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PREFACE 

T h e  a i m  o f  t h i s  m o n o g r a p h  i s  t o  s h o w  t h a t  t h e  m e t h o d s  u s e d  b y  G e n t -  

z e n  i n  h i s  s e c o n d  c o n s i s t e n c y  p r o o f  f o r  n u m b e r  t h e o r y  c a n  b e  e x t e n d e d  

a n d  u s e d  i n  o r d e r  t o  e x h i b i t  p r o p e r t i e s  o f  m a t h e m a t i c a l  i n t e r e s t  o f  

c e r t a i n  i n t u i t i o n i s t i c  s y s t e m s  o f  a n a l y s i s .  T h e  m o n o g r a p h  h a s  i t s  

root in a paper [8 ~ in which familiar properties of number theory 

have been derived with the aid of Gentzen methods. An outline of the 

material contained in chapter IV has been presented at the Buffalo 

conference on intuitionism and proof theory (1968) [9], while other 

parts have been discussed in seminaries on mathematical logic at the 

university of Basel. A detailed introduction, containing a review of 

the content of the monograph, is given at the beginning of chapter I. 

The author would like to express his gratitude to the Swiss national 

foundations whose financial support made this work possible. Thanks 

are also due to the Freiweillige Akademische Gesellschaft Basel which 

supplied the major part of the typing costs. 
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CHAPTER I: 

Introduction and preliminaries 

1.1@ Introductory remarks 

A__t@ The work presented in this monograph consists essentially of 

two components: l) the results which are proved, 2) the techniques 

which are used in proving them. Let us begin with a quick review of 

the kind of results which we are going to prove. For certain in- 

tuitionistic theories T and certain families F of formulas we 

are going to prove a statement (to be denoted by (s) in the se- 

quel) of the following kind: 

(s) 
A,B, 

a) If 

b) If 

that 

c) If 

that 

Let AI,..o,A s be closed formulas from F and 

(E f)C(~), (Ex)D(x) be arbitrary closed formulas. 

A1,...,As, T ~A VB then A1,...,As, T~ A or A1,...,As,TkB. 

A I ..... As, T ~(E ~)C(~), then there is a functor F such 

A 1 .. A T ~ (C(F) holds. 
~. , S ~ 

A 1 ..... AS, T ~ (Ex)D(x) then there is a numeral n such 

A 1 . . . . .  As, T~ D(n) h o l d s .  

The language from which the formulas of the theories to be consi- 

dered are constructed, is that of second order arithmetic, that is 

essentially the language used in the book of Kleene-Vesley. The 

theories T for which we are going to prove statement (S) (and 

whose exact definition will be given in the course of the work) are 

theories which are obtained from intuitionistic number theory by 

addition of certain axiom schemas of transfinite induction. Among 

these we mention in particular: l) an intuitionistic theory which 

has the same strength as classical analysis, 2) the intuitionistic 

theory of barinduetion with respect to primitive recursive wellfoun- 

ded trees, 3) the intuitionistic theory of barinduction with respect 

to decidable wellfounded trees. The families F which are admitted 

in statement (S) are: l) a family F of formulas considered for the 

first time by R. Harrop in ~2J , and which we call for simplicity the 

family of Harrop formulas, 2) the subfamily of classically true 

Harrop formulas. Two major applications will be presented: l) an 

application to questions connected with the Marker principle, 

2) a relative consistency proof of the classical theory of barin- 

duction with respect to wellfounded primitive recursive trees modulo 
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a weak system of intuitionistie analysis. Many further applications 

of the methods developed here have been omitted in order to keep the 

size of the monograph within reasonable limits. 

B. Before proceeding further we would like to stress the fact that 

our results are not contained in the results obtained by Kleene in 

~63 (which are perhaps more interesting from an intuitionistic point 

of view) who proves the statement (S) for the system treated in 

ESJ, but without the family F and the formulas A 1 ..... A s . On the 

other hand Kleene~ result is not contained in ours and there are 

reasons which suggest that there is no straightforward extension of 

our technique in order to recover Kleene~ result. 

C. Now a few words about the techniques used in this work. A first 

application to intuitionistic systems of the methods used in Gentze~s 

second consistency proof has been presented in ~SJ , where several 

familiar properties of intuitionistic number theory have been derived 

by means of Gentzen~s techniques; among others we mention in particu- 

lar statement (S), a result which has for the first time been 

proved by R. Harrop in E2 3 (with F the family of Harrop formulas, 

of course). At about that time, the author discovered what he calls 

the basic lemma; he then recognized that the basic lemma permitted a 

proof theoretic treatment of certain intuitionistic systems of ana- 

lysis, some of them as strong as classical analysis. The basic lemma 

really deserves its name as the reader will see; everything presented 

in this work depends completely on its validity. 

At first sight one might believe that the restriction to intuitio- 

nistic systems of analysis in this work is due to a deficiency of the 

method and that more refined methods permit us to treat classical sy- 

stems in a similar way. However, by using a result due to Kreisel 

(whose proof he sketched in the first volume of the Stanford report 

[12J ) one can show that the techniques used by Gentzen in his second 

consistency proof cannot be applied to sufficiently strong systems of 

classical analysis if they are formulated in the language of second 

order arithmetic. Hence, one of the main reasons, why proof theoretic 

methods can successfully be applied to the systems considered in this 

monograph is that this systems are intuitionistic. 
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D__ t. As mentioned, there are many results which the author did not 

present in this monograph. However, there are also many problems 

which came up in the course of the work, which the author could not 

solve. Among these we would like to mention just one: to recover 

Bachmann~ ordinal __ ? ~ + l  (1) from the reduction technique presented 

in chapter Vo 

E__~. Next, some words about the organisation of the work. In chapter I 

we present preliminaries and list the formal systems which will find 

consideration later on; some elementary properties of this systems 

are discussed. In chapter II we present a short repetition of @ent- 

zen~s second consistency proof together with a mild generalization. 

In chapter III we discuss the application of Gentze~s methods to in- 

tuitionistic number theory; the basic lemma is proved. In chapter IV 

we consider an intuitionistic system (call it TO) which is as strong 

as classical analysis and show that Gentze~s proof theoretic methods 

can be applied to this system. For this system we prove among others 

a weak version of statement (S), that is, statement (S) but with- 

out F and A1,...,A s . An outline of the material contained in 

chapter IV has been presented at the Buffalo conference of proof 

theory and intuitionism ~gJ • In chapters V, VI and VII we consider 

consecutively three systems of intuitionistic analysis; we denote 

them by T1, T 2 and T 3 for the moment being. Theory T 1 is equi- 

valent to the intuitionistic theory of barinduction over wellfounded, 

primitive recursive trees, with function parameters absent. In order 

to explain the strength of T 2 let T~ be the classical theory of 

barinduction over primitive recursive wellfounded trees, with func- 

tion parameters admitted° Next, for any formula A, let A 0 be the 

result of replacing V and E by V , A and V in the well-known way 

described eg. in E4J , P. 493. Now T 2 is a formally intuitionistic 

theory having the property : if the sequent ) A is provable 

in T~ then > A 0 is provable in T 2 . The theory T 3 finally 

is essentially equivalent to the theory which one obtains if one 

omits from the system of Kleene-Vesley the axiom of choice and the 

axiom of continuity. For each of these systems we prove the weak form 

of statement (S) (that is without F and A l ..... As) with the aid 

of a method which differs considerably from that one used in chap- 

ter IV. The advantage of this method becomes clear in chapter VIII, 

which is so to speak the main chapter of our monograph, in that it 

contains the most general results. In this chapter we prove three 

results: l) as a preparation full statement (S) for intuitionistic 
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number theory, with F the family of Harrop formulas, 2) statement 

(S) for the intuitionistic theory T O of chapter IV, with F the 

family of classically true Harrop formulas, 3) statement (S) for 

the intuitionistic theories T 1 and T3, (considered in chapter V 

and VII) with F the full family of Harrop formulas. In order to 

prove 2) we use the methods of chapter IV combined with some new 

ideas involved in the proof of i), in order to prove 3) we use the 

methods of chapter V and VII respectively, combined with the ideas 

used in the proof of i). Chapter IX contains some applications of 

the results obtained in chapter VIII to questions centering around 

the Markov principle. Its main result is the following: (with F 

the family of Harrop formulas) if AI,...,A s ~F and if 

AI,...,AI, T 3 is consistent then Markov~ principle is not deri- 

vable from AI,O..,As, T 3 . Chapter X finally contains a kind of 

consistency proof for the theory T 2 (and hence for T~) consi- 

dered in chapter VI. More precisely we show that the consistency of 

T 2 can be reduced to the consistency of a certain (seemingly) weak 
A 

subtheory T 1 of T 1 . The basic idea used is the following: one 

shows that the apparently unconstructive method used in chapter VI 

can be made constructive to such an extent that it can be formalized 
A 

in T 1 

F__ u Now some remarks about the presentation. The presentation is not 

polished and many similar things are presented in a different way at 

different places. The reason for this is that many results were found 

when the monograph was already under preparation (in particular the 

results in chapters VIII and IX). It would have been possible to con- 

dense chapters V, VII and VIII into one single chapter. The reason 

for not having done this is that it would have been difficult for the 

reader to grasp the simple mathematical ideas which lie behind the 

sometimes rather involved syntactical considerations. Most of the 

theorems stated in this work are proved in detail; however, if a 

proof is only a slight variant of an other, similar one, given ear- 

lier, then we content ourself with an outline or an indication. An 

exception is perhaps the consistency proof presented in chapter X. 

There, we did not present all the details, since this would have in- 

creased the size of the monograph considerably. However, we have 

worked out the consistency proof to such an extent that it will be- 

come clear to the reader that the details omitted can be supplied 

without difficulty° 
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G. The monograph is not selfcontained. The reader is supposed to 

have a good knowledge of Gentze~s second consistency proof [iJ and 

at least a superficial knowledge of ~ 8J .Concerning ordinal nota- 

tions the reader is supposed to be familiar with the ordinal func- 

tions ~n(~) , ~ $i ~ , ~ + ~, ~/~ and their properties, such as dis- 

cussed in SchGtte~ book flO 7 . It is not absolutely necessary, but 

highly recommendable to have some further familiarity with Sch~tte~ 

book. Finally, it is indispensable for the reader to be familiar with 

Kleene~ "Introduction to Metamathematics" f4~ , at least with that 

parts which are concerned with sentential calculus and recursive 

functions. 

1.2. Preliminaries and notations 

A. In this section we collect some notions and notations which will 

be used throughout the rest of this work. We start with a few re- 

marks on primitive recursive functions. By N we denote the set of 

natural numbers, if not otherwise stated. By N N we denote the set 

of mappings from N into N , that is the set of one place number- 

theoretic functions (or sometimes simply numbertheoretic functions). 

If S is any set, then S n denotes the n-fold cartesian product of 

S ; if el, o..,S m are sets then SlX...xS m denotes the cartesian pro- 

duct of S1, o.o,S m . A function of type (s,t) is a mapping from 

(NN) s x N t into N ; a functional of type (s,t) is a mapping from 

(N~)S ~t NN x into . If s=t=O , then f will be identified with 

an element in N , while F will be identified with an element in 

N N . Let f be a function of type (s,t+l) . With f we associate 

a functional F of type (s,t), which satisfies the following equa- 

tion: for all gi ~NN ' i=l, ...,s and all n,nl, ...,n t ~N 

F(g I ..... gs,nl ..... nt)(n)=f(g I ..... gs,nl ..... nj,n,nj+l ..... 'nt) 

(with 1 L_ j L_t)o The uniquely determined F will be denoted by 

.f or ~f in case j=t, or also by Aj 
AYf(C~ . . .  C ~ s , X l ,  . .  x j , y , x  , ' ' " ' j+l ° " ° 'xt) ' where c~j,x k indicate 

function and number arguments and where y is "bound" by the ab- 

straction operator 

In this work it is convenient to use a particular notion of primitive 

function and primitive recursive functional° Their inductive defini- 

tion is given by the clauses listed below, where Greek letters 
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i' ~k represent elements from N N, while xi,Y k run over N o 

a) The natural numbers are primitive recursive (poro) functions of 

type (0,0). b) The successor function s (of type (0,1)) given 

by s(x)=x+l , is a p.ro function, c) The functions f:,t of type 

(s,t), given by f:,t ( ~l ..... Ys'Xl ..... xt)=xi (l~i %t) , are 

_s,t of t y p e  (s,t), given by p.ro functions, d) The functions ~i,k 
fs,t 
i,k (~l ..... ~ s,Xl ..... xt)= ~i(Xk) , are p.r. functions 

~. L l~k~t), e) If f of type (s,t) is p.ro then (with l~1~s, 

~ i f (l~iL_t) is a p.ro functional, f) Let f of type (s,t+l) 

and g of type (a+b,c+d) , with a~s , c~t , be p.r. functions. 

> ~ . and ~ i ..... ~b and Let ~ , ~ , x be short for ~l .... ~s 

xl,o..,xt+ d respectively; assume l~i ~t . 

The function 

f (  ~ ' X l  . . . . .  x i  'g( ~ l  . . . . .  % '  [ 'Xl  . . . . .  Xc'St+l  . . . . .  X t + d ) ' X i + l ' ' ' ~ t  ) 

is a poro function of type (s+b,t+d) g) Let f be a poro func- 

tion of type (s+l,t) and F a p.ro functional of type (a+b,c+d) 

~.~ ~ 
with a ~s , c ~t ; assume 1 =I =s . Let ~ , ~ be as before. 

The function 

f( G1 . . . . .  G i  'F( G1 . . . . .  Ga '~ 'X l  . . . . .  xo ' x t+ l  . . . . .  Xt+d) ' 

G i + l  .... ' ~s'xl .... 'xt) 

is a p.r. function of type (s+b,t+d). h) Let f and g be p.ro 

functions of type (s,t) and (a+b,c+d) respectively, with 

a ~ s , c ~t . Assume l~i~s+d+l . Then we can define a function~ 

by means of the following inductive clauses: 

: G,x I ..... xt), 

2) ~ ( ~  ~ ~,x,n+l) = g ( ~  f ~ ~w  
' Z , , x  l ,  . . .  , x  i , n , x i + l ,  . . .  , X t + d , ~ ( ~ , [ , x ,  n)) .  

T h e n  i s  a p . r o  f u n c t i o n  o f  t y p e  ( s + b , t + d + l )  ( w i t h  ~ , a n d  x 

a s  b e f o r e ) . C l a u s e s  f ) ,  g )  s i m p l y  s t a t e ,  t h a t  t h e  s e t  o f  p o r o  f u n c -  

t i o n s  i s  c l o s e d  u n d e r  s u b s t i t u t i o n ;  h )  m e a n s  t h a t  t h e  s e t  o f  p o r o  

f u n c t i o n s  i s  c l o s e d  u n d e r  p r i m i t i v e  r e c u r s i o n o  W e . n o t e  t h r e e  f a c t s :  

l )  t h e  f u n c t i o n s  f g i v e n  b y  f ( ~ , ~ ) = n = c o n s t a n t  a r e  p o t .  f u n c -  

t i o n s  in virtue of clauses a),o) and f ) ,  2) if f is a poro func- 

tion and and y permutations of ~ and x respectively, then f*, 

given by f*(~ ,y)=f(~ ,~), is a poro function, 3) if F is a por. 
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functional of type (s,t+l), then f , given by 

f( ~ ,x,y) = F(~,~)(y) , is a p.r. function. 

B. Sequences of numbers are codified in the usual way: 

ao+l as_l+l 
with ao,...,as_ 1 we associate the number Po .... Ps-1 , where 

po,Pl,.., is the list of primes, starting with 2 and listed in 

ao+l as_l+l 
increasing order. A number of the form Po .... Ps-1 is called 

sequence number. Sequence numbers will usually be denoted by letters 

such as u,v,w,ul,Vl,Wl,.., etc.; the sequence number associated 

with ..... a will also be denoted by < . ~ The 
ao' s-i ao' "''as-I " 

empty sequence is represented by 1 and often written as < >. 

Concatenation of u = <a O ..... as_ 1 > with v = ~ b O ..... bt_l ~ 

is given by <a ° ..... as_l, b e .... ,bt_l~ and written as u * v . 

As length of u= ~a O ..... as_ 1 ~ we take s ; we write length(u)=s 

or simply l(u)=s If u= ~a ° ..... as_l ~ and if f is a one 

place numbertheoretie function then u*f denotes the one place hum- 

bertheoretic function g given by: i) g(i)=a for i<s , 

2) g(i)=f(i-s) for i~s With f ~N N and n~N we can associate 

the sequence number <f(0) ..... f(s-1) ~ , which will be denoted by 

f--(s) . Sequence numbers can always be represented in the form ~(s). 

A partial ordering f- can be introduced as follows: l) if n~Km 
--K 

then n and m are sequence numbers, 2) for f,g ~N N, f(s) ~K~t ) 

iff S~ and f(i)=g(i) for i<t . The Kleene-Brouwer partial orde- 

ring ~ K  is given by: n ~K m iff n~m and n ~K m . There is a 

well known total linear ordering of sequence numbers, the so-called 

Kleene-Brouwer linear ordering. It is denoted by ~K and its defi- 

nition is as follows: I) if n ~Km , then n and m are sequence 

numbers, 2) for f,g ~N N , f(s) ~Kg(t ) iffeither f(s) ~Kg(t ) or 

else ~(i)=g(i) and f(i+l) ~g(i+l) for some i~min(s,t)-l. The 

sequence number u=<ao,...,as_ 1 

of f~N N if ~(s)=u. 

is said to be an initial segment 
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C. Another important notion is that of continuity function. An ele- 

ment T ~ (NN) s is said to be a continuity function if the following 

holds: l) if ~ (n I ..... ns)~0 then all n i are sequence numbers 

and length (hi) = length (hi+l) for i=l ..... s-l, 

2) if ~ (fl(n) ..... ~s(n))~0 and n ~ m , then 

T(f--l(n ) ..... L(n)) = ~(f--l(m) ..... fs(m)) (with fl ..... fs ~NN)' 

3) for every s-tupel fl,..o,fs of elements from N N there is an 

, . . . .  N t n with ~ (fl(n) ,fs(n))~0 An element ~ ~ (NN) s x is said 

to be a generalized continuity function of type #s,t 7 if for every 

t-tupel of natural numbers n I .... ,n t -C (xl,...,Xs,nl,o..,n t) is a 

continuity function with respect to the variables Xl,oo.,x s o In 

order to exhibit the particular role of the first s arguments we 

sometimes write ~- (x I .... ,Xs/Yo, .... yt) instead of 

-~(xl, o.o,Xs,Yl,O..,Yt)o Generalized continuity functions can be 

used in order to describe the behaviour of primitive recursive func- 

tions, as the following theorem shows: 

Theorem: Let f be a p.r. function of type (s,t) . Then we find 

effectively a generalized poro continuity function ~ of type [s,tJ 

with the property: for all natural numbers m,nl,o.o,n t and all 

numbertheoretic functions fl,...,f , if 
S 

~(fl(m) ..... fs(m),nl ..... nt)=k+l , then f(fl ..... fs'nl ..... nt)=k° 

There are many elementary proofs of this theorem (see section 1.4 

for an indication); we omit the details of such a proof. A continui- 

ty function, having the properties described by the theorem will be 

called a continuity function related with f . The word "effective" 

could easily be made precise with the aid of partial recursive func- 

tions and Goedel numbers. 

Do The main formalism used in this work is that of Gentze~s sequen- 

tial calculus, also treated by Kleene in L 4 j . In connection with 

sequential calculus we adopt the notions and notations used by 

Kleene; as example we cite the notion of principal formula of a 

logical inference. An expression such as eg. > ~ indi- 

cates an inference "introduction of an implication on the right"; 

similarly with ~ > , ) /~ etCoo We also use capital 

Greek letters such as /~, ~ , f , ~ in order to denote sequen- 

ces of formulas. The following notation is very convenient: 

a) if S1,S 2 are premisses of a two-premiss inference and S its 
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conclusion then we express this by writing SI,S2/S , b) if S 1 

is the premiss of a one-premiss inference and S its conclusion 

then we write Sl/S 

E__~ Proofs in sentential calculus are treated in an obvious way as 

finite trees (infinite at some places); we call them proof trees or 

simply proofs. We could characterize such proof trees in a precise 

way (see eg. ~10J ); however, we omit such a characterization and use 

the properties of proof trees without proving them explicitly w~en- 

ever they are intuitively evident. With respect to formulas, sequents 

and proofs we have to be a bit careful in one respect: a formula can 

occur at several places in a proof and we should actually speak of an 

"occurence of a formula in a proof". However, in order to avoid leng- 

thy formulations we mostly simply speak of "formula in a proof". It 

will always be clear from the context whether the formula itself or 

rather an occurence of the formula in the proof is meant. Similar re- 

marks apply to formulas in sequents and to sequents in proofs. In 

most of the cases "formula in a proof", "formula in a sequent" and 

"sequent in a proof" mean "occurence of the formula in the proof" 

etc., Similarly we have to distinguish between a particular infe- 

rence, say S1,S2/S , itself and its occurences in a given proof. 

Again we speak of an "inference S1,S2/S in a proof P" meaning in 

most of the cases a particular occurence of S1,S2/S in P . Some 

further notions are needed in connection with proof trees. In order 

to explain them we do not fix the formal system, to which the no- 

tion of proof refers. All we have to know about this formal system 

is that all its inferences have the form S1,S2/S or S1/S . Consi- 

der a proof P and two occurences S and S' of sequents in P o 

We call S the successor of S' if there is either (an occurence 

of) a one premiss inference S1/S* in P or else (an eccurence of) 

a two premiss inference S1,S2/S* in P such that S' is S 1 or 

S 2 and such that S is S* ; we call S' a predecessor of S (the 

predecessor in the first case). A path in P is a list SI,O.o,S m 

of (occurences of) sequents in P such that Si+ 1 is the successor 

of S o (An occurence of) a sequent in a proof P , say S , is 

called an axiom, if S has no predecessors, or in other words, if 

S is an uppermost sequent in P ; the lowest sequent of P (the 

only one without successor) is called the endsequent of P o A se- 

quent S in P is said to be situated below the sequent S' in P 

if there is a path So,...,S m in P such that m ~ 0 and S'=S ° 
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and S=S m . We express this by writing S ~S' and use S ~ S' as 

abbreviation for S ~S' V S=S' o If S is a sequent in P then we 

can consider the set of those occurences of sequents S' in P for 

which S~ S' holds. If we restrict the tree relation to the set 

S'/S~S'~ then we obtain a subtree of P , called the subproof of 
# 

S in P and denoted by PS " The occurences of sequents in a proof 

P are sometimes also called the nodes of P . 

F__ u. We also need a small portion of ordinal arithmetics in our work. 

All that has to be known are essentially the ordinal functions 

~n( ~ ), C~ + i~ , o(~ and o~ ~ / (natural sum) and their properties. 

The reader will find everything needed about these functions in 

SchGtte~ book. 

io3. Languages, Syntax 

In this section we introduce the languages on which the systems con- 

sidered in this work are mainly based. 

A.I. The most important of the languages to be used is (apart from 

minor differences) that one used in ~5 J We denote it by L . The 

alphabet of L consists of the following symbols: l) the logical 

signs ~ , ~ , V , ~ , ~/, E which in this order denote conjunction, 

disjunction, negation, implication, all-quantifier and existential 

quantifier; 2) number variables x, y, z, x i (i< ~) etCo; 

3) variables for one place number theoretic functions ~, / , / , 

i (i< ~ ) etc.~ 4) an individual constant 0 $ 5) a denume- 

table list of constants fo' fl'''" for primitive recursive func- 

tions among which the first three f ,fl,f2 play a particular role 
o 

and are denoted by ' , + and x respectively; 6) for every fi- 

nite sequence ~ = du o .... ,Ux_ l~ of natural numbers a denumerable 

list g~ ~ (i~) of so called special function constants; u 
7) commas and parentheses; 8) the two-place predicate constant =, 

called equality; 9) the abstraction symbol ~ ; lO) the sequential 

arrow ) . With every constant f. we associate in a fixed way 
i 

an ordered pair of natural numbers ~ni,m i~ , called the type of 

f.. For i=O,1,2 these pairs are in particular ~0,1> ~0,2~ 
i 

and ~ 0,3 ~ respectively. Now we define the notions "term" and 

"functor" in the same way ~ as in f5 7 ' namely: l) number variables 
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and constants are terms; 2) the function variables are functors; 

3) the constants for special functions and the constants of type 

~0,1~ are functors~ 4) if F 1 ..... Fn. are functors and 

, , F I t I .. o,t are terms then fi(Fl "''' n. tl,...,tm. ) is a term; 
m. 

l 
5) if F I is a functor and t a term t~en F(t) is a term; 

6) if t is a term then ( ~ xt) is a functor. The particular 

terms 0,0' , (0 I)' etc. are called numerals° 

2. The inductive definition of formulas is given as follows: 

l) if tl,t 2 are terms then tl=t 2 is a prime formula, 2) if 

A, B are formulas then (A~B) , (AVB) , (~A) , (A~B) , 

(Vx)A , (Ex)A , (~)A and (E O~)A . If no confusion arises we 

omit brackets and use current abbreviations such as A 1VA21/A 3 for 

((ALVA2) ~/A3) eteo; universal quantification is often written more 

simply (x)A , ( ~)A o The notions "free occurenee of a number varia- 

ble in a term" ( k binds variables!) , "free occurence of a (number 

or function) variable in a formula" , "bound occurence of a (number 

or function) variable in a formula (term)" are introduced as in~4J , 

§ 18, but now taking into account the symbol ~ A closed formula is 

a formula without free variables (but special function constants may 

occur in it); a constant functor (term) is a functer (term) which 

does not contain free variables (but it may contain special function 

constants). 

Let t,ql, ooo,qn be terms, F,GI,o..,G m functors, A a formula, 

Xl,...,x n pairwise distinct number variables and ~l''''' ~m pair- 

G l ' ' ' ' ' G m ' q l ' ' ' ' ' q n A  we de- 
wise distinct function variables. By S 

i,~.., m,Xl,.-.,Xn 

note the expression which we obtain if we replace for each i every 

free occurence of ~i by G i and for each k every free occurence 

of x k by qk ; if no ~i and no x k occurs free in A then this 

G l ' ° ' ' ' G m ' q l ' ' ' ' ' q n F  and 
expression is simply A . The expressions S 
G l ' ' ' ° ' G m ' q l ' ' ' ° ' q n t  l ' ' ' ' '  m ' X l ' ' ' ' ' X n  

S are defined analogously. Clearly, the result 
l''''' m'Xl'''''Xn 

of this substitution is again a formula, a functer and a term respec- 

tively. Frequently we use more suggestive notations such as 

A(Gl,ooo,Gm,ql, o..,qn) etc. in order to denote the result of repla- 

cing ~l''''' ~m'Xl '''°'xn wherever they occur free. Of course, we 
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can also replace special function constants by funetors: 

... f are special function constants which occur in a 
if e~. i' ' s Fl, o..,FSA 

formula A , if Fl, ... ,F s are functors then S is the 
i~''' s 

expression which we obtain when we replace each by F. wher- 
/i i 

ever /i occurs in A. Similarly with a term t or a functor G in 

place of A . In this connection we use the notions "t is free for 

x in A" , "G is free for ~ in A" etc. which are defined in the 

same way as in ~4 ~ , § 18. We note: for every term t (functor F , 

formula A) there is an other term t' (functor F' , formula A') 

without special function constants, pairwise distinct function 

variables t~l ~i s ~s ~ f i' / s 
.... , ~ and special function constants ~ .... F 

' ' 1 SFt such that = S t t (or F = S or 
7 "''x ..... 

A = S i' ""' SA' One can easily prove that t' is essentially 

determined by t (that is up to the function variables ~i ..... ~q 

one is going to replace by ~i .... ' fs respectively). How- which 

ever we do not need this. We merely assume that the term t' has 

been associated in a fixed and well determined way: we call t' 

the term associated with t If t contains no special function 

constants, then clearly t=t' The variables C~I,...,C~s in 

which we are going to replace by ~i ..... ~s are called the 
l 

substitution variables of t' (with respect to t). 

t' 

3. We now make a convenient assumption which is supposed to be sa- 

tisfied throughout the whole work. 

Assumption A: With every constant fi we associate (in an effective 

way) once and for all a fixed primitive recursive function ~i of 

type <ni,m i> . Moreover this assignment is such that every pri- 

mitive recursive function ~ is associated with at least one fi 

In particular ~o is the successor function, ~i is addition and 

92 is multiplication. 

From now on we will work with primitive recursive functions in a li- 
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beral way and introduce special notations for particular ones when- 

ever we find it convenient. Let M be the set of terms and functors 

containing no special function constants. Taking assumption A as 

basis and making use of the remarks on primitive recursive functions 

and functionals stated in "Preliminaries and Notations" we can asso- 

ciate with every term t(~ I,..0, Ms,X l,...,xq) and every functor 

;(~i ..... ~s'Xl ..... Xq) belonging to M a primitive recursive 

function ~ ( ~I,..., O<s'X l,...,xq) and a primitive recursive func- 

tional ~( ~i ..... ~s,Xl ..... Xq) respectively in an obvious and well 

determined way. Of course this assignment is defined in such a way 

as to be compatible with the inductive definition of terms and func- 

tore: if eg. ~ is associated with t then ~ x ~ is associated 
k 

with (~xt), if in turn F is associated with F and ~with t, 

then ~(~) is associated with F(t) etc. We call ~ the primitive 

recursive function associated with t or more briefly the primitive 

recursive function of t and F the primitive recursive functional 

associated with F (of F). As pointed out in "Preliminaries and 

Notations" one can relate with every primitive recursive function 

~( ~i ..... ~s'Xl ..... xt) a generalized continuity function 

(Yl .... 'Ys/Xl .... 'xt) which "describes" the behaviour of -~ for 

its arguments in the way explained in "Preliminaries and Notations". 

Definition O: Let t be a term in M , fits primitive recursive 

function and ~ a (generalized) continuity function related with 7 . 

Then we call ~ a continuity function of t related with t. 

Assumption B: With every term t from the set M we associate in 

an effective way once and for all a fixed continuity function q~ 

related with t , called the continuity function of t. 

There are many possibilities of associating with a term t a conti- 

nuity function L related with t . A particular way of doing this 

will be described at the end of the next section; this particular 

assignment will find application in chapter IX. 

Definition i: Let t be a term containing no free variables, let 

~>i ..... ~L be the list of special function constants occuring 

u I u s 
in t , let t' be the term associated with t and 

i' "'"' ~ s its substitution variables (with respect to t). Let 
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finally q~(yl,..o,Ys) be the continuity function of t' . We say 

that t is saturated if -~ (U~l ..... ~s) is greater than zero. In 

(u 1 this case we denote the number ~ .... ,Us)-i by ~t/ 

In other words, if ~g. a( C~ , / ) is a term from M , whose only 

free variables are the function variables p if /> 
is its primitive recursive function, if f u ' ~ ~ are two con- 

(f~ ~) is saturated if we stants for special functions, then q ' v 

are able to calculate the value of ~ (f,g) under the sole assump- 

tion that u is an initial segment of f and ~ an initial seg- 

ment of g . At this point we can briefly explain the role of the 

2 
s p e c i a l  f u n c t i o n  c o n s t a n t s  , C~.> , . . . .  I n  t h e  f o r m a l  s y s -  

u u 
t e r n s  w h i c h  we  a r e  g o i n g  t o  c o n s i d e r ,  t h i s  s y m b o l s  a r e  t r e a t e d  l i k e  

c o n s t a n t s  f o r  f u n c t i o n s .  T h e i r  s e m a n t i c a l  m e a n i n g ,  h o w e v e r ~ i s  r a t h e r  

t h e  s a m e  a s  t h a t  o f  f u n c t i o n  v a r i a b l e s :  0(..~. 1 r e p r e s e n t s  s o  t o  s p e a k  
u 

a f u n c t i o n  f , a b o u t  w h i c h  we o n l y  k n o w  t h a t  f ( i ) = u ,  f o r  i ~ n 
1 

where u = <u ° ..... Ux_ l> and which is undetermined otherwise. In 

principle one could avoid the use of special function constants; 

their introduction, however, turns out to be very convenient. 

5. Next we need 

Definition 2: Two formulas 

other) if there is a formula 

A,B are called isomorphic (with each 

C(Xl,...,Xs) containing the free indi- 

vidual variables Xl,...,x and two lists of saturated terms 
s 

tl,... ,ts and ql'''''qt such that: a) lqil = ti for 

i=l .... ,s , b) C(t I ..... ts ) is A , c) C(q I ..... qs ) is 

Similarly for terms p,q and functors F,G 

6__ u. Sequents are expressions of the form AI''" °'As > BI'''''Bt' 

where the formulas A.I or the formulas B k or both may be absent. 

The list A l ' ' ' ' ' A s  i s  c a l l e d  t h e  a n t e c e d e n t ,  t h e  l i s t  B 1 , . . . , B  t 
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the succedent. Prime formulas are those of the form tl=t 2 . A se- 

quent which contains only prime formulas is called a prime sequent. 

A saturated prime sequent is one which contains only prime formulas 

tl=t 2 with tl,t 2 saturated. 

7. It remains to explain what a true prime sequent is. To this end, 

let t I ...,t be a list of terms, let 
S 

be an enumeration (without re- 

u 1 
petition) of the free P function variables, free num- 

ber variables and special function constants which occur in at least 

one t. . A list ~ ,..., ~ , ~ ,..., of special 
i v I v m w I Wp 

function constants and a list of numerals nl,...,n q is called a 

saturating list for tl,...,t (with respect to the given enumera- 
S 

tion) if the following holds: a) every ~. is a (proper or impro- 
i 

per) extension of ~i b) replacement of ~i by ~ i , • ~ , of 

V. 

/ ! b y  and of x k b y  rl k (i=l . . . . .  m , j=l . . . . . .  p , 
U .  W .  

J J 
k = l,oo.,n) transforms every term t into a saturated term t ~ 

q q 

We express the relation between tl,...,t ,t~,...,t' the enume- 
S S ~ 

ration ~l ..... ~m'Xl ..... Xq' / l~ /P and the saturating 

1 4 1  P ~m ~l ~p 
''''~ .,o list ~i ~ , Wl> ,o--, ~ ,n I, ,nq briefly by say- 

m p 

ing that the given saturating list transforms tl,.., t into 
~ s  

tl, • t' without mentioning the enumeration " ~ $ 

i,''-, ~m,Xl .... ,Xq, ~ ,.--, ~ explicitly° Now to the 
u I Up 

truth definition for prime sequents. If the sequent S , which we 

assume to be given explicitly by 

tl=Pl'''''ts=Ps ~ ql~rl, ...,qt=rt , is saturated,then S is 

of course true if either /ti] ~ / Pi) or I qk I = Irk[ for at least 

one i or k . Now assume that S is not saturated. Then S is 

called true in the first sense if every saturating list for 
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tl, o. O,ts,Pl,...,ps,ql,...,qt,rl, o..,r t transforms this list into 

tl, o oo,t's,Pl, °'''Ps'ql " ° ° °'qt'rl " ' ° ° °'r~ such that the (necessarily 

saturated) sequent S' : '- ' '- ' ~ '- ' '- ' tl-P 1 , .. o ,ts-P s ql-rl , • . . ,qt-rt 

is true° There is of course another more natural definition of 

truth for prime sequents. Let S be as above and let 

~i ' ' f q' be the primitive recursive functions asso- 

ciated with t.1 ' Pj ' qk ' rh respectively. Then S is true in 

the second sense if the following holds : in whatever way we put 

functions and numbers at the respective argument places of 

t ~ p ~q ~r 
~i ' ~ j ' ' h ' 

the resulting intuitive implication 

yr 
"if = for all i N s~ then k = k for at least one k " 

is true° For us it is useful to note the following, easily provable 

fact: a prime sequent is true in the first sense if and only if it 

is true in the second sense. This closes our discussion of the lan- 

guage L and the concepts immediately related with it. The dis- 

cussion of the notion of truth for arbitrary formulas and sequents 

will be postponed to a later section. 

Bo On many occasions we have to consider formulas and sequents 

which are constructed with respect to a certain restricted language 

L* o This language L* is obtained from L merely by deleting the 

constants for special functions. Then all definitions and state- 

men~s made in part A of this section specialize immediately to 

the case of the language L* , by omitting all references to spe- 

cial function constants. The resulting notions then essentially 

coincide (apart from minor differences) with the corresponding 

notions in 1.3.,A. 

io4o Some basic systems 

The aim of this section is to introduce some formal systems which 

will serve as basis for all later considerations. One of these sy- 

stems is essentially number theory, formalized in terms of senten- 

till calculus. All these systems have L and L* respectively as 
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their basic languages. 

A__ t. Let fi,fj,fk be three different constants for primitive re- 

cursive functions and let ~i' ~j' ~k be the primitive recursive 

functions associated with fi,fj,fk respectively. The types of 

f. ,f. and fk are for simplicity assumed to be <i,i> ~1,3> 
1 O 

and <1,2> respectively. Now let us assume that ~k is defined 

from y and ~. by means of the following recursion scheme: 
#J 

l) ~k(~,O,x)= ?i(O(,x) , 
2) ~k(~,y+l,x) : ~j( O< ,y, ~k( O<,y,X) ,X ) o Then we call the 

following two sequents the defining sequents of fk : 

) fk(~ ,O,x)=f i (O< ,x) ' /x fk (dX,y , ,x )=f j (O( ,y , fk (~ ,y ,x )N) .  
Similarly let gl,g2,hl,h2,f and f* be a list of different con- 

stants for primitive recursive functions. For simplicity we assume 

that the types of this constants are ~1,2> , ~1,2> , ~l,1 > , 

<l,l>, <2,2> and <l,l> respectively. Let ~l(C<,x,y) , 

~2 (O<,x,y), fl (O<,x) , f2 (dE,x) , ~ (C<,x) and 

( ~l'~ 2'Yl'Y2 ) be the primitive recursive functions associated 

with gl,g2,hl,h2,f and f* respectively. Now let us assume that 

~(C~,X) is defined from fl' ~2'fl'f2 and ~ by means of 

substitution as follows: 

e(ny 
Then we call the following sequent the defining sequent of f : 

> f ( ~  ,x) = f * ( A y g l ( g ~ , x , y ) ,  X y g 2 ( ~ , x , y ) , h l ( g K , x ) , h 2 ( ~ , x ) )  
If constants of more general types are involved then the correspon- 

ding definitions are of course completely analogous. Next, let 

fi and fk be two constants, whose associated primitive recursive 

functions ~i ( 0<i , . . . , C~n" ,x I ..... Xm. ) and 
1 1 

/k(~l ..... ~nk,x I ..... xmk) 

yi(~l ..... C~ni,x I .... ,Xm.) 
1 

satisfy the equations 

= ~ j ( X r )  ( j ~ n  i r~m i) and 

Y k(~ i' " ° °' ~n k ,Xl, ...,xmk) = Xp (P~mk) respectively° In 

this case we call > fi(~l ..... ~n ,Xz ..... Xm ) = ~j(Xr) the 
1 i 

defining sequent of fi and > fk(C~l .... , O(nk,xl,o..,xmk )=xr 

the defining sequent of fk respectively. Finally, if fi has as 

associated primitive recursive function the successor function 

y i(x)=x+l~ then we take as defining sequents of f. the follow- l 

ing ones: fi(x)=fi(y) > x=y and fi(x)=0- ) . Thus 
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the defining sequents of ' (that is fo) are x'=y ~ ~ x=y 

and x'=O ~ , the defining sequents of + (that is fl) are 

x+O=x and ) x+y'=(x+y)' and the defining sequents of 

x finally are > x x 0 = 0 and > x x y' = x x y + x o 

Notation: from now on we write a . b or sometimes even more simp- 

ler ab in place of a x b . Remark: Up to now the assignment of 

Fi with f. has been arbitrary except that both have to be of the 
l 

same type and that assumption A has to be satisfied. One can al- 

ways choose this assignment in such a way that the following assump- 

tion is satisfied. 

Assumption C: Every primitive recursive function ~ occurs exactly 

once in the list Fo' fl' F2 .... Each fi is either a basic 

function or defined in terms of previous ones by means of substi- 

tution or the schema of primitive recursion. 

Actually, we never make use of assumption C; however the reader who 

likes can always assume C to be satisfied. 

B. A sequent which contains at most one formula in the succedent 

will be called normal. Next let S be a sequent without constants 

for special functions, whose list of free variables is given by 

i''''' ~s ' Xl'''''xt Then S' is called a substitution in- 

stance of S if there is a list of functors FI,O..,F s and terms 

ql'° "" 'qt (with Fi free for O~i and qk free for Xk) such that 

S' is obtained from S by replacing for each i every free occu- 

rence of ~i by F.I and for each k every free occurence of x k 

by qk " Of course, S is a substitution instance of itself. Now 

we define some sets of sequents. M is the set of all sequents of 
O 

the form ~ ( ~ xt(x))=t(q) where q is free for x in t 
i 

M 1 is the set of all true, saturated normal prime sequentso M 2 is 
i 

the set of all defining sequents of fi ; hence M 2 contains one or 

two sequents according to which of the cases, which have been listed 

UM i under A , applies to fl M~ is i 2 . Finally, a sequent S' 

is in M 2 , if and only if it is a substitution instance of some se- 

quent S in M~ . By M 3 we understand the set which contains pre- 

cisely those sequents having one of the following forms: 

t=p, p=q > t=q , t=p ~ p=t , > t=t , 

t=p ) S~q=S~q (with t,p free for x in q ). Next, 
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M 4 is the set of sequents of the form D ~ D' where D and 

D' are isomorphic. As M5 we take the set of all the sequents 

> ~(j)=k, where u = dUo ..... Un_l> , j <n and uj=k o 

Finally, let M~ be any set of true normal prime sequents net con- 

taining special function constants and let S' be in M 6 if and 

only if it is a substitution instance of some S in M~ . The set 

M~ (and hence M 6 ) is allowed to be void. 

Remark: If we agree to associate with ~ (x) the continuity func- 

tion ~ (~/x) given by T (~/x)=0 for x ~n and W (~/x)=ux+l for 

x<n where ~ = lUo ..... Un_l> ~ then M 5 is of course a subset 

of M 1 according to defo 1 In order to exhibit the particular 

role of the special function constants we have preferred to consi- 

der them separately. 

We no~ the trivial 

Lemma O: If S ~ ~ M. and if S' 
0 l 

S then S' ~ ~ M. too. 
o 1 

is a substitution instance of 

Clearly, all sequents in ~ M. are normal. 
0 1 

C. Now we introduce a formal system ZT whose structure is essen- 

tially that of number theory except that it may contain additional 

true normal prime sequents as axioms (namely those in M 6 ). The 

set M of axioms of ZT is ~ M. o The rules of ZT are the 
O 1 

following ones: l) the structural rules of sentential calculus 

such as thinning, interchange, contraction and cut; 2) the propo- 

sitional rules of sentential calculus; 3) the four quantifier rules 

for number quantification, namely 

a) A(t), ~ > L~ b) ~-~ > ~ ,A(y) 

(~/x)A(x) ,  ~ ) ~ ~-~ ) ~ ,(~x)A(x) 

c) A(y), ~--~ ) ~ d) ~ > ~ ,A(t) 

2A V 

where t is a number term free for x in A(x) , where y does 

not occur free in the conclusions of b) and c) , and where y 

is free for x in A(x) 
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4) four quantifier rules for function quantification, namely 

(V~)A(O<), / > A V > zi, (W)A(~ ) 

/ 

(EO()A(O( ) , F > "/~ /--- > ~  , ( ~ o < ) A ( o < )  

where F is a functor free for C~ in A(~), where / does not 

occur free in the conclusions of b') and c'), and where / is 

free for O< in A(~); 

5) a so-called conversion rule (or more briefly conversion) 

AI,...,A s > BI,..o,B t 

A i .... ,A,s > BI,..o,B~ 

where A and B are isomorphic with A' and B' respectively~ 

6) the induction rule 

A(~), ~ > A ,~(~') 

F > ~ ,A(t) A(O), 

with t a term free for x 

Rule 5) is just another version of SchGtt~s "Umsetzungsregel" EIO], 

also used in [8 J . What we understand by a proof in ZT is clear; we 

will always consider proofs as certain finite trees of sequents (at 

many places however we will have to consider infinite trees!). In 

particular, there is the notion of pure variable proof, introduced 

i n  f4J, § 78° 

D. Let ZT' be the system which differs from ZT only in that it 

contains no conversion rule. Let ZT* be that subsystem of ZT ~ 

which we obtain by dropping special function constants; that is~a 

proof in ZT' is a proof in ZT* if it contains only formulas 

built up from the symbols of the language L* The following lemma 

is easily provable: 
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Lemma l: a) If a sequent S is provable in ZT then in ZT' 

b) If a sequent S which does not contain special function con- 

stants is provable in ZT' ~ then it is provable in ZT* . 

Hint: If S is as in pto b) of the lemma and P a proof in ZT' 

of S, then we obtain a proof P* in ZT* of S by replacing eve- 

ry special function constant ~ in P by a constant functor F~ 

whose associated primitive recursive function(al) ~has ~ as ini- 

tial segment. Concerning pt. a) it is sufficient to note that we can 

derive the conclusion A~ ..... A~ > B~ ..... B~ of a conversion 

from its premiss A1,...,A s ) B1,...,B t by means of structural 

rules with the aid of the axioms A! ~ A. and B k ~ B~ o 
I i 

E__t~ A proof P in ZT (in ZT* , ZT') is said to be intuitionistic 

if it contains only normal sequents, that is sequents which contain 

at most one formula in the succedent. By restricting attention to 

intuitionistic proofs we obtain the subsystem ZTi of ZT , called 

the intuitionistic version of ZT* and ZT' , to be denoted by ZTi* 

and ZTi' respectively. Of course, we have the 

Lemma 2: a) If S is provable in ZTi then in ZTi' 

b) If S does not contain special function constants and is pro- 

vable in ZTi'~ then it is provable in ZTi* 

The justification of the term "intuitionistic" will be given below. 

F. With each of the systems ZT* and ZT' we associate a corres- 

ponding Hilbert-type system ZH* and ZH°~ respectively. We give 

only the description of ZH ° ; the description of ZH* is complete- 

ly analogous° The formulas of ZH ° are the same as those of ZT 

The set MA of mathematical axioms of ZH* is given as follows: 

a) if S ~ M i has the form AI,...~A s ) B with antece- 

dent and succedent both nonempty, then 

A 1 ~ ( A  2 ~ ... ~ ( A  s ~ B)...) is in NA ; b) if 

S ~ N i has the form ) B then B ~MA % c) if S ~ M i 

has the form A1,...,A s ) then 

A 1 ~ (A 2 ~ ..... ~ (A s ~ 0=l)...) is in MA 

d) F ~NA only in virtue of a), b), c). The so-called logical 

axioms listed in ~4J , p. 82 (such as A ~(B ~ A) , 

A ~ A k/B etc. for all formulas A,B); b) two groups of axioms 

for number quantification, namely (x)A(x) ~ A(t) and 
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A(t)~ (Ex)A(x) with t free f o r  x in A ; c) two groups of  

axioms for function quantification, namely (~)A( ) ~ A(F) and 

A(F) ~ (E~)A(O{) where the functor F is free for C~ in A ° 

Finally, we have the group of induction axioms: 

A(0)/~(x)(A(x) ~ A(x')) ~ .A(t) with t free for x in 

A(x) .The rules of ZH are: a) modus ponens A; A ~ B / B; 

b) two rules for number quantification C ~ A(x) / C ~ (x)A(x) 

and A(x) ~ C /(Ex)A(x) ~ C with x not free in C ; c) two 

rules for function quantification C ~ A(c~) / C ~ (~)A(~) and 

A(~) ~ C / (E~)A(~) ~ C with O( not free in C . 

The corresponding intuitionistic version of ZH e , to be denoted by 

ZHi ° , is obtained by omitting all propositional axioms of the form 

UA ~ A  and by adding in their place all propositional axioms of 

the form ~ A ~ (A ~ B) ( ~4] , pp. 82, 101) . The systems ZH* 

and ZHi* are related to ZT* in the same way as ZH ° and ZHi ° 

to ZT' 

G__t~ Further systems which will find consideration are the following 

ones: ZT*, ZTi* , ZT O , ZTi O and ZH* , ZHi* , ZH°o , ZHio O . Each 

of the systems with index 0 follows from the corresponding one 

without index by omitting the induction rule (in case of a Gentzen 

type system) or the group of induction axioms in case of a Hilbert 

type system. 

H__ u. In order to explain the connection between these different sy- 

stems we recall the notion of a "derivation from given assumptions 

with all variables held constant", [4 ] , § 22. In the theorem be- 

low and throughout the workjwe indicate e~. the fact that a formula 

A is derivable from assumptions A1,...,A s on the basis of ZH* 

by ZH*: A 1 °o A ~ A; similarly~if by adding sequents 
P "  ~ S 

SI,..o,S to the axioms of ZT* we can derive (by means of the 
n 

rules of ZT*) the sequent S# then we denote this fact by ZT*: 

S1,...,S ~ S o Analogous notations are used in connection with 
n 

other systems. 

Theorem 0: a) If ZH: A1,...,A s ~ A with all variables held con- 

stantTthen ZT': ~ A1,...,A s > A . On the other hand, if 

F1,...,F are closed formulas from the language L* and if 
S P 

ZT': > F1,..., > F ~ A1,...,A 
n 8 ~B1,...,Bt,C ~ then 
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ZH: FI,...,Fn,A1,...,As, 7B I, .... ]B t ~ C with variables held 

constant, b) Likewise in the case of ZHi and ZTi' but with 

B1,..o,B t absent° c) Likewise in the case of ZH* and ZT* 

d) Likewise in the case of ZHi* and ZTi* but with BI,O.o,B t 

absent• The proof of th. 0 is up to a few minor modifications the 

same as the proofs of theorems 46 and 47 in f43 and will be 

omitted• 

Io In order to study the connection between classical and intuitio- 

nistic number theory,~leene introduces in L43 § 8 two mapping8 

o and + of formulas, whose definition is given as follows: 

l) A + is obtained from A by replacing each prime part P in A 

by 77P ; 2) if P is primep then pC is P ; 3) (A ~ B) ° , 

(An B) ° and (~ A) ° are A° ~ B ° , A°/hB ° and ~A ° respective- 

ly ; ~) ((x)A) ° and (( ~ )A) ° are (x)A O and (~)A ° respec- 

tively ; 5) (AVB) ° is ~ ( ~A°~ ]B °) ; 6) ((Ex)A(x)) ° and 

((E ~)A( ~ ))o are ~ (x) ~ A(x) ° and ~ (C~) ~A(~) ° respectively. 

The connection between ZH* and ZHi* and also between ZH* and 

ZHi* is described by the following theorem whose proof parallels 

that one of theorem 60 in [4] : 

o A o A o 
Theorem l: If ZH*: A1,...,A s ~A , then ZHi*: A1,..., s 

o+ AO+ + 
Similarly, if ZH~: A 1 ..... A s ~ A then ZHi~: A 1 ..... s ~A° 

The connection between ZT* and ZTi* and also between ZT* and 

ZTi* now follows immediately via theorems 0 and 1 : 

Corollary: If ZT*: ) Fl,o.. , ~ F s ~A1,.•.,A n ) B, 

then ZTi*: > F~, .... ~ F°s ~ Al,o .o " 'A°n > B , where 

FI'''°'Fs are closed formulas. Similarly, if 

• ~ A1, ,A > B~ then ZT*: > FI'" °' > Fs "'" n 
o+ > Fo+ ~ o+ Ao+ > Bo+ 

ZTi*: ) F1 ''°'' s A1 .... ' n 

K. The set PR of bounded formulas is defined as follows: 

l) a prime formula p=q is in PR ; 2) if A, B are in PR~ then 

so are A ~ B  , A/~ B , AVB and 7 A ~ 3) if A is in PR , if 

t is a term not containing y free, then (Ey)(y~t/hA) and 

(y)(y<t ~A) are in PR. By PR* we denote the set of all formu- 

las in PR which do not contain special function constants. We 

note the following trivial fae~: for every formula A ~PR there is 
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a formula B(~I,... , ~ s) PR* and pairwise distinct special func- 

tion constants ~ l  ~ (~l=~ ~ s ,..., such that A is B ,.. o, ) 

s [nl ns 

The following theorem is easily proved by induction with respect to 

the number of logical symbols in the formula A; its proof is 

omitted• 

Theorem 2: For every formula A~PR* one finds effectively a term 

t containing exactly the same free variables as A and containing 

no special function constants for which the following holds: 

a) ZTi* ~t=0 > A , 

b) ZTi* ~A > t=O , c) TZi* ~ > t=0 Vt=l 

Theorem 2 is not indispensable, but its use is convenient in many 

places. 

Notation: the term t associated with A in virtue of theorem 2 

will be denoted in the sequel by t A 

L. As promised in the last section we will briefly describe a par- 

ticular assignment which associates with every term t a conti- 

nuity function q~ related with t . To this end we will use a re- 

sult which will not be proved and which has already been mentioned 

(in a somewhat different form) in the "Preliminaries" . Let ZTi 
C 

b e  o b t a i n e d  f r o m  Z T i  b y  o m i s s i o n  o f  t h e  c o n v e r s i o n  r u l e .  L e t  

t( ~i ..... C~S) be a term without free number variables and special 

f u n c t i o n  c o n s t a n t s  w h o s e  f r e e  f u n c t i o n  v a r i a b l e s  a r e  p r e c i s e l y  

1 ' °''' ~s " Then we can prove the following statement STo : 

f o r  g i v e n  n u m b e r t h e o r e t i c  f u n c t i o n s  f l , . . . , f s  t h e r e  e x i s t  n u m b e r s  

n and m such that ZTi c ~ t(~ull ,... ,~usS )=n holds, where 

U.1 = fi(m) , i = i, o. o,S . The proof of this statement does not make 

use o f  t h e  f u l l  f o r c e  o f  Z T i  b u t  d e p e n d s  m e r e l y  o n  t h e  f a c t  t h a t  
c 

the whole calculus of primitive functions is formalized within ZTi 
C 

T h e  s t a t e m e n t  t h e n  f o l l o w s  b y  m e a n s  o f  a r g u m e n t s  w h i c h  a r e  v e r y  
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similar to those presented in ~ll3 , 8.4. Now let ~ (x I ..... Xs) 

be a numbertheoretic function defined as follows: if Ul,...,u s are 

sequence numbers of equal length, then ~ (Ul,...,us)=n+l if and 

only if there exists a Goedel number e~length(Ul) of the proof in 

i , o-o s )=n o Now ZTi c has a primitive recursive ZTi c of t(~ Ul , ~ Us 

proof predicate (" e is (Goedel number of) a proof of the formula 

(with Goedel number) b")~as is easy to show. Therefore ~ is primi- 

tire recursive. Moreover, ~ is a continuity function in virtue of 

the statement ST o Finally, by showing that every formula provable 
o 

in ZTi is "true" in the usual sense,it follows that ~ is indeed 
c 

related with t . Furthermor%it is clear that as soon as we are gi- 

yen t we are given ~ . If we use this particular assignment as 

basis for the definition of "saturated", then one can easily prove 

with the aid of statement ST ° the statement STl: if a sequent S 

is provable in ZTi then it is provable in ZTi . The advantage of 
c 

this particular assignment is that the syntax of ZTi becomes pri- 

mitive recursive. It will not be until chapter IX that we will make 

use of this advantage. 

1.5o Some systems of analysis 

In this section we introduce those systems of analysis which will be 

considered most of the time in this work. 

A__u Below we consider some particular primitive recursive functions 

and relations. With respect to them we adopt a particular convention 

which is useful for typographical reasons: we use one and the same 

sign in order to denote both the intuitively given object and its 

formal counterpart in the theory. 

I. Intuitively we have the natural numbers at our disposal; they are 

represented formally in ZT by the list 0,0',0",... of terms, 

called numerals. By symbols such as n,m,a,b etc. we denote both 

certain particular numbers as well as their corresponding numerals. 
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o 
2. As is evident from the axioms, the symbols ' ,+, represent in 

our formal systems successor function, addition and multiplication. 

By the very same symbols we denote also the intuitively given func- 

tions successor, addition and multiplication. 

3. The function f(x,y)=~((x+y)2+3x+y)" " --'" " " maps the ordered pairs 

(a,b) of natural numbers in a one way into the set of natural num- 

bers. There are~of course~ infinitely many terms in L* whose asso- 

ciated primitive recursive function is f(x,y) . Among these we 

choose in a welldetermined way a particular one t and call t the 

term representing f in ZT . Both the term and the function will be 

denoted by ~x,y> 

4. There is a primitive recursive function ~(~ ,x) (of type<l,l>) 

which associates with every function f and every number n the 
f(o)÷l f(s-l)+l if 

sequence number <f(0) ..... f(n-1)> = Pc .... Ps-1 

n~0 and 1 otherwise. Again there is a welldetermined term t in 

L* whose associated primitve recursive function is ~ . Both 

and t will be denoted by ~ (x) as in [ 5 

5o There is another primitive recursive function seq(x), which has 

the property: seq(n)=O iff n is a sequence number, that is, a num- 

ber of the form ~f(0) ..... f(s-1)~ for some f and s 

(s=0 included). The function seq(x) has a formal counterpart in the 

theory (a term t ~L* having only x free); we denote this coun- 

terpart also by seq(x). 

6. The primitive recursive function ~(x,y) which associates with 

two sequence numbers u = du o ..... Us_l ~ , v = ~v ° ..... Vt_l ~ its 

concatenation u*v will be denoted by x*y ; as above, we denote 

also the formal counterpart of x*y in ZT by x*y. 

7. Let R(x,y) be the Kleene-Brouwer partial ordering. There is a 

welldetermined term t(x,y) ~L* whose associated primitive recur- 

sive function f(x,y) has the property: a) R(n,m) i~ f(n,m)=0, 

b) f(n,m)=0 or f(n,m)=l for all n,m. Both R(x,y) and t(x,y) 

will be denoted by x ~ky o We recall that the definition of 

x ~ky is such that n ~k TM always implies that both n and m 

are sequence numbers. The sequents x ~k y ~ seq(x) , 

x ~ky ) seq(y) are both provable in ZTi and we can even 
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assume that they occur among the axioms (in the set M6). 

8o By x<kY we denote the Kleene-Brouwer linear ordering of se- 

quence numbers and at the same time a certain prime formula 

q(x,y)=0 which is related to x ~ky in the same way as 

t(x,y) to x ~k y before. We use x ~k y and x ~ky as abbre- 

viations for x~kY Vx=y and X~kY Vx=y respectively. 

B_.~. Next we introduce some particular types of formulas. Let R(x) 

be an arbitrary formula. We use x~RY as abbreviation for 

x/~kYAR(x)AR(y ) and x ~Ry as abbreviation for 

x ~kYAR(x)~R(y ) . We use x ~Ry and x ~<R y as abbreviations 

for x~RY Vx=y and x ~Ry ~x=y respectively. By N( ~ R) we 

denote the formula (O()(Ex)(-A ~(x+l) ~R~(X)); by ~(~R) we 

denote the formula (C~) ~(x)(C~(x+l) %Rg~(x)). W(~R) and 

~(~R) are defined similarly but with ~R in place of ~ R  " 

The meaning of ~R and ~R is clear: x ~Ry ~ e.g. 

represents the restriction of x ~k y to the set of those sequence 

numbers which belong to I x/R(x)~ . The formulas W( ~R ) and 

~( ~ R) express classically both that ~R is wellfounded. The 

expression (x) ~RYA(x ) serves as abbreviation for the formula 

(x)(x ~Ry ~A(x)). An important class of formulas are those 

which do not contain function parameters° A formula A is said 

to contain no function parameters if the following holds: there is 

a formula B(x I ...... Xs)~ L* (that is, without special function 

constants) which does not contain free function variables and there 

are terms tl,°o.,t s free for Xl,..o,X s in B such that A is 

B(t I ..... ts) Eg. (Ey)(~(x)=y+l) is s~ch a formula while 

(x)(x ~_y _~ ~(x)=0) is not. In other words: a formula without 

function parameters may contain free function variables and special 

• t! function constants, howeverjonly in an "inessential way. 

Another important class of formulas is that one described by 
1 

Definition ~: a) A ~l-formula is a formula of the form 

(O~)(Ex)R(~(x)) where R~PR . b) The set N of formulas is de- 

1 f termined as follows: Cf) ~l-formulas are in W, ) if A does 

not contain bounded function variables, then A ~W , 7) if A,B~N 

then A ~ B , AA B , At/B , 7 A , (Ex)A , (x)A are all in W . 

c) A~N N iff A~N and iff A does not contain function parameters. 



- 28 - 

Finally we note that~in view of theorem 2 and the remarks preceding 

it, we can associate with every R~PR effectively a term t contai- 

ning exactly the same free variables and the same special function 

constants as ~R such that ZTi ~ t(x,y)=O ~ x CR Y , 

ZTi ~ x ~R y ) t(x,y)=0 and ZTi ~ > t=0 vt=l o We 

abbreviate t(x,y)=0 by x dry . Similarly, there is another term 

g containing exactly the same free variables and the same special 

function constants as ~R such that ZTi ~ > g=0 V g=l, 

ZTi ~ g(x,y)=0 ) U x ~Ry , and 

ZTi ~ ~ x ~Ry > g(x,y)=0 hold. In view of theorem 2 we can 

choose t(x,y) and g(x,y) both in such a way that if R (and 

hence ~R) does not contain function parameters, then t(x,y) and 

g(x,y) do not contain function parameters. We use (x) <RYA(X) 

as abbreviation for (x)(x<~y ~A(x)) , x IRy as abbreviation 

for g(x,y)=0 and W' ( <R ) as abbreviation for 

(~)(Ex)(~ (x+l) 4R ~(x)) Finally we need the notion of standard 

formula. A formula R(y) is called a standard formula if it has the 

form Q(y) A seq(y) where Q(y) is an arbitrary formula• The only 

purpose of standard formulas is to secure the following implication: 

if R(q) holds, then q is a sequence number. 

C. In order to define the systems of analysis needed,we have to 

introduce a number of rules, all representing essentially transfi- 

• The formula R(y) which nite induction with respect to ~-~R 

occurs in all these rules is by definition a standard formula. These 

rules are 

I. 
R(y),(x) ~RyA(X), ~ > ~ ,A(y) 

R(q), W(~_R) , 7 > /k ,A(q) 

II. 

R(y), (x) ~RyA(X), r > ~ ,A(y) 

) ~ ,A(q) 

III. 

tR(Y)=0, (x) ~RyA(X), ~ >~ ,A(y) 

tR(q):0 , W(~R), /~ > ~ ,A(q) 
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IV. 

tR(Y):O' (x) ~RyA(X)' Y > A ,A(y) 

tR(q):o, w'(<R), > A ,A(q) 

V. 
tR(X):O , (x) ~/'RyA(X), >A ,A(y) 

tR(q)=°' F- z5 ,A(q) 

In all these rules y does not occur free in the conclusion and q 

is free for x in A . Of importance are some rules which are ob- 

tained by imposing certain restrictions concerning A and R on 

the above rules. The rules thus obtained are as follows: i) the 

rules IN, IIN,... are obtained from I, II, .... respectively by 

admitting only such formulas R which do not contain function para- 

meters, 2) the rules I', If', ... are obtained from I, II, ... 

respectively by admitting only formulas R from PR (this is auto- 

~matieally satisfied for fiX, IV, V), 3) the rules I~, II~ .... 

are obtained from I, II, ... by admitting only formulas R ~PR which 

do not contain function parameters, 4) the rules I*, II*, ... are 

obtained from I, II, .... by requiring R~PR and A~W, 

5) the rules IS, II~ .... finally are obtained from I, II .... by 

admitting only such formulas R and A which are in PR and in W 

respectively and which do not contain function parameters. 

Notation: From now on we will abbreviate tR(X):O by dR(X ) or 

sometimes more simpler by d(x). 

D. In sect. 1.4 we have defined a set M of sequents which serves 

as axiom set for the systems ZT, ZTi*, .... M is the union of 

seven sets M (0~i<6) . With exception of M6, every other set M i 

is a well defined set of sequents; M6, howeve~ plays the role of a 

parameter set and has remained undetermined up to now. From now on 

however we make the following assumption: 

Assumption D: The set M 6 contains for all terms p,q,t the 

following sequents: a) p ~Kq , q ~ K  t ) p ~k t , 

b) p ~Rq ) tR(q)=O and p < R q > tR(P)=O for all 

R 6 PR. 

5 Actually, assumption D is redundant: using only axioms from o--<2Mi 
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we can prove x ~ . K y  , y f-K z ~ x ~K z , 

x day ) ta(Y)=O and x <ay > tR(x)=0 in ZTi 

(in ZTi' if R ~PR*) . We assume D merely for technical conve- 

nience. 

E__~. By adding one of the new rules to any of the systems ZT, ZTi, 

ZT* etc. we obtain quite a series of more or less similar systems. 

Consider ~g. the system ZT . By adding to ZT the new rule I we 

obtain a new system, to be denoted by ZT/I. The system ZT/I differs 

from ZT in that we can new use the new rule I in addition to the 

old ones in order to generate proofs: whenever P is a proof of a 

sequent of the form R(y), (x) ~_ yA(X), ~ ~ /k ,A(y) for 

some R , then we can apply rule IRto the endsequent of P in order 

obtain a proof P' of W(~R),R(q), ~ > ~ ,A(q), provided to 

that y does not occur free in W(~R),R(q), ~ ~ ~ ,A(q) 

(and where q is free for x in A ). Proofs are of course identi- 

fied with certain finite trees of sequents.A proof P (with respect 

to ZT/I) is again called intuitionistic if there is no sequent in 

P containing more than one formula in the suocedent. If we restrict 

our attention to intuitionistie proofs only, then we obtain a sub- 

system which will be denoted by ZTi/I. The system ZT*/I is ob- 

tained from ZT/I by considering only such proofs which de not con- 

tain special function constants; the system ZTi*/I is obtained from 

ZT/I by restricting attention to intuitionistie proofs not contai- 

ning special function constants. Quite similarly, if we combine any 

of the systems of sect. 1o4 with any of the above rules we obtain 

a whole list of new systems, to be denoted in a selfexplanatory way 

by ZT/I, ZTi/I, ZT/I*, ZTi/I* ...... ZT*/IN, ZTi*/I~ etc. A first 

superficial insight into the strength of some of these systems is 

given by 

Theorem ~: a) ZT/I' has the same strength as the theory TIQF in 

[32 ; b) ZT/I' has the same strength as ZT/III ; c) ZT/I has 

the same strength as ZT*/I ; d) ZT/I' has the same strength as 

ZT*/I'; e) ZT/I has the same strength as ZT*/I ~ f) ZT*/I and 

ZTi*/II have the same strength; g) ZT*/I is as strong as classical 

analysis. 

Proof: Most of these relationships are trivial. We just consider 

a), f) and g). 
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a) We merely show that ZT*/I' is at least as strong as TIQF . 

The proof of the converse makes use of th.2 and is almost trivial. 

First we show that for each A and each R ~PR* we can derive 

I. > W(~R)~.(y)(R(y)_ ~ .(x) ~RyA(X)~A(y))~ (z)(R(z)~z). 

Let us denote to this end 

(y)(R(y)~ o(X) ( ~- yA(X) ~A(y)) by Progr(R,A) and consider the 

sequent Progr(R,A) R ) Progr(R,A) which is an axiom of ZT*/I'. 

By a bit of intuitionistic predicate calculus we can derive 

R(y),(x) ~ yA(X),Progr(R,A) > A(y) . Application of rule I' 
R 

to this sequent yields the conclusion W(~ R),R(z),Progr(R,A)---~A~) 

with suitably chosen free z . By intuitienistic predicate calculus 

we immediately derive the sequent I. That is, ZT*/I' is at least 

as strong as the theory T which we obtain by adding to ZT* all 

sequents of the form 

I. (for R6PR@) as axioms. In virtue of theorem 0, this theory has 

the same strength as the theory T* which we obtain from ZH* by 

adding to it as axioms all formulas of the form 

II. W(~R) ~ .Progr(R,A) ~ (z)(R(z) ~ A(z)) for all RePR* 

and all formulas A . The only thing which remains to be done is to 

show that in T* one can derive all formulas of the form 

IZI. W(~R) ~.(y)((x) ~ yA(X) ~A(y)) ~ (z)A(z) . But this 

is an easy task if one notes t~e provability of the formulas 

IV. VR(Y) ~ (x) ~RyA(X) and 

V. (y)((x) ~ yA(X) ~ A(y)) __~ Progr(R,A) . Since PR* contains 

in particular all quantifierfree formulas without special function 

constants, we conclude TIQF ~T* . We note that all derivations are 

entirely intuitionistic; the rule of excluded middle is only used in 

the form R(y) V 7R(y) and this is intuitionistically correct in 

virtue of R 6 PR* 

Next, to g). We content ourself to show that ZT*/I is at least as 

strong as classical analysis; the converse is more routine work. By 

proceeding as in the proof of a) we conclude that ZT*/I is at 

least as strong as a theory T which is obtained from ZH* by 

adding to it all formulas of the form III., but now for all formulas 
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A and R and not merely for formulas R in PR* ; now~of course, we 

use the law of excluded middle in a nontrivial way, namely in the 

form R(y)~ ~R(y) for arbitrary R . It remains to show that T 

has indeed the strength of whole classical analysis. But this has 

essentially been proved by W. Howard in chapter II , p~ 2°8 of the 

Stanford report, vol. I (~123) . More precisely~ one first shows 

that the axiom of bar induction 

VI. (~) (Ex)P(~  (x))/k( ~ ) ( x ) ( P ( ~ ( x ) )  ~ A(~ (x))) /~. 
/~ (g~)(x)((y)A(~(x)*y) ~ A ( ~  (x)))..~ (C~)(x)A(~(x)) 

can be derived in T for all formulas A and R . This task is 

easily achffeved by transforming the bar induction into a transfinite 

induction over~ . Thus the theory T is at least as strong as 
P 

the theory BI which is obtained from ZH* by adding all formulas 

of the form VI. as axioms. But according to Howard~ result~ BI 

has the same strength as classical analysis what proves one half 

of the statement g). 

In order to prove f)~ one shows that whenever a sequent ~ G 

has been proved in ZT~/I ~ then ) ~ is provable in 

ZTi*/II . To this end let Tr be the set of all formulas of the 

form If. above (for all R and all A not containing special 

function constants) and let Tr ° be the set of all formulas of 

the form ~(~R) ~ .Progr(R,A) ~ (z)(R(z)~A(z)) . Let finally 

STr be the set of sequents of the form F with F~Tr; let 

STr ° be the set of sequents of the form > F with F~Tr O 

Denote by ZT ** the theory obtained by adding to ZT a" all the se- 

quents from STr as axioms. By the same reasoning used in the proof 

of a) one shows that ZT** ~ S iff ZT~/I ~ S . Now assume 

ZT*/I ~ > G. Then ZT** ~ ) G , that is ZT*: 

) FI,... , > Fn ~ > O for some F. 'sl from Tr . 

In virtue of theorem 2 this implies ZH*: FI, o . o,F n ~ G and there- 

fore ZHi*: ~l,...,~n ~ ~ again by theorem 2. A third application 

of theorem 2 finally yields ZTi* ~ 91,...,~n > ~. On the 

other hand ~ ~i (i~ n) are all provable sequents in 

ZTi*/II , as a repetition of the argument used in the proof of a) 

shows. Hence we obtain ZTi*/II ~ ) ~ . 
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F. The theories on which we will concentrate mainly are ZTi/I , 

ZTi/II , ZTi/IV , ZTi/V and ZTi/IV~ , but other theories from our 

list will be considered from time to time. The theories ZTi/I , 

ZTi/II etc. have net yet the form suitable for a proof theoretic 

treatment. This will be achieved by considering certain conservative 

extensions of the above theories. Thus ~g. we will consider in place 

of ZTi/IV a certain conservative extension, to be denoted by T for 

the moment, which is obtained from ZTi/IV by adding to ZTi/IV a 

set of rules, all of which are derivable in ZTi/IV; that is T and 

ZTi/IV have the same theorems. This conservative extensions serve 

only technical purposes and have no interest in their own; we will 

therefore define these extensions at the places where they are 

needed° 



CHAPTER II: 

A review of Gentze~s second consistency proof 

In this chapter we present a brief repetition of Gentze~s second con- 

sistency proof and a mild generalisation of it, to be of use later 

on. This chapter can%of course~not replace a detailed study of [13, 

with which the reader is assumed to be familiar. In this and the 

next chapter we include some material contained in [8 3 . We will 

base our discussion on the system ZT and a system ZT( ~D) 

(to be defined below) which contains a principle of transfinite in- 

duction with respect to a fixed given primitive recursive wellorde- 

ring. 

2.1. Some preliminary notions 

From now on a proof (in ZT or any other system) will always be a 

finite tree (a proof tree) with sequents as nodes, which satisfies 

the following requirements: a) uppermost sequents are axioms; 

b) if S is a node of the tree which is not an uppermost one, then 

S has either one or two predecessors~ c) if S is a node and S' 

its only predecesser~then S'/S is a one-premiss inference; d) if 

S is a node and S1,S 2 its predecessors from left to right, then 

SI,S2/S is a two-premiss inference; e) the tree has exactly one 

lowest node, which is called the endsequent of the proof. Let S be 

(an occurence of) a sequent in a proof P; let N S be the set of 

nodes which contains precisely S together with all sequents S' in 

P which are situated above S . By restricting P to N S we ob- 

tain a subtree PS of P which is obviously a proof of S . We 

call PS the subproof of S in P . An important notion connected 

with a proof tree is that of its final part: i) the endsequent be- 

longs to the final part; 2) if S'/S is a conversion or a one- 

premiss structural rule and if S belongs to the final part of P, 

then S' belongs to the final part of P ; 3) if S1,S2/S is a 

cut in P and if S belongs to the final part of P~ then both 

S 1 and S 2 belong to the final part of P ; 4) S belongs to the 

final part of P only in virtue of 1), 2), 3). Clearly, an upper- 

most sequent of the part is either an axiom or the conclusion of a 

logical inference or an induction. 
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Definition 4: Let P be a proof. An inference S'/S or Sl,S2/S 

in P is called critical if it is neither a conversion nor a struc- 

tural inference and if its conclusion S belongs to the final part 

of P . 

In the following definition ~ denotes the list AI,O..,A s of for- 

, . and 77- de- mulas, /~ denotes B1,..o,B t ~ denotes C1, ..,Cp 

• ' and B~ .... B~ are iso- notes D1, .o,Dq ; the formulas AI,o..,A s 

morphic with A1,..°,A s and B1,...,B t )respectively, and the two 

lists are denoted by y' and ~ ' ) respectively. 

Definition 5: Let A be a formula (more precisely an occurence of 

a formula) in the final part of P A formula B in P is called 

successor of A if one of the following clauses is satisfied: 

l) there is a right interchange 

~ /~ ,F1,F2, ~/ ~ ~ /k ,F2,FI, ~ in the final part 

of P and A is Ai,Bj,F k or C m in the premiss~while B is 

Ai,Bj,F k or C m respectively in the conclusion; 2) similarly in 

case of a left interchange; 3) there is a conversion 

~ ~  A / T' z~ ~ and A is A i or B. in the pre- 
J 

miss~while B is A! or B'. respectively in the conclusion; 
i j 

4) there is a right contraction ~ > /~ ,F,F/ T ~ /~ ,F 

in the final part, and A is A. or B. or one of the F's in the 
i j 

premiss, while B is Ai,B j or F, respectively, in the conclusion; 

5) similarly in case of a left contraction; 6) there is a right 

thinning ~ > ~/ ~ ~ ~ ,D in the final part and A is 

A i or B.j in the premiss, while B is A.1 or Bj j respectively, in 

the conclusion; 7) similarly in case of a left thinning; 8) there 

i s  a cut ~ ) A ,F ; F, ~ > ~ / F , Z > A , 7 i n  

the final part, and A is Ai,Bj,C k or D m in the premiss,while B 

is Ai,Bj,C k or D m ~ respectively, in the conclusion. 

Since the final part of a proof is also a finite tree, all notions 

introduced in connection with finite trees retain their meaning for 

the final part. 

Definition 6: Let SI,...,S n be a path in the final part of P , 

let Ai,...,Ai+ k be a list of formulas in Si,..o,Si+ k respective- 

ly such that An+ 1 is the successor of A n for i~n <i+k accor- 

ding to definition 5. Then Ai+ k is called the image of A i in Si+ k. 
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We note that in connection with logical inferences we use the no- 

tions "principal formula" and "side formula(s)" of the inference in 

the same sense as Kleene in [4~ , p . ~43. 

Definition 7: Let P be a proof and 

y > /~ ,A(~)/ F > ~ ,(V~ )A(~) a quantifier infe- 

rence where ~ is subject to the usual restriction on variables. 

We call C>< the quantified variable of this inference. Similarly, in 

case of a quantifier inference A(C~), F ~ ~ /(E~)A(~), ~---~ 

and similarly with x in case of the quantifier inferences 

F > ~ , A ( x ) /  F '} ~ , ~2/ x )A(x)  and 

A(x), V > ~ /(Ex)A(x), C > /k ~respectively. If 

A(x), F ) ~ ,A(x')/A(0), F ~ ~ ,(q) i s  an induction in- 

ference in P ~ then x is called the induction variable of this 

inference. 

Remark: If e~. we say that O< is the quantified variable of a 

quantifie r inference~then we tacitly assume that this inference is 

an E > or an > ~/ with ~ as the quantified 

variable. 

Definition 8: A proof P is called normal if it has the following 

properties: l) no variable occurs both free and bound in it; 

2) if C~ is the quantified variable of a quantifier inference 

S/S' in P, then ~ does not occur free in any sequent S" below 

S ; 3) if x is the quantified variable of a quantifier infe- 

rence S/S' or the induction variable of an induction S/S' , then 

x does not occur free in any sequent S" below S~ 4) if 

occurs free in a sequent S in P but not in the endsequent, then 

there is a quantifier inference S1,/2 in P with c~ as quanti- 

fied variable and such that S 2 is below S ; 5) if x occurs 

free in a sequent S in P but not in the endsequent of P ~ then 

there is either a quantifier inference SI/S 2 with x as quanti- 

fied variable and S 2 below S) or an induction inference S'/S" 

with x as induction variable and S" below S . 

Remark: A pure variable proof always satisfies ]), 2), 3) of 

def. 8 . On the other hand, if P is a proof which satisfies 

I), 2), 3) of  d e f .  8,then we can always transform P into a normal 

proof P' by replacing certain free variables in P by appropria- 
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tely choosen constant functors and terms. If P satisfies i), 2), 

3), if S is a sequent in P and PS the subproof of S in P~ 

then PS satisfies i), 2), 3). 

Definition ~: A proof is called saturated if every constantterm 

(that is,term without free variables of both kinds) occuring in the 

final part is saturated. 

Definition i0: Let P be a proof and II,I 2 two logical inferences 

in it. We call Il,I 2 dual to each other if one of the following 

clauses is satisfied: l) I 1 is an > ~ and 12 is an 

) inference; 2) I 1 is an ~ ~ and 12 is an 

) inference; 3) similarly with /~ or k/ in place 

of ~ ~ 4) I 1 and 12 are both number quantifications 

~/ and ~ > , respectively; 5) I 1 and 12 are 

both function quantifications ~ ~ and ~ > , respecti- 

vely; 6) similarly with E in place of ~/ 

The next few definitions are intimately connected with Gentzen's se- 

cond consistency proof. In this connection we use the very conve- 

nient notion of "fork" which has been introduced by D. Isles in an 

as yet unpublished work on proof theory. 

Definition ii: Let P be a proof. Let there be three inferences in 

P which we denote symbolically by Il,I2,I 3 ; let S 1 be the con- 

clusion of I 1 and S 2 the conclusion of 12 . The ordered triple 

Ii,I2,I 3 is called a fork in P if the following conditions are 

satisfied: l) I 1 and 12 are critical logical inferences with 

principal formulas A I and A 2 respectively; 2) I o is a cut 

S',S"~S where S' and S" are V > ~ ,F and 

F, ~ ~ ~ respectively, while S is,of eourse~ 

V ' ~ ~ ~ , ~ ; 3) S and hence S' and S" belong to 

the final part of P ; 4) A 1 has the cut formula F as image in 

S' ," 5) A 2 has the cut formula F as image in S" 

Remark: Retain the notation of def. ii and assume that Ii,I2,I 3 

is a fork. Then we can draw immediately the following conclusions: 

i) S' is equal to S 1 or situated below S 1 ; 2) S" is equal 

to S 2 or situated below S 2 ; 3) F is isomorphic with A 1 and 

A 2 , respectively~ 4) hence A 1 is isomorphic with A2; 
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5) I 1 and 12 are dual to each other. The clauses l) - 5) 

follow immediately from our preceding definitions. With respect to 

forks we adopt the following expressions: l) if the inference I 1 

(and hence I2) is a propositional inference and the symbol intro- 

duced a ~ , /~ , ~/ or ~, then we say that Ii,I2,I 3 is an 

--~ -, /~ -, k/ - or ~ -fork, respectively; 2) if I 1 is a 

number quantification and the symbol introduced an ~/ , then we 

call Ii,I2,I 3 a numerical V-fork; 3) if I 1 is a function 

quantification and the symbol introduced an ~ , then we call 

Ii,I2,13 a functional ~-fork; 4) similarly with E in place 

of V 

v l 
In |l~ Gentzen associates with every cut 

V > ~ ,F ; F, ~ > ~ / ~ , ~ ) /~ , ~ and every 

induction A(x), ~ ~ /~ ,A(x')/A(0), ~ ~ ~ ,A(t) a 

natural number called complexity of the cut and the induction,res- 

pectively: in case of the cut this number is equal to the number of 

logical symbols contained in F , in case of the induction this num- 

ber is equal to the number of logical symbols in A(x). Next, Gent- 

zen associates with every sequent S in a proof P another number, 

called its height and denoted by h(S) , according to the following 

Definition 12: Let S be a sequent in P . If S is the eadse- 

quent then h(S)=0 o Now let S be a premiss of an inference I 

with conclusion S' . If I is a cut, then h(S) is max(h(S'),d), 

where d is the complexity of the cut. If I is an induction then 

h(S) is max(h(S'),d), where d is the complexity of the induction. 

In all other cases h(S)=h(S') 

Remark: If S',S"/S is a cut in P~ then by definition 

h(S')=h(S") . If S O ..... S n is a path in P, then clearly 

h(S1)>h(Si+l). ~ • If,in particular, S' ,S"/S is a cut in P such 

that h(S')~h(S) , then we say that S',S"/S is a cut with jump 

("HShensprung" in ~l~ ). 

Lemma ~: Let Il,I2,I 3 be a fork in P according to def. ll and 

let S',S"/S be the cut 13 ; assume that I has complexity 

d ~0 . Then there is exactly one cut S' S"/S in P having the 
0 ~ 0 ~ 0 

following properties: l) S is equal to S or situated below S, 
o 

2) h(S~)=h(S,) , 3) h (So )~h(SL) .  
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Proof: Trivial 

" in lemma 3, which is unequally de- Definition 12": The cut S''So/Soo 

termined by the fork Ii,I2,I3, is called the cut associated with 

the fork Il,I2,I 3 

2.2. The reduction steps 

We are now ready to give a short account of Gentze~s second consi- 

stency proof. In this respect we explain a few essential points and 

reader otherwise to Ill . In the sequel we will always refer the 

observe the following convention: by a logical axiom in the final 

part of a proof P we will always understand an uppermost sequent 

S of the final part which has the form D } D' , where D and 

D' are isomorphic with each other. 

A__ u. In LIJ , Gentzen introduces certain syntactical transformations 

of proofs which he calls reduction steps. We can distinguish three 

kin~ of reduction steps: l) removing all thinnings and logical 

axioms from the final part; 2) removing critical inductions from 

the final part; 3) removing forks from the final part. Reduction 

steps of type l) will be called preliminary reduction steps, those 

of type 2) and 3) essential reduction steps. We start with a brief 

discussion of the preliminary reduction steps. We omit a precise de- 

finition of the preliminary reduction steps and content ourselveS'by 

discussing some typical cases. Assume e.g. that in the final part of 

a proof P there is a left thinning whose conclusion is the right 

premiss of a cut: 

2 >VF 

in this case we can obviously omit the cut and derive the conclusion 

by a serie$of thinnings and interchanges from ~ ~ ~--~ : 
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>TF 

c,[ 7 
thinnings, interchanges 

The proof P' which results from this alteration is said to follow 

from P by means of a preliminary reduction step. 

In order to consider a similar but more general situation, let us for 

the moment introduce the so-called identity rule which permits us to 

derive S' from S . Now assume that in the final part of P there 

is a path So,o..,S n ,with S o an uppermost sequent of the final 

part and S n the endsequent of P , such that there is an i with 

the property: Si+ 1 follows from S i by means of a left thinning, 

that is, S.l is ~ ) A and Si+ 1 is A, ~ ) 

We distinguish two cases: i) there is an S m with i< m <n such 

that S m is the right premiss of a cut S' Sm/Sm+ 1 , whose cut for- 

mula F in S m is the image of A ; 2) the endsequent S n con- 

tains an image A' of A (in Si+l) In the first case we proceed 

similarly as in our example above, that is, we cancel A in Si+ 1 to- 

gether with all its images in P~ obtaining thus a new path 

... ' .. S' ,Sn, then we cancel the subproof SO' 'Si' Si+l'° ' m' Sm+l'''" 

' in the PS' and derive Sm+ 1 by thinning and interchange from S m 

same way as in the example above. This operation transforms P into 

a tree P* which is a proof tree in a slightly more general sense: 

it contains in addition to the ordinary inferences also some identi- 

S' S' of the ty inferences (they all occur in the part Si' i+l ''" °' m 

altered path). By cancelling these identity inferences in P* we fi- 

nally obtain a proof P' in the ordinary sen~ P' is said to 

follow from P by means of a preliminary reduction step. In case 2) 

we proceed as follows: we cancel A together with all its images in 

Si+l'''" ' nS This operation transforms P into a generalized proof 

tree P* in the above sense, containing among others some identity 

inferences. By cancelling in P* all identity inferences we obtain 

again an ordinary proof P'~ whose endsequent S' is related to the 

endsequent S of P in the following way: S is derivable from 

S' by means of a thinning and some interchanges. Here too we say 

that P' follows from P by means of a preliminary reduction step. 

Another situation to be treated is the following: assume that in P 

there is a left premiss ~,D1, ~ ) ~ ,Di, ~ (to be denoted 
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by S) of a cut, whose subproof PS in P has the particular form 

D > D' 

V,D l, Z > -~-,D i, /% 

one premiss structural rules 
and conversions 

where D > D' is an axiom, D 1 image of D and Di image of 

D' . Of course D 1 and Di are isomorphic with each other. We di- 

stinguish two subcases: l) ~ is empty and the cut in question is 

F ,o l, ~ > 7 ,~ , 
Di, F' ~ -ff'/K,D1,Z, F' > W,-17-' , 
2) o i is not the cut formula, /~ has the form /~',F and the cut 

in question is 

F,D l, ~ > V,D',~',~ ; 
F, V' > W'/ fl,Ol, ~, Y' > W,D I, ~', 7r, 
In both cases we can derive the conclusion of the cut by canceling 

in P the subproof of its right premiss and by deriving its con- 

clusion by means of thinnings and interchanges from the axiom 

D ~ D' . Here~to~ we say that the resulting proof P' is ob- 

tained from P by application of a preliminary reduction step. 

The three cases presented are typical; all other cases can be ob- 

tained from them by interchanging the roles of left and right. 

The properties of the preliminary reduction steps are summarized by 

Theorem 4: There is a primitive reoursive relation PR(X,Y) and 

two primitive recursive functions ~(X) , ~ (X) such that for all 

proofs P,P' the following holds: i) PR(P,P') iff P' is ob- 

tained from P by means of a preliminary reduction step; 2) if 

PR(P,P ~) then P' has less than f (P) symbols~ 3) every se- 

quence Pc ..... PN (with Pc=P) such that PR(Pi,Pi+l) for i < N 

has length < ~ (P) , that is N < ~(P) ~ 4) if PR(P,P ~) then 

either P and P' have the same endsequent or we can derive the 

endsequent S of P by thinnings and interchanges from the endse- 

quent S' of P' The proof of theorem 4 is completely elementary 

and hence omitted. 

B__. In order to describe a reduction step of type 2), also called 

induction reduction, let 
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I: 
A(x), V > d,A(x,) 

A(O), V ) /% ,A(q) 

be a critical induction in a proof P and q a saturated term with 

lql = n . Let Pw be the subproof of the premiss and Pi the re- 

sult of replacing every free occurence of x in P by i; let P 
w 

be the subproof of A(0), f ) ~ ,A(q) in P o Denote 

A(i), V " ~ ~ ,A(i+l) by S i and A(O), F ) ~,A(k) by S~ . 

We distinguish three cases. 

a) lq I = 0 . Then we replace the subproof of A(O), V 

in P by the following derivation: 

~ ,A(q) 

A(O) > A(o) 

A(0), V > n,A(0) 
thinnings, interchanges 

/x 
b) q = 1 . Then we replace P by the following derivation: 

P 
o 

A(0), > Zk ,A(1) 

A(O), S ~ ~ ,A(q) 
conversion 

c) / ql = m+l and m~l Now S* can be derived from S~ and 
= " i+l 1 

S. by means of a cut and some interchanges and contractions as 
l 

follows: 

St S. 
l 1 

S ~ 
i+l 

cut, interchanges, contractions. 

A 
Hence we can replace P by the following derivation: 
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P P1 
,0 

: P2 

S S 1 
0 

s~ s 2 
Pm-I Pm 

• . . . . . 

. . . . .  S* S 
m m 

A(O, ~ > ~ ,A(m) 

A(0), F >~,A(q) 
conversion 

In each case we say that the resulting new proof P' is obtained 

from P by application of an induction reduction. 

C. The most sophisticated among the reduction steps are those of 

type 3). We explain two of them, namely the case of an ~ -fork and 

the case of a functional ~-fork. All other cases are treated in an 

analoguous way; for further details the reader may consult Ill 

In order to discuss the elimination of a functional~-fork from the 

final par%we note the following 

Lemma 4: A. Let P be a proof which satisfies 1), 2) and 3) of 

definition 8 . Let F be a constant functor whose bound variables 

do not occur free in P . Let ~ be a function variable which occurs 

free in the endsequent E of P . If we replace every (free) occu- 

rence of C~ in P by F , then we obtain a proof which still sa- 

tisfies 1), 2) and 3) 

B. Similarly in case of a number variable x and a number term t 

in place of C~ and F . 

Proof: The statement follows immediately by "finite bar induction" 

over P. 

Corollary: A. Let P be a normal proof whose endsequent does not 

contain free variables. Let E/E 1 be a quantifier inference in P 

with C~ as quantified variable. Let P contain a critical function 

quantification 

~/ ~ or  ~ E , say A(F ) ,  F ) /~ / ( ~ / ~ ) A ( o  z~ ) , ) ~ - - ~ - - ~  
/ F 
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If we replace g~ wherever it occurs (free) in the subproof PE of 

E (in P) by F~ then we obtain a proof of SIE , which satisfies 

properties 1), 2), 3) of definition 8. 

B. Similarly in case of number quantification V 

> E with x and t in place of ~ and F . 

or 

Proof: Since P is normal, it follows that F is constant. The 

conditions of lemma 4 are obviously satisfied; hence the statement 

follows. 

The first case to be treated is that of a function ~-fork. The 

treatment of this case is precisely the same as that of a numerical 

V-fork LI3 , but for illustration we treat this ease considered in 

in some detail. To this end let P be a normal proof whose endse- 

quent does not contain free variables and ll, I2, 13 a functional 

~-fork in P . Let I1, I2, 13 be as follows: 

~o ~ ±o,Al(~ ) A2(F), ~ > -n- 
Il: I2: 

o o,( )Al( ) (V/g)A2( ~) ,J  ~T 

F1 ) ( v B ) * ( P ) , Z  1 > 
I3: 

YI Z I ~ Zi l /Ii 

As noted earlier, (~p)Ai(~) (i=l,2) and (Vy)A(~ ) are all 

isomorphic with each other. The inferences Il,I 2 and 13 will also 

be written more briefly as Sl/S ~ , $2/S ~ and S3,$4/S 5 respective- 

ly. Let furthermore P. (i~5) and P~ be the subproofs in P of 
1 

S i (±~__5) and S~ (k=l,2), respectively. Let in addition 

I : S',S"/S be the cut associated with Ii,12,I 3 and assume that 

S',S" and S are ~2 ~ ~2,F and F, 22 ) ~ 2 and 

~2' f2 ~ ~2' II~2 respectively; S will also be written 

more briefly as ~3 ~ ~3" Let finally P',P" and Pc be 

the subproofs of S',S" and S respectively. 

On P we perform a syntactical transformation to be described in 

the sequel. First we replace every free occurence of C~ in P1 by 

F; in view of lemma 4 and its corollary this transforms P1 into a 

F So proof P1 of " ~ ~o,Al(F) . Then we replace in Pc the 
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subproof Pi by the following derivation of 

Yo > A(F), ±o,(V~)Al(~) : 

pF 
:i 

{ 

~o > Ao'AI(F) 

)-o ) A(F), Ao'(~/°<)Al(~) 

conversion, inter- 
changes, thinning 

T h i s  t r a n s f o r m s  P i n t o  a p r o o f  P* o f  ~Yq ~ A(F)  /~3  
O / ~ " 

By adding some interchanges to P* j we obtain a proof P1 which can 

symbolically be written as follows : 

p* 

~3 ) A(F), A~ 

~3 ) A3'A(F) 
interchanges 

Next we perform another, similar transformation on P First we 
O 

replace in P the subproof P~ by the following derivation of 
O 

P2 

A~(F), ~ , -  ~ 

( ~ ) A 2 ( ~ ) ,  ~,A(F) )~]~ 

conversion,inter- 
changes, thinning 

This transforms P into a proof P** of -- F3,A(F) 

adding some interchanges to P**~ we obtain a proof P2 

symbolically be written as follows: 

> A3 . By 
w h i c h  c a n  

p * *  

)~3,A(F) i 
A 3 

interchanges 

A(F) ~3 ) A3 
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Finally we replace the subproof P 
O 

derivation, to be denoted by P : 

of S in P by the following 

~ ) ~,A(F) A(F), ~3 

}-3 > A3 

interchanges, comtractions 

A 
The final result of this transformation, call it P , is again a 

normal proof, having the same endsequent as P . We say that P 

follows from P by means of a functional ~-reduction step° The 

second case to be treated is that of an implicational fork. Let 

again P be a normal proof and Ii,12,I 3 an implicational fork in 

P Let Il,I2,I3 be 

Ii: AI' Fo ") Ao'B 
)-o > Ao'A1 ~BI 

I2: 
f > ~-'A2 B2' i' > -~' 

A2 ~ B  2'  f ' i '  ,> -~F, -/7-' 

I3: 
VI > Z~I,A ~B A ~  B, fl /~ ~l 

Of course, A is isomorphic with A 1 and A 2 and B is isomor- 

phic with B 1 and B 2 . Let us write the inferences Il,I2,I 3 

more symbolically as follows: l) Si/S I in the case of I l, 

2) S~/S 2 in the case of 12 , 3) $3,S4/S 5 in the case of 13 • 

Let S' ,S"/S be the cut associated with the fork in question and 

let S' ,S" and S be V2 > ~2,F and F, ~2 /~ ~-~2 

and ~2' ~2 ) ~2' 72 respectively; S will also be 

written more briefly as F3 ~ ~ 3 Finally let us denote 

' ",S' S" and S by the subproofs of SI,S2,S 1 ,S~,S 2 , 

PI,P2,PI,P~,P~,P' ,P" and Poj respectively. First we describe a 
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syntactical transformation to be performed on P . We replace 

P by the following derivation: o 

P1 in 

PI 

A I , 7 o ~ ~o,Bl 

~o ,A > B, ~o,AI ~ B 1 

interchanges, conversions, 
thinnings. 

This transforms P into a proof P* of ~ ,A o 3 
By adding some interchanges we obtain a proof P1 

A, ~3 > X~3'B : 

> B, ~3 " 

of 

p* 

~,A ~ B, Z~ 3 

A, V3 # ,,%3, B 

interchanges 

Next, we perform another transformation on 

P by the following derivation: 
o 

Po " We replace P2 in 

p! 
2 

A2~B 2, ~, ~' > A, 77-, 77-' 

interchanges,conversion 
thinnings. 

This transforms P into a proof P** of 

adding some interchanges we obtain a proof 

as follows: 

~3 >A, ih 3 . By 

P2 of 5 > Zk3'A 

p** 
: 

~-3 > A, Z~ 3 
interchanges. 

Finally, we perform a third transformation on 

in P by the following derivation: 
o 

P . We replace P 
o 2 
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B , ~ ,  

ptt 
:2 

)--/7- '  

A 2 , Z , , B  > ~T, 7[' 

interchanges,conversion, 
thinning 

This transforms P into a proof P*** of ~3,B > ~3 By 

adding some interchanges~we obtain similarly as above a proof P3 

of B , ~3 ~ Z~ 3 The proofs PI,P2 and P3 can now be 

composed by means of cuts, interchanges and contractions in order to 

yield a new proof ~ of <3 ~ ~3 as follows: 

% 

f2 ) d~,A 

Y3 
A, V~ > Z~3'B cut 

> ~3' A3'B B, ~3 >A 3 cut 

73' ~3' ~3 ) /~3' ~3' ~ 3 interchanges, 
contractions 

Y3 > ~3 

Now we replace P in P by P . This transforms P into a new 
O 

p r o o f  P . C l e a r l y  P h a s  t h e  s a m e  e n d s e q u e n t  a s  P a n d  i s  a g a i n  
A 

n o r m a l .  We s a y  t h a t  P f o l l o w s  f r o m  P b y  m e a n s  o f  a n  i m p l i c a t i o n  

r e d u c t i o n  ( o r  a n  ~ - r e d u c t i o n )  

2.~. Properties of reduction steps 

A. In order to discuss some properties of reduction steps we need 

Definition 12"*: The two-place relation W applies to proofs P 

and P' (in symbols W(P,P')) if and only if P and P' are nor- 

mal, have endsequents without free variables and satisfy the 

following conditions: l) there is a list Po,...,PN of proofs 

= P and PR(P i Pi+l) (see th. 4) for all i <N ; such that Pc 

2) P' follows from PN by exactly one application of an essential 

reduction step; 3) no preliminary reduction step is applicable 
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t o PN " 

The properties of W are described by 

Theorem 5: a) W is recursive, b) There is a recursive function 

having the following property: if W(P,P') then P' has at 

most ~ (P) symbols. 

In connection with W we introduce some notations° Let P be a 

normal proof whose endsequent does not contain free variables. By 

Dp we denote the set of those proofs P' which satisfy one of the 

following two conditions: l) P' is P, 2) there is a list 

Po,...,PN such that Po = P' PN = P' and W(Pi,Pi+l) for i < N 

By Wp we denote the restriction of W to Dp By W* we denote 

the two-place relation which is induced by W in the following 

PN = P' PN = P' way: W*(P,P') iff there is a list Po' .... with Po 

such that W(Pi,Pi+I) for i<N By W~ we denote the restriction 

of W* to Dp 

The reduction steps have an elementary but fundamental property, 

which is described by 

Theorem 6: Let P be a normal saturated proof whose endsequent 

does not contain free variables. Assume that P does not admit re- 

duction steps (neither preliminary nor essential ones) and that P 

is different from its final part. Then there is a critical logical 

inference, whose principal formula has an image in the endsequent. 

A proof of this theorem can be found in ~l] or in ~2J . Before 

mentioning the main application of th. 6~we note 

Lemma 5: Let P be a saturated proof and E its endsequent. Let 

P have the following properties: a) it contains no logical axioms, 

b) it contains only conversions, cuts, interchanges and contraction~ 

Then E is a true saturated prime sequent. 

The proof is trivial and hence omitted. The main conclusion which 

can be drawn from th. 6 is 

Corollary: Let P be a normal saturated proof of ~ m = n 

which does not contain special function constants. If W is well- 

founded (that iS,does not allow strictly descending sequences) 

then > m = n is true. 
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Proof: Let us call a proof P' "good" if it has the same proper- 

ties as P~ except that its endsequent may be ) m = n or 

# Then one easily shows: if P' is "good" and if 

W(P',P") holds,then P" is also "good". Next we take an arbitrary 

but fixed strictly descending sequence Po,...,PN such that 

Pc = p ' W(Pi'Pi+l) and (~X) ~W(PN,X ) (such a sequence exists in 

view of our assumptions). Since the endsequent of PN does not con- 

tain any logical symbol, one concludes from th. 6 that PN is iden- 

tical with its final part. The statement then follows via lemma 5. 

In view of the above corollary, Gentzen directed his main effort to- 

ward a proof of the wellfoundedness of W . How he achieved this 

with the aid of ordinal numbers will be outlined in the next section. 

Notation: Since from now on we will almost always be concerned with 

normal proofs whose endsequent does not contain free variablesjwe 

will introduce a new name for them and call them strictly normal. 

Strictly normal proofs which are also saturated will also be called 

strongly normal proofs. We note 

Lemma 6: Let P be strictly normal. If P' is obtained from P by 

means of a reduction step (preliminary or essential) then P' is 

strictly normal (but not necessarily strongly normal). 

2.4. Assignment of ordinals to proofs 

As mentioned above, we present an outline of Gentze~s proof that the 

relation W is wellfounded. 

A__ u Let P be an arbitrary proof. With every sequent S in P we 

associate an ordinal to be denoted by 0(S) , inductively as follows: 

l) if S is an axiom, then 0(S)=l ; 2) if S is the conclusion 

of a one-premiss structural inference or a conversion So/S J then 

O(S)=O(S o) ; 3) if S is the conclusion of a one-premiss logical 

inference So/S ~ then O(S)=0(So)+l ; 4) if S is the conclusion 

of a two-premiss logical inference S1,S2/S , then 

0(S)=0(S1) 0($2) ~l ; 5) if S is the conclusion of a out 

SIS2/S, t h e n  O(S)=OOd(O(SI) ~0($2) ) w h e r e  d=h(Sl)-h(S ) 

(with h(Sl) and h(S) the heights according to def. 12); 

6) if S is the conclusion of an induction So/S, then 
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O(S) =~d(O(So)~) with d=h(So)-h(S ) . As ordinal of the proof P , 

sometimes denoted by O(P) , we take the ordinal O(E) of the end- 

sequent E of P 

B. The essential step is to prove the following 

Theorem 7: Let P be a strictly normal proof. Let P' be obtained 

from P by means of an essential reduction step. Then 0(P')~0(P) 

We also need 

Theorem 8: Let P be an arbitrary proof. Let P' be obtained from 

P by means of a preliminary reduction step. Then O(P')~O(P) 

Before discussing theorem 7,1et us comment briefly theorem 8. In Cl~ 

Gentzen sketched a proof of theorem 8. For the time beeing (that is 

in this and the next section) we assume theorem 8 to be true. How- 

ever, in view of the importance of preliminary steps for intuitioni~- 

tic systems, we will look more closer at theorem 8 in the last sec- 

tion of this chapter. Concerning theorem 7~we are content to 

prove the statement for the case of an implication reduction. The 

treatment of the other cases is similar but simpler; we refer to ~. 

Let P be a strictly normal proof, Il,I2,I 3 an implicational fork 

in P and S',S"/Q the cut associated with Ii,I2,13 ; let Q be 

more explicitly S > ~ . Let ~ ~ B  k be the principal 

formulas of I k for k=l,2 , let A ~B be the cutformula of 13 

and let F be the cutformula of S',S"/Q . Let finally h=h(S') be 

the height of S' (and S") and h ° the height of V ) /~ 

(in P) . From the definition of cut associated with the fork 

Ii,I2,13 one immediately deduces the following inequalities: 

l) h=N(F) , 2) N(A ~B)_~h , 3) ho~N(F ) . Here N(F) , 

N(A ~B), N(A) and N(B) denote the number of logical symbols in 

F, A, B and A ~B~ respectively. The proof P can symbolically 

be written as follows: 

I1 12 

S '  S "  

.Q 
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In view of our definition of implicational reduction step;we can 

write the altered proof symbolically as follows: 

P1 P2 

s l , s  ~ s~,s~ 

Q1 Q2 

Q4 

Q5 

P3 

Q3 

Here  Q1 is ~ ) ~ , A ,  Q2 is A, ~ ~ d ,B , 

% is V >~,~ , % is B, ~ > ± and 

Q5 is ~ ) /~ . A double line indicates a cut followed by some 

interchanges and contractions. The cuts S! S"/Q all have the same l' i i i 

cut formula, namely F The heights of Qi' i=l, .... ,5 and 

Q5 s: , k=1,2,3 are given as follows: a) h( ) is h ° , 

b) h(Q3) and h(Q4) are max(ho,N(B)) and will be denoted by 

h2; c) h(Ql) and h(Q2) are max(ho,N(A),N(B)) and will be 

denoted by h I ; d) h(Si) and h(S~) are max(ho,N(A),N(B),F ) ; 

e) h(S~) is max(ho,N(B),F ) From our inequalities 1)-3) listed 

above, one immediately deduces that h(S') are all equal to h and 

that the following inequalities are satisfied: h ° ~h 2 ~h I ~h We 

note the following easily established fact: if the ordinal of Q in 

P' is smaller than the ordinal of Q in P, then P' has smaller 

ordinal than P. In order to calculate the ordinals of Q in P 

and of Q' in P', let us introduce the following notations: 

i) by 0(S) we denote the ordinal of a sequent S in P , by 

0'(S) we denote the ordinal of a sequent S in P' ; 2) we put 

o(s,): c<, , o(s,,)= o<,, , o,(s i): o< i, and O'(S:'~:~. o< i'' ", 

3) we put  O(Q)= 
{ 
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p ' l! and 0'(Qi)= i ' 4) C~ ' ~ c< is denoted by c~ and 

! !! 
~i ~ ~i is denoted by ~ . . Clearly, the following inequali- 

i 

ties are satisfied: ~i ~ g~ for i=l,2,J . Now we have by defi- 

nition: a) T =(X)h-h 0 ( ~ )  ' b) / l = / . Z ) h _ h l ( ~ / 1  ) , 

e) p3: O)h_h2(5~ 3), f)/.:~h2 ho(/. ~e distinguish 

two cases : hl~h 2 and hl=h 2 . 

Case l: hl=h 2 o Then P5 is given as follows: 

p5 =~h2-ho(~h_h2(~l)#~)h_h2(~2)~h_h2(~3)) • Since 

~I' ~2' ~3 < D< and h 2 ~h~ we have in view of the properties of 

~0 d (see preliminaries) the following relation: 

C4)h_h2 (~i) < ~h_h2(~ ) . Therefore 
1 

: 

Case 2: h 2 ~h I . Then /5 is given as follows: 

/5 : ~h2ho( ~hlh2 ( mh hl(~ l) ~ ~hhl(~2) )#~h~h2(~h hl ( ~ J )) ) 
where use has been made of /3 = ~Jhl~2(~Oh-hl(~3 )) Put 

~ ~h_hl(~ i) = A • Again in view of ~ i' ~2' ~3 < ~ and 
1 

hi<h, one finds ~ < ~h_hl (~) On the other hand, 

P5 % OJh2-ho(tOhl-h2(k) ~ 60hl_h2(k )) and, since h2< h I by 

assumption and k< OOh_hl (~) ~ as noted>we conclude 

P5 ~ ~h2-ho(~hl-h2(6Oh-hl (~))) = ~ what proves the statement 

also in this case. 

2.5. A ~eneralization 

In this section we discuss a simple and straightforward generali- 

zation of Gentze~s procedure which will play an important role in 

the sequel. 

A. Let D be an arbitrary standard formula containing the number 

variable x free; let ~ D be the partial ordering associated 
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with D(x) acording to chapter l, section 1.5o, part B. We note 

Lemma 7: a) For terms t,p,q we can prove the sequents 

t ~_d p ) D(t) and t ~Dp, p ~D q ) t ~D q in ZTi 

without cuts and inductions, b) Let D(x) be u(x)=v(x) Let 

t,q be terms such that u(t),v(t),u(q) and v(q) all are satura- 

ted. If t z~-- D q ) is true,then it is provable in ZTi 

without cut and induction. 

Proof: al) From D(t) ) D(t) we can derive by means of two 

applications of /k > the sequent 

t ~Kp /~D(t) /~D(q) ) D(t) , that is~t ~D q ) D(t) 

a2) From D(t) > D(t) and D(q) > D(q) we can derive by 

means of two applications of /~ ) , a thinning on the left and 

an interchang%the sequent t ~Dp, p ~Dq ) D(t) and 

t ~ D p, p ~ D q ) D(q) .These two sequents can be combined 

by means of an > /~ in order to yield 

t ~ Dp , p f-ZDq > D(t) /%D(q) . On the other hand 

t ~ Kp, p ~Kq ~ t ~_K q is an axiom. By means of seve- 

ral applications of /~ ) and some interchanges to this sequent 

we can derive t ~ Dp, p ~D q > t ~ K  q . Combining this se- 

quent with that one proved under al) by means of an ) /~ we 

finally obtain a derivation of t ~ Dp , p ~ D  q ~ t ~Dq. 

b) Since t ~Dq is false, one of t ~ Kq, D(t), D(q) is false. 

Assume e~g. t ~Kq to be false; then t ~Kq ~ is an 

axiom from which t ~Dq ) can be derived by means of two 

applications of ~ ) . We proceed similarly in the other 

c a s e s .  

For the rest of this section let D be a prime formula, which for 

simplicity is assumed to contain no function variables or special 

function constants. Let us assume that for one reason or the other 

(e.g. by means of a proof in Zermelo-Fr~nkel set theory) we know 

that ~D is a wellordering. We construct a new formal system by 

adding to ZT suitably formulated rules which express transfinite 

induction with respect to ~ D " The system so obtained and de- 

noted by ZT(f_D) is more precisely defined as follows: 

a) its axioms are the same as those of ZT ; b) it contains all 

the rules of ZT ; c) it contains in addition the following 

rules 



- 55 - 

TI: 

D(y), (x) ~DyA(X), r ) Z~ ,A(y) 

D(q), y > ~ ,A(q) 

and for all saturated terms t such that D(t) is true 

TI : a 

y~ot, (X)~DyA(X), ~ ,A(y) 

q ~Dt, y , > & , A ( q )  

where /t/ is assumed to be 

free in the conclusion and q 

A(y). 

a . In both cases y does not occur 

is supposed to be free for y in 

The rules TI are of course superfluous; they are derivable from a 

TI, as can easily be seen. We have introduced them for technical pur- 

poses, as will be seen below. The system ZT( ~ D  ) thus introduced 

has the same strength as the Hilbert-type system which we obtain by 

adding to ZH all axioms of the following form: 

(y)(D(y) /~ (x) ~DyA(X) 0 ~. A(y)) o ~ o(z)(D(z) ~ A(z)). 

We omit the easy proof. 

Proofs are again considered as finite trees. Those proofs which con- 

tain only sequents with at most one formula in the succedent are 

called intuitionistic proofs; they give rise to the intuitionistic 

version of ZT(~D) , to be denoted by ZTi( ~ D) 

B__ u With the exception of definition 12 , which will be modified 

slightly, we can carry over the whole content of section 2.1. to the 

present situation. That is, the notions such as final part, image, 

normal proof etc. can be defined for proofs in ZT(~D) in exactly 

the same way as in section 2.1. In order to modify definition 12 we 

associate natural numbers, called complexities, with cuts, induetion~ 

TI- and TI -inferences. The complexity of a cut or an induction is a 

the same as before, namely the number of logical symbols contained in 

the cut formula or the induction formula~ respectively. If the pre- 

miss of the TX-inference in question is 

D(y) (x) A(x) ~ > /~ ,A(F) then we take as complexity of 
, ~-Dy , 

this inference the number of logical symbols contained in 
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(x) ~ yA(X) . Similarly, if the premiss of the TI-inference in 

t" D . ques ion is y ~__D t , (x) ~ yA(X), Y > ~ ,A(y) , then we 
D 

take again the number of logical symbols contained in 

(x) ~DyA(X) as complexity of this inference. 

Definition 121: With every sequent S in a proof P we associate 

a natural number h(S) , its height, inductively as follows: 

l) if S is the endsequent, then h(S)=0; 2) if S is premiss of 

a logical inference, of a conversion, or a one-premiss structural 

rule with conclusion S' , then h(S)=h(S') ; 3) if S is a pre- 

miss of a cut with conclusion S'~ then h(S)=max(d,h(S')) where d 

is the complexity of the cut in question; 4) if S is premiss of 

an induction with conclusion S', then h(S)=max(d,h(S')) where d 

is the complexity of the induction in question; 5) if S is pre- 

miss of a TI- or TI -inference with conclusion S', then a 

h(S)=max(d,h(S')) where d is the complexity of the TI- or TI a- 

inference in question. 

A cut with jump is~of course~the same as before, namely a cut 

Sl,S2/S such that h(Sl) ~ h(S ) . It is clear that the height of a 

sequent in the final part is unaffected by this change of definitio~ 

and the same is true for the notion of cut associated with a given 

fork Il,I2,I 3 . A TI- or TIa-inference will, of course, be called 

critical if its conclusion belongs to the final part; for logical and 

induction inferences the notion "critical" has the same meaning as 

before. 

Next, we can carry over the whole body of section 2.2. to the present 

situation. That isbwe can introduce preliminary reduction steps, in- 

duction reductions and elimination of forks from the final part in 

exactly the same way as in section 2°2. All the lemmas and theorems 

stated there remain invariably true in the present situation. In or- 

der to obtain a counterpart of theorem 6 in section 2.3.~howeve~ we 

have to introduce two new types of reduction steps, connected with 

the new rules TI and TIa; they are called TI- and TIa-reduction 

steps. 

Let us first explain the TI-reduction step. To this end let P be a 

normal proof and assume that there is a critical TI-inference in P, 

say 
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D(y), (x) ~DyA(X), ~ ~  + A ,A(y) 

D(q), ~ "~ ) ~ ,A(q) 

for which q is saturated; assume lq]=a . We denote this inference 

more symbolically by S/S' ; by PS and PS' we denote the subproo~ 

of S and S' in P~ respectively. Now we distinguish two cases: 

i) D(q) is true; 2) D(q) is false. We start with case i). If we 

replace every (free) occurence of y in PS by q then we obtain 

q of according to lemma 4 a new proof PS 

D(q), (x) ~_qA(X), ~ > /~ ,A(q) • On the other hand (lemma 7), 

there is a proof P not containing any cuts, inductions, TI- and 
o 

TIa-inferences, whose endsequent is y ~D q ) D(y) . A new 

derivation P' of S' can now be obtained in the following way: 

cut 
y , f ' - .  D q 

P P 0 , S 

) D(y) D(y),(x) ~DyA(X), S >~,A(y) 

T I  
a 

> ~  

y ~ D  q , ( x )  C f - D y A ( X ) ,  y 

q,Y > &,A(s) 

y > Z~ ,s ~D q .~.A(s) 

/ > Z~ ,(x) (-"-:DqA(X) 

> A ,A(y) 

D(q), (x) ~DqA(X), ~-A-'->z~ ,A(q) 

D(q), ~ + Z~ ,A(q) 

Here the double line indicates a cut followed by some interchanges 

and contractions. Now we replace PSm in P by P' , obtaining 

thus a new proof P* having the same endsequent as P . Thereby 

we can always choose the variable s in such a way that the new 

proof P* is again normal; ~g. by taking for s the first indivi- 

dual variable which does not occur in P at all. 

Now to case 2) : D(q) is false. Since D(q) is prime and false, 

D(q) > is an axiom. Hence we can derive S' from 
A 

D(q) > by means of thinnings and interchanges alone. Let P 

be such a derivation. By replacing PS' in P by ~ we obtain a 

new proof P* , having the same endsequent as P , which is also 

normal. 
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Both in case l) and case 2) we say that P* is obtained from P by 

means of a TI-reduction step. 

Now to the TI -reduction step. Let P be a normal proof and assume a 
that there is a critical TI -inference in P , say a 

y ~O t, (x) ~DyA(X), F ) /~,A(y) 

q~D t' r > /k ,A(q) 

for which both t and q are saturated; let / t I and lq I be a 

and b respectively. Of cours% D(t) is true by assumption. We de- 

note this inference more briefly by S/S' ; by PS and PS' we de- 

note the subproofs of S and S' in P~ respectively. Again we 

have two cases to distinguish: l) t ~D q is true , 

2) t ~ D q is false. 

Let us start with case 1); note that D(q) is true. Replacing eve- 

q of ry (free) occurence of y in PS by q gives a proof PS 

q ~____Dt,(x) ~ qA(X), ~ ) /~ ,A(q) According to lemma 7 

there is a proo~ in ZTi not containing cuts and inductions of 

y ~ D t, q ~D t > y ~D t ; call it Po" A new deduction 

of S' can now be obtained in the following way: 

p' 

PS Po 

Y ~D q, q ~D t > y ~D t y Dt,(x  yA(x), V )~,A(y) 

TI b 

y ~Dq,(x) ~qA(x),q~Dt, F------~ ~,A(Y) 

s~Dq,q~D t, y > ~ ,A(s) p~ 

q ~D t, V > ~,s ~Dq ~A(s) 

q~D t' f > ~'(X)~DqA(X) q~Dt,(x)~DqA(X),~---~,A~ 

q ~ D  t ,  y z~,A(q) 

A double line indicates again a cut followed by interchanges and 

contractions. Now we replace Psi in P by P' ; this gives a new 
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proof P* , having the same endsequent as P . By choosing for s 

the first number variable Which does not occur in P , we can achieve 

that P* is again normal. 

Now to the second case: q ~ D  t is false. Then there is a proof Pc 

in ZTi of q ~ D  t ~ which does not contain cuts and in- 

ductions. By adding some thinnings and interchanges~we obtain a proof 
A 
P in ZTi of S' which does not contain cuts and inductions. By 

replacing PS' in P by P~ we obtain a new normal proof P* which 

has the same endsequent as P . In both cases we say that P* is ob- 

tained from P by means of a TI -reduction step. 
a 

C. Now we can divide the set of reduction steps again in two classes: 

l) preliminary reduction steps (elimination of logical axioms and 

thinnings from the final part) ; 2) essential reduction steps (eli- 

mination of forks, induction reductions, TI- and TIa-reduction 

steps). For this enlarged set of reduction steps we can introduce a 

relation W in the same way as in definition 12"*, sect. 2.3. ; 

with this W we can associate the sets Dp and the relations 

Wp,W* and W~ precisely as in section 2.3., pt. A. It is an easy 

matter to verify that theorems 5,6 and its corollaries also hold in 

the present case (with the new set of reduction steps~of course). 

Hence a formal consistency proof for ZT( ~_D ) is obtained if we 

can show that the relation W is wellfounded. We prove this by 

associating ordinals with proofs in such a way that an essential 

reduction step applied to a proof P lowers its ordinal. More pre- 

cisely, given a proof P , we associate inductively from above 

with every sequent S in P an ordinal, to be denoted by 0(S). 

The inductive definition of 0(S) goes as follows: l) if S is 

an axiom then 0(S)=l ; 2) if S is the conclusion of a structural 

inference, a conversion, a logical inference or an induction then we 

proceed as in pt. A of sect. 2.4. ; 3) if S is the conclu- 

sion of a TI-inference with premiss S~ then we put 

0(S)=~((C~ ~ +l)~+l)~ where ~ =0(S1), d=h(S1)-h(S) and 

where ~ is the ordinal associated with the wellfounded relation 
! 

~--D ; 4) if S is the conclusion of a TIa-inference SI/S then 

we put O(S)=~d((~ ~ t~2~ +I)6~X+I) where ~ =O(SI) , d=h(Sl)-h(S ) 

and where ~ is the ordinal associated with the partial ordering 

~x,y~ / x ~Da /k y ~ Da /~ x ~ Dy ~ . The ordinal of a proof 

P is now by definition the ordinal of its endsequent; we denote it 

by O(P) 
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It remains to show that a preliminary reduction step does not in- 

crease the ordinal of a proof, and that an essential reduction step 

lowers the ordinal of a proof. Again we postpone the discussion of 

the first half of this statement (corresponding to th. 7) to the 

next section and look at the second half (corresponding to theorem 8). 

So we have to prove that O(P*) ~O(P) holds whenever P* is ob- 

tained from P by means of an essential reduction step. The proof 

is by cases according to the kind of reduction step which transforms 

P into P* 

Case i: P* follows from P 

verification of 0(P*) < 0(P) 

in 

by means of an induction reduction. The 

is achieved in exactly the same way as 

Case 2: P* follows from P by means of a fork elimination. Here 

too, the verification is word by word the same as in ill ~ or as 

in section 2.4. in case of an ~-fork. 

Case 3: P* follows from P by means of a TI-reduction step. In 

order to verify O(P*) ~0(P)~ we refer to the notation and the dia- 

gram which were introduced in connection with the definition of 

TI-reduction step. First we consider the subcase l: D(q) is true. 

Let us rewrite the diagram presented there in a shorter way~ as 

follows: 

Po PS 

S 8 
O 

cut 

S 1 
TI 

a 

> ~ S2 pq 
:S 

> V s3 
S 4 S 5 

S' 
cut 

where S 5 is the endsequent of PS ' that is~ 

D(q) ,(x)~DqA(X), f ) k ,A(q) Let us denote the ordinals of 

S and S' in P by ~ and y respectively, the ordinals of S 

and S' in P* by ~ ' and 7' respectively, the ordinals of 
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S.l (in P*) by ~i " In addition, let us denote by h(S), h(S' ) 

the heights of S,S' in P, and by N'(S), h'(S'), h'(Si) (i ~ 5) 

the heights of S,S' ,S i (i~5) respectively in P* . A quick in- 

spection shows: 1) h'  (Si)=h '  (S)=h(S); 2) h'  (S ' )=h (S ' )  ; 
3) ~'= ~ ; 4) ~= ~; 5) ~o=m<~. By definition, 

7 = ~Ud((C~ ~007+1)jf+i) where d=h(S)-h(S') . Now let us calcu- 

late ~' . First we note that the ordinal k associated with 

~<x,y~ /x ~Da/%y ~Da /~x ~Dy ~ is smaller than ~, (the ordi- 

nal associated with ~ D) . Next~ we obtain for C><l, . . . , 0< 4 and 

~ ' successively the following values: l) ~ ~= ~ m ; 
k+l A+I ~" ~ 1 , 2) ~ 2 = ( ~ i ~  )~ ; 3) ~ 3 = ~ 2 # 1  , 4) 4=~3@ • 

5) '-OJ (C< ~O<) We want to prove ' < Since ~ < ,we ~ - d 4 " ~ ~ . ~ have 
~+i< %, and therefore 

02~((~%~+2)~2~+2) ~ ~0~((o~O2~+l)o0f +I) . Hence we are through if 

we have proved 02d((~#m~Ou ~+l)6A2~+l~2)<~)d((~ Co ~ +2)~ +2) . 

This in turn is a special case of the following inequality: 

E. ~Od((~m~u)~ )~#~ ~ n)< 60d((CK # co~+l)ag~ +I) 

(with n,m~6o) . Let us turn to the proof of E. For convenience, we 

use the shorthand writing nX for %# %# ..... # , n times 

Since ~ n~< ~O3 (see preliminaries), we o b t a i n  successively the 

following inequalities: +i)~# m#t~ ~m+ido~ ; 

2)  #< # ~m+lWY<O(#oj ; 
3) (~<~m # j ' ) ~ y + l  < (~4/_~,y'+l)~,y÷l ; 
4) "~n+2(~#m # . ~ ' ) J  ~ (~@m 4/ J )~ 2"+1 ; 
5)  (~m~O)~)OJY~ cf ~ n~ ~n+2(~ ~ ~+ --m~T~)°J~ ; 
6) (~ ~ re#w# )J~ ~ 4~ n < (~ # gU Y +l) From 6) one imme- 

diately derives inequality E. Hence, by putting n=2 in E, we 

obtain ~'< ~. The inequality 0(P *) <0(P) is now an easy conse- 

quence of 7'~ - ~. 

Now to subcase 2: D(q) is false. Then we get P* from P by re- 
A 

placing PS' in P by a derivation P of S' which does not con- 

tain cuts, inductions, TI- or TIa-inferences. That is, the ordinal ~' 

of S' in P* is a natural number m which clearly satisfies the 

inequality m~ ~ where ~ =~d((~@~ +i)~+i) is again the 

ordinal of S' in P. From ~'< ~ the inequality 0(P*) < 0(P) 

immediately follows. 

Case 4: P* follows from P by means of a TI -reduction step. 
a 

Again we use the notation and the diagram introduced in connection 
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with the definition of TI -reduction step. First to subcase i: a 

q ("--.Dt is true. The diagram used in the definition of TIa-reduction 

step may be presented more symbolically, as follows: 

P PS .o 

TI b 

> 

S 
o 

S 

S 1 

S 2 

s 3 

s 4 s 5 

cuts, interchanges 

cuts, interchanges, contractions 

where S 5 is (x) ~ qA(X), q ~D t, ~ - > ~ ,A(q) . By ~ and ~ 

we denote the ordinalsDof S and S' in P , by ~ ' and ~' the 

ordinals of S and S' in P* . In addition, h(S) and h(S') are 

the heights of S and S' in P , while h'(S) and h'(S') are 

the heights of S and S' in P* . Furthermore, ~ is the ordinal 

o~ {<x,y)/x:~-- Da /~ y ~ D a /~x ~D y 5 and hz" is the ordinal of 

~<x'y~/x ~Db/~ Y ~Db /~ x ~ DY I " Since q ~ D  t is true and 

]tl =a , /q]=b , it is clear that ~ < ~. The calculation of V and 

~ 1 ensues in the same way as in case 3 and yields the same kind of 

expressions as there; that is~we obtain 

~ =~d((~#~ +l)~ ~+l) and ~': ~d((~#m ~Y+l)~+l~ ~ ~ 2) 

where d=h(S) -h (S ' )  . But the s ta tement  ~ '  < V i s  again  a s p e c i a l  
case of the inequality E. which has been proved above under case 3. 

Finally, O(P*)<O(P) follows easily from ~ ' <  ~ .  

Now to subcase 2: q ~D t is false. We proceed in the same way as 

under subcase 2 of case 3. 

D. The formal consistency proof for ZT( C D ) thus obtained has, of 

oourse~not much interest in itself. The most which can be said is 

that all results proved in Ill (for ZT and ZTi essentially) can 

be proved also for ZT(~D) and ZT~(~D) , as a straightfor- 

ward analysis shows. However the technique used in this formal con- 

sistency proof will play an important role in the later chapters. 
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2.6. The preliminary reduction steps 

A__:_. As basis of our discussion we take the theory ZT(~D) . Below 

P is an arbitrary proof in ZT(~ D) ; the inferences in P are de- 

noted symbolically by I,I' ,II,I2, ... etc. By N(A) we denoSe the 

number of logical symbols in the formula Ao 

Definition i~: a) An inference I in a proof P is called strong 

if it is either a cut, an induction, a TI- or a TI -inference. All a 

other inferences are called weak. 

b) A function f which associates with every strong inference I 

in P~ a natural number~ f(I) is called a complexity assignement 

for P . 

c) Let f be a complexity assignement for P having the following 

properties: i) if I Js a cut with cut formula A then 

f(I)=N(A) ~ 2) if I is an induction with premiss 

A(x), V > ~ ,A(x'), then f(I)=N(A) ; 3) if I is a TI- or 

a TI -inference with premiss a 

D(y),(x)~ yA, ~ ) ~ ,A(y) or Y ~Dt,(x)~Dya, F > ~ ,A(y) 

respeetivel~, then f(I)=N((x) ~ vA) . Then f is called the 

normal complexity assign4ment for D k 

With such a complexity assignement f we may associate a notion of 

height in precisely the same way as in definition 12 or 121. That is, 

we have 

Definition 14: Let f be a complexity assignement for P A height 

h(S) is associated with every sequent S in P as follows: 

l) if S is the endsequen% then h(S)=0 ; 2) if S is the pre- 

miss of a weak inference I whose conclusion is S'; then 

h(S)=h(S') ; 3) if S is the premiss of a strong inference I 

whose conclusion is S', then h(S)=max(h(S'),f(I)). With this no- 

tion of height we can associate ordinals with sequents in exactly the 

same way as before. 

Definition 15: Let f be a complexity assignement for P~ and h 

the height function associated with f according to def. 14 . Then 

an ordinal 0(S) can be associated with every S in P~ as follows: 
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i) if S is a n  axiom, then O(S)=I ; 2) if S is the conclusion 

of a one-premiss structural inference or a conversion S'/S~ then 

o(s):0(s,) ; 3) if s is the conclusion of a one-premiss logical 

inference S'/S) then 0(S)=O(S') ~i ; 4) if S is the conclusion 

of a two-premiss logical inference SI,S2/S, then 

0(S):0(Sl)@0(S2)@l ; 5) if S is the conclusion of a cut 

SI,S2/S ~ then O(S)=~d(0(SI)~O(S2) ) where d=h(Sl)-h(S ) ; 

6) if S is the conclusion of an induction S'/S, then 

O(S)=~d(O(S')~ ) with d=h(S')-h(S) ; 7) if S ~is the~conclusion 

of a TI-inferenee S'/S~ then O(S)=~((0(S,)~L£)/+I)~~ ~+i) with 

d=h(S')-h(S) and where ~ is the ordinal associated with ~ D 

8) if S is the conclusion of a TIa-inference S'/S ~ then 

0(S)=~d((O(S')~+I)~ ~+I) where d=h(S')-h(S) and where A is 

the ordinal associated with a with respect to ~D " 

As ordinal of P , denoted by 0(P) , we take the ordinal 0(SE) of 

the endsequent S E of P . In order to indicate the dependence of 

h and 0 on f and P, we write more explicitely h(P,f/S) and 

OP ,f/S), respectively. Our main tool in treating preliminary re- 

duction steps is 

Lemma 8: Let P be a proof, Io: SI,S2/S* a cut in P and f,g 

two complexity assignements for P having the following properties: 

I) if I is a strong inference different from I , then 

f(m)=g(I) ; 2) g(Io)+l = f(Io) . Then the following holds: 

a) if S is a sequent in P which is different from S* and is 

neither above nor below S@~ then O(P,g/S)=0(P,f/S) ; b) if S is 

either S* or below S*~ then 0(P,g/S) ~0(P,f/S) In particular, 

O(P,g/SE)~0(P,f/SE) where S E is the endsequent of P. 

Proof: Part a) of the statement is rather trivial to verify; we 

omit its proof. Part b) is essentially proved if we can show 

O(P,g/S~O(P,F/S*), if So ..... Sn (with So=S* and Sn the end- 

sequent) is the path which leads from S* to the endsequent, one 

shows with an easy induetion with respect to i (using part a)) 

that O(P,g/Si)~O(P,r/Si) holds. Hence, let us prove 

O(P,g/S*~O(P,F/S*) . Here two subcases arise, 

i) h(P,F/Sl)=h(P,F/S* ) ; 2) h(P,f/S*) <h(P,f/Sl) In the first 

case~one easily verifies that h(P,g/S)=h(P,f/S) holds For all S 

in P~ and obtains as an immediate consequence that 

0(P,F/S)=O(P,g/S) helds for all S in P o Hence, let us assume 
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h(P,F/S*) ~h(P,f/Sl) Then the following relations hold, as is 

easily verified: i) h(P,f/S*<f(lo) , 2) h(P,f/Sl)=f(lo) , 

3) h(P,g/S1)=f(Io)-i , 4) h(P,f/S*)=h(P,g/S*) . Now let us intro- 

duce the notion of "good" sequent with respect to S 1 inductively, 

as follows: l) S 1 is good; 2) if S is a premiss of a weak in- 

ference whose conclusion is good, then S is good; 3) if S is a 

premiss of a strong inference I , whose conclusion is good, then 

S is good, provided that f(I)<f(Io) holds; 4) S is good only 

in virtue of 1)-3) • The set of good sequents (with respect to S1) 

gives rise to a subtree P1 of P: it is thatsubtree of P which 

contains precisely those sequents of P which are good with respect 

to S 1 . The following properties of good sequents are immediate con- 

sequences of their definition: ~) h(P,f/S)=h(P,f/S1)=f(Io) ; 

#) h(P,g/S)=h(P,g/S1) ; ~) if S is an uppermost element of Pl' 

then it is either an axiom or the conclusion of a strong inference 

I for which f(Io) ~f(I) holds; ~) if S is an uppermost element 

of PI and not an axiom, if furthermore S' is situated above S~ 

then 0(P,g/S')=0(P,f/S') . Now we will prove that the following 

inequality holds for every good sequent: A) 0(P,g/S)_~I(0(P,f/S)) 

(where ~l(~ ) is~ of course~only another way of writing ~ ) 

We prove A) by induction over P1 and proceed by cases. 

Case i: S is an axiom. Then O(P,g/S)=O(P,f/S)=I and A) holds, 

since 

Case 2: S is the conclusion of a strong inference I such that 

f(Io)~f(I ) Let I be e~g. a TI-inference S'/S and put 

0(P,f/S')= ~ In virtue of j) above~ 0(P,g/S')= g~too . In 

addition, h(P,f/S')=f(I) and h(P,g/S')=f(I) , as is easily veri- 

fied. On the other hand~ h(P,f/S)=f(Io)=h(P,g/S)+l. Putting 

d=h(P,f/S')-h(P,f/S), we obtain O(P,f/~)=~((~) and 
+i j 

0(P,g/S)=~+l(~) where %=(~ ~ ~ ) with ~,as before 

the ordinal of c--- D. Since ~d+l(~)=~(~d(~)), the inequality A) 

is clearly satisfied. The cases where I is a cut, an induction or 

a TI -inference are treated alike. a 

Case 3: S is the conclusion of an induction S'/S and S' is 

also a good sequent. Put 0(P,f/S')= ~ and 0(P,g/S')= O<, and 

assume ~ ' ~  to be proved. Since h(P,f/S)=h(P,f/S')=f(Io) in 

virtue of property ~ ) listed above, we find 0(P,f/S)= ~ . ~ . On 

the other hand, we conclude from properties p) and 3) listed 
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above that h(P,g/S)=h(P,g/S')=f(I ) - 1  holds. Hence, 
<°~+i~ ~°~ O(P,g/S)= ~'~ . But ~ ' ~  . ~ ~ , that is, inequality 

A) is satisfied. 

Case 4: S is the conclusion of a cut S',S"/S and both S',S" are 

good  sequents. Put O ( P , f / S ' ) =  ~ '  , O ( P , f / S " ) = ~ "  , O ( P , g / S ' ~ ) = / '  , 

0(P,g/S")=/" , O(P,f/S)= ~ and 0(P,g/S)= / . The inductive assump- 

tion As in ease 3. we find 

h(P,g/S')=h(P,g/S) and h(P,f/S')=h(P,f/S) Therefore 

~= ~ ' ~ p" and ~ = ~' # ~" . Since ~=max(~ ', ~")~ ~' ~ ~ "~ 

we have ~ ' ~  "~ ~ ~ ~ < ~  . On the other hand, 
' ~ ,, /< 

/~ ~ # ~ ; h e n c e ,  ~ ~,that is; A) holds 

Case 5: S is the conclusion of a TI-inference S'/S and S' is a 

good sequent. Put 0(P,f/S')= C~ , 0(P,f/S)=/ , 0(P,g/S')= 5{, and 

0(P,g/S)=/' . Again h(P,g/S')h(P,g/S)/, 04- and h(P,f/S')=h(P,f/S) 
Hence / =(0( ~6u~ +l)cu~+l and =( cu~+l)&o~+l Furth@rmore, 

by assumption with respect to ~ one immediately proves 

0< + ~ ~o s for o< ~ 1 . Using this~ we obtain the following list 

of inequalities, in which each is a consequence of the previous one 
+1 c< ~+i or of the assumption ~' ~cu ~ : i) ~ '~ 6o~ ~03 ~ 03 ; 

2) ~' #0D[~+l~J # (~ ~I) (since max(e< , ~+i)~o< ~ (~ +i)) ; 

(since &X4(ff2)Ou "/ =U,/a" 60 V ) ; ~ -~ 
"- / -~ i 

(since ~ + J <---- /~; if /~0) . But 5) is nothing else than 
,~f o<' ~ OU , that is inequality A) . 

Case 6: S is the conclusion of a TI -inference S'/S 
a 

good. The treatment is exactly the same as in case 5. 

and S' is 

Hence~ if we specialize to the case where S is S I , we find 

O(P,g/Sl) ~l(O(P,f/Sl) ) . What has been done for S can be done in 

exactly the same way for 82, and we find 0(P,g/S2)~(O(P,f/S2) ). 

Now let us put h(P,f/Sl)-h(P,f/S*)=d ° , h(P,g/Sl)-h(P,g/S*)=d and 

O(P'f/Si)= ~i ' O(P'g/Si): /i (i---~1,2) . Then,obviously, do=d+l , 

O(P,f/S*)=W. I(~_#.c< ~) and 0(P,g/S*):ou=(/l @/2). But 
r 1 (I+± ~ ~2" ~ u 

I~CO , / 2__~U in view of inequality A). Therefore 

ODd( ~ , # p%) ~ ~3d(~Cf i~64j~ 2) and since 
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COd (~i ~ ~2)~ ~d+l(~l #~2) , we obtain the desired inequality 

C~d(fl#P2)~C~ ~d+l(~l~2) , that is, O(P,g/S*)~O(P,f/S*) 

From the preceding lemma we now obtain ~mmediately the following 

Theorem 9: Let P be a proof in ZT( ~D) and f,g two complexi- 

ty assignements for P which satisfy the following condition: for 

every strong inference I, we have g(I) ~f(I) . Then 

O(P,g/SE)~O(P,f/SE) where S E is the endsequent of P. 

Proof: One constructs a list of complexity assignements 

go,...,gn+~ with the following properties: l) go is f ; 

2) gn+l is g ; 3) for every i~n there is a strong inference 

I i in P such that gi(Ii)=gi+l(Ii)+l , while gi(I)=gi+l(I ) for 

all other strong inferences. The theorem then follows by some succes- 

sive applications of the previous lemma. 

B. We are now ready to discuss preliminary reduction steps. Among 

the operations involved in preliminary reduction steps~there is just 

one for which it is not evident that it does not increase the ordinal 

of the proof to which it is applied. This operation applies in case 

there is a cut Sl,S2/S in the final part of a proof P which has 

the property: S is derivable from S 1 (or $2) by means of 

thinnings and interchanges. The operation then consists in the 

following: one replaces the subproof PS in P by the following 

derivation 

Ps I 

S 1 

S 

thinnings, interchanges 

obtaining thus a new proof P* having the same endsequent as P . 

If the roles of S 1 and S 2 are interchanged, then one replaces 

PS ~ of course,by 

PS 2 

S 2 

S 

thinnings, interchanges 
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In order to have a name for it, let us call the operation just des- 

cribed omission of a cut; we say that P* follows from P by 

omission of a cut. The main property of this operation is described 

by 

Theorem 10: Let P* follow from P by omission of a cut. Then 

0(P*) is smaller than 0(P) : 0(P*) d0(P) 

Proof: Let I ° : SI,S2/S be a cut in P which e~g. has the proper- 

ty: S can be derived from S 1 by means of thinnings and inter- 

changes. Let P* be obtained from P by replacing the subproof 

PS of S in P by the following derivation: 

~s I 

S 1 

S 

thinning, interchanges 

(Ps is the subproof of S 1 in P) . Let finally f and f* be 
1 

the normal complexity assignements for P and P* respectively. 

The theorem is proved if we can show 0(P*,f*/S)<0(P,f/S). In or- 

der to prove this, let us first consider the proof P but provided 

with a complexity assignement g having the following properties: 

l) g(Io)=0 ; 2) if I is a strong inference different from I o, 

then g(I)=f(I) From lemma 9 we obtain 0(P,g/S)~0(P,f/S) 0n 

the other hand, one easily verifies that~if S' is a sequent in 

PS , then 0(P,g/S')=0(P*,f*/S') . Now put 0(P'g/Sl)= ~l ' 

0(~'g/S2)=~2 ; in view of the last remark we have 

0(P*,f*/Sl)=g~l . Then 0(P'g/S)=~I ~2' while 0(P*,f*/S)= ~i 

Since 0 ~2 , we obtain 0(P*,f*/S)~0(P,g/S), that is, 

O ( P * , f * / S ) ~ O ( P , f / S )  , what proves the statement. 

With the aid of theorem i0 it is now almost trivial to verify 

Theorem ll: If P*,P are two proofs in ZT(~D) such that P* 

is obtained from P by means of a series of preliminary reduction 

steps, then 0(P*) ~40(P) 

We omit the proof. 
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C. In this section, we have presented in some detail a generali- 

zation of Gentzen~ second consistency proof to systems of the type 

ZT(~D) . Now~as noted, theories of this type have no real inter- 

est in themselves. Our main objects of investigation will be the 

theories ZTi/I , ZTi/II etc., which where introduced in the pre- 

ceding chapter. However~ it turns out that thes~ theories are amenable 

to a Gentzen-like treatment which behaves with respect to reduction 

steps and ordinal assignements in essentially the same way as the 

treatment of ZT(~D) presented in this chapter, and we will see 

that most of the results together with their proofs will carry over 

without any changes to the new situation. 



CHAPTER Ill: 

The intuitionistic system of number theory 

This is the last of the introductory chapters. In it we study the 

behaviour of intuitionistic proofs under the application of fork eli- 

mination. In addition,we prove a lemma which is crucial for the fur- 

ther development° The material presented here is essentially con- 

tained in LSJ . As basis of our discussion,we take the theories 

ZT(~D) and ZTi(~D) ~ respectively. 

3.1. Elimination of forks in intuitionistic ~roofs 

A__ u Let P be a proof in ZTi(~D), that is, a proof which con- 

tains only sequents having at most one formula on the right of the 

sequential arrow. One easily verifies the following fact: if we 

apply to P a preliminary reduction step, an induction reduction, 

a TI- or a TI -reduction step, then we obtain again an intuitionistic a 

proof P* . If on, the other hand, we eliminate a fork in P, then it 

is clear by inspection that the resulting proof P' is no longer in- 

tuitionistic. However, as has been shown in L8J , it is sufficient 

to apply to P' a number of preliminary reduction steps in order to 

obtain again an intuitionistic proof P" , having the same endse- 

quent as P' and, hence~as P . Below we will briefly describe how to 

get from P' to P" ; for a detailed treatment we refer to [SJ 

To start with, let us call a proof P in ZT( ~ D  ) almost intui- 

tionistic if there is a path So,..o,S m (with S m the endsequent) 

in the final part of P , which has the following properties: 

i) S O has the form ~o ~ A ; 2) for i >i, S. has the 

form ~i > A,~i where ~i may be empty; 3) ¢1 is not 

empty, and S 1 follows by right thinning from 7o > A ; 

4) the A indicated in S1,...,S m is not side formula of any in- 

ference; 5) if S in P is different from Sl,..o,S m ~ then it 

contains at most one formula in the succedent. This definition of 

almost intuitionistic proof is a slightly more specialized version 

of that one given in [8J . For almost intuitionistic proofs~one can 

prove the following lemma: 
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Lemma 9: Let P be an almost intuitionistic proof of y ) A, 

(where + may be empty). P can be transformed into an intuitio- 

nistic proof P* of y > A by means of a seri~of applica- 

tions of preliminary reduction steps. 

Proof: Let So,...,S m be the path in P which satisfies the pro- 

perties l) 5) mentioned above. As before, S O is Yo ~ A , 

while S.l is ~i ~ A, ~i for i~l= . Let k be the number 

's which are cut formulas; we call k the of formulas among the i 

characteristic number of P . We prove the statement of the lemma by 

induction with respect to k o If k = 0 , then ~ is an image of 
m 

+l " By cancelling all +i's and omitting the thinning So/Sl~ one 

gets the desired proof P* . 

If k>0 , then there is a smallest i such that ~i is the cut 

formula of a cut, which necessarily must look as follows: 

We omit the thinning SolS 1 and cancel +l together with all its 

images up to ~i and derive ~+l ~ A' +i+l 

(that is> ~i ' ~- ~ A, ~i+l ) by thinnings and interchanges 

from Ji > A . This transforms P into an almost intuitioni- 

stic proof P' whose characteristic number is k-1 The statement 

then follows from the induction hypothesis. 

B. An immediate consequence of lemma 9 is 

Theorem 12: Let P be an intuitionistic proof in ZT( ~ D  ) and 

let P be obtained from P by means of a logical reduction step 

(that is by means of an elimination of a fork). By a series of pre- 
A 

liminary reduction steps,one can transform P into an intuitioni- 
A 

stic proof P* , which has the same endsequent as P and hence as 

P. 

Proof: We content ourself with the case where the fork in question 

is an ~-fork. To this end we use the diagram introduced in 

chapter II, section 2.2., part C. in connection with the definition 

of ~-reduction step. According to this definition, the altered 
A 

proof P can be presented symbolically in the following way: 
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2 P1 

>A3,A A, ~3 >A3'B 
out 

)~3' )~3' ~3 /~ S3, A3' A3 interchanges, 
contractions 

cut 

Since P is intuitionistic, it is evident from the definition of 

~-reduction step that ~3 is a single formula, say ~ . Even 

more than this: an easy inspection shows that both P1 and ~P° are 

almost intuitionistic proofs with ~ playing the role of ~m P3 

on the other hand is intuitionistic,as is evident from inspection. 

Now we apply lemma 9 to P1 and P2 " It results that we can trans- 

form ~P° and P1 by means of preliminary reduction steps only into 

proofs P~ and P~ of J3 > A and A, ~3 > B~ respec- 

tively. This gives rise to a new proof P* which can symbolically be 

represented as follows: 

P3 

) A A, g > B 
cut 

c u t  

i n t e r c h a n g e s ,  c o n t r a c t i o n s  

It is not difficult to verify that P* in turn can be obtained 
A 

from P by means of a series of preliminary reduction steps. This 

concludes the proof of the theorem. 
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Corollary i: Let P' PI' P2 be three proofs in ZT(~D) which 

satisfy the following conditions: a) P is intuitionistic; 

b) P1 is obtained from P by means of a logical reduction step~ 

c) P2 is obtained from P1 by a series of preliminary reduction 

stepsl d) P2 does not admit any preliminary reduction step. Then 

P2 is intuitionistio. 

Proof: The statement is an immediate consequence of lemma 9 and 

theorem i0. 

The last corollary gives rise to 

Definition 16: Let P, P' be two intuitionistic proofs 

(in ZT(~D) ) . We say that P' is obtained from P by means of an 

intuitionistic logical reduction step if the following holds: 

l) there is a proof P* which is obtained from P by means of a 

logical reduction step (in the sense of chapter II, section 2.2., 

part C.; 2) P' is obtained from P* by means of a series of pre- 

liminary reduction steps; 3) P' does not admit any preliminary re- 

duction step. 

The following statement is a trivial consequence of corollary i, 

definition 10,and the results of chapter II: 

Corollary II: a) Let P be a strictly normal intuitionistic proof 

containing a fork. Then we can apply an intuitionistic logical re- 

duction step to P . b) If P' is the result of the application 

of this reduction step to P , then O(P') <O(P) 

A last result in this connection is 

Theorem l~: Let P be a strongly normal intuitionistic proof in 

ZT(~D) which does not coincide with its final part. Assume that 

no preliminary reduction step, no intuitionistic logical reduction 

step, no induction reduction, no TI- and no TI -reduction step are a 

applicable to P . Then P contains a critical logical inference 

whose principal formula has an image in the endsequent. 

Proof: Since no intuitionistic logical reduction step is applicable 

to P~ it follows from corollary II that no logical reduction step at 

all is applicable to P . The statement then follows from theorem 6, 

which,as noted earlier, holds also for ZT( ~ D  ) . 
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In the chapters to follow we are mostly concerned with intuitionistie 

systems. Therefore, we will often simply speak of "logical reduction 

steps" instead of intuitionistic logical reduction steps" and speak 

of "classical logical reduction steps" if, for one reason or the 

other~we have to consider classical proofs in some classical system 

and logical reduction steps as introduced in chapter II, section 2.2., 

part C. 

~.2o A basic lemma 

A__ u. In this section we prove a lemma of elementary combinatorial 

character which will play a crucial role throughout this work. It is 

responsible for the fact that the methods introduced by Gentzen in 

his second consistency proof can be extended to theories such as 

ZTi/I, ZTi/II etc.. There are two versions of this lemma. The first 

is very general and holds for almost every intuitionistic theory T , 

provided only that the notion of final part is defined in the same 

way as before. The second version improves the first one but applies 

only to those intuitionistic theories T , for which there exists an 

ordinal assignement to proofs which behaves more or less in the same 

way as the ordinal assignement introduced for proofs in ZTi(~D) 

We will prove both versions of this lemma; for simplicity we prove 

them for the case where T is ZTi(~D)... 

Basic lemma I: Let P be a proof in ZTi(~D) whose endsequent 

E has the form > A and which does not contain any thinning 

in its final part. Let S1,..o,S m be the uppermost sequents of the 

final part, listed from left to right; let S i be ~i ~ A~ 
i 

Then the following is true for every i~m : l) there is a proof 

Pi of > A i , 2) if B occurs in , then there is a 

proof P' of > B 

Proof: We begin with two remarks concerning the concepts left-right. 

i) If S*, S** are two uppermost sequents in the final part of P , 

then S* is by definition on the left of S** if there is a cut 

S',S"/S in the final part of P , having the following properties: 

i) S' is equal to S* or below S*; 2) S" is equal to S** or 

below S** ii) Let S be any sequent in the final part and assume 

that ~ is ~ > B Then there is an uppermost sequent S' in 

the final part having the following properties: i) S' is equal to 



- 75 - 

S or situated above S ; 2) S' has the form V' ) B', and 

B is an image of B' . This statement is easily proved by "bar in- 

duction" over the final part. Now we prove the lemma by induction 

with respect to i. 

Case l: i=l . Since S is the leftmost one among the uppermost se- 

quents of the final part, it must necessarily have the form ~ A 1. 

The statement of the lemma is therefore trivially satisfied. 

Case 2: i=k+l . We assume that the statement of the lemma is true 

for i~k. We first prove part II of the lemma for Sk+ 1 . Let B 

occur in ~k+l" Since the endsequent contains no formula on the 

left of the sequential arrow there must necessarily be a cut 

S',S"/S in the final part of P having the following properties: 

a) S" is equal to Sk+ I or below Sk+ 1 ; b) the cutformula F 

in S" is an image of B and hence isomorphic with B . In view of 

remark ii) above, there is an uppermost sequent S , equal to S' 
i 

or situated above S' such that the cut formula F in S' is an 

image of A. , and therefore isomorphic with A. In view of te- 
l i 

mark i) above# S i is on the left of Sk+ 1 , hence i~k . According 

to the induction hypothesis, there is a proof P. of ~ A. 
i i 

Since Ai,B and F are all isomorphic with each other, we obtain a 

proof P' of ~ B by adding, if necessary a conversion to P. 

Now we prove part l) of the lemma for Sk+ 1 . Let ~k+l be 

B1, o..,B N . According to what has just been proved, there are proofs 

Pi' " "''PN' of ~ B I, . .., ) BN~ respectively. On the other 

hand, there is a proof P* of Sk+ 1 , namely the subproof of Sk+ 1 

, ' and P* in a suitable way by means in P . By combining P1 "'''PN 

of cuts, we obtain a proof Pk+l of ~ Ak+ 1 what concludes the 

proof. 

It is clear from the proof of basic lemma I that no use has been 

made of the particular structure of ZTi( ~ D  ) . We could replace 

ZTi( ~ D  ) by any intuitionistic theory T ; the proof of the basic 

lemma I would remain exactly the same. In particular, T can be any 

of the intuitionistic theories introduced so far 

(ZTi/I, ZTi/II, etc.) and any of the theories which will be intro- 

duced later (particular conservative extensions of ZTi/I, ZTi/II,et~). 

This entitles us to make free use of the basic ]emma I throughout the 

rest of this work. The second version of the basic lemma (called 
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basic lemma II) is more special and has to do with ordinals° We first 

present the lemma and its proof and give a commentary afterwards. 

Basic lemma II: Let P be a proof in ZTi( ~ D  ) whose endsequent 

has the form ~ A and which does not contain any thinning in 

its final part. Let SI,O..,S m be the uppermost sequents of the fi- 

nal part, listed from left to right; let S i be ~i ~ Ai 

Then the following is true: l) for every i < m there is a proof 

P'I of ~ A.1 for which 0(Pi)~0(P ) holds; 2) for every 

i ~ m , if B occurs in ~i ' then there is a proof P' of > B 

for which O(P')<O(P) holds. 

Proof: i) We first prove i) by constructing directly a proof P. 
l 

of ) A. . Since i<m , one must necessarily find a cut 
i 

S ' , S " / S  i n  t h e  f i n a l  p a r t  h a v i n g  t h e  f o l l o w i n g  p r o p e r t i e s :  

i) S' is equal to S i or below S i ; 2) the cut formula F in 

S' is an image A. . Let this cut be more explicitely ~ ) F ; 
i 

F, -~- ) G/ 2 , ~ ~ G . Let in addition Ps' ' PS" and 

PS be the subproofs of S',S" and S in P respectively. Let us 

alter P as follows: 

PS' PS" 

F,7[ > G 
thinning, interchanges 

> F F, 7[ >F,G 
out 

~, IT > ~,G 

F,A 

This proof, call it P* , has clearly the property that we can de- 

rive 2 , 7 ~ F,G from the left premiss of the cut indicated 

by thinning and interchanges. That is~we can apply to P* the ope- 

ration called omission of a cut in order to obtain a new proof P** . 

We can arrange the thinnings and interchanges in a particular way so 

that P** has the following form: 
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PS ' 

~ ,  ~ > F  

~ ,  ~ ) F,G 

thinnings, interchanges 

thinning 

) F,A 

It is evident that P** is an almost intuitionistic proof. The path 

So,...,S n which is responsibel for P**, being an almost intuitio- 

nistic proo~ is obviously that one beginning with ~ , ~ > F 

and ending with ) F,A . According to lemma 9, we can transform 

P** into an intuitionistic proof ~ of > F . By adding a 

conversion if necessary to P~ we finally obtain an intuitionistic 

proof P' of ) A The following equalities and inequali- 
i 

ties are obviously satisfied in view of theorems l0 and ll: 

a) O(P)=O(P*) ; b) O(P**)<O(P*)  ; c) O(P)~O(P**)  ; 
d) O(P')=O(P) . Hence, P' i s  the  d e s i r e d  p r o o f .  

ii) In order to prove part 2) it is sufficient to show the following: 

if B occurs in __Fi , then there is a j~i such that Aj is iso- 

morphic with B . The rest then follows from part 1),which has al- 

ready been proved. But in order to prove the last statemen%we pro- 

ceed in exactly the same way as in the proof of the basic lemma I 

(the proof of part 2) under case 2)). 

The construction of P' presented in the last proof could~ of course, 

be used to prove basic lemma I . In the proof of basic lemma II no 

explicit use is made of the particular structure of ZTi( ~ D  ) . We 

merely used the fact that lemma 9, theorems 10, ll,hold for 

ZTi(~D) . Lemma 9 is rather a property of the final part and has 

nothing to do with the particular structure of ZTi( ~ D  ) . Theo- 

rems l0 and ll) on the other handjdepend only on the definition of the 

final part and on the particular way to assign ordinals with proofs; 

the proofs of these theorems, too,do not depend on the particular 

structure of ZTi( ~ D ) _  From the next chapter on,we will be con- 
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cerned almost entirely with conservative extensions of the intuitio- 

nistic theories ZTi/I , ZTi/II , ..o which have been introduced in 

chapter I, section 1.5. There will be ordinal assignements to proofs 

in these conservative extensions, which, from an abstract point of 

view~are the same as the assignement of ordinals to proofs in 

ZTi(~D) . It will be evident that lemma 9, theorems lO and ll will 

be true in all these cases and that their proofs can be taken over 

without any changes. In such situations~ therefore~we will not give 

proofs for the statements corresponding to lemma 9, theorems 10, ll, 

and basic lemma II since this would amount to a mere repetition of 

arguments already given; we will content ourself instead with some 

relevant remarks. 



CHAPTER IV: 

A formally intuitionistic system as strong as classical analysis 

In this chapter we present a proof theoretic of the theories 

ZTi/II N and ZTi/II . Our aim will be to prove>ag, for ZTi/II, 

statements like the following: if A, B are closed formulas which 

do not contain special function constants, if,moreover, 

ZTi/II ~ ) A VB , then ZTi/II~ > A or 

ZTi/II ~ > B . We start with a treatment of ZTi/II N , which 

is somewhat simpler than full ZTi/II, and extend the method after- 

wards to ZTi/II . The reasoning used in this chapter is essentially 

classical; some remarks on intuitionistic reasoning are presented in 

the last two sections. In particula~ we consider ZTi/II as a sub- 

system of classical analysis having the property: if > A is 

provable in ZTi/II~ then A is true in the usual classical sense. 

For technical purposes it is very convenient, although not absolute- 

ly necessary, to include the corresponding classical systems ZT/II 

and ZT/II N in our considerations. 

4.1. A conservative extension of ZT/II N 

A__ u We start by reminding that ZT/II is the theory which is ob- 

tained from ZT by adding to it the new rule 

II. 

D(y), (x) ~DyA(X), f ) ~ ,A(y) 

~(~D), D(q), F > ~,A(q) 

where q is free for y in A(y), and where y does not occur 

free in the conclusion~and where u ~DV is an abbreviation for 

u ~KVAD(u)AD(v ) . Here, D(y) is a standard formula, that is, a 

formula of the form R(y)/kseq(y) where R(y) may be any formula; 

in particular, R(y) may contain special function constants and addi- 

tional free variables of any kind. If we restrict the above rule to 

the case where D(y) (or what amounts to the same, R(y)) does not 

contain function parameters (in the sense of section 1.5., part A), 

we obtain a weaner rule, denoted by II N . The theory which we ob- 

tain by adding II N to ZT has been denoted by ZT/II N . The 

corresponding intuitionistic theories have been denoted by ZTi/II 

and ZTi/II N, respectively. They are characterised by the following 
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requirement: a proof P with respect to ZT/II (with respect to 

ZT/IIN) is a proof with respect to ZTi/II if and only if every 

sequent which occurs in P contains at most one formula on the 

right of the sequential arrow. So much for repetition. 

Now we extend the system ZT/II and ZT/II N , respectively, by 

adding a set of new rules to each of them. The resulting new theo- 

ries, which we will denote by ZTE/II and ZTE/IIN, respectively, 

will not be stronger than the old ones, because each of the new 

rules is derivable in the corresponding system ZT/II and ZT/II N o 

In other words, the new theories are merely conservative extensions 

of the old ones; no more sequents are provable than before. It will 

also be evident from our definitions below, that if we restrict our 

attention to intuitionistic proofs in ZTE/II and ZTE/II N , that we 

obtain intuitionistic theories ZTEi/II and ZTEi/II N which in turn 

are conservative extensions of ZTi/II and ZTi/II N respectively. 

Actually, the theories ZTEi/II and ZTEi/II N are those which de- 

serve our main attention since they are best suited for a proof theo- 

retic treatment in Gentzen's spirit, as will be seen in the course of 

this chapter. 

B__~. We begin by considering ZT/II N and its conservative extension 

ZTE/II N whose definition we are going to give. To this end, we.are 

going to define a set of new rules. The first of these rules can be 

stated as follows: if P is a strictly normal proof in ZTi/II N of 

> ~(~D) where ~( ~ D  ) does not contain special function 

constants nor free function variables, then we can infer from the 

premiss D(y) (x) ~ yA(X), f # ~ ,A(y) the conclusion 

D(q) V D 1 , ~ ,A(q) . A particular application of this rue is 

called Ti(P)-inference and is written as follows: 

Ti(e) 
D(y), (x) ~DyA(X), F >~,A(y) 

D(q), y > ~ ,A(q) 

Another rule can be described as follows: if P and ~(~D) are 

as before, if P1 is a strictly normal proof in ZTi/II N of 

> D(t) , where t is a saturated term with Itl = m , then we 

can infer from the premiss y ~ D  t ,(x) ~DyA(X), S ~ ~ ,A(y) 

the c o n c l u s i o ~  q ~ o t ,  F ~ A , A ( q ) .  
A particular application of this rule is called Ti(P,Pl,m)-inference 
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and is written as follows: 

Ti(P,PI,m) 

Y ~  D t, (x) ~DyA(X), ]~ > /~,A(y) 

q ~ D  t, ~ > ~ ,A(q) 

The proof P in ZTi/II N which appears in the definition of an in- 

ference 

S 1 
Ti(P) -- 

S 2 

is called side proof of this inference. The proof P which appears 

in the definition of an inference 

S 1 
Ti(P,Pl,m ) 

S 2 

is called the first side proof of this inference, P1 is called the 

second side proof of this inference, and m = Itl is called the norm 

of the inference. Such inferences will also more conveniently be 

written by expressions such as Ti(P) : SI/S 2 and Ti(P,PI,m):S1/S 2 

respectively. The variable y in both rules is not allowed to occur 

in the conclusion~and the term q has to be free for x in A(x). 

Note that the proofs P and P1 are required to be proofs in 

ZTi/II N , that is intuitionistic proofs in ZT/II N ! By adding the 

rules Ti(P) and Ti(P,Pl,m ) to ZT/II N, we obtain the extension 

ZTE/II N of ZT/II N . A proof tree in ZTE/II N is again a finite 

tree whose nodes are sequents and which has the following properties: 

a) uppermost sequents are axioms; b) if S is not an uppermost 

node of the tree,then S has either one or two predecessors; 

c) if S is a node and S' its only predecessor, then S/S' is 

a one-premiss inference (with respect to the rules of ZTE/IIN)~ 

d) if S is a node and S1,S 2 its predecessors from left to right, 

then S1,S2/S is a two-premiss inference (with respect to the rules 

of ZTE/IIN) . By an analysis of a proof Po' we mean a specification 

which tells us for each node S of P : a) by which inference S 
o 

follows from its predecessors (if S is not an uppermost node) ; 

b) if S follows from its predecessor S' by means of a 
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Ti(P)-inference, which is the side proof of this inference; 

c) if S follows from its predecessor by means of a Ti(P,Pl,m )- 

inference, which is its first side proof, which is its second side 

proof and which is its norm. In the following we always tacitly 

assume that, for each proof Pc in ZTE/IIN, such an analysis of Pc 

is effectively given. Such an analysis can,of course, be codified by 

means of GGdelnumbers: we can e~g. associate with every inference in 

P a GGdelnumber which codifies the relevant information about this 
o 

inference in a suitable way. A formula A is said to occur in P 
o 

if it occurs in some node of Pc " A proof P' in ZTi/II N is said 

to be a side proof of P if P contains a Ti(P)-inference or a 

Ti(P,Pl,m)-inference having P' as side proof (hence P=P' in the 

first case and P=P' or Pl=P ' in the second case). 

If we restrict our attention to those proofs P in ZTE/II N which 

contain only sequents having at most one formula in the succedent, 

then we get the intuitionistic version of ZTE/II N , to be denoted 

by ZTEi/II N . 

For proofs in ZTE/II we can introduce the notions of final part, 

successor, imag~ in the same way as in chapter II, sect. 2.1. In or- 

der to introduce the notion of normal proof for ZTE/II~ one has to 

change clauses 3) and 5) in definition 8 slightly. In order to do 

this, let us call transfinite induction inference any particular 

application of one of the rules II, Ti(P) , Ti(P,Pl,~ ) . We call the 

variable y the critical variable of a transfinite induction infe- 

rence if it is the y in the premiss, say, 

D(y), (x)~ DyA(X), F >~,A(y) or 

y ~ D  t, (x) ~ yA(X), F > Z~ ,A(y). Then clauses 3) and 5) in 

definition 8 hav~ to be replaced by clauses 3*) and 5*) respectively: 

3*) if S/S' is a quantifier inference, an induction or a transfi- 

nite induction inference, if y is the quantified variable, the in- 

duction variable or the critical variable of S/S', respectively, 

then y does not occur (free) below S ; 5*) if y occurs free 

in a sequent S in P, then there is an inference Sl/S 2 with S 1 

below or equal to S such that S1/S 2 is a quantifier inference, an 

induction or a transfinite induction inference, and such that y is 

the quantified variable, the induction variable or the critical vari- 

able,respectively~of S1/S 2 If we replace in def. 8 the clauses 3), 

5) by 3*) and 5*),respectively, we obtain a new definition which will 
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be referred to as definition 8*) . A matter of routine is the proof 

of the following statement: if P is a proof in ZTE/II N 

(in ZTEi/IIN) and if no variable occurs both free and bound in the 

endsequent S of P ~ then there is a normal proof P* in ZTE/II N 

(in ZTEi/IIN) of S . The proof is as usual by induction with 

respect to the longest path in P , by renaming eventually some free 

and bound variables in an appropriate way. 

C___t~ Our next task is to show that ZTE/II N and ZTEi/II N are in- 

deed conservative extensions of ZT/II N and ZTi/IIN, respectively. 

Actually, we will obtain a slightly more sharp result° In order to 

prove i%we need 

Definition 16: a) A proof P in ZT/II N is said to have order n 

if every formula, which occurs in P contains at most n logical 

connectives, b) A proof P in ZTE/II N is said to have degree n 

if every formula which occurs in P contains at most n/2 logical 

connectives and if every side proof P' of P has order n . 

The result mentioned is given by 

Theorem 14: a) If P is a proof in ZTE/II N of degree n, then 

there exists a proof P' in ZT/II N of order n, having the same 

endsequent as P . If P is intuitionistic then P' is intuitie- 

nistic. 

Proof: The proof proceeds by induction with respect to the length of 

the longest path in P . If P consists of a single sequent S, then 

S is an axiom and we may choose for P' the proof P itself. Let 

P contain more than one sequent and let S be the endsequent of P. 

Let I be the lowest inference in P : the conclusion of I is ne- 

cessarily S . Now we distinguish cases according to the type of I . 

Case i: I is a structural inference, a conversion, a logical infe- 

rence, an induction, or a IIN-inference. Let, as an example, I be a 

cut Sl,S2/S ° . Let furthermore P1 and P2 be the subproofs of 

S 1 and S 2 in P respectively. P1 and P2 both have degree n . 

By induction there are proofs Pi' P2 in ZT/II N of order n , 

having S 1 and S 2 as endsequents, respectively. Combining P~ and 

P~ by means of the same cut I : SI,S2/So, we obtain a proof P' in 

ZT/II N of S o which has degree n . If P is intuitionistic, then 
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so are P1 and P2' and by induction PI,P2~' ' and therefore P' is 

also intuitionistic. 

Case 2: I 

• i(~ I) 

is a Ti(Pl)-inference 

D(y), (x) ~DyA(X), > ±,A(y) 

D(q), ~ >~k ,A(q) 

with PI, as indicated, the side proof of this inference. Let P~ be 

the subproof of the premiss. P~ has degree n and therefore there 

exists a proof P~ in ZT/II N of order n whose endsequent is the 

premiss of the above inference. Now we obtain the following proof P' 

in ZT/II  N of D(q), y > ~ ,A(q) : 

p~ 

P1 

D(y), (x) Wf--DyA(X), 

I I  N 
) ~ ( ~ D )  ~ ( ~ _ D )  , D(q), ]~ ) ~ ,A(q) 

cut 

> ~ ,A(y) 

D(q), ~ > ~ , A ( q )  

Since ~( ~ D) contains no more logical connectives than 

(x) ~ ~-- yA(X), it follows that P' has order n ; moreover, if P is 
D 

intuitionistic~then P* is intuitionistie, P** is intuitionistic 

in view of the induction hypothesis~and P is intuitionistie by 

assumption. Hence P' is intuitionistic. 

Case III: I is a Ti(PI,P2,m)-inference 

Ti(Pl ,P2 ,m)  
Y ~ D  t , (x) ~_~DyA(X), >~,A(y) 

q ~ D  t , ~ > z~,A(q) 

with P1 and P2 first and second side proofs and m=It I . Let us 

write ~ for ~ D " We start with the axiom 

(x)(x~y ~.x ~t ~A(x)) > (x)(x~ y ~ .x ~t ~ A(x)) 

and derive from it in a cut-free way, using only rules from intuitio- 

nistic predicate calculus the sequent SI: 

sCt, s~y, (x)(x~y~.x~t~A(x)) ~A(s) 
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In virtue of lemma 7 there is a cutfree derivation, using only rules 

of intuitionistie predicate calculus of $2: 

s ~ y , y ~ t  ) s ~ t  . With the aid of a cut with leftpre- 

miss S 1 and right premiss $2, we derive first the sequent S 3 : 

s ~y, y ~t, (x)(x ~ y  ~ .x~- t ~ A(x)) ~ A(s) 

and then by two propositional operations the sequent $4: 

y~f- t , (x)(x~y~ .x ~t ~A(x)) > (x)(x~ y ~  A(x)). 

The proof Pc of S 4 so obtained is intuitionistic and of order n: 

the formula (x)(x~ y ~  .x~f-. t ~A(x)) contains at most twice 

as many logical connectives as (x)(x~ y. ~A(x)) , which in its 

turn contains at most n/2 logical symbols. On the other hand,it 

follows from our inductive assumption that there is a proof P* in 

ZT/II N of order n of (x) ~yA(X) , y<~-t, F ) ~ ,A(y) 

Combining Pc and P* by means of a cut, whose left premiss is $4, 

followed by an interchange;we obtain a proof P** of S 5 : 

y ~ t  , ( x ) ( x  ~ y  ~ .x ~ t  ~ A ( x ) ) ,  F > ~ ,A(y)  From S 5 

we derive by means of an implicational inference ( > ~ )  and 

left thinning the sequent S 6 : 

D(y), (x)(x ~ y ~.x ~t ~A(x)), F > ~ ,y~___ t ~ A(y) and 

to S 6 we apply the rule II N (with x ~t ~A(x) in place of 

A(x)), obtaining thus S 7 : ~(~),D(q), ~ ~ ~ ,q ~ t ~A(q) 
A 

The proof P of S 7 so obtained is still a proof in ZT/II N of or- 

der n . At our disposal is in addition the proof P1 of 

~(~ ) which by assumption is a proof in ZTi/II N of order 

n Combining Pl and P by means of a cu%we obtain the sequent 

S 8 : D(q), F > ~ ,q ~ t  ~A(q) Using lemma 7 (applied to 

q ~ t > D(q)), we finally obtain by a bit of intuitionistic 

predicate calculus a proof P' of S 9 : q ~ t , y  > Z~ ,A(q) 

P' is clearly a proof in ZT/II N of order n . If the original 

proof is intuitionistic~then P* is intuitionistic in virtue of the 

induction hypothesis; then P' is also intuitionisti%as is evident 

from its construction. The theorem is thus proved. 

4.2. Reduction steps 

A__ u As already noted, we can carry over with almost no changes all de- 

finitions and notions introduced in sections 2.1 and 2.5 to the pre- 

sent situation. If e~g. P is a proof in ZTE/II N and S a sequent 

in P~ then we say (again) that S belongs to the final part of P 

if the path leading from S to the endsequent of P does not en- 
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counter inferences other than conversions or structural inferences. 

With cuts, inductions, IIN-inferences , Ti(P1)-inferences and 

Ti(P1,P2,m)-inferences we associate again natural numbers, called 

complexities. This assignement is defined in exactly the same way as 

in part B of section 2.5, treating thereby IIN- , Ti(P1)- and 

Ti(P1,P2,m)-inferences in the same manner as TI- and TIa-inferences: 

with a IIN-inferenc % for instance, we associate as complexity the num- 

ber of logical connectives occuring in (x)(x~DY~A(x)) and 

likewise with Ti(P1)- and Ti(P1,P2,m)-inferences. Definition 12, as 

presented in section 2.5, serves again as definition of height; we 

merely have to replace the TI- and TI -inferences in clause 5) by a 

the IIN- , Ti(P1)- and Ti(Pl,P2,m)-inferenees. The definition of fork 

I1, I2, 13 and of its associated cut are again given by definitions 

ll and 12" in section 2ol. So,whenever we have to make allusion to 

the definitions of fork, height, etc., we will refer to sections 2.1 

and 2.5 (and eventually to section 4ol in case of definition 8*). 

Moreover~ we will use all these notions freely and without further 

comments in connection with ZTE/II N and ZTEi/II N 

B. Our next task consists in defining reduction steps for ZTE/II N 

and ZTEi/II N Actually, the syntactical transformations needed 

have already been introduced in chapter II (section 2.2 and 2.5); 

no new ones will appear. Nhat we will do below is to fix the condi- 

tions under which this syntactical transformations are applicable to 

a proof in ZTE/II N and ZTEi/II N respectively. To this end let P 

be a strictly normal proof in ZTE/II N , that ±s,a normal proof (in 

the sense of definition 8*) whose endsequent does not contain free 

variables. For such a proof we are going to define a series of re- 

duction steps. 

ao Preliminary reduction steps: By preliminary reduction .steps we 

understand again the step-by-step elimination of thinnings and logi- 

cal axioms from the final part of P , as described in part A of 

section 2.2. Theorem 4 holds invariably in the present case. 

b. I n d u c t i o n  r e d u c t i o n :  Let A(x),  y ) ~ , A ( x ' ) / A ( 0 ) ,  F )~ ,A( t )  
be a critical induction inference in P (that iswith conclusion in 

the final part) such that t is saturated with value /tl =n . Then we 

apply to P the same syntactical transformation as described in 

part B of section 2.2, distinguishing thereby again between the 

cases n=0, n=l and l<n . As before, we call such a transformation 
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an induction reduction. 

c. Logical reduction steps: To begin with, let Ii,I2,I 3 be a func- 

tional ~-fork in P . Then we can apply to P the same syntacti- 

cal transformation which has been described in part C of section 

2.2 and which has been called functional ~-reduction step° We 

thereby tacitly use the fact that lemma 4 and its corollary both 

hold invariably in the present case (but with def. 8* in place of 

def. 8); their proofs remain the same, hence we omit them. 

If Ii,I2,I 3 is an implicational fork in P~ then we can perform on 

P that syntactical transformation which has been described in part C 

of section 2.2 and which we have called implicational reduction° 

If, finally~ Ii,I2,13 is any other kind of fork (-~-fork, numerical 

V-fork, etc.)~ then we proceed as before in the same way as in I13. 

In each case we say accordingly that a functional V-reduction step, 

an implicational reduction step, etc. has been applied to P . 

d. IIN-reduction steps: L~ there be a critical IIN-inference in P, 

say 

II N 

D(y),(x) ~DyA(X), /~ > ~ , A ( y )  

~(~_____D), D(q), F ) ~ ,A(q) 

Let the following two assumptions hold: i) every constant term which 

occurs in ~(~D) is saturated; 2) there is a strictly normal 

P~ in ZTi/II N of > ~(~D) Since D contains no proof 

function parameters, it follows from assumption l) that there is a 

formula D' which contains no special function constants and no 

free function variables at all, which is isomorphic with D . There- 

fore, by adding to P* a conversion, we obtain a strictly normal 

proof PI in ZTi/II N of ~ ~( ~D,). Now we can replace 

~the above IIN-inference by the following series of inferences: 
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Ti(e I) 

D(Y)'(x)(-"--DyA(X)' F > Z~ ,A(y) 

D'(y),(x) E--"-'D,yA(X), )'-" ) ~,A(y) 

D'(y), f" ) A ,A(q) 

~(~/~--D),D(q), Y 

conversion 

conversion, thinning 

> z~,A(q) 

This replacement transforms P into another proof P' in ZTE/II N , 

whose endsequent is the same as that of P . We say that P' is ob- 

tained from P by means of a IIN-reduction step and that the re- 

duction step has been applied to the particular IIN-inference above. 

e. Til-reduction steps: Let there be a critical Ti(Pl)-inference 

in P ,say 

Ti(e l) 
D(Y),(x) ~DyA(X), > /k,A(y) 

D(q), ff  > /\,A(q) 

with P1 a proof in ZTi/II N of ) ~(~D) ; by assumption, 

~(~D) and therefore D do not contain free function variables or 

special function constants. Let the following two assumptions be 

satisfied: i) q is saturated with value, say m , 2) there is a 

strictly normal proof P2 in ZTi/II N of ) D(q) The above 

Ti(Pl)-inference will be denoted briefly by Ti(Pl) : S/S' As usual, 

PS and PS' denote the subproofs of S and S' in P~ respective- 

ly. By P~ we denote the proof which we obtain if we replace every 

occurence of y in PS by q ; by S q we denote the endsequent of 

P~ . According to lemma 7 there is a proof Pc in ZTi of 

y ~ D  q ) D(y) , which uses neither cuts nor inductions. Now 

we apply to P a syntactical transformation, which is an exact copy 

of the TI-reduction step, defined in part B of section 2.5 (chapter 

II). More precisely we replace the subproof PS' of S' in P by 

the following proof P* of S' : 
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Po PS 

y~Dq ) D(y) S 

y ~Dq,(x) ~DyA(x ), ~ > Z~ ,A(y) 

F fl Z~ , s  (~--D q ~ A ( s )  

f ) Z~'(x) ~DqA(X) sq 

D(y), y ) /~ ,A(q) 

cut 

Ti(P1,P2,m) 

A comparison shows that this diagram is merely a condensed version of 

the corresponding diagram in part B of section 2.5~ which was used 

in order to explain the TI-reductien step; the only difference which 

shows up is that the index TI in the previous diagram is now re- 

placed by the index Ti(P1,P2,m) . The proof P' which results from 

P by means of the above transformation is said to follow from P by 

means of a Til-reduction step; we say that the Til-reduction step 

has been applied to the Ti(P1)-inference. 

f. Ti2-reduction steps: Let there be a critical Ti(PI,P2,m) infe- 

rence in P , say 

Ti(el,e2,m) 
Y ~ D  t, (x) ~DyA(X)' > ~ ,A(y) 

q ~ D  t' F > ~ ,A(q) 

According to the definition of such inferences, ~(~D) is a for- 

mula without function parameters, which does not contain free func- 

tion variables nor special function constants, P1 is a strictly 

normal proof in ZTi/II N of > ~(CD) , t is saturated with 

value m and P2 is a strictly normal proof in 

ZTi/II of ~ D(t) (where D(x) evidently does not contain 
n 

free function variables nor special function constants). Let the 

following two assumptions be satisfied: l) q is a saturated term 

, ' is a strictly normal proof in with value say~ n ; 2) P2 

ZTi/II N of ~ q ~Dt . We denote the above inference more 

briefly by Ti(Pl,P2,m ) : S/S' By PS and PS' we denote the 

subproofs of S and S' in P, respectively; P~ denotes the 
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result of replacing every occurence of y in PS by q and S q 

q According to lemma 7 there are proofs denotes the endsequent of PS " 

P'o and Po in ZTi of q ~ D  t ) D(q) and 

y~Dq, q ~ D  t >y ~ D  t , respectively, which use neither cuts 

nor inductions. With the aid of P~ and P'o and a cut, we obtain a 

strictly normal proof of ) D(q) which we denote by P3 Now 

we apply to P syntactical transformation which in its turn is an 

exact copy of the TI -reduction step defined in part B of section a 

2.5. That is~we replace PS' in P by the following proof P* of 

S' : 

PS Po 

Y ~ D  q, q ~D t ) y ~ D  t S 

y ~  Dq , (x)c~--DyA(X) ,  q ~ D  t ,  y ) / ~ , A ( y )  

s ~ D t ,  q ~ D  t ,  y > /~ ,A(s )  

q~--- D t ,  /-- ) z~ ,s  ~ D  q ~ A ( s )  

q ~ D  t ,  Y fl ~ ,(x)(x ~ Dq ~A(x)) 

cut, 
interchanges 

Ti(Pl,P3,n) 

S q 

q ~ D  t, y )' Z~ ,A(q) 

This diagram is just a condensed version of that one introduced in 

part B, section 2.5, in order to explain the TIa-reduction step; 

again, the index Ti(P1,P3,n ) takes over the role of the index TI a 

in the diagram in section 2.5. The proof P' , which is obtained 

from P by this transformation is said to follow from P by means 

of a Ti2-reduction step; we also say that the Ti2-reduction step 

has been applied to the Ti(P1,P2,m) inference above. 

This concludes our list of reduction steps. We note tha% by an appro- 

priate choice of the free variable s in the case of Ti l- and 

Ti2-reduction steps~we can always achieve that the altered proof P' 

is strictly normal> too; we always tacitly assume that s has been 

chosen in this way. All other reduction steps, applied to strictly 

normal proofs, yield automatically strictly normal proofs as results; 

this follows easily from inspection of their definitions. 

Formally, the reduction steps are the same as those introduced in 

chapter II. Furthermore, given two strictly normal proofs P,P' in 
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ZTE/II N , we can always decide in a recursive way whether P' 

follows from P by means of one of our reduction steps and~if so,by 

which one. However, the basic theorem 6 fails to hold in the present 

case. The reason for this failure is that in general we are not able 

to find proofs which satisfy the conditions 2) which appear in the 

definitions of IIN- , Ti l- and Ti2-reduction steps. 

4.~. Ordinals 

Now we are going to associate ordinals with proofs in ZTE/II N in 

very much the same way as we have done with proofs in ZT(~D). 

Prior to this we need some preparations. 

A__~. For formulas A which do not contain special function constants 

there is available a classical notion of truth which can roughly be 

described as follows: a) logical connectives are interpreted in 

the usual classical way, b) individual variables range over the 

set of natural numbers, c) function variables range over the full 

classical universe of number theoretic functions. We assume that the 

reader is familiar with this notion; we refer to it as "classical 

truth". All systems which have been introduced in chapter I are ei- 

ther particular formulations of what is known as classical analysis 

or (proper or improper) subsystems of this classical analysis 

(theorem 3). Let P be a proof in any of these systems of a sequent 

F , where F is supposed to be a closed formula not contai- 

ning special function constants. If P contains special function 

constants then we can always replace them by appropriately chosen 

constant functors in order to obtain a proof P* of the same sequent~ 

not containing special function constants. It is then clear that the 

formula F thus proved is classically true. In the particular case 

wheref F is ~(CD) ~_ it follows that the partial ordering 

~ !  ~p,q~ / p ~ K  q holds and both D(p),D(q) are classically 

is indeed wellfounded. This means that we can associate with 

every number a such that D(a) is classically true, an ordinal 

number, to be denoted by I[all D" In addition we can associate with 

IIRD[ [ the smallest ordinal number which is greater than all ordinal 

numbers representable in the form /[a[/ D ; we denote this ordinal 

number by I[RDI/ . If, in addition~there is another proof P1 

(in any of the systems introduced in chapter I) of > b ~ D  a, 

then we conclude that both a,b belong to the range of definition 
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of R D and that RD(b , a) holds ; this clearly implies [Ibl[ D < flail D . 

Now let -~ be the smallest among the ordinals, ~ having the 

following property: if P is a proof in ZTi/II N with endsequent 

~(~D) and with ~( ~ D ) not containing special function 

constants nor free function variables, then IIRD~<~. 

After this preliminaries we are ready to associate ordinals with 

proofs in ZTE/II N @ 

B__ u. Let P be any proof in ZTE/II N ; we are going to associate 

with every sequent S occuring in P an ordinal, denoted by o(S) 

The inductive definition of o(S) goes as follows: i) if S is an 

axiom, then o(S)=l ; 2) if S is the conclusion of a structural 

inference, a conversion, a logical inference or an induction, then we 

proceed as in part A of section 2.4; 3) if S1/S is a IIN-infe- 

fence, then we put o(S)= ~d((O(Sl)~X~/+l)~/~--+I) where 

d=h(Sl)-h(S); 4) if SI/S is a Ti(Pl)-inference , say 

Ti(P 1 ) 

D(y),(x) ~DyA(X), F > A ,A(y) 

D(q), F ) /~ ,A(q) 

then we put 

R D = I/ H , 

o(S)=~d((O(S1)~+l)Go~ +i) where d=h(Sl)-h(S ) 

5) if Sl/S is a Ti(Pi,P2,m)-inference, say 

and 

Ti(Pl,P2,m) 

y ~D t, (x) ~DyA(X), F ,> A ,A(y) 

q~o t, T >A,A(q) 

(where m= Itl), then we put o(S):~ d((O(Sl)~+l)~ +i) where 

d=h(Sl)-h(S) a n d  C~ = /Iml l  D " 

The ordinal of the endsequent is called the ordinal of the proof P. 

In order to summarize the properties of reduction steps and ordinal 

assignements, we call every reduction step which is not a prelimina- 

ry one an essential reduction step. Furthermore, we remark that the 

operation "omission of a cut" defined in section 2.6, retains its 

meaning in the present context; its definition remains unaltered. 

Then we have 
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Theorem 15: a) Preliminary reduction steps do not increase the or- 

dinal of a proof P . b) Omission of a cut lowers the ordinal of a 

proof P . c) Essential reduction steps lower the ordinal of P . 

The proofs of part a) and b) are word by word the same as the proofs 

of theorems ii and i0. Case c) splits up into two subcases: i) the 

reduction step in question is a logical one or an induction reduc- 

tion; 2) the reduction step in question is a IIN-, a Ti I- or a 

Ti2-reduction step. In the first case we proceed in exactly the same 

way as in the proof of theorem 7. In the second case we are in turn 

led to the calculations performed in part C of section 2.5. More ex- 

plicitely, in order to verify that a fiN-reduction step lowers the 

ordinal of the proof to which it is applied, we are again led to the 

verification of an inequality 

~0d((~ ~ m~0)k+l)~X+l#~ 2)~ ~d(( ~ ~ ~ ~+i) ~+i) where ~ is 

the ordinal ~ defined above,and where k =IIRD// for a D for 

which we have a proof Pl in ZTi/II N of > ~(~D) By 

definition of~ and IIRDII, we have k<~,and hence the inequality 

is true in virtue of the same reasoning as presented in part C of 

section 2.5. 

The proof that a Til-reduction step lowers the ordinal of the proof 

to which it is applied reduces again to the verification of the above 

inequality, but now with ~ and V given as follows: i) ~ is 

IIRDII for a D for which we have a strictly normal proof Pl in 

ZTi/II N of > ~(~D) ; 2) k is llnIID for an n for which 

we have a strictly normal proof P2 in ZTi/II N of ~ D(n) 

By definition of Sn~ D and IIRD[I , we have~< V~ and the above ine- 

quality is again true in virtue of the arguments given in section 

2°5. 

The proo~ finally, that a Ti2-reduction step lowers the ordinal of 

the proof to which it is applied, leads again to a verification of 

the inequality ~d((~ ~ m#60~+i)~+i~ 2)< $Od((~ ~ ~+i)~+i), 

but now with k and ~ given as follows: i) k is IIm~ D for a D 

for which proofs P1 and P2 (in ZTi/IIN) of > ~( ~ D ) 

and > D(m) respectively are given; 2) ~ is IInSD and a 

proof P~ in ZTi/II N of > n ~D m is given. From our 

classical point of view, what is provable in ZT/II N is true, hence 

n ~Dm is true, hence I/nll D < //mH D , that i~ ~< ~ holds. As be- 

fore, this implies the truth of the above inequality by the same 
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arguments given in B, section 2.5° 

For arbitrary proofs in ZTE/IIN, theorem 8 is of no use. For proofs 

P in ZTEi/IIN~ however, whose endsequent contains nothing on the 

left side of the arrow, the situation is entirely different, as will 

be shown in the next section. 

4.4. The system ZTEi/II N 

A___u The passage from ZTE/II N to ZTEi/II N is more or less the 

same as that from ZT( ~Zj D) to ZTi(~D), described in chapter 

III. One easily verifies that every reduction step which is not a 

logical reduction step transforms a strictly normal proof P in 

ZTEi/II N into another strictly normal proof P' in ZTEi/II N @ 

I~ on the other hand, we apply to P a logical reduction ste~ then 

we obtain a proof P' which is still strictly normal, but no longer 

intuitionistic. However, it is trivial to verify that theorem 12 

invariably holds in the present case, that is, we have 

Theorem 16: Let P be an intuitionistic proof in ZTE/II N and let 

P be obtained from P by means of a logical reduction step. By a 

series of preliminary reduction steps one can transform P into an 

intuitionistic proof P* , which has the same endsequent as P . 

The proof remains exactly the same. Corollary 1 of theorem 12 remains 

of course, true in the present case and so we can use definition 16 

as it stands as definition of intuitionistic logical reduction step. 

Finally, it is clear in virtue of theorem 15 that corollary II of 

theorem 12 remains true. For the sake of completeness, we formulate a 

variant of theorem 15 which summarizes the properties of reduction 

steps and ordinal assignements for intuitionistic proofs. 

Theorem 15": Let P be a strictly normal proof in ZTEi/II N 

a) A preliminary reduction step, applied to P , transforms 

to a strictly normal proof 

is not larger than o(P) 

to a strictly normal proof 

is smeller than o(P) c) 

fork elimination transforms 

ZTEi/II N , whose ordinal is smaller than that of 

P in- 

P' in ZTEi/II N , whose ordinal o(P') 

b) Omission of a cut transforms P in- 

P' in ZTEi/II N whose ordinal o(P') 

An essential reduction step other than 

P into e strictly normal proof P' in 

p. d) An intui- 
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tionistic logical reduction step (in the sense of def. 16) applied to 

P transforms P into a strictly normal proof P' in ZTEi/II N , 

whose ordinal is smaller than that of P . 

If no danger of confusion arises, we omit the attribut~ "intuitioni- 

stic" and speak merely of logical reduction step. 

B_~. In section 3.2 we have proved for the theory ZTi( ~ D  ) two 

lemmas, or rather two variants of one and the same lemma, which we 

have called there Basic lemma I and Basic lemma II. As we have al- 

ready mentioned there, this lemmas hold for a large class of intuitio- 

nistic theories; the theory ZTEi/II N is no exception in this res- 

pect. The proof of Basic lemma I presented in section 3°2 applies to 

~TEi/II N without any changes, as an easy inspection shows. The same 

is true of the proof of Basic lemma II in section 3.2: all we have to 

do is to refer to theorem 15" instead of theorem ll and 12. Actually, 

if we inspect the proof of basic lemma II,then we see that it yields 

a slightly more sharp statement, which in the present case reads 

as follows: 

Basic lemma II: Let P be a strictly normal proof in ZTEi/II N of 

degree n ; assume that it has no thinning in the final part and 

that its endsequent has the form ) A Let SI,$2, • • .,Sm be 

the uppermost sequents of the final part, listed from left to right; 

let S i be Yi ~ A i Then the following is true: i) for 

every i<m there is a strictly normal proof Pi (in ZTEi/IIN) of 

degree n whose endsequent is > A. and for which 
l 

o(Pi) do(P) holds; 2) for every i ~m , if B occurs in ~i ~ 

then there is a strictly normal proof P' (in ZTEi/IIN) of degree 

n whose endsequent is > B and for which o(P') <o(P) holds. 

Proof: Exactly the same as that of Basic lemma II in section 3.2. 

If we drop in Basic lemma II 1 the reference to ordinals, then we ob- 

tain a sharpening of Basic lemma I, which could, of course~be obtained 

directly from the proof of Basic lemma I$ we merely have to sharpen 

slightly the induction hypothesis used in the proof of Basic lemma I 

(part 2)). Actually, all we need in this chapter is this sharpened 

version of Basic lemma I; we do not use the fact that the ordinals of 

o(Pi) and o(P') are smaller than o(P) . Now let P be a strictly 

normal proof in ZTEi/II N , whose endsequent has the particular 
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form ~ A, whose degree is n , and which contains only satura- 

ted terms in its final part. Assume that no thinning occurs in the 

final part of P and let there be a critical IIN-inference in P , 

s ay 

II N 

D(y),(x) ~DyA(X), J'-" > A(y) 

~(~D),D(q) ,  ~ > A(q) 

Without loss of generalit~ we can assume that the formula D(x) does 

not contain special function constants and that x is its only free 

variable; otherwise we would replace the IIN-inference above by a 

conversion, followed by another IIN-inference and a second conver- 

sion. The formula ~(~D) in particular does not contain free vari- 

ables and no special function constants. From Basic lemma II 1 it fol- 

lows that we can extract from P a proof P* of ) ~(~D) 

which still has degree n . From theorem 14 it follows that P* can 

be transformed into a proof P' in ZTi/II N of ~ ~(~D), 

whose order is n . Since there is no variable, which occurs free in 

~(~D), we can transform P' into a strictly normal proof Pl in 

ZTi/II of ) ~(~D), whose order is still n : we merely have 

to rename eventually free and bound variables in a suitable way. An 

inspection shows that the conditions which appear in the definition 

of IIN-reduction step are satisfied: P1 is the proof required by 

them. Therefore, we can apply to the fiN-inference above a IIN-re- 

ductlon step: we can replace the original fiN-inference by a Ti(P1) 

inference in the way described in the definition of this reduction 

step. 

The situation is similar if P contains a critical Ti(P1) infe- 

rence, say 

Ti(P I) 
D(Y)'(x) g'- DyA(X)' F > A(y) 

D(q), f > A(q) 

By assumption, q is saturated and has a value lq[ =m. As before,we 

apply Basic lemma II 1 and extract a subproof P* of ~ D(q) 

which still has degree n . Then we transform P*- with the aid of 

theorem 14 into a proof P' in ZTi/II N of > D(q), whose or- 

der is n . Finally, by renaming eventually free and bound variables 
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in an appropriate way we transform P' into a strictly normal proof 

P in ZTi/II N of > D(q), whose order is still n . An inspec- 

tion shows that all conditions, stated in the definition of Til-re- 

duction step, are satisfied: P2 is the proof required by them. Hen~ 

we can apply to the above Ti(PI) inference a Til-reduction step by 

replacing the Ti(Pl) inference above by a Ti(Pl,P2,m) inference in 

the way described in the definition of Til-reduction step. 

Finally, let P contain a critical Ti(PI,P2,m ) inference, say 

Ti(P1,P2,m) 

y ~ D  q, (x) ~DyA(X), ) A(y) 

p ~ ' D  q , y ) A(q) 

(with m= ]ql ) • By assumption, p is saturated with value say r . 

Then~by proceeding as in the previous cases, we can find effectively 

a strictly normal proof P~ in ZTi/II N of ) p ~ D  q, whose 

order is n . Using lemma 7~we obtain a proof P3 in ZTi/II of 

> D(p) which is still strictly normal and has order n . An 

inspection shows that the two conditions stated in the definition of 

Ti 2 reduction step are both satisfied: P~ in particular is the proof 

whose existence is required by the second of these conditions. This 

means that we can apply a Ti2-reduction step to the above 

Ti(Pl,P2,m ) inference by replacing it by a Ti(Pl,P3,n ) inference in 

the way described in the definition of Ti2-reduction step. These 

facts are summarized by the following 

Theorem 17: Let P be a strictly normal proof in ZTEi/II N whose 

degree is n , whose endsequent has the form ) A and which 

does not contain thinnings in the final part. Assume, that every con- 

stant term in the final part is saturated. Then the following holds: 

i) if there is a critical II N inference in P, then we can effectiv~ 

ly apply a IIN-reduction step to this inference; 2) if there is a 

critical Ti(Pl) inference in P~ then we can effectively apply a 

Til-reduction step to this inference; 3) if there is a critical 

Ti(Pl,P2,m ) inference in P, then we can effectively apply a Ti 2- 

reduction step to this inference. In each of these three cases we ob- 

tain as result a strictly normal proof P* of degree n . 

From the above it follows that we can reobtain suitably formulated 

variants of theorems 5 and 6 for ZTEi/II N if we restrict our 
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attention to proofs P whose endsequent has the particular form 

) A . In view of their importance, we introduce a name for such 

proofs: 

Definition 17: A proof P is called standard if its endsequent has 

the particular form > A . As abbreviation for "strictly normal 

standard proof" we use the expression "s.n.s. proof" 

In order to obtain appropriate versions of theorems 5,6, we restrict 

the class of II N- , Ti I- and Ti2-reduction steps. 

Definition 18: Let P be a saturated s.n.s, proof in ZTEi/II N 

which does not contain thinnings in its final part. If P contains 

a critical IIN-inference then we can apply to it that particular 

IIN-reduction step which is described in the proof of theorem 17: 

we call this particular reduction step the canonical reduction step 

associated with the critical II N inference in question. Similarl~ in 

case of a critical Ti(Pl) inference or a critical Ti(PI,P2,m ) infe- 

rence in P . 

That is, among all possible reduction steps which can eventually be 

applied to the critical II N inference in question~we select a par- 

ticular one: that one described in the considerations preceeding 

theorem 17. 

Theorem 5 can now be restated as follows: 

Theorem 18: Let W be the twoplace relation which applies to proofs 

P,P' in ZTEi/II N if and only if the following holds: i) P,P' are 

saturated s.n.s, proofs which do not contain thinnings and logical 

axioms in the final part; 2) P' can be obtained from P by appli- 

cation of a logical reduction step, an induction reduction or a ca- 

nonical II N- , Ti I- or Ti2-reduction step. Then W is decidable. 

Moreover, if W(P,P') holds, then we can effectively determine the 

reduction step which, applied to P , yields P' . Finally, there is 

a recursive function ~ having the property: if W(P,P') holds, 

then there are at most ~ (P) symbols which occur either in P' or 

in one of its side proofs. 
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As mentioned earlier, theorem ~ remains true as it stands for all 

proofs and hence in particular for standard proofs; we will not re- 

state it again. The basic theorem 6 on the other hand now reads as 

follows: 

Theorem 19: Let P be a saturated s.n.s, proof in ZTEi/II N , which 

does not contain thinnings and logical axioms in the final part and 

which is different from its final part. Assume that no logical reduc- 

tion step, no induction reduction and no canonical II N- ~ ~i I- and 

Ti2-reduction step is applicable to P . Then there is a critical lo- 

gical inference in P whose principal formula has an image in the 

endsequent. 

Proof: From theorem 17~ it follows that P does not contain any cri- 

tical II N- , Ti(Pl)- or Ti(Pl,P2,m)-inference. Then we obtain the 

statement of the theorem by proceeding in the same way as in the pro~ 

of theorem 6. 

Definition 19: A reduction step will be called canonical if it is a 

canonical II N- , Ti I- or Ti2-reduction step° A reduction step will 

be called strictly essential if it is a logical reduction step, an 

induction reduction or a canonical reduction step° 

C. Before coming to applications,there is still a point to consi- 

der. Let P be an s.n.s, proof in ZTEi/II N which does not contain 

thinnings and logical axioms in its final part~ and assume a) that 

no strictly essential reduction step is applicable to P ~ b) that 

there is no critical logical inference whose principal formula has 

an image in the endsequent; c) that P does not coincide with its 

final part. A comparison with theorem 19 shows that P necessarily 

must have the following properties: i) there are constant terms in 

the final part shich are not saturated; 2) there is at least one 

critical induction inference, II N inference, Ti(Pl) inference or 

Ti(Pl,P2,m) inference in P . That i) holds is a consequence of 

theorem 19: otherwise we would obtain a contradiction in view of 

assumption b) . In order to prove 2), we prove the following lemma: 

Lemma 9: We can effectively decide whether a proof P in 

ZTE/II N is saturated or not. If it is not saturated and if 

11 i 
, ...... , ~ s is a given listing of the distinct special 

u I u s 
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function constants occuring in P , then we can find effectively a 

p.r. continuity function ~ (Xl, . . . ,Xs) having the following proper- 

ty: if ~ (v I .... ,Vs)~0. and if P* results from P by replacing 

i k I k 
every ~ by ~ then P~ is saturated. The proof of this 

u k Uk*Vk ~ 

lemma is an immediate consequence of the definitions of term and sa- 

turated term and is omitted. In order to show that P has property 

i I i 
2) stated above~ let , ..... , ~ s be the distinct special 

u I u s 
function constants occuring in P and let ~ (x I ..... Xs) be the 

continuity function associated with P according to the lemma. Let 

v l,...,v s be such that ~([l,...,Vs)~0 and denote by P~ t~e re- 

dent that the following statements are true: ~) if there is a 

fork in P*, then there is a fork in P ; ~) if there is a criti- 

cal induction in P*~ there is a critical induction in P ; y) if 

there is a critical fIN- , Ti(Pl)- or Ti(Pl,P2,m)-inferenee in P~ 

then there is such an inference in P ; ~) if there is a critical 

logical inference in PW whose principal formula has an image in the 

endsequent~ then there is such an inference in P . Moreover, P* is 

clearly a saturated s.n.s, proof in ZTEi/II N which does not contain 

thinnings and logical axioms in its final part. In virtue of theorem 

19, the assumptions about P and the list ~)- ~), it follows that 

P* must contain either a critical induction, a critical IIN-in- 

ference, a critical Ti(Pl)-inference or a critical 

Ti(Pl,P2,m)-inference. Therefore, in view of ~)- f)~ the same is 

true for P , what proves that P has property 2). Consider e~. the 

case where the inference stated in 2) is an induction: 

A(x), ~ > A(x')/A(O), S ' '> A(q). The reason why we cannot 

apply an induction reduction to P~ and to this inference in parti- 

cular, is that q is not saturated; hence it cannot be replaced by 

a numeral with the aid of a conversion. The situation is similar in 

case of a critical fIN- , Ti(P I )- or Ti(Pi,P2,m)-inference. 
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Remark: In virtue of lemma 9, we can associate with every s.n.s. 

proof P which is not saturated in an effective way a continuity 

function ~ which is related to P in the way described by lemma 9; 

we denote this continuity function by ~p and call it the continui- 

ty function associated with P . Finall~ we need 

i I i 
Definition 20: a) Let P be a s.n.s, proof and ~u I''''" ' ~usS 

the critical special function constants which occur in P . Let 

Vl, . ..,v be sequence numbers all having the same length ~0 . If 
s 

the s.n.s, proof P* has been obtained from P by replacing every 

i k i k 
occurence of ~Uk in P by ~Uk.V k (k ~[ s)~ then we call P* a 

substitution instance of P . b) If~in particular; v i = ~i(n) 

(i ~ s) are such that ~p(V 1 ..... Vs)~0 ~ while 

~p(~l(m) ..... ~s(m))=0 for m <n, then we say that P* has been 

obtained from P by means of an inessential reduction step. 

The above considerations may be summed up with the aid of this defi- 

nitions as follows: 

Theorem 20: Let P be a s.n.s, proof in ZTEi/II N having the 

following properties: a) no strictly essential reduction step is 

applicable to P ; b) there is no critical logical inference whose 

principal formula has an image in the final part; e) P does not 

coincide with its final part. Then P is not saturated and contains 

either a critical induction inference, a critical IIN-inference , a 

critical Ti(Pl)-inference or a critical Ti(Pl,P2,m)-inference. 

D___u. In connection with theorem 19~ there is a last syntactical opera- 

tion to be considered. To this end let P be a saturated s.n.s. 

proof in ZTEi/IIN~ which satisfies the conditions of theorem 19. We 

distinguish a number of cases according to the form of the endsequent 
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of P 

Case i: The endsequent of P is > AAB . Since P is an in- 

tuitionistic proof whose endsequent has empty antecedent, it follows 

that the critical inference given by theorem 19 must necessarily have 

the form 

F > A' ~ > B' 

Y > A' A B' 

with A' and B' isomorphic with A and B ~ respectively. It fur- 

thermore follows from the intuitionistic structure of P that this 

inference is the rightmost one among all critical inferences in P~ 

and that the path leading from ~ > A' /~ B' to the endsequent 

is the rightmost one among all the paths in the final part of P . 

Therefore we have two possibilities: we can omit the inference in 

question and cancel its right premiss, obtaining thus a proof P1 of 

> A ~ or we can omit the inference and cancel its left premiss, 

obtaining thus a proof P2 of ) B . It goes without saying 

that both proofs P1 and P2 are s.n.s, proofs in ZTEi/II whose 

ordinal O(Pl) , o(P2) are smaller than o(P) 

Case 2: The endsequent of P is ~ AVB . The critical infe- 

rence given by theorem 19 must be of the form 

y > A'/ F > A'VB' or f > B'/A' V B' with A' ,B' 

isomorphic with A,B, respectively. Again the inference in question 

is the right-most one among all critical inferences. In either case 

we can omit the inference, obtaining a proof P1 of > A' or 

of > B' . As before, Pl is an intuitionistic s.n.s, proof 

and O(Pl) <o(P) holds. 

Case 3: The endsequent of P i s  ) (x)A(x) • Then the criti- 

cal inference given by theorem 19 has the form 

> A'(z) 

> (x)A'(x) 

where A' (z) 

F 
A 

is isomorphic with A(z) . Let P be the subproof of 
A 

/~ A' (z) in P . Now we replace every occurence of z in P 



- l O 3  - 

A A 
by n and obtain a proof P of ) A'(n) . Next we replace P 

n 
in P by P and omit the quantifier inference in question: this 

n 
yields a proof Pl of ) A(n) which is still a s.n.s, proof in 

ZTEi/II N ; its ordinal O(Pl) is clearly smaller than o(P) 

Case 4: The endsequent of P is > (V~)A( ~ ) • In this case 

the critical inference given by theorem 19 must have the form 

>A'(~) 

where A' ( C ( )  is isomorphic with A(~) . Let ~ > be any 

special function constant associated with the empty sequent which 

does not occur in P . We replace every occurence of C~ in 

) A' (~) or above by cK~ > and omit the quantifier in- 

ference ~ ~ At(~)/ ~ ) (V ~)A'( ~ ). The result is 
i 

a proof Pl of ) A( ~Z > ) ; P is clearly an s.n.s, proof 

in ZTF, i/II N whose ordinal is smaller than that of P . 

Case 5: The endsequent of P is ) (E~)A(~ 

inference given by theorem 19 must have the form 

• The critical 

> A'(F) 

where A'(~) is isomorphic with A(~) Since P is a s.n.s. 

proo~ it follows that F is a constant functor. By omitting the in- 

ference ~ ) A' (F)/ S ) (Ef)A' (7)~ we obtain a proof Pl 

of fl A(F). As before, Pl is a s.n.s, proof in ZTEi/II N and 

its ordinal is smaller than that of P . 

Case 6: The endsequent of P is > ( E x ) A ( x )  

i n f e r e n c e  g i v e n  b y  t h e o r e m  19  h a s  t h e  f o r m  

y ) A'(t) 

/ > (~x)A(x) 

where A' (x) is isomorphic with A(x) Since P 

The critical 

is normal, it 
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follows that t is a constant term. By omitting the above critical 

inference, we obtain a proof Pl of ) A(t) P is,of course~ 

a s.n.s, proof in ZTEi/II N whose ordinal O(Pl) is smaller than 

o(p) 

Case 7: The endsequent of P is ~ A ~ B  . The critical in- 

ference given by theorem 19 must have the form 

A', T > B' 

F > A' ~B' 

where A' and B' are isomorphic with A and B~ respectively. By 

omitting this inference, we obtain a proof Pl of A > B . P1 

is still a strictly normal proof in ZTEi/II N and its ordinal is 

still smaller than that of P . However, P1 is no longer a stan- 

dard proof since its endsequent has an antecedent which is not empty. 

Case 8: The endsequent of P is 

rence given by theorem 19 must be 

> q A . The critical infe- 

A', ~ > 

> IA' 

where A' is isomorphic with A . By omitting this inference~we ob- 

tain a proof P of A > . P is still a strictly normal proof 

in ZTEi/II N but it is no longer standard since its endsequent has 

a nonempty antecedent. The above considerations give rise to the de- 

finition below. 

Definition 21: Let I) 8) denote the cases I) 8) which have 

just been discussed above. Let P be a saturated s.n.s, proof in 

ZTEi/II N which does not admit preliminary nor strictly essential re- 

duction steps and which does coincide with its final part. Let S be 

the endsequent of P . A proof P* is said to follow from P by 

application of a subformula reduction step if one of the following 

alternatives holds: a) S is > A /k B and P* is one of 

the proofs P1 or P2 in I) ; b) S is > AVB and P* 

is the proof P1 in 2) ; c) S is > (x)A(x) and P* is 

one of the proofs Pl defined in 3) ; d) S is 

( V ~)A(~) and P* is the proof Pl of 4)~ while ~ % 
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in 4) is the first in the list ~ > , 

does not occur in P ; e) $ is 

proof P1 in 5) ; f) S is 

proof Pl defined in 6) ; g) S is 

the proof P1 in 7) ; h) S is 

proof P1 in 8) 

--C~ 2 < ~ , ...... which 

> (E~)A(~) and P* is the 

> (Ex)A(x) and P* is the 

> A ~B and P* is 

> 7 A and P* is the 

With the aid of definition 21, we can sum up the above considerations 

as follows: 

Theorem 21: Let P be a saturated s.n.s, proof in ZTEi/II N which 

does not coincide with its final part and which does not admit preli- 

minary nor strictly essential reduction steps. Then we can effective- 

ly apply to P a subformula reduction step; the resulting proof P* 

is a strictly normal proof in ZTEi/II N whose ordinal o(P*) is 

smaller than o(P) 

Corollary: Let P,P* be as in theorem 21 and let S,S* be their 

endsequents respectively. If S is > A VB, then S* is 

> A or ) B, if S is > (E ~)A( ~ ) then S* is 

> A(F) for some constant functor F, if S Ex)A(x) 

then S* is A(t) for some constant term t . 

Remark: The functor and the term t may of course contain special 

function constants. 

4.5. Applications 

A__ u. Applications of our analysis of the system ZTEi/II N are most 

immediately obtained by introducing two wellfounded relations R,L 

which are both intimately connected with our reduction steps. 

Definition 22: Let the two-place relation R hold for s.n.s, proo~ 

P,P' in ZTEi/II N (in symbols R(P,P')) if and only if one of the 

following two conditions A,B below are satisfied. A__~. P is not 

saturated and P' follows from P by means of an inessential re- 

duction step. B~ P is saturated and there is a list 

Pl,...,Ps,Ps+l (s=l admitted) of proofs having the following pro- 

perties: i) P=Pl' P'=Ps+l ' 2) for i ~ s Pi follows from 

Pi-i by means of a preliminary reduction step, ~) no preliminary 



106 - 

reduction step is applicable to P , 4) P 
s s+l 

means of a strictly essential reduction step. 

follows from P by 
s 

The second relation, denoted by L , is introduced by the following 

Definition 22: The two-place relation L holds between s.n.s, proofs 

P,P' in ZTEi/II N if and only if one of the three conditions A,B,C 

below are satisfied. 

A__ m. P is not saturated and R(P,P') holds. B__ m. P is saturated and 

R(P,P') holds. C___u. P is saturated and there is a list 

E 1 ..... Ps,Ps+l (l<~_s) of proofs having the following properties: 

i) P=Pl' P'=Es+I' 2) for i<s P. follows from E. by means 
= 1 i-i 

of a preliminary reduction step, 3) no preliminary reduction step 

is applicable to Ps ' 4) Ps+l follows from Ps by means of a 

subformula reduction step. 

The main properties of R,L are described by the following 

Theorem 22: a) R,L both are decidable, b) given P , the pre- 

dicates (EX)R(P,X), (EX)L(P,X) are decidable, c) R and L are 

wellfounded, that is, no infinite sequence El, .... such that 

R(Pi,Pi+l) for all i or L(Pi,Pi+l) for all i exists. 

Proof: The proof of a) is rather routine and hence omitted. We 

sketch the proof of b) . Given a s.n.s, proof P in ZTEi/IIN~ we 

first decide whether P is saturated or not. If not, then we can 

apply to P an inessential reduction step in order to obtain a proof 

P' with R(P,P') . Hence (EX)R(P,X) holds. If P is saturated, 

then there are finitely many chains El,... ,P s with the property: 

i) PI=P , 2) Pi+l follows from P.1 by means of a preliminary 

reduction step~ 3) no preliminary reduction step is applicable to 

E . For each such chain we take the corresponding P and chock 
s 

whether an essential reduction step is applicable to E or not. If 

there is such a chain, then (EX)R(P,X) holds, if not, then 

(EX)R(P,X) is false. The argument for L is quite similar. In order 

to prove c)~ assume that Pl,P2, .... is such an infinite chain with 

respect to R; that is~ R(Pi,Pi+l) is assumed to hold for all i o 

Obviously, o(Ei+l) ~ o(Pi) However, it is easy to see that there 

must be an infinite subsequence i I ~ i 2 ~ i 3 .... such that 

Pik+l follows from P'l by means of a strictly essential reduction 

step. Hence o(P i ) > o~Pik + ) in virtue of theorem 15, what leak to 

a contradiction. ~he argumen~ is quite the same in the case of the 
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relation L . 

The applications of the previous theorem are now immediate: 

Theorem 23: Let AVB , (Ex)A(x) , (E~)A(~) be formulas which do 

not contain free variables nor special function constants, a) Given 

a proof P in ZTEi/II N of > A VB , we find effectively a 

proof P' in ZTEi/II N of ) A or fl B . b) Given a 

proof P in ZTEi/II N of ) (Ex)A(x), we effectively find an 

n and a proof P' in ZTEi/II N of ) A(n) c) Given a proof 

P in ZTEi/II N of ) (E~)A(7), we effectively find a con- 

stant functor F not containing special function constants and a 

proof P' in ZTEi/II N of > A(F) 

Proof: We content ourself with the proof of c) . The other cases 

are treated in exactly the same way. Since (Ef)A(f) does not 

contain free variables at all, there is no variable which occurs both 

free and bound in P . Hence there is a normal proof P* of 

(E~)A(f) (see part B of this section) and by replacing 

those special function constants which eventually may occur in P* 

by suitably chosen constants for p.r. functions, we get a s.n.s, pro~ 

P in ZTEi/II N of ~ (~/)A(/) which does not contain spe- 

cial function constants at all. In virtue of theorem 23~we effective- 

ly find a chain %,~ ...... PN such that 7 (EXm(PN,X) holds. The 

endsequent of PN is, of course, still > (E ~)A(~) and one 

easily verifies that PN is saturated and does not contain special 

function constants. Now we apply as many preliminary reduction steps 

as possible to PN ; we obtain in this way a proof 

of > (E ~)A(~) which is saturated and does not admit pre- P~ 
/ 

liminary reduction steps. No strictly essential reduction step is 

applicable to P~, since otherwise ~(EX)R(PN,X ) would be false. 

On the other hand P~ cannot coincide with its final part, since in 

this case only prime formulas would occur in P~ Hence, in virtue 

of theorem 21 it follows that a subformula reduction step is appli- 
A 

cable to P~ The result of this reduction step is a proof P of 

) A(F)~ as is clear from the corollary of theorem 21. F is a 

constant functor and~ since P does not contain special function con- 

stants~ it follows that also F does not contain special function 
A 

constants. Since~ moreover, P is a proof in ZTEi/II N the statement 

c) of the theorem is proved. 
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Remark: We note that in the above proof we have heavily used the 

fact that ZTEi/II N is consistent: a successive application of pre- 

liminary reduction steps to a standard proof does not affect its end- 

sequent. 

The result above can be generalized. In order to obtain this genera- 

lization, we note a lemma which has been used implicitely several 

times, in particular also in the proof of theorem 23, namely 

Lemma i0: Let P be a s.n.s, proof in ZTEi/II of ) A and 

i I i 
let ~ , ..... , ~ s be those special function constants which 

u I u s 
occur in P but not in A . Then we can replace the constants 

i I i 
s by suitably chosen constants for primitive recur- 

~'''''~ U Ul s 

sive functions in order to obtain a s.n.s, proof P' of > A 

which contains only those special function constants which occur in 

A • We h a v e  o(P)=o(P') 

We omit the trivial proof of this lemma. Another evident lemma whose 

routine proof is omitted is the following 

Lemma ii: Let P be a s.n.s, proof in ZTEi/II N of A A 

which has the following property: every special function constant 

which occurs in P occurs in A . If R(P,P') holds then P' still 

has this property. 

In order to have a word at hand let us call a s.n.s, proof P 

stratified if every special function constant which occurs somewhere 

in P already occurs in its endsequent. 

Definition 24: Let P be a stratified s.n.s, proof in ZTEi/II N 

i I i 
...... s the special function constants occuring in 

and Ul, , ~u s 

P , listed in some fixed way. Let Wl, ..... ,Ws be sequence numbers 

all having length ~ 0  . A substitution of 
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i I i i I i 
~ S for ~ ~ s is said to be 

Ul*Vl~'''''' u *v Ul~ "'''" ~ u s s s 
compatible with Wl, . o ~. ,w if w. ~ KUi~Vi for 1 < i ~ s 

s 1 

A pair P,P' is said to be compatible w~th Wl, .... ,w if P' is 
s 

a substitution instance of P and if the substitution which trans- 

forms P into P' is compatible with Wl, ..... ,w A chain 
s 

..... =P is said to be compatible with w 1 Po' 'PN with Po ' .... 'Ws 

if a) R(Pi,Pi+l) for all i<N , b) Pi,Pi+l is compatible with 

w~ ..... ,w s whenever Pi is not saturated. A chain Po, ..... 'PN 

with Po=P is said to be compatible with functions ~, ....... ~s 

if a) R(Pi,Pi+l) for all i <N , b) there is a sufficiently 

large K such that for all i Pi,Pi+l is compatible with 

~'(K) S(K) whenever P is not saturated. 
2 l 

Remark: For use below, we mention the following easily provable fact: 

if P, ~ U l  i l , . . . .  . , ~usiS and  Wl, . . . . .  ,Ws a r e  a s  i n  d e f i n i t i o n  24~ 

then there is at most one P' such that R(P,P') holds and such 

that the pair P,P' is compatible with Wl, .... ,Ws; moreover~ we can 

effectively decide if there is such a P' and if so we can find this 

P' effectively. Now we are able to state the generalization of theo- 

rem 23, namely 

Theorem 24: a) Let P be a s.n.s, proof in ZTEi/II N of 

~) ~ i is the only special function ) (E A( ~ i ) where ~ u u ~ 
/ 

constant oceuring in the endsequent of P Then there exists a re- 

cursive continuity function ~ (x) with ~he property: if 

(v)~0 ~ then one effectively finds a functor F , containing at 

i 
most ~ u*v as special function constant~and a proof P' 

(in ZTEi/IIN) of > A( C~ i u.v,F), b) Similarly~if P is a 

proof of > (E~)A( e4 i ,x) but with a term t in place of the u 

functor F . c) If P is a s.n.s, proof in ZTEi/II N of 
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> A( ~ i)vB(C~) where C~ i is the only special function u u 

constant in A,B~ then there is a continuity function ~ (x) having 

the property: if ~ (v)~0~ then one effectively finds a proof P' 

i i 
of either > A( C~ u.v) or of > B(C~u.v). d) An analo- 

gous statement holds if the special function constants which appear 

in the endsequent of P are ~ il i , ..... , ~ s ; the continuity 

u I u s 
function ~ (x) has then to be replaced accordingly by 

(x I ...... x s ) 

Proof: We prove only the first case; the three other cases are trea- 

ted in exactly the same way. In view of lemma i0, we can assume with- 

out loss of generality that P is stratified. Let us call a sequence 

number v secured if the following is true: there is a chain 

P ' .... PN with P =P which is compatible with u*v and such that 
o ' o 

~(EX)R(PN,X ) holds. We want to show that the property of a se- 

quence number to be secured is decidable. First~ we note thatj given 

any chain of proofs Po' .... 'PN ~ it is decidable whether this chain 

is compatible with u*v or not. Next, we look at the set B of 

chains which are compatible with u*v . We claim that this set is 

finite. To this end, given any chain Po' .... 'PN with 

R(Pi,Pi+l) (i<N), let us call Po ...... Pn+l 'PN a successor of 

this chain if also R(PN,PN+I) holds. Now we apply the fan theorem 

and show: i) there is no infinite chain Po,PI, .... such that for 

every N Po' .... 'PN is a chain in the set B ~ 2) a chain 

Po' .... 'PN in B has at most finitely many successors in B . Now 

i) is a consequence of the fact (already noted earlier) that no infi- 

nite sequence Po,PI,P2 ..... with R(Pi,Pi+I) exists. On the other 

hand, given a chain Po' ..... PN of the set B there are two possi- 

bilities: either PN is saturated and there are at most finitely 

many P~'s with R(PN,P~)~ as noted earlier, or PN is not satura- 

ted and there is at most one P~ such that R(PN,P* ) holds and 
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such that the pair PN,P* is compatible with u*v (see remark follo~ 

ing definition 24). In both cases Po' .... 'PN has at most finitely 

many successors in B . Now we call a set M admissible if its ele- 

ments are chains Po,...,PN which are compatible with u*v . Clear- 

ly, B is admissible and every other admissible set M is a subset 

of B ; in other words, B is the largest admissible set. Our proof 

is essentially finished if we can show that given an admissible set 

M we can decide whether M is maximal or not. To this end, let 

Co, .... 'CA be the chains in M . As in the application of the fan 

theorem above, we conclude that each C has at most finitely many 

successors which are compatible with u*v . In virtue of theorem 4, 

theorem 18, theorem 22 and the remark following definition 24~it 

follows that for each i we can decide whether C. has successors 
i 

in B and~if so, we can find them all in an effective way. Let 

M(Ci) be the set of successors of C. which are in B (empty if 
1 

there are none). All we have to do is to check whether M~M(Ci) is a 

proper extension of M or not. But this is obviously a decidable 

problem. To sum up: i) given v, we can effectively decide whether 

a finite set M of chains is admissible (with respect to v) ; 

2) given an admissible set M ~ we can decide whether it is maximal 

or not; 3) there is precisely one maximal admissible set (the B 

above). From this it follows that, given v , the maximal admissible 

set B can effectively be found. In order to decide whether v is 

secured or not)we only have to check whether B contains a chain 

Po' "''" 'PN such that ~(EX)R(PN,X ) holds. Hence, we can effective- 

ly decide whether v is secured or not. Now we define a recursive 

function a s  follows: i) if ~ (v)~0~ then v is a sequence number 

of length > 0; 2) ~ (v)~0 iff v is secured; 7) if v is 

seeured~then ~ (v)=l . It remains to verify that ~ (x) is the 

continuity function we are looking for. To this end we note that~ 

a function /, we can effectively find a chain Po' ..... 'PN given 



- 112 

w h i c h  i s  c o m p a t i b l e  w i t h  u * ~  a n d  f o r  w h i c h  ~ ( E X ) R ( P N , X )  h o l d s ;  

t h i s  i s  a n  e a s y  c o n s e q u e n c e  o f  t h e o r e m s  4 ,  18 a n d  t h e  r e m a r k  f o l l o w -  

i n g  definition 24 . By definitionp this means that there is a K such 

that u*~(K) is secured. Hence ~ is continuous. 
f 

Finally, let v be secured, that i~ J (v)=l. Then we effectively 

find a chain Pc' ..... 'PN compatible with u*v for which 

(EX)R(PN,X) holds. PN in,of course,saturated, does not admit 

any preliminary nor strictly essential reduction step. The endsequent 

of PN has the form > (E ~)A( C~ i / ) where w is a cer- 
, U~W' 

rain sequence number for which v ~ w holds. Clearly, PN does 

not coincide with its final part. By theorem 21~we can apply a sub- 

formula reduction step to PN ' obtaining thus a proof P of 

> A( C~ i is a certain constant functor u.w,Fo) where F ° 

effectively determined by PN~ which does not contain special func- 

i 
tion constants other than eventually o~ u.w If w=v, we are fi- 

nished. Otherwise we replace ~ i by ~ i in P , obtaining 
u~w u~v 

thus a proof of > A( C~ i F) where F is a constant funetor 
U~V ' 

which does not contain other special function constants than even- 

tually ~ i This concludes the proof uWv ° 

B. Another kind of application is connected with the notion of con- 

structive, infinite ~ -proof, introduced by Sch~tte in ~lOJ . We 

content ourself with a rather superficial treatment of this matter. 

A rigorous treatment would involve a precise definition of construc- 

tive cut--free ~ -proof and several applications of the fixed point 

theorem for partial recursive functions. As an intuitive substitute 

for partial recursive functions and the fixed point theorem~we use 

the notion "effective" in about the same way as Sch~tte in [i0~ 

To this end~we introduce a certain infinitary ruie~which we call con- 

structive ~-rule, and a semiformal system S~ containing this 
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rule. In this connection we use the following notation: if S is a 
i I i 

sequent whose special function constants are among ~ ~ s, 
Ul~''''~ u s 

whose free function variables are among ~i ....... ~t and whose 
/ 

free number variables are among Xl, .... ~Xr~ then we express this by 

w r i t i n g  S( ~ s , X r ) ,  o r  i n  a 
' ..... ' ' i' ..... ' t'Xl ' ..... 

~Ul ilus i ~ 
m o r e  c o n d e n s e d  f o r m  S ( O ~ u  . . . . . .  x 1 . . . . . . .  X r )  ~ o r  

i I i 
S( ~ u I' "'''" ' ~uS' ]~" ,X), respectively. We remind that if 

s 
(x I ...... Xs) is a continuity function of type fs,O~, then 

, (n) ....... ~ s(n) is called immediately secured with respect 

to ~ if ~ ( ~ (n) ..... c~ (n))~0 and if 

~(~,(i) ....... ~s(i))=0 for all i<n The fact that 

Vl, .... ,v s is immediately secured with respect to ~ will be ex- 

pressed by writing ~ (v I ...... Vs) ~0 . 

Definition 25: The constructive ~ -rule is determined by the 
i I i > 

clauses a) ~ b) below, a) Let S( ~ u I, " "" "" ' ~ use' ~ ,x) be a 

sequent and assume that we are effectively given a continuity function 

of type fs,O 7 , having the following property: if 

(Vl, ..... v )~0~ then we are effectively given a proof Pvl...v 
s i I i ~ ~ s 

s x) 
(in some suitableil system) i°f ~$( O< Ul*Vl ~Us*Vs 

S ~ Xl ,Xr) be a sequent and assume b) Let S( ~ Ul ~us 

.... we are effectively given a proof that for each r-tuple n I 'r. 
i i 

Pnl.. nr of S( ~ ul 1 ....... C~ s # ~ ! . In each of these • ' u ' ~nl' .... 'nr 
s 11 i 

s ~ 'Xl ..... ,Xr) cases we are permitted to infer S( ~ ...... ~Us, 
Ul j 

from the premisses. 

Notation: An application of the constructive 

written as follows: ~ (v I ....... Vs)~O__ : 
i I i ~ ~ l 1 

S( ~Ul.V 1 ~u s ,x)/S( C<ui 
S S 

case a) of definition 25 and 

&J-rule will be 

i 

I 
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il ui uli 1 i 
s n I .. nr)/S (o< ,... nl, . . o ,n ~Y : S(C~Ul 
S ~ LIB 

in case b) of definition 25. 

The system S mentioned above is introduced by the following 

Definition 26: The language and the axioms of S~ are the same as 

those of ZTi (and hence as those of ZT, ZTEi/II N etc.). The rules 

of S are: i) the structural rules except cut; 2) the conversion 

rule; 3) the logical rules of sequential calculus; 4) the con- 

structive ~-rule; 5) an additional rule, denoted by C , whose 

i 
definition is as follows: if ~4 > is a special function constant, 

S a sequent and ~ a function variable free for ~ ~ ~ in S , 

then we can infer S' from S where S' is obtained from S by 

replacing every occurence of ~l< > in S by 

The notion of infinitary proof tree (with respect to S dO ) can be 

introduced in the usual way (see [107 )~ and with every such infi- 

nitary proof we can associate in a natural way an ordinal, called 

its tree ordinal. For details we refer to [lOJ Our ~rule is on- 

ly seemingly more general than ~ -rule introduced in [i0]. It 

would, in fact, be easy to show that our ~-rule is derivable by 

means of the usual ~ -rule; by adopting definition 26~however~we can 

save a few lemmas. Notation: the fact that S is provable in S 

will be expressed by the notation S~ ~ S . 

Theorem 25: Let A be a formula with the properties: i) neither 

nor ~ occur in A ; b) no variable occurs both free and 

bound in A . Let P be a proof in ZTEi/II N of > A . Then 

one effectively finds a proof P~ in S ~ of ) A. 
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Proof: A. First we observe that it is sufficient to prove the 

statement for the case where P is an s.n.s, proof. In order to see 

this, let P be an arbitrary proof in ZTEi/II N and assume for simp- 

licity that A contains precisely two free variables, namely, c~ and 

x ; we indicate this by writing A(~ ,x) Since by assumption nei- 

ther ~ nor x occurs bound in A , there is a normal proof P* of 

> A(~ ,x) . Let ~i< ~ be a special function constant, asso- 

ciated with the empty sequence, which does not occur in P* ; let n 

be an arbitrary, but fixed numeral. By replacing every occurence of 

O< and x by ~ i< ~ and n, respectively,we get a proof 

P'n of > A( ~i< > ,n) . According to earlier remarks,there 

exists a s.n.s, proof Pn of > A( o<i~ > in) Since, by 

assumption~the theorem holds for s.n.s, proofs it follows that we 

effectively find proofs P~ in S~ of > A( C~ i< > ,n) . By 
n 

means of the constructive DO -rule (clause b) of definition 25, we 

A 
can piece the P ~ 's together in order to get a proof P in S~ of 

n 

> A( ~i > ,x) Now we apply to >A( ~ i • < ~ ,x) an infe- 

rence of type C (see clause 5) of definition 26 and obtain a proof 

P~ of > A(~ ,x) 

B__ u In order to prove the theorem for s.n.s, proofs,we proceed by bar 

induction over the relation L , introduced by definition 23 . To this 

end~let P be an s.n.s, proof of ~ A where A has the pro- 

perties stated in the theorem; according to the definition of P, 

there are no free variables in A . The proof by transfinite induc- 

tion over L is essentially accomplished if we can show that the 

theorem holds for P in each of the following two cases: 

a) ~(EX)L(P,X) holds; b) if L(P,P') holds~then the theorem is 

true for P' . Case i: ~(EX)L(P,X) holds. Then P is a saturated 

s.n.s, proof which does not admit any kind of reduction step. In vir- 

tue of theorem 19, it follows that P coincides with its final part. 
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Since no logical axioms and no thinnings occur in P} it follows 

that A must be a saturated prime formula and since cuts, contrac- 

tions, interchanges and conversions are the only inferences in P , 

it follows that A is true. Hence~ > A is an axiom of S what 

proves the theorem in this case. Case 2: Assume (EX)L(P,X)~ and 

assume furthermore that the theorem is true for all proofs P' for 

which L(P,P') holds. We have to consider subcases. For simplicity, 

we assume that A contains exactly one special function constant, 

say ~ ; we express this by writing A(~) The case where A 

contains more than one special function constant is treated in exact- 

ly the same way. Subcase i: P is not saturated. Let ~(x) be the 

continuity function associated with P according to lemma 9 and the 

remark preceeding definition 20j and let P be the proof which we 
v 

i in P by obtain from P by replacing every occurence of ~u 

i 
u*v " According to the definition of ~ and of the inessential 

reduction steps, we have L(P,Pv) 

holds and~conversely, if L(P,P') 

according to the definition of L 

given proofs P~ in S of 
v 

f o r  a l l  v f o r  w h i c h  ~ ( v )  ~ 0 

holds~then P' is P for some 
v 

By i n d u c t i o n ,  we a r e  e f f e c t i v e l y  

i 
> A( C~ u . v )  . The  p r o o f s  P~v 

can be pieced together by means of the following applicatio n of the 

constructive ~-rule: ~ (v) # 0 : 

The result is a proof P~ in S~ of 

Subcase 2: P is saturated and L(P,P') 

i > A( ~u.v)/ > A(~) 

> A(~). 

holds in virtue of clause B 

vj 

of definition 23, that is~ R(P,P') holds. Then P' has the same 

endsequent as P . According to the induction hypothesis, we effecti- 

vely find a proof P~ in $~ of > A , that is,the theo- 

rem applies to P . Subcase 3: P is saturated and L(P,P') holds 

in virtue of clause C in definition 23. Then P' is obtained from 

P by means of a subformula reduction step,and we have to distinguish 

subsubcases according to the outermost logical symbol in A . We con- 

tent ourself with the treatment of two cases where the outermost 
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logical symbol is a universal quantifier applied to a function va- 

riable and a universal quantifier applied to a number variable, re- 

7 
s p e c t i v e l y ,  a )  L e t  A h a v e  t h e  f o r m  ( V  ) B (  • u '  ) . A c t o r -  

d i n g  t o  t h e  d e f i n i t i o n  o f  s u b f o r m u l a  r e d u c t i o n  s t e p ,  i t  f o l l o w s  t h a t  

P '  i s  a s . n ° s ,  p r o o f  w h o s e  e n d s e q u e n t  h a s  t h e  f o r m  

) B( ~ i C~ k % u' ~ >)~ where c~ > is a special function con- 

stant, associated with the empty sequent, which does not occur in P 

and hence not in A . According to the induction hypothesis~there is 

in S~ of ~ B( C~, ~ > ). From P'47 and an a proof p~ 

application of rule C~ we get a proof P~ in S~ of > A 

as follows: 

% 

U 
C 

> B ( c ~  i cX ) 
U ~ V 

i z) According to the defi- b) Let A have the form ( V z)B( ~u' " 

nition of subformula reduction step and clause C of definition 23, 

it follows that there is a denumerable list of proofs Po,PI,P2, .... 

having the following properties: o) if L(P,P') holds)then P' 

occurs in the list; i) L(P,Pn) holds for n < ~ ; 2) the endse- 

i n quent of Pn has the form ) B( ~ u' ) By the induction hypo- 

n 
thesis we are effectively given proofs P~ in S~ of 

i n > B( ~ u' ) " Combining these proofs with the aid of the con- 

structive ~-rule followed by a universal quantificationjwe get a 

proof P~ in S~ of ~ A as follows: 
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n 
P~ 

i n >B(~ u, ) 
n < ~  

i x > ~( ~u' ) 
V 

i Z) > ( VZ)B(~U, 

what proves the statement for this case. 

The last theorem and its proof are nothing else than appropriate ge- 

neralizations of theorem 6 and its proof presented in [8~ . 

C. There is another application, intimately connected with the last 

theorem and which we will discuss only superficially. To this end, let 

A be a closed formula, not containing special function constants and 

having prenex normal form. In order to fix the ideas, we assume that 

A is, say, (~)(Ep)( ~)(Ex)B( C~, j~, ~ ,x) , B quantifierfree. 

We say that A has a constructive model if we find recursive func- 

tionals F E~J, G [<, ~ and a recursive function ~ (C~, y ) such 

that B( ~ ,F f~ 3 ,G ~/ ~ , ~( ~ , y )) is an identically true 

formula (thereby using the notion "formula" in a slightly more gene- 

ral sense than in chapter I. This concept can be generalized in a ha- 

tural and rather obvious way to arbitrary closed formulas not conrad- 

ing the signs ~ and ~ and not containing special function 

constants. Finally, let A be a formula which does not contain 

i I i 
nor ~ , whose special function constants are among C~ ..... ~ s 

u I u s / 

and whose free variables are among ~ ...... ~ x I x As 
i / i ]t' ' ..... ' q 

i I 

7 7 usual~we write A( ~ Ul ~Us 1 ' t Xl Xq) in 

place of A We say that A admits a constructive model if the 

formula 
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. . . . .  . . . . .  . . . . .  . . . . .  . . . . .  

~ ,Xl,...,Xq) admits a constructive model. The main result then 

says: if A is a formula which does not contain ~ nor 7, and 

if P is a proof in ZTEi/II N of > A , then we effectively 

find a constructive model of A . Here "effective" means that the 

Goedel numbers of the recursive functions and functionals whose exi- 

stence is claimed can be found effectively from the Goedelnumber of 

the proof P There are two possibilities to prove this statement: 

a) by transfinite induction over the wellfounded relation L , 

using thereby the fact that the statement follows for formulas con- 

taining free variables if it has been proved for closed formulas; 

b) by transfinite induction over the proof P~ in S~ of > A 

which is provided by the last theorem. In both cases the fixpoint 

theorems for partial recursive functions have to be used in an essen- 

tial way. 

It is interesting in this connection to consider the simplest case, 

namely~that one where the formula A in question has the form 

(x)(Ey)B(x,y), where B is prime, without special function constants 

and without free variables other than x,y Let P be a proof in 

ZTEi/II N of ) A . From P we obtain for each numeral n in an 

effective way a s.n.s, proof P in ZTEi/II~ of ~ (~y)B(n,y) 

In order to find an m such that B(n,m) is true, we construct a 

chain pn n O' 'PN such that a) P~=P, b) R(P n n .... i,Pi+l) for all 

i<N , c) ~ (EX)R(P~,X) In virtue of the properties of R, such 

n 
a chain can always effectively be found. The endsequent of PN is 

n 
still > (Ey)B(n,y) Since PN is saturated and admits 

neither preliminary nor strictly essential reduction steps~it follows 

in virtue of theorem 19 that a subformula reduction step is appli- 

n 
cable to PN " The result is a s.n.s, proof P*n in ZTEi/II N whose 

endsequent has the form > B(n,t), where t is a constant term° 
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By applying eventually an inessential reductionstep to P* we get a 
n ' 

~xJ 

proof Pn of ~ B(n,t*) , where t* is saturated with value, 
/k 

say~ m . By means of a conversionjwe finally get a proof Pn of 

B(n,m) . The procedure described is effective, that is~ given 

A 
P ~ we can find for each n effectively a proof P of ) B(n,m) 

n 

for some m . The m depends, of course, on n , hence it may be 

written as ~ (n) . That ispfrom P we have extracted a recursive 

function ~ (x) such that B(n, y(n)) is true for each n , that 

is, such that B(x, ~ (x)) is identically true. In this connection we 

may ask the following question: if /~ (x)(Ey)B(x,y) 

(with B prime) has been proved in ZTEi/II N • can we then prove 

) (E ~ )(x)B(x, ~ (x)) ? In virtue of theorem 23 the answer is 
/ 

clearly negative. The reason is that from a proof of 

(E~)(x)B(x, ~ (x)) we can find, according to this theorem, 
/ ! 

a functor F and a proof of ~ B(x,F(x)) ; this implies that 

there is a p.ro function f such that B(n, ~(n)) is true for all 

n . On the other hand, it is not difficult to find a prime formula 

B(x,y) having the following properties: a) for each primitive re- 

cursive function ~ there is an n with B(n, f (n))#0 ; 

b) ZTEi/II N ~ ) (x ) (Ey)B(x ,y)  holds .  A consequence of this 

argument is 

Theorem 26: There is a prime formula B(x,y) for which the follow- 

ing sequent is unprovable in ZTEi/II N : 

(x ) (Ey)B(x ,y )  

As corollary we immediately obtain the 

Corollary: The axiom of choice for primitive recursive formulas is 

not provable in ZTEi/II N. 
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C. Up to now we have formulated all results for the theory 

ZTEi/II N . But, since ZTEi/II N is merely a conservative extension 

of ZTi/IIN, it follows immediately that these results hold invariab- 

ly for ZTi/II N . On the other hand, if A is a formula without spe- 

cial function constants, if P is a proof in ZTEi/II N of > A, 

then there is a proof P* in ZTi*/II N of > A that is a 

proof not containing special function constants at all. This implies 

that the theorems 23 and 25 remain true for ZTi*/II N . There is also 

a suitable transformation of theorem 24 into the language L* which 

is true for ZTi*/II N : all we have to do is to replace the special 

function constants ~ il i s by functors 
U 1 ' ..... ~ ~U 

S 

Ul* C>Ql' ..... 'Us* ~s where the C~ i's are suitably chosen free 

function variables. Finally, it presents no difficulties to pass from 

ZTi/II N and ZTi'~/II N to corresponding Hilbert-type systems 

ZHi/II N and ZHi*/II N with the aid of theorem 0 . It is clear, 

that theorems 23 - 26, suitably reforn~ulated, remain true for these 

Hilbert-type systems. We do not pursue the details of these passages 

from one system to the other, since they involve only routine tech- 

niques of a rather trivial nature. 

4.6. The system ZTi/II and its conservative extension ZTEi/II 

In this section we consider a conservative extension ZTE/II of 

ZT/II which is related to the latter in the same way as ZTE/II N to 

ZT/II N . The intuitionistic version of ZTE/II , to be denoted by 

ZTEi/II , is in its turn a conservative extension of ZTi/II . To 

ZTEi/II we apply a treatment which parallels that one of ZTEi/II N. 

In order to avoid a repetition of the arguments presented in the last 

section, we content ourself in pointing out the changes which have to 

be made in passing from ZTEi/II N to ZTEi/II. 
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A. According to the definition of 

adding to ZT the new rule 

ZT/II , we obtain this system by 

II. 
D(y), (x) ~__DyA(X), y > A ,A(y) 

> ~ ,A(q) 

where,as before, ~(~ D) and (x) ~DyA(X ) are abbreviations for 

the formulas ( C~ ) ~ (x)( o< (x+l) K C~(x) /kD(~(x+l))/%D(~ (x))) 

and (x)(x ~Dy. ~ .A(x)), respectively, while q and y are sub- 

ject to the stipulations stated in part B of section 1.5. Here, 

in contrast to ZTi/II N , the formula ~(~D) is not required to 

be a formula "without function parameters"; that is, free function 

variables and special function constants may occur in ~(~D) in 

a quite essential way. In order to obtain a conservative extension 

ZTE/II of ZT/II which corresponds to ZTE/IINp we need new rules 

which correspond to the rules Ti(P) and Ti(P,Pl,m ) introduced in 

section 4.1. To this end, let Vl, ..... ,v s and Wl, ..... ,w s be two 

lists of sequence numbers such that l(Vl) ....... l(Vs) and 
i I i 

~°,~..~ l(Wl) ....... l(Ws) holds. Let D( ~u I ~uS,x) be a formula 
S 

whose only free variable is x and whose distinct special function con- 
i I i 

• .., S 
stants are ~Ul , ' ~u ; we denote this formula briefly by 

s i I i 

~'''°o7 D(x) Let G(x) and H(x) be D( C~ul.Vl C~uS.v x) and 
i I i s s 

D( ~ Ul.Vl.Wl C~uS*v *w x) respectively. The first of the 
S S S 

above-mentioned rules is defined as follows: if P is a strictly 

normal proof in ZTi/II of > ~(~D) , then we are allowed to 

infer from the premiss G(y),(x) ~GyA(X ) , ~ * ~ ,A(y) the 

conclusion G(q), ~ > ~ ,A(q) . This rule is denoted by TI(P) 

and written as follows: 
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Tz(p) 
G(y), (x)(x~ Gy. _~A(x)), /~ ) ~ ,A(y) 

G(q), /~ > n ,A(q) 

Here y is not allowed to occur free in the conclusion and q is 

assumed to be free for y in A(y) 

The second rule is given as follows: if P1 is a s.n.s, proof in 

ZTi/II of > ~(~D), if P2 is a s.n.s, proof in ZTi/II of 

G(t), where t is a saturated term, then we are allowed to 

infer from the premiss y ~ H  t , (x)(x ~ H  y. ~A(x)),y >n,A(Y) 

the conclusion q ~H t, ~ > ~ ,A(q) where q,y are subject 

to the same stipulations as before. We write this rule as follows: 

TI(PI,P2,m) 
y6"~- Ht , (x)(x ~Hy. _~A(x)), ~ > ~ ,A(y) 

q ~ H  t , Y # ~ ,A(q) 

where m= /t I 

By adding the just defined rules TI(P) and TI(Pl,P2,m ) to ZT/II, 

we obtain the system ZTE/II. 

Remark: In the case of the TI(P) rule above it is evident that by 
i I i 

replacing every occurence of ~Ul, ...... ~u s in P by 
i I i s 

..... ~ s , respectively, we obtain a s.n.s, proof P' 
C~ul*v I ' ' u *v 

S S 

in ZTi/II of ~ ~( ~ G). Similarly~ by replacing 
i I i i I i 

, C~ s in P2 by s in P1 and C~ul.Vl, , u *v ~u ...... ~u .... 

C ~  s i s s 

Ul*Vl*W 1 ' u *v *w * we get proofs P1 and P~ of 
S S S 

) ~(~H) and > H(t), respectively, in case of a 

TI(P1,P2,m) inference. Thus~ TI(P) and TI(P1,P2,m ) are generalisa- 

tions of the rules Ti(P) and Ti(P1,P2,m ) defined in section 4.1. 



124- 

The systems ZTE/II and ZTE/II N look clearly very much the same 

and it is to be expected that what we have done for ZTE/II N can be 

done in more or less the same way for ZTE/II . This is indeed rather 

evident for the content of sections 4.1. : all statements, defini- 

tions and results carry over to ZTE/II with almost no changes. 

Thus we can %g. introduce the notion of side proof, degree and order 

in exactly the same way as in section 4.1. Theorem 14 remains true 

for ZTE/II ; its proof remains essentially the same except that the 

last remark has to be used at a few places. Of course, we can pass 

from ZTE/II to its intuitionistic version ZTEi/II which in virtue 

of theorem 14 is a conservative extension of ZTi/II To sum up: 

we will apply all notions and results given in section 4.1. without 

further comments to ZTE/II and ZTEi/II To the notions defined in 

section 4.1. we add a new one, namely, that of the index of a 

TI(PI,P2,m ) inference. To this end,let 
i 

~u I'II .... ' ~uS , v I ...... Vs,Wl ...... ,Ws and D,G,H have the 
s 

same meaning as above in the definition of TI(P)- and 

TI(Pl,P2,m)-inferences. The list Vl, .... v of sequence numbers, 
' s 

which is determined by P1 and P2' will be called the index of the 

TI(P1,P2,m ) inference in question. The index will play an important 

role in connection with the ordinal assignement which will be dis- 

cussed below. 

B__ u. With a cut, an induction, a TI(P) inference or a TI(PI,P2,m ) 

inferenee~we can~of course~associate a natural number, called its 

complexity, in exactly the same way as in part B of section 2.5. 

Based on the notion of "complexity" we can associate with each se- 

quent S in a proof P in ZTE/II another natural number, called 

its height~and denoted again by h(S) ; the definition of height, too, 

is,of course, the same as the definition of height in part B of sec- 

tion 2.5. With the notion of height at hand,we can now define reduc- 
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tion steps for proofs P in ZTE/II in almost the same way as we 

have done it for proofs P in ZTE/II N . In particular, we can 

introduce preliminary reduction steps, induction reduction steps and 

logical reduction steps in precisely the same way as before. In or- 

der to introduce the notions "substitution instance" and "inessential 

reduction stop", we can,of course,use definition 20 without any 

change. Minor differences appear in the definition of II-, TI l- and 

Tl2-reduction step which correspond to the IIN- , Ti l- and Ti2-re- 

duction steps,respectively, defined in section 4.2. 

a) II-reduction steps. Let 

II 

D(y), (x) ~DyA(X), / > ~ ,A(y) 

~(~__D) , D(q), / ) ~ ,A(q) 

be a critical If-inference in a strictly normal proof P in 

ZTE/II . Let P1 be a strictly normal proof in ZTi/II of 

> ~(~D) . Finally, let q be saturated. According to the de- 

finition of "strictly normal"~ it follows automatically that y is 

the only free variable in D(y) . A II-reduction step consists in 

replacing the above inference by the following inferences: 

D(Y)'(x) ("--]DyA(X)' S >' ~ ,A(y) 

TI(P 1 ) 
D(q), ~ - - - ~  S ,A(q) 

thinning 

~( ~ D), D(q), y # Z~ ,A(q) 

The proof P' so obtained is said to follow from P by means of a 

II-reduction step; we say that the reduction step has been applied to 

the II-inference above. 
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i I i 
b) TI-reduction steps. Let D( ~ Ul OiuS,x) be a formula 

S 

c o n t a i n i n g  o n l y  x f r e e  a n d  w h o s e  s p e c i a l  f u n c t i o n  c o n s t a n t s  a r e  

il is Let be a list of se- precisely ~Ul , ..... , C~ u v I ...... ,v s 
S 

quence numbers all of the same length, and let G(x) be 

D( ~Ul.Vl, il ..... ' C~uiSs*vs ' x) Let P1 be a strictly normal proof 

in ZTi/II of fl ~(S~-D) Let there be a critical TI(PI) in- 

ference i n  t h e  s t r i c t l y  n o r m a l  p r o o f  P i n  Z T E i / I I  , n a m e l y  

TI(P 1 ) 

~(y), (x)~Gy*(X), ) ~ , A ( y )  

G(q), /-~ ) ~ ,A(q) 

and let q be a saturated term with value lql , say m . Finally~ 

assume that we have at disposal a strictly normal proof P2 in 

ZTi/II of ) G(q) Then we apply to P the same syntactical 

transformation as in the case of Til-reduction step, that is~we al- 

ter the TI(PI) inference as follows: 

P P 
o S 

cut 

TI(P1,P2,m) 

y ~G q ) G ( y )  S 

y ( ~ _ G  q ,  ( x )  ~ G y A ( X ) ,  y ) L~,A(Y) 

s ~Gq, y > A ,A(q) 

/-~ > ~,s ~G q ~A(s) 

9 ~ , ( x )  ~GqA(X) sq 

D(q), C > ~ ,:(q) 

q and S q have the same meaning as in the definition Here, S, Po' PS 

of Til-reduction step in section 4.2. The resulting proof P' is 

said to be obtained from P by means of a TIl-reduction step; we 

also say that the Tll-reduction step has been applied to the above 
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TI(PI) inference. 

• i 

c) Tl2-reduction steps. Let D , ~ u ..... ' c4 u ' Vl'''i'''Vs 

1 i I ~ ~ s ~) 
and G be as before and let H be D( ~Ul.Vl.Wl, ..... , wv Ww u 

s s s 

where Wl, ..... ,w is a second list of sequence numbers all having 
s 

the same length. Let there be a critical TI(P1,P2,m].. inference in 

P , say 

TI(PI,P2,m) 

y ~__H t, (x) c/--HyA(X), y > ~ ,A(y) 

q ~Ht, ~ > ~ ,A(q) 

where Itl =m , P1 is a strictly normal proof in ZTi/II of 

) ~(~D) and P2 is a strictly normal proof in ZTi/II of 

> G(t) . Assume that q is saturated with lql =n, and that we 

have at disposal a strictly normal proof P3 in ZTi/II of 

> q ~Ht . Finally, let P~ be a cut-free proof in intuitio- 

nistic predicate calculus of q ~H t > H(q) and P4 the 

following proof: 

P3 P~ 

> q ~H t q ~H t > H(q) 

; a(q) 

Then we apply to P a syntactical transformation which is just a 

copy of the TI -reduction step defined in section 2°5, namely a 
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PS Po 

cut 

TI(PI,P4,n) 

y ~ . H q ,  q ~ H  t ) y ~ H  t S 

Y ~ H  q' q ~ H t ' ( x )  ~ H  yA(x)' S > ~,A(y) 

s ~Hq,q ~H t, S ) ~ ,A(s) 
q 

q ~ H t, y > ~,S ~H q. ~ A(s) PS 

q ~H t, /~ > ~,(x) ~HqA(X) S q 

q ~H t' S ) /%,A(q) 

Here Po' PS' P~' S and S q have the same meaning as in the defini- 

tion of Ti2-reduction step in section 4.2. We say that the resulting 

proof P' has been obtained from P by means of a TI-reduction 

step,and we also say that this reduction step has been applied to the 

given TI(PI,P2,m ) inference° 

C. Next, we want to associate ordinals with proofs P in ZTE/II . 
i I i 

To start with, let D( ~u ....... ~u~i x) be a standard formula 
li 1 

(that is of the form R( C~u I ....... ~uS,x) /kseq(x)) whose special 
S 

function constants are precisely those indicated and whose only free 

variable is x . Let C<l, .... , ~s l" be pairwise distinct function 
i I 

s and let G( ~l' ~s 'x) , . o . .  o ~ • • • o ~ variables free for C~Ul O<us 

be the formula D(Ul* Cfl, ..... u * O<s,X ). Let 
S 

(V O~ 1 ....... O<s)~ ( ~ G  ) be true in the usual classical sense; 

this is classically, of course,the same as to say that 

( V O(I 1 ....... C~s)W (~G) is true. This means that,for every 

s-tuple of number theoretic functions fl ..... 'fs ' the set 

In/G(fl ....... fs,n) true} is wellordered by the relation 

{<n,m~ /n ~Km and G(fl ...... fs,n) ,G(fl ....... fs,m) both true ) 

The set n/G(f I ...... fs,n) will be denoted by D(fl ..... fs) , 
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the relation I<n,m~/n~Km and G(f I ..... fs,n),G(fl ..... fs,m) true~ 

by RD(fl, .... ,fs/X,y) . Since D is a standard formula, it follows 

that every n ~D(fl .... ,fs)~ is a sequence number. Now let Q be 

the set of ordered pairs ~<v I ...... Vs~ ,n> (written more briefly 

as <v I ...... Vs/n > ) whose first component is an s-tuple 

v I,..... ,v s of sequence numbers vl all having the same length 

(length zero thereby admitted)~ while the second component is an ar- 

bitrary natural number. We remind at this place that 

<n,m} =(n+m)2+3n+m and <n I,.. . ,n s> = <<n I,... ,ns_l> ,ns> ; the 

elements of Q in particular are themselves natural numbers. By QD 

we denote the subset of Q which is defined as follows: 
A 

<Vl ...... Vs/n> QD iff n ~ O(Vl*f I ...... Vs*fs) for every choice 

fl' .... 'fs of numbertheoretic functions. Now we are going to define 

a partial ordering L D of the elements of QD " We put 

<Vl ...... Vs/n> ~D <Wl ...... Ws/m> if and only if the following 

holds: i) <v I ...... Vs/n > and <w I ...... Ws/m ~ are both in 

QD ' 2) v. ~ for all i ~ s ; 3) , • o i -- ~wi RD(wl*fl 'ws*fs/n'm) 

holds for all s-tuples fl' .... 'fs of numbertheoretie functions. The 

so defined relation L D is a wellfounded partial ordering; we omit 

the easy verification of this statement. From the partial ordering 

L D we now pass to a total ordering L D of QD " To this end, we note 

that in view of the wellfoundedness of L D there is a mapping 

which associates with every element e 6QD an ordinal ~ (e) in 

such a way that the following holds: if eLDe' holds,then ~ (e) 

is smaller than ~ (e') Now we define a relation L D as follows: 

i) if eLDe' then e,e' ~QD ~ 2) if e and e' are in QD and 

if F (e) is smaller than F (e')~ then eLDe' ; 3) if e and 

e' are in QD ' if ~ (e)= f (e') and if e < e' , then eLDe' 

The relation L D is a wellfounded, total ordering of QD ' as is 

easy to verify. Therefore we can associate with every e ~ QD induc- 

tively an ordinal ~ ell in the following way: II ell is the smallest 
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ordinal greater than all ordinals He'// for which e'LDe holds. Fi- 

nally we can also associate with the relation L D itself an ordinal, 

to be denoted by //L D // : it is the smallest ordinal greater than all 

ordinals IIe~ , e ~QD " 

So,whenever we are given a formula ~( ~D) , with D as above and 

such that (7 ~i ...... ~ s)~(~D) is true,then we can associate 

with this formula the wellordering L D of QD as described above. 

i I i 
Now let,conversely, D( ~ ...... ~ S,x) be a standard formula 

u I u s 
(denoted more briefly by D ) whose special function constants are 

precisely those indicated and whose only free variable is x . Assume 

that we have a proof P in ZTi/II of > ~(~_D) Now let 

, be suitably chosen pairwise distinct function variab- 
i' .... ~ s 

i k 
les. Then by replacing every occurence of ~Uk in P by Uk* ~k 

we get a proof P' of ) ~( ~ G  ) where G( ~ i ..... ~ s 'x) 

is D(Ul* ~i ...... Us* ~s,X) If there are other special function 

constants which occur in P', we replace them by suitably chosen 

constants for primitive reeursive functions, obtaining thus a proof 

P" in ZTi/II of > ~(~G) which does not contain special 

function constants at all. This means that we can associate with 

~( ~ G  ) the set QD and the wellordering L D of QD which we 

have described above. 

i i 
Definition 27: Let D( ~u I ...... ~uS,x) be a standard formula, 

i I 1 i s 
containing precisely ~ ,....., ~ s as distinct special function 

u I u s 
constants~and whose only free variable is x . Let P be a strictly 

normal proof in ZTi/II of ~ ~ ( ~ D) . Then we call the 

wellordering L D described above the wellordering induced by P ; 

QD is called the domain of L D and IIell (for e ~QD) and II LDII 

have the meaning described above. 
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After these preliminaries we are ready to associate ordinals with 

proofs in ZTE/II . 

Definition 28: By -~ we denote the smallest ordinal ~ having 

the following property: for any proof P in ZTi/II of 

~( ~ D ) (with D as in definition 27) the relation 

tILD~I < ~ holds. 

Now let P be a fixed proof in ZTE/II . With each sequent S in 

we associate a certain ordinal, to be denoted by o(S) . If S is 

an axiom of P~ then o(S)=l . If S is the conclusion of a conver- 

sion or a one-premiss structural rule S'/S~ then o(S)=o(S') . If 

S is the conclusion of a one-premiss logical inference S'/S~ or a 

two-premiss logical inference S' ,S"/S, then we put o(S') ~ l=o(S) 

in the first case and o(S)=o(S') ~o(S") #i in the second case. If 

S is the conclusion of an induction S'/S~ then we put 

o(S)= ~d(~.o(S')) where d=h(S')-h(S) . If S is the conclusion 

of a cut S' ,S"/S then we put o(S)= ~d(O(S')~ o(S")) where 

d=h(S')-h(S) . It remains to describe the ordinal assignement in the 

case where 

inference 

S is the conclusion of a II-, TI(Pl)- or TI(PI,P2,m)- 

S'/S respectively. 

Case a): S'/S is a II-inference. Then we put 

/t+l /l+l s'/s is (Pl o(S): ~d((O(S')# ~ ) ~ ) Case b): a TI )-in- 

ference~ say 

TI(P 1 ) 

G(y),(x) ~GyA(X), y ) A ,A(y) 

Let P1 be a proof of 

11 i 
o... S~x) D( 4Ul, , ~Us 

> ~( ~D ) , where 

and G the formula 

D is the formula 
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D( ~:~.v I, i S ,x) for some list Vl, ,v s 
• . . o ,  U * V  " ' ' °  

S X 

numbers all having the same length. Then we put 

o(S)= ~d((O(S') # W ~+I) W ~+I) where ~ = IILDII 

d=h(S' )-h(S) 

of sequence 

and 

Case e) : S'/S is a TI(Pi,P2,m)-inference, say 

TI(Pl,P2,m) 
Y ~Ht,(x) ~HyA(X), > A ,A(y) 

q ~H t , ~ ) ~ ,A(q) 

H e r e  P1 is a p r o o f  (in Z T i / I I )  o f  ) ~(  ~ D) , where D i s  
i 1 i 

. . . . .  , C ~ u S , x  ) ~ c o n t a i n i n g  p r e c i s e l y  a standard formula D( ~u I 
i I i S 

~u I'''''' ~uS as distinct special function constants~and whose 
s 

only free variable is x . P2 in its turn is a proof of # G(t) 
i i 

where G is the formula D( C~ i g~ s 
Ul*V 1 ..... ' u * ,x)~ while 

S V 
S 

v l,....,v s is a list of sequence numbers all having the same length. 

t is by definition saturated and has value m . Clearly~ 

( ~  1 ~s)D(Ul*Vl*~l *v * ~ ,m) is a true formula, 
..... ~ ' ..... 'Us S S 

hence ~Vl, .... ,Vs/m ~ an element of QD " We put 

o ( S ) =  ~d((O(S') ~ ~ ~+i) +i) where / = ]l ~v I ..... Vs/m~I I and 

d:h(S' )-h(S) • This concludes our definition of ordinal assignement. 

As ordinal of a proof P we take as usual the ordinal of its endse- 

q u e n t .  

D. From now on we can apply to ZTE/II, and in particular to 

ZTEi/II, essentially the same treatment as to ZTE/II N and 

ZTEi/IIN, respectively. We do not consider the details of this treat- 

ment, since this would amount to a mere repetition of the considera- 

tions contained in the sections 4.3. up to 4.5. In particular, theo- 

rems 23-26 remain true for ZTEi/II and hence for ZTi/II without 

any changes. The same can be said about the proofs of these theorems 

which depend essentially on the wellfoundedness of two relations R 
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and L , whose definitions are~ of course, copies of the definitions of 

R and L given in section 4.5. and which behave in any respect like 

R and L . 

4.7. Some remarks on the proof theoretic treatment of 

ZTEi/IIN and ZTEi/II 

Most of the results mentioned in this section will not be proved; 

none of the proofs omitted requires a new technique or a new mathe- 

matical idea but all of them are rather lengthy if done in detail. 

For these reasons we prefer to call the results mentioned in this 

section (apart from some exceptions) statements rather than theorems. 

A__:. To start with, let us look at ZTEi/II N and its proof theoretic 

treatment presented in sections 4.1. - 4.5. An easy inspection of the 

arguments presented in these sections shows that they can be forma- 

lized in full Zermelo-Fr~nkel set theory (to be denoted by ZF ). 

Immediately the question comes up whether the content of 4.1. - 4.5. 

can already be formalized in ZF , that is,the theory obtained from 

ZF by omitting the powerset axiom. Now a second inspection shows 

that we used at some central places the assumption that, if 

> ~(~_D) has been proved in ZTi/IIN~ then ~(~D) is 

true; below we will refer to this assumption as assumption (A). On 

the other hand,we know that ZTi/II has proof theoretically the same 

strength as ZT/II, and that ZT/II in turn is as strong as classi- 

cal analysis, that is as ZF . This makes it very plausible that al- 

ready ZT/II N and hence ZTi/II N has proof theoretically the same 

strength as ZF . Now the author has learned from H. Friedmann that 

this is indeed the case. So assumption (A) is evidently not provable 

in ZF , as some routine Goedel arguments show. However, by refining 

the reasoning presented in sections 4.1. - 4.5° slightly, it is pos- 

sible to reduce ZTEi/II N to ZF- . To this end, let us denote by 

ZTEin/II N the subtheory of ZTEi/II N which we obtain by restricting 

our attention only to proofs of degree n , that is, ZTEin/II N ~ S 

if and only if there is a proof P in ZTEi/II N whose degree is n 

and whose endsequent is S . Similarly, ZTin/II N is related to 

ZTi/II N as ZTEin/II N to ZTEi/II N . Let us denote by (An) the 

following assumption: if ZTi/II N P > ~(~D) then ~(~D) 

is true. The relation between the theories ZTin/II N and ZF- is 

described by the following 
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Statement I: For each n we can prove a (suitably formalized ver- 

sion of) the hypothesis (An) in ZF- 

Although the proof of this statement is routine and does not involve 

difficulties of particular interest, it is quite long and hence we 

omit it. The next step consists in relativizing the content of sec- 

tions 4.1. 4.5. to the theories ZTin/II N and ZTEin/II N . In 

particular, we replace the ordinal -g~- by the ordinals _L~ n whose 

definition is as follows: -~n is the smallest ordinal ~ for which 

I/RDH< ~ holds whenever ) ~(~D) has been proved in 

ZTin/II N . Furthermore,we replace the relations R and L intro- 

duced by definitions 22, 23 by corresponding relations R n and L n, 

respectively, whose definition is as follows: R n and L n are the 

restrictions of R and L ~ respectively, to proofs P in ZTEi/II N 

having degree n . Then, making use of statement I ~ one can show 

that for each fixed n we can translate the relativizations of sec- 

tions 4.1. 4.5. to ZTEi/II N into ZF- . As a result one obtains 

the following 

Statement II: For each n we can prove in ZF the wellfounded- 

ness of R n and L n respectively. 

If we refine the proofs of the above two statements somewhat~then we 

get a still sharper result, namely 

Statement III: a) For each n we can prove hypothesis (An) in 

ZT/II N , b) for each n we can prove the wellfoundedness of R n 

and L n, respectively, in ZT/II N . 

What has been done for ZTEi/II N and ZTi/II N can, of cours%be 

done in the same way for ZTEi/II and ZTi/II, respectively. That 

is, if we work out for ZTEi/II and ZTi/II the program outlined 

above,then we obtain a statement IV which corresponds to the conjunc- 

tion of statements I and If. In order to formulate i%let ZTin/II 

and ZTEin/II be the subsystems obtained from ZTi/II and ZTEi/II, 

respectively~by restricting attention to proofs of degree n ; let 

~n and ~n be the restrictions of R and L , respectively, to 

proofs of degree n ; and let finally (An) be the following hypo- 

thesis: if ) ~(~D) has been proved in ZTin/II , then 

~(~D) is true. Then we have 
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Statement IV: a) For each n we can prove in ZF- a suitably for- 

malized version of the hypothesis (An) ; b) for each n one can 

prove in ZF- the wellfoundedness of ~n and L n respectively. 

By using a similar refinement as that one which leads from statements 

I and II to statement III,one obtains a corresponding 

Statement V: a) For each n one can prove in ZT/II a suitably 

formalized version of the hypothesis (An) ; b) for each n one 

can prove in ZT/II the wellfoundedness of R and L , respective- 
n n 

ly. The most important of these results is part b) of statement V. 

Another, more elegant way of obtaining part b) of statement V is to 

use a result which has been communicated to the author by G. Kreisel 

and which seems to be contained implicitely in several papers. In or- 

der to state this result, let ZT/CA be that version of second-order 

analysis which we obtain by adding to ZT all instances of the fol- 

lowing form of the comprehension axiom: 

> (V~)(E /~ )(x)( ~ (x)=0~-----~A(~,x)) 

(where C~ is a list C~I, ..... , O<s of function variables which 

may occur as parameters in A and where / does not occur free in 

A ). This result, which will be referred to as 

Statement VI, says; if a ~q-formula G without free variables is 

provable in ZF- then ~ G is provable in ZT/CA . As we have 

already mentioned in the proof of theorem 3 (section 1.5.)~ it follows 

from work of W. Howard that ZT/II is as strong as classical analysis. 

More precisely~he shows among others that if ZT/CA ~ S holds then 

ZT/II ~ S holds. By combining this with statement VI, one immediately 

gets 

Statement VII: If G is a 3-formula without free variables such 

that ZF- ~ G holds then ZT/II ~ > G holds. 

~n 
Now, the formalized versions of the sentences ,,R is wellfounded" 

~n ~-formulas and and ,L is wellfounded" are clearly , say~ Pn 

Qn" respectively, which do net contain free variables nor special 

function constants. By combining statement VII with part b) of state- 

ment IV we obtain 
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Statement VIII: For each n we have ZT/II ~ ~ P and 
n 

ZT/II ~ > Qn Since p and Qn do not contain special func- 
n 

tion c o n s t a n t s ,  i t  i s  c l e a r  t h a t  we o b t a i n  a s  a n  i m m e d i a t e  c o n c l u s i o n  

of statement VIII the 

Statement IX: ZT*/II ~ ) Pn and ZT*/II ~ > Qn hold for 

all n . Finally, using theorem i) and its corollary (section 1o5. in 

chapter I) we obtain immediately 

Statement X: ZTi*/II P > ~n and ZT*i/IIk > ~n hold for 

all n . However~ this is not yet all. As we will show below, the 

following theorem is true. 

Theorem 27: Let R(x) be a prime formula, which contains x among 

its free variables and which does not contain special function con- 

stants. In ZT*i/II we can prove the following sequent: 

Before coming to the proof of this theorem, we will quickly draw some 

conclusions which interest us. Since these conclusions depend on the 

statements I - X for which we did not give proofs,we prefer to call 

these conclusions again "statements" instead of "theorem" or 

"corollary". 

Statement XI: If ~(x) is a primitive recursive function of one 

argument and~if ( ~ )(Ey) 9 ( ~ (y))=O is provable in ZF-~ then 

> (i~)(Ey) ~( ~ (y))=0 is provable in ZTi*/iI. 

Proof: This statement is an immediate consequence of theorem 27, 

theorem 1 and its corollary. 

Statement XII: For all n , ZTi*/II ~ P and 
n 

ZTi*/II P > Qn hold. 

Proof: This is an immediate consequence of statements IV, XII and a 
1 result of Kleene~according to which every -U-l-statement can be 

b r o u g h t  i n t o  t h e  f o r m  ( ~ ) ( E y )  f ( ~ ( y ) ) = O  w i t h  ~ p r i m i t i v e  

recursive. 
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Statement XIII: If T (x,y) is a twoplace primitive recursive func- 

tion and if (x)(Ey) ~ (x,y)=O is provable in ZF-, then 

> (X) (Ey) f (x,y)=O is provable in ZTi*/II . 

Proof: First, we note that (X)(Ey) ~ (x,y)=0 is a very special case 

a ~-statement. According to statement VI, it follows that of 

> (x)(~y) ~(~,y)=O is provable in ZT*/II ; from theorem 1 and 

its corollary, it follows that > (x) ~(y) ~ ~(x,y)=O is pro- 

vable in ZTi*/II . Next, let b(x) be the primitive recursive func- 

tion defined as follows: i) b(n)=0 if n is not a sequence num- 

ber; 2) b(n)=m if n= ~ (m) (in particular b(1)=O ) . The func- 

tion b is,of course, available in ZTi*/II in form of a suitable 

constant which we also denote by b . The defining axioms of b , 

which are at hand in ZTi*/II , permit us to prove ) b(~ (y))=y 

and hence__ ~(x,y)=O > ~(x,b( ~ (y)))=O and 

~(x,b( ~ (y)))=O > ~(x,y)=O in ZTi*/II . From the last two 

sequents we can derive in ZTi*/II by means of a little bit of in- 

tuitionistic predicate calculus the following sequents: 

a) (x) f(x,.)=o (x)(/) v(y)  (yl))=o, 

b) 

Since > (x) ~ (y) ~ ~ (x,y)=O is provable in ZTi*/II , it 

follows that " > (x)(/)q (y) ~ ~ (x,b(y (y)))=O is provable 

in ZTi*/II . From theorem 27 and another bit of intuitionistic pred~ 

eate calculus,it follows that ~ (x)(~)(Ey)~ (x,b(~ (y)))=O 

is provable and from b) , finally,we conclude that 

> (x)(Ey) ~(x,y):O is provable in ZTi*/II . 

From the last statement it follows that if a recursive function can 

be proved in ZF to exist, then one can "compute" its value for any 

given argument in the sense described in part C of section 4.5. 

Before coming to the proof of theorem 27, we would like to make a 

last remark. As noted above, the wellfoundedness of the recursive re- 

lation is not provable in ZF- ; however, we can prove in ZF- the 

wellfoundedness of L for each fixed number n This makes it very 

plausible that the ordinal associated with L is the least upper 

bound of the provable recursive wellorderings of ZF- , or, what 

amounts to the same, that if k is the ordinal associated with some 
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provable recursive wellordering, then ~ < IILnl] for some n , where 
v 

HL [[ is the ordinal associated with the wellfounded relation L 
n n 

Now this can indeed be proved. One possible way to prove this runs as 

follows: a) one adds to number theory ZT the rule of transfinite 

induction with respect to L, obtaining thus an extension of ZT , to 

be denoted by ZT(~) ; b) one proves in ZT(~) by transfinite in- 

duction over L the following reflection principle: "if -~ is a 

recursive linear ordering for which > W(~ ) is provable in 

ZTi/II , then < is a wellorderiDg"; c) by using b) one constructs 

in ZT(L) a linear wellordering ~ which is essentially the sum 
o 

of all recursive linear orderings which can be proved in ZTi/II to 

be wellordered; d) using e4~. cut elimination methods as in ~10J, 

one proves the inequality II~<o// E~ where /I~o~ is the ordinal 

of ~o ' where = I/L// and where E is the smallest fixpoint 

of ~X=x which exceeds ~ ; e) using the connection between ZF- 

and ZTi/II given by statement ~ XI, one shows that~ if k<I/~o// , 

then ~ ~II<o II ~ f) combining d) and e), we obtain I(~ O II~ 

what is essentially what we are looking for. There are other , more 

direct ways to prove the above statement; we do not discuss them 

here. 

Now let us conclude with the 

Proof of theorem 27: We prove a variant of the theorem which~in 

virtue of the relationship between wellfounded recursive trees and 

their corresponding Brower-Kleene partial orderings, is easily 

seen to be equivalent to the theorem. That is,we want to prove the 

following: if D(x) is a quantifierfree formula~then we can prove 

in ZTi/II the sequent ~( ~ D) > W(~D) . Instead of giving 

a formal derivation of this sequent, we prefer to give an informal 

proof; but it will be clear that this informal proof can be forma- 

lized in ZTi/II almost as it stands. We start by noting that, since 

D is quantifierfree, the tertium non datur holds for D . Now we 

assume ~( ~ D) . Then transfinite induction over ~ D  is availa- 

ble in ZTi/II in the following form: 

(y)(D(y) /~ (x)(x ~Dy. ~ A(x)). ~A(y)). ~(z)(D(z)~A(z)) 

where A may be any formula. Let us, in particular~ choose for A(x) 
x 

the formula W( ~ D) where y ~ x  , D z is an abbreviation for 

y ~ DZ /k y ~DX /% z ~D x . Our first aim is to prove the left side 
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of the transfinite induction statement, that is, 

x 
(y)(D(y) A (x)(x~ Dy. ~W( ~ D) ) ~ W( ~ I) ) . To this end~let 

n be any number for which D(n) holds and assume that for any m 

with m ~Dn the statement W( ~ i) is true. Now let g~ be any 

numbertheoretic function; we have to find an i such that 

~ (i+l) ~ n  C<(i) is true. Such an i can be found by distin- 
D 

guishing a number of cases° Case l: ~ ~(0) ~D n holds. Then 

clearly ~ ~ (1) ~D ~ (0) holds, since o< (1) ~ D ~ (0) im- 

plies among others ~ (0) ~ D n , contradicting the assumption. 

Case 2: ~ (0) ~ D n holds. Then by assumption W( ~(0))D is 

true ~ot ~ be defined as follows: 9(~): ~(x+l) =inee 

W( f~-~ ~ (0)) is true, it follows that there is a j with 
D 

/ ~(0) (j) , and so there is a smallest k such U ( j + l ) ~  D 

/ ~ (0)  / (k) holds. Now we d is t inguish subcases. that ~ (k+l)~ D 

n lubcase i :  / ( k ) ~ D  ~(0)  holds. Then ~ /  ( k + l ) ~  D / (k) is  

true since otherwise I (k+l) ~ D  I (k) and therefore 

_ % (k+l)  ~ o ~ (o) would h o l d  what would imply 

~(0)  ( k + l ) ~  i f ( k ) ,  contradict ing the assumption. Hence, for 
n 

i=k+l we have n ~(i+l) ~ D ~ (i) Subcase 2: U/~(k) ~ D ~(0) 

holds. Then k is necessarily O~ since otherwise 

/ ~ (0) I (k_l) would hold, contradicting the minimality W (k)~ D 

of k . Hence c~ (i) ~ D ~ (0) holds, and therefore also 

~ (i) ~ D c~(0) Hence we can take i=l Since n was arbitra- 

ry, we have proved (y)((D(y) /~ (x)(x ~ by. ~W(~I)). ~W(~I)), 

and so we can conclude (z)(D(z) ~ W(~ i) ) . It remains to see 

that the latter formula implies W( ~___- D) . That is, given any number- 

theoretic function <><,we have to find an i such that 

C~(i+l) ~ D  ~ (i) holds. Let again / denote the function de- 

fined by / (x)= C~ (x+l) We make a distinction of cases very simi- 

lar to that one above. Case i: D( g~ (0)) is false. Then 

~C~(1) ~ D ~ (0) is true, and we can put i=l. 
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Case 2: D( ~ (0)) is true. Then there is a j such that 

(o) 
/ (j+l) g~-- D /(j) holds. Let k be the smallest number 

~(0) /(k) holds such that ~ / (k+l) ~D 

/ "- ~(k) is Subcase i: (k) ~D ~(0) is true. Then (k+l) ~--D / 

false~ since otherwise / (k+l) C D ~ (0) , and hence 

/ (k+l) ~D (k) would follow, contradicting the assump- 

tion. Hence we can put i=k+l . Subcase 2: / (k) ~ D ~ (0) is 

false. Then necessarily k=0 , since otherwise 

/ (k) ~- DC~(O) /(k-l) would be false, contradicting the mini- 

mality of k . So again we can take i=O . 

This concludes the proof. 

Corollary: In ZTi/II the following form of Marko~s principle is 

provable: ) (x)( ~ (y) ~ D(x,y) > (Ey)D(x,y)) where D 

is quantifierfree. 

Proof: We use the same argument as in the proof of statement XIII, 

that is, we use the fact that the following two sequents are provable 

in ZTi/II : a) D(x,b( ~ (y))) > D(x,y), 
/ - - -  

b) D(x,y) ) D(x,b( ~ (y))) (with b again given by 
b( p (y))=y) . Then we continue in the same way as in the proof of 

statement XIII. 

Corollary: Theorem 1 and the above corollary remain true if we re- 

place ZTi/II by ZTi/V . 

Proof: An inspection of the proof of theorem 27 and its first 

corollary shows that we have used the rule of transfinite induction 

only in the form available in ZT/V . 

This concludes temporarily our investigations about the theories 

ZTi/II and ZTi/II N . We will encounter them again in chapter VIII. 



CHAPTER V: 

Transfinite induction with respect to recursive wellorderings 

without function parameters 

5.1. A conservative extension of ZTi/IV N 

A. We recall theorem 2 in chapter I which states that for every 

Q E PR there is a prime formula tQ such that: a) tQ has exactly 

the same free variables and the same special function constants as Q, 

b) the sequents tQ = 0 > Q , Q > tQ = 0 and 

tQ = 0 V tQ = 1 are provable in ZTi . For quantifierfree Q 

there is a sharper statement, namely 

Theorem 2*: For every quantifierfree formula Q one effectively 

finds a prime formula tQ such that a),b),c) above and the follow- 

ing additional property d) are satisfied: d) if Zl, ..... ,Zs are 

.... are any terms distinct, free number variables in Q , if rl, ,r s 

free for z l, .... ,z in Q , if V is 
s 

• . r I .... r 
rl" 'rsQ then Szl .... zStQ Sz I .... z ' is t V . 

S S 

Proof: Instead of giving the proof for the general case, we treat a 

particular case which makes it fully clear how to proceed in the ge- 

neral case. Let ~ , ~ and/~ be fixed p.r. functions such that: 

l) ~ (x)=0 if x=0 and 1 otherwise, 2) ~ (x)=l- ~ (x) , 

3) ~ (x,y)= ~ ( x-y ) . We can assume that Q has conjunctive nor- 

mal form. Let Q ~g. be: 

(al=a ~ va2=a ~ va3~a ~) /k (bl=b ~ Vb2~b ~ Vb3~b~) . As term tQ we take: 

~(/Z(b3,b~)) ) . The proof that tq has the properties a),b),c) 

above is an easy exercise in formalized primitive recursive function 

theory and the proof that d) holds is evident from the construction 

of tQ . 

If, in p a r t i c u l a r ,  R i s  a s t a n d a r d  f o r m u l a  R o ( X ) / ~  s e q ( x  ) , w i t h  

Ro(X ) q u a n t i f i e r f r e e , t h e n  x ~ K Y A R ( x ) / k R ( y )  a n d  

](x ~KYAR(x)/~R(y)) both are quantifierfree,and we effectively 

find terms PR(X,y)=0 and qR(x,y)=0 such that the above sequents 

are provable in ZTi , once with x ~Ry and PR(X,y) in place of 

Q and tQ~ respectively; and once with ~ x CRy and qR(x,y) in 

place of ~Q and t > respectively. The two formulas PR(X,y)=0 and 
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qR(x,y)=0 which are welldetermined by R have been denoted by 

x <Ry and x ~ Ry respectively (chapter I) By W'(~ R) we 

have denoted the formula (~)(Ex) (x+l) < R ~ (x) . In the sequel 

we also use (x) <~yA(x) as abbreviation for (x)(x ~Ry ~A(x)) 

In order to state a corollary of theorem 2* we introduce the 

following 

Definition 29: A quantifierfree formula R without free variables 

is called saturated if, for every prime formula p=q occuring in R, 

both p and q are saturated. A saturated prime formula p=q is 

by definition true or false according to whether Ipl =lql or Ipl ~/q.I 

Based on truth and falsity of prime formulas~we associate in an ob- 

vious way a truth value ("true" or "false") with every saturated 

quantifierfree formula R by interpreting the propositional connec- 

tives in the usual way. 

The proof of the following corollary of theorem 2* can easily be ob- 

tained either via theorem 2* or by using directly the construction of 

tQ outlined in the proof of theorem 2". 

Corollary: a) Let R(x) be quantifierfree and not contain function 

parameters. Then tR(Y)=0 , x <Ry , x ~Ry do not contain function 

parameters, b) Let R(x) be as before but with x as its only 

free variable. If p <Rq is saturated, then R(p) and R(q) are 

saturated~and conversely. If p ~R q is saturated and true,then 

p ~Rq is saturated and true,and conversely. Similarly with 

tR(p)=0 and R(p) c) If W' (< R) is saturated) then there is 

effectively a quantifierfree Q(x) not containing free function 

variables other than x nor special function constants such that: 

I) R(x), tR(X ) and W' (< R) are isomorphic with Q(x), tQ(x)=0 

and W'(~Q) respectively: 2) W' (< Q) does not contain free 

variables nor special function constants. 

The system ZT/IV is obtained from ZTi by adding to it the rule 

IV 
tR(Y)=O , (x) ~RyA(X), y ) ~ ,A(y) 

w ' ( <  R)' tR(q)=° , > ~ ,A(q) 

where q and y are subject to the usual stipulations. The system 

ZT/IV N is obtained by restricting the above rule to the case where 
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R does not contain function parameters. In virtue of theorem 2* 

~ R and t R do not contain special function constants either. 

The intuitionistic versions of ZT/IV and ZT/IV N are denoted by 

ZTi/IV and ZTi/IV N respectively. In the sequel we are mainly con- 

cerned with ZTi/IV N . 

B. In what follows we introduce a certain conservative extension 

ZTFi/IV N of ZTi/IV N . This extension is known if we know what its 

proofs are. This will be done by introducing certain proof trees, 

called intuitionistic proofs of type (m,n) . They are defined induc- 

tively by means of the clauses I, II below. 

I. P is an intuitionistic proof of type (m.0) if and only if it 

is a proof (-tree) in ZTi/IV N , whose formulas contain at most m 

logical symbols. 

II. Assume that for all s ~i and all m we know what proofs of 

type (m,s) are. Intuitionistic proof trees of type (m,i+l) and 

their nodes are defined inductively by means of the clauses i) - 5) 

below, i) If S is an axiom of ZTi/IV N containing only formulas 

with at most m logical symbols, then S is an intuitionistic proof 

P of type (m,i+l) . The only node of P is S . 2) Let P be an 

intuitionistic proof of type (m,i+l) and S' its endsequent; let 

S be a sequent whose formulas do not contain more than m logical 

symbols and which contains at most one formula in the succedent. The 

tree 

S t 
q 

S 

denoted by P' , is said to be an intuitionistie proof of type 

(m,i+l) in any of the following cases: a) S'/S is a conversion; 

b) S'/S is a one-premiss structural inference; e) S'/S is a one- 

premiss logical inference; d) S'/S is an induction; e) S',/S is 

a IVN-inference. A sequent S* is a node of P' if it is a node of 

P or if it is S . 3) Let PI' P2 be intuitionistic proofs of 

type (m,i+l) and SI,S 2 its respective endsequents. Let S be a 

sequent whose formulas do not contain more than m logical symbols 
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and which contains at most one formula in the succedent. The tree 

el .re 

S 1 S 2 

S 

to be denoted by P' is said to be an intuitionistic proof of type 

(m, i+ l )  in any of the following cases: a) S1,S2/S is a out, 
b) SI,S2/S is a two--premiss logical inference. A sequent S* is 

said to be a node of P' if it is a node of P1 or P2 or if it is 

S 4) Let P be an intuitionistic proof of type (m,i+l) of 

tR(Y)=0 , (x)  < yA(X), y ~ A(y) and let Pl be an intuitioni- 
R 

stic proof of type (m,i) of > W'( <R ) where W'(<R) does 

not contain free variables or special function constants• The tree 

T(P 1) 

P 

tR(y)=0, (x)<~yi(X), ff  > A(y) 

tR(q)=O, ~ ) A(q) 

to be denoted by P' is an intuitionistic proof of type (m,i+l) 

A sequent S* is said to be a node of P' if it is a node of P or 

if it is the sequent tR(q)=0 , y > A(q) . This sequent is said 

to fellow from the premiss tR(Y)=0, (x) ~ A(x), ~ > A(y) by 

means of a T(Pl)-inference. The term q a~ the variable y are 

subject to the usual stipulations. 5) Let P be an intuitionistic 

proof of type (m,i+l) of x < R t , (x) ~RyA(X) , # > A(y) 

where t is saturated with value a . Let P and W' (< R) be as 

in clause 4.) and assume that tR(Y)=0 is true. The tree 

T(Pl,a) 

P 

y < R t , (x) <~RyA(X), # ) A(y) 

q ~ R t  , y ) A(q) 
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to be denoted by P' is an intuitionistic proof of type (m,i+l) 

A sequent S* is said to be a node of P' if it is a node of P or 

if it is q <R t , ~ ~ A(q) . The latter sequent is said to 

follow from the premiss y < R t, (x) ~RyA(X), / > A(y) by 

means of a T(Pl,a)-inference. The term q and the variable y are 

subject to the usual stipulations. 

Remarks and definitions, a) The formula W'(< R) in clauses 

4),5) of II does by definition not contain special function constants 

nor free variables. Since x ~Ry contains in virtue of theorem 2* 

the same free variables and special function constants as 

x ~_____Ky i R(x) /~R(y)~ it follows that the only free variable in 

R(x) is x and that R(x) does not contain special function con- 

stants. R(x) is thus automatically a formula without function para- 

meters, b) Since R(x) contains no special function constants and 

has x as only free variable, the same is true for tR(x ) ; hence 

tR(a ) in clause 5) is automatically saturated and the value is 1 

or 0 . The assumption tR(a)=0 true thus implies that a belongs 

to the domain of the partial ordering ~R " c) The proof P1 

which appears in the clauses 4),5) above is said to be the side proof 

of the T(P1)- and the T(Pl,a)-inference respectively. We also call 

P1 a side proof of the proof tree P' in which the T(P1)- and 

T(Pl,a)-inference respectively occur. 

Definition 30: A sequent S is said to be provable in ZTFi/IV N 

there is an intuitionistic proof of type (m,i) (for some m,i ) 

having S as endsequent. In this case we write ZTFi/IV N ~ S . 

if 

For technical purposes we also need the notion of classical proof of 

type (mti) . Its inductive definition is given by clauses I*, If* 

below. 

I*. P is a classical proof of type (m,0) if it is a proof in 

ZT/IV N whose formulas contain at most m logical symbols. 

II*. Assume that for all m and all s ~i we know what a classical 

proof of type (m,s) is. Classical proof trees of type (m,i+l) and 

their nodes are defined inductively by means of clauses 1")-5") 

where i*)-5") follow from i)-5) by means of the following modifi- 

cations: a) the proof P in 1),2) is assumed to be a classical 

proof of type (m,i+l) and S is allowed to contain more than one 
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formula in the succedent; b) the proofs PI,P2 in 3) are assumed 

to be classical proofs of type (m,i+l) and S is allowed to con- 

tain more than one formula in the conclusion; e) the proof P in 

~) is assumed to be a classical proof of type (m,i+l) with endse- 

quent tR(Y)=0 , (x) < yA(x), ~ > ~ ,A(y) : the proof Pl' how- 

ever~is still an intui~ionistic proof of type (m,i) of 

) W' (< R), and as conclusion of the (classical) T(Pl)-infe- 

fence we take tR(q)=O , F > A ,A(q) ~ d) to 5) we apply 

the same modifications as to 4) , described in c) 

The remarks made above in connection with intuitionistic proofs of 

type (m,i) apply essentially also to classical proofs of type 

(m,i) 

There is a more compact, but slightly less precise way to define the 

system ZTFi/IV N . That is;we can obtain ZTFi/IV N by adding to 

ZTi/IV N two rules to be defined below. The first of these is given 

as follows: if P is a proof in ZTFi/IV N already at hand, whose 

endsequent is > W'( < R) with W' ( < R ) not containing free 

variables nor special function constants, then we can infer from the 

premiss tR(Y)=0, (X) < yA(X), ~ > A(y) the conclusion 

tR(q)=O , ~ > A(q) R. Written more symbolically this rule looks 

as follows: 

T(P 1) 
tR(Y)=O , (x) <RyA(X), h A(y) 

tR(q)=O, ~ > A(q) 

where y and q are subject to the usual stipulations° The rule is 

called T(Pl)-rule and a special application of it T(Pl)-inference. 

P1 is called side proof of the inference. The second rule is de- 

fined similarly. Let P1 be a proof in ZTFi/IV N already at hand 

of > W' ( <R ) ; let W' (< R) be as before. Let t be a sa- 

turated term with value a such that tR(a)=0 is true. Then we are 

allowed to infer from the premiss y < R t , (x) < wyA(X), ~ > A(y) 

the conclusion q <Rt, y ~ A(q) . More formaTl~ the rule is 

written as follows: 

y<~t ,  (~)<RyA(~),)~ ) A(y) 

T(Pl,a) 
q<Rt , ~ ) A(q) 
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The rule is called T(Pl,a)-rule, a particular application of it 

T(Pl'a)-inference" P1 is called side proof of this inference. This 

new definition of ZTFi/IV N is equivalent to the old one, as is 

easily established, although we lose in this way the notion of type 

of a proof. Correspondingly, we get back to the notion of classical 

proof of type (m,i) for some m,i by generalizing the above rules 

as follows: in the first case we allow premiss and conclusion to be 

of the form tR(Y)=0 , (x) ~RyA(X), y > ~ ,A(y) and 

tR(q)=0 , y > /k ,A(q) , in the second case we allow them to be 

of the form y ~R t , (x) (yA(X), ~ > A ,A(y) and 
R 

q<R t , y ~ ~ ,A(q) respectively. In both cases, however~ P1 

must still be a proof in ZTFi/IV N . The system so obtained is again 

ZTF/IV N . 

C. Simple properties of 

following 

ZTFi/IV N and ZTF/I¥ N are given by the 

Lemma 12: An intuitionistic proof of type (m,i) 

tionistic proof of type (m',i') for m ~m', i ~i' 

classical proofs. 

is also an intui- 

Similarly with 

The proof is by induction with respect to 

of its triviality. The fact that ZTFi/IV N 

sion of ZTi/IV N is given by 

i and is omitted in view 

is a conservative exten- 

Theorem 28: a) An intuitionistic proof of type (m,i) can be trans- 

formed effectively into a proof P' in ZTi/IV N of order 2m, ha- 

ving the same endsequent as P b) Similarly with classical proofa 

Proof: We merely sketch the proof One starts with a) and pro- 

ceeds by induction with respect to i If i=0~ the statement is 

trivially true. If P has type (m,i+l)~ then all its side proofs 

have type (m,i) and the induction hypothesis applies to them. Then 

we proceed essentially in the same way as in the proof of theorem 14. 

In order to prove b) we use a)~ and proceed then essentially in the 

same way as in the proof of thm. 14. 
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5.2. Reduction steps 

A. For proofs (intuitionistic or classical) of type (m,i) we can 

introduce all the syntactical notions introduced in earlier cases. So 

we have the notion of final part, normal proof, strictly normal proof 

and standard proof. Their definitions parallel the definitions of the 

corresponding notions for ZTE/II N in chapter IV. Moreover, we can 

associate a number, called complexity, with every cut, induction, 

IVN-inference, T(PI)- and T(Pl,a)-inference. The definition is 

exactly the same as in the case of ZTE/II N With the aid of this 

complexity we can associate with every sequent S in P another na- 

tural number, called its height and denoted by h(S) . The definition 

of height is of course the same as in all previous cases. An infe- 

rence other than a conversion or structural rule is again called 

critical if its conclusion belongs to the final part. The notion of 

fork and of cut associated with a given fork Ii,I2,I 3 is introduced 

in the usual way. Moreover~ basic lemm~ I and II remain true and there 

proofs remain the same. There is a variant of basic lemma I, which 

reads as follows: 

Basic lemma I: Let P be a strictly normal proof in ZTFi/IV N of 

type (m,i) Assume that no thinning occurs in the final part and 

that its endsequent has the form ~ A Let SI, ..... ,S n be the 

uppermost sequents of the final part, listed from left to right; let 

Sj be v~ > Aj Then: i) for j <n there is a strictly 

normal intuitionistic proof P. of type (m,i) whose endsequent is 
J 

) Aj ", 2) for j _4 n , if B occurs in 6j then there is a 

strictly normal proof P' of type (m,i) of > B 

Proof: Take the subproofs P and P' provided by the construction 

described in the proof of basic lemma II. 

Below, after having introduced ordinals, we will formulate a sharpe- 

ning of basic lemma If, which corresponds to the variant of basic 

lemma II mentioned in section 4.4. 

B___u. We start by introducing reduction steps for intuitionistic proofs 

of type (m,i) . Their definition is up to one minor point the same 

as in all previous cases. That is, we have preliminary reduction step~ 

intuitionistic logical reduction steps (definition 16) and induction 
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reductions. They are defined in the same way as before. Next we have 9 

what we call T I- and T2-reduction steps. Their definition paral- 

lels that one of TI- and TI -reduction steps• 
a 

~l-reduction steps. Let P be an intuitionistic proof of type (m,i) 

containing a critical T(P1)-inference, say 

T(P l) 
tR(Y):O , (x) <RyA(X), / > A(y) 

tR(q)=O , f ) A(q) 

Let q be saturated with value, say, a . Then tR(q ) is saturated. 

Case l: tR(q ) has value 1 . Then tR(q)=0 > is an axiom and 

so we can derive the conclusion of the above T(P1)-inference by 

thinning and interchange from this axiom. Case 2: tR(q ) has value 

0 . Let S and S' be premiss and conclusion of the above T(P1)- 

inference. Let PS and PS' be their respective subproofs. Let P~ 

be the result of replacing every occurence of y in PS by q ; let 

q In virtue of the assumption D in ~q be the endsequent of PS " 

chapter I, the sequent y<Rq ) tR(Y)=0 is an axiom of ZTi 

We replace PS' in P by the following derivation: 

~S 

y < R  q ) tR(Y)=0 S 

y ~ R  q, (X)~RyA(X),  ]~ > A(y) 

s < R q ,  y > A(q) 

cut 

T(P i ) 

q 
"Ps 

F ) ( x ) <  RqA(X) sq cut,  
inter- 

tR(q)=0, ~ ~ A(q) changes 

The resulting proof P' is said to follow from P by means of a 

Tl-reduction step. We also say that the Tl-reduction step has been 

applied to the particular T(Pl)-inference above. 

~2-reduction steps. Let P be an intuitionistic proof of type (m,i) 

which contains a critical T(Pl,a)-inference, say 
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T(PI , a )  
Y < R  t , (x) / 'RyA(X) , f'~ ) A(y) 

q<Rt , y > A(q) 

where t is saturated with value a . Let q be saturated with 

value b 

Case i: q ~R t is false. Then q ~R t > is an axiom and we 

can derive the conclusion by thinning and interchange from this 

axiom. Case 2: q <Rt is true, hence tR(q)=0 , that is tR(a)=0 

true. Let S,S' be premiss and conclusion of the T(Pl,a)-inference, 

q and S q have the same meaning as before. By let PS ' PS' ' PS 

assumption D, the sequent y ~R q , q <R t > y ~R t is an 

axiom. Now we replace PS in P by the following derivation: 

Ps 

y~R q , q <R t > y < R t S 

Y < R  q ' q < R  t ' (X)<RyA(X)' S > A(y) 

s <Rq ' q <R t ' F ) A(s) 

q <R t , Y > s <Rq~A(s) 

q < S t , f"* .) (X)<RqA(X) 

q~t , y > A(q) 

cut 

T(Pl,b) 

pq 
S 

S q 

cut, 
interchanges 

The result P' of this operation is said to follow from P by means 

of a T2-reduction step. We also say that the T2-reduction step is 

applied to the above T(Pl,a)-inference. 

IVN-reduction step. Let P be an intuitionistic proof of type (m,~ 

which contains a critical IVN-inference, say 

IV N 

tR(Y)=0, (X)~RyA(X) , /~ > X(y) 

W (<~), tR(q):0, y > A(q) 

whose endsequent has the form > B and assume that W'( < R) 

is saturated. From the corollary of theorem 2 ~ it follows that there 

is a quantifierfree Q(x) not containing special function constants, 
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such that R(x) , tR(x ) , W'(<R) are isomorphic with Q(x) , 

tQ(x) and W'(<Q), respectively, and such that W' (~ q) does not 

contain free variables or special function constants. According to 

the variant of basic lemma I, cited in this section,one effectively 

can extract from P a certain proof P' of > W' (~ R) which 

is again an intuitionistic proof of type (m,i) . By adding to P' 

a suitable conversion~we obtain in virtue of the above remarks an in- 

tuitionistic proof P of type (m,i) of > W'(<Q) . Now we 

alter P as follows: 

tR(Y):O, (x) <RyA(X), ]'~ > A(y) 

tQ(y):O, (x) <QyA(X), y > A(y) 

tQ(q)=0, y A(q) 

W'(<R), tR(q)=0, y > A(q) 

conversion 

T(P I) 

Thinning 

The resulting proof so obtained is intuitionistic of type (m,i+l) 

We say that P* has been obtained from P by means of a IVN-re- 

duction step and that the IVN-reduction step has been applied to the 

above IVN-inference. 

Remark: The side proof P1 which appears in the definition of 

IVN-reduction step is uniquely determined by the procedure described 

in the proof of basic lemma II and by the critical IVN-inference , to 

which the reduction step is applied. We call Pl the side proof de- 

termined by the critical IVN-inference. Similarly the reduction step 

is entirely determined once the critical IVN-inference is given. We 

call this reduction step the IVN-reduction step determined by the 

critical IVN-inference. 

The logical reduction steps, the induction reductions, the IV N- , 

T I- and T2-reduetion steps are also called strictly essential re- 

duction steps. The notions "substitution instance" and"inessential 

reduction step" are introduced in precisely the same way as in sec- 

tion 4.4. ~ (def. 20) of the last chapter. The reduction steps so in- 

troduced have the same properties as the corresponding reduction 

steps in earlier cases. The main properties of preliminary reduction 

steps are again given by theorem 4. In order to describe the proper- 

ties of strictly essential reduction stepsjwe introduce a relation W 

by means of the following variant of def. 14, stated in section 2.2: 
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Definition 31: The two place relation W applies to intuitionistic 

s.n.s, proofs (of some type (m,i)) iff the following holds: 

i) there is a list P , ..... ,P of proofs such that P =P and such 
o N o 

that Pi+l follows from Pi by means of a preliminary reduction 

step (i~N) ; 2) no preliminary reduction step is applicable to 

PN ' 3) P' follows from PN by means of a strictly essential re- 

duction step. 

Theorem 29: I) W is recursive; 2) given P, there are at most fi- 

nitely many P' with W(P,P') andj if so, they can be found effecti- 

vely; 3) (EX)W(P,X) is decidable. The strictly essential reduction 

steps in turn have the properties described by theorem 6, that is, we 

have 

Theorem 30: Let P be a saturated intuitionistic s.n.s, proof of 

some type different from its final part whose final part does not ad- 

mit preliminary or essential reduction steps. Then there is a criti- 

cal logical inference whose principal formula has an image in the 

endsequent. 

The proof is practically the same as that of the corresponding theo- 

rem 19. Finally, we can introduce the notion of subformula reduction 

step in exactly the same way as in part D of section 4.4. of the 

preceeding chapter. Corresponding to theorem 21 we have 

Theorem 31: Let P be a saturated intuitionistic s.n.s, proof of 

some type which does not coincide with its final part. Assume that 

no preliminary and no strictly essential reduction step is appli- 

cable to P . Then we can effectively apply to P a subformula re- 

duction step. The resulting proof P~ is again a strictly normal in- 

tuitionistic proof of the same type. 

With respect to inessential reduction steps, the situation is the 

same as earlier• That is, given intuitionistic proofs P,P' of type 

(m,i)2 we can effectively decide whether P is saturated or not, and 

if not, we can effectively decide whether P' follows from P by 

means of an inessential reduction step or not. 

C__ u. Classical proofs of type (m,i) do not play an important role 

in our considerations. For technical reasons~we introduce two kinds 

of reduction steps for them: i) preliminary reduction steps, 
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2) logical reduction steps (fork elimination). Their definitions are 

the same as usual. As described by definition 16, we can decompose an 

intuitionistic logical reduction step into a classical logical re- 

duction step followed by some preliminary reduction steps. The clas- 

sical logical reduction step transforms the intuitionistie proof P 

to which it is applied into a classical proof P' , the preliminary 

reduction steps transform P' back into an intuitionistic proof P". 

It is this fact which will be used below. 

5-3. Ordinals 

In order to associate ordinals with certain proofs in ZTF/IV N A__~. 

and ZTFi/IVN~ we introduce two relations R* and L* whose defi- 

nitions are given by definitions 22 and 23, respectively. More preci- 

sely we can use definition 22 in order to introduce a relation R*, 

using thereby the notion "strictly essential reduction step" in the 

sense defined in section 5.2. Similarly we can use definition 2.3° in 

order to introduce a relation L* , replacing thereby R by R* 

The relations R* , L* are counterparts of R and L and have 

similar properties; in particularp theorem 22, part a) (with R* , L* 

in place of R,L) and its proof holds invariably in the present 

case. For simplicity, we omit the star and write R and L in place 

of R* and L* , without danger of confusion. Of basic importance 

are certain subtrees of L . 

Definition 32: Let P be an intuitionistic s.n.s, proof of type 

(m,i) A sequence P , ..... ,P is called a P-chain in each of the 
O S 

following cases: i) s=0 and P =P ; 2) s~O P =P and 
O ~ O 

L(Pi,Pi+I) The set Dp is defined as follows: P' ~ Dp iff there 

is a P-chain P , ...... ,P such that P'=P By Lp we denote the 
O S S 

restriction of L to Dp 

For the sake of a brief repetition we introduce 

i I i 
Definition 33: a) A formula A( C~ ~ s) without free 

Ul' ..... , U s 

 ruo ( ....... ...... 

true. b) Let BI, .... ,Bs,A be formulas without free variables. 

Then > A, B 1 ..... B ) A and B 1 ,B s > are 

true iff A , B IAB 2A ...... A B ~ A and 
S 

B 1 /~ B 2 ........ ~ B ~ 0=i respectively are true. 
s 
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A basic property of Lp is described by the following 

Theorem 32: Let P be an intuitionistic s.n.s, proof of some type 
O 

whose endsequent S is either ) or else of the form ~ A, 
O 

where A does not contain ~ , ~ . If Lp is wellfounded then 

S is true. o 
o 

Proof: The proof is by transfinite induction over Lp . To this 
o 

end we note: if P is in Dp then P is again an intuitionistic 

o 
s.n.s, proof of type (m,j), i ~j (where P is of type (m,i)) 

whose endsequent is ) or has the form ) B where B 

does not contain ~ , ~ . Furthermore, it is clear that if 

P E Dp then Lp is also wellfounded. The transfinite induction 
O 

essentially amounts to show the following: if p E Dp , and if for 
o 

all P' with L(P,P') the endsequent S' of P' is true~ then P 

has true endsequent S . Hence let us assume: a) P ~ Dp , b) if 
O 

L(P,P') then P' has true endsequent S' . We distinguish between 

cases, subcases, subsubcases etc. Subcases and subsubcases are deno- 

ted by SC , SSC , etc. Case i: P is saturated and does not admit 

preliminary reduction steps. SCI: P admits a strictly essential re- .... 

ductiÙn step; let P' be the resulting proof and S' its endsequent. 

S' is either > or > A for some A . According to the 

inductive assumption S' is true; hence S' has to be > A 

and so S is > A , hence true too. $C2: P does not admit an 

essential reduction step. Then P cannot have > as endsequent, 

since this would imply that P coincide with its final part accor- 

ding to theorem 30; but from true saturated mathematical axioms we 

cannot derive > , using only cuts, interchanges inductions and 

conversions. Therefore the endsequent S of P must be > A 

for some A , and a subformula reduction step must be applicable to 

P . We have to distinguish between cases according to the form of A. 

We content ourself by treating two of them~ those left out are even 

e a s i e r  t o  t r e a t .  ~ !  A i s  ( )B(  C ~ u ,  ) ; f o r  s i m p l i c i t y  we 
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assume that only one special function constant is present. The sub- 

formula reduction step transforms P into a proof P' of 
i 

> B( ~ .u' ~ J~ >) (for some j~i ). Since L(p,p, ) holds, 

B( ~ iu , ~ -- ~ ~ )> is true, that is , ( ~ , ~ )B(u~ ~ ;  , <~ ~)/ is true, 

hence (<, ~)B(u~ ~, ~)and so A are true. _SSC_2: A is 

(x)B( ~ i x )i / -- " .  Then there is a list Po,Pl ...... of proofs such that 

in , 2) L(P,Pn) holds Aocor- i) Pn is a proof of > B( ~ u' ). 

i n ding to the inductive hypothesis B( ~u' ) is true for all n . 

That is (~)B(II~ ~,n)is true for all n, hence (x)(~)B(u~ ,x) 

and so A is true . Case 2: P is saturated but admits preliminary 

reduction steps. Let Pc' ..... 'PN be a chain such that a) Po=P , 

b) Pi+l follows from P'I by means of a preliminary reduction step, 

c) no preliminary reduction step is applicable to PN " 0bviously 

PN is still saturated. If L(PN,P' ) then L(P,P') as is easily 

verified. Hence L(PN,P' ) implies that P' has true endsequent. 

But then we can apply the reasoning presented under case 1 in order 

to conclude that PN has true endsequent. But this implies that P 

and PN have the same endsequent, hence the endsequent of P is true. 

Case ~: P is not saturated. Assume for simplicity that there ~s on- 

ly one special function constant present in P say ~ i ' u ; in the 

more general case the reasoning remains exactly the same. If we re- 

place ~i by ~u~wi ~ we obtain a new proof, denoted by Pw , whose 

endsequent is S w . Let -Cp be the prim. ree. continuity function 

associated with P according to lemma 9, the remark following it and 

definition 20. As before, we write -Cp( ~ (i))~O as abbreviation 

for "-Cp( ~ (i))~O and -~ p( ~ (s))=0 for all s<i". By defini- 

tion, if ~p(W) ~0 then P is saturated and L(P,Pw) Since S 
w w 

is true accordin~ to the inductive hypothesis, it is not > . 

Hence S is not > but has the form > A( ~ i). Now: if 
i 

Tp(W)@0 , then ~ A( ~ u,w) is true, according to the indue- 

tire hypothesis. Hence (~)A(u*w*~)is true whenever ~_ c_ -C p(W)~ 0 . 

From this one infers by barindnction over 7~ P that (~)A(u~) is 
/ / 

true; hence S is true. 

B___L. The previous theorem gives rise to a certain subclass of s.n.s. 

proofs, the so called "~raded proofs". This subclass is given by 

Definition 34: a) An intuitionistie s.n.s, proof P is said to be 

"good" if its endsequent has the form ) A with A not contai- 

nin~ ~ nor ~ and if in addition Lp is wellfounded, b) An 

intuitionistic or classical proof is said to be "graded" if all its 
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side proofs are "good". 

The following lemma is evident: 

Lemma 17: A preliminary reduction step, the operation "omission of 

a cut" or a classical logical reduction step applied to a graded 

proof P yield a graded proof P' An intuitionistic logical reduc- 

tion step, an induction reduction, a T I- or a T2-reduction step 

applied to an intu~ionistic graded proof P yield an intuitionistic 

proof P' 

The only case not covered by this lemma is that of a IVN-reduction 

step whose role will become clearer below. In order to associate or- 

dinals with graded proofs~we use some notation. If P is a good 

proof of > W' (< R), then // ~ RH is the ordinal associated 

with the partial ordering ~R ' which is wellfounded according to 

the previous theorem; if a is in the domain of R , that is, if 

R(a) (or what amounts to the same tR(a)=0 ) is true, then IIaIIR de- 

notes the ordinal associated with the restriction of ~ to 
R 

~x/ x ~Ra ~ By ~ we denote the smallest ordinal ~ having 

the property:1 if P is a good proof of ~ W' (~ R) then 

[ /~  R][< ~ • ~ is evidently denumberable. Now we can describe our 

ordinal assignement. Let P be a graded proof and S a sequent in 

it. With each such S we associate inductively an ordinal, to be de- 

noted by o(S) Case i: S is an axiom of P Then o(S)=l 

Case 2: S is the conclusion of a conversion or a one-premiss struc- 

tural rule, say S'/S . Then o(S)=o(S') Case 3: S is the con- 

clusion of a one-premiss logical inference S'/S . Then o(S)=o(S')#L 

Case 4: S is the conclusion of a two-premiss logical inference 

Sl,S2/S . Then o(S)=O(Sl)~O(S 2 #i Case 5: S is conclusion of an 

induction S'/S. Then o(S)= Wd(O(S')W ) where d=h(S')-h(S) 

Case 6: S is conclusion of a IVN-inference S'/S . Then 

O(S)= gtTd((O(S')# ~ 0) -(-~+L) 64) -~+I) where d=h(S')-h(S) Case 7: S 

is conclusion of a T(Pl)-inference S'/S , where P. is a proof of 

> W'(< R) . Then o(S)=~)d((O(S, ) ~L0 X+I) ~gkll) where 

d=h(S')-h(S) and X = //~RI/. Case 8: S is the conclusion of 

a T(Pl,a)-inference S'/S . Then o ( S ) = ~ O d ( ( O ( S , ) #  £OV+I) g.~'l/+l) 
where "1] = l/all R ( t R ( a ) = O  and hence R(a) are  t r u e )  and 
d--h(8' ) - h ( S ) .  

The ordinal of the endsequent is called the ordinal of P and deno- 

ted by o(P) . This assignement of ordinals has all the familiar pro- 
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perties of the assignements described in earlier chapters. We collect 

these properties by means of the following 

Theorem 33: i) The operation "omission of a cut" lowers the ordi- 

nal of a graded proof P . 2) Preliminary reduction steps do not 

increase the ordinal of a graded proof. 3) A classical logical re- 

duction step lowers the ordinal of a graded proof. 4) An intuitio- 

nistie logical reduction step, applied to an intuitionistic graded 

proof P , lowers the ordinal of P • 5) An induction reduction, 

a T l- or a T2-reduction step, applied to an intuitionistic graded 

proof P , lowers the ordinal of P . 6) A subformula reduction 

step lowers the ordinal of an intuitionistic graded proof. 

The proof of this theorem leads exactly to the same calculations as 

in earlier cases and is omitted. The case of a IVN-reduction step 

is not covered by the above theorem since it is not clear whether 

a IVN-reduction step transforms an intuitionistic graded proof al- 

ways in an intuitionistic graded proof. However, the following can 

be said: 

Theorem 34: Let P be an intuitionistic graded s.n.s, proof and 

assume that a IVN-reduction step is applied to the critical IV N- 

inference 

IV N 

tR(Y)=O, (x) ~RyA(X), ]~ > A(y) 

W' (~R), tR(Y)=0, Y ) A(y) 

Let P1 be the side proof determined by this inference. If P1 is 

a good proof, then the IVN-reduction step, determined by the above 

IVN-inference, transforms P into an intuitionistic graded s.n.s. 

proof P' whose ordinal is smaller than that of P . 

Proof: Let P1 have the endsequent > W' (<Q) and put 

= H~ QII The reduction step looks as follows: 
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T(P 1) 

tR(Y)=O , (x) ~RyA(X), F ) A(y) 

tQ(y)=O, (x) <RyA(X), ~-~ > A(y) 

tQ(q)=0, y ) A(q) 

tR(q)=0, y > A(q) 

w,(<R), t~(q)=0, y > A(q) 

conversion 

conversion 

thinning 

Let S' and S be premlss and conclusion of the IVN-inference and 

C~ the ordinal of S' in P The ordinal of S in P is by defi- 

nition ~d ((d~ ~ ~ ~/~+i) 03/~ +I) Calculating the ordinal of S 

in P', we evidently obtain ~ d ( ( ~  ~ A +i) A÷I) . Since 

< ~, the second ordinal is smaller than the first one what proves 

essentially the statement. 

Below we have to use the full force of basic lemma II. There is a 

slightly sharpened version of basic lemma II, namely 

Basic lemma IIl~ Let P be an intuitionistic graded s.n.s, proof of 

type (m,j). Let Sl ....... Sn be the uppermost sequents of the final 

part, listed from left to right; let S i be > A i . Then the 

following holds: i) for every i<n there is an intuitionistic gra- 

ded s.n.s, proof P. of type (m,j) of > A. , whose ordinal 
l 1 

is smaller than that of P ; 2) for every i<n , if B occurs in 

~i ' then there is an intuitionistic graded s.n.s, proof P' of 

type (m,j) of > B , whose ordinal is smaller than that of P. 

Proof: The construction of Pi,P' respectively remains the same as 

in the proof of basic lemma If; the inequalities o(Pi) < o(P ) and 

o(P') < o(P) follow from the fact that the operation "omission of a 

cut" is used in the construction of P. and p1 . An important spe- 
1 

cial case of this sharpened version of basic lemma II is 

Corollary: Let P be an intuitionistic graded s.n.s, proof of type 

(m,i) and S/S' a critical IVN-inference in P . The side proof 

P1 determined by this inference is again an intuitionistic graded 

s.n.s, proof of type (m,i) whose ordinal O(Pl) is smaller than 
o(p). 
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Proof: Follows immediately from basic lemma If. 

5.4. The wellfoundedness proof 

Theorem 35: If P is an intuitionistic graded s.n.s, proof then 

Lp is wellfounded. 

Proof: We proceed by transfinite induction with respect to the or- 

dinal o(P) of P . Let P be an intuitionistic graded s.n.s, proof 

with o(P)= ~ and assume that for all intuitionistic graded s.n.s. 

/ 

proofs P' J with o(P')= k ~ ~ the relation Lp, is wellfounded. 

We want to show that Lp is wellfounded and note in this connection 

that Lp is wellfounded iff for all P' with L(P,P') Lp, is 

wellfounded. Case A: We first prove the wellfoundedness of Lp un- 

der the assumption that P is saturated and does not admit prelimi- 

nary reduction steps. If L(P,P') then P' necessarily follows 

from P by means of a strictly essential reduction step or a sub- 

formula reduction step. The proof is accomplished in this case if we 

can show that for each such P' Lp, is wellfounded in virtue of 

the inductive assumption. We distinguish two subcases. Subcase i: 

P' follows from P by means of a subformula reduction step or a 

strictly essential reduction step other than a IVN-reduction step. 

Then o(P') <o(P) by theorem 33. In virtue of our inductive assump- 

tion Lp, is wellfounded. Subcase 2: P' follows from P by means 

of a IVN-reduction step. More precisely, let S/$' be a critical 

IVN-inference in P and let the IVN-reduction step in question be 

that one determined by this critical IVN-inference. Let PI be the 

side proof determined by the critical IVN-inference S/S' . In vir- 

tue of the corollary of basic lemma IIl,it follows that P1 is an 

intuitionistic graded s.n.s, proof with ordinal O(Pl) smaller than 

o(P) . From the inductive assumption it follows that Lp is well- 

founded: hence Pl is good. Theorem 34 now implies that I P' is 

again an intuitionistic graded s.n.s, proof, but with o(P') < o(P). 

Hence Lp, is wellfounded too in virtue of the inductive assumption. 

Subcase 1 and 2 together imply the wellfoundedness of Lp . 

Case B: P is saturated but preliminary reduction steps can be app- 

lied to P . Let L(P,P') hold. Then there is a chain Pc' .... 'PN 

such that i) P=Po ' 2) Pi+l follows from Pi by means of a 

preliminary reduction step, 3) no preliminary reduction step is 

applicable to PN' 4) PN is saturated and P' follows from PN 
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by means of a strictly essential or a subformula reduction step. 

That is, as shown in case A, we have o(P') ~ O(PN) . But 

O(PN) ~ o(P) by theorem 33, hence o(P') ~ o(P) That is, if 

L(P,P') holds, then Lp, is wellfounded in virtue of our inductive 

assumption; hence Lp is wellfounded. Case C: P is not saturated° 

If L(P,P') holds, then P' is saturated by definition of L and 

o(P)=o(P') . By case B Lp, is wellfounded. Hence Lp is wellfoun- 

ded what concludes the proof. 

Corollary: The relation Lp is wellfounded for every s.n.s, proof 

in ZTi/IV N 

Proof: An s.n.s, proof in ZTi/IV N is evidently an intuitionistic 

graded s.n.s, proof since it contains no side proofs at all. 

5.5. Remarks on applications 

From the last theorem, and in particular from its corollar~ we could 

again reobtain easily theorems 23, 24 and 25 (but restricted of 

course to ZTi/IVN) However, as we will see in later chapters, the 

present method enables us to prove much more general results than 

theorems 23, 24 and 25. We will therefore postpone the discussion of 

applications to these later chapters. 



CHAPTER VI: 

A formally intuitonistic theory equivalent to classical 

transfinite induction with respect to recursive wellfounded 

trees with function parameters 

In this chapter we apply a proof-theoretic treatment to the theory 

ZTi/V (or rather to a conservative extension of ZTi/V ), which is 

very similar to that one presented in the last chapter. The method, 

however~is no more involved since ZTi/V includes two additional 

features: a) the formula W'(<R) which appears in the rule of 

transfinite induction characterizing ZTi/IV N is now replaced by 

W°(<R) ; b) function parameters are admitted. 

6.1. Some preparations 

A_ u. Let R(x) be a quantifierfree standard formula, that in, of the 

form Ro(X)/k seq(x), and let tR(x)=0 , x <Ry be the quantifier- 

free formulas associated with R(x) and x c~-~Ry according to 

theorem 2* and its corollary. Let Pl(X) ...... Pn(X) be a list of 

prime formulas. Assume that x is the only free variable in R(x) 

il is be the list of and Pi(X), i=l ....... n ; let ~ Ul ~Us 

special function constants which occur in R(x) or in at least one 

Pi(X) . In order to indicate this occurences we write sometimes more 

i i i I i 

~iUl . . . . . . . . . . . . . . .  ~ S x) explicitely R( 1 ~u s'x) tR( ~u I u ' ' 
s s il s 

Pi ( ~ u I ...... ~U ,x) or R( ~ u,X) , tR(~u,X) , pi (~u,X) 
s 

Therby we use the following notation: 

numbers and t a term~then we denote 

more briefly by R( ~u.v,t) or even 

P .  ' s  a n d  o t h e r  f o r m u l a s .  
1 

i f  Vl, .... ,v are sequence 
• s 

i I i ,t) 

R( C~ul~v 1 . . . . .  ~ v  s 
R (t) ; similarly~ with the 
v 

Now we associate with R and PI' .... 'Pn a certain partial orde- 

ring, to be denoted by E • The domain of ~--~. , to be denoted by D 
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consists of ordered pairs <<v I ...... Vs> ,d~ which satisfy the 

following conditions: a) v I, ....,v s are sequence numbers all ha- 

ving the same length; b) d is a sequence number ; e) R(~u.v,d) 

is saturated and true, or what amounts to the same, tR( ~ u.v,d) is 

saturated and its value is 0 ; d) for all i~ lencth(Vl) and all 

k ~ n pk ( ~ u.v,i) is either not saturated or else saturated and 

]pk(~u.v,i) J =0 . Instead of ~<v I ...... Vs>,d>~ we write 

<v I ...... Vs/d > . The relation ~ , whose domain is by defi- 

nition D , is now defined as follows: 

<v I ...... Vs/a > ~ <w I ...... Ws/b > iff i) each v i is a proper 

extension of w.1 ' that is v i ~KWi for i=l, ..... ,s 

2) a is a proper extension of b (that is a ~Kb) ; 7) both 

<v I . . . . . . .   s/a> and <w I . . . . . . .  Ws/b > belong to 

Notation: With R ~ Pl' ..... ~Pn we associate the formula 

( ~ )(Ex)( ~ ~ (x+l)~ R ~ (x)vPl(X)~O .... VPn(X)~ 0 ) and denote 

" ~ 7 Then we have i t  b y  F f R , p  i ,  C~ U . 

Theorem 76: If F ~R,Pi; ~u ] is true, then ~ is wellfounded. 

Proof: In order to simplify the notation~we treat only the case 

where s=l , that is where only one special function constant is pre- 

sent, say, ~ 1 ; for simplieityj we assume u=< ~ . We also assume u 

n=l , that is that Pl(X) is the only member of the list 

1 
PI' ..... 'Pn ; we write p in place of Pl " By replacing ~u in 

R( C~ u,l x) , p(~l,x) and x ~R y by ~ we get new formulas 

which we denote by R(~,x) p( ~ ,x) and x C ~ ' R y " By assump- 

tion ( ~ )( ~ )(Ex)( ~ ~ (x+l)~ R ~ ~ (x)V p( ~ ,x)~0) is true. 
? z 

Let g be an arbitrary number-theoretic function. We have to find 

an i such that q g(i+i~--- g(i) holds. To this end, we introduce 

two functions f,h . We define f as follows: a) if for all 

i ~ s+l g(i)= <ui/vi> 6D and g(0) ~ g(1)~ ] g(s+l) 
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holds then f(s)=as where as is the s'th component of Us+ 1 , 

which by necessity must have length ~ s+l and hence be of the form 

Us+ 1 = <a 0 ........ a s ..... > ; b) if the assumption stated in a) 

does not hold, then f(s)=O . The function h is defined as follows: 

a) if for all i~s g(i)= <ui/vi~ 6 D and 

g(0) ~ g(1) ~ --I g(s), then h(s)=v s ; b) if the assump- 

tion in a) does not hold, then h(s)=O . From our assumption it f o l -  

lows that there is an m such that I) 

is true. Now we distinguish cases. 

Case l: 

with 

Case 2: 

f 
-7h(m+l) ~ Rg(m ) V p ( f , m ) ~ O  

g(O)---Tg(1) ~ . . . . .  ___--A g(m+l) is false; then an i 

7g(i+l) ~---g(i) (i~m) can effectively be found. 

g(0)~ - Ig(m+l) is true; put g(i): <ui/vi> 

for i~m+l . Then we can effectively determine an N so large that 

the following holds: i) N ~length(Um+l) ; 2) R(c~l,m) and 

1 m P( ~w' ) are saturated where w=~(N) . We claim: 

g(0)-~g(1) & ..... i g(N) is false. Assume the contrary and 

put g(i)= <ui/vi) for i~N . Then necessarily 

u N ~Kum+l , u N ~F(N) and hence ~(N) ~KUm+l Moreover, 

h ( m ) = V m  ' h ( m + l ) = V m +  1 . S i n c e  I )  

1 m)~O -TVM+ 1 ~RVm or p( C><w, 

<UN/VN) 6 D ; this implies that 

ted or saturated with value 

tradiction. 

is true~ it follows that either 

is true Now necessarily 

p(~N,m) is either not satura- 

0 . Since UN ~ w  , this yields a con- 

T h e  case w h e r e  m o r e  

e x a c t l y  t h e  s ame  w a y .  

Pi'S and C>< i'Su are present is treated in 

Remark: The particular case where the Pi's are absent, that is z 

where the list Pl' ..... 'Pn is empty, is,of eourse~ contained in the 

definition of I and D : condition d) which occurs in the de- 

finition of D is then emptily satisfied. This particular case can 
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also be subsumed under the general case by taking n=l and for p 

any of the formulas 0=0 , ~#~(0)= ~2 (0) The behaviour of C-- 

and D in this particular case is described by 

Corollary: If W(<R) is true then V--- wellorders D 

Proof: This is a particular case of theorem 36 by putting 

taking as p the formula 0=0 

n=l and 

Definition 35: Let R , PI' ..... 'Pn and [---- , D be as in theo- 

rem 36 • By D* we mean the set of sequence numbers 

u= <Uo, ..... ,Us_l> which satisfy one of the following conditions: 

6D " c) s>2 u. ~ D a) u= < > ; b) u= <Uo> and u O , = ' X 
for all i< s and u ° lu I ----q ...... | Us_ 1 , 

d) s~2 , u i E D for all i < s , ~Us_ 1 u---- Us_ 2 and if s ~ 3 

then also u O ~ u  I ~ I Us_ 2 If u= <u O ....... Us_i) 6 D* 

according to a),b) or c), then u is called unsecured, if u ~ D* 

according to d)~ then u is called immediately secured. By ~* 

we denote the Kleene Brower linear ordering restricted to D* . 

Theorem 37: I f  F E R , P i ;  ~ u] is true, then "~ * is wellfoun- 

ded. 

Proof: This is an immediate consequence of theorem 36 and ~he well- 

known equivalence between the wellfoundedness of trees and the asso- 

ciated Kleene Brower linear ordering. 

6.2. Conservative extensions of ZT/V and ZTi/V 

A___u The system ZT/V is obtained from ZT by addition of the 

following rule: 

V 
tR(Y)=0  , (x)  < RyA(X),  y > ~ ,A(y)  

tR(q)=O, we( <R ), Y ~ ,A(y) 

with q,y subject to the usual stipulations. Here tR(x ) and 

x ~Ry are associated with R(x) and x ~ Ry in the way ~es- 

cribed in the proof of theorem 2* W°(<R) is an abbreviation 

for ( C~ ) ~ (2) ~ ( ~ ~ (x+l) <R ~ (x)) Since x <Ry is 
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prime,the tertium non datur is available for it in ZTi and hence 

W°( <R ) is provable equivalent with ( C~ ) -~ (x) ( ~ (x+l)<R~(X)) ; 

in order to avoid a new notation we use in this chapter W°( ~ R) 

as an abbreviation for ( O< ) q (x)( C~ (x+l) <R C~ (x)) instead 

for ( O< ) ~ (x) ~ ~ ( ~ (x+l) <R ~ (x)) . The system ZTi/V is 

as usual obtained by restricting attention to those proofs which con- 

tain at most one formula in the succedent. 

B. We now are going to define what we call intuitionistic proofs of 

type (m,i) by induction with respect to i . The definition is very 

similar to that one presented in the preeeeding chapter• 

i. Proofs in ZTi/V in which only formulas with at most m logical 

symbols occur are intuitionistic proofs of type (m,i) for all i . 

2__ u. Let P' be an intuitionistic proof of type (m,i) whose endse- 

quent is S' . Let S be a sequent with at most one formula on the 

right of the arrow and assume that every formula in S contains at 

most m logical symbols• The tree 

p, 

S ! 

S 

is an intuitionistic proof of type (m,i) if S'/S is an inference 

of the following type: structural, conversion, logical, induction, 

V-inference. 

3. Let PI,P2 be intuitionistic proofs of type (m,i) with SI,S 2 

as endsequents~respectively. Let S be as in clause 2. The tree 

.PI .P2 

S1 $2 

S 



- 166 - 

is an intuitionistic proof of type (m,i) if SI,S2/S is an infe- 

rence of the following type: cut, logical inference. 

4. Let R(x) be a quantifierfree standard formula (that is of the 

form Ro(X)/kseq(x)) and Pl(X) ....... Pn(X) a list of terms; we 

assume that x is the only free variable which occurs in R(x) and 

il is be the list of those special in the Pi'S . Let ~ Ul ~u s 

function constants which occur in at least one of the expressions 

R(x), Pi(X) . Here we use again the notation introduced at the be- 

ginning of section 6.1. , part A. Let Vl, .....,v s be a list of se- 

quence numbers all having the same length ~ 0 and let P' be an 

intuitionistic proof of type (m,i+l) of 

tRv(Y)=O' (x) ~RyA(X), 7 ) A(y) . Let Pl be an intuitionistic 

V. 
proof of type (m,l) of (x)Pl(X)=O ....... (X)Pn(X)=O > W°(<R ) . 

The following tree is an intuitionistic proof of type (m,i+l): 

T(P 1) 

p !  

t R y ( y ) = 0  , (x)  ~ R  yA(X) ,  f > A(y)  
V 

(x)p ( ~ u.v,x)=O . . . . . . .  (X)Pn( ~u.v,X)=O,tR (q)=O, y-----~ A(q) 
V 

where q and y are subject to the usual stipulations. The endse- 

quent of this tree is said to follow from the premiss 

t R (y)=0,(x) ~ yA(X), / > A(y) by means of a 
v R 

v 

il is be as before 5__:_- Let R(x) , Pl(X) ....... Pn(X) , C~Ul ~u s 

and l e t  ~ , D be t h e  p a r t i a l  o r d e r i n g  and i t s  domain  a s s o c i a -  

t e d  w i t h  R(x)  , p l ( x )  . . . . . . .  Pn(X) a c c o r d i n g  t o  s e c t i o n  6 . 1 .  L e t  

4 * ,D* be the Kleene Brouwer ordering associated with I , D 

T ( P 1 ) - i n f e r e n ~ .  

according to definition 35. Let a= ~ao, ..... ,at_l~ be an unse- 

cured element of D* and let at_ 1 be <v 1 ....... v s /d~, in 
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particular. Let w I,.... .,w s be a list of sequence numbers~ all ha- 

ving the same length and such that each w. is a proper or improper 
l 

extension of vi(w i ~Evi) . Let t be a saturated term with value 

d . Let P' be an intuitionistic proof of type (m,i+l) of 

(x)Pl(X):O (X)Pn(X)=O ) W°(< R) . The following tree is 

an intuitionistic proof of type (m,i+l) : 

p' 

• y t ,  (x) < yA(X), > A(y) 
Y~Rw R 

w 

(x)Pl (  ~ u*w 'x)=O . . . . .  (X)Pn( C~u~w 'x)=O' q < R  t ,  y > A(q) 
w 

where y,q are subject to the usual stipulations. The endsequent of 

the new tree is said to follow from the premiss 

Y ~R t, (x) < yA(X), y > A(y) by means of a T(Pl,a)-infe- 
w R 

fence, w 

Remarks and definitions. The proof P1 which appears in the clau- 

ses 4,5 ) above is called side proof of the T(PI)- and T(Pl,a)-in- 

ference~respectively. If an intuitionistic proof P of some type 

contains a T(Pl)- or a T(Pl,a)-inference~ then Pl is said to be 

a side proof of P . The sequent number a in a T(Pl,a)-inference 

is called index of this inference. For simplicity, we did not include 

in the above clauses 1)-5) the notion of "node" of an intuitionistic 

proof of type (m,i) but this could of course be done in the same 

way as in the correspondin~ definition of the previous chapter. The 

main point to stress about nodes is the following: if P1 is a 

side proof of an intuitionistic proof P of type (m,i)~ then we do 

not consider the nodes of P1 as nodes of P . 

Definition 36: A sequent S is said to be provable in ZTFi/V if 

there is an intuitionistic proof of type (m,j) (for some m,j ) ha- 

ving S as endsequent. 

There is a notion of classical proof of type (m,i) whose definition 

is given by clauses I*-5-) which are obtained from clauses 1-5) by 

means of the following changes: a) in clauses 1-3) we allow S to 

contain more than one formula in the succedent; b) in clauses 4), 

5) we allow premiss and conclusion of the T(PI)- and T(Pl,a)-in- 
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ference, respectively~ to contain more than one formula in the succe- 

dent, that is to be of the form ..... > ~ ,A(y) and 

..... ~ ~ ,A(q) respectively while the side proof P is 

still required to be intuitionistic. The classical system so obtained 

will be denoted by ZTF/V . 

B__~. Again we have 

Lemma 14: An intuitionistic proof of type (m,i) is also an intui- 

tionistie proof of type (m',i') for m~m' , i~i' Similarly~ with 

classical proofs of type (m,i) 

Theorem 38: An intuitionistic proof of type (m,i) 

formed effectively into an intuitionistic proof P' 

Similarly, with classical proofs of type (m,i) 

can be trans- 

of type (2m,O). 

Proof: The proof is essentially the same as the proof of theorem 14, 

that is~we proceed by induction over the proof tree P . Assume e~. 

that P contains a T(Pl,a)-inference , say 

T(Pl,a) 

Y~] R t, (x) < yA(X), I > A(y) 
w R 

W 

(x)PI( ~ u*w 'x)=0 ........ q ~R t, F > A(q) 
W 

(retaining thereby the notation used in clauses 4), 5)). P1 is by 

definition an intuitionistie proof of type (m,i-1) of 

(x)Pl( ~u.w,X)=O ...... > W°( ~R ). By inductionjthere is an 
W 

intuitionistie proof P' of the premiss of the above T(Pl,a)-infe- 

fence. By proceeding in exactly the smne way as in the proof of theo- 

rem 14, case III, we obtain from P' a proof P" of 

W°(~ R ), t R (q)=O, ~ > q ~R t ~A(q) which is intuitioni- 

stic ofWtype W(2m,O) . With the aidWof P and with a little bit of 

intuitionistic predicate calculus, we can transform P" into an in- 

tuitienistie proof of type (2m,O) of 

(x)Pl( ~u*w'X)=O ........ q <R t, y > A(q) . Both for the clas- 

sical and intuitionistie proof~ of type (m,i) we can introduce the 

usual notions such as final part, normal proof, strictly normal 

proof, complexity of a cut, an induction, of a V-inference, of a 

T(PI)- or a T(Pl,a)-inference. Similarly~we can define the notion 

of height of a sequent S in a proof P (denoted by h(S) ) in the 
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usual way, and the same holds for the notion of critical inference. 

Brief, the definitions of all these notions remain exactly the same 

as before. Basic lemmas I and II remain the same as before; however, 

a more general form of the basic lemma is needed below. 

6.3. A ~eneralisation of the basic lemma 

Basic lemma III: Let P be a strictly normal intuitionistic proof 

of type (m,i) . Assume that no thinning occurs in the final part• 

Let GI, ..... ,G ~ H be the endsequent. Let S 1 ,S be 
s '''''" n 

the uppermost sequents of the final part, listed from left to right; 

let S. be F. > A. . Then: i) for every j<n there is a 
j " o j 

strictly normal intuitionistic proof P. of type (m,i) whose end- 
J 

sequent is GI, ...... ,G > A. ; 2) for every j<n , if B 
s j 

occurs in Fj and if B is not isomorphic with any GI, ..... ,G s 

then there is a strictly normal intuitionistic proof P' of type 

(m,i) of G 1 ...... G > B 
' S 

Proof: Apart from minor variants the proof remains essentially the 

same as that of basic le~ma If• a) We first prove 1).Since j<n~ we 

must necessarily find a cut S' ,8"/S in the final part with the 

property: i) S' is equal to S. or below S. ; 2) the cut for- 
O J 

mula F in S' is an image of A. Let S',S"/S be more explici- 

tely ~ > F ; F, ]]- > D ~  ,~ > O . Let PS' ' PS" ' 

PS be the subproofs of S', S" and S in P respectively• We alter 

P as follows: 

PS" 

PS' 

F,UT >D 
. thinnings, interchange 

Z > F F,UT >F,D 
cut 

~,TF )F,D 

G1, ...... ,G s ) F,H 

This new proof P* is a classical proof of type (m,i) . Clearly we 

can derive ~ , ~ ~ F,D from the left premiss of the cut indi- 

cated by thinning and interchange. That is. we can apply to p, the 
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operation "omission of a cut" and obtain a new proof P** of type 

(m,i) having the following form: 

PS' 

7, ~ > F 

~7-, ~ > F,G 

thinning, interchanges 

GI, ..... ,G s > F,H 

P** is clearly an almost intuitionistic proof in the sense of sec- 

tion ~.i., part A. According to lemma 9 (which remains invariably 

true in the present context) we can transform P** by means of a 

series of preliminary reduction steps into an intuitionistic proof 

P' of type (m,i) of GI, ..... ,G s > F . By adding eventually 

a conversion if necessary~we finally obtain a strictly normal intui- 

tionistic proof P. of type (m,i) of GI, ..... ,G s > A. 
O S 

b) In order to prove 2) it is sufficient to show: if B occurs in 

Fj and if B is not isomorphic with any of the formulas 

GI, ..... ,G , then there is an ~ (k<n) isomorphic with B . In vir- 
S 

rue of the second half of the assumption, B has no image in the end- 

sequent. Hence there is a cut S' ,S"/S with the property: i) S" 

is equal to S or below S ; 2) the cutformula F in S" is an 

image of B . As in the proof of basic lemma I (chapter ]II, section 

3.2.), we conclude that the cutformula F in S' is the image of 

some ~, k~n . Hence B is isomorphic with A k . 

Remarks: In the above proof we have used the notions "preliminary 

reduction steps" and "omission of a cut" without having defined them 

in the present context. However, it is evident that the definition 

of these notions remain word by word the same as those given in chap- 

ter II, sections.202, and 2.6. Another remark concerns the proofs P. 
J 

and P' whose existence is claimed in basic lemma III. The content 

of the proof given above is that, as soon as A and B are givenjwe 

can construct the proofs P. and P' , respectivelyjin an effective 
3 

way by applying to P certain preliminary reduction steps and the 

operation "omission of a cut". This gives rise to 
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Definition 77: Let P be a strictly normal intuitionistic proof of 

type (m,i) whose endsequent is GI, ..... ,G s > H . Let 

~j > Aj , j=l, ..... ,n be the uppermost sequents of the final 

part, listed from left to right. The construction described in the 

proof of basic lemma III associates with every Aj (j <n) a wellde- 

termined strictly normal intuitionistic proof P. of type (m,i) of 
J 

GI, ..... ,G s > A. ; we call P. the side proof determined by 
J J 

A. Similarly, a welldetermined strictly normal intuitionistic proof 
J 

P' of GI, ..... ,G s > B is associated with every B @ yj 

(j~n) by means of the construction described in the proof of basic 

lemma III; we call P' the side proof determined by B . 

6.4. Reduction steps 

A. Let us first introduce reduction steps for classical proofs of 

type (m,i) . The only kinds of reduction steps needed for our pur- 

poses are: a) preliminary reduction steps; b) elimination of 

forks, that is,logical reduction steps. Fork elimination in the pre- 

sent context will also be called "classical logical reduction step". 

Their definition remains the same as in all previous cases. 

B. Next we introduce reduction steps for intuitionistic proofs of 

type (m,i) Apart from minor changes, they are essentially the same 

as those introduced in the last chapter for intuitionistic proofs of 

type (m,i) . We have: a) preliminary reduction steps; b) intui- 

tionistic logical reduction steps; c) induction reductions. The 

notion "substitution instance" is again given by definition 20; the 

definition of inessential reduction step, however, will slightly be mo- 

dified below. Further reduction steps (V- , T I- , T2-reduction 

steps) will be introduced below. The definitions of the reduction 

steps a-c) remain invariably the same as in the previous chapters. 

An intuitionistic logical reduction step applied to an intuitionistic 

proof P of type (m,i) again splits up into a fork elimination, 

transforming P into an almost intuitionistic proof of type (m,i), 

plus a series of preliminary reduction steps transforming P' back 

into an intuitionistic proof P" of type (m,i) , having the same 

endsequent as P . If P is strictly normal, then so is P" Since 

in most of the cases we have to do with intuitionistic proofs (of 

some type), we simply speak of logical ~eduction step instead of in- 

tuitionistic logical reduction step. The notion of substitution in- 
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stance is,of course, again given by definition 20 in chapter IV. Now 

to the definition of T l- , T 2- and V-reduction steps. 

Notation: Below we use again the notation introduced in section 6.1. 

of this chapter, at the beginning of part A. 

~l-reduction steps. Let P be a saturated intuitionistic proof of 

type (m,i) containing a T(Pl)-inference, say 

T(P I) 

tRv(Y)=0 , (x) ~ R yA(X), ~ > A(y) 

v 

(X)pl( ~u.v,X)=o ....... t R (q)=o, y 
v 

# A(q) 

Here P1 is an intuitionistic proof of type (m,i-l) of 

(x)Pl( ~ u,X)=0 ........ (X)Pn( ~u,X):0 5 W°( < R) By S' 

and S we denote premiss and conclusion of the above T(Pl)-infe- 

rence. Let l , D be the partial ordering and its domain associa- 

ted with R( ~ u,X),pl(~u,X) ........ pn (~u,X) according to sect. 

6.1.; let D* , ~* be the Kleene Brouwer partial ordering associa- 

ted with F-~ , D according to definition 35. Since P is satura- 

ted, both q and tR(q ) are saturated= We distinguish ~ree cases. 

Case I: t R (q)I ~0 Then t R (q)=O > is an axiom and the 

conclusion o~ the above T(Pl)[inference can be derived by means of 

thinnings and interchanges from this axiom. Let P be such a deri- 
o 

ration. The reduction step in this case consists in replacing PS by 

Po Case. 2: ItR (q)I=0 and <v I ' .... 'sV/~q}> ~ D Since 

t R (q) is saturated with value O, it follows from the corollary of 

v ~ q) is saturated and true. Since theorem 2* that R( ~u*v' 

<v I ....... Vs/lqI> ~ D~ it follows from the definition of D that 

i) is there is an i~length(Vl) and a k<n such that pk( ~ u.v, 

saturated with value ~0 Hence pk ( ~ u.v,i)=O ~ is an 

axiom. Let P be the following proof: 
o 

__h 
pk( C~ u.v,i)=O > 

(x)Pk( C< u,v,X)=0 ) 

thinnings, interchanges 

The Tl-reduction step in this case consists in replacing PS by Po" 
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Case ~: ItR (q) J=0 and < ~ ....... Vs/lql > ~ D . By definition 

o f  D ~ : ~v I . . . . . . .  v s / I q  I . ,  e D *  and a= ~ v 1 . . . . . .  V s / l q  t 
is unsecured. The Tl-reduction step in this case consists in repla- 

cing PS by the following derivation of S : 

Y < R  q ) t R ( y ) = 0  S' 
v v cut 

Y~R q ' (x) < yA(X), ~ ) A(y) 
v N 

V 

x)=O, s < R q F ) A(q) . . . . .  (x lp i (  u*v . . . . . . . .  

v 

--~ x ) = O  . . . . . .  y . . . . .  ( x ) P i (  O< u * v '  ) x) < R  qA(X) 
V 

T ( P I , a )  

q 

cut 

q 
PS' 

x)=0 t R (q)=0 
. . . . .  (x)pi( u*v . . . . . . . . .  

V 

> A(q) 

q denotes~as usual,the result which we obtain by replacing Here PS' 

' is again the end- every (free) occurence of y in PS' by q ; Sq 

q We say that a Tl-reduction step has been applied sequent of PS' 

to the particular T(Pl)-inference above. 

~2-reduction steps. Let w l,.....,w s be a list of sequence numbers, 

all of the same length, such that each w. is an extension of 
I 

v.l (w i ~__KVi)~ and let t be a saturated term. Let P be a strict- 

ly normal intuitionistic proof of type (m,i) which contains a cri- 

tical T(Pl,b)-inference, say 

Y~Rw t , (x) ~ R yA(X), ~ > A(y) 
W t(Pl,b) 

..... (x)Pi( ~ u*w 'x)=O ...... q <R t , y 
w 

) A(q) 

Here, P1 is by definition an intuitionistic proof of type (m,i-l) 

of (x)Pl(X):0 ....... (X)Pn(X)=0 ) we(< R) Since P is satu- 

rated, every constant term in the final part of P is saturated, 

t) and q ~R t is saturated, hence R( u.w,q) and R( ~ u*w' 

w t are saturated in virtue of the corollary of theorem 2*. 
q ~ R  
Let b w be bo, ..... ~br_ 1 and let br, in particular~ be 

<v I ....... Vs/d > . By definition of T(Pl,b)-inference , b is an 

unsecured element of D* , that is) bo ~ b I I I br_ 1 ; 
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moreover, Itl=d and ~v I ....... Vs/d > ~ D . By S' and S we de- 

note again premiss and conclusion of the above T(Pl,b)-inferenee ; 

PS is the subproof of S ; PS' is the subproof of S' . In order 

that a T2-reduction step be applicable to the above T(Pl,b)-infe- 

rence~we require that the following condition C. be satisfied: every 

w. is a strict extension of v. . In virtue of the definition of 
1 1 

T(Pl,b)-inference,this amounts to require: length(Vl) < length(Wl) 

We distinguish three cases. Case i: q <R t is false. Then 
.w 

q~R t ) is an axiom a n d  we can derlve S from q <R t > 
w 

by means of thinnings and interchanges alone. Let P be suchWa deri- 

vation. The T2-reduction step in this case consists in replacing PS 

by Pc Case 2: q ~R t is true and b*= ~bo, .... ,br_l,br > is 

not an unsecured elementWof D* , where we have put 

br= <w I ....... Ws/[q]> . Now br_ 1 E D as noted above. Furthermore, 

q< R t is saturated and true, hence [ ql~ R I tI is saturated 

and t~ue in virtue of the corollary to theorem 2 ~ . If b would be 
r 

in D then necessarily br [--- br_ 1 in virtue of wi ~ KVi and 

the definition of D ; hence ~bo, ..... ,br> would be an unsecured 

element of D* , contradicting the assumption. Hence we conclude 

br D . But R( c~-~ u*w'q) and hence R( C~ u*w'q) are saturated and 

true as noted above. Looking at the definition of D, we see that the 

only reason for < w I ....... Ws/ lq I > not to be an element in D is 

that there is a k~n and an i~ length(Wl) such that 

Pk( C~ U.W,~ i) is saturated with value %0 Hence Pk ( ~ u*w'i)=O > 

is an axiom. Therefore the following derivation P of S can be 
o 

found: 

i)=O > PK (~ u*w' 
V 

(x)pk( u.w,X):0 > 

thinnings, interchange 

The T2-reduction step consists in replacing PS by Pc 

Case 3: q < R t is true and b*= ~b ° ....... b r ~ is an unsecured 

element of D*W(with b as under case 2). The reduction step in 
r 

this case consists in replacing PS by the following derivation 
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PS' 

S' Y < R  q' q <R t > Y < R t 
14 W W 

cut 

Y < R q ' q <R t , ( x )  < y A ( X ) ,  y ,>A(y) 
w w S w 

. . . .  (x)pi( ~ u~w,X)=O ....... s ~ t,q <R t,f > A(s) 
W w 

T(Pl,b*) 

.... (x)Pi( ~ u*w 'x)=0 ....... q < R t, 7 
W 

(~)~R qA(x) 
W 

S ~ q 

. . . . . .  (x)Pi( ~u*w 'x)=O . . . . . .  q <R t '  7 
W 

> A(q) 
cut 

The last double line indicates a cut combined with some interchanges 

and contractions. P~, and S' are again the results of replacing 
q 

every (free) occurence of y in PS' and S' respectively by q . 

We say that a T2-reduction step has been applied to the particular 

T(Pl,b)-inference. 

V-reduction step_~:_ Let P be a strictly normal intuitionistic proof 

of type (m,i) . In order that a V-reduction step be applicable to P 

we require from the outset that the following condition D be satis- 

fied: the endsequent of P has the form 

(x)Pl(X)=O ....... (X)Pn(X)=0 > A (A arbitrary). Let P have 

this property and assume that P contains a critical V-inference, 

say 

tR(Y)=0, (x) <RyA(X), Y + A(y) 

W ° ( < R )  , t R ( q ) = O ,  ]~  > A(q) 

Evidently W°(~ R) cannot have an isomorphic image in the endse- 

quent in virtue of condition D Therefore ~e can extract from P 

the side proof P1 determined by W°(<R) (def. 37, basic lemma 

III and the remark following it). P1 is a strictly normal intuitio- 

nistic proof of type (m,i) whose endsequent is 

(x)Pl(X):O ........ (X)Pn(X):O > W°(< R) . Let S be the conclu- 

sion of the above V-inference and PS its subproof. We replace PS 

by the following derivation: 
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tR(Y)=O , (x )<  RyA(X), f~ 
T(Vl)' 

) A(y) 

• .. (x)Pi(X)=0 . . . .  tR(Y):O, Y > A(q) 

W°(<R),tR(q)=O, ~ .... (x)Pi(X)=0 .... --+ A(q) 

interchanges, 
thinning 

The resulting proof P* is a strictly normal and intuitionistic 

proof of type (m,i+l) and its endsequent looks as follows: 

(x)Pl(X)=O ...... (X)Pn(X)=0,(x)Pl(X)=0 ..... (X)Pn(X)=O -- ) A. Now 

we apply to the endsequent of P* a series of interchanges and 

contractions and finally obtain a proof P' , which is strictly nor- 

mal and intuitionistic of type (m,i+l) , whose endsequent is the 

same as that of P . We say that P' follows from P by means of a 

V-reduction step. We also say that the reduction step in question has 

been applied to the particular V-inference above. 

C. Before proceeding further, let us quickly draw attention to the 

T2-reduction steps. Let us for this purpose retain the notation used 

in the definition of T2-reduction step. According to this definition 

a T2-reduction step is applicable to the critical T(Pl,b)-inference 

only if each sequence number Wl, .... ,w s is a strict extension of 

the corresponding sequence number v l,....,v s Now assume that the 

w i's are not strict extensions of the v. 'sl ; this implies)of cours% 

vi=w i , i=l, .... ,s . In this case we say that the T(Pl,b)-inference 

under consideration is incomplete; if each w i is a strict extension 

of vi, then we call the T(Pl,b)-inference complete. The T(PI,b )- 

inference can,of course, be made complete by passing from P to a 

substitution instance P' This suggests 

Definition 38: A strictly normal proof is called strongly saturated 

if every constant term which occurs in the final part or in the pre- 

miss of a critical inference is saturated and if every critical 

T(Pl,b)-inference is complete. 

Why we also require that every constant term which occurs in the pre- 

miss of a critical inference should be saturated will become clear 

below. With respect to the notion "strongly saturated" there is avai- 

lable a lemma which is the exact counterpart of lemma-9, namely 
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Lemma 14: We can effectively decide whether a proof P in 

ZTFi/V is strongly saturated or not. If it is not strongly saturated 

and if ~ il i s is a given listing of the distinct special 
Ul'''''' u s 

function constants oeeuring in P~ then we can find effectively a 

prim. ree. continuity function T (x I ...... ,Xs) having the follow- 

ing property: if ~(v I ....... Vs)~0 and if P* results from P by 

i k i k 
replacing every ~ by ~ , then P* is strongly satura- 

u k Uk*V k 

ted. 

The proof of this lemma, like that of lemma 9, is an immediate conse- 

quence of the definition of term and saturated term and hence omitte~ 

Remark: With every strictly normal proof P in ZTFi/V which is 

not strongly saturated there is associated in an effective way a con- 

tinuity function ~ which is related to P in the way described 

by lemma 14; we denote this continuity function by ~p and call it 

the continuity function strongly associated with P . 

Definition 39: Let P be a strictly normal proof in ZTFi/V which 

i 1 
is not strongly saturated, ~ i 

U l '  . . . . .  ' ~ u S  a l i s t i n g  o f  t h e  s p e -  

s d 
e i a l  f u n c t i o n  c o n s t a n t s  w h i c h  o c c u r  i n  P L e t  b e  t h e  c o n t i -  

P 

n u i t y  f u n c t i o n  s t r o n g l y  a s s o c i a t e d  w i t h  P . L e t  V l ,  . . . .  , V s  b e  a l i s t  

o f  s e q u e n c e  n u m b e r s ,  a l l  o f  t h e  s a m e  l e n g t h , a n d  P *  t h e  p r o o f  o b -  

i 1 i 
t a i n e d  f r o m  P b y  r e p l a c i n g  e v e r y  o c c u r e n c e  o f  ~ , . . - o ,  ~ s i n  

i I Ul u s 
7,''o" S P by ~Ul.Vl , ~iu *v P* is said to follow from P by 

s s means of an i n e s s e n t i a l  r e d u c t i o n  s t e p  i f  t h e  f o l l o w i n g  h o l d s :  

a) ~p(V I,..... ,Vs)~0 , b) if w I,.. ..,w s is a list of sequence 

numbers such that v.l ~-- ~ ~ i=l s then ~ p(wl, )=O. w ±  , , ..... ~ ...,w s 

D. A reduction step is called strictly essential, if it is a logical 

one, an induction reduction, a T I- , T 2- or a V-reduction step. 
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Strictly essential reduction steps satisfy 

Theorem 39: Let P be a strictly normal, strongly saturated intui- 

tionistic proof of type (m,i) (for some (m,i)) whose endsequent 

has the form (x)Pl(X)=0 ....... (X)Pn(X)=0 > A (where the Pi'S 

or A or both may be absent). Assume the following: a) P does not 

coincide with its final part, b) no preliminary and no strictly 

essential reduction steps are applicable to P . Then the following 

is true: there is a critical logical inference whose principal formu- 

la has an image in the endsequent. 

Proof: P cannot contain any critical induction inference 9 

T(PI)- , T(Pl,b )- or V-inference since in this case we could apply a 

corresponding reduction step to P , in contradiction with the assum~ 

rich. No fork can occur in the final part of P since this would 

give rise to an intuitionistic fork elimination, contradicting the 

assumption. Hence we can proceed as in the proof of theorem 6. 

E. Finally let us discuss the notion of subformula reduction step. 

To start with, let us fix necessary conditions which have to be sa- 

tisfied by a proof P in order that a subformula reduction step may 

eventually be applicable to it.These conditions, summarily denoted 

by SFC , are i) P has to be a strictly normal, strongly satura- 

ted intuitionistic proof of type (m,i) , (for some (m,i)) ; 

2) no preliminary and no strictly essential reduction step is appli- 

cable to P ; 3) the endsequent of P must have the form 

(x)Pl(X)=0 ....... (X)Pn(X)=0 ) A . According to the last theorem~ 

there must be at least one critical logical inference in P , whose 

principal formula has an image in the endsequent. We distinguish two 

cases. Case i: There is no critical inference in P which has an 

image in the antecedent of the endsequent of P . The critical infe- 

rence provided by the above theorem must then by necessity be a logi- 

cal inference which introduces a new logical symbol in the succedent, 

that is an inference of the following type: a) a functional quanti- 

fication > V or > E , b) a quantification >V 

or > E over individuals, c) a propositional inference 

> A , ----~ V , > ~ or > q . That in, we are 

precisely in the situation considered in section 4.4. of chapter IV, 

part D. Hence we define the subformula reduction step in this case in 

precisely the same way as in section 4.4., part D, summarized by de- 

finition 21. Case 2: There is a critical inference whose principal 
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formula has an image in the antecedent of the endsequent of P . This 

inference must necessarily have the form: 

p(t)=O, y > B/(x)p(x)=O, y > B , where p(x)=O is  isomor- 
phic with one of the formulas Pi(x)=O . Since P is strictly nor- 

mal, there is no free variable in the endsequent of P , and accor- 

ding to the definition of "normal" there is no free variable in 

p(t)=0 . Since P is strongly saturated, both p(t) and t are 

saturated. We distinguish two subcases. Subcase i: Ip(t)l~O - 

Then by definition no subformula reduction step is applicable to P . 

~'ubcase 2: ]p(t)I =0 . Then ~ p(t) is an axiom and we can re- 

place the inference p(t)=0, ~ > B/(x)p(x)=O, ~ > B by the 

following derivation: 

> p(t)=O p(t)=O, Y fl B 

(x)p(x)=O, S ) B 
thinning 

cut 

The resulting proof P' is said to follow from P by means of a 

subformula reduction step. Remark: If P' is obtained from P by 

means of a subformula reduction step according to case 1 above~ then 

it is,of course~possible that the endsequent of P' has no longer 

the particular form (x)Pl(X)=0 ....... (X)Pn(X)=0 ) A ; this may 

happen if the critical inference provided by theorem 39 is of type 

F. The list of reduction steps is completed. Let us summarize their 

properties. The properties of preliminary reduction steps are again 

given by theorem 4. A relation W can be introduced using definition 

14 as it stands; theorem 5 remains invariably true in the present 

case. As we have seen, our attention is mostly restricted to proofs 

whose endsequents are of the particular form 

(x)Pl(X)=O ....... (X)Pn(X)=O ) A • This gives rise to 

Definition 40: A proof is said to have standard form if its endse- 

quent has the form (x)Pl(X)=0 ....... (X)Pn(X)=0 > A . Thereby 

the Pi's or A or both may be absent. As before we use "s.n.s. 

proof" as abbreviation for strictly normal standard proof. Defini- 

tions 22 and 23 can be used without any change in order to introduce 

two relations R' and L' . The text of the definitions remains the 

same with one exception: "saturated" has to be replaced by 
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"strongly saturated". The notions "strictly essential reduction step", 

~subformula reductien steps", "inessential reduction step" have, of 

eourse~to be interpreted in-the sense of the present chapter. The re- 

lations R' and L' are the counterparts of R and L, respective- 

ly, and have also the similar properties: theorem 22, part a) (with 

R' and L' in place of R and L ) remains invariably true and its 

proof remains up to minor modifications the same. Again we simplify 

the notation by writing R and L in place of R' and L' ; no 

danger of confusion arises thereby. Subtrees Lp of L and its do- 

mains Dp can be introduced by.using definition 32 as it stands. Fi- 
l 1 
1 s 

nally, we call a formula A( C~ ....... C~ ) as before true if 
u 

~ 1 s 
( 1 ..... ' s)A(Ul . 1 ....... us* s ) is true in the usual 

11 i 
sense (def. 32) ; ~Ul ...... ~u s is thereby the list of distinct 

s i I i 

~..... special function constants which occur in A( ~u I , ~u s) Our 
s 

goal is to prove that Lp is wellfounded for proofs P of a suitab- 

ly large class. To this end we need a few definitions. In order to 

formulate them we use again the notation introduced at the beginning 

of part A of section 6.1. (this ohapter). Let R( & u,X) be a quan- 

tifierfree formula, pi( Oiu,X ) i=l ..... ,n a list of terms and 

il,..., is the list of those special function constants O< Ul , C<us _~ 

which occur in R( O< u,X) or at least one pi ( C~u,X ) . It is as- 

sumed that x is the only free variable in R( C~ u,X) and 

. . . . . . . . . .  be a list of pi ( C~ u,X) i=l, ,n) respectively. Let Vl, ,v s 

sequence numbers, all having the same length; by C~u. v we denote 

i I i 
the list ~Ul.V 1 ,.... o, C~uS.v By x ~R y we denote the 

S S ~V __~ 
prime formula associated with x ~KY/qR( C~u.v,X)/kR ( CKu.v,y ) 

according to theorem 2 *, and x ~ R  y is used as an abbreviation for 
v 

the latter formula. 

Definition 41: An intuitionistic s.n.s, proof P of type (m,i) is 

s a i d  t o  b e  s p e c i a l  i f  i t s  e n d s e q u e n t  h a s  o n e  o f  t h e  f o r m s  l i s t e d  b e -  

l o w :  

x)=0, '(xlPn( ~ u ,x)=° > w°(dR) l) (~)Pl( c< u ...... , 
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2) (x)PI( ~u 

3) (X)pl(~ u 

for some terms 

l a  R(~u,X ) 

• j 

,x) ..... (X)Pn( ~ u,X)=O > ~ (x) ~(x*l)< R ~w(X) 

x):0 > ,x)=O . . . . . .  (X)Pn( ~ u '  

pi( C~ u,X) , i=l, .... ,n , some quantifierfree formu- 

and some special function constant C~ j with j dif~- 
w 

rent from il, ..... ,is . Thereby we allow the list 

pi( C~ u,X) , i=l, ..... ,n , to be empty. 

Lemma 15: If P is an intuitionistic s.n.s, proof which is spe- 

cial, if L(P,P') holds then P' is also special. 

Proof: The lemma is proved if we can show the following: if P* is 

special and if P** is obtained from P* by means of a reduction 

step, then P** is also special. Let S* and S** be the endse- 

quents of P* and P** respectively and assume S* to have form 

i),2) or 3) in definition 41. Case i: The reduction step is a pre- 

liminary one. Then we can derive S* from S** by means of thin- 

nings and interchanges alone. Then S** has clearly one of the forms 

i),2) or 3) of definition 41. Case 2: The reduction step is an in- 

essential one. Then S** has the same form as S* except that the 

i I i 
list ~ ...... , ~ s is now replaced by a corresponding list 

i I Ul i Us 

Ul*V l'''''" ' ~uS*v where the v.'sl are sequence numbers all ha- 
s S 

ving the same length /0 

Case 3: The reduction step is a strictly essential one. Then S** 

is the same as S* 

Case 4: The reduction step is a subformula reduction step. Then the 

following subcases arise: a) S* has form i) and S %* has form 

i) or 2); b) S ~ has form 2) and S ~* has form 2) or 3); 

c) S* has form 3) and S *~ has form 3). In each of these cases 

s** has form i),2) or 3) listed in definition 41. 
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Lemma 16: Let P be an intuitionistic s.n.s, proof of type (m,i) 

which is special. Let P contain a critical V-inference, say 

V 

tR(y)=0 , (x) ~RyA(X), Y > A(y) 

W°(< R), tR(q)=O, Y > A(q) 

The side proof PI determined by this inference according to Basic 

lemma III, the remark following it and definition 37 is again special. 

Proof: This is immediate from Basic lemma III, the definition of 

side proof determined by a critical V-inference and the fact that 

is special. 

P 

In order to state the main property of special proofs we need a fur- 

ther 

2) A2: 

(simply 

3) A: 

The formula A 

Definition 42: Let Pl(X) ...... Pn(X) be terms, R(x) a quantifier- 

free formula and x the only free variable occuring in all these ex- 
i I i 

pressions. Let ~ ~ s be the special function constants 
Ul, ..... , u s 

occuring in R(x) or at least one Pi(X) . We allow the list 

PI' .... 'Pn to be empty and indicate this by putting n=0 . Let S 

be any of the following sequents: 

i) Sl: (x)Pl(X)=0 ...... (X)Pn(X)=0 ~ W°(~ R); 

J 2) %: (X)pl(x):o ...... (X)Pn(X):O >~(x) ~(x+l)< R ~w(X); 

3) $3: (x)Pl(X)=O ...... (X)Pn(X)=0 > , (where j is different 

from il, .... ,is) Consider the following formulas: 

i) AI: ( ~ )(Ex)( q ~ (x+l) ~ R ~ (x) V Pl(X)~0 .... V Pn(X)~ 0) 

(simply ( I~ )(Ex)( ~ ~ (x+l) ~ R.~ (x) if n=0 ); 

(Ex)(~ ~ ~(x+l) ~ R ~(x) V PI(X)~0 V ..... V Pn(X)~O), 
J (Ex)( V ~ J(x+l) <:~::1 R ~w (x)) if n=O)' w 

(Ex)(PI(X)~O V ..... ~/Pn(X)~O) (simply 0=i if n=O ) 

is said to be induced by S if A is A. when S 
1 
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is S. . We say that 
1 

true. 

S is strongly true if the induced formula is 

Remark: i) From a purely classical point of view the above defini- 

tion is superfluous: if S is true under the usual interpretation~ 

then its induced formula is necessarily true. From an intuitionistic 

point of view) howeve~ the truth of S does not necessarily imply the 

truth of the induced formula. Although the considerations in the pre- 

sent chapter use the language of classical set theory, their presen- 

tation is as constructive as possible in view of the discussion pre- 

sented in chapter X. Therefore we make the distinction between true 

and strongly true sequent. 

Theorem 40: Let P be an intuitionistic s.n.s, proof in ZTFi/V 
O 

(that is of some type (m,i)) which is special. Assume that Lp 
0 

wellfounded and let S be the endsequent of P . Then S 
0 0 0 

is strongly true. 

is 

Proof: The proof is by transfinite induction with respect to Lp , 
0 

that is~we prove: if P ~ Dp then its endsequent S is 
O 

strongly true (P is again speclal in virtue of lemma 15). Hence, let 

P ~ Dp be given) and assume that for all P' , if L(P,P') holds~ 
O 

then S' is strongly true, where S' is the endsequent of P' 

With the aid of this hypothesis we have to show: S is strongly 

true. We distinguish between cases, within cases between subeases, 

within subcases between subsubcases etc. We abbreviate "subcase ';, 

"subsubcase" etc. by SC , SSC etc. Case i: P is strongly satu- 

rated and does not admit preliminary reduction steps. SCl: P ad- 

mits a strictly essential reduction step. Then L(P,P') iff P' 

follows from P by application of a strictly essential reduction 

step. Take any such P' The endsequent S' of P' is evidently 

the same as S . By the inductive assumption S' is strongly true, 

hence S is strongly true. SC2: P does not admit any strictly 

essential reduction step. In view of the special form of the endse- 

quent S of P, it follows that P cannot coincide with its final 

part since this would clearly force S to be > ; again 

) is not provable from mathematical axioms using only inter- 

changes, contractions, conversions and cuts. According to theorem 3~ 

there is a critical logical inference whose principal formula has an 

image in the final part. We distinguish between subeases. 

SSCI: There is no critical logical inference whose principal formula 
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has an image in the antecedent of the endsequent. Therefore, a well- 

defined subformula reduction step is applicable to P , transforming 

P into P' { by definition L(P,P') holds. Let S' be the endse- 

quent of P' By necessity S is S 1 or S 2 in definition 42 for 

some terms PI' .... 'Pn ' some quantifierfree formula R and some 

special function constant ~ j w' respectively. ~ q ~  S is S 1 

The induced formula A is then given by 

( ~ )(ex)( ~ ~ (x+l) ~ R  ~ (x) V Pl(X)~O V .... VPn(X)/O ) . By 

necessity; S' is 

(X)pl(~)=0 ...... (X)Pn(X)=O > n(x) ~>(~+l) <R ~<J>(x) 
for some j . The formula A' induced by S' looks as follows: 

(Ex)(~ ~>(x+l) ~ R c~2(x ) V pl(x)~O V .... VPn(X)~O ) . How- 

ever, it is evident from definition ~3 in chapter V that A is true 

iff A' is true. Since L(P,P') holds, S' is strongly true by the 

inductive assumption, that is A' , hence A2 are true and so S is 

strongly true. ~ S is S 2 . The formula A induced by S 

looks as follows: 

(~x)(-] ~(~+I)~R ~(~1 Vpl(Xl=°v ..... Vpn(~):O) . Neces 

sarily, S' is given by 

(x)Pl(X)=0 ....... (xlPn(X)=0 , (x) ~ ~(x+l) <R ~(x) > . The 

formula A' induced by S' is obviously again A . S' is strongly 

true by the inductive assumption. It follows that A' and hence A 

are true; hence S is strongly true. SSC2: There is a critical io- 
. . . o .  

gical inference whose principal formula has an image in the antece- 

dent of S • Let p(t):O, F > B/(x)p(x)=O, ]~ > B be this 

inference, p(~):O is necessarily isomorphic with some pi(x):O ; 

let i=l for simplicity. ~ p(t) (which is saturated) has 

value 0 Then we can apply to P a subformula reduction step which 

transforms P into a proof P' whose endsequent S' is the same as 

that of P , that is, S By the inductive hypothesis~ S' is strong- 

ly true, hence S is strongly true. ~9~$ p(t) has value ¢0 

Now Pl(t) is saturated, too~and its value therefore also /0 . How- 

ever, Pl(t)/O ~Ai (with A i as in def. 42) are obviously all in- 

tuitionistically true formulas. Therefore S is strongly true, re- 

gardless whether S is SI,S 2 or S 3 in def. ~2. This exhausts the 

possibilities which might arise under the assumption of case i. 

Case 2: P is strongly saturated, but admits preliminary reduction 

steps. Let Po' ..... PN be any chain such that a) Po is P ; 

b) Pi+l follows from P'l by means of a preliminary reduction step% 

c) PN does not admit any preliminary reduction steps. Obviously 
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PN is strongly saturated. If L(PN,P' ) then L(P,P') , as is easily 

verified; hence the endsequent S' of P' is strongly true in vir- 

tue of the inductive assumption about P . Therefore we can apply the 

considerations of case i to PN and conclude that the endsequent S N 

of PN is strongly true. Now S can obviously be derived from S N 

by means of thinnings and interchanges alone; from this one easily 

concludes that S is also strongly true. 

Case 3: P is not strongly saturated. Let S be the endsequent of 
i I i 

, ..... , ~ s the list of special function constants oc- P and ~Ul 
U S 

curing in P . Let A be the formula induced by S . The special 

function constants occuring in A are obviously contained in the 

list ~ il i s . We indicate this by writing 
i I Ul' i Us 

A( Ul' i ~usS) or ilA( u) respectivelY.i Replacement of 

, .... , C~ s respectively~ trans- s by ~ * ' .... ' u *w ' 

Ul ~Us Ul Wl s s 
forms P into another proof, to be denoted by P ; the 

w I • .... w s 

endsequent of P is denoted by S According to 
w I .... w s w I .... w s 

lemma 14, the remark following it and definition 39, there is a prim. 

rec. continuity function 

~p(W 1 ....... Ws)~O then 

call a list ~l(n), ..... 

~p with the property: if 

P is strongly saturated. Let us 
_w I .... w s 

n) immediately secured with respect 

to Jp if ~P(~l(n) ....... ~s(n))~° and 

~p(~l(i) ....... ~s(i))=O for i<n ; the fact that w I .... w s 

is immediately secured with respect to ~p will be indicated by 

writing dp(W I ...... We) ~ 0 . It is evident that the formula A' 

induced by S is A( ~ il i Wl.. .w Ul*Wl , ~ S ). From the de- . '''''" U ~W 
S S S 

finition of inessential reduction step it follows that 

) holds whenever ~p(W 1 ...... We) ~0 . Hence, using L(P'Pwl...w s 

the inductive assumption~we have the following situation: if 
i I i 

s ) is true. 
4p(W I, ...... Ws)~O then A( ~Ul.W I,....., Us*We 

Using bar induction with respect to the p.r. continuity function %, 
i I i 

one easily deduces the truth of A( ~ Ul ~u s) Hence S is 
s 

strongly true. 
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There is an immediate and important corollary, namely 

Corollary: Let P be an intuitionistic s.n.s, proof in ZTFi/V 

whose endsequent S has the form 

(x)Pl(X):O (X)Pn(X)=O > W°(< R) and let Lp be wellfoun- 

dad. Then: a) ( ~)(Ex)( n ~ (x+l) ~ R ~ (x) VPl(X)~O V... VPn(X)~O ) 

is true~ b) the particular ordering ~ associated with the latter 

formula according to section 6.1., part A, is wellfounded] c) the 

Kleene Brouwer linear ordering ~* associated with [---- actor- 

ding to def. 35 is a wellordering. 

Proof: a) is a special case of the last theorem; b) follows from 

a) and theorem 36; c) is a consequence of the wellfoundedness of 

I-- 

6.5. Ordinals 

A. From now on we proceed in quite the same way as in the last chap- 

ter. First of all we introduce two classes of proofs by means of 

Definition 43: a) An intuitionistic s.n.s, proof P (of some type 

(m,i)) is called "good" if it is special and if, moreover, Lp is 

wellfounded, b) An (intuitionistic or classical) s.n.s, proof P 

(of some type (m,i)) is said to be "graded" if all its side proofs 

are good. 

Again we have the following evident 

Lemma 17: A preliminary reduction step, the operation "omission of 

a cut" or a classical logical reduction step, applied to a graded 

proof, yield a graded proof P' . An intuitionistic logical reduc- 

tion step, an induction reduction, a T I- or T2-reduction step, 

applied to an intuitionistic graded proof P , yield an intuitioni- 

stic graded proof P' 

In order to describe a certain ordinal assignemen% we use again some 

suitable notation. Let P be a good proof of 

(x)Pl(X)=0 ....... (X)Pn(X)=O > W°(<R ) . The partial ordering 

associated with 

( (x+l) Vpl(x) o v ..... Vpn(x) O) is 
then wellfounded according to the last corollary; and so is the 

Kleene-Brouwe~ ordering ~* associated with f according to 
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def. 35. We denote the ordinal of .~* by lid* [l • If, moreover, 

a is an element in the domain D* of ~* ~ then llal] denotes 

the ordinal associated with the restriction of ~* to 

{x/x <*a }. By ~ we denote the smallest ordinal ~ with the 

property: if P is a good proof of 

(x)Pl(X)=0 ....... (X)Pn(X)=0 ) W°(< R ) , then [I.~*]) ~ ~ 
Finally, if P is a proof of 

(x)Pl(X)=0 ....... (X)Pn(X)=O ) W°(< R ) , if ~ is the partial 

ordering associated with 

( ~ )(Ex)(~ ~ (x+l) r"- R ~ (x) ~ Pl(X)~O V ..... V Pn(X)~0)~ then 

we call [-- simply the partial ordering associated with P ; the 

Kleene-Brouwer ordering .~ * associated with l is also called 

the Kleene-Brouwer linear ordering associated with P . 

Now to the description of the ordinal assignement announced above. 

Let P be a graded proof and S a sequent in it. With S we asso- 

ciate inductively an ordinal, denoted by o(S). 

Case  1: S i s  an  a x i o m  ( o f  P) Then o ( S ) : l  . 

Case 2: S is the conclusion of a one-premiss structural rule, or 

a conversion, say; S'/S . Then o(S)=o(S') 

Case ~: S is the conclusion of a one-premiss logical inference, 

say, S'/S, different from A(t), Y > ~ /(x)A(x), Y ) 

Then  o ( S ) = o ( S '  )+1 

Case 4: S is the conclusion of a one-premiss logical inference 

S'/S of the form A(t), y ) ~ /(x)A(x), S ~ ~ Then 

o(s)=o(s,)+2 

Case 5: S is the conclusion of a two-premiss logical inference, 

s a y ,  S 1 , S 2 / S  . Then o ( S ) = o ( S 1 )  ~ o ( $ 2 )  ~ l  

Case 6: S is the conclusion of an induction S'/S . Then 

d(O(S') ~) ) where d=h(S')-h(S) o(S)= 

Case 7: S is the conclusion of a V-inference, say~ S'/S . Then we 

put o(S)= ~)d((O(S') ~d ~ +l) CO -~- +i) where d=h(S')-h(S) 
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Case 8: S is the conclusion of a T(P1)-inference, sayj S'/S . 

Then we put o(S)= ~d((o(S') ~ ~ X *i) ~ X +i) where 

d=h(S')-h(S) and k = II~*II , with -~* the Kleene-Brouwer 

ordering associated with P1 . 

Case 9: S is the conclusion of a T(P ,a)-inference, say~ S'/S 

Then we put o(S)= 60d((O(S' ) ~ 60 ~ +~) 64) ~ +i) where 

d=h(S' )-h(S) and where ~ is the ordinal associated with the re- 

of <* to ~x/x -< *a~ and where < * is the striction 

Kleene-Brouwer ordering associated with P1 " 

The ordinal o(P) of a graded proof is by definition the ordinal of 

its endsequent. We have 

Theorem 41: Let P be a graded s.n.s, proof in ZTFi/V 

I) "Omission of a cut" lowers the ordinal of P ; 2) preliminary 

reduction steps do not increase the ordinal of P ; 3) a classical 

logical reduction step lowers the ordinal of P ; 4) an intuitio- 

nistic logical reduction step lowers the ordinal of P ; 5) an in- 

duction reduction, a T I- or a T2-reduction step lowers the ordi- 

nal of P ; 6) a subformula reduction step lowers the ordinal of 

P (with P intuitionistic in clauses 4)-6)). 

Proof: Verification of the clauses 1)-5) leads precisely to the same 

calculations and inequalities encountered before. In the verification 

of clause 6) one encounters just one case not treated up to now, na- 

mely: P is strongly saturated, no preliminary and no strictly es- 

sential reduction step is applicable to P~ and P contains a cri- 

tical inference p(t)=0, y > A/(x)p(x)=0, y > A whose 

principal formula has an image in the endsequent and such that p(t) 

has value 0 . Let S' and S be premiss and conclusion of the 

above inference, P' the result of the subformula reduction step and 

o(S' )= ~ , o(S)= p By definition p = ~ ~ 2 . It is trivial 

to verify that the application of the subformula reduction step lo- 

wers the ordinal of S : it becomes ~ ~ 1 Hence o(P') is smal- 

ler than o(P) 

We also have 

Theorem 42: Let P be an intuitionistic graded s.n.s, proof and 

assume that a V-reduction step is applied to the cri'tical V-inference 
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V 

tp(y)=0, (x) <RyA(X), /~ > A(y) 

w°(<R), t~(q):o, f" ) A(q) 

Let P1 be the side proof determined by W°(< R ) If P1 is 

"good", then the V-reduction step determined by the above V-inference 

transforms P into an intuitionistic graded s.n.s, proof whose ordi- 

nal is smaller than that of P . 

The proof is practically the same as that of theorem 34 and hence 

omitted. 

Basic lemma IIIl: Let P be an intuitionistic graded s.n.s, proof 

with endsequent G 1 ..... G > H Let S 1 .... ,S m be the upper- 
~ S 

most sequents of the final part, listed from left to right; let S. 
J 

be ~/4 > A.j Then: if B occurs in ~/i , if Pl is the 

side proof determined by B in S. (according to basic lemma III, 
J 

the remark following it and definition 37), then P1 is a graded in- 

tuitionistie s.n.s, proof and O(Pl) < o(P) 

Proof: We proceed as in the proof of basic lemma III and use the 

fact that in the construction of P1 we use the operation "omission 

of a cut" 

Of main importance for us is 

Corollary: Let P be a graded intuitionistic s.n.s, proof contai- 

ning a critical V-inference 

V 

tR(Y):O, (X) <RyA(X), > A(y) 

w°(<~), tR(q)=o, y > A(q) 

The side proof P1 determined by W°(~ R ) is a graded intuitioni- 

stic s.n.s, proof and o(P1) <o(P) 

6.6. The wellfoundedness proof 

Theorem 43: If P is an intuitionistie graded s.n.s, proo~ then 

Lp is wellfounded. 



- 19o - 

Proof: We proceed by transfinite induction with respect to the ordi- 

nal o(P) . Let P be an intuitionistic graded proof with o(P)= 7 ; 

assume that for all intuitionistic graded proofs P' with 

o(P') < o(P) the relation Lp, is wellfounded. We have to show 

that Lp is wellfounded. Case i: First we assume that P is 

strongly saturated and does not admit preliminary reduction steps. If 

L(P,P') , then there is necessarily a strictly essential reduction 

step or a subformula reduction step which transforms P into P' 

We distinguish two subcases. Subcase i: The reduction step in ques- 

tion is a subformula reduction step or a strictly essential reduction 

step other than a V-reduction step. Then o(P') < o(P) according to 

theorem 41 and hence Lp, is wellfounded. ~ _ ~ !  P' follows 

from P by means of a V-reduction step. Let 

V 

tR(Y)=0, (x) ~RyA(X), A(y) 

W ° ( <  R ), tR(q)=0 , y > A(q) 

be the critical V-inference in P , to which the V-reduction step in 

question is applied. Let P1 be the side proof determined by 

W°(~ R) . According to the corollary to basic lemma IIIl~ P1 is a 

graded intuitionistic s.n.s, proof whose ordinal O(Pl) is smaller 

than that of P . By the inductive assumption~it follows that LPl 

is wellfounded; hence P1 is "good". This combined with theorem 

42 shows that P' is again a graded intuitionistic s.n.s, proof with 

ordinal o(P') ~ o(P) . Hence Lp, is wellfounded. Combining sub- 

case 1 with subease 2,we conclude that L(P,P') implies the well- 

foundedness of Lp, . But Lp is wellfounded if and only if Lp, is 

wellfounded for all P' with L(P,P') . Hence Lp is wellfounded. 

Case 2: P is strongly saturated but admits preliminary reduction 

steps. Proceeding as in the proof of theorem 35, case B, we conclude 

that L(P,P') implies o(P' ) ~ o(P) , hence the wellfoundedness of 

Lp, . From this we again infer the wellfoundedness of Lp . 

Case 3: P is not strongly saturated and admits preliminary reduc- 

tion steps. If L(P,P') then P' is by definition of L strongly 

saturated and is subject to case 2; since o(P')=o(P) holds, we in- 

fer the wellfoundedness of Lp, . This in turn implies the wellfoun- 

dedness of Lp , concluding the proof of the theorem. 

Corollary i: The relation Lp is wellfounded for every s.n.s, proof 

P in ZTi/V. 
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Proof: Every such proof P is obviously a graded proof since it 

does not contain side proofs at all. Hence it is subject to the pre- 

vious theorem. 

In order to prove the last corollary we need 

Definition 44: a) Let P be a strongly saturated intuitionistie 

s.n.s, proof which does not admit preliminary nor strictly essential 

reduction steps. A proof P' is said to follow from P by means of 

aweak subformula reduction step if P contains a critical inference 

p(t)=o, ~ ) A((x)p(x)=0, ~ fl A with p(t) true, and if P' 

follows from P by replacing this inference by 

> p ( t ) = O  p ( t ) = O ,  f 

/ r~ >A 

(x)p(x)=O, y > A 

> A 
c u t  

b) By L~ we denote the relation which applies to P, P~ (in signs 

LW(P,PW)) iff P, P' are intuitionistic s.n.s, proofs and if either 

R(P,P') holds,or if else there is a list Po' ..... 'PN of such proo~ 

such that a) P=Po ' b) P is strongly saturated, c) Pi+l fol- 

lows from P. by means of a preliminary reduction step, d) no pre- 
1 

liminary reduction step is applicable to PN ' e) P' follows from 

PN by means of a weak subformula reduction step. 

Corollary 2: Let P be an s.n.s, proof in ZTi/V whose endsequent 

S does not contain free variables nor special function constants. 

a) If S is (x)Pl(X)=0 ....... (X)Pn(X)=0 > A ~/B (with the 

Pi'S terms)~ then one effectively finds a proof P1 in ZTi/V of 

either (x)Pl(X)=O ....... (X)Pn(X)=O > A or 

(x)Pl(X)=0 ....... (X)Pn(X)=0 > B ; b) if S is 

(x)Pl(X)=0 ....... (X)Pn(X)=0 > (E ~ )A( ~ )~ then one effectively 

finds a functor F without free variables and special function con- 

stants and a proof P in ZTi/V of 

( x ) P l ( X ) = O  . . . . . . .  ( X ) P n ( X ) : O  fl A(F)  ; c)  s i m i l a r l y  w i t h  (Ex)  

i n  p l a c e  o f  (E ~ ) and  a t e r m  t i n  p l a c e  o f  F . 

Proof: We consider ~g. b). P is clearly an intuitionistic graded 

s.n.s, proo~ since no side proofs at all occur in P . Therefore Lp 

is wellfounded. Denote by L~ the restriction of L ~ to Dp . 

Since L ~ is a subrelation of L, it follows that L~ is wellfoun- 
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ded. Hence~we effectively find a chain Po' .... 'PN with Po=P and 

such that a) L*(Pi,Pi+l) holds for i~N , b) (~X) ]L*(PN,X ) 

Obviously PN is strongly saturated. By induction with respect to i 

one easily shows that the endsequent of P has the form 

i) (x)p ~l(X)=O ....... (x)p O<k(X)=O > (E ~ )A( ]~ ) or 

(x)p C~ (x)=0 ...... (x)p ~ (x)=O > . In case i) k can be 0 , 
1 k 

in case 2) necessarily k%0 since the last theorem implies 

consistency of ZTi/V . Let us apply in an arbitrary but fixed way 

preliminary reduction steps to PN so as to obtain a proof P~ 

which does not admit preliminary reduction steps. Evidently, P~ is 

strongly saturated and does not admit strictly essential reduction 

steps since otherwise L(PN,P~) would hold, contradicting the assump- 

tion. According to theorem 39~ there is a critical logical inference 

whose principal formula has an image in the endsequent. 

Case i: The inference is p(t)=0, y > C/(x)p(x)=0, y > C . 

Then p(t)=0 is false by necessity. Otherwise we could apply a weak 

' obtaining as result a proof " subformula reduction step to PN~ PN 

which would satisfy L (PN,PN) , contradicting the assumption. Hence 

p(t)=0 is false, hence p(t)=0 > an axiom and p(x) isomor- 

phic with some Pi(X) . With the aid of an ~ > inference, 

followed by conversions and interchanges, we can derive 

(x)Pl(X)=O . . . . . . .  (X)Pn(X)=O > A(F) f o r  any f u n c t o r  F . 
Case 2: There is no critical logical inference of the form 

p(t)=0, / > C/(x)p(x)=O, ~ > C in P~ . Then P~ contains 

necessarily a critical logical inference of the form 

y > A' ( F ) /  ~ > (E ~ )A' ( ~ ) whose p r i n c i p a l  fo rmula  has  
an image in the endsequent. A' ( ~ ) is necessarily isomorphic with 

A( ~ ) . Without loss of generality we can assume that F does not 

contain free variables and special function constants: the first is 

a Con~quenee of the fact that P~ is an s.n.s, proof, the second 

can always be achieved by replacing eventually some special function 

constants by suitably chosen constants for prim. tee. functions. By 

' followed by a application of a subformula reduction step to PN 
tt conversion, some thinnings and interchanges,we obtain a proof PN 

in ZTFi/V of (x)Pl(X)=O ...... (X)Pn(X)=0 ) A(F). By means of 

" into a proof P' in ZTi/V of theorem 38, we can transform PN 

(x)Pl(X)=O ...... (X)Pn(X)=0 # A(F) , what concludes the proof. 

Remark: In virtue of the equivalence of quantifierfree formulas 

with prime formulas~the last corollary remains true if we replace 

PI(X)=O ....... Pn(X)=0 by quantifierfree formulas Ql(X) ..... Qn(X) ~ 

respect±rely. 



CHAPTER VII: 

A system containing barinduction with respect to decidable predicates 

In this chapter we show that a reasoning very similar to that 

presented in chapters V, VI can be applied to the theory ZTi/I.. 

There is,however, an essential difference between the methods presen- 

ted in chapters V, VI and the method presented in this chapter: the 

former yield automatically the consistency of the theory to which 

they are applied, the latter, however, works only if we assume ab ini- 

rio that ZTi/I is consistent. Hence let us assume throughout this 

chapter: ZTi/I is consistent. 

7.1. The theor 7 ZTi/I and a certain conservative extension 

A___u. The theory ZT/I 

ing rule I: 

is obtained from ZT by additon of the follow- 

I. 

R(y , (x) ~RyA(X), y > ~,A(y) 

W(~R) , R(q), ~ > /~,A(q) 

where y and q are subject to the usual stipulations. Here, R is 

an arbitrary standard formula, that is, a formula of the form 

Ro(X) /k seq(x) ; no restrictions are thereby imposed on Ro(X ) , that 

is, Ro(X ) can be any formula containing special function constants 

and free variables of any kind. x ~___~_Ry and W( ~R) are a~ain 

abbreviations for x~Ky~R(x) AR(y ) and 

(~)(EX) ~ ~ (X+I)~ R ~ (x)~ respectively. ZTi/I is obtained 

from ZT/I by restricting attention to intuitionistic proofs. 

B. Next, some notations. In part C below, R(x) 

dard formula whose special function constants are 

denotes a stan- 

i I i c~ ~ s 
U I ' .... , U s 

and whose only free variable is x . In order to indicate the occu- 
i 
k's , we write as before R( ~u ,x) or rence of the C~k 

R( G~ 11 . . . . . .  ~ S , x )  . R e p l a c e m e n t  o f  O( , . . . . . ,  ~ s b y  
11 i 

• u u u I u l I i s i ~ s 
s transforms R( C~ u ,x) into another for- 

'''''°' ~ U ~V ~ " U l ~ V l  s s 
m u l a  w h i c h  w i l l  b e  w r i t t e n  a s  R( C ~ u ~ v , X  ) o r ,  m o r e  b r i e f l ~  a s  R v ( x  ) 

i 1 i 
o r  e v e n  Rv  . Of  c o u r s e  C~ . . . - . . ,  C~uS a r e  p r e c i s e l y  t h e  

Ul' S 
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special function constants which occur in x ~Ry . In order to in- 

dicate their occurenee in x ~Ry , we sometimes also write 

u 
x ~ Ry Hence x ~Ry and x ~ ~y • are both abbreviations of one 

and the same formula: x /--- Ky /~R (~u,X) /~R( ~u,y ) If we replace 

i I i i I i 
C~Ul s in x ~ Ry by ~Ul~V 1 ~uS~v then we 

s s s 

obtain a new formula which may be written as x ~R y " For conve- 
y 

nience we denote this formula also by x ~ u~v R y . Hencej x ~R y 
V 

UWV 
and x ~ R y both denote x~KY /~ R (~u~v,x) /~R( ~u~v,y ) 

C___~. We now introduce a conservative extension of ZTi/I which is 

related to ZTi/I in the same way as e~. ZTEi/V N is related to 

ZTi/V N . This conservative extension is denoted by ZTGi/I and is 

obtained from ZTi/I by addition of two new rules T(PI) and 

T(PI,P2) whose definition is ~iven below, i) Let v I ...... ,v s 

a list of sequence numbers, such that 

i=l, ..... ,s • Let P be a proof in 
O 

y is R(C~u~v,y), (x) ~ u - v  A(x) 
R Y ' 

p r o o f  i n  Z T G i / I  , a l r e a d y  a t  h a n d ,  w h o s e  e n d s e q u e n t  i s  

U 
> W( ~ R) . T h e n  

length(Vl):length(vi), 

ZTGi/I , whose endsequent 

) A(y) ; let PI be a 

P 
.O 

T(P l) 
R(~ u~vq) 7- ) A(q) 

be 

is a proof in ZTGi/I ; we denote it by P . The inference 

T(P l) 
R( C~ u~v,y), (x) ~ u~v A(x) ~ ) A(y) 

R Y ' 

4( ~u~v'q)' Y > A(q) 

is called a T(Pl)-inference. P1 is called side proof of this in- 
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ference. P1 is also said to be a side proof of P . 2) Let 

v 1,.....,v s and w l,.....,w s be two lists of sequence numbers, de- 

noted briefly by v and w ; assume w.1 ~KVi for i=l, .... ,s and 

in addition length(Vl)=length(vi) , length(Wl)=length(wi) for 

i=l, ..... ,s . Let P be a proof in ZTGi/I whose endsequent S is 
O 

Y ~ u * w  R t , (x) ~I/*w A(x) ~ ) A(y) ; t is assumed to be 
~ " - -  R Y 

saturated, Itl=a . Let Pl be a proof in ZTGi/I already at 

hand of fl W( ~ R) and P2 another proof in ZTGi/I already 

at hand of ) R( ~ u.v,t) . Then 

T(Pl,P 2) 

P 
.O 

U ~W 
q ~R t , ~ ) A(q) 

is a proof in ZTGi/I ; we denote it by P . The inference 

T(Pl,P 2) 

u*w 
Y ~R t , (x) ~ u * w  A(x) 

R Y 
> A ( y )  

U~W 
q ~ R  t , fl A(q) 

is called a T(PI,P2)-inference. P1 is called a side proof of this 

inference, P2 is called the index proof of this inference. P1 is 

again called side proof of P while P2 is called an index proof 

of P . 

Remarks: a) q and y in 2) and 3) above are subject to the usual 

stipulations, b) The description of ZTGi/I can, of course, be made 

more precise by associating inductively with every proof in ZTGi/I 

a type (m,i) in the same way as in chapters V, VI. c) If P1 is 

a side proof of P , and if S is an occurence of a sequent in P1 ' 

then we do not consider S as an oceurence of a sequent in P . Si- 

milarly, if P1 is an index proof of P . 

D__ u. T h e r e  i s  a l s o  a c o n s e r v a t i v e  e x t e n s i o n  Z T G / I  o f  Z T / I  w h o s e  

d e f i n i t i o n  i s  o b t a i n e d  f r o m  t h a t  o f  Z T G i / I  b y  m e a n s  o f  t h e  

following changes: a) in clause i) in part B we permit P to be a 

proof in ZT/I ; b) in clauses 2) and 3) Po is a proof in 

ZTG/I ; e) premiss and conelusion of a T(P1)- or a T(rl,P2)-in- 

ference~respectively~are permitted to contain more than one formula 

in the suceedent. The side proof P1 and the index proof P2 ~ how- 
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eve~ are still assumed to be proofs in ZTGi/I . The theory ZTG/I 

has been introduced for technical purposes only. 

E_~. The main result about ZTG/I and ZTGi/I is given by 

Theorem 44: a) ZTGi/I is a conservative extension of ZTi/I ; 

b) ZTG/I is a conservative extension of ZT/I. 

The proof is essentially the same as that of theorem 38; one uses 

thereby the fact that types (m,i) can be associated with proofs in 

ZTGi/I and ZTG/I respectively. 

F___u. For proofs P in ZTGi/I and ZTG/I , we can introduce the usual 

notions such as final part, complexity of a cut, of a I-inference, 

of a T(Pl)-inference , of a T(Pl,P2)-inference , of a fork, etc. We 

use all these notions without any further comment; their definitions 

remain the same as before. A standard proof ~g. is again a proof 

whose endsequent has the form > A . Strictly normal standard 

proofs (s.n.s. proofs) will again be the objects with which we work 

most of the time. A further notion, which can be taken over without 

changes~ is that of substitution instance; it is again given by defi- 

nition 20, sect. 4.4., chapter IV. 

7.2. Remarks about the basic lemma 

A__u. The basic lemma will be used in the form given by basic lemma II 

(chapter III, sect. 2.2.). Let P be a proof in ZTGi/I , and 

> A an uppermost sequent in the final part of P and B a 

)v . The procedure described in the proof of basic formula in 

lemma II associates with B a welldetermined proof Pl in 

ZTGi/I of ~ B ; we call P1 the side proof determined by B 

in ~ > A . If, in particular, ~ > A is the conclusion of 

a critical I-inference, say 

I .  
R(y), (x) ~ RyA(X), ~ o  > A(y) 

W ( ~ R )  , R(q), /]'-~o 9' A(q) 

if B is W(~ R) , then Pl is also called the side proof of 

> W(~ R) determined by this particular I-inference. 
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7.3. Reduction steps for ZTGi/I 

A. Now we introduce reduction steps for proofs P in ZTGi/I 

Among these we have preliminary reduction steps, induction reductions 

and intuitionistic fork elimination (intuitionistic logical reduction 

steps). Their definitions remain the same as in all previous chapter~ 

Next we have three kinds of reduction steps which are associated with 

I- , T(Pl)- and T(Pl,P2)-inferences and which are called I-reduc- 

tion steps, T(Pl)-reduction steps and T(Pl,P2)-reduction steps respe~ 

tively. 

T(Pl)-reduction steps. Let P be a saturated s.n.s, proof in 

ZTGi/I , which oontains a critieal T(Pl)-inference S/S , say 

T(P l)  
R ( C ~ u . v , y ) ,  (x) ~ u * v  A(x) 

R ~ 

R ( ~ u . v , q ) ,  /'~ > A(q) 

> A(y) 

U 
where P1 is by definition a proof of > W(~R) in ZTGi/I. 

Let P be the side proof of > R( C~u.v,q ) , determined by 

R( O< u.v,q) according to basic lemma II. Let Po be a cut free 

proof in ZTi which does not contain induction and whose endsequent 
U ~ V  

is Y g~--R q > R( C~u.v,y ) . Let Ps be the subproof of S in 

P ' Ps' the subproof of S' in P and P~, the result of repla- 

cing every oceurenee of y in P by q ; let S' be the endue- 
S' q 

quent of P~, . Then we can replace PS by the following deri- 

vation P* : 

PO .PS t 

U*V --~ 
Y -' R q ) R( C~ u .v ,q )  S' 

cut 
y~U*V R q , (x) ~ u * v . A ( x )  y > A(y) 

R Y ' 

U@V s q, /I > A(x) T(Pl'P2) 

U*VqA(X) 

' v  

R( @u*v'q)'  Y ) A(q) 

S t 
q 

• Pq, 

cut, 
interchanges 

The result of this replacement is a proof P' which is said to fol- 

low from P by means of a T(P1)-reduction step. We say that the 
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T(Pl)-reduction step has been applied t o  the particular T(Pl)-infe- 

fence above. We also say that the T(Pl)-inference is transformed by 

means of the T(Pl)-reduction step into the T(Pl,P2~inference, which 

appears in the last diagram. 

T(Pl,P2)-reduction steps. Let us retain the notation introduced in 

part B of sect. 7.1. and in the definition of T(Pi,P2)-inference. In 

particular, Vl, ..... ,Vs and w I, ...... ,w s are two lists of sequence 

numbers such that length(Vl) = length(vi) and length(Wl) = length(wi), 

and such that w i ~KVi , i=l, ..... ,s . These two lists are again 

denoted by v and w respectively. Let P be a saturated s.n.s. 

proof which contains a critical T(Pl,P2)-inferenee S'/S , say 

T(PI,p 2) 

u*w 
u*w A(x) Y ~ R  t , (x) ~ R Y ' 

q ~U*WR t , ~ > A ( q )  

> A ( y )  

Here PI is a proof in 

a p r o o f  o f  > R( 

F i r s t  we n o t e  t h a t  t h e  f o l l o w i n g  s e q u e n t s  c a n  b e  p r o v e d  i n  Z T i  

without cuts and inductions: i) q ~ u*w R t > R( u.w,q) , 

u*w u*w . Let P be such a 2) y X~- R q ' q ~ R  t > Y ~-- u*wtR 

proof of the first sequent and P be such a proof of the second 
o 

sequent. Next we can extract according to basic lemma II the side 

proof P determined by q ~u*w R t in S . By combining P and 

' in ZTGi/I of by means of a cut we obtain a proof P2 

> R( C~ u.w,q) Let again PS and PS' be the subproofs of 
q 

and S' respectively. By PS' we denote the result of replacing 

every occurence of y in PS' by 

sequent of P~, Then we replace 

ZTGi/I of > W ( ~ )  while P2 is 

t) Now to the T(Pl,P2)-reduction step. 
U~V ~ 

/% 

P 

q : again S' denotes the end- 
q 

PS by the following derivation: 
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P .Ps' . 0  

U*W U*W  U* W S '  
Y ~ R  q ' q < R t > Y ~ R  t 

eut~ 
interchanges 

u*w u*w y > A(y) y ~ - ~  q , ( x ) ~ u * w  A ( ~ )  q ~ - R  t 
R Y ' T(PI,P ~) 

s ~ u*w u*w / -  R q ' q ~---R t ,  ) A(s) 

q ~ u * w  ~ > ( x ) ~  u*w A(x) S' R t, q 
R c u t ,  

q ~U*WR t ,  ~ ) A(q) 
interchanges, 
contractions 

The result of this reduction is a proof P' which is said to follow 

from P by means of a T(Pl,P2)-reduction step. We say that a 

T(Pl,P2)-reduction step has been applied to the particular T(Pl,P2)- 

inference above. The T(Pl,P2)-inference , to which the reduction step 

is applied, is said to be transformed by the reduction step into the 

T(Pl,P~)-inference, which appears in the last diagram. 

E-reduction steps. Let P be a saturated s.n.s, proof in ZTGi/I, 

containing a critical I-inference, say 

I .  
R ( y ) ,  (x) d~E. RyA(X), / '~  > A(y) 

W( ~ R) , R(q), S ) A(q) 

to be denoted by S'/S • Let P1 be the side proof determined by 

W( ~ R ) in S according to basic lemma II; its endsequent is 

)W( ~ R) Then we can alter P as follows: 

PS' 

R(y) ,  ( x ) ~ . ~ R y A ( X ) ,  / 
T(P 1) 

R(q), y ) A(q) 
thinning 

W( ~ R) , R(q), S > A(q) 

A(y) 

The proof P' which is obtained from P by means of this alteration 

is said to follow from P by means of a I-reduction step. We say 
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that a I-reduction step has been applied to the particular I-inferen~ 

above. The I-inference is said to be transformed by the reduction 

step into the T(Pl)-inference, which appears in the last diagram. 

B___u What we actually need below are not the T(PI)- and T(Pl,P2)- 

reduction steps themselves, but slight variants of them, called 

strong T(PI)- and strong T(Pl,P2)-reduction steps. They are intro- 

duced by the following 

Definition 45: Let 

c~ii c~is 

u I u s 
P . Let P 

v I ..... v 
i k s 

(k=l ...... s) 
u k 

P be a s.n.s, proof in ZTGi/I and 

the special function constants which occur in 

be the result of replacing every occurence of 

i k 
by C~ . An s.n.s, proof P' in ZTGi/I 

Uk*V k 

is said to follow from P by means of a strong T(PI)- (T(PI,P2)-) 

reduction step if there are sequence numbers Vl, . ...,v s of length 

1 such that P' follows from P by means of a 
v 1 . . . . .  v s 

T ( P 1 ) -  ( T ) P 1 , P 2 ) - )  r e d u c t i o n  s t e p .  

C__ u. For nonintuitionistic proofs P in ZTG/I, we merely need pre- 

liminary reduction steps (including "omission of a cut") and logical 

reduction steps (fork elimination) which are, of course,defined in the 

usual way. The only kind of nonintuitionistic proofs which will 

appear (implicitely) below are almost intuitionistic proofs in the 

sense of chapter III (sect. 3.1., pt. A). Such proofs appear in the 

proof of a theorem (a variant of theorems 33, 41) which states among 

others that an intuitionistic logical reduction step lowers the ordi- 

nal of the proof to which it is applied (with respect to an ordinal 

assignement to be defined below). Apart from this, nonintuitionistic 

proofs will not be encountered. 

D___u. A reduction step is called strictly essential if it is a logical 

reduction step, an induction reduction, a I-reduction step, a strong 

T(Pl)-reduction step or a strong T(Pl,P2)-reduction step. A satura- 

ted proof is as usual one all whose constant terms in the final part 

are saturated. The notion of inessential reduction step is again gi- 

ven by definition 20 (Chapter IV, sect. 4.4., pt. C). With respect 

to strictly essential reduction steps we have in analogy with theo- 

rem 39: 
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Theorem 45: Let P be a saturated s.n.s, proof in ZTGi/I which 

does not coincide with its final part and which does not admit pre- 

liminary nor strictly essential reduction steps. Then there exists a 

critical logical inference whose principal formula has an image in 

the endsequent. 

Proof: The same as that of theorem 39. 

E. The notion of subformula reduction step is introduced in the same 

way as in section 4.4. (part D) of chapter IV. In analogy with theo- 

rem 21 we have 

Theorem 21": If P is a saturated intuitionistic s.n.s, proof in 

ZTGi/I which does not coincide with its final part, and if P does 

not admit preliminary nor strictly essential reduction steps, then we 

can apply a subformula reduction step to P . 

7.3a. Good proofs 

A. In order to be able to introduce ordinals into our considerationj 

A 
we introduce relations R and L whose definitions are given by de- 

A 
finitions 22 and 23 in sect. 4.5. of chapter IV. R and L are 

counterparts of R and L and behave very similarly; in particular~ 

they satisfy a slight variant of theorem 22, part a), which, however, 

will not be needed here. Without danger of confusion, we write R and 

A A 
L in place of R and L . Using definition 32 in chapter V, sect. 

5.3. as it stands~we can associate with every s.n.s, proof P in 

ZTGi/I the set Dp of proofs and the restriction Lp of L to Dp. 

With respect Lp and Dp, we have a theorem, which corresponds to 

theorem 32. In order to state it,we remind that R in W ( ~ )  is 

a standard formula, whose only free variable is x and whose list of 

i I i s 
special function constants is given by ~ ...... ~ u 

Ul' s 
u 

x ~R y is used as abbreviation for 

x Ky 

for 

and W( ~ R) is an abbreviation 

( ~ )(Ex)~ ~ (x+l) ~ R  ~ (x) Now to the theorem. 
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Theorem 46: Let P be an s.n.s, proof in ZTGi/I of 

> W( ~ ~) and assume that Lp is wellfounded. Let 

fl' ..... 'f and g be numbertheoretic functions. Then we find an 
s 

m and an n with n+l < m and a proof P' in Dp of 

> ~ 7 w(n+l) ~ u*v ~ R w(n) where v denotes the system 

vi=fi(m ) , i=l ....... s of sequence numbers and where w=~(m) 

Proof: The proof is essentially the same as that of theorem 24. 

This gives rise to 

Definition 46: An s.n.s, proof P 

proof if Lp is wellfounded. 

in ZTGi/I is said to be a good 

Definition 46~ According to theorem 46 we can associate with every 

good proof P , whose endsequent has the form > W(~R) , a 

continuity function -C P having the following properties: 

if fl' .... f and g are numbertheoretic functions, if moreover 
s 

~P(fl(m) ...... fs(m),g(m))~0 , then there is an n with 
~u*v 

n+l < m and a proof p, C Dp of ) ~ ~ w(n+l) (n) 
R w 

where v and w have the same meaning as in theorem 46. 

-~P is called the continuity function determined by P 

In connection with good proofs we again introduce the notion of gra- 

ded proof. 

Definition 47: An s.n.s, proof P in ZTGi/I or ZTG/I is said to 

be graded if all its side proofs are good. 

Remark: We note that this definition imposes no condition on the in- 

dex proofs of P Lemma 13 in chapter V remains true in the present 

case as is evident to see. 

7.4. Valuation of proofs 

A. In order to be able to introduce ordinals into our consideration~ 

we need an additional concept, that of valuation of a proof. We 

start with some preliminaries. By D s we denote the set of ordered 

s+l-tuples of sequence numbers <Vl, ..... ,Vs,Vs+l> for which 

length(Vl)=length(vi) , i=l ...... s+l holds. The partial ordering 

f---~ s of D s is given as follows: 
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iff t < x and O<i(t)= li(t) for i=l ...... s+l. 

Definition 48: Let P be a good proof of > W( CI- i) where 

R is the formula R( C~ il i s x) Let q~P be the conti- 9,,.. 
U 1 ~ C~ u , S 

nuity function determined by P All element e= <v I .... ,Vs+l> ~ D s 

is said to be unsecured with respect to P if ~P(vl,...,Vs+l)=0 

and secured otherwise. 

Bo 

to a good proof P, we use the following notation: i) 

U 
good proof of > W(~R) (with R denoting 

i i 
1 , ~u s 

R( g~Ul . . . . . .  x)), then Ds(p) is the subset of D s consisting 
S 

of those elements e E D s , which are unsecured with respect to P ; 

S 2) the restriction of • s to DS(p) is denoted by ~ p 

C o n c e r n i n g  D S ( p ) )  we h a v e  t h e  f o l l o w i n g  r a t h e r  e v i d e n t  

In connection with the concept of unsecured element with respect 

if P is a 

L e m m a  1 8 :  L e t  P b e  a g o o d  p r o o f  o f  ) W ( £ i )  
i 1 i 

noting R( ~u I ....... ~uS,x)) . The restriction I- 

s 

to DS(p) is wellfounded. 

(with R de- 

S S 
of I 

P 

We omit the rather obvious proof. 

C__ u Now to the concept of valuation. A valuation of a proof P in 

ZTG/I is a function (or an assignement) which associates with every 

T(P1,P2)-inference in P either a number e which satisfies a cer- 

tain condition C~ ) to be explained below, er else a pair of num- 

bers e , e I which satisfy a certain condition I) to be explained 

below. In order to explain this concept more properly, let 

and be two lists of' sequence numbers, de- VI,'''..,V s W 1 , .... .,W s 

noted by v and w , respectively~such that 

a) length(Vl)=length(vi) , i=l ...... s , 
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b )  length(Wl)=length(wi) , i=l . . . . . .  S , 

c )  wi ~Kvi , i=l . . . . . . .  s Let P contain a T(Pl,P2)-inference, 

say 

T(PI,P 2) 
u*w (~) u*w A(x) /~ 

y d~--R t, ~ R  Y ' ) ~ ,A(y)  

q ~U*WR t, f ~  > Z~ ,A(q) 

Here P i s  a proof in ZTGi/X of > W ( ~ )  (with R as 
i i 

usual R( C~u~ s x , ..... C~u , ) containing no other free variable than 
s 

x )~ while P2 is a proof in ZTGi/I of ) R( ~u.v,t ) . Let 

a valuation of P be given. 

Case i: The valuation associates with the above T(Pl,P2)-inference 
a number e . Then e satisfies the following condition ~) : 

a) e is of the form 

' • " " ; " ~ ~i(~) ' <~l(X) ., ~s(X),/ (x)> , b) x=l e) w ~ K  

i = l  . . . . . .  s ; d )  / ( 0 ) =  I t I  

Case 2: The valuation associates with the above T(Pi,P2)-inference 

a pair e , e I of numbers. Then e and e I satisfy the following 

condition /) : a) e has the form < ~l(X) ..... ~s(X), / (x)> 

with x~2 ~ b) /(x-l)= ~ t I ; c) e I has the form ~(x-l) ° 

' .... w' depen- d) if i<x-l~ then there are sequence numbers Wl, ' s ' 

ding on i and all of the same length, such that 

wi ~KW'i ' i=l, .... ,s and such that ~ (i) is the G~delnumber of 

u*w' ~ (i) a proof r.m in ZTGi/I of ) / (i+l) ~ R / 

! ,,,, W ! ) (where w' denotes the list Wl, ' s 

There are clearly proofs which do not admit a valuation: if ~g. 

w.= < > , i=l ...... s ~ then neither condition ~) nor /) can 
1 

be satisfied. I~ on the other hand, P does not contain T(Pl,P2)-in- 

ferences at all, then it clearly admits a valuation, the so-called 

empty valuation. Notation: Valuations are denoted by symbols such 

as ~, ~ ,  ~ 1 ' V2 etc.. If SI/S 2 is a T(Pl,P2)-infe- 

rence in P ~ then we denote the value of V for this inference by 

( SI/S 2 ) 
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D. Let P be an s.n.s, proof in ZTG/I provided with a valuation 

V . Let P' be a substitution instance of P or else be obtained 

from P by means of a reduction step. Then we can define on P' in 

a natural way a valuation V in terms of V which will be called 

the valuation induced by V on P' and denoted by ~ . In order 

to define ~* it is useful to have three supplementary concepts 

at hand, that of extension of a T(Pi,P2)-inferenee, of data and of 

index of a T(Pl,P2)-inference or a T(Pl)-inference~ respectively. 

Consider two T(Pl,P2)-inferences , say 

T ( p l , p  2) 

- U*W .(x y ~_2  R t )  ( x )  ~ y , 
R 

/% ,A(y) 

u*w , /}~ > ~ , A ( q )  q ~ R  t 

and  

T ( P 1 , P  2) 

Y ~ u*w '  yB U t ,  ( x ) ~ - - - u * w '  ( x ) ,  " > ~ ' , B ( y )  
R 

q ~u~wtR ) ff > ± , ) B ( q , )  

i 
il'''''' ~ S'x) ' P1 is a proof of Here R denotes R( C~u I 

u S 

W ( ~ )  and w and w' denote w I and ).---)w S 

Wl,' .... ,W's, respectively. The second inference is said to be an 

extension of the first if w! ~KWi 1 , i=l, .... ,s , it is called a 

strict extension of the first if w!l ~KWi' i=l, .... ,s . The formula 

i I 
iS,x) the list w I ,w and the number I t [ )..,..) ~ )-,.. R( c~Ul ~<u s 

S 

are called the data of the first of the above T(PI,P2)-jnferences 

and the term q is called the index of this inference. Similarl~ if 

a T(Pl)-inference is given, say 

T(P l) 
u*v A(x) R(~u~v,y), (x) ~R Y > ~,A(y) 

R( u.vq) > ~ ,A(q) 

(with R,P 1 as before and v denoting v I ..... ,Vs); then 

R( ~ u,y ) and v I,.. ..,v s are the data of this inference, while the 
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term q is called its index. 

Now to the definition of ~* . We distinguish cases according to 

the kind of reduction step which leads from P to P' 

Case i: P' is a substitution instance of P . Then each 

T(Pl,P2)-inference S/S' in P is transformed into a T(Pl,P2)-in- 

ference SI/S i in P' which is a strict extension of S/S' . Then 

we put V*(SI/SI)= ~(S/S') ~* , thus defined is certainly a 

valuation. 

Case 2: P' is obtained from P by means of an inessential reduc- 

tion step. This is a special case of case i. 

Case 3: P' follows from P by means of a subformula reduction 

step. Each T(Pl,P2)-inference S/S' in P is transformed into a 

T(Pl,P2)-inference SI/S i in P' which is an extension of S/S' 

We put ~*(Sl/Si): ~(S/S' ) 

Case 4: P' is obtained from P by means of an induction reduction. 

This induction reduction transforms each T(Pi,P2)-inference S/S' 

into n images Si/S ~ , i=l ....... n (with n depending on S/S'), 

each of which is a T(PI,P2)-inference which is an extension of S/S' . 

We put F* (S/S')= ~(S/S' ) 

Case 5: P' is obtained from P by means of a classical fork eli- 

mination. Every T(Pi,P2)-inference S/S' is transformed into at 

most three images Si/S ~ , i=i,2,3 , each of which is an extension 

of S/S' We put ~*(Si/S~): V(S/S' ) 

Case 6: P' follows from P by means of a preliminary reduction 

step or "omission of a cut". A T(Pi,P2)-inference S/S' in P is 

either left unaffected by such a reduction step or else is cancelled 

out. We put ~*(S/S' )= ~(S/S' ) if S/S' remains unaffected by 

the reduction step. 

Case 7: P' follows from P by means of an intuitionistic fork eli- 

mination. This case can either be subsumed under case 5 followed by 

case 6~or else be treated directly in the same way as case 5. 



- 207 - 

Case 8: P' follows from P by means of a I-reduction step. Each 

T(Pl,P2)-inference S/S' in P remains unaffected by this reduction 

step. Hence we put y*(S/S' )= V(S/S' ) 

Case 9: P' follows from P by means of a strong T(Pl)-reduction 

step, applied to the critical T(Pl)-inference So/S ~ in P . Each 

T(Pl,P2)-inference S/S' in P , different from So/S ~ , is trans- 

formed by this reduction step into at most two images si/s I , i=l,2, 

each of which is an extension of S/S '  . We put ~ * ( S / S ! ) =  V ( S / S ' )  

for such inferences• The T(Pl)-inference So/S'o in P , howeve~ is 

transformed by this reduction step into a T(Pl,P2)-inference, say~ 

S*/S *~, and we have to define y* properly on S~/S ~* . Let 

R( ~ u,X) and v I,. . ..,v s be the data of So/S'o and q its index. 

According to the definition of strong T(Pl)-reduction step, the data 

of S*/S *~ are given by R( ~ u,X) , w I, . ...,w s and lql , where 

w.l ~--q KVi and where length(wi)=length(vi)+l , i=l, .... , s . Hence we 

find sequence numbers of length i, say ~i(i) ..... ~s(1), ~(i) 

such that w. ~ ~i(1) i=l, S and such that ~ (0)= I tl- 

AS value of ~ for S*/S** we take 

e= < ~i(i) . . . . . .  ~S(1), / (i)> Condition ~ )  is obviously 

satisfied by e . 

Case i0: P' follows from P by means of a strong T(Pi,P2)-reduc- 

tion step. Let So/S ° be the critical T(Pl,P2)-inference in P , 

to which the strong T(Pl,P2)-reduction step is applied. If S/S' is 
A 

a T(Pl,P2)-inference in P other than So/So, then S/S' is 
f /% 

transformed by this reduction step into at most two T(Pl,P2)-infe- 

rences Sl/S i and $2/S i which are extensions of S/S'. We put 

~ * ( S i / S . ~ ) =  ~ ( S / S '  ) • Now to So/S ° . L e t  R( ~ u , X ) , V  1 . . . . .  v s 
and I tl be the data of So/S ° and q its index• The strong 

T(Pl,P2)-reduction step transforms So/S O into another T(Pl,P~)-in- 

• and ference S~/S *~. , whose data are given by R( ~ u,X) 9 w I .... w s 

/ql where a) wig KVi, i=l ...... s ; 

b) length(wi)=length(vi)+l , i=l ...... s Su_b_c_ase_l: Y associaSes 

with So/S 0 a number e, say, < ~ l ( 1 )  . . . . .  ~ S ( 1 ) ,  / (1) ~ 
By definition, vi ~ K ~i(1) and / (0)= Jt I Since 

w. , i=l, ..... ,s is a strict extension of v. , we find sequence 
1 1 

numbers c~i(2 ) ....... C~s(2 ) which are extensions of 

~i(i ) ....... O((i) and which satisfy w.~ ~ (2), i=l ..s . s l K i '" 
By definin~ / (i)= I ql, we obtain an extension J(2) of ~ (i). 
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Now we can extract from P by means of the basic lemma IIan s.n.s. 

proof P in ZTGi/I of > lql ~u*v R I t I . Let m be the 

Goedelnumber of this proof and put < (0)=m . Then it __is evident 

that e'= <~i(2) ....... ~s(2), ~ (2)> and e"= ~ (i) satis- 
J 

fy condition ~ ) . Thus we may define: The value of ~* for 

S*/S** is e' ,e" . The definition of ~* on P' is thus comple- 

ted. Sub~ase_2i ~associates with So/S ~ a pair of numbers, say~ 

< ~l(X) ....... ~s(X), f (x)~ and ~ (z) . According to 

condition ~ ) ~ we have x~2 , vi ~ K  ~i(x) ~ (x-l)= I t I and 

z=x-1 . For each i=x-1 there are in addition sequence numbers 

vl ...... ,V~ of equal length and an s.n.s, proof Pi in 

ZTGi/I of > # (i) ~u*v, ~ v R ~ (i+l) such that vi --K i ' 

i=l, ..... ,s and such that ~ (i) is a Goedelnumber of Pi 

• i=l, ,s~ we find se- Since w I is a strict extension of v i , ..... 

quence numbers ~l(X+l) ....... ~s(X+l) which are extensions of 

x) ...... ~s(X) and which satisfy wi ~K ~i (x+l)' i=l ..... s. 

From P we can extract according to basic lemma II an s.n.s, proof 
u~v 

in ZTGi/I of ~ lql ~R I t I Let m be the Goedelnumber 

of this proof and put ~ (x-l)=m Then it is clear that 

e'= <~l(X+l) ...... ~s(X+l), /(x+l)> and e"= (x) satisfy 

condition ~ ) if we put j (x)= / q l . Hence wedefine: the value 

of ~* for S*/S** is e',e" ~* is thus fully defined on 

p, 

E. If P is a graded s.n.s, proof in ZTG/I, then there are cer- 

tain valuations of P which are of particular interest. 

i) 

e 

is 

is an unsecured element with respect to 

Definition 49: Let P be a graded s.n.s, proof in ZTG/I and V 

a valuation of P • V is said to be compatible with P if for 

every T(Pl,P2)-inference S/S' (whose data are assumed to be 

i I i 
~....°~ y ....° y R( ~ u I ~uS'x)s Wl' 'Ws I tl ) the following holds: 

if ~(S/S' ) is e= < ~i(i) ....... ~s(1), f(1) > , then 

is an unsecured element with respect to Pl ' 2) if V (S/S') 

e= < ~l(X) ....... ~s(X), f(x) > , e'= ~(x-l) , then e 

P1 

Remark: Clause i) of def. 49 is automatically satisfied according 

to our definition of "unsecured". Clause i) has been included for 
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convenience only. 

Lemma 19: Let P be a graded s.n.s, proof and ~ a compatible 

valuation of P Let P' be obtained from P by means of a preli- 

minary reduction step, "elimination of a cut", (intuitionistic or 

classical) fork elimination, an inessential reduction step, an in- 

duction reduction or a subformula reduction step. The induced valu- 

ation ~ * on P' is compatible with P' (which is still a gra- 

ded proof) 

Proof: Is obvious from the definition of V* 

Lemma 20: Let P be a graded s.n.s, proof and Va compatible 

valuation of P . Let P' be obtained from P by means of a strong 

T(Pl)-inference or a strong T(Pl,P2)-inference. The induced valu- 

ation V ~ on P' is compatible with P' (which is still a gra- 

ded proof). 

Proof: 

Case I: P' follows from P by means of a strong T(Pl)-reduction 

step. Let So/S ~ be the T(Pl)-inference in P to which the reduc- 
i 

step is applied; let R( ~i, tion s x) v I ..... v and 
S 

;t I be the data of this inference. Let SI/S i be the T(Pl,P2)- 

inference into which So/S ~ is transformed by the reduction step. 

The lemma is essentially proved if we can show that V* asso- 

ciates with Sl/S i an element e= < ~l(X) ..... ~s(x), ~ (x)~ 

which is unsecured with respect to Pl (where P1 is by assumption 

a good proof). Now V * associates with Sl/$ i by definition an 

. . . . .  ( i )  / ( i ) . ~  But such element e of the form < ~l (1) ' ~s ' 

an element is by definition unsecured with respect to P1 ' hence 

V * is compatible. 

Case 2: P' follows from P by means of a strong T(PI,P2)-reduc- 

tion step. Let So/S ~ be the T(Pi,P2)-inference to which the strong 
i I i 

T(Pl,P2)-reduction step is applied; let R( ~Ul ~uS,x) 
S 

Vl, ...... ,v s , It I be the data of this inference and q its index. 
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Let SI/S { be the T(Pl,~2)-inference into which So/S ~ is trans- 

.... and I q l formed by the reduction step; let R( ~u,X), Wl, ,w s 

its data. Assume eg. that ~ associates with So/S ~ the pair 

e: < ~l(X) ...... ~s<X), y<x)~ , e': ~ (x-l) . By definition, 

the induced valuation ~* associates with Sl/S { a certain pair 

of the form < ~l(X+l) ..... ~s(X+l), ~ (x+l)~ , ~ (x) ; here 

/ (x-l)= It I , ~ (x)= I q I and ~ (x) is a GSdelnumber of a 

uWv 
proof P~ in ZTGi/I of > l ql ~ R  I tl . Now assume 

that ~* is not compatible with P' . This implies that 

< ~l(X+l) ....... ~s(X+l), ~ (x+l)~ is secured with respect 

to P1 " By definition there is an n~x and a proof P ~ DPl of 

7 > w '(n+l) ~ R  w, (n) , where v' denotes the list 

~l(X+l) ....... ~s(X+l) and where w'= (x+l) . By means of a 

A 
conversion we obtain from P a proof P in ZTGi/I of 

u*v'/ 
> p (n+l) rf R (n) . On the other hand, (n) is the 

GSdelnumber of a proof P** in ZTGi/I of 

R (n) where v" denotes a list of sequence 

'! o . . o v" numbers Vl, ' s all of equal length, satisfying 

wi ~--KV"i ' i=l, .... ,s . From P we obtain a substitution instance 

Pl whose endsequent is > ~ / (n+l) ~ R uWw / ~ (n) and from 

P** we obtain a substitution instance P~* whose endsequent is 

uWw / ~ (n+l) ~--R (n) ~ut this implies that ZTGi/I is in 

c o n s i s t e n t  and via theorem 4~ that ZTi/I is inconsistent, contra- 

dicting the assumed consistency of ZTi/I . The case where V 

associates with So/~ & a number < ~l(1) ..... ~s(1),/(1)> 

can be treated in precisely the same way. 

F__ u. Let Pc' .... 'Pn' .... be a list of s.n.s, proofs in ZTGi/I , 

each of which is obtained from the previous one by means of a re- 

duction step, including "omission of a cut". If ~ is a valu- 
o 

ation of Pc ' then we obtain valuations ~i of Pi by means 
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of the inductive definition ~i+l = Yi* " In such a case we 

say that V i is the valuation induced by ~o on Pi " As 

example, consider ans.n.s, proof P in ZTGi/I provided with a 

valuation ~n and let ~ ~ A be an uppermost sequent in 

the final part of P (denoted by S ). Let B be a formula in 

and let P be the side proof determined by B in S according to 

basic lemma II. P can be derived from P by means of preliminary 

reduction steps and the operation "omission of a cut". Hence there is 
A 

a chain Pc' ..... 'PN with Po=P ' PN =P and such that Pi+l follows 

from P. by means of a preliminary reduction step or an "omission of 

a cut". The valuation ~N induced on PN (that is on P ) by 

~o will be called the valuation induced ~ the side by on 

proof P . The valuation which is induced on 9 by ~o can~of 

coursej be described directly. Each T(Pl,P2)-inference S/S' in P 

occurs either unaffected in P or else is omitted. The induced va- 

luation ~ on P is then nothing else than the restriction of 

~o to those T(Pl,P2)-inferences S/S' which are not cancelled 

out. We have the obvious 

Lemma 21: Let P be a graded s.n.s, proof in ZTGi/I , provided 

with a compatible valuation ~ and ~ > A (denoted by S ) 

an uppermost sequent in the final part of P . Let B be a formula 

i n  a n d  P t h e  s i d e  p r o o f  d e t e r m i n e d  b y  B i n  S a c c o r d i n g  t o  

b a s i c  l e m m a  I I .  T h e  v a l u a t i o n  ~ i n d u c e d  b y  ~ o n  P i s  c o m p a -  

t i b l e  w i t h  P ( w h e r e  P i ~  o f  c o u r s e ~ a  g r a d e d  p r o o f ) .  

G. Lemmasl9 and 20 do not include the case of a l-reduction step, 

since it is not clear whether a I-reduction step transforms a graded 

proof into a graded proof. We have~however~ 

Lemma 22: Let P be a graded s.n.s, proof in ZTGi/I provided 

with a compatible valuation ~ Let S/S' be a critical I-infe- 

rence in P ' P1 the side proof determined by S/S' Let finally 

P' be obtained from P by means of a I-reduction step, applied to 

S/S' and ~' the valuation induced by ~ on P' If P is 

"good", then P' is graded and ~' is compatible with P' 

The evident proof is omitted. 
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7.5. Ordinals 

u 
A__:. Let P be a good proof of > W( dr- R) with R denoting 

i I i 
R( ~ ..... s ) ~u )x) . As noted earlier, the restriction of 

u I s 
-s ) of unsecured ele- /_-~s to the set DS(p) (denoted by [ p 

ments with respect to P is wellfounded. If e is such an element, 

then we can associate with 

~ ; we denote it by 

s i__p will be denoted by 

e as usual its ordinal with respect to 

II ell p • The ordinal associated with 

s II 

B__ u. Now let P be a graded s.n.s, proof in ZTG/I and ~ a com- 

patible valuation of P . If S/S' is a T(Pl,P2)-inference in P , 

then ~ associates with S/S' either a number e or else a pair 

of numbers e , e I , satisfying conditions ~) or ~ ), respecti- 

vely. In both cases e is by definition an unsecured element with 

respect to the good proof P1 " The ordinal I) ell P1 will be called 

the ordinal associated by ~ with S/S' and will be denoted by 

o %F (s/s,) 

C. The set of proofs in ZTGi/I is denumerable and so is the set 

o f  g o o d  p r o o f s .  H e n c e  t h e r e  i s  a s m a l l e s t  d e n u m e r a b l e  o r d i n a l  ~ 

u 
having the property: if P is a good proof of > W(~R) 

I . ° , )  ) • ( w i t h  R f o r  R( U l ,  G~uS x ) )  t h e n  /[E~Z2~ II< We d e n o t e  
s 

t h i s  s m a l l e s t  o r d i n a l  b y  - ~ -  

D. Given a graded s.n.s, proof P in ZTG/I provided with a compa- 

tible valuation ~ , we can associate with every sequent S in P 

a certain ordinal (depending on ~ ) which we denote by 0(y/S) 

and whose inductive definition is given as follows: 

i) if S is an axiom, then 0( ~ /S)=I ; 2) if S is the con- 

clusion of a conversion or a one-premiss structural rule S/S') then 
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0( V /S):0( V /S' ) ; 3) if S is the conclusion of a one--premiss 

logical inference B'/S, then 0( ~/S)=0( V /S') ~ 1 

4) if S is the conclusion of a two-premiss logical inference 

SI,S2/S~ then 0( ~/S)=0( V /S I) # 0( V /S 2) ~ 1 

5) if S is the conclusion of a cut SI,S2/S , then 

0( V /S)= (XFd(0 (V/S1) @0(V/S2) ) where d=h(Sl)-h(S ) 

6) if S is the conclusion of an induction S'/S ~ then 

O( V/S)= gOd(O (Y/S') 60 ) where d=h(S')-h(S) ; 7) if S is 

the conclusion of a I-inference S'/S, then 

O( V/S): 60d((O (V/S') =~ LO -(~ +i) (x) ~- +i) where d:h($')-h(S), 

8) if S is the conclusion of a T(P )-inference S'/S, then 

0( ~/S)= 6~) d((0 ( ~ /S') # DO k+l)l CO A+I) where d=h(S')-h(S) 

and k : 'I ~ p H, 9> if S is the conclusion of a T(PI,~2!I 
inference S'/S, thln 0( ~ /S)= DOd((0 (V/S') ~ 60 ~+i)DO / ) 

where d=h(s')-h(S) and ~ =0 ~(S'/S) . The ordinal of the end- 

sequent of P is called the ordinal of P and will be denoted by 

0 ~(P) (indicating its dependence on ~ ) 

E. With respect to this ordinal assignement we have the following 

Theorem 47: 

A__ u Let P be a graded s.n.s, proof in ZTG/I and ~ a compatible 

valuation of P . Let P' be obtained from P by means of a reduc- 

tion step and V* the valuation induced by V on P' . Then 

0 V.(P') < 0 V(P) if the reduction step in question belongs to 

the following list: i) "Omission of a cut", 2) a classical fork 

elimination, 3) an intuitionistic fork elimination, 4) an induc- 

tion reduction, 5) a strong T(Pl)-reduction step, 6) a strong 

T(Pl,P2)-reduction step. 

B. If P' is a substitution instance of 

means of a preliminary reduction step then 

P or follows from P 

0 y.(P') ~0 v(P ) 
by 

Proof:a)The proof of clauses 1)-6) and of the last part of the theo- 

rem leads to exactly the same inequalities as in earlier cases. The 

proof of 3)~ in particular, uses the fact that an intuitionistic fork 

elimination is composed by a classical fork elimination plus some 

preliminary reduction steps. Hence 3) is reduced as usual to 1),2) 

and part B. b) Next consider the case where P' follows from P 

by means of a T(Pl)-reduction step. Let S/S' be the T(Pl)-infe- 

renee to which the reduction step is applied and let Sl/S i be the 
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T(Pi,P2)-inference into which S/S' is transformed by means of the 

s II (for some suita- reduction step. By definition, V(S/S' )= II[---~-pl 

ble s) and V*(SI/SI)= IIell Pl where e is an element in the 

s . By definition, Ilell pl<Jl~Spll~- domain DS(PI) of [----Pl 

If we put IIel] Pl = ~ IIc --s I/ = ~, then the proof of 5) 
' P1 

leads again to the verification of the inequality 

in turn is a consequence of the inequality E : 

~d((~# m@w~)w~# ~ @ n)<~d((~@w~+l)~ ~+l) (for all 

, ~ and all finite m,n,d ) which is proved in chapter II, 

sect. 2.5., part C.  c) Finally, let P' be obtained from P by 

means of a T(Pl,P2)-reduction step. Let S/S' be the T(Pl,P2)-in- 

ference, to which the reduction step is applied, and let Sl/S i be 

A 
the T(Pl,P2)-inference into which S/S' is transformed by the re- 

duction step. Assume ~g. that V associates with S/S' the pair 

V sl i e , e I and that * associates with /S the pair e' , e 1 

By definition of V* it follows that e' [----s e holds. By assump- 

tion and according to lemma 20, it follows that e' ~s e holds. 
P1 

Hence, ~e'II Pl < lie IIPI " The verification of 6) again amounts to 

the proof of 

~ d ( ( ~ m  ~ W~+I)~ ~+i @~ ~ 2)<gOd((~@ ~ V+I)~ ~+i) with 

# e'# Pl = ~ ' # e# PI = 7 , which in turn is a consequence of 

the inequality E . The situation is precisely the same in the case 

where V associates with S/S' a single number e . 

If P' follows from P by means of a I-reduction step then it is 

not clear whether P' is again a graded proof. However, we have 

Theorem ~8: Let P be a graded s.n.s, proof in ZTGi/I , provided 

with a compatible valuation V . Let S/S' be a critical I-infe- 

rence in P and assume that P' is obtained from P by means of a 

I-reduction step, applied to S/S' . Let S1/S ~ be the T(P1)- 
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inference into which S/S' is transformed by the reduction ste~ and 

let V* be the valuation induced by ~ on P' . If the side pro~ 

Pl of S/S' in P is good, then P' is graded, V * is compa- 

tible with  P' and 0 ~ . ( P ' )  ~ 0  v ( P  ) 

Proof: That P' is graded and V* compatible with P' is sta- 
~q+l -~+i 

ted in lemma 22. By definition O( V /S')= 64)d( ( ~ ~ W ) ~2 ) 

where ~ :0( • /S) . Similarly, O( V*/SI): ~d((~@~O ~+i)~+i) 

where ~ = I] ~ ~. By definition, ~ < ~. The proof of the 
1 

theorem amounts to proving 0( ~ */Sl) < 0( ~/S ) which, in turn, is 

a consequence of the strict monotonieity of ~62d(( ~ ~ X+I) ~4) ~+i) 

as function of x 

7.6. The wellfoundedness proof 

A__ u Theorem 49: Let P be a graded s.n.s, proof in ZTGi/I , provi- 

ded with a compatible valuation V • Then Lp is wellfounded. 

Proof: We proceed by transfinite induction with respect to 

O V (P) . There are three subcases to be distinguished: A) P is 

saturated and does not admit preliminary reduction steps, B) P is 

saturated but preliminary reduction steps can be applied to P , 

C) P is not saturated and preliminary reduction steps can be app- 

lied to P . We content ourself with the proof of A). Cases B) and 

C) are easy consequences of case A) and can be treated in the same 

way as the corresponding cases B,C in, say, theorem 35. Case A) is 

proved if we can show: if L(P,P') holds, then Lp, is wellfoun- 

ded. In view of the assumptions stated under case A), this is the same 

as to prove: if P' follows from P by means of a strictly essen- 

tial reduction step or a subformula reduction step, then Lp, is well- 

founded. Subcase i: Let P' be obtained from P by means of a 

strictly essential reduction step different from a I-reduction step 

or by means of a subformula reduction step. Let V* be the valu- 

ation induced by ~ on P' . According to theorem 4 7 we have 

0 h~.(P') <0 V(P) ; hence Lp, is wellfounded. _~_~_~! Let 

P' be obtained from P by means of a I-reduction step. Let S/S' 

be the critical I-inference in P to which the reduction step is 

applied and P1 the side proof determined by S/S' (in P). Accor- 

ding to its construction, described in basic lemma If, P1 is deri- 

ved from P by means of preliminary reduction steps, including the 
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operation "omission of a cut". Let ~ be the valuation induced by 

on P1 " According to theorem 47 it follows that 

0 V(PI) < 0 V (P) holds. From the inductive assumption of our tran~ 

finite induction it follows that Lp is wellfounded, that is, that 

P1 is good. The proof P' is therefore again a graded proof, and 

the valuation ~* induced by ~ on P' compatible with P' , 

as follows from lemma 22. From theorem 48 we conclude that 

0 v.(P') < 0 ~ (P) holds; hence Lp, is wellfounded. By combining 

subcase 1 with subcase 2 we infer the wellfoundedness of Lp . This 

proves case A and thus essentially the whole theorem. 

An immediate consequence of the above theorem is 

Corollary: If P is an s.n.s, proof in ZTi/I 

founded. 

then Lp is well- 

Proof: We can treat such a proof as graded proof provided with the 

empty valuation. 

7.7. Remarks on applications 

From the last theorem and its corollary we could again deduce theo- 

rems 23, 24, 25 (but restricted to ZTi/I ). However, the method des- 

cribed in the last three chapters has a much wider range of appli- 

cations and so we postpone the discussion of applications to the next 

chapters. 



CHAPTER VIII: 

Harrop formulas 

In the present chapter we generalize the results obtained in chap- 

ters IV - VII by using some quite elementary combinatorial conside- 

rations which are intimately connected with basic lemmas I and II. 

The main applications of our methods, which we have obtained so far, 

are results of the form: "if > A k/B has been proved (in some 

suitable theory) then there is a proof of > A or > B ", 

etc.. Now we generalize these results and prove theorems of the fol- 

lowing kind: "if AI, ..... ,A s are formulas belonging to a certain 

class C of formulas (yet to be defined) and if AI, ..... A s ) Ak/B 

has been proved (in some suitable theory)~ then there is a proof of 

AI, .... ,As ) A or of AI, .... ,A s > B" . The above-mentioned 

combinatorial arguments can be combined either with the methods des- 

cribed in chapter IV or else with the methods described in chapters 

V - VII. It turns out that the results obtained in the second case 

are much stronger than those obtained in the first case. This makes 

it evident that the methods described in chapters V - VII are more 

substantial than those described in chapter V; other arguments in fa- 

vour of this statement will be given in the last chapter. 

8.1. Intuitionistic number theory and Harrop formulas 

To start with, let us introduce a class of formulas, called the 

M The inductive definition 

A. 
D 

class of Harrop formulas and denoted by 

of M is given by 

Definition 50: a) prime formulas belong to M ; b) if A is in 

M, then (X)A and ( ~ )A are in M ; e) if A and B are in 

then A /~B is in M ; d) if A is in M and B is arbitrary, 

then B ~ A  is in M ; e) for arbitrary A , -~A is in M 

Remark: From now on we call a formula closed if it does not contain 

free variables nor special function constants. 

In connection with the above definition we note the obvious 

Lemma 23: i) If A ~ B  is in M~ then B E M ; 2) if A /kB ~ M 

then A 6 M and B g M ', 3) if ( O<)A( O< ) 6 M, then A(F) E M 

for any funetor F free for ~ in A ; 4) if (x)A(x) E M then 
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A(t) ~ M for every term t free for x in A . The first who re- 

cognized that the formulas of M play a certain role in the theory 

of intuitionistic systems was R. Harrop. In f2] he proved certain 

results for a Hilbert-type version of intuitionistic number theory. 

We formulate his result in terms of sentential calculus, using our 

version of intuitionistic number theory, namely ZTi . In this lan- 

guage Harrop~ result can be stated as follows: a) if AI, ..... ,A s 

are closed formulas in M and if A, B are closed formulas such 

that ZTi ~ A I, ..... ,A s ) A V B holds, then 

ZTi ~ A 1 ...... ,A s > A or ZTi ~ A I ..... ,A s > B ; 2) if 

closed formula~ then ZTi ~ A 1 ...... ,A s > A(F) for some functor 

F free for ~ in A ; c) similarly, with Ex in place of E 

and a term t in place of F . We will refer to this result hence- 

forth as Harrop~ result. In ~8 3 we gave a proof of Harrop~ result 

using the techniques which Gentzen introduced in Eli . In the mean- 

time,however, it turned out that there is a much more elegant proof of 

this result which shows clearly the close relationship between Harrop 

formulas and Gentze~s reduction techniques. This proof will be given 

below. 

B__~. In order to reformulate Harrop~s result in such a way as to be 

easily accessible to Gentzen techniques, we need the following 

Theorem 50: Let T be any of the theories considered so far, that 

is,any of ZT , ZTi , ZT/I , ZTi/I , .... or any of the conservative 

extensions ZTE/II N , ZTEi/II N , ZTEi/II , ZTE/II , .... etc. Let 

A1, ..... ,A s be formulas without free variables. Then 

T, > A 1 ....... > A ~ ~ > ~ iff 
s 

T ~ A I ...... As, y > /k 

Proof: The implication from right to left is obvious. Let P be a 

proof in T, ) AI, ..... ~ A of ~ ) ~ . Then one 
' s 

proves by an almost trivial induction (starting with the axioms): 

if y w > ~ ' is a sequent in P, then 

~' T ~ A 1 ...... As, ~ ~ ' The statement then follows by 

taking for y' > /k ' the endsequent of P . 

This theorem allows us to reformulate Harrop's result in the following 

form 
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Theorem 51: Let AI, .... ,A be closed Harrop fQrmulas and 
s 

A, B, a r b i t r a r y  c l o s e d  f o r m u l a s ,  a) 

ZTi, ) AIr .... , > A ~ > A V B, then 
S 

ZTi, > A 1 .... , > A ~ > A or 
S 

ZTi, > A 1 ...... ) A ~ > B ' 
S 

b) if ZTi, > A 1 > A 

there is a functor F free for ~ in C( ~ ) 

ZTi, > A 1 ...... > A ~ > C(F) 
S / 7 

Ex and a term t in place of E ~ and F 

s e q u e n t  o f  

> (E ~ )C( ~ ), then 

such that 

c )  s i m i l a r l y ,  w i t h  

T h i s  i n  t u r n  i s  a c o n -  

Theorem 52: Let AI, .... ,A be closed Harrop formulas such that 
s 

> A 1 ....... > A ZTi is consistent. Then a), b) c) of 

theorem 51 hold. If ) AI, ..... , > A , ZTi is inconsi- 
s 

stent, then > is provable and so a), b), c) of theorem 51 

hold trivially. So it remains only to consider the case where 

A I, .... , > A ,ZTi is consistent. Here we make use of the 
s 

tertium non datur, which could be avoided without difficulty; howeve~ 

its use simplifies the considerations below. 

C° 
m 

(~. ZTE/II ) 
ZTEi/II ) Let 

T(A 1 ..... A ) 

) A I , .... , 

Ti(A 1 ...... A s ) 

A 1 , .... , 

Next, let T be any of the systems considered so far 

and T i its intuitionistic version (that is, 

AI, .... ,A s be closed Harrop formulas. By 

we denote the system which we obtain by addition of 

> A as new axioms to T , correspondingly by 
s 

the system which we obtain by adding 

> A as new axioms to Ti 
S 

Definition 51: The Harrop hull HTi(A 1 ...... As) of Ti(A I ...... As) 

is obtained from Ti(AI, ..... ,As) by adding to it every sequent S 

as a new axiom which satisfies one of the following conditions: 

a) S is # B and B is a Harrop formula such that 

Ti(A 1 ...... As) ~ > B ; b) S is A > B and B is a 

Harrop formula such that Ti(A 1 ...... As) ~ > A ~ B ; c) S is 

A ~ and Ti(A 1 ...... As) ~ > ~ A . The Harrop hull 

HT(A 1 ...... As) of Ti(A 1 ...... As) is obtained from T(A 1 ...... As) 

by addition of every sequent S which satisfies a), b) or c) above. 

Remark: A sequent S which satisfies one of the conditions a), b) 

or c) above is called a Harrop axiom (with respect to Ti(A 1 ..... As) ) . 
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In connection with the above definition we note 

Lemma 24: Let S be a Harrop axiom and assume that S is a sequent 

of the following list: I) > ( ~ )~( __ ~ ) , 2) > (x)B(x) , 

3) > A A B , 4) > A ~ B , 5) > ] A . If S is 

the i-th sequent in the above list then the i-th sequent in the list 

below is also a Harrop axiom: i) > B(F) , F a functor free 

for 7 in B ; 2) > B(t) , t a term free for x in B ; 

3) > A and > B , 4) A ) B , 5) A > 

Proof: S, having the form > G , can only be a Harrop axiom in 

virtue of clause a) of definition 51. In particular, G must be a 

Harrop formula. With the aid of this observation the statement imme- 

diately follows from the definition of Harrop formulas (in particular 

lemma 23) and from definition 51. 

Systems of the form HT(AI, .... ,As) will be called Harrop systems, 

those of the form HTi(AI, .... ,As) are called intuitionistic Harrop 

systems. If e.g. Ti is ZTEi/II , then HTi(A 1 ...... ,As) is the 

theory obtained from ZTEi/II by adding to it every sequent S as 

new axiom, which satisfies one of the clauses a), b) or c) in def.51. 

The following theorem is evident. 

Theorem 53: a) HTi(A 1 ...... A ) ~ S iff Ti(A 1 ...... A 
s s 

b) HT(A I ...... As) ~ S iff T(A 1 ...... AS) ~ S • 

~S, 

I n  o t h e r  w o r d s ,  HTi(A I . . . . . .  As) and HT(A 1 . . . . . .  As) a r e  c o n s e r v a -  

t i v e  extensions of Ti(A 1 ....... As) and T(A 1 ....... As) respective- 

ly. 

D__~. With respect to Harrop systems, we can introduce the notion of fi- 

nal part as usual: i) the endsequent of a proof P is in its final 

part; 2) if S is in the final part of P and if S is the con- 

clusion of a conversion or a structural inference,then the premiss(es) 

of this inference belong to the final part. An inference is called 

critical if it is neither a conversion nor a structural rule and if 

its conclusion belongs to the final part. Preliminary reduction steps 

and the operation "omission of a cut" can be introduced for proofs 

P with respect to Harrop systems in the usual way. An indispensable 

tool for the present section and the whole chapter is the basic lemma 

II , which in the present context reads as follows: 



221 - 

Basic lemma llH! Let HTi(AI, ..... ,As) be an intuitionistic Harrop 

system and P a proof in it. Assume that the endsequent of P has 

, be the uppermost sequents in the form > A . Let S1 ...... $m 

the final part of P , listed from left to right; let S. be 
1 

~'I ' i=l, ..... ,m . a) i m a proof > B. If < then there is 
1 

P'l in HTi(AI, ..... ,As) of > B i ~ b) if B occurs in Yi) 

then there exists a proof P' in HTi(A 1 ...... ,As) of > B Q 

The proofs P. and the proof P' can be derived from P by means 
1 

of preliminary reduction steps, including at least one "omission of a 

cut " . 

Proof: Word by word the same as that of basic lemma II. 

Remark: The proof P' associated with B in S. is welldetermined 
J 

by B (and S. ) according to the construction described in the 
J 

proof of basic lemma II. We call P' the side proof determined by 

B in S. 
J 

E___u Now let AI, ..... ,A s be arbitrary but fixed closed Harrop formu- 

las. Throughout what follows we make the 

Assumption: ZTi, > AI,. .... > A is consistent. 
S 

From theorem 53 we conclude 

Lemma 25: HZTi(A I ...... As) is consistent. 

Notation: The theories HZTi(A 1 ...... As) and HZT(A I ....... As) 

will be denoted by HZi and HZ respectively. 

For HZ and HZi we can introduce the whole complex of notions in- 

troduced in connection with ZT . That is, the following notions can 

be introduced without any changes in exactly the same way as before: 

i) complexity of a cut; 2) of an induction; 3) height of a se- 

quent in a proof; 3) fork Ii,I2,I 3 , 4) fork elimination (clas- 

sical logical reduction step); 5) intuitionistic fork elimination 

(intuitionistic logical reduction step); 6) induction reduction; 

7) saturated proof; 8) substitution instance; 9) inessential re- 

duction step; i0) subformula reduction step; ii) preliminary re- 

duction step; 12) strictly normal standard proof (s.n.s. proofs). 

To this list of concepts we add a new one, more precisely we intro- 

duce a new kind of reduction step, to be called "H-reduction step" 
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with H indicating that the reduction step has something to do with 

Harrop formulas.Prior to the definition of H-reduction step we note 

an important lemma which connects the basic lemma II H with the Harrop 

axioms. 

Lemma 26: Let P be a standard proof in Zi (that is having an end- 

sequent of the form > C). Let A > B be a Harrop axiom in 

the final part of P . Then ) B is a Harrop axiom. 

Proof: By assumption, A > B is an uppermost sequent in the 

final part of P . Case a: A > B is the rightmost one among 

the uppermost sequent in the final part of P . Then P , being a 

standard proof, has necessarily the endsequent > B . Hence, 

HZi ~ ) B and so Zi ~ > B by theorem 53. 

Case b: A > B is not the rightmost one among the uppermost 

sequents in the final part of P . According to basic lemma IIH~there 

is a proof P' in HZi of > B; hence Zi ~ ) B accor- 

ding to theorem 53. 

On the other hand,it follows from the inspection of definition 51 

that B is 8 Harrop formula. Hence~ by combining this with cases a) 

and b)~ we obtain the lemma. 

Now to the description of H-reduction step. Let P be an s.n.s. 

proof in HZi and S a Harrop axiom in the final part of P ha- 

ving the form y > G where ~ contains at most one formula. 

Then we can apply to P a certain syntactical transformation, depen- 

ding on the form of G . The specific form of this transformation is 

given by the clauses A-F below. 

A) S is 

hence 

~ (~)B( ~ ). By lemma 26 ~ ( ~ )B( ~ ) and 

) B( O< ) are Harrop axioms. So we can replace S in P 

by the following derivation: 

.~ B( O< ) 

>(~)B(~) 
where o< is a suitably chosen 

> V ' eventually followed by a 
thinning, 

free variable. 

B) S is > (x)B(x) . Then we proceed in the same way as under 
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A), but with a suitably chosen free individual variable y in place 

of Oi 

C) S is ~ > A /k B By lemma 26 > A /kB and hence 

> A and 9 B are Harrop axioms. Hence,we can replace 

by the following derivation: 

S 

>A >B 

y >AAB 
~ /~ , eventually followed by a 

thinning. 

D) S is /-- > A ~ B  . By lemma 26 > A ~ B  is a 

Harrop axiom and by definition 51, clause b , A ~ B is also a 

Harrop axiom. Hence we can replace S by the following derivation: 

A > B 
, followed eventually by a 

thinning. 

E) S is ~ > ~ A . By lemma 26 > ~ A is a Harrop 

axiom and by definition 51, clause c), A > is a Harrop axiom. 

Hence we can replace S by the following derivation: 

A > 

-->~A 

, eventually followed by a 
thinning. 

F) S is / ~ p=q and 9 not empty. Then ~ p=q is a 

Harrop axiom and we can replace S by the following derivation: 

p:q 

> p=q 

thinning. 

The proof P' which one obtains by applying to P any of the trans- 

formations described under A) - F) is said to follow from P by 

means of an H-reduction step. We say that the H-reduction step is 

applied to the Harrop axiom S . 

It is evident that there is no infinite chain of proofs Po,PI, ..... 

such that Pi+l follows from Pi by means of an H-reduction step. 

We even can find an upper bound N in terms of P with the proper- 
o 



224 - 

ty: if Po' .... 'Ps is a chain of proofs in HZi such that Pi+l 

follows from P. by an H-reduction step and such that no such te- 
l 

duction step is applicable to P then s <N . An important proper- 
s 

ty of H-reduction steps is described by the following 

Lemma 27: Let P be a saturated s.n.s, proof in HZi which does 

not admit any H-reduction step. Then every sequent ~ in the final 

part of P is either a true prime sequent or else a mathematical 

axiom D > D' , D isomorphic with D' 

Proof: Assume the lemma to be false. The sequent S which violates 

the lemma must then by necessity be a Harrop axiom. We show that a 

contradiction arises and distinguish cases according to which clause 

of definition 51 S is a Harrop axiom. Case a: S is > B 

with B a Harrop formula such that Zi ~ ~ B . If B were not 

a prime formula, then B would contain as outermost logical symbol 

either a propositional connective A , --7 , ~, or else a universal 

quantifier applied to a functional variable or an individual variable. 

In any case,we could apply an H-reduction step to S , contradicting 

the assumption. Hence B is a prime formula p=q and, since P is 

a saturated proof~ both p and q are saturated. Since Zi is con- 

sistent by assumption, it follows from theorem 53 that Ipl = lql 

holds; hence S is a true saturated prime formula, contradicting the 

assumption about S . Case b: S is A ~ B and 

Zi ~ ) A ~ B From lemma 26 it follows that > B is a 

Harrop axiom, that is, Zi ~ > B As under a), it follows that B 

cannot contain a logical symbol. Hence B must be a saturated prime 

formula p=q From lemma 26, the assumed consistency of Zi and 

theorem 53, we conclude that IPl = lq[ must hold, contradicting the 

assamption about S . Case c: S is A > and Zi ~ > ~A 

holds. Since S is an axiom in the final part of P, it is an upper- 

most sequent in the final part of P~ and so we can infer from basic 

lemma II H that there exists a proof P* in HZi of ) A. 

Since HZi is a conservative extension of Zi 9 this contradicts 

Zi ~ ) ~ A and the assumed consistency of Zi 

F. Now we associate with every formula A inductively a natural 

number, called its degree and denoted by d(A) a) If A is 

prime, then d(A):l ; b) d(A/~ B)=d(A)+d(B)+I ; 

c) d(A ~/B)=d(A)+d(B)+I ; d) d(A ~B)=d(A)+d(B)+I ; 

e) d( ~ A)=d(A)+I ; f) d((x)A(x))=d(A(x))+l ; 
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i) d((Ex)A(x))=d(A(x))+l . After this, we associate with every se- 

quent S in a proof P in HZ inductively an ordinal ~ . The 
o 

inductive clauses in the definition of this ordinal assignement are 

invariably given by clauses 2) - 6) in section 2.4., part A of chap- 

ter II. 0nly clause i) has to be replaced by another one, to be deno- 

ted by i*). In order to state i*) explicitely, let S be an axiom in 

P . Clause i*) is then given as follows: i) if S is Y > , 

then 0(S)=l ; 2) if S is ~ > B, then 0(S)=d(B) As or- 

dinal of P we take; as usual? the ordinal associated with its endse- 

quent ; it is denoted by O(P) The reason for replacing i) by I*) is 

given by 

Theorem 54: If P and P' are s.n.s, proofs in HZi such that P' 

follows from P by means of an H-reduction step, then 0(P')~ O(P). 

Proof: Let S be the Harrop axiom in P to which the H-reduction 

step is applied. We treat two representative cases; all other cases 

are equally trivial to treat. 

Case i: S is ~ > A ~ B . By definition 0(S)=d(A)+d(B)+I 

The H-reduction step amounts to replace in P the sequent S by the 

derivation 

A >B 

> A ~ B  

eventually followed by a 
thinning, 

where A ~ B is again a Harrop axiom by lemmas 26 and 24. The 

theorem is essentially proved if we can show that the ordinal of 

> A ~ B in P' is not larger than the ordinal of 

Y > A ~ B in P . The first~howevero is by definition 

d(B) ~ 1 , that is, d(B)+l , while the second is d(A)+d(B)+l , that 

is~larger than the first one. 

Case 2: S is / 

by the derivation 

> ~ A . The reduction step replaces S in P 

A > 

y ) ~A 

, plus eventually a thinning. 
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The ordinal of 

S in P' is 

of S in P . 

S in P is d(A)+l by assumption, the ordinal of 

1 ~ 1 ~ that is, 2 , hence not lar~er than the ordinal 

Concerning the other reduction steps~everything remains the same as 

in chapter II, that is~we have 

Theorem 55: A) Preliminary reduction steps and inessential reduc- 

tion steps do not increase the ordinal of the proof to which they are 

applied. B) Fork elimination (classical and intuitionistic), 

"omission of a cut" and induction reductions lower the ordinal of the 

proof to which they are applied. C) A subformula reduction step 

lowers the ordinal of the proof to which it is applied. 

The proof is the same as usual and can be omitted. On the purely 

syntactical level we also have 

Theorem 56: Let P be a saturated s.n.s, proof in HZi which does 

not admit preliminary reduction steps, H-reduction steps, induction 

reductions and fork elimination. If P does not coincide with its 

final part~ then there is a critical logical inference whose princi- 

pal formula has an image in the endsequent; hence a subformula reduc- 

tion step is applicable to P . 

Proof: Since no H-reduction step is applicable to P~ it follows 

from lemma 27 that every axiom in the final part of P is either a 

true saturated prime sequent, or else of the form D ) D' with 

D, D' isomorphic. Since no preliminary reduction step is applicable 

to P~ we conclude that only true prime sequents can occur as axioms 

in the final part of P . Since P is saturated and no induction re- 

duction is applicable to P~ it follows that P does not contain a 

critical induction inference. Hence~the only critical inferences in 

P are the logical ones. Now we proceed in exactly the same way as in 

the proof of theorem 2 in ~8]. 

G_~. Now we come to the proof of theorem 51. In virtue of theorem 53~ 

theorem 51 is proved if we can prove 

Theorem 56: 

HZi 

HZi 

a) If A,B are closed formulas such that 

A k/ B then either HZi ~ ~ A ~ or else 

) B . b) if (E ~ )A( ~ ) is a closed formula such 
I i 
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that HZi ~ > (E ~ )A( ~ ) then there is a functor F free For 

in A( ~ ) such that HZi ~ > A(F) holds, c) Similarly 

as in b), but with (Ex)A(x) in place of (E ~ )A( ~ ) and a term t 

in place of F . 

Proof: We prove b) . The proofs of a),c) are practically the same. 

Hence let P be a proof in HZi of > (E ~ )A( ~ ) . Without 

loss of generality we can assume that P is strictly normal and sa- 

turated (since (E ~ )A( ~ ) is closed). Let us call reduction chain 

every finite or infinite sequence of proofs PogPl, .... having the 

following properties: i) P =P ; 2) each P. is an s.n.s, proof 
O 1 

in HZi ; 3) Pi+l follows from Pi by means of a preliminary re- 

duction step, by an H-reduction step, an induction reduction or an 

intuitionistic fork elimination. Then it follows from our considera- 

tions above (in particular theorem 56) that no infinite reduction 

chain exists. Hence there exists a finite reduction chain 

Po'PI ' ..... 'PN having the property: no reduction step other than a 

subformula reduction step is applicable to PN " By induction with 

respect to i , using thereby the consistency of HZi , one proves 

that P'I and hence PN has the same endsequent as P , namely 

> (E ~)A( ~ ) From theorem 56 we infer that a subformula re- 

duction step is applicable to PN " The result of this subformula re- 

duction step must by necessity be a proof P' in HZi of 

> A(F) for a certain f~nctor F, free for ~ in A( ~ ) and 

determined by PN " This proves b) of our theorem. Statements a) and 

c) are proved in the same way. 

8.2. Harrop formulas and the theories ZTi/II N and ZTEi/II N 

A. In this section, we consider only a special type of Harrop for- 

mulas, namely those given by the following 

Definition 52: By MT we understand the set of those Harrop formu- 

las which are classically true, whereby the truth of formulas contai- 

ning special function constants is reduced to the truth of those 

without special function constants via definition 33. 

If we restrict our attention to formulas belonging to MT 5 then we 

can extend the considerations of the previous section in an almost 

straightforward way to the theories ZTE/II N and ZTE/II . It is the 
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purpose of this section to extend the considerations of the previous 

section to the case where ZT and ZTi are replaced by ZTE/II N 

and ZTEi/IIN~ respectively, and where the class of Harrop formulas to 

be considered belongs to the subset MT of M . 

B___u. For the time being ~ let AI, .... ,A s be arbitrary closed 

Harrop formulas. Then ZT/IIN(A 1 ...... As) denotes by definition the 

theory obtained from ZT/II N by addition of > AI,... > A 
s 

as new axioms. Similarly, ZTi/IIN(A 1 ..... ,As) is the theory obtain~ 

from ZTi/II N by addition of > AI, .... , > As as new 

axioms; ZTi/IIN(AI, .... ,As) is, of course~nothing else than the in- 

tuitionistic version of ZT/IIN(A 1 ..... ,As) 

From ZTi/IIN(A 1 ....... As) we can pass to a conservative extension 

zT~i/IIN(A 1 ...... As) by addition of two new inference rules, Ti(P) 

and Ti(P,Pl,m ) , which have been introduced in part B of section 

4.1. of chapter IV. The formal definition of the rules Ti(P) and 

Ti(P,Pl,m ) remains the same as in part B of section 4.1., with the 

following exception: a) the side proof P in Ti(P) is now as- 

sumed to be a proof in ZTi/IIN(A 1 ...... As) ; b) the side proofs 

P' Pl in Ti(P,Pl,m ) are now assumed to be proofs in 

ZTi/IIN(A 1 ...... A s ) 

Similarly~we can introduce the conservative extension 

ZTE/IIN(A 1 .... A ) of ZT/I%(A 1 A ) by adding to 
' ~ S ~ " " " ° ~ S 

ZT/IIN(A 1 .... A ) the two new rules Ti(P) and Ti(P Pl,m) ; 

again P' Pl range now over proofs in ZTi/IIN(A I ..... ,As) . Corres- 

ponding to theorem 14 we have 

Theorem 57: a) ZTEi/IIN(A 1 ...... As) is a conservative extension of 

ZTi/IINA 1 ...... As) ; b) ZTE/IIN(A 1 ...... As) is a conservative ex- 

tension of ZT/IIN(AI,.... ,As) 

The proof of this theorem is a mere copy of the proof of theorem 14. 

By specializing definition 51 to the case where T and Ti are 

ZTE/IIN(A I ...... As) and ZTEi/IIN(A 1 ...... As)~ we obtain their 

respective Harrop hulls to be denoted by HZTE/IIN(AI, .... ,As) and 

HZTEi/IIN(AI, .... ,As), respectively. The notion of Harrop axiom 

(with respect to ZT~i/IIN(A 1 ...... A ) now) is again given by the 
S 

remark following definition 51; lemmas 24 and 26 remain~of course~ 

true in the present case. Clearly we have 
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Theorem 58: a) HZTEi/IIN(A 1 ...... As) is a conservative extension 

of ZTEi/IIN(A 1 ...... As) and hence of ZTi/IIN(A 1 ...... As) ; 

b) HZTE/IIN(A 1 ...... As) is a conservative extension of 

ZTE/IIN(A 1 ...... As) and hence of ZT/IIN(A 1 ...... As) 

It is also clear that HZTEi/IIN(A I ..... ,As) is nothing else than 

the intuitionistic restriction of HZTE/IIN(A 1 ..... ,As) 

For proofs P in HZTE/IIN(A I ..... ,As) we can, of course, introduce 

the notions "final part", "omission of a cut" and "preliminary re- 

duction step" in exactly the same way as in all previous eases. 

Throughout this section we will use basic lemma II H for the spe- 

cial case where HTi(A 1 A ) is HZTEi/IIN(A 1 ..... As) . If in 

particular ~ 9 A is an uppermost sequent in the final part 

of a proof P in HZTEi/IIN(A 1 ...... As) , if B is a formula in Y, 

if P' is the welldetermined proof of ~ B , whose existence is 

stated in basic lemma II H , then we call P' the side proof of 

> B determined by B in y > A . 

C. From now on AI, ..... ,A s 

satisfy the 

are fixed, closed Harrop formulas which 

Assumption: AI, .... ,A s are classically true. 

In order to avoid the steady use of the clumsy notation 

HZTEi/IIN(A 1 ...... As) and HZTE/IIN(A 1 ...... As) , we denote the first 

theory simply by HZEi , the second by HZE . The theories 

ZTE/IIN(A 1 ...... As) and ZTEi/IIN(A 1 ...... As) on the other hand 

will be denoted simply by ZEi and ZE . 

Next, we can carry over without the slightest changes the whole body 

of concepts introduced in chapter IV for ZTE/II N and ZTEi/II N , 

respectively, to the present case. A list of concepts, which can be 

defined for proofs P in HZE and HZEi, respectively, using the 

same definitions as in chapter IV, is given in what follows: 

i) complexity of a cut; 2) of an induction; 3) complexity of a 

fiN-inference ; 4) of a Ti(P)-inference; 5) of a Ti(P,Pl,m)-in- 

ference; 6) height h(S) of a sequent S in P ; 7) fork 

Ii,I2,I 3 ; 8) fork elimination (classical and intuitionistic); 

9) induction reduction; i0) canonical fiN-reduction step, 

ii) canonical Til-reduction step; 12) canonical Ti2-reduction 
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step; 13) saturated proof; 14) preliminary reduction step; 

15) inessential reduction step; 16) subformula reduction step; 

17) preliminary reduction step~ 18) strictly normal standard 

proof (s.n.s. proof). With respect to the clauses i0), ii), 12) in 

the above list, we refer thereby to part B of section 4.4. (chapter IV) 

and in particular to theorem 17 and definition 18. To this list of 

concepts we add the notion of H-reduction step which has been de- 

fined in the previous section and whose definition remains invariably 

the same. It has exactly the same properties as before; lemma 27, in 

particular, remains invariably true and its proof remains the same. 

Finally, We can associate with every formula A its degree d(A) , 

whose inductive definition is again given by the inductive clauses 

stated at the beginning of part F in the last section. 

D_c _. Before associating ordinals with proofs P in HZE and HZEi , 

we have to make some remarks which are closely connected with part A 

of section 4.3. (chapter IV). To this end, consider a Ti(Pl)-infe- 

rence SI/S 2 , where SI,S 2 have the particular form described in 

part B of section 4.1. P1 is by definition a proof in 

ZTi/IIN(A 1 ...... As) of a sequent of the form ) we( ~ R ) , 

where R is a standard formula of the form R (x) /\ seq(x) contai- 
o 

ning no special function constants and whose only free variable is x. 

Since AI, ,A s are by assumption classically true formulas;it 

follows that W°(~ R~ is a classically true formula. In other 

words, the relation (<n,m > / n ~Km and R(n) and R(m) true ~ is 

indeed wellfounded. The ordinal which is associated with this rela- 

tion will b e  d e n o t e d  b y  II~-~ll 

Next, let there be given a Ti(Pi,P2,m)-inference SI/S 2 , where 

SI,S 2 have the particular form described in part B of section 4.10 

By definitionp P1 is a proof in ZTi/IIN(A I ...... As) of a sequent 

having the form ) W°( ~ R) , with R as above. The proof P2 

on the other hand is by definition a proof in ZTi/IIN(AI, .... ,As) 

whose endsequent has the form ~ R(t) , where t is a certain 

saturated term whose value I t I is m . As before,we conclude that 

R(t) and hence R(m) are classically true formulas. This means that 

m belongs to the domain of definition of the wellfounded relation 
F 

~ U,V~ / U~KV and R(u),R(v) classically true I Therefore, 

there is a welldefined ordinal associated with m as a member of the 

domain of definition of the relation 

~ u,v ~ / U~KV and R(u),R(v) classically true ~ We denote this 
) 
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o r d i n a l  b y  II m//  R " F i n a l l y ,  we  c a n  i n t r o d u c e  a s  i n  p a r t  B o f  s e c t i o n c  

4. 3 . the ordinal ~ which is the smallest among all ordinals 

having the following property: if P is a proof in 

ZTi/IIN(A I ...... As) of ~ W°( ~ R) , then [I~-R I]< 

(with R as above). 

E__&. Now, if we are given a proof P in HZE we can associate induc- 

tively an ordinal O(S) with every sequent S ocurring in P . The 

inductive clauses of this assignement are as follows: i*) if S is 

an axiom of the form / ~ ~ then 0(S)=l , if S is an axiom 

of the form / + B ~ then 0(S)=d(B) ; 2) if S is the con- 

clusion of a conversion, a structural inference, an induction or a 

logical inference, then we proceed as in part A of section 2.4. 

3) if S is the conclusion of a II.-inference S'/S~ then 

0(S)= 60d((0(S' ) ~ 60 ~ +I) ix) ~+i) N where d:h(S')-h(S) ; 4) if 

S is the conclusion of a Ti(Pl)-inference S'/S, then we put 

0(S)= 03d((0(S' ) ~ 60 ~ +i) 09 ~ +i) where d=h(S')-h(S) ~ and 

where P is a proof (in ZTi/IIN(A I, .... ,As )) of /~ W°( ~ R) 

and ~X = II~ R II ; 5) if S is the conclusion of a 

Ti(Pl,P2,m)-inference S'/S~ then we put 

o(s)= ~d((O(S,) ~ ~ +l) co ~+l) with d=h(S')-h(S), where P1 
and P2 are proofs (in ZTi/IIN(A I,.. ,.,As )) of • W°( ~ R) 

and P R(t) with I tI =m, respectively,and where ~ = /Imll 
R 

o 

As ordinal 0(P) of a proof~ we take as usual the ordinal of its 

endsequent. The main property of this ordinal assignement is given by 

Theorem_59: Let 

P' follow from 

o(P,)~o(P) 

P and P' be two s.n.s, proofs in HZEi 

P by means of an H-reduction step. Then 

and let 

Theorem 60: A) Preliminary reduction steps and inessential reduc- 

tion steps do not increase the ordinal of the proof to which they are 

applied. B) A reduction step lowers the ordinal of the proof to 

whicb it is applied if it belongs to the following list: i) fork 

elimination (classical or intuitionistic) ; 2) omission of a cut; 

3) induction reduction; 4) canonical IIN-reduction step; 5) ca- 

nonical Til-reduction step; 6) canonical Ti2-reduction step; 

7) subformula reduction step. 

The proof of theorem 59 is~of course, exactly the same as the proof of 

theorem 54 in the previous section; the proof of theorem 60~on the 
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other hand, leads to precisely the same calculations and inequalities 

encountered in chapters II and llI. 

F__~. Before coming to the main result, we note that theorem 19 remains 

invariably true in the present case, that is,we have 

Theorem 61: Let P be a saturated s.n.s, proof in HZEi and assume 

that P does not admit either preliminary reduction steps, H-reduc- 

tion steps, fork eliminations, induction reductions, canonical 

fiN-reduction steps, canonical Til-reduction steps or canonical Ti 2- 

reduction steps. If P does not coincide with its final part~ then 

there is a critical logical inference whose principal formula has an 

image in the final part. Hence, a subformula reduction step is appli- 

cable to P in this case. 

Proof: Since P is saturated and does not admit any induction re- 

duction, there is obviously no critical induction inference in P . 

Similarly, there are no critical IIN- , Ti(Pl)- and Ti(Pi,P2,m)-infe- 

rences in P since otherwise a corresponding reduction step would be 

applicable to P , contradicting the assumption. Since no H-reduction 

step is applicable to P~ it follows from lemma 27 in the last section 

that every axiom in the final part of P is either a saturated prime 

sequent or else a logical axiom D > D' Since no preliminary 

reduction step is applicable to P, we conclude that no logical axiom 

D > D' occurs in the final part of P . Finally there is no 

fork Ii,I2,I 3 in the final part of P since otherwise an intuitio- 

nistic fork elimination would be applicable to P , contradicting the 

assumption. Hence, by proceeding in the same way as in the proof of 

2 in [8] ~ we conclude that there is a critical logical theorem in- 

ference whose principal formula has an image in the final part of P. 

G. Now we can state the main result: 

Theorem 62: a) If A,B are closed formulas such that 

HZEi ~ # A ~ B holds, then either HZEi ~ > A or 

HZEi ~ ") B ; b) if (Ex)A(x) is a closed formula such that 

HZEi ~ > (Ex)A(x) holds, then there is a saturated term t such 

that HZEi ~ > A(t) holds; C) if (E ~)A( ~ ) is a closed 

formula such that HZEi ~ ) (E ~ )A( ~ ) holds,then" there is a 

functor F without free variables such that HZi ~ ) A(F) holds. 
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Proof: The proof parallels the proof of theorem 56. Consider ~g. 

c) and let P be a proof in HZEi of > (E ~ )A( ~ ) , part 

(E ~ )A( ~ ) closed. Without restriction we can assume 
! i 

with that P 

is an s.n.s, proof. A finite or infinite chain Po,PI, .... of proofs 

in HZEi is called a reduction chain if the following holds: 

I) Po=P ; 2) each Pi is an s.n.s, proof; 3) Pi+l follows from 

P. by means of a preliminary reduction step, an H-reduction step, an 
i 

intuitionistic fork elimination, an induction reduction, a canonical 

IIN-, Ti I- or Ti2-reduction step. Given any proof P* in HZEi, it 

is clear that we cannot apply indefinitely H-reduction steps and pre- 

liminary reduction steps to P* . From this observation and theorem 

60, part B), it follows that infinite reduction chains do not exist. 

Let us call a reduction chain Po'PI ' ..... 'PN terminating if no re- 

duction step other than a subformula reduction step is applicable to 

PN " Evidently, there exist terminating reduction chains. Let 

Po'PI ' .... 'PN be a fixed one. From the consistency of HZEi one in- 

fers by induction~ that each P~ and in particular PN ~ have 

> (E ~ )A( ~ ) as endsequent. From theorem 61 and the defini- 
A 

tion of terminating reduction chain,it follows that a subformula re- 

duction step is applicable to PN The result of this subformula 

reduction step must necessarily be a proof P* in HZEi of 

> A(F) for some functor F without free variables, determined 

by PN 

Since HZEi is a conservative extension of ZTi/IIN(AI, ..... As) we 

can reformulate the above theorem in the following way: 

Theorem 63: Let AI, .... ,A s be closed, classically true Harrop for- 

mulas and A,B, (Ex)A(x), (E ~ )A( ~ ) arbitrary closed formulas. 

a) If ZTi/IIN(A 1 ...... As) ~ ) A V B then either 

ZTi/II N ~ ~ A or ZTi/II N ~ > B ; b) if 

ZTi/IIN(A 1 ...... As) ~ > (E ~ )A( ~ ), then there exists a func- 

tor F without free variables such that 

ZTi/IIN(A 1 ...... As) ~ > A(F) holds; c) similarly with 

(EX)A(X) and a term t in place of (E ~ )A( ~ ) and F, respecti- 

vely. 

There is a special case of the last theorem which is of some interest. 

To this end let BI, .... ,B s be a list of closed formulas such that 

each B is an instance of the continuity axiom or of Church's the- 

sis, which can be refuted in ZT/II N . That is, for each i we have: 
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i) B. is an instance of the continuity axiom or of Church's thesis; 
1 

2) ZT/II N } 9 ~B.I Then B I,. ... ,B s are obviously classical- 

ly true formulas. This implies that theorem 65 applies to 

ZTi/IIN( ~ B 1 ...... ~Bs): 

Corollary: Let BI, .... B be closed formulas such that for each i s 
the following holds: i) B is an instance of the continuity axiom 

or of Church' s thesis; 2) ZT/II N ~ ~ ~B . Then a),b) ,c) of 

theorem 63 hold for ZTi/IIN( -]B 1 ...... ]Bs) 

H. It causes no difficulties to reprove theorem 24 for 

HZEi/IIN(AI, .... ,As) with A 1 ..... ,A s classically true Harrop for- 

mulas. The proof of this theorem remains essentially the same as the 

proof of theorem 24 in section 4.5. of chapter IV, provided with the 

necessary supplements due to the presence of Harrop axioms. We leave 

the proof to the reader. 

8.3. Harrop formulas and the theories ZTi/II and ZTEi/II 

A. The considerations of the previous section can be extended in a 

straightforward way to the case where ZTi/II N and ZTEi/II N are 

replaced by ZTi/II and ZTEi/II~ respectively. All that has to be 

done is to replace certain notions that are characteristic for 

ZTEi/II N by the corresponding notions belonging to ZTEi/II . So, 

fIN- , Ti(PI)- and Ti(Pl,P2,m)-inferences will be replaced by If-, 

TI(PI)- and TI(Pl,P2,m)-inferences, respectively. Similarly, we re- 

place canonical IIN- , Ti I- and Ti2-reduction steps by canonical 

If-, TI I- and TI2-reduction steps, respectively. Finally we have to 

replace the ordinal assignement described in section 4.3. by the or- 

dinal assignement described in section 4.6., part C. Apart from this 9 

chan~es, definition and treatment of the theories ZTi/II(AI, .... ,As), 

ZTEi/II(A 1 ...... As) and HZTEi/II(A I ...... As) , parallel definition 

and treatment of the theories ZTi/IIN(A 1 ..... ,As) , 

ZTEi/IIN(A 1 ...... A s) and ~ZT~i/IIN(A 1 ...... As), respectively. In 

particular, all concepts connected with Harrop formulas, such as Harrop 

axiom, Harrop hull, H-reduction step, remain the same as before. In 

order to avoid repetitions~ we omit a detailed treatment of 

ZTi/II(A 1 ...... As) and HZTEi/II(A 1 ...... As) and content ourself by 

stating the main results which parallel those obtained for 

ZTi/IIN(A 1 ...... As): 
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be closed classically true Harrop for- Theorem 64: Let AI, .... ,A s 

mulas and A,B, (E ~ )C( ~ ), (Ex)D(x) arbitrary closed formulas. 

a) If HZTEi/II(AI] ..... As) ~ > A X/B, then 

HZTEi/II(A 1 ...... As) ~ > A or HZTEi/II(A 1 ...... As) ~ > B ; 

h) if HZTEi ~ > (E ~ )C( ~ ), then there is a functor without 

free variables F such that HZTEi ~ > C(F) holds; c) simi- 

larly with (Ex)D(x) and a term t in place of (E ~ )C( ~ ) and 

F . Since HZTEi/II(AI, .... ,As) is a conservative extension of 

ZTi/II(A 1 ...... AS), clauses a),b),c) apply to ZTi/II(A 1 ...... As) as 

well. 

By specializing AI, .... ,A s in an appropriate way we obtain a corol- 

lary to the last theorem which corresponds to the corollary to theo- 

rem 62, namely 

Corollary: Let BI, .... ,B s be closed formulas such that for each i 

the following holds: 1) B is an instance of the continuity axiom 
1 

or of Church~ s thesis; 2) ZT/II k ) ~ B.. Then a),b),c) of 
l 

theorem 64 hold for ZTi/II( ~ B 1 ...... ~ Bs) 

It would again cause no trouble tO reprove theorem 24, but with 

ZTi/II(A I ...... As) in place of ZTi/II N where A I ...... A s are 

closed, classically true Harrop formulas. We omit the proof. 

8.4. Harro~ formulas and the theories ZTi/I and ZTGi/i 

This is the most important section of this chapter. Its main purpose 

is to combine the considerations of the previous chapters with those 

of section 8.1. in order to obtain theorem 51, but with ZTi/I in 

place of ZTi . 

A. To start with, let AI, .... A be arbitrary closed Harrop formu- 
- -  YS 
las. Then ZTi/I(A 1 ...... As) is the theory obtained from ZTi/I by 

addition of -----9 A. , i=l, .... ,s , as new axioms; 
l 

ZT/I(A 1 ....... As) is obtained from ZT/I by addition of 

> A i , i=l ...... s , as new axioms. ZTi/I(A 1 ...... As) is~ of 

course~the intuitionistic restriction of ZT/I(AI, ..... A ) From 
S 

ZTi/I(A 1 ....... As) we pass to a certain conservative extension, to 

be denoted by ZTGi/I(AI, .... ,As) ) by addition of two new rules 

T(P1) and T(Pl,P2). The formal definitions of T(Pl) and T(PI,P2) 
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remain exactly the same as in the definitions of the rules T(PI) 

and T(PI,P2) ~ respectively, given in chapter VII, section 7.1., 

part A) (clauses i), 2)) with the following exception: a) the proo~ 

P o  a n d  P l  in t h e  definition o f  T ( P 1 )  ( c l a u s e  1 )  , p a r t  A) , s e c t .  

7.i.) are now proofs already at hand in ZTGi/I(A I ...... As) ; 

b) the proofs ~o,Pl,P2 in the definition of T(P1,P2) (clause 2), 

part A), sect. 7.1.) are now proofs already at hand in 

ZTGi/I(A I ...... As) . If we add to ZT/I(A I ...... As) and to 

ZTi/I(A 1 ...... As) the new rules T(PI) and T(PI,P2), then we ob- 

tain correspondingly conservative extensions ZTG/I(A 1 ...... As) and 

ZTGi/I(A 1 ..... A ), respectively. ZTGi/I(A 1 .... A ) is,of course, 
S • S 

nothing else than the intuitionistic restriction of ZTG/I(AI,...,As). 

To sum up, we have 

Theorem 65: a) ZTG/I(A I ...... As) is a conservative extension of 

ZT/I(A 1 ...... As) ; h) ZTGi/I(A 1 ...... As) is a conservative exten- 

sion of ZTi/I(A 1 ...... As) ; c) ZTGi/I(A I ...... As) is the intui- 

tionistic restriction of ZTG/I(A I ...... As) The proof of a),b) re- 

mains the same as the proof of theorem 14. From ZTG/I(A 1 ...... As) 

and ZTGi/I(AI, .... ,As) we can pass to their respective Harrop hulls 

HZTG/I(A I ...... As) and HZTGi/I(A I ...... As); the notion of Harrop 

axiom (with respect to ZTGi/I(A I ...... As) ) now remains,of course, the 

same as before. Lemma 24 remains true in the present case and we 

clearly have 

Theorem 66: a) HZTGi/I(A 1 ...... As) is a conservative extension of 

ZTGi/I(A 1 ...... A ) and hence of ZTi/I(A 1 ...... A ) ; 
S S 

b) HZTG/I(A I ...... A s ) is a conservative extension of 

ZTG/I(A 1 As) and so of ZT/I(A I A ) 

B__ m. From now on AI, .... ,A s are arbitrary but fixed closed Harrop 

formulas which satisfy the following 

Assumption: ZTi/I(A I ...... A ) is consistent. 
S 

In order to avoid the lengthy notations HZTGi/I(AI, .... ,As) 

HZTG/I(A I ...... As) , ZTGi/I(A 1 ...... As) and ZTG/I(A 1 ...... As) , we 

replace them by HZGi, HZG, ZGi and ZG respectively. The next 

step consists in carrying over to HZGi and HZG certain notions 

and concepts, which have been introduced for ZTGi/I and ZTG/I 

Among the simplest of these are the notions "final part", "prelimi- 
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nary reduction step" and "omission of a cut". In this connection we 

note that basic lemma IIH, formulated in section 8.1., remains inva- 

riably true in the present case if we take for HTi(AI, .... ,As) the 

theory HZGi . We also adopt the terminology introduced by the re- 

mark following basic lemma IIH: if B is a formula in ~ > A , 

if / ) A is an uppermost sequent in the final part of a 

proof P in HZGi , if P' is the proof of ~ B whose exi- 

stence is given by basic lemma II H and whose construction is des- 

cribed in the proof of basic lemma II (chapter III, sect. 3.2.), then 

P' is called the side proof of # B) determined by B in 

> A according to basic lemma II H . If, in particular, 

~ A is the conclusion of a I-inference, S/S' , say 

R(y), (x) ~_____RyA(X)., S' > A(y) 

W(r"'-.R) , R(q), A(q) 

if B is W( ~ R) , then we call P' as before the side proof de- 

termined by this I-inference in P . Further notions which can be 

introduced for proofs P in HZGi . HZG in the same way as for 

proofs in ZTGi/I , ZTG/I are: i) complexity of a cut; 2) an in- 

duction; 3) complexity of a ~-inference; 4) complexity of a 

T(Pl)-inference; 5) complexity of a T(Pl,P2)-inference~ 

6) height of a sequence S in P ; 7) fork Ii,I2,I 3 ; 8) fork 

elimination (classical or intuitionistic); 9) induction reduction; 

i0) I-reduction step; Ii) T(PI)- and T(Pl,P2)-reduction step; 

12) strong T(PI)- and strong T(Pl,P2)-reduction step; 13) satu- 

rated proof; 14) substitution instance; 15) inessential reduction 

step; 16) subformula reduction step; 17) strictly normal stan- 

dard proof; 18) side proof of a T(PI)- or a T(Pl,P2)-inference; 

19) index proof of a T(Pl,P2)-inference. All these notions are de- 

fined in precisely the same way as in chapter VII or in earlier chap- 

ters. To this list of notions~we add the concept of H-reduction step 

which has been introduced in section 8.1. and whose definition re- 

mains invariably the same. The notion of H-reduction step has the 

same properties as before; lemmas 26 and 27 in particular remain 

true and their proofs remain the same. The degree d(A) of a formula 

finally is defined in the same way as in part F of section 8.1. 
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C. Corresponding to theorem 56 in section 8.1. we have now 

Theorem 67: Let P be an s.n.s, proof in HZGi which does not coin- 

cide with its final part. Assume that no reduction step of the follow- 

ing list is applicable to P : i) preliminary reduction step, 

2) intuitionistic fork elimination, 3) induction reduction, 

4) I-reduction step, 5) strong T(Pl)-reduction step, 6) strong 

T(Pl,P2)-reduction step, 7) H-reduction step. Then there is a cri- 

tical logical inference in P whose principal formula has an image 

in the final part. Hence a subformula reduction step is applicable 

to P . 

Proof: As in earlier cases, it follows that no critical I-inference, 

T(Pl)-inference and T(Pl,P2)-inference occurs in P , since otherwise 

corresponding reduction steps could be applied to P ; for the same 

reason, there can be no critical induction in P . On the other hand~ 

no H-reduction step and no preliminary reduction steps are applicable 

to P by assumption. Hence the final part of P contains only mathe- 

matical axioms (true saturated prime sequents), conversions, inter- 

changes, contractions and cuts. Finally no fork can occur in P and 

so we can argue as in the proof of theorem 2 in ~8~ 

D__~. Our next aim is to introduce a suitable notion of "good" proof. 

For the sake of completeness~we discuss this notion in some detail 

and proceed thereby in a slightly different way than in chapters V 

and VII . 

Definition 53: Let P be an s.n.s, proof in HZGi . A sequence 

(finite or infinite) Po,PI,P2, ..... of s.n.s, proofs in HZGi is 

said to be a reduction chain of P if Po:P ~ and if for each i 

Pi+l follows from P. by means of a reduction step of the following 
i 

list: i) preliminary; 2) H-reduction step; 3) intuitionistic 

fork elimination ; 4) induction reduction; 5) I-reduction step; 
A 

6) strong T(~l)-reduction step; 7) strong T(Pl,P2)-reduction step; 

8) subformula reduction step; 9) inessential reduction step. A re- 

duction chain is terminating if it is finite, say, Po'Pl' .... 'PN , and 

if no reduction step listed above is applicable to PN" 

Definition 54: An s.n.s, proof P in HZGi is called "good" if 

every reduction chain of P is terminating. 
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Remarks on notation: In the theorem below we retain the notation 

used in connection with theorem 46 in section 7.3. of chapter VII; 

u 
R in W(~R), in particular, is a standard formula whose only free 

variable is x and whose special function constants are 

~i I i 2 i 
, , .... , ~ s More generally~we use throughout this 

u I u 2 u s 
section the notation introduced in part B of section 7.1., chapter 

VII. 

The main property of ~ood proofs is ~iven by 

Theorem 68: Let 

U 
w( ~ R) 

Then we find an 

in HZGi of 

the system 

w:~(m) 

P be a ~ood s.n.s, proof in HZGi of 

Let fl' .... 'fs '~ be numbertheoretic functions. 

m and an n with n+l < m and ans.n.s, proof P' 

~ fuWv ~ (n) where v denotes ) ~ w (n+l) ~---R w ' 

vi=fi(m ) , i=l ...... ,s of sequence numbers,and where 

Proof: In order to save notation,we assume s=l , that is~ just one 

special function constant, say, C~ i u ' occurs in R and hence in 

u will then be identified u) The upper index u in C-~ R w(~ R 

with the lower index u in ~ i u The function fl will be denoted 

by f Now we proceed in steps. 

i) From the definition of "~ood" proof it follows: if Po,PI,... ,PN 

is a reduction chain of P, then PN is good. 

2) Call a reduction chain Po'Pl' .... 'PN of P "short" if no Pi+l 

follows from P. by means of a subformula reduction step. If 
i 

P ' .... 'PN is a short reduction chain of P~ then each P. has an 
O i 

u*v. ~-KVi A endsequent of the form > W( ~ R  i) where vi+ I . 

short reduction chain is called compatible with f if v. is an ini- 
1 

tial segment of f for all i A short reduction chain of P is 

called terminating if there is no short reduction chain of P which 

extends the given one properly. 
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3) It is evident: there exist terminating short reduction chains of 

P which are compatible with f. Let P .... PN be any such redue- 
o ~ 

tion chain. According to its definition, no reduction step other than 

a subformula reduction step is applicable to PN " Since the endse- 

uWv 
quent of PN is > W ( ~  R N) , PN does not coincide with 

its final part. By theorem 67 a subformula reduction step is appli- 

cable to PN " The result is a proof PN+I with endsequent 

• U*V " 
) (EX) ~ ~ > (x+l) ~ R  N C~ >(x) • Here i~j by defini- 

tion of subformula reduction step. 

4) PN+I is good in virtue of 1). Consider a short reduction chain 

P N + I ' P N + 2  ' . . . .  'PM o f  PN+I " E a c h  o f  t h e  P i ' s  h a s  a n  e n d s e q u e n t  o f  

u*v. g<~ (x) Call such a re- t h e  f o r m  '> (Ex)  ~ ~ . ( x + l )  ~ R  1 . . 
1 1 

duction chain compatible with f,g if for each i v. and w. are 
i l 

initial segments of f and g respectively. 

5) It is evident: there are short, terminating reduction chains of 

PN+I which are compatible with f,g . Let PN ..... 'PM be any such 

chain. As before, we conclude that PM admits a subformula reduction 

step. The result is a proof P* whose endsequent has the form 

U ~ j (t+l) ~--u*v J (t) , where t is a constant term 
w M R M ~ WM 

containing no other special function constants than 

i j 
~u*v M , w M 

6) Then it is obvious that we find an m so large that 

i , O( j T(~u.f(m) ~(m) ) is saturated with value, say, n ~ such that: 

~ )  n + l ~  m , ~ )  f ( m )  ~ K U * V M  , g )  g (m)  ~ K  WM " By s u b -  

i j c~i 
stituting in P* ~ u'f (m) and g~ ~(m) for U.VM and 

C~JM respectively and by adding eventually a conversion to the 

endsequent we finally obtain a proof P' which satisfies the condi- 

tions of the theorem. 
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Now we can associate with every good proof P of > W( ~ ~) , 

exactly as we have done in sect. 7.3. of chapter VII, a continuity 

function ~ (x I ...... Xs,Y ) , having the properties: if fl ..... %'g 

are numbertheoretic functions, if ~ (fl(m) ..... fs(m),g(m))~0 , then 

there is an n with n+l < m and a proof P' in HZGi of 

~ ~ w(n+l) ~ U*VR ~w(n) , where V.l denotes the list 

vi=f--i(m ) , i=l ...... s , of sequence numbers and where w=g(m) . We 

call ~ the continuity function associated with P and denote it 

by ~ P . Actually, ~ P could be chosen recursive but we do not 

use this fact. 

Definition 55: Ans.n.s. proof in HZGi or HZG is called graded if 

all its side proofs are good. 

E. The next tool which we need here is that of valuation. This con- 

cept is introduced in exactly the same way as in section 7.4. of the 

last chapter and has all the properties described there. So D s is 

again the set of ordered s+l-tuples of sequence numbers, all having 

the same length~and ~ Vl' .... 'Vs'Vs+l ~ ~---s ~ Wl,W2,...,Ws,Ws+l~ 

still holds iff v i ~KWi , i=l, ..... ,s (where left and right ar- 

guments are elements of D). A/~ element Vl' .... '~s+l from D is 

secured with respect to the good proof P iff ~ (v I ...... Vs+l)~0 , 

unsecured otherwise. De(p) is the set of those elements of D s 
s 

which are unsecured with respect to P and [--p is the restric- 

--s is wellfounded tion of ~ s  to DS(p) Clearly, I--p 

Naw to the valuation. A valuation of a proof P in HZG is an 

assignement which associates with every T(Pl,P2)-in@erence in P 

either a number e which satisfies a certain condition ~) ~ or 

else a pair of numbers e, e I which satisfies a certain condition 

~) Condition ~ ) in the present case is word by word the same 

as~ condition 5) in part C of sect. 7.4. Condition / ) in the 

present case is the same as condition /) in part C of sect. 7.4. 

with one exception: ZTGi/I in clause d) in the definition of 8 ) , 

part C of sect. 7.4., has to be replaced by HZGi In all other res- 

pects ~ ) in the present case is the same as / ) in C, 7.4. 

Valuations are again denoted by symbols such as ~ , ~ etc; the 

value of ~ for an inference s/S' is written as ~(S/S' ) 

From now onjwe can treat valuations in exactly the same way as in 

sect. 7.4. In particular, we have the following three notions: 

a) extension of a T(Pl,P2)-inference ; b) data of a T(PI,P2)- 
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inference; c) index of a T(Pl,P2)-inference. Their definitions re- 

main the same as in section 7.4. With these notions at hand, we can 

introduce the concept of induced valuation. That is, given a proof P 

in HZGi , a valuation ~ of P and a proof P' which follows 

from P by means of a reduction step, we can define on P' a valua- 

tion ~* in terms ~ . This valuation is again called the valua- 

tion induced by ~ on P' . Its definition is described by cases 

1 - iO listed in part D of sect. 7.4. and an additional case ii which 

takes into account H-reduction steps. Case Ii: P' follows from P 

by means of an H-reduction step. Each T(Pl,P2)-inference S/S' in 

P remains unaffected by this H-reduction step: we may therefore de- 

fine ~*(S/S' )= ~ (S/S') ~* on P~ is thus completely de- 

termined. If now P is a graded s.n.s, proof in HZG and ~ a va- 

luation of P, then we call ~ compatible with P if the condi- 

tions in definition 49 (part D of sect. 7.4.) are satisfied. Lemma 19 

is now replaced by the slightly modified 

Lemma 19": Let P be a graded s.n.s, proof and ~ a compatible 

valuation of P . Let P' be obtained from P by means of a re- 

duction step from the following list: I) preliminary; 2) omission 

of a cut; 3) H-reduction step; 4) intuitionistic or classical 

fork elimination; 5) induction reduction; 6) subformula reduction 

step . Then P' is still a graded proof and the induced valuation 

~ * is compatible with Pf 

Lemma 20, on the other hand, remains true as it stands and its proof 

remains the same. Finally, let P be an s.n.s, proof in HZOi , pro- 

vided with a valuation ~ , let S/$ ' be a critical I-inference 

in P and Pl the side proof determined by S/S' according to ba- 

sic lemma II H Then we can define on P1 a valuation ~ ' in 

terms of ~ in exactly the same way as we have done it in part F 

of sect. 7.4. Without danger of confusion, we call ~ ' the valua- 

tion induced by ~ on the side proof P1 Lemmas 21 and 22 about 

side proofs and induced valuation remain invariably true in the pre- 

sent case and their proofs remain the same. 

F. Our next step consists in associating ordinals with graded 

proofs. More precisely 9 if P is a graded proof, then we associate 

with every sequent S in P a certain ordinal O(S) The inductive 

definition of O(S) is exactly the sam~ as in sect. 7.5., part D, 

that is, we use clauses i) - i0) in section 7.5., part D, as they 
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stand in order to define 0(S) . The notations H ~ i  ]/ , //e~ 
P1 

and 0 V (S/S') retain thereby their meaning. 

The properties of this ordinal assignement remain essentially the 

same as before. In place of theorem 47 we have the slightly modified 

Theorem 47": Let P be a graded s.n.s, proof in HZG and ~ a 

compatible valuation of P Let P' be obtained from P by means 

of a reduction step and V* the valuation induced by ~ on P' 

Then 0 h~.(P')~ 0 ~ (P) if the reduction step in question is one 
W ~ 

of the following list: i) omission of a cut; 2) classical fork 

elimination; ~) intuitionistic fork elimination; 4) induction re- 

duction; 5) strong T(Pl)-reduction step; 6) strong T(Pl,P2)-re- 

duction step (with P intuitionistic in case of ~) - 6)). If P' is 

a substitution instance of P or follows from P by means of a pre- 

liminary of an H-reduction step, then 0 Av.(P') ~ 0 AT (P) 

Proof: The only new element which has to be taken into consideration 

is the case of H-reduction step, which can be treated in the same way 

as in the proof of theorem 54 in section 8.1. Apart from this, the 

proof of theorem 47* parallels that one of theorem 47 . 

Theorem ~8 finally remains true as it stands and its proof remains 

the same. 

G. Our final step consists in proving 

Theorem 49*: If P is a graded proof in HZGi and ~ a compatib- 

le valuation of P~ then P is good. 

Proof: We proceed by transfinite induction with respect to 0 ~(P), 

that in,we assume: if P' is a graded'proof in HZGi , and %f' a 

compatible valuation of P' such that 0 ~,(P') < 0  ~(P) , then 

P' is good. We show that a contradiction follows from the assumption 

that P is not good. Hence let us make this assumption and let 

Po,PI, .... be an infinite reduction chain of P . Then we clearly 

find an N with the following property: i) if i+l ~ N ~ then Pi+l 

follows from P. by means of a preliminary reduction step or an 
1 

H-reduction step; 2) PN+I follows from PN by means of a reducti~ 

step which is neither an H-reduction step nor a preliminary reduc- 

tion step. For i __~ N+I we define inductively v a l u a t i o n s  ~i on 

= "~.* From lemma 19" P'l as follows (part F, sect. 7.4.): Vi+l 1 " 
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we conclude by induction that each P. is still a graded proof and 
1 

that ~i is compatible with Pi " From theorem 47* it follows that 

0 ~i+l(Pi+l) ~0 hf.(Pi) holds in case i<N . Now we distinguish 
.i 

two subcases aceordlng to the kind of reduction step which leads 

from PN to PN+I -~J-~-~i The reduction step in question is a 

fork elimination, an induction reduction, a strong T(Pl)-reduction 

step, a strong T(Pl,P2)-reduction step or a subformula reduction 

step. Then PN+I is still a graded proof and ~N+I is compatible 

with PN+I according to lemma 19" or 20, and 

0 ~N+I(PN+I) < 0 ~N(PN) according t o  theorem 47*  But then PN+I 

is good according to our inductive assump- 

tion, contradicting the assumption that the reduction chain 

Po,Pl ..... ,PN,PN+I ..... is infinite. }H~[9~2_~! PN+I follows from 

PN by means of a I-reduction step. Let S/S' be the critical I-in- 
A 

ference in PN to which the reduction step is applied and P the 

side proof determined by S/S' in PN " According to the construc- 

tion described in the proof of basic lemma II (chapter III, section 

3.2.)~ P is obtained from PN with the aid of some preliminary re- 

duction steps and at least one operation "omission of a cut". Let 

~ be the valuation induced by ~N on P (part F in section 

7.4.). According to lemma 21 (still true now)~ P is graded and ~' 

compatible~ with P According to theorem 47*, 0 II,(P)<OII(P) 

hence P is good according to our inductive assumption. According 

to lemma 22 and theorem ~8~ PN+I is ~raded, ~N+I is compatible 

with PN+I and 0 VN+I(PN+I) < 0 ~N(PN) Hence PN+! is good, 

again contradicting the assumption that the reduction chain 

Po,Pl, .... ,PN,PN+I, .... is infinite. 

From theorem 49* we obtain as an immediate consequence 

Theorem 69: Let P be a graded proof in HZGi provided with a 

compatible valuation V • Let A,B, (E ~ )A( ~ ), (Ex)A(x) be 

closed formulas, a) If P is a good proof in HZGi of 

> A V B , then HZGi ~ > A or HZGi ~ > B b) If P 

is a good proof of ) (E -- ~ )A( ~ ), then there exists a closed 
! 

f u n c t o r  F s u c h  t h a t  HZGi ~ ) A(F)  t e)  S i m i l a r l y  a s  i n  b ) ,  

oo oterm 
/ / 

place of F . 

Proof: Consider ~g. b). In virtue of theorem 49*, P is good. Hence 

we find a reduction chain Pc' .... 'PN with the property: 
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a) no Pi+l follows from P'l by means of a subformula reduction 

step; b) no reduction step other than eventually a subformula re- 

duction step is applicable to PN The endsequent of PN is still 
g ~ 

~ (E T )A( f ) and so PN cannot coincide with its final part. 

According to theorem 67, we infer that there is a critical logical in- 

ference whose principal formula has an image in the final part and 

that a subformula reduction step is indeed applicable to PN " The 

result of this subformula reduction step is by necessity a proof P* 

whose endsequent is ~ A(F) for some closed functor F . Clau- 

ses a) and c) are proved similarly. 

From the last theorem we immediately get the main result: 

Theorem 70: Let AI, .... ,A s be closed Harrop formulas s:ich that 

is consistent. Let A,B, (E ~ )A( i ~ )' (Ex)A(x) ZTi/I (A 1 A s ) 

be closed formulas Then we have: a) if ZTi/I(A 1 ...... As)~ > A~ 

then ZTi/I ~ > A or ZTi/I ~ > B ; b) if 

ZTi/I ~ ~ (E ~ )A( ~ ), then ZTi/I ~ # A(F) for some 

closed functor F ; c) similarly as in b), but with (Ex)A(x) in 

place of (E ~ )A( ~ ) and with a term t in place of F . 

Proof: Assume ~g. ZTi/I (A 1 ...... As) 

obviously find an s.n.s. P proof of 

respect to HZTGi/I(A 1 ...... As) (that is 

ded proof: no T(PI)- and T(Pl,P2)-inferences occur in 

patible valuation of P is given by the empty valuation 

Therefore we can apply the last theorem and conclude: 

HZGi ~ > A(F) for some constant functor F Since 

conservative extension of ZTi/I(A 1 .... A ), we obtain 
7 S 

ZTi/I(A I ..... A ) ~ ) A(F) as stated by the theorem. 

> (E )A( ) Then we 

> (E ~I) A( ~ ) But with 

HZGi), P is clearly a gra- 

P . A com- 

HZGi is a 

8.5. The theories ZTi/IV N and ZTi/IV 

A__~. The theories ZTi/IV N and ZTi/IV are, of course, subtheories of 

ZTi/I . Despite this,we cannot specialize theorem 70 at once by 

replacing ZTi/I by ZTi/IV N or ZTi/IV~ respectively. The reasons 

are twofold: i) from the consistency of ~g. ZTi/IV(A 1 ...... As) we 

cannot necessarily infer the consistency of ZTi/I(A 1 ...... As) ; 

2) even if this is the case, and if ~g. ZTi/IV(A I ..... As) ~ ) AVB 

holds, we can infer from theorem 70 only that either 

ZTi/I(A 1 ....... A ) ~ > A or ZTi/I(A 1 ...... As) ~ ~ B 
s 
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holds. Howeve~ a closer inspection shows that if we restrict atten- 

tion in the foregoing section to proofs P in ZTi/IVN(A I ...... As) 

or ZTi/IV(A 1 ..... ,As) ~ then we never have to take into account the 

larger theory ZTi/I(AI, .... ,As) . By performing this inspection in 

some detail we would obtain theorem 70, but with ZTi/IV N and 

ZTi/IV~ respectively, in place of ZTi/I We do not go into details 

but merely sum up the results which one obtains in this way: 

Theorem 71: Let AI, .... ,A s be closed Harrop formulas such that 

ZTi/IV(A 1 ...... As) is consistent. Let A,B, (E ~ )A( ~ ), (Ex)A(x) 

be closed formulas, a) If ZTi/IV(A I ...... As) ~ ~ A X/B then 

ZTi/IV(A 1 ...... As) ~ > A or ZTi/IV(A 1 ...... As) ~ > B . 

b) If ZTi/IV(A 1 ....... As) ~ > (E ~ )A( ~ ), then there is a 

c o n s t a n t  functor F such t h a t  Z T i / X V ( A  1 . . . . . .  AS) ~ > A ( F )  

h o l d s  e) S i m i l a r l y ,  hut w i th  (E~)A(x)  in  p l a c e  of  (E ~ ) A ( ~ )  
and a term t in place of F . Similarly, but with ZTi/IV N in 

place of ZTi/IV . 

There is a particular case of the last theorem which may be of some 

interest: 

Theorem 72: Let BI, ..... ,B t be a list of closed formulas such 

that for each i the following holds: i) B is an instance of the 
1 

c o n t i n u i t y  a x i o m  o r  o f  C h u r e h ,  s t h e s i s ;  2)  Z T / I V  b > U B. 1 
Let CI, .... ,Cq be a list of closed formulas such that for each i 

the following holds: ~ ) C. is an instance of the axiom of 
1 

choice; ~ )  ZT/XV ~ c i +  1 > c i ;  ~ )  n o  > C i i s  p r o -  

v a b l e  f r o m  Z T / I V  . T h e n  c l a u s e s  a ) , b ) , c )  o f  t h e  l a s t  t h e o r e m  a p p l y  

t o  Z T i / X V (  q B 1 . . . . . .  W B t ,  ~ C 1 . . . . . . .  7 C q ) .  

Proof: All we have %o do is to show that 

Z T i / I V (  D B 1 . . . . . . .  ~ B t ,  ~ C 1 . . . . . .  U C q )  (to b e  denoted for brevi- 

ty by T) is consistent. To this end, assume the contrary. Then 

T ~ >' follows, or what amounts to the same: 

Z T i / X V  ~ ~ B 1 . . . . . .  ~ B t ,  D C 1 . . . . . .  ~ C q  > S i n c e  

ZT/IV ~ > ~B i by assumption, we obtain 

Z T / I V  ~ ~ C 1 . . . . . .  ~ Cq > , t h a t  i s  Z T / I V ~  ) C 1 . . . . . .  Cq 

On the other hand, we have ZT/IV ~ Ci+ 1 >C i by assumption. 

Hence by application of a series of cuts and contractions we finally 

obtain: ZT/IV ~ ~ C 1 However,this contradicts / ) 
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Expressed in an inexact way, the last theorem says: if we add to 

ZTi/IV the negation of the continuity axiom, of Church' s thesis and 

of the axiom of choice,then we obtain a theory which still satisfies 

a),b),c) of theorem 71. The preceeding theorem is of course only of 

interest because there are formulas BI,B2, .... ~CI,C2, .... which sa- 

tisfy 1),2) and ~ ), ~ ), ~ ) ; thereby we tacitly use the fact that 

there exists an infinite list CI,C2, .... of instances of the axiom 

of choice, such that ZT(CI, .... ,Cn, ..... ) is as strong as classical 

analysis and such that ZT ~ Ci+ 1 > C.i holds. Whether theorem 

72 holds if we replace ZTi/IV by ZTi/I is not clear to the 

author. 



CHAPTER IX: 

The Markov principle 

This chapter contains the main applications of the results contained 

in the preceeding chapter, namely a proof of the fact that the Markov 

principle (or at least a particular form of the Markov principle) is 

not derivable in a certain large class of intuitionistic formal theo- 

ries. Since no new proof theoretic techniques will come into appli- 

cation, it is notationally somewhat simpler for us to consider Hil- 

bert-type systems in place of Gentzen-type systems. 

9.1. The Markov principle 

A__ t We remember that according to our notation introduced in chap- 

ter I, ZH is the Hilbert-type version of the Gentzen-type system 

ZT of number theory, ZHi is the intuitionistie restriction of ZH 

and at the same time the Hilbert type version of ZTi . Briefly, ZHi 

is a Hilbert-type version of intuitionistic number theory, based on 

the language L . Since some Goedel type diagonal argument will be 

used below~ it is advisable to make the distinction between natural 

numbers and the terms 0t0',0", .... which represent them in ZH : if 

n is a natural number~we denote the term 0 by n and call it the 

numeral of n . We also need 

Definition 56: A theory T is said to be primitive recursive if it 

is primitive recursively axiomatizable, that is,if the set of its 

axioms can be chosen in a primitive recursive way. 

Assumption: Throughout this chapter we assume that the assignement 

which associates with every term t a continuity Function ~ rela- 

ted with t is that one described in part L of section 1.4., chap- 

ter I. As mentioned there, we have then 

Theorem 73: ZTi and hence ZHi are primitive recursive. 

B___t We distinguish between two kinds of Markov principle , the weak 

Markov principle, denoted by MP ° , and the strong Markov principle, 

denoted by MP . The weak Markov principle is a certain axiom schema. 

A particular instance of MP is given by a formula of the following 
o 

t y p e :  ~ (x) ~ R(x)  ~ ( E y ) R ( y )  , where  R(x)  i s  a p r ime  formula 
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without special function constants and whose only free variable is 

x . A particular instance of MP on the other hand is given by 

(x) -7(Y) ~ R(x,y)~(x)(Ey)R(x,y) , where R(x,y) is a prime for- 

mula without special function constants and with only x,y free. We 

say that MP O (or MP ) is not provable in a certain theory if a 

particular instance of MP ° (or MP ) is not provable in this theory. 

Our main objectiv~is to prove that MP and MP are not provable in 
o 

a certain large class of intuitionistic theories. 

C° 

MP : 

Before proceeding further~we note a relation between MP ° and 

Lemma 28: MP can be derived from MP within ZHi. 
O 

Proof: Assume - ~ ( y )  -~R(y) Let R(x ,y )  be a prime fo rmu la  such 

t h a t  -~ R(x ,y )  ~ D (R(y) k/ x tx  ) i s  p rovab le  in  ZHi . Then 

"~ R(x ,y )  ~ ~ R(y) and (x) ~ (y) ~ R(x ,y )  ~ ~ (y)  ~ R ( y )  are 

provable in ZHi . By application of MP to (x) -~ (y) q R(x,y) we 

get (x) (Ey)R(x,y) However, (x)(Ey)R(x,y) is provable equivalent 

to (Ey)R(y) that is, MP holds 
O 

Sometimes we simply say that Markov~ principle is not derivable, mea- 

ning that MP and hence MP is not derivable. 
O 

9.2. Markov principle and weak Harrop property 

A. Definition 55: Let T be any extension of ZHi . We say that 

T has the weak Harrop property if T is consistent and if the fol- 

lowing holds: if R(x) and Q(x) are prime formulas without free 

variables other than x and without special function constants, if 

(x) ~R(x), T ~ (Ez)Q(z) , then there is an n such that Q(n) is 

true. 

Theorem 74: Let T be a primitive recursive extension of ZHi , 

which has the weak Harrop property. Then MP (and hence MP ) 
O 

not provable in T 

is 

Proof: Since T is a primitive recursive extension of ZHi and 

since ZHi contains the whole formalism of primitive recursive 

function theory, we find according to Goedel and Rosser a prime for- 
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mula R(y) such that the following holds: i) R(y) does not con- 

tain special function constants or free variables other than y ; 

2) (y) ~R(y) is undecidable with respect to T ; 3) (y) ~R(y) 

is true. Clearly, T, ~ (y) ~ R(y) is consistent. Otherwise, 

T ~ ~ ~(y) ~R(y) would hold. But ZHi ~ ~(y) q R(y)---~(y) ~ R(y) 

holds, since (y) ~R(y) is a formula without V and E .Henee 

T ~ (y) ~ R(y) would follow, contradicting the undecidability of 

(y) ~ R(y) . Now assume T ~ MP O . Then T, ~ (y) ~ R(y) ~ (Ey)R(y) 

Since T has the weak Harrop property, it follows that there is an 

n such that R(n) is true. This contradicts the fact that 

(y) ~ R(y) is true. Hence T ~ MP is false. 
o 

Actually, if we inspect the proof of theorem 74, then we see that we 

have proved the following variant of theorem 74: 

Theorem 74*: Let T be a primitive recursive extension of ZHi 

which has the weak Harrop property. Then we find a prime formula 

R(x) whose only free variable is x , such that the following holds: 

(Ey)R(y) is not provable from ~ (y) ~ R(y), T . 

9.3. The Markov principle and some particular intuitionistic theor~s 

A___u In what follows we will apply theorem 74 to some particular intu~ 

tionistic theories. Since most of our results have been obtained in 

the frame of sentential calculus~we will rephrase them in the termi- 

nology of Hilbert-type systems. First we will pass from the Gentzen- 

type systems ZTi/V and ZTi/I to the corresponding Hilbert-type 

systems. To this end, consider the following formula: 

R) ~ .  { (y) (R(y)  ~ .  (x) ~ yA(X) ~ A ( y ) ) ~  (z) ( R ( z ) ~ A ( z ) )  } W ( ~  
. R This formula i s  denoted by To(R,A ) . The u n i v e r s a l  c losure  of 

T~(R,A) (that is,the formula obtained by universal quantification 

over all free variables which occur in T~(R,A)) is denoted by 

To(R,A ) . We also need formulas of the following type: 

W( (~-- R) > • { (y ) ( (x )  CDyA(X ) ~ A ( y ) )  ~ (z)A(z) } Such fo r -  
mulas are denoted by T*(R,~) and their universal closure by T(R,A). 

Finally, we cite the axiom of barinduction such as stated in ~ 57 in 

the form 26.3a: 

~(a ) ( seq (a )  ~ .R(a) V ~ R(a) ) /~  ( (~)(Ex)R(  ~ (x)) /~  ( a ) ( s e q ( a ) / ~  
/~R(a) .  ~ A ( a ) )  / ~  ( a ) ( seq(a )  /~ (s)A(a*2S+l) .  ~ A ( a ) )  ~ .~A(1) 

We denote it by BI*(R,A) and its universal closure by BI(R,A) 
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Definition 58: i) By ZHti we denote the theory which we obtain 
o 

by adding to ZHi all formulas To(R,A ) without special function 

constants as new axioms. 2) By ZHti we denote the theory which we 

obtain by adding to ZHi all formulas T(R,A) without special func- 

tion constants. 3) ZHti~ is like ZHti, but R in To(RgA ) is 

required to be a bounded formula. 4) ZHti ~ is like ZHti~ but R 

in T(R,A) is required to be a bounded formula. 5) ZHBi is ob- 

tained by adding to ZHi all formulas B(R,A) without special func- 

tion constants. 6) ZHBi ~ is like ZHBi, but the R in B(R,A) is 

required to be a bounded formula. 

Notation: Let T be any of the theories listed in definition 58. 

The theory which we obtain by adding to T the formulas AI, .... ,A s 

as new axioms is denoted by T(AI, .... ,As) . We remind tha%if T is 

a Gentzen-type theory~ then T(A 1 ..... ,As) denotes the theory obtained 

by adding ~ AI, .... , ) A as new axiom to T . Closed 
s 

formulas are again formulas without free variables and special func- 

tion constants. 

Theorem 75: Let A 1 ..... ,A s be closed formulas. 

l) ZTi/I(A I ...... As) F > B iff ZHtio(A 1 ...... As) ~ B . 

2) ZTi/IV(A 1 ...... As) ~ > B iff ZHti~(A 1 ...... As) ~ B . 

3) ZHtio(A 1 ...... As) ~ B iff ZHti(A 1 ...... AS) ~ B and 

ZHti~(A I ...... As) ~ B iff ZHti~(A 1 ...... As) ~ B . 

4) If ZHti(A I ...... As) ~ B then ZHBi(A I ...... As) ~ B . 

5) ZHti~(A 1 ...... As) ~ B iff ZHBi*(A 1 ...... As) ~ B . 

6) The theories ZHtio(A 1 ...... As) , ZHTi~(A 1 ...... As) , 

ZHti(A 1 ...... As) , ZHti*(A 1 ...... AS) , ZHBi(A I ...... AS) and 

ZHBi~(A 1 ..... ,As) are all primitive recursive. 

The proof of theorem 75 is completely routine and hence omitted; 

6) in particular is an immediate consequence of theorem 73. Theorem 

75 permits us to rephrase the results obtained in the preceeding 

chapter for ZTi/I and ZTi/IV in terms of their Hilbert-type ver- 

sions ZHti and ZHti*, respectively, or what amounts to the same 

(in virtue of 3),4) of theorem 75) in terms of ZHti and ZHti* ~ 

respectively. That is, we have 

Theorem 76: Let AI, .... ,A s be a list of closed Harrop formulas. 

Let T be any of the theories ZHti or ZHti* respectively. Let 

A,B, (E ~ )A( ~ ), (Ex)A(x) be closed formulas.  I f  T(A 1 . . . . . .  As) 
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is consistent)then the following holds: a) if T(A 1 ..... As) ~ A V 

then T(A 1 ...... A s ) ~A or T(A 1 ...... A) ? B ; 

b) if T(A 1 ...... ,As) ~ (~ ~ )A( ~ ), then T(A 1 ...... As) ~ A(F) for 

some constant funetor F ; c) if T(A 1 .... ,As) ~ (Ex)A(x) ~ then 

T(A 1 ..... ,As) ~ A(t)" for some constant term t , and hence 

T(A 1 ...... As) ~ A(n) for some n . 

The proof is an immediate consequence of theorems 70, 71 and theorem 

75. From theorem 76 we infer 

Theorem 77: Let AI, .... ,A s be closed Harrop formulas. Let T be 

any of the theories ZHti and ZHti~> respectively. If T(AI,...,As) 

is consistent~then it has the weak Harrop property. 

Proof: Let R(x) and Q(z) be prime formulas without special func- 

tion constants and whose only free variables are x and z ~ res- 

pectively. Assume that T(A 1 ...... As,(X ) ~ (y) ~ R(y)) is consistent 

and that T(A 1 ...... As, (x) ~ (y) ~ R(y)) ~ (Ez)Q(z) holds. Now we 

apply the last theorem, but with A 1 ...... As, (x) ~ (y) ~ R(y) in 

place of AI, .... ,A s and infer that there is a number n such that 

T(A 1 ...... As, (x) ~ (y) ~ R(y)) ~ Q(n) holds. Now Q(z) is numeral- 

wise decidable in ZHi , that is, ZHi ~ Q(m) iff Q(m) is true. If 

Q(n) would be false~then ZHi ~ q Q(n) and hence 

T(A n ..... As, (x) ~ (y) q R(y)) ~ ~ Q(n) ~ contradictin~ the assumed 

consistency of T(A 1 ...... As, (x) ~ (y) ~ R(y) . Hence Q(n) is true 

what proves the weak Harrop property of T(A i ...... As) 

From the last theorem and theorem 74~we obtain immediately the main 

result of this chapter, namely 

Theorem 78~ Let T be any of the theories ZHti of ZHti~ res- 

pectively. Let AI, .... ,A s be closed Harrop formulas. If 

T(A I, .... ,As) is consistent~then Markov's principle is not derivable 

from T(A 1 ...... AS) 

Theorem 79: There are three primitive recursive lists of closed for- 

mulas AI,A2, .... , BI,B2, ..... , CI,C2, ..... having the following 

properties: i) each A. is an instance of Church's thesis; 
1 

2) each B i is an instance of the continuity axiom; 3) each C i 

is a n  instance of the axiom of choice; 4) Marko~s principle is not 

provable from ZHti(AI,A 2 ...... BI,B 2 ..... ) ; 5) Markovs principle 
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is not provable from ZHti*(A1,A 2 ..... ,BI,B2, ..... ,CI,C2, ..... ) 

The proof of the theorem is via theorem 77~ proceeding thereby essen- 

tially as in the case of corollary of theorem 63 and of theorem 72. 

From the last theorem and from theorem 75~we obtain 

Corollary: There are primitive recursive lists of formulas 

A1,A2, ..... BI,B2, ..... ,C1,C 2 ...... having properties l) - 3) of 

theorem 79, and in addition the following properties: 4*) Markov~ 

principle is not provable from ZHBi(A1,A 2 ..... ,B1,B2, .... ) ; 

5*) Markov~ principle is not provable from 

ZHBi*(A1,A 2, .... ,B1,B2, .... ,C1,C2, .... ) . The result obtained in the 

corollary can be stated in an imprecise way as follows: l) if we 

add to the intuitionistic theory of barinduction for decidable formu- 

las the negation of the axioms of continuity and of Church~ s thesis, 

then we cannot derive Markov~ principle from the theory so obtained; 

2) if we add to the intuitionistic theory of barinduction for quan- 

tifierfree formulas the negation of the axiom of choice, of conti- 

nuity and of Church's thesis,then we cannot derive Marko~s principle 

from the theory so obtained. 

9.4. Markov ~rinci~le a n d  the theory of Kleene-Vesley 

A__ u The reader might have wondered why up to now we did not say any- 

thing about the axiom of choice and the axiom of continuity. The rea- 

son is that our methods (at least, in the form in which we have pre- 

sented them) do not extend to the case where the axiom of choice or 

the continuity axiom is present. In order to see this, let ZTiAC be 

intuitionistic number theory plus all instances of the axiom of 

choice. If Gentzen~ proof-theoretic methods could be extended without 

modifications to ZTiAC~ then we could prove among others the follow- 

ing statement S : If ZTiAC ~ ~ (E 7)A( ~ ), then 

ZTiAC ~ ) A(F) for some constant functor~ Fr (where (E ~)A( ~ ) 

is a closed formula). From this,however, we could derive a contradic- 

tion. In order to see this, let T(z,x,y) be Kleene~s T-predicate. 

Assume ZTiAC ~ ) (E ~ )(x)T(e,x, ~ (x)) . Then, in virtue of 

the statement S ~ it follows that there is a constant functor F 

s u c h  t h a t  Z T i A C  ~ ) ( x ) T ( e , x , F ( x ) )  . H o w e v e r ,  a l l  f u n c t o r s  o f  

Z T i A C  r e p r e s e n t  p r i m i t i v e  r e c u r s i v e  f u n c t i o n s .  T h e r e f o r e  i t  f o l l o w s  

that the recursive function ~e~ (x) is primitive recursive. 0n 
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g 

the other hand,it is easy to find an e such that ~e ~ (x) is 
M 

not primitive recursive and such that 

ZTiAC ~ ~ (E ~ ) (x)T(e,x, ~ (x)) holds; hence a contradiction 

is obtained. The difficulty is,of eourse~the same in the case of 

stronger theories such as the system of Kleene-Vesley, which will be 

denoted by KV . 

B. Although Gentzen~ methods are not directly applicable to KV~ 

there are other methods (indirect methods) which permit us to infer 

that Markev~ principle is not derivable from KV . All these methods 

are based on the fact that KV is interpretable in ZHti* . A de- 

tailed description lies outside the scope of this monograph; we con- 

tent ourself with a few indications. One of these methods (the only 

one which we are going to consider) is based on work of Kreisel and 

Troelstra ~7/ and on work of Troelstra which is going to be pub- 

lished. In ~7~ , two theories CS and IDK are introduced. The 

first of these includes KV as a subsystem while the second is both 

a subsystem of CS and of classical analysis. CS contains a con- 

stant K , representing roughly speaking the species of reeursive 

functions, variables for choice sequences and variables for construc- 

tive functions, together with suitable axioms. IDK is obtained from 

CS by dropping everything which refers to choice sequences. The ma- 

jor result concerning IDK and CS is the following: with every 

closed formula A from CS we can associate a formula A* from 

IDK (that is~one not containing variables for choice sequences)~ such 

that CS A iff IDK A* . Irwin particular, A is itself a formula 

whithout choice variables>then A is A* . For formulas without 

choice variables>we can introduce a certain realizability notion 

which essentially coincides with that one introduced in ~4~ . In 

work which will appear, Troelstra proves the following statement SI: 

if A 1 ..... ,As,B are closed formulas from IDK, and if 

IDK, AI, .... ,A s ~ B holds, then B is realizable whenever 

AI, .... ,A are realizable. This notion of realizability can be for- 
S 

malized within the language L which we have used throughout this 

work and there are closed formulas R with the property: if A is a 
n 

closed formula from IDK with at most n logical symbols,then 

RL( [ A~ ) expresses intuitively that A is realizable where EA~ 

is the Goedelnumber of A . Although the author has not worked out 

the details, he believes that the following statement S 2 is pro- 

vable: if AI, .... ,As,B are closed formulas from IDK each con- 

taining at most n logical symbols, if AI, .... ,As,IDK ~ B holds, 
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then ZHti* ~ Rn( E A 1 ] ) /~ ''- /~RL( [A ] ) ~ R( [ B ] ) holds. 
s 

The following statement $3; on the other hand, is easy to verify: 

if R(x) is a prime formula containir~only x free and without spe- 

cial function constants, then, for n sufficiently large, 

ZHt i*  ~ ~n( [~ (y)  ~ R(y)  ] ) ~ ~ ( y )  ~ R ( y )  and 
ZHt i*  ~ Rn( E ( E y ) R ( y )  ~ ). ---- ( E y ) R ( y )  h o l d s .  From t h i s ,  one can  de -  

duce  the following statement S 4 : Let R(y) be the prime formula 

mentioned in theorem 74* (with ZHti* for T ) ; then (Ey)R(y) is 

not derivable from q (y) -~R(y), CS 

P r o o f ;  Assume th e  c o n t r a r y .  Then CS ~ ~ ( y )  - ~ R ( y )  ~ ( E y ) R ( y )  and 

hence IDK ~ ( ~ (y) -~ R(y) ~ (Ey)R(y))* in virtue of the main re- 

sult of Troelstra-Kreisel. Since A is A* if A does not contain 

variables for choice sequencesjwe infer IDK ~ ~ (y) ~R(y)~(Ey)R(y). 

According to statement S 2 , this implies 

ZHti* ~ Rn( ~ ~ (y) ~R(y) 3 ) ~ Rn ( ~ (Ey)R(y) ~ ) With the aid 

of statement $3~ finally we get ZHti* ~ q (y) q R(y)~(Ey)R(y) , 

that is ~ ZHti*, q(y) ~R(y) ~ (Ey)R(y) , contradicting the combi- 

nation of theorem 74* and theorem 78. 

C__~. There are other ways of interpreting KV in ZHti* ; either of 

these could be used to prove statement S along the lines sketched 

above. We hope that this indications suffice to make clear that~ at 

least with respect to the Markov principle, axiom of continuity and 

axiom of choice can be reduced to the theories treated in this mono- 

graph, although in an indirect way and at the expense of a conside- 

rable amount of work. 



CHAPTER X: 

Relative consistency proof of ZTN with respect to ZTi/I~ 

Our arguments presented in chapters II - IX are essentially classi- 

cal, that is, we looked at the proof theory of intuitionistic systems 

from a classical point of view. To be sure, we were careful not to 

use the law of excluded middle when it was not necessary; but ordi- 

nals were handled in a completely abstract and unconstructive way. 

It is the purpose of the present chapter to show that the reasoning 

presented in chapter VI can be reproduced in the theory ZTi/I~ 

(see chapter I for the definition of ZTi/I~). This means that the 

consistency of ZTi/V can be reduced (in a primitive recursive way, 

in principle) to the consistency of ZTi/I~ . On the other hand,it 

is easily seen that ZT/V • that is~ ZTi/V plus law of excluded 

middle• can be reduced in a primitive recursive way to ZTi/V : if 

ZT/V ~ A , then ZTi/V ~ A ° . Thus we obtain a consistency proof for 

ZT/V relative to ZTi/I~ . Actually, we do not formalize the theory 

presented in chapter VI in ZTi/I~ in the proper sense of the word. 

Our reasoning will be intuitive, but such that it will become clear 

that our arguments can be reproduced without difficulty in ZTi/I~ . 

For notational simplicity~we present our formalisation in the Hilbert 

type version of ZTi/I~ , that is, in the theory which we obtain from 

intuitionistic numbertheory ZHi by addition of all the axioms of 

the form W(~R) D.(y)((x)~ yA(X)~A(y))~(z)(R(z)~A(z)) • 
a R 

with A formula from the set W N (sect. 1.5. def. 3) and R a 

bounded formula without function parameters (sect. 14, part K). Thus¢ 

if we say below that a formula B is provable in ZTi/I~ ~ we mean 

that ) B is provable in ZTi/I~ , or equivalently that B is 

provable in the Hilbert-type version of ZTi/I~ . 

i0.i. Preliminary remarks 

A__ t. Our task, to reduce the consistency of ZTi/V to that of 

ZTi/I~ , is,of course, accomplished if we cml reduce the consistency of 

ZTFi/V to that of ZTi/I~, where ZTFi/V is that particular conser- 

vative extension of ZTi/V which has been introduced in chapter VI. 

Denote by ZTFi/V that subsystem of ZTFi/V which we obtain by 
n 

considering those proofs in ZT~/V only, which do not contain for- 

mulas with more than n logical symbols. Since ZTi/I~ is a sub- 

theory of ZTFi/V, it is clear that we cm]not reproduce the arguments 
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of chapter VI as a whole in ZTi/I~ ; this would contradict Goedel~ 

second incompleteness theorem. Howeve~ the arguments presented in 

chapter VI can be relativised to ZTi/V n . This sugges~ that we try 

to prove in ZTi/I~ for each fixed n that ZTi/V n is consistent, 

using thereby the methods of chapter V2, but now restricted to 

ZTi/V n . That this can be done, will be shown in the following sec ~ 

tion. 

B. Before proceeding further, we briefly recapitulate the defini- 

tion of ZTi/I~ . To this end we remind that, according to definition 

3~we denote by W N the set of formulas which can be built up from 
1 

ill-formulas without free-function variables by means of propositio- 

nal combinations and quantifications over number variables. By 

ZTi/I~ we denote the theory obtained from ZTi by addition of the 

following rule of inference: 

I *N 

R(y) , (x) ~____~RyA(X) , f > A(y) 

R(y) , W( ~ R) , / ) A(q) 

where R is a bounded formula without function parameters and where 

A belongs to W N 

C. In this chapter we are not interested in the proof theory of 

ZTi/l~ ; we rather want to know what portion of chapter VI can be 

formalized within ZTi/I~ It is therefore not necessary to take 

special function constants into account, as far as ZTi/I~ is con- 

cerned. Hence we will restrict ourself throughout this chapter to 

that portion of ZTi/I~ which does not contain special function con- 

stants; that is~we tacitly assume that the terms, formulas, sequents 

and proofs of ZTi/I~ with which we are concerned do not contain 

special function constants. Special function constants, however, re- 

appear as soon as we are concerned with the proof theory of ZTi/V ; 

then they are objects about which we speak within ZTi/I~ 

10.2. Remarks about transfinite induction in ZTi/I~ 

A__~. In ZTi/I~ we can perform transfinite induction only with res- 

pect to wellorderings of the form ~-R (that is 

x c'-- Ky /hR(x) /~R(y)) where R is a bounded formula without func- 
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tion parameters (see part K of section 1.4., chapter I). It is not 

absolutely necessary but useful to know that in ZTi/I~ we can per- 

form barinduetions with respect to wellfounded trees R( ~ (x)) 

where R(y) is recursive in the intuitionistic sense. More precisel Z 

we have the following 

Theorem 80: Let D(x,y) and D(x,y) be two formulas not containing 

function parameters. Denote by HI, .... ,H 5 consecutively the follow- 

ing formulas: 

i) (x)( ~ (Ey)D(x,y) ~ (Ez)D(x,z)); 2) (x)(~(Ey)D(x,y)~/(Ey)D(~y)~ 

3) ( ~ )(Ex,y)D(~(x),y) ; 4) ( ~ ,x)((z)A( ~ (x)*z)~A(Ch/(x)); 

5) ( C~ ,x)((Ey)D( ~ (x),y) ~ A( C~ (x))). The formula A is thereby 

supposed to be in W N . Then we can prove in ZTi/I~ the following 

implication: H1/~ ...... /% Hs~A(< >) 

Remarks: Clauses i) and 2) express that (Ey)D(x,y) is recursive in 

the intuitionistie sense ( ~ , p . 284). Since ZTi contains all 

primitive recursive functions, we c~i express every recursive enume- 

table set in the form (Ey)D(x,y) , with D a bounded formula. 

Although the proof of theorem 80 is not completely straightforward~ it 

does not present any difficulties and therefore we omit it. 

Wit the aid of theorem 80, other forms of transfinite induction can 

be proved in ZTi/I~ . In order to list them, let us introduce 

Definition 59: A formula A(Xl, ..... Xs) is called intuitionistical- 

ly recursive with respect to the intuitionistie system T if 

Xl, .... ,x are its only free variables and if the following holds: 
s 

i) A(Xl, ....,Xs) has the form (Ey)R(x l,....,xs,y) where R is a 

bounded formula; 2) there is a bounded formula Q(x I ...... x ,z) 
s 

such that Tk D(Ey)R(x I ..... x ,y)~(~z)q(x z ..... x z) ; 
8 ~ ~ 8 ~ 

3) T ~ A ( x  I . . . . . .  Xs) V ~ A ( x  I . . . . . .  Xs) 

Remark: We are mostly interested in the case where T is ZTi/I~ 

Now l e t  L ( x , y ) ,  D(x) and R(x) be i n t u i t i o n i s t i c a l l y  r e e u r s i v e  

f o r m u l a s  s u e h  t h a t  L ( x , y )  ~ D ( x ) / ~ O ( y )  i s  p r o v a b l e  i n  Z T i / I ~  

Deno te  by W(L) t he  f o r m u l a  ( ~ ) (Ex)  ~ L( O< ( x + l ) ,  C ( ( x ) )  Then 

the following formulas are provable in ZTi/I~ ~ provided A belongs 

t o W N : 
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i) W(~R)~I(y)(R(y)/~(x)(x~RY~A(x)).~A(y))~(z)(R(z)~A(z)) } 

2) W(~ R)~ ~(y)((x) (x~RY ~A(x ) )~A(y))~(z)A(z) ) 

3) W(L) ~(y)((x)L(x,y)~A(x))~A(y)) ~(z)A(z) } 

4) W(L)~y)(D(y)/k(x)(L(x,y)~A(x)).~A(y))D(z)(D(z)~A(z)) ) . 

Formulas i), 2) are special cases of 3), 4). Formulas 3), 4) follow 

from theorem 80 by means of standard devices such as presented in~33 . 

B. In order to apply theorem 80 and its implications successfull~ it 

is important to know that certain particular sets and relations are 

indeed intuitionistically reeursive. In many cases this is a conse- 

quence of the following well-known 

Theorem SI: Let A(x,y) be a quantifierfree formula, a) If 

(x)(Ey)A(x,y) in classical number theory, then ~ (x)(Ey)A(x,y) 

in intuitionistie number theory, b) If ~ (x,y)A(x,y) in classi- 

cal number theory, then ~ (x,y)A(x,y) in intuitionistic number 

theory. 

From this theorem we infer the following 

Theorem 82: If A(x,y) and B(x,y) are quantifierfree formulas and 

if ~ (x)((y)A(x,y) ~ (~z)B(x,z)) in classical number theory, then 

(x) ((y)A(x,y)~ (Ez)B(x,z)) in intuitionistic number theory. 

Proof: a) In order to prove the theorem~we list four formulas which 

can be proved in intuitionistic predicate calculus and whose proof we 

leave to the reader: l) (Ez)(A V B(z)) ~(A ~/(Ez)B(z)) ; 

2) (y)(U ~ V ( y ) )  ~ (U ~ (y)V(y)) ; 
3) (Ey)( ~ A(y) VB) ~ ((y)A(y)~ B) ; 

4) (z)(U(z) ~ V) ~ ((Ez)U(z)~ V) In 2) and 3) Y is not in 

U and B, respectively, in i) and 4) z is not in A and V, 

respectively, b) Next we prove that (y)A(x,y) ~ (Ez)B(x,z) can 

be proved intuitionistically. To this end we write ~e and ~i 

in order to indicate provability in classical and intuitionistic num- 

bertheory, respectively. From ~c(Y)A(x,y) ~ (Ez)B(x,z) we infer 

~c(EY)(Ez)(~A(x,y) ~/B(x,z)) and thus from theorem 81 

~i(EY)(Ez)( ~ A(x,y) k/ B(x,z)) . From formula i) listed under a) we 

get ~i(Ey)( ~ A(x,y) k/ (Ez)B(x,z) and from formula 3) 

~i(Y)A(x,y) ~ (Ez)B(x,z) c) Now to the converse: 

~i(Ez)B(x,z) ~ (y)A(x,y) . From ~c(EZ)B(x,z) ~ (y)A(x,y) we 

infer ~c(y,z)(-TB(x,z) k/A(x,y)) , that is 
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~i(y,z) ( ~ B(x,z) V A(x,y)) by theorem 81 and hence 

~i(y,z) (B(x,z) ~ A(x,y)) (since A,B quantifierfree obey the law 

of excluded middle). From 4) in a) we infer 

?i(y)((Ez)B(x,z) ~A(~,y)) a~d from 2) in a~ finally 

h(Ez)B(x,z) ~ (y)A(x,y) 

Corollary: If A(x,y) and B(x,z) are quantifierfree and if 

~c(Ey)A(x,y) ~ (z)B(x,z) holds, then: 

a) ~i(Ey)A(x,y) ~ (z)B(x,z) , b) ~i(y ) ~A(x,y)~(Ez) ~B(x,z) , 

c) ~i(EY)A(x,y) ~ ~ (Ey)A(x,y) 

Proof: Part a) follows directly from theorem 82. Part b) follows 

from theorem 82 and the classical consequence 

>o(y) ~ A(x,y)-- (~z) ~ B(x,z) . Now to part c). According to IM , 

p . 166, we have: I) ~i ~ (EY)A(x'Y)~(Y) ~A(x,y) . Next we have 

~c(Ey)A(x,Y) V ~ (Ey)A(x,y) , that is, 

~c(EY)A(x,y) V (Ez) ~ B(x,z) in virtue of our assumption and there- 

fore ~c(Ey)(Ez)(A(x,Y) V ~ B(x,z)) . By applying formula i) lis- 

ted under a) in the proof of theorem 82, we infer from the last state- 

ment: ~i(Ey)A(x,y) ~ (Ez) ~ B(x,z) . From b), already proved, we get 

therefore: ~i(Ey)A(x,y) ~/ (y) ~ A(x,y) . Using finally I), we obtain 

~i(EY)A(x,y) ~/ q (Ey)A(x,y) , what proves c) 

Thus, if a predicate can be proved to be recursive in classical num- 

bertheory, then it can be proved to be recursive in intuitionistic 

number theory. 

10.3. Syntax of ZTi/V 

A__~. In the system ZTi/I~ we can speak about the syntax of ZTi/V ; 

one uses thereby a suitable Goedelnumbering of the symbols of 

ZTi/V , its terms, formulas, sequents and proofs. As noted at the 

beginning, we do not give a complete formalisation of the content of 

chapter VI in ZTi/I~ We rather prefer to rephrase the arguments of 

chapter VI in a constructive, but intuitive way such that it will be 

evident that everything can be reproduced via Goedelnumbering in 

zTi/i~ 

B. Chapter Vl splits essentially into two parts: a rather elementary 

part presented in sections 6.1. - 6.4. and a nonelementary part, con- 
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tained in sections 6.5. - 6.6. Formalizing the content of sections 

6.1. - 6.4. requires obviously quite extensive routine work; howeve~ 

this cml be done in principle without difficulties. Among the more 

subtle parts in sections 6.1. - 6.4. for which it is not completely 

evident that they can be formalized in ZTi/I~ is perhaps theorem 

40. Let us just outline how this can be done. Firs~ it is clear that 

the relations R and L between proofs in ZTi/V introduced in 

part F of section 6.4., chapter Vl, can be proved to be recursive in 

classical numbertheory. Using the corollary to theorem 82~it follows 

that both R and L can be proved to be r4cursive in intuitionistic 

numbertheory. If L is provably intuitionistic recursive, then so is 

Lp for every proof P in ZTi/V. Now consider the proof of theorem 

40 as presented in section 6.4. In this proof, we assume that for 

a certain Po ' Lp is wellfounded. By transfinite induction over 

Lp we prove: o if P ~ Dp, then the endsequent of P is 

strongly true. In virtue of theorem 80 and its implications~this 

transfinite induction is accessible to ZTi/I~ if we can show that 

the statement "the endsequent of the special proof P is strongly 

true" is represented by a formula A(x) belonging to W N (with x 

running over Goedelnumbers of special proofs). This, however, is an 

immediate consequence of the definitions of "special proof" and 

"strongly true" as given by definitions 41 and 42 in 6.4. Thus, there 

is in principle no obstacle to proving the Goedelized versions of 

sections 6.1. up to 6.4. in ZTi/I~ . 

10.4. Ordinals 

A. The main obstacle to a straightforward formalization of chapter 

VI within ZTi/I~ is obviously section 6.5. There we introduce or- 

dinals, some of which are apparently nonconstructive. The most im- 

portant among these nonconstructive ordinals is obviously ~ , 

whose definition is given at the beginning of part A of section 6.5. 

It is the purpose of this and the next sections to show that~ despite 

the nonconstructive character of the ordinals introduced in 6.5.~ 

there is a way of handling them within ZTi/I~ . 

B. Let L(x,y) be a formula containing no other free variables 

than x,y . We write xLy instead of L(x,y) . Assume that we have 

already proved xLy, yLz > xLz . Even if we have good reasons 

to expect that xLy is wellfounded classically in virtue of its de- 
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finition, we can hardly expect to prove ( ~)(Ex)(]~(x+l)L~ (x)) in 

ZTi/I~ because xLy might be highly undecidable. However, we can 

eventually hope to prove the following or a similar version of trans- 

finite induction: (y)((x) (xLy ~A(x)) ~A(y)) ~ (z)A(z) . We will 

show that this is the case for certain particular formulas L . 

Assumption A: In what follows, P(z,x,y) and G(z,x) are two in- 

tuitionistically recursive formulas and we assume that 

P(z,x,y)~ G(z,x) /~k G(z,y) is provable in ZTi/I~ . We write 

x ~ zy and x ~ G z in place of P(z,x,y) and G(z,x), respective- 

ly. By W( <z ) we understand the formula 

( f>< ) (Ex)( q ~ (x~i) <z ~ (x)) while PrOgrx(<z,A(x)) and 

TI (<z,A(x)) are abbreviations for 

(y) (y ~ Gz ~ • (x)(x <zy ~ A(x)) ~ A(y)) and 

W( <z ) ~ .Progrx(<z,A(x)) ~ (y)(y 6 G z ~ A(y)) . Finally, F(z) 

is an arbitrary formula for which F(z) ~ W( ~z ) is provable in 

ZTi/I~ ; we sometimes write x ~ F instead of F(x) 

Notation: By < x,y ~ we denote the pairing function 

½((x+y) 2 +3x+y) which maps N 2 in a one-one way onto N 

set of natural numbers). 

(N the 

Now we are going to define a relation L(x,y) , a family of relations 

L(z,x,y) depending on the parameter z and their respective domains 

D(x) and D(z,x) ; we write xLy , xLZy , x E D and x ~ D in 
z 

place of L(x,y), L(z,x,y), D(x) and D(z,x), respectively. Their 

definition is as follows: 

1) ~e,x>L<e',y> --~ e6F/he'~F/~X6Ge/Ry ~Ge,/~ 

/~(e <e' • k/. (e=e'/~x daY)) , 

2) <e,x> ~ D ~ e @F/kx EGe , 

3) <e,x~ L z ~e' ,y> ~ e ~ z /~ e' < zA <e,x > L <e',y > , 

4) <e,x> a D ~ <e,x> £D /~ e < z 
z = 

By Progrx(L,A(x)) and Progrx(LZ,A(x)) we denote the formulas 

(y)(y ~ o ~ .(x)(xLy ~ A(x)) ~ A(y)) and 

(y) (y e D ~ . (x) (xL y ~ A(x)) ~ A(y)) respectively. z 2 
TIx(L,A(x)) and TIx(LZ,A(x)), finally, are abbreviations for 

PrOgrx(U,A(x)) ~(s)(s ~ D ~A(s)) a~d 

Progrx(LZ,A(x))~(s)(s e Dz ~A(s)); respectively. Our aim is to 

prove 



- 263 - 

Lemma 29: Assume A ~W N . Then: a) ZTi/I~ ~TIx(LZ,A(x)) , 

b) ZTi/I~ ~ TIx(L,A(x)) . The lemma will be proved by first proving 

a) by induction over z and then by proving b) with the aid of a). 

We proceed in steps, a) First we claim ZTi/I~ ~TIx(L°,A(x)) . To 

this end assume PrOgrx(L°,A(x)) . Let <u,v> ~ D O be arbitrary. 

From the definition of D and D we infer: 
O 

~u,v> ~D --~u=0/kO ~F/~v ~G Thus we have to prove 
O O 

A( < 0,v ~) From the definition of L z, on the other hand,we imme- 

diately infer: < e,x~ L O <e' ,y~ ~ e=0/~ e=e' /~ x ~oy Hence 

PrOgrx(L°,A(x)) is provably equivalent to 

(v)(0EF/kVEGo~ " (x)(X'~oV~A(C0' x>)) ~A(<0,v>)) , that is, to 

OEF~.(v)(VeGo ~ .(x)(x <o v ~A(<0,x>))~A(<0,v~)) . As no~ 

ted it follows from the assumption <u v> E D that u=0 and 
~ O 

0 E F holds. Hence Progrx(L°,A(x) ) is equivalent to 

(v) (veG o~. (x)(x <oV~A(<O,x >))~A(<0,v>)) , that is, to 

Progrx(<o,A(<0,x>)) From our assumption A we infer W(<o) , 

and since A ~ W N so A( ~ 0,x ~ ) ~ W N . Hence we can derive in 

ZTi/I~ the formula 

W(<o) ~ . P r o g r x ( ~ o , A ( < 0 , x > ) )  ~ (x)(x EGo~A(<0,x>) ) . From 

this, W( ~o ) and Progrx( ~o,A( ~0,x > )) we immediately get 

(x)(x ~G ~A( <0,x ~)) that is, in particular, A( ~0,v~ ) 
O 

b) Next we want to show: ZTi/I~ ~TIx(L z,A(x))~TIx(Lz+l,A(x)) 

To this end assume TIx(Ln,A(x)) and Progrx(Ln+l,A(x)) . Our aim is 

to prove A( <u,v> ) for all <u,v> in Dn+ 1 . To begin with, 

we list some equivalences and implications which immediately follow 

from the definition of L,L z ~ D and D : 
z 

) < u , v >  ~ D n + l ~ - < u , v > ~ D n ~ / ( u = n + l / k n + l  e F n V a D n + l )  ; 

/9)  < u , v > ~ D  n ~ < u , v >  ~ D n÷l ; 

y )  < p , q > , ~ n < u , v > ~  < p , q >  L n + l < u , v >  ; 

~I ) < p,q~Ln+l<u,v> -<p,q~L n<u,v> k/(p~nAu:n+i/kp aFA 

/% u 6F/kq 6Gp/kVE Gn+l) ; 

~2) < n + l , q >  L n+l  < n + l , v >  ------ q ~ n + l V / X n + l  E F , 

~3 ) ~ p , q ~ L n + l ~ n + l , v ~  (p ~ n / X p  6 F A n + I  6 F / i q  6Gp/hV 6Gn+ 1) v 

( p = n + l ~ n + l ~ F ~ q  ~ n + l V )  ; 

g ) ~u,v> ~Dn~(<p,q> L n+l <u,v>__--~ <p,q>Ln <u,v> ) 

From ~ ) we get as an immediate consequence 

P r o g r x ( L n + l , A ( x ) )  ~ P r o g r x ( L n , A ( x ) )  S ince  P r o g r x ( L n + l , A ( x ) )  

h o l d s  by a s s u m p t i o n ,  i t  f o l l o w s  t h a t  PrOgrx(L n , A ( x ) )  h o l d s .  From 
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the inductive assumption TIx(L n,A(x)) we therefore obtain I): 

~ A( < s t >)) Accordin~ to C~ ) above, our (s,t)( < s,t> e D n 

proof is accomplished if we can show: if u=n+l, n+l ~F and 

v ~ Gn+ 1 , then ~(< u,v ~) Hence, let us assume u=n+l, n+l~F 

and v ~ Gn+ 1 . From Progr (Ln+l,A(x)) and this assumption we in- 

fer: II) (s,t)(<s,t>Ln+~<n+l,v> ~A(<s,t>))~A(<n+l,v>) . 

Next we claim: III) 

(p,q) (~p,q>Ln+l<n+l,v> ~A(<p,q~)) ~-~(q)(q <n+iV~A(<n+l,q>)). 

In order to verify the implication from left to right, take p=n+l 

and use ~2) . In order to prove the implication from right to left, 

assume ~p,q> L n+l <n+l,v> . According to ~3) ~ this is equi- 

valent to 

(p=<nAp ~F/kn+l CFAq ~Gp/kV ~Gn+l~n+l ~F)V(p=n+i/kn+l ~FAq~n+iV ) If 

the first of these alternatives holds, then clearly ~p,q~ ~ D n 

and therefore A( < p,q >) according to I) above. I~ however, 

p=n+l, q ~n+l v , then A( <n+l,q >) from the assumed righthand 

side of III). Hence III) is indeed true. This permits us to replace 

in II) the lefthandside of the implication by the righthandside of 

III), that is, we get: IV) (q)(q ~n+l v ~A(<n+l,q>))~A(~n+l,v>). 

In other words we get: V) Progrx( ~n+l,A( <n+l,x >) Since 

n+l ~F by assumption we get W( ~n+l ) by assumption A . Now 

W(<n+l) ~ .Progrx(~n+l,A(<n+l,x>)) ~ (z (z EGn+I~ A(<n+l,z>)) 

is provable in ZTi/I~ since A( <n+l,x ~ ) belongs to W N This 

together with V) and W(<n+l) finally implies 

( z ) ( z  ~ Gn+ 1 ~ A ( ~ n + l , z  > ) )  and ,  i n  p a r t i c u l a r ,  A( < n + l , v  > ) , 

what concludes the induction step. Thus 

Tlx(LZ,A(x)) ~Tlx(LZ+l,A(x)) indeed holds in ZTi/I~ . Combining 

this with the already proved TIx(L°,A(x))~ we obtain 

(z)TIx(LZ,A(x)) f o r  a l l  A ~ W N 

C) It remains to show that (z)TIx(LZ,A(x)) implies TIx(L,A(x)) 

To this end we list some further consequences of the definitions of 

L, Lx, D, Dx : 

i) <u,v> ~ D x ~ ( < p,q >L <u,v> ~p,q> LX <u,v~ ) , 

2) ~x,y> ~ D ~ <x,y~ ~ D 
x 

Now assume 

(u,v)(<u,v~ eD~. (p,q)(<p,q>l <u,v~ ~A(<p,q~)) ~A(~u,v>), 

that is, Progrx(L,A(x)) . Assume in addition <x,y~ ~ D . We 

have to prove A( ~x,y~ ) From Progrx(L,A(x)) we easily infer 

with the aid of i) : Progrx(LZ,A(x)) . Namely, let <u,v> be in 

D z . Then we can replace < p,q> L <u,v> by < p,q>L z <u,v), 
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according to i) above. That is, we have 

(u,v)(<u,v> eDz ~.(p,q)(<p,q LZ<u,v>~A(<p,q>))~A(<u,v>)~ 

that is Progrx(L2,A(x)) Since TIx(LZ,A(x)) is already prove% we 

can infer from Progrx(LZ,A(x)) : (u,v)(<u,v> aDz ~A(<u,v>)) 

Hence we get~ in particular <xly > ~ D ~ A( < xiy> ) or by ta- 
Z 

king x for z : < x y> ~ D ~A( <x y > ) However~ 
i X i 

~x,y> e D x is true by 2) above and so is A( < x,y~ ), what 

concludes the proof of lemma 29. 

10.5. On extending linear wellorderings 

A___~. In the last section we have considered certain particular rela- 

tions L which from a classical point of view are wellfounded. We 

have seen that in virtue of the definition of L , and despite the 

eventually highly undecidable character of L~ one can prove in 

ZTi/I~ transfinite induction with respect to L in the form 

TIx(L,A(~)) , with A ~W N . Such a particular relation L , whose 

definition will be given later, will serve, roughly speaking, as a 

substitute for the ordinal -~ in chapter VI, section 6.5. However, 

-~t only SI , but also such ordinals as ~n( ~ m(X2#l) ~ i) etC. 

w~re used. It is the purpose of this and the next section to provide 

an appropriate constructive substitute for such ordinals and for the 

functions ~n( C~ ), ~ # 

B& To start with, let P(z,x,y) and G(z,x) be two intuitionisti- 

cally recursive formulas and F(z) a third formula which satisfies 

condition A stated at the beginning of part B of the last section. 

With respect to P,G and F~ we use the same abbreviations as in the 

last section. In addition we assume that P,G,F satisfy also the 

following additional 

Assumption B: i) P,G,F are in W N ; 2) for every e, de is 

; then a linear ordering of G e that is; ~ ) if x,y,z E Ge ~ 

X~eY Vx=y Vy ~e x , and X~eY , y_~eZ ~ X.<e z and 

x ~e y ~ ~ y ~e x / ~  y=x hold ; /) x ~eY~X E G e A y E G e 

holds; 3) there is an e and an x E G such that F(e) 
e 

holds. In terms of P,G and F~ we again introduce a relation L 

and its domain D by means of clauses i), 2) in part B of the last 

section. With respect to L,D, we have the 
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Lemma 30: a) If n,m ~D) then: i) nLm Vn=m V mLn ; 

2) nLm, mLp ~nLp ; 3) nLm ~ ~ mLn /% ~ m=n ; 4) 

5) there is an n ~ D . b) nLm ~ n E D /~m E D . 

nLn ; 

The proof follows in a straightforward way from assumptions A,B 

satisfied by P,G,F and from the definition of L,D . 

As shown in the last section, we can prove in ZTi/I~ ~TIx(L,A(x)) 

for A EW N . It is clear that in virtue of assumption B,I) the 

formulas L,D are also in W N . 

Definition 60: The formulas D(x), L(x,y) are said to be an order- 

ing pair if they belong to W N and if, in addition>clauses a), 1)-5) 

and b) of lemma 30 are satisfied. They are called a wellordering pair 

if, in addition j TIx(L,A(x)) is provable in ZTi/I~ for every 

A E w N . 

C. We are now going to extend the relation 

be a new symbol. 

L . To this end) let + 

Definition 61: ~) Let D,L be an ordering pair. Then D* is the 

set of strings (words) of the form n I ~i + ..... +ns ~s which satis- 

fy the following conditions: I) ~i ..... ' ~s E D ; 

2) ~i+l L ~i (in case s > i) ~ 3) ni> 0 . Thereby we admit 

s=l / ) A relation L* over D* is introduced by defining 

ml 81 + .... +rot ~t L* nl ~i +'''+as ~s if one of the following con- 

ditions is satisfied: l) there is an i< min(s,t) (possibly 0) 

such that mk=n k and ~k = /k for k ~i and either 

/ / mi+ 1 < ni+ 1 and i+l = ~i+l~ or else i+l L ~i+l ' 

2) t < s and mk=nk ' ~ k = /k for k=l, .... ,t By definitionj 

xL*y ~x ~ D* /k y E D* . We call L*,D * the ordering pair induced 

by the ordering pair L,D . 

Remark: It would be an easy matter to represent strings 

n I d~l+ .... +n ~ by suitably chosen Goedelnumbers; however we omit 
S S 

such an arithmetisation in order to avoid complicated notations. 

Concerning L*,D* we have 

Lemma 31: If L,D is an ordering pair, then L*,D* is an ordering 
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pair. 

The proof is a straightforward consequence of the definition of 

L*,D* and of the assumption that L,D is an ordering pair. Elements 

~ D can be identified with the elements 1 ~ ~ D* . This iden- 

tification is justified by the following 

Lemma 32: i) If ~, / ~ D then / L ~ iff 1 O< L* 1 / 

Notation: For simplicity~we write O< instead of iO~ for ele- 

ments C~ ~ D . For elements in D*, we can introduce a natural sum 

which will play about the same role as the natural sum 

usually defined for ordinals. Namely, let ~ and ~ be 

n I g~l+...+n s O< s and ml A +  .... +mt /t' respectively. Let S 1 be 

the set ~ C~I . . . . . .  O<s ~/ -" $2 the set ( / 1  . . . . . .  / t  ~ and 
S=S 1 k_/ S 2 the union of both. The elements of S are listed in de- 

creasing order with respect to L : ~i' .... ' ~a " Then we define 

~ ~ to be Pl ~i + .... +Pa ~a ' where the coefficients Pi are 

given as follows: i) if there is a j and a k such that 

C~ j= /k = ~i ~ then pi=(nj+mk ) ; 2) if there is a j such that 

O< j= /i ' but no k such that ~ k = Yi ' then Pi=nj ; 

~) if there is a k such that ~i = /k ' but no j such that 

j= ~i ' then Pi=mk . 

Lemma 33: For ~ ,  ~ ' ,  9~ ~ D* i e  have }~) ~F4# ~'= / ~ ~; 
2) ~ L* ~ ~ ~ 3)if ~ = 7 ~ then ~ = ~ 

This lemma is an easy consequence of the definition of 

Our principal aim is to prove 

Theorem 89: If L,D is a wellordering pair and if A E W N , then 

TIx(L*,A(x)) is provable in ZTi/I~ . 

Here TIx(L*,A(x)) is an abbreviation for 

Progrx(L*,A(x)) ~ (z) (z e D* ~ A(z)) , while PrOgrx(L*,A(x) ) is 

an abbreviation for (y)(y e D*~ . (x)(xL*y ~A(x))~ A(y)) . In or- 

der to prove the theorem, it is convenient to introduce a list of fur- 

ther abbreviations. First, we introduce for every ~ ~ D a set D R 

as 
4 

we introduce for every ~ 6 D* the formula 

(y)(ye*~ ~ .(x)(xL*y ~ A(x)) ~ A(y)) and denote it by 

Progrx(L ~ ,A(x)) ; the formula 
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Progrx(L*~ ,A(x)) ~ (z)(zL* C>< ~ A(z)) will be denoted by 

TIx(L* ~ ,A(x)) For ~ ~ D we use Prog~ (L~,A(x)) a~ abbre- 

viation for (y)(y ~ D*~. (x)(xL*y~A(x))~A(y)) Finally, for 

O<~ D we take TI~ (L*,A(x)) as abbreviation for 

(s)(s e D* ~ .Progr~ (L*,A(s @ x) ~ (z)(z e D~ D A(s #z))) 

D. Instead of proving theorem 83 directly, we first prove 

Lemma 34: With L,D a wellordering pair, if A ~W N, then the fol- 

lowing formula is provable in ZTi/I~ : 

(s)(s e D D . ( t ) ( tLs  ~ TI~(L*,A(x))) ~ T I : ( L , A ( x ) ) )  
(that is, Progrs(L,TI:(L*,A(x)) 

Before coming to the proof of this lemma, we show that theorem 83 is 

an immediate consequence of it; more precisely, we infer from lemma 

3~ two corollaries, the second of which is precisely theorem 83 . 

Corollary i: (s) (s ~ D ~ TI:(L*,A(x)) is provable in ZTi/I~ , 

provided A ~ W N . 

Proof: According to lemma 29, we have ZTi/I~ ~ TIx(L,B(x)) for all 

formulas B E W N . Since A ~ W N it follows that, in particular, 

TIs(L,TI;(L*,A(x)) ) is provable in ZTi/I~ (since TI:(L*,A(x)) is 

in W N ) . That is, 

Progrs(L,Tl;(L*,A(x))) ~ (z)(z G D ~ TI:(L*,A(x))) is provable in 

ZTi/I~ . However, according to lemma 34, PrOgrs(L,TI~(L*,A(x))) is 

provable in ZTi/I~ , and so (s) (s ~ D ~ TIS(L * A(x))) is pro- 
x- 

vable in ZTi/I~ , what proves the corollary. 

Corollary 2: For A ~ W N , the formula TIx(L*,A(x)) is provable in 

ZTi/I~ . 

Proof: a) By definition TIx(L*,B(x)) is 

Progrx(L*,B(x)) ~ (z)(z E D* ~ B(x)) Assume Progrx(L*,B(x)) and 

Dr put = ; by definition, D According to 

corollary l, we have TI ~ (L*,B(x)) that is, I) : 
X 

(S)(S e D* ~ .Progr~ (L*,B(s ~x))D (z) (z ~ D~ ~B(s #x))) 

provided only that B ~ W N . b) Let s o be an arbitrary but fixed 

element from D* ; that there is such an element follows from lemma 

31. Take for B(z) the following formula: 

(EV)(V # So=Z /k A(v)) . Clearly, B(z) e W E . In addition, B(s O @ x) 
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is obviously equivalent to A(x) , as follows from lemma 33. Hence we 

conclude from I above that II) holds: 

Progr~ (L*,A(x) ~ (z)(Z ~D~ ~ A(z)) . Now it is evident that the 

following formula III) holds: 

Progrx(L*,A(x)) ~ Progr ~ (L*,A(x)) . The lefthandside of this impli- 

cation is (y) (y ~ D* ~ .(x) (xL*y ~ A(x)) ~A(y)) while the 

righthandside is by definition: 

(y)(y eD~ ~ .(x)(xL*y ~A(x))\~ A(y)) . But D~ ~ D * by 

definition of D~ ; hence III) is clearly provable in ZTi/I~ . 

Combining III) with II) and using our assumption 

Progrx(L*,A(x)) , we infer IV): (z)(z ~ D% ~ A(z)) . But I~ I = ~ , 

that is ~ I ~I ~ D~ , hence we infer A( ~ ) from IV), what con- 
t ! 

cludes the proof in virtue of the arbitrariness of 
I 

That is, theorem 83, which is the same as corollary 2, follows from 

lemma 34. 

E. Prior to the proof of lemma 34, we want to state a remark concer- 

ning lemmas 30 and 31 and the use of the law of excluded middle. The 

relations L,L* are in general, of course~highly undecidable: given 

two arbitrary numbers a,b we are in general not able to decide 

whether aLb, bLa or neither of them holds. Similarl~ if we are given 

two arbitrary expressions ~ =n I ~i + .... +ns ~s ' 

~=ml /i+ .... +mr / t with the aid of the ~i's and /k'S j 

which need not necessarily all belong to D , then we are in general 

not able to decide whether ~ L* ~ , ~L* ~ or none of them 

holds. However, as soon as we are given the information that a,b 

belong to D, then we know that precisely one of the three relations 

a=b, aLb or bLa holds~ and we are able to decide which one of them 

is true; this is the main content of lemma 30. Similarly, if we are 

given the information ~i' /k ~ D , i:l, .... s , k=l, ..... ,t , then 

we can decide whether ~ , ~ belong to D* and~if so, which of 

the relations L , * , = ~ hold. Finally, if 

told that ~ , ~ 6 D ~ then we know by definition that we are 
I 

" ' ~k ~ D~ and so we are again able to decide which of the re- 

lations T ~ L* ~, ~ L* ~ ,~ ~ = ~ holds. In other words, al- 

though the statements aLb / ~ L* ~ are in general highly undeci- 

dable~the law of the excluded middle is applicable as soon as we 
/ 

know that the arguments a,b and ~ , ~ are in D and in D*, 
I 

respectively. Keeping this in mind, the reader will verify that no 

forbidden application of the law of excluded middle occurs in our 
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considerations below. 

F__ u. In order to prove lemma 34, we need three properties PI' P2' P3 

of D,L and D*,L* which are immediate consequences of definition 

61. 

P l: If ~ ~ D, then ~L*0< , iff ]~' L c< 

Proof: Let ~6D* have the form ml /l+ .... +mr /t ; by defini- 

tion m. ~ 0 , i  P i ~ D and~in case t ~ O~ also ~ i+l L ?i " 

Since L,D is an ordering pair, exactly one of the statements 

 :Pl, holds. I f  or 
then ~ L* O< is impossible according to the definition of L* ; 

hence~ /i L ~ has to hold (this argumentation uses the intuitio- 

nistic valid formula A ~/B /~ ~ A. ~ B ) . If, on the other hand, 

/i L ~ then ~ L* ~ by definition of L* . 

P2: If I ~I L o< , then ] k c< ~ ~I = C>< 

Proof: Obvious from the definition of norm. 

P3: Assume ~ L*g~ and O(~ D . Then VL*(n+I) ~ ~ ~, if 

and only if one of the following conditions holds: 

l) ~ = (n+l) c~ @ ~ and ~L*~ ; 2) ~ = k o( ~k~ and 

0 ~ k ~  n and ] ~ I L  C~ , 3) ~ = ~ and I ~ ] L  c~ 

P roo f :  a) Put / = n I ~ l  + . . . .  +ns g~s ' ~ = ml A +  . . . .  +rot /t 

and ~ =  Pl ~ 1 + . . . .  +Pv ~v al) Assume l) to h o l d .  From ~ b *  ~ 
and lemma 33 we ge t  (n+l)  g~ # ~ L*(n+l)  ~ ~ ~ ,  t h a t  i s  > 

~ L * ( n + l ) ~  ~ . a2) Assume 2 ) t o  ho ld .  Then k o( ~ ~ h a :  

the form k C~ +~ F1 + .... +Pv Fv " Hence, k o( ~ ~ b*(n+l) g~ 

according to the definition of L* . a3) Assume 3) to hold. Then 

according to Pl> and hence that is, 

~%L*(n+l) C~ ~ ~ . b) Now assume ~ L * ( n + l )  ~ ~ 7 Since 
~L*~ , we infer ] ~ ] L  o( ~ and hence, ] ( n+ l )~  :~f~ /] = C~ 

Since ~ L*(n+ l )g~  ~ ~ ,  t h e r e  a re  two p o s s i b i l i t i e s :  A) I ~ / :  ~ ,  
B) ] ~  /L O~ . I f  B) h o l d s ,  t hen  we t ake  ~ f o r  ~ and c l a u s e  3) 
of  P* i s  s a t i s f i e d .  Let  A) be t r u e .  Then ~ =k O( ~ ~ , 

0 ~ k ~  n+l , where [ ~ I L  o~ . Two subcases  a r i s e :  A1) : k_~ n , 
A2) k=n+l . I f  A1) h o l d s ,  then  c l a u s e  2) of  P3 i s  s a t i s f i e d .  

Assume finally k=n+l . Then necessarily ~L* 7 ; otherwise 
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(n+l)  ~ # ~l =(n+l) < @ 
according to  whether ~ = 

Contradiction. 

or (n+l) ~ @ ~ L*(n+l) ~ ~ 

or ~ L* ~ , thus giving a 

G__~. Now to the proof of lemma 34. We have to show that for A ~ W N 

we can prove in ZTi/I~ the formula PrOgrs(L,TI~(L*,A(x)) ) . That 

is,we have to prove TI ~ (L*,A(x)) under the assumption 
x 

~ D , (t)(tL~ ~ T I : ( L * , A ( x ) ) )  and this finally amoun t s  to 

prove (z)(z ~ D~ ~ A( ~ ~ z)) under the following assumption 

AP ° : ao) ~ e D ; bo) ~6D* ; Co) Progr~(e*,A(F@x)) ; 

do) (t)(tL~(~TI2(L*,A(x))) We will do this by proving successi- 

vely three statements ST1, ST2, ST3~ with (z)(zED~A( y @ z)) 

an immediate consequence of ST3. 

STI: (s)(s ~ D* ~ .Progrx(L ~ ,A(s #~ x)) ~ (t)(tL*~A(s # t))) 

holds. 

Proof: a) In addition to AP we make the following assumptions o 7 
AP I : al) s o e D* ; bl) Progrx(L ~ ,A(s o =~x)) ; cl) toL*o< 
To prove STI amounts to prove A(s ° @ to) under the assumptions 

AP ° and AP 1 . Since toL*c~ , we have I tol L cl by Pl ~ and 

hence, TI ItOI (L*,A(x)) by AP do) that is 
X O ~ ~ 

( s ) ( s  ~D*~ .Progr! t°I ( L * , A ( s  ~ x ) ) ~  (z)(z ~ D~to/~A(So ~= z))) 

For So, in particular, we have I) : 

erogrxlt°;(L*,A(s ° ~ x)) ~(z)~z ~ Ditoj~A(s ° @ z)) 
h) Now Progr (L~ ,A(So@X)) is 
(y)(yL*O( ~ (x)(xL*y ~A(So@ x ) )  ~ A(so~Y)),while 

Progr: tO] (L*,A(So@#X)) is (y)(y ~ D*~t ~. (xL*y~A(So~X))~A(So@@Y))o 
. . . .  I oi I t o l  

We claim II) : Progrx(L~ ,A(So#~X))~VrOgrx (L*,A(So~= x)) . To 

this end, assume Yo eD~to I and PrOgrx(L ~ ,A(So@ ~)) . Then 

lYol LI %1 VI Yol -- Itol' and hence, lYol L< in virtue of 

]tol L < . According to Pl, this means oL*~< , and hence we can 

i n f e r  ( x ) ( x L * y  ~A(So ~x)) ~A(So~Yo) f rom 
Progr (L~< , A ( S o ~ X ) ) .  This proves I I ) .  Combining I) and l I )  
with APl,bl),we can infer (z)(z E D~toi~A(So ~ z)) Since 

t o a ~to I,we obtain A(So ~to) what eoncludes the proof of ~i 

ST2: Under the assumption APo , if ~ L~o( then A(T ~ ~ ) 

Proof: a) Progr~ (L*,A( y ~ x)) 

listed under AP . We claim I) : 
o 

occurs among the assumptions 
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Progrx~ (L*,A( / :~ x)) 3 Prog~x~t (L*,A( / ~ x)) . Now 

Pr°grx~(L*'A( F @ X)) is 

(y) (y 6 D~ ~ • (x)(xL*y ~ A( / @ x)) ~ A( ~ ~ y)), while 

ProgJx~] (L*,A( F # x)) is 
(y)(y e D* ~ . (x) (xL*y ~ A( ~ ~ x)) ~ A( ~ #~ y)) If 

y ~ DI~ , , then IYl L I ~ I or I y, = I ~ I • According to P1 and 

~L*IO<) we have I~IL c~ , hence in any case IY' L ~< ~ and so 

y ~D~ . This, combined with Progrx~ (L*,A(~ ~ x))  as  assump- 

tion,implies (x) (xL*yDA(/ ~ x)) ~ A(y ~ y) , what proves I) 

b) AS noted, we have }~IL o< . From AP O , do) , we can infer 

TII> ] (L*,A(x)) , that is, II) : 
x 

( s ) ( s  ~ D* ~.Progfl I (L*,A(s @ x))~ (z)(z ~ ~ A(s =~: z ) )  ] 
r]x~iSince. ~D* by AP ° , bo) , we obtain III). 

Prog (L*,A(~ ~ x)) ~ (z)(z ~ D~ ~ A( ~ ~ z).) . Combining 

I )  and AP ° , Co) , with I I I ) ,  we ge t l ' / IV)  : ( z ) ( z  EDI~I ~ A ( ~  ~ z)) .  
S ince  7 D ~ , ,  we f i n a l l y  o b t a i n  A ( ~  ~ ~ ) ,  p rov i ng  S t . 2  . 

ST3: If ~L* o< then A( ~ ~ n o< V 

(with F ~ n o< ~ ~ = F ~ ~ if n:0 

Proof: The proof is by induction with respect to n . a) If n=O, 

then the statement is a consequence of St2 . b) Assume that for 

all k with 0Lk__~n we have proved I) : if ~ L* e< , then 

A(~ ~ k O< ~ ~ ) holds. Since ~ # (n+l)c( ~ D*, it follows 

from Stl that our statement is proved for n+l in place of n if 

Progrx(L*o( ,A( ~ @ (n+l)c~ @ x)) is provable, that is,if we can 

prove II ) : 

(y)(yL*~ ~ .(x)(xb*y ~A(y 4@ (n+l)~ ~ x))~A(F~(n+l)~y)). 

According to our assumption AP e , Co) , we have at our disposal 

Progrx~ (L*,A( F # x)) , that is, III): 

(y)(y 6 D~ ~ . (x)(xL*y ~ A(f ~ x)) ~ A(~ • y)) . In order to 

prove II) , assume ~L*o< and in addition IV) : 

For such a k, we can infer from III) the statement V) : 

(x)(xL*X ~ A(f ~ x)) ~ A( ~ ~ ~ ) Now let ~ be such 

that ~ L* X For such y we infer from P3 that one of the 

following three conditions holds: i)? =(n+l)~ ~ ~ and ~ L* ~; 

2) ¢ =kC<~ , 0~k<_n and I~]L ~ ; 3) ~ = ~ and 

I ~I L ~ If l) holds, then A(~ ~ (n+l)c~ ~ ~ ) , that is, 

A(~ ~ ~ ) holds according to IV) If 2) holds, then 

=k o< # ~ , O ~ k ~ n  and ~ L* ~ a c c o r d i n g  to P1 ; hence  
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A( ~ ~ k ~ ~ ~ ) , t h a t  is A ( ~  ~ ~ ) h o l d s  in  v i r t u e  of  our  

i n d u c t i v e  a s sumpt ion .  I f  3) h o l d s , t h e n  a g a i n  A ( / ~  ? )  i n  v i r t u e  

of  ST2 (o r  a l s o  i n  v i r t u e  of  our  i n d u c t i v e  a s s u m p t i o n ) .  I n  any 

case, whenever ~ L'k, then A( ~ ~ 7) . That is,we have proved 

VI) : (x)(xL*~ ~ A( /=~ x)) . From V) and VI) we infer 

A(~ @ (n+l) ~ # ~ ) , proving thus II) . This concludes the 

proof of St3 . 

C o r o l l a r y  ( to  S t3) :  ( z ) ( z  e D~ ~ A( F ~ z ) )  

Proof: If z E D~ , then z=n~ ~ ~ (with z: ~ in case n=O) 

and ~ L ~ ; hence, A(~ ~ n ~.@ ) holds in virtue of St3 . 

That is,we have proved (Z)(Z 6 D~ ~ A(F ~ z)) under the as- 

sumption AP , what proves lemma ~. 
o 

10.6. Cartesian products of ordering pairs 

A_c _. Given two ordering pairs DI,L 1 and D2,L2 ~ we can form a new 

one, D+,L+ , called the cartesian product of D I,L 1 and D2,L 2 

The domain D+ is given as follows: <a,b> ~D+ iff a ~D 1 

and b ~ D 2 The relation L+ on D+ is defined as follows: 

< a,b~ L+ <u,v> iff <a,b~ ~ D+ /k<u,v>~D+ /k 

/k (aLlU . ~ / . ( a = u  / k b L 2 v ) )  
Concern ing  L+,D+, we have 

Lemma 35: If DI,L 1 and D2,L 2 are ordering pairs then L+,D+ 

an ordering pair. 

is 

We omit the completely straightforward proof. In addition, we also 

have 

Lemma 36: If DI,L 1 and D2,L 2 are wellordering pairs then D+,L+ 

is a wellordering pair. 

Proof: Our aim is to show that TIx(L+,A(x)) is provable in 

ZTi/I~ if A ~ W N • To this en% we assume I) : Progrx(L+,A(x)) 

We want to infer (z)(z @ D ~A(z)) a) Instead of proving I) + 
directly we prove II) : PrOgrx(Ll, (s)(s E D2~A(< x,s >))) 

From II) we infer I) immediately, as follows: from 

TIx(Ll,(S)(S ~ D 2 ~A(<x,s~))) we infer with the aid of II) 
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t h e  f o r m u l a  ( t ) ( t  ~ D 1 ~ ( s ) ( s  a D2 ~ A (  ~ t , s  ~ ) )  ) a n d  t h i s  i s  

the same as (z)(z ~ D ~A(z)) b) In order to prove II), let 
+ 

be in D I and assume Ill) : 

(t)(tLl~ ~ (s)(s ~ D 2 ~A( < t,s ~ ))) . Our task is accomplished 

if we can prove IV) : (s)(s ~ D 2 ~ A ( < ~  ,s>)) . In virtue of 

TIx(L2,A ( < ~  ,x >)), this is achieved if we can show V) : 

PrO~rx(L2,A(<~ ,~>)) . That is, we have to infer A(<~<, ~>) 
from the assumptions__ VI): i) 7 ~ D2 ; 

2) (s) (sL27 ~ A (  < ~  ,s >)) . Because of I), we have VII) : 

(x,y)(<x,y>< ~ <~ , ~>~A(<~,y>))~A(<~, ~ 
In virtue of the definition of L , there are two cases to be distin- 

+ 

guished: i) x= ~ and yL 2 ~ ; 2) xL 1 ~ . In case i) it 

follows from assumption Vl) , 2) that A(<~,y>) holds. In 

case 2), however, it follows from assumption III) that 

A(~ x,y ~) holds. Thus the lefthandside of VII) holds, that is, 

A(<~ , ~>), what proves the lemma 

B. Let D,L be an ordering pair and ~ an element not contained 

in D . Then we define a new domain and a new relation D°,L °, 

respectively, as follows: i) a ~ D ° iff a=(~. k/ .(a 6 D) , 

2) aL°b iff aLb. V .(a= ~/'kb E D) . We say that L°,D ° have 

been obtained from D,L by addition of a smallest element 

Lemma 37: a) L°,D ° is an ordering pair. b) If L,D 

ordering pair~then L°,D ° is a wellordering pair. c) 

and x ~ ,  then ~L°x . 

is a well- 

If x ~ D ° 

We omit the straightforward proof. Let 

and let e be an arbitrary element of 

lows: i) x ~ De iff eLx ,' 2) xLeY 

Concerning De,Le , we have 

D,L be a wellordering pair 

D . Define De,L as fol- 
e 

iff x 6 D  ~ y  ED /'NxLy . 
e e 

Lemma 38: a) De,L is an ordering pair; b) if 
e 

o r d e r i n g  p a i r ~ t h e n  D ,L i s  a w e l l o r d e r i n g  p a i r .  
e e 

D,L is a well- 

The proof is rather trivial and hence omitted. 

C. Let DI,L I and D2,L 2 be two wellordering pairs and ~ an 

element not contained in D I and D 2, respectively. Let DI,L I and 
O O 

D 2 L 2 be obtained from D 1 L 1 and D 2 L 2 respectively~by addition 
0 ~ 0 ~ ~ 

of a smallest element O . Let D ,L be the cartesian product 
+ + 
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of DI,L 1 and D2,L 2 . Then D ,L is a wellordering pair according 
0 0 0 0 + + 

to lemmas 36, 37. Finally, put e= ~Q~ ,@_) ~ . Then (D+) e , 

(L+) e is a wellordering pair according to lemma 38. We can define 

(D+) e , (L+) e with e= < ~  , @ ~  also directly as follows: 

i) ~a,b> C(D+) e iff 

(a ~ Dl/~b ~ D2) k/(a ~ DI/N b=(~) ) ~/(a=(~)/k b ~ D2) ; 

2) ~ a,b> (l+)e~U,V > iff 

(< a,b> ~ (D+)e/~< u,v~ 6 (D+)e) k/ (aLIU ~/(a:~/~ u ~ DI)N/ 

N/ (a=u~bL2v) N/ (a=u ~b=(~) /~ v 6 D2) ) For simplicity, we c a l l  

( D + ) e  , ( L + ) e  , w i t h  e= < ~ ,  ~ > . t h e  e x t e n d e d  c a r t e s i a n  

product of Di,Ll and D2,L 2 with respect to ~ . With this termi- 

nology~ we infer from lemmas 36 - 38 

Lemma 39: Let DI,L I and D2~L 2 be wellordering pairs, ~ an 

element not in D1 kJ D2 ~ and D , L the extended cartesian product 

of DI,L I and D2,L 2 with respect to ~ . Then D , t is a well- 

ordering pair. 

10.7. The ~-construction 

A. In what follows we start with a given wellordering pair D,L and 

construct successively new ones Do,Lo, DI,LI, D2,L2, etc. We call 

this construction i-construction in view of its similarity with 

Gentzen~ notation for ~o ' used in [i] . Hence, let D,L be a 

given, fixed wellordering pair and +, ~ two symbols not contained 

in D . By definition, Do,L ° is the wellordering pair induced by 

D,L according to definition 61; D , in particular, is the set of ex- 
O 

pressions n I ~ 1 + .... +ns ~s with n.i >0 ' { i E D and 

i+l L ~ i (in case s ~i ) Now assume that Dn,L n have alrea- 

dy been defined and proved to be a wellordering pair. Then we take 

for Dn+ 1 the set of expressions of the following form: 

~ i + ..... +n ~s +m I -- ~ +mt ~ with ~ i E s 1 + .... ! t Dn ' n I 

i ~ D , n i > O, m i >0 , ~ i+iLn ~ i and / i+l L / i 

Thereby we admit s or t (but not both) to be 0 ; in the first 

case we obtain an expression of the form ml ~ 1 + .... +mt ~t be- 

longing to D ; in the second case we obtain an expression of the 

form n I gO ~ 1 + ..... +ns CO ~ s . The relation Ln+ 1 is said to 

hold between ~ =n OO ~ 1 + .... +n 60 ~ s +m ~ + . .  • ~+m t [v i , s ~ i /i F t 

a n d  ~ = P l  ~ " 1  + . . . . .  +Pa  bO [ a + q l  ~ 1  + . . . . .  +qb ~ b  ( i n  

signs ~ Ln+ 1 ~ ) iff one of the following conditions is satisfied: 
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i) s=a , ni=mi ' ~ i = Yi and 

ml F1 + .... +mr /tLoql Yl + ..... +qb /b (s=a=O admitted); 

2) s < a and n.=m. , o< .= Yi for i ~_Js (s=O admitted) 
1 I 1 

3) there is a j < min(s,a) such that n.=m. and o< = ~i for 1 1 1 
= =m or else i < j ~ and either o<j+ 1 ~j+l and nj+ 1 j+l 

~j+l L ~j+l " 
One easily proves by induction with respect to n : 

Lemma 40: i) Ln,D n a r e  ordering pairs, 2) Dn ~ Dn+ I , 3) if 

then ~ L I iff O< Ln I 0< ' I E D n n+l 

Finally there is again a natural imbedding of D in D and hence 
o 

in D : an c~ ~ D can be identified with 1 ~ ~ D . Without dan- 
n o 

ger of confusion, we write simply o~ in place of 1 C~ for 

~ D . There is also a notion of natural sum ~ whose defini- 

tion and properties are quite the same as in the previous section and 

which will be needed later. In order to define ~, consider first 

the case of two elements ~=nl LO c~ 1 + ..... +n ~O ~ s a n d s  

T =ml LO ~i + .... +m t 60 IFt from Dn Let _SI and S 2 be 

1 ....... O( s ~ and (~i ....... Ft )' respectively. Put 

S=S 1 h# S 2 and list the elements of S in decreasing order: 

~i ~ ~ ..... ~ ~ .  Then we take for 7 # 7 the element 

09 where the coefficients a. are de- =a I 60 +a r I 

fined as follows: I) if there is a j and a k such that 

~j= ~k = ~i' then a =nl j +mk " 2) if there is a j such that 

j= Ai but no k such that /k = ki, then ai=n. ; 3) if 
J \ 

A there is a k such that yk = Xi but no j such that g~ .=., j i 
then ai=mk . The direct sum ~ :~ "Y~_ of elemTts 
~ :ml /i + ..... +mr /t ' ~ =ql ;i + .... +qb b ( /i' Yi ~ D) 

is defined in the same way as in part C of the last section. Now we 

extend the sum ~ to arbitrary elements 

]d=nl~ L0 g< 1 + ..... +Us bO °<s +ml /i +'~'''+m+ /t ( /i ~ D) 

a =p it) y l  + . . . . . .  Pa cJ 8/~a +q l  ° l  + . . . . .  +qb 7b ( Yi ~ D) 

by taking ~or ~ ~ y  the element 

((nl dx) o< i +...n s 60 °(s) =~ (Pl 60 rl + .... Pa ~ ~a))+ 

+((ml P i + .... mt I t) @ (ql ~i + "+qb ~b ) ) " If, in particular~ 

~g. s=O , a~O, then the last expression reduces by definition to 

(Pl 60 Fly Co/Ya)+((ml /i "+rot /t ) @ + ..... +Pa +''" 

(ql ~i + ..... +qb ~b )) " If s=a=O ~ then we obtain by definition 

(ml  / i  + . . . .  +rot I t  ) ~ ( q l  Y l  + . . . . .  +qb Yb ) )  ; s i m i l a r l y ,  i n  o t h e r  

situations such as a=O , s~O and t~O , b=O etc. Again we have 
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H__~. It remains to prove 

Theorem 8h: If D,L is a wellordering pair~then we can prove in 

ZTi/I~ for every n the formula TIx(Ln,A(x)) for A ~ W N . 

Proof: The proof is by induction with respect to n If n=0, then 

the statement is a consequence of theorem 83 . Assume the theorem 

proved up to n . Hence Dn,L n is a wellordering pair. In order to 

form the induced pair of D ,L according to definition 61~we take a 
n n 

~( * as in definition 61 but with new sign ~ and define (Dn)* L n 

in place of + Denote by Dn+ 1 the subset of elements of 

Dn+ 1 having the form n I ~O ~ i + ..... n ~ ~ s and let L be 
s ~ ~ n+l 

the restriction of Ln+ 1 to Dn+ 1 ; the pair Dn+ 1 , Ln+ 1 can 

easily be proved to be an ordering pair. The mapping which associates 

with every element nl ~ ~ 1 + ..... +n ~ ~ s from the ele- s Dn+l 
ment n ~I ~ ..... ~ n ~ is clearly an order isomorphism 

~i s s 

from n+iD , An+IL onto (Dn)* , (Ln)* . From this it follows easily 

that Dn+ 1 , Ln+ 1 is a wellordering pair. But it is not difficult to 

see that Dn+l ' ~n+l is~ order-isomorphic with the extended carte- 

sian product of Dn+ 1 , Ln+ 1 and Do,L ° . This~however~implies that 

Dn+ 1 , Ln+ 1 is a wellordering pair. 

The sequence Dn,L n , n=0,1, ..... thus constructed with the aid of 

D,L is called the ~ -construction based on D,L . 

10.8. Direct sums of orderin~ pair.s 

A__~. Consider two ordering pairs DI,L 1 and D2,L 2 ; assume 

D1 z~ D2= ~ . Then we can form a new ordering pair D+,L + , called 

the sum of DI,L 1 and D2,L 2 Thereby D+=DI~ D 2 , while xL+y 

iff one of the following conditions is satisfied: i) x ~ D 1 and 

y ~ D 2 ; 2) x,y ~ D I and xLIY ; 3) x,y ~ D 2 and xL2Y . That 

D+,L + is indeed an ordering pair can easily be proved. We also have 

Lemma 42: If DI,L 1 and D2,L 2 are wellordering pairs~then D+,L + 

is a wellordering pair. 



- 278 - 

Proof: We have to show: Progrx(L+,A(x)) ~ (z)(z ~ D + ~A(z)) 

That is, we have to prove (z)(z ~ D+ ~ A(z)) under the assumption 

I) : Progrx(L+,A(x)) The first step consists in proving II) : 

PrOgrx(Li,A(x)) , using assumption I) We omit the verification of 

this in virtue of its simplicity. From II) we can infer III) : 

(z) (z ~ D, ~ A(z)) . We are through if we can prove IV) : 

(z)(z e D 2 ~A(z)) . This is achieved if we can prove V) : 

Progrx(L2,A(x)) . To this end~ assume VI) : i) y e D 2 , 

2) (x)(xL2Y ~A(x)) All we have to do is to prove A(y) and 

this in turn is achieved if we can prove VII) : (x)(xL+y~A(x)) 

Now xL+y ~x C D 1 k/xL2Y is an immediate consequence of the defi- 

nition of L + and of y ~ D 2 . But x ~ DI DA(x ) holds according 

to Ill) and xL2Y DA(x ) according to VI), 2) Hence, 

xL+y ~ A(x) , what concludes the proof. 

B__&. There is an obvious generalisation of the above concept. If 

DI'LI ...... 'Ds'Ls is a list of ordering pairs such that 

Di/h D k = + for i~k , then we can form a sum D +,L + by taking for 

D + the union D 1 ~/ ..... kJ D while xL+y iff one of the fol- 
s 9 

lowing conditions is satisfied: I) x,y ~ D i and xLiY ; 

2) x E D i , y ~D k and i ~ k . For D +,L + thus defined we have 

Lemma 43: i) D+,L + is an ordering pair. 2) If Di,Li, i=l, ..... s 

are wellordering pairs,then D+,L + is a wellordering pair. 

The proof of i) is straightforward. The proof of 2) can be re- 

duced to the last lemma by an easy induction with respect to s . We 

call D+,L + the sum of DI,LI, ..... Ds,L 
' s 

10.9. 0he-one mappings of orderin~ pairs 

A__~. Consider an ordering pair D,L . Let m be a fixed number ~ 0 

and define D , L as follows: i) x ~ D iff (Ey)(my=x/~y ~ D) ; 

2) for mx, my ~ D put mxLmy iff xLy . Then we have 

A 
Lemma 44: a) D, L is an ordering pair. b) If 

o r d e r i n g  p a i r ,  t h e n  D, L i s  a w e l l o r d e r i n g  p a i r .  

D , L is a well- 

We omit the obvious proof. 
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I0.i0. A particular ~-construction 

A. Our aim is to replace the abstract ordinals used in chapter VI 

by a suitable ~-construction. To this end,let P be an s.n.s. 

proof in ZTFi/V whose endsequent has the form 

(x)Pl(X)=0 ...... (X)Ps(X)=0 > ~(< R) ; with every such proof we 

can associate a certain domain D and a partial ordering ] of 

D : namely the domain D and the partial ordering 1 associated 

with the formula 

according to the definition given in section 6.1., part A (chapter VI~ 

There we also have associated with D a certain domain D* of se- 

quence numbers and~ denoted by ~ *~ the Kleene-Brouwer ordering of 

D* We call D* the domain associated with P and ~* the 

Kleene-Brouwer ordering associated with P The statement "z is a 

(Goedelnumber of an) s.n.s, proof P in ZTFi/V whose endsequent 

has the form (x)Pl(X)=0 ....... (X)Ps(X)=O > ~(< R) and x be- 

longs to the domain D* associated with P " can obviously be forma- 

limed and gives rise to an intuitionistically recursive formula 

Go(Z,X ) which expresses precisely this statement. Similarly~ we can 

express the statement "z is (a Goedelnumber of) an s.n.s, proof P 

in ZTFi/V whose endsequent has the form 

(X)Pl(X)=O . . . . . .  (X)Ps(X)=O > ~ ( ~  R) and x < ~ y ,  where "~* 
is the Kleene-Brouwer ordering associated with P " by means of an 

intuitionistically recursive formula Po(Z,x,y) . Finally, there is a 

formula F(z) which expresses the statement "z is (a Goedelnumber 

of) an s.n.s, proof P in ZTFi/V whose endsequent has the form 

(X)Pl(X):0 ...... (X)Ps(X):0 > ~(~R) and Lp is wellfounded"; 

it is not difficult to see that there is such an F(z) in W N . 

There are two other statements which can be formalized by means of 

intuitionistic recursive formulas, namely~ "z is not (a Goedelnumber 

of) an s.n.s, proof P in ZTFi/V with endsequent 

(x)Pl(X)=0 ...... (X)Ps(X)=0 > ~(< R) ", and "z is not (a Goe- 

delnumber of) an s.n.s, proof P in ZTFi/V with endsequent 

(x)Pl(X)=0 ...... (X)Ps(X)=0 ~ ~(~ R) , and x <y " The two 

intuitionistically recursive formulas which formalize the first and 

second statement,respectively~ are denoted by Gl(Z ) and Pl(Z,x,y), 

respectively; by definition~ Pl(Z,x,y) is just x < y /~ Gl(Z ) . Now 

let G(z,x) and P(z,x,y) be two intuitionistically recursive for- 

mulas for which the following holds: i) G(z,x) ~ Go(Z,X ) V Gl(Z,X), 

2) p(z,x,y)-~po(Z,X,y )~/pl(z,x,y) . it is not difficult to find 
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such formulas G,P With respect to the triple G,P,F we retain 

the notation used in the last section; in particula~ we write 

x ~ zy in place of P(z,x,y) . The properties of G,P,F are summa- 

rized by the following lemma: 

Lemma /-I-5: 1) x < z y  ~ G ( z , x )  / N G ( z , y )  , 2) F ( z )  ~ W( ~ z) ; 
3) P,G,F are in W N , 4) for every e , <e is a linear or- 

dering of Ge= { x/G(e,x) ] ; 5) there is an e and a z such 

that z ~ G and F(z) holds. 

Clause i) of this lemma is an obvious consequence of the definition 

of P,G . Clause 2) is nothing else than a restatement of theorem 40, 

which, as noted in section 10.3., is provable in ZTi/I~ . Clause ~) 

is obvious for P,G . As noted above, it is always possible to take 

F from the set W N , and in virtue of this choice, clause 3) is 

true. Clause ~) is satisfied in virtue of the definition of P,G . In 

order to verify clause 5), it is sufficient to take for e the Goe- 

delnumber of a proof P in ZTi whose endsequent has the form 

) ~(< R) with Ix/R(x) ~ nonempty. 

B c _. In terms of G,P,F we now introduce the wellordering pair 

D' ,L' by means of clauses i),2) in part B of section 10.4. (with 

D' ,L' in place of D,L ) . With the aid of D' ,L'j we form a new 
z k /X 

wellordering pair D,L as follows: i) x E D iff 

(Ey)(x=3y/~y ~ D' ) ; 2) 3xL3y iff xL'y (see section 10.9.) 

There are two further wellordering pairs which will be used: 

D'o,L'o and DI,L I' ' . As D'o ' we take the set of numbers congruent 

two modulo three (that is 2,5,8 ..... ) and,as Di~the set of numbers 

congruent one modulo three (1,4,7, ..... ) As L'o and L I', we take 

the restriction of < to D'o and D I' , respectively. Now we form 

the sum of D~ L' D' ' ' o' o ' ,L' and D I,L 1 in this order, according to 

the definition in part B of section 10.8., and denote it by D,L . 

In order to describe briefly the behaviour of D,L, let e,f be 

Goedelnumbers of s.n.s, proofs PI,P2 in ZTFi/V , both having an 

endsequent of the form 

(x)Pl(X)=O ..... , (X)Ps(X)=0 ) ~( < R) . Let D*e and D~ be the 

domains of sequence numbers associated with Pl and P2 ~ respective- 

* and ~ ~ be the Kleene-Brouwer orderings associated ly; let ~ e 

with P1 and P2' respectively. Assume in addition e < f and let 

Xl,X2,yl,y 2 be four numbers such that x I <~ x 2 and Yl <~ Y2 
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hold. Then we have: i) 3n+2L3 ~e,xib , i=1,2 for all n ; 

2) 3n+2L3 <f,yi ~ , i=I,2 for all n ; 3) 3~e,xi ~L3n+l , 

i=i,2 for all n ; ~) 3 <e,Yi~ L3n+l , i=1,2 for all n 

5) 3 <e,xi> L~ <f,yk~ , i,k=l,2 ; 6) ~ <e,xl~ L3 <e,x2> ; 

7) 3 ~ f , y l >  L 3 ~ f , y 2 ~  . In  p a r t i c u l a r ,  2 L 3 < e , x l >  , 
3 < e , x l ~  L1 , 3 < e , x l  > L4 ~ and s i m i l a r l y  with ~ e,x2 > , 

~f'Yl ~ and ~ f'Y2 ~ in place of < e,xl ~ In addition, we 

note IL4 

C. Now we form the ~ -construction based on D,L . With respect 

to Dn,L n , n=l,2.., we use the following notation: 

~2n( ) 
i) ~o(C< )= ~ ; 2) ~3n+i(~)= ~ This particular 

-construction will serve as a substitute for the abstract ordi- 

nals used in chapter VI. We note that elements ~ ~ D can be iden- 

tified with the elements 1 ~ ~ Do~ and that for ~ , / E D we 

have ~ L / iff 1 ~ L i/~ (n=0,1,2 ..... ). As before, we write 

without danger of confusion ~ in place of i Oi for elements 

D . We remind that for elements ~ , /~ ~ L/ D we have de- 
C n n 

fined a natural sum ~ ~ ~ which has the properties described 

by lemma 41. 

i0.ii. An ordinal assignment 

A. An s.n.s, proof P in ZTFi/V with endsequent 

(x)Pl(X)=O (X)Ps(X)=O ~(~R) i s  c a l l e d  " g o o d "  a c c o r -  

d i n g  to definitions 41 and 43 if and only if Lp is wellfounded. 

This means that F(e) is true if and only if e is the Goedelnumber 

of such a good proof P . Graded proofs on the other hand are s.n.s. 

proofs in ZTF/V all whose side proofs are good. Now we are going to 

define an ordinal assignement for graded proofs with the aid of that 

particular ~ -construction described in the last section. More pre- 

cisely~we associate with each sequent S in a graded proof P a 

certain element ~ ~ D n , to be denoted by o(S) The definition 

of o(S) is by induction according to the clauses listed below. 

i. S is an axiom. Then o(S)=2 

2. S is conclusion of a conversion or a one-premiss structural in- 

ference Sl/S . Then o(S)=o(S1) 

3. S is the conclusion of a one-premiss logical inference SI/S 

Then o(S)=O(Sl) ~ 2 
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4. 

T h e n  o(S)=O(Sl) ~ 0(82) 

5___~- S is the conclusion of a cut SI,S2/S . Then 

o(8)= t4Jd(O(Sl) ~o(82) ) , where d=h(Sl)-h(S), and with 

the height of S I and S respectively. 

6__2_. S is the conclusion of an induction Sl/S 

cases. 

~_!! °(Sl)=nl ~ ~I + ...... Then we put o(S)= ~d(~ 
where d=h(Sl)-h(S ) 

~9~_~i °(Sl)=ni ~ 1 + .... with ~ i £ D Then we put 

o(S)= LOd(C<) 2) where d=h(Sl)-h(S ) 

7__u- S is the conclusion of a V-inference SI/S . 

~e~_li °(Sl)=n I ~ ~ 1 + ...... Then we put o(S): /~d(OO 

where d=h(Sl)-h(S ) 

Case 2: O(Sl~=n I i + .... with ~ i ~ D . Then we put 

~(Si~-L d( 60 ) where d=h(Sl)-h(S ) 

8__u. S is the conclusion of a T(Pl)-inference SI/S . 

~9~_~i °(Sl)=n I ~ ~i + ..... Then we put o(S)= ~X) d( 

with d:h(Sl)-h( S ) 

~9~_~! °(Sl):n I ~ i + .... with ~ i ~ D . Then we put 

o(S)= ~d( {x} i) . 

S is the conclusion of a two-premiss logical inference SI,S2/S 

h(Sl) ,h(S) 

We distinguish two 

~1@21 

1@4) 

°( i ~i) 

9__" S is the conclusion of a T(Pl,a)-inference SI/S . Let e be 

the Goedelnumber of Pl " Since P is a graded proof, P1 is good 

and F(e) holds. By definition, a is an unsecured element of D* , 

with D* the domain associated with P . Hence 3 ~ e,a> ~ D , 

that is~ 3 de,a> ~ <-]D 

~_~! °(Sl)=nl ~ln÷.~... Then we put 
o(S)= ~d( ~ ~l @3 <e,a~ ) with d=h(Si)-h(S) 

Case 2: O(Sl)=nl o< 1 + ...... O~ i ~ D . Then we put 

o(S)~-Ld( £4)~ e,a > ) , where d=h(Sl)-h(S ) 

As ordinal of P~ we take as usual the ordinal of its endsequent; we 

denote it by o(P) 

B__ u Our next task is to prove that the above ordinal assignement has 

the same properties as the ordinal assignements introduced in chap- 

ters II, IV, etc. More precisely one has to prove 

Theorem 41": Let P be a graded s.n.s, proof in ZTF/V and let any 

of the following reduction steps be applied to P . a) The opera- 
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tion "omission of a cut" lowers the ordinal of P . b) A prelimina- 

ry reduction step does not increase the ordinal of P . c) A fork 

elimination (intuitionistic or classical) lowers the ordinal of P . 

d) An induction reduction lowers the ordinal, e) A Tl-reduction 

step lowers the ordinal, f) A T2-reduetion step lowers the ordinal. 

g) A subformula reduction step (as defined in part E of section 

6.4.) lowers the ordinal of P . 

This is the counterpart of theorem 41. We also need the counterparts 

of theorem 42 and of basic lemma III 1 , which are word by word the 

same with the only proviso that the word "ordinal" refers to the or- 

dinal assignement defined here with the aid of the E-construction. 

We denote these counterparts by theorem 42* and basic lemma TT~ The 

corollary of basic lemma III 1 is evidently true in the present case~ 

provided basic lemma III~ is true. We refer to this corollary, inter- 

preted in the present sense, as corollary * Basic lemma III* 

and theorem 42",in turn, are straightforward consequences of theorem 

41" . The proof of theorem 41" consists in a step by step verifica- 

tion of a)-g). This verification, performed in detail, is quite 

lengthy, but entirely routine. We therefore content ourself with some 

indications. 

Consider a) of theorem 41": in order to prove a) ~ it is essentially 

sufficient to prove a counterpart of lemma 8 (call it lemma 8*) 

(sect. 2.6. ~ chapter II). To this end one introduces again all the 

notions listed under definitions 13, 14 and 15; the T(PI)- , 

T(PI,a )- and V-inferences are thereby included among the strong in- 

ferences. The proof of theorem 8* in turn essentially reduces to the 

proof of the counterpart of a statement A) which appears in the proof 

of lemma 8. This counterpart (call it A*) is the following state- 

ment: if S is a good sequent, if 7 is the ordinal of S with 
! 

respect to f, and ~ the ordinal of S with respect to g ~ then 
[ 

L n ~ (for suitably large n ) . This verification splits up into 

several cases, whose discussion is straightforward and which we omit. 

Consider b) of theorem 41" : once part a) of theorem 41" is veri- 

fied, part b) is an immediate consequence. 

Consider c) of theorem 41" : in order to prove c) it is sufficient 

to show that classical fork elimination lowers the ordinal of the 

proof P to which it is applied. For intuitionistic fork elimination~ 
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the statement then follows immediately with the aid of parts a) and 

b). The case of classical fork elimination, however, leads to the veri- 

fication of the following inequality: g~2 b( &49a c~I ~O222)L n OO~+ b 

(for sufficiently large n ) , where ~iLn~ , ~2Ln ~ and a~0 

are assumed. From the definition of L and ~, we immediately 
n 

infer ~2 ~ IL /~2 ~ ~9 ~ 2 L ~ , 6j ~ 1 ~ ~ ~2 L ~ 
a n a ' a n a a a n a 

1 and hence ~ b ( /Z2a a+b 

Consider d) of theorem 41" : a verification of d) essentially amounts 

to a proof of the following inequalities: i) if 7 =nl DO ~ i+..., 

then ( / ~ .... ~ 7 )LngJ ~ 1 ~ 2 (n sufficiently large) ; 

2) if ~ =nl ~ 1 + .... (~i ~ D), then ( ~ ~ .... ~ ~ )Ln 6<) 2 

Both inequalities are immediate consequences of the definition of L 
n 

and of 

Consider e) of theorem 41" : consider the case of a critical 

T(Pl)-inference SI/S , and assume that e is the Goedelnumber of 

P1 " Application of a Tl-reduction step to the T(Pl)-inference 

SI/S transforms this inference into a series of new inferences; 

among these~there occurs a particular T(Pl,a)-inference , where a 

is an element of D* , with D* the domain associated with P1 

Assume O(Sl)= ~ . In order to prove that the Tl-reduction step in 

question lowers the ordinal of the proof one is finally led to the 

verification of the following inequalities: i) if 
c< 

~ =n. ~O 1 + .... ~ then 

2) ~ d(G) ~ e ' a >  ~ 2 @ 2 ~ (g~) ) (n s u f f i c i e n t l y  
large in both cases). We leave it to the reader to verify that these 

inequalities are straightforward consequences of our definitions of 

L n and 

Consider f) of theorem 41" : consider the case of a critical 

T(Pl,a)-inference SI/S ; let e be the Goedelnumber of P1 " Appli- 

cation of a T2-reduction step transforms the inference SI/S into 

a series of new inferences; among these there occurs a particular 

T(Pl,b)-inference such that h <*a holds, where -4" is the 

Kleene-Brouwer ordering associated with Pl " Put °(Sl)= 7 . The 

proof of f) leads to the verification of the following inequalities: 

i) if ~ =n g42 °< 1 + .... then 

g<2d( Lz 2 ~ 1 ~ 3 < e , b  > @ 2 ~ 2 ~ ~ )L n g42d( (x} ~ 1 ~ 3  < e , a ~  ); 
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2) dif <~ :n g>< + ..... with )Ln~ ~)d (I ~ 3~ e,a" )41> ~x2 (6~.) 3 e~b> 1 " ~ D , then 
2 # 2 # ~ for n suf- 

ficiently large. As before) these inequalities are straightforward 

consequences of the definitions of L and n 

Consider g) of theorem 41" : a verification of g) essentially re- 

duces to the verification of the following inequalities: 

i) ~ L n ~ ~ 2 , 2) ~ L n ~ ~ ~ . Both are contained in 

lemma 41. 

Finally, consider theorem 42 ~ : its proof essentially reduces to the 

verification of the following two inequalities: 

i) L~) d(64) °< ~ l)Ln ~)d(. L0c< ~ ~) , 

2) 09 d ( ~ )  I)L n gd d((.4.) 

10.12. The wellfoundedness proof 

A___u. We now come to our final task, namely) to the proof of an approp- 

riate counterpart of theorem 4 3 . To begin with, we have to convince 

ourself that if we restrict our attention to graded s.n.s, proofs P 

not containing formulas with more than n logical symbols, then one 

has to use only ordinals belonging to a certain D m , with m depen- 

ding on n . In order to do this, we associate with every 

e ~D a natural number ~ ( ~ ) inductively as follows: 
n n 

i) if ~ ~ Do )then k ( C~ ) =0 ; 2) if ~ has already been 

defined on Dn , and if ~ =n I g42 ~ 1 + .... is in Dn+ 1 , then we 

put k (7): ~ ( C~ 1)+1 Concerning ~ ~ we can prove several 

simple properties by induction with respect to n , whose proof we 

omit for simplicity. These properties are summarized by 

Lemma 46: i) if ~ ~ D , then ~ ( ~ ) ~ n ; 2) if O( L~ 

then A ( ~ )_~ ~+ (.)~__)~ 3) ~ (C~ @ / )=max( ~ ( O(), k ( )); 

4) ~ (n I 60 ~i .. ( C~ I)+i ; 5) k ( 40 d ( 0( ))= ~ ( O< )+d; 

6) if k ( ~ )=n , then O< E D n 

Definition 62: Let P be a proof in ZTF/V and So, ..... ,S m a 

path in P , that is a list of sequents having the properties: 

i) S is an axiom; 2) Si+ 1 is the successor of S i . We do not 

require that S is the endsequent of P . With any such path (de- 
m 

note it by C ) we associate the number 
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D(C)=(h(So)-h(SI))+ .... +(h(Sm_l)-h(Sm) ) (that is, h(So)-h(Sm) ) ; 

D(C) is 0 if m:0 . Now let S be any sequent in P and F S 

set of paths which contain S as last element. Then we put 

d(S)=maxD(C) , C ~F S , (h(S) the heigth of S ) 

the 

A relation between ~ and d(S) is given by 

Lemma 47: Let P be a graded s.n.s, proof in ZTF/V which does 

not contain formul~ with more than n logical symbols. If S is a 

sequent in P, then ~ (o(S)) ~--- d(S)+l . 

Proof: a) We begin by listing two properties of d . First, if S 

is conclusion of a two-premiss inference, say; SI,S2/S ~ then 

d(S)=max(d(Sl),d(S2))+h(Sl)-h(S ) . I~ on the other hand, S is the 

conclusion of a one-premiss inference SI/S , then 

d(S):d(Sl)+h(Sl)-h(S ) b) Now we claim: ~ (o(S)) ~ d(S)+l . 

The proof is by induction over P . We proceed in steps, i) We omit 

the discussion of the following cases which are trivial to handle: 

~ ) S is an axiom; ~ ) S is the conclusion of a one--premiss 

structural inference; r) S is the conclusion of a logical infe- 

rence. 2) S is the conclusion of a cut SI,S2/S , with 

k(Si) ~ d(Si)+l , i=1,2 by induction. Put d=h(Sl)-h(S ) . Then 

o(S)= ~ d(O(Sl)~ o($2)) ~ and hence 

~ (o(S))=d+max( ~ (O(Sl)), ~ (o($2))) . From this we get 

k(o(S)) ~d+max(d(Sl)+l,d (S2)+I) ~ d+max(d(Sl),d(S2))+l = d(S)+l . 

2) S is the conclusion of an induction SI/S . If k(O(Sl))=O , 

then o(S)= ~d( GO 2) , k (o(S))=d+l and d(S)=d(Sl)+d , hence 

~(o(S)) ~ d(S)+l (with d=h(Sl)-h(S)) If o(S1)=n I ~ ~ 1 + .... 

then ~(O(Sl))= ~( ~ i)+I and o(S)= ~ d( ix# ~ 1 ~) . From this 

we get k (o(S)):d+l+ k ( ~ l)=d+ ~ (o(SI)) Since 

(O(Sl)) ~-~ d(Sl)+l , we have ~ (o(S)) ~ d+d(Sl)+l:d(S)+l , what 

proves the statement also in this case. 4) The cases where S is 

the conclusion of a T(PI)- , T(Pl,a )- or V-inference SI/S are trea- 

ted in the same way as the case of induction. We omit their discus- 

sion. 

In connection with this lemma, we say that a proof has bound n if no 

formula with more than n logical symbols occurs in this proof. From 

the last lemma,we infer 

Lemma 48: If P is a graded proof in ZTF/V 

o(P) C D . We also have the evident 
n+l 

with bound n ~ then 
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Lemma 49: Reduction steps of any kind do not increase the bound of a 

proof. 

B. Now we come to the main task of this section, namely, the proof of 

Theorem 4J*: For every fixed n , we can prove in ZTi/I~ the Gee- 

delized version of the following statement: "if P is a graded s.n.~ 

proof in ZTFi/V with bound n , then Lp is wellfounded" 

Proof: Let n be fixed. By A(x,P) we denote a formula which says: 

P is a graded s.n.s, proof in ZTFi/V with bound n and x is the 

ordinal associated with P . In virtue of lemma 48 we have: 

A(x,r) ~ x e Dn÷ 1 . Let W(Lp) be a formula which says that Lp is 

wellfounded. By a suitable choice, both A(x,P) and W(Lp) are in 

W N . By B(x) we denote the statement: (P)(A(x,P) ~ W(Lp)) . Ob- 

viously, B(x) is in W N . In virtue of theorem 84,we have: 

TIx(Ln+l,B(x)) The theorem is proved if we can show I) : 

Progrx(Ln+l,B(x)) . Hence assume II) : a) y ~ Dn+ 1 

b) (x) (XLn+lY ~B(x)) . We are through if we have proved III): 

H(y) . Let P be any graded s.n.s, proof in ZTFi/V with bound 

n and ordinal y . According to its definition, Lp is wellfounded 

if Lp, is wellfounded for all P' with P'LP . Hcnce, we are 

through if, on the basis of If) a),b) ~ we can prove IV) : 

(P')(P'LP~W(Lp,)) • As in the p r o o f  of theorem 4J, we distinguish 

three cases. Case i: P is strongly saturated and does not admit 

preliminary reduction steps. Then P'LP holds iff P' follows from 

P by means of an essential reduction step. Subcase i: P' follows 

from P by means of a reduction step other than a V-reduction step. 

In virtue of theorem 41*Twe have o(P')LmO(P ) for sufficiently large 

m . It follows from lemmas 48, 49 that we can chose n+l for m 

Hence A(x,P' ) holds, where x=o(P') From II),b) and the form of 

B(x) we infer: W(Lp,) ~ _ ~ !  P' follows from P by means 

of a V-reduction step. Let 

tR(Y)=0  , (x)  < R y A ( X )  , > A(y)  

~(<R) ' tR(q)=O ' /~ > 'A(q )  

be the critical V-inference in P , to which the V-reduction step in 

question is applied. Let P1 be the side proof determined by 

~(~R) . According to basic lemma III* and lemmas 48, 49, P is a 
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graded s.n.s, proof in ZTFi/V whose ordinal O(Pl) belongs to 

Dn+ 1 and for which O(Pl)Ln+lO(P ) holds. Denote O(Pl) by x 1 

From II),b) and the form of B(x) we infer W(Lp) . Hence, P' is a 

graded s.n.s, proof in ZTFi/V whose ordinal z=o(P') is smaller 

than y (that is~ ZLn+lY ) according to theorem 42* . But then it 

follows again from II),b) and the form of D(x) that W(Lp,) holds. 

Therefore W(Lp) holds, proving thus the theorem under the assump- 

tions of case i. There remains the discussion of the following two 

cases: 2) P is strongly saturated but admits preliminary reduction 

steps; 3) P is not strongly saturated and admits preliminary re- 

duction steps. Case 2) is handled in exactly the same way as in the 

proof of theorem 35, while case 3) is reduced to case 2), as in the 

proof of theorem 35 or 43. 

Let us draw a few corollaries from theorem 43*. 

Corollary I: For fixed n, we can prove in ZTi/I~ the Goedelized 

version of the following statement: "If P is an s.n.s, proof in 

ZTi/V with bound n, then Lp is wellfounded" 

Proof: Since P has no side proofs at all, it is by definition a 

graded s.n.s, proof in ZTFi/V and hence subject to theorem 43* 

Corollary 2: For fixed n, we can prove in ZTi/I~ the Goedelized 

version of the following statement: "Let P be an s.n.s, proof in 

ZTi/V with bound n of ~ ( ~ ) (Ex) ~ C~ (x+l) <R ~ (x) and 

assume that no special function constants occur in its endsequent. 

Then there is a continuity function ~ with the property: if 

(u)~0, then there is an m and a proof P of m 

# ~ C~u(m+l)< R ~u(m)" 

We omit the proof of this corollary~which is an easy consequence of 

corollary l~and which proceeds along the same lines as similar proofs 

in earlier cases, eg. the proof of theorem 24 (chapter IV). Another 

straightforward consequence of corollary 1 is 

Corollary 3: For fixed n we can prove in ZTi/I~ the Goedelized 

version of the following statement: "Let P be an s.n.s, proof in 

ZTi/V with bound n whose endsequent has the form > t=q , 

With t,q saturated. Then ItI=lql." 
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A combination of corollaries 2 and 3 finally yields 

Corollary 4: Let n be fixed. In ZTi/I~ we can prove the 

Goedelized version of the following statement: "Let P be an s.n.s. 

proof in ZTi/V which does not contain special function constants 

and whose bound is n Let the endsequent of P have the form 

> W( < R) , (with R(x) by definition a prime formula). Then 

W( < R) is true". 

We have omitted the proofs of corollaries 2 - ~ since they do not 

present the slightest difficulties and are completely analogous to 

the proofs of similar statements, presented earlier. 

10.13. Applications 

A. In order to mention two applications, we note the 

Lemma 50: For every n~ we find an N with the property: if P is 

a proof in ZT/V with bound n of AI, .... ,A s ) B , then there 
o 

is a proof P' in ZTi/V with bound N of AI,...,A ~ > B ° 

We omit the routine proof of this lemma. From this lemma and corol- 

lary 3 we obtain 

Theorem 85: For every n the following statement is provable in 

ZTi/I~ : "If P is a proof in ZT/V with bound n of > p=q 

(with p,q numerals), then p=q is true" . 

As corollary we obtain 

Corollary: If ZTi/I~ is consistent, then ZT/V is consistent. 

B. According to a corollary stated at the end of section 4.7., 

chapter IV, we can prove in ZTi/V the following form of Marko~s 

principle: ~(< R) ) W(~ R) . Combining this with corollary 4 

to theorem 43* a n d  lemma 50~we obtain 

Theorem 86: For every n the following statement is provable in 

ZTi/I~ : "Let P be a proof in ZT/V with bound n of 

W(< R) with W(~R) ~ not containing special function con- 

stants or free variables. Then W(< R) is true". 
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In other words, if we can prove in ZT/V that a certain primitive 

recursive linear ordering is a wellordering, then we can prove this 

also in ZTi/I~ . A similar situation is described by our last 

Theorem 87: For every n the following statement is provable in 

ZTi/I~ : "Let P be a proof in ZT/V of > (x) (Ey)R(x,y) , 

with R(x,y) a quantifierfree formula not containing special func- 

tion constants and with x,y as its only free variables, then 

( X ) ( E y ) R ( x , y )  is t r u e " .  

The proof is an immediate consequence of the corollary stated at the 

end of section 4.7., of lemma 50 and of corollary 4 to theorem 47*. 

This concludes our investigations about the constructive character of 

the reasoning presented in chapter VI, in particular, and our investi- 

gations about the proof theoretic treatment of intuitionistic systems 

of analysis in general. 
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