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PREFACE

The aim of this monograph is to show that the methods used by Gent-
zen in his second consistency proof for number theory can be extended
and used in order to exhibit properties of mathematical interest of
certain intuitionistic systems of analysis. The monograph has its
root in a paper [ﬁ ] in which familiar properties of number theory
have been derived with the aid of Gentzen methods. An outline of the
material contained in chapter IV has been presented at the Buffalo
conference on intuitionism and proof theory (1968) [9] , while other
parts have been discussed in seminaries on mathematical logic at the
university of Basel. A detailed introduction, containing a review of
the content of the monograph, is given at the beginning of chapter I.
The author would like to express his gratitude to the Swiss national
foundations whose financial support made this work possible. Thanks
are also due to the Freiweillige Akademische Gesellschaft Basel which

supplied the major part of the typing costs.
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CHAPTER I:

Introduction and preliminaries

l.1. Introductory remarks

A. The work presented in this monograph consists essentially of
two components: 1) the results which are proved, 2) the techniques
which are used in proving them. Let us begin with a quick review of
the kind of results which we are going to prove. For certain in-
tuitionistic theories T and certain families F of formulas we
are going to prove a statement (to be denoted by (s) in the se-

quel) of the following kind:

(s) Let Aj,...,A  Dbe closed formulas from F and
A,B, (E;)c(f), (Ex)D(x) be arbitrary closed formulas.

a) If Aj,ovuy8,, TLAVB then A ,...,A_, TFA or A;,...,A ,TtB.
b) If Alseve, A, TH(E F)C(?), then there is a functor F such
that A;,...,A_, T F (c(F) hoilds.

c) If Alseeo A, T | (Ex)D(x) +then there is a numeral n such
that A;,...,A_, T+ D(n) holds.

The language from which the formulas of the theories to be consi-
dered are constructed, is that of second order arithmetic, that is
essentially the language used in the book of Kleene-Vesley. The
theories T for which we are going to prove statement (S) (anda
whose exact definition will be given in the course of the work) are
theories which are obtained from intuitionistic number theory by
addition of certain axiom schemas of transfinite induction. Among
these we mention in particular: l) an intuitionistic theory which

has the same strength as classical analysis, 2) the intuitionistic
theory of barinduction with respect to primitive recursive wellfoun-
ded trees, 3) the intuitionistic theory of barinduction with respect
to decidable wellfounded trees. The families F which are admitted
in statement (S8) are: 1) a family F of formulas considered for the
first time by R. Harrop in [2_], and which we call for simplicity the
family of Harrop formulas, 2) the subfamily of classically true
Harrop formulas. Two major applications will be presented: l) an
application to questions connected with the Markov principle,

2) a relative consistency proof of the classical theory of barin-

duction with respect to wellfounded primitive recursive trees modulo



a weak system of intuitionistic analysis. Many further applications
of the methods developed here have been omitted in order to keep the

size of the monograph within reasonable limits.

B. Before proceeding further we would like to stress the fact that
our results are not contained in the results obtained by Kleene in
[6] (which are perhaps more interesting from an intuitionistic point
of view) who proves the statement (S) for the system treated in
[5], but without the family F and the formulas Al""’As . On the
other hand Kleene’s result is not contained in ours and there are

reasons which suggest that there is no straightforward extension of

our technique in order to recover Kleeneks result.

€. Now a few words about the techniques used in this work. A first
application to intuitionistic systems of the methods used in Gentzens
second consistency proof has been presented in [8] , where several
familiar properties of intuitionistic number theory have been derived
by means of Gentzer’s techniques; among others we mention in particu-
lar statement (S), a result which has for the first time been
proved by R. Harrop in [2_] (with F the family of Harrop formulas,
of course). At about that time, the author discovered what he calls
the basic lemma; he then recognized that the basic lemma permitted a
proof theoretic treatment of certain intuitionistic systems of ana-
lysis, some of them as strong as classical analysis. The basic lemma
really deserves its name as the reader will see; everything presented

in this work depends completely on its validity.

At first sight one might believe that the restriction to intuitio-
nistic systems of analysis in this work is due to a deficiency of the
method and that more refined methods permit us to treat classical sy-
stems in a similar way. However, by using a result due to Kreisel
(whose proof he sketched in the first volume of the Stanford report
[12] ) one can show that the techniques used by Gentzen in his second
consistency proof cannot be applied to sufficiently strong systems of
classical analysis if they are formulated in the language of second
order arithmetic. Hence, one of the main reasons, why proof theoretic
methods can successfully be applied to the systems considered in this

monograph is that this systems are intuitionistic.



D. As mentioned, there are many results which the author did not
present in this monograph. However, there are also many problems
which came up in the course of the work, which the author could not
solve. Among these we would like to mention just one: to recover
Bachmannks ordinal 5Z<EZ+1 (1) from the reduction technique presented

in chapter V.

E. Next, some words about the organisation of the work. In chapter 1
we present preliminaries and list the formal systems which will find
consideration later on; some elementary properties of this systems
are discussed. In chapter II we present a short repetition of Gent-
zen’s second consistency proof together with a mild generalization.

In chapter ITIT we discuss the application of Gentzen’s methods to in-
tuitionistic number theory; the basic lemma is proved. In chapter IV
we consider an intuitionistic system (call it TO) which is as strong
as classical analysis and show that Gentzen's proof theoretic methods
can be applied to this system. For this system we prove among others
a weak version of statement (S), that is, statement (S) but with-

out F and A As . An outline of the material contained in

12
chapter IV has been presented at the Buffalo conference of proof
theory and intuitionism [9] . In chapters V, VI and VII we consider
consecutively three systems of intuitionistic analysis; we denote

them by Tl’ T and T for the moment being. Theory T is equi-

2 3 1
valent to the intuitionistic theory of barinduction over wellfounded,
primitive recursive trees, with function parameters absent. In order

to explain the strength of T let T¥% be the classical theory of

2 2
barinduction over primitive recursive wellfounded trees, with func-
tion parameters admitted. Next, for any formula A, let Ao be the

result of replacing |/ and E by 7 , /A and Y in the well-known way
described eg. in,[u_], p. 493. Now T,
theory having the property : if the sequent ——> A is provable
in T; then ——— A% s provable in T, . The theory T3

is essentially equivalent to the theory which one obtains if omne

is a formally intuitionistic
finally

omits from the system of Kleene-Vesley the axiom of choice and the
axiom of continuity. For each of these systems we prove the weak form
of statement (S) (that is without F and Al,...,AS) with the aid
of a method which differs considerably from that one used in chap-
ter IV. The advantage of this method becomes clear in chapter VIII,
which is so to speak the main chapter of our monograph, in that it
contains the most general results. In this chapter we prove three

results: 1) as a preparation full statement (S) for intuitionistic



number theory, with F the family of Harrop formulas, 2) statement

(8) for the intuitionistic theory T of chapter IV, with F the

0
family of classically true Harrop formulas, 3) statement (S) for

the intuitionistic theories T and T (considered in chapter V

1 3’
and VII) with F the full family of Harrop formulas. In order to

prove 2) we use the methods of chapter IV combined with some new
ideas involved in the proof of l), in order to prove 3) we use the
methods of chapter V and VII respectively, combined with the ideas
used in the proof of l). Chapter IX contains some applications of
the results obtained in chapter VIII to guestions centering around
the Markov principle. Its main result is the following: (with F
the family of Harrop formulas) if Al,...,As £F and if

Al,...,Al, T3 is consistent then Markovs principle is not deri-

vable from A A T, . Chapter X finally contains a kind of

1ret et gy 3

consistency proof for the theory T (and hence for TE) consi-

2
dered in chapter VI. More precisely we show that the consistency of

T2 can be reduced to the consistency of a certain (seemingly) weak

A
subtheory Tl of Tl . The basic idea used is the following: one

shows that the apparently unconstructive method used in chapter VI

can be made constructive to such an extent that it can be formalized

in £
in 1 -
F. Now some remarks about the presentation. The presentation is not

polished and many similar things are presented in a different way at
different places. The reason for this is that many results were found
when the monograph was already under preparation (in particular the
results in chapters VIII and IX). It would have been possible to con-
dense chapters V, VII and VIII into one single chapter. The reason
for not having done this is that it would have been difficult for the
reader to grasp the simple mathematical ideas which lie behind the
sometimes rather involved syntactical considerations. Most of the
theorems stated in this work are proved in detail; however, if a
proof is only a slight variant of an other, similar one, given ear-
lier, then we content ourself with an outline or an indication. An
exception is perhaps the consistency proof presented in chapter X.
There, we did not present all the details, since this would have in-
creased the size of the monograph considerably. However, we have
worked out the consistency proof to such an extent that it will be-
come clear to the reader that the details omitted can be supplied

without difficulty.



G. The monograph is not selfcontained. The reader is supposed to
have a good knowledge of Gentzerns second consistency proof [l].and

at least a superficial knowledge of [_8_] .Concerning ordinal nota-
tions the reader is supposed to be familiar with the ordinal func-
tions Lun(o(,) y X /{/4 , o + {5)’ 0(/4 and their properties, such as dis-
cussed in Schiitte’s book [jlt7. It is not absolutely necessary, but
highly recommendable to have some further familiarity with Schiitteks
book. Finally, it is indispensable for the reader to be familiar with
Kleene’s "Introduction to Metamathematics" [h ], at least with that
parts which are concerned with sentential calculus and recursive

functions.

1.2. Preliminaries and notations

A. In this section we collect some notions and notations which will
be used throughout the rest of this work. We start with a few re-
marks on primitive recursive functions. By N we denote the set of
natural numbers, if not otherwise stated. By NN we denote the set
of mappings from N into N , that is the set of one place number-
theoretic functions (or sometimes simply numbertheoretic functions).
If S is any set, then Sn denotes the n-fold cartesian product of
S ; if Sl’°"’sm are sets then Slx...xsm denotes the cartesian pro-
duct of Sl,o.c,Sm . A function of type (s,t) is a mapping from

(NN)s x Nt into N ; a functional of type (s,t) is a mapping from

(NN)S x Nt into NN . If s=t=0 , then f will be identified with
an element in N , while F will be identified with an element in
NN . Let f be a function of type (s,t+1) . With f we associate

a functional F of type (s,t), which satisfies the following equa-
tion: for all By ENN , i=l,...,s and all NyNyyeee,ny E£N
F(gl’°"’gs’n1’°"’nt)(n)=f(gl"'"gs’nl’"°’nj’n’nj+1’°°°’nt)

(with 1 <£j £€t). The uniquely determined F will be denoted by
/ﬂjf or /1f in case Jj=t, or also by
Ayf(o(7"'vdsixl9""xj9Y!Xj+
function and number arguments and where 7y is "bound" by the ab-

1’°'°’xt)’ where qj,xk indicate
straction operator /ﬂ .
In this work it is convenient to use a particular notion of primitive

function and primitive recursive functional. Their inductive defini-

tion is given by the clauses listed below, where Greek letters



- 6 -

djj Xk represent elements from NN, while Xis¥y Tun over N .
a) The natural numbers are primitive recursive (p.r.) functions of

type (0,0). b) The successor function s (of type (0,1)) given

by s(x)=x+l , is a p.r. function. c) The functions fi’t of type
. t R
(s,t), given by fi’ ((Xl,..., C{s,xl,...,xt)=xi (1<i €t) , are

p.r. functions. d) The functions f?’t

i,k
t ’ .
fi:k (a’l,e.., q’s,xl,...,xt)=(xi(xk) , are p.r. functions
(with 1Z=i<s, 1<k£€t). e) If f of type (s,t) is p.r. then

At (1£i£%) is a p.r. functional. f) Let f of type (s,t+1)

of type (s,t), given by

and g of type (a+b,c+d) , with a<s , c£t , be p.r. functions.

Let & ,; , % be short for X yeen, d, ana Yire-er Jp and

X »ee0sX, 4 Tespectively; assume 1<£i £t

The function

> Z )
f(cx,xl,oo.,xi,g(<X1,..., da, }"xl""’xc’st+l"‘°’xt+d)’xi+l’"”xt
is a p.r. function of type (s+b,t+d) o g) Let f be a p.r. func-
tion of type (s+l,t) and F a p.r. functional of type (a+b,c+d)

> Pd
with a<€s , ¢4t ; assume 1<i<s . Let o(,/ be as before.
The function
>

f(o(l,...,o(i,F(o(l,...,o(a,/,xl,...,xc,xt+l,°..,xt+d),
O(i+1"°"0<s’xl""’xt)
is a p.r. function of type (s+b,t+d). h) Let f and g be p.r.
functions of type (s,t) and (a+b,c+d) respectively, with
a £s s c4£t . Assume 1<i<%s+d+l . Then we can define a functionj?

by means of the following inductive clauses:

1) P&, [,50) = £(&xgenixy),
2) ?(&,;,i,nid) = g(g(,f,xl,...,xi,n,xi+1,...,xt+d,5p(0>(,)?,;,n)).

= = -
Then €%7is a p.r. function of type (s+b,t+d+1) (with O, // and x
as before).Clauses f), g) simply state, that the set of p.r, func-
tions is closed under substitution; h) means that the set of p.r.
functions is closed under primitive recursion. We note three facts:

. . = 7

1) the functions f given by f(&,x)=n=constant are p.r. func-
tions in virtue of clauses a),c) and f), 2) if f is a p.r. func-

-

=
tion and/? and ;’ permutations of & and i- respectively, then f¥%
g

Z > >
given by f*(/?,y):f(c&,x), is a p.r. function, 3) if F is a p.r.



functional of type {s,t+l1), then f , given by

> > > >
f{ X ,x,vy) = F{ K ,x)(y) , is a p.r. function.

B. Sequences of numbers are codified in the usual way:
a +1 as_l+1
with ao""’as-l we associate the number Py "'°ps—l , where

po,pl,... is the list of primes, starting with 2 and listed in

a +1 as_l+l
increasing order. A number of the form P, ++++Pg is called

sequence number. Sequence numbers will usually be denoted by letters

such as u,v,w,ul,vl,w etc.; the sequence number associated

l,-.-

with a ,....,a will also be denoted by <i‘a srses@ ;>. The
o o s~1

s-1
empty sequence is represented by 1 and often written as <: ;>.
Concatenation of u = <:ao,...,as_1 ;> with v = <<’bo,...,bt_l >

is given by <:ao,...,as_l, b

o""’btwlz;> and written as u ¥ v .

As length of u= <ia0,...,as_l >> we take s ; we write length(u)=s
or simply 1(u)=s . If u= <:ao,...,as_l >> and if f d1s a one
place numbertheoretic function then u*f denotes the one place num-
bertheoretic function g given by: 1) g{i)=a for ids ,
2) g(i)=f(i-s) for igZs . With ngN and nfN we can associate
the sequence number <:f(0),...,f(s—1) ;> , which will be denoted by
Ezs) . Sequence numbers can always be represented in the form F(s).
A partial ordering é;;K can be introduced as follows: l) if nfé}Km
then n and m are sequence numbers, 2) for f,g‘éNN, E(s)gé;th)
iff s>t and f{i)=g(i) for i<t . The Kleene-Brouwer partial orde-
ring <::K is given by: =n <::Km iff nfm and n g;;Km . There is a
well known total linear ordering of sequence numbers, the so-called
Kleene-Brouwer linear ordering. It is denoted by <:K and its defi-
nition is as follows: l) if nA<me , them mn and m are sequence
numbers, 2) for f,g(ENN , EXS)‘<<KéKt) iff either E(s)C::KE(t) or
else f(i)=g(i) and £(i+1) <g(i+l) for some i< min(s,t)-1. The

sequence number u=<:a0,...,a is said to be an initial segment

s-1
of ££NY if f(s)=u .



C. Another important notion is that of continuity function. An ele-
ment T'é.(NN)S is said to be a continuity function if the following
holds: l) if Ti(nl,.oa,ns)#o then all n, are sequence numbers

and length £ni) = lenEth (ni+1)
2) if T (fl(n),.n,,fs(n))#o and n <m , then

t(?l(n),...,Es(n)) = t(?l(m),,..,Fs(m)) (with f

for 4i=1l,...,s-1,
1reeeafy Yy,
3) for every s-tupel fl"'°’fs of elements from NN there is an
n with T (El(n),...,t_‘s(n));éo . An element T £ (FV)® x N' is said
to be a generalized continuity function of type [s,t] if for every
t-tupel of natural numbers n;,...,n, 't'(xl,...,xs,nl,g..,nt) is a
continuity function with respect to the wvariables xl,cu.,xs . In
order to exhibit the particular role of the first s arguments we
sometimes write Z‘(xl,o.o,xs/yo,..e,yt) instead of
Z‘(xl,,.,,xs,yl,o..,yt)° Generalized continuity functions can be
used in order to describe the behaviour of primitive recursive func-

tions, as the following theorem shows:

Theorem: Let f be a p.r. function of type (s,t) . Then we find
effectively a generalized p.r. continuity function C of type [s,tj

with the property: for all natural numbers L and all
numbertheoretic functions fl,...,fs , if
: Zr(fl(m),...,fs(m),nl,.,,,nt)=k+l , then f(fl,..a,fs,nl,..n,nt)=ka

There are many elementary proofs of this theorem (see section 1.4
for an indication); we omit the details of such a proof. A continui-
ty function, having the properties described by the theorem will be
called a continuity function related with f . The word "effective"
could easily be made precise with the aid of partial recursive func-

tions and Goedel numbers.

D. The main formalism used in this work is that of Gentzen's sequen-
tial calculus, also treated by Kleene in El#] . In connection with
sequential calculus we adopt the notions and notations used by
Kleene; as example we cite the mnotion of principal formula of a
logical inference. An expression such as eg. —_— == indi-
cates an inference "introduction of an implication on the right";
similarly with 00— , ———> /1 etc.. We also use capital
Greek letters such as [’, 77— R Zj , /\ in order to denote sequen-

ces of formulas. The following notation is very convenient:

a) if Sl’SZ are premisses of a two-premiss inference and S its



conclusion then we express this by writing Sl,Sz/S , b) if S

is the premiss of a oneepremiss inference and S its conclusion

1

then we write Sl/S .

E. Proofs in sentential calculus are treated in an obvious way as
finite trees (infinite at some places); we call them proof trees or
simply proofs. We could characterize such proof trees in a precise
way (see eg. [1oj'); however, we omit such a characterization and use
the properties of proof trees without proving them explicitly when-
ever they are intuitively evident. With respect to formulas, sequents
and proofs we have to be a bit careful in one respect: a formula can
occur at several places in a proof and we should actually speak of an
"occurence of a formula in a proof". However, in order to avoid leng-
thy formulations we mostly simply speak of "formula in a proof". It
will always be clear from the context whether the formula itself or
rather an occurence of the formula in the proof is meant. Similar re-
marks apply to formulas in sequents and to sequents in proofs. In
most of the cases "formula in a proof", "formula in a sequent" and
"sequent in a proof" mean "occurence of the formula in the proof"
etc., Similarly we have to distinguish between a particular infe-
rence, say Sl’SZ/S , itself and its occurences in a given proof.
Again we speak of an "inference Sl,Sz/S in a proof P" meaning in
most of the cases a particular occurence of Sl,Sz/S in P . Some
further notions are needed in connection with proof trees. In order
to explain them we do not fix the formal system, to which the no-
tion of proof refers. All we have to know about this formal system

is that all its inferences have the form sl,sz/s or sl/s . Consi-
der a proof P and two occurences S and S' of sequents in P .

We call S the successor of S!' if there is either (an occurence

of) a one premiss inference Sl/S* in P or else (an occurence of)

a two premiss inference Sl,Sz/S* in P such that 8! is Sl or
S2 and such that S is S¥ ; we call S' a predecessor of S (the
predecessor in the first case). A path in P idis a list Sl’oca,sm
of (occurences of) sequents in P such that Si+l is the successor
of S . (An occurence of) a sequent in a proof P , say S , is

called an axiom, if S has no predecessors, or in other words, if
S is an uppermost sequent in P ; the lowest sequent of P (the
only one without successor) is called the endsequent of P . A se-

quent S in P is said to be situated below the sequent S' in P

if there is a path So,...,Sm in P such that m >0 and S‘=S0



and $=S . We express this by writing S {S8' and use S {S' as
abbreviation for S~ St'\/S=S' . If S is a sequent in P then we
can consider the set of those occurences of sequents S' in P for
which S =< S' holds. If we restrict the tree relation to the set

{ S‘/S;gS'} then we obtain a subtree of P , called the subproof of

S din P and denoted by P The occurences of sequents in a proof

s -
P are sometimes also called the nodes of P .,

F. We also need a small portion of ordinal arithmetics in our work.
All that has to be known are essentially the ordinal functions

{,(}n( ), K+ /69 , O<f9 and X # lﬂ (natural sum)} and their properties.
The reader will find everything needed about these functions in

Schiitte’s book.

1.3. Languages, Syntax

In this section we introduce the languages on which the systems con-

sidered in this work are mainly based.

A.l. The most important of the languages to be used is {apart from
minor differences) that one used in [5_] . We denote it by L . The
alphabet of L consists of the following symbols: 1) the logical
signs A , V., 7,2, V', E which in this order denote conjunctiom,
disjunction, negation, implication, all-quantifier and existential
quantifier; 2) number variables x, vy, 2, x; (i<tu) etc.s
3) variables for one place number theoretic functions &, ﬁ’, )‘,
o<i (i< w ) etc.y 4) an individual constant O 3 5) a denume-

rable list of constants fo’ by for primitive recursive func-

ye o
tions among which the first thiee fo’fl’fz play a particular role
and are denoted by ' , + and x respectively; 6) for every fi-
nite squence 5 = <u0"°"ux—l>> of natural numbers a denumerable
list o % (i<¢u) of so called special function constants,

7) commas and parentheses; 8) the two-place predicate constant =,
called equality; 9) the abstraction symbol A ; lO) the sequential
arrow ——————) . With every constant fi we associate in a fixed way
an ordered pair of natural numbers <<ni,mi‘> , called the type of

fi . For 14i=0,1,2 these pairs are in particular ‘<O,l>> , <10,2;>
and <:0,3‘> respectively. Now we define the notions "term" and

"functor" in the same way as in [.5_] , namely: l) number variables



and constants are terms; 2) the function variables are functors;
3) the constants for special functions and the constants of type
<O,l> are functors; 4) 4if F
tl,..,,tm are terms then fi(F

LI AR F are funCtOI‘S al’ld
? b
1 n,

l""’Fn [EEREY
. i, ﬁ L1
5) if F' is a functor and t a term then F(t) is a term;

, t tm ) is a term;
6) if t is a term then ( >\xt) is a functor. The particular

terms 0,0', (0')' etc. are called numerals.

2. The inductive definition of formulas is given as follows:
1) if t,t,
A, B are formulas then (AAB) , (AVB) , (7A4) , (AT—=B) ,

(Vx)A , (Ex)A , (VQx)A and (E o()A . If no confusion arises we

omit brackets and use current abbreviations such as Al\/Az\/A3 for

are terms then tl=t2 is a prime formula, 2) if

((Al\/Az)\/AB) etc.; universal quantification is often written more
simply (x)A , (X)A . The notions "free occurence of a number varia-
ble in a term" ( )\binds variables!) , "free occurence of a (number
or function) variable in a formula" , "bound occurence of a (number
or function) variable in a formula (term)" are introduced as in[:hJ ,
§ 18, but now taking into account the symbol A . A closed formula is
a formula without free variables {but special function constants may
occur in it); a constant functor (term) is a functor (term) which
does not contain free variables (but it may contain special function

constants).

Let t,ql,aao,qn be terms, F’G1’°"’Gm functors, A a formula,
XiseeesXy pairwise distinct number variables and O&,...,(Xm pair-
Giye..5G 4Q;5...,4
1’ m’ "1 n
wise distinct function variables. By S A we de-
Lot mr Xy Xy

note the expression which we obtain if we replace for each 1 every

free occurence of (Xi by Gi and for each k every free occurence

of x by gq, 3 if no &, and no x occurs free in A then this
k k i k
G y0003G 3075000,

1 m’ =1 9n
expression is simply A . The expressions S x % F and
Gl,...,Gm,ql,...,,qn 1’ m'"1? ’“n
S t are defined analogously. Clearly, the result

ooty me Xy Xy

of this substitution is again a formula, a functor and a term respec-
tively. Frequently we use more suggestive notations such as
A(Gl’°°°’Gm’q1’°'°’qn) etc. in order to denote the result of repla-

cing cxl,...,cxm,xl,..o,xn wherever they occur free. Of course,we



can also replace special function constants by functors:

if eg. ; IEERER) ;s are special function comnstants which occur in a
F.,...,F
formula A , if Fl,...,Fs are functors then S 1 SA is the
17000
expression which we obtain when we replace each /gi by Fi wher-

ever }?i occurs in A. Similarly with a term t or a functor G in
place of A . In this connection we use the notions "t 1is free for

x din A" , "G is free for <« in A" etc. which are defined in the
same way as in [H ], § 18. We note: for every term t (functor F ,
formula A) there is an other term t' (functor F', formula A')

without special function constants, pairwise distinct function

variables C<l""’c<s ;?nd special function constants /gl,...,/é;
yvr ey 30 s 0y
such that t =_S 1 St (or F = S/?l Sp or
Lo By 1700 % [ERERE
A =S5 Al ). One can easily prove that t' 1is essentially
170
determined by t (that is up to the function variables C{l,..., o(q
which one is going to replace by /;.,...,/?; respectively). How-
ever we do not need this. We merely assume that the term t' has

been associated in a fixed and well determined way: we call t!'

the term associated with t . If t contains no special function

constants, then clearly +t=t' . The variables C{l,...,c<s in  t!
which we are going to replace by }? ,...,/ES are called the

substitution variables of t' (with respect to t).

3. We now make a convenient assumption which is supposed to be sa-

tisfied throughout the whole work.

Assumption A: With every constant fi we associate (in an effective

way) once and for all a fixed primitive recursive function j?i of
type <:ni,miﬁ> . Moreover this assignment is such that every pri-
mitive recursive function _}p is associated with at least one fi .
In £4 . . . c s
particular j?o is the successor function, <5bl is addition and

9@2 is multiplication,

From now on we will work with primitive recursive functions in a 1i-
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beral way and introduce special notations for particular ones when-
ever we find it convenient. Let M be the set of terms and functors
containing no special function constants. Taking assumption A as
basis and making use of the remarks on primitive recursive functions

and functionals stated in "Preliminaries and Notations" we can asso-

ciate with every term t(cKl,..o,(Xs,xl,...,xq) and every functor
F(g{l,...,cxs,xl,...,xq) belonging to M a primitive recursive
functio?~:? (cxl,...,cxs,xl,...,xq) and a primitive recursive func-
tional F(c{l,...,cxs,xl,...,xq) respectively in an obvious and well

determined way. Of course this assignment is defined in such a way
as to be compatible with the inductive definition of terms and func-
tors: if eg. is associated with t then /| x‘j? is associated
with (>\xt), if in turn F 1is associated with F and §Pwith t,
then '§K£?) is associated with F(t) etc. We call £?7the primitive
recursive function associated with t or more briefly the primitive
recursive function of t and f/ the primitive recursive functional
associated with F ({of F). As pointed out in "Preliminaries and
Notations" one can relate with every primitive recursive function
ép(cxl,..., qé,xl,...,xt) a generalized continuity function
T:(yl,...,ys/xl,...,xt) which "describes" the behaviour of T for

its arguments in the way explained in "Preliminaries and Notations",

‘Definition O: Let t be a term in M , its primitive recursive

function and T a (generalized) continuity function related with jp .

Then we call T a continuity function of t related with t.

Assumption B: With every term +t from the set M we associate in

an effective way once and for all a fixed continuity function T

related with t , called the continuity function of t.

There are manyvpossibilities of associating with a term t a conti-
nuity function [ related with t . A particular way of doing this
will be described at the end of the next section; this particular

assignment will find application in chapter IX.

Definition 1: Let t be a term containing no free variables, let

1 s .
d/> veve s _> be the list of special function constants occuring
u u

1 S .
in t , let t! be the term associated with t and

CXl,...,cXS its substitution variables (with respect to t). Let



finally 7:(y1,..°,ys) be the continuity function of ' . We say
that t 1is saturated if 7:(§i,...;§s) is greater than zero. In

Y A
this case we denote the number Yl(ul,o..,us)-l by 1t/ .

In other words, if gg. af O(’)ﬂ ) is a term from M , whose only
free variables are the function variables X , ﬁ’, if 5? (c%, ﬁ’)

is its primitive recursive function, if ;? ; , 7-;- are two con-
stants for special functions, then q(fiﬁ , ﬁ-:) is saturated if we
are able to calculate the value of §W (f,g) under the sole assump-
tion that ﬁ' is an initial segment of f and ¥ an initial seg-
ment of g . At this point we can briefly explain the role of the
special function constants C{;; y CX;F s o e . In the formal sys-
tems which we are going to con:ider, :his symbols are treated like
constants for functions. Their semantical meaning,however,is rather
the same as that of function variables: c(;i represents so to speak
a function f , about which we only know tha: f(i):ui for i <n
where i = <:uo,...,ux_l:> and which is undetermined otherwise. In
principle one could avoid the use of special function constants;

their introduction, however, turns out to be very convenient.
5. Next we mneed

Definition 2: Two formulas A,B are called isomorphic (with each

other) if there is a formula C(xl,...,xs) containing the free indi-

vidual wvariables xl,...,xs and two lists of saturated terms
tl,...,ts and Ays-eerqy such that: a) fqi] = ti for
i=l,...,s , b) C(tl,...,ts) is A, «¢) C(ql,...,qs) is B .

Similarly for terms p,q and functors F,G .

6. Sequents are expressions of the form Al"'°’As —> B B

17 Py

where the formulas Ai or the formulas Bk or both may be absent,.

The list Al,...,As is called the antecedent, the list B B

100 By
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the succedent. Prime formulas are those of the form tl=t2 ., A se-
quent which contains only prime formulas is called a prime sequent.

A saturated prime sequent is one which contains only prime formulas

tlzt2 with tl’tZ saturated.

7. It remains to explain what a true prime sequent is. To this end,

let £

l""’ts be a list of terms, let
O(l,...,o(m,xl,...,x ,ﬁi ,...,/0"; be an enumeration (without re-
q u up
petition) of the free function variables, free num-

ber variables and special function constants which occur in at least

. 1 m 1 P .
one ti.Allst F> ,...,%> ,72> ,...,7Z> of special
v v w w
1 m 1 p
function constants and a list of numerals nl,...,nq is called a

saturating list for tl,...,ts (with respect to the given enumera-

tion) if the following holds: a) every lﬁi is a (proper or impro-
per) extension of ﬁi, b) replacement of C(i by ; i. , of
J J i
/?_s by 7; and of x, _ by nk(i=1,...,m,j=l,....,15 ,
u, W,
J J
k =1,...,n) transforms every term tq into a saturated term té .
We express the relation between t yeeast LtY, ..,8" , the enume-
1 s’ 1 s

ration o(l,.,..,o(m,xl,...,xq,/ﬂ,]; ,...,(gp) and the saturating

u u

1 P
. 1 m 1
llst§) ,...,$> ,’)Z> 2o ey "Z£ ,nl,..‘,,nq briefly by say-
Vi Vo W, w
ing that the given saturating list transforms tl,...,t into
ti,..a,té without mentioning the enumeration
1
CXl,...,CXm,xl,...,xq,/g = ,...,ﬁ’g, explicitly. Now to the
u u
1 p

truth definition for brime sequents. I1f the sequent S , which we

assume to be given explicitly by

tl=pl""’ts=Ps —_—> qlsrl,...,qt=r is saturated,then S is

.t ’
of course true if either /til # /piJ or /qu = /rkl for at least

one i or k . Now assume that S is not saturated. Then S 1is

called true in the first sense if every saturating list for



tl’°'°’ts’pl’""ps’ql""’qt’rl’°"’rt transforms this list dinto
ti,gea,té,pi,e..,p;,qi,o,,,q%,ri,eee,r% such that the (necessarily
saturated) sequent S' : t1=p} s-..,t1=P} _ aj=ry yeresql=rl

is true. There is of course another more natural definition of

truth for prime sequents. Let S be as above and let

t p q r o . .
971 s 7‘]. , f K’ ?h be the primitive recursive functions asso-
ciated with ti ) pj e respectively. Then S is true in
the second sense if the following holds : in whatever way we put

functions and numbers at the respective argument places of

97: s ?? ’ 57;1[ s ?; , the resulting intuitive implication

"if ?: =?I; for all i =s, then ?i = ?; for at least one k "
is true. For us it is useful to note the following, easily provable
fact: a prime sequent is true in the first sense if and only if it
is true in the second sense. This closes our discussion of the lan-
guage L and the concepts immediately related with it. The dis-
cussion of the notion of truth for arbitrary formulas and sequents

will be postponed to a later section.

B. On many occasions we have to consider formulas and sequents
which are constructed with respect to a certain restricted language
L*¥ , This language L* is obtained from L merely by deleting the
constants for special functions. Then all definitions and state-
ments made in part A of this section specialize immediately to
the case of the language L* , by omitting all references to spe-
cial function constants. The resulting notions then essentially
coincide (apart from minor differences) with the corresponding

notions in 1.3.,A,

1.4, Some basic systems

The aim of this section is to introduce some formal systems which
will serve as basis for all later considerations. One of these sy-
stems is essentially number theory, formalized in terms of senten-

tial calculus. All these systems have L and L* respectively as



their basic languages.

A. Let fi’fj’fk be three different constants for primitive re-
cursive functions and let spi,~9%, Eék be the primitive recursive

functions associated with fi,fj,f respectively. The types of

k
fi’fj and fk are for simplicity assumed to be <l,l> s <l,3>
and <l,2>> respectively. Now let us assume that §Pk is defined
from and . by means of the following recursion scheme:

i
1) @ ol 0.x)=" @, (%)

2) @, (oCiye1,x) "= @,(X,y, §,(X,¥,x),x) . Then we call the
following two sequents the defining sequents of fk :

E— fk((X,O,X):fi(O( ,x) , —> fk(0<,Y',X)=fj(o(,y,fk(o(,y,x)x)-
Similarly let gl,gz,hl,hz,f and f* ©be a list of different con-
stants for primitive recursive functions. For simplicity we assume
that the types of this constants are 1,2 , Li,2> , L1,1 ),
<l,l> , <2,2> and <l,l> respectively. Let ?l(o(,x,y) s
?z(o(sst): ?l(“’x) ’ ?2(“!3{) ’ ?((X,x) and

8 (ﬁ’l,ﬁ72,yl,y2) be the primitive recursive functions associated
with gl,gz,hl,hz,f and f* respectively. Now let us assume that
EV(CK,X) is defined from j?l’ 9?2,j?l,}ﬁé and & by means of
substitution as follows:

Q(o( !x) = Q (/\Y ?1(0( sx,Y)r/\Y?Z( O(,x,y), 4)1((3( %), 492(0( ’x)) .
Then we call the following sequent the defining sequent of f :
_ f(D( 'x) = f*( Aygl(O<yx;Y)s Ang(O(,x,y),hl(o(,x),hz(o(,x)) .
If constants of more general types are involved then the correspon-

ding definitions are of course completely analogous. Next, let

fi and fk be two constants, whose associated primitive recursive
functions 9@1((Xl,...,cxni,xl,...,xmi) and
97k(0<l,..o,cxn 1K ee e X ) satisfy the equations

k k
yi(()(l’""dni,xl,---,xm.) = O<J-(Xr) (jgn,, r<m;) and

i
(q seoay X y K s eeesX. ) = X (pfgm ) respectively. In

5?1( 1 n, 1 m, P k
this case we call ——> fi(cxl,e..,c(ni,xl,...,xmi) = CKj(xr) the
defining sequent of fi and ———> fk(CXl,..e,c(nk,xl,e..,xmk)=xr
the defining sequent of fk respectively. Finally, if fi has as

associated primitive recursive function the successor function

97i(x)=x+l, then we take as defining sequents of fi the follow-

ing ones: fi(x)=f.(y) —> x=y and fi(x)=0 —_

i . Thus



the defining sequents of ' {that is fo) are x'!'=zy! ————> x=vy

and x'=0 ——> , the defining sequents of + (that is fl) are
————> x4+0=x and —> x+y'=(x+y)' and the defining sequents of
x finally are ————> x x 0 =0 and ——> X X ¥' = X X ¥V + X o

Notation: from now on we write a . b or sometimes even more simp-
ler ab din place of a x b . Remark: Up to now the assignment of
E?i with fi has been arbitrary except that both have to be of the
same type and that assumption A has to be satisfied. One can al-
ways choose this assignment in such a way that the following assump-

tion is satisfied.

Assumption C: Every primitive recursive function,~§7occurs exactly
once in the list 5?0, 9?1, sbz,... . Each f?i is either a basic

function or defined in terms of previous ones by means of substi-

tution or the schema of primitive recursion.

Actually, we never make use of assumption C; however the reader who

likes can always assume C to be satisfied.

B. A sequent which contains at most one formula in the succedent
will be called normal. Next let S be a sequent without constants
for special functions, whose list of free variables is given by
o(l,..., g + Xy1+-+1%X, . Then S' is called a substitution in-

stance of S if there is a list of functors F FS and terms

l3°”,
ql’°"’qt (wlth Fi free for c(i and aQy free for xk) such that

S' is obtained from S by replacing for each i every free occu-
rence of c(i by Fi and for each k every free occurence of X
by 9 - Of course, S 1is a substitution instance of itself. Now
we define some sets of sequents. Mo is the set of all sequents of
the form ———3 A xt(x))=t(q) where q is free for x in t .

Ml is the set of all true, saturated normal prime sequents. M; is

the set of all defining sequents of fi s hence M; contains one or

two sequents according to which of the cases, which have been listed
under A , applies to fi B ME is gM; . Finally, a sequent S'

is in M2 , if and only if it is a substitution instance of some se-

i *
gquent S in M2 . By M3

cisely those sequents having one of the following forms:
t=p, p=q —> t=q , t=p —> p=t , ——> t=t ,
t=p —> s;q=s£q (with t,p free for x in q ). Next,

we understand the set which contains pre-
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Mh is the set of sequents of the form D ———> D' where D and
Dt are isomorphic. As M5 we take the set of all the sequents
_— O(ﬁ(j):k , where T = <uo"'°’un—l> , §J<n and uj=k o
Finally, let MZ be any set of true normal prime sequents not con-
taining special function constants and let S' be in M6 if and

only if it is a substitution instance of some S in Mz . The set

M3 (and hence Mg ) is allowed to be void.

Remark: If we agree to associate with O((x) the continuity func-
-
tion T {u/x) given by T (u/x)=0 for x2n and I>(§7x)=ux+l for
e Py
x<n where u = <:uo""’un—l:>’ then M5 is of course a subset

of Ml according to def. 1 . In order to exhibit the particular

role of the special function constants we have preferred to consi-

der them separately.

We note the trivial

Lemma O: If S E § Mi and if St is a substitution instance of
S then S! E é Mi too.

Clearly, all sequents in § Mi are normal.

C. Now we introduce a formal system ZT whose structure is essen-
tially that of number theory except that it may contain additional
true normal prime sequents as axioms (namely those in M6 ). The

set M of axioms of ZT is g Mi . The rules of ZT are the
following omes: 1) the structural rules of sentential calculus

such as thinning, interchange, contraction and cut; 2) the propo-
sitional rules of sentential calculus; 3) the four quantifier rules

for number quantification, namely

a)  A(t), N\ —— A S I p— )
(Vx)Ax), N — A T A (Vx)A(x)

ey Aly),] ——> A a) | —— A,A(¢)
(Ex)A(x), |7 —>A [ T——> A (Ex)A(x)

where t is a number term free for x in A(x) , where 7y does
not occur free in the conclusions of b) and c) , and where vy

is free for x in A(x) >



h) four quantifier rules for function quantification, namely

ar) A(r), [ —— A o) [T—— A.a08)

]

where

(V)A(X), [T—— A [ T—— AL (VX )A(x)
NoAf), [T—— A a)  [T——= A ,a(®)
(BeO)A(x), [T —— A [[—— A (ExX)A(X)

F is a functor free for & in A(&), where f? does not

occur free in the conclusions of b') and <c¢'), and where é’ is

free

5)

where

6)

with

Rule
also
will

many

for X in A(X):

a so-called conversion rule (or more briefly conversion)

A ,...,A

L —— B,....B,
Al,...,Al ——> BI!,...,B]

A and B are isomorphic with A! and B! respectivelyy

the induction rule

Alx), | —— A ,a(x)
A(0), F——-ﬁ A SA(E)

t a term free for x .

5) is just another version of Schiittes "Umsetzungsregel! [lO],
used in [8] . What we understand by a procf in ZT is clear; we
always consider proofs as certain finite trees of sequents (at

places however we will have to consider infinite trees!). In

particular, there is the notion of pure variable proof, introduced

in Zjh] , § 78.

D.

Let ZT' be the system which differs from ZT only in that it

contains no conversion rule. Let 2T* be that subsystem of ZT!

which we obtain by dropping special function constants; that is,a

proof in ZT' is a proof in ZT¥*¥ 4if it contains only formulas

built up from the symbols of the language L* . The following lemma

is easily provable:



Lemma 1: a) If a sequent S is provable in 2T then in ZT' .
b) If a sequent S which does not contain special function con-

stants is provable in ZT', then it is provable in ZT¥* .

Hint: If S is as in pt. b) of the lemma and P a proof in 2ZT'

of S, then we obtain a proof P*¥ din ZT*¥ of S by replacing eve-
ry special function constant c(a’ in P by a constant functor Fﬁ
whose associated primitive recursive function(al) 97has 4 as ini-
tial segment. Concerning pt. a) it is sufficient to note that we can
derive the conclusion Ai,.,.,Aé —_— Bi,...,B% of a conversion

from its premiss Al,...,As _— Bl""’Bt
rules with the aid of the axioms A! —> 4, and B_ —————9’B£ .

by means of structural

E. A proof P in 2T (in 2T* , ZT') is said to be intuitionistic

if it contains only normal sequents, that is sequents which contain
at most one formula in the succedent. By restricting attention to

intuitionistic proofs we obtain the subsystem ZTi of ZT , called
the intuitionistic version of ZT* and ZT' , to be denoted by ZTi¥

and ZTi' respectively. Of course,we have the

Lemma 2: a) If S is provable in 2Ti then in ZTi' ,
b) If S does not contain special function constants and is pro-
vable in ZTi', then it is provable in ZTi* .

The justification of the term "intuitionistic" will be given below.

F. With each of the systems ZT*¥ and ZT' we associate a corres-
ponding Hilbert-type system ZH¥ and ZHO, respectively. We give
only the description of ZHo ; the description of ZH*¥ dis complete-
1y analogous. The formulas of ZH®° are the same as those of 2T .
The set MA of mathematical axioms of ZH*¥ dis given as follows:
a) if S € M, has the form A),...,A_ ——> B with antece-
dent and succedent both nonempty, then

Al j::>(A2 _— ... _::>(As > B)...) is in MA ; b) if

S e@ Mi has the form ——> B then BEMA , c¢) if Ség Mi
has the form Al,...,As ——> then

Al ::7(A2 T e T (AS —2 0=1)...) dis in MA ;

d) FEMA only in virtue of a), b), c). The so-called logical
axioms listed in [jh] , P. 82 (such as A “>(B —> A) ,

A "D ANB etc. for all formulas A,B); b) two groups of axioms

for number quantification, namely (x)A(x) T2 A(t) and



A(t) > (Ex)A(x) with t free for x din A} «¢) two groups of
axioms for function quantification, namely (o )A( ) > A(F) and
A(F) > (EX)A(X) where the functor F is free for < in A .
Finally, we have the group of induction axioms:

A(O)N(x)(A(x) == A(x')) . = .A(t) with t free for x in

A(x) .The rules of ZH are: a) modus ponens A; A > B / B;

b) two rules for number quantification € 2 A(x) / € = (x)A(x)
and A(x) > ¢ /(Ex)A(x) > C with x not free in C ; «¢) two
rules for function quantification € 2 A(o) / ¢ = (X)A( <) and
Alxx) > ¢ / (EX)A(x) = € with <X not free in C .

The corresponding intuitionistic version of zu° , to be denoted by
ZHi° , is obtained by omitting all propositional axioms of the form
T7A TOA and by adding in their place all propositional axioms of
the form JA > (A —>3B) ([4], pp. 82, 101) . The systems ZH*
and ZHi* are related to ZT* in the same way as zH® and ZHi0

to ZT' .

G. Further systems which will find consideration are the following

ones: ZT* , ZTi* , ZT' , ZTi' and 2ZH* , ZHi* , ZH® , ZHi® . Each
o o o o o o o o

of the systems with index O follows from the corresponding one

without index by omitting the induction rule (in case of a Gentzen

type system) or the group of induction axioms in case of a Hilbert

type system.

H. In order to explain the connection between these different sy-
stems we recall the notion of a "derivation from given assumptions
with all variables held constant", [4] , § 22. In the theorem be-
low and throughout the work,we indicate eg. the fact that a formula
l""’As on the basis of ZH¥
by ZH*: Al"°°’As F A; similarly,if by adding sequents

A is derivable from assumptions A

Sl,...,Sn to the axjioms of ZT* we can derive (by means of the
rules of ZT*) the sequent 8, then we denote this fact by ZT*:
Sl,...,Sn F S . Analogous notations are used in connection with

other systems.

Theorem O: a) If ZH: Al,...,AS A with all variables held con-~

stant, then 2ZT': | Al,...,As ———> A . On the other hand, if

F,.,...,F are closed formulas from the language L%, and if
1 s

t .
ZT'; ——— Fl’.--, —_— Fn}"AlyooogAE —'-)Bl,...,Bt,C,then



ZH: Fl,...,Fn,Al,...,As, IBy,..., TIBy F ¢ with variables held
constant. b) Likewise in the case of ZHi and 2ZTi' but with
Bl"'"’Bt absent. c¢) Likewise in the case of ZH* and ZT* .
d) Likewise in the case of ZHi* and ZTi* but with Bl""’Bt
absent. The proof of th. O is up to a few minor modifications the
same as the proofs of theorems 46 and 47 in [-4J and will be

omitted.

I. In order to study the connection between classical and intuitio-
nistic number theory,KXleene introduces in [4] § 8 two mappings

© and + of formulas, whose definition is given as follows:

1) A* is obtained from A by replacing each prime part P in A
by 77P ; 2) if P is prime, then p° is P ; 3) (A ::>B)° ,
(A/\B)o and (_7A)° are A° ™ B , A°AB®° and 7A° respective-
1y 5 4) ((x)A)® and ((&)A)°® are (x)A° and (o )A® respec-
tively ; 5) (AVB)® is 7(74°A 78°) 3 6) ((Ex)A(x))® and
((Ex)A())° are 7 (x) TA(x)° and () JA(()° respectively.

The connection between ZH¥ and ZHi* and also between ZH¥*¥ and
ZHi* is described by the following theorem whose proof parallels
that one of theorem 60 in [h] :

Theorem 1: If ZH*: A ,...,A A, then ZHi*: Ai""’A: r A° .

A . . o¥ o+ o+
Similarly, if ZHg: Al’°'°’As A then Zng: Al ""’As A o

The connection between ZT* and 2ZTi* and also between ZT* and

ZTi* now follows immediately via theorems O and 1 :

Corollary: If ZT%: — Fisoees _— F_ Fa
then ZTi*: ——> Fp,..., —— 18 FA:,“.,
Fl"'°’Fs are closed formulas., Similarly, if

ZT*: ——> Fi,..0, _— Fg FAL, e, A) —— B, then

ZTi%: —> F;+,.e., s F‘S” FA2+,...,A§+——% B°* .

l,...,An——a B,
Aﬁ——) B , where

K. The set PR of bounded formulas is defined as follows:

1) a prime formula p=q is in PR ; 2) 4if A, B are in PR, then
so are A_>B , AAAB, AVB and TJA , 3) if A is in PR , if
t is a term not containing y free, then (Ey)(y<:t/\A) and
(y)(y«<t1:>A) are in PR. By PR* we denote the set of all formu-

las in PR which do not contain special function constants. We

note the following trivial faet: for every formula A £PR there is



a formula B(c(l,...,cxs) PR* and pairwise distinct special func-

. 1 s . 1 s
tion constants %;:; ,...,?<;> such that A is B(E?:>,..,, E;z‘ ) .
n 1 n n
1 s 1 s

The following theorem is easily proved by induction with respect to
the number of logical symbols in the formula A; its proof is

omitted.

Theorem 2: For every formula A&PR* one finds effectively a term
t containing exactly the same free variables as A and containing
no special function constants for which the following holds:

a) 2ZTi* | t=0 —> A ,

b) 2ZTi* A —> t=0 , <¢) TZi* b ———> +=0 Vt=1 .

Theorem 2 is not indispensable, but its use is convenient in many
places.

Notation: the term t asscciated with A in virtue of theorem 2

will be denoted in the sequel by tA .

L. As promised in the last section we will briefly describe a par-
ticular assignment which associates with every term t a conti-
nuity function T related with + . To this end we will use a re-
sult which will not be proved and which has already been mentioned
(in a somewhat different form) in the "Preliminaries" . Let ZTic
be obtained from ZTi by omission of the conversion rule. Let

t( dl,we., a%) be a term without free number variables and special

function constants whose free function variables are precisely

o(l,o.., qg . Then we can prove the following statement STO :

for given numbertheoretic functions fl,...,fs there exist numbers
n and m such that 2Ti_ }'t(dil"""xi )=n holds, where

u, o= f;(m) s, 1 = 1l,...y8 . The proof of thi: statement does not make

use of the full force of ZTic but depends merely on the fact that

the whole calculus of primitive functions is formalized within ZTic.

The statement then follows by means of arguments which are very
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similar to those presented in [ll] , 8.4. Now let T (xl’°"’xs)
be a numbertheoretic function defined as follows: if Uysee.su, are
sequence numbers of equal length, then T (ul,...,us)=n+l if and
only if there exists a Goedel number eélength(ul) of the proof in
ZTic of t(o(il,o.o,o(zs)=n. . Now ZTic has a primitive recursive
proof predicate (" e is (Goedel number of) a proof of the formula
(with Goedel number) b"),as is easy to show. Therefore T is primi-
tive recursive. Moreover, U is a continuity function in virtue of
the statement STo . Finally, by showing that every formula provable
in ZTic is "true" in the usual sense,it follows that T is indeed
related with ¢ . Furthermore,it is clear that as soon as we are gi-
ven t we are given T . If we use this particular assignment as
basis for the definition of "saturated", then one can easily prove
with the aid of statement STo the statement STl: if a sequent S
is provable in ZTi +then it is provable in ZTic . The advantage of
this particular assignment is that the syntax of ZTi becomes pri-

mitive recursive. It will not be until chapter IX that we will make

use of this advantage.

l.5. Some systems of analysis

In this section we introduce those systems of analysis which will be

considered most of the time in this work.

A. Below we consider some particular primitive recursive functions

and relations. With respect to them we adopt a particular convention
which is useful for typographical reasons: we use one and the same

sign in order to denote both the intuitively given object and its

formal counterpart in the theory.

1. Intuitively we have the natural numbers at our disposal; they are
represented formally in 2T by the list 0,0',0",... of terms,
called numerals. By symbols such as n,m,a,b etc. we denote both

certain particular numbers as well as their corresponding numerals.



2., As is evident from the axioms, the symbols ',+,° represent in
our formal systems successor function, addition and multiplication.
By the very same symbols we denote also the intuitively given func-

tions successor, addition and multiplication.

3. The function f(x,y):%((x+y)2+3x+y) maps the ordered pairs

(a,b) of natural numbers in a one way into the set of natural num-
bers. There are,of course, infinitely many terms in L* whose asso-
ciated primitive recursive function is f(x,y) . Among these we
choose in a welldetermined way a particular one t and call t the
term representing f din 2T . Both the term and the function will be

denoted by <x,y> .

4., There is a primitive recursive function ¢(O<,x) (of type<<l,l>)
which associates with every function f and every number n the

flo)+1l f(s-1)+1 .
sequence number <if(0),...,f(n-l)>> = po( ) ""psEl ) if
nZ0 and 1 otherwise. Again there is a welldetermined term t in
L* whose associated primitve recursive function is ¢ . Both ¢

and t will be denoted by EZ (x) as in [:5 J .

5. There is another primitive recursive function seq(x), which has
the property: seq(n):O iff n is a sequence number, that is, a num-
ber of the form < f(0),...,f(s-1) > for some f and s

(s=0 included). The function seq(x) has a formal counterpart in the
theory (a term t £ L* having only x free); we denote this coun-

terpart also by seq(x).

6. The primitive recursive function (x,y) which associates with
two sequence numbers u = <:uo,...,us_l >, v = <:vo,...,vt_l > its
concatenation u*v will be denoted by x*y ; as above,we denote

also the formal counterpart of x¥y din ZT by x*y.

7. Let R(x,y) be the Kleene-Brouwer partial ordering. There is a
welldetermined term t(x,y) EL* whose associated primitive recur-
sive function f(x,y) has the property: a) R(n,m) iff f(n,m)=0,
b) f(n,m)=0 or f(n,m)=1 for all n,m . Both R(x,y) and t(x,vy)
will be denoted by x C::kY . We recall that the definition of

x <:ky is such that n <::km always implies that both n and m
are sequence numbers. The sequents x C::ky —> seq(x) ,

X (Y ——> seq(y) are both provable in ZTi and we can even
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assume that they occur among the axioms (in the set M6).

8. By x<~<ky we denote the Kleene-Brouwer linear ordering of se-
quence numbers and at the same time a certain prime formula
q(x,y):O which is related to x —<{ky in the same way as

t(x,y) to x C:ky before. We use x <;;ky and x tgky as abbre-
viations for xc::ky\/x=y and x<~<ky Vx=y respectively.

B. Next we introduce some particular types of formulas. Let R(x)
be an arbitrary formula. We use x<£ZRy as abbreviation for
xc::ky/\R(x)/ﬂR(y) and x ~<Ry as abbreviation for

X <{kyzﬂR(x)/\R(y) . We use x Q;Ry and x :gRy as abbreviations
for xCRyvx=y and x ~ vy Vx=y respectively. By W(C_R) we
denote the formula (o()(Ex){™\ X(x+1) éRO((x)); by ﬁ( C‘R) we
denote the formula (&) ~7(x) (X (x+1) C::RCX(X)). W ( -<:R) and

ﬁ( «CR) are defined similarly but with °<:R in place of Ci:R .

The meaning of C::R and «fR ig clear: x C:;Ry s ©8.
represents the restriction of x 7 ky to the set of those sequence
numbers which belong to {x/R(x)} . The formulas W( - R) and

f(— R) express classically both that C::R is wellfounded. The
expression (x)‘ﬁ:;RyA(x) serves as abbreviation for the formula
(x)(x C:;Ry ;::>A(x)). An important class of formulas are those
which do not contain function parameters. A formula A is said

to contain no function parameters if the following holds: there is

a formula B(xl,.c..,xs)é.L* (that is, without special function
constants) which does not contain free function variables and there
are terms tl,oo-,ts free for XiseeosXg in B such that A is
B(tl,...,ts) . Bg. (BEy)(X(x)=y+l) is such a formula while

(x)(x é;y';:>cx(x)=0) is not. In other words: a formula without
function parameters may contain free function variables and special

function constants, however,only in an "inessential" way.

Another important class of formulas is that one described by
Definition 3: a) A -fT;L.-formula is a formula of the form

(X )Y(Ex)R(X (x)) where REPR . b) The set W of formulas is de-
termined as follows: X ) TTi—formulas are in W, ) if A does

not contain bounded function variables, then AEW , ;ﬁ if A,BEVW
then A OB, AAB, AVB, 74, (BEx)A, (x)A are all in W .
c) AéiWN iff AEW and iff A does not contain function parameters.



Finally we note that,in view of theorem 2 and the remarks preceding
it,we can associate with every REPR effectively a term t contai-
ning exactly the same free variables and the same special function
constants as _p such that 2Ti Ft(x,y)=0 —> =x RV

ZTi - x gy —> t(x,y)=0 and ZTi}F —> t=0Vvt=1 . We
abbreviate t(x,y):O by x <:Ry . Similarly, there is another term

g containing exactly the same free variables and the same special
function constants as C::R such that ZTi b ——> g=0yvg=1,

ZTi ~ g(x,y)=0 ——> 7 x CRY , and

ZTi F I x )Y ——> g(x,y)=0 hold. In view of theorem 2 we can
choose t(x,y) and g(x,y) both in such a way that if R (and
hence c:lR) does not contain function parameters, then t(x,y) and
g(x,y) do not contain function parameters. We use (x) <:RyA(x)

as abbreviation for (x)(x < RyY DoA(x)) , x 4:Ry as abbreviation
for g(x,y):O and W‘( <:R) as abbreviation for
(O()(Ex)(O((x+l)44:R %(x)) . Finally we need the mnotion of standard

formula. A formula R(y) is called a standard formula if it has the

form Q(y)/\seq(y) where Q(y) is an arbitrary formula. The only
purpose of standard formulas is to secure the following implication:

if R(q) holds, them q is a seguence number.

C. In order to define the systems of analysis needed,we have to
introduce a number of rules, all representing essentially transfi-
nite induction with respect to C::‘R . The formula R(y) which

occurs in all theserules is by definition a standard formula. These

rules are

R(Y):(X) C:_RYA(X)’ r —_— A !A(Y)

I.
R@), W), | —> A& L)
R(y), (x) CRYA(X)’F——ﬁA ,A(Y)
IT.
R(q)! ﬁ( é-R)’ /.’—_—> A vA(q)
t(1)=0, (x) = A(x), [ ——> A ()
ITT. R

tR(Q)':'Os W( <R)’ /_— —_— A ,A(q)



tp(v)=0, (x) < A(x), [[—> A .A(y)
Iv. R

tR(q)=05 w'(<R)’ [ﬂ e A sA(q)

tp(x)=0, (x) YA(X), F—}A JA(y)
R

tR(q)=O9 ﬁ( < R)’ F —_— A ’A(Q)

In all theserules y does not occur free in the conclusion and g
is free for x in A . Of importance are some rules which are ob-
tained by imposing certain restrictions concerning A and R on
the above rules. The rules thus obtained are as follows: l) the
rules IN, IIN,...
admitting only such formulas R which do not contain function para-

are obtained from I, II, .... respectively by

meters, 2) the rules I', II', ... are obtained from I, II, ...

respectively by admitting only formulas R from PR (this is auto-

*matically satisfied for IITI, IV, V), 3) the rules Iﬁ, II& y e
are obtained from I, II, ... by admitting only formulas R&PR which
do not contain function parameters, 4) the rules I¥, II¥, ... are

obtained from I, II, .... by requiring RE&EPR and AEW,

5) the rules 1%,

admitting only such formulas R and A which are in PR and in W

IIﬁ,... finally are obtained from I, II, ... by
respectively and which do not contain function parameters.

Notation: From now on we will abbreviate tR(x)=0 by dR(x) or

sometimes more simpler by d(x).

D. In sect. 1.4 we have defined a set M of sequents which serves
as axiom set for the systems ZT, ZTi*,... . M is the union of
seven sets M (0521556) . With exception of M6’ every other set Mi
is a well defined set of sequents; M6’ however, plays the role of a
parameter set and has remained undetermined up to now. From now on

however we make the following assumption:

Assumption D: The set M6 contains for all terms p,q,t the

k% g gt > p <= b,

b) p < g4 —_— tR(q)=o and p < gd _— tR(p)=O for all
R €EPR.

following sequents: a) P <

Actually, assumption D is redundant: using only axioms from %M
i
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we can prove Xx ﬁKy, v CKZ —_— x CKZ ,
x <:Ry —_— tR(y)=O and x <:Ry —_— tR(x)=O in ZTi
(in ZTi*' if RéEPR*) . We assume D merely for technical conve-

nience.

E. By adding one of the new rules to any of the systems ZT, ZTi,
ZT* etc. we obtain quite a series of more or less similar systems.
Consider gg. the system ZT . By adding to ZT +the new rule I we
obtain a new system, to be denoted by ZT/I. The system 2T/I differs
from ZT in that we can now use the new rule I in addition to the
old ones in order to generate proofs: whenever P 1is a proof of a
sequent of the form R(y), (x) — yA(x), [‘————f> A ,A(y) for
some R , then we can apply rule IRto the endsequent of P in order
to obtain a proof P! of W( C:;R),R(q), r‘—————? A ,A(q), provided
that y does not occur free in W( CZLR),R(q), [—-————? A LA(q)
{(and where q is free for x in A ). Proofs are of course identi-
fied with certain finite trees of sequents.A proof P (with respect
to ZT/I) is again called intuitionistic if there is no sequent in

P containing more than one formula in the succedent. If we restrict
our attention to intuitionistic proofs only, then we obtain a sub-
system which will be denoted by ZTi/I. The system ZT*¥/I is ob-
tained from 2T/I by considering only such proofs which do not con-
tain special function constants; the system ZTi*/I is obtained from
ZT/I by restricting attention to intuitionistic proofs not contai-
ning special function constants. Quite similarly, if we combine any
of the systems of sect. l.4 with any of the above rules we obtain

a whole list of new systems, to be denoted in a selfexplanatory way
by 2ZT/I, ZTi/I, ZT/I*, 2Ti/I*, ..... ZT*/IN, ZTi*/Iﬁ etc. A first

superficial insight into the strength of some of these systems is

given by

Theorem 3: a) ZT/I' has the same strength as the theory TIQF in
[3] ; b) ZT/I' has the same strength as ZT/III ; ¢) ZT/I has
the same strength as ZT*/I ; d) ZT/I' has the same strength as
ZT*/I'; e) ZT/I has the same strength as 2T*/I ; f) ZT*/I and
ZTi%*/II have the same strength, g) 2ZT*/I is as strong as classical
analysis.

Proof: Most of these relationships are trivial. We just consider

a)s f) and g)'
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a) We merely show that ZT*/I' is at least as strong as TIQF .

The proof of the converse makes use of th.2 and is almost trivial.
First we show that for each A and each R &PR¥ we can derive

I. — W) 2 REID (x) 2 JA(x) =2 A(y)) 2 (2) (R(2).2 A=)
Let us denote to this end R

(vY(R(y) 2 (%) — yA(x).::>A(y)) by Progr(R,A) and consider the
sequent Progr(R,A) —B———% Progr(R,A) which is an axiom of ZT*/I'.
By a bit of intuitionistic predicate calculus we can derive

R(y),(x) & yA(x),Progr(R,A) ———> A(y) . Application of rule I!'
to this sequgnt yields the conclusion W( < R),R(z),Progr(R,A)——%A@)
with suitably chosen free =z , By intuitionistic predicate calculus
we immediately derive the sequent I. That is, ZT*/I' is at least

as strong as the theory T which we obtain by adding to ZT* all

sequents of the form

I. (for REPR*) as axioms. In virtue of theorem O, this theory has
the same strength as the theory T¥* which we obtain from ZH¥* by

adding to it as axioms all formulas of the form

II. w( ~ R) —— .Progr(R,A) =2 (z)(R(2z) => A(z)) for all REPR*
and all formulas A . The only thing which remains to be done is to

show that in T* one can derive all formulas of the form

IIT. W(éﬁ) . (x) — yA(x) —>Aly)) > (2)A(z) . But this

is an easy task if one notes tﬁe provability of the formulas

Iv. 7R(y) >(x) éRyA(x) and
V. (y)((x)<f:: yA(x) > A{y)) == Progr(R,A) . Since PR* contains
in particular all quantifierfree formulas without special function

constants, we conclude &£ T*% . We note that all derivations are

TIQF
entirely intuitionistic; the rule of excluded middle is only used in

the form R(y)V 7R(y) and this is intuitionistically correct in
virtue of REPR* ,

Next, to g). We content ourself to show that ZT*/I is at least as
strong as classical analysis; the converse is more routine work. By
proceeding as in the proof of a) we conclude that ZT*/I is at
least as strong as a theory T which is obtained from ZH¥* by

adding to it all formulas of the form III., but now for all formulas
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A and R and not merely for formulas R in PR* ; now,of course,we
use the law of excluded middle in a nontrivial way, namely in the
form R(y)V TR(y) for arbitrary R . It remains to show that T
has indeed the strength of whole classical analysis. But this has
essentially been proved by W. Howard in chapter II , p. 2.8 of the
Stanford report, vol. I ( [12_]) . More precisely, one first shows

that the axiom of bar induction

VI, (o) (Bx)P(X (x))NA (&) (x) (P(X(x)) 2 a(X (x))) A.

A (X)) (x) (YD) A( X (x)#y) T2 A(X (x))) . 22 (X ) (x)A(K (%))
can be derived in T for all formulas A and R . This task is
easily achieved by transforming the bar induction into a transfinite
induction over4:::p . Thus the theory T is at least as strong as
the theory BI which is obtained from ZH* by adding all formulas
of the form VI. as axioms. But according to Howards result, BI
has the same strength as classical analysis what proves one half

of the statement g).

In order to prove f), one shows that whenever a sequent - G
has been proved in 2T%/I, then ——> 8 is provable in

ZTi*/IT . To this end let Tr be the set of all formulas of the
form II. above (for all R and all A not containing special
function constants) and let Tr° be the set of all formulas of

the form ﬁ(CR) —> .Progr(R,A) > (z)(R(z) =2 A(z)) . Let finally
STr be the set of sequents of the form ——— F with FETr; let
STr® be the set of sequents of the form ——> F with FeTr® .
Denote by ZT** the theory obtained by adding to ZT¥* all the se-
quents from STr as axioms. By the same reasoning used in the proof
of a) one shows that ZT** S iff ZT*/I S . Now assume

ZT*/I F ——> G. Then ZT** F ——> G , that is Z2ZT*:

—_— Fl,..., —_— Fn f —> G for some Fi's from Tr

In virtue of theorem 2 this implies ZH¥*: Fl,o.e,Fn - G and there-

fore ZHi%: B ﬁn/~ 8 again by theorem 2. A third application

EEREE
of theorem 2 finally yields 2Ti* F 91""’gn —> 8. on the
other hand ——> ﬁi (i<n) are all provable sequents in
ZTi*/IL , as a repetition of the argument used in the proof of a)

shows. Hence we obtain ZTi¥*/II F — 8 .
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F. The theories on which we will concentrate mainly are ZTi/T ,
ZTi/II , ZTi/IV , ZTi/V and ZTi/Iv§ , but other theories from our
list will be considered from time to time. The theories ZTi/I ,
2Ti/II etc. have not yet the form suitable for a proof theoretic
treatment. This will be achieved by considering certain conservative
extensions of the above theories. Thus eg. we will consider in place
of ZTi/IV a certain conservative extension, to be denoted by T for
the moment, which is obtained from 2ZTi/IV by adding to ZTi/IV a
set of rules, all of which are derivable in ZTi/IV; that is T and
ZTi/IV have the same theorems. This conservative extensions serve
only technical purposes and have no interest in their ownj; we will
therefore define these extensions at the places where they are

needed,



CHAPTER II:

A review of Gentzen's second consistency proof

In this chapter we present a brief repetition of Gentzens second con-
sistency proof and a mild generalisation of it, to be of use later
on. This chapter cansof courseynot replace a detailed study of [l],
with which the reader is assumed to be familiar. In this and the

next chapter we include some material contained in [8] . We will
base our discussion on the system ZT and a system ZT( C:;D)

(to be defined below) which contains a principle of transfinite in-
duction with respect to a fixed given primitive recursive wellorde-

ring.

2.1. Some preliminary notions

From now on a proof (in ZT or any other system) will always be a
finite tree (a proof tree) with sequents as nodes, which satisfies
the following requirements: a) uppermost sequents are axioms;

b) if 8 1is a node of the tree which is not an uppermost one, then
S has either one or two predecessors) c¢) if S is a node and §'
its only predecessor,then S'/S is a one-premiss inference; d) if

S 1is a node and Sl,S its predecessors from left to right, then

2
Sl,SZ/S is a two-premiss inference; e) the tree has exactly one

lowest node, which is called the endsequent of the proof. Let S be

(an occurence of) a sequent in a proof P; let NS be the set of

nodes which contains precisely S together with all sequents S' in

P which are situated above S . By restricting P to NS we ob-

tain a subtree PS of P which is obviously a proof of 8 . We

call PS the subproof of S in P . An important notion connected
with a proof tree is that of its final part: 1) +the endsequent be-
longs to the final part; 2) if S8'/S is a conversion or a one-

premiss structural rule and if S belongs to the final part of P,

then S' belongs to the final part of P 3) if Sl’SZ/S is a
cut in P and if S belongs to the final part of P, then both
§, and S, belong to the final part of P ; 4) S belongs to the

final part of P only in virtue of 1), 2), 3). Clearly, an upper-
most sequent of the part is either an axiom or the conclusion of a

logical inference or an induction.
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Definition 4: Let P be a proof. An inference S'/S or Sl,Sz/S
in P 1is called critical if it is neither a conversion nor a struc-

tural inference and if its conclusion S ©belongs to the final part
of P .

In the following definition [/ denotes the list Al'”"’As of for-
mulas, A denotes Bl"'°’Bt , :E: denotes Cl,...,Cp and 7/ de-
notes Dl,e.o,Dq ;3 the formulas Ai,,..,Aé and B!,...,B! are iso-~-

t
morphic with Al"'”’As and Bl,...,B y Frespectively, and the two

t
lists are denoted by r/' and A&', respectively.

Definition 5: Let A be a formula (more precisely an occurence of

a formula) in the final part of P . A formula B in P is called
successor of A if one of the following clauses is satisfied:

l) there is a right interchange
I/—% A’Fl’Fz’ Z/ r“—‘——ﬁ A ’F2’Fl’ = in the final part

of P and A is Ai’Bj’Fk or Cm in the premiss,while B is

Ai’Bj’Fk or Cm respectively in the conclusion; 2) similarly in
case of a left interchangej; 3) there is a conversion

/V—‘ AV F"——&‘ and A dis A, or Bj in the pre-

miss,while B is Ai or BB respectively in the conclusion;

4) there is a right contraction )u—-% A JF,F/ [ —> A,F

in the final part,and A is Ai or Bj or one of the F'!'s in the

premiss,while B is Ai’Bj or F, respectively,in the conclusion;

5) similarly in case of a left contraction; 6) there is a right

thinning [‘—————9 YAV [%——————9 /\,D in the final part and A is

Ai or B, in the premiss,while B is Ai or Bj’

the conclusion; 7) similarly in case of a left thinning; 8) there

isaCUtrﬁ&:F;F,ZHW/rQZ_ﬁAaWin

the final part,and A is Ai’Bj’Ck

is Ai,BJ.,Ck or Dm , respectively,in the conclusion.

respectively, in

or Dm in the premiss,while B

Since the final part of a proof is also a finite tree, all notions
introduced in connection with finite trees retain their meaning for

the final part.

Definition 6: Let S.,...,S be a path in the final part of P ,
1 n

let Ai""’Ai+k be a list of formulas in Si"'°’si+k respective-

ly such that An+1 is the successor of An for i<n <i+k accor-

ding to definition 5. Then A, is called the image of A, in S, .
i+k i i+k
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We note that in connection with logical inferences we use the no-
tions "principal formula" and "side formula(s)" of the inference in

the same sense as Kleene in [hj , p . b443.

Definition 7: Let P be a proof and
T —— A LAX)) [ ——— A (VX )A(X) a quantitier infe-

rence where X 1is subject to the usual restriction on variables.

We call & the quantified <variable of this inference. Similarly, in
case of a quantifierinference A{X), r——%A/(EO()A(O(),r—%A
and similarly with x in case of the quantifier inferences
[—— A .A(x)/ [ ——= 4 ,(V x)A(x) and

A(x), r/“_-*_f> A /{Ex)Aa(x), " ————> A ,respectively. If

A(x), f_—————9 A LA(x')/A(0), r——~———> A ,(q) is an induction in-
ference in P, then x is called the induction variable of this

inference.

Remark: If eg. we say that ¢ is the quantified variable of a
quantifier inference,then we tacitly assume that this inference is

an E ———> or an ——> Y with & as the quantified

variable.

Definition 8: A proof P is called normal if it has the following

properties: l) no variable occurs both free and bound in it;

2) if X is the quantified variable of a quantifier inference

S/S' in P, then ¢ does not occur free in any sequent S" below
S H 3) if x 4is the guantified variable of a quantifier infe-
rence S/S! or the induction variable of an induction §S/S', then
x does not occur free in any sequent S" below S; 4) if &

occurs free in a sequent S din P but not in the endsequent, then
there is a quantifier inference Sl,/2 in P with < as quanti-
fied variable and such that 82 is below S ; 5) if x occurs

free in a sequent S in P but not in the endsequent of P, then

there is either a quantifier inference Sl/SZ with x as quanti-

fied variable and 52 below S, or an induction inference S'/S*"
with x as induction variable and S" below S .
Remark: A pure variable proof always satisfies ]), 2), 3) of

def. 8 . On the other hand,if P is a proof which satisfies

l), 2), 3) of def. 8,then we can always transform P into a normal

proof P' Dby replacing certain free variables in P by appropria-
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tely choosen constant functors and terms. If P satisfies l), 2),
3), if S8 dis a sequent in P and PS the subproof of S in P,
then Py satisfies 1), 2), 3).

Definition 9: A proof is called saturated if every constant term

(that is, term without free variables of both kinds) occuring in the

final part is saturated.

Definition 10: Let P be a proof and Il’IZ two logical inferences
in it. We call Il’IZ dual to each other if one of the following
clauses is satisfied: 1) Il is an _— —— and I, is an
—_— — inference; 2) I, is an ——> 7] and I, dis an

7 —_— inference; 3) similarly with A\ or \/ 1in place
of T O ;&) I, and I, are both number quantifications

_— \7/ and E/ e ; respectively; 5) Il and I2 are
both function quantificatioﬁs —_— \f and k/ _ , respecti-
vely; 6) similarly with E in place of \g/ .

The next few definitions are intimately connected with Gentzens se-
cond consistency proof. In this comnnection we use the very conve-
nient notion of "fork" which has been introduced by D. Isles in an

as yet unpublished work on proof theory.

Definition 11: Let P be a proof. Let there be three inferences in

1,12,I3 ;5 let Sl be the con-

clusion of I and 82 the conclusion of I . The ordered triple

1 2
Il’IZ’I3 is called a fork din P if the following conditions are
satisfied: 1) I. and I,

1 2
principal formulas Al and A2 respectively; 2) I, is a cut
2
St',8"/S where S!' and S" are [/ > A ,F and
F, = —_— 77-,respectively,while S dis,of course,

. Z2Z——> A, 77 ; 3) S and hence S' and S" belong to

P which we denote symbolically by I

are critical logical inferences with

the final part of P ; 4) Al has the cut formula ¥ as image in
st ; 5) A, has the cut formula F as image in S" .

Remark: Retain the notation of def. 11 and assume that Il’Iz’I3
is a fork. Then we can draw immediately the following conclusions:
l) S' is equal to Sl or situated below Sl N 2) S" is equal
to S2 or situated below 52 H 3) F is isomorphic with Al and
A, ,respectively; 4) hence A, 1is isomorphic with Ay,
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5) Il and 12 are dual to each other. The clauses l) - 5)
follow immediately from our preceding definitions. With respect to
forks we adopt the following expressions: 1) if the inference Il
(and hence Iz) is a propositional inference and the symbol intro-
duced a > , /AN, \V or 7], then we say that Il’Iz’I3 is an
—2 -, /A -, \/ - or ] -fork,respectively; 2) if I, is a

number quantification and the symbol introduced an \k/ , then we

call Il’Iz’IB a numerical &/—fork; 3) if Il is a function
quantification and the symbol introduced an , then we call
Il’Iz’Ij a functional k/—fork; 4) similarly with E in place
of .

In [l] Gentzen associates with every cut
r——ﬁA,F,F,Z————?—IT/[_,Z—HA,W and every
induction A(x), | ——> A ,A(x')/a(0), T ——> T ,a(t) a
natural number called complexity of the cut and the induction,res-
pectively: in case of the cut this number is equal to the number of
logical symbols contained in F , in case of the induction this num-
ber is equal to the number of logical symbols in A(x). Next, Gent-
zen associates with every sequent S in a proof P another number,

called its height and denoted by h(S) , according to the following

Definition 12: Let S ©be a sequent in P . If S is the endse-

quent then h(S):O . Now let S be a premiss of an inference I
with conclusion S' . If I is a cut,then h(S) is max(h(s'),d),
where d 1is the complexity of the cut. If I is an induction then
h(S) is max(h(S‘),d), where d is the complexity of the induction.
In all other cases h(S):h(S') .

Remark: If S',S"/S is a cut in P,
h(s')=n(s") . If S,»+++»S  is a path in P, then clearly
h(si);ih(si+1) . If,in particular, S$',S"/S is a cut in P such
that h(S');>h(S) , then we say that S',S"/S is a cut with jump
("Hﬁhensprung" in [;] ).

then by definition

Lemma 3: Let Il’IZ’IB be a fork in P according to def. 11 and
let S',S"/S be the cut I3 ;3 assume that I has complexity

d :>-0 . Then there is exactly one cut Sé,Sg/So in P having the

following properties: 1) S0 is equal to S or situated below S,

2) nh(s!)=n(s') , 3) h(s,) <n(s!).



Proof: Trivial

Definition 12%: The cut s('),s(';/s0 in lemma 3, which is unequally de-

termined by the fork Il’I2’I3’ is called the cut associated with

the fork Il’Iz’IB .

2.2. The reduction steps

We are now ready to give a short account of Gentzer’s second consi-
stency proof. In this respect we explain a few essential points and
refer the reader otherwise to [l] . In the sequel we will always
observe the following convention: by a logical axiom in the final
part of a proof P we will always understand an uppermost sequent
S of the final part which has the form D ———3 D', where D and

D! are isomorphic with each other.

A. In [l] » Gentzen introduces certain syntactical transformations

of proofs which he calls reduction steps. We can distinguish three

kinds of reduction steps: l) removing all thinnings and logical
axioms from the final part; 2) removing critical inductions from
the final part; 3) removing forks from the final part. Reduction

steps of type 1) will be called preliminary reduction steps, those
of type 2) and 3) essential reduction steps. We start with a brief
discussion of the preliminary reduction steps. We omit a precise de-
finition of the preliminary reduction steps and content ourselves by
discussing some typical cases. Assume eg. that in the final part of
a proof P there is a left thinning whose conclusion is the right

premiss of a cut:

Z—>TT
[ —— A F F, >3——T

[ 7——> AT

in this case we can obviously omit the cut and derive the conclusion

by a series of thinnings and interchanges from ZE — ] :



Z——> T

thinnings, interchanges

[, 2——> AT

The proof P' which results from this alteration is said to follow

from P by means of a preliminary reduction step.

In order to consider a similar but more general situation,let us for
the moment introduce the so-called identity rule which permits us to
derive S' from S . Now assume that in the final part of P there
is a path So’°"’sn ,with So an uppermost sequent of the final

part and Sn the endsequent of P , such that there is an i with

the property: Si+l follows from Si by means of a left thinning,

that is, S, 1is [ ———— A  and S, is A4, [ — A .

We distinguish two cases: 1) there is an Sm with i< m<«n such

that S is the right premiss of a cut S',S /S whose cut for-
m m’ Tm+l

mula F in Sm is the image of A ; 2) the endsequent Sn con-

tains an image A! of A (in S In the first case we proceed

i+l) °
similarly as in our example above,that is,we cancel A in Si+l to-
gether with all its images in P, obtaining thus a new path

) 1
So""’si’ Si+l’°"’sm’ Sm+l""’sn’ then we cancel the subproof
PS' and derive Sm+l by thinning and interchange from Sé in the
same way as in the example above. This operation transforms P into
a tree P*¥ which is a proof tree in a slightly more general sense:
it contains in addition to the ordinary inferences also some identi-

ty inferences (they all occur in the part Si,S S% of the

JRTREE
altered path). By cancelling these identity inferences in P¥* we fi-
nally obtain a proof P' in the ordinary sensg P! is said to
follow from P by means of a preliminary reduction step. In case 2)
we proceed as follows: we cancel A together with all its images in

S Sn . This operation transforms P into a generalized proof

. s ooy
t;;i P*¥ 4in the above sense,containing among others some identity
inferences. By cancelling in P¥* all identity inferences we obtain
again an ordinary proof P!, whose endsequent S' is related to the
endsequent S of P in the following way: S 1is derivable from
st by means of a thinning and some interchanges. Here too we say

that P' follows from P by means of a preliminary reduction step.

Another situation to be treated is the following: assume that in P

there is a left premiss rﬁ,Dl, Z;"———_f> TT,Di, A (to be denoted
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by S) of a cut, whose subproof PS in P has the particular form

D —> D!

one premiss structural rules
and conversions

F,Dl, Z% W—!D'r A

where D ——> D' is an axiom, D, image of D and D; dimage of
D' . Of course Dl and Di are isomorphic with each other. We di-
stinguish two subcases: l) /A is empty and the cut in question is
F/,Dl,Z——a T,y

o}, [ *—— T/, 7, 7' ——> T, T

2) Di is not the cut formula, A has the form A\',F and the cut
in question is

., 2—> T,D', A',F 5

F, ' —— T/ T .,,7, 7*— T ,p}, A, T .

In both cases we can derive the conclusion of the cut by canceling
in P the subproof of its right premiss and by deriving its con-
clusion by means of thinnings and interchanges from the axiom

D —> D' . Here,too,we say that the resulting proof P' is ob-

tained from P by application of a preliminary reduction step.

The three cases presented are typical; all other cases can be ob-

tained from them by interchanging the roles of left and right.

The properties of the preliminary reduction steps are summarized by
Theorem 4: There is a primitive recursive relation PR(X,Y) and
two primitive recursive functions (X} , T(X) such that for all
proofs P,P' the following holds: 1) PR(P,P') iff P' is ob-
tained from P by means of a preliminary reduction step, 2) if

PR(P,P') then P' has less than (P) symbols; 3) every se-

quence P _,...,Pg (with P0=P) such that PR(Pi,Pi+l) for i <N
has length << T (P) , that is N <C T(P) ; 4) if PR(P,P') then
either P and P' have the same endsequent or we can derive the

endsequent S of P by thinnings and interchanges from the endse-
quent S' of P! . The proof of theorem 4 is completely elementary

and hence omitted.

B. In order to describe a reduction step of type 2), also called

induction reduction, let
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Ax), [ —> A ,a(x")
A(0), | ——> A ,a(aq)

be a critical induction in a proof P and q a saturated term with

[a] = n . Let P be the subproof of the premiss and P, the re—A
sult of replacing every free occurence of x in Pw by 4i; let P
be the subproof of A(0), I_—————9 A ,A(q) din P . Denote

A(1), [ —— A L,A(i+l) by s, and A(0),] —>A,A(x) by SE .
We distinguish three cases.

a) |a] = 0 . Then we replace the subproof of A(O),[————? A ,A(q)
in P by the following derivation:

A(0) — 4A(0)

thinnings, interchanges

A(O)i )——_ﬁ A sA(O)
A
b) a = 1 . Then we replace P by the following derivation:

P
o

A(0), | —> A ,a(1)
A(O), [/ E— A 1A(CI)

conversion

c) [af =m+l and m>1 . Now §

* can be derived from S¥ and
i+l i
S

i by means of a cut and some interchanges and contractions as
follows:

cut, interchanges, contractions.

A
Hence we can replace P by the following derivation:
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%o ?l
N : p
: 2
So Sl
*
SZ S2 P P
m-1 m
Sx :
S* S
m m
a(o, | —— A ,a(m)
conversion
A(O) > )—'_H A aA(Q)
In each case we say that the resulting new proof P' is obtained

from P by application of an induction reduction.

C. The most sophisticated among the reduction steps are those of
type 3). We explain two of them, namely the case of an _ D -fork and
the case of a functional k/-fork. All other cases are treated in an
analoguous way; for further details the reader may consult [l] .

In order to discuss the elimination of a functional‘vcfork from the

final part, we note the following

Lemma 4: A. Let P be a proof which satisfies 1), 2) and 3) of

definition 8 . Let F ©be a constant functor whose bound variables
do not occur free in P . Let (X be a function variable which occurs
free in the endsequent E of P ., If we replace every (free) occu-

rence of X in P by F , then we obtain a proof which still sa-

tisfies 1), 2) and 3) .

B. Similarly in case of a number variable x and a number term t

in place of (X and F .

Proof: The statement follows immediately by "finite bar induction"

over P.

Corollary: A. Let P be a normal proof whose endsequent does not
contain free variables. Let E/El be a quantifier inference in P
with X as quantified variable. Let P contain a critical function

quantification

Vi or > B, ey AT —— A/(VAMS) . — A
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If we replace X wherever it occurs (free) in the subproof PE of
B (in P) by F, then we obtain a proof of §§E , which satisfies

properties 1), 2), 3) of definition 8.

B. Similarly in case of number quantification k/—————% or
——> E with x and t in place of X and F

Proof: Since P is normal,it follows that F is constant. The
conditions of lemma 4 are obviously satisfied; hence the statement

follows.

The first case to be treated is that of a function k/—fork. The
treatment of this case is precisely the same as that of a numerical
\/—fork considered in [l] , but for illustration we treat this case

in some detail« To this end let P be a normal proof whose endse-

guent does not contain free variables and Il’ 12, 13 a functional
\/—fork in P . Let Il’ 12’ 13 be as follows:
L e 88, (e0) RO 2 —Tr
1} 5!
s—— o a () (V44,5 —T
L L AL W) M), Z, —— T,
3}

r‘1 Zl 7 Ay T

As noted earlier, (V/H)Al(/g ) (i=1,2) and (V/ﬂ )A(ﬁ } are all

isomorphic with each other. The inferences Il’IZ and I3 will also
. . . R o

be written more briefly as Sl/Sl s 52/52 and SB,Sh/S5 respective

ly. Let furthermore Pi (ig;S) and Pi be the subproofs in P of

S, (i<5) and S! (k=1,2), respectively. Let in addition

k
I : S',S"/S be the cut associated with Il’IZ’IB and assume that

St,8" and S are }/2-———% AZ,F and F, Zzﬁ “[TZ and
fé, ?2 —_— 132, 7Té respectively; S will also be written
more briefly as )”3 _ /g Let finally P',P" and P_ be
the subproofs of S',8" and S respectively.

On P we perform a syntactical transformation to be described in

the sequel. First we replace every free occurence of & in Pl by

F; in view of lemma 4 and its corollary this transforms Pl into a

F
proof Pl of [; _— ZSO,Al(F) . Then we replace in P the
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subproof Pi by the following derivation of

o —> A(F), A, (Ve)a, (X)

F
F1

ro % Ao’Al(F)

conversion, inter-
changes, thinning

L —— A(F), A, (VoA (X)

This transforms P, into a proof P¥* of y; — A(F), 133 .

By adding some interchanges to P¥ 6 we obtain a proof ﬁl which can

symbolically be written as follows
pP*

I, —— A0, 4,

interchanges

Ty — £.A(F)

Next we perform another, similar transformation on P . First we

replace in P0 the subproof Pé by the following derivation of

(Vo)A (X)), 7 ,a(F) —> T

P2

Ay(F), L — TT

conversion,inter-
changes, thinning

(Voo ) Ay (), 2,a(F) —— T

This transforms P into a proof P** of )’B,A(F) —_— ZXB . By

adding some interchanges to P¥**, we obtain a proof P2 which can

symbolically be written as follows:
P**

Tg’A(F);—————> ZLB

interchanges

A(R), T3 —=> A,
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Finally we replace the subproof Po of § in P Dby the following

derivation, to be denoted by 35 :

Py P2

)

Ty = ByAF) am), [, — 4,
I3 Ts > By Oy

interchanges,contractions

_—
E Ay
A
The final result of this transformation, call it P , is again a
A
normal proof, having the same endsequent as P . We say that P
follows from P by means of a functional \/—reduction step. The

second case to be treated is that of an impljcational fork. Let

again P be a normal proof and Il’IZ’Ij an implicational fork in

P . Let Il,I2,I3 be
Il: Al’ ro - AO'B
)—o - Ao’AlPBl
I,: 2— T4, By 2! ——>
A2 DBZ’ Z ’ Z' _— —/T’ art
,: rl—9 A ,A>B a=>s, 5, —> T

)_13 Zl_‘? Al’ _{Tl

Of course, A 1is isomorphic with Al and A2 and B is disomor-

phic with Bl and B2 . Let us write the inferences 11,12,13
more symbolically as follows: 1) S]'_/Sl in the case of I,

! i i f .
2) sz/s2 in the case of I, , 3) s3,54/s5 in the case o I,

Let §S',S"/S be the cut associated with the fork in question and

let S',S" and S be r2 —_— Az,F and F, 22 —_— _”_2
and T’y Zé —_— ZXZ, 7Té respectively; S will also be
written more briefly as )—5 —_— 4313 . Finally let us denote
the subproofs of Sl’SZ’Si ,s',sg,s',s" and S Dby

Pl’Pz’Pi’P"PE’P"P" and Po> respectively. First we describe a
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syntactical transformation to be performed on P . We replace P1 in

Po by the following derivation:
t
B)

Al’ T; . 7 Ao’Bl

interchanges, conversions,
thinnings.

):,A —> B, A,.A B,

This transforms P0 into a proof P¥ of 5~3,A — B, Z}B .

By adding some interchanges we obtain a proof Pl of

ATy Ay
P*

] 54 ——> 3B, A,

interchanges

A’ }—3 —_>A3:B
Next, we perform another transformation on PO . We replace P2 in
Po by the following derivation:

1
2

Z—

interchanges,conversion
thinnings.

AZDBZ’E’Zl——ﬁAaW’ 77—'

This transforms P into a proof P*¥* of T; — A, 133 . By
adding some interchanges we obtain a proof Fz of Y5 _— [SS,A

as follows:

Px*

T} = A As

interchanges.

I > Agoh

Finally, we perform a third transformation on P0 . We replace P2

in Po by the following derivation:



1"
Py

B T T

interchanges,conversion,

thinning
Ay =B, Z, 2B —— T, T
This transforms P dinto a proof P¥** of }—B,B _— A3 . By
adding some interchanges,we obtain similarly as above a proof FB
of B , 7; E— 133 . The proofs Fl’FZ and 53 can now be

composed by means of cuts, interchanges and contractions in order to

wi
vield a new proof P of .
<<3 —_— Zﬁj as follows:

il
ey

‘.D-U

Is ? A5h AT ARAT T
[3 0 T3 ——> 85 A58 By T3 77485 cut
I3 V3 Y3 ? Ay Ay As

)3 > As

cut

interchanges,
contractions

w“
Now we replace PO in P by P . This transforms P into a new
A A . .
proof P . Clearly P has the same endsequent as P and is again
A
normal. We say that P follows from P by means of an implication

reduction (or an ::>—reduction) .

2.3. Properties of reduction steps

A. In order to discuss some properties of reduction steps we need

Definition 12%*%: The two-place relation W applies to proofs P

and P' (in symbols W(P,P!')) if and only if P and P' are nor-

mal, have endsequents without free variables and satisfy the

following conditions: l) there is a list Po""’PN of proofs
such that P_ =P and PR(Pi,Pi+l) (see th. 4) for all i <N ;
2) P' follows from PN by exactly one application of an essential

reduction step; 3) no preliminary reduction step is applicable
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to PN .

The properties of W are described by

Theorem 5: a) W is recursive. b) There is a recursive function
g having the following property: if W(P,P') then P! has at

most @(P) symbols.

In connection with W we introduce some notations. Let P be a
normal proof whose endsequent does not contain free variables. By

DP we denote the set of those proofs P! which satisfy one of the

following two conditions: 1) P' is P, 2) there is a list

P ,...,Py such that P_ =P, P =P' and W(Pi,Pi+l) for i <N .
By WP we denote the restriction of W to DP . By W¥*¥ we denote
the two-place relation which is induced by W in the following
way: Wx(P,P') iff there is a list Po"’°’PN with PO = P, PN = P!
such that W(Pi,Pi+l) for i<N . By W we denote the restriction

of W* +to DP .

The reduction steps have an elementary but fundamental property,
which is described by

Theorem 6: Let P be a normal saturated proof whose endsequent
does not contain free variables. Assume that P does not admit re-
duction steps (neither preliminary nor essential ones) and that P
is different from its final part. Then there is a critical logical

inference, whose principal formula has an image in the endsegqguent.

A proof of this theorem can be found in [l] or in [2] . Before

mentioning the main application of th. 6,we note

Lemma 5: Let P be a saturated proof and E its endsequent. Let
P have the following properties: a) it contains no logical axioms,
b) it contains only conversions, cuts, interchanges and contractions

Then E is a true saturated prime sequent.

The proof is trivial and hence omitted. The main conclusion which

can be drawn from th. 6 is

Corollary: Let P be a normal saturated proof of —> m =n
which does not contain special function constants. If W is well-
founded (that i8,does not allow strictly descending sequences)

then ———> m =n is true.



- 50 -

Proof: Let us call a proof P! "good" if it has the same proper-
ties as P, except that its endsequent may be —> m =n or
————> . Then one easily shows: if P' is "good" and if

W(P‘,P") holds,then P" is also "good". Next we take an arbitrary

but fixed strictly descending sequence Po""’PN such that
P =P, W(Pi’Pi+l) and (\/X) 7W(PN,X) (such a sequence exists in
view of our assumptions). Since the endsequent of PN does not con-

tain any logical symbol, one concludes from th. 6 that PN is iden-

tical with its final part. The statement then follows via lemma 5.

In view of the above corollary,Gentzen directed his main effort to-
ward a proof of the wellfoundedness of W . How he achieved this

with the aid of ordinal numbers will be outlined in the next section.

Notation: Since from now on we will almost always be concerned with
normal proofs whose endsequent does not contain free variables,we

will introduce a new name for them and call them strictly normal.

Strictly normal proofs which are also saturated will also be called

strongly normal proofs. We note

Lemma 6: Let P be strictly normal. If P! is obtained from P by
means of a reduction step (preliminary or essential) then P! is

strictly normal (but not necessarily strongly normal).

2.4, Assignment of ordinals to proofs

As mentioned above,we present an outline of Gentzens proof that the

relation W is wellfounded.

A. Let P be an arbitrary proof. With every sequent S in P we
associate an ordinal to be denoted by O(S) , inductively as follows:
1) if S 1is an axiom,then O0(S)=1 ; 2) 4if S 1is the conclusion
of a one-premiss structural inference or a conversion SO/S, then
O(S):O(SO) , 3) if S8 1is the conclusion of a one-premiss logical
inference S _/S, then o(s)=o(so)+1; 4} if S is the conclusion
of a two-premiss logical inference Sl’SZ/S’ then

o(s):o(sl) 0(32)4#1 ; 5) if S is the conclusion of a cut
5152/5' then o(s)=ood(o(sl)##o(sz)) where d=h(Sl)—h(S)

(with h(Sl) and h(S) the heights according to def. 12);

6) if S is the conclusion of an induction So/S, then
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o(s) =cod(o(so)a)) with d:h(So)~h(S) . As ordinal of the proof P ,
sometimes denoted by O(P) , we take the ordinal O{E) of the end-
sequent E of P .

B. The essential step is to prove the following
Theorem 7: Let P be a strictly normal proof. Let P' be obtained
from P by means of an essential reduction step. Then O0(P') < 0(P) .

We also need
Theorem 8: Let P be an arbitrary proof. Let P' be obtained from
P by means of a preliminary reduction step. Then O(P’)j;O(P) .

Before discussing theorem 7,let us comment briefly theorem 8. In [;]
Gentzen sketched a proof of theorem 8. For the time beeing (that is
in this and the next section) we assume theorem 8 to be true. How-
ever, in view of the importance of preliminary steps for intuitionis
tic systems,we will look more closer at theorem 8 in the last sec-
tion of this chapter. Concerning theorem 7,we are content to
prove the statement for the case of an implication reduction. The
treatment of the other cases is similar but simpler; we refer to [;].
Let P be a strictly normal proof, 11’12’13 an implicational fork
in P and S',S"/Q the cut associated with Il’IZ’I3 ; let Q Dbe
more explicitly f/——————> A\ .« Let Ak j:DBk be the principal
formulas of Ik for k=1,2 , let A B be the cutformula of 13
and let F be the cutformula of S',S"/Q . Let finally h=h(S') be
the height of $' (and S") and h_ the height of | —> A
(in P) . From the definition of cut associated with the fork
Il,I2,I3 one immediately deduces the following inequalities:
1) h=N(F) , 2) N(A T>B)<h , 3) hotiN(F) . Here N(F) ,
N(A —>B), N(A) and N(B) denote the number of logical symbols in
F, A, B and A “2B, respectively. The proof P can symbolically

be written as follows:
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In view of our definition of implicational reduction step,we can

write the altered proof symbolically as follows:

1 52
é 3
si;si 3,51
Q Q S
1 2 51,88
Q, Q,
5

Here Ql is r———)A,A,Qz is A,r—HA:B’

Q, is [—— A .,B, Q is B, ——> A and

Q is r/—————9 [l . A double line indicates a cut followed by some

5
interchanges and contractions. The cuts Si,Sg/Qi all have the same
cut formula, namely F . The heights of Qi, i=l,....,5 and

Si , k=1,2,3 are given as follows: a) h(Q5) is ho 3

b) h(QB) and h(Qh) are max(ho,N(B)) and will be denoted by

h2; c) h(Ql) and h(Q2) are max(ho,N(A),N(B)) and will be
denoted by h, ; d) h(Si) and h(Sé) are max(ho,N(A),N(B),F) ;
e) h(Sé) is max(ho,N(B),F) . From our inequalities 1)-3) listed
above, one immediately deduces that h(S‘) are all equal to h and

that the following inequalities are satisfied: ho —éhZ éhléh . We

note the following easily established fact: if the ordimnal of Q in

P! is smaller than the ordinal of Q in P, then P' has smaller
ordinal than P. In order to calculate the ordinals of Q in P
and of Q' in P', let us introduce the following notations:

l) by O(S) we denote the ordinal of a sequent S in P , by
0'(S) we denote the ordinal of a sequent S din P!'; 2) we put
o(s')= X1, o(s")= X 0'(sy)= X! and 0'(s!)= ! ;

3) we put 0(a)=F
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and 0'(Qi)=/9i ;L) X' # " is denoted by o and

A H# XI is denoted by o, . Clearly, the following inequali-
ties are satisfied: 0(. < &K for i=1,2,3 . Now we have by defi-
nition: a) f —W, n (X) , D) /fwh_hl(o(l),
©) f o= hh(0<)’ a) /?h‘hh (Bo#f2)
e) /443 (x5) » 1) /95_ hz_ho(/gB#/gh) . We distinguish

two cases : hl>h2 and hl=h2

Case 1: hl=h2 » Then /95 is given as follows:

=W .
s = Unpmn (W, () # 0, () H# W, (0,)) - sinee
O(l, 0(2, 0(3 £ o and h2<h) we have in view of the properties of
u7d (see preliminaries) the following relation:
Z (,L)h n, (o, )< u)h_hz(rx) . Therefore
F < w, - ho<wh-h2(<><>> that is Fo< W (o) = §

Case 2: h, <hl . Then /KE is given as follows:

By = Won W (W () #0 (K )Wy (W (3)))
where use has been made of = W (u} (¢ )) . Put

/43 hih, h-h; 3
thh (. ) A . Again in view of D(l’o(2’0<3< &« and
h <h, one finds >\< W (O() . On the other hand,
/€5< U,}h -h (a}h -h, (>\)#= Q/h -n, (X)) and,since h,<h, by
assumptlon and >~<: U)h h (0(), as noted we conclude

/?5 < U/h -h (U)hl h (U)h h (x))) = L?) what proves the statement

also in thls case.

2.5. A generalization

In this section we discuss a simple and straightforward generali-
zation of Gentzen’s procedure which will play an important role in

the sequel.

A. Let D be an arbitrary standard formula containing the number

variable x freej let <& D be the partial ordering associated
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with D(x) acording to chapter 1, section 1.5., part B. We note

Lemma 7: a) For terms t,p,q we can prove the sequents
t < 4gp —> D(t) and t <P, P ——> t Cpa din ZTH
without cuts and inductions. b) Let D(x) be u(x)=v(x) . Let

t,q be terms such that uf(t),v{t),u{q) and +v{g) all are satura-
ted. If t ~ pd —_— is true,then it is provable in 2ZTi

without cut and induction.

Proof': al) From D(t) —— D(t) we can derive by means of two
applications of N\ — the sequent

t << p AD(t) AD(q) —> D(t) , that is,t < jq —> D(t) .
az) From D(t) ———> D(t) and D(q) ———> D(q) we can derive by
means of two applications of /A ————> , a thinning on the left and
an interchange,the sequent t < P, P <[4 ———> D(t) and

t <~ Dp, P CZZDq —_ D(q) .These two sequents can be combined
by means of an ———— /\ in order to yield

t Py P T2 D(t) AD(q) . On the other hand

t kP P g —_— > t &£ g4 is an axiom. By means of seve-
ral applications of /\ ——> and some interchanges to this sequent
we can derive t < pPs P C::Dq'—————> t <::_Kq . Combining this se-
quent with that one proved under al) by means of an ——> /\, we
finally obtain a derivation of t <= P, P £_pa — > t < a.
b) Since t<CZZDq is false, one of t o k% D(t), D(q) is false.

Assume eg. t <:;Kq to be false; then t 4::Kq _— is an
axiom from which t <::Dq _ can be derived by means of two
applications of A —_— . We proceed similarly in the other
cases.

For the rest of this section let D be a prime formula, which for
simplicity is assumed to contain no function variables or special
function constants. Let us assume that for one reason or the other
(eg. by means of a proof in Zermelo-Frinkel set theory) we know
that :D

adding to ZT suitably formulated rules which express transfinite

is a wellordering. We construct a new formal system by

induction with respect to C::'D . The system so obtained and de-
noted by ZT( éi:’D) is more precisely defined as follows:

a) its axioms are the same as those of 2T ; b) it contains all
the rules of ZT ; c) it contains in addition the following

rules
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Alx), J——> A A(y)

D(Y) ’ (x) Pl oY

TI:s
p(q), | —> A ,a(aq)

and for all saturated terms t such that D(t) is true

y éDt’ (x) i DyA(X)’ )/_—_ﬁ A 3A(Y)

a &gt [ ——> A Ala)

TI :
a

where /t/ is assumed to be a . In both cases y does not occur

free in the conclusion and q 1is supposed to be free for y in
A(y).

The rules TIa are of course superfluous; they are derivable from
TI, as can easily be seen. We have introduced them for technical pur-
poses, as will be seen below. The system ZT( C::D) thus introduced
has the same strength as the Hilbert-type system which we obtain by
adding to ZH all axioms of the following form:

(v) (d(y) N (x) CDYA(X) . —. A(y)) . = .(z)(D(2z) == A(=)).
We omit the easy proof,.

Proofs are again considered as finite trees. Those proofs which con-
tain only sequents with at most one formula in the succedent are
called intuitionistic proofs; they give rise to the intuitionistic

version of ZT( C.D), to be denoted by ZTif CD) .

B. With the exception of definition 12 , which will be modified
slightly, we can carry over the whole content of section 2.1. to the
present situation. That is, the notions such as final part, image,
normal proof etc. can be defined for proofs in ZT(<::;D) in exactly
the same way as in section 2.1. In order to modify definition 12 we
associate natural numbers, called complexities, with cuts, inductions,
TI- and TIa-inferences. The complexity of a cut or an induction is
the same as before, namely the number of logical symbols contained in
the cut formula or the induction formula, respectively. If the pre-
miss of the TI-inference in guestion is

D(y),(x) = 5 A(x), y‘—————} A JA(y), then we take as complexity of

this inference the number of logical symbols contained in
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(x) < yA(x) . Similarly,if the premiss of the TI-inference in
questiog is v <;:Dt, (x) «— yA(x), [ —— A ,A(y) , then we

take again the number of 1ogigal symbols contained in

(x) e yA(x) as complexity of this inference.
D

Definition 121: With every sequent S in a proof P we associate

a natural number h(S) , 1ts height, inductively as follows:

1) 4if S is the endsequent, then h(S)=0; 2) 4if S is premiss of
a logical inference, of a conversion,or a one-premiss structural
rule with conclusion S' , then h($)=h(s') ; 3) if S is a pre-
miss of a cut with conclusion §S', then h(S)=max(d,h(S')) where d
is the complexity of the cut in question, &) if S is premiss of
an induction with conclusion S', then h(S)=max(d,h(S')) where 4d
is the complexity of the induction in question, 5) if S 1is pre-
miss of a TI- or TIa-inference with conclusion S', then
h(s)=max(d,h(S')) where d 4is the complexity of the TI- or TI, -

inference in question.

A cut with jump is, of course,the same as before, namely a cut
sl,sz/s such that h(Sl),>>h(S) . It is clear that the height of a
sequent in the final part is unaffected by this change of definition,
and the same is true for the notion of cut associated with a given

fork Il’I I, . A TI- or TIa—inference will, of course,be called

2°73
critical if its conclusion belongs to the final part; for logical and
induction inferences the notion "critical" has the same meaning as

before.

Next, we can carry over the whole body of section 2.2. to the present
situation. That is, we can introduce preliminary reduction steps, in-
duction reductions and elimination of forks from the final part in
exactly the same way as in section 2.2. All the lemmas and theorems
stated there remain invariably true in the present situation. In or-
der to obtain a counterpart of theorem 6 in section 2.3., however, we
have to introduce two new types of reduction steps, connected with
the new rules TI and TIa; they are called TI- and TIa—reduction

steps.

Let us first explain the TI-reduction step. To this end let P be a
normal proof and assume that there is a critical TI-inference in P,

say
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D(y), (x) CDYA(X)’ T—_—_} A JA(Y)

D(Q); 7/ —_— A 7A(q)

for which q is saturated; assume fq}:a . We denote this inference
more symbolically by S/S' ; by PS and PS' we denote the subproofs
of 8 and S' in P, respectively. Now we distinguish two cases:

1) D(q) is true; 2) D(q) is false. We start with case 1). If we
replace every (free) occurence of y in PS by q then we obtain
according to lemma 4 a new proof Pg of

D(a), (x) o~ Alx), T ——— A ,a(q) . On the other hand (lemma 7),
there is a proof Po not containing any cuts, inductions, TI- and
TIa-inferences, whose endsequent is ¥y cﬁqu _— D(y) . A new

derivation P' of 8! can now be obtained in the following way:

g g s P D)) = A, [ 40AG)
Yy CDq N (x) CDYA(X), }J—'—%A ’A(Y)

cut

TI
a

s < pa, ] ——> O ,A(s) pd
J—— A s < pa . 2.A(s)
[ 8,00 = A 2(a),(x) = A=), [ —24.40)

— =

D(Q)s F_——% A sA(Q)

Here the double line indicates a cut followed by some interchanges

and contractions. Now we replace P in P by P! , obtaining

St
thus a new proof P*¥ having the same endsequent as P . Thereby
we can always choose the variable s in such a way that the new
proof P¥* is again normal; eg. by taking for s the first indivi-

dual variable which does not occur in P at all.

Now to case 2): D(q) is false. Since D(g) is prime and false,

D(q) e is an axiom. Hence we can derive S' from

D(Q) _— by means of thinnings and interchanges alone. Let ﬁ
be such a derivation. By replacing PS' in P by 3 we obtain a
new proof P¥ , having the same endsequent as P , which is also

normal.
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Both in case 1) and case 2) we say that P* is obtained from P by

means of a TI-reduction step.

Now to the TIa-reduction step. Let P be a normal proof and assume

that there is a critical TIa-inference in P , say

v gt (%) o A, ] —— ALA®B)

acZpty [ ——> A a(Q)

for which both t and gq are saturated; let [t{ and {qf be a
and b respectively. Of course, D(t) is true by assumption. We de-
note this inference more briefly by S/S' ; by P, and Py, we de-
note the subproofs of S and S' in P, respectively. Again we
have two cases to distinguish: 1) ¢t C::Dq is true ,

2) t pd is false.

Let us start with case 1); note that D{q) is true. Replacing eve-

ry (free) occurence of y in PS by q gives a proof Pg of

q < Dt,(x) - qA(x), [’—————9 A ,A(q) . According to lemma 7
there is a proof in ZTi not containing cuts and inductions of

Yy C:ZDt, q C::Dt —_— > vy c::Dt ; call it P_. A new deduction P!

of S' can now be obtained in the following way:

y<par 4 CDt —_— yCDt v CDt,(x) — yA(x), 7’———>A,A(y)
D

y <pds (x) CDqA(X) ya< b, > ALA(y)

TIb

SCquqCDt’ /’—9 A ,A(S) Pq
a £ty f'—)A,sCquA(S)
QCDt’)’—_ﬁAs(X)CD

A aept (%) =

QCDty /_/ ASA(Q)

A double line indicates again a cut followed by interchanges and

contractions. Now we replace P in P by ©P' ; this gives a new

s'
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proof P¥ |, having the same endsequent as P ., By choosing for s
the first number variable which does not occur in P , we can achieve

that P*¥ is again normal.

Now to the second case: q Dt is false. Then there is a proof Po
in Z2ZTi of g C::Dt _— which does not contain cuts and in-

ductions. By adding some thinnings and interchanges,we obtain a proof
A

P in ZTi of S' which does not contain cuts and inductions. By

A
replacing PS' in P by P, we obtain a new normal proof P* which
has the same endsequent as P . In both cases we say that P* is ob-

tained from P by means of a TIa-reduction step.

C. Now we can divide the set of reduction steps again in two classes:
l) preliminary reduction steps (elimination of logical axioms and
thinnings from the final part) } 2) essential reduction steps (eli—
mination of forks, induction reductions, TI- and TIa—reduction
steps). For this enlarged set of reduction steps we can introduce a
relation W in the same way as in definition 12%%, sect. 2.3. 3
with this W we can associate the sets DP and the relations
WP,W* and W; precisely as in section 2.3., pt. A. It is an easy
matter to verify that theorems 5,6 and its corollaries also hold in
the present case (with the new set of reduction steps, of course) .
Hence a formal consistency proof for ZT% C::D) is obtained if we
can show that the relation W is wellfounded. We prove this by
associating ordinals with proofs in such a way that an essential
reduction step applied to a proof P lowers its ordinal. More pre-
cisely, given a proof P , we associate inductively from above
with every sequent S din P an ordinal, to be denoted by O(S).
The inductive definition of O0(S) goes as follows: 1) if $ is
an axiom then O0(S)=1 ; 2) if S is the conclusion of a structural
inference, a conversion, a logical inference or an induction then we
proceed as in pt. A of sect. 2.4. ; 3) if S is the conclu-
sion of a TI-inference with premiss S, then we put
o(s):ué(((x #—w%*l)UJF*l), where o<=o(sl), d=h(Sl)—h(S) and
where F is the ordinal associated with the wellfounded relation
C:‘D ) h) if 8 4is the conclusion of a TIa—inference Sl/S then
we put 0(s)=w, ((x # w>‘+l)w>‘+l) where X =0(s,), d=h(s;)-h(s)
and where ) is the ordinal associated with the partial ordering
{(X,Y> / x C_Da/\y <= 2 N x CDY} . The ordinal of a proof
P is now by definition the ordinal of its endsequent; we denote it

by o(p) .
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It remains to show that a preliminary reduction step does not in-
crease the ordinal of a proof, and that an essential reduction step
lowers the ordinal of a proof. Again we postpone the discussion of

the first half of this statement (corresponding to th. 7) to the

next section and look at
So we have to prove that
tained from P by means

is by cases according to

the second half {corresponding to theorem 8)
o{p*} <Z0(P) P*

of an essential reduction step. The proof

holds whenever is ob-

the kind of reduction step which transforms

P idinto P*

P*¥ follows from P

o(Px) < o(p)

Case 1: by means of an induction reduction. The

verification of

in [1] .

is achieved in exactly the same way as

Case 2: P* follows from P by means of a fork elimination. Here
too, the verification is word by word the same as in [l], or as
in section 2.,4. in case of an > _fork.

Case 3: P*¥ follows from P by means of a TI-reduction step. In

order to verify O(P*) <:O(P)) we refer to the notation and the dia-

gram which were introduced in connection with the definition of
D(a)
Let us rewrite the diagram presented there in a shorter way, as

follows:

TI-reduction step. First we consider the subcase 1: is true.

P, Pg
SO S
cut
S
TI L
a
SZ
_ > Pg
) :
— Vv :
S S
4 > cut
S'
where S is the endsequent of PS , that is,
D(q),(x) —. qA(x),)’—————? A »4(a) Let us denote the ordinals of

S and S!

Sl

?n P by K and jf respectively, the ordinals of S

and in P* by & and ;r' respectively, the ordinals of
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s, (in P*) by &; . In addition, let us denote by h(s), h(st)
the heights of $,8' in P, and by h'(S), h'(s'), h'(s;) (i <5)
the heights of S,S',SJ!_ (i-§5) respectively in P¥ . A quick in-
spection shows: 1) h'(Si)=h'(S)=h(S); 2) n'(s8t)=h(s') ;

3) X'= X ;3 &) ,=K; 5) o =m<wW . By definition,

7 = wd((O(#UJF*’l)w f”') where d=h(S)-h(S') . Now let us calcu-

late \“S' . First we note that the ordinal >\ associated with
{<X,Y> /x C.Da/\y CDa N x CDY is smaller than F, (the ordi-
nal associated with D) . Next,we obtain for O<l’ PPN 0(4 and

successively >1\:he foilowing values: 1) X =X#m ;
2) K=ot # W™ 3) K=o # s 4) A= agHL

5) ’=(4Ud(<>(,+ #O<) . We want to prove ‘?' < < . Since A < ?,we have
>\+1g ;>‘ and therefore
wd( (O(#W +2)W>\+2)§ wd((o(#wF+l)w?+l) . Hence we are through if

we have proved wd((O(#m#w>\+l)w>\+l#0(#:2)<wd((o(# w>‘+2)af\+2)
This in turn is a special case of the following inequality:

B, o(@#ngol Yul Fox # n) (& # 0l T it

(with n,m<(u0 . Let us turn to the proof of E. For convenience, we
use the shorthand writing Zn’y‘t for 41#71# ..... # /)/L , n times.
Since Z nf<< 2(/0 (see preliminaries), we obtain successively the
following inequalities: 1) # m#wl < o(#zm”.wX ;

2) & # Zm+lw9’<o(#w/+l :

3) (A #Em #wf Nl < (Xl

4) @ #n # ol e < (xHmH W Yl

5) GEmpal Yo't od # g T (X #F mot Yol

6) (O(#m#w‘y )a/# X # nZ(d#wJ/+l)w/+l . From 6) one imme-
diately derives inequality E. Hence, by putting n=2 in E, we
obtain \§'< ‘S, The inequality O(P*) < 0(P) 4is now an easy conse-

quence of ’;'( —5.

Now to subcase 2: D(q) is false. Then we get P* from P by re-

A
placing P in P by a derivation P of S' which does not con-

t
tain cuts,sinductions, TI- or TIa-inferences. That is, the ordinal ‘"s'
of S! in P* is a natural number m which clearly satisfies the
inequality m< ?, where ? =wd((0(#w‘§ +l)w‘§ +1) is again the
ordinal of S' in P. From 7' < ? the inequality O(P*) < o(P)

immediately follows.

Case 4: P* follows from P by means of a TIa—reduction step.

Again we use the notation and the diagram introduced in connection
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q C::Dt is true. The diagram used in the definition of TIa—reduction

step may be presented more symbolically,as follows:

o -5
s, s
cuts, interchanges
S
TI L
b S
_H )L Pg-
S :
—_— \/ 32
Sh S5

cuts, interchanges, contractions

where S5 is  (x) P qA(x), q C_Dt,r-————% A ,A(q) . By & and\g-
we denote the ordinalsDof S and S' in P , by & ' and Z;' the
ordinals of S8 and S' in P* ., In addition, h(S) and h(S') are
the heights of § and S' in P , while h'(S) and h'(S') are
the heights of § and S' in P¥* . Furthermore, ,> is the ordinal
of {(x,y)/xCDa/\y < pa Ax <Y } and Vv is the ordinal of
<x,y>/x CDb/\YCDb/\x CDY . Since q CDt is true and
[t] =a , [q]=b , it is clear that V'<,k. The calculation of 2; and
Z;' ensues in the same way as in case 3 and yields the same kind of
expressions as therej that is,we obtain
§=wd((o<#w>‘ +l)w>\+l) and §'= wd((o(#m#wvﬂ)wvu#o( # 2)
where dzh(S)—h(S') . But the statement 23'<: Eris again a special
case of the inequality E. which has been proved above under case 3.

Finally, O(P*)}< 0(P) follows easily from S"<: Z;.

Now to subcase 2: q Dt is false. We proceed in the same way as

under subcase 2 of case 3.

D. The formal consistency proof for ZI( <::D) thus obtained has, of
coursesnot much interest in itself. The most which can be said is
that all results proved in [l] (for ZT and ZTi essentially) can
be proved also for ZT(<::;D) and ZTi( <::D) , as a straightfor-
ward analysis shows. However the technique used in this formal con-

sistency proof will play an important role in the later chapters.
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2.6. The preliminary reduction steps

A. As basis of our discussion we take the theory ZT( C::D) . Below
P is an arbitrary proof in ZT(.— D); the inferences in P are de-
l’I2"" etc. By N(A) we denote the
number of logical symbols in the formula A,

noted symbolically by I,I',I

Definition 13: a) An inference I in a proof P is called strong

if it is either a cut, an induction, a TI- or a TIa-inference. All

other inferences are called weak.

b) A function f which associates with every strong inference I
in P, a natural number; £f(I) is called a complexity assignement

for P .

c) ILet f be a complexity assignement for P having the following
properties: l) if I dis a cut with cut formula A then

£(I)=N(A) ; 2) if I is an induction with premiss

A(x),] ——> A ,A(x'), then f£(I)=N(A) ; 3) if I is a TI- or

a TIa—inference with premiss

D(v), (x) = A == A.4(y) or yopti(x) — 2] —> L,a(y)
respectivel?, then f£(I)=N{(x) e yA) . Then f° is called the

normal complexity assignément for DP.
With such a complexity assignement f we may associate a notion of
height in precisely the same way as in definitiop 12 or 121. That is,

we have

Definition 14: Let f be a complexity assignement for P . A height

h(S) is associated with every sequent S in P as follows:

1) if S is the endsequent,then h(S)=0 ; 2) if S is the pre-
miss of a weak inference I whose conclusion is S', then

h(S):h(S') 3y 3) if S is the premiss of a strong inference I
whose conclusion is S', then h{(S)=max(h{s'),f{(I}). With this no-
tion of height we can associate ordinals with sequents in exactly the

same way as before.

Definition 15: Let f be a complexity assignement for P, and h

the height function associated with f according to def. 14 . Then

an ordinal 0(S) can be associated with every S din P, as follows:
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1) if S is an axiom,then O0(S)=1 ; 2) 4if S is the conclusion
of a one=-premiss structural inference or a conversion S'/S, then
0(s)=0(s') ; 3) 4if S is the conclusion of a one-premiss logical
inference $S'/S, then O0(S)=0(S')#1 ; 4) 4if S 1is the conclusion
of a two-premiss logical inference sl’SZ/S’ then
0(s)=0(s )#%o(sz)##l i 5) 4if S is the conclusion of a cut
$,,8,/S, then o(s)=w;(0(s,)4F0(s,)) where d=h(S,)-h(s) ;
6) if S is the conclusion of an induction S'/S, then
o(s)=aﬁ(o(s')a» with d=h(s')-h(s) ; 7) if is the conclusion
of a TI-inference S'/S, then 0(S)=w ((o(s‘)%#a)F+l 7+1) with
d=h{sS')-h(S) and where ~F is the ordlnal associated with < D’
8) 4if S is the conclusion of a TI ,-inference S'/S , then
o(s)=w;((o(s") #wk Yew A+l) where d—h(S')—h(S) and where .\  is
the ordinal associated with a with respect to C::D .

As ordinal of P , denoted by O(P) , we take the ordinal O(SE) of
the endsequent SE of P . In order to indicate the dependence of
h and O on f and P, we write more explicitely h(P,f/S) and
OoP ,f/S), respectively. Our main tool in treating preliminary re-

duction steps is

Lemma 8: Let P be a proof, I: Sl’SZ/S* a cut in P and f,g
two complexity assignements for P having the following properties:
1) if I dis a strong inference different from I , then

£f(I)=g(I) ; 2) g(10)+1 = f(Io) . Then the following holds:

a) if S idis a sequent in P which is different from S* and is
neither above nor below S%*, then 0(P,g/S)=0(P,f/s) ; b) if S is
either $* or below S*, then O0(P,g/S) <<0(P,f/S) . In particular,
O(P,g/SE)ggo(P,f/SE) where S. is the endsequent of P.

Proof: Part a) of the statement is rather trivial to verify; we
omit its proof. Part b) is essentially proved if we can show
0(P,g/S®HLO(P,£/S*): if S senesS (with $,=S* and S the end-
sequent) is the path which leads from S* to the endsequent,one
shows with an easy induction with respect to i {(using part a))
that o(P,g/si)g;o(P,f/si) holds. Hence,let us prove
0(P,g/s*=<0(P,£/S*) . Here two subcases arise:

1) h(P,f/Sl)zh(P,f/S*) ;o 2) h(P,f/S*)<<h(P,f/Sl) . In the first
case,one easily verifies that h(P,g/S)=h(P,f/S) holds for all S
in P, and obtains as an immediate consequence that

O(P,f/s)=0(P,g/S) holds for all S in P . Hence,let us assume
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h(P,f/s*)<:h(P,f/sl) . Then the following relations hold, as is
easily verified: 1) h(P,f/s*<:f(Io) , 2) h(P,f/Sl)=f(Io) ,

3) h(P,g/Sl)=f(Io)—l , 4) n(p,f/s*)=n(P,g/S*) . Now let us intro-
duce the notion of "good" sequent with respect to Sl inductively,
as follows: 1) Sl is good; 2) if S 1is a premiss of a weak in-
ference whose conclusion is good, then S is good; 3) if S is a
premiss of a strong inference I , whose conclusion is good, then

S 1is good, provided that f(I)<ff(Io) holds; %) S is good only
in virtue of l)—3) . The set of good sequents (with respect to Sl)
gives rise to a subtree Pl of P: it is that subtree of P which
contains precisely those sequents of P which are good with respect
to Sl . The following properties of good sequents are immediate con-
sequences of their definition: ¢) h(P,f/S):h(P,f/Sl)=f(Io) 5

ﬁ) h(P,g/S):h(P,g/Sl); X) if S is an uppermost element of P,,
then it is either an axiom or the conclusion of a strong inference

I for which f(Io);gf(I) holds; §) 4if S is an uppermost element
of Pl and not an axiom, if furthermore S' is situated above S,
then O(P,g/S')=0(P,f/S') . Now we will prove that the following
inequality holds for every good sequent: A) O(P,g/S);;aﬁ(O(P,f/S))
(where ui(o<) is, of course,only another way of writing af* ) o

We prove A) by induction over Pl and proceed by cases.

Case 1: S is an axiom. Then O(P,g/S)=0(P,f/S)=1 and A) holds,

1
since 1Zew .

Case 2: S is the conclusion of a strong inference I such that
f(Io)gf(I) . Let I be eg. a TI-inference S'/S and put
o(p,f/S')= & . In virtue of A') above, 0(P,g/S')= & ,too . In
addition, h(P,f/S')=f(I) and h(P,g/S')=f(I) , as is easily veri-
fied. On the other hand, h(P,f/S):f(IO)=h(P,g/S)+l. Putting
d=h(P,f/S')-h(P,f/S), we obtain 0(P,f/5)=aa((1) and
0(P,g/S)=aﬁ+l(71) where 71\:(0§ #‘u)?+l)usg+l with %;as before
the ordinal of <« . Since aa+1(71)=“i(aa(fl>)» the inequality A)
is clearly satisfied. The cases where I is a cut, an induction or

a TIa—inference are treated alike.

Case 3: S is the conclusion of an induction S'/S and S is
also a good sequent. Put O(P,f/S')=X and O(P,g/S')= X' and
assume c('ggafx to be proved. Since h(P,f/S):h(P,f/S‘):f(Io) in
virtue of property X ) listed above,we find O(P,f/S): o+ s. On
the other hand,we conclude from properties /&) and 3) listed
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above that h(P,g/S)=h(P,g/s')=f(I ) 1 holds. Hence,
0(P,g/8)= X'w . But 'w<w™ . o”l< W
A) is satisfied.

wLw that is, inequality

9

Case 4: S is the conclusion of a cut $',$"/S, and both S',S" are

good sequents. Put O(P,f/S')= o' , O(P,f/S"}=0(" , o(P,g/Sr)=/§'
o(P,g/s")= /7" 0(P,f/S)=c and o(P,g/s)=/i . The inductive assump-

tion is ﬁ'éwo( . /&"éwo(" . As in case 3,we find

h(P,g/s')=h(P,g/S) and h(P,f/S')=h(P,f/S) . Therefore

/19 ﬁ #/4" and & = X! #0(" . Since A:max(o{‘,o(")< o(‘#o(",

we have o( P u)\ # u)\ <w°< . On the other hand,

/?é <u°< #cuo( " ; hence, /fé w ,that is, A) holds.

Case 5: S is the conclusion of a TI-inference S'/S and S is a

good sequent. Put O(P,f/S')=c( , 0(P,£/8)=fF , 0(P,g/s')= X ' and

o(P,g/s)=/§' . Again h(P,g/S')=h(P,eg/s) and h(P,f/s')=h(P,f/S)

Hence /3 =(0(#wf +l)wf+l and /':(O(' # w_f'*l)wf*‘l . Furthermore,
by assumption with respect to J one immediately proves
o + J go(ws for 0(21 . Using this, we obtain the following list
of inequalities, in which each is a consequence of the previous one
or of the assumption 0('<w0< 1) o 'H wf+l§wo(# w}+l H
2) el #a,§+1< 0(#(§+l) (since max(o(,§+l)50< # (54-1)) H

+l +1 +1
3) (o pw i el < w(x#wls 3 :

1
) (fw ) )w§+ = w((ta) ™) T
{since ai(/o —u;'“wv) :
= Fa1 }+1

5) (ot #w )cu J = ) (( (X F#F w Y
(since //’ + /Lw if //‘;40) . But 5) is nothing else than
/ 4 , that is inequality A)

Case 6: S is the conclusion of a TIa—inference S'/S and S is

good. The treatment is exactly the same as in case 5.

Hence, if we specialize to the case where S is Sl, we find
O(P,g/Sl)éwl(O(P,f/Sl)). What has been done for S can be done in
S,, and we find O(P,g/SZ)ggui(O(P,f/Sz)).
Now let us put h(P,f/Sl)—h(P,f/S*)=do , h(P,g/Sl)—h(P,g/S*)=d and
o(P,f/s, )=cxi , O(P,g/S.): /91 (i=1,2) . Then,obviously, d =d+l ,
o(p, f/S}) w (o # o X 2) and  0(P,g/s*)=cy( &) #4,)
£

ﬂlfa) , ,ELw in view of inequality A). Therefore
1
wd( ﬁ ’ #/672) = (,ud(ouo( # 0(2) and since

exactly the same way for
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K1 H# X2y « . . . .
wd(w )= wd+l(o(l #‘-0(2), we obtain the desired inequality

wd(/&l#ﬂz)é wy, 1 (X ] #0o,) , that is, 0(P,g/S*)< 0(P,£/S%) .
From the preceding lemma we now obtain -immediately the following

Theorem 9: Let P be a proof in ZT( C::D) and f,g two complexi-
ty assignements for P which satisfy the following condition: for
every strong inference I, we have g(I)=Zf(I) . Then
o(P,g/sE)go(P,f/sE) where S, is the endsequent of P.

Proof: One constructs a list of complexity assignements

go""’gn+l with the following properties: l) g, 1is b A

2) Ehil is g ; 3) for every iZ=n there is a strong inference

I, in P such that gi(Ii)=g (Ii)+l’ while gi(I)=g.+l(I) for

i+l i
all other strong inferences. The theorem then follows by some succes-

sive applications of the previous lemma.

B. We are now ready to discuss preliminary reduction steps. Among
the operations involved in preliminary reduction steps, there is just
one for which it is not evident that it does not increase the ordinal
of the proof to which it is applied. This operation applies in case
there is a cut Sl,Sz/S in the final part of a proof P which has

the property: S is derivable from S (or S by means of

1 2)
thinnings and interchanges. The operation then consists in the

following: one replaces the subproof P in P by the following

S
derivation

thinnings, interchanges

obtaining thus a new proof P¥* having the same endsequent as P .,

If the roles of Sl and 52 are interchanged, then one replaces

PS, of course,by

thinnings, interchanges
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In order to have a name for it, let us call the operation just des-

cribed omission of a cut; we say that P* follows from P by

omission of a cut. The main property of this operation is described

by

Theorem 10: Let P* follow from P by omission of a cut. Then

O(P*) is smaller than O(P) : O(Px) << o(P) .

Proof: Let I0 H Sl’SZ/S be a cut in P which eg. has the proper-

ty: S can be derived from Sl by means of thinnings and inter-

changes. Let P¥ be obtained from P by replacing the subproof

PS of S din P by the following derivation:

thinning, interchanges

(PS is the subproof of S, in P) . Let finally f and f¥* be
thelnormal complexity assignements for P and P¥* respectively.
The theorem is proved if we can show O{(Px*,fx/s)<0(P,f/S). In or-
der to prove this, let us first comnsider the proof P but provided

with a complexity assignement g having the following properties:

1) g(Io)=O N 2) if I is a strong inference different from Io’
then g(I)=f(I) . From lemma 9 we obtain O(P,g/S)<<0(P,f/S) . On
the other hand,one easily verifies that,if §S° is a sequent in
Py, then 0(P,g/S')=0(P*,f*/S') . Now put O(P,g/Sl)= X >

O(%,g/52)=c(2 ; in view of the last remark we have

o(P*,f*/Sl)=c>(l . Then o(P,g/s)=c><l # of,, while O(P*,f*/S)= X, -
Since O‘<c<2, we obtain O(Px*,f*/S)<C0(P,g/S), that is,
O(P*,£%x/S)<C0(P,£/S) , what proves the statement.

With the aid of theorem 10 it is now almost trivial to verify
Theorem 11: If P*,P are two proofs in ZI( C:::D) such that P*

is obtained from P by means of a series of preliminary reduction

steps, then O(P*)=0(P) .

We omit the proof.
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€. In this section, we have presented in some detail a generali-
zation of Gentzen’s second consistency proof to systems of the type
Z7( CZLD) . Now,as noted, theories of this type have no real inter-
est in themselves. Our main objects of investigation will be the
theories ZTi/I , ZTi/II etc., which where introduced in the pre-
ceding chapter. However, it turns out that these theories are amenable
to a Gentzen-like treatment which behaves with respect to reduction
steps and ordinal assignements in essentially the same way as the
treatment of ZT( C::D) presented in this chapter, and we will see
that most of the results together with their proofs will carry over

without any changes to the new situation.



CHAPTER IITI:

The intuitionistic system of number theory

This is the last of the introductory chapters. In it we study the
behaviour of intuitionistic proofs under the application of fork eli-
mination. In addition,we prove a lemma which is crucial for the fur-
ther development. The material presented here is essentially con-
tained in [8] . As basis of our discussion,we take the theories

ZT( CZ:D) and Z7Ti( C::D), respectively.

3.1. Elimination of forks in intuitionistic proofs

A. Let P be a proof in ZTi( C::D), that is, a proof which con-
tains only sequents having at most one formula on the right of the
sequential arrow. One easily verifies the following fact: if we
apply to P a preliminary reduction step, an induction reduction,

a TI- or a TIa—reduction step, then we obtain again an intuitionistic

proof P* . If on, the other hand, we eliminate a fork in P, then it
is clear by inspection that the resulting proof P!' is no longer in-
tuitionistic. However, as has been shown in [8] , it is sufficient
to apply to P! a number of preliminary reduction steps in order to
obtain again an intuitionistic proof P" , having the same endse-
quent as P! and, hence,as P . Below we will briefly describe how to
get from P! to P" ; for a detailed treatment we refer to [8] B

To start with, let us call a proof P in ZT( 5::D) almost intui-

tionistic if there is a path So,..Q,Sm (with Sm the endsequent)
in the final part of P , which has the following properties:
1) S, has the form y; —> A ; 2) for i>1l, S, has the

form f; —_— A,¢i where ¢)i may be empty; 3) 4)1 is not
empty, and Sl follows by right thinning from T; - A
4) the A indicated in Syseses

ference; 5) if 8 4in P is different from Sl"'°’sm’ then it

Sm is not side formula of any in-

contains at most one formula in the succedent. This definition of
almost intuitionistic proof is a slightly more specialized version
of that ome given in [8] . For almost intuitionistic proofs,one can

prove the following lemma:
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Lemma 9: Let P be an almost intuitionistic proof of f:—————é A,¢
(where ¢ may be empty). P can be transformed into an intuitio-

nistic proof P¥ of I/—————é A Dby means of a seriesof applica-

tions of preliminary reduction steps.

Proof: Let SO,...,Sm be the path in P which satisfies the pro-
perties l) - 5) mentioned above. As before, SO is T; —_— A,
while S, is }—1 ——> A, $. for i>1 . Let k be the number
of formulas among the ¢)i's which are cut formulas; we call k the
characteristic number of P . We prove the statement of the lemma by
induction with respect to k . If k = O , then (Pm is an image of
¢l . By cancelling all (#i's and omitting the thinning So/sl’ one
gets the desired proof P¥ ,

If k>0 , then there is a smallest i such that 4)1 is the cut

formula of a cut, which necessarily must look as follows:

Ji — A’¢i; (?12—9 ¢i+l/ Ti’z——} a’ﬁbiu'

We omit the thinning SO/Sl and cancel 1 together with all its

images up to ¢>i/ and derive }/i+l — A, ¢)

(that is, |, , 5 —> A,[f)

— i+l)
from }i ~—————> A . This transforms P dinto an almost intuitioni-

i+l
by thinnings and interchanges

stic proof P! whose characteristic number is k-1 . The statement

then follows from the induction hypothesis.

B. An immediate consequence of lemma 9 is

Theorem 12: Let P be an intuitionistic proof im ZT( C::D) and
let E be obtained from P by means of a logical reduction step
(that is by means of an elimination of a fork). By a series of pre-

) .
liminary reduction steps,one can transform P into an intuitioni-

A

stic proof P¥ , which has the same endsequent as P and hence as
P.

Proof: We content ourself with the case where the fork in question
is an T>_fork. To this end we use the diagram introduced in
chapter II, section 2.2., part C. in connection with the definition

of O -reduction step. According to this definition, the altered
A
proof P can be presented symbolically in the following way:



P

2 "1
: : “3
Iy =454 A, ——a4,3 cut :
J3r Jy =455 A58 B Iy Ty
}5’ }5’ 75 — ZXB’ZBB’ZXB interchanges,
contractions

B—%AB

Since P dis intuitionistic, it is evident from the definition of

—— ~reduction step that A is a single formula, say ¢ . Even

3

more than thist an easy inspection shows that both 51 and P2 are

almost intuitionistic proofs with ¢ playing the role of ¢>m . 53

on the other hand is intuitionistic,as is evident from inspection.
Now we apply lemma 9 to ﬁi and 52 . It results that we can trans-

form Bé and Fi by means of preliminary reduction steps only into

proofs P¥ and P} of T;-H A and A, )”3——-> B, respec-

tively. This gives rise to a new proof P¥* which can symbolically be

represented as follows:

, ’
: ; Py
); — 4 & }; —— B cut :
;5’ jg b o }; Cﬁl cut
) s E—
/5 }; )5 ¢ interchanges, contractions
J3—— ¢

It is mnot difficult to verify that P¥* din turn can be obtained
A
from P by means of a series of preliminary reduction steps. This

concludes the proof of the theorem.
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Corollary 1: Let P, P;, P, be three proofs in ZT( C:;D) which

satisfy the following conditions: a) P is intuitionistic;

b) Pl is obtained from P by means of a logical reduction step;y

c) P2 is obtained from Pl by a series of preliminary reduction

steps} d) P2 does not admit any preliminary reduction step. Then
P2 is intuitionistic.

Proof: The statement is an immediate consequence of lemma 9 and

theorem 10.

The last corollary gives rise to
Definition 16: Let P, P' be two intuitionistic proofs

(in z7( C::D)) . We say that P' is obtained from P by means of an

intuitionistic logical reduction step if the following holds:

1) there is a proof P* which is obtained from P by means of a
logical reduction step (in the sense of chapter II, section 2.2.,
part C.; 2) P! is obtained from P* by means of a series of pre-
liminary reduction steps; 3) P! does not admit any preliminary re-

duction step.

The following statement is a trivial consequence of corcllary 1,

definition 10,and the results of chapter II:

Corollary II: a) Let P be a strictly normal intuitionistic proof

containing a fork. Then we can apply an intuitionistic logical re-
duction step to P . b) If P! is the result of the application
of this reduction step to P , then O(P') <:0(P)

A last result in this connection is

Theorem 13: Let P be a strongly normal intuitionistic proof in
ZT( C::D) which does not coincide with its final part. Assume that
no preliminary reduction step, no intuitionistic logical reduction
step, no induction reduction, no TI- and no TIa—reduction step are
applicable to P . Then P contains a critical logical inference

whose principal formula has an image in the endsequent.

Proof: Since no intuitionistic logical reduction step is applicable

to P, it follows from corollary II that no logical reduction step at
all is applicable to P . The statement then follows from theorem 6,

which,as noted earlier, holds also for ZT( C::D).



- 74 -

In the chapters to follow we are mostly concerned with intuitionistic
systems. Therefore, we will often simply speak of "logical reduction
steps" instead of intuitionistic logical reduction-steps" and speak
of "classical logical reduction steps" if, for .one reason or the
other,we have to consider classical proofs in some classical system
and logical reduction steps as introduced in chapter II, section 2.2.,

part C.

3.2. A basic lemma

A. In this section we prove a lemma of elementary combinatorial
character which will play a crucial role throughout this work. It is
responsible for the fact that the methods introduced by Gentzen in
his second consistency proof can be extended to theories such as
ZTi/I, ZTi/II etc.. There are two versions of this lemma. The first
is very general and holds for almost every intuitionistic theory T ,
provided only that the notion of final part is defined in the same
way as before. The second version improves the first one but applies
only to those intuitionistic theories T , for which there exists an
ordinal assignement to proofs which behaves more or less in the same
way as the ordinal assignement introduced for proofs in ZTi( C::D) .
We will prove both versions of this lemma; for simplicity we prove

them for the case where T is ZTi( < D).

Basic lemma I: Let P be a proof in ZTi( < D) whose endsequent
E has the form ————> A and which does not contain any thinning

in its final part. Let S Sm be the uppermost sequents of the

[EREEY,
final part, listed from left to right; let Si be I; —_— Ai .
Then the following is true for every i<m l) there is a proof
P, of —_— A, 2) if B occurs in f; , then there is a

proof P' of —> B ,

Proof: We begin with two remarks concerning the concepts left-right.
i) If S¥*, §*%* are two uppermost sequents in the final part of P ,
then S* is by definition on the left of S*¥* if there is a cut
$!',8"/S in the final part of P , having the following properties:
l) S* dis equal to S* or below S*; 2) S" dis equal to S¥** or
below S** ii) Let S ©be any sequent in the final part and assume
that \ﬁ, is T/—————> B . Then there is an uppermost sequent S' in

the final part having the following properties: l) S' is equal to
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S or situated above S ; 2) St has the form f] ——— B', and
B is an image of B' . This statement is easily proved by "bar in-
duction" over the final part. Now we prove the lemma by induction

with respect to i.

Case 1: 4i=1 . Since S 1is the leftmost one among the uppermost se-
quents of the final part, it must necessarily have the form — Al.

The statement of the lemma is therefore trivially satisfied.

Case 2: i=k+l . We assume that the statement of the lemma is true
for ick. We first prove part II of the lemma for Sk+l . Let B
occur in /f;+l. Since the endsequent contains no formula on the
left of the sequential arrow there must necessarily be a cut

S!',S"/S in the final part of P having the following properties:
a) S" is equal to Sk+l or below Sk+l ; b) the cutformula F
in S" 4is an image of B and hence isomorphic with B . In view of
remark ii) above, there is an uppermost sequent Si , equal to S'

or situated above S' , such that the cut formula F in S' is an
image of Ai , and therefore isomorphic with Ai . In view of re-

mark i) above, Si is on the left of hence i<k . According

S )
k+l
to the induction hypothesis, there is a proof Pi of —— Ai .

Since Ai’B and F are all isomorphic with each other, we obtain a

proof P' of ———> B by adding, if necessary a conversion to P.

Now we prove part 1) of the lemma for Si,1 + Let I;+l be
B

l,n..,BN . According to what has just been proved, there are proofs

Pi,...,Pﬁ of —m——— Bl""’ _— BN’ respectively. On the other
i *

hand, there is a proof P of Sk+l , namely the subproof of Sk+l

in P . By combining Pi,...,Pﬁ and P* din a suitable way by means

of cuts,we obtain a proof Pk+l of ——> Ak+l what concludes the

proof.

It is clear from the proof of basic lemma I that no use has been

made of the particular structure of ZTi( <::D) . We could replace
ZTi( CZ:D) by any intuitionistic theory T ; the proof of the basic
lemma I would remain exactly the same. In particular, T can be any
of the intuitionistic theories introduced so far

(ZTi/I, ZTi/IT, etc.) and any of the theories which will be intro-
duced later (particular conservative extensions of ZTi/I, ZTi/II,etc.).

This entitles us to make free use of the basic lemma I throughout the

rest of this work. The second version of the basic lemma (called
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basic lemma II) is more special and has to do with ordinals. We first

present the lemma and its proof and give a commentary afterwards.

Basic lemma ITI: Let P be a proof in ZTi( C::D) whose endsequent
has the form —————9 A and which does not contain any thinning in
its final part. Let Sl,c..,Sm be the uppermost sequents of the fi-
nal part, listed from left to right; let Si be T; —-——9 Ai .
Then the following is true: l) for every i <« m there is a proof
P, of ———> A, for which 0(P,)<{O(P) holds; 2) for every
i4<m, if B occurs in r;, then there is a proof P' of —> B
for which 0(P')<{0o(P) holds.

Proof: i) We first prove l) by constructing directly a proof Pi
of ——> Ai . Since i<m , one must necessarily find a cut
S',S8"/S in the final part having the following properties:

1) S' is equal to S, or below S, ; 2) +the cut formula F in
S' is an image Ai . Let this cut be more explicitely 2_————9 F
F, T——> &/ 2, 7T ——> & . Let in addition Pg, , Pg, and

PS be the subproofs of S',S" and S in P respectively. Let us

alter P as follows:

PS 1 PS L

. F,W’% G
— > F F, T —F,G
pd
Z’—/—-_.—% F,G

thinning, interchanges

cut

F,A
This proof, call it P*¥ , has clearly the property that we can de-
rive » , l ——> F,6 from the left premiss of the cut indicated
by thinning and interchanges. That is,we can apply to P* the ope-
ration called omission of a cut in order to obtain a new proof P*¥ ,
We can arrange the thinnings and interchanges in a particular way so

that P** has the following form:



2 ——F

thinnings, interchanges

T, S— 7
T, S—>r,c

thinning

— > F,A

It is evident that P*¥* is an almost intuitionistic proof. The path
éo""’gn which is responsibel for P**, being an almost intuitio-
nistic proof, is obviously that one beginning with 7T , zi — F
and ending with —————> F,A . According to lemma 9, we can transform
P*¥*¥ into an intuitionistic proof F of ————> F . By adding a
conversion if necessary to P, we finally obtain an intuitionistic
proof P! of —m—> Ai . The following equalities and inequali-
ties are obviously satisfied in view of theorems 10 and 11:

a) 0(P)=0(P*) ; b) 0o(P**)<0o(P*) ; c) O(P)<O(P**) ;

d) O(P')=O(;) . Hence, P' 1is the desired proof.

ii) In order to prove part 2) it is sufficient to show the following:
if B occurs in f; , then there is a j<i such that Aj is iso-
morphic with B . The rest then follows from part l),which has al-
ready been proved. But in order to prove the last statement,we pro-
ceed in exactly the same way as in the proof of the basic lemma I

(the proof of part 2) under case 2)).

The construction of P' presented in the last proof could, of course,
be used to prove basic lemma I . In the proof of basic lemma II no
explicit use is made of the particular structure of 2Tif C::D) . We
merely used the fact that lemma 9, theorems 10, 11l,hold for

ZTi( CZ:D) . Lemma 9 is rather a property of the final part and has
nothing to do with the particular structure of ZTi( C:ZD) . Theo-
rems 10 and 11, on the other hand,depend only on the definition of the
final part and on the particular way to assign ordinals with proofs;

the proofs of these theorems, too,do not depend on the particular

structure of ZTi( — D) . From the next chapter on,we will be con-
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cerned almost entirely with conservative extensions of the intuitio-
nistic theories 2ZTi/I , ZTi/II , ... which have been introduced in
chapter I, section 1.5. There will be ordinal assignements to proofs
in these conservative extensions, which, from an abstract point of
view, are the same as the assignement of ordinals to proofs in

Z7i ( C::D) . It will be evident that lemma 9, theorems 10 and 11 will
be true in all these cases and that their proofs can be taken over
without any changes. In such situations, therefore,we will not give
proofs for the statements corresponding to lemma 9, theorems 10, 11,
and basic lemma II since this would amount to a mere repetition of
arguments already given; we will content ourself instead with some

relevant remarks.



CHAPTER IV:

A formally intuitionistic system as strong as classical analysis

In this chapter we present a proof theoretic of the theories

ZTi/IIN and ZTi/II . Our aim will be to prove,eg. for ZTi/II,
statements like the following: if A, B "are closed formulas which
do not contain special function constants, if,moreover,

ZTi/IT f ———> A VB , then ZTi/II}——> A or

ZTi/ITF ——> B . We start with a treatment of ZTi/IIN , which
is somewhat simpler than full ZTi/II, and extend the method after-
wards to ZTi/II . The reasoning used in this chapter is essentially
classical; some remarks on intuitionistic reasoning are presented in
the last two sections. In particular, we consider ZTi/II as a sub-
system of classical analysis having the property: if ——> A is
provable in ZTi/II, then A is true in the usual classical sense.
For technical purposes it is very convenient, although not absolute-
ly necessary, to include the corresponding classical systems ZT/II

and ZT/IIN in our considerations.

4.1. A conservative extension of ZT/ITI..

A. We start by reminding that ZT/II is the theory which is ob=-
tained from ZT by adding to it the new rule

D(y), (x) — _A(x), | —> A ,A(y)

DY

#(—p,), (), | —— A,A(q)

II.

where q is free for y in A(y), and where v does not occur
free in the conclusion, and where u,C:;Dv is an abbreviation for

u (::KV/\D(u)/\D(v) . Here, D(y) is a standard formula, that is,a
formula of the form R(y)/\seq(y) where R(y) may be any formulaj
in particular, R(y) may contain special function constants and addi-
tional free variables of any kind. If we restrict the above rule to
the case where D(y) (or what amounts to the same, R(y)) does not
contain function parameters (in the sense of section 1.5., part A),

we obtain a weaker rule, denoted by II The theory which we ob-

N
tain by adding IIN to ZT has been denoted by ZT/IIN . The
corresponding intuitionistic theories have been denoted by ZTi/IT

and ZTi/IIy, respectively. They are characterised by the following



requirement: a proof P with respect to 2T/II (with respect to
ZT/IIN) is a proof with respect to ZTi/II if and only if every
sequent which occurs in P contains at most one formula on the

right of the sequential arrow. So much for repetition.

Now we extend the system ZT/II and ZT/IIN, respectively, by

adding a set of new rules to each of them. The resulting new theo-
ries, which we will denote by ZTE/II and ZTE/IIN, respectively,
will not be stronger than the old ones, because each of the new

rules is derivable in the corresponding system ZT/II and ZT/IIN .
In other words, the new theories are merely conservative extensions
of the o0ld ones; no more sequents are provable than before. It will
also be evident from our definitions below, that if we restrict our
attention to intuitionistic proofs in ZTE/II and ZTE/IIN , that we
obtain intuitionistic theories ZTEi/II and ZTEi/IIN which in turn
are conservative extensions of ZTi/II and ZTi/IIN respectively.
Actually, the theories ZTEi/II and ZTEi/IIN are those which de-
serve our main attention since they are best suited for a proof theo-
retic treatment in Gentzen’s spirit, as will be seen in the course of

this chapter.

B. VWe begin by considering ZT/IIN and its conservative extension
ZTE/IIN whose definition we are going to give. To this end,we.are
going to define a set of new rules. The first of these rules can be
stated as follows: if P 1is a strictly normal proof in ZTi/IIN of
E— ﬁ(C:::D) where ﬁ( C::D) does not contain special function
constants nor free function variables, then we can infer from the
premiss D(y), (x) yA(x), f‘—————%lﬂ ,A(y) the conclusion

p(q), r/—————Q [},A(q)D. A particular application of this rule is

called Ti(P)-inference and is written as follows:

D(y), (x) = JAx), ] ——> L ,A)
Ti(P) D

p(a), | —> A ,A(q)

Another rule can be described as follows: if P and ﬂ(C:::D) are
as before, if Pl is a strictly normal proof in ZTi/IIN of

—_— D(t) , where t 4is a saturated term with [t] = m , then we
can infer from the premiss vy C:th ,(x) ja) yA(X), [/—————} AS,A(y)
the conclusion q 4::Dt’ }_—————9 A ,a(a). D

A particular application of this rule is called Ti(P,Pl,m)—inference



and is written as follows:

Y pts (X)CDyA(X), f’%A,A(y)

Ti(P,P.,m)
1 QCDt’ r‘——%A5A(q)

The proof P in ZTi/IIN which appears in the definition of an in-

ference

=

Ti(P) —

wn

is called side proof of this inference. The proof P which appears

in the definition of an inference

Ti(P,Pl,m) —
s

is called the first side proof of this inference, Pl is called the
second side proof of this inference,and m = }tl is called the norm
of the inference. Such inferences will also more conveniently be
written by expressions such as Ti(P) : Sl/S2 and Ti(P,Pl,m):Sl/S2
respectively. The variable vy in both rules is not allowed to occur
in the conclusion,and the term q has to be free for x in A(x).
Note that the proofs P and Pl are required to be proofs in
ZTi/IIN , that is intuitionistic proofs in ZT/IIN ! By adding the
rules Ti(P) and Ti(P,Pl,m) to ZT/IIN, we obtain the extension
ZTE/IIN of ZT/IIN . A»proof tree in ZTE/IIN is again a finite
tree whose nodes are sequents and which has the following properties:
a) uppermost sequents are axioms; b) if S is not an uppermost
node of the tree,then S has either one or two predecessors;

¢) if S is a node and S' its only predecessor, themn S/S' is

a one-premiss inference (with respect to the rules of ZTE/IIN);

d) if S d4is a node and Sl,S its predecessors from left to right,

then Sl’SZ/S is a two—premisi inference (with respect to the rules
of ZTE/IIN) . By an analysis of a proof Po’ we mean a specification
which tells us for each node S of Po: a) by which inference S
follows from its predecessors (if S 1is not an uppermost node) H

b) if S follows from its predecessor. S! by means of a
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Ti(P)—inference, which is the side proof of this inference;

c) if S8 follows from its predecessor by means of a Ti(P,Pl,m)—
inference, which is its first side proof, which is its second side
proof and which is its norm. In the following we always tacitly

assume that, for each proof P0 in ZTE/II such an analysis of P0

>
is effectively given. Such an analysis canfof course, be codified by
means of Godelnumbers: we can eg. associate with every inference in
Po a Godelnumber which codifies the relevant information about this
inference in a suitable way. A formula A is said to occur in P

if it occurs in some node of P0 . A proof P' in ZTi/IIN is sazd
to be a side proof of P if P contains a Ti(P)-inference or a
Ti(P,Pl,m)—inference having P! as side proof (hence P=P! in the
first case and P=P' or Pl:P‘ in the second case).

If we restrict our attention to those proofs P din ZTE/IIN which
contain only sequents having at most one formula in the succedent,

then we get the intuitionistic version of ZTE/IIN , to be denoted
by ZTEi/IIy

For proofs in ZTE/II we can introduce the notions of final part,
successor, image, in the same way as in chapter II, sect. 2.1. In or-
der to introduce the notion of normal proof for ZTE/II, one has to
change clauses 3) and 5) in definition 8 slightly. In order to do
this, let us call transfinite induction inference any particular
application of one of the rules II, Ti(P) , Ti(P,Pl,m) . We call the
variable y the critical variable of a transfinite induction infe-

rence if it is the y in the premiss, say,

D(y), (x)— jAlx), J ——>A,A(y) or
Y<::th, (X)<::f YA(X)’ r’—————> A L,A{y). Then clauses 3) and 5) in

definition 8 havg to be replaced by clauses 3*) and 5*) respectively:
3*) if s/s¢ is a quantifier inference, an induction or a transfi-
nite induction inference, if y is the quantified variable, the in-
duction variable or the critical variable of S/S!', respectively,

then y does not occur (free) below S 5*) if vy occurs free
in a sequent S in P, then there is an inference Sl/S2 with Sl
below or equal to S such that Sl/S2 is a guantifier inference, an .
induction or a transfinite induction inference,and such that y is

the quantified variable, the induction variable or the critical vari-

able,respectively,of Sl/SZ . If we replace in def. 8 the clauses 3),

5) by 3*) and 5%),respectively, we obtain a new definition which will
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be referred to as definition 8%) . A matter of routine is the proof
of the following statement: if P is a proof in ZTE/IIN

(in ZTEi/IIN) and if no variable occurs both free and bound in the
endsequent S of P, then there is a normal proof P¥ in ZTE/IIN
(in ZTEi/IIN) of S . The proof is as usual by induction with
respect to the longest path in P , by renaming eventually some free

and bound variables in an appropriate way.

C. Our next task is to show that ZTE/IIN and ZTEi/IIN are in-
deed conservative extensions of ZT/IIN and ZTi/IIN, respectively.
Actually, we will obtain a slightly more sharp result. In order to

prove it,we need

Definition 16: a) A proof P in ZT/IIN is said to have order n
if every formula, which occurs in P contains at most n logical
connectives. b) A proof P in ZTE/IIN is said to have degree n
if every formula which occurs in P contains at most n/2 logical
connectives and if every side proof P! of P has order n .

The result mentioned is given by

Theorem 14: a) If P is a proof in ZTE/IIN of degree mn, then

there exists a proof P' in ZT/IIN of order mn, having the same
endsequent as P . If P is intuitionistic then P! is intuitio-
nistic.

Proof: The proof proceeds by induction with respect to the length of
the longest path in P . If P consists of a single sequent S, then
§ is an axiom and we may choose for P! +the proof P itself. Let

P contain more than one sequent and let S be the endsequent of P.

Let I ©be the lowest inference in P : the conclusion of I is ne-
cessarily S . Now we distinguish cases according to the type of I .
Case 1: I is a structural inference, a conversion, a logical infe-
rence, an induction, or a IIN—inference. Let, as an example, I be a
cut Sl,Sz/So . Let furthermore P1 and P2 be the subproofs of

Sl and S2 in P respectively. Pl and P2 both have degree n .
By induction there are proofs Pi, Pé in ZT/IIN of order n ,
having Sl and S2 as endsequents, respectively. Combining Pi and
Pé by means of the same cut I : Sl,Sz/So, we obtain a proof P! in

ZT/IIN of So which has degree n . If P is intuitionistic, then
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so are Pl and P2, and by induction Pi,Pé, and therefore P' is

also intuitionistic.

Case 2: I is a Ti(P,)-inference

1)

D(y)s (x) = A(x), | —— 2,4

Ti(Pl)
D(q)! r_>A 7A(Q)
with Pl’ as indicated, the side proof of this inference. Let P* be
the subproof of the premiss. P*¥ has degree n and therefore there

exists a proof P¥¥ in ZT/IIN of order n whose endsequent is the

premiss of the above inference. Now we obtain the following proof P!

in 2T/II, of D(a), [ ——> A ,a(q)

pP**

L :
: D), (x) = alx), [ ——>8,40)
) IT
— (=) ¥ (), n(a), [——> 4 ,4aq)
D(q)7 [’__—_ﬁ A?A(q)

cut

Since Q(C::fD) contains no more logical connectives than

(x)<::' YA(X), it follows that P! has order n ; moreover,if P is
intuitignistic,then P*¥ is dintuitionistic, P¥* dis intuitionistic
in view of the induction hypothesis,and P is intuitionistic by

assumption. Hence P! is dntuitionistic.

Case III: I is a Ti(Pl,PZ,m)—inference

gt s (X) o AG), [ A A)

Ti(Pl,PZ,m)
QCDt s F—H A,A(q)

with Pl and P2 first and second side proofs and m:[t]. Let us

write <~ for C::'D . We start with the axiom

() (xcoy T2 x et T2A(x)) —> (x)(xc= vy T2 .x <<t 22 A(x))
and derive from it in a cut-free way, using only rules from intuitio-
nistic predicate calculus the sequent Sl:

s _t, sy, (x)(xZy > .x <t = A(x)) —> A(s).
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In virtue of lemma 7 there is a cutfree derivation, using only rules
of intuitionistic predicate calculus of SZ:

s~y , vy t——> st . With the aid of a cut with leftpre-
miss Sl and right premiss Sz, we derive first the sequent 53 H

s Cy, y—t, (x){x<c<”y > .x_ t > A(x)) —> A(s)

and then by two propositional operations the sequent 54:

vyt , (xMxcl v =2 .x 2t D A(x)) —> (x){(x = vy 2 A(x)).
The proof Po of Sh so obtained is intuitionistic and of order n:
the formula (x)(x<cZ y > .x<— t “>A(x)) contains at most twice
as many logical connectives as (x)(x<_ y. 2>A(x)) , which in its
turn contains at most n/2 logical symbols. On the other hand,it
follows from our inductive assumption that there is a proof P¥* in
ZT/IIN of order n of (x) C::yA(x) y Y b, ;’————% AL A(y) .
Combining Po and P¥ by means of a cut, whose left premiss is Sh’
followed by an interchange,we obtain a proof P**¥ of S

vyt , (x)(xCy > ox <<t 2 A(x)), },—HA,A(y) . From 55
we derive by means of an implicational inference {(——> _>) and
left thinning the sequent S6

D(y), (x)(x <y >.x =t >A(x)), | ——> A,y <t > A(y) and
to S, we apply the rule TIIy (with x <~ t ™= A(x) in place of

A(x)), obtaining thus S7 : Q(C:f),D(q), J— A ,q <=t Z2A(q) .
A

The proof P of S7 so obtained is still a proof in ZT/IIN of or-

der n . At our disposal is in addition the proof Pl of

—— f(&= ) which by assumption is a proof in ZTi/IIN of order
n . Combining Pl and Q by means of a cut, we obtain the sequent
Sq ¢ n(q), f/—————9 A ,a ,~—t Z>A(q) . Using lemma 7 (applied to
q<c_ t ——> D(q)), we finally obtain by a bit of intuitionistic
predicate calculus a proof P! of S9 i q C::t,}v;———> A LA(q) .

p! is clearly a proof in ZT/IIN of order n . If the original
proof is intuitionistic,then P¥ is intuitionistic in virtue of the
induction hypothesis; then P! is also intuitionistic,as is evident

from its construction. The theorem is thus proved.

4.2, Reduction steps

A. As already noted, we can carry over with almost no changes all de-
finitions and notions introduced in sections 2.1 and 2.5 to the pre-
sent situation. If eg. P is a proof in ZTE/IIN and S a sequent
in P, then we say (again) that S belongs to the final part of P

if the path leading from S +to the endsequent of P does not en-



counter inferences other than conversions or structural inferences.
With cuts, inductions, IIN-inferences, Ti(Pl)—inferences and
Ti(Pl,Pz,m)—inferences we associate again natural numbers, called
complexities. This assignement is defined in exactly the same way as

in part B of section 2.5, treating thereby II Ti(Pl)— and

s
Ti(Pl,Pz,m)—inferences in the same manner as ?I— and TIa-inferences:
with a IIN—inference,for instance, we associate as complexity the num-
ber of logical connectives occuring in (x)(x(:::Dy_::>A(x)) and
likewise with Ti(P;)- and Ti(Pl,Pz,m)—inferences. Definition 12, as
presented in section 2.5, serves again as definition of height; we
merely have to replace the TI- and TIa-inferences in clause 5) by
the II -, Ti(Pl)— and Ti(Pl,PZ,m)—inferences. The definition of fork
Il’ 12’ I3 and of its associated cut are again given by definitions
11 and 12% in section 2.1. So,whenever we have to make allusion to
the definitions of fork, height, etc., we will refer to sections 2.1
and 2.5 (and eventually to section 4.1 in case of definition 8*).
Moreover, we will use all these notions freely and without further

comments in connection with ZTE/IIN and ZTEi/IIN .

B. Our next task consists in defining reduction steps for ZTE/IIN
and ZTEi/IIN . Actually, the syntactical transformations needed
have already been introduced in chapter II (section 2.2 and 2.5);

no new ones will appear. What we will do below is to fix the condi-
tions under which this syntactical transformations are applicable to
a proof in ZTE/IIN and ZTEi/IIN respectively. To this end let P
be a strictly normal proof in ZTE/IIN , that is, 2 normal proof (in
the sense of definition 8%) whose endsequent does not contain free
variables. For such a proof we are going to define a series of re-

duction steps.

a. Preiiminary reduction steps: By preliminary reduction steps we

understand again the step-by-step elimination of thinnings and logi-
cal axioms from the final part of P , as described in part A of

section 2.2. Theorem 4 holds invariably in the present case.

b. Induction reduction: Let A(x), | ——>A,A(x')/A(0), | —>A,A(t)

be a critical induction inference in P (that is-with conclusion in

the final part) such that t is saturated with value /t[:n . Then we
apply to P the same syntactical transformation as described in
part B of section 2.2, distinguishing thereby again between the

cases n=0, n=l and 1l<n . As before,we call such a transformation
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an induction reduction.

c. Logical reduction steps: To begin with, let Il’IZ’IB be a func-

tional VLfork in P . Then we can apply to P the same syntacti-

cal transformation which has been described in part C of section
2.2 and which has been called functional \f—reduction step. We
thereby tacitly use the fact that lemma 4 and its corollary both
hold invariably in the present case (but with def. 8% in place of
def. 8); their proofs remain the same, hence we omit them.

If Il’Iz’I3 is an implicational fork in P, then we can perform on
P that syntactical transformation which has been described in part C

of section 2.2 and which we have called implicational reduction.

If, finally, Il’IZ’IB is any other kind of fork (‘7—fork, numerical
ELfork, etc.), then we proceed as before in the same way as in [l].
In each case we say accordingly that a functional \/—reduction step,

an implicational reduction step, etc. has been applied to P .

d. IT -reduction steps: Let there be a critical IIN-inference in P,

say

(1) (x) = A=), [ > AAG)

IIN

W(c—p), p(a), | —> A ,a(a)

Let the following two assumptions hold: l) every constant term which
occurs in ﬁ(<:::D) is saturated; 2) there is a strictly normal
proof P¥* in ZTi/IIN of —m—> ﬁ(‘ij:D) . Since D contains no
function parameters, it follows from assumption l) that there is a
formula D' which contains no special function constants and mno
free function variables at all, which is isomorphic with D . There-
fore, by adding to P¥ a conversion, we obtain a strictly normal
proof P, in ZTi/IIN of —> fi( 4::D') . Now we can replace

‘the above IIN-inference by the following series of inferences:
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D(Y)’(x) CDYA(X)’ )—_ﬁ A !A(Y)

conversion

D' (y), (x) CD'yA(X), T ——0,A(y)

Ti(P.)
Yooi(y), — 4 ,4(q)

conversion, thinning

ﬁ( CD)!D(q)! }/_H A’A(q)

This replacement transforms P into another proof P! in ZTE/IIN ,
whose endsequent is the same as that of P . We say that P' is ob-

tained from P by means of a IIN—reduction step and that the re-

duction step has been applied to the particular IIN—inference above.

e. Til—reduction steps: Let there be a critical Ti(Pl)—inference

in P ,say

DyA(x), 7’——9 DL A(y)

D(a), [ —> A,A(q)

D(y), (x) ~—

Ti(Pl)

with P, a proof in 2Ti/ITy of ——> ﬁ(C:jD) ; by assumption,
ﬁ(C:fD) and therefore D do not contain free function variables or

special function constants. Let the following two assumptions be

satisfied: l) q is saturated with value, say m , 2) there is a
strictly normal proof P, in ZTi/IIg of —— D(q) . The above
Ti(Pl)—inference will be denoted briefly by Ti(Pl): s/St' . As usual,

PS and PS' denote the subproofs of S and 8" in P, respective-
ly. By Pg we denote the proof which we obtain if we replace every
occurence of y in PS by q ; by s? we denote the endsequent of
Pg . According to lemma 7 there is a proof P0 in ZTi of

y'C::Dq — D(y) , which uses neither cuts nor inductions. Now
we apply to P a syntactical transformation, which is an exact copy
of the TI-reduction step, defined in part B of section 2.5 (chapter
II). More precisely we replace the subproof PSI of S' in P by
the following proof P¥ of §S'
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P Pg
Yy £opa —> D(y) S
cut
Yy Cqu(x) < YA(X)’ r—> A ’A(Y)
D Ti(P,,P,,m)

s <& 4, J—— A\,A(s) 172
)’-ﬁA,sCDq DA(s) P(s1

q
)’%A,(X) CDqA(X) S

b(y), [ '—> A ,a(a)

A comparison shows that this diagram is merely a condensed version of
the corresponding diagram in part B of section 2.5, which was used
in order to explain the TI-reduction step; the only difference which
shows up is that the index TI in the previous diagram is now re-
placed by the index Ti(Pl’PZ’m) . The proof P' which results from
P by means of the above transformation is said to follow from P by
means of a Til—reduction step; we say that the Ti.,-reduction step

1
has been applied to the Ti(Pl)—inference.

f. Ti _-reduction steps: Let there be a critical Ti(Pl,Pz,m) infe-
a~

rence in P , say

 pte (1) o A, J — A .aly)

Ti(Pl,Pz,m)
a =gty >4 ,A(q)

According to the definition of such inferences, ﬁ(C:::D) is a for-

mula without function parameters, which does not contain free func-

tion variables nor special function constants, Pl is a strictly
normal proof in ZTi/IIN of —> ﬂ( C:TD), t 4is saturated with
value m and P2 is a strictly normal proof in

ZTi/IIn of ——— D(t) {(where D(x) evidently does not contain
free function variables nor special function constants). Let the

following two assumptions be satisfied: l) q is a saturated term

with value, say, n ; 2) Pé is a strictly normal proof in
ZTi/IIN of —m— q & Dt . We denote the above inference more
briefly by Ti(Pl,Pz,m) : 8/t . By PS and PS' we denote the

subproofs of 8§ and S' in P, respectively; Pg denotes the
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result of replacing every occurence of y in PS by g9 and Sq

denotes the endsequent of Pg . According to lemma 7 there are proofs
P! and P, in 2ZTi of q =t —> D(q) and
y(:::Dq, q Dt —y Dt’ respectively, which use neither cuts

nor inductions. With the aid of Pé and Pé and a cut, we obtain a

strictly normal proof of — D(q) which we denote by P3 . Now

we apply to P syntactical transformation which in its turn is an

exact copy of the TIa—reduction step defined in part B of section

2.5. That is, we replace PS' in P by the following proof P* of
S'
Po PS
Yo Dqs q CDt __9 yCDt 5 cut,

interchanges

Yo pd: (X)CDYA(X): QCDt: r_"> AvA(Y)

Ti(Pl,PB,n)
SCDt, q CDt, T—) A LA(s)

qth,/’—-—,\A,sCDq A(s) Pg
0T gty [ 4 (x)(x <= pa == A(x)) st

a b, ] —— A ,A(a)

This diagram is just a condensed version of that one introduced in
part B, section 2.5,in order to explain the TIa—reduction step;
again, the index Ti(Pl’Pj’n) takes over the role of the index TIa
in the diagram in section 2.5. The proof P!' , which is obtained
from P by this transformation is said to follow from P by means
of a Tiz—reduction step; we also say that the Ti,-reduction step

2
has been applied to the Ti(Pl’PZ’m) inference above.

This concludes our list of reduction steps. We note that, by an appro-
priate choice of the free variable s 1in the case of Til— and
TiZ—reduction steps,we can always achieve that the altered proof P!
is strictly normal, too; we always tacitly assume that s has been
chosen in this way. All other reduction steps, applied to strictly
normal proofs, yield automatically strictly normal proofs as results;

this follows easily from inspection of their definitions.

Formally, the reduction steps are the same as those introduced in

chapter II. Furthermore, given two strictly normal proofs P,P' in
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ZTE/IIN , we can always decide in a recursive way whether P!
follows from P by means of one of our reduction steps and,if so,by
which one. However, the basic theorem 6 fails to hold in the present
case. The reason for this failure is that in general we are not able
to find proofs which satisfy the conditions 2) which appear in the

definitions of IIN—, Til— and Tiz—reduction steps.

4.3. Ordinals

Now we are going to associate ordinals with proofs in ZTE/IIN in
very much the same way as we have done with proofs in ZT(C::D).

Prior to this we need some preparations.

A. For formulas A which do not contain special function constants

there is available a classical notion of truth which can roughly be

described as follows: a) logical connectives are interpreted in
the usual classical way, b) individual variables range over the
set of natural numbers, c¢) function variables range over the full

classical universe of number theoretic functions. We assume that the
reader is familiar with this notionj; we refer to it as "classical
truth". All systems which have been introduced in chapter I are ei-
ther particular formulations of what is known as classical analysis
or (proper or improper) subsystems of this classical analysis
(theorem 3). Let P be a proof in any of these systems of a sequent
——> F , where F 1is supposed to be a closed formula not contai-
ning special function constants. If P contains special function
constants then we can always replace them by appropriately chosen
constant functors in order to obtain a proof P¥ of the same sequenty
not containing special function constants. It is then clear that the
formula F thus proved is classically true. In the particular case
where F 1is ﬁ((CZfD), it follows that the partial ordering

Rp={ <p,q> / P~ g4 holds and both D(p),D(q) are classically
true is indeed wellfounded. This means that we can associate with
every number a such that D(a) is classically true, an ordinal
number, to be denoted by Ha” D In addition we can associate with
”RD” the smallest ordinal number which is greater than all ordinal
numbers representable in the form ﬂa” p § ve denote this ordinal
number by HRDII . If,in addition, there is another proof Pl

(in any of the systems introduced in chapter I) of —m—> b C::Da,
then we conclude that both a,b belong to the range of definition
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of Ry and that RD(b,a) holds; this clearly implies HbHD<”aHD .
Now let (2 be the smallest among the ordinals, & having the

following property: if P 1is a proof in ZTi/IIN with endsequent
_— ﬁ( CD) and with ﬁ( Yl D)

constants nor free function variables, then HRD”<fq.

not containing special function

After this preliminaries we are ready to associate ordinals with

proofs in ZTE/IIN .

B. Let P ©be any preof in ZTE/IIN ; we are going to associate

with every sequent S occuring in P an ordinal, denoted by o(S) .
The inductive definition of o(S) goes as follows: 1) if S is an
axiom, then o(S)=1 ; 2) 4if S is the conclusion of a structural
inference, a conversion, a logical inference or an induction, then we
proceed as in part A of section 2.4; 3}2 if Sl/S is a IIy-infe-
rence, then we put o(S):éOd((o(Sl)#:u) +l)60£l+l)
d=h(Sl)—h(S); Ly if Sl/S is a Ti(Pl)—inference, say

where

D(v),(x) = ,Alx), ] —— A,a(y)
Ti(P D

)
. D(a), | —> A ,A(q)

then we put o(S):édd((o(Sl)#%dx+l)a)d +l) where d:h(Sl)-h(S) and
oA = ”RD” 7 5) if Sl/S is a Ti(Pl,Pz,m)—inference, say

v Cptr () = A, =4 A

Ti(Pl,Pz,m)

1
d+lnud+ )

(where m= [t|), then we put o(S):O)d((o(Sl)#U) where

a=h(s;)-h(s) and of = [l ,
The ordinal of the endsequent is called the ordinal of the proof P.
In order to summarize the properties of reduction steps and ordinal
assignements, we call every reduction step which is not a prelimina-
ry one an essential reduction step. Furthermore, we remark that the
operation "omission of a cut" defined in section 2.6, retains its
meaning in the present context; its definition remains unaltered.

Then we have
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Theorem 15: a) Preliminary reduction steps do not increase the or-
dinal of a proof P . b) Omission of a cut lowers the ordinal of a
proof P . c) Essential reduction steps lower the ordimal of P .

The proofs of part a) and b) are word by word the same as the proofs
of theorems 11 and 10. Case c¢) splits up into two subcases: 1) the
reduction step in question is a logical one or an induction reduc-

tion; 2) the reduction step in question is a II a Ti,- or a

]

Tiz—reduction step. In the first case we proceed ii exactlylthe same
way as in the proof of theorem 7. In the second case we are in turn

led to the calculations performed in part C of section 2.5. More ex-
plicitely, in order to verify that a IIN—reduction step lowers the

ordinal of the proof to which it is applied, we are again led to the
verification of an inequality

W (o # m ™) ™ et 2)< wy (K # w V) w
the ordinal {2 defined above,and where BN =HRDH for a D for

which we have a proof Pl in ZTi/IIN of —> ﬁ( C:?D) . By

definition of.fz and ”RDH’ we have >\<.£2,and hence the inequality

V+1

} where YV is

is true in virtue of the same reasoning as presented in part C of

section 2.5.

The proof that a Til—reduction step lowers the ordinal of the proof
to which it is applied reduces again to the verification of the above
inequality, but now with >\ and V given as follows: 1) ) is
HRDN for a D for which we have a strictly normal proof Pl in
ZTi/IIN of ——mm ﬁ(C::‘D) i 2) ,X is ”nHD for an n for which
we have a strictly normal proof P, in ZTi/IIN of ————> D(n) .
By definition of ﬂnﬂD and “RD”,
quality is again true in virtue of the arguments given in section
2.5.

we have>\<'\/7 and the above ine-

The proof, finally, that a Ti2—reduction step lowers the ordinal of
the proof to which it is applied, leads again to a verification of
the inequality wd((q#m#wk"l)w}‘*l#o(# 2)< (A)d((0< #wV+l)u)V+l),
but now with.,k and Y given as follows: l) >\ is IImUD for a D
for which proofs P, and P, (in ZTi/IIy) of ——> f( — o)

2
and ————> D(m) respectively are given; 2) VY is HnUD and a
proof Pé in ZTi/IIN of ———> n C:;Dm is given. From our

classical point of view, what is provable in ZT/IIN is true, hence
n.(::Dm is true, hence NnHD < //mUD , that is, )p< Y holds. As be-
fore, this implies the truth of the above inequality by the same
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arguments given in B, section 2.5.

For arbitrary proofs in ZTE/IIN, theorem 8 is of no use. For proofs
P in ZTEi/IIN, however, whose endsequent contains nothing on the
left side of the arrow, the situation is entirely different, as will

be shown in the next section.

4.4, The system ZTEi/II,.

A. The passage from ZTE/IIN to ZTEi/IIN is more or less the
same as that from ZT(<j::D) to ZTil( C:fD), described in chapter
IIT. One easily verifies that every reduction step which is not a
logical reduction step transforms a strictly normal proof P in
ZTEi/IIN into another strictly normal proof P! in ZTEi/IIN .

If, on the other hand,we apply to P a logical reduction step, then
we obtain a proof P' which is still strictly normal, but no longer
intuitionistic. However, it is trivial to verify that theorem 12

invariably holds in the present case, that is, we have

Theorem 16: Let P be an intuitionistic proof in ZTE/IIN and let

~

P be obtained from P by means of a logical reduction step. By a
)

series of preliminary reduction steps one can transform P dinto an

intuitionistic proof P* , which has the same endsequent as P .

The proof remains exactly the same. Corollary 1 of theorem 12 remains
of course, true in the present case and so we can use definition 16

as it stands as definition of intuitionistic logical reduction step.
Finally, it is clear in virtue of theorem 15 that corollary II of
theorem 12 remains true. For the sake of completeness, we formulate a
variant of theorem 15 which summarizes the properties of reduction

steps and ordinal assignements for intuitionistic proofs.

Theorem 15%: Let P be a strictly normal proof in ZTEi/IIN .

a) A preliminary reduction step, applied to P , transforms P din-
to a strictly normal proof P! in ZTEi/IIN , whose ordinal o(P‘)
is not larger than o(P) . b) Omission of a cut transforms P in-
to a strictly normal proof P! in ZTEi/IIN whose ordinal o(P')
is smaller than of{P) . c) An essential reduction step other than

fork elimination transforms P into a strictly normal proof P' in

ZTEi/IIN » whose ordinal is smaller than that of P. d) An intui-
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tionistic logical reduction step (in the sense of def. 16) applied to
P transforms P into a strictly mnormal proof P' in ZTEi/IIN ,

whose ordinal is smaller than that of P .

If no danger of confusion arises, we omit the attribute "intuitioni-

stic" and speak merely of logical reduction step.

B. In section 3.2 we have proved for the theory ZTi( C::D) two
lemmas, or rather two variants of one and the same lemma, which we
have called there Basic lemma I and Basic lemma IT. As we have al-
ready mentioned there,this lemmas hold for a large class of intuitio-
nistic theories; the theory ZTEi/IIN is no exception in this res-
pect. The proof of Basic lemma I presented in section 3.2 applies to
ZTEi/IIN without any changes, as an easy inspection shows. The same
is true of the proof of Basic lemma II in section 3.2: all we have to
do is to refer to theorem 15* instead of theoremsll and 12. Actually,
if we inspect the proof of basic lemma II,then we see that it yields
a slightly more sharp statement, which in the present case reads

as follows:

Basic lemma II: Let P be a strictly normal proof in ZTEi/IIN of
degree n ; assume that it has no thinning in the final part and

that its endsequent has the form ———> A . Let Sl’SZ""’Sm be
the uppermost sequents of the final part, listed from left to right;
let Si be I; _ Ai . Then the following is true: l) for
every i<m there is a strictly normal proof Pi (in ZTEi/IIN) of
degree n whose endsequent is —> Ai and for which

o(Pi) <::o(P) holds; 2) for every i<gm , if B occurs in T;a
then there is a strictly normal proof P! (in ZTEi/IIN) of degree
n whose endsequent is ———> B and for which o(P') <Zo(P) holds.

Proof: Exactly the same as that of Basic lemma II in section 3.2.

If we drop in Basic lemma IIl the reference to ordinals, then we ob-
tain a sharpening of Basic lemma I, which could,of course,be obtained
directly from the proof of Basic lemma I3 we merely have to sharpen
slightly the induction hypothesis used in the proof of Basic lemma I
(part 2)). Actually, all we need in this chapter is this sharpened
version of Basic lemma I; we do not use the fact that the ordinals of
O(Pi) and o(P') are smaller than o(P) . Now let P be a strictly

normal proof in ZTEi/IIN » whose endsequent has the particular
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form ———> A, whose degree is n , and which contains only satura-
ted terms in its final part. Assume that no thinning occurs in the
final part of P and let there be a critical IIN—inference in P,

say

D(Y)o(x) I yA(x)7 ;/_'9 A(Y)
II D

W < p)p(a), T——> a(a)

Without loss of generality, we can assume that the formula D(x) does
not contain special function constants and that x is its only free
variable; otherwise we would replace the IIN—inference above by a
conversion, followed by another IIN—inference and a second conver-
sion. The formula 6(41::D) in particular does not contain free vari-
ables and no special function constants. From Basic lemma IIl it fol-
lows that we can extract from P a proof P*¥ of —> ﬁ(C:::D)
which still has degree n . From theorem 14 it follows that P* can
be transformed into a proof P! in ZTi/IIN of ——> W C::D)’
whose order is n . Since there is no variable, which occurs free in
ﬂ(é::.D)’ we can transform P' into a strictly normal proof Pl in
ZTi/II of ———> ﬂ(<i::D), whose order is still n : we merely have
to rename eventually free and bound variables in a suitable way. An
inspection shows that the conditions which appear in the definition
of IIN—reduction step are satisfied: P1 is the proof required by
them. Therefore, we can apply to the IIN-inference above a IIN—re—
duction step: we can replace the original IIN—inference by a Ti(Pl)
inference in the way described in the definition of this reduction

step.

The situation is similar 4if P contains a critical Ti(Pl) infe-

rence, say

D(3)) (x) = yalx), [—— aG)

Ti(Pl)
p(a), ]| ——> a(a)
By assumption, q 1is saturated and has a value ]q|=m. As before, we
apply Basic lemma IIl and extract a subproof P* of ———> D(q)
which still has degree mn . Then we transform P¥*- with the aid of

theorem 14 into a proof P' in ZTi/IIN of ————> D(q), whose or-

der is n . Finally, by renaming eventually free and bound wvariables
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in an appropriate way we transform P! into a strictly normal proof
P in ZTi/IIN of ——> D(q), whose order is still n . An inspec-

tion shows that all conditions, stated in the definition of Til—re-

duction step, are satisfied: P2 is the proof required by them. Hence

we can apply to the above Ti(Pl) inference a Til—reduction step by

replacing the Ti(Pl) inference above by a Ti(Pl,P ,m) inference in

2
the way described in the definition of Til—reduction step.

Finally, let P contain a critical Ti(Pl,Pz,m) inference, say

Y <= pas (%) CDYA(X)’ J—— ay)

p e, [ ——> A(a)

Ti(Pl,Pz,m)

(with m= Jq] ) . By assumption, p is saturated with value say 1T .
Then, by proceeding as in the previous cases,we can find effectively

a strictly normal proof Pé in ZTi/IIN of ——> p C::Dq’ whose

order is n . Using lemma 7,we obtain a proof P in ZTi/II of

3
E— D(p) which is still strictly normal and has order n . An

inspection shows that the two conditions stated in the definition of

T12 reduction step are both satisfied: Pé in particular is the proof

whose existence is required by the second of these conditions. This

means that we can apply a Ti,-reduction step to the above

2

Ti(Pl,Pz,m) inference by replacing it by a Ti(Pl,P ,n) inference in

3

the way described in the definition of 7Ti_-reduction step. These

2
facts are summarized by the following

Theorem 17: Let P be a strictly normal proof in ZTEi/IIN whose
degree is n , whose endsequent has the form ——> A and which
does not contain thinnings in the final part. Assume, that every con-
stant term in the final part is saturated. Then the following holds:
l) if there is a critical IXI_ inference in P, then we can effective-

ly apply a IIN—reduction steg to this inference; 2) if there is a
critical Ti(Pl) inference in P, then we can effectively apply a
Til-reduction step to this inference, 3) if there is a critical
Ti(Pl,Pz,m) inference in P, then we can effectively apply a Tiz—
reduction step to this inference. In each of these three cases we ob-

tain as result a strictly normal proof P* of degree n

From the above it follows that we can reobtain suitably formulated

variants of theorems 5 and 6 for ZTEi/IIN if we restrict our
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attention to proofs P whose endsequent has the particular form

————> A . In view of their importance,we introduce a name for such
proofs:
Definition 17: A proof P 1is called standard if its endsequent has

the particular form ————> A . As abbreviation for "strictly normal

standard proof" we use the expression "s.n.s. proof",

In order to obtain appropriate versions of theorems 5,6,we restrict

the class of IIN— s Til- and Ti2—reduction steps.

Definition 18: Let P be a saturated s.n.s. proof in ZTEi/IIN

which does not contain thinnings in its final part. If P contains

a critical IIN-inference then we can apply to it that particular
IIN—reduction step which is described in the proof of theorem 17:

we call this particular reduction step the canonical reduction step
associated with the critical IIN inference in guestion. Similarly, in
case of a critical Ti(Pl) inference or a critical Ti(Pl’PZ’m) infe-
rence in P .

That is, among all possible reduction steps which can eventually be
applied to the critical IIN inference in guestion,we select a par-
ticular one: that one described in the considerations preceeding

theorem 17.
Theorem 5 can now be restated as follows:

Theorem 18: Let W Dbe the twoplace relation which applies to proofs
P,P' in ZTEi/IIN if and only if the following holds: l) P,p! are
saturated s.n.s. proofs which do not contain thinnings and logical
axioms in the final part; 2) p can be obtained from P by appli-
cation of a logical reduction step, an induction reduction or a ca-
nonical IIN- R Til- or Tiz-reduction step. Then W is decidable.
Moreover, if W(P,P') holds, then we can effectively determine the
reduction step which, applied to P , yields P' ., Finally, there is
a recursive function @ having the property: if W(P,P') holds,
then there are at most (9 (P) symbols which occur either in P' or

in one of its side proofs.
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As mentioned earlier, theorem 4 remains true as it stands for all
proofs and hence in particular for standard proofs; we will not re-

state it again. The basic theorem 6 on the other hand now reads as

follows:

Theorem 19: Let P be a saturated s.n.s. proof in ZTEi/IIN , which
does not contain thinnings and logical axioms in the final part and
which is different from its final part. Assume that no logical reduc-
tion step, no induction reduction and no canonical IIN— R Til— and
Tiz—reduction step is applicable to P . Then there is a critical lo-

gical inference in P whose principal formula has an image in the

endsequent,
Proof: From theorem 17,it follows that P does not contain any cri-
tical IIN— s Ti(Pl)— or Ti(Pl,PZ,m)-inference. Then we obtain the

statement of the theorem by proceeding in the same way as in the prodf
of theorem 6.

Definition 19: A reduction step will be called canonical if it is a

1
be called strictly essential if it is a logical reduction step, an

canonical IIN- , Ti. - or Tiz—reduction step. A reduction step will
induction reduction or a canonical reduction step,

C. Before coming to applications,there is still a point to consi-
der. Let P be an s.n.s. proof in ZTEi/IIN which does not contain
thinnings and logical axioms in its final part, and assume a) that
no strictly essential reduction step is applicable to P j b) that
there is no critical logical inference whose principal formula has
an image in the endsequent; c) that P does not coincide with its

final part. A comparison with theorem 19 shows that P mnecessarily

must have the following properties: l) there are constant terms in
the final part shich are mnot saturated; 2) there is at least one
critical induction inference, II  inference, Ti(Pl) inference or
Ti(Pl,Pz,m) inference in P . That l) holds is a consequence of
theorem 19: otherwise we would obtain a contradiction in view of
assumption b) . In order to prove 2), we prove the following lemma:
Lemma 9: We can effectively decide whether a proof P in

ZTE/IIN is saturated or not. If it is not saturated and if
il i
O& e ee ooy Wus is a given listing of the distinct special
1 s
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function constants occuring in P , then we can find effectively a

p.r. continuity function T:(xl,...,xs) having the following proper-

ty: if Tf(vl,...,v }#0 and if P¥* results from P by replacing
i 3,

every (Xu by w %y then P* 1is saturated. The proof of this

k k 'k
lemma is an immediate consequence of the definitions of term and sa-

turated term and is omitted. In order to show that P has property

i i

2) stated above, let <Xul,....., dus be the distinct special
1 s

function constants occuring in P and let T (xl,...,xs) be the

continuity function associated with P according to the lemma. Let

Vys+es,V_ be such that T (vl,...,v }#0 and denote by P* the re-
s ik s ‘ ik

sult of replacing every o in P by o8 % . Now it is evi-

u u, ¥v

k k 'k
dent that the following statements are true: o() if there is a
fork in P*, then there is a fork in P ; /?) if there is a criti-
cal induction in P#*, there is a critical induction in P ; X) if
there is a critical IIg-, Ti(Pl)— or Ti(Pl,PZ,m)-inference in Px
then there is such an inference in P j J) if there is a critical

logical inference in P¥ whose principal formula has an image in the
endsequent, then there is such an inference in P . Moreover, P*¥ is
clearly a saturated s.n.s. proof in ZTEi/IIN which does not contain
thinnings and logical axioms in its final part., In virtue of theorem
19, the assumptions about P and the 1list ) - é),it follows that
P*¥ must contain either a critical induction, a critical IIN—in—
ference, a critical Ti(Pl)—inference or a critical
Ti(Pl,PZ,m)—inference. Therefore, in view of )- J},the same 1is
true for P , what proves that P has property 2). Consider eg. the
case where the inference stated in 2) is an induction:

A(x),‘jl————9 A(x')/a(0), f:———a—a A(g). The reason why we cannot
apply an induction reduction to P, and to this inference in parti-
cular,is that q is not saturated; hence it cannot be replaced by

a numeral with the aid of a conversion. The situation is similar in

case of a critical IIyg-, Ti(Pl )— or Ti(Pl,Pz,m)—inference.
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Remark: In virtue of lemma 9, we can associate with every s.n.s.
proof P which is not saturated in an effective way a continuity
function T which is related to P in the way described by lemma 9;

we denote this continuity function by T;P and call it the continui-

ty function associated with P . Finally, we need
i i
s 1 s
Definition 20: a) Let P be a s.n.s. proof and CXu s e e ey (Xu
1 s
the critical special function constants which occur in P . Let
vl,...,vS be sequence numbers all having the same length #0 . If

the s.n.s. proof P* has been obtained from P by replacing every

i i
occurence of <Xuk in P by ng* (k s;s), then we call P* a

Kk kK Vk _
substitution instance of P . b) 1If,in particular, v, = O(i(n)
(i = s) are such that 1:p(vl,...,vs)£0, while
‘UP(EZl(m),..., 5@(m))=o for m<n, then we say that P* has been

obtained from P by means of an inessential reduction step.

The above considerations may be summed up with the aid of this defi-

nitions as follows:

Theorem 20: Let P be a s.n.s. proof in ZTEi/IIN having the

following properties: a) no strictly essential reduction step is
applicable to P b) there is no critical logical inference whose
principal formula has an image in the final part; c) P does not

coincide with its final part. Then P is not saturated and contains
either a critical induction inference, a critical IIN-inference, a

critical Ti(Pl)—inference or a critical Ti(Pl,Pg,m)-inference.

D. In connection with theorem 19, there is a last syntactical opera-
tion to be considered. To this end let P be a saturated s.n.s.

proof in ZTEi/II which satisfies the conditions of theorem 19. We

N)

distinguish a number of cases according to the form of the endsequent
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of P .

Case 1: The endsequent of P is ———> AAB . Since P is an in-
tuitionistic proof whose endsequent has empty antecedent, it follows
that the critical inference given by theorem 19 must necessarily have

the form

J— & [—— &

[ — A A B

with A! and B! isomorphic with A and B, respectively. It fur-
thermore follows from the intuitionistic structure of P that this
inference is the rightmost one among all critical inferences in P,
and that the path leading from T/—————9 A' N\ B! to the endsequent
is the rightmost one among all the paths in the final part of P .
Therefore we have two possibilities: we can omit the inference in
question and cancel its right premiss, obtaining thus a proof Pl of
_ A, or we can omit the inference and cancel its left premiss,
obtaining thus a proof P of ——> B . It goes without saying

2

that both proofs Pl and P2 are s.n.s. proofs in ZTEi/II whose

ordinals O(Pl)’ o(P2) are smaller than o(P) .

Case 2: The endsequent of P is ——> AVB . The critical infe-
rence given by theorem 19 must be of the form

}’——-—} A/ f’———-} A'\/B' or )J-—————> B'/A'\/ B' with A',B!
isomorphic with A,B, respectively. Again the inference in question
is the right-most one among all critical inferences. In either case
we can omit the inference, obtaining a proof Pl of —> A! or
of ————— B' . As before, P is an intuitionistic s.n.s. proof

1
and o(Pl)<o(P) holds.

Case 3: The endsequent of P is ——> (x)A(x) . Then the criti-

cal inference given by theorem 19 has the form

J—— ar(2)

J—— (x)a'(x)

A
where A'(z) is isomorphic with A(z) . Let P be the subproof of

A
[i—————% A'(z) din P . Now we replace every occurence of z in P
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o>

A
by n and obtain a proof P_  of ——— > A'{(n) . Next we replace
A
in P by Pn and omit the quantifier inference in question: this

yields a proof Pl of —m> A(n) which is still a s.n.s. proof in

ZTEi/IIg ; its ordinal o(Pl) is clearly smaller than o(P) .

Case 4: The endsequent of P isg ———> (V/f»)A( F') . In this case

the critical inference given by theorem 19 must have the form

[ —— A (F)
J > (V)

where A'(&) is isomorphic with A(X) . Let (Xi > be any
special function constant associated with the empty sequent which
does not occur in P . We replace every occurence of & in

)/—————9 A'(C() or above by O(% > and omit the quantifier in-
ference f/-—————% A (x)/ /f—————% (V/f-)A'( F’). The result is

a proof Pl of —> A( cxi > }); P is clearly an s.n.s. proof
in ZTEi/IIN whose ordinal is smaller than that of P

Case 5: The endsequent of P is _— (EJE)A(EV) . The critical

inference given by theorem 19 must have the form

f% A (F)

] —— (ij(})

where A'( f ) is isomorphic with A(§) . Since P is a s.n.s.

proof, it follows that ¥ is a constant functor. By omitting the in-
ference //—————% A (F)/ /ﬁ—————é (E/?)A’(f-), we obtain a proof P,
of ———> A(F). As before, P is a s.n.s. proof in ZTEi/IIN and

1
its ordinal is smaller than that of P

Case 6: The endsequent of P is ——> (Ex)A(x) . The critical

inference given by theorem 19 has the form

J—— ar(t)

J—— (m)a(x)

where A‘(x) is isomorphic with A(x) . Since P is normal,it
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follows that t 1is a constant term. By omitting the above critical
inferencey, we obtain a proof Pl of —m> A(t) . P is,of course,

a s.n.s. proof in ZTEi/IIN whose ordinal o(Pl) is smaller than

O(P) .

Case 7: The endsequent of P is ———> A 2B . The critical in-

ference given by theorem 19 must have the form

A, }/__9 B!

[ —— A = B

where A' and B' are isomorphic with A and B, respectively. By
omitting this inference, we obtain a proof Pl of A—> B . Pl
is still a strictly normal proof in ZTEi/IIN and its ordinal is
still smaller than that of P . However, Pl is no longer a stan-
dard proof since its endsequent has an antecedent which is not empty.

Case 8: The endsequent of P is —> 71 A . The critical infe-

rence given by theorem 19 must be

A, —s

—— 1a
where A' is isomorphic with A . By omitting this inference,we ob-
tain a proof P of A —> . P is still a strictly normal proof

in ZTEi/IIN but it is no longer standard since its endsequent has
a nonempty antecedent. The above considerations give rise to the de-

finition below.

Definition 21: Let 1) - 8) denote the cases 1) - 8) which have

just been discussed above. Let P be a saturated s.n.s. proof in
ZTEi/IIN which does not admit preliminary nor strictly essential re-
duction steps and which does coincide with its final part. Let S be
the endsequent of P , A proof P* is said to follow from P by
application of a subformula reduction step if one of the following

alternatives holds: a) S is ——> A AB and P* is one of

the proofs P, or P, in 1) ; b) S8 is ——> AVB and P*
is the proof Py in 2) ; ¢} 8 is —> (x)A(x) and P¥* is
one of the proofs Pl defined in 3) ; d) S8 is

_ (V’F)A(}?) and P* is the proof P, of 4), while <L
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in 4) is the first in the list O N K%< >,...... which
does not occur in P ; e) S is —> (EIF)A(FT) and P* is the
proof P, in 5) ; f) S8 is ——> (Ex)A(x) and P* is the
proof P, defined in 6) ; g) S is ———> A ™™B and P* is
the proof P, in 7) 5 h) S is —> T A and P¥ is the

proof P, in 8) .

With the aid of definition 21, we can sum up the above considerations

as follows:

Theorem 21: Let P be a saturated s.n.s. proof in ZTEi/IIN which
does not coincide with its final part and which does not admit preli-
minary nor strictly essential reduction steps. Then we can effective-
ly apply to P a subformula reduction step; the resulting proof P¥*
is a strictly mnormal proof in ZTEi/IIN whose ordinal o(P*) is

smaller than of(P) .

Corollary: Let P,P* be as in theorem 21 and let S,5*%¥ be their
endsequents respectively. If 8§ is —> AVB, then S* is
—— > Aor ——> B, if s is — (E ?)A(:%) then S* is

————> A(F) for some comstant functor F, if § ———— (Ex)A(x)
then S¥ is —— A(t) for some constant term t .
Remark: The functor and the term t may of course contain special

function constants.

L.5. Applications

A. Applications of our analysis of the system ZTEi/IIN are most
immediately obtained by introducing two wellfounded relations R,L

which are both intimately connected with our reduction steps.

Definition 22: Let the two-place relation R hold for s.n.s. proofs

P,P' in ZTEi/IIg (in symbols R(P,P')) if and only if omne of the

following two conditions A,B below are satisfied. A. P 1is not
saturated and P! follows from P by means of an inessential re-
duction step. B: P is saturated and there is a list

Pl,...,Ps,PS+l (s:l admitted) of proofs having the following pro-

perties: 1) P=P pPi=p , 2) for i =<s P, follows from

1’ s+1
Pi—l by means of a preliminary reduction step, 3) no preliminary
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reduction step is applicable to Ps R h) Ps+l follows from PS by

means of a strictly essential reduction step.

The second relation, denoted by L , is introduced by the following

Definition 273: The two-place relation L holds between s.n.s. proofs

P,P! in ZTEi/IIN if and only if one of the three conditions A,B,C

below are satisfied.

A. P is not saturated and R(P,P') holds. B. P is saturated and
R(P,P') holds. C. P is saturated and there is a list

Pl""’Ps’Ps+l (lg;s) of proofs having the following properties:

= = i <
l) P Pl’ P Ps+l’ 2) for 1i<s Pi follows from Pi-l by means
of a preliminary reduction step, 3) no preliminary reduction step
is applicable to PS s Q) ps+l follows from Ps by means of a

subformula reduction step.

The main properties of R,L are described by the following

Theorem 22: a) R,L both are decidable, b) given P , the pre-
dicates (EX)R(P,X), (EX)L(P,X) are decidable, c¢) R and L are
wellfounded, that is,no infinite sequence P ‘e such that

R(Pi’Pi+l) for all i or L(Pi’Pi+l)

1’°
for all i exists.

Proof: The proof of a) is rather routine and hence omitted. We
sketch the proof of b) . Given a s.n.s. proof P in ZTEi/IIN; we
first decide whether P 1is saturated or not. If not, then we can
apply to P an inessential reduction step in order to obtain a proof
Pt with R{(P,P') . Hence (EX)R(P,X) holds. If P 1is saturated,

then there are finitely many chains P Ps with the property:

preee
l) P1=P , 2) Pi+l follows from Pi by means of a preliminary
reduction step, 3) no preliminary reduction step is applicable to
PS . For each such chain we take the corresponding P and check

whether an essential reduction step is applicable to P or not. If
there is such a chain, then (EX)R{P,X) holds, if not, then
(EX)R(P,X) is false. The argument for L is quite similar. In order

to prove c),assume that Pl’P is such an infinite chain with

PYEEEE
i+l)
+l) fgo(Pi) . However, it is easy to see that there

respect to R; that is, R(Pi,P is assumed to hold for all i .

Obviously, o(Pi

must be an infinite subsequence il<< 12 <ji3 e such that
Pi +1 follows from P, by means of a strictly essential reduction

i
step. Hence o(Pi ) >>0%Pi ) in virtue of theorem 15, what leads to

a contradiction. %he argumgﬁ% is quite the same in the case of the
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relation L .

The applications of the previous theorem are now immediate:

Theorem 23: Let AVB , (BEx)Aa(x) , (E%F)A( ) be formulas which do
not contain free variables nor special function constants. a) Given
a proof P in ZTEi/IIN of ———> AVB , we find effectively a
proof P' in ZTEi/IIN of ———> A or —> B . b) Given a
proof P in ZTEi/IIN of — (Ex)A(x), we effectively find an

n and a proof P! in ZTEi/IIN of ——> A(n) . c¢) Given a proof
P in ZTEi/IIN of — (E)E)A(jr), we effectively find a con-
stant functor F not containing special function constants and a

proof P' in ZTEi/ILg of — A(F)

Proof: We content ourself with the proof of <c¢) . The other cases
are treated in exactly the same way. Since (E%F)A(}—) does not
contain free variables at all, there is no variable which occurs both
free and bound in P . Hence there is a normal proof P¥ of

— (E}?)A(j?) (see part B of this section) and by replacing
those special function constants which eventually may occur in P¥

by suitably chosen constants for p.r. functions,we get a s.n.s. prod
P in ZTEi/II, of —> (Ef)A(}’) which does not contain spe-
cial function comnstants at all. In virtue of theorem 23, we effective-

ly find a chain R,§ ,....,P such that 7 (EX)R(PN,X) holds. The

N
endsequent of PN is,of course, still ———> (E/F)A{}F) and one
easily verifies that PN is saturated and does not contain special

function constants. Now we apply as many preliminary reduction steps
as possible to PN ; we obtain in this way a proof

Pﬁ of —> (E)?)A(j?) which is saturated and does not admit pre-
liminary reduction steps. No strictly essential reduction step is

applicable to P¥%, since otherwise 7(EX)R(PN,X) would be false.

N y
On the other hand P§ cannot coincide with its final part, since in
this case only prime formulas would occur in P§ . Hence, in virtue

of theorem 21 it follows that a subformula reduction step is appli-
cable to Pﬁ . The result of this reduction step is a proof 3 of
_— A(F), as is clear from the corollary of theorem 21. F is a
constant functor and, since 9 does not contain special function con-
stants,it follows that also F does not contain special function
constants. Since, moreover, @ is a proof in ZTEi/IIN the statement

c) of the theorem is proved.
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Remark: We note that in the above proof we have heavily used the
fact that ZTEi/IIN is consistent: a successive application of pre-
liminary reduction steps to a standard proof does not affect its end-

sequent.
The result above can be generalized. In order to obtain this genera-
lization,we note a lemma which has been used implicitely several

times, in particular also in the proof of theorem 23, namely

Lemma 10: Let P be a s.n.s. proof in ZTEi/II of —> A and

i i
let C(ul, ..... s (Xué be those special function constants which
1 s

occur in P but not in A . Then we can replace the constants

il i
O<u s e e e ey (Xus by suitably chosen constants for primitive recur-

1 s
sive functions in order to obtain a s.n.s. proof P' of —> A

which contains only those special function constants which occur in

——> A . We have o(P)=o(P') .

We omit the trivial proof of this lemma. Another evident lemma whose

routine proof is omitted is the following

Lemma 11: Let P be a s.n.s. proof in ZTEi/IIN of —> A
which has the following property: every special function constant
which occurs in P occurs in A . If R(P,P') holds then P! still

has this property.
In order to have a word at hand let us call a s.n.s. proof P
stratified if every special function constant which occurs somewhere

in P already occurs in its endsequent.

Definition 24: Let P be a stratified s.n.s. proof in ZTEi/IIN

i i
1 . . .
and du."""" (Xus the special function constants occuring in
1 s
P , listed in some fixed way. Let w_,..... ,ws be sequence numbers

all having length >0 , A substitution of



il i il i
gy rereeer X S, for X Tl & % is said to be
1 1 s s 1 s
compatible with wl,”:.,ws if W [ Kpi*vi for 1<=<i=s.

A pair P,P' 1is said to be compatible with Wysesess W if P' is

a substitution instance of P and if the substitution which trans-

forms P dinto P! is compatible with wl""'°’ws . A chain
PO,....O,PN with PO=P is said to be compatible with wl,....,ws
if a) R(Pi,Pi+l) for all i<N , b) P,,P, ., 1is compatible with
wl‘,....,wS whenever Pi is not saturated. A chain PO,.....,PN
with P =P is said to be compatible with functions A?',o...., ?s
if a) R(Pi’Pi+l) for all i <N , b) there is a sufficiently
large K such that for all i Pi,Pi+l is compatible with
j?'(K),....., /?G(K) whenever Pi is not saturated.

Remark: For use below, we mention the following easily provable fact:
if P, O(:i,....., C(:Z and Wiseesss, W oare as in definition 2L,

then there is at most one P! such that R(P,P') holds and such

that the pair P,P! is compatible with wl,....,ws; moreover, we can
effectively decide if there is such a P! and if so we can find this
P! effectively. Now we are able to state the generalization of theo-

rem 23, namely

Theorem 24: a) ILet P be a s.n.s. proof in ZTEi/IIN of
—_ (E;)A( O<$, } ) where o{:‘l is the only special function
constant occuring in the endsequent of P . Then there exists a re-
cursive continuity function 6 (x) with the property: if
5 (v)#O, then one effectively finds a functor F , containing at
i

most 034

uxy s special function constant,and a proof P!

(in ZTEi/IIN) of —> A( O{i*V,F). b) Similarly,if P is a
proof of ——> (Ex)A( O(i,x) but with a term t in place of the

functor F . ¢) If P is a s.n.s. proof in ZTEi/ILy of
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_ A( O(i)vB( O(i) where X i is the only special function
constant in A,B, then there is a continuity function é(x) having
the property: if g (v)#O, then one effectively finds a proof P!
of either -———> A( O(i*v) or of —> B( C(i*v). d) An analo-
gous statement holds if the special function constants which appear
in the endsequent of P are cKil,....., CKiS ;  the continuity

1

s
function 6 (x) has then to be replaced accordingly by

g(xl,....,xs) .

Proof: We prove only the first case; the three other cases are trea-
ted in exactly the same way. In view of lemma 10, we can assume with-
out loss of generality that P is stratified. Let us call a sequence
number v secured if the following is true: there is a chain
Po""“’PN with P0=P which is compatible with u*v and such that
T(EX)R(PN,X) holds. We want to show that the property of a se-
quence number to be secured is decidable. First, we note that,given

any chain of proofs Po"""PN’ it is decidable whether this chain

is compatible with u*v or not. Next,we look at the set B of

chains which are compatible with u*v . We claim that this set is
finite. To this end, given any chain PO,....,PN with

R(Pi’Pi+l) (i<:N), let us call Po’°'°"PN’Pn+1 a successor of
this chain if also R(PN’PN+1) holds. New we apply the fan theorem
and show: l) there is no infinite chain Po’Pl""° such that for
every N P_,....,Py is a chain in the set B ¢ 2) a chain
PO,...O,PN in B has at most finitely many successors in B . Now

l) is a consequence of the fact (already noted earlier) that no infi-

i . i . . i . th
nite sequence PO,Pl,P2 with R(Pl’P1+l) exists. On the other
hand, given a chain PO,....,PN of the set B there are two possi-
bilities: either PN is saturated and there are at most finitely
many P¥'!'s with R(PN,P*), as noted earlier, or PN is not satura-

ted and there is at most ome P¥ such that R(PN,P*) holds and
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such that the pair P* is compatible with u*v (see remark follow

PN,

ing definition 24). In both cases P oyeees,P has at most finitely

N
many successors in B ., Now we call a set M admissible if its ele-

ments are chains Po""’P which are compatible with u¥*v . Clear-

N
ly, B is admissible and every other admissible set M is a subset
of B ; in other words, B is the largest admissible set. Our proof
is essentially finished if we can show that given an admissible set
M we can decide whether M is maximal or not. To this end, let
co"""CA be the chains in M . As in the application of the fan
theorem above,we conclude that each C€ has at most finitely many
successors which are compatible with u*v ., In virtue of theorem h,
theorem 18, theorem.22 and the remark following definition 24,it
follows that for each i we can decide whether Ci has successors
in B and, if so,we can find them all in an effective way. Let

M(Ci) be the set of successors of Ci which are in B (empty if
there are none). All we have to do is to check whether MgM(Ci) is a
proper extension of M or not. But this is obviously a decidable
problem. To sum up: l) given v, we can effectively decide whether
a finite set M of chains is admissible (with respect to v);

2) given an admissible set M, we can decide whether it is maximal
or not; 3) there is precisely one maximal admissible set (the B
above). From this it follows that,given v , the maximal admissible
set B can effectively be found. In order to decide whether Vv is
secured or not, we only have to check whether B contains a chain
P_,....,Pg such that ‘7(EX)R(PN,X) holds. Hence,we can effective-
ly decide whether v is secured or not. Now we define a recursive
function as follows: 1) if (5(V)#O, then v 1s a sequence number
of length > 0; 2) é (v)£0 iff v is secured; 3) if v is
secured ,then é (V):l . It remains to verify that g (x) is the
continuity function we are looking for. To this end we note that,

given a function )?» we can effectively find a chain Po"""’PN
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which is compatible with u*)g and for which ‘)(EX)R(PN,X) holds;
this is an easy consequence of theorems 4, 18 and the remark follow-

ing definition 24 . By definition, this means that there is a K such

that u*/?(K) is secured. Hence g is continuous.

Finally, let v be secured, that is, é (v)=1. Then we effectively

find a chain Po,.....,P compatible with u¥*¥v for which

N

'7(EX)R(PN,X) holds. Py 1is,of course,saturated, does not admit

any preliminary nor strictly essential reduction step. The endsequent

of Py has the form _— (EF)A( o<lil*w’ F) where w 1is a cer-

tain sequence number for which v <— w holds. Clearly, PN does

not coincide with its final part. By theorem 21,we can apply a sub-
' A

formula reduction step to P, , obtaining thus a proof P of

N
—>  A( O(;*W,FO) where F_  is a certain comstant functor,

effectively determined by PN’ which does not contain special func-

tion constants other than eventually O(i*w . If w=v, we are fi-
. . i i . L
nished. Otherwise we replace O<u*w by o(u*v in P , obtaining

thus a proof of —> A( O(;*V,F), where F 1is a constant functor
which does not contain other special function constants than even-

tually O(i*v. This concludes the proof.

B. Another kind of application is connected with the notion of con-
structive, infinite W -proof, introduced by Schiitte in [10] . We
content ourself with a rather superficial treatment of this matter.
A rigorous treatment would involve a precise definition of construc-
tive cut—free W -proof and several applications of the fixed point
theorem for partial recursive functions. As an intuitive gubstitute
for partial recursgive functions and the fixed point theorem,we use
the notion Yeffective" in about the same way as Schiitte in [lOJ .

To this end,we introduce a certain infinitary rule, which we call con-

structive -rule, and a semiformal system S, containing this
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rule. In this connection we use the following notation: if S is a
i i
sequent whose special function constants are among O(ul,...., C(us,
s
whose free function variables are among l;}j.....,/;1: and whose
free number variables are among xl,....,xr, then we express this by
i i
R 1 s X
writing S( O(u yeesses ?Ku ) /?-l’?""’ ;?t,xl,.....,xr), or in a
1 ips ig >
more condensed form S(X. T,.ee., X 7, 41Xy eeaeesX )y OF
i > ul us 1 T
s{ & 1,....., O(ué, ;? ,§), respectively. We remind that if
]
T (xl,....,xs) is a continuity function of type [E,Q], then
s (n), ...y, EZs(n) is called immediately secured with respect
to T if T (X ,(n),....., X _(n))#0, and if

TOA (1), ennnn, EZS(i))=o for all i<n . The fact that

Vl,....,vs is immediately secured with respect to T will be ex-
pressed by writing T (vl,....,vs) 20
Definition 25: The constructive & -rule is determined by the
il is > >
clauses a), b) below. a) Let S( O(u e e e e uy O(u s } ,x) be a
1 s

sequent and assume that we are effectively given a continuity function

T of type [s,Q] , having the following property: if

Tl(vl,....,v %O, then we are effectlvely given a proof P v
l ls ~ Y1°°Vg
(in some suitable system) of s((X see s o v ,}',x) .
il i l s s
b) Let s(xX ~,...., K %, 4X.,...4,%X_) be a sequent and assume
ul uS 1 T
that for each r-tuple nl,....,r we are effectively given a proof
i
1
Pnl...n of S(CK‘Jl,......, /;‘ nl,....,n ) . In each of these
cases we are permitted to infer S((X s e e ey C{ S ;f,xl,....,xr)
from the premisses.
Notation: An application of the constructive wW-rule will be
writtin as follows:i T:(vl,.....,vs)f§0 .
1 s s > 1 s o TN
S(O<u *V,....,O<u *v,%,x)/s(xu,....,O(u, ,x) din the
1 1 s s 1 s

case a) of definitien 25 and
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j_l i o~ il is a0
s )
ny,eee,n <wWsos(e CLaeel, T F,nl,...,nr)/S(O(u A /?,x)
1 s 1 s
in case b) of definition 25.

The system S mentioned above is introduced by the following

Definition 26: The language and the axioms of S, are the same as

those of ZTi (and hence as those of ZT, ZTEi/IIN etc.). The rules

of S are: 1) the structural rules except cut; 2) the conversion
rule; 3) the logical rules of sequential calculus; h) the con-
structive W-rule; 5) an additional rule, denoted by C€ , whose

definition is as follows: if cxi »1is a special function constant,

S a sequent and K a function variable free for o(£:> in § ,
then we can infer S! from S where St is obtained from S by
replacing every occurence of cx%< > in S by .

The notion of infinitary proof tree (with respect to 8., ) can be
introduced in the usual way (see [10] )» and with every such infi-
nitary proof we can associate in a natural way an ordinal, called

its tree ordinal. For details we refer to [lOJ . Our W-rule is on-
ly seemingly more general than W ~rule introduced in [10]. It
would, in fact,be easy to show that our W-rule is derivable by

means of the usual « -rule; by adopting definition 26,however, we can
save a few lemmas. Notatjon: the fact that S is provable in Sy

will be expressed by the notation Sy, S .

Theorem 25: Let A be a formula with the properties: l) neither
> nor T} occur im A ; b) no variable occurs both free and

bound in A . Let P be a proof in ZTEi/IIN of ——> A . Then

one effectively finds a proof P, in S, of —— A.
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Proof: A. First we observe that it is sufficient to prove the
statement for the case where P is an s.n.s. proof. In order to see
this, let P be an arbitrary proof in ZTEi/IIN and assume for simp-
licity that A contains precisely two free variables, namely, X and
X ; we indicate this by writing A(D(,x) . Since by assumption nei-
ther X nor x occurs bound in A , there is a normal proof P* of
—_— A(D<,x) . Let C<i< > be a special function constant, asso-
ciated with the empty sequence, which does not occur in P* ; let n
be an arbitrary, but fixed numeral. By replacing every occurence of
X and x by O(i<. > and n, respectively,we get a proof
Pﬂ of ——> A( c(%< >,,n) . According to earlier remarks, there
exists a s.n.s. proof Pn of —> A( CK%: ‘>,n) . Since, by
assumption, the theorem holds for s.n.s. proofs it follows that we
effectively find proofs PX in S, of ——> A( x* 5 ,n) . By
means of the constructive W ~rule (clause b) of definition 25, we
can piece the Pg)'s together in order to get a proof S in Sw of
—_— A(C(%< ;,,x) . Now we apply to —A( {< > ,x) an infe-
rence of type C (see clause 5) of definition 26 and obtain a proof

P, of —> A(K ,x) .

B. In order to prove the theorem for s.n.s. proofs,we proceed by bar
induction over the relation L , introduced by definition 23. To this
end,let P be an s.n.s. proof of ———> A where A has the pro-
perties stated in the theorem; according to the definition of P,
there are no free variables in A . The proof by transfinite induc-
tion over L is essentially accomplished if we can show that the
theorem holds for P in each of the following two cases:

a) TJ(EX)L(P,X) holds; b) if L(P,P') holds,then the theorem is
true for P' . Case 1: “7(EX)L(P,X) holds. Then P is a saturated
s.n.s. proof which does not admit any kind of reduction step. In vir-

tue of theorem 19, it follows that P coincides with its final part.
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Since no logical axioms and no thinnings occur in P, it follows

that A must be a saturated prime formula and since cuts, contrac-
tions, interchanges and conversions are the only inferences in P ,
it follows that A is true. Hence, ———> A is an axiom of S what
proves the theorem in this case. Case 2: Assume (EX)L(P,X), and
assume furthermore that the theorem is true for all proofs P' for
which L(P,P') holds. We have to consider subcases. For simplicity,
we assume that A contains exactly one special function constant,
say OQi ; we express this by writing A( C(i) . The case where A
contains more than one special function constant is treated in exact-
ly the same way. Subcase 1: P is not saturated. Let T(x) be the
continuity function associated with P according to lemma 9 and the
remark preceeding definition 20, and let Pv be the proof which we

obtain from P by replacing every occurence of o{i in P Dby

i

utv According to the definition of T and of the inessential

X
reduction steps,we have L(P,PV) for all v for which Yf(v)é% 0
holds and, conversely,if L(P,P') holds,then P' is PV for some v,
according to the definition of L . By induction,we are effectively
given proofs Pf in S, of — > A( X i* ) . The proofs p%¥

u*v v
can be pieced together by means of the following application of the
constructive W -rule: T (v) # 0 : — A( ¥ i*v)/H A X IJ;) .
The result is a proof Py, in Sy of — A( O(i).
Subcase 2: P is saturated and L{P,P') holds in virtue of clause B
of definition 23, that is, R(P,P') holds. Then P' has the same
endsequent as P . According to the induction hypothesis,we effecti-
vely find a proof Py, in S, of —> A , that is,the theo-
rem applies to P . Subcase 3: P is saturated and L(P,P') holds
in virtue of clause C in definition 23. Then P! is obtained from
P by means of a subformula reduction step,and we have to distinguish

subsubcases according to the outermost logical symbol in A . We con-

tent ourself with the treatment of two cases where the outermost
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logical symbol is a universal quantifier applied to a function va-
riable and a universal quantifier applied to a number variable, re-
spectively. a) Let A have the form (V ; ) B( 0{1];, ;) . Accor-
ding to the definition of subformula reduction step,it follows that
P! is a s.n.s. proof whose endsequent has the form

———> B( O(:{, O(k< >), where <><k< > is a special function con-
stant, associated with the empty sequent, which does not occur in P
and hence not in A . According to the induction hypothesis,there is
a proof P} in 8§, of ——> B( O(i, O(E: > }) . From v, and an
application of rule C, we get a proof P, in S, of —> A

as follows:

fB(O(i, D<k< >)

(o, X )

— (v;m( < F)

b) Let A have the form ( \/ z ) B( O(i,z) . According to the defi-
nition of subformula reduction step and clause C of definition 23,

it follows that there is a denumerable list of proofs Po’P P

1P
having the following properties: o) if L(P,P‘) holds,then P!
occurs in the list; 1) L(P,P ) holds for n<w ; 2) the endse-
quent of Pn has the form —— B( o(i,n) . By the induction hypo-
thesis we are effectively given proofs Pﬁ, in §,, of

_— B( O(i,n) . Combining these proofs with the aid of the con-

structive W -rule followed by a universal quantification,we get a

proof P, in Sy of ———> A as follows:



- 118 -

n
Pw

.__;_9 B( di’n)

n < WJ T
—— B( XL ,x)

s \/

———> (Va2)B(x },2)

what proves the statement for this case.

The last theorem and its proof are nothing else than appropriate ge-

neralizations of theorem 6 and its proof presented in [8] .

C. There is another application, intimately connected with the last
theorem and which we will discuss only superficially. To this end, let
A be a closed formula, not containing special function constants and
having prenex normal form. In order to fix the ideas,we assume that
A is, say, (X )(E/B)( X)(Ex)B(O( ,ﬁ vy ,X) , B quantifierfree.
We say that A has a constructive model if we find recursive func-
tionals F BXJ, G[}(,X] and a recursive function A (o“ f }  such
that B( < ,F [o(J,G {_—O</ )’J s A(oC, )/ )) is an identically true
formula (thereby using the notion "formula" in a slightly more gene-
ral sense than in chapter I. This concept can be generalized in a na-
tural and rather obvious way to arbitrary closed formulas not contain-
ing the signs = and "] and not containing special function

constants. Finally, let A be a formula which does not contain D>

i i
nor 7 , whose special function constants are among O(ul,....0< s
1 us
and whose free variables are among ;-l"""‘;k’xl"""’xq . As
i i
. 1 s .
usual,we write A(O(ul,..o., O<us, Fl,.....,;t,xl,...,xq) in

place of A . We say that A admits a constructive model if the

formula
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(k/nl,...,’ws, Fl,...,/%t,xl,...,xq)A(ul*‘Wl,...,us*‘qs,/gl,...,

;?t,xl,...,xq) admits a constructive model., The main result then
says: if A 1is a formula which does not contain ~T— mnor ~ ], and
if P 1is a proof in ZTEi/IIN of ————> A, then we effectively
find a constructive model of A . Here "effective" means that the
Goedel numbers of the recursive functions and functionals whose exi-
stence is claimed can be found effectively from the Goedelnumber of
the proof P . There are two possibilities to prove this statement:
a) by transfinite induction over the wellfounded relation L ,

using thereby the fact that the statement follows for formulas con-
taining free variables if it has been proved for closed formulas;

b) by transfinite induction over the proof Py in S, of ——> A
which is provided by the last theorem. In both cases the fixpoint
theorems for partial recursive functions have to be used in an essen-

tial way.

It is interesting in this connection to consider the simplest case,
namely, that one where the formula A in question has the form
(x)(Ey)B(x,y), where B 1is prime, without special function constants
and without free variables other than x,y . Let P be a proof in
ZTEi/IIN of ——> A . From P we obtain for each numeral n in an
effective way a s.n.s. proof P in ZTEi/IIN of —> (Ey)B(n,y) .

In order to find an m such that B(n,m) is true,we construct a

. n n n n _n
chain Po"""PN such that a) PO=P, b) R(Pi’Pi+l) for all
i<N , ¢) ‘7(EX)R(P§,X) . In virtue of the properties of R, such

a chain can always effectively be found. The endsequent of P; is

still ——> (Ey)B(n,y) . Since PE is saturated and admits
neither preliminary nor strictly essential reduction steps,it follows

in virtue of theorem 19 that a subformula reduction step is appli-

cable to P§ . The result is a s.n.s. proof Pg in ZTEi/IIN whose

endsequent has the form ————3% B(n,t), where t is a constant term.
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By applying eventually an inessential reductionstep to P;, we get a
proof ;; of —— B(n,t*) , where t* is saturated with value,
say, m . By means of a conversion,we finally get a proof 3n of
————Q-B(n,m) . The procedure described is effective, that is,given
P, we can find for each n effectively a proof Qn of —m— B(n,m)
for some m . The m depends,of course,on n , hence it may be
written as 5? (n) . That is,from P we have extracted a recursive
function jy(x) such that B(n, ﬁp(n)) is true for each n , that
is, such that B(x,_?’(x)) is identically true. In this connection we
may ask the following question: if ———> (x)(Ey)B(x,y)

(with B prime) has been proved in ZTEi/II can we then prove

N’
—> (E ;')(X)B(x,/? (x)) ? In virtue of theorem 23 the answer is
clearly negative. The reason is that from a proof of

_— (E&;)(X)B(x,;'(x)) we can find, according to this theorem,

a functor F and a proof of ——> B(x,F(x)) ; this implies that
there is a p.r. function §P such that B(n, EP(n)) is true for all
n . On the other hand, it is not difficult to find a prime formula
B(x,y) having the following properties: a) for each primitive re-
cursive function _99 there is an n with B(n, jﬁ(n))#o H

b) ZTEi/IIN F—_— (x)(Ey)B(x,y) holds. A consequence of this

argument is

Theorem 26: There is a prime formula B(x,y) for which the follow-

ing sequent is unprovable in ZTEi/IIN

(x)(Ey)B(x,y) —> (E ; ) (x)B(x, ;(x)) .

As corollary we immediately obtain the
Corollary: The axiom of choice for primitive recursive formulas is

not provable in ZTEi/IIN.
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C. Up to now we have formulated all results for the theory
ZTEi/IIN . But, since ZTEi/IIN is merely a conservative extension
of ZTi/IT it follows immediately that these results hold invariab-

N7
ly for ZTi/IIN . On the other hand, if A 1is a formula without spe-

cial function constants, if P 1is a proof in ZTEi/IIN of —> A,
then there is a proof P¥ in ZTi*/IIN of —> A that is a

proof not containing special function constants at all. This implies
that the theorems 23 and 25 remain true for ZTi*/IIN . There is also

a suitable transformation of theorem 24 into the language L* which

is true for ZTi*/IIN : all we have to do is to replace the special
i i
function constants Cxul,....., Cﬁus by functors
: 1 s
* u * ' i
uy CKl,.....,us c(s where tl.e o ;'S are suitably chosen free

function variables. Finally, it presents no difficulties to pass from
ZTi/IIN and ZTi*/IIN to corresponding Hilbert-type systems

ZHi/IIN and ZHi*/IIN with the aid of theorem O . It is clear,
that theorems 23 - 26, suitably reformulated, remain true for these
Hilbert~-type systems. We do not pursue the details of these passages
from one system to the other, since they involve only routine tech-

niques of a rather trivial nature.

4.6. The system 2ZTi/II and its conservative extension ZTEi/II

In this section we consider a conservative extension ZTE/II of
ZT/I1I which is related to the latter in the same way as ZTE/IIN to
ZT/IIN . The intuitionistic version of ZTE/II , to be denoted by
ZTEi/IX , is in its turn a comnservative extension of 2Ti/II . To
ZTEi/I1 we apply a treatment which parallels that one of ZTEi/IIN.
In order to avoid a repetition of the arguments presented in the last
section,we content ourself in pointing out the changes which have to

be made in passing from ZTEi/IIN to ZTEi/IX.
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A. According to the definition of ZT/II , we obtain this system by

adding to ZT the new rule

D): (1) A, [ 4.al)

IT.
ﬁ'( CD)’ /_/_—'9 A yA(Q.)

where, as before, ﬁ(cﬁZ’D) and (x)<:::DyA(x) are abbreviations for
the formulas (O ) 77 (x)( & (x+1) k X(x) AD(X(x+1))ND(X (x)))
and (x)(x = py. D .A(x)), respectively,while q and y are sub-
ject to the stipulations stated in part B of section 1.5. Here,
in contrast to ZTi/IIN , the formula W( CZZD) is not required to
be a formula "without function parameters"; that is,free function
variables and special function constants may occur in &( CZZD) in
a quite essential way. In order to obtain a conservative extension
ZTE/II of ZT/11I which corresponds to ZTE/IIN, we need new rules
which correspond to the rules Ti(P) and Ti(P,Pl,m) introduced in
section 4.1. To this end, let ViseeeresVy and Wiseenao W be two
lists of sequence numbers such that .l(vl)=....°fl(vs) and

1
1(w;)=+....=1(w_) holds. Let D( 1. .., & %,x) be a formula
S ul us

whose only free variable is x and whose distinct special function con-
i1 i
stants are O<u s e e e ey D(us 5 we denote this formula briefly by

1

s e e seoy O<us*v *uw ,X), respectively. The first of the
s s s

,X) and

1 s
D(x) . Let G(x) and H:(Lx) be D o<u %y us*v
u *vl*wl

p( &
1
above-mentioned rules is defined as follows: if P dis a strictly
normal proof in ZTi/II of —mm> Q((C::D), then we are allowed to
infer from the premiss G(y),(x) — y x), /u;————é A ,A(y) the
conclusion G(q), [’—————9‘A ,A(g) . This rule is denoted by TI(P)

and written as follows:
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G(y), (x)(xcZ gv. D A(x)), [ ——> A ,4(y)
G¢(a), [ ——> A ,a(a)

TI(P)

Here vy is not allowed to occur free in the conclusion and q is

assumed to be free for y in A(y) .

The second rule is given as follows: if Pl is a s.n,s. proof in

ZTi/II of —m> ﬁ( c::D), if P, is a s.n.s. proof in ZTi/II of
—_— G(t), where t 1is a saturated term, then we are allowed to
infer from the premiss Yy <yt (x)(x CZLHY-::D-A(X));/v——9zﬁ,A(Y)
the conclusion q <= .t, }u—————9 A ,A(q) where q,y are subject

to the same stipulations as before. We write this rule as follows:

Yyt (1) (x gy oA(x)), [ —— 4 ,A()
a4t » S —> A,a(q)

TI(Pl,Pz,m)

where m= [tl .

By adding the just defined rules TI(P) and TI(Pl,PZ,m) to ZT/11,

we obtain the system ZTE/II.

Remark: In the case of the TI(P) rule above it is evident that by

i
replacing every occurernce of O<ul,....., C{us in P by
i i 1 s
ul*v sseevoy C<us*v » respectively,we obtain a s.n.s. proof P!
1 1 s s
in ZTi/II of ———> ﬁ( C::G)' Similarly, by replacing
i i i i
1 s . 1 s .
O<u yocesoy 0<u in P, and CKu Xy C<u Yy in P, by
O(ll s 1s 1 1 s s
ul*vl*wl,...o, C(u *v *w"’ we get proofs Pi and Pé of

i
_— ﬁ( < H) and ——> H(t), respectively, in case of a
TI(Pl’PZ’m) inference. Thus, TI(P) and TI(Pl’PZ’m) are generalisa-

tions of the rules Ti(P) and Ti(Pl,Pz,m) defined in section 4.1.
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The systems ZTE/II and ZTE/IIN look clearly very much the same
and it is to be expected that what we have done for ZTE/IIN can be
done in more or less the same way for ZTE/II . This is indeed rather
evident for the content of sections 4.1.: all statements, defini-
tions and results carry over to ZTE/II with almost no changes.
Thus we can gg. introduce the notion of side proof, degree and order
in exactly the same way as in section 4.1. Theorem 14 remains true
for ZTE/II ; its proof remains essentially the same except that the
last remark has to be used at a few places. Of course,we can pass
from ZTE/II to its intuitionistic version 2TEi/II which in virtue
of theorem 14 is a conservative extension of ZTi/II . To sum up:
we will apply all notions and results given in section 4.1. without
further comments to ZTE/II and ZTEi/II . To the notions defined in
section 4.1. we add a new one, namely, that of the index of a
TI(?l,Pz,m) inference. To this end,let
i i

C(ui,...., C(us y vl"""vs’wl""'°’ws and D,G,H have the
same meaning as Zbove in the definition of TI(P)- and
TI(Pl,Pz,m)—inferences. The 1list vl,...,,vS of sequence numbers,

which is determined by P and P

1 20 will be called the index of the

TI(Pl’PZ’m) inference in question. The index will play an important
role in connection with the ordinal assignement which will be dis-

cussed below.

B. With a cut, an induction, a TI(P) inference or a TI(Pl’PZ’m)
inference,we can,of course,associate a natural number, called its
complexity, in exactly the same way as in part B of section 2.5.
Based on the notion of "complexity" we can associate with each se-
quent S in a proof P in ZTE/II another natural number, called
its height,and denoted again by h(S) ; the definition of height, too,
is;of course,the same as the definition of height in part B of sec-

tion 2.5, With the notion of height at hand,we can now define reduc-
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tion steps for proofs P din ZTE/II in almost the same way as we
have done it for proofs P in ZTE/IIN . In particular, we can
introduce preliminary reduction steps, induction reduction steps and
logical reduction steps in precisely the same way as before. In or-
der to introduce the notions "substitution instance™ and "inessential
reduction step", we can,of course,use definition 20 without any

change, Minor differences appear in the defimnition of II-, TIl— and

TIZ—reduction step which correspond to the IIN—, Til— and Tiz—re—

duction steps,respectively, defined in section 4.2.

a) II-reduction steps. Let

D(x)s (1) = yA(x), [ A G

IT
ﬁ(é::[)): D(q)1 /“% A sA(Q)

be a critical II-inference in a strictly normal proof P in

ZTE/II . Let P, be a strictly normal proof in ZTi/ITI  of

_— ﬁ(<i D) . Finally, let q be saturated. According to the de-

finition of "strictly normal" it follows automatically that y is

bd
the only free variable in D(y) . A II-reduction step consists in

replacing the above inference by the following inferences:

P(3): (%) = AGx), [ A 1AG)

TI(Pl)
p(a), | —> A ,a(a)
thinning
ﬁ( P ): D(Cl)y —_— A ’A(Q)
D
The proof P! so obtained is said to follow from P by means of a

Il-reduction step; we say that the reduction step has been applied to

the IT-inference above.



i i
b) TI-reduction steps. Let D( O(ul,...., CKus,x) be a formula
1 s

containing only x free and whose special function constants are

i i

precisely X l,....., X % . Let v s e s e,V be a list of se-
ul us 1 s

quence numbers all of the same length,and let G(x) be

i i
p( X ui*vl,....., O<us*v ,X) . Let P, be a strictly normal proof
s s
in ZTi/II of —> H( C::D) . Let there be a critical TI(Pl) in-

ference in the strictly normal proof P in ZTEi/II , namely

6(x)s (%) = (A}, [ 2.a0)

T )
TPy G(q), [ —— A ,a(a)

and let gq be a saturated term with value |gq| , say m . Finally,

assume that we have at disposal a strictly normal proof P2 in

ZTi/I1 of ——> G(q) . Then we apply to P the same syntactical

transformation as in the case of Til—reduction step, that is,we al-

ter the TI(Pl) inference as follows:

Po PS

. °

Y —ga — aly) s

cut

Yy (;:Gq: (X) C::GYA(X), )v;____9 éﬁ:A(Y)

TI(Pl,PZ,m)
s gt J—— A ,a(a) pd

J——— A,s g =2 A(s) :

J—— A () — at (%) s?

p(a), —— A ,a(q)

Here, S, Po, P% and Sq have the same meaning as in the definition
of Til—reduction step in section 4.2. The resulting proof P! is
said to be obtained from P by means of a TIl-reduction step; we

also say that the TIl-reduction step has been applied to the above
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TI(Pl) inference.

i i
c) TI,-reduction steps. Let D , O< 1,...., o4 s, V,seeeeesyV
2 u, "y u 1 i s
1 s
and G be as before and let H be D( o(u Yy *yw ,.....,lYu Yo ¥ )
1 1 1 s s s
where wl,.....,ws is a second list of sequence numbers all having

the same length. Let there be a critical TI(Pl,Pz,m) inference in

P , say

v gt () =A%), J—— 2 ,a(y)

TI(Pl,PZ,m)
a =yty [ —— A ,4)

where )t[ =m , Pl is a strictly normal proof in ZTi/II of
_— ﬁ( C::D) and P2 is a strictly normal proof in ZTi/II of

——> G(t) . Assume that g is saturated with la] =n, and that we

have at disposal a strictly normal proof P3 in ZTi/II of

be a cut-free proof in intuitio-

—> q aiZHt . Finally, let P§
nistic predicate calculus of q - ——> H(gq) and P), the

following proof:

—> a gt a gyt — H(a)

——— H(q)

Then we apply to P a syntactical transformation which is just a

copy of the TIa—reduction step defined in section 2.5, namely



.

Yy £ g4 d CZ?Ht —_— y oyt s

cut

Y a4 gty (%) ‘::HYA(X)' T — 0,A(y)

TI(Pl,Pu,n)
s £ g9,9 gyt J—— ALA(s)

q

P

qLth f_eAys CHQ.DA(S) 'S

a4yt = 0,(x) — Ax) st
H

qCHt, //_9 AsA(CI)

Here Po’ PS’ Pg, S and Sq have the same meaning as in the defini-
tion of Tiz-reduction step in section 4.2, We say that the resulting
proof P' has been obtained from P by means of a TI-reduction

step,and we also say that this reduction step has been applied to the

given TI(Pl,Pz,m) inference.

C. Next,we want to associate ordinals with proofs P in ZTE/ITI .
To start with, let D( O(ilf....., O<:SZX) be a standard formula
(that is of the form R( 03:1,....., Cs;s,x) N seq(x)) whose special
function constants are preciiely those isdicated and whose only free
variable is x . Let ;Xl,...., cxsi be pairwise distinct function
variables free for CKui,....,, CXuz and let G (Xl,...e, CXs,x)

be the formula D(ul* Xyserneru ¥ CXs,x). Let

(\/ Cfl,....., cxs)ﬂ(<£::G) be true in the usual classical sense;
this is classically,of course,the same as to say that

(\/ C(l,....., O(S)W( - G) is true. This means that,for every

s-tuple of number theoretic functions f fs , the set

Lreees
{n/G(fl,.....,fS,n) true}- is wellordered by the relation
{<n,m> /n o k® and G(fl,....,fs,n),G(fl,.....,fs,m) both true(} .

A
The set -{n/G(fl,....,fs,n)} will be denoted by D(f1,...,fs) ,
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the relation {(n,m)/nL::Km and G(f fs,n),G(f fs,m) true}

177" 11

by RD(fl,....,fs/x,y) . Since D 1is a standard formula, it follows
A
that every n é,D(fl,...,f ) is a sequence number. Now let Q Dbe
s
the set of ordered pairs <Eivl,....,vs> ,n;> (written more briefly
as <:vl,....,vs/n.;>) whose first component is an s-tuple
vl,.....,vs of sequence numbers vi all having the same length
(length zero thereby admitted), while the second component is an ar-
bitrary natural number. We remind at this place that
2
<n,m)> =(n+m)“+3n+m and <nl,...,ns> =<3<nl,...,ns_l)>,ns/> ; the
elements of Q in particular are themselves natural numbers. By QD
we denote the subset of Q which is defined as follows:
A
<:vl,....,vs/n;> Qp iff n € D(vl*fl,....,vs*fs) for every choice
fl,....,fs of numbertheoretic functions. Now we are going to define
w1
a partial ordering LD of the elements of QD . We put
wv
<<vl,....,vs/q> LD <:wl,....,ws/m;> if and only if the following
holds: l) <:vl,....,vs/n;> and <:wl,....,ws/m;> are both in
. ; . * *
QD ;o 2) vy P K¥i for all is<s ; 3) RD(Wl fl"°°’ws fs/n,m)
holds for all s-tuples f

A

gso defined relation LD is a wellfounded partial ordering; we omit

l,.uou,fs of numbertheoretic functions. The

the easy verification of this statement. From the partial ordering

wi

LD we now pass to a total ordering LD of QD . To this end, we note

that in view of the wellfoundedness of LD there is a mapping 99

which associates with every element e éQD an ordinal 99(6) in

such a way that the following holds: if eL_e' holds,then f? (e)

D
is smaller than 5? (e') . Now we define a relation LD as follows:
1) if eLpe' then e,e! éQD s 2) if e and e' are in Qp, and
if 50 (e) is smaller than 57 (e'), then eLpe! ; 3) if e and
e' are in Qy , if j? (e)= jb(e‘) and if e<e' , then eLje' .
The relation LD is a wellfounded, total ordering of QD , as is

easy to verify. Therefore we can associate with every eéZQD induc-

tively an ordinal [/ ef in the following way: |le| is the smallest
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ordinal greater than all ordinals {]e'” for which e‘LDe holds. Fi-
nally we can also associate with the relation LD itself an ordinal,
to be denoted by [/LD// : it is the smallest ordinal greater than all

ordinals [felf s € éQD .

So,whenever we are given a formula ﬁ( < D) , with D as above and
such that (V/cil,...., cxs)ﬂ( C::D) is true,then we can associate

with this formula the wellordering LD of QD as described above.

i i
Now let,conversely, D( C{ul,...., O(us,x) be a standard formula
1 s
(denoted more briefly by D ) whose special function constants are

precisely those indicated and whose only free variable is x . Assume
that we have a proof P din 27Ti/II of —m—> &( CZZD) . Now let

dl,...., o(s be suitably chosen pairwise distinct function variab-
i

les. Then by replacing every occurence of O(uk in P by uk* CXk
k

we get a proof P! of —— ﬁ( C::G) where G( O(l,..., O(S,x)
is D(ul* G<l""°'us* c{s,x) . If there are other special function
constants which occur in P', we replace them by suitably chosen
constants for primitive recursive functions, obtaining thus a proof
P" in ZTi/ITI of ——> f( C::G) which does not contain special
function constants at all. This means that we can associate with

#( - G) the set Q and the wellordering L of Qp which we

D

have described above.

i 1
R 1
Definition 27: Let D( O<u s e ey C<us,x) be a standard formula,
il 1 iss
containing precisely C(u e n v ey CXu as distinct special function
1 s
constants,and whose only free variable is x . Let P be a strictly

normal proof in ZTi/II of —= & ( C D) . Then we call the

wellordering L described above the wellordering induced by P ;

D

Qp is called the domain of L, and llell (for e éQD) and || LD”

have the meaning described above.
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After these preliminaries we are ready to associate ordinals with

proofs in ZTE/II .

Definition 28: By (2 we denote the smallest ordinal X having

the following property: for any proof P in 2Ti/II of
— #( C:;D) (with D as in definition 27) the relation

HLD}{< >\ holds.

Now let P be a fixed proof in ZTE/II . With each sequent S in P

we associate a certain ordinal, to be denoted by o(S) . If 8§ is
an axiom of P, then o(S)=1 . If S is the conclusion of a conver-
sion or a one-premiss structural rule S'/S, then o(S)=o(sS') . If

S is the conclusion of a one-premiss logical inference §S'/S, or a
two-premiss logical inference S',S"/S, then we put o(S') 3 1=0(8)
in the first case and o(S)=o0(S') #o(S")31 in the second case. If
S is the conclusion of an induction S'/S, then we put

o(s)= (dd(&J.o(S')) where d=h(S')-h(s) . If S is the conclusion
of a cut 8',8"/S then we put o(S)= (Jd(o(S')#=o(S")) where
d=h(S')-h(S) . It remains to describe the ordinal assignement in the
case where S is the conclusion of a II-, TI(Pl)— or TI(Pl’PZ’m)_

inference $'/S respectively.

Case a): S'/S is a 1II-inference. Then we put
Q
o(s)= CUd((O(S')#=U) +l) 0212440 . Case b): 8'/S is a TI(Pl)—in—

ference, say

€)(x) = A S A AG)

TI(Pl)
G(q)7 /‘/——9 A 7A(q)
Let Pl be a proof of —m ﬁ( C:fD) , where D 1is the formula

i i
1
D( 0<u Y e e eny Cxus,x) and G the formula
1 s
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i
s )
“e x for some list v e ooy V of sequence
? s O<u *vx! ) 17‘ H s q
s

D(

numbers all having the same length. Then we put

11
*
91ty

o(s)= wy((o(s)# wX*) W) wnere « = Lyl ana
d=h(8')-h(S) . Case c): S'/S is a TI(Pl,PZ,m)—inference, say

v S gt (x) = A, J—— 4 ,Ay)

TI(Pl,Pz,m)
a4 gt S —— A ,ala)

Here P is a proof (in ZTi/II) of —> &( C::D) , where D is

1 i, i
a standard formula D( C{u e e e ey C{us,x), containing precisely
i i 1 s
CKul,...., C%us as distinct special function constants,and whose
1 s
only free variable is x . P2 in its turn is a proof of ——> G(t)
i i
. 1 s
where G 1is the formula D( C(u o T CXu * ,x), while
1 1 s Vv
Vs eene,yV is a 1list of sequence numbers all having the same length.
1 S
t is by definition saturated and has value m ., Clearly,
*v * *y * i
(V/O<l,....., o(s)D(ul vy C<l,.....,us Vg <Xs,m) is a true formula,
hence <:vl,....,vs/m;> an element of QD . We put
o(s)= de((o(S')## a)ﬁ+l) +1) where /g =[f<'vl,...,vs/m>ﬁl and
d=h(s')-h(S) . This concludes our definition of ordinal assignement.

As ordinal of a proof P we take as usual the ordinal of its endse-

quent.

D. From now on we can apply to ZTE/IL, and in particular to
ZTEi/I1, essentially the same treatment as to ZTE/IIN and

ZTEi/II respectively. We do not consider the details of this treat-

N>
ment, since this would amount to a mere repetition of the considera-
tions contained in the sections 4.3. up to 4.5. In particular, theo-
rems 23-26 remain true for ZTEi/II and hence for ZTi/II without

any changes. The same can be said about the proofs of these theorems

v
which depend essentially on the wellfoundedness of two relations R
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v
and L , whose definitions are, of course, copies of the definitions of
R and L given in section 4.5. and which behave in any respect like

R and L

4.7. Some remarks on the proof theoretic treatment of

ZTEi/II, and ZTEi/II

Most of the results mentioned in this section will not be proved;
none of the proofs omitted requires a new technique or a new mathe-
matical idea but all of them are rather lengthy if domne in detail.
For these reasons we prefer to call the results mentioned in this

section (apart from some exceptions) statements rather than theorems.

A. To start with, let us look at ZTEi/IIN and its proof theoretic
treatment presented in sections 4.1. - 4.5. An easy inspection of the
arguments presented in these sections shows that they can be forma-
lized in full Zermelo-Frinkel set theory (to be denoted by ZF ),
Immediately the question comes up whether the content of 4.,1. - 4.5,
can already be formalized in ZF , that is,the theory obtained from
ZF by omitting the powerset axiom. Now a second inspection shows
that we used at some central places the assumption that, if

—_ ﬁ(c::—D) has been proved in ZTi/IIN, then ﬁ(<:::D) is

true; below we will refer to this assumption as assumption (A). On
the other hand,we know that ZTi/II has proof theoretically the same
strength as 2ZT/I1, and that ZT/II in turn is as strong as classi-
cal analysis, that is as ZF . This makes it very plausible that al-
ready ZT/IIN and hence ZTi/IIN has proof theoretically the same
strength as ZF . Now the author has learned from H. Friedmann that

this is indeed the case. So assumption (A) is evidently not provable

in ZF~ , as some routine Goedel arguments show. However, by refining
the reasoning presented in sectiomns 4.1. - 4.5. slightly,it is pos-
sible to reduce ZTEi/IIN to ZF~ ., To this end,let us denote by

ZTEin/IIN the subtheory of ZTEi/IIN which we cobtain by restricting
our attention only to proofs of degree mn , that is, ZTEin/IIN F s,
if and only if there is a proof P in ZTEi/IIN whose degree is n
and whose endsequent is § . Similarly, ZTin/IIN is related to
ZTi/IIN as ZTEin/IIN to ZTEi/IIN . Let us denote by (An) the
following assumption: if 2ZTi/II  F —— ﬁ(<£::D) then ﬁ(C::D)
is true. The relation between the theories ZTin/IIN and 2F is

described by the following
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Statement I: For each n we can prove a (suitably formalized ver-

sion of) the hypothesis (An) in ZF .

Although the proof of this statement is routine and does not involve
difficulties of particular interest, it is quite long and hence we
omit it. The next step consists in relativizing the content of sec-
tions 4.1. - 4.5. +to the theories ZTin/IIN and ZTEin/IIN . In
particular, we replace the ordinal _Il.by the ordinals _Cln whose
definition is as follows: _Czn is the smallest ordinal ?? for which
URDU<: ; holds whenever ———> ﬁ( C::D) has been proved in
ZTin/IIN . Furthermore,we replace the relations R and L intro-
duced by definitions 22, 23 by corresponding relations R™ and Ln,
respectively, whose definition is as follows: Rr" and Ln are the
restrictions of R and L , respectively,to proofs P in ZTEi/IIN
having degree n . Then, making use of statement I , one can show
that for each fixed n we can translate the relativizations of sec-
tions 4.1. - 4.5. to ZTEi/IIN into ZF . As a result ome obtains
the following

Statement IT: For each n we can prove in ZF  the wellfounded-

ness of Rn and Ln respectively.

If we refine the proofs of the above two statements somewhat, then we

get a still sharper result, namely

Statement III: a) For each n we can prove hypothesis (An) in

ZT/IIN , b) for each n we can prove the wellfoundedness of Rn
and L™, respectively, in ZT/IIN .

What has been done for ZTEi/IIN and ZTi/IIN can, of course, be
done in the same way for ZTEi/II and 27Ti/II, respectively. That
is, if we work out for ZTEi/I1 and ZTi/II the program outlined
above, then we obtain a statement IV which corresponds to the conjunc-
tion of statements I and II. In order to formulate it, let ZTin/II
and ZTEin/II be the subsystems obtained from ZTi/II and ZTEi/IX,
respectively, by restricting attention to proofs of degree n ; let
ﬁn and in be the restrictions of ﬁ and i, respectivelys to
proofs of degree n; and let finally (Xn) be the following hypo-
thesis: if ——> f( ;) has been proved in 2Ti_/II, then

ﬁ( C::D) is true. Then we have
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Statement IV: a) For each n we can prove in 2ZF  a suitably for-
v
malized version of the hypothesis (An) ; b) for each n one can
— v v .
prove in ZF the wellfoundedness of R® ana L" respectively.

By using a similar refinement as that one which leads from statements

I and ITI to statement III,one obtains a corresponding

Statement V: a) For each n one can prove in Z2ZT/II a suitably
formalized version of the hypothesis (Xn) 3 b) for each n one
can prove in ZT/II the wellfoundedness of ﬁn and {n’ respective-
ly. The most important of these results is part b) of statement V.
Another, more elegant way of obtaining part b) of statement V is to
use a result which has been communicated to the author by G. Kreisel
and which seems to be contained implicitely in several papers. In or-
der to state this result, let ZT/CA be that version of second-order
analysis which we obtain by adding to 2T all instances of the fol-

lowing form of the comprehension axiom:
—— (VB () ( f (x)=04—A(,x))

o
(where X is a list CKl,....., X, of function variables which
may occur as parameters in A and where /9 does not occur free in
A ). This result, which will be referred to as

Statement VI, says: if a ‘§§-formula G without free variables is
provable in 2ZF~ then ———> G is provable in ZT/CA . As we have
already mentioned in the proof of theorem 3 (section 1.5.), it follows
from work of W. Howard that ZT/II is as strong as classical analysis,
More precisely; he shows among others that if ZT/CA F S holds then
ZT/IT S holds. By combining this with statement VI, one immediately
gets

Statement VII: If G is a jg;—formula without free variables such
that ZF [ G holds then 2T/II - ——> G holds.

1%
Now, the formalized versions of the sentences "Rn is wellfounded"
v
n .
and L is wellfounded" are clearly §é—formulas, say, Pn and

Qn' respectively, which do not contain free variables nor special

function constants. By combining statement VII with part b) of state-

ment IV we obtain
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Statement VIII: For each n we have ZT/II}- —_— Pn and
ZT/11 fF ———> Qn . Since Pn and Qn do not contain special func-
tion constants,it is clear that we obtain as an immediate conclusion

of statement VIII the

Statement IX:; ZT*/II |} ——> P and ZT*/11 b —> Q, hold for

all =n . Finally, using theorem 1) and its corollary (section 1.5. in

chapter’I) we obtain immediately

Statement X: ZTi*/II F ——— i3n and ZT*i/I1F ——> &n hold for
all n ., However, this is not yet all. As we will show below, the

following theorem is true.

Theorem 27: Let R(x) be a prime formula, which contains x among
its free variables and which does not contain special function con-

stants. In ZT*i/II we can prove the following sequent:

(Y8) 1 (VY ) 7 r( /i(yn —_ (v/m(Ey)R(/?(y))

Before coming to the proof of this theorem, we will quickly draw some
conclusions which interest us. Since these conclusions depend on the
statements I - X for which we did not give proofs,we prefer to call
these conclusions again "statements" instead of "theorem" or

"corollary™",

Statement XT: If (x) is a primitive recursive function of one
argument and,if ( X )(Ey) ( éz (v))=0 4is provable in ZF_, then
— (‘X ) (Ey) ?( X (y))=0 is provable in ZTi*/II.

Proof: This statement is an immediate consequence of theorem 27,

theorem 1 and its corollary.

Statement XII: For all n , ZTi*/II — P~ and
ZTi*/II F ——> Q, hold.

Proof: This is an immediate comnsequence of statements IV, XII and a
result of Kleene,according to which every TTi—statement can be

brought into the form ( X )(Ey) 9@( ;Z(y))=0 with §p primitive

recursive.
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Statement XITI: If (x,y) is a twoplace primitive recursive func-
tion and if (x)(Ey) € (x,y)=0 is provable in ZF, then
——> (x) (BYy) 7 (x,¥)=0 1is provable in ZTix*/II .,

Proof: PFirst,we note that (x)(Ey)j}’(x,y):O is a very special case
of a TTi—statement. According to statement VI,it follows that

_— (x)(Ey) 97(x,y)=0 is provable in ZT*/II ; from theorem 1 and
its corollary, it follows that —> (x) 71(y) 7 §P(x,y)=0 is pro-
vable in ZTi*/II ., Next, let b(x) be the primitive recursive func-
tion defined as follows: 1) b(n)=0 if n is not a sequence num-
ber; 2) b(n)=m if n= &(m) (in particular b(1)=0 ) . The func-
tion b is,of course,available in ZTi*/II in form of a suitable
constant which we also denote by b . The defining axioms of b ,
which are at hand in ZTi*/II , permit us to prove ——> b(X(y))=y
and hence 99(x,y)=0 —> P (x,b( X (y)))=0 and

gp(x,b((x (v)))=0 ——> 97(x,y)=0 in 2ZTi*/II . From the last two
sequents we can derive in ZTi*/II by means of a little bit of in-

tuitionistic predicate calculus the following sequents:
a) (x) 7 ()7 7(x,y)=0 —> (x)( /@ ) 1 (v) 7 ?(x,b(/_(y))ﬁo,
b) (%) ( ﬂ ) (By) @ (x,b( /5— (v)))=0 ———>(x) (By) @ (x,y)=0.

Since —> (x) 7 (v) 7 ?’(x,y):O is provable in ZTi*/II , it
follows that ——> (x)(/g)—f (v) 7 ? (x,b( /5 (v)))=0 is provable
in ZTi*/II . From theorem 27 and another bit of intuitionistic pred#
cate calculus,it follows that ———> (x)(%?)(Ey) 97(x,b(z?(y)))=0

is provable and from b), finally,we conclude that

——> (x) (BEy) §p(x,y)=o is provable in ZTi*/II .

From the last statement it follows that if a recursive function can
be proved in ZF~  to exist, then one can "compute" its value for any

given argument in the sense described in part C of section 4.5,

Before coming to the proof of theorem 27, we would like to make a

last remark. As noted above, the wellfoundedness of the recursive re-
lation is not provable in ZF ; however, we can prove in ZF  the
wellfoundedness of L for each fixed number n . This makes it very
plausible that the ordinal associated with L is the least upper
bound of the provable recursive wellorderings of ZF~ , or, what

amounts to the same, that if )\ is the ordinal associated with some
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provable recursive wellordering, then >\ < anﬂ for some n , where
Ufnﬂ is the ordinal associated with the wellfounded relation E; .
Now this can indeed be proved. One possible way to prove this runs as
follows: a) one adds to number theory ZT the rule of transfinite
induction with respect to {, obtaining thus an extension of ZT , to
be denoted by ZT(E) ) b) one proves in ZT(E) by transfinite in-
duction over i the following reflection principle: rif ~< is a
recursive linear ordering for which ———> W(°<') is provable in
ZTi/ITI , then =< is a wellordering"; c) by using b) one constructs
in ZT(K) a linear wellordering o<  which is essentially the sum
of all recursive linear orderings which can be proved in ZTi/II to

be wellordered, d) using eg. cut elimination methods as in [10]'

one proves the inequalitz ”’<o//6 where H«(OU is the ordinal
of «{0 , where F'= LIl and whére & is the smallest fixpoint
of u)x=x which exceeds ;' B e) using the connection between ZF~
and ZTi/II given by statement XI, one shows that,if >\<U<%/ ’

then € <ﬁﬁ<ol{ 5 f) combining d) and e), we obtain H«%}Hé

what is essentially what we are looking for. There are other , more

direct ways to prove the above statement; we do not discuss them

here.

Now let us conclude with the

Proof of theorem 27: We prove a variant of the theorem which,in

virtue of the relationship between wellfounded recursive trees and
their corresponding Brower-Kleene partial orderings,is easily

seen to be equivalent to the theorem. That is, we want to prove the
following: if D(x) is a quantifierfree formula,then we can prove
in ZTi/II the sequent W( < ) ——> W( <) . Instead of giving
a formal derivation of this sequent, we prefer to give an informal
proof; but it will be clear that this informal proof can be forma-
lized in 2Ti/II almost as it stands. We start by noting that, since
D 1is quantifierfree, the tertium non datur holds for D . Now we
assume ﬁ( C:JD) . Then transfinite induction over <~ is availa-

D
ble in ZTi/II in the following form:

(V) A () (x = py. 22 Alx)) . 2A(y)) . = (2) (D(2) = A(z))
where A may be any formula. Let us,in particular, choose for A(x)

the formula W{ <Z E) , where vy C::;z is an abbreviation for
Y'CZZDZ NY Zpx Az < px .« Our first aim is to prove the left side
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of the transfinite induction statement, that is,

(v)(D(y) N (x)(x < ov- Dow( ﬁ)) = wW( C:Z%)) . To this end, let
n be any number for which D(n) holds and assume that for any m
with m C:fDn the statement W( C::g) is true. Now let & be any
numbertheoretic function; we have to find an i such that

7] CX(i+1) c::>g O((i) is true. Such an i can be found by distin-
guishing a number of cases. Case 1: | &(0) < pn holds. Then
clearly ] (1) 5 X {(0) holds, since X (1) < p < (0) im-

plies among others x (0) C:fDn , contradicting the assumption.

¢
D(O))

true . Let é7 be defined as follows: fg(x)= of (x+1) . Since

Case 2: X {0) C:ZDn holds. Then by assumption W( & _ is
w( Cog(o)) is true, it follows that there is a j with
_7/9(j+l)<i: DD<(O) (j) , and so there is a smallest k such

that 7% (k+1) & DO<(O) /é (k) holds. Now we distinguish subcases.
Subcase 1: /g (k) C:fD «(0) holds. Then _7/9 (k+1) C::g fg(k) is
true since otherwise ﬁ)(k+l) C:jD ﬁ’(k) and therefore

/3 (k+1) <& D %(o) would hold, what would imply

/ﬁ (k+l)C::_DO<(O) ﬁ7(k) , contradicting the assumption. Hence, for
i=k+1l we have ] o((i+l) < & (i) . Subcase 2: 7/(k) < 5 «(0)
holds. Then k 1is necessarily O, since otherwise

"7/?(k)<Z:fDCK(O) /?(k-l) would hold, contradicting the minimality
of k . Hence o (1) C::D X (0) holds,and therefore also

7 (1) C:fD o (0) . Hence we can take i=1 . Since n was arbitra-
ry, we have proved (y)((D(y) N (x)(x <& py. jW(Cig))'ZDW(C%)):
and so we can conclude (z)(D(z)::D W é)) . It remains to see
that the latter formula implies W((::.D) . That is, given any number-
theoretic function <,we have to find an i such that

7] C((i+l)<::1)o<(i) holds. Let again /f denote the function de-
fined by /9 (x)= X (x+1) . We make a distinction of cases very simi-
lar to that one above. Case 1: D{ X (0)) is false. Then

X (1) < b X (0) is true, and we can put i=1.
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Case 2: D( O((O)) is true. Then there is a j such that
-)ﬁ?(j+l)C::_DD<(O) (j) holds. Let k be the smallest number
such that ] ﬁ (k+1) CD(X(O) /(k) holds.

Subcase 1: /7(k) C::D A (0) 4is true. Then /?(k+l) =5 /?(k) is
false, since otherwise ﬁ7(k+l) C:\D o (0), and hence

/?(k+l) C::DCX(O) /?(k) would follow, contradicting the assump-
tion. Hence we can put i=k+l . Subcase 2: /§ (k) — D « (0) 1is
false. Then necessarily k=0 , since otherwise

/§ O{)C:: DO<(O) /?(k—l) would be false, contradicting the mini-
mality of k . So again we can take i=0

This concludes the proof.

Corollary: In ZTi/II the following form of Markov’s principle is
provable: — (x)( 7] (y) 71D(x,y) —> (Ey)D{(x,y)) where D

is quantifierfree,

Proof: We use the same argument as in the proof of statement XIIT,

that is,we use the fact that the following two sequents are provable
in ZTi/II : a) D(x,b(/? (v))) —— D(x,v),

b) dD(x,y) _— D(x,b( /5 (y))) (with b again given by

b( ﬁ {(v))=y ) . Then we continue in the same way as in the proof of

statement XIIX.

Corollary: Theorem 1 and the above corollary remain true if we re-
place ZTi/II by ZTi/V .

Proof: An inspection of the proof of theorem 27 and its first
corollary shows that we have used the rule of transfinite induction

only in the form available in ZT/V .

This concludes temporarily our investigations about the theories

ZTi/I1 and ZTi/IIN . We will encounter them again in chapter VIII.



CHAPTER V:
Transfinite induction with respect to recursive wellorderings

without function parameters

5.1. A conservative extension of ZTi/IV._

A. We recall theorem 2 in chapter 1 which states that for every

Q £ PR there is a prime formula t such that: a) t has exactly

Q Q
the same free variables and the same special function constants as Q,
b) the sequents tg =0 ——> Q, Q —> tq = 0 and

_— tQ =0 V’tQ = 1 are provable in 2ZTi . For quantifierfree Q

there is a sharper statement, namely

Theorem 2%: TFor every quantifierfree formula Q one effectively
finds a prime formula tQ such that a),b),c) above and the follow-
ing additional property d) are satisfied: d) if ZyseeeeesZ arTe
distinct, free number variables in Q , if rl,....,rs are any terms
free for zl,....,zS in Q@ , if V is

Tyee.T b aBRS o

S, , Q. then s, ZstQ is by .

1 Zg 1002
Proof: 1Instead of giving the proof for the general case,we treat a

particular case which makes it fully clear how to proceed in the ge-

neral case. Let 3 , T and//b be fixed p.r. functions such that:

1) 6 (x)=0 if x=0 and 1 otherwise, 2) T (x)=1 - 6 (x) ,

3) /u (x,y): 8 ( X-y ) . We can assume that Q has conjunctive nor-

mal form. Let Q «eg. be:

(al=ai\/a2=aé vaB#aé) /\(bl=bi\/b2#bé\/b3#bé) . As term t we take:
( g(al,ai)./t(ag,aé).Y:g/b(aB,aé))+/%(bl,bi).~C(/%(bz,bé)).

T Q/L(bS,bé)) ) . The proof that tQ has the properties a),b),c)
above is an easy exercise in formalized primitive recursive function
theory and the proof that d) holds is evident from the construction

£ t, .

R
If, in particular, R 1is a standard formula Ro(x)/\seq(x) , with
Ro(x) quantifierfree, then x Ky/\R(x)/\R(y) and

J(x (::Ky/WR(x)/\R(y)) both are quantifierfree,and we effectively
find terms pR(x,y)zo and qR(x,y)=O such that the above sequents
are provable in ZTi , once with x éiiRy and pR(x,y) in place of
Q and tQ’ respectively, and once with 7] x <::Ry and qR(x,y) in

place of tQ and t , respectively. The two formulas pR(x,y)=O and
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qR(x,y)=O which are welldetermined by R have been denoted by

x <:Ry and x ¢:Ry respectively (chapter I) . By W'(< R) we
have denoted the formula (&) (Ex) (x+1)‘< R X (x) . In the sequel
we also use (x) < YA(x) as abbreviation for (x)(x <:Ry'::m(x)) .
In order to state aRcorollary of theorem 2% we introduce the

following

Definition 29: A quantifierfree formula R without free variables

is called saturated if, for every prime formula p=q occuring in R,
both p and q are saturated. A saturated prime formula p=q is

by definition true or false according to whether |[p|/=]|q| or |[pl#lal
Based on truth and falsity of prime formulas,we associate in an ob-
vious way a truth value ("true" or "false") with every saturated
quantifierfree formula R by interpreting the propositional connec-

tives in the usual way.

The proof of the following corollary of theorem 2% can easily be ob-

tained either via theorem 2% or by using directly the construction of

tQ outlined in the proof of theorem 2%,
Corollary: a) Let R(x) be quantifierfree and not contain function

parameters. Then tR(y):O , X <:Ry y X A;Ry do not contain function
parameters. b) Let R(x) be as before but with x as its only
free variable. If p <:Rq is saturated, then R(p) and R(q) are
saturated, and conversely. 1If p <:Rq is saturated and true,then

P C:;Rq is saturated and true,and conversely. Similarly with
tR(p)=O and R(p) . c) If W'(<:~R) is saturated, then there is
effectively a quantifierfree Q(x) not containing free function
variables other than x nor special function constants such that:
1) R(x), tR(x) and W' (< R) are isomorphic with Q(x), tQ(x)=O
and W'(<ijQ) respectively; 2) W‘(<<jQ) does not contain free

variables nor special function constants.
The system ZT/IV is obtained from 2Ti by adding to it the rule

t(1)=0, (x) = A(x), | —— 4 ,A()
Iv R

Wi(< g) tgla)=0 , ——> A ,a(a)

where q and y are subject to the usual stipulations. The system

ZT/IVN is obtained by restricting the above rule to the case where
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R does not contain function parameters. In virtue of theorem 2%
A;R and tR do not contain special function congtants either,.

The intuitionistic versions of 2ZT/IV and ZT/IVN are denoted by
ZTi/IV and ZTi/IVN respectively. In the sequel we are mainly con-
cerned with ZTi/IvN .

B. 1In what follows we introduce a certain conservative extension
ZTFi/IVN of ZTi/IVN . This extension is known if we know what its
proofs are. This will be done by introducing certain proof trees,

called intuitionistic proofs of type (m,n) . They are defined induc-

tively by means of the clauses I, II below.

I. P is an intuitionistic proof of type (m.0) if and only if it
is a proof (-tree) in ZTi/IVN , whose formulas contain at most m

logical symbols.

IT. Assume that for all s <i and all m we know what proofs of
type (m,s) are. Intuitionistic proof trees of type (m,i+l) and
their nodes are defined inductively by means of the clauses 1) - 3)
below. 1) If S is an axiom of ZTi/IVN containing only formulas
with at most m logical symbols, then S is an intuitionistic proof
P  of type (m,i+l) . The only node of P is S . 2) Let P be an
intuitionistic proof of type (m,i+l) and 8! its endsequent; let

S be a sequent whose formulas do not contain more than m logical

symbols and which contains at most one formula in the succedent. The

tree

P

5

S
denoted by P! , is said to be an intuitionistic proof of type
(m,i+1) 4in any of the following cases: a) S'/S is a conversion;
b) S!'/S is a one-premiss structural inference; c¢) S!'/S is a one-
premiss logical inference; d) $§'/S is an induction; e) S'/S 1is
a IVN—inference. A sequent S¥*¥ is a node of P! if it is a node of
P or if it is S . 3) Let Pl’ P2 be intuitionistic proofs of

type (m,i+l) and Sl,S its respective endsequents, Let S be a

2
sequent whose formulas do not contain more than m logical symbols
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and which contains at most one formula in the succedent. The tree

?l ?2
sl SZ
S
to be denoted by P! is said to be an intuitionistic proof of type

(m,i+1) in any of the following cases: a) Sl,Sz/S is a cut,

b) Sl,Sz/S is a two—premiss logical inference. A sequent S* 1is
said to be a node of P' if it is a node of Pl or P2 or if it is
S . L4) Let P be an intuitionistic proof of type (m,i+l) of
tp(v)=0, (x) yA(x), [ —— A(y) and let P, be an intuitioni-
stic proof of t%pe (m,i) of ——— W'( <:R) where W'(<fR) does

not contain free variables or special function constants. The tree

P
tR(Y)':Oy (x) < .yA(X)! //H A(Y)
T(P. ) R
1
tp(a)=0, J——— a(aq)
to be denoted by P! is an intuitionistic proof of type (m,i+l) .
A sequent S¥ 1is said to be a node of P! if it is a node of P or

if it is the sequent tR(q):O, f/—————é A{q) . This sequent is saiaq
to follow from the premiss tR(y)=O, (x) - yA(x), ;/—————? A(y) by
means of a T(Pl)—inference. The term g and the variable 7y are
subject to the usual stipulations. 5) Let P be an intuitionistic
proof of type (m,i+l) of x < gt (x) =~ yA(x) s /J—————> Ay)
where t 1is saturated with value a . Let RP and W'(<i R) be as

in clause 4) and assume that tR(y)=O is true. The tree

P
A

y <t (0 = AG), S a0

T(P ,a)
* a< gt » ) —— A(a)
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to be denoted by P' is an intuitionistic proof of type (m,i+l) .

A sequent $S* 1is said to be a node of P! if it is a node of P or
if it is a < gt , 7/—~———9 A(g) . The latter sequent is said to
follow from the premiss v <:Rt’ (x) = yA(x), )/—————% A(y) by
means of a T(Pl,a)-inference. The termR g and the variable 7y are

subject to the usual stipulations.

Remarks and definitions. a) The formula W'(<: R) in clauses

4),5) of II does by definition not contain special function constants
nor free variables. Since x <¥Ry contains in virtue of theorem 2%
the same free variables and special function constants as

X C:;Ky AR(x) NR(y), it follows that the only free variable in

R(x) is x and that R(x) does not contain special function con-
stants. R(x) is thus automatically a formula without function para-
meters. b) Since R(x) contains no special function constants and
has x as only free variable, the same is true for tR(x) ; hence
tR(a) in clause 5) is automatically saturated and the value is 1

or O . The assumption tR(a)=O true thus implies that a belongs
to the domain of the partial ordering C::R . c) The proof Pl
which appears in the clauses 4),5) above is said to be the side proof
of the T(Pl)— and the T(Pl,a)—inference respectively. We also call
P a side proof of the proof tree P! din which the T(Pl)— and

1
T(Pl,a)~inference respectively occur.

Definition 30: A sequent $ is said to be provable in ZTFi/IVN if
there is an intuitionistic proof of type (m,i) (for some m,i )

having § as endsequent. In this case we write ZTFi/IVN s .

For technical purposes we also need the notion of classical proof of

type m,i . Its inductive definition is given by clauses I¥*, II*
below.
I*, P is a classical proof of type (m,O) if it is a proof in

ZT/IVN whose formulas contain at most m logical symbols.

II*. Assume that for all m and all s<i we know what a classical
proof of type (m,s) 4is. Classical proof trees of type (m,i+l) and
their nodes are defined inductively by means of clauses 1%)-5%)

where 1%*)-5%) follow from 1)-5) by means of the following modifi-
cations: a) the proof P in 1),2) is assumed to be a classical

proof of type (m,i+l) and S is allowed to contain more than one



- 146 -

l’PZ in 3) are assumed

to be classical proofs of type (m,i+l1) and S is allowed to con-

formula in the succedent; b) the proofs P

tain more than one formula in the conclusion; c¢) the proof P in
4) is assumed to be a classical proof of type (m,i+1l) with endse-
quent tR(y)=O, (x) = yA(x), //—————9 A ,A(y) ; the proof P

is still an intui%ionistic proof of type (m,i) of

1! how-

ever,
— W (< )
rence we take tR(q)=O, }J’—_—_f} A ,A{qa) ;3 d) to 5) we apply

the same modifications as to 4) , described in ¢) .

and as conclusion of the (classical) T(Pl)—infe—

The remarks made above in connection with intuitionistic proofs of
type (m,i) apply essentially also to classical proofs of type

(m,i) .

There is a more compact, but slightly less precise way to define the
system ZTFi/IVN . That is,we can obtain ZTFi/IVN by adding to
ZTi/IVN two rules to be defined below. The first of these is given
as follows: 1if P is a proof in ZTFi/IVN already at hand, whose
endsequent is —> W'(<< R) with W'( <:R) not containing free
variables nor special function constants, then we can infer from the
premiss tR(y)zo, (x) = yA(x), /J——————% A(y) the conclusion
tR(q)=o, J— A(q)R. Written more symbolically this rule looks

as follows:

tr(1)=0, (x) - JAGx), [ ——> A

T(P. )
t tp(a)=0, /T——— a(a)

where y and q are subject to the usual stipulations. The rule is

called T(Pl)-rule and a special application of it T(Pl)-inference.

Pl is called side proof of the inference. The second rule is de-
fined similarly. Let Pl be a proof in ZTFi/IVN already at hand
of —— W' ( <:R) 3 let W'(<Z R) be as before. Let t be a sa-

turated term with value a such that tR(a):O is true. Then we are
allowed to infer from the premiss y < pt , (x) < yA(x),)J———9 A(y)
the conclusion ¢ <:Rt, //—————9 A(q) . More forma%ly,the rule is

written as follows:

< gt () = A0, J—— ay)

T(Pl,a)
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The rule is called T(Pl,a)—rule, a particular application of it
T(Pl,a)—inference. Pl is called side proof of this inference. This
new definition of ZTFi/IVN is equivalent to the old one, as is
easily established, although we lose in this way the notion of type
of a proof. Correspondingly, we get back to the notion of classical
proof of type (m,i) for some m,i by generalizing the above rules
as follows: in the first case we allow premiss and conclusion to be
of the form tR(y)=0, (x) = yA(x), )J——————> A LA(y) and

tR(q)zo, [/—————9 A ,A(q) 3 in the second case we allow them to be
of the form y <t , (x) - yA(x), // —> A L,A(y) and

a <<gt, )v’—————9.zk sA(q) gespectively. In both cases,however, P,
must still be a proof in ZTFi/IVN . The system so obtained is again
ZTF/IVN .

€. Simple properties of ZTFi/IVN and ZTF/IVN are given by the

following
Lemma 12: An intuitionistic proof of type (m,i) is also an intui-
tionistic proof of type (m',i') for m=m', i <i' . Similarly with

classical proofs.

The proof is by induction with respect to i and is omitted in view
of its triviality. The fact that ZTFi/IVN is a comnservative exten-

sion of ZTi/IVN is given by

Theorem 28: a) An intuitionistic proof of type (m,i) can be trans-
formed effectively into a proof P! in ZTi/IVN of order 2m, ha-

ving the same endsequent as P . b) Similarly with classical proofs

Proof: We merely sketch the proof . One starts with a) and pro-
ceeds by induction with respect to i . If 1i=0, the statement is
trivially true. If P has type (m,i+l), then all its side proofs
have type (m,i) and the induction hypothesis applies to them. Then
we proceed essentially in the same way as in the proof of theorem 14,
In order to prove b) we use a), and proceed then essentially in the

same way as in the proof of thm. 14.
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5.2, Reduction steps

A. For proofs (intuitionistic or classical) of type (m,i) we can
introduce all the syntactical notions introduced in earlier cases. So
we have the notion of final part, normal proof, strictly normal proof
and standard proof. Their definitions parallel the definitions of the
corresponding notions for ZTE/IIN in chapter IV. Moreover, we can
associate a number, called complexity, with every cut, induction,

N
exactly the same as in the case of ZTE/IIN . With the aid of this

IV, -inference, T(Pl)— and T(Pl,a)—inference. The definition is

complexity we can associate with every sequent $§ din P another na-
tural number, called its height and denoted by h(S) . The definition
of height is of course the same as in all previous cases. An infe-
rence other than a conversion or structural rule is again called
critical if its conclusion belongs to the final part. The notion of

I

fork and of cut associated with a given fork I I is dintroduced

1’72’73
in the usual way. Moreover, basic lemmas I and II remain true and there
proofs remain the same. There is a variant of basic lemma I, which

reads as follows:

Basic lemma I: Let P Dbe a strictly normal proof in ZTFi/IVN of

type (m,i) . Assume that no thinning occurs in the final part and
that jits endsequent has the form ———= A . Let Sl"""’sn be the
uppermost sequents of the final part, listed from left to right; let
Sj be [; —_— Aj . Then: 1) for j=n there is a strictly
normal intuitionistic proof Pj of type (m,i) whose endsequent is
e Aj 7 2) for j<n , if B occurs in f}, then there is a
strictly normal proof P! of type (m,i) of —> B .

Proof: Take the subproofs P and P! provided by the construction

described in the proof of basic lemma II.

Below, after having introduced ordinals, we will formulate a sharpe-
ning of basic lemma II, which corresponds to the variant of basic

lemma II mentioned in section 4,4,

B. We start by introducing reduction steps for intuitionistic proofs
of type (m,i) . Their definition is up to one minor point the same
as in all previous cases. That is,we have preliminary reduction steps,

intuitionistic logical reduction steps (definition 16) and induction
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reductions. They are defined in the same way as before. Next we have s
what we call Tl— and T2—reduction steps. Their definition paral-
lels that one of TI- and TIa—reduction steps.

Il—reduction steps. Let P Dbe an intuitionistic proof of type (m,i)

containing a critical T(Pl)—inference, say

0 (=0, (x) = AG), [ A()

T(Pl)
tp(a)=0 , ]J—————-> A(a)

Let g be saturated with value, say, a . Then tR(q) is saturated.
Case 1: tR(q) has value 1 . Then tR(q)=O ———> is an axiom and

so we can derive the conclusion of the above T(Pl)-inference by

thinning and interchange from this axiom. Case 2: tR(q) has value
O . Let 8 and S!' be premiss and conclusion of the above T(Pl)—
inference. Let PS and PS' be their respective subproofs. Let Pg
be the result of replacing every occurence of y in Ps by q ; let
Sq be the endsequent of Pg . In virtue of the assumption D in
chapter I, the sequent y<qu —_— tR(y)=0 is an axiom of ZTi .
We replace PS‘ in P by the following derivation:
s
y < g@ — tp(y)=0 S
cut
y << 54, (x) A(x), [ —— a(y)
R << vy
R
T(P;)
s <ga [ —> a(a)
pd
I -
J— s < gd —4A(a) -
// > (x)<: qA(X) Sq
R cut,
inter-
tR(q)zo, J —— A(q) changes
The resulting proof P' is said to follow from P by means of a

Tl-reduction step. We also say that the Tl—reduction step has been

applied to the particular T(Pl)—inference above.

zg—reduction steps. Let P be an intuitionistic proof of type (m,i)

which contains a critical T(Pl,a)-inference, say
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y < gt (X)‘<ijA(X) , [ —— A(y)

T(Pl,a)
a<gt » [ —> ala)

where t is saturated with value a . Let q be saturated with

value b .

Case 1: q <th is false. Then q_<:Rt —_— is an axiom and we
can derive the conclusion by thinning and interchange from this

axiom. Case 2: a t dis true, hence t_(q)=0 , that is t_(a)=0
Lase =t R R R

true. Let 8,8! be premiss and conclusion of the T(Pl,a)-inference,
let Ps , PS' , P% and Sq have the same meaning as before. By
assumption D, the sequent y'<:Rg , q <:Rt — > ¥y <th is an
axiom. Now we replace Ps in P by the following derivation:

Ps

y<Rq’q<Rt >Y<Rt S

cut
Y<Zga s a<pt , (x)_- yA(X),,f/————9 A(y)
R
T(Pl,b)
s <:Rq s q_<th s /J————f% A(s)
p&
4 <t , > s < qaA(s) . s
A<l gt s [T (x)  alx) s
R cut,
q<<th , }4 3 A(q) interchanges
The result P! of this operation is said to follow from P by means

of a T2-reduction step. We also say that the T2—reduction step is

applied to the above T(Pl,a)—inference.

IV _-reduction step. Let P be an intuitionistic proof of type (m,ﬂ

which contains a critical IVN—inference, say

N tr(1)=0s (x) - A | ——— a(»)

V(< ). tg(@)=0, | ——> a(a)

whose endsequent has the form ———> B and assume that W'(<: R)
is saturated. From the corollary of theorem 2% it follows that there

is a quantifierfree Q(x) not containing special function constants,
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such that R(x) , tR(x) , W'(<<’R) are isomorphic with Q(x) ,
tQ(x) and W'(<:'Q), respeetively, and such that W'(<i'Q) does not
contain free variables or special function constants. According to
the variant of basic lemma I, cited in this section,one effectively
can extract from P a certain proof PV of ——m W'(<: R) which
is again an intuitionistic proof of type (m,i) . By adding to P!

a suitable conversion,we obtain in virtue of the above remarks an in-
tuitionistic proof P of type (m,i} of — > W'( < Q) . Now we

alter P as follows:

tr(1)=0, (x) < ya(x), [l a()

Q(j) 0, (x) A(x),///__ N ( ) conversion
= A T(P
tQ(q) 0, )/ = N
Thinning

wi(<lg) tg(a)=0, J/——> a(aq)

The resulting proof so obtained is intuitionistic of type (m,i+l) .
We say that P* has been obtained from P by means of a IVN—re—
duction step and that the IVN—reduction step has been applied to the

above IVN—inference.

Remark: The side proof Pl which appears in the definition of

IVN—reduction step is uniquely determined by the procedure described
in the proof of basic lemma II and by the critical IVN—inference, to
which the reduction step is applied. We call P the side proof de-

1
termined by the critical IV -inference. Similarly the reduction step

is entirely determined once the critical IVN—inference is given. We

call this reduction step the IV -reduction step determined by the

critical IV _-inference,.
N

The logical reduction steps, the induction reductions, the IVN— s
Tl— and T2—reduction steps are also called strictly essential re-
duction steps. The notions "substitution instance” and"inessential
reduction step" are introduced in precisely the same way as in sec-
tion 4.4, (def. 20) of the last chapter. The reduction steps so in-
troduced have the same properties as the corresponding reduction
steps in earlier cases. The main properties of preliminary reduction
steps are again given by theorem 4. In order to describe the proper-
ties of strictly essential reduction steps,we introduce a relation W

by means of the following variant of def. 14, stated in section 2.2:
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Definition 31: The two place relation W applies to intuitionistic

s.n.s. proofs (of some type (m,i)) iff the following holds:

1) there is a list P oyeeeeasP of proofs such that P _=P and such

N
that Pi+l follows from Pi by means of a preliminary reduction
step (i<fN) ; 2) no preliminary reduction step is applicable to
PN H 3} Pt follows from PN by means of a strictly essential re-

duction step.

Theorem 29: l) W is recursive; 2) given P, there are at most fi-
nitely many P' with W(P,P') and, if so, they can be found effecti-
vely; 3) (EX)W(P,X) is decidable. The strictly essential reduction
steps in turn have the properties described by theorem 6, that is,we

have

Theorem 30: Let P be a saturated intuitionistic s.n.s. proof of
some type different from its final part whose final part does not ad-
mit preliminary or essential reduction steps. Then there is a criti-
cal logical inference whose principal formula has an image in the

endsequent.

The proof is practically the same as that of the corresponding theo-

rem 19. Finally, we can introduce the notion of subformula reduction

step in exactly the same way as in part D of section 4.4, of the

preceeding chapter. Corresponding to theorem 21 we have

Theorem 31: Let P be a saturated intuitionistic s.n.s. proof of
some type which does not coincide with its final part. Assume that

no preliminary and no strictly essential reduction step is appli-
cable to P . Then we can effectively apply to P a subformula re-
duction step. The resulting proof P¥* 1is again a strictly normal in-~

tuitionistic proof of the same type.

With respect to inessential reduction steps, the situation is the

same as earlier. That is, given intuitionistic proofs P,P' of type
(m,i), we can effectively decide whether P is saturated or not, and
if not, we can effectively decide whether P' follows from P by

means of an inessential reduction step or not.

€C. Classical proofs of type (m,i) do not play an important role
in our considerations. For technical reasons,we introduce two kinds

of reduction steps for them: l) preliminary reduction steps,
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2} logical reduction steps {fork elimination). Their definitions are
the same as usual. As described by definition 16, we can decompose an
intuitionistic logical reduction step into a classical logical re-
duction step followed by some preliminary reduction steps. The clas-
sical logical reduction step transforms the intuitionistic proof P
to which it is applied into a classical proof P' , the preliminary
reduction steps transform P' back into an intuitionistic proof P".

It is this fact which will be used below.

5.3. Ordinals

A. In order to associate ordinals with certain proofs in ZTF/IVN
and ZTFi/IVN, we introduce two relations R*¥ and L* whose defi-
nitions are given by definitions 22 and 23, respectively. More preci-
sely we can use definition 22 in order to introduce a relation R¥*.
using thereby the notion "strictly essential reduction step" in the
sense defined in section 5.2. Similarly we can use definition 2.3. in
order to introduce a relation L* , replacing thereby R by R¥* .
The relations R* , L*¥ are counterparts of R and L and have
similar properties; in particular, theorem 22, part a) (with R* , L*
in place of R,L) and its proof holds invariably in the present
case. For simplicity, we omit the star and write R and L in place
of R¥ and L* , without danger of confusion. O0f basic importance

are certain subtrees of L .

Definition 32: Let P be an intuitionistic s.n.s. proof of type

(m,i) . A sequence P see..o P dis called a P-chain in each of the
following cases: 1) s=0 and PO=P s 2) s>0 , P0=P and

. . . \ .
L(Pi’Pi+1) . The set DP is defined as follows: P' E DP iff there
is a P-chain PO,......,PS such that P'=Ps . By LP we denote the
restriction of L +to DP .

For the sake of a brief repetition we introduce

i
Definition 33: a) A formula A( 0( AR X S) without free
variables is true if ( j?l,....., ;‘ )A(u ;i,....,u * ;_) is
true. b) Let Bl,....,Bs yA be formulas without free variables.
Then ——> A, Bl,.....,Bs ———> A and Bl,.....,Bs —_— are

true iff A , Bl/\Bz/\ e A B_ 2 A and

Bl A By o A Bs > 0=1 respectively are true.
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A basic property of LP is described by the following

Theorem 32: Let P0 be an intuitionistic s.n.s. proof of some type
whose endsequent S0 is either ——> or else of the form —> A,
where A does not contain ], ~O> . If LP is wellfounded then
S is true. °
o
Proof: The proof is by transfinite induction over LP . To this
o
end we note: if P is din DP then P 1is again an intuitionistic
o

s.n.s. proof of type (m,j), i<j (where P 1is of type (m,i) )

whose endsequent is ——> or has the form —> B where B

does not contain 7] , P . Furthermore, it is clear that if
P é.DP then LP is also wellfounded. The transfinite induction
o
essentially amounts to show the following: if P €& DP , and if for

o
all P' with L(P,P') the endsequent $' of P' is true, then P

has true endsequent S . Hence let us assume: a) P 6'DP , b) if
o

L(P,P') then P' has true endsequent S' . We distinguish between
cases, subcases, subsubcases etc. Subcases and subsubcases are deno-
ted by 8C , SSC , etc. Case 1: P is saturated and does not admit
preliminary reduction steps. §g}i P admits a strictly essential re-
duction step; let P! be the resulting proof and 8! its endsequent.
St is either — or ——> A for some A . According to the
inductive assumption S is true; hence S' has to be —> A

and so 8 is —> A , hence true too. SC2: P does not admit an
essential reduction step. Then . P cannot have ————> as endsequent,
since this would imply that P coincide with its final part accor-
ding to theorem 30; but from true saturated mathematical axioms we
cannot derive -———> , using only cuts, interchanges inductions and
conversions. Therefore the endsequent 8 of P must be ———> A
for some A , and a subformula reduction step must be applicable to

P . We have to distinguish between cases according to the form of A.

We content ourself by treating two of them; those left out are even
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assume that only one special function constant is present. The sub-
formula reduction step transforms P into a proof P' of

—_—> B( X - w’ O({:>) (for some j#i ). Since L(P,P') hoilds,

B(O( , O(<>) is true, that is, YZ ; B(u* ,<>*E) is true,
hence (71 )B(u* 7, %) and so A are true. SsC2: A is

(x)B( C( ,x) . Then there is a list PO,Pl,....°

1) P is a proof of —— B( & ,n)., 2) L(P,Pn) holds. Accor-
ding to the inductive hypothesis B( O(i,n) is true for all n .

That is (;)B(u*},n) is true for all n , hence (x)(; )B(u*%,x)

of proofs such that

and sc A is true . Case 2: P 1is saturated but admits preliminary
reduction steps. Let PO,.....,PN be a chain such that a) P0=P ,
b) Pi+1 follows from Pi by means of a preliminary reduct#on step,
c) no preliminary reduction step is applicable to PN . Obviously

PN is still saturated. If L(PN,P') then L(P,P') as is easily
verified. Hence L(PN,P') implies that P' has true endsequent.
But then we can apply the reasoning presented under case 1 in order

to conclude that P has true endsequent. But this implies that P

and PN have the samz endsequent, hence the endsequent of P is true.
Case 3: P 1is not saturated. Assume for simplicity that there Ais on-
ly one special function constant present in P , say O(i ; in the
more general case the reasoning remains exactly the same. If we re-
place O(i by O( » we obtain a new proof, denoted by Pw , whose
endsequent is SW . Let "CP be the prim. rec. continuity function

associated with P according to lemma 9, the remark following it and
definition 20. As before, we write T ( (i))?éo as abbreviation
for "T:P( (i))#0 ana T ( }'( s§))=0 for all s<i" . By defini-
tion, if T (W)E#O then Pw is saturated and L(P,P ) . Since Sw
is true according to the inductive hypothesis, it is not —> .
Hence S is not ———> but has the form ——> A( O(i). Now: if

T (w)#zo, then ——> A( & © ) is true, according to the induc-
tive hypothesis. Hence (;)A(u*w*;) is true whenever T (w)% o .
From this one infers by barinduction over T P that );)A(uff) is

true; hence S is true.

B. The previous theorem gives rise to a certain subclass of s.n.s.

proofs, the so called "graded proofs". This subclass is given by

Definition 34: a) An intuitionistic s.n.s. proof P is said to be
"good" if its endsequent has the form ———3> A with A not contai-
ning 7] nor O and if in addition L is wellfounded. b) An

P
intuitionistic or classical proof is said to be "graded" if all its
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side proofs are "good".

The following lemma is evident:

Lemma 13: A preliminary reduction step, the operation "omission of
a cut" or a classical logical reduction step applied to a graded
proof P vyield a graded proof P' . An intuitionistic logical reduc-
tion step, an induction reduction, a Tl— or a T2—reduction step
applied to an intuifionistic graded proof P yield an intuitionistic

proof P' .,

The only case not covered by this lemma is that of a IVN—reduction
step whose role will become clearer below. In order to associate or-
dinals with graded proofs,we use some notation. If P is a good
proof of — W' (< R)’ then ([ RH is the ordinal associated
with the partial ordering C::R , which is wellfounded according to
the previous theorem; if a 1s in the domain of R , that is, if
R(a) (or what amounts to the same tR(a):O) is true, then HaHR de-
notes the ordinal associated with the restriction of C:_R to

{rx/ X C:fRa} . By Q2 we denote the smallest ordinal having
the property: if P is a good proof of ——> W' (< R) then
”C::R”<:; . 2 is evidently denumberable. Now we can describe our
ordinal assignement. Let P be a graded proof and S absequent in
it. With each such § we associate inductively an ordinal, to be de-
noted by O(S) . Case 1: S 1is an axiom of P ., Then 0(S)=l .

Case 2: S 1is the conclusion of a conversion or a one-premiss struc-
tural rule, say S'/S . Then o(S)=o(S') . Case 3: 8 is the con-
clusion of a one-premiss logical inference S'/S . Then O(S)ZO(S')#L
Case 4: S is the conclusion of a two-premiss logical inference
Sl,Sz/S . Then o(S):o(Sl)#Eo(Sz=#l . Case 5: S 1is conclusion of an
induction $S!'/S . Then o(S)= wd(o(S')a/) where d=h(S')-h(s) .

Case 6: S is conclusion of a IV _-inference 8'/S . Then

o(8)=w ((o(s)# @ *%) w*Y) wnere da=n(s')-n(s) . Case 7: s
is conclusion of a T(Pl)—inference St/S , where Pl is a proof of
———> Wi (< ) . Then o(s)=w ((ofs') # © 1) w 1) unere
d=h(S')—h(S) and x = ﬁc::Rﬁ. Case B: S is the conclusion of
a T(Pl,a)—inference $'/S . Then o(S):&)d((o(S')#=£U~V+1) a}y+1)
where Vo= Ha”R (tR(a)=O and hence R(a) are true) and

d=h(S')-h(s).

The ordinal of the endsequent is called the ordinal of P and deno-

ted by o(P) . This assignement of ordinals has all the familiar pro-
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perties of the assignements described in earlier chapters. We collect

these properties by means of the following

Theorem 33: l) The operation "omission of a cut" lowers the ordi-
nal of a graded proof P . 2) Preliminary reduction steps do not

increase the ordinal of a graded proof. 3) A classical logical re-
duction step lowers the ordinal of a graded proof. 4) An intuitio-

nistic logical reduction step, applied to an intuitionistic graded

proof P , lowers the ordinal of P ., 5) An induction reduction,
a Tl— or a T2-reduction step, applied to an intuitionistic graded
proof P , lowers the ordinal of P . 6) A subformula reduction

step lowers the ordinal of an intuitionistic graded proof.

The proof of this theorem leads exactly to the same calculations as
in earlier cases and is omitted. The case of a IVN—reduction step
is mnot covered by the above theorem since it is not clear whether
a IVN—reduction step transforms an intuitionistic graded proof al-
ways in an intuitionistic graded proof. However, the following can

be said:

Theorem 34: Let P be an intuitionistic graded s.n.s. proof and
assume that a IVN—reduction step is applied to the critical IVN—
inference

(=0, () o alx), [ a()

IV

2

wi(<g)y tg(y)=0, | —— a(y)

Let P1 be the side proof determined by this inference. If Pl is

a good proof, then the IVN-reduction step, determined by the above
IVN—inference, transforms P dinto an intuitionistic graded s.n.s.

proof P! whose ordinal is smaller than that of P

Proof: Let Pl have the endsequent —————a-W'( <:Q) and put
>\= UCZIQH . The reduction step looks as follows:
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tR(Y)=O: (x) < YA(X)’ [/_ﬁ A(y)
R

conversion
tQ(y)=O, (x) <7 yA(X), ).-/—__—9 A(Y)
R
T(P,)
to(a)=0, ) —— a(a)
conversion
tp(a)=0, /— a(a)
thinning
W (< g)s tg(a)=0, J"—— A(aq)
Let S8' and 8 be premiss and conclusion of the IVN—inference and
X the ordinal of S! in P . The ordinal of S 4in P is by defi-
nition wd((ouo< # wﬂ’“l) w‘Q”) . Calculating the ordinal of §

in P', we evidently obtain u)d((afxq% U)'X +l) ag'k+l) . Since
>\<«§Z,the second ordinal is smaller than the first one what proves

essentially the statement.

Below we have to use the full force of basic lemma II. There is a

slightly sharpened version of basic lemma II, namely

Bagic lemma IT Let P be an intuitionistic graded s.n.s. proof of

1--
type (m,j). Let Sl"""’sn be the uppermost sequents of the final
part, listed from left to right; 1let Si be —m Ai . Then the
following holds: 1) for every di<n there is an intuitionistic gra-

ded s.n.s. proof P, of type (m,j) of —> A, , whose ordinal
is smaller than that of P | 2) for every idigm , if B occurs in
f; , then there is an intuitionistic graded s.n.s. proof P! of

type (m,j) of ———> B , whose ordinal is smaller than that of P.

Proof: The comstruction of Pi,P' respectively remains the same as
in the proof of basic ilemma Ii; the inequalities o(Pi)<: o{(P) and
o(P‘)<i:o(P) follow from the fact that the operation "omission of a
cut" is used in the construction of Pi and P' ., An important spe-

cial case of this sharpened version of basic lemma ITI is

Corollary: Let P be an intuitionistic graded s.n.s. proof of type
(m,i) and S/S! a critical IVN—inference in P . The side proof

Pl determined by this inference is again an intuitionistic graded

sin.s. proof of type (m,i) whose ordinal o(Pl) is smaller than
o(P).
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Proof: Follows immediately from basic lemma II.

5.4. The wellfoundedness proof

Theorem 35: If P is an intuitionistic graded s.n.s. proof then

LP is wellfounded.

Proof: We proceed by transfinite induction with respect to the or-
dinal o(P) of P . Let P be an intuitionistic graded s.n.s. proof
with o(P)= and assume that for all intuitionistic graded s.n.s.
proofs P' with o(P')= >\<Z % the relation LP' is wellfounded.
We want to show that LP is wellfounded and note in this connection
that L, is wellfounded iff for all P' with L(P,P') Ly, is
wellfounded. Case A: We first prove the wellfoundedness of LP un-

der the assumption that P is saturated and does not admit prelimi-
nary reduction steps. If L(P,P') then P' necessarily follows
from P by means of a strictly essential reduction step or a sub-

formula reduction step. The proof is accomplished in this case if we

can show that for each such P! LP' is wellfounded in virtue of
the inductive assumption. We distinguish two subcases. Subcase 1:
P! follows from P by means of a subformula reduction step or a

strictly essential reduction step other than a IVN-reduction step.

Then o(P') < o(P) by theorem 33. In virtue of our inductive assump-

tion LP' is wellfounded. Subcase 2: P! follows from P by means

of a IVN—reduction step. More precisely, let 8/8' be a critical
IVN—inference in P and let the IVN-reduction step in question be

that one determined by this critical IVN—inference. Let Pl be the

side proof determined by the critical IVN—inference s/s' ., In vir-

tue of the corollary of basic lemma II_,it follows that P is an

1 1
intuitionistic graded s.n.s. proof with ordinal o(Pl) smaller than
o(P) . From the inductive assumption it follows that LP is well-

1 .
founded: hence Pl is good. Theorem 34 now implies that P’ is

again an intuitionistic graded s.n.s. proof, but with o(P') <:o(P).

Hence LPI is wellfounded too in virtue of the inductive assumption.
Subcase 1 and 2 together imply the wellfoundednesgs of LP .

Case B: P 1is saturated but preliminary reduction steps can be app-
lied to P . Let L(P,P') hold. Then there is a chain P oy, Py
such that 1) P=P_ , 2) P,,, follows from P, by means of a
preliminary reduction step, 3) no preliminary reduction step is
applicable to P 4) P is saturated and P! follows from P

N’ N N
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by means of a strictly essential or a subformula reduction step.

That is, as shown in case A, we have o(P‘) <:o(PN) . But

o(PN) < o(P) by theorem 33, hence o(P') < o(P) . That is, if
L(P,P') holds, then LP’ is wellfounded in virtue of our inductive
assumption; hence LP is wellfounded. Case C: P dis not saturated.
If L(P,P') holds, then P! is saturated by definition of L and
o(P)=o(P') . By case B L, is wellfounded. Hence L, is wellfoun-
ded what concludes the proof.

Corollary: The relation LP is wellfounded for every s.n.s. proof
in ZT1/IVN .

Proof: An s.n.s. proof in ZTi/IVN is evidently an intuitionistic

graded s.n.s. proof since it contains no side proofs at all.

5.5. Remarks on applications

From the last theorem, and in particular from its corollary, we could
again reobtain easily theorems 23, 24 and 25 (but restricted of
course to ZTi/IVN) . However, as we Will see in later chapters, the
present method enables us to prove much more general results than
theorems 23, 24 and 25. We will therefore postpone the discussion of

applications to these later chapters.



CHAPTER VI:
A formally intuitonistic theory equivalent to classical
transfinite induction with respect to recursive wellfounded

trees with function parameters

In this chapter we apply a proof-theoretic treatment to the theory
ZTi/V (or rather to a conservative extension of ZTi/V ), which is
very similar to that one presented in the last chapter. The method,
however,is no more involved since ZTi/V includes two additional
features: a) the formula W'(<i:R) which appears in the rule of
transfinite induction characterizing ZTi/IVN is now replaced by

W°(<::R) 5 b) function parameters are admitted.

6.1. Some preparations

A. Let R(x) be a quantifierfree standard formula, that is,of the
form Ro(x)/\ seq(x), and let tR(x)zo » x <{py be the quantifier-

free formulas associated with R(x) and x <::Ry according to

theorem 2% and its corollary. Let pl(x),....,pn(x) be a list of
prime formulas. Assume that x is the only free variable in R(x)
i i
and pi(x), izl,....0,n ; let O<ul,....n, Cﬁus be the list of
1 s
special function constants which occur in R(x) or in at least one
pi(x) . In order to indicate this occurences we write sometimes more
il is il is
explicitely R( & yeeeeey, O T,x) , tR( K e, X ®,x),
i .u u_ u, u_
1 s = = -
pi( o<uls°---y O<us’x) or R( O(u,x) s tR( O(uyx) 3 Pi( O(u,x) .
Therby we use the following notation: if vl,....,v5 are sequence
i
numbers and t a term,then we denote R( X 1 yee e S ,t)
u, *v us*vs

-
more briefly by R( O(u*v,t) or even R_{t) ; similarly, with the

Pi's and other formulas.

Now we associate with R and Ppsevs-sP a certain partial orde-

n

ring, to be denoted by | . The domain of | , to be denoted by D
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consists of ordered pairs <3<Vi"""vs> ,d;> which satisfy the
following conditions: a) vl,....,vS are sequence numbers all ha-
ving the same length; b) d dis a sequence number ; c) R(<§u*v,d)
is saturated and true, or what amounts to the same, tR( Szu*v’d) is
saturated and its value is O ; d) for all i_g:length(vl) and all

-

k<n pk( q’u*v,i) is either not saturated or else saturated and
/pk( o<u*v’i)} =0 . Instead of <E;vl,...o,vs:>,d;>, we write
<:Vl,....,vs/d;> . The relation [__ , whose domain is by defi-

nition D , is now defined as follows:

<:vl,....,vs/%> [ <@i,....,ws/b;> iff 1) each vy is a proper

extension of Wi that is vy & kY3 for di=l,.....,s )

2) a 1is a proper extension of b (that is a c::Kb) ’ 3) both
<:vl,.....,vs/a;> and <fwl,.....,ws/b;> belong to D .
Notation: With R , Pysescee, P, We associate the formula

( % Y(Ex){ 7 F (x+1) & R ? (x)vpl(x)%=0....vpn(x)%=0) and denote

N
it by F [R,pi; c{llj . Then we have

Theorem 36: If F [R,pi; ;Zuj is true, then [ is wellfounded.

Proof: In order to simplify the notation,we treat only the case
where s=1 , that is where only one special function constant is pre-
sent, say, CX i ; for simplicity, we assume u=<f,> . We also assume

n=1 , that is that pl(x) is the only member of the list

PiseseesPy ; we write p din place of Py - By replacing O(i in
1 1
R((X u,x) , pl O(u,x) and x cZ:Ry by 71 we get new formulas
i n
which we denote by R(’YL,X) , p('YL,x) and x C:?R y . By assump-

tion (7] )( ;{)(Ex)( 1 ; (x+1) = ;é(x)vp< N .x)40) is true.
Let g be an arbitrary number-theoretic function. We have to find
an i such that 1 g(i+1)[ g(i) holds. To this end,we introduce
two functions f,h . We define f as follows: a) if for all

i< s+1 g(i)= <ui/vi> ED and g(0) /™ g(1) =2 ..... T3 g(s+1)
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holds then f(s):aS where a_ is the s'th component of u_ . ,
which by necessity must have length ;z s+1 and hence be of the form
u_,q = <:a0,.....o,as,....;> ;7 b) if the assumption stated in a)
does not hold, then f(s8)=0 . The function h is defined as follows:
a) if for all i<s g(i)= <:ui/vi> € D and

g(0) TJe(1) == ..... Z—1g(s), then h(s):vs ; b) if the assump-
tion in a) does not hold, then h(s)=0 . From our assumption it fol-
lows that there is an m such that I) “(h(m+1) Cilﬁg(m)‘dp(f,m)#o
is true. Now we distinguish cases.

Case 1: g(0) ::jg(l) USRS :::]g(m+l) is false; then an i

with  Jg(i+1) [_e(i) (iZLm) can effectively be found.

Case 2: g(0)”"J..... —g(m+1) is true; put g(i)= <<:ui/vi:>
for iLm+l . Then we can effectively determine an N so large that
the following holds: 1) N :>1ength(um+l) i 2) R( O(i,m) and

p( C{i,m) are saturated where w=fKN) . We claim:

g(o) —e(1) —3.....——7 g(N) is false. Assume the contrary and
put g(i)= <:ui/vi>> for i< N . Then necessarily

u

Uy é;;Kf(N) and hence f(N) S . Moreover,

N K'm+1
h(m):vm , h(m+l)=vm

+1

+1 Since 1) is true,it follows that either

- < pVn ©°T p( O(i,m)#O is true . Now necessarily

VM+1

<<uN/vN:> € D ; this implies that p( O(i ,m) is either not satura-
N

ted or saturated with value O . Since Uy &=V, this yields a con-

tradiction.

i . .
The case where more pi‘s and O(u's are present is treated in

exactly the same way.

Remark: The particular case where the pi's are absent, that is,
where the list Pyresee-sPy is empty, is,of course, contained in the
definition of [ and D : condition d) which occurs in the de-

finition of D is then emptily satisfied. This particular case can



- 164 -

also be subsumed under the general case by taking mn=1 and for p
any . of the formulas 0=0 , CﬁiﬁO): 43;0) . The behaviour of [

and D in this particular case is described by

Corollary: If W(-<:R) is true then [ wellorders D .
Proof: This is a particular case of theorem 36 by putting n=1 and

taking as p the formula O0=0 .

Definition 35: Let R , PysesseesPy and [~ , D be as in theo-
rem 36 . By D¥ we mean the set of sequence numbers
u= <fuo,.....,us_l>> which satisfy one of the following conditions:

a) u=< >; b) u= <u0> and  u, €D ¢) s>2, u, €D

for all 1i<s and uO:lul [ :Ilus_l',

d) s__2__2,ui€D for all i<s, Tu _, c—=u__, and if s>3
_ *

then also u “Ju —J..... “Ju__, . If u= <uo,.....,us_l> ED

according to a),b) or c),then u is called unsecured, if u € D¥
according to d), then u 1is called immediately secured. By < *

we denote the Kleene Brower linear ordering restricted to D¥ .,

S
Theorem 37: If F [R,pi; qllj is true, then < % is wellfoun-
ded.
Proof: This is an immediate consequence of theorem 36 and the well-

known equivalence between the wellfoundedness of trees and the asso-

ciated Kleene Brower linear ordering.

6.2. Conservative extensions of ZT/V and ZTi/V

A. The system 2T/V is obtained from ZT by addition of the

following rule:

with q,y subject to the usual stipulations. Here tR(x) and
X <:Ry are associated with R(x) and =x < ry in the way des-
cribed in the proof of theorem 2% . Wo( <fR) is an abbreviation

for (X ) 77(x) 77 (77 X (x+1) <R X (x)) . Since x<Ry is
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prime, the tertium non datur is available for it in ZTi and hence
W0(<<:R) is provable equivalent with (X ) T7(x)( O((x+l)<fR<X(x));
in order to avoid a new notation we use in this chapter Wo( << R)
as an abbreviation for ( X ) ] (x)( &X (x+1) <:R>CK(X)) instead
for (X ) T1{x) 77 T1{ X{x+1) <:R X (x)) . The system ZTi/V is
as usual obtained by restricting attention to those proofs which con-

tain at most one formula in the succedent.

B. We now are going to define what we call intuitionistic proofs of
type (m,i) by induction with respect to i . The definition is very

similar to that one presented in the preceeding chapter.

1. Proofs in ZTi/V in which only formulas with at most m logical

symbols occur are intuitionistic proofs of type {(m,i) for all i .

2. Let P' Dbe an intuitionistic proof of type (m,i) whose endse-
quent is S' . Let S be a sequent with at most one formula on the
right of the arrow and assume that every formula in S contains at

most m logical symbols. The tree

Nreesssenid

@ |

is an intuitionistic proof of type (m,i) if S'/S is an inference
of the following type: structural, conversion, logical, induction,

V-inference.

3. Let Pl,P2 be intuitiomistic proofs of type (m,i) with Sl,S

as endsequents,respectively. Let S be as in clause 2. The tree

2

-
N

Yaresrreeeig
(leereseceiy

[
N
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is an intuitionistic proof of type (m,i)} if Sl’SZ/S is an infe-

rence of the following type: cut, logical inference.

&; Let R(x) be a quantifierfree standard formula (that is of the
form Ro(x)/\seq(x)) and pl(x),.....,pn(x) a list of terms; we
assume that x 1is the only free variable which occurs in R(x) and
in the p.,'s . Let O(llli, o(is be the list of those special
function constants which occur in at l:ast one of the expressions
R(x), pi(x) . Here we use again the notation introduced at the be-
ginning of section 6.1., part A. Let Vireeeeea Vg be a list of se-
quence numbers all having the same leungth ;; 0 and let P' be an
intuitionistic proof of type (m,i+1) of
th(y)=O, (x) <RyA(x), J — A(y) . Let P
proof of type (in) of (x)pl(x)=0,.....,(x)pn(x)=0 —_— Wo(<: R)‘

be an intuitionistic

The following tree is an intuitionistic proof of type (m,i+1):

seceaig

tp (v)=0, (x) —  _A(x), | —> a(y)

v R Y
T(P,) — Y —
(X)p ( o<u*vvx)=0y~°---:(x)Pn( “u*v’x)zo’tR (q)'_'oa f’_ﬁ A(q)

where Qq and y are subject to the usual stipulations. The endse-

quent of this tree is said to follow from the premiss

tR (y)=0,(x) < yA(x), r:————9 A(y) by means of a T(Pl)—inferenaL
v R
v

i i
5. Let R(x) , p,{x),e...0.,p (x), X l,....., X ® be as before
1 n u, u.
and let [~ , D be the partial ordering and its domain associa-
ted with R(x) , pl(x),.....,pn(x) according to section 6.1. Let
v yD*¥ Dbe the Kleene Brouwer ordering associated with — , D

according to definition 35. Let a= <:a0,....,,at l>> be an unse-

cured element of D¥* and let ay_.; be <fv1,.....,vs /d;>» in
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particular. Let wl,.....,ws be a list of sequence numbers, all ha-
ving the same length and such that each W, is a proper or improper
extension of vi(wi S;;Kvi) . Let t be a saturated term with value
d . Let P! be an intuitionistic proof of type (m,i+l) of

(x)pl(x)=0,......,(x)pn(x)=0 —_— Wo(<< R) . The following tree is

an intuitionistic proof of type (m,i+l) :

Pl

YLt ()< AR, J—— )

W

,X):O,...,(X)pn( O—?u*w’x)=o' CI<R t, ;/_% A(q)
w

T(P 3a) __\
P e (X

u*w

where vy,q are subject to the usual stipulations. The endsequent of

the new tree is said to follow from the premiss

vy <<, t, (x) < A(x), [J—————é A(y) by means of a T(P.,a)-infe-
Rw rRY 1

rence. w

Remarks and definitions. The proof P which appears in the clau-

ses 4,5) above is called side proof oflthe T(Pl)— and T(Pl,a)—in~
ference, respectively. If an intuitionistic proof P of some type
contains a T(Pl)- or a T(Pl,a)-inference,then Pl is said to be
a side proof of P . The sequent number a in a T(Pl,a)—inference
is called index of this inference. For simplicity, we did not include
in the above clauses 1)-5) the notion of "node" of an intuitionistic
proof of type (m,i) but this could of course be done in the same
way as in the corresponding definition of the previous chapter. The
main point to stress about nodes is the following: if Pl is a
side proof of an intuitionistic proof P of type (m,i), then we do
not consider the nodes of Pl as nodes of P .

Definition 36: A sequent S is said to be provable in ZTFi/V if

there is an intuitionistic proof of type (m,j) (for some m,J ) ha-

ving S as endsequent.

There is a notion of classical proof of type (m,i) whose definition
is given by clauses 1%-5%*) which are obtained from clauses 1-5) by
means of the following changes: a) in clauses 1—3) we allow S to
contain more than one formula in the succedent; b) in clauses 4),

5) we allow premiss and conclusion of the T(Pl)— and T(Pl,a)—in—
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ference, respectively, to contain more than one formula in the succe-
dent, that is to be of the form ..... —> A ,A(y) and

veeee — > A ,A(q) respectively while the side proof P is

atill required to be intuitionistic. The classical system so obtained

will be denoted by ZTF/V .
B. Again we have

Lemma 14: An intuitionistic proof of type (m,i) is also an intui-
tionistic proof of type (m!,i') for m<m' , igi' . Similarly, with

classical proofs of type (m,i) .

Theorem 38: An intuitionistic proof of type (m,i) can be trans-
formed effectively into an intuitionistic proof P! of type (2m,0).

Similarly, with classical proofs of type (m,i) .
Proof: The proof is essentially the same as the proof of theorem 14,

that is,we proceed by induction over the proof tree P . Assume eg.

that P contains a T(Pl,a)—inference, say

v b ()< AL, J —— aA(y)

W
T(Pl,a) = L
(X)py (A s X)=0seennne,a < g t, T ——> A(q)
w
(retaining thereby the notation used in clauses 4), 5)). P, is by
definition an intuitionistic proof of type (m,i-1) of
(x)pl( é?]l*w,x)=0 B e <:I{ ). By induction, there is an
intuitionistic proof P' of the premisg of the above T(Pl,a)—infe-

rence. By proceeding in exactly the same way as in the proof of theo-
rem 14, case III, we obtain from P' a proof P" of

w°(<:jR ), ta (q)=0, f/—————9 a <:R t =2 A(q) which is intuitioni-
stic of"type "(2m,0) . With the aid"of P and with a little bit of
intuitionistic predicate calculus,we can transform P" dinto an in-
tuitionistic proof of type (2m,0) of

(x)pl( 5;11*w,x)=0,......,q <:R t, //—————9 A(q) . Both for the clas-
sical and intuitionistic proofg of type (m,i) we can introduce the
usual notions such as final part, normal proof, strictly normal
proof, complexity of a cut, an induction, of a V-inference, of a
T(Pl)— or a T(Pl,a)-inference. Similarly, we can define the notion

of height of a sequent S in a proof P (denoted by h(S) ) in the
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usual way, and the same holds for the notion of critical inference.
Brief, the definitions of all these notions remain exactly the same
as before. Basic lemmas I and II remain the same as before; however,

a more general form of the basic lemma is needed below.

6.3. A generalisation of the basic lemma

Basic lemma III: Let P be a strictly normal intuitionistic proof
of type (m,i) . Assume that no thinning occurs in the final part.
Let Gl,.....,Gs ——> H be the endsequent. Let Sl"“"’sn be

the uppermost sequents of the final part, listed from left to right;

let Sj be ;; _— Aj . Then: 1) for every j<n there is a
strictly normal intuitionistic proof Pj of type (m,i) whose end-
sequent is G ,......,G_ ———-—)AJ. ; 2) for every j<n , if B

occurs in f} and if B is not isomorphic with any Gl,.....,GS,
then there is a strictly normal intuitionistic proof P! of type

(m,i) of Gl,.....,Gs—>B .

Proof: Apart from minor variants the proof remains essentially the
same as that of basic lemma II.a)We first proye 1l).Since j<n, we
must necessarily find a cut §',S"/8 in the final part with the
property: l) S is equal to Sj or below Sj ; 2) the cut for-
mula F 4in S! is an image of Aj . Let S',8"/S be more explici-
tely Z2—>F ; F,T—>D/S , T ——> D . Let Pgy » Pgu »
Ps be the subproofs of S', 8" and S 1in P respectively. We alter

P as follows:

s“

F, 7 —> D

thinnings,interchange

veesaetg

Z > F F, 7T ——>F,D

cut

>, T——>F,D

EEEEE)

Gl,......,Gs —> F,H

This new proof P* 1is a classical proof of type (m,i) . Clearly we
can derive 2 , T ——> F,D from the left premiss of the cut indi-

cated by thinning and interchange. That is, we can apply to Px the
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operation "omission of a cut" and obtain a new proof P** of type

(m,i) having the following form:

SI

ceesry

—> F

thinning, interchanges

T, >——>F
T’ Z—'—_HFsG

G G, — F,H

IEERRERN:

P** 4is clearly an almost intuitionistic proof in the sense of sec-
tion 3.1., part A. According to lemma 9 (which remains invariably
true in the present context) we can transform P¥*¥* by means of a

series of preliminary reduction steps into an intuitionistic proof

P! of type (m,i) of Gl"""’Gs —> F . By adding eventually

a conversion if necessary,we finally obtain a strictly normal intui-
tionistic proof Pj of type (m,i) of Gloveers, Gy ——9AJ. .

b) In order to prove 2) it is sufficient to show: if B occurs in

r} and if B is not isomorphic with any of the formulas
Gl,.....,GS, then there is an Ak (k<n) isomorphic with B . In vir-
tue of the second half of the assumption, B has no image in the end-

sequent. Hence there is a cut S',S"/S with the property: 1) 8"

is equal to S8 or below S ; 2) the cutformula F in 8" is an
image of B . As in the proof of basic lemma I (chapteriﬂl, section
3.2.),we conclude that the cutformula F din 8! is the image of

some Ak’ k<n . Hence B 1is isomorphic with Ak .
Remarks: In the above proof we have used the notions "preliminary
reduction steps" and "omission of a cut" without having defined them
in the present context. However, it is evident that the definition
of these notions remain word by word the same as those given in chap-
ter II, sections.2.2. and 2.6. Another remark concerns the proofs Pj
and P' whose existence is claimed in basic lemma III. The content
of the proof given above is that, as soon as A and B are given,we
can construct the proofs Pj and P', respectively,in an effective
way by applying to P certain preliminary reduction steps and the

operation "omission of a cut". This gives rise to
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Definition 37: Let P be a strictly normal intuitiomnistic proof of
type (m,i) whose endsequent is GloernensGy —> H . Let
T} —_— Aj y J=1l,.....,n1 be the uppermost sequents of the final

part, listed from left to right. The construction described in the
proof of basic lemma ILI associates with every A, (j<n) a wellde-
termined strictly normal intuitionistic proof Pj of type (m,i) of
Gl,.....,Gs —_— Aj ; we call Pj the side proof determined by

Aj . Similarly, a welldetermined strictly normal intuitionistic proof
Pt of Gl,.....,Gs ~———3> B is associated with every B & T} ,
(jégn) by means of the construction described in the proof of basic

lemma III; we call P! the side proof determined by B .

6.4. Reduction steps

A. Let us first introduce reduction steps for classical proofs of
type (m,i) . The only kinds of reduction steps needed for our pur-
poses are: a) preliminary reduction steps; b) elimination of

forks, that is,logical reduction steps. Fork elimination in the pre-
sent context will also be called "classical logical reduction step".

Their definition remains the same as in all previous cases.

B. Next we introduce reduction steps for intuitionistic proofs of
type (m,i) . Apart from minor changes, they are essentially the same
as those introduced in the last chapter for intuitionistic proofs of
type (m,i) . We have: a) preliminary reduction steps; b) intui-
tionistic logical reduction steps; C) induction reductions. The
notion "substitution instance" is again given by definition 20; the
definition of inessential reduction step, however, will slightly be mo-
dified below. Further reduction steps (V- , Tl— , Tz—reduction
steps) will be introduced below. The definitions of the reduction
steps a—c) remain invariably the same as in the previous chapters.

An intuitionistic logical reduction step applied to an intuitionistic
proof P of type (m,i) again splits up into a fork elimination,
transforming P dinto an almost intuitionistic proof of type (m,iL
plus a series of preliminary reduction steps transforming P' Dback
into an intuitionistic proof P" of type (m,i) , having the same
endsequent as P . If P is strictly normal, then so is P" . Since
in most of the cases we have to do with intuitionistic proofs (of

some type),we simply speak of logical reduction step instead of in-

tuitionistic logical reduction step. The notion of substitution in-
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stance is,of course,again given by definition 20 in chapter IV. Now

to the definition of Tl— , T2- and V-reduction steps.

Notation: Below we use again the notation introduced in section 6.1.

of this chapter, at the beginning of part A.

Il—reduction steps. Let P be a saturated intuitionistic proof of

type (m,i) containing a T(Pl)—inference, say

tp (v)=0, (x)<R LA, —— A
T(P,) v

(x)P, (X yxyrX)=0svenenrty (a)=0, | —— a(a)

u*v

Here P1 is an intuitionistic pi?Of of type (m,i-1) of

(x)pl( &7u,x)=0, e ,(x)pn( o(u,x)=0 _> W0(<< R) . By s!
and S we denote premiss and conclusion of the above T(Pl)—infe-
rence. Let [ , D be the partial ordering and its domain associa-
ted with R( E;‘l,x),pl( Szu,x),......,pn( ézu,x) according to sect.
6.1.; let D* , «<* be the Kleene Brouwer partial ordering associa-
ted with [ , D according to definition 35. Since P 1is satura-
ted, both g and tR(q) are saturated. We distinguish three cases.
Case 1: tr (q)’#O - Then tg (a)=0 ——> 1is an axiom and the
conclusion of the above T(Pl)Yinference can be derived by means of
thinnings and interchanges from this axiom. Let P be such a deri-
vation. The reduction step in this case consists in replacing PS by
P, . Case 2: [tR (q)':O and <:vl,....,vs/lq];> &,D . Since

tR (q) is saturatgd with value O, it follows from the corollary of

=
théorem 2% that R{ X ,q) is saturated and true. Since

u*v
<:vl,.....,vs/[ql;> % D, it follows from the definition of D that
=
there is an i;;length(vl) and a k<in such that pk( CX11*v’i) is
Ny
saturated with value #0 . Hence pk( o(u*v,i)zo E— is an

axiom. Let Po be the following proof:

—
P (& yyri)=0 ——>

(X) Py ( X yrys¥)=0 —>

thinnings, interchanges

The Tl-reduction step in this case consists in replacing PS by Po'
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Case 3: ltR (q)l:O and <:vl,.....,vs/]ql > € D . By definition
of D¥ %ivl,.....,vs/[qkﬁ> ED* and a= <€fvi,....,vs/fq};>

is unsecured. The Tl-reduction step in this case consists in repla-

cing PS by the following derivation of S :
s
y<Lpa—>ty (y)=0 s
v v
cut
<< g . (1) = A(x), [ ——> A(y)
v R y
S ~ T(Pl’a) P‘;t
.....(x)pi( o(u*v,x)=0,.....,s<<ijq,}/————> A(q) .
-~ .
e ()P (X g X)=0, e, [/ (%) <. QA () s}
= cut
-----(X)Pi(CX u%V,x)=0,....., th(q)=O,,r;——> A(q)
Here ng denotes, as usual, the result which we obtain by replacing
every (free) occurence of y in PS’ by a ; Sé is again the end-~
sequent of Pq, . We say that a Tl-reduction step has been applied
to the particular T(Pl)-inference above.
zz—reduction steps. Let Wis oo, Wy be a list of sequence numbers,

all of the same length, such that each W is an extension of
vy (wi g;;Kvi), and let t be a saturated term. Let P be a strict-
1y normal intuitionistic proof of type (m,i) which contains a cri-

tical T(Pl,b)—inference, say

y<g b (D2 A, > A

— v t(P,,b)
ceees ()P (X 4osx)=0,.00., @ <<, t, /J;————> A(q)
i u¥*w Rw
Here, Pl is by definition an intuitionistic proof of type (m,i-l)
of (x)pl(x)=0,.....,(x)pn(x)zo —_— Wo(<::R) . Since P 1is satu-

rated, every constant term in the final part of P is saturated,

— LN
q<g t 1is saturated, hence R( X ,a) and R(o(u*w,t) and

u*w

q <::§ t are saturated in virtue of the corollary of theorem 2*.
Let b" be b seesse b and let b_, in particular, be

(o] r-1 r
<:vi,.....,vs/d:> . By definition of T(Pl,b)—inference, b is an

unsecured element of D#* , that is, bo::: bl::3 J U | br L
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moreover, [t]|=d and <:Vi"""’vs/d>> €D . By S and S we de-
note again premiss and conclusion of the above T(Pl,b)-inference H
PS is the subproof of S j PSl is the subproof of S' . In order

that a Tz—reduction step be applicable to the above T(Pl,b)-infe-
rence, we require that the following condition C. be satisfied: every
wi is a strict extension of Vi . In virtue of the definition of
T(Pl,b)—inference,this amounts to require: length(vl) < length(wl) .
We distinguish three cases. Case 1: q <:R t is false. Then
q:<fR t ——> is an axiom and we can derive S from q <:R t —>
by megns of thinnings and interchanges alone. Let P be such"a deri-
vation., The T2-reduction step in this case consists in replacing PS
. 3 ¥ s
by P0 . Case 2: q <:R t dis true and b*= <:bo""°’br—1’br-;> is
not an unsecured element"of D* , where we have put
br= <:wl,.....,ws/|q|;> . Now br-l € D as noted above. Furthermore,
q<_ r T is saturated and true, hence [al< R | t] is saturated
and tPue in virtue of the corollary to theorem 2% ., 1f br would be
in D then necessarily brl br-l in virtue of wi<£ kVi and
the definition of D ; hence <:b0,.....,br:> would be an unsecured
element of D¥* , contradicting the assumption. Hence we conclude
= —
br %.D . But R( u*w’q) and hence R( O<u

true as noted above. Looking at the definition of D, we see that the

*W,Q) are saturated and

only reason for -<:wl,.....,ws/[q];> not to be an element in D 1is
that there is a k=n and an ig length(wl) such that

- PN
Pk((x u*w,l) is saturated with value #0 . Hence pk( o<u*w,1)=0———%
is an axiom. Therefore the following derivation Po of S can be
found:

Py (X ,i)=0 ——>

*
\V/ qu

(x)py ( X 0 X)=0 ———>

thinnings, interchange

S
The T24reduction step consists in replacing P by Po .
Case 3: q_<:R t dis true and b*= <ib0,.....,br:> is an unsecured

element of D*w(with br as under case 2). The reduction step in

this case consists in replacing P by the following derivation

S
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Y<LpgH aLlgt — > vzt s
w w w

cut

y <y d , q<pt ,(x) < A, S ——>a(y)

= > T(P ,b*) P,

e (P (& e ®) =0, evirs Ty B < €S> A(6) :
e (x)p ( mu*w,x)zo,.....,q<th,f—> (x) < p_aa(x) 8}
N t

......(x)pi( O{u*w,x)zo,....,q <5th,)<———) A(q) cu

The last double line indicates a cut combined with some interchanges
and contractions. Pg, and S& are again the results of replacing
every (free) occurence of y in PS' and S! respectively by q .
We say that a Tz—reduction step has been applied to the particular
T(Pl,b)-inference.

V-reduction steps. Let P be a strictly normal intuitionistic proof

of type (m,i) . In order that a V-reduction step be applicable to P
we require from the outset that the following condition D be satis-
fied: the endsequent of P has the form

(x)pl(x)=0,.....,(x)pn(x)=0 ———> A (A arbitrary). Let P have
this property and assume that P contains a critical V-inference,

say

t(3)=0, (x) < A(x), [ A0)
w0(<R) ’ .tR(q):Os /f/*_> A(Q)

Evidently Wo(<:.R) cannot have an isomorphic image in the endse-

quent in virtue of condition D . Therefore we can extract from P
. o .

, determined by W (< R) (def. 37, basic lemma

III and the remark following it). Pl is a strictly normal intuitio-

the side proof P

nistic proof of type (m,i) whose endsequent is
(x)pl(x)=0,......,(x)pn(x)zO —_— Wo(<: R) . Let S Dbe the concilu-

sion of the above V-inference and P its subproof. We replace P

S S

by the following derivation:
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(=0, ()2 AG), S A()

T(Pl) - .
...(x)pi(x)_O...,tR(y)_O,//————% A(a)

interchanges,
thinning

W0(<R),tR(q)=0,f/,...(X)pi(X)=0,--- — A(q)

The resulting proof P*¥ 1is a strictly normal and intuitionistic
proof of type (m,i+l) and its endsequent looks as follows:
(x)pl(x)=0,....,(x)pn(x)zo,(x)pl(x)=0,...,(x)pn(x)=0 ——> A. Now
we apply to the endsequent of P* a series of interchanges and
contractions and finally obtain a proof P! , which is strictly nor-
mal and intuitionistic of type (m,i+1) , whose endsequent is the
same as that of P ., We say that P' follows from P by means of a
V-reduction step. We also say that the reduction step in question has

been applied to the particular V-inference above.

C. Before proceeding further, let us quickly draw attention to the
Tz—reduction steps. Let us for this purpose retain the notation used
in the definition of T2—reduction step. According to this definition
a T2-reduction step is applicable to the critical T(Pl,b)—inference

only if each sequence number Winere s W is a strict extension of

the corresponding sequence number vl,....,vs . Now assume that the
wi's are not strict extensions of the vi‘s ; this implies, of course
Vi=Wi oo i=l,....,s8 . In this case we say that the T(Pl,b)—inference

under consideration is incomplete; if each w5 is a strict extension
of Vi then we call the T(Pl,b)—inference complete. The T(Pl,b)-
inference can,of course, be made complete by passing from P to a

substitution instance P' ., This suggests

Definition 38: A strictly normal proof is called strongly saturated

if every constant term which occurs in the final part or in the pre-
miss of a critical inference is saturated and if every critical

T(Pl,b)—inference is complete.

Why we also require that every constant term which occurs in the pre-
miss of a critical inference should be saturated will become clear
below. With respect to the notion "strongly saturated" there is avai-

lable a lemma which is the exact coeunterpart of lemma-9, namely
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Lemma 14: We can effectively decide whether a proof P in

ZTFi/V is strongly saturated or mot. If it is not strongly saturated
i i

and if O(ul,...., O(us is a given listing of the distinct special

1 ]
function constants occuring in P

, then we can find effectively a
prim., rec. continuity function 'C(xl,.....,xs) having the follow-
ing property: if 't(vl,.....,vs)#O and if P* results from P by

1

i
replacing every C(Hk by 0<uk*v s, then P* 1is strongly satura-
k k 'k

ted.

The proof of this lemma, like that of lemma 9, is an immediate conse-

quence of the definition of term and saturated term and hence omitted.

Remark: With every strictly normal proof P in ZTFi/V which is
not strongly saturated there is associated in an effective way a con-
tinuity function é which is related to P 1in the way described
by lemma 14; we denote this continuity function by (§P and call it

the continuity function strongly associated with P .

Definition 39: Let P be a strictly normal proof in ZTFi/V which

i .
: . 1 i
is not strongly saturated, C(ul,....o, (xus a listing of the spe-
s
cial function constants which occur in P . Let 5 be the conti-

P

nuity function strongly associated with P . Let Viseeses Vg be a 1list

of sequence numbers, all of the same length,and P¥* the proof ob-

1 1
tained from P by replacing every occurence of O<ul,...a, O(us in
i . 1 s
P by O<ul*v peeeees X's . P* is said to follow from P by
11 u _*v

means of an inessential rediictfon step if the following holds:
a) C;P(vl,.....,vs)ﬁo , b) if wl,....,ws is a list of sequence

numbers such that vy o W i=1,.....,s8 then C;P(wl,...,ws)=0.

K'i ’

D. A reduction step is called strictly essential, if it is a logical

one, an induction reduction, a Tl— ’ T2— or a V-reduction step.
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Strictly essential reduction steps satisfy

Theorem 39: Let P be a strictly normal, strongly saturated intui-

tionistic proof of type (m,i) (for some (m,i) ) whose endsequent

has the form (x)pl(x):O,.....,(x)pn(x)zo —— > A (where the pi‘s
or A or both may be absent). Assume the following: a) P does not
coincide with its final part, b) no preliminary and no strictly
essential reduction steps are applicable to P . Then the following

is true: there is a critical logical inference whose principal formu-

la has an image in the endsequent.

Proof: P cannot contain any critical induction inference,
T(Pl)— , T(Pl,b)— or V-inference since in this case we could apply a
corresponding reduction step to P , in contradiction with thé assump-

tion., No fork can occur in the final part of P since this would
give rise to an intuitionistic fork elimination, contradicting the

assumption. Hence we can proceed as in the proof of theorem 6.

E. Finally let us discuss the notion of subformula reduction step.
To start with, let us fix necessary conditions which have to be sa-
tisfied by a proof P in order that a subformula reduction step may
eventually be apolicable to it.These conditions, summarily demnoted
by S8FC , are l) P has to be a strictly mnormal, strongly satura-
ted intuitionistic proof of type (m,i) , (for some (m,i) );

2) no preliminary and no strictly essential reduction step is appli-

cable to P 3) the endsequent of P must have the form
(x)pl(x)=0,.....,(x)pn(x)=0 ———> A . According to the last theorem,
there must be at least one critical logical inference in P , whose

principal formula has an image in the endsequent. We distinguish two
cases. Case 1: There is no critical inference in P which has an
image in the antecedent of the endsequent of P . The critical infe-
rence provided by the above theorem must then by necessity be a logi-

cal inference which introduces a new logical symbol in the succedent,

that is an inference of the following type: a) a functional quanti-
fication ——— k/ or ———> E , b) a quantification — VY
or —> E over individuals, c) a propositional inference
_ A, s /, > T35 or —> 7] . That is,we are

precisely in the situation considered in section L.4. of chapter IV,
part D. Hence we define the subformula reduction step in this case in
precisely the same way as in section 4.4., part D, summarized by de-

finition 21. Case 2: There is a critical inference whose principal
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formula has an image in the antecedent of the endsequent of P . This
inference must necessarily have the form:

p(t)=0, ;/;————9 B/(x)p(x)=0, /J—————Q B , where p(x)=0 is isomor-
phic with one of the formulas pi(x)=0 . 8ince P is strictly nor-
mal, there is no free variable in the endsequent of P , and accor-
ding to the definition of "normal" there is no free variable in
p(t)=0 . Since P is strongly saturated, both p(t) and t are
saturated. We distinguish two subcases. Subcase 1: \p(t)]#o .

Then by definition no subformula reduction step is applicable to P .
Subcase 2: [p(t)]=0 . Then ——> p(t) 4is an axiom and we can re-
place the inference p(t)=0, [/—————9 B/ (x)p{x)=0, )/;————9 B by the

following derivation:

——>p(t)=0  p(t)=0, [ ——> B

cut
J—— s
thinning
(x)p(x)=0, /— B
The resulting proof P! is said to follow from P by means of a
subformula reduction step., Remark: If P! is obtained from P by

means of a subformula reduction step according to case 1 above, then
it is,of course,possible that the endsequent of P! has no longer
the particular form (x)pl(x)=0,.....,(x)pn(x)zo ——> A ; this may
happen if the critical inference provided by theorem 39 is of type
—> = or ——> | .

F. The list of reduction steps is completed. Let us summarize their
properties. The properties of preliminary reduction steps are again
given by theorem 4, A relation W can be introduced using definition
14 as it stands; theorem 5 remains invariably true in the present
case. As we have seen, our attention is mostly restricted to proofs

whose endsequents are of the particular form

(x)pl(x)zo,.....,(x)pn(x)=0 ———> A . This gives rise to
Definition 40: A proof is said to have standard form if its endse-
quent has the form (x)pl(x)=0,.....,(x)pn(x)=0 ———> A . Thereby
the pi's or A or both may be absent. As before we use "s.n.s.

proof® as abbreviation for strictly normal standard proof. Defini-
tions 22 and 23 can be used without any change in order to introduce
two relations R! and L' . The text of the definitions remains the

same with one exception: "saturated" has to be replaced by
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"strongly saturated". The notions "strictly essential reduction step",
®subformula reductien steps®, "inessential reduction step® have, of

eourse, to be interpreted in-the sense of the present chapter. The re-

lations R! and L! are the counterparts of R and L, respective-
ly,and have also the similar properties: theorem 22, part a) (with
R* and L' in place of R and L ) remains invariably true and its

proof remains up to minor modifications the same. Again we simplify
the notation by writing R and L in place of R! and L' ; no

danger of confusion arises thereby. Subtrees LP of L and its do-

mains DP can be introduced by. uslng deflnltlon 32 as it stands. Fi-

nally, we call a formula A( X l,.. s) as before true if

( ;-l""" ;-S)A(u * %i,....., u * ; ) s is true in the usual

sense (def. 33); O< l,...,, O<u is thereby the list of distinct
s X .
special function constants which occur in A( O(ul,....., O<us) . Our
1 s
goal is to prove that LP is wellfounded for proofs P of a suitab-

ly large class. To this end we need a few definitions, In order to
formulate them we use again the notation introduced at the beginning

of part A of section 6.1. (this chapter). Let R( O(u,x) be a quan-

tifierfree formula, pi( O(u,x) i=1,....,n a list of terms and
i1 i
0<u e e sy C<us the list of those special function constants
1 - -~
which occur in R( X u,x) or at least one pi( O(u,x) . It is as-

=
sumed that x is the only free variable in R( X u,x) and

—_—
pi( Q{u,x) i=l,.....,n) respectively. Let vl,....,,,vS be a list of
sequence numbers, all having the same length; by O(u*v we denote
i
. 1 s
the list O<u Yy e X . By x <:R y we denote the

u *v
1 1 s s Vv N
prime formula associated with x c:.Kyf/\R( o<u*v’x)/q R( D<u*v’Y)

according to theorem 2% and x C:LR Yy 1is used as an abbreviation for

v
the latter formula.

Definition 41: An intuitionistic s.n.s. proof P of type (m,i) is

said to be special if its endsequent has one of the forms listed be-

low:

1) (x)pl( é; u,x):O,.....,(x)pn( é; u,x):O —_ Wo( <:fR) ,



- 181 -

2)  (x)py (X yx) s ee s ()P (X ix)=0 —> T (x) X J(xe1)<p o I(x)
3) (x)py (X »x)=0,.vuu, (X)p ( X ,x)=0 —>
for some terms pi(é§ u,x) , i=1,....,n , some quantifierfree formu-

ia R( &u,x) and some special function constant ‘Xi with j diffe-

rent from i.,.....,1 . Thereby we allow the list
1 s
=N
pi(CX u,x) , i=1,.....,n , to be empty.
Lemma 15: If P is an intuitionistic s.n.s. proof which is spe-

cial, if L(P,P!') holds then P' is also special.

Proof: The lemma is proved if we can show the following: if P¥* is
special and if P** is obtained from P¥*¥ by means of a reduction
step, then P** 1is also spacial. Let §&* and S** be the endse-
quents of P* and P** respectively and assume $S¥*¥ to have form
l),2) or 3) in definition 41. Case 1: The reduction step is a pre-
liminary one. Then we can derive $S* from S** by means of thin-
nings and interchanges alone. Then $** has clearly one of the forms
l),2) or 3) of definition 41. Case 2: The reduction step is an in-

essential one. Then S** has the same form as S* except that the

i i
list CKul,....., Cxus is now replaced by a corresponding list
i i
1 s e e ey C{ s where the v.,'s are sequence numbers all ha-
ul*vl us*vs i

ving the same length #0

Case 3: The reduction step is a strictly essential one. Then S**%

is the same as 8% .

Case 4: The reduction step is a subformula reduction step. Then the
following subcases arise: a) $*% has form 1) and S%* has form

l) or 2); b) $* has form 2) and S** has form 2) or 3);

c) $S* has form 3) and S** has form 3). In each of these cases

S** has form 1),2) or 3) listed in definition A41.



- 182 -

Lemma 16: Let P be an intuitionistic s.n.s. proof of type (m,i)

which is special. Let P contain a critical V-inference, say

ta()=0. (x) = A=), [ ——>a0)

V(< L), tpla)=0, JT——— A(a)

The side proof P determined by this inference according to Basic

1

lemma IIT, the remark following it and definition 37 is again special.

Proof: This is immediate from Basic lemma III, the definition of
side proof determined by a critical V-inference and the fact that P

is special.

In order to state the main property of special proofs we need a fur-

ther

Definjition 42: Let Pl(x),....,pn(x) be terms, R(x) a quantifier-

free formula and x the only free variable occuring in all these ex-
. 0(11 s . .

pressions. Let SRR dll be the special function constants

s
occuring in R(x) or at least one pi(x) . We allow the list

Pysec-esPy to be empty and indicate this by putting n=0 . Let 8§

be any oif the following sequents:

1) s (x)py(x)=0,. .., (x)p (x)=0 ——> WO(< L)

1
2) Syt (x)pl(x)=0,....,(x)pn(x):o —_— 7 (x) O<$(X+l)<:R °<$(X);
3) Sy (x)pl(x)=0,....,(x)pn(x)=0 ——> , (where j is different
from il""°’is) . Consider the following formulas:

1) A CFIEDCTF (e02) g F (0 Vopy(0)£0. .. vy (x)40)
{(simply (%)(Ex (77 ;(x+l < f(x) if n=0 );

2) Ay (Bx) (7 o J(x+1) S o J(x) Ve (x)A0 Vi vip (x)£0),
(simply (Ex)( ] w(x+l) <z O(W(x)) if n=0);
3) A (Ex)(pl(x);éo Voo \/pn(x);éo) (simply 0=1 if n=0 ) .

The formula A is said to be induced by S 4if A is Ai when S
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is Si . We say that S 1is strongly true if the induced formula is

true.

Remark: l) From a purely classical point of view the above defini-
tion is superfluous: if S 1is true under the usual interpretation,
then its induced formula is necessarily true. From an intuitionistic
point of view,however, the truth of S does not necessarily imply the
truth of the induced formula. Although the considerations in the pre-
sent chapter use the language of classical set theory, their presen-
tation is as constructive as possible in view of the discussion pre-
sented in chapter X. Therefore we make the distinction between true

and strongly'true sequent.

Theorem 40: Let Po be an intuitionistic s.n.s. proof in ZTFi/V

(that is of some type (m,i) ) which is special. Assume that Ly is
wellfounded and let So be the endsequent of Po . Then So °

is strongly true.

Proof: The proof is by transfinite induction with respect to LP R
that is,we prove: if P & DP then its endsequent S is °

strongly true (P is again sgecial in virtue of lemma 15). Hence, let

P £ DP be given, and assume that for all P' , if L(P,P‘) holds,

>
then © S! is strongly true, where §' is the endsequent of P' .
With the aid of this hypothesis we have to show: S 1is strongly
true. We distinguish between cases, within cases between subcases,
within subcases between subsubcases etc. We abbreviate "subcase“,
"subsubcase" etc. by SC , SSC etc. Case 1l: P 1is strongly satu-
rated and does not admit preliminary reduction steps. SCl: P ad-
mits a strictly essential reduction step. Then L(P,P') iff P!
follows from P by application of a strictly essential reduction
step. Take any such P' . The endsequent S! of P! is evidently
the same as S . By the inductive assumption S' is strongly true,
hence S 1is strongly true. SC2: P does not admit any strictly
essential reduction step. In view of the special form of the endse-
quent § of P, it follows that P cannot coincide with its final
part since this would clearly force S§ to be —> ; again
_— is not provable from mathematical axioms using only inter-
changes, contractions, conversions and cuts. According to theorem 39,
there is a critical logical inference whose principal formula has an

image in the final part. We distinguish between subcases.

35C1: There is no critical logical inference whose principal formula
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has an image in the antecedent of the endsequent, Therefore, a well-

defined subformula reduction step is applicable to P , transforming

P into P! ; by definition L(P,P') holds. Let S' be the endse-

quent of P' . By necessity S 1is Sl or 52 in definition 42 for

some terms PpoeseesP, > some quantifierfree formula R and some

. . 3 . . .
special function constant v’ respectively. 88$Gl:y S is Sl .
The induced formula A 1is then given by

(F)(ex)(T F (1) <= F(x) v p ()40 Voo Vip (x)40) . By

necessity, S' 1is
(x)p, (x)=0, ..o, (x)p (x)=0 —— THx) o (x+1) <p oI5 (x)
for some j . The formula A’ induced by S! looks as follows:

(Ex) () C&g>(x+l) <R CQ3>(X) v'pl(x)#o Vi \/pn(x)#o) . How-
ever, it is evident from definition 33 in chapter V that A is true

iff At is true. Since L(P,P‘) holds, S is strongly true by the

inductive assumption, that is A' , hence A, are true and so S is
strongly true. §§§g§% S is 82 . The formula A induced by S
looks as follows:

J e J _ _ -
(Ex)( 7] CXW(X+1) R CKw(x) w/pl(x)—O Voiee.. \/pn(x)_O) . Neces
sarily, S' is given by
(x)pl(x)zo,.....,(x)pn(x)zo, (x) o(i(x+l) <fR cxi(x) ——— . The
formula A’ induced by S' is obviously again A . S’ is strongly
true by the inductive assumption. It follows that A' and hence A
are true; hence S 1is strongly true. SSC2: There is a critical lo-

e e e

gical inference whose principal formula has an image in the antece-
dent of S . Let p(t)=0, /V————,é B/ (x)p(x)=0, f/——> B be this
inference. p(x):O is necessarily isomorphic with some pi(x)=0 H
let i=1 for simplicity. $88¢}; p(t) (which is saturated) has
value O . Then we can apply to P a subformula reduction step which
transforms P 1into a proof P! whose endsequent S' is the same as
that of P , that is, 8§ . By the inductive hypothesis, §' is strong-
ly true, hence § 1is strongly true. g$g¢2; p(t) has value #£0 .
Now pl(t) is saturated, too,and its value therefore also #£0 . How-
ever, pl(t)ﬁo N {(with A, as in def. 42} are obviously all in-
tuitionistically true formulas. Therefore S 1is strongly true, re-

5, or S3 in def. 42. This exhausts the

possibilities which might arise under the assumption of case 1.

gardless whether S is Sl,S

Case 2: P 1is strongly saturated, but admits preliminary reduction
steps. Let PO,....,PN be any chain such that a) P0 is P
b) Pi+l follows from Pi by means of a preliminary reduction step;

c) PN does not admit any preliminary reduction steps. Obviously
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Py is strongly saturated. If L(PN,P') then L(P,P')

verified; hence the endsequent S' of P' is strongly true in vir-

, as is easily

tue of the inductive assumption about P . Therefore we can apply the

considerations of case 1 to PN and conclude that the endsequent §

of PN is strongly true. Now S can obviously be derived from SN

N

by means of thinnings and interchanges alone; from this one easily

concludes that S 1is also strongly true.

Case 3: P is not strongly saturated. Let S be the endsequent of
P and CK 1,....., CX S the list of special function constants oc-
curing in P . Let A be the formula induced by 8§ . The special

function constants occuring in A are obviously contained in the

list o 1,....., 0( “s . We indicate this by writing
s =

A( X 1,...., dué) or A( Cxu)> respectively. Replacement of

1l 1 is 1 .s

w e CXu by CXu oy Pt Cxu oy respectively, trans-

1 s 1 "1 s 8
forms P into another proof, to be denoted by Pw w H the

IREEEE
endsequent of P is denoted by S . According to
Wisee oW Wiees W

lemma 14, the remark following it and definition 39, there is a prim.

rec, continuity function éP with the property: if

8P(wl,.....,ws)#0 then P is strongly saturated. Let us

WoeoooW
1 ‘"s

call a list ;l(n 3o eeey ? (n) immediately secured with respect

to 59 ir 6 ? (n),yeennn, %s(n));éo and

6 ( ;&( £ 1) IR ;-5(1))=O for i<n ; the fact that w,,..,w_

is immediately secured with respect to 6)P will be indicated by

writing (§P(wl"""ws) ?é() . It is evident tyat the formula A!

i
. . s
induced by S is A( O<u *u a *w
1 s 1 s s
finition of inessential reductlon step it follows that

). From the de-

g0 0 e 00y

L(P’Pwl...w } holds whenever <§P(wl,....,ws)?é0 . Hence, using

the inductive assumption,we have the following situation: if

i
1 .
6 p(Wiseeeen,w )0 then A( X T, ,....., C(us*w ) is true.
11 s s
Using bar induction with respect to the p.r. continuity function g

i

one easily deduces the truth of A( 0( ,...., CXus) . Hence, S is
s

strongly true.
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There is an immediate and important corollary, namely

Corollary: Let P be an intuitionistic s.n.s. proof in ZTFi/V
whose endsequent S has the form

(x)pl(x)=0,....,(x)pn(x)=0 _— WO(<<'R) and let LP be wellfoun-
ded. Then: a) (%)(Ex)(j ? (x+1) < g ? {x) \/pl(x);éO (VR \/pn(x);éo)
is true; b) the particular ordering [I= associated with the latter
formula according to section 6.1., part A, is wellfounded, c) the
Kleene Brouwer linear ordering < * associated with — accor-

ding to def. 35 is a wellordering.

Proof: a) is a special case of the last theorem; b) follows from
a) and theorem 36; c) is a consequence of the wellfoundedness of
— .

6.5. Ordinals

A. From now on we proceed in quite the same way as in the last chap-

ter. First of all we introduce two classes of proofs by means of

Definition 43: a) An intuitionistic s.n.s. proof P (of some type
(m,i)) is called "good" if it is special and if, moreover, LP is
wellfounded. b) An (intuitionistic or classical) s.n.s. proof P

(of some type (m,i)) is said to be "graded" if all its side proofs

are good.

Again we have the following evident
Lemma 17: A preliminary reduction step, the operation "omission of

a cut" or a classical logical reduction step, applied to a graded

proof, yield a graded proof P' . An intuitionistic logical reduc-
tion step, an induction reduction, a Tl— or T2—reduction step,
applied to an intuitionistic graded proof P , yield an intuitioni-

stic graded proof  P' .,

In order to describe a certain ordinal assignement, we use again some

suitable notation. Let P be a good proof of

(x)pl(x)zo,.....,(X)pn(x)zo E— W0(<i:R) . The partial ordering
L associated with

(E)(ex) (7 % (x+1) < F(x) Vp ()40 V... Ve (x)40) is

then wellfounded according to the last corollary; and so is the

Kleene-Brouwer ordering < * associated with [T”  according to
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def. 35. We denote the ordinal of < * by < *| . If,moreover,
a is an element in the domain D* of %, then [ aill denotes
the ordinal associated with the restriction-of < * to

{x/x < *a } . By .12. we denote the smallest ordinal F- with the
property: if P is a good proof of

(x)py (x)=0, . vv.., (x)p (x)=0 —> WO(< ;) , then L+l <§ )
Finally, if P 1is a proof of

(x)pl(x)zo,.....,(x)pn(x)=0 _— Wo(<< R) , if [ is the partial
ordering associated with

( F)(ex)(T Fo(xe1) < ;(x) V p,(x)£0 V ..... V p (x)£0), then
we call [~ simply the partial ordering associated with P ; the
Kleene-Brouwer ordering < * associated with [” is also called

the Kleene-Brouwer linear ordering associated with P .

Now to the description of the ordinal assignement announced above.
Let P be a graded proof and S a sequent in it. With S we asso-

ciate inductively an ordinal, denoted by o(S).
Case 1: S is an axiom (of P) . Then of(S)=1 .

Case 2: S 1is the conclusion of a one-premiss structural rule, or

a conversion, say, 3'/8 . Then o(S):o(S') .

Case 3: S 1is the conclusion of a one-premiss logical inference,
say, S'/S, different from A(t), [/———*? A /(x)a(x), j“"————9 AN
Then o(S)=o(S')+1 .

Case U: S 1is the conclusion of a one-premiss logical inference

S'/S of the form A(t), }/;———9 A /{(x)a(x), [/—————? /A . Then
o(S)=o(s')+2 .

Case 5: S 1is the conclusion of a two-premiss logical inference,

say, Sl,Sz/S . Then o(S):o(Sl)4#o(Sz)##]_.

Case 6: S is the conclusion of an induction S'/S . Then

o(8)= wd(o(s')w) where d=h(sS')-n(s) .

Case 7: S 1is the conclusion of a V-inference, say, S'/S . Then we
) 4 L2 41 £2 41
put o(S)= de((o(s ) w ) ) where d=h(S')-n(s) .
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Case 8: S 1is the conclusion of a T(P )-inference, say, S'/S

X ¥l X+l
Then we put o(S)= & ( (s') # w ) W ) where
d=h(S')—h(S) and >\= I <*1l , witn . *¥ the Kleene-Brouwer
ordering associated with Pi .
Case 9: S 4is the conclusion of a T(P ,a)—inference, say, S'/S

Then we put 0(S)= &)d((o(S') %E w Y+ ) w v +l) where

d=h(s')}-h(8S) and where V is the ordinal associated with the re-
striction of < * to {x/x <L *a} and where < *¥ 1is the
Kleene-Brouwer ordering associated with Pl .
The ordinal o(P) of a graded proof is by definition the ordinal of

its endsequent. We have

Theorem 41: Let P be a graded s.n.s. proof in ZTFi/V .

l) *"Omission of a cut” lowers the ordinal of P ; 2) preliminary
reduction steps do not increase the ordinal of P ; 3) a classical
logical reduction step lowers the ordinal of P 4) an intuitio-
nistic logical reduction step lowers the ordinal of P ; 5) an in-
duction reduction, a Tl- or a T2—reduction step lowers the ordi-
nal of P ; 6) a subformula reduction step lowers the ordinal of

P (with P dintuitionistic in clauses 4)-6)).

Proof: Verification of the clauses l)—5) leads precisely to the same
calculations and inequalities encountered before. In the verification
of clause 6) one encounters just one case not treated up to now, na-
mely: P is strongly saturated, no preliminary and no strictly es-
sential reduction step is applicable to P, and P contains a cri-
tical inference p(t)=0, //;————9 A/ (x)p(x)= /J—————> A whose

principal formula has an image in the endsequent and such that p(t)

has value O . Let S and S be premiss and conclusion of the
above inference, p! the result of the subformula reduction step and
o(s')= X , o(s)= ﬁ’ . By definition ﬂ =X # 2 . It is trivial

to verify that the application of the subformula reduction step lo-
wers the ordinal of S : it becomes & # 1 . Hence o(P') 4is smal-

ler than of{P) .

We also have
Theorem 42;: Let P be an intuitionistic graded s.n.s. proof and

assume that a V-reduction step is applied to the critical V-inference



- 189 -

tp(Y)zoy (x) <RyA(X), //—? A(Y)

W< )y typla)=0, [ T—— 4a(q)

. . o R

Let Pl be the side proof determined by W (<: R) . If P1 is
"good", then the V-reduction step determined by the above V-inference
transforms P into an intuitionistic graded s.n.s. proof whose ordi-

nal is smaller than that of P .

The proof is practically the same as that of theorem 34 and hence

omitted.

Basic lemma IIT Let P be an intuitionistic graded s.n.s. proof

l,.....,Gs ———> H . Let Sl,....,Sm be the upper-
most sequents of the final part, listed from left to right; let Sj
be /3 —_— Aj . Then: if B occurs in /; , if Pl is the
side proof determined by B in Sj (according to basic lemma IIT,

14
with endsequent G

the remark following it and definition 37L then Pl is é graded in-

tuitionistic s.n.s. proof and o(Pl)<i o(P) .

Proof: We proceed as in the proof of basic lemma III and use the
fact that in the construction of Pl we use the operation "omission
of a cut".

Of main importance for us is

Corollary: Let P be a graded intuitionistic s.n.s. proof contai-

ning a critical V-inference

(=0, () = a0, [ a()

WO (<< ) tgla)=0, [ — a(a)

The side proof Pl determined by WO(<: R) is a graded intuitioni-

stic s.n.s. proof and o(Pl) <:0(P) .

6.6. The wellfoundedness proof

Theorem 43: If P is an intuitionistic graded s.n.s. proof, then

LP is wellfounded.
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Proof: We proceed by transfinite induction with respect to the ordi-

nal of(P) . Let P be an intuitionistic graded proof with o(P)= ;

assume that for all intuitionistic graded proofs P' with
o(P') < o(P) the relation LP' is wellfounded. We have to show
that LP is wellfounded. Case 1: First we assume that P is

strongly saturated and does not admit preliminary reduction steps. If
L{P,P') , then there is necessarily a strictly essential reduction
step or a subformula reduction step which transforms P dinto P' .
We distinguish two subcases. §g§g§§g_}i The reduction step in ques-
tion is a subformula reduction step or a strictly essential reduction
step other than a V-reduction step. Then o(P') < o(P) according to

is wellfounded. Subcase 2: P! follows

theorem 41 and hence LP'

from P by means of a V-reduction step. Let

ta(x)=0, (%) = A(x), S —— a(y)

Wo(<< p)y tgla)=0, J—— a(a)

be the critical V-inference in P , to which the V-reduction step in
question is applied. Let Pl be the side proof determined by

Wo(<: R) . According to the corollary to basic lemma IIIl, P1 is a

graded intuitionistic s.n.s. proof whose ordinal of(P is smaller

1)

than that of P . By the inductive assumption,it follows that LP

is wellfounded; hence Pl is "good". This combined with theorem

42 shows that P! is again a graded intuitionistic s.n.s. proof with
ordinal 0(P')<< o(P) . Hence LP’ is wellfounded. Combining sub-
case 1 with subcase 2,we conclude that L(P,P') implies the well-
foundedness of Ly, . But LP is wellfounded if and only if L, is
wellfounded for all P' with L(P,P') . Hence LP is wellfounded.
Case 2: P 1is strongly saturated but admits preliminary reduction
steps. Proceeding as in the proof of theorem 35, case B, we conclude
that L(P,P') implies o(P') < o(P) , hence the wellfoundedness of
LP‘ . From this we again infer the wellfoundedness of LP .
Case 3: P 1is not strongly saturated and admits preliminary reduc-
tion steps. If L(P,P') then P' is by definition of L strongly
saturated and is subject to case 2; since o(P')=o(P) holds, we in-
fer the wellfoundedness of LP‘ . This in turn implies the wellfoun-
dedness of LP , concluding the proof of the theorem.

Corollary 1: The relation LP is wellfounded for every s.n.s. proof
P in 2ZTi/V.
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Proof: Every such proof P is obviously a graded proof since it
does not contain side proofs at all. Hence it is subject to the pre-

vious theorem.

In order to prove the last corollary we need

Definition 44: a) Let P be a strongly saturated intuitionistic

s.n.s. proof which does not admit preliminary nor strictly essential
reduction steps. A proof P! is said to follow from P by means of
a weak subformula reduction step if P contains a critical inference
p(t)=o, /“¥————9 A((x)p(x)=0, }/—————9 A with p(t) true,and if P!

follows from P by replacing this inference by

—> p(t)=0 p(t)=0, fi—————% A
J—— a

cut

(x)p(x)=0, [ —— &

b) By L* we denote the relation which applies to P, P¥* (in signs
L*(P,P*)) iff P, P! are intuitionistic s.n.s. proofs and if either

R(P,P') holds,or if else there is a list PO,.....,P of such proofs

N

such that a) P=P_ b) P is strongly saturated, c) P,,, fol-
lows from Pi by means of a preliminary reduction step, d) no pre-
liminary reduction step is applicable to PN , e) P! follows from

PN by means of a weak subformula reduction step.

Corollary 2: Let P be an s.n.s. proof in ZTi/V whose endsequent
S does not contain free variables nor special function constants.
a) If S is (x)pl(x):O, ..... (x)p, (x)=0 ———> A /B (with the
pi's terms), then one effectively finds a proof Pl in ZTi/V of
either (x)pl(x}zo,.....,(x)pn(x):O —> A or
(x)pl(x):O,.....,(x)pn(x)zO —~———> B ; b) if S is
(x)pl(x)=0,.....,(x)pn(x):O — (E ?-)A( ; })» then one effectively
finds a functor F without free variables and special function con-
stants and a proof P in 2Ti/V of

(x)pl(x)zo,.....,(x)pn(x)=0 —> A(F) ; ¢) similarly with (Ex)
in place of (E ? ) and a term t in place of F .

Proof: We consider gg. b). P is clearly an intuitionistic graded

s.n.s. proof, since no side proofs at all occur in P . Therefore LP

is wellfounded. Denote by L; the restriction of L* to DP .
Since L*¥ 1is a subrelation of L, it follows that Lﬁ is wellfoun-
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ded. Hence, we effectively find a chain Po,....,P with P0=P and
such that a) L*(Pi,Pi+l) holds for i<N , b) ( \/x)'YL*(PN,x) .
Obviously PN is strongly saturated. By inductien with respect to i

one easily shows that the endsequent of P has the form
D) (02 o (1)=0,eenns ()2 o (x)=0 —— (2 F)ACF ) or
1 k

(x)p & (x)=0,....,{x)p d (x)=0 ——> . In case 1) k can be O ,
in caselz) necessarily k#0 since the last theorem implies
consistency of ZTi/V . Let us apply in an arbitrary but fixed way
preliminary reduction steps to P so as to obtain a proof P!

N N

which does not admit preliminary reduction steps. Evidently, Pﬁ is
strongly saturated and does not admit strictly essential reduction

steps since otherwise L(P would hold, contradicting the assump-

N PN)
tion. According to theorem 39, there is a critical logical inference
whose principal formula has an image in the endsequent.

Case 1: The inference is p(t)=0, //———9 ¢/ (x)p(x)=0, //————9 c .
Then p(t)=0 1is false by necessity. Otherwise we could apply a weak

subformula reduction step to obtaining as result a proof PJ

. >
which would satisfy L*(PN,Pﬁ) T contradicting the assumption. Hznce
p(t):O is false, hence p(t):O ———> an axiom and p(x) isomor-~
phic with some pi(x) . With the aid of an \/ —> inference,
followed by conversions and interchanges,we can derive
(x)pl(x)=0,.....,(x)pn(x)=0 —_— A(F) for any functor F .
Case 2: There is no critical logical inference of the form
p(t)=0, [/F————a ¢/ (x)p(x)=0, )¢;————> C in PY . Then P} contains
necessarily a critical logical inference of the form

/{;————9 At (r)/ [J—————% (B ?')A'( ? ) whose principal formula has
an image in the endsequent. A'( ?-) is necessarily isomorphic with
A( ;-) . Without loss of generality we can assume that F does not
contain free variables and special function constants: the first is
a Congequence of the fact that Pﬁ is an s.n.s. proof, the second
can always be achieved by replacing eventually some special function
constants by suitably chosen constants for prim. rec. functions. By
application of a subformula reduction step to Pﬁ followed by a
conversion, some thinnings and interchanges,we obtain a proof Pﬁ
in ZTFi/V of (x)pl(x):O,....,(x)pn(x)zo ——> A(F). By means of
theorem 38, we can transform Pﬁ into a proof P! in ZTi/V of
(x)pl(x)=0,....,(x)pn(x):O ———— A(F) , what concludes the proof.
Remark: 1In virtue of the equivalence of quantifierfree formulas
with prime formulas,the last corollary remains true if we replace
pl(x)=0,.....,pn(x)=0 by quantifierfree formulas Ql(X),.-.,Qn(X),

respectively.



CHAPTER VII:

A system containing barinduction with respect to decidable predicates

In this chapter we show that a reasoning very similar to that
presented in chapters V, VI can be applied to the theory 2ZTi/I.
There is,however,an essential difference between the methods presen-
ted in chapters V, VI and the method presented in this chapter: the
former yield automatically the consistency of the theory to which
they are applied, the latter, however,works only if we assume ab ini-
tio that ZTi/I 1is consistent. Hence let us assume throughout this

chapter: ZTi/I is consistent.

7.1. The theory 2ZTi/I and a certain conservative extension

A. The theory ZT/I is obtained from ZT by additon of the follow-

ing rule 1:

R () = A0, [—— 2,40

w( =), R(a), | ——— AL,a(q)

where y and g are subject to the usual stipulations. Here, R is
an arbitrary standard formula, that is, a formula of the form

Ro(x)/\ seq(x) ; no restrictions are thereby imposed on Ro(x) , that
is, Ro(x) can be any formula containing special function constants
and free variables of any kind. x - RY and W({ C:_R) are agailn
abbreviations for x C:ZKy,”\R(x)//\R(y) and

( ?)(Ex) I ? (x+1) c— R C; (x), respectively. ZTi/I is obtained

from ZT/I by restricting attention to intuitionistic proofs.

B. Next, some notations. In part C below, R(x) denotes a stan-
i i
1
dard formula whose special function constants are Cﬁu"""’ CKus
1 s
and whose only free variable is x . In order to indicate the occu-
ik e
rence of the X 's, we write as before R( Q(u ,X) or
i, Eg i ig
R( X e e ey 0( ,x) . Replacement of o4 e e ey CK by
. u u ', u u
i, 1 s :Ls ~ 1 s
ul*vl,....., O(u *r transforms R( CKll ,X) into another for-
s s

—
mula which will be written as R( O{u*v,x) or, more briefly, as Rv(x)

i .
or even R_ . Of course 1 * i
v CKU_’_...__’ CKus are precisely the
s
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special function constants which occur in x <::Ry . In order to in-
dicate their occurence in x c::Ry, we sometimes also write
x C:fgy . Hence x Ciféy and x C::Ey are both abbreviations of one

- —_—
and the same formula: x C:;Ky//\R( CXu,x)/A\R( O(u,y) . If we replace
il is i is
0<u M ey O(u in x c:ZRy by X s e ey CKu xy @ then we
1 s 1 s
obtain a new formula which may be written as x C:;R vy .
v

. . u*v
nience we denote this formula also by x<::'R y . Hence, x C:‘R y

* o PN v
and XC; Yy both denote xCKy/\R( O(u*v,x)/\R( O(u*v,y) .

*v

1
"

For conve-

C. We now introduce a conservative extension of ZTi/I which is
related to ZTi/I in the same way as eg. ZTEi/VN is related to
ZTi/VN . This conservative extension is denoted by ZTGi/I and is
obtained from ZTi/I by addition of two new rules T(Pl) and
T(Pl’PZ) whose definition is given below. 1)} Let ViteserasVy be
a list of sequence numbers, such that 1ength(v1)=1ength(vi),
i=l,.¢..4,8 . Let P0 be a proof in ZTGi/I , whose endsequent §

A N

is R( Q{u*v,y), (x) c::;*vy A(x), /¥;————9 A(y) ; 1let P, be a
proof in ZTGi/I , already at hand, whose endsequent is

_ W(<£ZTB) . Then

cesaetg

T(P,) = ,
1 1q)1 /J_—ﬁ' A(q)

is a proof in ZTGi/I ; we denote it by P . The inference

u*v

¥)e (%) = urvy Ax), [ a(y)

T(P,) —

R{ & ,a), [ —— a(a)

u*v

is called a T(Pl)-inference. Pl is called side proof of this in-
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ference. Pl is also said to be a side proof of P . 2) Let
vl,.....,vs and wl,.....,ws be two lists of sequence numbers, de-
noted briefly by v and w ; assume w, éE;Kvi for i=1,....,s and
in addition 1ength(v1)=1ength(vi) , 1ength(wl)=length(wi) for
i=l,.....,8 . Let P0 be a proof in 2ZTGi/I whose endsequent S 1is
y C::;*wt , (%) é::u*wyA(x), /v;————é A(y) ; t 4is assumed to be
saturated, |t]=a .R Let Pl be a proof in ZTGi/I already at
hand of ——> W( CE) and P, another proof in ZTGi/I already

at hand of ———> R( &u*v,t) . Then

P

.0

( S

T(P,,P,)
2 *
1 a <3t , J——> a(a)
is a proof in ZTGi/I ; we denote it by P . The inference
u*w
v SR (%) ouneax), J—— A(y)

T(Pl’PZ) u*w

Q<o t o, /v———ﬁA(Q)

is called a T(Pl,PZ)—inference. Pl is called a side proof of this

inference, P2 is called the index proof of this inference. Pl is
again called side proof of P while P2 is called an index proof
of P .

Remarks: a) q and y in 2) and 3) above are subject to the usual
stipulations. b) The description of Z2ZTGi/I can, of course, be made

more precise by associating inductively with every proof in 2ZTGi/I

a type (m,i) in the same way as in chapters V, VI, c) If P is

1
a side proof of P , and if S 1is an occurence of a sequent in Pl B
then we do not consider S as an occurence of a sequent in P . Si-
milarly, if Pl is an index proof of P .

D. There is also a conservative extension ZTG/I of ZT/I whose
definition is obtained from that of ZTGi/I by means of the
following changes: a) in clause 1) in part B we permit P to be a
proof in 2ZT/I ; b) in clauses 2) and 3) P is a proof in

ZTG/I ; c¢) premiss and conclusion of a T(Pl)— or a T(Pl,PZ)—in—
ference,respectively, are permitted to contain more than one formula

in the succedent. The side proof Pl and the index proof P2, how-
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ever, are still assumed to be proofs in 2TGi/I . The theory 2ZTG/I

has been introduced for technical purposes only.
E. The main result about ZTG/I and Z2ZTGi/I 1is given by

Theorem 44: a) 2TGi/I is a conservative extension of ZTi/I ;

b) ZTG/I is a conservative extension of ZT/I,

The proof is essentially the same as that of theorem 38; one uses
thereby the fact that types (m,i) can be associated with proofs in
ZTGi/T and ZTG/I respectively.

F. For proofs P in ZTGi/I and ZTG/I, we can introduce the usual
notions such as final part, complexity of a cut, of a I-inference,

of a T(P -inference, of a T(Pl,PZ)—inference, of a fork, etc. We

1)
use all these notions without any further comment; their definitions
remain the same as before. A standard proof eg. is again a proof
whose endsequent has the form ———> A . Strictly normal standard
proofs (s.n.s. proofs) will again be the objects with which we work
most of the time. A further notion, which can be taken over without

changes, is that of substitution instance; it is again given by defi-

nition 20, sect. %.4,, chapter IV.

7.2. Remarks about the basic lemma

A. The basic lemma will be used in the form given by basic lemma II

(chapter III, sect. 3.2.). Let P be a proof in ZTGi/I , and
—> A an uppermost sequent in the final part of P and B a

formula in )Jr. The procedure described in the proof of basic

lemma II associates with B a welldetermined proof P in

1

ZTGi/I of —> B ; we call Pl the side proof determined by B
in ///—————9 A . If,in particular, )/—————> A is the conclusion of

a critical I-inference, say

ROV, (1) = A, [, =)

W( CR)’ R(q)9 /-/() —_— A(Ci)

if B is W(<C R) , then P is also called the side proof of

1
____—9‘W(<:: R) determined by this particular I-inference.
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7.3. Reduction steps for ZTGi/I

A. Now we introduce reduction steps for proofs P in ZTGi/T .
Among these we have preliminary reduction steps, induction reductions
and intuitionistic fork elimination (intuitionistic logical reduction
steps). Their definitions remain the same as in all previous chapters.
Next we have three kinds of reduction steps which are associated with
I- , T(Pl)- and T(Pl,PZ)—inferences and which are called I-reduc-

tion steps, T(Pl)—reduction steps and T(Pl,Pz)—reduction steps respeoc-
tively.

T!Pl)—reduction steps. Let P ©be a saturated s.n.s. proof in

ZTGi/I , which contains a critical T(Pl)—inference s'/s , say

R( E21.1*‘,—’3’)’ (x) C::;*vyA(x), /f;——__> A(y)

T(Pl)

R( X yora), | ——> a(a)

u*v

where Pl is by definition a proof of t:———é‘W( C::E) in ZTGi/I.
Let;hP be the side proof of —m> R( O(u*v,q) , determined by

R( o<u*v’q) according to basic lemma ITI. Let P, be a cut free
proof in ZTi which does not contain induction and whose endsequent
is yCE*Vq — > R( &u*v,y) . Let Py be the subproof of S in
P, PS' the subproof of S! in P and Pg| the result of repla-
cing every occurence of y in PS' by q ; let Sé be the endse-

quent of Pq' . Then we can replace Ps by the following deri-

vation P¥*

r, s
*' - :
yC; vq——>R(<><u*v,q) st
v cut
vy g a s (x) muvoalx), ) — A(y)
u*v = T(Pl’PZ) q
s CR qa, //——ﬁ A(X) . PS!
p— . T
J—— (x) (x) 7 '
x u*v _A(x S!
<g ¢ cut,
interchanges
_
R( X yagra)s [ —> al0)
The result of this replacement is a proof P' which is said to fol-

low from P by means of a T(Pl)-reduction step. We say that the
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T(Pl)—reduction step has been applied to the particular T(Pl)—infe—
rence above. We also say that the T(Pl)—inference is transformed by
means of the T(Pl)—reduction step into the T(Pl,Pz}inference, which

appears in the last diagram.

T!PlLEG)—reduction steps. Let us retain the notation introduced in
4

part B of sect. 7.1. and in the definition of T(Pl,Pz)-inference. In
particular, vl,.....,vs and wl,......,ws are two lists of sequence
numbers such that length(vl) = length(vi) and length(wl) = length(wi),
and such that L EE;Kvi , i=1,.....,8 . These two lists are again
denoted by v and w respectively. Let P be a saturated s.n.s.

proof which contains a critical T(Pl,PZ)—inference s'/8 , say

y <=2V, (x) = urw (). J—— a(y)

(P, ,P

1’ 2)

a Cﬁ*wt , S ——— a(a)

Here P, is a proof in ZTGi/I of —— W( CE) while P, is
a proof of ———> R( o(u*v,t) . Now to the T(Pl,PZ)

-reduction step.
First we note that the following sequents can be proved in ZTi
u*w =

without cuts and inductions: 1) g CZZR t — R( a’u*w,q) R
* * * A
2) vy 4::; Ya , q C::; Vi —_—ay 4::-; Yt . Let P be such a

proof of the first sequent and Po be such a proof of the second
sequent. Next we can extract according to basic lemma II the side

%) u*w [%a} s
proof P determined by q C::R t din S . By combining P and P

by means oi_a cut we obtain a proof Pé in ZTGi/I of

—> R( O(u*w,q) . Let again PS and PS' be the subproofs of §
and S' respectively. By ng we denote the result of replacing
every occurence of y in PS' by q : again S& denotes the end-

sequent of Pq, . Then we replace PS by the following derivation:
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w

P
.0

u*w

* *
y R 2.4 CZ:E ¢ ——y CZ:; Yt

Nrrersrtd

cut,
interchanges

y TR () uatn), @ < J—— a(y)

]
T(P,,P})
u*w u*w Pq,
SC’R Q7qC,R t, ——éA(S) .S
[
——3 Vv *
u*w )
q <:fR t, /v;————a (x) — E*w A(x) S
cut,
interchanges,
q C::E*wt, /V—————ﬁ A(q) contractions
The result of this reduction is a proof P! which is said to follow

from P by means of a T(Pl,PZ)—reduction step. We say that a
T(Pl,Pz)—reduction step has been applied to the particular T(Pl’PZ)_

inference above. The T(P P2)—inference, to which the reduction step

l 2
is applied, is said to be transformed by the reduction step into the

T(Pl,Pé)—inference, which appears in the last diagram.

I1-reduction steps. Let P be a saturated s.n.s. proof in ZTGi/I,

containing a critical I-inference, say

R(Y)’ (X) CRYA(X), f/ >A(y)
W(<Z ), R(a), /[ —> a(a)

to be denoted by S'/S . Let Pl be the side proof determined by

W( fd R) in S according to basic lemma II; its endsequent is
——W( C::R) . Then we can alter P as follows:

Pa

sevs

RO, (1) L= ), J— a(n)

T(P,)
rR(a), / — a(aq)
thinning
W< ), R(a), /7 ——> ala)
The proof P' which is obtained from P by means of this alteration

is said to follow from P by means of a I-reduction step. We say
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that a I-reduction step has been applied to the particular I-inference
above. The I-inference is said to be transformed by the reduction

step into the T(Pl)—inference, which appears in the last diagram.

B. What we actually need below are not the T(Pl)— and T(Pl,PZ)—
reduction steps themselves, but slight variants of them, called

strong T(Pl)— and strong T(Pl,PZ)—reduction steps. They are intro-

duced by the following

Definition 45: Let P be a s.n.s. proof in ZTGi/I and

i i
C<ul,......, CKUS the special function constants which occur in
i s
P . Let Pv v be the result of replacing every occurence of
ik seeeeVy ik
o (k=1,....,s) by X . An s.n.s. proof P' in ZTGi/T
uk uk*vk

is said to follow from P by means of a strong T(Pl)- (T(Pl,PZ)—)
reduction step if there are sequence numbers M EREEREA of length

1 such that P! follows from PV v by means of a
Vg

T(Pl)' (T)Pl,Pz)—) reduction step.

C. For nonintuitionistic proofs P in ZTG/I, we merely need pre-
liminary reduction steps (including "omission of a cut") and logical
reduction steps (fork elimination) which are, of course,defined in the
usual way. The only kind of nonintuitionistic proofs which will
appear (implicitely) below are almost intuitionistic proofs in the
sense of chapter III (sect. 3.1., pt. A). Such proofs appear in the
proof of a theorem (a variant of theorems 33, 41) which states among
others that an intuitionistic logical reduction step lowers the ordi-
nal of the proof to which it is applied (with respect to an ordinal
assignement to be defined below). Apart from this,nonintuitionistic

proofs will not be encountered.

D. A reduction step is called strictly essential if it is a logical
reduction step, an induction reduction, a I-reduction step, a strong
T(Pl)-reduction step or a strong T(Pl,PZ)—reduction step. A satura-
ted proof is as usual one all whose constant terms in the final part
are saturated. The notion of inessential reduction step is again gi-
ven by definition 20 (Chapter IV, sect. 4.4., pt. C). With respect

to strictly essential reduction steps we have in analogy with theo-

rem 39:
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Theorem 45: Let P be a saturated s.n.s. proof in ZTGi/I which
does not coincide with its final part and which does not admit pre-
liminary nor strictly essential reduction steps. Then there exists a
critical logical inference whose principal formula has an image in

the endsequent.
Proof: The same as that of theorem 39.

E. The notion of subformula reduction step is introduced in the same
way as in section 4.4, (part D) of chapter IV, In analogy with theo-

rem 21 we have

Theorem 21%: If P is a saturated intuitionistic s.n.s. proof in
ZTGi/I which does not coincide with its final part, and if P does
not admit preliminary nor strictly essential reduction steps, then we

can apply a subformula reduction step to P .

7.3a. Good proofs

A. In order to be able to introduce ordinals into our consideration,

N A
we introduce relations R and L whose definitions are given by de-

finitions 22 and 23 in sect. 4.5. of chapter IV. Q and 2 are
counterparts of R and L and behave very similarly; in particular,
they satisfy a slight wvariant of theorem 22, part a), which, however,
will not be needed here. Without danger of confusion,we write R and
L in place of ﬁ and f . Using definition 32 in chapter V, sect.
5.3. as it stands,we can associate with every s.n.s. proof P in
ZTGi/I the set DP of proofs and the restriction LP of L to DP'

With respect LP and DP, we have a theorem, which corresponds to

theorem 32. In order to state it,we remind that R in W( C E) is
a standard formula, whose only free variable is x and whose list of

i i
special function constants is given by (X/ul,....., Q<us .
1 s

x C::; ¥ 1is used as abbreviation for

x < kY A R( ;(u,x)/\R( O?u,y) and W( <= ;) is an abbreviation

for ( ?)(Ex)7 Cf’ (x+1) C; ? (x) . Now to the theorem.



- 202 -

Theorem 46: Let P be an s.n.s. proof in ZTGi/I of
—_— W C:;;) and assume that L is wellfounded. Let

fl,.....,fs and g Dbe numbertheoritic functions. Then we find an
m and an n with n+l <m and a proof P! in DP of

—_ ] ?w(n+l) CE*V ?w(n) where Vv denotes the system
vizfg(m) , i=1,.....,s8 of sequence numbers and where w:é(m) .

Proof: The proof is essentially the same as that of theorem 24.

This gives rise to

Definition 46: An s.n.s. proof P in 2ZTGi/I 1is said to be a good

proof if LP is wellfounded.

Definition 46a& According to theorem 46 we can associate with every

good proof P , whose endsequent has the form —————> W( C:?E) , a

continuity function ‘CP having the following properties:

if fl,....,fs and g are numbertheoretic functions, if moreover
tp(fl(m),....,fs(m),é(m))#o , then there is an n with

n+l < m and a proof P'€ D of —mm> 7] }w(rul) CE*V ?w(n)

P
where v and w have the same meaning as in theorem 46,
"CP is called the continuity function determined by P .

In connection with good proofs we again introduce the notion of gra-

ded proof.

Definition 47: An s.n.s. proof P in ZTGi/I or ZTG/I is said to

be graded if all its side proofs are good.
Remark: We note that this definition imposes no condition on the in-

dex proofs of P . Lemma 13 in chapter V remains true in the present

case as is evident to see.

7.4, Valuation of proofs

A. In order to be able to introduce ordinals into our considerations,
we need an additional concept, that of valuation of a proof. We

start with some preliminaries. By D° we denote the set of ordered
s+l-tuples of sequence numbers <fvl,.....,v vV

s’ s+1
length(vl)=length(vi) , i=1,....,8+1 holds. The partial ordering

> for which

[—° of DS ig given as follows:
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<K ®) ey X (x), X, (%) >=® </»l(t>,...,/s<t> B (8)>

iff t < x and x (t)— /? (t) for i=1,....,s+l.

Definition 48: Let P be a good proof of ——> W( <~ ) where

R is the formula R( X l,...., C( S x) . Let TP be the conti-
Yy s
. . . s
nuity function determined by P . An element e= <:vi,...,vs+l:> ED
is said to be unsecured with respect to P if 'tp(vl,...,vs+l)=0

and secured otherwise,

B. 1In connection with the concept of unsecured element with respect
to a good proof P, we use the following notation: l) if P 1is a

good proof of —————9 W( ) (with R denoting

R{ X 1,...., X s,x))y then D%(P) is the subset of D° consisting
1 Ys

of those elements e & p° , which are unsecured with respect to P ;

2) the restriction of [=° to D%(P) is denoted by T=— .

Concerning DS(P)) we have the following rather evident

Lemma 18: Let P be a good proof of ——3> W( C:?;) (with R de-

i i
noting R( O(ul,....., C<us,x)) . The restriction E::; of [ °
1 s
to DS(P) is wellfounded.
We omit the rather obvious proof.
C. Now to the concept of valuation. A valuation of a proof P in

ZTG/I 1is a function (or an assignement) which associates with every
T(Pl,Pz)—inference in P either a number e which satisfies a cer-
tain condition X ) to be explained below,or else a pair of num-
bers e , e which satisfy a certain condition /9) to be explained
below. In order to explain this concept more properly, let
vl,.....,vS and wl,.....,ws be two lists of sequence numbers, de-

noted by v and w, respectively,such that

a) length(v1)=length(vi) y iz=l,i..u,8 ,
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b) length(wl)zlength(wi) , i=1,....,8 ,
c) wﬁ_ég;Kvi , i=1,.....,8 . Let P contain a T(Pl,PZ)-inference,

say

YCE*Wt, (x) C;*WYA(X)’ //ﬁé ,A(Y)

T(Pl,Pz)
a 3™, JT—— A L,a(a)

Here P is a proof in ZTGi/I of —— W( 422;) (with R as
i

i

1

usual R( C(u e e e ey C{us,x) containing no other free variable than
1 s

—=
x ), while P, 1is a proof in ZTGi/I of — R( o(u*v,t) . Let

a valuation of P be given.

Case 1: The valuation associates with the above T(Pl,PZ)-inference
a number e . Then e satisfies the following condition )
a) e is of the form

<1521(x),...,é?s(x),}f(x);> ;7 b)) x=1 35 c) w, = 5?i(x) ,

i —K
izl,....,s 5 d) /7(o)= el .

Case 2: The valuation associates with the above T(Pl,PZ)-inference
a pair e , e, of numbers. Then e and e, satisfy the f?}lowing
condition /67) : a) e has the form <g(l(x),..., &s(x)’ /6’ (x) >
with x2>2 ; b) /?(x-l): lt] 5 ) e, has the form ;’(x—l) s
d) 4if 4i<=x-1, then there are sequence numbers wi,....,wé , depen-
ding on i and all of the same length, such that

w, é;;Kwi , i=1l,....,s and such that ET (i) ii ?he Godelnumber of
a proof P, in 2TGi/I of —————9—/?(i+1) 3" /4 (1)

(where w'! denotes the list wi,....,wé ).

There are clearly proofs which do not admit a valuation: if eag.
W= <> , i=l,....,s, then neither condition o) nor /?) can
be satisfied. If, on the other hand, P does not contain T(Pl,PZ)-in-

ferences at all, then it clearly admits a valuation, the so-called

empty valuation. Notation: Valuations are denoted by symbols such
as \T y bj’ , \f'l , lfz etc.., If Sl/Sz is a T(Pl,Pz)-lnfe—
rence in P, tpen we denote the wvalue of for this inference by

\)/(sl/sz) .
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D. Let P be an s.n.s. proof in ZTG/I provided with a valuation
\T. Let P' be a substitution instance of P or else be obtained
from P by means of a reduction step. Then we can define on P! in
a natural way a valuation WU/ in terms of \T which will be called
the valuation induced by \T on P! and denoted by '1F* . In order
to define \r* it is useful +to have three supplementary concepts
at hand, that of extension of a T(Pl,P
index of a T(Pl,PZ)
Consider two T(Pl,P

2)—inference, of data and of
-inference or a T(Pl)—inference,respectively.

2)—inf‘erences, say

YR (1) muwnalx), S a Al

T(P,,P,)
1 2 1 *w
a ot J—— 4 ,a(q)
and
Hyg !
y SRt (x) —utwt B(x), J —— A,B(y)
T(Pl,Pz) R
Ky !
' <Rt )t ——> Av,B(a)
i i
Here R denotes R( O( l,...., X s,x) , P is a proof of
ul us 1
—_— W Y and w and w' denote W,,....,W and
R 1 s

W), e, W! respectively. The second inference is said to be an
l ? s 3 y

extension of the first if wi éE;Kwi y i=l,....,8 ; it is called a

strict extension of the first if wi < KV i=l,....,s8 . The formula
i i

R( O<ul,....., C{us,x) , the list LEREERRRS and the number | t|

1 s

are called the data of the first of the above T(Pl,P -inferences

2)

and the term q is called the index of this inference. Similarly, if

a T(Pl)—inference is given, say

R( X u*V’Y)’ (X) e u*vy A(x) , //—H AN ,A(y)
T(P,) — R
R( X L xyrd)s f~—9 A ,A(q)
(with R,Pl as before and v denoting vl,....,vs),then

-
R( O<u,y) and Vy»-+++,v, are the data of this inference, while the
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term q is called its index.

Now to the definition of lf* . We distinguish cases according to

the kind of reduction step which leads from P to P' .

Case 1: P! is a substitution instance of P . Then each

T(Pl,Pz)—inference S/S' in P is transformed into a T(Pl,Pz)—in—
ference Sl/Si in P' which is a strict extension of $/S' . Then
we put \j*(sl/Si)z N(s/s) . ]T* , thus defined is certainly a

valuation.

Case 2: P! is obtained from P by means of an inessential reduc-

tion step. This is a special case of case 1.

Case 3: P! follows from P by means of a subformula reduction
step. Each T(Pl,PZ)—inference s/S! in P is transformed into a
T(Pl,Pz)—inferenoe Sl/Si in P' which is an extension of S/S8' .

We put V*(Sl/si)z V(s/s') .

Case k4: P! is obtained from P by means of an induction reduction.
This induction reduction transforms each T(Pl,Pz)—inference s/ st
into n dimages Si/Si , i=l,.....,n (with n depending on S/S'),
each of which is a T(Pl,PZ)—inference which is an extension of §/S'.

We put lf*(S/S'): \r(S/S') .

Case 5: P! is obtained from P by means of a classical fork eli-
mination. Every T(Pl,P2)—inference S/s8!' is transformed into at
most three images Si/Si , i=1,2,3 , each of which is an extension

of S/S!' . We put V*(si/si)= Y(s/st) .

Case 6: P' follows from P by means of a preliminary reduction
step or "omission of a cut". A T(Pl,Pz)—inference s/s' in P is
either left unaffected by such a reduction step or else is cancelled
out. We put V*(s/s')= V(s/s') if S/S' remains unaffected by

the reduction step.

Case 7: P' follows from P by means of an intuitionistic fork eli-
mination. This case can either be subsumed under case 5 followed by

case 6,0r else be treated directly in the same way as case 5.
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Case 8: P' follows from P by means of a I-reduction step. Each
T(Pl,Pz)-inference s/s! in P remains unaffected by this reduction

step. Hence we put xr*(S/S')z V(s/s)

Cagse 9: P' follows from P by means of a strong T(Pl)—reduction

step, applied to the critical T(P,)-inference So/Sé in P . Each

T(?l,gz)—inference s/S' in P , éifferent from SO/Sé , is trans-
formed by this reduction step into at most two images Si/Si , i=1,2,
each of which is an extension of $S/S' . We put j}*(S/S'): YV {s/s")
for such inferences. The T(Pl)—inference SO/Sé in P, however, is

transformed by this reduction step into a T(P Pz)—inference, say,

s
S*/S**, and we have to define Er* properly oi Sx/g** | Let

R((§ u,x) and vl,....,vs be the data of So/Sé and q its index.
According to the definition oi strong T(Pl)—reduction step, the data
of S*/S** are given by R( o(u,x) s Wisee..,w_  and lal , where
W, C::Kvi and where length(wi)=length(vi)+l , i=1l,....,s . gfnce we
find sequence numbers of length 1, say 5?1(1),..., &g(l), /7(1)
such that w, <=, &, (1) , i=1,....,s and such that A (0)={t].
As value of lf* for S¥*/S** we take

e= <&l(l),...., &s(l),/g—(l)> . Condition ) is obviously

satisfied by e .

l,P2)-reduc-

)-inference in P ,

Case 10: P! follows from P by means of a strong T(P
tion step. Let 50/58 be the critical T(Pl,P
to which the strong T(Pl,P

2
2)-reduction step is applied. If §/S8' 1is
AN
_a . Qt ] s
a T(Pl’PZ) inference in P other than SO/L.0 , then §/$A is
transformed by this reduction step into at most two T(Pl,Pz)-infe-
rences Sl/Si and SZ/Sé which are extensions of S/S' . We put
—
]r¥(si/si): V(s/s') . Now to S,/S. . Let R( a’u,x),vl,...,v

and |t]| be the data of SO/Sé and q its index. The strong

S

T(Pl,Pz)-reduction step transforms So/Sé into another T(Pl,Pg)—in—

ference S*/8%*', whose data are given by R( 5?11,x), wl,...,ws and
|a] where a) Wi gV i=1l,....,8 3
b) 1ength(wi)=length(vi)+l , i=1,....,s . Subcase 1: yr associates
with S_/S! a number e , say, <(:5Zl(1),..., 5?5(1),/§ (1) > .
By definition, v, <& 4 O(i(l) and ﬁ7(0)= |t} . since
wi , i=1l,.....4,8 dis a strict extension of vy s we find sequence
numbers Z21(2),....., (XS(Z) which are extensions of

X (1), eeenn, a;(l) and which satisfy w,<—= . &,(2), i=1,...s .

By defining /? (1)= {ql, we obtain an extension ﬁ;(Z) of %5 (1).
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Now we can extract from P by means of the basic lemma Ilan s.n.s.

1% *
proof P in ZTGi/I of ——> |q 523; V |t|l . Let m be the

Goedelnumber of this proof and put 27 (0)=m . Then it is evident

that e'= <o_(l(2),....., 0—(5(2),; (2)> and e"= z(l) satis-

fy condition /Q ) . Thus we may define: The value of jf'* for
S¥/S** is e',e" . The definition of ]T* on P! is thus comple-
ted. Subcase 2: \J’associates with SO/Sé _a pair of numbers, say,

<g(l(x),....., &s(x), Z(x)> and _ L; (z) . According to
condition ﬁ) »we have x2>2 , v, <y O(i(x) ﬁ(x-l): | t| and
z=x-1 . For each i=x-1 there are in addition sequence numbers

vi,.....,Vé of equal length and an s.n.s. proof Pi in
* 1
ZIGi/I of ——> B (1) c::; V' B (i+1) such that v, &=

v!
__—K i ’
i=l,.....,s and such that LS(i) is a Goedelnumber of Pi
Since W, is a strict extension of Vi i=l,.....,s, we find se-
quence numbers E;l(x+l),....., &;(x+l) which are extensions of
C(l(x),...., Ezs(x) and which satisfy w, <=4 E;i(x+l), i=l,...,s.

v
From P we can extract according to basic lemma IIan s.n.s. proof P

in 2ZTGi/I of —> [q] 4::;*V

of this proof and put g (x-1)=m . Then it is clear that

e'= <<;(1(x+1),...., &S(x+lj, /g(x+l)> and e"= Lg(x) satisfy

|[t{ . Let m be the Goedelnumber

condition %’) if we put /ﬂ (x)= /qa] . Hence wedefine: the value
of )f* for S*/8*% 4is et',e" , "V’* is thus fully defined on
P .,

E. If P is a graded s.n.s. proof in ZTG/I, then there are cer-

tain valuations of P which are of particular interest.

Definition 49: Let P be a graded s.n.s. proof in ZTG/I and V.

a valuation of P . )f-is said to be compatible with P if for
every T(Pl,Pz)—inference s/s! (whose data are assumed to be

i R
R( O(ul,....., O(us,x) P W e, Wo | t] ) the following holds:

1 s — . -~
1) if Vis/s') is e= <X (D) o( (1), /?(1)(j> , then
o2 eV (s/s)
is e= <é—(1(x),....., o—(s(x), /—g—(x)> , e'= %(x—l) , then e

is an unsecured element with respect to Pl .

e is an unsecured element with respect to P

Remark: Clause l) of def. 49 is automatically satisfied according

to our definition of "unsecured". Clause 1) has been included for
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convenience only.

Lemma 19: Let P be a graded s.n.s. proof and \I/ a compatible
valuation of P . Let P' be obtained from P by means of a preli-
minary reduction step, "elimination of a cut", (intuitionistic or
classical) fork elimination, an inessential reduction step, an in-
duction reduction or a subformula reduction step. The induced valu-
ation \f ¥ on P' is compatible with P! (which is still a gra-
ded proof) .

Proof: Is obvious from the definition of 'v’* .

Lemma 20: Let P be a graded s.n.s. proof and \Ta compatible
valuation of P . Let P' be obtained from P by means of a strong
T(Pl)—inference or a strong T(Pl,PZ)—inference. The induced valu-
ation 17* on P! is compatible with P' (which is still a gra-
ded proof).

Proof:
Case 1: P' follows from P by means of a strong T(Pl)-reduction

step. Let SO/SA be the T{(P. )-inference in P to which the reduc-

1 il i
tion step is applied; let R( X ~,....., X %,x) , v ,eee..,v and
ul us 1 s
[t] be the data of this inference. Let sl/si be the T(Pl,Pz)—
inference into which So/Sé is transformed by the reduction step.
The lemma is essentially proved if we can show that }r* asso-
ciates with Sl/Si an element e= <ijCKl(x),..., CKS(X), ﬁ7(x)/>>
which is unsecured with respect to Pl (where Pl is by assumption
a good proof). Now lf* associates with Sl/Si by definition an
element e of the form <:.C{1(l),...., &g(l), /?(1)‘:> . But such
an element is by definition unsecured with respect to Pl , hence
xf* is compatible.

Case 2: P' follows from P by means of a strong T(PI,PZ)—reduc—
tion step. Let so/s$ be the T(Pl,PZ)—inference to which the strong
i i
T(P , P )-reduction step is applied; 1let R( X 1,...., 0( s,x),
1’72 u, ug

V1yeeee.e,Vg , |t] be the data of this inference and q its index.
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ra)
' " . . , . _
Let Sl/sl be the T(Pl’PZ) inference into which So/so is trans
formed by the reduction step; let R( o(u,x), wl,....,ws and lql

its data. Assume eg. that }T associates with SO/SA the pair

e= <Rl(x),...., &s(x), /?(x)> y e'= %(x-l) . By definition,

the induced valuation 1f* associates with Sl/Si a certain pair
of the form <::é;l(x+l),..., E;s(x+l), %;(x+l);:> , ? (x) ; here
/?(x—l): lt] /?(x): |a) and %;(x) ig a Gddelnumber of a
proof P¥ in ZTGi/I of ——> [q] e ;*v | t| . Now assume
that )f* is not compatible with P' ., This implies that

< 521(x+1),....., Zis(x+1), 2?(x+l);:> is secured with respect

A
to Pl . By definition there is an n<x and a proof P & DP of
1
Kt
_— ?W‘(n+l) & Ev ;w'(n) , where v' denotes the list
Ezl(x+l),....., E;s(x+l) and where w'= /?(x+l) . By means of a

A %)
conversion we obtain from P a proof P in ZTGi/I of

¥yt
_— ﬁ (n+1) é; M /ﬁ (n) . On the other hand, 3 (n) is the
Godelnumber of a proof P** din ZTGi/I of

F—)
/§ (n+1) < E v /& (n) where v" denotes a list of sequence

numbers Vi,....,v; , all of equal length, satisfying

“ .
LA C:;Kv£ , i=1,....,8 . From P we obtain a substitution instance
wi

Pl whose endsequent is ———> 7| /? (n+l)<:::;*w ﬁ’(n) and from

P*¥* we obtain a substitution instance Pi* whose endsequent is
u*w . . . . . .
_ ﬁ (n+1) CR /g(n) . But this implies that 2TGi/I is in-
consistent and via theorem 44 that ZTi/I is inconsistent, contra-
dicting the assumed consistency of ZTi/I . The case where lf
associates with SO/S% a number <_ CXl(l),..., ‘Xs(l), /?(l)‘;>

can be treated in precisely the same way.

F. Let Po,....,Pn,.... be a list of s.n.s. proofs in ZTGi/I ,

each of which is obtained from the previous one by means of a re-
duction step, including “omission of a cut". If W;; is a wvalu-

ation of P0 , then we obtain valuations W;; of Pi by means
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of the inductive definition Wfi+1 = lfi* . In such a case we
say that ]ji is the valuation induced by WI; on Pi . As
example, consider ans.n.s. proof P in ZTGi/I provided with a
valuation w;; and let /k/—————% A be an uppermost sequent in

the final part of P (denoted by S ). Let B be a formula in J

A
and let P be the side proof determined by B in S according to

A
basic lemma II. P can be derived from P Dby means of preliminary
reduction steps and the operation "omission of a cut®. Hence there is
A
a chain P ,.....,P with P =p , P _ =P and such that P, follows
N o N i+l

from Pi by means of a preliminary reduction step or an "omission of

a cut". The wvaluation WTN induced on PN (that is on 3 ) by
_v; will be called the valuation induced by \f; on the side
proof 3 . The valuation which is induced on ﬁ by ]70 can, of
course, be described directly.AEach T(Pl,PZ)—inference s/s' in P
occurs either unaffected in P or else is omitted. The induced va-
luation i} on P is then nothing else than the restriction of
jf; to those T(Pl,Pz)-inferences S/S' which are not cancelled

out. We have the obvious

Lemma 21: ILet P be a graded s.n.s. proof in ZTGi/I , provided

with a compatible valuation lr and ,]/—————9 A (denoted by S )

an uppermost sequent in the final part of P ., Let B be a formula

in // and 3 the side proof q?termined by B in S according to
A

basic lemma II. The valuation }f induced by er on P 1is compa-

A A :
tible with P (where P is, of course, a graded proof).

G. Lemmasl9 and 20 do not include the case of a I-reduction step,
since it is not clear whether a I-reduction step transforms a graded

proof into a graded proof. We have,however,

Lemma 22: Let P be a graded s.n.s. proof in ZTGi/I provided
with a compatible valuation \]/ . Let S/S' be a critical I-infe-
rence in P , Pl the side proof determined by 5/8' . Let finally
P! be obtained from P by means of a I-reduction step, applied to
s/8' and \f“ the valuation induced by \y> on P' ., If P is
"good", then P! is graded and \f' is compatible with P' .,

The evident proof is omitted.
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7.5. Ordinals

A, Let P be a good proof of ——> W( C::;) with R denoting
R( O(il,...., O(:s,x) . As noted earlier, the restriction of
% to the set SDS(P) (denoted by E:::; ) of unsecured ele-
ments with respect to P 1is wellfounded. If e is such an element,
then we can associate with e as usual its ordinal with respect to
[:::; ; we denote it by I[eH p - The ordinal associated with

J—

U

will be denoted by [T 21f .

B. Now let P be a graded s.n.s. proof in ZTG/I and \J’ a com-
patible valuation of P . If S/S! is a T(Pl,PZ)—inference in P ,
then 177 associates with S/S‘ either a number e or else a pair
of numbers e , e; > satisfying conditions CX) or ﬁ)), respecti-
vely. In both cases e 1is by definition an unsecured element with
respect to the good proof Pl . The ordinal f{ el Pl will be called
the ordinal associated by lr‘ with S/8' and will be denoted by

0 v (s/s') .

C. The set of proofs in ZTGi/I is denumerable and so is the set
of good proofs. Hence there is a smallest denumerable ordinal ;%
. . . u
having the property: if P 1is a good proof of ——m—> W( C:?R)
i i
(with R for R( o(ul,...., o(us,x)) then /{J:; I/<;. We denote
1

s
this smallest ordinal by Q) .

D. Given a graded s.n.s. proof P in ZTG/I provided with a compa-
tible valuation ‘V/ , We can associate with every sequent S in P
a certain ordinal (depending on Avh ) which we denote by O( \j'/S)

and whose inductive definition is given as follows:

1) if S is an axiom, then Of );‘/S)=l ; 2) if S 1is the con-

clusion of a conversion or a one-premiss structural rule S/S', then
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O( )f’/s)=o( ]f‘/s') 5 3) if 8§ 1is the conclusion of a one=premiss
logical inference S'/S, then 0f )f//s)=0( )T /st) # 1 ;

L)y 4if S is the conclusion of a two-premiss logical inference
$,,8,/8, then Of V /s)=0( ) /8,) # of 17'/52) # 1

5) 4if S is the conclusion of a cut sl,sz/s , then

o( V' /s)= w (o V' /s)) #0( V /s,)) where a=n(s))-n(s) ;

6) 4if S is the conclusion of an induction 8'/S, then

of V /s)= w (o V' /s')w ) where d=h(s')-n(s) ; 7) if S is
the conclusion of a I-inference S'/S, then

o( V' /8)= w (o V /st) # @ 1) w0 £5*1) nere  d=n(st)-n(s);
8) if S 1is the conclusion of a T(Pl)-inference S'/S , then

o( Y /s)=w 4((of Vi/s)y# w <X+1) w X+l) where d=h(S')-h(s)
and X = !IE::; ll; 9) 4if S is the conclusion of a T(Py,P,)-
inference §'/S, theén o( ) /S)= w (o Vi/s) # w %'“L)AO g+l
where d=h(s')-h(S) and § =0 )y(S'/S) . The ordinal of the end-
sequent of P 1is called the ordinal of P and will be denoted by

o} )y(P) (indicating its dependence on ) )

E. With respect to this ordinal assignement we have the following

Theorem 47:

A. Let P be a graded s.n.s. proof in ZTG/I and 17‘ a compatible
valuation of P . Let P' be obtained from P by means of a reduc-
tion step and V/* the valuation induced by \; on P' ., Then

0 Py <o xf(P) if the reduction step in question belongs to
the following list: 1) "Omission of a cut", 2) a classical fork
elimination, 3) an intuitionistic fork elimination, h) an induc-
tion reduction, 5) a strong T(Pl)-reduction step, 6) a strong

T(Pl,Pz)—reduction step.

B. If P! is a substitution instance of P or follows from P by

means of a preliminary reduction step then O W)/*(P') =0 17(P)

Proof: a)The proof of clauses 1)-6) and of the last part of the theo-
rem leads to exactly the same inequalities as in earlier cases. The
proof of 3), in particular,uses the fact that an intuitionistic fork
elimination is composed by a classical fork elimination plus some
preliminary reduction steps. Hence 3) is reduced as usual to l),2)
and part B. b) Next consider the case where P' follows from P
by means of a T(Pl)—reduction step. Let S/S' ©be the T(Pl)—infe—
rence to which the reduction step is applied and let Sl/Si be the
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T(P P2)—inference into which S/S' is transformed by means of the

l,
reduction step. By definition, »r(S/S')= ”E::; | (for some suita-
1
ble s) and lf*(sl/Si)= el p where e 1is an element in the
1

domain Ds(Pl) of E::; . By definition, |el P, <:}]E::SPlll-

1
If we put el P = X , ] E::SP I = » then the proof of 5)

1 1
leads again to the verification of the inequality

w (XFm #w>‘+l)w Ml oy oo 2) <w ((of 4 @ }*1) w ) which
in turn is a consequence of the inequality E :
Wt #tw )y wl# o ¥ n)<w (X H#o ™Y w ) (ror an1
y « and all finite m,n,d ) which is proved in chapter II,

sect. 2.5,, part C. c¢) Finally, let P' be obtained from P by
means of a T(Pl,Pz)—reduction step. Let §S/S' be the T(Pl,PZ)—in-
ference, to which the reduction step is applied,and let Sl/Si be
the T(Pl,sz)—inference into which §/S' 1is transformed by the re-
duction step. Assume gg. that xr associates with §/8!' the pair

e , el and that \; ¥ associates with Sl/Si the pair e' , ei B
By definition of 17,* it follows that e! E::s e holds. By assump-

tion and according to lemma 20,it follows that e E::sp e holds.
1

Hence, f[e'|] P, < Hellpl . The verification of 6) again amounts to
the proof of

wd((d#m#c{)‘*l)w A+l g o # 2) w ((of # w Vily o VALY Lien
Il ey P, =X, ley P, " v , which in turn is a consequence of

the inequality E . The situation is precisely the same in the case

where lr associates with S/S' a single number e .
If P! follows from P by means of a I-reduction step then it is
not clear whether P! is again a graded proof. However, we have

Theorem 48: Let P be a graded s.n.s. proof in ZTGi/I , provided
with a compatible valuation )7 . Let s/S! be a critical I-infe-
rence in P and assume that P! is obtained from P by means of a

I-reduction step, applied to §/S' . Let $;/8{ be the T(P;)-
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inference into which §/S! is transformed by the reduction step, and
let \f* be the valuation induced by \I— on P' , If the side prod
P, of S/St in P 1is good, then P' is graded, \f * is compa-

tible with P! and O V*(p')<o V(P) .

Proof: That P! is graded and W/’* compatible with P! is sta-
ted in lemma 22. By definition O \f'/S')= Odd((ixz#édll+l)£d 13'+1)
where & =0( V /8) . similarly, o( \J */8])= w ((X# %+1)w%+l»
where % = [/E::; . By definition,%-<:_f2_. The proof of the

theorem amounts to lproving o( \f‘*/Si) << 0o( )V /8) which,in turn,is
a consequence of the strict monotonicity of azd((m # )Gl) w X+l)

as function of x .

7.6. The wellfoundedness proof

A. Theorem 4L9: Let P be a graded s.n,s. proof in ZTGi/I , provi-
ded with a compatible valuation \r . Then LP is wellfounded.
Proof: We proceed by transfinite induction with respect to

-0 xr(P) . There are three subcases to be distinguished: A} P is
saturated and does not admit preliminary reduction steps, B) P is
saturated but preliminary reduction steps can be applied to P ,

C) P 1is not saturated and preliminary reduction steps can be app-
lied to P . We content ourself with the proof of A). Cases B) and

C) are easy consequences of case A) and can be treated in the same
way as the corresgponding cases B,C in, say, theorem 35. Case A) is
proved if we can show: if L(P,P') holds, then Ly, is wellfoun-
ded. In view of the assumptions stated under case A), this is the same
as to prove: if P' follows from P by means of a strictly essen-
tial reduction step or a subformula reduction step, then LP' is well-
founded. Subcase 1: Let P' be obtained from P by means of a
strictly essential reduction step different from a I-reduction step
or by means of a subformula reduction step. Let »r* be the wvalu-
ation induced by Lr on P! , According to theorem 47 we have

0 S(Pr)y<Zo ET(P) i hence L,, is wellfounded. Subcase 2: Let

p! be obtained from P by means of a I-reduction step. Let S/S!'

be the critical I-inference in P to which the reduction step is
applied and P, the side proof determined by s/S' (in P). Accor-

ding to its construction, described in basic lemma II1, Pl is deri-

ved from P by means of preliminary reduction steps, including the
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CaY
operation "omission of a cut". Let XT be the valuation induced by
V' on Pl . According to theorem 47 it follows that
o {}(Pl) << 0 mr(P) holds. From the inductive assumption of our trans-

finite induction it follows that LP is wellfounded, that is, that
Pl is good. The proof P! is there%ore again a graded proof, and
the valuation Y * idinduced by VY on P' compatible with P!' ,
as follows from lemma 22. From theorem 48 we conclude that

o] \f*(P')<:()1f(P) holds; hence L,, is wellfounded. By combining
subcase 1 with subcase 2 we infer the wellfoundedness of LP . This

proves case A and thus essentially the whole theorem,

An immediate consequence of the above theorem is

Corollary: If P is an s.n.s. proof in ZTi/I then LP is well-
founded.
Proof: We can treat such a proof as graded proof provided with the

empty valuation.

7.7. Remarks on applications

From the last theorem and its corollary we could again deduce theo-
rems 23, 24, 25 (but restricted to ZTi/I ). However, the method des-
cribed in the last three chapters has a much wider range of appli-
cations and so we postpone the discussion of applications to the next

chapters.



CHAPTER VIII:

Harrop formulas

In the present chapter we generalize the results obtained in chap-
ters IV - VII by using some quite elementary combinatorial conside-
rations which are intimately connected with basic lemmas I and II.
The main applications of our methods, which we have obtained so far,
are results of the form: "if ———> A VB has been proved (in some
suitable theory) then there is a proof of ———> A or ——> B ",
‘etc.. Now we generalize these results and prove theorems of the fol-
lowing kind: "if Al,.....,As are formulas belonging to a certain
class C of formulas (yet to be defined) and if Al,....,As —> AVB
has been proved (in some suitable theory),then there is a proof of
Al,....,AS —> A or of Al,....,AS ————> B" , The above-mentioned
combinatorial arguments can be combined either with the methods des-
cribed in chapter IV or else with the methods described in chapters
V - VIT. It turns out that the results obtained in the second case
are much stronger than those obtained in the first case. This makes
it evident that the methods described in chapters V - VII are more
substantial than those described in chapter V; other arguments in fa-

vour of this statement will be given in the last chapter.

8.1, TIntuitionistic number theory and Harrop formulas

A. To start with, let us introduce a class of formulas, called the
class of Harrop formulas and denoted by M . The inductive definition

of M is given by

Definition 50: a) prime formulas belong to M ; b) if A dis in
M, then (X)A and ( X )A are in M ; ¢) if A and B are in M
then A N\B 1is in M

5 d) if A is in M and B is arbitrary,

then B “O2A dis in M ;, e) for arbitrary A , ~JA is in M .

Remark: From now on we call a formula closed if it does not contain

free variables nor special function constants.

In connection with the above definition we note the obvious

Lemma 23: 1) If A DB is in M, then B&E M ; 2) if AABEM
then A EM and BEM ., 3) if ( X)a( X) EM, then A(F) €M
for any functor F free for X in A ; U4) if (x)A(x) € M then
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A(t) €M for every term t free for x in A . The first who re-
cognized that the formulas of M play a certain role in the theory
of intuitionistic systems was R. Harrop. In £2] he proved certain
results for a Hilbert-type version of intuitionistic number theory.
We formulate his result in terms of sentential calculus, using our
version of intuitionistic number theory, namely ZTi ., In this lan-
guage Harrop’s result can be stated as follows: a) if Al,.....,AS
are closed formulas in M and if A, B are closed formulas such
that 2ZTi I Ajreeens,d —> A V' B holds, then

ZTi AjseeeasyA —> A or ITi + AjreenanA —> B ; 2) if
ZTi b Alveersd — (B ? YA( ? } holds with (E ? ya( ; }» a
closed formula,then ZTif A,.....,A  — > A(F) for some functor
F free for ; in A c) similarly, with Ex in place of E ;
and a term t in place of F . We will refer to this result hence-
forth as Harrops result. In [8] we gave a proof of Harrops result
using the techniques which Gentzen introduced in [l] . In the mean-
time, however, it turned out that there is a much more elegant proof of
this result which shows clearly the close relationship between Harrop
formulas and Gentzens reduction techniques. This proof will be given

below.

B. In order to reformulate Harrops result in such a way as to be

easily accessible to Gentzen techniques, we need the following

Theorem 50: Let T ©be any of the theories considered so far, that

is,any of 2T , 2Ti , 2T/I , ZTi/I ,.... or any of the conservative
extensions ZTE/IIN , ZTEi/IIN , ZTEi/I1 , ZTE/II ,.... etc. Let
Al,.....,As be formulas without free variables. Then

Ty, = A .eenn, —> A o — A iff

ThA,.c.iha, | ——=> &0 .

Proof: The implication from right to left is obvious. Let P be a
proof in T, —> Al"""’ —————9-As of //i————f> A . Then one

proves by an almost trivial induction (starting with the axioms):
if /“' —> A ' 1is a sequent in P, then

T F Al"""As’ ' ———> A ' . The statement then follows by
taking for }/' ——> A ' the endsequent of P

This theorem allows us to reformulate Harrop% result in the following

form
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Theorem 51: Let A ,....,AS be closed Harrop formulas and

A, B, (E ?-)C( ;') arbitrary closed formulas. a) If

ZTi, ——> A ,...., — > A F ——> AV B, then

ZTi, —— Al""’ —_— As F——> A or

ZTi, ——> A}, ..., ——> A_ f—> B

b) if ZTi, —> Ajyereey ——> A F —> (E ?’)c( ?’), then
there is a functor F free for ?’ in ¢ ) such that

ZTi, ——> A,...., — Al F——> C(F) ; c¢) similarly,with
Ex and a term t in place of E and F , This in turn is a con-

sequent of

Theorem 52: Let Al,....,As be closed Harrop formulas such that
_— Al,....., _— As, ZTi is consistent. Then a), b), c) of
theorem 51 hold. If —— Al"""’ —_— As, ZTi is inconsi-

stent, then ————> is provable and so a), b), c) of theorem 51
hold trivially. So it remains only to consider the case where

—> A —_— AS,ZTi is consistent. Here we make use of the

reee
tertium non datur, which could be avoided without difficulty; howeves

its use simplifies the considerations below.

€. Next, let T Dbe any of the systems considered so far
(Qg. ZTE/II ) and Ti its intuitionistic version (that is,
ZTEi/II ) . Let A ,....,As be closed Harrop formulas. By

1

T(A e aeay A ) we denote the system which we obtain by addition of

1 s
E—— Al""" — AS as new axioms to T , correspondingly by
Ti(Al,....,As) the system which we obtain by adding
_— Al""" —_— As as new axioms to Ti .
Definition 51: The Harrop hull HTi(Al,....,AS) of Ti(Al,....,AS)
is obtained from Ti(Al"""’As) by adding to it every sequent S
as a new axiom which satisfies one of the following conditions:
a) S is ———> B and B 1is a Harrop formula such that
Ti(Al,....,As) f ——> B, b) 8§ is A ————> B and B is a
Harrop formula such that Ti(Al,....,As) fF —— A OB ; c) S is
A —> and Ti(Al,....,As) b ———> T1A . The Harrop hull
HT(Al,....,AS) of Ti(Al,....,As) is obtained from T(Al,....,AS)

by addition of every sequent S which satisfies a), b) or C) above.

Remark: A sequent S which satisfies one of the conditions a), b)

or c) above is called a Harrop axiom (with respect to Ti(Al,...,As)).
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In connection with the above definition we note

Lemma 24: Let S be a Harrop axiom and assume that S 1is a sequent
of the following list: 1) —> ( ;')B( %—) , 2) ——> (x)B(x) ,
3) —>aAaAB, 4) —>a>B, 5) —> 1 A . If S is

the i-th sequent in the above list then the i-th sequent in the list
below is also a Harrop axiom: l) —_— B(F) , F a functor free
for l?- in B, 2) ——> B(t) , t a term free for x in B
3) ——> A and —— B, 4) A—> B, 5) A—m>

?

Proof: S, having the form -——> G , can only be a Harrop axiom in
virtue of clause a) of definition 51. In particular, G must be a
Harrop formula. With the aid of this observation the statement imme-
diately follows from the definition of Harrop formulas (in particular

lemma 23) and from definition 51.

Systems of the form HT(Al"""As) will be called Harrop systems,
those of the form HTi(Al,....,As) are called intuitionistic Harrop
systems. If eg. Ti is ZTEi/II , then HTi(Al,.....,AS) is the

theory obtained from ZTEi/II by adding to it every sequent S as
new axiom, which satisfies one of the clauses a), b) or c¢) in def.51.

The following theorem is evident.

Theorem 53: a) HTi(Al,....,As) F s iff Ti(Al,....,As s,
b) HT(A;,....,A ) b s iff T(A;,....,A ) F s.
In other words, HTi(Al,....,AS) and HT(Al"""As) are conserva-

tive extensions of Ti(A ...,As) and T(A .o,As) respective-

10" 10

ly.

D. With respect to Harrop systems,we can introduce the notion of fi-
nal part as usual: 1) the endsequent of a proof P is in its final
part; 2) 4if S is in the final part of P and if S is the con-
clusion of a conversion or a structural inference,then the premiss(eQ
of this inference belong to the final part. An inference is called
critical if it is neither a conversion nor a structural rule and if
its conclusion belongs to the final part. Preliminary reduction steps
and the operation "omission of a cut" can be introduced for proofs

P with respect to Harrop systems in the usual way. An indispensable
tool for the present section and the whole chapter is the basic lemma

IT , which in the present context reads as follows:
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Basic lemma II_.: Let HTi(A ..,As) be an intuitionistic Harrop
Il

Yoo
system and P .a proof in it% Assume that the endsequent of P has
the form ———> A . Let Sl"""’sm be the uppermost sequents in
the final part of P , listed from left to right; 1let Si be

f; _— Bi , i=1,.....,m . a) If i<<m, then there is a proof
P, in HTi(A;,.....,A) of ——> B, ; b) if B occurs in )},
then there exists a proof P' in HTi(Al,.....,As) of -—> B .
The proofs Pi and the proof P! can be derived from P by means

of preliminary reduction steps, including at least one "omission of a

cut",
Proof: Word by word the same as that of basic lemma II.
Remark: The proof P! associated with B in Sj is welldetermined

by B (and Sj ) according to the construction described in the
proof of basic lemma II. We call P! the side proof determined by

B in Sj .

E. Now let Al,.....,As be arbitrary but fixed closed Harrop formu-
las. Throughout what follows we make the

Assumption: ZTi, —— Al,....., _— AS is consistent.

From theorem 53 we conclude

Lemma 25: HZTi(Al,....,AS) is consistent,.
Notation: The theories HZTi(Al,....,As) and HZT(Al,.....,AS)

will be denoted by HZi and HZ respectively.

For HZ and HZi we can introduce the whole complex of notions in-
troduced in connection with 2ZT . That is, the following notions can
be introduced without any changes in exactly the same way as before:
l) complexity of a cut; 2) of an induction; 3) height of a se-

quent in a proof; 3) fork I,,1,,1 L) fork elimination (clas-

s
sical logical reduction step); 35) gntuitionistic fork elimination
(intuitionistic logical reduction step); 6) induction reduction;

7) saturated proof; 8) substitution instance; 9) inessential re-
duction step; 10) subformula reduction step; 11) preliminary re-
duction step; 12) strictly normal standard proof (s.n.s. proofs).

To this 1list of concepts we add a new one, more precisely we intro-

duce a new kind of reduction step, to be called "H-reduction step"
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with H indicating that the reduction step has something to do with
Harrop formulas.Prior to the definition of H-reduction step we note
an important lemma which connects the basic lemma IIH with the Harrop

axioms.

Lemma 26: Let P be a standard proof in Zi (that is having an end-
sequent of the form ———> C). Let A ———> B be a Harrop axiom in
the final part of P . Then ———> B 1is a Harrop axiom.

Proof: By assumption, A ——> B 1is an uppermost sequent in the
final part of P . Case a: A ———> B 1is the rightmost one among
the uppermost sequent in the final part of P . Then P , being a
standard proof, has necessarily the endsequent ——> B . Hence,
HZi  ———> B and so 2i  ————> B by theorem 53.

Case b: A ———> B 1is not the rightmost one among the uppermost

sequents in the final part of P . According to basic lemma IIH,there
is a proof P! in HZi of ———> B; hence Zi b ———> B accor-

ding to theorem 53.

On the other hand,it follows from the inspection of definition 51
that B is a Harrop formula. Hence, by combining this with cases a)

and b), we obtain the lemma.

Now to the description of H-reduction step. Let P be an s.n.s.
proof in HZi and S a Harrop axiom in the final part of P ha-
ving the form f/’—————> G where }/ contains at most one formula.
Then we can apply to P a certain syntactical transformation, depen-
ding on the form of G . The specific form of this transformation is

given by the clauses A-F below.

A) 5 dis —> ( )B(/% } . By lemma 26 ——> ( F.)B( ?') and
hence ———> B(CK ) are Harrop axioms. So we can replace S in P

by the following derivation:

—> B( X))

—77\/ B eventually followed by a

f/————9 ( %')B( ;’) thinning,
where o 1s a suitably chosen free variable.

B) s is —— (x)B(x) . Then we proceed in the same way as under
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A), but with a suitably chosen free individual variable vy 1in place

of X .

C) s is /vi————-Q A ANB , By lemma 26 ———> A N\B and hence
———> A and ———>» B are Harrop axioms. Hence,we can replace S

by the following derivation:

A B

/N , eventually followed by a
)/ > A AB thinning.

D} S is //—ﬁADB.By lemma 26 ————> A T>B is a
Harrop axiom and by definition 51, clause b), A ——> B 1is also a

Harrop axiom. Hence we can replace S by the following derivation:

A —> B

— , followed eventually by a
)/ > A OB thinning.

E) S8 is //;————9 1A . By lemma 26 ———— 1A is a Harrop
axiom and by definition 51, clause c), A ——> is a Harrop axiom.

Hence we can replace S by the following derivation:

A —>

> ] , eventually followed by a
)/’ — 7 A thinning.

F) s is /J;————9'p=q and )// not empty. Then —————> p=gq is a

Harrop axiom and we can replace S by the following derivation:

—> p=4q

thinning.

[/——ﬁ p=9q

The proof P' which one obtains by applying to P any of the trans-
formations described under A) - F)} is said to follow from P by
means of an H-reduction step. We say that the H-reduction step is

applied to the Harrop axiom S

It is svident that there is no infinite chain of proofs Po’Pl"""

such that Pi+l follows from Pi by means of an H-reduction step.

We even can find an upper bound N in terms of PO with the proper-
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ty: if Po,....,P is a chain of proofs in HZi such that P,

s i+l
follows from Pi by an H-reduction step and such that no such re-
duction step is applicable to Ps then s é;N . An important proper-

ty of H-reduction steps is described by the following

Lemma 27: Let P be a saturated s.n.s. proof in HZi which does
not admit any H-reduction step. Then every sequent S in the final
part of P is either a true prime sequent or else a mathematical

axiom D ————> D' , D isomorphic with D' .

Proof: Assume the lemma to be false. The sequent § which violates
the lemma must then by mnecessity be a Harrop axiom, We show that a
contradiction arises and distinguish cases according to which clause
of definition 51 S is a Harrop axiom. 9§§§_§i S is ——> B
with B a Harrop formula such that 2Zi  ————> B . If B werenot
a prime formula, then B would contain as outermost logical symbol
either a propositional connective A\, 7], 2>, or else a universal
quantifier applied to a functional variable or an individual variable.
In any case,we could apply an H-reduction step to S , contradicting
the assumption. Hence B is a prime formula p=q and, since P is
a saturated proof, both p and q are saturated. Since 2i is con-
sistent by assumption,it follows from theorem 53 that |[p| = [q]
holds; hence S 1is a true saturated prime formula, contradicting the
assumption about S . 9§§§_Pi S is A —> B and
ZiF ————> A 2> B . From lemma 26 it follows that ————> B is a
Harrop axiom, that is, Zif} ———> B . As under a),it follows that B
cannot contain a logical symbol. Hence B must be a saturated prime
formula p=q . From lemma 26, the assumed consistency of Zi and
theorem 53, we conclude that |[pl = |q| must hold, contradicting the
assumption about S . Case ¢c: S is A — —— and Zil —— A
holds. Since S 1is an axiom in the final part of P, it is an upper-
most sequent in the final part of P, and so we can infer from basic
lemma IIH that there exists a proof P¥ in HZi of ————> A.
Since HZi is a conservative extension of Zi, this contradicts

Zi F ————> 7] A and the assumed consistency of Zi .

F. Now we associate with every formula A inductively a natural
number, called its degree and denoted by d(A) . a) If A is
prime, then d(A)=1 ; b) d(AA B)=d(a)+d(B)+1 ; ‘

c) d(aB)=d(a)+d(B)+1 ; d) da(a “>B)=d(A)+d{(B)+1 ;

e) d( TA)=d(a)+1 5 £) a((x)a(x))=a(a(x))+1 ;
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) a(( F)a( FN=a(alx )+ 5 n) a((e F)al F))=a(alx))+1 ;
i) d((Ex)A(x)):d(A(x))+l . After this, we associate with every se-
quent S in a proof P din HZ inductively an ordinal <:£O . The
inductive clauses in the definition of this ordinal assignement are
invariably given by clauses 2) - 6) in section 2.4., part A of chap-
ter II. Only clause l) has to be replaced by another one, to be deno-
ted by l*). In order to state l*) explicitely, let S be an axiom in
P . Clause 1*%) is then given as follows: 1) if S |is }/:—————> 5
then o0(s)=1 ; 2) if s is | ——> B, then 0(S)=d(B) . As or-
dinal of P we take, as usual,the ordinal associated with its endse-
qQuent; it is denoted by O(P) . The reason for replacing 1) by 1%) is
given by

Theorem 5k4: If P and P! are s.n.s. proofs in HZi such that P!
follows from P by means of an H-reduction step, then O(P')=<C 0(P).

Proof: Let S be the Harrop axiom in P to which the H-reduction
step is applied. We treat two representative cases; all other cases

are equally trivial to treat.

Case 1: S is )J———%A OB . By definition 0(8)=d(A)+d(B)+1 .

The H-reduction step amounts to replace in P +the sequent S by the

derivation
A —>B
> eventually followed by a
[/ 5> AT B thinning,

where A ——> B is again a Harrop axiom by lemmas 26 and 24. The
theorem is essentially proved if we can show that the ordinal of
//—————9 ADOB in P! is not larger than the ordinal of
//;————% A_>B 4in P . The first,however,is by definition
d(B)# 1 , that is, d(B)+1 , while the second is d(A)+d(B)+1 , that

is,larger than the first one.

Case 2: S is //;————9 "1 A . The reduction step replaces S in P

by the derivation

A —>

\1 , Plus eventually a thinning.

J——> Ta
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The ordinal of S in P is d(A)+1 by assumption, the ordinal of
S in P! is 1,##'1, that is, 2 , hence not larger than the ordinal
of 8 din P .

Concerning the other reduction steps,everything remains the same as

in chapter ITI, that is,we have

Theorem 55: A) Preliminary reduction steps and inessential reduc-
tion steps do not increase the ordinal of the proof to which they are
applied. B)} Fork elimination (classical and intuitionistic),
"omission of a cut" and induction reductions lower the ordinal of the
proof to which they are applied. C) A subformula reduction step

lowers the ordinal of the proof to which it is applied.

The proof is the same as usual and can be omitted. On the purely

syntactical level we also have

Theorem 56: Let P be a saturated s.n.s. proof in HZi which does
not admit preliminary reduction steps, H-reduction steps, induction
reductions and fork elimination. If P does not coincide with its
final part, then there is a critical logical inference whose princi-
pal formula has an image in the endsequent; hence a subformula reduc-

tion step is applicable to P .

Proof: Since no H-reduction step is applicable to P, it follows
from lemma 27 that every axiom in the final part of P is either a
true saturated prime sequent, or else of the form D ——> D' with
b, D! isomorphic. Since no preliminary reduction step is applicable
to P, we conclude that only true prime sequents can occur as axioms
in the final part of P . Since P 1is saturated and no induction re-
duction is applicable to P, it follows that P does not contain a
critical induction inference. Hence,the only critical inferences in

P are the logical ones. Now we proceed in exactly the same way as in

the proof of theorem 2 in [8].

G. Now we come to the proof of theorem 51. In virtue of theorem 53,

theorem 51 is proved if we can prove

Theorem 56: a) If A,B are closed formulas such that
HZi } ——> A VB then either HZi F ——> A, or else

HZi | ———5 B . b) if (B ; ) A( ; ) is a closed formula such
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that HZi t —— (E ; Ya( % } then there is a functor F free for
; in  A( % ) such that HZi  ——> A(F) holds. ¢) Similarly
as in b), but with (Ex)A(x) in place of (E }‘ Ya( ? ) and a term t

in place of F .

Proof: We prove b) . The proofs of a),c) are practically the same.
Hence let P be a proof in HZi of ———> (E })A( %) . Without
loss of generality we can assume that P 1is strictly normal and sa-

turated (since (E 2’)A( %-) is closed). Let us call reduction chain

every finite or infinite sequence of proofs Po,Pl,.... having the
following properties: 1) P0=P ; 2) each Pi is an s.n.s. proof
in HZi ; 3) Pi+l follows from Pi by means of a preliminary re-

duction step, by an H-reduction step, an induction reduction or an
intuitionistic fork elimination. Then it follows from our considera-
tions above (in particular theorem 56) that no infinite reduction
chain exists. Hence there exists a finite reduction chain

Po,Pl,.....,P having the property: no reduction step other than a

N
subformula reduction step is applicable to PN . By induction with
respect to 1 , using thereby the consistency of HZi , one proves
that P, and hence P has the same endsequent as P , namely

i
— (E ;?)A( ;') . From theorem 56 we infer that a subformula re-

duction step is applicable to PN . The result of this subformula re-

duction step must by necessity be a proof P! in HZi of
—_— A(F) for a certain functor F, free for ?- in A( ;') and

determined by P_ . This proves b) of our theorem. Statements a) and

N
c) are proved in the same way.

8.2, Harrop formulas and the theories ZTi/II_ and ZTEi II\VT

A. In this section, we consider only a special type of Harrop for-

mulas, namely those given by the following

Definition 52 By MT we understand the set of those Harrop formu-

las which are classically true, whereby the truth of formulas contai-
ning special function constants is reduced to the truth of those

without special function constants via definition 33.

If we restrict our attention to formulas belonging to MT, then we
can extend the considerations of the previous section in an almost

straightforward way to the theories ZTE/IIN and ZTE/II . It is the
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purpose of this section to extend the considerations of the previous
section to the case where ZT and ZTi are replaced by ZTE/IIN

and ZTEi/IT respectively, and where the class of Harrop formulas to

N 4
be considered belongs to the subset MT of M

B. For the time being , let Al,....,As be arbitrary closed
Harrop formulas. Then ZT/II&(Al,....,AS) denotes by definition the
theory obtained from ZT/IIN by addition of ——> Al,..., e As

as new axjioms. Similarly, ZTi/IIN(Al,....,As) is the theory obtained
from ZTi/IIN by addition of ——> A ,...., —_— AS as new
axioms; ZTi/IIN(Al,....,As) is,of course,nothing else than the in-
tuitionistic version of ZT/IIN(Al,....,AS) .

From ZTi/IIN(Al"""’As) we can pass to a conservative extension
ZTEi/IIN(Al,....,AS) by addition of two new inference rules, Ti(P)
and Ti(P,Pl,m) , which have been introduced in part B of section
4,1, of chapter IV. The formal definition of the rules Ti(P) and
Ti(P,Pl,m) remains the same as in part B of section 4,1,, with the
following exception: a) the side proof P in Ti(P) is now as-
sumed to be a proof in ZTi/IIN(Al,....,AS) , b) the side proofs
P, Pl in Ti(P,Pl,m) are now assumed to be proofs in

ZTi/IIN(Al,....,AS) .

Similarly, we can introduce the conservative extension

ZTE/IIN(Al,....,AS) of ZT/IIN(Al,....,AS) by adding to
ZT/IIN(Al,....,AS) the two new rules Ti(P) and Ti(P,Pl,m) ;
again P, Pl range now over proofs in ZTi/IIN(Al,....,AS) . Corres-

ponding to theorem 14 we have

Theorem 57: a) ZTEi/IIN(Al,....,
ZTi/IINAl,....,AS) . b) ZTE/IIN(A
tension of ZT/IIN(Al,....,AS)

A ) is a conservative extension of
s

....,A ) is a conservative ex-
1’ s

The proof of this theorem is a mere copy of the proof of theorem 14,
By specializing definition 51 to the case where T and Ti are
ZTE/IIN(Al,....,AS) and ZTEi/IIN(Al,....,AS)> we obtain their
respective Harrop hulls to be denoted by HZTE/IIN(Al,....,AS) and
HZTEi/IIN(Al,....,AS), respectively. The notion of Harrop axiom

(with respect to ZTEi/IIN(A ..,As) now) is again given by the

1’
remark following definition 51; lemmas 24 and 26 remain,of course,

true in the present case. Clearly we have
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Theorem 58: a) HZTEi/IIN(Al,....,As) is a conservative extension
of ZTEl/IIN(Al,....,AS) and hence of ZTl/IIN(Al,....,AS) ;
b) HZTE/IIN(Al,....,AS) is a conservative extension of

ZTE/IIN(Al,....,As) and hence of ZT/IIN(Al,....,AS) .
It is also clear that HZTEi/IIN(Al,....,AS) is nothing else than
the intuitionistic restriction of HZTE/IIN(Al,....,AS) .

For proofs P in HZTE/IIN(Al,....,AS) we can, of course, introduce
the notions "final part", "omission of a cut" and "preliminary re-
duction step" in exactly the same way as in all previous cases.
Throughout this section we will use basic lemma IIH for the spe-
cial case where HTi(Al,....,AS) is HZTEi/IIN(Al,....,As) . If in
particular f/—————ﬁ A 1is an uppermost sequent in the final part
of a proof P in HZTEi/IIN(Al,....,AS) , if B is a formula in ) ,
if P' is the welldetermined proof of —> B , whose existence is
stated in basic lemma IIH ,
—> B determined by B in }¢—_____> A

then we call P! the side proof of

C. From now on Al,.....,AS are fixed, closed Harrop formulas which

satisfy the

Assumption: A_,....,A are classically true.
Assumption: 1 s

In order to avoid the steady use of the clumsy notation
HZTEi/IIN(Al,....,AS) and HZTE/IIN(Al,....,AS), we denote the first
theory simply by HZEi , the second by HZE . The theories
ZTE/IIN(Al,....,As) and ZTEl/IIN(Al,...
will be denoted simply by ZEi and Z2E .

.,As) on the other hand

Next, we can carry over without the slightest changes the whole body
of concepts introduced in chapter IV for ZTE/IIN and ZTEi/IIN,
respectively, to the present case. A list of concepts, which can be
defined for proofs P in HZE and HZEi, respectively, using the
same definitions as in chapter IV, is given in what follows:

l) complexity of a cut; 2) of an induction; 3) complexity of a
II -inference; L) of a Ti(P)-inference; 5) of a Ti(P,Pl,m)—in—
ference; 6) height h{(S) of a sequent S in P ; 7) fork

11,12,13 M 8) fork elimination (classical and intuitionistic);
9) induction reduction; lO) canonical IIN—reduction step,
11) canonical Til-reduction step; 12) canonical Ti2—reducti0n
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step, 13) saturated proof; lh) preliminary reduction step;

15) inessential reduction step; 16) subformula reduction step;

17) preliminary reduction step; 18) strictly normal standard
proof (s.n.s. proof). With respect to the clauses 10), 11), 12} in
the above list,we refer thereby to part B of section 4.4. (chapter IV)
and in particular to theorem 17 and definition 18. To this list of
concepts we add the notion of H-reduction step which has been de-
fined in the previous section and whose definition remains invariably
the same. It has exactly the same properties as before; lemma 27, in
particular, remains invariably true and its proof remains the same.
Finally, we can associate with every formula A its degree d(A) ,
whose inductive definition is again given by the inductive clauses

stated at the beginning of part F in the last section.

D. Before associating ordinals with proofs P in HZE and HZEi,
we have to make some remarks which are closely connected with part A
of section 4.3. (chapter IV). To this end, consider a Ti(Pl)-infe—
rence 81/82 , where 81,52 have the particular form described in
part B of section 4.1. Pl is by definition a proof in
ZTi/ITg(A},....,A ) of a sequent of the form -——> WO < )
where R 1is a standard formula of the form Ro(x) /\seq(x) contai-

ning no special function constants and whose only free variable is x.

Since Al"""As are by assumption classically true formulas, it
follows that WO(C::.R) is a classically true formula. In other
words, the relation <n,m> / n 4::Km and R(n) and R(m) true } is

indeed wellfounded. The ordinal which is associated with this rela-

tion will be denoted by Il | .

Next, let there be given a Ti(Pl,PZ,m)—inference Sl/S2 , where

Sl’SZ have the particular form described in part B of section 4.1,
By definition, P1 is a proof in ZTi/IIN(Al,....,
having the form ———> Wo( C:;R) , with R as above. The proof P

AS) of a sequent
2
on the other hand is by definition a proof in ZTi/IIN(Al,....,AS)
whose endsequent has the form ——> R(t) , where t is a certain
saturated term whose value |t]| is m . As before,we conclude that
R(t) and hence R(m) are classically true formulas. This means that
m belongs to the domain of definition of the wellfounded relation
{< u,v_> / u<£:Kv and R(u),R{(v) classically true } . Therefore,
there is a welldefined ordinal associated with m as a member of the
domain of definition of the relation

{<:u,v,>*/ u

kv and R(u),R(v) classically true } . We denote this
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ordinal by [!m” R ° Finally, we can introduce as in part B of section
h.j. the ordinal <2 which is the smallest among all ordinals ?
having the following property: if P 1is a proof in
2Ti/IT(Ay, ... A) of ———> Wo( < ), then [ (< ;

(with R as above).

E. Now, if we are given a proof P in HZE we can associate induc-
tively an ordinal O(S) with every sequent S8 ocurring in P . The
inductive clauses of this assignement are as follows: 1%) if S is
an axiom of the form /v’————~9 , then O(S):l , if S 1is an axiom
of the form | ———> B, then 0(S)=d(B) ; 2) if S is the con-
clusion of a conversion, a structural inference, an induction or a
logical inference, then we proceed as in part A of section 2.4.;

3) if S 1is the conclusion of a IIN—inference S'/S, then

o(s)= w ((o(s) # w =+ w 4*)" ihere asn(s')-n(s); 4) ir

S 1is the conclusion of a Ti(Pl)—inference S'/S, then we put

o(s)= wy((o(s") # w 1y w %*l) where d=h(s')-h(S), and
where P -is a proof (in ZTi/IIN(Al,....,AS)) of ——> w°(<:: R)
and >\ = |l R}[ 5 5) if S is the conclusion of a
Ti(Pl,Pz,m)—inference S'/S, then we put

o(s)= w ((o(s") #w F *) w F ') with a=n(s')-n(s), where P,
and P, are proofs (in ZTi/TI (A;,....,A )) of ——> wo( r)
and ————> R(t) with | £t] =m, respectively,and where % = ﬂm” R °

As ordinal O(P) of a proof, we take as usual the ordinal of its

endsequent. The main property of this ordinal assignement is given by

Theorem 59: Let P and P! be two s.n.s. proofs in HZEi and let
P! follow from P by means of an H-reduction step. Then

o(p') <o(p) .

Theorem 60: A) Preliminary reduction steps and inessential reduc-
tion steps do not increase the ordinal of the prooft to which they are
applied. B) A reduction step lowers the ordinal of the proof to
which it is applied if it belongs to the following list: l) fork

elimination (classical or intuitionistic); 2) omission of a cut;
3) induction reduction; h) canonical IIN—reduction step; 5) ca-
nonical Til—reduction step; 6) canonical Tiz-reduction step,

7) subformula reduction step.

The proof of theorem 59 is,of course, exactly the same as the proof of

theorem 54 in the previous section; the proof of theorem 60,on the
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other hand,leads to precisely the same calculations and inequalities

encountered in chapters II and IITI.

F. Before coming to the main result, we note that theorem 19 remains

invariably true in the present case, that is,we have

Theorem 61: Let P be a saturated s.n.s. proof in HZEi and assume
that P does not admit either preliminary reduction steps, H-reduc-
tion steps, fork eliminations, induction reductions, canonical
IIN—reduction steps, canonical Til—reduction steps or canonical Tiz—
reduction steps. If P does not coincide with its final part, then
there is a critical logical inference whose principal formula has an

image in the final part. Hence, a subformula reduction step is appli-

cable to P 4in this case.

Proof: Since P 1is saturated and does not admit any induction re-
duction, there is obviously no critical induction inference in P .

Similarly, there are no critical IIy-, Ti(Pl)— and Ti(Pl,P ,m)-infe-

rences in P since otherwise a corresponding reduction stip would be
applicable to P , contradicting the assumption. Since no H-reduction
step is applicable to P, it follows from lemma 27 in the last sectionm
that every axiom in the final part of P 1is either a saturated prime
sequent or else a logical axiom D ————> D' , Since no preliminary
reduction step is applicable to P, we conclude that no logical axiom
D ——— D! occurs in the final part of P . Finally there is no

fork I_,I 13 in the final part of P since otherwise an intuitio-

17 21

nistic fork elimination would be applicable to P , comtradicting the
assumption. Hence, by proceeding in the same way as in the proof of
theorem 2 in [8], we conclude that there is a critical logical in-

ference whose principal formula has an image in the final part of P.
G. Now we can state the main result:

Theorem 62: a) If A,B are closed formulas such that

HZEi b ———> A V' B holds, then either HZEi } ———> A or

HZEi F ———> B ; b) if (Bx)A(x) 1is a closed formula such that
HZEi | ———> (Ex)A(x) holds, then there is a saturated term t such
that HZEi - ——> A(t) holds; c¢) if (E ?)A( ? ) dis a closed
formula such that HZEi F ——> (E }')A( % ) holds,then there is a
functor F without free variables such that HZi | —— A(F) holds.
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Proof: The proof parallels the proof of theorem 56. Consider eg.
part c) and let P be a proof in HZEi of ———> (E ?’)A( ; ),
with (E ? )A( ? ) closed. Without restriction we can assume that P

is an s.n.s. proof. A finite or infinite chain PO,P of proofs

yevoe
in HZEi 1is called a reduction chain if the followiig holds:

1) P =P ; 2) each P, is an s.n.s. proof; 3) P,,; follows from
Pi by means of a preliminary reduction step, an H-reduction step, an
intuitionistic fork elimination, an induction reduction, a canonical
IIN-, Til— or Ti2—reduction step. Given any proof P* in HZEi, it
is clear that we cannot apply indefinitely H-reduction steps and pre-
liminary reduction steps to P* ., From this observation and theorem
60, part B), it follows that infinite reduction chains do not exist.
Let us call a reduction chain Po,Pl,.....,PN terminating if no re-
duction step other than a subformula reduction step is applicable to
PN . Evidently, there exist terminating reduction chains. Let
Po’Pl"""PN be a fixed one. From the consistency of HZEi one in-

fers by induction that each P, and in particular P have

N 2
—_— (E ;‘)A( ; ) as endsequent. From theorem 61 and the defini-
tion of terminating reduction chain,it follows that a subformula re-
duction step is applicable to PN . The result of this subformula
reduction step must necessarily be a proof P* din HZEi of

_— A(F) for some functor F without free variables, determined
by PN .

Since HZEi is a conservative extension of ZTi/IIN(Al,....,AS) we

can reformulate the above theorem in the following way:

Theorem 673: Let Al,....,AS be closed, classically true Harrop for-
mulas and A,B, (Ex)A(x), (E ;’)A( ?.) arbitrary closed formulas.

a) 1If ZTi/IIN(Al,....,As) | —————> A VB then either

ZTi/IIN F ——— A or ZTi/IIN F—> B ;, b) if
ZTi/IIN(Al,....,As) F— (E C;I)A( L%), then there exists a func-
tor F without free variables such that

ZTi/IIN(Al,....,AS)  ———> A(F) holds; <c¢) similarly with
(Ex)a(x) and a term t in place of (E ? YA( ;) and F, respecti-
vely.

There is a special case of the last theorem which is of some interest

To this end let B BS be a list of closed formulas such that

presce
each B is an instance of the continuity axiom or of Church’s the-

sis, which can be refuted in ZT/IIN . That is, for each i we have:
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1) Bi is an instance of the continuity axiom or of Church’s thesis;
2) 2T/II F —> TIB; . Then B ,....,B_ are obviously classical-
1y true formulas. This implies that theorem 65 applies to

ZTl/IIN( ‘]Bl,...., '1Bs):

Corollary: Let Bl,....,Bs be closed formulas such that for each i
the following holds: l) B 1is an instance of the continuity axiom

or of Church’s thesis; 2) ZT/IIN.F ~——> 1B . Then a),b),c) of
theorem 63 hold for ZTi/IIN( TIByreeees _TBS) .

H. It causes no difficulties to reprove theorem 24 for

HZEi/IIN(A AS) with A As classically true Harrop for-

rec e IEERREE)
mulas. The proof of this theorem remains essentially the same as the
proof of theorem 24 in section 4.5. of chapter IV, provided with the
necessary supplements due to the presence of Harrop axioms. We leave

the proof to the reader.

8.3. Harrop formulas and the theories ZTi/ITI and ZTEi/IT

A. The considerations of the previous section can be extended in a
straightforward way to the case where ZTi/IIN and ZTEi/IIN are
replaced by 2ZTi/II and ZTEi/II, respectively. All that has to be
done is to replace certain notions that are characteristic for
ZTEi/IIN by the corresponding notions belonging to ZTEi/IT . So,
IIN—, Ti(Pl)— and Ti(Pl,Pz,m)-inferences will be replaced by IT-,
TI(Pl)— and TI(Pl,PZ,m)—inferences,respectively. Similarly, we re-
place canonical II, -, Ti,- and Ti,-reduction steps by canonical

N 1l 2

IT-, TIl- and TIz—reduction steps, respectively. Finally we have to

replace the ordinal assignement described in section 4.3. by the or-

dinal assignement described in section 4.6., part C. Apart from this,

changes, definition and treatment of the theories ZTi/II(Al,....,AS),
ZTEi/II(Al,....,As) and HZTEi/II(Al,....,AS), parallel definition
and treatment of the theories ZTi/IIN(Al,....,AS) R
ZTEi/IIN(Al,....,AS) and HZTEi/IIN(Al,....,AS), respectively. In

particular, all concepts connected with Harrop formulas, such as Harrop
axiom, Harrop hull, H-reduction step, remain the same as before. In
order to avoid repetitions, we omit a detailed treatment of

ZTi/11(A AS) and HZTEi/II(A As) and content ourself by

1r e IR
stating the main results which parallel those obtained for

ZTi/IIN(Al,....,AS):
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Theorem 64: Let A ,....,As be closed, classically true Harrop for-
mulas and A,B, (E yo( }, (Ex)D(x) arbitrary closed formulas.

a) If HZTBi/II(A;,....,A ) F ——> A VB, then
HZTEi/II(Al,....,AS)f- ——> A or HZTEi/II(Al,....,AS) F—> B,
b) if HZTEi b —— (E ) )> then there is a functor without
free variables F such that HZTEi F ———> C(F) holds; c¢) simi-
larly with (Ex)D(x) and a term t in place of (E % )C( ; ) and

F . Since HZTEi/II(Al,....,AS) is a conservative extension of

ZTi/II(Al,....,AS), clauses a),b),c) apply to ZTi/II(Al,....,AS) as
well.
By specializing Al,....,As in an appropriate way we obtain a corol-

lary to the last theorem which corresponds to the corollary to theo-

rem 63, namely

Corollary: Let Bl,....,Bs be closed formulas such that for each i
the following holds: l) Bi is an instance of the continuity axiom
or of Church’s thesis; 2) 2T/IT| —> —]Bi . Then a),b),c) of
theorem 64 hold for ZTi/II( T1Byaeee, —YBS) .

It would again cause no trouble to reprove theorem 24, but with
ZTi/II(Al,....,AS) in place of ZTi/IIN where A ,....,A_ are
closed, classically true Harrop formulas. We omit the proof.

8.4. Harrop formulas and the theories ZTi/I and ZTGi/I

This is the most important section of this chapter. Its main purpose
is to combine the considerations of the previous chapters with those
of section 8.1. in order to obtain theorem 51, but with ZTi/I in

place of ZTi .

A. To start with, let Al"""As be arbitrary closed Harrop formu-

las. Then ZTi/I(A As) is the theory obtained from ZTi/I by

yeeeos
addition of —————; Ai y i=1l,....,8 , as new axioms;
ZT/I(Al,.....,AS) is obtained from 2T/I by addition of

—> A, , i=1l,....,s , as new axioms. ZTi/I(Al,....,AS) is, of
course, the intuitionistic restriction of ZT/I(Al,....,As) . From
ZTi/I(Al,.....,AS) we pass to a certain conservative extension, to

be denoted by ZTGi/I(Al,....,As)) by addition of two new rules
T(Pl) and T(Pl,Pz). The formal definitions of T(Pl) and T(Pl,Pz)
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remain exactly the same as in the definitions of the rules T(Pl)

and T(Pl’PZ)’ respectively, given in chapter VII, section 7.1.,

part A) (clauses 1), 2)) with the following exception: a) the proofs
P and P, in the definition of T(Pl) (ciause 1), part A), sect.
7.1.) are now proofs already at hand in ZTGi/I(Al,....,As) ,

b) the proofs P »P,P, in the definition of T(Pl,PZ) (clause 2),

2

o
part A), sect. 7.1.) are now proofs already at hand in
ZTGi/I(Al,....,AS) . If we add to ZT/I(Al,....,As) and to
ZTi/I(Al,....,As) the new rules T(Pl) and T(Pl,Pz), then we ob-

tain correspondingly couservative extensions ZTG/I(Al,....,AS) and

ZTGi/TI(A ..,AS), respectively. ZTGi/I(A ..As) is,of course,

17°° 10
nothing else than the intuitionistic restriction of ZTG/I(Al,...,AS)

To sum up,we have

Theorem 65: a) ZTG/I(Al,..
ZT/I(Al,....,AS) ;b)) ZTGi/T(A
sion of ZTi/I(A

..,A ) is a conservative extension of
s

....,A ) is a conservative exten-
1’ s

l,....,AS) ;o ¢) ZTGi/I(Al,....,AS) is the intui-
tionistic restriction of ZTG/I(Al,....,AS) . The proof of a),b) re-
l,....,AS)

and ZTGi/I(Al,....,AS) we can pass to their respective Harrop hulls

HZTG/I(Al,....,AS) and HZTGi/I(Al,....,AS); the notion of Harrop

axiom (with respect to ZTGi/I(Al,....,AS)) now remains,of course, the

mains the same as the proof of theorem 14. From ZTG/I(A

same as before. Lemma 24 remains true in the present case and we

clearly have

Theorem 66: a) HZTGi/I(Al,....,As) is a conservative extension of

ZTGi/I(Al,....,AS) and hence of ZTi/I(Al,....,AS) ;

b) HZTG/I(Al,....,AS) is a conservative extension of

ZTG/I(Al,....,AS) and so of ZT/I(Al,....,AS) .

ERRERE
formulas which satisfy the following

B. From now on A AS are arbitrary but fixed closed Harrop

Assumption: ZTi/I(Al,....,AS) is consistent.

In order to avoid the lengthy notations HZTGi/I(Al,....,AS) ,
HZTG/I(Al,....,AS) s ZTGi/I(Al,....,As) and ZTG/I(Al,....,AS), we
replace them by HZGi, HZG, 2ZGi and 2G respectively. The next
step consists in carrying over to HZGi and HZG certain notions

and concepts, which have been introduced for 2ZTGi/I and ZTG/I .

Among the simplest of these are the notions "final part", "prelimi-
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nary reduction step" and "omission of a cut", In this connection we
note that basic lemma IIH, formulated in section 8.1., remains inva-
riably true in the present case if we take for HTi(Al,....,As) the

theory HZGi . We also adopt the terminology introduced by the re-
mark following basic lemma IIH: if B 1is a formula in )/ —————9 A,
if //—————9 A 1is an uppermost sequent in the final part of a
proof P din HZGi , if P! is the proof of —> B whose exi-
stence is given by basic lemma IIH and whose construction is des-
cribed in the proof of basic lemma IT (chapter III, sect. 3.2.), then
P! is called the side proof of ———> B, determined by B in
f/~————9 A according to basic lemma Ty, .

f/—————% A 1is the conclusion of a I-inference, 3/8' , say

If, in particular,

R(Y)! (x) C—RYA(X)’ /J' ———>A(Y)

W= g). R(a), /* — a(a)

if B is W(C::.R) , then we call P' as before the side proof de-
termined by this I-inference in P . Further notions which can be
introduced for proofs P in HZGi . HZG in the same way as for

proofs in 2TGi/I , ZTG/I are: 1) complexity of a cut; 2) an in-

duction;g 3) complexity of a T-~inference; h) complexity of a
T(Pl)-inference; 5) complexity of a T(Pl,Pz)—inference;

6) height of a sequence S in P ; 7) fork 11,12,13 ;5 8) fork
elimination (classical or intuitionistic); 9) induction reduction,
10) TI-reduction step; 11) T(Pl)— and T(Pl,Pz)—reduction step;

12) strong T(Pl)- and strong T(Pl,PZ)—reduction step;, 13) satu-
rated proof; 14) substitution instance; 15) inessential reduction
step;, 16) subformula reduction step; 17) strictly normal stan-

dard proof; 18) side proof of a T(Pl)— or a T(Pl,Pz)—inference;
19) index proof of a T(Pl,PZ)—inference. All these notions are de-
fined in precisely the same way as in chapter VII or in earlier chap-
ters. To this list of notions,we add the concept of H-reduction step
which has been introduced in section 8.1. and whose definition re-
mains invariably the same. The notion of H-reduction step has the
same properties as before; lemmas 26 and 27 in particular remain

true and their proofs remain the same. The degree d(A) of a formula

finally is defined in the same way as in part F of section 8.1.
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€. Corresponding to theorem 56 in section 8.1. we have now

Theorem 62: Let P bean s.n.s. proof in HZGi which does not coin-
cide with its final part. Assume that no reduction step of the follow-
ing 1list is applicable to P : l) preliminary reduction step,

2) intuitionistic fork elimination, 3) induction reduction,

4) I-reduction step, 5) strong T(Pl)—reduction step, 6) strong
T(Pl,Pz)-reduction step, 7) H-reduction step., Then there is a cri-
tical logical inference in P whose principal formula has an image

in the final part. Hence a subformula reduction step is applicable

to P

Proof: As in earlier cases,it follows that no critical I-inference,

T(Pl)—inference and T(P,,P_)-inference occurs in P , since otherwise

1’ 2)
corresponding reduction steps could be applied to P ; for the same
reason, there can be no critical induction in P . On the other hand,
no H-reduction step and no preliminary reduction steps are applicable
to P by assumption. Hence the final part of P contains only mathe-
matical axioms (true saturated prime sequents), conversions, inter-

changes, contractions and cuts. Finally no fork can occur in P and

so we can argue as in the proof of theorem 2 in [8] .

D. Our next aim is to introduce a suitable notion of "good" proof.
For the sake of completeness,we discuss this notion in some detail
and proceed thereby in a slightly different way than in chapters V
and VIT .

Definition 573: Let P be an s.n.s. proof in HZGi . A sequence

(finite or infinite) Po’Pl’P of s.n.s. proofs in HZGi is

PEEERE
said to be a reduction chain of P if PO:P, and if for each 1

Pi+l follows from Pi by means of a reduction step of the following
list: l) preliminary; 2) H-reduction step, 3)' intuitionistic
fork elimination ; 4) induction reduction; 5) I-reduction step,

A A
6) strong T(%l)-reduction step; 7) strong T(Pl,Pz)-reduction step;
8) subformula reduction step; 9) inessential reduction step. A re-

P and

duction chain is terminating if it is finite, say, P Pl,...., N

o’
if no reduction step listed above is applicable to PN.

Definition 54: An s.n.s. proof P in HZGi is called "good" if

every reduction chain of P is terminating.
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Remarks on notation: In the theorem below we retain the notation

used in connection with theorem 46 in section 7.3. of chapter VII;
R in W( <:;.;), in particular,is a standard formula whose only free
variable is x and whose special function constants are
i1 12 i
5( B CK e ey O( S . More generally,we use throughout this
uy u, u_ ’
section the notation introduced in part B of section 7.1l., chapter

VIY.

The main property of good proofs is given by

Theorem 68: Let P be a good s.n.s. proof in HZGi of

—_— W( C::;) . Let fl,....,fs,g be numbertheoretic functions.
Then we find an m and an n with n+l1 < m and ans.n.s. proof P!

in HZGi of ——> 7] (;w(n+l)c E*V ?w(n) , where v denotes

the system vi=f;(m) , i=1l,.....4,8  of sequence numbers,and where
w=g(m) .

Proof: 1In order to save notation,we assume s=1 , that is, just one
special function constant, say, CKi , occurs in R and hence in

w( < ‘ﬁ) . The upper index u in CE will then be identified

with the lower index u in O(i . The function fl will be denoted
by f . Now we proceed in steps.
1) From the definition of "good" proof it follows: if Po’Pl""’PN
is a reduction chain of P, then PN is good.
2) Call a reduction chain P ,P_,....,P of P "short" if no P,

o’ 1 N i+l

follows from Pi by means of a subformula reduction step. If

Po,....,PN is a short reduction chain of P, then each Pi has an
* st
endsequent of the form —> W( <& ; Vi) where Vi — K'i . A

short reduction chain is called compatible with f if vy is an ini-
tial segment of f for all i . A short reduction chain of P 1is
called terminating if there is no short reduction chain of P which

extends the given one properly.
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3} It is evident: there exist terminating short reduction chains of

P which are compatible with f. Let P ,....P

o N be any such reduc-

tion chain. According to its definition,no reduction step other than

a subformula reduction step is applicable to PN . Since the endse-
¥~7
quent of Py is ——> W(<Z_p 'N) , Py does not coincide with

its final part. By theorem 67 a subformula reduction step is appli-

cable to P_ . The result is a proof PN+ with endsequent

N 1

— (Bx) ) o(<j 5 (x+1) e z><<j S(x) . Here i#j by defini-

tion of subformula reduction step.

L) PN+l is good in virtue of 1). Consider a short reduction chain

1
PN+1’PN+2"""PM of PN+1 . Each of the Pi s has an endsequent of

. % .

the form ——> (Bx) 7] cxi (x+1) < ; Vi C{i {x) . Call such a re-
i i

duction chain compatible with f,g if for each 1 vy and w. are

1

initial segments of f and g respectively.

5) It is evident: there are short, terminating reduction chains of
PN+l which are compatible with f,g . Let PN,....,PM be any such

chain. As before, we conclude that PM admits a subformula reduction
step. The result is a proof P* whose endsequent has the form
J u*v. J .
—> ] « e (t+1) é::R MooX (t) , where t 1is a constant term
M M

containing no other special function constants than

6) Then it is obvious that we find an m so large that
T( O<$*f(m)’ CX%(m)) is saturated with wvalue, say, n , such that:
X) n+l<<m , ﬁ) f(m) CKu*vM , 3/) g(m) C__:K wy - By sub-

stituting in P* “i*f(m) and o(%(m) for O<111*v and
M

c{i respectively and by adding eventually a conversion to the
M
endsequent we finally obtain a proof P! which satisfies the condi-

tions of the theorem.
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Now we can associate with every good proof P of ——> W( < ;) ,

exactly as we have done in sect. 7.3. of chapter VII, a continuity
function T (Xl,....,xs,y) , having tEé properties: if fl""’%fg
are numbertheoretic functions, if TL(fl(m),...,fs(m),glm))#o , then

there is an n with n+l < m and a proof P! in HZGi of
— 7] } W (0+1) C::E*V. ?“An) , where v, denotes the list
vi=E;(m) , i=1,....,s8 , of sequence numbers and where w:E(m) . We
call T the continuity function associated with P and denote it
by TTP . Actually, 'CP could be chosen recursive but we do not

use this fact.

Definition 55: Ans.n.s. proof in HZGi or HZG is called graded if

all its side proofs are good.

E. The next tool which we need here is that of valuation. This con-
cept is introduced in exactly the same way as in section 7.4. of the
last chapter and has all the properties described there. So D® is
again the set of ordered s+l-tuples of sequence numbers, all having
the same length, and < vl,....,vs,vS+l > E::S < wl’w2""’ws’ws+l>
still holds iff vy ég;Kwi y i=1l,4c4.4,8 (where left and right ar-

guments are elements of D). An element from D is

V.ogeeee,V
1 Ps+l
secured with respect to the good proof P iff T (Vl,....,vs+l)#0 R

unsecured otherwise. DS(P) is the set of those elements of D°

which are unsecured with respect to P and E:::S is the restric-
tion of —° to D%(P) . Clearly, I ; is wellfounded.

Now to the valuation. A valuation of a proof P din HZG is an

assignement which associates with every T(Pl,P -inference in P

2)
either a number e which satisfies a certain condition (X), or
else a pair of numbers e, e, which satisfies a certain condition
ﬁ) . Condition ) in the present case is word by word the same
as' condition o) in part C of sect. 7.4. Condition /9 } in the
present case is the same as condition /?) in part C of sect. 7.4,
with one exception: ZTGi/I in clause d) in the definition of /?) ,
part C of sect. 7.4., has to be replaced by HZGi . In all other res-
pects /9 ) in the present case is the same as /?) in C, 7.k,
Valuations are again denoted by symbols such as ))', )%f etc; the
value of \)’ for an inference $§/5' is written as )r(S/S‘) .
From now on,;we can treat valuations in exactly the same way as in
sect. 7.4, In particular, we have the following three notions:

P

a) extension of a T(Pl, 2)-inference; b) data of a T(Pl,P2)-
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inference; c¢) index of a T(P ,P,)-inference., Their definitions re-

’
main the same as in section 7.&% With these notions at hand, we can
introduce the concept of induced valuation. That is, given a proof P
in HZGi , a valuation lf/of P and a proof P' which follows
from P by means of a reduction step, we can define on P! a valua-
tion )f* in terms \vl . This valuation is again called the valua-
tion induced by \)’ on P' . Its definition is described by cases

1 - 10 listed in part D of sect. 7.4. and an additional case 11 which
takes into account H-reduction steps. Case 11: P' follows from P
by means of an H-reduction step. Each T(Pl,PZ)—inference s/S! in

P remains unaffected by this H-reduction step: we may therefore de-
fine )j/*(S/S‘): -mr(S/S‘) . Xy* on P' is thus completely de-
termined. If now P is a graded s.n.s. proof in HZG and ~)r a va-
luation of P, then we call \f< compatible with P if the condi-
tions in definition 49 (part D of sect. 7.4.) are satisfied. Lemma 19

is now replaced by the slightly modified

Lemma 19%: Let P be a graded s.n.s. proof and ﬁ\r a compatible
valuation of P , Let P! be obtained from P by means of a re-
duction step from the following list: 1) preliminary; 2) omission
of a cut; 3) H-reduction step; 4) intuitionistic or classical
fork elimination; 5) induction reduction; 6) subformula reduction
step . Then P' is still a graded proof and the induced valuation

V* is compatible with P! ,

Lemma 20, on the other hand, remains true as it stands and its proof
remains the same. Finally, let P be an s.n.s. proof in HZGi , pro-
vided with a valuation j}l , let S/S' be a critical I-inference
in P and P the side proof determined by s/ 8! according to ba-

sic lemma IIHl. Then we can define on Pl a valuation W}" in
terms of \[’ in exactly the same way as we have done it in part F
of sect. 7.4. Without daunger of confusion, we call W}z‘ the valua-
tion induced by Xf on the side proof Pl . Lemmas 21 and 22 about
side proofs and induced valuation remain invariably true in the pre-

sent case and their proofs remain the same.

F. Our next step consists in associating ordinals with graded
proofs. More precisely, if P 1is a graded proof, then we associate
with every sequent S in P a certain ordinal 0(S) . The inductive
definition of O(S) is exactly the samz as in sect. 7.5., part D,

that is, we use clauses l) - lO) in section 7.5., part D, as they



- 243 -

stand in order to define O0(S) . The notations /[E::; Il el p
1

and O X[’(S/S') retain thereby their meaning. 1

The properties of this ordinal assignement remain essentially the

same as before. In place of theorem 47 we have the slightly modified

Theorem U7%; Let P be a graded s.n.s. proof in HZG and V/ a
compatible valuation of P , Let P' be obtained from P by means
of a reduction step and \f* the valuation induced by \7> on P'.
Then 0 V*(P')<O V(P) if the reduction step in question is one
of the following list: 1) omission of a cut; 2) classical fork
elimination; 3) dintuitionistic fork elimination; 4) induction re-
duction; 5) strong T(Pl)~reduction step; 6) strong T(Pl,Pz)—re—
duction step {with P intuitionistic in case of 3) - 6)). If P' is
a substitution instance of P or follows from P by means of a pre-

liminary of an H-reduction step, then O \r*(P‘) <0 }T(P) .

Proof: The only new element which has to be taken into consideration
is the case of H-reduction step, which can be treated in the same way
as in the proof of theorem 54 in section 8.1. Apart from this, the

proof of theorem 47* parallels that one of theorem 47.

Theorem 48 finally remains true as it stands and its proof remains

the same.
G. Our final step consists in proving

Theorem 49*: If P 1is a graded proof in HZGi and \r a compatib-

le valuation of P, then P is good.

Proof: We proceed by transfinite induction with respect to O XY(P)’
that is,we assume: if P! is a graded proof in HZGi , and \j’ a
compatible valuation of P' such that O \;,(P‘)<C:O nf(P) , then

P! is good. We show that a contradiction follows from the assumption

that P is not good. Hence let us make this assumption and let

Po’Pl""' be an infinite reduction chain of P ., Then we clearly
find an N with the following property: 1) if i+l = N, then Pi+l
follows from Pi by means of a preliminary reduction step or an
H-reduction step,; 2) PN+1 follows from PN by means of a reductim

step which is neither an H-reduction step nor a preliminary reduc-
tion step. For i = N+1 we define inductively valuations }}i on

. - * *
P, as follows {part F, sect. 7.4.): \;&+1 = \f& . From lemma 19
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we conclude by induction that each Pi is still a graded proof and
that \Ii is compatible with Pi . From theorem 47* it follows that
0 1fi+l(Pi+l)§§() \jg(Pi) holds in case 1i<N . Now we distinguish
two subcases according to the kind of reduction step which leads

from PN to PN+l . §9§9§§9_11 The reduction step in question is a
fork elimination, an induction reduction, a strong T(Pl)—reduction

step, a strong T(Pl,PZ)—reduction step or a subformula reduction

step. Then PN+l is still a graded proof and XTN+1 is compatible
with PN+l according to lemma 19% or 20, and
i *
(@] (PN+1)<: 0 lf (PN) according to theorem 47% . But then PN+l
N+1 N

is good according to our inductive assump-
tion, contradicting the assumption that the reduction chain

PO,P P is infinite. Subcase 2: P follows from

17 +++sPysPy,r---+ is infinite. Subcase 2: Nal

PN by means of a I-reduction step. Let S/S! be the critical I-in-

A
ference in PN to which the reduction step is applied and P the

side proof determined by §/S! in PN . According to the construc-
tion described in the proof of basic lemma II (chapter III, section
3.2.), ? is obtained from PN with the aid of some preliminary re-
duction steps and at least one operation "omission of a cut". Let
17‘ be the valuation induced by j}ﬁ on ? A(part F in section
7.4.). According to lemma 21 (still true now), P is graded and )
compati?le with P . According to theorem 47%, O \;'(3)-<ZO lf(P) ;
hence P 1is good according to our inductive assumption. According
to lemma 22 and theorem 48, Pis1
with Po . and O lfN+l(PN+l)-<io Wf&(PN) . Hence Py . is good,

is graded, W;N+l is compatible

again contradicting the assumption that the reduction chain

PoyPlyeeee Pr,Poyue

is infinite.

From theorem 49% we obtain as an immediate consequence

Theorem 69: Let P be a graded proof in HZGi provided with a
compatible valuation \) . Let A,B, (B % ya( %’), (Ex)A(x) be
closed formulas. a) If P 1is a good proof in HZGi of

——> A VB, then HZ2Gi F ————> A or HZGi} ——> B . b) If P
is a good proof of ——> (E %-)A( ), then there exists a closed
functor F such that HZGi } ———> A(F) . c¢) Similarly as in b),
but with (Ex)A(x) in place of (E F')A( ;') and a term t in
place of F ,

Proof: Consider eg. b). In virtue of theorem box P 1is good. Hence

we find a reduction chain Po”""P with the property:

N
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a) no Pi+l follows from Pi by means of a subformula reduction
step; b) no reduction step other than eventually a subformula re-
duction step is applicable to PN . The endsequent of PN is still
—> (E ?—)A( ;') and so PN cannot coincide with its final part.
According to theorem 67, we infer that there is a critical logical in-
ference'whose principal formula has an image in the final part and

that a subformula reduction step is indeed applicable to P The

N
result of this subformula reduction step is by necessity a proof P*
whose endsequent is ——> A(F) for some closed functor F . Clau-

ses a) and c) are proved similarly.

From the last theorem we immediately get the main result:

Theorem 70: Let Al,....,As be closed Harrop formulas suach that
ZTi/I(Al,....,AS) is consistent. Let A,B, (E ??)A( }, (Ex)Aa(x)

be closed formulas. Then we have: a) if ZTi/I(Al,....,AS)k~——9 AVB
then ZTi/I}p ——> A or 2ZTi/I}F ———> B ; Db) if
ZTi/I F —> (B % YA( ?’), then 2ZTi/T F ——> A(F) for some
closed functor F ; ¢) similarly as in b), but with (Ex)A(x) in
place of (E ;;)A( %A) and with a term t in place of F

Proof: Assume eg. ZTi/I(Al,....,AS)}— ——> (E YA( ) . Then we
obviously find an s.n.s. P proof of —> (E YA ( % ) . But with

respect to HZTGi/I(A ..,AS) (that is HZGi), P is clearly a gra-

) e
ded proof: no T(Pl)—land T(Pl,Pz)-inferences occur in P . A com-
patible valuation of P 1is given by the empty valuation 1}¢ .
Therefore we can apply the last theorem and conclude:

HZGi | —> A(F) for some constant functor F . Since HZGi is a

conservative extension of ZTi/I(A ..,AS), we obtain

R
ZTi/I(Al,.....,AS) b ——> A{F) , as stated by the theorem.

8.5. The theories ZTi/IV.. and ZTi/IV

A. The theories ZTi/IVN and ZTi/IV are,of course, subtheories of
ZTi/I . Despite this,we cannot specialize theorem 70 at once by
replacing ZTi/I by ZTi/IVN or ZTi/IV, respectively. The reasons
are twofold: 1) from the consistency of eg. ZTi/IV(Al,....,As) we
cannot necessarily infer the cousistency of ZTi/I(Al,....,AS) H

2) even if this is the case, and if eg. ZTi/IV(A As)k-———% AVB

[EERRNY
holds, we can infer from theorem 70 only that either

ZTi/I(Al,.....,As) F———5 A or ZPi/I(Ay,eee A ) ——— B
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holds. Howevern, a closer inspection shows that if we restrict atten-

l,....,AS)

AS), then we never have to take into account the

tion in the foregoing section to proofs P in ZTi/IVN(A
or ZTi/IV(Al,....,

larger theory ZTi/I(A ..,AS) . By performing this inspection in

10
some detail we would obtain theorem 70, but with ZTi/IVN and
ZTi/IV, respectively, in place of ZTi/I . We do not go into details

but merely sum up the results which one obtains in this way:

Theorem 71: Let Al,....,As be closed Harrop formulas such that
ZTi/IV(Al,....,As) is consistent. Let A,B, (E ?’)A( ;'), (Ex)A(x)
be closed formulas. a) If ZTi/IV(Al,....,AS)}— ————> A VB then
ZTi/IV(Al,....,AS)}— —> A or ZTi/IV(Al,....,AS) } ——> B

b) If ZTi/TV(A,,.....,A ) F — (B % )A( ;'), then there is a
constant functor F such that ZTi/IV(Al,....,AS)}— —> A(F)
holds. c) Similarly, but with (Ex)A(x) in place of (E ?)A( ; )
and a term t in place of F . Similarly, but with ZTi/IVN in
place of ZTi/IV

There is a particular case of the last theorem which may be of some

interest:

Theorem 72: Let Bl"""’Bt be a list of closed formulas such
that for each i the following holds: 1) Bi is an instance of the
continuity axiom or of Church's thesis; 2) 2ZT/IVF ——> ‘}Bi .

Let C Cq be a list of closed formulas such that for each i

IEEEREY :
the following holds: o() Ci is an instance of the axiom of

choice} ﬁ’) ZT/1V F>Ci+l —> C5 X) no ——> C; 1is pro-
vable from ZT/IV . Then clauses a),b),c) of the last theorem apply

to ZTi/IV( 1B ,...., 1B, 1€ ,..... , 1c).

Proof: All we have to do is to show that
ZTi/TV( “]Bl,....., TIBy, 1C .., ‘7cq) (to be denoted for brevi-
ty by T) is consistent. To this end, assume the contrary. Then

T ——> follows, or what amounts to the same:

ZTi/IV ) Byoreenn, *1Bt, ']cl,...., ‘TCq ———> ., Since
ZT/IV o ——> ‘WBi by assumption, we obtain
ZT/Iiv - 7] Clvevnns ‘7cq ———> |, that is ZT/IV}—— Cl,....,cq .

On the other hand,we have ZT/IV F_Ci+l _— Ci by assumption.
Hence by application of a series of cuts and contractions we finally

obtain: ZT/IVf ——> C, . However,this contradicts >/ ) .
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Expressed in an inexact way, the last theorem says: if we add to
ZTi/IV the negation of the continuity axiom, of Church’s thesis and
of the axiom of choice,then we obtain a theory which still satisfies

a),b),c) of theorem 71. The preceeding theorem is of course only of

interest because there are formulas Bl’BZ"""Cl’CZ""' which sa-
tisfy 1),2) and ), /g ), )/) ; thereby we tacitly use the fact that
there exists an infinite 1list 01’02"°" of instances of the axiom

of choice, such that ZT(C yeeeesC ,.....) 1is as strong as classical
1 n

analysis and such that 2ZT Ci+l —_— Ci holds. Whether theorem

72 holds if we replace ZTi/IV by ZTi/I is not clear to the

author.



CHAPTER IX:

The Markov principle

This chapter contains the main applications of the results contained
in the preceeding chapter, namely a proof of the fact that the Markov
principle (or at least a particular form of the Markov principle) is
not derivable in a certain large class of intuitionistic formal theo-
ries. Since no new proof theoretic techniques will comeinto appli-
cation, it is notationally somewhat simpler for us to consider Hil-

bert-type systems in place of Gentzen-type systems.

9.1, The Markov principle

A. Ve remember that according to our notation introduced in chap-
ter I, ZH 1is the Hilbert-type version of the Gentzen-type system

ZT of number theory, ZHi is the intuitionistic restriction of ZH
and at the same time the Hilbert type version of ZTi . Briefly, ZHi
is a Hilbert-type version of intuitionistic number theory, based on
the language L . Since some Goedel type diagonal argument will be
used below,it is advisable to make the distinction between natural
numbers and the terms 0,0',0",.,.. which represent them in ZH : if
n is a natural number,we denote the term O by n and call it the

numeral of mn . We also need

Definition 56: A theory T is said to be primitive recursive if it

is primitive recursively axiomatizable, that is,if the set of its

axioms can be chosen in a primitive recursive way.

Assumption: Throughout this chapter we assume that the assignement
which associates with every term” t a continuity function T rela-
ted with t is that one described in part L of section 1.4,, chap-

ter I. As mentioned there,we have then

Theorem 73: ZTi +and hence ZHi are primitive recursive.
B. We distinguish between two kinds of Markov principle , the weak
Markov principle, denoted by MP0 , and the strong Markov principle,

denoted by MP . The weak Markov principle is a certain axiom schema.

A particular instance of MPo is given by a formula of the following

type: _W(X) —?R(x) ::)(Ey)R(y) , where R(x) is a prime formula
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without special function constants and whose only free variable is

X . A particular instance of MP on the other hand is given by

(x) T (v) 7T R(x,y) D> (x)(Ey)R(x,y) , where R(x,y) is a prime for-
mula without special function constants and with only x,y free. We
say that MP0 (or MP ) is not provable in a certain theory if a
particular instance of MPO {or MP ) is not provable in this theory.
Our main objectiveis to prove that MPo and MP are not provable in

a certain large class of intuitionistic theories.

€. Before proceeding further,we note a relation between MPo and

MP:
Lemma 28: MPo can be derived from MP within ZHi.

Proof: Assume ~—](y) TJR(y) . Let R(x,y) be a prime formula such
that “]R(x,y) = 1(R(y) V x¢£x) 1is provable in ZHi . Then
TIR(x,y) = TIR(y) and (x) TI1(y) TIR(x,y) = "1{(y) T1R(y) are
provable in ZHi . By application of MP to (x) “](y) "TR(x,y) we
get (x)(BEv)R(x,y) . However, (x)(Ey)R(x,y) is provable equivalent
to (Ey)R(y) , that is, MP_ holds.

Sometimes we simply say that Markovs principle is not derivable, mea-

ning that MP0 and hence MP is not derivable.

9,2, Markov principle and weak Harrop property

A. Definition 55: Let T be any extension of ZHi . We say that

T has the weak Harrop property if T 1is consistent and if the fol-

lowing holds: if R(x) and Q{x) are prime formulas without free

variables other than x and without special function constants, if
1(x) JR(x), T (Ez)Q(z) , then there is an n such that Q(n) is

true.

Theorem 74: Let T be a primitive recursive extension of ZHi ,
which has the weak Harrop property. Then MP_ (and hence MP ) 1is

not provable in T .

Proof: Since T is a primitive recursive extension of ZHi and
since ZHi contains the whole formalism of primitive recursive

function theory, we find according to Goedel and Rosser a prime for-
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mula R(y) such that the following holds: 1) R(y) does not con-
tain special function constants or free variables other than vy ;

2) (v) TIR(y) 4is undecidable with respect to T ; 3) (y) JR(y)
is true. Clearly, T, _7(y) ﬁ]R(y) is consistent. Otherwise,

ThF 7 1y) TTR(y) would hold. But zHi} ] )y) TR(y)=(y) TIR(y)
holds, since (y) "JR(y) 4is a formula without \ and E . Hence

T (y) —TR(y) would follow, contradicting the undecidability of
(v) 7TR(y) . Now assume T |- MP_ . Then T, T (y) TTR(y) I (Ey)R(y) .
Since T has the weak Harrop property, it follows that there is an
n such that R(R) 4is true. This contradicts the fact that

(v) 77R(y) is true. Hence T F MP_ is false.

Actually, if we inspect the proof of theorem 74, then we see that we

have proved the following variant of theorem 74:

Theorem 74*: Let T Dbe a primitive recursive extension of ZHi
which has the weak Harrop property. Then we find a prime formula

R(x) whose only free wvariable is x , such that the following holds:
(Ey)R(y) is not provable from | (v) TR(y), T .

9.3. The Markov principle and some particular intuitionistic theories

A. TIn what follows we will apply theorem 74 to some particular intui
tionistic theories. Since most of our results have been obtained in
the frame of sentential calculus,we will rephrase them in the termi-
nology of Hilbert-type systems. First we will pass from the Gentzen-
type systems ZTi/V and ZTi/I to the corresponding Hilbert-type
systems. To this end, consider the following formula:

W= p) D {<y><n(y)3 () = A DA (2) (R(2) D)) |-
This formula is denoted by T*(R A) . The universal closure of

Tg(R,A) (that‘ls,the formula obtained by universal quantification
over all free variables which occur in Tg(R,A)) is denoted by
TO(R,A) . We also need formulas of the following type:

W(CR) . {(y)((x) = yA(x) 2aly)) > (z)a(z) } . Such for-
mulas are denoted by T*(R,g) and their universal closure by T(R,A).
Finally, we cite the axiom of barinduction such as stated in [-5J

the form 26.3a:

{(a)(seq(a) = .R(a) V. T R(a)) A ( X)(Ex)R( X (x)) N (a)(sea(a) A
AR(2). Da(a)) A (a) (seala) A (s)a(ar2z® ). Da(a)) }.2a(1) .
We denote it by BI*(R,A) and its universal closure by BI(R,A) .
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Definition 58: 1) By ZHti0 we denote the theory which we obtain
by adding to ZHi all formulas TO(R,A) without special function
constants as new axioms. 2) By ZHti we denote the theory which we
obtain by adding to ZHi all formulas T(R,A) without special func-
tion constants. 3) ZHti* is like ZHti, but R in TO(R,A) is
required to be a bounded formula. 4) ZHti* is like 2Hti, but R
in T(R,A) is required to be a bounded formula. 5) ZHBi 1is ob-
tained by adding to ZHi all formulas B(R,A) without special func-
tion constants., 6) ZHBi* is like ZHBi, but the R in B(R,A) is

required to be a bounded formula.

Notatiomn: Let T be any of the theories listed in definition 58.

The theory which we obtain by adding to T the formulas Al,....,AS
as new axioms 1is denoted by T(Al,....,As) . We remind that,if T is
a Gentzentype theory,then T(A
by adding ——> Al,....,

formulas are again formulas without free variables and special func-

l"""As) denotes the theory obtained

_— As as new axiom to T . Closed

tion constants.

Theorem 75: Let Al"""As be closed formulas.

1) ZTi/I(Al,....,AS) b ——> B iff ZHtio(Al,....,AS) - B .
2} ZTi/IV(Al,....,AS)}— —— > B iff ZHtig(Al,....,AS)f— B .
3) ZHtio(Al,....,AS) B iff ZHti(Al,....,AS)}— B and
ZHtig(Al,....,As) - B iff ZHti*(Al,....,As) ~ B .

L)y 1¢ ZHti(Al,....,As) | B then ZHBi(Al,....,AS) B .

5) ZHti*(Al,....,AS) B iff ZHBi*(Al,....,As) B .

6) The theories ZHtio(Al,....,As) , ZHTi*(Al,....,AS) ,
ZHti(Al,....,AS) , ZHti*(Al,....,AS) , ZHBi(Al,....,AS) and
ZHBi*(Al,....,As) are all primitive recursive.

The proof of theorem 75 is completely routine and hence omitted;

6) in particular is an immediate consequence of theorem 73. Theorem
75 permits us to rephrase the results obtained in the preceeding
chapter for ZTi/I and 2ZTi/IV in terms of their Hilbert-type ver-
sions ZHti and ZHti*, respectively, or what amounts to the same
(in virtue of 3),4) of theorem 75) in terms of ZHti and ZHti*
respectively. That is, we have

Theorem 76: Let Al,....,AS be a list of closed Harrop formulas.
Let T ©be any of the theories ZHti or ZHti*¥ respectively. Let
A,B, (E ?')A( ;'), (Ex)A(x) be closed formulas. If T(Al,....,AS)



- 252 -

is consistent,then the following holds: a) if T(A AS) Fa V' B

R

then T(Al,....,As) FaA or T(Al,....,As) B ;

b) if T(Al,...,,AS) (B ? Ya( ; ), ‘then T(Al,....,AS) F A(F) for
some constant functor F ; «¢) if T(Al""’As) - (Ex)A(x), then
T(Al,....,As) + A(t) for some constant term +t, and hence
T(Al,....,As) - A(n) for some n .

The proof is an immediate consequence of theorems 70, 71 and theorem
75. From theorem 76 we infer

Theorem 77: Let A .,....,A be closed Harrop formulas. Let T Dbe
— e L 1 *s

any of the theories ZHti and ZHti*, respectively. If T(Al,...,As)

is consistent,then it has the weak Harrop property.

Proof: Let R(x) and Q(z) be prime formulas without special func-
tion constants and whose only free variables are x and =z , res-
pectively. Assume that T(Al,....,AS,(x) 1 (y) VR(y)) is consistent
and that T(Al"""As’(X) T (y) IR(y)) b (Ez)Q(z) holds. Now we
1,....,AS,(X).7 (v) TR(y) in
place of Al,....,As and infer that there is a number n such that
T(Al,....,AS,(x) 1 (y) TIR(y)) - Q@(n) holds. Now Q(z) is numeral-
wise decidable in ZHi , that is, ZHi | Q(m) iff Q(m) is true. If
Q(n) would be false,then ZHi | Q(n) and hence

T(An,...,As,(x) T (y) IrR{(y}) F 1 q{n), contradicting the assumed
consistency of T(Al,....,As,(x) 1 (v) 1 R(y) . Hence Q(n) is true

apply the last theorem, but with A

what proves the weak Harrop property of T(Ai,....,As) .

From the last theorem and theorem 74,we obtain immediately the main

result of this chapter, namely

Theorem 78: Let T be any of the theories ZHti of ZHti*, res-

pectively. Let Al,....,AS be closed Harrop formulas. If

T(A, ,....,A ) is consistent,then Markov's principle is not derivable
1 s

from T(Al,.,..,As)

Theorem 79: There are three primitive recursive lists of closed for-
mulas Al’AZ”"' , Bl’BZ""" , Cl’C2""" having the following
properties: l) each Ai is an instance of Church’s thesis;

2) each Bi is an instance of the continuity axiom; 3) each Ci

is an instance of the axiom of choice; 4) Markov’s principle is not

provable from ZHti(Al,Az,....,Bl,Bz,.... ) ;3 5) Markovs principle
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is not provable from ZHti*(Al,AZ,....,Bl,BZ,.....,Cl,CZ,.....) .

The proof of the theorem is via theorem 77, proceeding thereby essen-
tially as in the case of corollary of theorem 63 and of theorem 72.

From the last theorem and from theorem 75, we obtain

Corollary: There are primitive recursive lists of formulas
Al’AZ"""Bl’BZ"'""Cl’c2""" having properties 1) - 3) of
theorem 79, and in addition the following properties: h*) Markovs
principle is not provable from ZHBi(Al’AZ""”Bl’BZ""°) H

5%) Markovs principle is not provable from
ZHBi*(Al,AZ,....,Bl,Bz,....,Cl,Cz,....) . The result obtained in the
corollary can be stated in an imprecise way as follows: l) if we

add to the intuitionistic theory of barinduction for decidable formu-
las the negation of the axioms of continuity and of Church’s thesis,
then we cannot derive Markovs principle from the theory so obtained;
2) if we add to the intuitionistic theory of barinduction for quan-~
tifierfree formulas the negation of the axiom of choice, of conti-
nuity and of Church’s thesis,then we cannot derive Markov’s principle

from the theory so obtained.

9.4. Markov principle and the theory of Kleene-Vesley

A. The reader might have wondered why up to now we did not say any-
thing about the axiom of choice and the axiom of continuity. The rea-
son is that our methods (at least, in the form in which we have pre-
sented them) do not extend to the case where the axiom of choice or
the continuity axiom is present. In order to see this, let ZTiAC be
intuitionistic number theory plus all instances of the axiom of
choice. If Gentzen's proof-theoretic methods could be extended without
modifications to ZTiAC, then we could prove among others the follow-
ing statement § : If ZTiaC b —> (E }’)A( }’), then

ZTiAC f — A(F) for some constant functor F (where (E %)A( ;)
is a closed formula). From this,however, we could derive a contradic-
tion. In order to see this, let T(z,x,y) be Kleene’s T-predicate.
Assume ZTiAC f ——— (E ?’)(x)T(e,x, F'(x)) . Then, in virtue of
the statement S, it follows that there is a constant functor F

such that ZTiAC } —> (x)T(e,x,F(x)) . However, all functors of
ZTiAC represent primitive recursive functions. Therefore it follows

that the recursive function {je} (x) is primitive recursive. On
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the other hand,it is easy to find an e such that {_e} (x) is
not primitive recursive and such that

ZTiAC f —> (E ; ) (x)T(e,x, ?'(x)) holds; hence a contradiction
is obtained, The difficulty is,of course,the same in the case of
stronger theories such as the system of Kleene-Vesley, which will be

denoted by KV .

B. Although Gentzens methods are not directly applicable to XV,
there are other methods (indirect methods) which permit us to infer
that Markov’s principle is not derivable from KV . All these methods
are based on the fact that KV is interpretable in ZHti* . A de-
tailed description lies outside the scope of this monograph; we con-
tent ourself with a few indications. One of these methods (the only
one which we are going to consider) is based on work of Kreisel and
Troelstra [7;] and on work of Troelstra which is going to be pub-
lished. In [7] , two theories €S and IDK are introduced. The
first of these includes KV as a subsystem while the second is both
a subsystem of CS and of classical analysis. CS contains a con-
stant K , representing roughly speaking the species of recursive
functions, variables for choice sequences and variables for construc-
tive functions, together with suitable axioms. IDK is obtained from
CS by dropping everything which refers to choice sequences. The ma-
jor result concerning IDK and C8 is the following: with every
closed formula A from CS we can associate a formula A¥ from
IDK {that is,one not containing variables for choice sequences), such
that Cs A 4iff 1IDK A* . If,in particular, A is itself a formula
whithout choice variables,then A 1is A% . For formulas without
choice wvariables,we can introduce a certain realizability notion
which essentially coincides with that one introduced in [4] . In

work which will appear, Troelstra proves the following statement Sl:

if Al,....,AS,B are closed formulas from 1IDK, and if
IDK, A.,....,A F B holds, then B is realizable whenever
1 s
Al,....,AS are realizable. This notion of realizability can be for-

malized within the language L which we have used throughout this
work and there are closed formulas ﬁ; with the property: if A is a
closed formula from IDK with at most n 1logical symbols,then

ﬁ;( [A] ) expresses intuitively that A 1is realizable where [A]
is the Goedelnumber of A . Although the author has not worked out
the details, he believes that the following statement S2 is pro-
vable: if A ...,AS,B are closed formulas from IDK each con-

AS,IDK F B holds,

1’

taining at most n logical symbols, if Al,....,
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then zHtix F R ( [ A ] ) A ... AR ( [a] )>RrR( [B] ) hoids.

The following statement on the other hand,is easy to verify:

Sq,
if R(x) is a prime formu%a containing only x free and without spe-
cial function constants, then, for n sufficiently large,

zutix FR ([T (v) TR(x) ] ) = (y) IR(y) and

ZHti* |k ﬁ;( [ (Ey)R(y) ] ). = (Ey)R(y) holds. From this,one can de-
duce the following statement SM : Let R(y) be the prime formula
mentioned in theorem 74* (with ZHti* for T ); then (Ey)R(y) is

not derivable from —Y(y) “Tr(y), Cs

Proof: Assume the contrary. Then €S F |(y) JR(y) D(Ey)R(y) and
hence IDK | ( 7] (y) JR(y) =2 (Ey)R(y))* in virtue of the main re-
sult of Troelstra-Kreisel. Since A is A¥ if A does not contain
variables for choice sequences,we infer 1IDK f _7(y)_1R(y)::>(Ey)R(y)
According to statement S_, this implies

zatix F R ([ 7(y) TIR(y) ] ) DOR ([ (Ey)R(y) ] ) . With the aid
of statement Sj, finally we get ZHti* F 1{y) TTr(y) > (By)R(y) ,
that is, zZHti*, ]{(y) "IR(y) } (Ey)R(y) , contradicting the combi-

nation of theorem 74% and theorem 78.

€. There are other ways of interpreting KV in ZHti* ; either of
these could be used to prove statement S along the lines sketched
above. We hope that this indications suffice to make clear that, at
least with respect to the Markov principle, axiom of continuity and
axiom of choice can be reduced to the theories treated in this mono-
graph, although in an indirect way and at the expense of a conside-

rable amount of work.



CHAPTER X:
Relative consistency proof of ZTN with respect to ZTi/Iﬁ

Our arguments presented in chapters II - IX are egsentially clagsi-
cal, that is,we looked at the proof theory of intuitionistic systems
from a classical point of view. To be sure, we were careful not to
use the law of excluded middle when it was not necessary; but ordi-
nals were handled in a completely abstract and unconstructive way.
It is the purpose of the present chapter to show that the reasoning
presented in chapter VI can be reproduced in the theory ZTi/Iﬁ

(see chapter I for the definition of ZTi/Iﬁ). This means that the
consistency of 2ZTi/V can be reduced (in a primitive recursive way,
in principle) to the consistency of ZTi/Iﬁ . On the other hand,it
is easily seen that 2ZT/V , that is, ZTi/V plus law of excluded
middle, can be reduced in a primitive recursive way to 2ZTi/V : if
ZT/V F A, then 2Ti/V } A° . Thus we obtain a consistency proof for
ZT/V relative to ZTi/I§ . Actually, we do not formalize the theory
presented in chapter VI in ZTi/I§ in the proper sense of the word.
Our reasoning will be intuitive, but such that it will become clear
that our arguments can be reproduced without difficulty in ZTi/I§ .
For notational simplicity,we present our formalisation in the Hilbert
type version of ZTi/Iﬁ , that is,in the theory which we obtain from
intuitionistic numbertheory ZHi by addition of all the axioms of
the form W( <) 2. (v)((x) — ,alx) 2 A(y)) = (2)(R(2) Da(2)) ,
with A a formula from the setR WN (sect. 1.5.,, def. 3) and R a
bounded formula without function parameters (sect. 14, part K). Thus,
if we say below that a formula B is provable in ZTi/Iﬁ , We mean
that —> B 1is provable in ZTi/Iﬁ , or equivalently that B 1is
provable in the Hilbert-type version of ZTi/Iﬁ .

10.1. Preliminary remarks

A. Our task, to reduce the consistency of ZTi/V to that of

ZTi/Iﬁ, is,of course, accomplished if we can reduce the consistency of
ZTFi/V to that of ZTi/Iﬁ, where ZTFi/V is that particular conser-
vative extension of ZTi/V which has been introduced in chapter VI.
Denote by ZTFi/Vn that subsystem of ZTFi/V which we obtain by
considering those proofs in ZTH/V only, which do not contain for-
mulas with more than n logical symbols. Since ZTi/I§ is a sub-

theory of ZTFi/V, it is clear that we cannot reproduce the arguments
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of chapter VI as a whole in ZTi/Iﬁ 7 this would contradict Goedel’s
second incompleteness theorem., However, the arguments presented in
chapter VI can be relativised to ZTi/Vn . This suggests that we try
to prove in ZTi/I§ for each fixed n that ZTi/Vn is consistent,
using thereby the methods of chapter VI, but now restricted to
ZTi/Vn . That this can be done, will be shown in the following sec-

tion,

B. Before proceeding further, we briefly recapitulate the defini-
tion of ZTi/I§ . To this end we remind that, according to definition
37we denote by WN the set of formulas which can be built up from
TTi—formulas without free-function variables by means of propositio-
nal combinations and quantifications over number variables. By
ZTi/Iﬁ we denote the theory obtained from ZTi by addition of the

following rule of inference:

R(y) o (x) o= yalx) [ ——>A(y)

R(Y) ’ W(CR) ’ [—_ﬁ A(q)

where R 1is a bounded formula without function parameters and where
A belongs to WN .

€C. 1In this chapter we are not interested in the proof theory of
ZTi/Iﬁ ; we rather want to know what portion of chapter VI can be
formalized within ZTi/Iﬁ . It is therefore not necessary to take
special function constants into account, as far as ZTi/I§ is con=
cerned. Hence we will restrict ourself throughout this chapter to
that portion of ZTi/Iﬁ which does not contain special function con-
stants; that is,we tacitly assume that the terms, formulas, sequents
and proofs of ZTi/I§ with which we are concerned do not contain
special function constants. Special function constants, however,re-
appear as soon as we are concerned with the proof theory of ZTi/V

then they are objects about which we speak within ZTi/Iﬁ .

10.2. Remarks about transfinite induction in ZTi/IX*

A, In ZTi/Iﬁ we can perform transfinite induction only with res-

pect to wellorderings of the form R (that is

X< gy NR(x) NR(y)) where R is a bounded formula without func-
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tion parameters (see part K of section 1.4., chapter I). It is not
absolutely necessary but useful to know that in ZTi/Iﬁ we can per-
form barinductions with respect to wellfounded trees R( O((x))

where R(y) is recursive in the intuitionistic sense. More precisely

we have the following

A
Theorem 80: Let D(x,y) and D(x,y) be two formulas not containing

function parameters. Denote by H )= consecutively the follow-

10y
ing formulas:

1) (x)( 71 (By)d(x,y) = (E2)D(x,2)); 2) () (T(EY)D(x,v) V (By)D(x3)}
3) (o) (Bx,y)D( X (x),y) 5 4) ( &X,x)((z)a( X (x)*z) Da( X (x));

5) (o ,x)((Ey)D( X (x),y) > A( I (x))). The formula A is thereby

supposed to be in WN . Then we can prove in ZTi/I§ the following
implication: H; A ...... A HSZ:D Al >y .
Remarks: Clauses 1) and 2) express that (By)D(x,y) is recursive in

the intuitionistic sense ( [h] , p.. 284)., Since 2Ti contains all
primitive recursive functions, we caun express every recursive enume-
rable set in the form (Ey)D(x,y) , with D a bounded formula.
Although the proof of theorem 80 is not completely straightforward, it

does not present any difficulties and therefore we omit it.

Wit the aid of theorem 80, other forms of transfinite induction can

be proved in ZTi/Iﬁ . In order to list them, let us introduce

Definition 59: A formula A(xl,....,xs) is called intuitionistical-

ly recursive with respect to the intuitionistic system T if
xl,....,xs are its only free variables and if the following holds:
1) A(xl,....,xs) has the form (Ey)R(xl,....,xs,y) where R is a
bounded formula; 2) there is a bounded formula Q(xl,....,xs,z)
such that T F _](Ey)R(xl,....,xs,y)EE (Ez)Q(xl,.....,xs,z) :

3) T F—A(xl,....,xs)\/ 1 A(xl,....,xs) .

Remark: We are mostly interested in the case where T is ZTi/Iﬁ .

Now let L(x,y), D(x) and R(x) be intuitionistically recursive
formulas such that L(x,y) ::DD(X)/A\D(Y) is provable in ZTi/I§ .
Denote by W(L) the formula ( & )(Ex) JL( & (x+1), X(x)) . Then
the following formulas are provable in ZTi/I&, provided A Dbelongs

to WN :
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1) W(E DO {3 ROIAG) (x €y Da(x)). DA(3) 2 (2) (R(2)Da(2)) }
2) WC D {(3) ((x) (xegy DA(x) )DA(y) ) D (2)A(2) }

3) W(L) D) ((D)L(x,y) D A(x) D Aa(y)) D(2)a(=) }

B) W) D) A X (L(x,y)DAx) ) . DA)) D(2) ((2) Da(=)) -

Formulas 1), 2) are special cases of 3}, 4). Formulas 3), 4) follow

from theorem 80 by means of standard devices such as presented inZ}].

B. 1In order to apply theorem 80 and its implications successfully, it
is important to kmow that certain particular sets and relations are
indeed intuitionistically recursive. In many cases this is a conse-

quence of the following well-known

Theorem 81: Let A(x,y) be a quantifierfree formula. a) f

F (x)(BEy)A(x,y) in classical number theory, then | (x)(Ey)A(x,y)
in intuitionistic number theory. b) If f (x,y)A(x,¥) in classi-
cal number theory, then [} (x,y)A(x,y) in intuitionistic number

theory.

From this theorem we infer the following

Theorem 82: If A(x,y) and B(x,y) are quantifierfree formulas and
if F (x)((y)A(x,y)EE QEZ)B(X,Z)) in classical number theory, then
F (x)((y)A(x,y)EE (Ez)B(x,z)) in intuitionistic number theory.

Proof: a) 1In order to prove the theorem, we list four formulas which
can be proved in intuitionistic predicate calculus and whose proof we
leave to the reader: 1) (Ez)(A V B(z)) Z=(A V(Ez2)B(2)) ;
2) (V= v(y)) 2 (U 2 (y)vly))
3) (Ev)( Ta(y) VB) D ((y)aly) = B) ;
k) (z2)(u(z) 2> v) D ((Bz)u(z) > V) . In 2) and 3) y is not in
U and B, respectively, in 1) and 4) z 1is not in A and V,
respectively. b) Next we prove that (y)A(x,y) Z2 (Ez)B(x,z) can
be proved intuitionistically. To this end we write }—c and Fi
in order to indicate provability in classical and intuitionistic num-
bertheory, respectively. From Fb(y)A(x,y)Z::>(EZ)B(X,Z) we infer
Fb(Ey)(Ez)( 7 A(x,y) \/B(x,z)) and thus from theorem 81
Fi(Ey)(Ez)( Q]A(x,y) V’B(x,z)) . From formula l) listed under a) we
get }-i(Ey)('7 A(x,y) V {(Ez)B{x,2) and from formula 3)
Fi(y)A(x,y) ::D(EZ)B(X,Z) . c) Now to the converse:
F;(E2)B(x,2) — (v)a(x,y) . From | (Ez)B(x,2z) = (v)a(x,y) we
infer Foly,z)( 77B(x,z) VA(x,y)) , that is
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Fi(y,z)( “1B(x,z2) V A(x,y)) by theorem 81 and hence

Fi(y,z)(B(x,z) = alx,v)) {since A,B quantifierfree obey the law
of excluded middle). From 4) in a) we infer

Fi(y)((Ez)B(x,z) 2 A(x,y)) and from 2) in a) finally

F; (B2)B(x,2) 22 (v)A(x,y)

Corollary: If A(x,y) and B(x,z) are quantifierfree and if
PE(Ey)A(x,y)EEE(z)B(x,Z) holds, then:

a)  Fy(EV)A(x,y) = (2)B(x,2) , b) F,(y) TA(x,y) =(Ez) B(x,2) ,

c) F (By)a(x,y) vV 77 (By)alx,y)

Proof: Part a) follows directly from theorem 82. Part b) follows
from theorem 82 and the classical conseguence

FE(Y) =7 A(x,y) = (Ez) 7] B(x,z) . Now to part c). According to IM ,
p . 166, we have: TI) Fi T (Ey)a(x,y) = (v) 14a(x,y) . Next we have

F(Ev)alx,y) v 71 (By)alx,y) , that is,

}b(Ey)A(x,y) V (BEz) 71 B(x,z) in virtue of our assumption and there-
fore }b(Ey)(Ez)(A(x,y)‘v 1B(x,z)) . By applying formula 1) lis-
ted under a) in the proof of theorem 82,we infer from the last state-
ment : Fi(Ey)A(x,y) \V (Ez) T1B(x,z) . From b), already proved,we get
therefore: Fi(Ey)A(x,y) \/(y) ~]A(x,y) . Using finally I),we obtain

F;(By)a(x,y) V/ T(By)A(x,y) , what proves c)

Thus, if a predicate can be proved to be recursive in classical num-

bertheory, then it can be proved to be recursive in intuitionistic

number theory.

10. 3, Syntax of ZTi/V

A. In the system ZTi/Iﬁ we can speak about the syntax of ZTi/V ;
one uses thereby a suitable Goedelnumbering of the symbols of

ZTi/V , its terms, formulas, sequents and proofs. As noted at the
beginning, we do not give a complete formalisation of the content of
chapter VI in ZTi/I§ . We rather prefer to rephrase the arguments of
chapter VI in a constructive, but intuitive way such that it will be
evident that everything can be reproduced via Goedelnumbering in
ZTi/Iﬁ .

B. Chapter VI splits essentially into two parts: a rather elementary

part presented in sections 6.1. - 6.4. and a nonelementary part, con-
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tained in sections 6.5. - 6.6, Formalizing the content of sections
6.1. - 6.4, requires obviously quite extensive routine work; however
this can be done in principle without difficulties. Among the more

subtle parts in sections 6.1. - 6.4. for which it is not completely
evident that they can be formalized in ZTi/Iﬁ is perhaps theorem
4o. Let us just outline how this can be done. First, it is clear that
the relations R and L between proofs in ZTi/V introduced in
part F of section 6.4,, chapter VI, can be proved to be recursive in
classical numbertheory. Using the corollary to theorem 82,it follows
that both R and L can be proved to be reécursive in intuitionistic
numbertheory. If L is provably intuitionistic recursive, then so is
LP for every proof P in 2ZTi/V., Now consider the proof of theorem
40 as presented in section 6.4. In this proof, we assume that for

a certain Po , LP is wellfounded. By transfinite induction over
o R
LP we prove: if P é{DP,

strongly true. In virtue of theorgm 80 and its implications,this

then the endsequent of P is

transfinite induction is accessible to ZTi/I§ if we can show that
the statement "the endsequent of the special proof P is strongly
true" is represented by a formula A(x) belonging to WN (with x
running over Goedelnumbers of special proofs). This, however,is an
immediate consequence of the definitions of "special proof" and
"strongly true" as given by definitions 41 and 42 in 6.4. Thus, there
is in principle no obstacle t0 proving the Goedelized versions of

sections 6.1, up to 6.4, in ZTi/Iﬁ .

10.4. Ordinals

A. The main obstacle to a straightforward formalization of chapter
VI within ZTi/Iﬁ is obviously section 6,5, There we introduce or-
dinals, some of which are apparently nonconstructive. The most im-
portant among these nonconstructive ordinals is obviously 2,
whose definition is given at the beginning of part A of section 6.5.
It is the purpose of this and the next sections to show that, despite
the nonconstructive character of the ordinals introduced in 6.5.,

there is a way of handling them within ZTi/Iﬁ .

B. Let L(x,y) be a formula containing no other free variables
than x,y . We write =xLy instead of L(x,y) . Assume that we have
already proved xLy, yLz ——> xLz . Even if we have good reasons

to expect: that xLy is wellfounded classically in virtue of its de-
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finition, we can hardly expect to prove ()(Ex)(T7o(x+1)L&(x)) in
ZTi/I§ because xLy might be highly undecidable. However, we can

eventually hope to prove the following or a similar version of trans-
finite induction: (y)({x)(xLy T2 A(x)) T2 A(y)) == (=z)A(z) . We will

show that this is the case for certain particular formulas L .

Assumption A: 1Ip what follows, P(z,x,y) and G(z,x) are two in-

tuitionistically recursive formulas and we assume that
P(z,x,y)::’G(z,x)/“\G(z,y) is provable in ZTi/Iﬁ . We write

x <izy and x é.GZ in place of P(z,x,y) and G(z,x), respective-
1y. By w( <<z) we understand the formula

(X )(Ex)( 7] of (x#1) <, K (x)) while Progrx( <<Z,A(x)) and

TIX( ‘iz,A(x)) are abbreviations for

(v)(y €6, =2 .(x)(x L,y P A(x)) =2 4A(y)) and

w(<,) D .Progr (¢, ,A(x)) T2 (v)(y € G, = A(y)) . Finally, F(z)
is an arbitrary formula for which F(z) = W( <<Z) is provable in

ZTi/Iﬁ ; we sometimes write x € F instead of F(x) .

Notation: By <:x,y:> we denote the pairing function
%((x+y)2 +3x+y) which maps N2 in a one-one way onto N (N the

set of natural numbers).

Now we are going to define a relation L(x,y) , a family of relations
L(z,x,y) depending on the parameter =z and their respective domains
D(x) and D(z,x) ; we write xLy , xLZy , x €D and x € DZ in
place of L(x,y), L(z,x,y), D(x) and D(z,x), respectively. Their
definition is as follows:
1) Le,x>L<et,y> = eéF/\e‘eF/\xéGe/\yéGe,/\

N(e <e'.V.(e=e'Ax ,<ey)) ,
2) <e,x> ED=e EFANX EGe ,
3) <eyx>1? <e',y> = e<czAelg zA <e,x>L e,y >
L) <e,x> 6DZ E<e,x> EDNe
By Progrx(L,A(x)) and Progrx(LZ,A(x)) we denote the formulas
(v)(vy € D 22 . (x)(xLy == a(x)) =2 A(y)) and
(v) (v é-Dz.:> LAx)(xL vy 2 A(x)) > A(y)), respectively.
TIX(L,A(X)) and TIX(LZ,A(X)), finally,are abbreviations for
Progrx(L,A(x)) 2{s){(s € D —=>4a(s)) and
Progrx(LZ,A(x))::D’(s)(s € DZ ::>A(s)), respesctively. Our aim is to

prove

IN

z
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Lemma 29: Assume A é;WN . Then: a) ZTi/Iﬁ F—TIX(LZ,A(X)) ,

b) ZTi/I§ F—TIX(L,A(x)) . The lemma will be proved by first proving
a) by induction over =z and then by proving b) with the aid of a).
We proceed in steps. a) First we claim ZTi/Iﬁ }—TIX(LO,A(X)) . To
this end assume Progrx(Lo,A(x)) . Let <u,v> €.Do be arbitrary.
From the definition of Do and D we infer:

<u,v> € D0 =u=0 N0 EF N\ v éGO . Thus we have to prove
A(<<'O,v ;>) . From the definition of LZ, on the other hand,we imme-
diately infer: <: e,x;> L.° <:e',y;> = e=0/\ e=e' N\ x <(oy . Hence
Progrx(Lo,A(x)) is provably equivalent to
(v)(OEF/\véGOD.(x)(x(ovDA(<O,x>))DA(<O,V>)) , that is, to
0EFD.(V)(vEG D . (x)(x < v Dua(<0,x>)) D>a(<0,v>)) . As no-
ted, it follows from the assumption <:u,v:> € DO that u=0 and
0 €F holds. Hence Progrx(Lo,A(x)) is equivalent to
(v)(véGOD.(x)(x <°VDA(<O,X>))DA(<O,V>)) , that is, to
Progrx( <<O,A(<:O,x;>)) . From our assumption A we infer W( <<O) ,
and since A & WN so A(<<o0,x>) & WN . Hence we can derive in
ZTi/I§ the formula
W(.<0)D.Progrx((o,A(<O,x>))D(x)(xéGODA(<O,x>)) . From
this, W(.<<o) and Progrx( <<o,A( < 0,%x >)) we immediately get
(x) (x éﬁGo —aA(<{o,x >)) , that is,in particular, A( <0,v > )
b) Next we want to show: ZTi/Iﬁ }—TIX(LZ,A(X))::)TIX(LZ+1,A(X)) .
To this end assume TIX(Ln,A(X)) and Prong(Ln+l,A(x)) . OQur aim is
to prove A( <:u,V':> } for all <:lJfV;> in Dn+l . To begin with,
we list some equivalences and implications which immediately follow

from the definition of L,Lz , D and DZ

o) < u,v>ep™=<Cu,v>ED" V(u=ns1An+l EFAVED ) ;
8) <u,v> €D D<u,v> €7l

y) <pa> " <u,v> > < p,a> 1™ <a,v >

51) < P,Q>Ln+1<u,v>z<p,q>Ln <u,v> \/(pgn/\u=n+l/\p EF N
/\uéFAqéGpAvéG )

n+l — .
éé) < n+l,q > L < n+l,v> = q *<n+lv/”\n+l EF

n+l

) v

({3) <p,q>Ln+1<n+l,v>~:’£(p <ZnANApéEF An+l EFAg éGp/\v 6Gn+1

V (p=n+1\n+l EFAgq <<n+1v) ;
E,) <u,v> éDnD(<p,q>' Lol lu,v > = <p,q>Lr1 la,v> )
From 5) we get as an immediate consequence
Progrx(Ln+l,A(x)) ::DProgrx(Ln,A(x)) . Since Prong(Ln+l,A(X))
holds by assumption, it follows that Progrx(Ln,A(x)) holds. From
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the inductive assumption TIX(Ln,A(x)) we therefore obtain I):
(s,t)( <s,t> € Dn DA(< s,t >)) . According to o) above,our
proof is accomplished if we can show: if u=n+l, n+l €EF and

v & G,,,’ then ‘A( < u,v >) . Hence,let us assume u=n+l, n+l&F
and v € Ghi1
fer: II) (s,t)(<s,t>L" T <nel,v> Dal(<s, t>)) DA(<n+l,v>) .
Next we claim: TIII)

(i) (<P a>L™  <nel,v> Da(<p,a>)) =(a) (a <y, v O A(<nr1,a>)).

In order to verify the implication from left to right, take p=n+l

From Progr (Ln+l,A(x)) and this assumption we in-

and use 52) . In order to prove the implication from right to left,
assume <p,q>Ln+l <n+l,v> . According to 53)> this is equi-
valent to
(psnAap eFAmwl_eFVﬂ_éGﬁAN'€Gn+IAn+1.6F)v(p:n+LAn+l éFAqﬂ<n+lv) . If
the first of these alternatives holds, then clearly <:p,q;> € Dn
and therefore A(<<'p,q >>) according to I) above. If, however,
p=n+l, q ‘<n+1v , then A{ <n+l,q >) from the assumed righthand
side of TIII). Hence ITI) is indeed true. This permits us to replace
in II) the lefthandside of the implication by the righthandside of
III), that is,we get: 1IV) (q)(q‘<h+lv DA(<n+1,q>))2A(<n+l, v >).
In other words we get: V) Progrx(.<fn+l,A(<<:n+l,x >>) . Since
n+l EF Dby assumption we get W( ‘<n+l) by assumption A . Now
V(L ) 2 Progr, (< A1, x>)) 2 (2) (2 €6, = A(Lnvl,2)))
is provable in ZTi/Iﬁ since A( <'n+1,x > ) belongs to WN . This
together with V) and w(‘<<n+1) finally implies
(z)(=z é'Gn+1 “DOA(<Tn+l,z >)) and,in particular, A( <n+l,v >) ,
what concludes the induction step. Thus
TIx(LZ,A(x)) ::)TIX(LZ+1,A(X)) indeed holds in 2Ti/I% . Combining
this with the already proved TIX(LO,A(X)), we obtain
(2)TI_(L%,a(x)) for all A €W .
¢) It remains to show that (z)TIx(Lz,A(x)) implies TIx(L,A(x))
To this end we list some further consequences of the definitions of
L, L_, D, D :

x X <
1) <u,v> e€p, D (<p,a>L<u,v> =dpa> L Juv ),
2) <x,y> €D D Ix,vy> €D, .
Now assume
(0, v)(<u,v> €D 2. (p,a)(<p,a>L <u,vX 2A(<p,qa ) =2 Aa(<Tu,v>),
that is, Prong(L,A(x)) . Assume in addition < x,y > &£ D . We
have to prove A(-<:x,y:> ) . From Progrx(L,A(x)) we easily infer
with the aid of l): Progrx(Lz,A(x)) . Namnely, let <:u,v:> be in

D, . Then we can replace < pya> L <u,v> by < p,q;>Lz <lu,v>,
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according to 1) above. That is, we have

(u,v) (<u,v> €D, D.(p,a)(<p,a L*<u,v> 2 a(<p,a>))>A(<u,v)))
that is Progrx(LZ,A(x)) . Since TIX(LZ,A(X)) is already proved, we
can infer from Progrx(Lz,A(x)) : (u,v)(<:u,v;>éiDZZZDA(<:u,v:>)) .
Hence we get, in particular, <{x,y> € D, DA(<x,y>), or by ta-
king x for =z : <x,y> 'S Dx = aA( <x,y>) . However,

<fx,y:> € D_ is true by 2) above and so is A(<{x,y > ), what

concludes the proof of lemma 29.

10.5. On extending linear wellorderings

A. In the last section we have considered certain particular rela-
tions L which from a classical point of view are wellfounded. We
have seen that in virtue of the definition of L , and despite the
eventually highly undecidable character of L, one can prove in
ZTi/I§ transfinite induction with respect to L in the form
TIX(L,A(X)) , with A €:WN . Such a particular relation L , whose
definition will be given later, will serve, roughly speaking, as a
substitute for the ordinal L2 in chapter VI, section 6.5. However,
ot only {2 , but also such ordinals as a)n( a)m(_fz##]J # 1) ete.
were used. It is the purpose of this and the next section to provide
an appropriate comnstructive substitute for such ordinals and for the

functions (A)n( X ), X # ﬂ .

B. To start with, let P(z,x,y) and G(z,x) be two intuitionisti-
cally recursive formulas and F(z) a third formula which satisfies
condition A stated at the beginning of part B of the last section.
With respect to P,G and F, we use the same abbreviations as in the
last section. In addition we assume that P,G,F satisfy also the

following additional

Assumption B: l) P,G,F are in WN ’ 2) for every e, ‘ie is

a linear ordering of G, ; that is; &) if =x,v,z &€ G, » then

x<ey\/x=y vy <ex , and X LYy y,(ez _Dx.<ez and

X LY =2 1Y £.x A\ T1y=x hold ; /) X L Y DOXxEG NAYEG,
holds; 3) there is an e and an x é.Ge such that F(e)
holds. In terms of P,G and F, we again introduce a relation L
and its domain D by means of clauses 1), 2) in part B of the last

section. With respect to L,D, we have the
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Lemma 30: a) If =n,m €D, then: 1) nlm Vn=m V mLn ;
2) nlm, mLp >nLp ; 3) nlm —> 1mln A “Im=n ; &) ] nln ;
5) there is an n €D, b) nlm —>n €D.Am ED .

The proof follows in a straightforward way from assumptions A,B

satisfied by P,G,F and from the definition of L,D .

As shown in the last section,we can prove in ZTi/Iﬁ FTIX(L,A(X))
for A é;WN . It is clear that in virtue of assumption B,1) the
formulas L,D are also in WN .

Definition 60: The formulas D(x), L(x,y) are said to be an order-

ing pair if they belong to Wy and if, in addition,clauses a), 1)-5)
and b) of lemma 30 are satisfied. They are called a wellordering pair
if, in addition, TIX(L,A(X)) is provable in ZTi/I§ for every

A €.WN .

C. We are now going to extend the relation L . To this end,let +

be a new symbol.

Definition 61: X) Let D,L be an ordering pair. Then D¥ is the
qs which satis-

set of strings (words) of the form n X *eee.atn

1 s
fy the following conditions: 1) KXyreoees X ED
2) 0<i+lL O(i (1n case s >>l) B 3) ni‘> O . Thereby we admit
s=1 . ) A relation L* over D¥* is introduced by defining

* i i -
my /£1+""+mt /QtL n, CK1+...+ns o(, if one of the following con
ditions is satisfied: 1) there is an i< min(s,t) (possibly O)

such that my =n, and 0(k: /?k for k £ i and either

My <Py, and 141 T Kj4qpo OF else /?i+1L X410

2) t<s and m=n_, & ,= /Qk for k=1,....,t . By definition,
xL*y O x €D*¥ ANy & D* . We call L*,D¥ +the ordering pair induced
by the ordering pair L,D .

Notation: The norm f?/ of ? =n, 0<l+...+ns Xy is X .

Remark: It would be an easy matter to represent strings
n, C>(l+....+nS a(s by suitably chosen Goedelnumbers; however we omit
such an arithmetisation in order to avoid complicated notations.

Concerning L*,D* we have

Lemma 31: If L,D is an ordering pair, then L¥,D¥ 1is an ordering
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pair.

The proof is a straightforward consequence of the definition of

L*¥,D*¥ and of the assumption that L,D 1is an ordering pair. Elements
¢ € D can be identified with the elements 1 ¢ € D* . This iden-

tification is justified by the following

Lemma 32: 1) If ,/€€D then /9Lo< iff 1o<L*1/§

Notation: For simplicity, we write (o4 instead of 1& for ele-
ments X € D . For elements in D¥*, we can introduce a natural sum
%# which will play about the same role as the natural sum ##
usually defined for ordinals, Namely, let and 71 be
0(l+...+ns CXS and m, /51+....+mt /§t’ respectively. Let S be

the set {o(l,...., o<s} , S, the set {/yl,.... /t} and
S=Sl N4 52 the union of both. The elements of S are listed in de-

creasing order with respect to L : 3/1,...., )ﬁa . Then we define
F.4#71 to be pl }3}....+pa )*a , where the coefficients p; are
given as follows: 1) if there is a j and a k such that

X 4= /?k= Y > then p, _(n +m ) ; 2) if there is a j such that

)ﬂi , but no k such that /§ K= )/i , then pi=nj p
3) if there is a k such that ) i= /gk , but no j such that

(Xj= Xi , then p,=m_ -

Lemma 33: For F s j , £ D* we have 1) %#j 7 # %
2) L;L* ?# s 3) 1f }’# '}#}l,then %" =
This lemma is an easy consequence of the definition of B

OQur principal aim is to prove

Theorem 83: If L,D is a wellordering pair and if A EEWN , then
TIX(L*,A(X)) is provable in ZTi/I§ .

Here TIX(L*,A(X)) is an abbreviation for

Progrx(L*,A(x)) "> (z)(z &€ Dx 2> A(z)) , while Prong(L*,A(x)) is
an abbreviation for (y)(y &€ D*2> ,(x)(xL*y DA(x))>A(y)) . In or-
der to prove the theorem,it is convenient to introduce a list of fur-
ther abbreviations. First, we introduce for every X € D a set D%
as follows: Fé DX iff ;é D*/\(I?f L ¥ \/l;[ = o ) . Next
we introduce for every & € D* the formula

(v){yL*x > .(x)(xL*y 72 a(x)) =2 A(y)) and denote it by
Progrx(L§X ,A(x)) ; the formula
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Progrx(Lﬁx JA(x)) D> (=z)(zL* X = A(z)) will be denoted by
TIX(Lﬁx ,A(x)) . For X €D we use Progrz (L*,A(x)) as abbre-
viation for (y)(y’é,D*dZZD.(x)(xL*y::>A(x))::DA(y)) . Finally, for
K ED we take TIz (L*,A(x)) as abbreviation for

(s)(s Epx D .Progr;( (L*,a(s H#x) = (z)(=z € px, D A(s F2))) .
D. Instead of proving theorem 83 directly, we first prove

Lemma 34: With L,D a wellordering pair, if A é,WN, then the fol-
lowing formula is provable in ZTi/Iﬁ

(s)(s €D > .(t)(tLs = TI (L*,A(x))) = TI3(L,A(x)))

(that is, ProgrS(L,TI;(L*,A(x)) .

Before coming to the proof of this lemma, we show that theorem 83 is
an immediate consequence of it; more precisely, we infer from lemma

34 two corollaries, the second of which is precisely theorem 83.

Corollary 1: (s)(s €D > TI;(L*,A(X)) is provable in ZTi/Iﬁ y
provided A E.WN .

Proof: According to lemma 29, we have ZTi/Iﬁ F—TIX(L,B(X)) for all
formulas B é-WN . Since A G-WN it follows that, in particular .,
TIS(L,TI;(L*,A(X))) is provable in ZTi/I} (since TIi(L*,A(x)) is
N ) . That is,

ProgrS(L,le(L*,A(x)))::D (z)(z €D ™> TI;(L*,A(X))) is provable in
ZTi/Iﬁ . However, according to lemma 34, Progrs(L,TIi(L*,A(x))) is
provable in ZTi/Iﬁ , and so (s)(s €D ::’TIi(L*,A(x))) is pro-

in W

vable in ZTi/Iﬁ , what proves the corollary.

Corollary 2: For A & W. , the formula TI (L*,A(x)) is provable in
N X
i/ I*
ZT1/IN .

Proof: a) By definition TIX(L*,B(X)) is

Progr (L*,B(x)) 2> (2)(z € D* 2D B(x)) . Assume Progr_(L*,B(x)) and
€ D* , Put I?J = & ; by definition, & &€ D , According to

corollary 1,we have TIZ (L*,B(x)) , that is, I) :

(s)(s € Dx D> .Progr;( (L*,B(s #Fx))™= (2) (= éDg(DB(s H#x)))

provided only that B EfWN . b) Let s, be an arbitrary but fixed

element from D¥* ; that there is such an element follows from lemma

31. Take for B(z) the following formula:
(Ev)(v‘##so=z AN A(v)) . Clearly, B(z) € Wy - In addition, B(s0 # x)
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is obviously equivalent to A(x) , as follows from lemma 33. Hence we
conclude from 1) above that II) holds:

Progrz (L*,a(x)) ™ (z)(ZfED; > A(z)) . Now it is evident that the
following formula III) holds:

Progrx(L*,A(x)) ;:DProgr: (L*,A(x)) . The lefthandside of this impli-
cation is (y)(y € D* 7D .(x)(xL*y == A(x)) = A(y)) while the
righthandside is by definition:

(v){y €Dy == .(x)(xL*y DA(x))\D a(y)) . But D <= D* by
definition of D;, ;7  hence III) is clearly provable in ZTi/Iﬁ .
Combining III) with II) and using our assumption

Progrx(L*,A(x)), we infer 1IV): (z)(=z é'Dt<::> A(z)) . But VFI =,
that is, l ?W é.D& , hence we infer A( ; ) from IV), what con-

cludes the proof in virtue of the arbitrariness of .

That is, theorem 83, which is the same as corollary 2, follows from
lemma 34.

E. Prior to the proof of lemma 34, we want to state a remark concer-
ning lemmas 30 and 31 and the use of the law of excluded middle. The
relations L,L*¥ are in general, of course, highly undecidable: given
two arbitrary numbers a,b we are in general not able to decide
whether alLb, blLa or DEitherrof them holds. Similarly, if we are given
two arbitrary expressions ?:n1 O(l+....+nS cxs ’

71=m1 /?l+....+mt /4t with the aid of the <Xi's and /?k's;
which need not necessarily all belong to D , then we are in general
not able to decide whether ? L* 7L_, 7(L* F' or none of them
holds. However, as soon as we are given the information that a,b
belong to D, then we know that precisely one of the three relations
a=b, alLb or bLa holds,and we are able to decide which one of them
is true; this is the main content of lemma 30. Similarly, if we are

given the information o, /?k €D, i=l,....8 , k=1,.....,t , then

we can decide whether F? belong to D¥ and, if so, which of
the relations (F L N, ML } , ? = 7 hold. Fimally, if
we are told that ?- 7L € D¥, then we know by definition that

X . 50 é.D, and so we are again able to decide which of the re-
latlons %'L* TL 71.L* <F l} 7L' holds. In other words, al-
though the statements alLb , ? 7( are in general highly undeci-

dable, the law of the excluded middle is applicable as soon as we
know that the arguments a,b and , 71 are in D and in D¥,
respectively. Keeping this in mind, the reader will verify that no

forbidden application of the law of excluded middle occurs in our
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considerations below.

1 Par Py
of D,LL and D*,L* which are immediate consequences of definition

61.

F. In order to prove lemma 34, we need three properties P

Pl: If & € D, then }_L*K, iff /}'/LCX .

Proof: Let €D* have the form m, /€l+....+mt /§t ; by defini-
tion m, >0, /9 i € D and,in case t >0, also ﬁ i+lL ﬁi .
Since L,D is an ordering pair, exactly one of the statements

gL o<=/41, dLﬁl holds. 1f o<=/3l or O(L/El)

then % L* X is impossible according to the definition of L¥* ;

hence, /91L X has to hold (this argumentation uses the intuitio-
nistic valid formula A VB /A ] A, OB ) . If,on the other hand,

/ﬂlL &  then ;L* & by definition of L* .

P2: TIf }%]LO( , then }ko(#;l - X .
Proof: Obvious from the definition of norm.

P3: Assume ?L*O( and X €D . Then ?L*(n+1) o F# F,
and only if one of the following conditions holds:

1) T:(ml)o(#rt and sz*)% s 2) 3‘=ko(#=7’L
0<k<n and |7MILX ; 3) é":v’t and {”rUch .

Proof: a) Put ?'= n, 174 +....+ns c(s , %: = my /51+....+mt /?t

and 7L~ Py }/"l+....+pv X”v . Assume 1) to hold. From 7LL* ;
and lemma 33 we get (n+l) #=7L L*¥(n+l) & ++ ?3 that is ,
?L*(n-&l)o{:ﬁ: . a,) Assume 2) to hold. Then k & += has
the form k O( 4Py )" +....+P, Yy* . Hence, k & #=7l L*(n+l) « 3 ?
according to the definition of L¥* ., a_) Assume 3) to hold. Then
L* X  according to Pl, and hence, 'VKL*(n+1)c( # , that is,
?’L*(rﬁl) K F L; . b) Now assume L*(n+l) o¢ H# ? . Since
L*X , we infer [£]L « , and hence, I(n+l>d #=%
Since §>L*(n+1)cx F* 5 there are two possibilities: ( !=ZX,
B) IYQIL X . If B) holds, then we take 3A for and clause 3)
of P* is satisfied. Let A) be true., Then %‘ =k o #
0 <fkg§ n+l , where IYLIL o . Two subcases arise: Al) : k<n,
A2) k=n+l . If Al) holds, then clause 2) of Py is satisfied.

Assume finally k=n+l . Then necessarily ‘WLL* <F ; otherwise
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(n+1) o¢ F# N =(n+1) X # ? or (n+l) X # % L*(n+l) < # 7
according to whether ?' ’Q or F—L* , thus giving a

contradiction.

G. Now to the proof of lemma 34. We have to show that for A 6'WN
we camn prove in ZTi/I* the formula ProgrS(L,TIz(L*,A(X))) . That
is,we have to prove TIo< (L* A(x)) under the assumption

X € D, (t)(tL0< —) TI (L* A(x))) and this finally amounts to
prove (z )(z é'QX o A()’ ## under the following assumption
APo : a ) X € D ; bo) )’éD* ; co) Progri(L*,A(}*#=x)) H
do) (t)(thX.::>TI (L*,A(x))) . We will do this by proving successi-
vely three statements ST1, ST2, ST3, with (z)(zéDj;< D aA( )/# z))

an immediate consequence of ST3.

ST1: (s)(séD*D.Progrx(L'& Als #x)) D (o) (tbrxxx > a(s FHt)))
holds.

Proof: a) In addition to APo’ we make the following assumptions
. * - - *
APl : al) So € D* bl) Progrx(L§< ,A(so FHx)) ; Cl) t L¥x
To prove ST1 amounts to prove A(so # to) under the assumptions
AP and APl . Since t L¥*x , we have |t0| L &« by Pl, and

hence, TI’;OI (Lx,a(x)) by AP_, d ) , that is,

(s)(s €bx D .Progr}’(to} (L*,a(s F x)) D (z)(= éD’?tO/DA(SOZH:z)))

(s, # =)

For S, in particular,we have 1I)
progrx/toJ(L*,A(so #x)) 2 (2)(z € D{%J
b) Now Progrx(Lg< ,A(so~%bx)) is

(v) (yL*o{ == (x) (xLxy 2 A(s_# x)) = (s, # vy)), while

progr [P (Lr,a(s#x)) is () (y €1, . (xLry = a(s #x))als #3))
We claim II) Progr_ (L* A(s H#Fx ))::>Pr0gr\ °‘(L* A(s ## x)) . To
this end, assume Y, érDltol and Progrx(L* ,A(so## x)) . Then

1y01 L} to) Vo yoi Itol,and hence, \yo]

lto} L « . According to Pl, this means oL*q’, and hence we can
infer (x)(xL*y ::7A(30:#=x)) ::DA(SO#%»YO) from

Prong(L§< ,A(so<#:x)) . This proves II) . Combining I) and II)
with AP bl),we can infer (z)(z E’Dﬁt lZZ)A(SO##E”) . Since

L & in virtue of

l’
t &€ D% ,we obtain A(s ##t ) what Qoncludes the proof of ST1
o [to] ) o

ST2: Under the assumption AP_ , if % L*ox then A(X‘#—?)

Proof: a) Progfz (L*,A()’ ## x)) occurs among the assumptions

listed under AP _ . We claim I)
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Progr;( (L*,A()/' H#H x)} o Progrlzl (L*,A(}/ #H x)) . Now

Progri(L*,A()/’ # x)) is

() (v €Dy = . (x)(xLry D aly # x)) D a(y~ # y)), while

Progrlxl (L*,A()" # x)) is

Ny €pr = ()xiy Daly # x)) > aly #7y) . 10

yéD]*] , then }y}L](Flor jy|=[?| According to Pl and
?L* X, we have }?]L X , hence in any case ]yl L& , and so
y €D§< . This, combined with Progr;( (L*,A()/“ H x)) as assump-
tion,implies (x) (xL*y_DA()ﬂ =H= x)) = A(/ #* y) , what proves 1I)

b)  As noted, we have ]?’L o34 . From AP _, do) , we can infer

TIE‘ (L¥,A(x)) , that is, II) :

(s)(s &€ D* :).Progrjxl (Lx,a(s F x)) > (z)(=z &€ D[*;] 2 Als H#2)) .
Since J ED* by AP, bo) , we obtain III) :

progrf (L,A(y # x)) 7> (s)(z €D > A( 4 2)) . Combining
I) and AP, Co) , with III), we get Iv): (z)(= 5DI*E,DA()/’# z)).
Since ? D?‘;I, we finally obtain A(}* # ? ) , proving St.2

ST3: If L* then A(Z/‘:H:nzx#?)
(with f#?nu#%=)/‘#7 if n=0 )

Proof: The proof is by induction with respect to n . a) If n=0,
then the statement is a consequence of $t2 . b) Assume that for
all k with O£k<n we have proved I) : if ? L* ¢ , then

A()/" H kX H#F LF ) holds. Since e F# (n+1)( € D*, it follows
from Stl that our statement is proved for n+l in place of n if
Progrx(L*b( JA( 2’” # (n+1) & + x)) 1is provable, that is,if we can
prove II)
(v) (s = . (x) (xL*y =2 A(y~ #F (n+1)o HF x)) D2 a(y F (nrl)ry)).
According to our assumption AP0 , co) , we have at our disposal
Progr;( (L*,A(X’ # x)) , that is, III)
(v}(y € D = .(x)(xL*y 22 A()/“ # x))— A(f # v)) . In order to
prove II) , assume ?L*o( and in addition 1IV) :
(x)(xL*‘;: Ay # () & # %) . Put X =(arl) #F .
For such a s we can infer from III) the statement V) :
(x)(xL*>\ DA(X # x)) = A()/‘ + >\ } . Now let ? be such
that { L*>\ . For such we infer from P3 that one of the
following three conditions holds: 1) 5‘ =(n+l) ~ F VL and 'VLL*;;
2) é’ :ko(#’VL , 0<kgn and |/ L o ; 3) = and
I?LJ L X . If 1) holds,then A(y FF (n+1) X 7 ) , that is,
A()/“ H %’) holds according to IV) . If 2) holds, then

=k < 4 ’}‘Z , 0<k=n and ’QL* ¢ according to Pl ; hence
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Aly # k # M ), that is Ay # ¢ ) holds in virtue of our
inductive assumption. If 3) holds,then again A()/# j‘) in virtue
of ST2 (or also in virtue of our inductive assumption). In any
case, whenever j'L*>\, then A()ﬂi# 7» . That is,we have proved
VI) : (x)(xL*ux = a( )"## %)) . From V) and VI) we infer

A()” # (n+1) & 3 ) , proving thus II) . This concludes the
proof of St3 .

Corollary (to st3): (z)(=z éDg( — A()/':ﬁ: z)) .

Proof: If =z € D& R then z=n& # (with z= in case n:O)
and ?'L & ; hence, A(J” ## n & ) holds in virtue of St3 .
That is,we have proved (z)(z E:D; — A()ﬁ # z)) under the as-
sumption AP0 , what proves lemma 34.

10.6. Cartesian products of ordering pairs

A. Given two ordering pairs Dl’Ll and D,,L,, we can form a new

2’
one, D+,L+ , called the cartesian product of Dl,Ll and D2,L2 .
The domain D _ is given as follows: <:a,b:> 61%_ iff a €D,

and b éD2 . The relation L_ on D, is defined as follows:
< a,b_> L, <u,v> iff < a,b > €& D, A< u,v>ED_A
A (aLlu N L (azu A bsz)) .

Concerning L+,D+, we have

Lemma 35: If Dl’Ll and D2,L2 are ordering pairs then L+,D+ is

an ordering pair.

We omit the completely straightforward proof. In addition, we also

have

Lemma 36: If Dl’Ll and D2,L2 are wellordering pairs then D+,L+

is a wellordering pair.

Proof: Our aim is to show that TIX(L+,A(X)) is provable in
ZTi/Iﬁ if A é—WN . To this end, we assume I) : Progrx(L+,A(x)) .
We want to infer (z)(z é-D+ ::>A(z)) . a) Instead of proving 1)
directly we prove II) : Progrx(Ll,(s)(s élDZ::DA(<< x,s_:>))) .
From TII) we infer 1) immediately,as follows: from

TIX(Ll,(s)(s € D, DA(<"x,s >>))) we infer with the aid of II)
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the formula (t)(t éDl —(s)(s €0, = a(< t,s >))) and this is
the same as (z)(=z é,D+ “>A(z)) . b) In order to prove 1II), let
A be in D1 and assume TII)
(t)(tLlC(_::D (s)(s é.D2 —>A(<t,s>))) . Our task is accomplished
if we can prove IV) : (s)(s é.D DOA(<X ,s>)) . In virtue of
TI (LZ’A( <X ,x >))» this is achleved if we can show V) :
Progrx(LZ,A(<<:O< s X >>)) . That is, we have to infer A(<::C% ;:>>)
from the assumptions VI): 1) & D, ;
2) (s)(sL = A( <i;C< y S :> . Because of 1), we have VII) :
(o) (< %oy L, <o, F DA< xy >N A(< o, F)
In virtue of the definition of L+, there are two cases to be distin-
2 (F ;o 2) xL, & . In case 1) it
follows from assumption VI) , 2) that A(<x,y > ) holds. In

guished: 1) x= X and yL

case 2), however,it follows from assumption III) that
A(< x,vy >>) holds. Thus the lefthandside of VII) holds, that is,
A(<: X |, F :>) , what proves the lemma.

B. Let D,L Dbe an ordering pair and C:) an element not contained
in D . Then we define a new domain and a new relation DO,L
respectively, as follows: 1) a €0Dp° iff a:C:)::. Vg .(a € D) ,

2) al®b iff alb.\ .(a= @@ \b & D) . We say that L°,D° have

been obtained from D,L by addition of a smallest element & .

Lemma 37: a) LO,D0 is an ordering pair. b) If L,D is a well-

ordering pair, then LO,DO is a wellordering pair. c) If x € p°

and x£@, then (L°x .

We omit the straightforward proof. Let D,L be a wellordering pair
and let e be an arbitrary element of D . Define De’Le as fol-
lows: 1) x éDe iff eLx ; 2) xL,y iff xéDe/\y éDe/\xLy .

Concerning De’Le’ we have

Lemma 38: a) De’Le is an ordering pair; b) if D,L is a well-

ordering pair, then De’Le is a wellordering pair.

The proof is rather trivial and hence omitted.

1.1 2 .2

€. Let D7,L and D ,L be two wellordering pairs and &> an
element not contained in Dl and D2, respectively. Let Di,Li and

Di,Li be obtained from Dl,Ll and D2,L2, respectively, by addition

of a smallest element C:) . Let D+,L+ be the cartesian product
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1 2
of Di,Lo and DO,Li . Then D+,L is a wellordering pair according

to lemmas 36, 37. Finally, put e=+<:Q5>,Qé> > . Then (D+)e

(L+)e is a wellordering pair according to lemma 38. We can define

(p,), , (L), with e=<E& , &> also directly as follows:

1) <a,b> & (p,), iff

(a €D, AN\b €D,) V(a €D N b=D) V(a=@ b €D,) ;

2) < a,b > (l+)e<u,v> iff

(<a,p> € (D) A< u,v> € (n).) V(al, UV (a=@ Au € D))V
\/(a=u/A\bL2v) V (az=u Ab=D N v €.D2)) . For simplicity, we call

(D+)e , (L+)e , with e= <<:QZD ,QED :> , the extended cartesian

product of D ,L1 and D2,L2 with respect to C:) . With this termi-

nology, we infer from lemmas 36 - 138

Lemma 39: Let D,,L and D,,L be wellordering pairs, & an

1'71 272
element not in Dl\v’Dz, and D , L the extended cartesian product
~ -~
of Dl’Ll and D2,L2 with respect to C:) . Then D , L is a well-

ordering pair.

10.7. The é—construction

A. In what follows we start with a given wellordering pair D,L and
construct successively new ones Do’Lo’ Dl’Ll’ D2,L2, etc. We call
this construction € -construction in view of its similarity with
Gentzens notation for 60 , used in [1] . Hence, let D,L be a
given, fixed wellordering pair and +, & two symbols not contained
in D . By definition, Do’Lo is the wellordering pair induced by

D,L according to definition 61; Do’ in particular, is the set of ex-
pressions n c><1+...,+n

1 s X, with n;, >0, «, €D and
°<i+l

L A i (in case s >1 ) . Now assume that Dn,Ln have alrea-
dy been defined and proved to be a wellordering pair. Then we take

for Dn+1 the set of expressions of the following form:
o1 Ks /9 i

n, w teeeeodn W +my [REERRE. /Qt with o4 i é,Dn ,

ﬂien, n, >0, m >0, &, L o, and /@iﬂL/&i.
Thereby we admit s or +t (but not both) to be O ; in the first
case we obtain an expression of the form my /?l+""+mt /?t be~
longing to D ; in the second case we obtain an expression of the
form n, w A1 teeeoodn w X 8 |, The relation Ln+l is said to

- A 1 X s

hold between %' n, o teeootn w +my f§1 Foae oMy é)t

Yt
and 71 =P, w b

signs F Ln+l‘Q.) iff one of the following conditions is satisfied:

a g i
+,....+paw )/ +ql 1 +.....+qb (1n
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1) s=a , n, 170y s X ;= ) and
m, /?l+....+mt /gtLoql <; +.....+qb C(b (s=a=0 admitted);
2) s < a and ng=mg o(iz f& for 1i<s (s=0 admitted) ?
3) there is a j<-min(s,a) such that ng=m, and X i )*i for
i< j, and either O<j+l = //j+l and nj+l=mj+l or else
0<j+1L )/3+l )

One easily proves by induction with respect to n :

Lemma 40: 1) L ,D  are ordering pairs, 2) D < D , 3) if
o<,/€ € D then 0<Ln+l/6’ iff dLnﬁ

Finally there is again a natural imbedding of D in Do and hence

in Dn : an o € D can be identified with 1& € Do . Without dan-
ger of confusion,we write simply X in place of 1 X for
X € D . There is also a notion of natural sum #F whose defini-

tion and properties are quite the same as in the previous section and
which will be needed later. In order to define ##» consider first

the case of two elements ?:nl w X1 teeoeotny w %8 and

3' =m, W fl+....+m w It from D . Let S, and S, be
{d’l,....., ot } nd {J”l,....., ]1:}, respectively. Put
S—S v s, and llst the elements of S in decreasing order:
>\l > >\ . > >\ . Then we take for‘j? ## LF’ the element

2
71 =alld ’kl +.....+a (ﬂ T where the coefficients a; are de-

fined as follows: 1) if there is a j and a k such that

Jkk i’ then a;=n 4my i 2) 1ﬁxthere is a j such that
d,j >H. but no k such that )’k= i+ then a;=n; ;o 3) 1f)
there is a k such that sz )i but no j such that X ;= i’
then a ,=m_ . The direct sum %b 3 M of elements

; =m /91 Feeseotmy /?t s ?—qu J; e atdy C{b ( /éi’ é;_ & D)

is defined in the same way as in part C of the last section. Now we
extend the sum ##‘ to arbitrary elements
=n, w %1 freo.atn W X's +my +.....+m ( . € D)
1 1 t i
and ;7 =p W /1 +......p w }‘a l +.....+qb b ( c{i € D)
by taking %or F # the element

((a, @ %1 4.l “w %) & (p, P, w ey,

+((m f?1 toooamy /’ )4# (ql c{l +.....+qb ‘!b)) . If, in particular,

ag. s=0 , a0, then the last expression reduces by definition to

(pl w 1 toeeaatp, W )ﬁa)a»((ml /?1 Foee oy /?t) H=

## (q terneatq )) . If s=a=0, then we obtain by definition
1 1 b b

(ml /Il taonotmy /?t) #:(ql c(l Feeeeatqy ¢f£)) ; similarly, in other

situations such as a=0 , s£0 and t#0 , b=0 etc. Again we have
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Lemma U41: ? , € D then #%’ (T
2) }' ;’#5" Tif }‘#Sr 7 }rnthen? }'

B. It remains to prove

Theorem 84; If D,L is a wellordering pair, then we can prove in

ZTi/Iﬁ for every n the formula TIX(Ln,A(x)) for A é:WN .

Proof: The proof is by induction with respect to n . If n=0, then
the statement is a consequence of theorem 83. Assume the theorem
proved up to n . Hence Dn,Ln is a wellordering pair. In order to
form the induced pair of Dn,Ln according to definition 61, we take a
new sign @ and define (D ) * ,(L * as in definition 61 but with

A
C) in place of + . Denote by D nel the subset of elements of
A
D having the form n_, W *1 teeeso.n W *s and 1et L be
n+l 1 A s A A n+l
th . . . .
e restriction of Ln+1 to Dn+l ; the pair Dn+1 y Ln+l can

easily be proved to be an ordering pair. The mapping which associates

A
with every element ny w CKl +.....+ns w S  from Dn+l the ele-
ment n, CKl (D A ng (Us is clearly an order isomorphism
A A
from D , onto (D }* , (L_)* . From this it follows easily
A+l n n

that Dn+1 A T

see that D s, L is order-isomorphic with the extended carte-
n+l n+l ~

sian product of Dn+1 N Ln+l and Do’Lo . This,however,implies that

Dn+1 . Ln+1 is a wellordering pair.

L
A+l
L is a wellordering pair. But it is not difficult to

The sequence Dn,Ln , Nn=0,1,..... thus constructed with the aid of

D,L is called the £ _construction based on D,L .

10.8. Direct sums of ordering pairs

A, Consider two ordering pairs Dl’Ll and D2,L2 ; assume

D N D = ¢ . Then we can form a new ordering pair D+,L+ , called
+ . +
the sum of Dl’ 1 and D2,L2 . Thereby D —Dl\/ D2 , while xL 'y
iff one of the following conditions is satisfied: 1) x é.Dl and
y é.D2 ;. 2) x,y € Dl and xLly 7 3) x,y €-D2 and xL,y . That

D ,L is indeed an ordering pair can easily be proved. We also have

Lemma 42: If Dl’Ll and D2,L2 are wellordering pairs, then D+,L+

is a wellordering pair.
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Proof: We have to show: P]:‘ogr'x(L+,A(x))::> (z)(z € p* ::>A(z)) .
That is, we have to prove (z)(z &D' T2 A(z)) under the assumption
I) : Progrx(L+,A(x)) . The first step consists in proving II) :
Progrx(Ll,A(x)) , using assumption I) . We omit the verification of
this in virtue of its simplicity. From 1II) we can infer III)
(z)(z € D, O A(z)) . We are through if we can prove IV)

(z)(= €-D2
Progrx(Lz,A(x)) . To this end,assume VI) : 1) vy é—DZ ,

2) (x)(xLzy ::>A(x)) . All we have to do is to prove A(y) and

> A(z)) . This is achieved if we can prove V)

this in turn is achieved if we can prove VII) : (x)(xL+yt:>A(x)) .
Now xL+y Ox éfDl \/xLzy is an immediate consequence of the defi-
nition of LY and of ¥y €,D2 . But x € D1?:>A(x) holds according
to III) and xL_y :DA(X) according to VI), 2) . Hence.,

2
xL+y O A(x) , what concludes the -proof.

B. There is an obvious generalisation of the above concept, If
Dl,Ll,.....,DS,Ls is a list of ordering pairs such that

Di/W Dk = ¢ for i#k , then we can form a sum D+,L+ by taking for
p*  the union b,y Voeeeels VY Ds , while xL%vy 4iff one of the fol-
lowing conditions is satisfied: 1) x,y €-Di and xL.y ;

2) x € D, , vy E;Dk and i<k . For D',L* thus defined we have
Lemma 43: 1) D',L* is an ordering pair. 2) If D.,L;, i=l,.....s

are wellordering pairs, then D+,L+ is a wellordering pair.
The proof of 1) is straightforward. The proof of 2) can be re-

duced to the last lemma by an easy induction with respect to s . We
+ o+
call D ,L the sum of Dl’Ll"""’Ds’Ls .

10.9. One-one mappings of ordering pairs

A. Consider an ordering pair D,L . Let m be a fixed number > 0
A A A
and define D , L as follows: 1) x €D iff (Ey)(my=x.\y & D) ;

2) for mx, my € D put mxLmy iff xLy . Then we have

A A
Lemma 44: a) D, L is an ordering pair. b) If D, L is a well-
A A
ordering pair,then D, L is a wellordering pair.

We omit the obvious proof.
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10,10. A particular E—construction
A. Our aim is to replace the abstract ordinals used in chapter VI
by a suitable & -construction. To this end,let P be an s.n.s.

proof in ZTFi/V whose endsequent has the form
(3)py (x)=0,.. .., (x)p_(x)=0 —> R(< ) ;

can associate a certain domain D and a partial ordering — of

with every such proof we

D : namely the domain D and the partial ordering [ associated
with the formula

( ‘; J(Ex) (T F (x+1) < F(x). V.p (x)£0. Voo Voip (x)£0)
according to the definition given in section 6.1., part A (chapter vI).
There we also have associated with D a certain domain D¥* of se-
quence numbers and, denoted by «< *¥, the Kleene-Brouwer ordering of
D*¥ , We call D¥* the domain associated with P and <<'* the
Kleene-Brouwer ordering associated with P . The statement "z 1is a
(Goedelnumber of an) s.n.s. proof P in ZTFi/V whose endsequent
has the form (x)pl(x)zo,.....,(x)ps(x):O _— ﬁ(<: R)

longs to the domain D* associated with P " can obviously be forma-

and x be-

lised and gives rise to an intuitionistically recursive formula
Go(z,x) which expresses precisely this statement. Similarly, we can
express the statement "z is (a Goedelnumber of) an s.n.s. proof P
in ZTFi/V whose endsequent has the form

(x)pl(x)=0,....,(x)ps(x)zo E— ﬂ(<<:R) and x £ *y, where L *
is the Kleene-Brouwer ordering associated with P " by means of an
intuitionistically recursive formula Po(z,x,y) . Finally, there is a
formula F(z) which expresses the statement "z 1is (a Goedelnumber
of) an s.n.s. proof P in ZTFi/V whose endsequent has the form
(x)pl(x)=0,....,(x)ps(x):o —————é-ﬂ(<:jR) and L is wellfounded";

P
it is not difficult to see that there is such an F(z} in Wg .
There are two other statements which can be formalized by means of
intuitionistic recursive formulas, namely, "z is not (a Goedelnumber

of) an s.n.s. proof P in ZTFi/V with endsequent

(x)pl(x)zo,....,(x)ps(x)=0 E— ﬁ(<in) " and "z is not (a Goe-
delnumber of) an s.n.s. proof P in ZTFi/V with endsequent
(x)pl(x)=0,....,(x)ps(x)=0 _— ﬁ(<i_R) , and x<{y "™ . The two

intuitionistically recursive formulas which formalize the first and
second statement,respectively, are denoted by Gl(z) and Pl(z,x,y),
respectively; by definition, Pl(z,x,y) is just x <Iy«A\Gl(z) . Now
let G(z,x) and P(z,x,y) be two intuitionistically recursive for-
mulas for which the following holds: 1) G(z,x)= Go(z,x)\/ Gl(z,x),

2) P(z,x,y)iE;Po(z,x,y) \/Pl(z,x,y) ., It is not difficult to find
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such formulas G,P . With respect to the triple G,P,F we retain
the notation used in the last section; in particular, we write
X <(zy in place of P(z,x,y) . The properties of G,P,F are summa-

rized by the following lemma:

Lemma 45: 1) x <Y =G(z,x) NG(z,y) ; 2) F(z) = W( *iz) ;
3) P,G,F are in WN ;i W) for every e , <<e is a linear or-
; 5) there is an e and a 2z such

that z €G and F(z) holds.

dering of G _= {:x/G(e,x)

Clause 1) of this lemma is an obvious consequence of the definition
of P,G . Clause 2) is nothingelse than a restatement of theorem 40,

which, as noted in section 10.3,, is provable in ZTi/Iﬁ . Clause 3)

is obvious for P,G . As noted above, it is always possible to take
F from the set WN , and in virtue of this choice, clause 3) is
true. Clause 4) is satisfied in virtue of the definition of P,G . In

order to verify clause 5), it is sufficient to take for e the Goe-

delnumber of a proof P in 2Ti whose endsequent has the form

_— ﬁ(<:_R) with ﬁx/R(x) } nonempty.

B. In terms of G,P,F we now introduce the wellordering pair
D',L' by means of clauses 1),2) in part B of section 10.4. (with
D',L! in place of D,L ) . With the aid of D',L', we form a new
wellordering pair 623 as follows: 1) x € 6 iff

(BEy)(x=3y NNy €D') ; 2) 3xL3y iff xL'y (see section 10.9.) .
There are two further wellordering pairs which will be used:

Dé,Lé and Di,Li . As Dé, we take the set of numbers congruent
two modulo three (that is 2,5,8,....) and,as Di,the set of numbers
congruent one modulo three (1,4,7,....) . As Lé and Li, we take
the restriction of < to Dé and Di, respectively. Now we form
the sum of Dg,Lé , D',L' and Di,Li in this order, according to

the definition in part B of section 10.8.,, and denote it by D,L .

In order to describe briefly the behaviour of D,L, let e,f Dbe

Goedelnumbers of s.n.s. proofs P in ZTFi/V , both having an

l’PZ
endsequent of the form
(x)pl(x)=0,....,(x)ps(x)zo — (< R) . Let DX and DX be the

domains of sequence numbers associated with Pl and PZ’ respective-

ly; let ; and <<§ be the Kleene-Brouwer orderings associated

with Pl and P2, respectively. Assume in addition e < f and let

xl,xz,yl,y2 be four numbers such that xq <<; X, and vy <<§ y2
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hold. Then we have: 1) 3n+2L3 <:e,xi:> , i=1,2 for all n ;
2)  3n+2L3 <if,yi:>~ , i=1,2 for all =n ; 3) 3<e,x; > L3n+l ,
i=1,2 for all n ; 4) 3<<:e,yi:> L3n+l , i=1,2 for all n }

5) 3 <:e,xi:> L3 <:f,yk:> , i,k=1,2 ; 6) 3 <:e,xl:> L3 <:e,x2:> ;
7) 3'<:f,yl:> L3'<:f,y2 > . In particular, 2L3 <:e,xl ;> ,
3<e,xl> L1, 3<e,xl>Lh, and similarly with <e,x2> ,
<:f,yl >> and <:‘f,y2 :> in place of <:e,xl >> . In addition,we

note 1L4

C. Now we form the E -construction based on D,L . With respect
to Dn,Ln , n=1,2... we use the following notation:
1) Cdo(0< )= X, 2) wn+l( X )= W wn( ) . This particular
£ _construction will serve as a substitute for the abstract ordi-
nals used in chapter VI. We note that elements o € D can be iden-
tified with the elements 1 X € D, and that for ,/? € D we
have & L ﬁ iff 1 XL 1/3 (n=0,1,2,....). As before, we write
without danger of confusion X in place of 1 for elements
€ D . We remind that for elements <, € %ﬁDn we have de-
fined a matural sum e'¢ ## f? which has the properties described
by lemma 41.

10.11. An ordinal assignment

A. An s.n.s. proof P in ZTFi/V with endsequent
(x)pl(x):o,....,(x)ps(x)=0 _— ﬂ(<: R) is called "good" accor-
ding to definitions 41 and 43 if and only if LP is wellfounded.
This means that F(e) is true if and only if e is the Goedelnumber
of such a good proof P . Graded proofs on the other hand are s.n.s.
proofs in 2ZTF/V all whose side proofs are good. Now we are going to
define an ordinal assignement for graded proofs with the aid of that
particular £ ~construction described in the last section. More pre-
cisely,we associate with each sequent S in a graded proof P a
certain element éﬁg Dn , to be denoted by o(S) . The definition

of O(S) is by induction according to the clauses listed below.
1. S is an axiom. Then o(8)=2 .

2. S 1is conclusion of a conversion or a one-premiss structural in-

ference Sl/S . Then o(S):o(Sl) .

3. S is the conclusion of a one-premiss logical inference Sl/S .

Then o(S):o(Sl)## 2 .
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4, s is the conclusion of a two-premiss logical inference Sl’SZ/S .
Then o(S):o(Sl)##o(SZ).

5. S8 1is the conclusion of a cut Sl’SZ/S . Then

o(s)= U)d(o(Sl) ##O(SZ)) , where d:h(Sl)—h(S), and with h(Sl),h(S)
the height of S and S respectively.

1
é; S is the conclusion of an induction Sl/S . We distinguish two
cases. ” - "
Case 1: o(Sl)=nl w 1 4. .... . Then we put o(s)= &)d(éd 1 2)

where d:h(Sl)—h(S) .
Case 2: o(Sl)znl o(l +.... with &, €D . Then we put
_______ 5 i

) where d=h(Sl)—h(S)

7. S 1is the conclusion of a V-inference Sl/S .

X
Case 1: o(Sl):nl w %1 4...+. . Then we put o(S)= a)d(LU 14# 4)
where d:h(Sl)-h(S) .
Case_2: o(Slzznl L ot with x i €'D . Then we put
o(8)= a)d( W ) where d:h(Sl)-h(S)
8. S is the conclusion of a T(Pl)-inference Sl/S .
Case 1: o(Sl)=nl w "1 4.... . Then we put o(s)= a)d( a7(x 1 %:l)
with d=h(Sl)—h(S) .
Case 2: o(Sl):n X, +.... with X , €D . Then we put
——————— 1 1 i i
o(s)= Cdd((/.) ) .

9. S is the conclusion of a T(Pl,a)—inference Sl/S . Let e ©Dbe
the Goedelnumber of Pl . Since P is a graded proof, Pl is good
and F(e) holds. By definition, a is an unsecured element of D% |
with D¥* the domain associated with P , Hence 3 <:e,a:> & D,

that is, 3 <le,a > €YD .

Case 1: o(Sl)znl w %1 +.+... . Then we put

o(s)= (o I3 <e,a> ) iin d=h(s )-n(s)
Case 2: o(Sl)=n1 Xyt O<i &€ D . Then we put
o(s)= Q)d( a)3<: €13 >3 | where d:h(Sl)—h(S)

As ordinal of P, we take as usual the ordinal of its endsequent; we

denote it by of(P) .

B. Our next task is to prove that the above ordinal assignement has
the same properties as the ordinal assignements introduced in chap-

ters II, IV, etc. More precisely one has to prove

Theorem 41*: Let P be a graded s.n.s. proof in ZTF/V and let any
of the following reduction steps be applied to P . a) The opera-



~ 283 -

tion "omission of a cut" lowers the ordinal of P . b) A prelimina-
ry reduction step does not increase the ordinal of P ., c) A fork
elimination (intuitionistic or classical) lowers the ordinal of P

d) An induction reduction lowers the ordinal. e) A Tl-reduction
step lowers the ordinal. f) A T2—reduotion step lowers the ordinal.
g) A subformula reduction step (as defined in part E of section

6.4.) lowers the ordinal of P

This is the counterpart of theorem 41. We also need the counterparts
of theorem 42 and of basic lemma III1 , which are word by word the
same with the only proviso that the word "ordinal" refers to the or-
dinal assignement defined here with the aid of the £ -construction.
We denote these counterparts by theorem 42% and basic lemma ITTT . The
corollary of basic lemma IIIl is evidently true in the present case,
provided basic lemma IIII is true. We refer to this corollary, inter-
preted in the present sense, as corollary * . Basic lemma III*
and theorem 42¥ in turn,are straightforward consequences of theorem
1% . The proof of theorem 4l1* consists in a step by step verifica-
tion of a)—g). This verification, performed in detail, is quite
lengthy, but entirely routine. We therefore content ourself with some

indications.

Consider a) of theorem 41%: in order to prove a), it is essentially
sufficient to prove a counterpart of lemma 8 (call it lemma 8%)
(sect. 2.6,, chapter II). To this end one introduces again all the
notions listed under definitions 13, 14 and 15; the T(Pl)— ,
T(Pl,a)— and V-inferences are thereby included among the strong in-
ferences. The proof of theorem 8* in turn essentially reduces to the
proof of the counterpart of a statement A) which appears in the proof
of lemma 8. This counterpart {call it A%*) is the following state-
ment: if 8§ 1is a good sequent, if is the ordinal of S with
respect to £, and < the ordinal of S with respect to g, then
?_Ln ; (for suitably large n ) . This verification splits up into

several cases, whose discussion is straightforward and which we omit.

Consider b) of theorem 41% : once part a) of theorem 41% is veri-

fied, part b) is an immediate consequence.

Consider c) of theorem 41% : in order to prove c¢) it is sufficient
to show that classical fork elimination lowers the ordinal of the

proof P to which it is applied. For intuitionistic fork elimination,
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the statement then follows immediately with the aid of parts a) and
b). The case of classical fork elimination, however, leads to the veri-

2.4 X
fication of the following ineqguality: w ( w ., 1 4#;L0 2)L o

a+b
(for sufficiently large n ) , where c&l L X ,L X and a#o0
are assumed. From the definition of Ln and ##, we immediately
; X 1 o w X2 9< X1 X2 o<
infer w Ln a)cx , O<a L w , a)a =+ L()a L, w a

29 1 (29 2 W
and hence b( w +# )L a}a+b
Consider d) of theorem 41% : a verification of d) essentially amounts
1%

to a proof of the following inequalities: l) if j? =1, o l+...,

then ( ; # ... F#F ? )L w X 12 (n sufficiently large) ;
2) ar Foemp oy .l (o( € D), then ( F# ....#;)Ln“”.
Both inequalities are immedlate consequences of the definition of Ln

and of ##

Consider e) of theorem 41* : consider the case of a critical
T(Pl)-inference Sl/S , and assume that e 1is the Goedelnumber of
Pl . Application of a Tl—reduction step to the T(Pl)—inference
Sl/S transforms this inference into a series of new inferences;
among these,there occurs a particular T(Pl,a)-inference, where a
is an element of D¥ |, with D¥ the domain associated with Pl

Assume o(Sl)z F- . In order to prove that the T.-reduction step in

1
question lowers the ordinal of the proof one is finally led to the

verification of the following inequalities: 1) if

?:nl a) d'l +....3 then

w (o FaHI<ea>p o4, 4 Wl o T2y
2) (a)3<e a> 2 423 ? )L a)n(w ) (n sufficiently
large in both cases). We leave it to the reader to verify that these

inequalities are straightforward consequences of our definitions of

Ln and ## .

Consider f) of theorem 41% ; consider the case of a critical
T(Pl,a)—inference Sl/S ; let e be the Goedelnumber of Pl . Appli-
cation of a T2—reduction step transforms the inference Sl/S into

a series of new inferences; among these there occurs a particular
T(Pl,b)-inference such that b «*a holds, where «L* is the

Kleene-Brouwer ordering associated with Pl . Put O(Sl): CF . The

proof of £f) leads to the verification of the following inequalities:

o4
1 +eenn then

Ld (Ld <z( -%=3 <e,b > ## 23k 2 4 <F )L éo)( cw 1 ##f3<i:e,&;> )
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2) if ? X +.... , with X 4 &€ D , then
w (@ el S L FL, @ (w3<2>) for n eut-
flClently large. As before, these 1nequa11t1es are straightforward

consequences of the definitions of Ln and ## .

Consider g) of theorem 41% : a verification of g) essentially re-
duces to the verification of the following inequalities:

1) 1L & # 2, 2) L, #ﬁ . Both are contained in
lemma 41.

Finally, consider theorem 42* : its proof essentially reduces to the
verification of the following two inequalities:

) w (@ T w0 F ol

2) (w Lw(aJ)-

10.12. The wellfoundedness proof

A. We now come to our final task, namely, to the proof of an approp-
riate counterpart of theorem 43. To begin with, we have to convince
ourself that if we restrict our attention to graded s.n.s. proofs P

not containing formulas with more than n logical symbols, then one

has to use only ordinals belonging to a certain Dm , with m depen-
ding on n . In order to do this, we associate with every

C( [ ;{Dn a natural number >\( O() inductively as follows:
1) if X E,D , then >\( c{):O ; 2) if A has already been
deflned on , and if ;? =n (29 X1 +aen is in Dn+l , then we
put ( ?) >\ ( 2% l)+l . Concerning >\ , We can prove several
simple properties by induction with respect to n , whose proof we

omit for simplicity. These properties are summarized by

Lemma 46: 1) if XK & D , then >\(o<)_§_n; 2) if o(Ln/é
then A () A (£) 5 D A(x # f)max( X (o), X (F));
B X (g w XL aD= Ao 5 XN (@ (X ))= X (o )va;
6) if X ()=n , then & & D/

Definition 62: Let P Dbe a proof in ZTF/V and So,.....,Sm a
path in P , that is a list of sequents having the properties:
l) S 1is an axiom; 2) Si+l is the successor of Si . We do not

require that Sm is the endsequent of P . With any such path (de—

note it by C ) we associate the number
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D(C)=(h(s )-h(s;))+....+(n(s _,)-h(s )) (that is, n(s )-n(s )) ;
D(C) is O if m=0 . Now let S be any sequent in P and FS the
set of paths which contain S as last element. Then we put

d(s)=maxD(C) , C éiFs , (h(S) the heigth of S )

A relation between >\ and d(S) is given by
Lemma 47: Let P be a graded s.n.s. proof in ZTF/V which does
not contain formulaswith more than n logical symbols. If S is a

sequent in P, then >\(0(S)) < d(s)+1

Proof: a) We begin by listing two properties of d . First, if S
is conclusion of a two-premiss inference, say, Sl’SZ/S’ then

d(S):max(d(Sl),d(S2))+h(Sl)—h(S) . If on the other hand, S 1is the

conclusion of a one-premiss inference Sl/S , then
d(S):d(Sl)+h(Sl)—h(S) . b) Now we claim: >\(0(S)) = d(s)+1
The proof is by induction over P . We proceed in steps. 1) We omit

the discussion of the following cases which are trivial to handle:

« ) S 1is an axiom; ﬁ)) S 1is the conclusion of a one-premiss
structural inference; )*) S is the conclusion of a logical infe-
rence. 2) S 1is the conclusion of a cut Sl’SZ/S , with

A(s;) £d(s,)+1 , i=1,2 by induction. Put d=h(S )-h(S) . Then
o(s)= a7d(o(Sl)## O(SZ))’ and hence

X (o(s))=a+max( A (o(s,)), A (o(s,))) . From this we get

N(o(s)) g;d+max(d(sl)+1,d(sz)+1);é d+max(d(sl),d(sz))+1:= a(s)+1
3) S is the conclusion of an induction Sl/S R >\(O(Sl)):0,

then 0(S)= Q)d(CJ 2) s >\(0(S)):d+l and d(S):d(Sl)+d , hence
>io(s)) 2 d(s)+1 (with d:h(Sl)—h(S)) . If o(s;)=n w S taua,
X 1 #E ;
then X(o(sl))= >« o(l)+l and o(8)= a)d( 129 1 ) . From this

we get bY (o(s))=d+1+ >\((X 1)=d+ A (O(Sl)) . Since
X(o(sl))§;<1(sl)+1, we have >\(0(S))_§ d+d(Sl)+l=d(S)+l , what
proves the statement also in this case. 4) The cases where S is
the conclusion of a T(Pl)—, T(Pl,a)- or V-inference Sl/S are trea-
ted in the same way as the case of induction. We omit their discus-

sion.

In connection with this lemma, we say that a proof has bound =n if no
formula with more than n 1logical symbols occurs in this proof. From

the last lemma,we infer

Lemma 48: If P is a graded proof in ZTF/V with bound n , then
o{(P) €D . We also have the evident
n+l
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Lemma 49: Reduction steps of any kind do not increase the bound of a

proof.
B. Now we come to the main task of this section, namely, the proof of

Theorem 43%: TFor every fixed n , we can prove in ZTi/Iﬁ the Goe-
delized version of the following statement: "if P 1is a graded s.n.s.
proof in ZTFi/V with bound n , then LP is wellfounded" .

Proof: Let n be fixed. By A(x,P) we denote a formula which says:
P is a graded s.n.s. proof in ZTFi/V with bound n and x 1is the
ordinal associated with P . In virtue of lemma 48 we have:

A(x,P) > x €D . Let W(LP) be a formula which says that LP is

n+l
wellfounded. By a suitable choice, both A(X,P) and W(LP) are in
Wy - By B(x) we denote the statement: (P)(A(x,P) ::>W(LP)) . Ob-
viously, B(x) is in Wy - In virtue of theorem 84,we have:

TIX(Ln+1’B(X)) . The theorem is proved if we can show T)

Progrx(Ln+l,B(x)) . Hence assume II) : a) vy e'Dn+l
b) (x)(an+ly “>B(x)) . We are through if we have proved I11) :
B(y) . Let P be any graded s.n.s. proof in ZTFi/V with bound

n and ordinal 7y . According to its definition, LP is wellfounded
if LP' is wellfounded for all P' with P'LP . Hcnce, we are
through if, on the basis of II) a),b), we can prove 1IV)
(P‘)(P’LP_::>W(LP')) . As in the proof of theorem 43,we distinguish
three cases. Case 1l: P 1is strongly saturated and does not admit
preliminary reduction steps. Then P'LP holds iff P! follows from
P by means of an essential reduction step. Subcase 1: P! follows
from P by means of a reduction step other than a V-reduction step.
In virtue of theorem 41%,we have o(P')Lmo(P) for sufficiently large
m . It follows from lemmas 48, 49 that we can chose mn+l for m .
Hence A(x,P') holds, where x=o(P') . From I1),b) and the form of
B(x) we infer: W(LP') . Subcase 2: P! follows from P by means

of a V-reduction step. Let

tr(1)=0 s () < JA() L ST aly)

B R) » tgla)=0 , /——— a(a)

be the critical V-inference in P , to which the V-reduction step in

question is applied. Let Pl be the side proof determined by

ﬁ(‘<jR) . According to basic lemma III* and lemmas 48, 49, P is a
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graded s.n.s. proof in ZTFi/V whose ordinal O(Pl) belongs to
D,,; and for which o(Pl)Ln+lo(P) holds. Denote o(Pl) by  x, .
From II),b) and the form of B(x) we infer W(LP) . Hence, P' is a
graded s.n.s. proof in ZTFi/V whose ordinal z=o(P') is smaller
than vy (that is, an+ly) according to theorem 42* . But then it
follows again from II),b) and the form of B(x) that W(LP') holds.
Therefore W(LP) holds, proving thus the theorem under the assump-
tions of case 1. There remains the discussion of the following two
cases:! 2) P is strongly saturated but admits preliminary reduction
steps; 3) P is not strongly saturated and admits preliminary re-
duction steps. Case 2) is handled in exactly the same way as in the
proof of theorem 35, while case 3) is reduced to case ZL as in the

proof of theorem 35 or 43,
Let us draw a few corollaries from theorem hL3%,

Corollary 1: For fixed n, we can prove in ZTi/Iﬁ the Goedelized
version of the following statement: "If P is an s.n.s. proof in
ZTi/V with bound n, then LP is wellfounded" .

Proof: Since P has no side proofs at all, it is by definition a

graded s.n.s. proof in ZTFi/V and hence subject to theorem L43* .

Corollary 2: For fixed n, we can prove in ZTi/Iﬁ the Goedelized
version of the following statement: "Let P be an s.n.s. proof in
2Ti/V with bound n of ——> ( X )(Ex) 7] X (x+1) <:R X (x) and
assume that no special function constants occur in its endsequent.
Then there is a continuity function T with the property: if

T (u)#0, then there is an m and a proof P of
—_ 1 CKu(m+l)<<:R O(u(m)".

We omit the proof of this corollary,which is an easy consequence of
corollary 1l,and which proceeds along the same lines as similar proofs
in earlier cases, eg. the proof of theorem 2k (chapter IV). Another

straightforward consequence of corollary 1 is

Corollary 3: For fixed n we can prove in ZTi/Iﬁ the Goedelized
version of the following statement: "Let P be an s.n.s. proof in
ZTi/V with bound n whose endsequent has the form —> t=q

with t,q saturated. Then [tl=la].®
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A combination of corollaries 2 and 3 finally yields

Corollary h: Let n be fixed. In ZTi/Iﬁ we can prove the
Goedelized version of the following statement: "Let P be an s.n.s.
proof in ZTi/V which does not contain special function constants
and whose bound is n . Let the endsequent of P have the form
_— W(<: R) , (with R(x) by definition a prime formula). Then
w( < R) is true".

We have omitted the proofs of corollaries 2 - 4 since they do not

present the slightest difficulties and are completely analogous to

the proofs of similar statements, presented earlier.

10.13. Applications

A. 1In order to mention two applications,we note the

Lemma 50: For every n, we find an N with the property: if P 1is
a proof in ZT/V with bound n of Al,....,As ——————> B , then there
is a proof P' in 2ZTi/V with bound N of Ai,...,AZ _— B° .

We omit the routine proof of this lemma. From this lemma and corol-

lary 3 we obtain

Theorem 85: For every n the following statement is provable in
ZTi/Iﬁ : "If P is a proof in ZT/V with bound n of —> p=q

(with p,q numerals), then p=q is true"

As corollary we obtain

Corollary: If ZTi/Iﬁ is consistent,then ZT/V 1is consistent.

B. According to a corollary stated at the end of section 4.7.,
chapter IV, we can prove in ZTi/V the following form of MarkovVs
principle: ﬁ(<i R) —_ W(<<:R) . Combining this with corollary 4

to theorem 43* and lemma 50,we obtain

Theorem 86: For every n the following statement is provable in
ZTi/Iﬁ : "Let P be a proof in 2ZT/V with bound n of
——> w(< ) with w(<

stants or free variables. Then W(<: R) is true".

)}, not containing special function con-
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In other words, if we can prove in ZT/V that a certain primitive

recursive linear ordering is a wellordering, then we can prove this

also in ZTi/Iﬁ . A similar situation is described by our last
Theorem 87: TFor every n the following statement is provable in
ZTi/I§ : "Let P be a proof in ZT/V of —> (x)(Ey)R(x,y) ,

with R(x,y) a quantifierfree formula not containing special func-
tion constants and with x,y as its only free variables, then

{x)(Ey)R(x,y) is true",

The proof is an immediate consequence of the corollary stated at the

end of section 4,7., of lemma 50 and of corollary 4 to theorem 43x.

This concludes our investigations about the constructive character of
the reasoning presented in chapter VI, in particular,and our investi-
gations about the proof theoretic treatment of intuitionistic systems

of analysis in general.
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