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Preface

This book gives an introduction to so-called proof interpretations, more specifically
various forms of realizability and functional interpretations, and their use in mathe-
matics. Whereas earlier treatments of these techniques (e.g. [366, 266, 122, 369, 7])
emphasize foundational and logical issues the focus of this book is on applications
of the methods to extract new effective information such as computable uniform
bounds from given (typically ineffective) proofs. This line of research, which has its
roots in G. Kreisel’s pioneering work on ‘unwinding of proofs’ from the 50’s, has
in more recent years developed into a field of mathematical logic which has been
called (suggested by D. Scott) ‘proof mining’. The areas where proof mining based
on proof interpretations has been applied most systematically are numerical analysis
and functional analysis and so the book concentrates on those. There are also some
extractions of effective information from proofs (guided by logic) in number theory
(G. Kreisel, H. Luckhardt, see e.g. [249, 268, 267, 122]) and algebra (G. Kreisel, C.
Delzell, H. Lombardi, T. Coquand and others, see e.g. [252, 84, 77, 74, 76]). How-
ever, here mainly methods from structural proof theory such as Herbrand’s theorem,
ε-substitution and cut-elimination are used and we will refer to the literature for
more information on these results.

In this book two kinds of systems play an important role: those with full induction
and variants with induction for purely existential formulas (whose central role has
been singled out in the context of so-called reverse mathematics, [338]). Further
(still weaker) fragments are briefly discussed in comments and referred to in the
literature.

Modified realizability (due to G. Kreisel) and functional interpretation (due to K.
Gödel) are both first developed in the framework of constructive (‘intuitionistic’)
arithmetic in higher types to which consecutively various non-constructive princi-
ples are added.

After this, systems based on ordinary (‘classical’) logic are studied. It is shown
that the combination of Gödel’s functional (‘Dialectica’) interpretation with the
so-called negative translation, which embeds certain classical theories into approx-
imately intuitionistic counterparts, can be used to unwind fully non-constructive
proofs. Since the main emphasis throughout this book is on ineffective proofs based
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on ordinary logic and hence on functional interpretation the preceding treatment of
modified realizability is largely independent from the rest of this book. However,
the study of modified realizability is recommended for a better understanding of the
more complicated functional interpretation.

Next, a so-called monotone variant of functional interpretation due to the author is
applied which combines functional interpretation with majorizability in the sense of
W.A. Howard and allows one to treat the binary König’s lemma and related princi-
ples such as a strong uniform boundedness principle.

The book presents in detail C. Spector’s deep extension of Gödel’s functional inter-
pretation to full classical analysis by means of his bar recursive functionals.

As an alternative method to the combination of functional interpretation with nega-
tive translation one can – in some circumstances – use instead a combination of mod-
ified realizability with negative translation if one inserts the so-called A-translation
(due to H. Friedman and A. Dragalin) as an intermediate step. This approach will
be briefly discussed as well.

Using suitable standard representations of Polish and compact metric spaces (going
back to L.E.J. Brouwer) we develop general metatheorems based on monotone func-
tional interpretation which guarantee the extractability of effective uniform bounds
from large classes of proofs in analysis. Moreover, monotone functional interpreta-
tion provides an algorithm to carry out such extractions for given proofs.

As an extended case study of the use of these metatheorems and the extraction al-
gorithms a number of concrete proofs in approximation theory (best Chebycheff
and L1-approximation of continuous functions), where this approach has led to new
results, are analyzed in great detail.

By extending the aforementioned proof interpretations to new formal systems of
analysis, where general classes of abstract metric, hyperbolic, CAT(0), normed and
uniformly convex spaces are added as new types, very general metatheorems are ob-
tained which guarantee the extractability of strongly uniform bounds which are not
only independent from parameters in compact metric spaces but even from parame-
ters in metrically bounded subspaces of such abstract spaces. Further refinement of
this approach shows that it actually suffices to suppose certain local boundedness
information rather than the boundedness of the whole (sub)space.

Finally, in a second extended case study, these general metatheorems are applied to
proofs in metric fixed point theory leading to numerous (even qualitatively) new re-
sults which were obtained first by this methodology. These results concern, among
other things, the asymptotic behavior of Krasnoselski-Mann iterates of nonexpan-
sive (and more general classes of) functions on hyperbolic spaces. Many more ap-
plications in this area are referred to in the literature.
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The book is concluded with some speculations about future applications of the meth-
ods developed in this book to proofs in the areas of algebraic number theory, partial
differential equations, ergodic theory and geometric group theory.

Of course, much work on the general topic of ‘computational content of proofs’
has been carried out by logical methods other than the ones covered in this book
as well as in the context of constructive foundations of mathematics (see e.g. the
recent book [349] which, however, only studies logical aspects of calculi and formal
systems without mathematical applications). In this book we focus on those methods
which have been applied in the past to concrete proofs in different areas of ‘core
mathematics’, have produced new mathematical results in these areas and are likely
to be useful in other parts of mathematics as well.

A relevant topic that is beyond the scope of this book is the issue of implementing
the techniques developed in suitable programming languages aiming at an auto-
mated extraction of algorithms from proofs. Much work in this direction has been
done in Munich by the group around H. Schwichtenberg in connection with the
MINLOG tool (see e.g. [20, 26, 21]). This work is based on modified realizability
and refined versions of the A-translation but, subsequently, also various forms of
functional interpretation have been successfully implemented (see e.g. [158]). Due
to the enormous difficulties involved in dealing with fully formalized proofs only
mathematically rather simple examples have been carried out by such tools yet. As
this book focuses on advanced applications to nontrivial proofs in mathematics these
implemented tools will be mentioned only briefly with references to the literature.

In addition to standard undergraduate knowledge in mathematics the book only pre-
supposes some familiarity with the basic concepts from elementary recursion theory
(up to the Kleene normal form theorem, e.g. [333]) and logic (covered in any intro-
duction to mathematical logic such as [372]). Some previous exposure to construc-
tive (‘intuitionistic’) logic ([372, 15, 371]) would be helpful but is not required.

Most chapters have exercises and historical comments at the end. These comments,
in particular, give detailed references to the relevant literature where the results pre-
sented first appeared. In addition to this we give explicit references at key definitions
and results themselves in cases where they are neither standard or folklore nor due
to the author. Except for a few central results that are joint work with co-authors, we
do not label our own results explicitly but refer to the ‘historical comments’ sections
for proper references.
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The book’s web site

http://www.mathematik.tu-darmstadt.de/∼kohlenbach/prooftheory.html

will list errata and updates.

Darmstadt, Ulrich Kohlenbach
December 2007
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8 Gödel’s functional (‘Dialectica’) interpretation . . . . . . . . . . . . . . . . . . . . 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 The soundness and program extraction theorems . . . . . . . . . . . . . . . 129
8.3 Fragments, exercises, historical comments and suggested further

reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9 Semi-intuitionistic systems and monotone functional interpretation . . 141
9.1 The soundness and bound extraction theorems . . . . . . . . . . . . . . . . . 141
9.2 Applications of monotone functional interpretation . . . . . . . . . . . . . 146
9.3 Examples of axioms Δ : Weak König’s lemma WKL . . . . . . . . . . . . 149
9.4 WKL as a universal sentence Δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.5 Fragments, exercises, historical comments and suggested further

reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10 Systems based on classical logic and functional interpretation . . . . . . . 163
10.1 The negative translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Combination of negative translation and functional interpretation . 165
10.3 Application: Uniform weak König’s lemma UWKL. . . . . . . . . . . . . 178
10.4 Elimination of extensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.5 Fragments of (W)E-PAω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.6 The computational strength of full extensionality . . . . . . . . . . . . . . . 191
10.7 Exercises, historical comments and suggested further reading . . . . 195

11 Functional interpretation of full classical analysis . . . . . . . . . . . . . . . . . . 199
11.1 Functional interpretation of full comprehension . . . . . . . . . . . . . . . . 199
11.2 Functional interpretation of dependent choice . . . . . . . . . . . . . . . . . . 206
11.3 Functional interpretation of arithmetical comprehension . . . . . . . . . 209
11.4 Functional interpretation of (IPP) by finite bar recursion . . . . . . . . . 213
11.5 Models of bar recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.6 Exercises, historical comments and suggested further reading . . . . 219



Contents xv

12 A non-standard principle of uniform boundedness . . . . . . . . . . . . . . . . . 223
12.1 The Σ0

1 -boundedness principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.2 Applications of Σ0

1 -boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.3 Remarks on the fragments E-GnAω . . . . . . . . . . . . . . . . . . . . . . . . . . 238
12.4 Exercises, historical comments and suggested further reading . . . . 241

13 Elimination of monotone Skolem functions . . . . . . . . . . . . . . . . . . . . . . . . 243
13.1 Skolem functions of type degree 1 in fragments of finite type

arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.2 Elimination of Skolem functions for monotone formulas . . . . . . . . . 247
13.3 The principle of convergence for bounded monotone sequences

of real numbers (PCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
13.4 Π 0

1 -CA and Π 0
1 -AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

13.5 The Bolzano-Weierstraß property for bounded sequences in R
d . . . 269

13.6 Exercises, historical comments and suggested further reading . . . . 272

14 The Friedman A-translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.1 The A-translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.2 Historical comments and suggested further reading . . . . . . . . . . . . . 277

15 Applications to analysis: general metatheorems I . . . . . . . . . . . . . . . . . . 279
15.1 A general metatheorem for Polish spaces . . . . . . . . . . . . . . . . . . . . . . 279
15.2 Applications to uniqueness proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
15.3 Applications to monotone convergence theorems . . . . . . . . . . . . . . . 291
15.4 Applications to proofs of contractivity . . . . . . . . . . . . . . . . . . . . . . . . 292
15.5 Remarks on fragments of T ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
15.6 Historical comments and suggested further reading . . . . . . . . . . . . . 295

16 Case study I: Uniqueness proofs in approximation theory . . . . . . . . . . . 297
16.1 Uniqueness proofs in best approximation theory . . . . . . . . . . . . . . . . 297
16.2 Best Chebycheff approximation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
16.3 Best Chebycheff approximation II . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
16.4 Best L1-approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
16.5 Exercises, historical comments and suggested further reading . . . . 376

17 Applications to analysis: general metatheorems II . . . . . . . . . . . . . . . . . 377
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
17.2 Main results in the metric and hyperbolic case . . . . . . . . . . . . . . . . . 391
17.3 The case of normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
17.4 Proofs of theorems 17.35, 17.52 and 17.69 . . . . . . . . . . . . . . . . . . . . 420
17.5 Further variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
17.6 Treatment of several metric or normed spaces X1 . . . ,Xn

simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
17.7 A generalized uniform boundedness principle ∃-UBX . . . . . . . . . . . 436
17.8 Applications of ∃-UBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
17.9 Fragments of A ω [. . .] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450



xvi Contents

17.10 Exercises, historical comments and suggested further reading . . . . 452

18 Case study II: Applications to the fixed point theory of nonexpansive
mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
18.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
18.2 Applications of the metatheorems from chapter 17 . . . . . . . . . . . . . . 461
18.3 Logical analysis of the proof of the Borwein-Reich-Shafrir

theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
18.4 Asymptotically nonexpansive mappings . . . . . . . . . . . . . . . . . . . . . . 496
18.5 Applications of proof mining in ergodic theory . . . . . . . . . . . . . . . . . 499
18.6 Exercises, historical comments and suggested further reading . . . . 501

19 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

List of formal systems and term classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

List of axioms and rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529



Common Notations and Terminology

Throughout this book N denotes the set of natural numbers including 0, i.e.

N := {0,1,2, . . .}.

Z,Q,R denote the sets of integers, rational numbers and real numbers, respectively.

R
∗ := R\ {0}, R+ := {x ∈ R : x ≥ 0}, R

∗
+ := {x ∈ R : x > 0}.

The sets Q
∗,Q+,Q∗

+ are defined analogously.

N
N is the set of all number theoretic functions f : N → N and 2N is the set of all

functions f : N → {0,1}. Elements in N
N and 2N are usually denoted by f ,g,h, . . .

but also by α,β ,γ, . . . .

Together with

d( f ,g) :=

⎧
⎨

⎩

2−minn[ f (n) �=g(n)], if ∃n ∈ N( f (n) �= g(n)),

0, otherwise,

N
N becomes a metric space which is referred to as Baire space. 2N with the induced

metric is a compact metric space, called Cantor space.

Many formal systems used in this book are formulated in the language of functionals
of finite type. The most important types are

0 := the type of natural numbers N

and
1 := 0(0) := the type of number theoretic functions f : N → N.

E.g. a sentence ∀ f 1∃g1∀n0(g(n) = f ( f (n))) expresses
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∀ f ∈ N
N∃g ∈ N

N∀n ∈ N(g(n) = f ( f (n))).

Instead of ‘ f ∈ N
N’ we also write ‘ f : N → N’.

Formulas are usually denoted by A,B,C, etc. The subscript ‘0’, i.e. A0,B0,C0 etc., in-
dicates that the respective formula does not contain any quantifiers, i.e. is quantifier-
free.

Occasionally, we use some notation from elementary recursion theory. ‘T (e,x,n)’
expresses that e is the number code of a Turing machine whose computation with
the input x terminates, where n is the code of that terminating computation. By U we
denote the function that extracts from n the result of the computation encoded by n.
The e-th partial recursive function, which we denote by {e}, is the partial function
defined by

{e}(x) :=

⎧
⎨

⎩

U(min n[T (e,x,n)]), if ∃n ∈ N(T (e,x,n))

undefined, otherwise.

Total recursive functions usually are called computable functions. A subset A ⊆ N

is decidable if its characteristic function is computable.

A well-know fact from elementary recursion theory, which we frequently use, is the
undecidability of the so-called special halting set or ‘special halting problem’

H := {e ∈ N : ∃n ∈ N(T (e,e,n)},

i.e. the set of all numbers e such that the Turing machine with number e applied to
the input e performs a terminating computation.

A function Φ : N
N → N is computable if there exists a Turing machine that com-

putes Φ( f ) for any given function f ∈ N
N used as an oracle. All these notions

extend in the obvious way to several number or function arguments and to n-ary
functions f rather than unary functions. As common in functional languages, we
often write ‘Φ f ’ instead of ‘Φ( f )’.

In fact, most of our formal systems permit the bijective encoding of finite sequences
(x0, . . . ,xn−1) of natural numbers x0, . . . ,xn−1 by numbers x := 〈x0, . . . ,xn−1〉 ∈ N.
lth : N → N is the function with lth(x) = n (‘length of the sequence encoded by x’)
and (·)(·) : N×N → N is the function satisfying

(x)i =

⎧
⎨

⎩

xi, if i < lth(x)

0, otherwise.

With x = 〈x0, . . . ,xn−1〉 and y = 〈y0, . . . ,ym−1〉 the number x ∗ y is the code of the
concatenation of the two sequences encoded by x,y, i.e.

x∗ y := 〈x0, . . . ,xn−1,y0, . . . ,ym−1〉.



Common Notations and Terminology xix

For f ∈ N
N and n ∈ N, the code 〈 f (0), . . . , f (n− 1)〉 of the sequence of the first

n values of f is denoted by f (n) or just f n, where f 0 is the code 〈〉 of the empty
sequence.

If T is a formal axiomatic system and A a sentence in the language L (T ) of T ,
then

T  A

expresses that A is derivable in T . If M is a structure that interprets L (T ), then

M |= A

expresses that A holds (or is ‘valid’ or ‘true’) in M . We then also say that ‘M is a
model of A’.



Chapter 1
Introduction

Consider a theorem of the following form

B :≡ ∀x ∈ N∃y ∈ NR(x,y),

where R(x,y) is some quantifier-free formula, i.e. a formula not containing any
quantifier, in the language of elementary arithmetic (and hence decidable). E.g.
R(x,y) may be of the form p(x,y) = 0, where p is a polynomial in N[x,y] or some
other elementary computable function.

Suppose that we have a formal proof p of B in some theory T that proceeds via a
lemma having a more complicated logical form

A :≡ ∀u ∈ N∃v ∈ N∀w ∈ NQ(u,v,w),

where Q again is a quantifier-free formula of elementary arithmetic. This means that
p has two subproofs p1 and p2, where p1 is a proof of A and p2 is a proof of A → B,
i.e. of

∀u ∈ N∃v ∈ N∀w ∈ NQ(u,v,w) →∀x ∈ N∃y ∈ NR(x,y),

and then proceeds from A and A → B by the modus ponens rule to derive B.

Even if the proof p of B is ineffective, it is clear that the conclusion B has a com-
putable solution by just forming the following program P for a partial function:

P(x) :=

⎧
⎨

⎩

miny ∈ N such that R(x,y) holds, if existent

undefined, otherwise.

p establishes that this partial function P actually is total and so is a computable
(using the decidability of R) function satisfying

∀x ∈ NR(x,P(x)).
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The program P, however, does not use at all how B is proved. Only the truth of
B is involved in verifying its termination on any input x ∈ N. Intuitively, though,
one will expect that looking into the computational content of the proof p it should
be possible to get more information on P, e.g. some complexity information via a
subrecursive bound on the unbounded search involved in P. In order to bring the
actual proof p into the play one attempt would be to see whether p1 might yield an
algorithm P1 satisfying

∀u,w ∈ NQ(u,P1(u),w).

Then the proof p2 might contain an algorithm P2 (no longer operating just on num-
bers but also on functions f : N → N) that transforms any hypothetical function f
realizing ‘∃v ∈ N’ in A into a realizer for ‘∃y’ in B, i.e.

∀ f : N → N(∀u,w ∈ NQ(u, f (u),w) →∀x ∈ NR(x,P2( f ,x)).

So P′(x) := P2(P1,x) is another program realizing the conclusion which might be
much more informative as it takes into account how B has been proved. The prob-
lem, however, is that an ineffectively proven lemma A in general will not have a
computable realizer P1 :
Let S(u,v) be a quantifier-free decidable predicate on N×N so that S′(u) :≡ ∃v ∈
NS(u,v) is undecidable (e.g. we may take the special Halting Problem for Turing
machines) and define Q(u,v,w) :≡ S(u,v)∨¬S(u,w). Then

A :≡ ∀u ∈ N∃v ∈ N∀w ∈ NQ(u,v,w)

is provable already in logic but any function P1 realizing ‘∃v ∈ N’ could be used to
decide S′ since then

S′(u) ↔ S(u,P1(u)).

Another instance of such a lemma (taken from elementary analysis) is the Cauchy
property

∀u ∈ N∃v ∈ N∀w ≥ v(|av −aw| ≤ 2−u)

for bounded monotone sequences (an) in R. By a well-known construction of E.
Specker ([342]) there are easily computable such sequences already in [0,1]∩Q

without any computable bound on ‘∃v’, i.e. which have no computable Cauchy mod-
ulus.

The problem in this example is caused by the fact that the proof of the conclusion
B uses a logically more complicated lemma A which in general no longer admits a
direct computable witness. One possible strategy to solve this would be to transform
the proof p into a direct proof p′ which does not use any formulas more complicated
than the conclusion. This can be achieved in certain contexts by the process of (par-
tial) cut-elimination which in turn yields so-called Herbrand terms from which a
realization of the conclusion can be obtained. However, (partial) cut-elimination is
not always available and where it is, the process is of enormous complexity resulting



1 Introduction 3

sometimes in a direct proof p′ whose length is superexponential in the length of p
(see e.g. [344, 296, 305]).

In this book we focus on an alternative strategy which rather than eliminating com-
plicated lemmas interprets them when necessary (as for A) in a more sophisticated
way than simply asking for a full witness function: the idea is to interpret all formu-
las F involved by formulas FI in such a way that

1) AI and (A → B)I are weak enough to allow for a computational realization which
can be extracted from proofs of A and A → B,

2) computational realizations of AI and (A → B)I yield a computational realization
of BI (interpretation of the modus ponens rule) and

3) for B ≡ ∀x ∈ N∃y ∈ NR(x,y) a computational realization of BI provides a pro-
gram P such that

∀x ∈ NR(x,P(x)).

To achieve 1) and 2) one has to assign to each formula A in the language L (T ) of
T a new formula AI (possibly in an extension of the original language) such that

a) all axioms A of T admit a computational interpretation of AI (verifiable in some
other theory T I) and

b) all the rules of T are valid (verifiable in T I) under the interpretation I.

As a consequence of a) and b), given a proof p of A in T one can construct a new
proof pI in T I of AI by a simple recursion over p. As the general logical structure
of p remains intact, that new proof pI will not be much longer than p (usually it is
at most cubic in p, [159]).
In order to achieve (3) we need that

(∀x ∈ N∃y ∈ NR(x,y))I ≡ ∃ f : N → N∀x ∈ NR(x, f (x)),

where a computational interpretation of the latter sentence provides a computable f .
Of course to be of any use, that f (as well as the computational interpretation of gen-
eral T -provable sentences) should not just be computable but of certain restricted
complexity and carrying additional information which reflects that the conclusion is
proved by the restricted means of T rather than merely being true.

In connection with this (necessarily slightly simplifying) discussion of proof inter-
pretations one should mention, however, that the separation between cut-elimination,
normalization and Herbrand theory on the one hand and proof interpretations on the
other hand is not as strict as it might appear: often (partial) normalization of the
terms extracted by proof interpretations is used and, conversely, proof interpreta-
tions can be applied to extract Herbrand terms as well ([118]). However, transform-
ing proofs into functional programs (as is done by functional interpretation) makes
it possible to use mathematical properties of these functionals (which often can be
established by the use of logical relations without any normalization) such as ma-
jorizability, continuity, compactness etc., which cannot be applied directly to proofs.
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This book is devoted to the study of proof interpretations and their use to extract
new information hidden (both effective data as well as new qualitative uniformities
and other strengthenings) in given proofs. Historically, most of these proof inter-
pretations were (just as cut-elimination and its variants) developed for foundational
reasons, in particular to give (relative) consistency proofs. E.g. two proof interpre-
tations which play a most important role in this book, Gödel’s negative translation
and his functional interpretation, were developed to give a consistency proof for first
order (‘Peano’) arithmetic PA. In such contexts, proof interpretations are applied to
a hypothetical proof of a contradiction, say ‘0 = 1’, or to proofs of universal the-
orems (so-called ‘real’ statements in Hilbert’s terminology) that can be expressed
as quantifier-free open formulas Aq f (a): Gödel’s interpretation establishes that if
∀aAq f (a) is provable in PA, then Aq f (a) can be derived already in a quantifier-free
calculus T of primitive recursive functionals in higher types (anticipated already in
Hilbert [161]). By a natural ‘shift of emphasis’ (G. Kreisel) one instead can aim at
using such interpretations for interesting proofs of existential theorems to e.g. ex-
tract realizers for the existential quantifier as explicit functions of the parameters
from the proof. As stressed by Kreisel, (proofs of) universal theorems (which play
the key role in Hilbert’s consistency program) do not have any impact on the extrac-
tion and the complexity of the realizers which shows that Kreisel’s emphasis is kind
of opposite to the foundational orientation in Hilbert’s program. Moreover, for this
applied reorientation of proof theory, the fact that the extracted realizer can be veri-
fied in a ‘constructive’ quantifier-free system plays no role as any principles may be
used for its verification.
It is precisely this applied reorientation of proof theory this book is about. Cer-
tain technical issues related to the original foundational aims of the interpretations
(covered extensively in existing literature such as [366]) are bypassed in our pre-
sentation while many new aspects relevant for applications appear here for the first
time in book format. In particular, the shift of emphasis prompts new variants of the
interpretations specially tailored for applications to certain classes of proofs.

Another important practical use of proof interpretations is that they sometimes can
be used to generalize a proof p of a theorem A to a proof pG which might use only
a restricted version of the assumptions of A and so prove a more general result AG.
We will see various such generalizations in this book, e.g. some results in fixed
point theory obtained previously only for nonexpansive mappings could easily be
generalized to other classes such as directionally nonexpansive mappings or the
assumption on the existence of a fixed point could be dropped etc. (see chapters 17
and 18). This is achieved by generalizing pI to a proof (pI)G (which often is easy
since pI exhibits the hidden combinatorial core of the proof p) and then looking for
a generalized proof pG whose interpretation (pG)I just coincides with (pI)G (see
also [358] for a discussion of a related phenomenon in ergodic theory):
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p I−→ pI

G ↓ ↓ IG

pG GI

−→ (pI)G = (pG)I.

After a discussion of some general aspects of this applied form of proof theory
(also called ‘Proof Mining’) in chapter 2 we start by considering first proofs based
on constructive (so-called intuitionistic) logic as initiated by L.E.J. Brouwer and
formalized by A. Heyting (chapter 3). Here the law-of-the-excluded-middle schema
A∨¬A (or – equivalently – the principle ¬¬A → A) is omitted. For proofs based on
intuitionistic logic the problem of the lemma A discussed above does not exist since
an intuitionistic proof of any ∀x ∈ N∃y ∈ NF(x,y)-sentence with F of arbitrary
logical complexity yields an algorithm P such that

∀x ∈ NF(x,P(x)).

One proof interpretation to extract such algorithms, e.g. from proofs in intuitionistic
(‘Heyting’) arithmetic, is the so-called (recursive) realizability technique due to S.C.
Kleene which extracts computable solutions. However, in order to obtain solutions
of restricted complexity and to be able to deal also with higher objects than such
numbers, a variant of this, the so-called modified realizability due to G. Kreisel, is
more suitable. We will study this technique in chapter 5. Even in this context we can
allow some ineffective lemmas to be used: e.g. let

∀x ∈ N∃y ∈ NF(x,y)

be constructively proved from an ineffective lemma of the form

∀u ∈ N∃v ≤ 1∀w ∈ NQ(u,v,w)

(with Q as above) as assumption. Then modified realizability provides a program
P( f ,x) such that

∀ f : N → {0,1}
(
∀u,wQ(u, f (u),w) →∀x ∈ NF(x,P( f ,x))

)
.

Moreover, programs extracted by modified realizability have (for many theories T )
the property of being majorizable, which means that another program P∗ of the same
or even lower complexity can be easily constructed from P such that

∀x∗,x ∈ N∀ f ∗, f : N → N(x∗ ≥ x∧ f ∗ ma j f → P∗( f ∗,x∗) ≥ P( f ,x)),

where
f ∗ ma j f :≡ ∀y∗,y ∈ N(y∗ ≥ y → f ∗(y∗) ≥ f (y)).

Now let 1 denote the constant-1 function, then
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∀x ∈ N∃y ≤ P′(x)F(x,y),

where P′(x) := P∗(1,x) is computable. So we have obtained at least a computable
bound. In applications to analysis one, of course, not only needs quantifiers over
natural numbers but also over e.g. Polish metric spaces X and compact metric spaces
K. The former can be represented by number theoretic functions g : N → N and the
latter even in such a way that only functions g with ∀x ∈ N(g(x) ≤ M(x)) for some
fixed computable M are needed (chapter 4). For simplicity let us assume that M
again is just the constant-1 function and define B := {g : N → N : ∀x ∈ N(g(x) ≤
1)}. By modified realizability combined with majorization (chapters 6 and 9) one
can extract from a proof of a sentence

∀x ∈ N∀g ∈ B∃y ∈ NF(x,g,y)

a computable bound Φ(x) on ‘∃y ∈ N’ which is independent from g ∈ B and hence
– if F ′(g) :≡ F(x,g,y) represents a property of some compact metric space K – a
bound which is uniform on K. This result, called ‘fan rule’, also holds if the proof
uses certain ineffective principles which do not contribute to majorants of function-
als extracted by modified realizability. E.g. this is the case for sentences

∀x ∈ X∃y ∈ K Ae f (x,y),

where X ,K as above and Ae f is a so-called ∃-free formula, i.e. a formula that does
not contain ∃ or ∨. This is due to the fact that it is possible to directly extract P∗

rather than first extracting P and then constructing P∗ from P even in cases where a
computable P does not exist. The method for doing this is called monotone modified
realizability (chapter 7).

The restriction of the underlying logic being intuitionistic is a very strong one.
Many more theorems become provable if one allows at least the use of the so-called
Markov principle (for numbers) which is not intuitionistically derivable and in one
formulation can be stated as

M : ¬∀x ∈ N¬R(x) →∃x ∈ NR(x),

where R(x) is a decidable formula (possibly with further parameters). It first seems
that the only way to give a computational interpretation to M is by using unbounded
search as above and, in fact, this is precisely how Kleene realizability interprets this
principle with the consequence that no complexity information is obtained and no
information from a proof of ¬∀x ∈ N¬R(x) is used. Modified realizability, on the
other hand, does provide subrecursive realizers whose complexity depends on the
proof principles used but it does not interpret M (see chapter 5). However, a deep
and much more refined interpretation, K. Gödel’s so-called functional (‘Dialectica’)
interpretation D, does interpret proofs involving M in a way which avoids the use
of unbounded search (chapter 8). In fact, it also validates extensions of M to higher
objects f such as functions f : N → N (instead of just numbers x ∈ N) to which
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search cannot even be applied. In order to achieve this the interpretation has to
interpret throughout the proof negatively occurring universal quantifiers in a positive
way. In particular, not only is

∃x ∈ NR1(x) →∃y ∈ NR2(y)

interpreted by D (as well as by modified realizability) as

∃ f : N → N∀x ∈ N
(
R1(x) → R2( f (x))

)

but also
∀x ∈ NR1(x) →∀y ∈ NR2(y)

is interpreted by D (but not by modified realizability) as

∃g : N → N∀y ∈ N(R1(g(y)) → R2(y)).

As before in the case of modified realizability, also functional interpretation can
be combined with majorizability (monotone functional interpretation, chapter 9) to
extract computable uniform bounds from proofs of ∀∃-sentences of still arbitrary
logical complexity which (in addition to M) might use certain ineffective princi-
ples (chapters 9 and 15). Now, the latter have to be of a more restricted form, e.g.
∀x ∈ X∃y ∈ K(G(x,y) = 0), where G represents a computable (and T -definable)
function : X ×K → R. This suffices to cover important theorems of classical analy-
sis such as the fact that every function f ∈ C[0,1] attains its maximum, Brouwer’s
fixed point theorem, the Cauchy-Peano existence theorem and many more which in
logical terminology correspond to the binary (‘weak’) König’s lemma WKL ([338])
and imply the existence of noncomputable real numbers resp. functions f : N → N.
WKL states that every infinite binary tree has an infinite branch. By a well-known
result of S.C. Kleene there are easily decidable such trees which do not have any
computable infinite branch.

The most important use of functional interpretation, however, is that by interpret-
ing M one now can even treat proofs based on the full ordinary (‘classical’) logic
(chapter 10) as will be the focus of this book. This is made possible by combining
functional interpretation (and monotone functional interpretation) by yet another
proof interpretation, namely the aforementioned negative translation which trans-
lates systems based on ordinary logic into systems with intuitionistic logic (or at
least approximately intuitionistic logic). The first such negative translations were
due to K. Gödel and G. Gentzen in 1933 and were refined later e.g. by S. Kuroda
and others (chapter 10). As is clear from the counterexample discussed above, it will
no longer be possible to extract computable realizers (or even bounds) for theorems
of the form

A :≡ ∀u ∈ N∃v ∈ N∀w ∈ NQ(u,v,w), Q quantifier-free,

but this is possible for theorems
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B :≡ ∀x ∈ N∃y ∈ NR(x,y)

with quantifier-free R and even for higher objects such as x ∈ X in Polish metric
spaces X etc. rather than integers. After the use of negative translation one has a
constructive proof of

B′ :≡ ∀x ∈ N¬¬∃y ∈ NR(x,y).

Whereas modified realizability is not able to recover any positive information from
this statement, functional interpretation does so since it interprets M which suffices
to derive B from B′.

But how is the situation where B is proved from lemmas A and A→B resolved now?
By negative translation it follows that in order to obtain (constructively) B′ one only
needs the negative translation A′ of A, namely

A′ :≡ ∀u ∈ N¬¬∃v ∈ N∀w ∈ NQ(u,v,w).

However, the functional interpretation of the latter (in this special case also called
‘no-counterexample interpretation’, [241]) is

∃Φ∀u,g Q(u,Φ(u,g),g(Φ(u,g))

(here u ∈ N,g : N → N and Φ : N×N
N → N) which usually does have a simple

computable solution Φ . E.g. in the example

∀u ∈ N∃v ∈ N∀w ∈ N(S(u,v)∨¬S(u,w))

discussed above we can just take

Φ(u,g) :=

⎧
⎨

⎩

u, if ¬S(u,g(u))

g(u), otherwise.

A majorant satisfying the monotone functional interpretation is even easier to obtain
as we can take simply Φ∗(u,g) := max{u,g(u)}. In fact, instead of using the values
u and g(u) one can use also c,g(c) for any c ∈ N, i.e.

Φc(u,g) :=

⎧
⎨

⎩

c, if ¬S(u,g(c))

g(c), otherwise.

Putting c := 0 we see that already Φ∗
0 := g(0) satisfies the monotone functional in-

terpretation in this case. Note also that in contrast to Φ,Φ0 the majorants Φ∗,Φ∗
0 no

longer depend on S.

In total, the combination of negative translation and monotone functional interpre-
tation applied to a proof of an implication A → B extracts a functional
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Ω ∗ : N
(N×N

N) → N
N

that transforms any hypothetical solution Φ∗ : N×N
N → N of the monotone func-

tional interpretation of A′ into a bound for B. A suitable Φ∗ is extracted (again by
negative translation and monotone functional interpretation) from a proof of A. As
a result one gets

∀u ∈ N∃v ≤ Ω ∗(Φ∗,u)R(u,v).

Usually, the level of the function spaces used can be lowered in practice as, typically,
Ω ∗ will be just the application of Φ∗ to some concrete function argument(s) (defined
in the parameters of the problem).

Not only can one treat proofs in (classical) arithmetic in this way but also substantial
fragments of analysis based on noncomputational WKL-related principles (such as
the aforementioned analytical principles) thereby obtaining bounds of rather lim-
ited complexity. Using monotone functional interpretation one can also show how
to eliminate the use of WKL from a large class of proofs. A particular usable ex-
tension of WKL is given by a strong uniform boundedness principle (chapter 12)
which, although false in the full set theoretic model, can be used in formalizing (and
subsequently analyzing) many proofs in analysis yielding bounds of low complex-
ity which in the end can be verified without the use of this principle (which gets
eliminated by the monotone interpretation).

An extension of Gödel’s functional interpretation to full classical analysis (based
on the axiom of dependent choice) was given by C. Spector in 1962. Although the
effective realizers in this case (the so-called bar recursive functionals) are of vast
complexity they do have the effective majorizability property which allows one to
obtain interesting uniformity results as we will use in chapter 17. We will give a
detailed account of Spector’s result in chapter 11.

The first part of the book which is devoted to the development of the proof interpre-
tations used in the analysis of proofs (chapters 2–14) finishes with a presentation of
an (in some cases) alternative to the combination of negative translation and func-
tional interpretation (chapter 14). Here in between negative translation and mod-
ified realizability another proof interpretation (called A-translation and due to H.
Friedman and A. Dragalin independently) is used to pre-process the result of the
negative translation so that modified realizability gives a meaningful result (various
refinements combine the use of negative and A-translation into a prima-facie sim-
pler, single step). In general, however, this route tends to require realizers of greater
complexity (compared to functional interpretation).

The second part of the book (chapters 15–18) brings the logical theorems on the
extractability of effective uniform bounds (developed in the first part) into the form
of general metatheorems directly applicable to proofs in analysis. Moreover, several
substantial applications to concrete proofs are carried out while further examples
are pointed to in the literature. The first set of such metatheorems is formulated in
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the context of continuous functions on concrete Polish and compact metric spaces
such as C[0,1] (with the uniform norm) or [0,1]d (chapter 15). We show how to ex-
tract from proofs effective bounds which are uniform in the sense that they do not
depend on parameters from compact metric spaces. The emphasis is on bounds of
low complexity and hence on proofs formalizable in fragments of analysis roughly
based on analytical principles corresponding to WKL. Various classes of theorems
where such uniform bounds carry important information are specified. A particu-
larly interesting class are uniqueness theorems. Here the metatheorems guarantee
the extractability of effective rates of so-called strong unicity (also called moduli
of uniqueness) which play an important role in various parts of numerical analysis
(e.g. in approximation theory). Using such effective moduli one can in fact construct
algorithms for the computation of prima-facie ineffectively proven unique existence
theorems of the form

∀x ∈ X∃!y ∈ K(G(x,y) =R 0),

where X (resp. K) is a Polish (resp. compact) metric space and G : X ×K → R

an explicitly given function. Although this is not a ∀∃-sentence but a ∀∃∀-sentence
(due to the universal quantifier hidden in the equality predicate =R for real numbers)
the uniform quantitative information obtainable even from ineffective uniqueness
proofs is sufficient to compute y.

In chapter 16 we extract explicit rates of strong unicity for both best Chebycheff ap-
proximations as well as best L1-approximations of functions C[0,1] by polynomials
p∈ Pn of degree≤ n from the standard uniqueness proofs. In both cases these proofs
heavily use noncomputable real numbers by relying on the principle that f ∈C[0,1]
attains its maximum (which corresponds to WKL, [338]). Nevertheless, we succeed
(guided by the proofs of the metatheorems) to extract rates of uniqueness which in
both cases have an optimal dependency on the error.

Whereas the applications mentioned so far deal with concrete Polish and compact
metric spaces, chapters 17 and 18 consider theorems which hold for general classes
of structures such as arbitrary metric, hyperbolic, CAT(0), normed, uniformly con-
vex and inner product spaces which, in particular, are not assumed to be separable or
to have a representation by names in N

N. We develop general metatheorems which
guarantee the extractability of effective bounds which are even independent from
parameters in noncompact (but only metrically bounded) subsets of such structures
if the proof does not use any more specific conditions other than the general axioms
for these structures. In order to formalize such proofs we add abstract metric, hyper-
bolic etc. spaces X axiomatically to the systems as a kind of atoms with a new base
type for elements of X . So although we cannot quantify over these classes of struc-
tures we can refer to them as parameters. A further refinement of this approach –
based on a novel form of majorizability relative to a variable reference point a ∈ X
which was first developed in [120] – even allows one to replace the boundedness
of the whole space by bounds on local distances between certain relevant terms at
hand. Here an a-majorant of an element x ∈ X of a metric space (X ,d) is a number
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n∗ ∈ N such that n∗ ≥ d(x,a) whereas an a-majorant of a function f : X → X is a
(monotone) function f ∗ : N → N such that

∀n∗ ∈ N∀x ∈ X(n∗ ≥ d(x,a) → f ∗(n∗) ≥ d( f (x),a)).

For higher function spaces this definition is extended in the usual hereditary fashion.
The functional interpretation will be parametrized by this reference point a ∈ X as
well which will be fixed only in the end depending on the parameters of the problem
at hand.

While in the case of compact metric spaces and continuous functions as treated in
chapter 15 the (ineffective) existence of uniform bounds follows from standard com-
pactness arguments so that it is the concrete effective information which is relevant,
the extended metatheorems in chapter 17 allow one to derive uniformity results
which even ineffectively are nontrivial. In fact, a number of new such results in
metric fixed point theory were obtained in this way (see chapter 18). Since here this
new qualitative improvement of theorems is most prominent we work in a context
of full analysis (with bar recursive bounds) in order to make the results as widely
applicable as possible. However, things scale down to fragments as well and in the
concrete applications relatively simple bounds are obtained due to the very limited
use of analytic principles. Chapter 18 gives a detailed treatment of some applica-
tions which deal with the asymptotic behavior of so-called Krasnoselski-Mann iter-
ations of nonexpansive mappings of hyperbolic spaces. We also briefly mention a
recent application due to Avigad-Gerhardy-Towsner in ergodic theory. Many other
applications are referred to in the literature. The book is concluded with some brief
comments about potential future uses of the metatheorems established in chapters
15 and 17 concerning ergodic theory and its connection to combinatorics, unique-
ness results for hyperbolic conservation laws, the reduction of Fermat’s last theorem
to the Taniyama-Weil theorem as well as applications to geometric group theory (an
area in which metric structures such as CAT(0)-spaces feature prominently).



Chapter 2
Unwinding proofs (‘Proof Mining’)

2.1 Introductory remark

In this chapter we give – exemplified by a couple of easy but fundamental examples
– a kind of tour-de-force through a number of topics which will be developed in
detail throughout the rest of this book. The aim of this chapter is to provide the
reader with a guiding line by explaining (in more technical terms than in the previous
chapter) the main goals we are aiming at in this book and the difficulties one has to
address in the course of this. We recommend to read this chapter first at a somewhat
informal level skipping maybe some technical details but to revisit it after the study
of the material up to chapter 11.

2.2 Informal treatment of ineffective proofs

Proof interpretations of the kind we are going to study in this book are tools to ex-
tract constructive (computational) data from given proofs by recursion on the proof.
Such data quite often cannot directly be read off from a proof but are hidden behind
the use of quantifiers.
G. Kreisel was the first to formulate the program of unwinding proofs under the
general question:

‘What more do we know if we have proved a theorem by restricted means than if
we merely know that it is true?’

The term ‘unwinding of proofs’ is due to G. Kreisel. More recently, D. Scott sug-
gested to us to use the more catchy slogan ‘proof mining’ which we find quite ap-
propriate for this area of applied proof theory.

What do we mean by ‘constructive data’?
E.g.
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1) Realizing terms from a proof of an existential theorem A ≡ ∃xB(x) (closed).
A weaker requirement is to construct a list of terms t1, . . . ,tn which are candidates
for A, i.e. such that B(t1)∨ . . .∨B(tn) holds.
More general: If A ≡ ∀x∃yB(x,y), then one can ask for an algorithm p such that
∀xB(x, p(x)) holds (or – weaker – for a bounding function b such that

∀x∃y ≤ b(x)B(x,y),

if e.g. y ranges over the natural numbers).
2) weakening of the assumptions used in the proof: e.g. replacing general assump-

tions by specific instances of them.

What type of information one can expect (in general) depends of course on the
structure of the theorem A to be proved and the principles used in its proof.
A first, very rough, division of the structure of a sentence (i.e. a closed formula) A
can be made according to the quantifier complexity of A :
From now on A0,B0,C0, . . . always denote quantifier-free formulas. Sometimes we
also write Aq f . Instead of a single variable we may have (here and in the following)
also a tuple x = x1, . . . ,xn of variables.

1) A purely universal, i.e. A ≡ ∀xA0(x), where A0 is quantifier-free.
Such sentences A, sometimes called complete, don’t ask for any witnessing data. So
the problem of extracting data is empty here.

2) A purely existential, i.e. A ≡ ∃xA0(x). We treat this as a special case of

3) A ≡ ∀x∃yA0(x,y). Let’s consider the case where x,y ∈ N and A0 ∈ L (PA) (here
PA denotes first order Peano arithmetic which we assume to contain all primitive
recursive functions; see chapter 3 for a precise definition). A0 is decidable (Exercise:
A0(x) ∈ L (PA), then one can construct a primitive recursive function term t such
that PA � ∀x(t(x) = 0 ↔ A0(x))) (see proposition 3.8 below) and, therefore, defines
a partial recursive function f , namely

f (x) :=

⎧
⎨

⎩

miny[A0(x,y)], if ∃yA0(x,y)

undefined, otherwise.

A just says that f is total recursive.

Questions: How to extract a non-trivial program for f (different from simple un-
bounded search) from a proof of A? What is the complexity and the rate of growth
of f if A is proved in a certain theory T ?

Theorems expressing that a set {y ∈ N : A(y)} ⊆ N is infinite have the form

∀x ∈ N∃y ≥ xA(y).
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Quite often A can be expressed in a quantifier-free way A0 in PA, so that this falls
under the general form ∀x∃yB0(x,y), where

B0(x,y) :≡ (y ≥ x∧A0(y)).

As an example consider the following

Proposition 2.1. There are infinitely many prime numbers.

The predicate P(x) :≡ ‘x is a prime number’ can be expressed in a quantifier-free
way as a primitive recursive predicate (see e.g. [194, 371]).

Proof 1 (Euclid): Define a := 1+ ∏
p≤x

p prime

p. a cannot be divided by any prime number

p ≤ x. By the decomposition of every number into prime factors it follows that a
contains a prime factor q ≤ a with q > x. �

From this proof one immediately gets the bound g(x) := 1 + x!(≥ 1 + ∏
p≤x

p prime

p). By

the Stirling formula we obtain

g(x) ∼ 1 +(2πx)
1
2 (

x
e
)x = 1 +

√
2π · ex lnx−x+ 1

2 lnx.

In order to obtain from Euclid’s proof an upper bound on the (r +1)-th prime num-
ber pr+1 which only depends on r instead of x ≥ pr one can argue as follows: Eu-
clid’s proof yields that

pr+1 ≤ p1 · . . . · pr + 1.

From this one obtains (exercise) by induction on r that

pr < 22r
for all r ≥ 1.

Proof 2 (Euler): Suppose that there are only finitely many prime numbers p1, . . . , pr
(listed in increasing order, r ≥ 1). One has

∑
0≤α1,...,αr≤n

1
p

α1
1 ·...·pαr

r
=

(
n
∑

i=0

1
pi

1

)

· . . . ·
(

n
∑

i=0

1
pi

r

)

< 1
1− 1

p1

· . . . · 1
1− 1

pr
= p1

p1−1 · . . . ·
pr

pr−1

≤ 2
1 ·

3
2 ·

4
3 · . . . ·

pr
pr−1 = pr

(note that this holds for all n ∈ N).
It follows (using the decomposition into prime numbers) that for all n ∈ N



16 2 Unwinding proofs

n

∑
i=1

1
i
≤ pr.

But this contradicts the fact that
∞
∑

i=1

1
i = ∞. �

Quantitative analysis of Euler’s proof:
We need a quantitative version of ‘

n
∑

i=1

1
i

n→∞→ ∞’, more precisely we need a bound

on ∃n
( n

∑
i=1

1
i > pr

)
. It is known that

n
∑

i=1

1
i − ln(n) ↘ C, where C ≈ 0.5772... is the

so-called Euler-Mascheroni constant. Hence for nr := �epr−C� we have
nr
∑

i=1

1
i > pr

(and this is essentially optimal). From the proof above it follows that for all n ∈ N

∑
0≤α1,...,αr≤n

1
pα1

1 · . . . · pαr
r

≤ pr.

Hence there must be an i (1 ≤ i ≤ nr) which contains a prime factor p with pr <
p ≤ i ≤ nr. So put together

∃p(p prime ∧ pr < p ≤ �epr−C�).

Applying this argument to all prime numbers p1 < .. . < prx ≤ x we obtain

∀x∃p(p prime ∧ x < p ≤ �ex−C�).

So we can take g(x) := �ex−C� (or an appropriate upper bound of this to make it
computable).

Conclusion: Euler’s proof yields a bound that is slightly better than the one from
Euclid’s proof.

Improvement of the analysis: The estimate at the beginning of Euler’s proof can
be improved (using that pi ≥ i+ 1) to

∑
0≤α1,...,αr≤n

1
p

α1
1 ·...·pαr

r
=

(
n
∑

i=0

1
pi

1

)

· . . . ·
(

n
∑

i=0

1
pi

r

)

< 1
1− 1

p1

· . . . · 1
1− 1

pr
≤ 1

1− 1
2
· . . . · 1

1− 1
r+1

= 2
1 ·

3
2 ·

4
3 · . . . ·

r+1
r = r + 1.

Analogously to the previous analysis we now get that (for r ≥ 1) the r + 1-th
prime number pr+1 is upper bounded by g(r) := �er+1−C� which is exponential
in r (and no longer in x ≥ pr) and constitutes a significant improvement over the
double exponential upper bound (in r) from Euclid’s proof (e.g. from the former
bound one gets the lower bound lnx for x ≥ 1 (exercise) for the Euler π-function
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π(x) := |{p : p prime ∧ p ≤ x}| whereas the bound from Euclid’s proof only yields
ln lnx (for x ≥ 2) as a lower bound (exercise, see also [149]).

Remark 2.2. Euler’s proofs uses as a lemma the fact that
∞
∑

i=1

1
i = ∞, i.e.

∀k∃n(
n

∑
i=1

1
i
≥ k),

which itself (just as the conclusion) is of the form ∀x∃yA0(x,y). Hence what the
analysis of Euler’s proof actually provides is a procedure that transforms a rate of
divergence of the harmonic series into a bound on a prime number p ≥ x. In the
analysis above we directly applied this to the rate of divergence resulting from

n

∑
i=1

1
i
− ln(n) ↘C.

Proof 3: Let p1, . . . , pr (r ≥ 1) be the first r primes and define for x ≥ 1
N(x) := {n ≤ x : n ≥ 1∧ n is not divisible by any prime p > pr } . We can express
n ∈ N(x) in the form n = n2

1m where m is ‘squarefree’, i.e. is not divisible by a
square of any prime.
We have m = pb1

1 · pb2
2 · . . . · pbr

r , where bi ∈ {0,1} . There are 2r possible exponents
and consequently at most 2r different values of m. Also, because of n1 ≤

√
n ≤√

x,
there are not more than

√
x different values of n1. Hence |N(x)| ≤ 2r√x. Now if

there were only finitely many primes p1, . . . , pr, then |N(x)| = x for every x and so
2r√x ≥ x for all x which is a contradiction.

From this proof one gets a bound as follows: Let p1, . . . , pr be the first r primes.
Define x := (2r)2 + 1 = 22r + 1. Then 2r√x < x. Hence ∃n ≤ x(n is divisible by
some prime p > pr) and so ∃p(p prime ∧ pr < p ≤ 22r + 1 = 4r + 1).
So we get again a bound g(r) := 4r + 1 which is exponential in r rather than pr.

For another proof (in fact a variant of proof 3) see the exercise 1. Still further proofs
can be found in [2].

Discussion:

1) All three proofs provide more information than the mere fact that ‘there are in-
finitely many primes’ is true. By making their quantitative content explicit one
can compare them with respect to their numerical quality.

2) The unwindings of the proofs 1)–3) were straightforward and didn’t require
any tools from logic as guiding principles. However there are more complicated
proofs where the use of proof-theoretic tools turned out to be decisive in practice
(see e.g. [122, 267, 204, 205]). The final verification of the data extracted will
always be again an ordinary mathematical proof (obtained by a proof-theoretic
transformation of the original proof) which does not rely on any logical metathe-
orems (in contrast to the verification of the general procedure of transformation).
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This differs from many model theoretic applications to mathematics where the
provability or the truth in some model of the conclusion is established without
exhibiting a proof which doesn’t rely on model theoretic theorems.

3) Already the a-priori information, provided by a general metatheorem, that e.g.
a certain computable bound must be extractable from a given proof which is
formalizable in a certain system T can be an important step in actually finding
such a bound even if the latter is carried out by ad hoc methods and doesn’t
follow closely any proof-theoretic procedure.

Remark 2.3. If A does not have the form ∀x∃yA0(x,y) right away it may have so
after some logical transformations, e.g.

A :≡
(
∃x∀yA0(x,y) →∀u∃vB0(u,v)

)

is logically equivalent to the prenex normal form

Apr :≡ ∀u,x∃v,y
(
A0(x,y) → B0(u,v)

)

so that the reasoning above applies to the Apr.

4) A ≡ ∃x∀yA0(x,y): From a proof of A (even in first order logic without equality
PL−=) one cannot (in general) obtain a realization ∀yA0(t,y) nor a list of candidates

such that
n∨

i=1
∀yA0(ti,y) (t,t1, . . . ,tn not containing y) holds:

Proposition 2.4. There exists a logically valid sentence A ≡∃x∀yA0(x,y) ∈L (PA)
in the language of Peano arithmetic PA such that there is no list of closed terms
t1, . . . ,tk ∈ L (PA) such that

PA �
k∨

i=1

∀yA0(ti,y).

Proof: Take P(x) :≡ ProvPA(x,�0 = 1�) and A0(x,y) :≡ P(x)∨¬P(y) (here
‘ProvPA(x,�0 = 1�)’ expresses primitive recursively ‘x is the Gödel number of a
PA-proof of 0 = 1’ (see e.g. [194]). Suppose there are closed terms t1, . . . ,tk such
that

(1) PA �
k∨

i=1

∀yA0(ti,y).

Within PA each ti can be computed to a numeral ni:

(2) PA � ti = ni for 1 ≤ i ≤ k.

By (1) and (2) we have

(3) PA �
k∨

i=1

∀yA0(ni,y).
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By the consistency of PA we know that

(4) N |=
k∧

i=1

¬P(ni).

Hence by the numeralwise representability of primitive recursive predicates in PA
we have

(5) PA �
k∧

i=1

¬P(ni).

But (3) and (5) imply

(6) PA � ∀y¬ProvPA(y,�0 = 1�),

which contradicts Gödel’s second incompleteness theorem. �

However, although PA is not able to verify
k∨

i=1
∀yA0(ti,y) for any tuple of terms ti

we can (using the consistency of PA) verify this on the meta-level: In fact, for any
term t, e.g. for 0, we know that ∀yA0(t,y) is true in N simply because

N |= ∀y¬ProvPA(y,�0 = 1�).

However, there are other examples where –in general– even this is not possible, e.g.
take

Ae :≡ ∃x∀y
(
T (e,e,x)∨¬T (e,e,y)),

where T is the (primitive recursive) Kleene-T-predicate, i.e. T (x,y,z) :≡ ‘the Turing
machine with Gödel number x applied to the input y terminates with a computation
whose Gödel number is z’ (see e.g. [371]).
In general we are not able to determine closed terms t1, . . . ,tk such that

N |=
k∨

i=1

∀y
(
T (e,e,ti)∨¬T (e,e,y)),

since this would allow us to decide whether ∃xT (e,e,x) or not (simply check

whether
k∨

i=1
T (e,e,ti) is true or not).

In fact, for
A :≡ ∀x∃y∀z

(
T (x,x,y)∨¬T (x,x,z)

)

A is provable in PA using only the logical axioms and rules and hence in PL−=, but
there is no computable bound g on ‘∃y’, i.e. no computable g such that

∀x∃y ≤ g(x)∀z
(
T (x,x,y)∨¬T (x,x,z)

)
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since this would make the (special) halting problem {x ∈ N : ∃y ∈ N(T (x,x,y))}
decidable by the then computable function

f (x) :=

⎧
⎨

⎩

0, if ∃y ≤ g(x)(T (x,x,y))

1, otherwise.

We sometimes make use of the following definition:

Definition 2.5. A formula A ∈ L (PL) in prenex normal form is called Π 0
n -formula

if it has n-alternating blocks of equal quantifiers starting with a block of universal
quantifiers, i.e.

∀x1∃x2 . . .∀/∃xn A0(x1, . . . ,xn),

where xi are tuples of variables. If the formula starts with a block of existential
quantifiers

∃x1∀x2 . . .∃/∀xn A0(x1, . . . ,xn)

it is called Σ0
n -formula.

Remark 2.6. The upper index ‘0’ only is relevant in theories with higher order quan-
tifiers (over functions and functionals) where then it indicates that all the quantifiers
range over the first order (‘base type’) variables.
Many theories, such as PA, allow the contraction of tuples of variables into single
variables.

As we discussed above, infinity statements (for quantifier-free properties) in number
theory have the form of Π 0

2 -formulas. So an important class of Σ0
2 -formulas are

finiteness statements, i.e.
∃x∀y > x¬A0(y,a),

where a,y are the only free variables in A0(y,a). We now may ask for

• a computable bound h(a) on the height of the solutions, i.e.

∀a∀y > h(a)¬A0(y,a)

or
• a computable bound N(a) on the number of solutions, i.e.

N(a) ≥ |{y : A0(y,a)}|.

It is clear that any h also is an upper bound N on the number of solutions but in
general the existence of a computable function N does not imply the existence of
a computable height function h as the following example (due to [267]) shows:
consider again Kleene’s T -predicate and define

A0(y,a) :≡ T (a,a,y).

Then clearly N(a) := 1 is a bound on the number of solutions but by the undecid-
ability of the special halting problem there is no computable (in a) bound h(a) on y.
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In general, for Σ0
2 -finiteness theorems not even a computable (in the parameters)

bound N exists ([267]): Let

A0(y,a) :≡ T (a,a, j2(y))∧0 < j1(y) ≤ j2(y),

where we refer to some standard pairing/unpairing functions j, j1, j2 (see definition
3.30 below). Here the number of solutions and their maximal size coincide and so
neither of them is computable.
Famous finiteness theorems in mathematics are Roth’s theorem ([317]) on the num-
ber of exceptionally good rational approximations of irrational algebraic numbers
and Falting’s theorem establishing the Mordell conjecture ([97]). In both cases ef-
fective bounds N are known but no computable bounds h.

Roth’s theorem says the following

Theorem 2.7 (Roth [317]). An algebraic irrational number α has only finitely many
exceptionally good rational approximations, i.e. for ε > 0 there are only finitely
many q ∈ N such that

R(q) :≡ q > 1∧∃!p ∈ Z : (p,q) = 1∧|α − pq−1| < q−2−ε .

The first polynomial bound N in the case of Roth’s theorem was obtained in Luck-
hardt [267] by extracting Herbrand terms (see theorem 2.18 and the subsequent
discussion below) from a proof of Roth’s theorem due to Esnault and Viehweg [94]
using certain growth properties of these terms (following general ideas from Kreisel
[249]).

Theorem 2.8 (Luckhardt [267]). The following upper bound on #{q : R(q)} holds:

#{q : R(q)} <
7
3

ε−1 logNα + 6 ·103ε−5 log2 d · log(50ε−2 logd),

where Nα < max(21log2h(α),2log(1+ |α|)) and h is the logarithmic absolute ho-
mogeneous height.

Independently, a roughly similar bound was obtained in Bombieri-van der Poorten
[38] using a more ad hoc strategy.

Two elementary examples of non-constructive proofs in number theory:

Proposition 2.9. ∃a,b ∈ R
(
a,b irrational ∧ab rational

)
.

Proof: Case 1:
√

2
√

2
is rational. Put a := b :=

√
2.

Case 2:
√

2
√

2
irrational. Put a :=

√
2
√

2
,b :=

√
2. �

Remark 2.10. In the example above, the matrix ‘a,b irrational ∧ab rational’ is more
complex than Π 0

1 : Using the representation of real number from chapter 4 below
‘a,b irrational’ is in Π 0

2 and ‘ab rational’ is in Σ0
2 .
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From this proof we get two candidates for (a,b), namely (
√

2,
√

2) and (
√

2
√

2
,
√

2)
but no decision which one satisfies the proposition.

Remark 2.11. 1) From a deep result of Gelfand and Schneider, stating that if a,b
are algebraic, a �= 0,1 and b irrational, then ab is transcendental, it follows that
√

2
√

2
is transcendental and, therefore, irrational. So it is the pair (

√
2
√

2
,
√

2)
which satisfies the proposition.

2) While it requires the Gelfand-Schneider theorem to determine which of the can-

didates (
√

2,
√

2) and (
√

2
√

2
,
√

2) satisfies the proposition, there is a trivial ar-
gument (which we learned from G. Stolzenberg) that provides an explicit so-
lution to proposition 2.9: take a :=

√
2 and b := 2log2(3). b is irrational since

log2(3) = m/n for some m,n∈N
∗ would imply that 2m = 3n which is impossible.

Clearly, ab = 3 is rational.

Here is another example (communicated by H. Friedman) of a simple non-construct-
ive proof in number theory:

Proposition 2.12. (e−π is irrational) or (e + π is irrational).

Proof: One easily formalizes the proof of the irrationality of e as given e.g. in [149]
in PA. If both e−π and e+π were rational, then also their sum 2e and, therefore, e
would be rational which is a contradiction. �

Remark 2.13. In 1996, it was proved by Yu.V. Nesterenko ([285]) that eπ and π are
algebraically independent and hence π + eπ is transcendental whereas for e+π and
e−π individually the question of transcendence is still open.

2.3 Herbrand’s theorem and the no-counterexample
interpretation

We have seen that already for Σ0
2 ,Π 0

3 -sentences A (i.e. A ≡ ∃n∀mA0(n,m) or
A ≡ ∀k∃n∀mA0(k,n,m) where A0 is recursive) it is not possible in general to com-
pute witnesses resp. bounds. However one can obtain such witness candidates and
bounds (and even realizing function(al)s) for a weakened version of A, namely its
so-called Herbrand normal form AH :

Definition 2.14. A ≡ (∀y0)∃x1∀y1 . . .∃xn∀ynA0(y0,x1,y1, . . . ,xn,yn). Then the Her-
brand normal form of A is defined as

AH :≡ (∀y0)∃x1, . . . ,xnA0(y0,x1, f1(x1), . . . ,xn, fn(x1, . . . ,xn)),

where f1, . . . , fn are new function symbols, called Herbrand index functions.
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Remark 2.15. In theories with function variables and function quantifiers we take
the Herbrand normal form of A to be

AH :≡ ∀(y0), f1, . . . , fn∃x1, . . . ,xnA0(y0,x1, f1(x1), . . . ,xn, fn(x1, . . . ,xn)).

In the following PL denotes first order predicate logic with equality.
For prenex sentences A, A and AH are equivalent with respect to logical validity, i.e.

|= A ⇔ |= AH

(this fact is also expressed by saying that AH is a validity normal form) but are not
logically equivalent since in general

PL � AH → A.

However the converse implication holds

PL−= � A → AH .

Remark 2.16. The dual normal form in which the existentially quantified variables
in a prenex normal formula are replaced by new function symbols depending on the
universally quantified variables from the universal quantifiers to the left is called
Skolem normal form and denoted by AS, i.e. for

A :≡ ∀x1∃y1 . . .∀xn∃yn A0(x1,y1, . . . ,xn,yn)

AS :≡ ∀x1, . . . ,xn A0(x1, f1(x1), . . . ,xn, fn(x1, . . . ,xn)).

The function symbols f1, . . . , fn are called Skolem functions.
For prenex sentences A, the Skolem normal form is a satisfiability normal form.
Unfortunately, the terminology differs for different authors. Sometimes the name
Skolem normal form is used for what we call Herbrand normal form.

Let PL2
(−=) denote the extension of PL(−=) obtained by the addition of n-ary func-

tion variables (for every n) and function quantifiers.
Let furthermore AC denote the schema of choice

AC: ∀x∃yA(x,y) →∃ f∀x A(x, f (x)) (x = x1, . . . ,xn),

then it is an easy exercise to show that

PL2
−= + AC � A ↔ AH .

We now consider again the sentence

A ≡ ∀x∃y∀z
(
P(x,y)∨¬P(x,z)

)
,
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where P is some predicate symbol. In contrast to A, the Herbrand normal form AH

of A
AH ≡ ∃y

(
P(x,y)∨¬P(x,g(y))

)

allows an interpretation in form of a list of candidates (uniformly in x,g) for ‘∃y’,
namely (x,gx) and also (c,gc) for any constant c does the job since the disjunction

AH,D :≡
(
P(x,c)∨¬P(x,g(c))

)
∨

(
P(x,g(c))∨¬P(x,g(g(c)))

)

is a tautology.
A tautology remains a tautology if we replace all occurrences of a term s by a vari-
able y: Replace g(c) by y and g(g(c)) by z. Then AH,D becomes

AD :≡
(
P(x,c)∨¬P(x,y)

)
∨

(
P(x,y)∨¬P(x,z)

)
,

which still is a tautology. From AD we can derive A by a so-called direct proof
(which uses only appropriate quantifier introduction rules, the shift of quantifiers
over ∨ and contraction):

P(x,c)∨¬P(x,y)∨P(x,y)∨¬P(x,z)

⇓ (∀-introduction)

P(x,c)∨¬P(x,y)∨∀z
(
P(x,y)∨¬P(x,z)

)

⇓ (∃-introduction)

P(x,c)∨¬P(x,y)∨∃y∀z
(
P(x,y)∨¬P(x,z)

)

⇓ (∀-introduction)

∀y
(
P(x,c)∨¬P(x,y)

)
∨∃y∀z

(
P(x,y)∨¬P(x,z)

)

⇓ (∃-introduction)

∃u∀y
(
P(x,u)∨¬P(x,y)

)
∨∃y∀z

(
P(x,y)∨¬P(x,z)

)

⇓ (contraction)

∃y∀z
(
P(x,y)∨¬P(x,z)

)

⇓ (∀-introduction)

∀x∃y∀z
(
P(x,y)∨¬P(x,z)

)

Definition 2.17. A formula A in the language of first order predicate logic with
equality (PL) is called a quasi-tautology if it is a tautological consequence of in-
stances of =-axioms.

Theorem 2.18 (Herbrand’s Theorem).
Let A ≡ ∃x1∀y1 . . .∃xn∀ynA0(x1,y1, . . . ,xn,yn). Then the following holds:
PL−= � A iff there are terms t1,1, . . . ,t1,k1 , . . . ,tn,1, . . . ,tn,kn (built up out of the con-
stants, free variables and function symbols of A and the index functions used for the
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formation of AH) such that

AH,D :≡
k1∨

j1=1

. . .
kn∨

jn=1

A0
(
t1, j1 , f1(t1, j1), . . . ,tn, jn , fn(t1, j1 , . . . ,tn, jn)

)

is a tautology.
The terms ti, j can be extracted constructively from a given PL−=-proof of A and
conversely one can construct a PL−=-proof for A out of a given tautology AH,D.
The theorem holds for PL if ‘tautology’ is replaced by ‘quasi-tautology’.

Proof: See e.g. [332]. �

The most difficult part of the proof of Herbrand’s theorem is the construction of the
Herbrand terms ti, j. The reverse direction for PL−= follows similar to the special
case treated above: the fi-terms in AH,D are replaced by new variables (starting
from terms of maximal size) yielding an index-function-free Herbrand disjunction
AD. From this A is derived by a direct proof. For PL the reverse direction is more
complicated to establish since also instances of equality axioms x = y → fi(x) =
fi(y) are now allowed in the proof of AH,D.

In applications, the Herbrand disjunction AD without index function has been par-
ticular useful (see [249],[267]). Although it is quite complicated to write down the
general form of such a disjunction it is easy for Π 0

3 -sentences (which is sufficient
for many applications in mathematics):

For sentences A ≡ ∀x∃y∀zA0(x,y,z), AD can always be written in the form

A0(x,t1,b1)∨A0(x,t2,b2)∨ . . .∨A0(x, tk,bk),

where the bi are new variables and ti does not contain any b j with i ≤ j (see [249]).

Herbrand’s theorem immediately extends to so-called open theories, i.e. first order
theories T whose non-logical axioms G1, . . . ,Gm are all purely universal
(Gi ≡ ∀aiGi

0(ai)), if ‘(quasi-)tautology’ is replaced by ‘tautological consequence of
instances of equality axioms and the non-logical axioms’.

Proof: Apply Herbrand’s theorem for logic to

Ã :≡ ∃x1∀y1 . . .∃xn∀yn∃a1, . . . ,am
( m∧

i=1

Gi
0(ai) → A0(x1,y1, . . . ,xn,yn)

)
.

�

Warning: For the extension of Herbrand’s theorem to open theories T it is impor-
tant that the index function used in defining AH are new and do not occur in the
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non-logical axioms. In particular if we have a schema of purely universal axioms
then in the statement of Herbrand’s theorem this schema is always understood with
respect to the original language (without the index functions). Otherwise the reverse
direction in Herbrand’s theorem in general would fail (see [202] for a discussion of
this and related matters thereby pointing out errors in the literature).

In general Herbrand’s theorem in the form stated above does not hold for theories
which are not open, e.g. it fails for PA.
However there are ways to extend the general idea behind Herbrand’s theorem to
theories like PA and beyond: in this book we will discuss various forms of Gödel’s
functional interpretation (chapters 8, 9, 10) and the so-called no-counterexample
interpretation (due to G. Kreisel [241, 242], see further below in this chapter and
chapter 10). We conclude this chapter by motivating the latter and also indicating its
limitations:

Let’s consider again the example

A ≡ ∀x∃y∀z
(
P(x,y)∨¬P(x,z)

)
.

If P is formulated in some theory like PA with decidable prime formulas, e.g. if
P(x,y) ≡ T (x,x,y), then we can realize the Herbrand normal form AH of A instead
of using a disjunction also by a computable functional of type level 2 which is
defined by cases:

Φ(x,g) :=

⎧
⎨

⎩

x if ¬T (x,x,g(x))

g(x) otherwise.

From this definition it easily follows that

∀x,g
(
T (x,x,Φ(x,g))∨¬T (x,x,g(Φ(x,g))

)
.

If A is not provable in PL but e.g. in PA we no longer can expect that functionals as
simple as Φ above will be sufficient. In addition to the use of definition by cases we
also have to allow certain recursive definitions whose complexity depends on the
strength of the theory in which A is proved. In this book we will show e.g. in the
case of PA (and subsystems) what functionals are needed.

Definition 2.19. Let A ≡ ∃x1∀y1 . . .∃xn∀ynA0(x1,y1, . . . ,xn,yn). If a tuple of func-
tionals Φ1, . . . ,Φn realizes the Herbrand normal form AH of A, i.e. if

∀ f A0
(
Φ1( f ), f1(Φ1( f )), . . . ,Φn( f ), fn(Φ1( f ), . . . ,Φn( f ))

)

is true (where f = f1, . . . , fn), then we say that Φ(= Φ1, . . . ,Φn) satisfies the no-
counterexample interpretation of A (short: Φ n.c.i. A).
If A starts with a universal quantifier ∀y0 then y0 is considered as a 0-place index
function and Φi now depends on y0 and f .
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Motivation for the name ‘no-counterexample interpretation’:

Let A be as above. Then ¬A is equivalent to

∀x1∃y1 . . .∀xn∃yn¬A0(x1,y1, . . . ,xn,yn).

So a counterexample to A is given by functions f1, . . . , fn such that

(+) ∀x¬A0(x1, f1(x1), . . . ,xn, fn(x1, . . . ,xn))

holds. Hence functionals Φ satisfying the n.c.i. of A produce a counterexample to
(+) i.e. to the existence of counterexample functions f1, . . . , fn.

The no-counterexample interpretation can indeed be realized for many interesting
classical theories (in particular Peano arithmetic PA for which it was designed by
Kreisel) and fragments thereof by certain subrecursive classes of functionals. E.g.
we will show in chapter 10 that theorems of the fragment PA1 of PA with the schema
of induction restricted to purely existential (Σ0

1 -)formulas always have functionals
satisfying the no-counterexample interpretation which are primitive recursive in the
sense of Kleene. This was first shown by Parsons ([299]) and will be proved in
chapter 10. Full Peano arithmetic requires primitive recursive functionals in higher
types in the extended sense of Gödel [133] (see chapter 3 and – again – chapter 10
below).

Definition 2.20. A function f : N
k → N is called primitive recursive if it can be

defined by the following schemas:

1) The initial functions Z(x) = 0 (Zero), Pp
i (x0, . . . ,xp−1) = xi p ≥ 1, i < p (Projec-

tions), S(x) = x + 1 (Successor) are primitive recursive.
2) If h0(x0, . . . ,xp−1), . . . ,hl−1(x0, . . . ,xp−1) and g(y0, . . . ,yl−1) are primitive recur-

sive functions, then also

f (x0, . . . ,xp−1) = g(h0(x0, . . . ,xp−1), . . . ,hl−1(x0, . . . ,xp−1))

is primitive recursive.
3) If g(x0, . . . ,xp−1) and h(z,y,x0, . . . ,xp−1) are primitive recursive functions, then

also f defined by

f (0,x0, . . . ,xp−1) = g(x0, . . . ,xp−1),

f (y + 1,x0, . . . ,xp−1) = h( f (y,x0, . . . ,xp−1),y,x0, . . . ,xp−1)

is primitive recursive.

Definition 2.21. A functional F is called primitive recursive (of level or ‘type’ ≤ 2)
in the sense of Kleene if it can be defined by the following schemas (x = x0, . . . ,xp−1
is a list of number variables and f = f0, . . . , fq−1 is a list of function variables for
any p,q ≥ 1):
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(i) (Projections) F(x, f ) = xi (for i < p) and (Zero) F(x, f ) = 0,
(ii) (Function application) F(x, f ) = fi(x j0 , . . . ,x jl−1)

(for i < q and j0, . . . , jl−1 < p and fi of arity l),
(iii) (Successor) F(x, f ) = xi + 1 (for i < p),
(iv) (Substitution)

F(x, f ) = G(H0(x, f ), . . . ,Hl−1(x, f ),λ y.K0(y,x, f ), . . . ,λ y.Kj−1(y,x, f )),
(v) (Primitive recursion)

F(0,x, f ) = G(x, f ), F(y + 1,x, f ) = H(F(y,x, f ),y,x, f ).

Remark 2.22. The class of primitive recursive functionals of level ≤ 2 in the sense
of Kleene which do not have any function arguments f coincides with the class of
primitive recursive functions. Exercise!

We will now demonstrate the no-counterexample on two simple examples (the sec-
ond of which will play an important role in applications to metric fixed point theory
in chapter 18 below):
Example 1: Consider the following proposition which is an immediate consequence
of the least number principle for natural numbers (which can formally be proved us-
ing Σ0

1 -induction):

(+) ∀ f : N → N∀k ∈ N∃n ≥ k∀m ≥ k( f (n) ≤ f (m)).

(+) is ineffective in the sense that there is no computable bound Φ( f ,k) on n. In
fact, the next two propositions give even stronger results:

Proposition 2.23. There is no computable functional Φ : N
N → N such that

∀ f : N → N∃n ≤ Φ( f )∀m ∈ N( f (n) ≤ f (m)).

Proof: Assume that on the contrary such a computable Φ would exist. Consider
the constant-1 function 1 := λ k.1. Since Φ is computable, Φ( f ) only depends on
finitely many values of f , i.e. Φ : N

N → N is continuous w.r.t. the product topology
on N

N and the discrete topology on N. Hence

(∗) ∃l ∈ N∀g : N → N(∀i ≤ l(g(i) = 1) → Φ(1) = Φ(g)).

Now define

g(i) :=

⎧
⎨

⎩

1, if i ≤ max(l,Φ(1))

0, otherwise.

Then Φ(g) = Φ(1) by (∗), but also Φ(g) > Φ(1) since g( j) = min{g(i) : i ∈N}= 0
for some j ≤ Φ(g), whereas g(i) = 1 for all i ≤ Φ(1). �

Proposition 2.24. There exists a primitive recursive function f0 : N → N such that
there is no computable function Φ : N → N with

∀k ∈ N∃n ≤ Φ(k)
(
n ≥ k∧∀m ≥ k( f0(n) ≤ f0(m))

)
.
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Proof: Let e ∈ N be such that

{k ∈ N : {e}(k) ↓} = {k ∈ N : ∃n ∈ NT (e,k,n)}

is undecidable, where the primitive recursive Kleene T -predicate satisfies

(1) ∀k,n1,n2 ∈ N(T (e,k,n1)∧T (e,k,n2) → n1 = n2).

Define f0(n) := g( j1(n), j2(n)), where

g(k,n) :=

⎧
⎨

⎩

j(k,0), if T (e,k,n)

j(k,n + 1), otherwise

and j : N×N → N is any primitive recursive bijection with primitive recursive
projections j1, j2 (e.g. we may take as j the standard Cantor pairing function, see
definition 3.30 below). It is clear that f0 is primitive recursive. Now suppose that
Φ : N → N is computable and satisfies

(2) ∀k ∈ N∃n ≤ Φ(k)
(
n ≥ k∧∀m ≥ k( f0(n) ≤ f0(m))

)
.

Define (primitive recursively in Φ) a function Φ̃ : N → N by

(3) Φ̃(0) := 0, Φ̃(l + 1) := max{Φ̃(l),Φ(Φ̃(l))+ 1}.

By induction on l we show that

(4) ∀l ∈ N∀m ≥ Φ̃(l)( f0(m) ≥ l) :

The case l = 0 is trivial. l �→ l + 1 : By induction hypothesis we have

(5) min{ f0(m) : m ≥ Φ̃(l)} ≥ l.

(2) yields

(6) ∃n ≤ Φ(Φ̃(l))
(
n ≥ Φ̃(l)∧ f0(n) = min{ f0(m) : m ≥ Φ̃(l)}

)
.

The injectivity of f0 (which follows using (1)) implies that n is uniquely determined
by f0(n) = min{ f0(m) : m ≥ Φ̃(l)} and thus (using (3))

∀m ≥ Φ̃(l + 1) = max{Φ̃(l),Φ(Φ̃(l))+ 1}
(

f0(m) > min{ f0(k) : k ≥ Φ̃(l)}.

Hence (using (5))
∀m ≥ Φ̃(l + 1)

(
f0(m) ≥ l + 1

)

which finishes the proof of (4).
Now let k0 := Φ̃( j(k,0)+ 1). Then by (4)

(7) ∀m ≥ k0
(

f0(m) > j(k,0)
)
.
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Hence

{e}(k) ↓↔ ∃nT (e,k,n) ↔∃m
(

j1(m) = k∧ f0(m) = j(k,0)
)

↔∃m < k0
(

j1(m) = k∧ f0(m) = j(k,0)
)
,

where the latter clearly is decidable which is a contradiction. �

In contrast to these negative results we have a primitive recursive (in the sense of
Kleene) functional Φ satisfying the no-counterexample interpretation of (+) :

Proposition 2.25. There exists a primitive recursive (in the sense of Kleene) func-
tional Φ such that for all f ,g : N → N

∀k ∈ N
(
Φ( f ,g,k) ≥ k∧

(
g(Φ( f ,g,k)) ≥ k → f (Φ( f ,g,k)) ≤ f (g(Φ( f ,g,k))

))
.

Proof: We construct an upper bound Φ∗( f ,g,k) for Φ( f ,g,k), i.e.

∀k ∈ N∃n ≤ Φ∗( f ,g,k)
(
n ≥ k∧ (g(n) ≥ k → f (n) ≤ f (g(n)))

)
.

Φ can then be constructed from Φ∗ by primitive recursive bounded search.
Let f ,g : N → N,k ∈ N. We first show that

(∗) ∃i ≤ f (k)
(
g(i)(k) ≥ k∧ (g(i+1)(k) ≥ k → f (g(i)(k)) ≤ f (g(i+1)(k)))

)
,

where g(0)(k) := k,g(i+1)(k) := g(g(i)(k)).
Case 1: ∃i < f (k)

(
g(i+1)(k) < k

)
. Let i0 be the least such i. Then

g(i0+1)(k) < k∧g(i0)(k) ≥ k. Hence the claim is satisfied with i0.
Case 2: ∀i < f (k)

(
g(i+1)(k) ≥ k

)
and hence ∀i ≤ f (k)

(
g(i)(k) ≥ k). Assume that

∀i ≤ f (k)
(

f (g(i)(k)) > f (g(i+1)(k))
)
.

Then
f (g( f (k)+1)(k)) < f (k)− f (k)

which is a contradiction. So again (∗) follows for some i ≤ f (k).
Now define

Φ∗( f ,g,k) := max{g(i)(k) : i ≤ f (k)}.

�

Example 2: Let (an)n∈N be a nonincreasing sequence of rational numbers in [0,1].
Since rational numbers can be coded by natural numbers one can consider (an) as
a number theoretic function. The order relation ≤ and the usual arithmetical oper-
ations between rational numbers are primitive recursive in their codes (identifying
below ‘2−k’ with its encoding).
Consider the proposition stating that (an) is a Cauchy sequence, i.e.

(++) ∀k ∈ N∃n ∈ N∀m ∈ N (|an+m −an| <Q 2−k).
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By a well-known result of E. Specker [342] even for certain primitive recursive
sequences (an) (so-called Specker sequences) there is in general no computable
bound f (k) on n. However, we have the following:

Proposition 2.26. There exists a primitive recursive functional in the sense of
Kleene satisfying the no-counterexample interpretation of (++). In fact, there exists
a primitive recursive Φ such that

∀k ∈ N∀g ∈ N
N∃n ≤ Φ(g,k) (|an+g(n)−an| <Q 2−k).

Proof: For g : N → N define g̃ : N → N by g̃(n) := n + g(n). We first show that

(∗) ∀k ∈ N∀g ∈ N
N∃i ≤ 2k(ag̃(i)(0)−ag̃(i+1)(0) <Q 2−k).

Assume that on the contrary for some k ∈ N and g ∈ N
N

∀i ≤ 2k(ag̃(i)(0)−ag̃(i+1)(0) ≥Q 2−k).

Then (using that g̃(0)(0) = 0)

a0 −a
g̃(2k+1)(0)

≥ (2k + 1) ·2−k > 1

which is a contradiction and so finishes the proof of (∗).
Since (an) is nonincreasing, (∗) implies that

∀k ∈ N∀g ∈ N
N∃i ≤ 2k(|ag̃(i)(0)−ag̃(i)(0)+g(g̃(i)(0))| <Q 2−k).

We now take Φ(g,k) := g̃(2k)(0) (= max{g̃(i)(0) : i ≤ 2k}). �

Using the primitive recursive decidability of <Q one can apply primitive recursive
bounded search to get a primitive recursive realizer Ψ ((an),g,k) for ‘∃n’ from the
bound Φ(g,k) in proposition 2.26. The bound Φ(g,k) is also valid for sequences
(an) of real numbers in [0,1]. Moreover, using the monotonicity of (an) and the
proof above we can state the result as follows (where [n;n + g(n)] := {i ∈ N : n ≤
i ≤ n + g(n)}):

Proposition 2.27. Let (an) be any nonincreasing sequence in [0,1] then

∀k ∈ N∀g ∈ N
N∃n ≤ Φ(g,k)∀i, j ∈ [n;n + g(n)](|ai−a j| <R 2−k),

where
Φ(g,k) := g̃(2k)(0) with g̃(n) := n + g(n).

Moreover, there exists an i ≤ 2k such that n can be taken as g̃(i)(0).

Note that the bound Φ(g,k) in proposition 2.27 does not depend on (an) at all.
Hence, using the fact that only sequence elements ak for k ≤ n + g(n) are touched,
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we obtain the following (explicit version of a) ‘finite convergence principle’ which
recently was considered by T. Tao ([357, 358]):

Corollary 2.28. For all k ∈ N,g ∈ N
N there exists an M ∈ N such that for all nonin-

creasing finite sequences 0 ≤ aM ≤ . . .≤ a0 ≤ 1 of length M +1 in [0,1] there exists
an n ∈ N with

n + g(n)≤ M∧∀i, j ∈ [n;n + g(n)](|ai−a j| <R 2−k).

Moreover, we can compute M as M := g̃(2k+1)(0), where g̃(n) := n + g(n).

Remark 2.29. 1) For nonincreasing sequences in [0,C] for some C ∈ N one can take
Φ(g,k,C) := g̃(C·2k)(0) and M as g̃(C·2k+1)(0).

2) The property

∀k ∈ N∀g ∈ N
N∃n ∈ N∀i, j ∈ [n;n + g(n)](|ai−a j| <R 2−k)

of a sequence (an) of reals, which is nothing else but the Herbrand normal form
of the following (equivalent) reformulation of the usual Cauchy property of (an)
(treating ‘∀i, j(. . .)’ as a Σ0

1 -formula to which it is equivalent since <R is Σ0
1 and

the universal quantifiers are bounded)

∀k ∈ N∃n ∈ N∀m ∈ N∀i, j ∈ [n;n + m] (|ai−a j| <R 2−k),

is (for given k,g) called ‘metastability’ in Tao [357] and [n;n + g(n)] a region
where (an) is ‘metastable’ with error 2−k.

There is, however, a problem in using the no-counterexample interpretation as a
tool to extract such realizing functionals in a modular way i.e. by a recursion over
the proof-tree which keeps the basic structure of the proof unchanged (which is of
crucial importance for actually analyzing concrete and – in particular – not fully
formalized proofs). In fact, Parsons’ and Gödel’s results where obtained by using a
different more complicated interpretation, the so-called Gödel functional (‘Dialec-
tica’) interpretation ([133]), which we will treat in chapters 8, 9,10. In contrast to the
no-counterexample interpretation, which only refers to functionals of type level 2,
functional interpretation uses – even for first order systems like PA – functionals of
arbitrary finite types to achieve an interpretation which respects the modus ponens.
We conclude this chapter by indicating why functionals of type 2 are not sufficient
whereas higher types allow one to resolve the problem.

The modus ponens problem:

Consider an instance
A A → B

B
of the modus ponens rule where A,B are sentences in L (PA) of the form

A :≡ ∀x∃y∀zA0(x,y,z) and B :≡ ∀u∃vB0(u,v),
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and A0,B0 are quantifier-free and suppose we have functionals satisfying the no-
counterexample interpretation of A and A → B. In order to make the latter precise
we first have to choose a prenex normal form of A → B, say

(A → B)pr :≡ ∀u∃x∀y∃z,v
(
A0(x,y,z) → B0(u,v)

)
.

The no-counterexample interpretation of A and (A → B)pr asks for functionals real-
izing the Herbrand normal forms

AH :≡ ∀x,g∃yA0(x,y,g(y))

and (
(A → B)pr)H :≡ ∀u, f∃x,z,v

(
A0(x, f (x),z) → B0(u,v)

)

of A and (A → B)pr, i.e. for functionals ϕ0,ϕ1,ϕ2,ϕ3 such that

∀x,gA0(x,ϕ0(x,g),g(ϕ0(x,g)))

and
∀u, f

(
A0(ϕ1(u, f ), f (ϕ1(u, f )),ϕ2(u, f )) → B0(u,ϕ3(u, f ))

)
.

In order to solve the modus problem one has to solve (in the parameter u) the fol-
lowing system of equations for solutions x, f ,g :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = ϕ1(u, f ),

ϕ0(x,g) = f (ϕ1(u, f )),

g(ϕ0(x,g)) = ϕ2(u, f ).

However, we will show that no primitive recursive functional – not even in the ex-
tended sense of Gödel allows one to solve this system of equations as a functional
in u,ϕ0,ϕ1,ϕ2. Indeed, the solvability of this system of equation will turn out to
correspond to the consistency of the schema of arithmetical comprehension

∃ f∀x
(

f (x) = 0 ↔ A(x)
)
,

where A(x) contains only number quantifiers but maybe function parameters (see
chapter 11).
The solution requires so-called bar recursion (of type 0) which was introduced by C.
Spector [343] and which goes beyond Gödel’s primitive recursive functionals. We
will discuss this further in chapter 11 below.
Moreover, one can construct concrete sentences A and B of the logical form as above
such that A and any prenex normal form of A → B have primitive recursive func-
tionals in the sense of Kleene satisfying their no-counterexample interpretations but
where B has no primitive recursive realizing function (but only one in the extended
sense of Gödel’s primitive recursion in higher types defined in chapter 3). For A
of the form ∀x∃y∀zA0(x,y,z) primitive recursion with equality between functions,
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i.e. of type 1 (see chapter 3), suffices for B but for more complex formulas A one
has to exhaust all finite types to realize B while A and A → B in general still have
no-counterexample interpretations using only primitive recursion of type 0, i.e. in
the sense of Kleene (these results are proved in [215] which provides a thorough
discussion of the modus ponens problem for the no-counterexample interpretation).
The reason for the weakness of the no-counterexample interpretation is the weak-
ness of the Herbrand normal form FH of formulas F of complexity ∃x∀y∃zF0(x,y,z)
or higher (such as (A → B)pr above). Then the passage from FH to F requires AC
(though only from numbers to numbers) for ∀-formulas (and beyond), which in gen-
eral are undecidable. I.e. one has to apply FH to noncomputable index functions to
derive F. For A of the form above, AC for the quantifier-free (and hence decidable)
formula ¬A0 is enough to prove AH → A but already for (A → B)pr this no longer is
the case. In chapter 13 we will show that for any theorem A of full Peano arithmetic
one can define a logically equivalent sentence Ã in prenex normal form such that ÃH

is provable using only quantifier-free induction (see proposition 13.1).

For the time being we confine ourselves with indicating how the above instance of
the modus ponens can be treated if one uses an interpretation which doesn’t stop at
type level 2, namely Gödel’s functional interpretation ([133]) which – for classical
proofs (where it always is combined with the so-called negative translation) – will
be developed in chapter 10:

The functional interpretation of A and A → B:
Whereas we don’t change the interpretation of A we use the following transforma-
tions of A → B:

(A → B) �
(
∀x,g∃yA0(x,y,g(y)) →∀u∃vB0(u,v)

)
�

(
∃Y∀x,gA0(x,Y (x,g),g(Y (x,g))) →∀u∃vB0(u,v)

)
�

(+) ∀u,Y∃x,g,v
(
A0(x,Y (x,g),g(Y (x,g))) → B0(u,v)

)
.

Note that only AC applied to quantifier-free formulas (though to objects more com-
plicated than numbers only) is needed to prove the equivalence between A → B and
(+).
We say that the functionals Φ0,Φ1,Φ2,Φ3 satisfy the functional interpretation of A
and A → B if

∀x,gA0(x,Φ0(x,g),g(Φ0(x,g)))

and
Φ1(u,Y ),Φ2(u,Y ),Φ3(u,Y ) realize x,g,v in (+).

A solution of the modus ponens problem is then given just by putting

Y := Φ0, x := Φ1(u,Φ0), g := Φ2(u,Φ0)
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yielding the conclusion
∀uB0(u,Φ3(u,Φ0)).

So a realizing function for ∀u∃vB0(u,v) is simply obtained by applying Φ3 to Φ0.
Note that Φ0 already is a functional N×N

N → N (i.e. has type level 2 in the sense
of chapter 3) and so Φ3 : N×N

(N×N
N) → N has type level 3 which goes beyond the

realm of the no-counterexample interpretation.

Let us compare further the no-counterexample interpretation and the functional in-
terpretation (combined with negative translation): consider the so-called ‘Infinite
Pigeonhole Principle’ (IPP) stating that for any partition of N into finitely many
subsets at least one of these sets has infinitely many elements: Let Cn := {0, . . . ,n}.

(IPP): ∀n ∈ N∀ f : N →Cn∃i ≤ n∀k ∈ N∃m ≥ k
(

f (m) = i
)
.

The Herbrand normal form of (IPP) is

(IPP)H ≡ ∀n ∈ N∀ f : N →Cn∀F : Cn → N∃i ≤ n∃m ≥ F(i)
(

f (m) = i
)
.

The no-counterexample interpretation of (IPP) has the following trivial solution:

M(n, f ,F) := max{F(i) : i ≤ n} and I(n, f ,F) := f (M(n, f ,F))

are realizers for ‘∃m’ and ‘∃i’ in (IPP)H . These realizers by no means reflect the true
complexity of (IPP) and its potential contribution to the complexity of programs or
bounds extractable from proofs based on (IPP). In fact, (IPP) corresponds to the so-
called bounded collection principle for universal formulas whose strength is known
to be in between induction for Σ0

2 -formulas (called Σ0
2 -IA) and induction for Σ0

1 -
formulas (called Σ0

1 -IA and defined in the exercises below). For a detailed study of
these principles see e.g. [211] and chapter 13. In particular, as (IPP) implies Σ0

1 -IA
it may cause arbitrary primitive recursive growth of functions provably total by the
use of (IPP) (this is not in conflict with the trivial solution of the n.c.i of (IPP) but
just shows again the failure of n.c.i. to interpret the modus ponens rule without caus-
ing a complexity explosion).

The functional interpretation of (the negative translation of) (IPP) (i.e. the ND-
interpretation in the sense of chapter 10 of (IPP)) is arrived at in the following way

(IPP) �

∀n ∈ N∀ f : N →Cn∃i ≤ n∃g : N → N∀k ∈ N
(
g(k) ≥ k∧ f (g(k)) = i

)
�

∀n ∈ N∀ f : N →Cn∀K : Cn ×N
N → N∃i ≤ n∃g : N → N

(
g(K(i,g)) ≥ K(i,g)∧ f (g(K(i,g))) = i

)
≡: (IPP)ND.

The functional interpretation of (IPP) requires functionals I(n, f ,K) and G(n, f ,K)
realizing ‘∃i’ and ‘∃g’. As follows from the soundness theorem for ND in chapter 10
(theorem 10.7) I and G precisely constitute the computational contribution resulting
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from the use of (IPP) in a proof. Such functionals can be defined by a compli-
cated (though very restricted form of) primitive recursion of level 1 (see chapter 10)
which, however, can be written in a rather short form using a finite version of bar
recursion as was shown by P. Oliva [293] (see chapter 11).

It is clear that to derive (IPP) from (IPP)ND one only has to consider computable
(in f ) functionals K which, therefore, are continuous in g (in the sense of the Baire
space topology (see chapter 4). One then can replace g by some finite initial segment
of g that can be encoded into a number m (see chapter 3).
Let [m](i) := g(i) for i < length(m) and [m](i) := 0 otherwise. Then we can refor-
mulate (IPP)ND as

∀n ∈ N∀ f : N →Cn∀K : Cn ×N
N cont.→ N∃i ≤ n∃m ∈ N

(
[m](K(i, [m])) ≥ K(i, [m])∧ f ([m](K(i, [m]))) = i

)
.

One can now define a functional Ω(n, f ,K) which searches for the least code 〈i,m〉
of a pair (i,m) satisfying

i ≤ n∧
(
[m](K(i, [m])) ≥ K(i, [m])∧ f ([m](K(i, [m]))) = i

)
.

Clearly, Ω is computable in its arguments and hence for continuous K it is con-
tinuous in f . In the case at hand this is obvious (even for general K) as f is only
evaluated at the argument [m](K(i, [m])). Hence Ω(n, ·,K) is bounded on the whole
compact subspace (Cn)N of N

N. This allows one to conclude the following ‘finite’
version of (IPP)

∀n ∈ N∀K : Cn ×N
N cont.→ N∃M ∈ N∀ f : CM →Cn∃i ≤ n∃m ≤ M

(
Image([m])⊆CM ∧ [m](K(i, [m])) ≥ K(i, [m])∧ f ([m](K(i, [m]))) = i

)
.

It is possible to represent continuous functionals K by number theoretic functions
α : N×N → N such that (see also definition 3.58 in chapter 3)

∀i ≤ n∀g ∈ N
N∃m ∈ N(αK(i,gm) �= 0)

and
∀i ≤ n∀g ∈ N

N (αK(i,g(min m [αK(i,gm) �= 0]))−1 = K(i,g)).

Here gm encodes the initial segment of g of length m (see definition 3.30). As the
last equation shows, K can effectively be recovered from α (this would no longer be
the case if we simply had taken α ′(i,m) := K(i, [m]) as we then have to search for
the least k such that α ′(i,gl) remains constant for all l ≥ k which is not effective).
Without loss of generality one may assume that α satisfies

∀i ≤ n∀m,k ∈ N(m ⊆ k∧α(m) > 0 → α(i,m) = α(i,k)),
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where m ⊆ k expresses that the finite sequence encoded by m is an initial segment
of the finite sequence encoded by k (for more information on this see Kohlenbach
[223]).
The above ‘finite’ version of (IPP) is very similar to T. Tao’s ([357]) formulation
of his ‘finite’ version of this principle. As mentioned by Tao, the principle is not
fully finitizable due to the hidden quantifiers in the continuity assumption (resp. the
assumption that a certain finite set-function – corresponding to α ′ above – is eventu-
ally constant in Tao’s formulation). This is also the reason why to compute M in this
finite version one either needs unbounded search or has to enrich K with a modulus
of uniform continuity functional ωK(h) on {g : g ≤1 h} (see below for the latter).
Because of this it is not the finite version of (IPP) which is useful in concrete un-
windings of proofs involving the principle (IPP) but the (primitive recursive in the
sense of Gödel) functionals I(n, f ,K),G(n, f ,K) realizing (IPP)ND which, combined
with the majorization technique developed in chapter 6 below, yield a uniform (and
monotone) ‘bound’ (in the sense of being a majorant of G) G∗(n,K) that no longer
depends on f (for I the construction of I∗(n,K) := I∗(n) := n is trivial).

Remark 2.30. G∗ being a majorant of G (essentially) means that for all K∗ being a
majorant of K in sense of

∀n∗,n,g∗,g(n∗ ≥ n∧g∗ ma j g → K∗(n∗,g∗) ≥ K(n,g))

one has

∀n∗,n∀ f : N →Cn (n∗ ≥ n → G∗(n∗,K∗) ma j G(n, f ,K)),

where for functions g∗,g :

g∗ ma j g :≡ ∀n∗,n(n∗ ≥ n → g∗(n∗) ≥ g(n)).

So, in particular, for all n ∈ N and f : N →Cn

∀k (G∗(n,K∗)(k) ≥ G(n, f ,K)(k)).

Now let ωK(i,h) be a modulus of uniform continuity for K(i,g) on {g : g ≤ h}
(where ≤ is defined pointwise) for i ≤ n, i.e.

∀i ≤ n∀g1,g2 ≤ h(∀k ≤ ωK(i,h)(g1(k) = g2(k)) → K(i,g1) = K(i,g2)
)
.

Given ωK one can easily compute a majorant K∗ of K and applying subsequently
ωK(i,h) to the bound h := G∗(n,K∗) one can construct (in n,K,ωK) a bound on the
‘finite’ version of (IPP) above which no longer relies on unbounded search.

The variant of functional interpretation which directly extracts such uniform bounds
(‘majorants’) G∗ we call monotone functional interpretation (see chapter 9 and –
combined with negative translation – chapter 10). By the soundness theorem of
monotone functional interpretation (and the soundness of negative translation) such
majorizing terms, as provided by monotone functional interpretation, of principles
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or lemmas used in a proof are all that is needed in extracting uniform bounds from
proofs.

2.4 Exercises, historical comments and suggested further reading

Exercises:

1) Verify the estimate pr < 22r
stated in the discussion of Euclid’s proof of propo-

sition 2.1.
2) Let π(x) be the number of all primes ≤ x (for x ≥ 1). From the estimates we

obtained by analyzing proofs 1)-3) of proposition 2.1 derive the following lower
bounds on π(x) :

a. From Proof 1 (Euclid): π(x) ≥ ln lnx for x ≥ 2.
b. From Proof 2 (Euler): π(x) ≥ lnx for x ≥ 1.
c. From Proof 3: π(x) ≥ lnx

2 ln2 for x ≥ 1.

3) Consider
Ψ(x) := |{n ∈ N : 1 ≤ n ≤ x∧ n is not divisible by any square number �= 1 }|.
Show that Ψ(x)≥ x− ∑

pprime
p≤x

[ x
p2 ] and use this to show that there are infinitely many

primes. Use this proof to obtain an upper bound g( j) for the next prime p j+1 as
in the 3rd proof of this statement above. Can you improve the bound we obtained
from the latter (see Hacks [148])?

4) (Ulrich Berger) Consider the open first order theory T in the language of first
order logic with equality and a constant 0 and two unary function symbols S, f .
The only non-logical axiom of T is ∀x(S(x) �= 0).

(i) Prove that T � ∃x
(

f (S( f (x))) �= x).
(ii) Construct from the proof finitely many closed terms s1, . . . ,sm and t1, . . . ,tn

such that

PL �
m∧

i=1

(S(si) �= 0) →
n∨

j=1

( f (S( f (t j))) �= t j).

5) Prove remark 2.22.
6) ([306, 231]) Let (an),(bn),(cn) be sequences in R+ such that ∑bn and ∑cn are

bounded and
∀n ∈ N(an+1 ≤ (1 + bn)an + cn).

Show that (an) is convergent and hence a Cauchy sequence. Construct a primitive
recursive functional Φ(A,B,C,g,k) such that

∀k ∈ N∀g ∈ N
N∃n ≤ Φ(A,B,C,g,k)∀i, j ∈ [n;n + g(n)] (|ai −a j| < 2−k)

for all A,B,C ∈ N be such that
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a0 ≤ A, ∑bn ≤ B, ∑cn ≤C.

7) Construct primitive recursive functionals Φ which satisfy the n.c.i. of (some
prenex normal form of) the second order axiom of Σ0

1 -induction:

Σ0
1 -IA :

⎧
⎨

⎩

∀ f
(
∃y( f (0,y) = 0)∧∀x(∃y( f (x,y) = 0) →∃y( f (x + 1,y) = 0))

→∀x∃y( f (x,y) = 0)
)

uniformly as a functional in f and the index functions.
8) Let (an)n∈N be a sequence of non-negative rational numbers. Use Σ0

1 -IA to prove
that

(+) ∀k∃n∀m(an ≤Q am + 2−k)

and construct a primitive recursive functional satisfying the no-counterexample
interpretation of (+) (see also exercise 3 in chapter 4 below).

Historical comments and suggested further reading:

1) More information on the general program of unwinding proofs (proof mining)
can be found in [249, 250, 252, 251, 99, 268, 84, 16, 122, 206, 210, 219, 226,
236, 229, 270].

2) For detailed accounts of Herbrand’s theorem see [62, 122, 202, 332, 249, 267,
114].

3) More material on the no-counterexample interpretation can be found in [122,
215, 241, 242, 350, 351, 353, 326] as well as chapter 10 below.

In particular, Kohlenbach [215] provides a thorough discussion of the modus ponens
problem for the no-counterexample interpretation.

A partially modular approach to Herbrand’s theorem via Gödel’s functional inter-
pretation (see chapter 8) can be found in Gerhardy-Kohlenbach [118].

A detailed complexity analysis of Herbrand’s theorem and the closely related cut
elimination theorem is given in Gerhardy’s articles [114] and [115].

For early applications of the no-counterexample interpretation as well as the ε-
substitution method (originally due to D. Hilbert and W. Ackermann), which is
closely related to Herbrand’s theorem and on which Kreisel’s original treatment
of his no-counterexample interpretation is based, to proofs in number theory (e.g.
Littlewood’s theorem on the sign changes of π(n)− li(n)) and algebra see Kreisel’s
original papers on the subject [241, 242] and also [243]. As briefly discussed above,
Luckhardt [267] presents (inspired by Kreisel [249]) an important application of
Herbrand terms extracted from two proofs of Roth’s theorem in diophantine ap-
proximation resulting in the first polynomial bounds on the number of solutions
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(see also Luckhardt [268]). Applications of the ε-substitution method to the solu-
tion of Hilbert’s 17th problem and subsequent work in this direction are discussed
in Delzell [84] (see also Delzell’s papers [79, 80, 81, 82, 83] although some do
not use proof theory directly). Again this work is inspired by ideas of G. Kreisel
going back to the 50’s (see e.g. Kreisel [245]). An analysis of two variants of the
proof of Furstenberg and Weiss of van der Waerden’s theorem by means of cut-
elimination and the no-counterexample interpretation, respectively, is given in Gi-
rard [122] (see pp. 237–251 and 483–496). Bellin [16] presents an application of
the no-counterexample interpretation to Ramsey’s theorem.

Applications of cut-elimination to coherence theorems in category theory are given
in Mints [276, 278, 279] and Babaev-Solovjov [9].

For other approaches to proof mining not (or only briefly) treated in this book see
e.g. the work of Coquand et al. [72, 73] and Berger-Schwichtenberg [21] (see, how-
ever, chapter 14). Interesting connections between proof theory and combinatorics
can be found in Ketonen-Solovay [181] and – recently – Weiermann [376].



Chapter 3
Intuitionistic and classical arithmetic in all finite
types

3.1 Intuitionistic and classical predicate logic

In the following we formulate an axiomatic system for intuitionistic first order pred-
icate logic IL. The particular Hilbert-type axiomatization we choose is due to [133]
and specially suited to carry out proof interpretations inductively over the proof tree.
Of course, like any Hilbert-type system also this axiomatization is not very conve-
nient for actually carrying out proofs for which a natural deduction style calculus
is to be recommended. For a proof of the equivalence of these calculi see [366]
(1.1.5–1.1.11).

Intuitionistic first order predicate logic without equality IL−=

I. The language L (IL−=) of IL−=:
As logical constants we use ∧,∨,→,⊥ (absurdity or ‘falsum’), ∃,∀. L (IL−=)
contains variables x,y,z, . . . (which can be free or bound). Furthermore, for any
arity n ≥ 0 we have (possibly empty) denumerable sets of function symbols
f1, f2, f3, . . . and (for n ≥ 1) predicate symbols P1,P2,P3, . . ..
0-place function symbols are called constants and usually denoted by
c1,c2,c3, . . . .

Terms:

(i) Variables and constants are terms.
(ii) If t1, . . . ,tn are terms and f is an n-ary function symbol, then f (t1, . . . ,tn) is a

term.

Terms that do not contain any variables are called closed.

Formulas:

(i) If t1, . . . ,tn are terms and P an n-ary predicate symbol, then P(t1, . . . ,tn) is a
(prime) formula. Moreover, ⊥ is a (prime) formula.

(ii) If A,B are formulas, then (A∧B), (A∨B) and (A → B) are formulas.
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(iii) If A is a formula and x a variable, then (∀xA) and (∃xA) are formulas.

As usual, formulas which do not contain free variables (i.e. variables occurring
not bound by any quantifier) are called closed or sentences.

Abbreviations:
¬A :≡ A →⊥, A ↔ B :≡ (A → B)∧ (B → A).

Conventions on parentheses: Negation and quantifiers bind stronger than ∨,∧
which bind stronger than →,↔ . Using this convention we can safely drop many
parentheses around formulas, e.g. we simply write (dropping also outermost
parentheses) A∧B →¬C∨D instead of ((A∧B) → ((¬C)∨D)).

II. Axioms of IL−=:

(i) A∨A → A, A → A∧A (axioms of contraction);
(ii) A → A∨B, A∧B → A (axioms of weakening);

(iii) A∨B → B∨A, A∧B → B∧A (axioms of permutation);
(iv) ⊥→ A (ex falso quodlibet);
(v) ∀xA → A[t/x], A[t/x]→∃xA, where t is free for x in A and A[t/x] is the result

of replacing every free occurrence of x in A by t (quantifier axioms).

III. Rules of IL−=:

(i)
A , A → B

B
,

A → B , B →C
A →C

(modus ponens and syllogism);
(ii)

A∧B →C
A → (B →C)

,
A → (B →C)

A∧B →C

(exportation and importation);
(iii)

A → B
C∨A →C∨B

(expansion);

(iv)
B → A

B →∀xA
,

A → B
∃xA → B

, where x is not free in B

(quantifier rules).

Remark 3.1. Most of the time we will use for notational simplicity the slightly im-
precise notation ‘A(t)’ instead of ‘A[t/x]’.

Classical first order predicate logic without equality PL−= results from IL−= by
adding the law-of-excluded-middle (LEM) schema

A∨¬A.

The Brouwer-Heyting-Kolmogorov ‘(BHK)’ proof interpretation of the intu-
itionistic logical constants (our exposition makes use of [318]).
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This interpretation is an informal attempt to explain the meaning of the logical
constants of IL−= in terms of proof constructions. Here ‘proof’ is understood as
‘verification by a construction’ and not as a formal proof in some fixed deductive
framework like HA below.

(i) There is no proof for ⊥.
(ii) A proof of A∧B is a pair (q,r) of proofs, where q is a proof of A and r is a proof

of B.
(iii) A proof of A∨B is a pair (n,q) consisting of an integer n and a proof q which

proves A if n = 0 and resp. B if n �= 0.
(iv) A proof p of A → B is a construction which transforms any hypothetical proof q

of A into a proof p(q) of B.
(v) A proof p of ∀xA(x) is a construction which produces for every construction cd

of an element d of the domain a proof p(cd) of A(d).
(vi) A proof p of ∃xA(x) is a pair (cd ,q), where cd is the construction of an element

d of the domain and q is a proof of A(d).

Discussion: There is one problem with the BHK-interpretation: from a strictly con-
structive point of view one would like to have a constructive verification of ‘p is a
proof of A’ in case this is true, i.e. one would like to recognize a proof if one sees it.
For (i),(ii),(iii),(vi) there is no problem with this requirement. But for the universal
statements in (iv),(v) one would need an additional clause as suggested by Kreisel
in [247]:

(iv)’ A proof p of A → B is a pair (r,q), where q is a construction which transforms
any hypothetical proof s of A into a proof q(s) of B and r is a proof which verifies
that q is such a construction.

(v)’ A proof p of ∀xA(x) is a pair (r,q) where q is a construction which produces for
every construction cd of an element d of the domain a proof q(cd) of A(d) and r
is a proof of the fact that q is such a construction.

Remark 3.2. There are various ways to formalize the idea behind the BHK-interpreta-
tion which give rise to various forms of so-called realizability interpretations. The
first version of realizability, the so-called recursive realizability, was introduced by
Kleene in [193]. In this book we will focus on a typed variant of Kleene’s type-
free interpretation which is called ‘modified realizability’ and is due to Kreisel
[244, 246].
Recently S. Artemov has developed a so-called ‘logic of proofs’ where ‘proof’ in
the BHK-clauses is interpreted as ‘t is a proof (polynomial) for A’ referring to some
standard proof (not: provability) predicate e.g. for PA. Using this interpretation he
proves a completeness result for intuitionistic propositional logic (see [4]).
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Intuitionistic first order predicate logic with equality IL

IL results from IL−= by adding a special binary predicate symbol = to the language
together with the

Equality axioms:

(i) x = x, x = y → y = x, x = y∧ y = z → x = z.
(ii) x1 = y1∧ . . .∧xn = yn → f (x1, . . . ,xn) = f (y1, . . . ,yn) for any n-ary function sym-

bol f .
(iii) x1 = y1 ∧ . . .∧xn = yn →

(
P(x1, . . . ,xn) → P(y1, . . . ,yn)

)
for any n-ary predicate

symbol P.

Classical first order predicate logic with equality PL results from IL by adding
the law-of-excluded-middle schema

LEM : A∨¬A.

3.2 Intuitionistic (‘Heyting’) arithmetic HA and Peano
arithmetic PA

L (HA) contains the logical constants of L (IL), number variables x,y,z, . . ., a con-
stant 0 (zero), a unary function symbol S (successor), function symbols for all prim-
itive recursive functions (more precisely for all derivations of primitive recursive
functions).

Axioms and rules of HA:

(i) axioms and rules of IL (based on L (HA)),
(ii) successor axioms: ⎧

⎨

⎩

S(x) �= 0,

S(x) = S(y) → x = y,

(iii) defining equations for the primitive recursive functions,
(iv) axiom schema of complete induction

IA : A(0)∧∀x
(
A(x) → A(S(x))

)
→∀xA(x)

for every formula A ∈ L (HA).

Convention: We often write x′ or x + 1 for S(x).

Remark 3.3. 1) In HA one can prove that ⊥↔ 0 = 1 and so we may identify ⊥ with
0 = 1, where 1 := S(0). Then the axioms involving falsum, namely ⊥→ A and
¬S(x) = 0 even become redundant: for 0 = 1 → A it suffices to establish this for
all prime formulas s = t which follows by primitive recursion. S(x) = 0 → 0 = 1
is proved similarly (exercise).
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2) Instead of the axiom schema IA we could have formulated HA equivalently using
the rule of induction

IR:
A(0) , A(x) → A(S(x))

A(x)
.

Exercise!

Lemma 3.4.
HA � ∀x(x = 0∨ x �= 0).

Proof: Induction on x : If x = 0, then x = 0∨ x �= 0 by weakening.
For S(x) we have S(x) �= 0 and hence S(x) = 0∨S(x) �= 0 again by weakening. �

Proposition 3.5. The following rule of double induction is derivable in HA:

A(x,0) , A(0,y) , A(x,y) → A(S(x),S(y))
A(x,y)

.

Proof: We leave the tedious proof as exercise resp. refer to the literature: [371]. �

In the following, let +, ·,sg, pd,−·, | ·− · | be defined primitive recursively as follows
(to bring these informal primitive recursions into the official format of primitive
recursion one has to make use of projections to introduce dummy arguments, exer-
cise):

x + 0 = x,x + S(y) = S(x + y);

x ·0 = 0,x ·S(y) = x · y + x;

sg(0) = 1,sg(S(x)) = 0;

pd(0) = 0, pd(S(x)) = x;

x−·0 = x,x−·(S(y)) = pd(x−·y);

|x− y|= (x−·y)+ (y−·x).

Remark 3.6. In the presence of the defining axioms for the primitive recursive func-
tions including the predecessor function pd the successor axiom S(x) = S(y)→ x =
y actually becomes redundant since

S(x) = S(y) → x = pd(S(x)) = pd(S(y)) = y.

Lemma 3.7. HA proves the following basic facts:

1) x + y = 0 ↔ x = 0∧ y = 0.
2) x · y = 0 ↔ x = 0∨ y = 0.
3) sg(x) = 0 ↔ x �= 0.
4) sg(x) · y = 0 ↔ (x = 0 → y = 0).
5) |x− y|= 0 ↔ x = y.

Proof: Exercise (use lemma 3.4 and double induction, i.e. proposition 3.5). �



46 3 Intuitionistic and classical arithmetic in all finite types

Proposition 3.8. Let A0(x) be a quantifier-free formula of L (HA) whose free vari-
ables are among x = x1, . . . ,xn. Then there is an n-ary primitive recursive function
symbol f of HA such that

HA � ∀x( f (x) = 0 ↔ A0(x)).

Proof: Immediate from lemma 3.7 since all prime formulas of L (HA) are of the
form t = s. �

Corollary 3.9. Let A0 be a quantifier-free formula of L (HA). Then

HA � A0 ∨¬A0.

In particular, quantifier-free formulas are provably stable, i.e.

HA � ¬¬A0 → A0.

Proof: Lemma 3.4 and proposition 3.8. �

Classical (‘Peano’) arithmetic PA results from HA by adding the law-of-excluded-
middle schema

LEM : A∨¬A.

3.3 Extensional intuitionistic (‘Heyting’) and classical (‘Peano’)
arithmetic in all finite types

In chapter 5 we will show, in particular, that a certain subclass C of the class of all to-
tal computable functions suffices to provide witnesses for all HA-provable sentences
of the form ∀x∃yA(x,y). However, to describe this class we have to go beyond the
primitive recursively defined functions contained in HA as HA proves ∀x∃yA(x,y)-
sentences such that for no primitive recursive function f , ∀xA(x, f (x)) is true over
N. E.g. HA can prove the totality of the so-called Ackermann function (defined in
the exercises to this chapter) which is not primitive recursive (for the latter see e.g.
[341]). In order to describe algorithmically a sufficiently rich (and actually optimal,
though we will not prove this) such class of functions we need to consider so-called
functionals of higher type defined by a generalized form of primitive recursion. Even
in fragments we consider where the recursion to define functionals of higher types
is restricted to yield only ordinarily primitive recursive functions f : N → N (or
even functions of much lower complexity) to enrich the language with variables and
quantifiers for functionals of all finite types is important to carry out the proof inter-
pretations we are mainly interested in. To some extent higher types (though usually
quite low) are also needed to formalize proofs in analysis.

The set T of all finite types (over N) is generated inductively by the clauses

(i) 0 ∈ T, (ii) ρ ,τ ∈ T ⇒ τ(ρ) ∈ T.
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The type 0 is the type natural numbers. Objects of type τ(ρ) are functions which
map objects of type ρ to objects of type τ.

Remark 3.10. Some authors write (ρ)τ, (τρ) or (ρ → τ) instead of τ(ρ). The no-
tation (ρ → τ) has the benefit of indicating directly the formation of a function
space. Because of this we will also use it occasionally. Moreover, it visualizes the
so-called Curry-Howard correspondence (or isomorphism, see [349] for a compre-
hensive treatment) between formulas (of the implicative fragment of intuitionistic
propositional logic) and types as well as between proofs and terms (see below). The
drawback is that complicated types get much longer to write than in our notation.

We often omit brackets which are uniquely determined and write e.g. 0(00) instead
of 0(0(0)).
One easily notices that every type ρ �= 0 can uniquely be written as ρ = 0(ρk) . . . (ρ1)
for suitable k and types ρ1, . . . ,ρk. We usually use ρ = 0ρk . . .ρ1 as shorthand for
this if it is clear to which types ρ1, . . . ,ρk we refer so that there is no danger of
confusion.

The set P ⊂ T of pure types is defined by

(i) 0 ∈ P, (ii) ρ ∈ P ⇒ 0(ρ) ∈ P.

Pure types are often denoted by natural numbers:

0(n) := n + 1 (e.g. 00 = 1,0(00) = 2).

The type level or degree deg(ρ) of a type ρ is defined as

deg(0) := 0, deg(τ(ρ)) := max(deg(τ),deg(ρ)+ 1)

(note that for pure types ρ , deg(ρ) is just the number which denotes ρ).

Objects of type ρ with deg(ρ) > 1 are usually called functionals.
We sometimes write ‘τ ≤ n’ instead of ‘deg(τ) ≤ n’.

The language L (E-HAω) of E-HAω is based on a many-sorted version ILω
−=

of IL−= which contains variables xρ ,yρ ,zρ , . . . and quantifiers ∀xρ , ∃yρ for every
type ρ . As constants E-HAω contains 00 (zero), S00 (successor), Π ρτρ

ρ ,τ (projector),
Σδ ,ρ ,τ (combinator of type τδ (ρδ )(τρδ )) and (simultaneous) recursor constants
Rρ = (R1)ρ , . . . ,(Rk)ρ , where Ri has type ρi(ρk0ρt) . . . (ρ10ρt)ρt0 for all δ ,ρ ,τ,ρ
(= (ρ1) . . . (ρk)) in T. Here we use the notation ρt := (ρk) . . . (ρ1).
Furthermore L (E-HAω) contains a binary predicate symbol =0 for equality be-
tween objects of type 0.
Sometimes we write t ∈ ρ to express that t is of type ρ .

Terms of E-HAω are built up by
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(i) constants cρ and variables xρ of type ρ are terms of type ρ
(ii) if tτρ is a term of type τρ and sρ is a term of type ρ , then t(s) is a term of type τ .

Again, we often simply write ts1 . . .sk – or t(s1, . . . ,sk) – instead of t(s1) . . . (sk).
Some authors write (ts) instead of t(s).

Formulas of E-HAω are built up by

(i) prime formulas (also called ‘atomic formulas’) s =0 t are formulas (where s0,t0

are terms of type 0);
(ii) if A,B are formulas, then also (A∧B), (A∨B) and (A → B) are formulas;

(iii) if A is a formula and xρ a variable of type ρ , then also (∀xρ A) and (∃xρ A) are
formulas.

We adopt the same conventions on parentheses as before.

Abbreviations:
1) Higher type equations s =ρ t between terms s, t of type ρ = 0ρk . . .ρ1 (where

k ≥ 1) are abbreviations for

∀yρ1
1 , . . . ,yρk

k

(
sy1 . . .yk =0 ty1 . . .yk

)
,

where y1, . . . ,yk are variables which don’t occur in s, t.
2) As before: ¬A :≡ A →⊥, where ⊥ :≡ (0 =0 1); A ↔ B :≡ (A → B)∧ (B → A).

Axioms and rules of E-HAω

(i) all axioms and rules of ILω
−=;

(ii) equality axioms for =0:
x =0 x, x =0 y → y =0 x, x =0 y∧ y =0 z → x =0 z;

(iii) higher type extensionality:

Eρ : ∀zρ ,xρ1
1 ,yρ1

1 , . . . ,xρk
k ,yρk

k

( k∧

i=1

(xi =ρi yi) → zx =0 zy
)
,

where ρ = 0ρk . . .ρ1;
(iv) successor axioms;
(v) induction schema

IA: A(0)∧∀x0(A(x) → A(Sx)
)
→∀x0A(x),

where A(x0) is an arbitrary formula of E-HAω ;
(vi) axioms for Πρ ,τ ,Σδ ,ρ ,τ and Rρ :

(Π) : Πρ ,τxρ yτ =ρ xρ ,

(Σ) : Σδ ,ρ ,τ xyz =τ xz(yz) (xτρδ , yρδ , zδ ),

(R) :

⎧
⎨

⎩

(Ri)ρ 0yz =ρi yi

(Ri)ρ(Sx0)yz =ρi zi(Rρ xyz)x for i = 1, . . . ,k,
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where ρ = ρ1, . . . ,ρk, y = y1, . . . ,yk, z = z1, . . . ,zk with yi of type ρi and zi of type
ρi0ρt .

Remark 3.11. 1) As a many-sorted system, the fact that the sorts τρ and ρ ,τ are
connected via the term formation rule stating that with tτρ ,sρ also t(s) is a term
(of type τ) strictly speaking needs to be expressed via application symbols Apρ ,τ ,
where then Apρ ,τ(tτρ ,sρ) stands for t(s). We suppress this cumbersome notation
and simply write t(s). However, we have to keep in mind that in order to specify
a model for E-HAω (see section 3.6 below) we also have to give interpretations
to Apρ ,τ (usually this will be the obvious set-theoretic application).

2) The reflexivity, symmetry and transitivity of the defined higher type equalities
=ρ are derivable from the corresponding axioms for =0. Using the extensionality
axioms one can prove

x =ρ y∧A(x) → A(y)

by induction on the complexity of A (for the case of prime formulas one first
proves by induction on the terms that x =ρ y → r[x/zρ ] =τ r[y/zρ ]) (exercise).

3) Instead of the axioms Eρ for all types ρ we could have used equivalently Eρ ,τ for
all ρ ,τ ∈ T, where

Eρ ,τ : ∀zτρ ,xρ ,yρ(x =ρ y → zx =τ zy)

(exercise).

Definition 3.12. Later on we will need also a ‘weakly extensional’ variant WE-HAω

of E-HAω , where the extensionality axioms Eρ are weakened to a quantifier-free
rule of extensionality

QF-ER:
A0 → s =ρ t

A0 → r[s/xρ ] =τ r[t/xρ ]
,

where A0 is quantifier-free and sρ ,tρ ,rτ are terms of WE-HAω (ρ ,τ ∈ T arbitrary).

Remark 3.13. 1) The special case of QF-ER with τ = 0 already implies the general
case.

2) Note that QF-ER allows one (by taking A0 :≡ x =0 y) to derive full extensionality
for equality of type 0, i.e.

∀x0,y0(x =0 y → r[x/z0] =τ r[y/z0]).

Also, QF-ER suffices to prove the following rule

A0 → s =ρ t
A0 → (B[s/xρ ] → B[t/xρ ])

,

where B is an arbitrary formula and s,t are free for xρ in B.

Warning: We will prove later (chapter 9) that WE-HAω does not satisfy the deduc-
tion theorem.
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Remark 3.14. 1) One can show in WE-HAω that the simultaneous primitive recur-
sors Rρ can in fact be reduced to the single recursors Rρ (i.e. the case k = 1) using
appropriate embeddings of tuples of types in a suitable common higher type and
tuple codings of functionals. For details see [366](1.6.17). Nevertheless, we pre-
fer to include simultaneous primitive recursion as a primitive concept since it is
used in this form in the soundness proofs of our proof interpretations in chap-
ters 5 and 8. Moreover, we will later (chapter 17) extend our framework to new
types where such a reduction does not seem to be possible anymore (unless one
introduces product types explicitly which would be another alternative).

2) Occasionally, we will denote the set of all closed terms of WE-HAω by T and
use Tn to denote the subset of closed terms involving only recursors Rρ with
deg(ρ)≤ n.

In the following FV(t) (FV(A)) denotes the set of all free variables of t (A).

WE-HAω allows the definition of λ -abstraction in the following sense:

Lemma 3.15. For every term t[xρ ]τ (here x refers to all occurrences of x in t)
one can construct in WE-HAω a term (λ xρ .t[x]) of type τρ (with FV(λ xρ .t[x]) =
FV(t[x])\ {x}) such that

WE-HAω � (λ xρ .t[x])(sρ) =τ t[s/x].

In contexts where is no danger of ambiguity, we omit the outer parentheses around
(λ x.t[x]).

Proof: Define
λ x.x := ΣΠΠ ,

λ x.t := Π t, if x �∈ FV(t),

λ x.(ts) := Σ(λ x.t)(λ x.s), if x ∈ FV(ts)

(here Π ,Σ of suitable types). �

Notation: Instead of λ x1 . . .λ xk.t we often write λ x1, . . . ,xk.t.

Remark 3.16. It is easy to see that using R0 and lemma 3.15 one can define all prim-
itive recursive functions so that HA can be viewed as a subsystem of WE-HAω .
For details see [366](1.6.9). Note that the use of Rρ in [366](1.6.9) can be replaced
by R0 if Tψ1 and Tψ2 are replaced by TΨ1(x1, . . . ,xn) and λ u0,z0.TΨ2(u,z,x1, . . . ,xn)
respectively.

Proposition 3.17. Let A0(x) be a quantifier-free formula of L (WE-HAω) whose
free variables are contained among x. Then one can construct a closed term t such
that

WE-HAω � ∀x
(
tx =0 0 ↔ A0(x)

)
.

Proof: Analogously to the proof of proposition 3.8 using lemma 3.15 and the pre-
vious remark. �
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Corollary 3.18. Let A0 be a quantifier-free formula of L (WE-HAω). Then

WE-HAω � A0 ∨¬A0.

In particular, quantifier-free formulas are provably stable, i.e.

WE-HAω � ¬¬A0 → A0.

Proposition 3.19. For each type ρ ∈ T there exists a closed term t (using only the
recursor R0 of type 0) such that

WE-HAω � ∀x0,yρ
1 ,yρ

2 ([x =0 0 → txy1y2 =ρ y1]∧ [x �=0 0 → txy1y2 =ρ y2]).

Proof: Define
χ(x0,y0

1,y
0
2) := R0(x,y1,λ n0,m0.y2).

Then
χ(0,y1,y2) =0 y1 and χ(S(x),y1,y2) =0 y2.

Hence, since x �=0 0 → x =0 S(pd(x)),

x �=0 0 → χ(x,y1,y2) =0 y2.

Let ρ = 0ρk . . .ρ1 and vρ := vρ1
1 , . . . ,vρk

k be distinct variables. Now define

t := λ x0,yρ
1 ,yρ

2 ,vρ .χ(x,y1v,y2v).

�

Definition 3.20. ILω is ILω
−= together with =0 and the equality axioms for =0 and

QF-ER. PLω
(−=) (WE-PAω , E-PAω ) is the extension of ILω

(−=) (WE-HAω , E-HAω)
obtained by adding the law-of-excluded-middle schema LEM (i.e. A∨¬A for arbi-
trary formulas A).

The set-theoretic functionals denoted by the closed terms of E-HAω (see the model
S ω defined in section 3.6 below) are called the ‘Gödel primitive recursive func-
tionals of finite type’. They were introduced first in [133] (but see also [161]). In
the exercises to this chapter we show that the Gödel primitive recursive functionals
of type degree 1 form a larger class than the ordinary primitive recursive functions.
In fact, the former class coincides with the provably recursive functions of Peano
arithmetic PA: that this class contains the provably recursive functions of PA follows
from Gödel’s ([133]) functional interpretation (see chapter 9). The other inclusion
follows from work of Parsons ([299]) and others.
The combinators Π and Σ are due already to [323]. The correspondence between
these combinators and the usual Hilbert-style axiomatization of the implicative frag-
ment of intuitionistic propositional logic given by (the modus ponens rule and) the
schemata



52 3 Intuitionistic and classical arithmetic in all finite types

A → (B → A)

(A → (B →C)) → ((A → B) → (A →C))

as well as the correspondence between typed λ -terms and the natural deduction style
formalization of that fragment are known as the ‘Curry-Howard’-isomorphism (see
[166, 349]).

We now consider various fragments of full arithmetic in all types which will be used
later. Most of the techniques used in this book apply to all of these systems down
to G2Aω (to be defined below) whose provably recursive functions are bounded by
polynomials. This shows that the proof interpretations on which the applications
to proof mining in analysis discussed in chapters further below are based do not
produce any non-polynomial growth of numerical bounds by themselves. So if a
given proof implicitly contains a bound say of polynomial growth, then the unwind-
ing process will produce such a bound. However, we will usually only sketch how
the results proved in this book for (W)E-HAω , (W)E-PAω can be adapted to these
fragments and refer to the literature for more details. This is in order to avoid to
have to deal with too many formal systems (a general malaise in the area of proof
theory) but also for the following important reason: weak formal systems are only
needed to state a-priori that a certain proof allows one to extract data of certain low
complexity because it can be formalized in such a weak system. For actual proof
mining where such data are explicitly extracted one will instead work in a stronger
framework to get an easier formalization of the proof. If the proof indeed contains
numerical data of low complexity the proof mining procedure will produce such if
the procedure is faithful. It is only to show the latter point why it is of relevance to
verify that in principle all techniques used in the procedure applied can be adapted
to work for such weak systems as well.

3.4 Fragments of (W)E-HAω and (W)E-PAω

Let ̂(W)E-PA
ω
|\ ( ̂(W)E-HA

ω
|\) be the fragment of (W)E-PAω ((W)E-HAω) where

we only have the recursor R0 for type-0-recursion and the induction schema is re-
stricted to the schema of quantifier-free induction

QF-IA : A0(0)∧∀x0(A0(x) → A0(S(x))
)
→∀x0A0(x),

where A0 is quantifier-free and may contain parameters of arbitrary types.

The set-theoretic functionals denoted by the closed terms of Ê-HA
ω
|\ are called the

‘Kleene primitive recursive functionals of finite type’. They were (for pure types)
first introduced in [195] under the name of S1-S8 computable functionals. In con-
trast to the Gödel primitive recursive functionals, the Kleene primitive recursive
functionals of type degree 1 are just the ordinary primitive recursive functions (see
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e.g. [7] for a proof of this).
The systems ̂(W)E-HA

ω
|\ were introduced in [98] (see also [299]). Proposition 3.17,

corollary 3.18 and proposition 3.19 hold analogously for ŴE-HA
ω
|\ instead of WE-

HAω .

In the presence of the quantifier-free axiom of choice schema for numbers

QF-AC0,0 : ∀x0∃y0A0(x,y) →∃ f 1∀x0A0(x, f (x)) (A0 quantifier-free),

the schema of induction for Σ0
1 -formulas

Σ0
1 -IA : ∃y0A0(0,y)∧∀x0(∃yA0(x,y) →∃yA0(S(x),y)

)
→∀x∃yA0(x,y),

where A0 is quantifier-free (with parameters of arbitrary types), becomes derivable
from QF-IA:

Proposition 3.21. ŴE-PA
ω
|\+ QF-AC0,0 � Σ0

1 -IA.

Proof: Assume ∃y0A0(0,y0) and ∀x,y1∃y2
(
A0(x,y1)→ A0(S(x),y2)

)
. By QF-AC0,0

we get (using that x,y1 can be coded into a single variable, see lemma 3.30 below)

∃ f∀x,y1
(
A0(x,y1) → A0(S(x), f (x,y1))

)
.

Define ⎧
⎨

⎩

Φ(0,y, f ) :=0 y

Φ(S(x),y, f ) :=0 f (x,Φ(x,y, f ))

(note that this can be done by R0). Then by QF-IA one easily shows that

∀xA0(x,Φ(x,y0, f ))

for y0 such that A0(0,y0) and, therefore, ∀x∃yA0(x,y). �

Whereas inspection of the proof above shows that the result also holds for the in-
tuitionistic system ŴE-HA

ω
|\+ QF-AC0,0, the next result requires classical logic:

QF-AC0,0 also allows one to prove the schema of Δ 0
1 -comprehension

Δ 0
1 -CA : ∀x0(∃y0A0(x,y) ↔∀y0B0(x,y)

)
→∃ f 1∀x0( f (x) = 0 ↔∃y0A0(x,y)

)
,

where again parameters in all types are allowed (A0,B0 quantifier-free).

Proposition 3.22. ŴE-PA
ω
|\+ QF-AC0,0 � Δ 0

1 -CA.

Proof: Exercise! �

As the proof of lemma 3.15 shows we still can define λ -abstraction in ̂(W)E-PA
ω
|\.

Using λ -abstraction and R0 one can define recursors R̂ρ such that
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⎧
⎨

⎩

R̂ρ 0yzw =0 yw

R̂ρ(Sx)yzw =0 z(R̂ρ xyzw)xw,

where y is of type ρ = 0ρk . . .ρ1, w = wρ1
1 . . .wρk

k and the type of z is ρ00 (exercise).

The crucial difference between R̂ρ and the much stronger Rρ is that in the case of the
former R̂ρxyzw may only be used with the fixed set of parameters w in the recursion
step while in the case of Rρ we can use the whole functional Rρ xyz.

3.5 Fragments corresponding to the Grzegorczyk hierarchy

We now define a hierarchy of systems GnAω corresponding (w.r.t. the definable and
provably total functions) to n-th level of the so-called Grzegorczyk hierarchy [147].
Following Ritchie [314] we base our definition on the n-th branch of the Ackermann
function [1]:

Definition 3.23. Let n ∈ N. We define (by recursion on n from the outside) the n-th
branch of the Ackermann function An : N×N → N by

A0(x,y) := y′ (Here and in the following x′ denotes the successor Sx of x),

An+1(x,0) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x, if n = 0

0, if n = 1

1, if n ≥ 2,

An+1(x,y′) := An(x,An+1(x,y))

.

Remark 3.24. 1) A1(x,y) = x + y, A2(x,y) = x · y, A3(x,y) = xy,

A4(x,y) = xx.. .x

(y times).
2) For each fixed n ∈ N the function An is primitive recursive. However, as first

shown by Ackermann [1], the diagonal function A(x) := Ax(x,x) is no longer
primitive recursive (see e.g. [341]).

The intuitionistic Grzegorczyk arithmetic GnAω
i of level n in all finite types and

its classical variant nAω :

The languageL (GnAω
i ) of GnAω

i is the extension of L (ILω
−=) resulting from the

addition of the constant 00, the projectors Πρ ,τ , the combinators Σδ ,ρ ,τ , function
constants S00 (successor), max000

0 ,min000
0 ,A000

0 , . . . ,A000
n and functional constants

Φ001
1 , . . . ,Φ001

n , μ00(000)
b (bounded μ-operator), R̃0 (bounded recursion of type 0)

of type 01(000)00. Furthermore we have a predicate symbol =0 for equality at type
0 and a predicate symbol <0 for objects of type 0.
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In addition to the axioms and rules of ILω
−= the theory GnAω

i contains the following
(with x ≤0 y being defined as x < y∨ x = y):

1) the Π ,Σ -axioms (as in the case of E-HAω).
2) the equality axioms for =0:

x =0 x, x =0 y → y =0 x, x =0 y∧ y =0 z → x =0 z.
x1 =0 x2 ∧ y1 =0 y2 ∧ x1 < y1 → x2 < y2.

3) <0-axioms: ¬x <0 0, x <0 Sy ↔ x <0 y∨ x =0 y, x <0 y∨ x =0 y∨ y <0 x.
4) S-axioms: Sx =0 Sy → x =0 y, ¬0 =0 Sx.
5) (max) : max0(x,y) ≥0 x, max0(x,y) ≥0 y, max0(x,y) =0 x∨max0(x,y) =0 y.
6) (min) : min0(x,y) ≤0 x, min0(x,y) ≤0 y, min0(x,y) =0 x∨min0(x,y) =0 y.
7) The defining recursion equations for A0, . . . ,An from the definition 3.23 above.
8) Defining recursion equations for Φ1, . . . ,Φn:

⎧
⎨

⎩

Φ1 f 0 =0 f 0

Φ1 f x′ =0 max0( f x′,Φ1 f x)

and ⎧
⎨

⎩

Φi f 0 =0 f 0

Φi f x′ =0 Ai−1( f x′,Φi f x), for i ≥ 2.

9)

(μb) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y ≤0 x∧ f 000xy =0 0 → f x(μb f x) =0 0,

y <0 μb f x → f xy �=0 0,

μb f x =0 0∨ ( f x(μb f x) =0 0∧μb f x ≤0 x).

10) Defining recursion equations for R̃0 (bounded recursion of type 0):
⎧
⎨

⎩

R̃00yzv =0 y

R̃0x′yzv =0 min0(z(R̃0xyzv)x,vx).

11) All N,NN,N(NN)-true purely universal sentences ∀xA0(x), where x is a tuple
of variables whose types have a degree ≤ 2, where BA denotes the set of all
set-theoretic functions f : A → B.

12) The quantifier-free extensionality rule QF-ER.

GnAω is the variant of GnAω
i with the law-of-excluded-middle schema A ∨ ¬A

added. Analogously, we define G∞Aω

If we add (E) =
⋃

ρ
{
(Eρ)

}
to GnAω ,GnAω

i we obtain theories which are denoted
by E-GnAω , E-GnAω

i . GnRω denotes the set of all closed terms of GnAω .
(E)-G∞Aω

(i) :=
⋃

n≥1
{ (E)-GnAω

(i)} and G∞Rω :=
⋃

n≥1
{GnRω}.
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Remark 3.25. 1) Our axioms contain w.r.t. 0,S,+, ·,< what is called Robinson’s
system Q which specifies (numeralwise) the meaning of 0,S,+, ·,< when inter-
preted in the standard model N and hence – when augmented by the schema of
full induction – results in a system containing a version of Peano arithmetic (see
e.g. [363] (I.9) for more information on this). Also the meaning of the other con-
stants is – when interpreted in the full type-structure over N (to be defined below)
– uniquely determined by the axioms.

2) The functionals Φ1,Φ2 and Φ3 have the following meaning:
Φ1 f x = max( f 0, f 1, . . . , f x), Φ2 f x = ∑x

y=0 f y, Φ3 f x = ∏x
y=0 f y. In general, for

i ≥ 2, Φi f x is the iteration of the (i-1)-th branch Ai−1 of the Ackermann function
on the f -values f 0, . . . , f x.

3) The axioms on μb formalize that

μb f x :=

⎧
⎨

⎩

miny ≤0 x( f xy =0 0), if such an y ≤ x exists,

0, otherwise.

4) As in the case of ŴE-HA
ω
|\ one can define λ -abstraction in GnAω

i as well as
bounded recursors R̃ρ that satisfy

⎧
⎨

⎩

R̃ρ 0yzvw =0 yw

R̃ρ x′yzvw =0 min0(z(R̃ρ xyzvw)xw,vxw),

where ρ = 0ρk . . .ρ1 and w = wρ1
1 . . .wρk

k .
5) Our definition of GnAω contains some redundancies (which however we want to

keep for greater flexibility of our language): E.g. Φi (i > 1) can be defined from
Ai, R̃0,min0 and Φ1: With f M := λ x.Φ1 f x one can show that Φi f x ≤ Φi f Mx ≤
Ai( f M(x)+ 1,x + 1). Hence Φi can be defined by R̃0 using Ai( f M(x)+ 1,x + 1)
as boundary function v.

6) The axiom of quantifier-free induction

(∗) ∀ f 1,x0( f 0 =0 0∧∀y < x( f y =0 0 → f y′ =0 0) → f x =0 0
)

can be expressed as a universal sentence ∀ f 1,x0A0 by prop. 3.28 below and
thus is an axiom of GnAω

i . (∗) implies every instance (with parameters of ar-
bitrary type) of the schema of quantifier-free induction in the form (equivalent to
QF-IA)

∀x0(A0(0)∧∀y < x(A0(y) → A0(y′)) → A0(x)
)

since again by prop. 3.28 there exists a term t such that tx =0 0 ↔ A0(x) for
quantifier-free A0. Now apply (∗) to f := t.

7) Our reason for including all true universal sentences as axioms in 11) is as fol-
lows: it is an old observation made by G. Kreisel that proofs of universal lemmas
have no impact on the extraction of programs or bounds from proofs. In fact,
all the extraction techniques developed in this book allow one to treat universal
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lemmas (and most of the time even more general classes of lemmas) as axioms.
For the systems (W)E-PAω etc. we make this explicit in our main theorems on
program and bound extractions rather than adding them beforehand as axioms al-
ready to the definition of (W)E-PAω since, occasionally, we state ‘foundational’
corollaries on the proof-theoretic strength of systems, consistency proofs, con-
servation theorems over PA or PRA etc. that would be spoiled by this. However,
for systems as weak as say G2Aω |\ such foundational issues are less relevant and
to verify some basic properties of functions such as max(x,y), |x− y| and cod-
ings etc. would be very tedious to carry out using just QF-IA. From n ≥ 3 on,
usually the standard proofs of these facts known from primitive recursive arith-
metic PRA go through even in the variant of GnAω with the universal axioms 11)
replaced by the schema QF-IA and we make free use of this in chapter 13. The
reason for our restriction of the types in the universal axioms we add is that in
some places in this book we deal with principles which are valid only in the type
structure M ω of the so-called majorizable functionals due to [27] (which will be
discussed further below) but not in the full type structure S ω of all set-theoretic
functionals. Since both type structures coincide up to type 1 and for the type 2
the inclusion M ω

2 ⊂ S ω
2 holds, the implication S ω |= ∀xρ A0 ⇒ M ω |= ∀xρ A0

is obvious if deg(ρ)≤ 2.

In the following we make free use of the fact that universal lemmas are included as
axioms if true.

Already in G1Aω
i we can, using R̃0 and trivial bounding functions, define the fol-

lowing functions:

Definition 3.26. 1) prd(0) =0 0, prd(x′) =0 x (predecessor),

2)

⎧
⎨

⎩

sg(0) =0 0,

sg(x′) =0 1,
and

⎧
⎨

⎩

sg(0) =0 1,

sg(x′) =0 0.

3)

⎧
⎨

⎩

x−· 0 =0 x

x−· y′ =0 prd(x−· y),
4) |x− y|=0 max(x−·y,y−·x) (symmetrical difference).

For the rest of this section we usually omit the type in =0 and simply write = .

Remark 3.27. The following basic properties of the functions defined above are all
purely universal and so (because of the universal axioms 11) trivially provable al-
ready in G1Aω

i :
sg(x) = 0 ↔ x = 0, sg(x) = 0 ↔ x �= 0, sg(x) ≤ 1, sg(x) ≤ 1, prd(x) ≤ x,
|x− y|= 0 ↔ x = y, x = 0∨ x = S(prd(x)), max(x,y) = 0 ↔ x = 0∧ y = 0,
min(x,y) = 0 ↔ x = 0∨ y = 0, max(x,y) = y ↔ x ≤ y, x < y ↔ Sx−·y = 0.

Proposition 3.28. Let n ≥ 1. For each formula A ∈ L (GnAω) which contains no
quantifiers except for bounded quantifiers of type 0 one can construct a closed term
tA in GnAω such that
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GnAω
i � ∀xρ1

1 , . . . ,xρk
k

(
tAx1 . . .xk =0 0 ↔ A(x1, . . . ,xk)

)
,

where x1, . . . ,xk contain all the free variables of A.

Proof: Induction on the logical structure of A using the remark above. Bounded
quantifiers are captured by μb:

GnAω
i � ∃y ≤0 xA0(x,y,a)

(μb)↔ A0(x,μb(λ x,y.tA0xya,x),a).

Similarly for the bounded universal quantifier. �

Proposition 3.29. Let n ≥ 1 and A0(x) ∈ L (GnAω) be a quantifier-free formula,
where x = xρ1

1 . . .xρk
k contain all the free variables of A0, and t0ρk...ρ1

1 ,t0ρk...ρ1
2 are

closed terms of GnAω . Then there exists a closed term Φ0ρk...ρ1 in GnAω such that

GnAω
i � ∀x

⎛

⎝Φx =0

⎧
⎨

⎩

t1x, if A0(x)

t2x, if ¬A0(x).

⎞

⎠

Proof: Define
Φ := λ x.R̃0(tA0x)(t1x)(λ y0,z0.t2x)(λ y0.t2x),

where tA0 is as in the previous proposition. One easily verifies that Φ does the job.
�

We now show how to encode pairs, tuples and finite sequences of numbers:

Definition 3.30 (and lemma). For n ≥ 2 we can define the well-known surjective
Cantor pairing function j with its projections in GnRω :

j(x0,y0) :=

⎧
⎨

⎩

minu ≤0 (x + y)2 + 3x + y[2u =0 (x + y)2 + 3x + y] if existent

00, otherwise,

j1z := minx ≤0 z[∃y ≤ z( j(x,y) = z)],

j2z := miny ≤0 z[∃x ≤ z( j(x,y) = z)].

Using j, j1, j2 we can define a coding of k-tuples for every fixed number k by

ν1(x0) := x0, ν2(x0,x1) := j(x0,x1), νk+1(x0, . . . ,xk) := j(x0,νk(x1, . . . ,xk)),

ν1
1 (x) := x and (for k > 1) νk

i (x) :=

⎧
⎨

⎩

j1 ◦ ( j2)i−1(x), if 1 ≤ i < k

( j2)k−1(x), if 1 < i = k.

Indeed, these functions satisfy the following properties of a surjective tuple coding:

νk
i (νk(x1, . . . ,xk)) = xi (1 ≤ i ≤ k)
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and
νk(νk

1(x), . . . ,νk
k (x)) = x.

Following essentially [366] we now extend this tuple coding to a coding of finite
sequences:

〈〉 := 0, 〈x0, . . . ,xk〉 := S(ν2(k,νk+1(x0, . . . ,xk))).

Using R̃0 we define functions lth,Π(x,y) ∈ GnRω such that for every fixed k

lth(〈〉) = 0, lth(〈x0, . . . ,xk〉) = k + 1

and (for x = 〈x0, . . . ,xm〉)

Π(x,y) =

⎧
⎨

⎩

xy, if y ≤ m

00, otherwise.

Define

lth(x) :=

⎧
⎨

⎩

00, if x =0 0

j1(x−· 1)+ 1, otherwise,

Π(x,y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

00, if lth(x) ≤ y

j1 ◦ ( j2)y+1(x−· 1), if 0 ≤ y < lth(x)−· 1

( j2)lth(x)(x−· 1), if lth(x) > 0∧ y = lth(x)−· 1

To improve the readability we normally write (x)y instead of Π(x,y).
That Π(x,y) is definable even in G2Rω , follows from the fact that the iteration
ϕxy = ( j2)y(x) of j2 is definable in G2Rω since ϕxy ≤ x for all x,y so that we can
use λ y.x as bounding function.

We need G3Rω to define a coding of initial segments of variable length of a function
f . Indeed, there is a functional Φ〈〉 ∈ G3Rω such that Φ〈〉 f x = 〈 f 0, . . . , f (x−· 1)〉.
Of course we cannot write 〈 f 0, . . . , f (x−· 1)〉 for variable x. However the meaning
of Φ〈〉 f x can be expressed via (Φ〈〉 f x)y = f y for all y < x (and = 0 for y ≥ x).
To achieve this, we first define

⎧
⎨

⎩

f̃ 0 = f 0

f̃ x′ = j( f x′, f̃ x)

in G3Rω : One easily verifies (using j(x,x) ≤ 4x2) that f̃ x ≤ 43x(
f Mx

)2x
for all x.

Hence the definition of f̃ can be carried out by R̃0 using as our bounding function

λ x. j
(

f x′,43x(
f Mx

)2x)
∈ G3Rω .
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With j̃(x,y) := j(y,x) we see that f̃ x means j̃(. . . j̃( j̃( f 0, f 1), f 2) . . . f x). Hence

f̂ x := ( ˜λ y. f (x−· y))x has the meaning j( f 0, . . . j( f (x−2), j( f (x−1), f x)) . . .).
Finally, we are now in the position to define Φ〈〉 ∈ G3Rω :

Φ〈〉 f x :=

⎧
⎨

⎩

00, if x = 0

(̂ fx)x + 1, otherwise,

where

fxy :=

⎧
⎨

⎩

x, if y = 0

f (y−· 1), otherwise.

Again for better readability, we usually write f x instead of Φ〈〉 f x.
Next we define a function ∗ in G3Rω by

n ∗m := Φ〈〉( f nm)(lth(n)+ lth(m)),

where

( f nm)(k) :=

⎧
⎨

⎩

(n)k, if k < lth(n)

(m)k−· lthn,otherwise.

Then
〈x0, . . . ,xk〉 ∗ 〈y0, . . . ,ym〉 = 〈x0, . . . ,xk,y0, . . . ,ym〉.

Note that Φ〈〉 and ∗ are not definable in G2Rω since their definitions involve an
iteration of the polynomial j.

Remark 3.31. 1) For detailed information on this as well as various other codings
see [341] and also [101] (where j is called ‘Cauchy’s pairing function’).

2) One easily shows that (x+y)2 +3x+y is always even so that the case ‘otherwise’
in the definition of j never occurs and 2 j(x,y) = (x + y)2 + 3x + y for all x,y.

Definition 3.32. For arbitrary ρ ∈ T we define the relation x1 ≥ρ x2 between func-
tionals x1,x2 of type ρ by induction on ρ :

⎧
⎨

⎩

x1 ≥0 x2 is defined already,

x1 ≥τρ x2 :≡ ∀yρ(x1y ≥τ x2y).

x1 ≤ρ x2 :≡ x2 ≥ρ x1.

Lemma 3.33. Let ρ = τρk . . .ρ1. Then

G1Aω
i � x1 ≥ρ x2 ↔∀yρ1

1 , . . . ,yρk
k (x1y ≥τ x2y).

We now for the first time make use of an important structural property of the closed
terms of all our systems. This property of ‘majorizability’ which is due to W.A.
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Howard will play key roles (in different ways) in the proofs of numerous results
in this book. In the present chapter it is used to prove results on the growth of the
definable functionals of GnAω . We will focus on the cases n = 1,2,3 as only those
(actually only n = 2,3) are of practical interest (the whole hierarchy is treated in
[207]).

Definition 3.34 (W.A. Howard [163]). We define the relation x∗ ma jρ x (x∗ ma-
jorizes x) between functionals of type ρ by induction on ρ :

⎧
⎨

⎩

x∗ ma j0 x :≡ x∗ ≥0 x,

x∗ ma jτρ x :≡ ∀y∗,y(y∗ ma jρ y → x∗y∗ ma jτ xy).

Lemma 3.35. G1Aω
i proves:

(i) x̃∗ =ρ x∗ ∧ x̃ =ρ x∧ x∗ ma jρ x → x̃∗ ma jρ x̃.
(ii) x∗ ma jρ x∧ x ≥ρ y → x∗ ma jρ y.

(iii) For ρ = τρk . . .ρ1 :

x∗ ma jρ x ↔∀y∗1,y1, . . . ,y∗k ,yk
( k∧

i=1

(y∗i ma jρi yi) → x∗y∗ ma jτ xy
)
.

Proof: Induction on the type respectively on k. �

Remark 3.36. 1) The relation ma jρ is a kind of hereditary form of ≥ρ (combined
with monotonicity) and is (in contrast to ≥ρ) a so-called logical relation in the
sense of G. Plotkin which implies a nice behavior w.r.t. substitution (see lemma
3.35 (iii)). Because of this, results on the majorization of complex terms can
be established directly by induction on the term structure without any use of
normalization.

2) The previous lemma can be proved also in ŴE-HA
ω
|\ since only the transitivity

of ≤0 is used (which can be proved by QF-IA) but no general universal axioms
11).

Next we need some basic properties of the constants in GnAω
i :

Lemma 3.37. Provably in GnAω
i (if applicable) the following holds:

1) Π ma j Π and Σ ma j Σ .
2) 0 ma j 0, S ma j S, Ai ma j Ai (i ≤ 2), A∗

j := λ x0,y0.max(A j(x,y),1) ma j A j
( j ≥ 3).

3) min ma j min, max ma j max .
4) Φ∗

1 := λ f 1,x0. f (x) ma j Φ1, Φ∗
2 := λ f 1,x0. f (x) · (x + 1) ma j Φ2,

Φ∗
j := λ f 1,x0.A j( f (x)+ 1,x + 1) ma j Φ j ( j ≥ 3).

5) μ∗
b := λ f ,x.x ma j μb.

6) R̃∗
0 := λ x,y,z,v.max0(y,v(prd(x))) ma j R̃0.

Proof: Exercise! �
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Definition 3.38. 1) GnRω
− ⊂GnRω denotes the subset of all closed terms in GnRω

that are built up from Πρ ,τ ,Σδ ,ρ ,τ ,A0, . . . ,An,00,S, prd,min0 and max0 only (i.e.
which do not contain occurrences of Φ1, . . . ,Φn, R̃0 or μb).

2) GnRω
−[Φ1] is the set of all closed terms built up from GnRω

− plus Φ1.

Proposition 3.39. Let n ≥ 1. To each term tρ ∈GnRω one can construct by direct
induction on the structure of t a term t∗ρ ∈GnRω

− such that

GnAω
i � t∗ ma jρ t.

Proof: 1. Replace every occurrence of R̃0 in t by R̃∗
0, which is built up from Π ,Σ

(which are used for defining the λ –operator) and the monotone functions max0 and
prd.
2. Replace all occurrences of A3, . . . ,An in t by A∗

3, . . . ,A
∗
n.

3. Replace all occurrences of Φ1, . . . ,Φn,μb in t by Φ∗
1 , . . . ,Φ∗

n ,μ∗
b .

Let t∗ be the term which results from t after having carried out 1.–3. By construc-
tion, t∗ ∈ GnRω

−. Moreover, t∗ is constructed by replacing every constant c in t by a
closed term s∗c such that s∗c ma j c (lemma 3.37). Since t is built up from constants
only this implies (using lemma 3.35) t∗ ma j t. �

Corollary to the proof:
One can even achieve that the majorizing term t∗ does not contain S, prd,max0 or
min0 (though this in general will give a less good bound if we use t∗ as a bound for
t0): this follows using λ x0.x ma j1 prd and A1 ma j max0,min0 and – as majorants
for R̃0 and A j ( j ≥ 3) – R̃∗ := λ x,y,z,v.(y + v(x)) and A∗

j(x,y) := A j(x + 1,y)+ 1,
where ‘x + 1’ can be replaced by A00x.

The majorizing term t∗ constructed in proposition 3.39 has a much simpler form
than t as it does not contain any functional of type degree > 1 except for the pro-
jectors and combinators Π and Σ . We know show that if t∗ has type (≤)2, then we
can rewrite the term t∗x1 even in the form t̂[x], where t̂[x] no longer contains any
projector or combinator (but does contain x1) :

Proposition 3.40. Let n ≥ 1 and ρ = 0ρk . . .ρ1 with deg(ρi) ≤ 1 for i = 1, . . . ,k (i.e.
deg(ρ) ≤ 2). Moreover, let tρ ∈ GnRω

−. Then one can construct (by ‘logical’ nor-
malization, i.e. by carrying out all possible Π ,Σ -reductions) a term t̂[xρ1

1 , . . . ,xρk
k ]

such that

1) t̂[x1, . . . ,xk] contains at most x1 . . . ,xk as free variables,
2) t̂[x1, . . . ,xk] is built up only from x1, . . . ,xk,A0, . . . ,An,S1,00, prd,min0,max0,
3) GnAω

i � ∀xρ1
1 , . . . ,xρk

k (̂t[x1, . . . ,xk] =0 tx1 . . .xk).

Proof: We perform reductions Πst � s and Σstr � sr(tr) inside of tx1 . . .xk as long
as no further such reduction is possible and denote the resulting term by t̂[x1, . . . ,xk].
The well-known strong normalization theorem for typed combinatory logic (see
e.g. [370] (theorem 1.2.18) or [349] (theorem 5.3.6)) ensures that this situation will
always occur after a finite number of reduction steps. Since Πxy = x and Σxyz =
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xz(yz) are axioms of GnAω
i the quantifier-free rule of extensionality yields (even

without appeal to the universal axioms 11)

GnAω
i � ∀xρ1

1 , . . . ,xρk
k (̂t[x1, . . . ,xk] =0 tx1 . . .xk).

We now prove that t̂[x1, . . . ,xk] does not contain any longer any combinator Π , Σ :
Suppose that on the contrary t̂[x1, . . . ,xk] contains an occurrence of Σ (resp. Π ).
Then Σ (Π ) must occur in the form Σ ,Σt1 or Σt1t2 (Π ,Π t1) but not in the form
Σt1t2t3 (resp. Π t1t2) since in the latter case we could have carried out the reduction
Σt1t2t3 � t1t3(t2t3) (resp. Π t1t2 � t1) contradicting the construction of t̂. All the
terms s = Σ ,Σt1,Σt1t2,Π ,Π t1 have a type whose degree is ≥ 1. Hence s can occur
in t̂ only in the form r(s), where r = Σ ,Σt4,Σt4t5,Π or Π t4 since these terms are
the only reduced ones requiring an argument of type ≥ 1 that can be built up from
xρ1

1 , . . . ,xρk
k ,Σ ,Π ,Ai,S1,00 and max0 (here we use that deg(ρi) ≤ 1). We notice that

the cases r = Σt4t5 and r = Π t4 cannot occur since otherwise r(s) would allow a
reduction of Σ resp. Π . Hence r(s) is again a Π ,Σ -term having a type of degree
≥ 1 and, therefore, has to occur within a term r′ for which the same reasoning
as for r applies and so on. Since t̂ is finite this process has to stop which gives a
contradiction. �

Remark 3.41. Proposition 3.40 gets false if deg(ρ) = 3: Define ρ := 0(0(000)) and
tρ := λ x0(000).x(Π0,0). Then tx =0 x(Π0,0) contains Π but no Π -reduction applies.

Corollary 3.42. Let n ≥ 1, ρ be as in proposition 3.40 and tρ ∈ GnRω . Then one
can construct (by majorization and subsequent ‘logical’ normalization) a term
t∗[xρ1

1 , . . . ,xρk
k ] such that

1) t∗[x1, . . . ,xk] contains at most x1 . . . ,xk as free variables,
2) t∗[x1, . . . ,xk] is built up only from x1, . . . ,xk,00,A0, . . . ,An.
3) GnAω

i � λ x1, . . . ,xk.t∗[x1, . . . ,xk] ma j t, i.e.

∀x∗1,x1, . . . ,x∗k ,xk
( k∧

i=1

(x∗i ma jρi xi) → t∗[x∗1, . . . ,x
∗
k ] ≥0 tx1 . . .xk.

Proof: The corollary follows from propositions 3.39 (and the corollary to its proof)
and 3.40 together with lemma 3.35. �

We are now in the position to estimate the growth of the functions definable by
terms in G1Rω , G2Rω and G3Rω . Note that we only need majorization and logical
normalization for this.

Proposition 3.43. The growth of the functions defined by closed terms t1 of GnRω

(n = 1,2,3) can be calibrated as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 ∈ G1Rω ⇒∃c1,c2 ∈ N : G1Aω
i � ∀x0(tx ≤0 c1x + c2) (linear growth),

t1 ∈ G2Rω ⇒∃k,c1,c2 ∈ N : G2Aω
i � ∀x0(tx ≤0 c1xk + c2)

(polynomial growth),

t1 ∈ G3Rω ⇒∃k,c ∈ N : G3Aω
i � ∀x0(tx ≤0 2cx

k ), where 2a
0 = a,2a

k′ = 22a
k

(finitely iterated exponential growth).

The result can also be extended to tuples of number variables: for tρ with ρ =
0(0) . . . (0)
︸ ︷︷ ︸

m−times

we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tρ ∈ G1Rω ⇒∃c1, . . . ,cm+1 ∈ N : G1Aω
i � ∀x0

1, . . . ,x
0
m(tx ≤0

m
∑

i=1
cixi + cm+1),

tρ ∈ G2Rω ⇒∃p ∈ N[x1, . . . ,xm] : G2Aω
i � ∀x(tx ≤0 px),

tρ ∈ G3Rω ⇒∃k,c1, . . . ,cm ∈ N : G3Aω
i � ∀x(tx ≤0 2c1x1+...+cmxm

k ).

The constants ci,k ∈ N as well as the coefficients of p can be effectively computed
from a given closed term t by majorization and normalization.

Proof: By corollary 3.42 one can in all three cases construct a term t̂[x] built up
from x0,00,A0, . . . ,An (n = 1,2,3) such that t̂[x] ≥0 tx for all x. For the particular
cases this yields the following:
n = 1: Consider a term tρ ∈ G1Rω , where ρ = 0(0) . . .(0)

︸ ︷︷ ︸
m

. t̂[x0
1, . . . ,x

0
m] is built

up from x0
1, . . . ,x

0
m,00,A0 and A1 only. Both A0(x1,x2) = 0 · x1 + 1 · x2 + 1 and

A1(x1,x2) = 1 · x1 + 1 · x2 + 0 are functions having the form c1x1 + c2x2 + c3 or –
more generally – c1x1 + . . .+ckxk +ck+1. Since substitution of such functions again
yields a function which can be written in this form it follows that t̂[x1, . . . ,xm] =
c1x1 + . . .+ cmxm + cm+1 for suitable constants c1, . . . ,cm+1.
n = 2: For tρ ∈ G2Rω , t̂[x1, . . . ,xm] is built up from x0

1, . . . ,x
0
m,00,A0,A1,A2. Since

A0,A1 and A2 are polynomials (in two variables) and substitution of polynomials in
several variables yields a function which can be written again as a polynomial, it is
clear that t̂[x1, . . . ,xm] = p(x1, . . . ,xm) for a suitable polynomial in N[x1, . . . ,xm]. In
the case m = 1, p(x) can be bounded by c1xk + c2 for suitable numbers c1,c2.
n = 3: Let tρ ∈ G3Rω . For Ã3(x,y) := A3(max0(x,2),max0(y,2)) the following
holds

Ã3 ma j A0,A1,A2,A3.

Replace in t̂[x1, . . . ,xm] all occurrences of Ai (with i ≤ 3) by Ã3 and denote the
resulting term by t̃[x1, . . . ,xm]. Then t̃[x1, . . . ,xm] can be bounded by yk, where y0 :=
y, yk′ := yyk and y := max(x1, . . . ,xm,2). and hence ∀x

(
2x

k̃
≥ tx

)
for a suitable k̃ ≥ k,

where 2x
0 := x1 + . . .+ xm and 2x

k′ := 22x
k . �

In concrete extractions of bounds from given proofs one will use, of course, all
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kinds of auxiliary functions to get a sharper estimate than the above perspicuous,
but crude, calibration in terms of 0,S,+, ·,exp only.

We now show how that calibration extends to functionals of type ρ with deg(ρ) ≤
2. To keep the notational complexity low we only formulate things for ρ = 1(1).
Before we can state the result we need the following

Definition 3.44. A functional Φ1(1) is called linear (polynomial, elementary re-
cursive resp.) if it can be written as a term t̃[ f ,x] which is built up only out of
x, f ,00,S1,+ (x, f ,00,S1,+, · resp. x, f ,00,S1,+, ·,(·)(·)).

Remark 3.45. If Φ1(1) is linear (polynomial, elementary recursive) and f is a linear
(polynomial, elementary recursive) function, then λ x.Φ f x again is a linear (poly-
nomial, elementary recursive) function.

Proposition 3.46. Let t1(1) be a closed term of G1Rω . Then there exists a linear
functional Φ given by some term t̃[ f ,x] as above such that

G1Aω
i � ∀x0, f 1 (

t̃[ f M,x] ≥ t f x
)
,

where f M := Φ1 f , i.e. f M(x) := max{ f (0), . . . , f (x)}.
Moreover, f M can be replaced by hM for any h satisfying h ≥1 f .
Analogously for t1(1) ∈ G2Rω (resp. t1(1) ∈ G3Rω ), where then Φ is a polyno-
mial (resp. elementary recursive) functional and G1Aω

i is replaced by G2Aω
i (resp.

G3Aω
i ).

Proof: The proposition follows from corollary 3.42 and the fact that

G1Aω
i � h ≥1 f → hM ma j1 f .

�

So, in particular, if t1(1) ∈ G2Rω and f is bounded by a polynomial p ∈ N[x], then
t f again is bounded by some polynomial r ∈ N[x] (note that p always is monotone
so that pM = p). In fact, this holds even in a certain uniform sense:

Proposition 3.47. Let t1(1) ∈ G2Rω . Then one can construct a polynomial q ∈ N[x]
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

For every polynomial p ∈ N[x]

one can construct a polynomial r ∈ N[x] such that

∀ f 1( f ≤1 p →∀x0(t f x ≤0 r(x))
)

and deg(r) ≤ q(deg(p))

The result also holds in the case where t has tuples f 1
1 , . . . , f 1

k ,x0
1, . . . ,x

0
l of arguments

with f1, . . . , fk ≤1 p and r ∈ N[x1, . . . ,xl].

Proof: Let p ∈ N[x] and t̃[ f ,x] be constructed to t f according to proposition 3.46.
Then t̃[p,x] ≥0 t f x for all f ≤1 p and t̃[p,x] is built up from x,00,A0,A1 and p only.
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As in the proof of proposition 3.43 one concludes that t̃[p,x] can be written as a
polynomial r in x. The existence of the polynomial q bounding the degree of r in the
degree of p follows from the fact that the degree of a polynomial p1 ∈ N[x1, . . . ,xm]
obtained by substitution of a polynomial p2 for one variable in a polynomial p3 is
≤ deg(p2)·deg(p3) and that deg(p2 + p3), deg(p2 · p3) ≤ deg(p2)+deg(p3). �

The analysis of the growth of the functionals definable in GnAω made use for the
first time of the important notion of majorizability from [163]. In connection with
the definition of a model for E-PAω (and its extension by bar recursion, see chapter
11) a variant – called ‘strong majorization’ and denoted by ‘s-maj’ – was introduced
semantically in [27] (see the next section). This notion has the following syntactic
counterpart:

Definition 3.48 (Bezem [27]). We define the relation x∗ s-ma jρ x (x∗ strongly ma-
jorizes x) between functionals of type ρ by induction on ρ :

⎧
⎨

⎩

x∗ s-ma j0 x :≡ x∗ ≥0 x,

x∗ s-ma jτρ x :≡ ∀y∗,y(y∗ s-ma jρ y → x∗y∗ s-ma jτ x∗y,xy).

The properties basic properties of s-ma j are

Lemma 3.49. G1Aω
i (as well as ŴE-HA

ω
|\) proves:

(i) x̃∗ =ρ x∗ ∧ x̃ =ρ x∧ x∗ s-ma jρ x → x̃∗ s-ma jρ x̃.
(ii) x∗ s-ma jρ x → x∗ s-ma jρ x∗.

(iii) x1 s-ma jρ x2 ∧ x2 s-ma jρ x3 → x1 s-ma jρ x3.
(iv) x∗ s-ma jρ x∧ x ≥ρ y → x∗ s-ma jρ y.
(v) For ρ = τρk . . .ρ1 :

x∗ s-ma jρ x ↔∀y∗1,y1, . . . ,y∗k ,yk
( k∧

i=1

(y∗i s-ma jρi yi) → x∗y∗ s-ma jτ x∗y,xy
)
.

Proof: (i)–(iv) follow by induction on ρ (where we use (ii) in the proof of (iii)).
(v) follows by induction on k using again (ii). �

Analogously to proposition 3.39 one proves:

Proposition 3.50. For all n ≥ 1 the following holds: To each term tρ ∈ GnRω one
can construct by induction on the structure of t (without normalization) a term t∗ρ ∈
GnRω

− such that
GnAω

i � t∗ s-ma jρ t.

Proof: The same term as constructed in the proof of proposition 3.39 also works for
s-ma j (exercise). �
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3.6 Models of E-PAω

The full set-theoretic model:
We define the type-structure S ω of all set-theoretic functionals as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0 := N

Sτρ :=
{

all set-theoretic functionals ϕ : Sρ → Sτ
}

S ω := 〈Sρ〉ρ∈T.

The following proposition is obvious:

Proposition 3.51. S ω is a model of E-PAω .

The model of all sequentially continuous functionals: The type-structure C ω

of all (sequentially) continuous functionals was introduced in [321]. We first need
some preparatory definitions:

Definition 3.52 (Kuratowski [258]). Let X be a set together with a relation of con-
vergence ‘→’ between sequences (pn) of X and elements p ∈ X . As usual we write
‘pn → p’ instead of ‘→ ((pn), p)’.
(X ,→) is called a ‘limit space’ (short: ‘L-space’) if the following axioms are satis-
fied:

1) pn → p implies that for every subsequence (pkn) (k1 < k2 < .. .) of (pn) also
pkn → p;

2) if pn = p for almost all n ∈ N, then pn → p;
3) if not pn → p, then there exists a sequence k1 < k2 < .. . such that no subsequence

of (pkn) converges to p;
4) if pn → p and pn → q, then p = q.

Definition 3.53. Let (X ,→X ) and (Y,→Y ) be two L-spaces. A function f : X → Y
is called continuous if f (pn)→Y f (p) whenever pn →X p. The set of all continuous
functions from X to Y is denoted by C (X ,Y ).

On C (X ,Y ) one can define the following relation of convergence

fn → f :≡ ∀(pn), p
(

pn →X p ⇒ fn(pn) →Y f (p)
)
.

Lemma 3.54. (C (X ,Y ),→) is again an L-space.

Proof: Exercise! �

Definition 3.55 (Scarpellini [321]). The type-structure of sequentially continuous
functionals is defined as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C0 := N, pn →0 p :≡ ∃k∀m > k(pm = p);

Cτρ := C (Cρ ,Cτ ),

fn →τρ f :≡ ∀(pn) ∈CN
ρ , p ∈Cρ

(
pn →ρ p ⇒ fn(pn) →τ f (p)

)
.

C ω := 〈Cρ〉ρ∈T.

Remark 3.56. Since (C0,→0) clearly is an L-space, lemma 3.54 implies that
(Cρ ,→ρ) is an L-space for any ρ ∈ T.

Proposition 3.57 (Scarpellini [321]). C ω is a model of E-PAω .

Proof: For 00,Π ,Σ ,S1 this is rather straightforward. For the recursors one shows
by induction on n that the functionals Rn belong to C for all n. It then follows im-
mediately that also the recursors R themselves belong to C . For details see [321]. �

The model of all extensional hereditarily continuous functionals: A different
type structure of continuous functionals, the so-called extensional hereditarily con-
tinuous functionals ECFω , is based on a notion of ‘continuous functional’ due to
[196] and [244]. As proved in [169], ECFω is in fact isomorphic to C ω . The main
proof-theoretic use of ECFω is due to the fact that the functionals in ECFω are rep-
resented by number theoretic functions α ∈N

N, their so-called associates, for which
an equivalence relation =ρ is defined for each type so that the equivalence classes
correspond to the functionals being represented. This makes it possible for formal-
ize certain semantic arguments in systems with number and function quantifiers such
as the so-called elementary intuitionistic analysis EL of Kreisel and Troelstra (see
[366], which in turn is based on [197], for a comprehensive treatment of all this). We
sketch here only the definition of ECFω : The definition is based on two versions of
so-called partial continuous function application (in the following α,β ,γ, . . . range
over unary number theoretic functions and x,y,z, . . . over natural numbers):

Definition 3.58. We define α|β and α(β ) by

(α|β )(x) � y :≡ α(〈x〉 ∗β(μz[α(〈x〉 ∗β z) �= 0]))−· 1 � y,

α(β ) � y :≡ α(β (μz[α(β z) �= 0]))−· 1 � y.

(α|β )(x) and α(β ) are partial recursive functionals in x,α,β resp. α,β . Thus, using
some basic notation from ordinary recursion theory, there are codes n0,n1 ∈ N for
corresponding oracle Turing machines such that

{n0}(x,α,β ) � y ↔ (α|β )(x) � y,

{n1}(α,β ) � y ↔ α(β ) � y.

α|β � γ is defined as ∀x ∈ N((α|β )(x) � γ(x)).

Definition 3.59 (Kleene [195], Kreisel [244], Troelstra [366]). The type structure
ECFω of all extensional hereditarily continuous functionals of finite type is defined
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by simultaneously declaring ECFρ and an extensional equality =ρ :

ECF0 := N, x =0 y :≡ x,y ∈ N∧ x = y;

ECF0(0) := N
N, α =1 β :≡ α,β ∈ N

N ∧∀x ∈ N(α(x) = β (x));

ECF0(ρ) :=

{α ∈ N
N : ∀β ∈ ECFρ∃x ∈ N(α(β ) � x)∧∀β1,β2(β1 =ρ β2 → α(β1) � α(β2)},

α1 =0(ρ) α2 :≡ α1,α2 ∈ ECF0(ρ)∧∀β ∈ ECFρ(α1(β ) � α2(β )) for ρ �= 0;

ECFτ(0) := {α ∈ N
N : ∀x ∈ N∃γ ∈ ECFτ(α|λ y.x � γ)},

α1 =τ(0) α2 :≡ α1,α2 ∈ ECFτ(0)∧∀x ∈ N(α1|λ y.x =τ α2|λ y.x) for τ �= 0;

ECFτ(ρ) :=

{α ∈ N
N:∀β ∈ ECFρ∃γ ∈ ECFτ(α|β � γ)∧∀β1,β2(β1 =ρ β2 → α|β1 =τ α|β2)},

α1 =τ(ρ) α2 :≡ α1,α2 ∈ ECFτ(ρ)∧∀β ∈ ECFρ(α1|β =τ α2|β ) for ρ ,τ �= 0.

ECFω = 〈ECFρ〉ρ∈T.

So in ECFω , the application operation Appτ,ρ between (representatives of) function-
als in ECFτ(ρ) and ECFρ is not the set-theoretic application but defined depending
on ρ ,τ as follows

App0,0(α,x) := α(x),

App0,ρ(α,β ) := α(β ) for ρ �= 0,

Appτ,0(α,x) := α|λ y.x for τ �= 0,

Appτ,ρ(α,β ) := α|β for ρ ,τ �= 0.

The following proposition is shown in [366]:

Proposition 3.60. ECFω is a model of E-PAω . Moreover, as interpretations [t]ECFω

for the closed terms tρ (ρ �= 0) of E-PAω one can take computable functions α ∈
ECFρ ∩REC.

The model of all strongly majorizable functionals: The following type structure
M ω of all strongly majorizable functionals was constructed in [27] making use of
the variant s-ma j of Howard’s majorization relation ma j.

Definition 3.61 (Bezem [27]). The type structure M ω of all hereditarily strongly
majorizable set-theoretic functionals of finite type is defined as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M0 := N, n s-ma j0 m :≡ n ≥ m∧n,m ∈ N,

x∗ s-ma jτ(ρ) x :≡ x∗,x ∈ M
Mρ
τ ∧ ∀y∗,y ∈ Mρ(y∗ s-ma jρ y → x∗y∗ s-ma jτ x∗y,xy),

Mτ(ρ) :=
{

x ∈ MMρ
τ : ∃x∗ ∈ MMρ

τ (x∗ s-ma jτ(ρ) x)
}

(ρ ,τ ∈ T)
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(Here MMρ
τ denotes the set of all total set-theoretic mappings from Mρ into Mτ ).

M ω := 〈Mρ〉ρ∈ T.

Remark 3.62. An easy induction on ρ shows that for x∗,x ∈ Mρ the relation s-ma jρ
as defined in definition 3.61 coincides with the interpretation of the corresponding
syntactic relation from definition 3.48 in the model M ω , i.e.

∀x∗,x ∈ Mρ(x∗ s-ma jρ x ↔ x∗[s-ma jρ ]M ω x).

The relation defined in definition 3.61, however, also applies to functionals which
prima facie are only in say MMρ

τ and is used to determine whether such a functional
actual is in Mτ(ρ). In the following lemmas we always refer to the relation from
definition 3.61.

Lemma 3.63. 1) x∗ s-ma jρ x → x ∈ Mρ ∧ x∗ s-ma jρ x∗ → x∗,x ∈ Mρ .
2) For all ρ = τρk . . .ρ1 (k ≥ 1) and all x∗,x : Mρ1 → (Mρ2 → . . . → Mτ) . . .) the

following holds

x∗ s-ma jρ x ↔

∀y∗1,y1, . . . ,y∗k ,yk
( k∧

i=1
y∗i s-ma jρi yi → x∗y∗1 . . .y∗k s-ma jτ x∗y1 . . .yk,xy1 . . .yk

)
.

Proof: 1) is proved by induction on ρ . 2) follows by induction on k using 1). �

Remark 3.64. The implication ‘←’ in the second claim of this lemma is used often
to establish that a functional x : Mρ1 → (Mρ2 → . . .→Mτ) . . .) actually is in Mτρk...ρ1 .

Definition 3.65. Let x ∈ MM0
ρ , where ρ = 0ρk . . .ρ1. Then we define

xM(n) := λ v.max{xiv : i ≤ n},

where v = vρ1
1 , . . . ,vρk

k .

Lemma 3.66. Let x, x̂ ∈ MM0
ρ be such that

∀n ∈ N (x̂n s-ma jρ xn).

Then
x̂M s-ma jρ0 xM,x

and hence x̂M,xM,x ∈ Mρ0.
In particular, this implies that (·)M s-ma jρ0(ρ0) (·)M ∈ Mρ0(ρ0).
As a special case it follows that

x∗1 s-ma jρ x1 ∧ x∗2 s-ma jρ x2 → maxρ(x∗1,x
∗
2) s-ma jρ maxρ(x1,x2),x1,x2,

where maxρ(x1,x2) := λ v.max0(x1v,x2v).
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Proof: Let ρ = 0ρk . . .ρ1 and y∗1,y1, . . . ,y∗k ,yk be such that
k∧

i=1
(y∗i s-majρi yi). One

easily shows by induction on n (using lemma 3.63.1) that

∀n∀m ≤ n(x̂Mny∗ ≥0 x̂Mmy,xMmy,xmy)

which by lemma 3.63.2) yields the claim. �

Remark 3.67. Note that (·)M is definable as a closed term of type ρ0(ρ0) already in
G1Aω .

Corollary 3.68. MM0
ρ = Mρ0 for each ρ ∈ T.

Proof: x ∈ MM0
ρ implies that for each n ∈ N there exists an x∗n ∈ Mρ with

x∗n s-ma jρ x(n).

Using AC0,ρ on the meta-level we obtain a sequence x∗ ∈ MM0
ρ with

∀n ∈ N (x∗n s-ma jρ xn).

Lemma 3.66 now yields that (x∗)M s-ma jρ0 x ∈ Mρ0. �

Proposition 3.69 (Bezem [27]). M ω is a model of E-PAω .

Proof: Using lemma 3.63.2) it is immediate that 0,S,Π ,Σ all majorize themselves
and hence belong to M ω . For the recursors Rρ one shows by induction on n that

for all y∗,y ∈ Mρ with y∗ s-ma jρ y, i.e.
k∧

i=1
(y∗i s-ma jρi yi) and z∗,z ∈ Mρ0ρ with

z∗ s-ma jρ0ρ z we have

(∗) ∀n ∈ N (Rρ ny∗z∗ s-ma jρ Rρ nyz).

Let n = 0 : Then Rρ 0y∗z∗ = y∗ s-ma jρ y = Rρ 0yz.

n �→ n + 1 : Rρ(n + 1)y∗z∗ = z∗(Rρ ny∗z∗)n
3.63,I.H.
s-ma j ρ z(Rρ nyz)n = Rρ(n + 1)yz.

This finishes the proof of (∗). Lemma 3.63.2 yields that

∀n ∈ N(Rρ n s-ma j Rρ n).

By lemma 3.66 it now follows that

(Ri)∗ρ := (Ri)M
ρ s-ma j (Ri)ρ ∈ Mρi(ρ0ρ)ρ0.

�.

The next proposition shows that the three models S ω ,C ω and M ω start to differ
from type 2 on:
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Proposition 3.70. 1) S1 = C1 = ECF1 = M1 = N
N.

2) C2 ⊂ M2 ⊂ S2, where both ‘⊂’ are strict.

Proof: 1) By definition we have that S0 = C0 = ECF0 = M0 = N and ECF1 = N
N.

It is trivial to observe that every f ∈ N
N is continuous in the sense of C ω . Since

∀n ∈ N ( f (n) ≥ f (n)) we get by lemma 3.66 that f M s-ma j1 f ∈ M1.

2) We first show the inclusions. Since M2 ⊆ MM1
0

1)
= SS1

0 = S2 the second inclusion
is trivial. Now let x ∈ C2. Then (by 1) x ∈ MM1

0 . We have to construct a majorant
x∗ ∈ MM1

0 : x ∈ C2 implies that x is a continuous function N
N → N between the

Baire space N
N (with its usual metric) and N with the discrete metric. Now let

f ∈ N
N. Then Kf := {g ∈ N

N : ∀n ∈ N (g(n) ≤ f (n))} is a compact subspace
of the Baire space. Hence x is uniformly continuous on Kf and so the following
definition is well-defined: x∗( f ) := max{x(g) : g ∈ Kf }. We claim that x∗ s-ma j2 x.
Let f s-ma j1 g. Then f (n) ≥ g(n) for all n ∈ N. Hence g ∈ Kf and so x∗( f ) ≥ x(g).
Moreover, x∗( f ) ≥ x∗(g) since Kg ⊆ Kf .
To show that S2 �⊆ M2 consider x ∈ S2 defined as follows

x( f ) :=

⎧
⎨

⎩

n, for the least n such that f (n) = 0 if existent

0, otherwise.

Suppose x∗ s-ma j2 x for some x∗ ∈ S2. Consider the function 1n(k) := 1 for k < n
and 1n(k) := 0 for k ≥ n and let 11 be the constant-1 function. Then 1 s-ma j1 1n and
hence x∗(11) ≥ x(1n) for all n ∈ N, but x(1n) = n which is a contradiction.
To show that M2 �⊆C2 consider x ∈ M2 defined as follows

x( f ) :=

⎧
⎨

⎩

1, if ∃n ∈ N( f (n) = 0)

0, otherwise.

Clearly, x ∈ M2 since x is majorized by the constant-1 functional. But also clearly
x /∈C2. �

Let T ω be a model of E-PAω and t a closed term of E-PAω . Then we use [t]T ω to
denote the interpretation of t in T ω . If t has a type of degree ≤ 2, then – intuitively
– it is clear (using proposition 3.70.1) that [t]S ω = [t]C ω = [t]M ω . The following
proposition confirms this:

Proposition 3.71. Let t2 be a closed term of E-PAω of type 2
Then [t]S ω ( f ) = [t]ECFω ( f ) = [t]C ω ( f ) = [t]M ω ( f ) for all f ∈ N

N, where in the
case of ECFω ‘·(·)’ refers to the partial continuous function application.
This result also holds for closed terms tρ whose type ρ is of degree ≤ 2.

Proof: We give the details for [t]S ω ( f ) = [t]C ω ( f ) (the claims [t]S ω ( f ) = [t]M ω ( f )
and [t]S ω ( f ) = [t]ECFω ( f ) are proved analogously). We define a so-called logical
relation (first studied systematically by G.Plotkin) ≈ρ by induction on ρ as follows:
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x ≈0 y :≡ x,y ∈ S0 = C0 ∧ x = y,

x ≈τρ y :≡ x ∈ Sτρ ∧ y ∈Cτρ ∧∀u ∈ Sρ ,v ∈Cρ(u ≈ρ v → xu ≈τ yv).

One easily shows for all constants cρ of E-PAω that

[c]S ω ≈ρ [c]C ω .

This immediately implies that for all closed terms t

[t]S ω ≈ρ [t]C ω .

Now let deg(ρ)≤ 2. It is clear that it suffices to consider the case ρ = 2. By propo-
sition 3.70.1) we have that

x ≈1 y ↔ x,y ∈ S1 = M1 = N
N ∧∀n ∈ N(x(n) = y(n)).

In particular, x ≈1 x for all x ∈ N
N. Hence [t]S ω ≈2 [t]C ω implies that

∀x ∈ N
N ([t]S ω (x) = [t]C ω (x)).

�

Remark 3.72. For C ω ,M ω ,S ω , where we still have at least inclusions for the type
2, the proof above can even be used to show that for closed terms t3 of E-PAω of
type 3 we have

∀x ∈C2 ⊂ M2 ⊂ S2 ([t]S ω (x) = [t]C ω (x)) = [t]M ω (x))

and
∀x ∈ M2 ⊂ S2 ([t]S ω (x) = [t]M ω (x)).

Proof: Exercise!

3.7 Exercises, historical comments and suggested further reading

Exercises:

1) Convince yourself that the axioms and rules of IL−= are sound under the BHK
interpretation.

2) Convince yourself that ¬¬A → A in general is not valid under the BHK interpre-
tation.

3) Show that IA is derivable from IR. Compare the complexity of the induction
formula Ã(x) of the IR-instance needed to prove an IA-instance with induction
formula A(x) with that of A(x).

4) ([161]) It is known that the function α : N×N → N defined by the equations
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(∗)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α(0,y) = y′

α(x′,0) = α(x,1)

α(x′,y′) = α(x,α(x′,y))

is not primitive recursive (in the sense of Kleene). In fact, α is a variant due to
R. Peter of the well-known Ackermann function.
Show that α is definable in WE-HAω by a closed term t0(0)(0) using R1 (i.e.
WE-HAω proves the equations (∗) for t).

5) Prove the statements in remark 3.11.2) and 3.11.3).
6) Prove the statement in remark 3.14.
7) Prove proposition 3.22.
8) The so-called bounded collection principle CP is given by

CP: ∀a0(∀x <0 a∃y0A(x,y) →∃z0∀x <0 a∃y <0 zA(x,y)),

where A is an arbitrary formula with arbitrary parameters allowed (including a)
but with z not free in A.

a. Prove WE-HAω � CP.
b. Proved ŴE-HA

ω
|\+QF-AC0,0 � Σ0

1 -CP, where Σ0
1 -CP is the restriction of CP

to Σ0
1 -formulas (with arbitrary parameters of arbitrary types).

Show the same result for GnAω
i instead of ŴE-HA

ω
|\.

9) Prove the claim at the end of section 3.4.
10) Show that WE-PAω+QF-AC0,1 proves the following: if Φ2 restricted to { f :

f ≤1 h} is uniformly continuous (for any h), then Φ is pointwise continuous
everywhere, i.e.

∀Φ2
(
∀h1∃n0∀ f ,g ≤1 h( f n = gn → Φ f = Φg) →

∀ f 1∃n0∀g1( f n = gn → Φ f = Φg)
)
.

Analogously for Φ1(1).
11) Show that G3Aω+(IPP) proves the following finite form of Σ0

1 -comprehension

∀n∃ j∀i < n
(
( j)i = 0 ↔∃yA0(i,y)

)
,

where A0 is quantifier-free and may contain arbitrary parameters. Hint: Let ν(x)
be the code of the binary sequence of length n satisfying

(ν(x))i = 0 ↔∃y ≤ xA0(i,y)

for all i < n. Now define the coloring f (x) := ν(x) of N by ≤ 1n-colors.
12) Use the previous exercise to show that

G3Aω+(IPP) � Σ0
1 -IA.
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13) Prove lemma 3.37 (Hint: see [207] where this lemma is proved for s-maj instead
of maj. With minor modifications the proof applies to maj as well).

14) Prove proposition 3.50.
15) Prove lemma 3.54.
16) Fill in the details of the proof of proposition 3.57.
17) Define the functional

Φ(z2,x1,y1) := minn0[x(n) =0 y(n) → zx =0 zy].

Show that Φ ∈ C ω and Φ ∈ S ω but Φ /∈ M ω ([163]).
18) Show that in ECFω the so-called fan functional

ΦFAN(x2) := minn [∀y1,y2 ∈ B(∀i < n(y1i = y2i) → xy1 = xy2)], where

B := {x ∈ N
N : ∀n ∈ N(xn ≤ 1)}, exists and even has a recursive associate α

(such functionals are called recursively countable; as shown by Tait (unpub-
lished) and Gandy/Hyland [111] ΦFAN is not Kleene computable, in the sense of
his schemata S1-S9 [195], over ECFω ).

19) For x1 define

(x,n0)(k0) :=

⎧
⎨

⎩

xk, if k < n

00, otherwise

and

μ1(x2,y1) :=

⎧
⎨

⎩

minn0[x(y,n) =0 xy], if ∃n(x(y,n) =0 xy)

undefined, otherwise.

Show that μ1 ∈ C ω , but μ1 /∈ M ω and μ1 /∈ S ω .
20) Define

μ t
1(x

2,y1) :=

⎧
⎨

⎩

minn0[x(y,n) =0 xy], if ∃n(x(y,n) =0 xy)

00 otherwise.

Show that μ1 ∈ S ω and μ1 ∈ C ω , but μ1 /∈ M ω .
21) Define

μ2(x2,y1) :=

⎧
⎨

⎩

minn0[x(y,n) < n], if ∃n(x(y,n) < n)

undefined, otherwise.

Show that μ2 ∈ M ω and μ2 ∈ C ω , but μ2 /∈ S ω

22) Show that C ω |= QF-AC1,0, where

QF-AC1,0 : ∀ f 1∃x0A0( f ,x) →∃F2∀ f 1A0( f ,F( f ))

with A0 quantifier-free.
23) Show that M ω |=/ QF-AC1,0 ([201]).
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24) Show the following ‘weak continuity’ property of M ω ([22]):

M ω |= ∀y0(ρ0),xρ0∃n0∀x̃ρ0(x,n =ρ0 x̃,n → yx̃ ≤ n
)
.

Use this to give an alternative proof of the previous exercise.
25) Prove the claim in remark 3.72.

Historical comments and suggested further reading:
For an introduction to intuitionistic logic and Heyting arithmetic as well as con-
structivism in general we refer to van Dalen [372] (chapter 5) and the first volume of
Troelstra-van Dalen [371]. Most of the material on HA and its finite type extensions
is taken from Troelstra [366]. Primitive recursion in higher types (in the sense of the
recursors Rρ was first considered in Hilbert [161] and Gödel [133]. The fragments

̂(W)E-PA
ω
|\ are studied in Feferman [98]. For pure types the functionals definable

in these fragments correspond to the primitive recursive functionals defined by the
schemata S1-S8 of Kleene [195]. The fragments GnAω were introduced and studied
first in Kohlenbach [207] from which most material of the corresponding section
is taken. See Troelstra [365] for further information on the BHK-interpretation. A
thorough treatment of the Curry-Howard isomorphism can be found in Sørensen-
Urzyczyn [349]. For more information on (W)E-HAω and its numerous variants see
Troelstra [366] and Troelstra-van Dalen [371].
The model C ω of sequentially continuous functionals was defined first in Scarpellini
[321] (with further refinements in Scarpellini [322]) as a model of bar recursion (see
chapter 11). The model ECFω of all extensional hereditarily continuous function-
als is due (independently) to Kleene [196] and Kreisel [244]. For uses of ECFω in
the proof theory of systems of intuitionistic analysis see again Troelstra [366]. The
precise relationship between ECFω and C ω was clarified in Hyland [169]. For a
comprehensive treatment of the recursion theory for ECFω see Normann [287]. The
model M ω of all hereditarily strongly majorizable functionals is due to Bezem [27]
(see also chapter 11).



Chapter 4
Representation of Polish metric spaces

4.1 Representation of real numbers

In this chapter we develop the so-called standard representation of complete sep-
arable metric spaces X , so-called ‘Polish’ metric spaces. Via this representation,
elements of X are represented by number theoretic functions, i.e. objects f of type-
1. Moreover, we will show that the representation can be arranged in such a way that
every function f 1 represents a unique element in X . In general, an element in X will
have many representatives f . On the representatives we define an equivalence rela-
tion f1 =X f2 :≡ ( f1, f2 represent the same X-element). Instead of having explicitly
to introduce elements of X as equivalence classes of representatives, we can use the
representatives themselves and then state that the function or predicate in question
respects the equivalence relations. E.g. a function F : X → Y between two Polish
spaces represented in this way is just a functional Φ1(1) satisfying

∀ f 1
1 , f 1

2 ( f1 =X f2 → Φ( f1) =Y Φ( f2)).

For compact metric spaces K we can arrange that the elements x∈K are represented
already by functions f ≤1 M which are bounded by a fixed function M depending
on K only. This representation goes back to L.E.J. Brouwer (see also the historical
comments at the end of this chapter). Again we can achieve that every f ≤1 M
represents a unique element in K.
The main benefit of this representation is that quantification of the kind ∀/∃x ∈ X
and ∀/∃x ∈ K can be expressed in our typed systems just as quantification ∀/∃ f 1

and ∀/∃ f ≤1 M without introducing any further quantifiers which we would have
to do if not every function f could be viewed as representing an element in X . In the
latter case ‘∀x ∈ X(. . .)’ would translate into

∀ f 1(if f represents an element of X → . . .)

with further quantifiers added by the implicative premise.
Our treatment (taken from [204] (section 3)) is based on ideas and constructions
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from [15, 57] and [371] and – for a comprehensive treatment of a general theory of
representations – [377]).
We develop this representation in some detail since, for the application of our proof-
theoretical extraction of effective data, the logical form of the representation is cru-
cial. As we will in this book mainly use the systems (W)E-PAω , ̂(W)E-PA

ω
|\ and

their intuitionistic variants, we carry out the representation only for ŴE-HA
ω
|\ but

not for weaker fragments. With minor changes the representation can also be done
already in G3Aω

i but for G2Aω
i things have to be changed significantly (see [209]

for a treatment of reals and some function spaces in such a weak setting).

Real numbers in ŴE-HA
ω
|\

As common in computable ([377]) and constructive analysis ([32]) as well as com-
plexity theory on the reals ([199]) and also reverse mathematics ([338]), real num-
bers are represented as Cauchy sequences of rational numbers with fixed given
Cauchy modulus. It will be convenient to use 2−n as Cauchy modulus. In order to
carry out this representation we first have to define the ordered field (Q,+, ·,0,1,<)
of rational numbers within ŴE-HA

ω
|\:

Rational numbers are represented as codes j(n,m) of pairs (n,m) of natural numbers
(i.e. type-0 objects): j(n,m) represents the rational number

n
2

m+1 if n is even, and the

negative rational number −
n+1

2
m+1 otherwise. Here we use the surjective Cantor pair-

ing function j from definition 3.30. So each natural number can be conceived as
code of a uniquely determined rational number. On the representatives of the ratio-
nal numbers, i.e. on N, we define an equivalence relation n1 =Q n2 which expresses
that n1 and n2 represent the same rational number:

n1 =Q n2 :≡
j1n1

2
j2n1 + 1

=
j1n2

2
j2n2 + 1

in the case where both j1n1 and j1n2 are even and analogous in the remaining cases.
For b,d > 0 here a

b = c
d is defined to hold iff ad =0 cb when bd > 0.

In order to express the statement that n represents the rational r, we write n =Q 〈r〉
or simply n = 〈r〉. Of course 〈·〉 is not a function of r since r possesses infinitely
many representatives. Rational numbers are, strictly, speaking equivalence classes
on N w.r.t. =Q. By using only their representatives and =Q one can avoid formally
introducing the set Q of all these equivalence classes. Alternatively one could al-
ways select a canonical representative by stipulating

c1(n) :=0 minm ≤0 n[n =Q m]

which is the code of the maximally simplified fraction representing the rational
number encoded by n. Clearly c(n) =Q n and n =Q m → c(n) =0 c(m). However,
the use of general representatives is convenient and anyway will be unavoidable for
an effective representation of real numbers.
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On N one can easily define primitive recursive operations +Q, ·Q and predicates <Q,
≤Q (in the sense of Kleene) such that e.g. 〈r1〉+Q 〈r2〉 =Q 〈r3〉 iff r1 + r2 = r3 for
the rational numbers r1,r2,r3 which are represented by 〈r1〉,〈r2〉,〈r3〉 (analogous for
·Q,<Q,≤Q). In view of our representation of Q we have the following embedding
of N into Q :

n 
→ 〈n〉 := j(2n,0);0Q := 〈0〉,1Q := 〈1〉.

It can easily be verified (within ŴE-HA
ω
|\) that (N,+Q, ·Q,0Q,1Q,<Q) is an or-

dered field (which represents (Q,+, ·,0,1,<) in ŴE-HA
ω
|\).

Using the above representation, each function f : N → N (i.e. each functional of
type 1) can be conceived of as an infinite sequence of codes of rationals and, there-
fore, as a representative of an infinite sequence of rationals.
We now officially represent real numbers by functions f 1 satisfying

(∗) ∀n
(
| f n−Q f (n + 1)|Q <Q 〈2−n−1〉

)
.

(∗) implies that for all n,k,m with k > m ≥ n :

| f m−Q f k|Q ≤Q

k−1

∑
i=m

| f i−Q f (i+ 1)|Q ≤Q

∞

∑
i=n

| f i−Q f (i+ 1)|Q < 〈2−n〉,

i.e. each f which satisfies (∗) in fact represents a Cauchy sequence of rationals with
Cauchy modulus 2−n. Condition (∗) is particularly convenient to define a construc-
tion which guarantees that each function f represents some real number: define the
following functional f 
→ f̂ which is primitive recursive (in the sense of [194] and
hence can be carried out in ŴE-HA

ω
):

(∗∗) f̂ n :=

⎧
⎨

⎩

f n if ∀k < n
(
| f k−Q f (k + 1)|Q <Q 〈2−k−1〉

)
,

f k for the least k < n with | f k−Q f (k + 1)|Q ≥Q 〈2−k−1〉 otherwise.

f̂ always satisfies (∗). If (∗) is already valid for f then ∀n( f n =0 f̂ n). Thus each
function f 1 codes a uniquely determined real number, namely the real number which
is given by the Cauchy sequence coded by f̂ . In the other direction, if f represents
a Cauchy sequence of rationals with modulus 2−n, then gn := f (n + 1) satisfies (∗)
and, therefore, represents the real number, given by f , in our sense. Hence nothing
is lost by our restriction of sequences satisfying (∗) and the construction f̂ makes
it possible to reduce quantification over R to ∀ f 1 resp. ∃ f 1 without adding further
quantifiers. Likewise for the operations on R below, we do not have to assume that
f1, f2 represent real numbers but directly can formulate the operations on the level
of f̂1, f̂2.

Remark 4.1. The construction f 
→ f̂ can even be carried out in G3Aω
i and for a

representation of real numbers based on the rate of convergence 1/k instead of 2−k

even in G2Aω
i (see e.g. [207]).
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On the representatives (in the sense above) of real numbers (i.e. on the functionals
of type 1) f1, f2 we define an equivalence relation =R by

f1 =R f2 :≡ ∀n
(
| f̂1(n + 1)−Q f̂2(n + 1)|Q <Q 〈2−n〉

)
.

f1 =R f2 holds iff f1 and f2 represent the same real number (w.r.t. the usual identity
relation on the reals).
This time there is no continuous (and hence no computable) way of selecting a
canonical representative of a real number given an arbitrary representative of that
real, i.e. there is no continuous (in the sense of Baire space) c1(1) with c( f ) =R f
and f1 =R f2 → c( f1) =1 c( f2) for all f 1, f 1

1 , f 1
2 (exercise).

In contrast to =Q, the relation =R is not decidable but in Π 0
1 .

f1 <R f2 :≡ ∃n
(

f̂2(n + 1)−Q f̂1(n + 1)≥Q 〈2−n〉
)
∈ Σ0

1 ,

f1 ≤R f2 :≡ ¬( f2 <R f1) ∈ Π 0
1 .

It is not difficult to define functionals +R,−R, ·R etc. on our codes of real numbers,
which represent the elementary operations +,−, · etc. on R: For example, define
f1 +R f2 by

( f1 +R f2)(k) := f̂1(k + 1)+Q f̂2(k + 1).

By applying f̂i to k + 1 instead of k it is ensured that f1 +R f2 has the right speed
of convergence to pass (∗∗) unchanged. So it is clear that f1 +R f2 =R f3 holds iff
x1 +x2 = x3 for the real numbers x1,x2,x3 which are represented by f1, f2, f3. +R is
a functional of type 1(1)(1). −R is defined analogously.
If n = 〈r〉 codes the rational number r, then λ k.n represents r as a real number.
0R := λ k.0Q,1R := λ k.1Q.
R denotes the set of all equivalence classes on the set of functions f w.r.t. =R.
As in the case of Q, we use R only informally and deal exclusively with the rep-
resentatives and the operations defined on them. (NN,+R, ·R,0R,1R,<R) is an
Archimedean ordered field (provable in ŴE-HA

ω
|\), which represents (R,+,·,0,1,<)

in ŴE-HA
ω
|\.

One easily verifies the following fact which expresses that f̂ (k) is a rational 2−k-
approximation of f :

Lemma 4.2. ŴE-HA
ω
|\  ∀k

(
| f −R λ n. f̂ (k)|R <R 〈2−k〉

)
.

Each functional Φ1(0) can be conceived of as an infinite sequence of codes of real
numbers and, therefore, as a representative of a sequence of real numbers. We have
the following Cauchy completeness:

Lemma 4.3. ŴE-HA
ω
|\ proves that

∀Φ1(0)(∀n;m,k ≥ n(|Φm−R Φk|R ≤R 〈2−n〉) →∃ f 1∀n(|Φn−R f |R ≤R 〈2−n〉)
)
.

In fact, f can be defined as
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f k := ̂Φ(k + 3)(k + 3).

4.2 Representation of complete separable metric (‘Polish’) spaces

Complete separable metric spaces, which we call: CSM-spaces or ‘Polish’ (met-
ric) spaces, are represented as completions (X̂ , d̂) of countable metric spaces (X ,d).
Such countable spaces are given as follows: Assume that the elements of X are
coded by natural numbers and that fX is a (prim. rec.) enumeration of the set 〈X〉
of all these codes. (X ,d) can now be represented by a pseudo metric dX (more pre-
cisely: a functional of type 1(0)(0), which represents a pseudo metric) on N such
that dX(n,m) =R 〈d(x,y)〉, where fX n and fX m are codes of x,y ∈ X and 〈d(x,y)〉 is
a representative of the real number d(x,y). In general, dX will not be a metric on N,
i.e. dX(n,m) =R 0R � n =0 m.
In the following we assume that dX(n,m) =1 ̂dX(n,m) (for otherwise we simply
could define d′

X(n,m) := ̂dX(n,m)). The completion (X̂ , d̂) of (X ,d) is now repre-
sented as the completion of (N,dX): An element of this completion is given by a
function h satisfying

(∗) ∀n
(
dX(hn,h(n + 1)) <R 〈7 ·2−n−1〉

)
.

(∗) implies that (hn)n∈N is a Cauchy sequence in (N,dX ) with modulus 2−n+3. As
for the representation of R above, we want to have that each function h represents a
(uniquely determined) element of the completion. If we would try to define ĥ in the
same way as we defined f̂ used in the representation of R above, then this operation
would not be computable in h since <R is (in contrast to <Q) not decidable. In order
to overcome this difficulty we first modify (∗) to

(∗∗) ∀n
(
[dX(hn,h(n + 1))](n + 1)<Q 〈6 ·2−n−1〉

)
.

Now ĥ can be defined as a functional in h in ŴE-HA
ω
|\ by

ĥ(n) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(n) if ∀k < n
(
[dX(hk,h(k + 1))](k + 1) <Q 〈6 ·2−k−1〉

)
,

h(k) for mink < n : [dX(hk,h(k + 1))](k + 1)≥Q 〈6 ·2−k−1〉,

otherwise.

In the following we always refer to this definition of ĥ unless we deal with real
numbers. ĥ fulfills (∗∗) and, therefore, (∗) for all h. If (∗∗) is already valid for
h, then ∀n(hn =0 ĥn). Hence each h may be thought of as being a representative
of a (uniquely determined) element of the completion of (N,dX), namely of that
element, which is represented by ĥ. In the other direction, each representative of a
Cauchy sequence in (N,dX ) with Cauchy modulus 2−n fulfills (∗∗) and, therefore,
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also is a representative in our sense (of the element given by this Cauchy sequence).
Using the construction ĥ we now can extend the pseudo metric dX to a pseudo metric
d̂X on N

N:

d̂1(1)(1)
X (h1,h2)(n) :=0 [dX(ĥ1(n + 5), ĥ2(n + 5))](n + 5).

By the summand +5, the ‘right’ rate of convergence of d̂X(h1,h2) is ensured:

∀k
(
|d̂X(h1,h2)(k)−Q d̂X(h1,h2)(k + 1)| <Q 〈2−k−1〉

)
.

Furthermore we have

Lemma 4.4. ŴE-HA
ω
|\  ∀k

(
d̂X( f ,λ m. f̂ (k)) <R 〈2−k+3〉

)
.

(NN, d̂X) is the completion of (N,dX):

Lemma 4.5. ŴE-HA
ω
|\  ∀Φ10

(
∀n;m,k ≥ n

(
d̂X(Φm,Φk) ≤R 〈2−n〉

)

→∃ f 1∀n
(
d̂X(Φn, f ) ≤R 〈2−n〉

))
.

In fact, f can be defined as: f k := ̂Φ(k + 5)(k + 5).

(N,dX ) is canonically embedded into (NN, d̂X) by i : N → N
N, i(n) := λ k0.n.

dX(n,m) =R d̂X(i(n), i(m)) for all m,n.

Definition 4.6. (NN, d̂X) is called standard representation of (X̂ , d̂).

We now define an equivalence relation =X̂ on the set N
N by

h1 =X̂ h2 :≡
(
d̂X(h1,h2) =R 0R

)
.

d̂X induces a metric on the equivalence classes with respect to =X̂ . This metric
space is isometric to (X̂ , d̂), which justifies the expression ‘standard representation
of (X̂ , d̂)’.

Remark 4.7. Later in this book we call CSM-spaces most of the time ‘Polish spaces’
though this is a minor deviation from standard terminology according to which
CSM-spaces are called ‘Polish metric spaces’ whereas a Polish space officially is a
separable completely metrizable topological space (the metric will not be uniquely
determined). In our case the space always comes with a metric w.r.t. which it is a
complete separable metric space.

Example 4.8. 1) R
n resp. [0,1]n endowed with the Euclidean metric

d̂E
(
(x1, . . . ,xn),(y1, . . . ,yn)

)
:=

(
Σn

i=1|xi − yi|2
) 1

2 is the completion of the space
Q

n resp. [0,1]n ∩Q
n with the metric

dE
(
(r1, . . . ,rn),(r̃1, . . . , r̃n)

)
:=

(
Σn

i=1|ri − r̃i|2
) 1

2 on Q
n resp. [0,1]n ∩Q

n.
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2) The space C[0,1] of all continuous functions f : [0,1] → R together with the
maximum metric d̂∞ is the completion of (A,d∞) where A is the set of all finite
tuples of rational numbers and d∞

(
(r0, . . . ,rm),(r̃0, . . . , r̃n)

)
:=

sup
x∈[0,1]

|(rmxm + . . .+ r1x + r0)− (r̃nxn + . . .+ r̃1x + r̃0)|.

C[0,1] is represented in ŴE-HA
ω
|\ as the standard representation of the comple-

tion (Â, d̂∞) of (A,d∞). This representation of f ∈C[0,1] is effectively equivalent
to the representation of f as a uniformly continuous function which is given with
a modulus of uniform continuity ω f : N → N :

∀n ∈ N,x,y ∈ [0,1]
(
|x− y|< 2−ω f (n) → | f (x)− f (y)| < 2−n).

Then it suffices to consider f restricted to the rational numbers in [0,1] as f on
[0,1] can be recovered from this by ω f (for more details see the end of section
4.3). Clearly, the representation above can be converted into the latter using that
one can explicitly write down a modulus of uniform continuity on [0,1] for a
polynomial (in chapter 16 we will give a particularly efficient such modulus using
the so-called Markov inequality). In the other direction one uses the effective
Weierstraß approximation theorem which for functions given with a modulus of
uniform continuity can be proved in e.g. (RCA0 and hence in) Ê-PA

ω
|\+QF-

AC0,0 as shown in [338]. If f is just given as a pointwise continuous function in
the sense of the representation used in [338] then one needs the binary König’s
lemma (discussed in chapters 9 and 10 below) to convert this into a representation
of f in our sense (see [338] and also [223]).

3) Let Lp denote (as usual) the space of (equivalence classes w.r.t. identity except on
null sets) functions f : [0,1]→R such that | f |p is integrable on [0,1] (1≤ p < ∞):
On the set A of 2) we define the metric

dp
(
(r0, . . . ,rm),(r̃0, . . . , r̃n)

)
:=

(∫ 1
0 |(rmxm + . . .+ r0)− (r̃nxn + . . .+ r̃0)|pdx

) 1
p .

Lp is represented in ŴE-HA
ω
|\ as the standard representation of the completion

(Â, d̂p) of (A,dp).

4) Let lp be the space of all sequences (xn) in R such that
∞
∑

i=0
|xi|p converges

(1 ≤ p < ∞). On the set A from 2) we define a metric by

dlp((r0, . . . ,rm),(r̃0, . . . , r̃n)) :=
(max(m,n)

∑
i=0

|ri− r̃i|p
) 1

p
, where ri := 0 (resp. r̃i = 0)

for i > m (resp. i > n).
lp is represented in ŴE-HA

ω
|\ as the standard representation of the completion

(Â, d̂lp) of (A,dlp). Over e.g. Ê-PA
ω
|\+QF-AC0,0 this representation is in canon-

ical 1-1 correspondence with the space of sequences (xn) in R for which
∞
∑

i=0
|xn|p

is convergent, which can (by the monotonicity of the sequence of partial sums)
be written as (referring to the representation of R)
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∃x1∀n0∃m0(x−R

m

∑
i=0

|xn|p <R 2−n).

Since <R∈ Σ0
1 one can use QF-AC0,0 to obtain a rate of convergence. From this

on it is clear how to rewrite (a representation of) (xn) into a representative in
the sense above (the converse direction is an easy exercise). Note that if one
expresses the convergence of the sum in the classically equivalent way by stat-
ing the boundedness of the sum, then one needs AC0,0 for Π 0

1 -formulas (which
amounts to arithmetical comprehension, see chapter 11) to conclude the existence
of a rate of convergence.

Definition 4.9. A CSM-space (X̂ , d̂) is called WE-HAω -definable
(ŴE-HA

ω
|\-definable), if it possesses a standard representation (NN, d̂X ) where

d̂1(1)(1)
X (i.e. actually d1(0)(0)

X ) is given by a closed term of WE-HAω (resp. of
ŴE-HA

ω
|\) and d̂X represents provably in WE-HAω (resp. ŴE-HA

ω
|\) a pseudo-

metric on N
N.

Remark 4.10. The metric spaces 1)–4) above are all ŴE-HA
ω
|\-definable and, fur-

thermore, the definitions of these spaces in definition 4.9 are classically equivalent to
the usual mathematical definitions (though not necessarily provably so in ŴE-PA

ω
|\

or WE-PAω ). In the case of C[0,1] we will use the representation of f with a given
modulus of uniform continuity (mentioned above) when we carry out the extrac-
tion of moduli of uniqueness from concrete mathematical proofs in approximation
theory (see chapter 16). The enriching of data by such a modulus ω f is more con-
venient in practice than the presentation of f as a Cauchy sequence of polynomials
having rational coefficients, since such a sequence is in general quite complicated to
construct, whereas a modulus ω f can often easily be written down. Thus, standard
representations of CSM-spaces are only used for proving the general metatheorems.
For the unwinding of concrete proofs, the most useful definition of these objects is
used.

Definition 4.11. Let (X̂ , d̂) be a CSM-space. Then for each x0 ∈ X̂ , r ∈R
+, the open

ball with radius r and center x0 is defined by B(x0,r) :=
{

x ∈ X̂ : d̂(x,x0) < r
}

.

Lemma 4.12. Let (X̂ , d̂) be a CSM-space.

1) Assume that hx0 ,hy represent x0,y ∈ X̂ in (NN, d̂X). Then the following implica-
tion holds

hx0(m+ 1) = hy(m+ 1)→ y ∈ B(x0,2−m+4).

2) To each x0 ∈ X̂ , m ∈N there exists an n ∈N such that for all y ∈ B(x0,2−m) there
exists a representative hy in (NN, d̂X) with hym =0 n.
Moreover, for a given representative hx0 of x0, n can be taken as
n :=< ĥx0(3), . . . , ĥx0(m+ 2) > .
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Proof:
1) By lemma 4.4 and the definition of the embedding i the following holds:

d̂X
(
hx0 , i(ĥx0(m))

)
<R 〈2−m+3〉 and d̂X

(
hy, i(ĥy(m))

)
<R 〈2−m+3〉.

Since the assumption hx0(m + 1) = hy(m + 1) implies that ĥx0(m) = ĥy(m) we
obtain

d̂X(hx0 ,hy) ≤R d̂X
(
hx0 , i(ĥx0(m))

)
+R d̂X

(
i(ĥx0(m)), i(ĥy(m))

)

+Rd̂X
(
i(ĥy(m)),hy) <R 〈2−m+3 + 2−m+3〉 = 〈2−m+4〉.

2) Let hx0 ,hy be representatives of x0,y in (NN, d̂X) and assume that m ≥ 1 (for
m = 0 we may take n := 〈〉 =0 hy0). Then

n :=< ĥx0(3), . . . , ĥx0(m+ 2) > and h̃y(k) :=

⎧
⎨

⎩

ĥx0(k + 3) if k < m,

ĥy(k + 3) if k ≥ m,

fulfill the lemma: h̃ym =0 n. Furthermore, h̃y represents y, i.e. d̂X(h̃y,hy)) =R 0R:

It is sufficient to show that ̂̃hy =1 h̃y. i.e.

(∗) ∀k
(

dX
(
h̃y(k), h̃y(k + 1)

)
(k + 1) <Q 〈6 ·2−k−1〉

)
.

The only problematic case is when k = m− 1. In this case we, however, have
(using tacitly the embedding of Q into R on the level of the representation):

dX
(
h̃y(m−1), h̃y(m)

)
(m) =Q dX

(
ĥx0(m+ 2), ĥy(m+ 3)

)
(m)

L.4.2
≤R dX

(
ĥx0(m+ 2), ĥy(m+ 3)

)
+ 2−m

L.4.4
≤R d̂X(hx0 ,hy)+ 2−m+1 + 2−m + 2−m

y∈B(x0,2−m)
≤R +2−m + 2−m+1 + 2−m + 2−m =R 5 ·2−m.

�

Remark 4.13. Lemma 4.12.1 in particular implies that each CSM-space (X̂ , d̂) is the
uniformly continuous image of the Baire space (NN,d), where

d( f ,g) :=

⎧
⎨

⎩

2−minn[ f (n) �=g(n)], if ∃n( f (n) �= g(n))

0, otherwise,

namely the image under the function Φ( f 1) := the unique element of X̂ represented
by f̂ .

The proof of lemma 4.12 can be carried out in ŴE-HA
ω
|\, i.e.
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Corollary 4.14. For each CSM-space (X̂ , d̂) given in standard representation
(NN, d̂X), ŴE-HA

ω
|\ proves

1) ∀h1
0,h

1,m0(h0(m+ 1) =0 h(m+ 1)→ d̂X(h0,h) <R 〈2−m+4〉
)

and

2) ∀h1
0,m

0∃n0∀h1(d̂X(h0,h) <R 〈2−m〉 → ∃h̃
(
d̂X(h, h̃) =R 0R ∧ h̃m =0 n

))
.

Moreover, n can be taken as n :=< ĥx0(3), . . . , ĥx0(m+ 2) > .

Definition 4.15. Let X̂ and Ŷ be CSM-spaces. A closed term Φ1(1) of WE-HAω

(ŴE-HA
ω
|\) represents provably in WE-HAω (ŴE-HA

ω
|\) a function X̂ → Ŷ if

WE-HAω (ŴE-HA
ω
|\)  ∀ f 1

1 , f 1
2
(

f1 =X̂ f2 → Φ f1 =Ŷ Φ f2
)
.

Remark 4.16. 1) Definition 4.15 is justified by the following fact: If Φ represents
a function X̂ → Ŷ in the sense of definition 4.15, then Φ induces (provable in
WE-HAω or in ŴE-HA

ω
|\) a function on the equivalence classes on N

N w.r.t.
=X̂ and =Ŷ . Modulo an isometry between X̂ ,Ŷ and their standard representations
this function in turn induces a function X̂ → Ŷ .

2) Using negative translation (developed in chapter 10) one can show that

WE-PAω  ∀ f 1
1 , f 1

2
(

f1 =X̂ f2 → Φ f1 =Ŷ Φ f2
)

implies
WE-HAω  ∀ f 1

1 , f 1
2
(

f1 =X̂ f2 → Φ f1 =Ŷ Φ f2
)
.

This also holds for ŴE-PA
ω
|\ and ŴE-HA

ω
|\.

Definition 4.17. A function F : X̂ → Ŷ is called WE-HAω -definable (ŴE-HA
ω
|\-

definable) if a closed term Φ1(1)
F in WE-HAω (ŴE-HA

ω
|\) exists such that

1) ΦF represents provably in WE-HAω (ŴE-HA
ω
|\) a function X̂ → Ŷ and

2) the function X̂ → Ŷ represented by ΦF coincides with F, i.e. if δ ( f 1) and δ ′( f 1)
denote the uniquely determined elements in X̂ and Ŷ , respectively, represented
by f (w.r.t. the above standard representation), then

∀ f 1(δ ′(ΦF ( f )) = F(δ ( f ))
)
.

This means that the following diagram commutes:

N
N ΦF−→ N

N

δ ↓ ↓ δ ′

X̂ F−→ Ŷ .
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In a similar way one could treat also partial functions F where then ΦF might be
partial as well. However, partiality of functions corresponds to hidden data (wit-
nesses for membership in the domain) which we have to make explicit for the ex-
traction of computational information from proofs as this information might de-
pend on these hidden data as inputs. E.g. a function f : R

∗
+ → R we treat as a

total function f ′ : N×R → R between the Polish spaces N×R and R, namely
as f ′(n,x) := f (max{2−n,x}), rather than as a partial function on R. I.e. we make
the function total by enriching the input: a strictly positive real number is a pair of a
real number and a witness n of its positivity.

Remarks and conventions: The function F in definition 4.17 may be given in set–
theoretical terms which are not expressible within WE-HAω . In particular, 4.17.2)
may be unprovable in WE-HAω or E-PAω+QF-AC etc. In the following, if we say
that a certain sentence involving X̂ ,Ŷ ,F holds provably in WE-HAω , we always
mean that the corresponding statement expressed in terms of the standard repre-
sentations of X̂ ,Ŷ and ΦF is provable in WE-HAω . We always consider X̂ ,Ŷ as
given with fixed standard representations (NN, d̂X), (NN, d̂Y ) and F as represented
by a fixed functional ΦF . Assume e.g. that X̂ and Ŷ are WE-HAω -definable CSM-
spaces and that F : X̂ × Ŷ → R is a WE-HAω -definable function. Then the sentence
∀x ∈ X̂∃y ∈ Ŷ

(
F(x,y) = 0

)
is represented in L (WE-HAω) by

(∗) ∀x1∃y1(ΦF(x,y) =R 0R

)

with ΦF a closed term of WE-HAω . (∗) has the logical form

(∗∗) ∀x1∃y1∀k0A0(x,y,k),

where A0 ∈ L (WE-HAω) is quantifier-free.
If T is a theory in the language of WE-HAω , then

T  ∀x ∈ X̂∃y ∈ Ŷ
(
F(x,y) = 0

)

stands for
T  ∀x1∃y1∀k0A0(x,y,k).

Proposition 4.18. If F : X̂ → Ŷ is a WE-HAω -definable (ŴE-HA
ω
|\-definable)

function, then F possesses provably in WE-HAω (ŴE-HA
ω
|\) a modulus

ω001
F ∈ WE-HAω (ŴE-HA

ω
|\)

of pointwise continuity, i.e.

WE-HAω  ∀ f 1
0 , f 1,n0(d̂X( f0, f ) <R 〈2−ωF f0n〉 → d̂Y (ΦF f0,ΦF f ) <R 〈2−n〉

)
.

(Analogous for ŴE-HA
ω
|\).

Note that ω f is in general not extensional in f0 with respect to =X̂ .
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Proof: The proposition follows from corollary 4.14 and the fact that each closed
term of type 1(1) in WE-HAω (resp. ŴE-HA

ω
|\) possesses a modulus of pointwise

continuity in WE-HAω (resp. ŴE-HA
ω
|\) (provable in WE-HAω resp. ŴE-HA

ω
|\ ;

see [366] (3.7.8) and [200] (3.22.1)). �

Complete separable normed spaces are represented in ŴE-HA
ω
|\ as special metric

spaces with the metric d(x,y) := ‖x− y‖. In addition to the metric also the vector
space operations have to be represented in WE-HAω or ŴE-HA

ω
|\. The spaces in

the examples above are also ŴE-HA
ω
|\-definable as normed spaces (over R).

4.3 Special representation of compact metric spaces

Compact spaces usually are defined via the Heine-Borel covering property. How-
ever, this property is unprovable in WE-PAω+QF-AC1,0 (also with QF-AC in all
types as discussed in chapter 10) even for the most common compact spaces as
e.g. [0,1] ⊂ R or the Cantor space 2ω as it requires the so-called binary König’s
lemma WKL to be discussed in chapters 9–10 and 12 (see also [338]). For met-
ric spaces, however, there are two additional (classically) equivalent definitions of
compactness, namely sequential compactness (every sequence contains a conver-
gent subsequence), and total boundedness (together with completeness). While se-
quential compactness needs even stronger ineffective tools to be provable e.g. for
[0,1], namely arithmetical comprehension as discussed in chapter 11 below (and ac-
tually is equivalent to this principle, see [338]), the total boundedness of the usual
compact metric spaces can be established fully elementary. Following Brouwer’s
treatment of compact metric spaces in intuitionistic mathematics as well as the prac-
tice in computable analysis we, therefore, adopt this definition as the basis of our
representation of compact spaces (which itself goes back to Brouwer).

Definition 4.19. A metric space (X̂ , d̂) is called compact if it is complete and to-
tally bounded, i.e. if there exist functions x(·.·) : N×N → X̂ , α : N → N, which
yield a finite sequence xk,0, . . . ,xk,α(k) in X̂ for each k ∈ N such that ∀x ∈ X̂ ,k∃i ≤
α(k)

(
d̂(x,xk,i) < 2−k

)
.

Remark 4.20. 1) Each compact metric space is separable: the countable set
X :=

⋃
k∈N

{
xk,0, . . . ,xk,α(k)

}
is dense in X̂ .

2) As mentioned above, in constructive mathematics the various classically equiva-
lent definitions of compactness need to be distinguished. Compact metric spaces
in our sense are often called ‘ CTB-spaces’, where ‘ CTB’ stands for ‘complete
totally bounded’.

Since by remark 4.20 compact metric spaces are special CSM-spaces, we could use
the standard representation for CSM-spaces described above. However, we need a
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special form of this representation, which has the property that all representatives
are bounded by some function M, i.e. are elements of

{
x ∈ N

N : ∀n(x(n) ≤ M(n))
}

,
and every element of this set represents a uniquely determined point in the compact
space:
Let (X̂ , d̂) be a compact metric space with a 2−k-net xk,0, . . . ,xk,α(k) in X̂ for each
k ∈ N. We code xk,i by j(k, i) (if n is not of the form j(k, i) with i ≤ α(k),
then n codes the element x0,α(0)). Now we consider the standard representation
(NN, d̂X) of (X̂ , d̂) w.r.t. X :=

⋃
k∈N

{
xk,0, . . . ,xk,α(k)

}
using this coding. For each

f ∈ N
N there exists (primitive recursively in f ,dX and α) a function g f ≤1 M

such that f and g f represent the same element in X̂ , i.e. d̂X( f ,g f ) =R 0R, where
M(k) :=max{ j(k + 2,0), . . . , j(k + 2,α(k + 2))}:
Define f̃ (k) := f̂ (k + 1), then ∀k

(
dX( f̃ (k), f̃ (k + 1)) <R 〈7 · 2−k−2〉

)
. For ev-

ery k ∈ N exists (primitive recursively in f ,dX and α) an ik ≤ M(k) such that
dX(ik, f̃ (k)) <R 〈2−k−1〉: Define ik as the least i ≤ M(k) such that

(∗) dX(i, f̃ k)(k + 3) <Q 〈2−k−2〉+ 〈2−k−3〉

(such an i ≤ M(k) always exists since, by M–definition, there exists an i ≤ M(k)
with dX(i, f̃ k) <R 〈2−k−2〉).
The construction of ik implies

dX(i, f̃ k) <R 〈2−k−2〉+ 〈2−k−3〉+ 〈2−k−3〉 = 〈2−k−1〉.

Hence

dX(ik, ik+1) ≤R dX(ik, f̃ k)+ dX( f̃ k, f̃ (k + 1))+ dX( f̃ (k + 1), ik+1)

<R 〈2−k−1〉+ 〈7 ·2−k−2〉+ 〈2−k−2〉 = 〈5 ·2−k−1〉

and, therefore,

dX(ik, ik+1)(k + 1) <Q 〈5 ·2−k−1〉+ 〈2−k−1〉 = 〈6 ·2−k−1〉.

Now define g f (k) := ik. The above shows that ĝ f =1 g f . It follows that g f represents
the same element of X̂ as f and ∀k ∈ N(g f (k) ≤ M(k)).
{

f ∈ N
N| f ≤1 M

}
together with the restriction of d̂X on {. . .}, which we also denote

by d̂X , represents the compact metric space (X̂ , d̂).

Remark 4.21. 1) Inspection of the construction f 
→ g f shows that it can be defined
already by a closed term of G3Aω in f ,dX ,α.

2) Note that f 1(n+1)=0 f 2(n+1)→ gf1(n) =0 g f2(n), i.e. the construction f 
→ g f
is a uniformly continuous selfmapping of the Baire space.

Definition 4.22.
({

f ∈ N
N : f ≤1 M

}
, d̂X

)
is called standard representation of the

compact metric space (X̂ , d̂). A compact metric space (X̂ , d̂) is called WE-HAω
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(resp. ŴE-HA
ω
|\)-definable if it possesses a standard representation({

f ∈ N
N : f ≤1 M

}
, d̂X

)
where M1, d̂1(1)(1)

X (i.e. M1,d100
X ) are closed terms of

WE-HAω (resp. ŴE-HA
ω
|\), and if dX represents provably in WE-HAω (resp.

ŴE-HA
ω
|\) a pseudo-metric on 〈X〉 such that

WE-HAω  ∀i ∈ 〈X〉,k∃ j ≤ M(k)
(
dX(i, j) < 2−k−2).

Examples:

1) [0,1]n(⊂ R
n) is a ŴE-HA

ω
|\-definable compact metric space (w.r.t. the Eu-

clidean metric dE ). Exercise!
2) Let K,C be positive rational numbers such that 2K > (n−1)C. Then

M :=
{
(x1, . . . ,xn) ∈ R

n : |xi| ≤ K ∧|xi − x j| ≥C (1 ≤ i < j ≤ n)
}

(endowed with the Euclidean metric) is a ŴE-HA
ω
|\-definable compact metric

space (exercise, see also the end of this chapter for a much easier treatment of
this space).

Remarks and conventions: Let X̂ be a CSM-space, K a compact metric space and
F : X̂ ×K → R a WE-HAω (resp. ŴE-HA

ω
|\)-definable function on the WE-HAω

(resp. ŴE-HA
ω
|\)-definable spaces X̂ ,K. Then a sentence

∀x ∈ X̂∀y ∈ K
(
F(x,y) > 0

)

is represented in WE-HAω (ŴE-HA
ω
|\) by

(+) ∀x1∀y ≤1 M
(
ΦF(x,y) >R 0R

)

with M,ΦF ∈ WE-HAω (resp. ŴE-HA
ω
|\). (+) can be written equivalently as

(++) ∀x1∀y ≤1 M∃k0(|ΦF(x,y)|R >R 〈2−k〉),

where ∃k0(|ΦF(x,y)|R >R 〈2−k〉) ∈ L (WE-HAω) (∈ L (ŴE-HA
ω
|\) is a Σ0

1 -
formula. We usually rewrite sentences (+) in the form (++) since we are interested
in extracting bounds on ‘∃k0’ from proofs of (+).
Similarly, a sentence

∀x ∈ X̂∃y ∈ K
(
F(x,y) = 0

)

is represented in WE-HAω (ŴE-HA
ω
|\) by

(∗) ∀x1∃y ≤1 M
(
ΦF(x,y) =R 0R

)

with M,ΦF ∈ WE-HAω (resp. ŴE-HA
ω
|\). (∗) can be rewritten as

(∗∗) ∀x1∃y ≤1 M∀k0(|ΦF(x,y)|R ≤R 〈2−k〉),
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where ∀k0(|ΦF (x,y)|R ≤R 〈2−k〉) ∈ L (WE-HAω ) (∈ L (ŴE-HA
ω
|\) is a Π 0

1 -
formula. Again, we usually rewrite (∗) as (∗∗) since we are interested in extracting
bound on ‘∀k0’ from proofs which use (∗) as an assumption.

Proposition 4.23. Let F : X̂ ×K → Ŷ be a WE-HAω -definable function, where K
is a WE-HAω -definable compact metric space K and X̂ ,Ŷ are WE-HAω -definable
CSM-spaces. Then F(x, ·) : K → Ŷ possesses (uniformly in a representative of x as
parameter) provably in WE-HAω a modulus ω1(1)

F of uniform continuity, i.e. ω1(1)
F

is a closed term such that

WE-HAω 

∀x1∀ f 1
1 , f 1

2 ,n0(d̂K( f1, f2) <R 〈2−ωF (x,n)〉 → d̂Y (ΦF (x, f1),ΦF(x, f2)) <R 〈2−n〉
)
.

An analogous result holds for ŴE-HA
ω
|\.

Proof: Let F be given by a closed term Φ1(1)(1)
F of WE-HAω . By proposition 9.10

(which will be proved in chapter 9 below) we can construct a closed term ω1(1)
ΦF

such

that for x1,n0 and k := ω1(1)
ΦF

(x,n)

∀g1,g2 ≤ M(g1(k) =0 g2(k) → (ΦF (x,g1))(n) =0 (ΦF (x,g2))(n)),

i.e. λ n.ωΦF (x,n) is a modulus of uniform continuity for ΦF (x, ·) on {g : g ≤1 M}.
Here M1 is the fixed function from the standard representation of K as a compact
metric space.
Now let x1, f 1

1 , f 1
2 be given and define

k := ωF(x,n) := ωΦF (x,n + 2)+ 1.

Assume that
d̂K( f1, f2) <R 〈2−ωF (x,n)〉.

By corollary 4.14 there exist functions f̃1, f̃2 with

2∧

i=1

( f̃i =K fi)∧ f̃ 1(k) =0 f̃ 2(k).

By the construction f 
→ g f from the standard representation of compact metric
spaces K and remark 4.21.2 applied to f̃1, f̃2 there exist g1,g2 ≤1 M such that

g1 =K f1 ∧g2 =K f2 ∧g1(k−1) =0 g2(k−1).

By the definition of k and the ·̂–construction we get

( ̂ΦF (x,g1))(n + 1) =0 ( ̂ΦF (x,g2))(n + 1)
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and so (using lemma 4.2)

d̂Y (ΦF (x,g1),ΦF(x,g2)) <R 〈2−n〉.

Using the extensionality of ΦF(x, ·) w.r.t. =K and =Ŷ yields

2∧

i=1

(ΦF (x,gi) =Ŷ ΦF(x, fi)).

Hence
d̂Y (ΦF (x, f1),ΦF(x, f2)) <R 〈2−n〉.

�

Notational convention: For the rest of this book we will usually simply write ‘2−k’
instead of its rational or real number code ‘〈2−k〉’ when it will be clear from the
context that we refer to the representation. Also we will usually simply write X
instead of (X̂ , d̂).

For the special compact space [0,1] the representation of compact metric spaces
above can be somewhat simplified. As this case will play a particularly important
role in chapters further below we will present this case here:

Definition 4.24.

x̃(n) := j(2k0,2n+2 −1), where k0 = maxk ≤ 2n+2[
k

2n+2 ≤Q x̂(n + 2)]

(k0 := 0 if no such k exists).
Note that λ x1.x̃ can easily be defined by a closed term in ŴE-HA

ω
|\.

One easily verifies the following

Lemma 4.25. Provably in ŴE-HA
ω
|\, for all x1:

1) 0R ≤R x ≤R 1R → x̃ =R x,
2) 0R ≤R x̃ ≤R 1R,
3) x̃ =R

˜̃x,
4) x̃ ≤1 N := λ n. j(2n+3,2n+2 −1),
5) x >R 1R → x̃ =R 1R, x <R 0R → x̃ =R 0R.
6) x =R y → x̃ =R ỹ.

Using the construction x 
→ x̃ from definition 4.24 we also can represent [0,1]d for
every fixed number d by a bounded set

{
x1 : x ≤1 Nd

}
of functions, where Nd :

νd(N, . . . ,N) (with νd as in definition 3.30 and N as in definition 4.24):

x(≤ Nd) represents the vector in [0,1]d which is represented by ( ˜(νd
1 x), . . . , ˜(νd

d x)).
If (in the other direction) x1, . . . ,xd represent real numbers r1, . . . ,rd ∈ [0,1], then
x := νd(x̃1, . . . , x̃d) ≤1 νd(N, . . . ,N) represents (r1, . . . ,rd) ∈ [0,1]d in this sense.
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Remark 4.26. For a,b∈R with a≤R b, quantification ∀x∈ [a,b] A(x) ( respectively
∃x ∈ [a,b] A(x)) reduces to quantification over [0,1] (and, therefore, –modulo our
representation– over {x : x ≤1 N}) by ∀λ ∈ [0,1] A((1−λ )a+λ b) and analogously
for ∃x. This transformation immediately generalizes to [a1,b1]×·· ·× [ad ,bd ] using
λ1, . . . ,λd .

Since an explicit representation of the intervals [−m,m] for m ∈ N is of particular
importance, we just indicate how to generalize directly definition 4.24 and 4.25 from
[0,1] to [−m,m] (dropping for notational simplicity the dependence of x̃ on m):

x̃(n) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j(2k0,2n+2 −1), where k0 = maxk ≤ m2n+2[ k
2n+2 ≤Q x̂(n + 2)],

if x̂(n + 2)≥Q 0Q,

j(2k0 + 1,2n+2−1), where k0 = mink ≤ m2n+2[− k
2n+2 ≤Q x̂(n + 2)],

if existent and = 0 otherwise,if x̂(n + 2) <Q 0Q.

As in lemma 4.25 it follows that

1) |x|R ≤R (m)R → x̃ =R x,
2) |x̃|R ≤R (m)R,
3) x̃ =R

˜̃x,
4) x̃ ≤1 Nm := λ n. j(m2n+3 + 1,2n+2−1),
5) x >R (m)R → x̃ =R (m)R, x <R (−m)R → x̃ =R (−m)R.

For most applications it suffices to have instead of the standard representation of
compact metric spaces (K,d) a representation by functions f ∈ N

N which are
bounded by some primitive recursive function M in the sense that f ≤1 M and which
satisfy a Π 0

1 -condition A( f ) ≡∀m0 Aq f ( fx,m) on the level of the representation. I.e.
every element x∈K has a representation by a function fx ≤1 M which satisfies A( fx)
and each function f ≤1 M satisfying A( f ) represents a unique element of K. This
suffices to ensure that for properties B of elements of K which can be expressed
on the level of the representatives by a ∃-formula B1( f , l) ≡ ∃n0 Bq f ( f , l,n) (e.g.
∃l0(|ΦF ( f )|R >R 2−l) as in the remarks after definition 4.22) statements of the
kind

∀x ∈ K∃l ∈ NB(x)

have the form

∀ f ≤1 M(∀m0Aq f ( f ,m) →∃l0,n0Bq f ( f , l,n))

and hence are equivalent to

∀ f ≤1 M∃m0, l0,n0(Aq f ( f ,m) → Bq f ( f , l,n)),

i.e. result in the same logical form (+) as in the case of spaces given in standard
representation (see the remarks after definition 4.22, similarly for statements of the
form (∗)). Such a weaker form of the representation is often much easier to achieve
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and also applies to many closed subspaces of compact spaces which might not have
a constructive standard representation as compact spaces on their own. E.g. the sec-
ond of our examples above has an immediate representation in this weaker sense
since the conditions ‘|xi−R x j|R ≥R C’ are purely universal. As another example we
give such a representation of the compact subset Kω,m ⊂ C[0,1] of all continuous
functions f : [0,1]→ [−m,m] which have ω1 as a modulus of uniform continuity in
the sense of

∀x,y ∈ [0,1],n0(|x− y|< 2−ω(n) → | f (x)− f (y)| ≤R 2−n).

Define a primitive recursive function by

q(n) :=

⎧
⎨

⎩

min l ≤0 n[l =Q n], if 0 ≤Q n ≤Q 1

00, otherwise.

Every rational number ∈ [0,1]∩ Q has a unique code by a number ∈ q(N) and
∀n0(q(q(n)) =0 q(n)). Also every such number codes an element of ∈ [0,1]∩Q. We
may conceive every number n as a representative of a rational number ∈ [0,1]∩Q,
namely of the rational coded by q(n). Now a function in Kω,m can be represented via
(the encoding of) its restriction to the rational numbers (from which is can uniquely
be recovered via ω), i.e. as a function f 1(0) ≤ λ k.Nm (with Nm as above) satisfying

Aω,m( f ) :≡ ∀m0,k0,n0(|q(m)−Q q(k)| < 2−ω(n) → | ˜f (q(m))−R
˜f (q(k))| ≤R 2−n),

where Aω,m is Π 0
1 . It is clear that f 1(0) can be encoded in a function g1 via g(n) :=

f ( j1(n), j2(n)).
When dealing with C[0,1] we will mainly refer to this representation of elements of
C[0,1] as pairs ( f 1(0),ω1) where f represents the restriction of the function to the
rational numbers in [0,1] and ω is a modulus of uniform continuity of f . In these
data one can easily write down closed terms of E-HAω (and fragments thereof)
which compute e.g. the Riemann integral

∫ 1
0 f (x)dx or the uniform norm ‖ f‖∞ :=

supx∈[0,1] | f (x)| (exercise, see also [209]).

4.4 Fragments, exercises, historical comments and suggested
further reading

Fragments: The representation of R
d , [0,1]d and other Polish spaces and compact

metric spaces developed in this chapter can without major changes be carried out
in G3Aω

(i) already. For G2Aω
(i) some major modifications are necessary. E.g. the rate

of convergence 2−k must be replace by 1/(k + 1). Moreover, the representation of
C[0,1] as Cauchy sequences of polynomials with rational coefficients can no longer
be used directly since we do not have the exponential function. However, one can use
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a representation based on polygons instead with the same effect (see [209] for details
on all this. For the simplified representation mentioned at the end of this chapter not
even this is necessary. In ( f 1(0),ω1) one can define

∫ 1
0 f (x)dx and supx∈[0,1] f (x)

even by closed terms of G2Aω
(i) (see again [209]).

Exercises:

1) Show that there is no continuous (in the sense of Baire space) functional c1(1)

with c( f ) =R f and f1 =R f2 → c( f1) =1 c( f2) for all f 1, f 1
1 , f 1

2 .
2) Fill in the details in the proofs of some lemmas in this chapter which we omitted.
3) Show that ŴE-PA

ω
|\ + Σ0

1 -IA (and hence – by proposition 3.21 – ŴE-PA
ω
|\+

QF-AC0,0) proves

∀a1
(·) (∀n(an ≥R 0) →∀k∃n∀m (an ≤R am + 2−k)).

4) Construct closed terms Φsup[0,1] and ΦI in ŴE-HA
ω
|\ which compute sup

x∈[0,1]
f (x)

and
∫ 1

0 f (x)dx, respectively, in the data ( f 1(0),ω1).

Historical comments and suggested further reading: The presentation in this
chapter follows closely section 3 of Kohlenbach [204] which in turn is influenced
by section 20 of chapter 1 from Beeson [15]. The standard representation of com-
pact metric spaces (i.e. complete totally bounded metric spaces) is already due to
Brouwer and for general Polish (i.e. complete separable) metric spaces can be found
e.g. in Troelstra [364] (see Troelstra-van Dalen [371], chapter 7, for a more recent
account). The special form of our representation of X̂ by which every element of
N

N represents a member of X̂ is due to Beeson [15]. Standard representations of
Polish and compact metric spaces are also frequently used in computable analysis,
e.g. in the so-called type-2 approach to computable analysis (see e.g. Weihrauch
[377]) as well as in the area of reverse mathematics (see e.g. Simpson [338]). For
a comprehensive treatment of the Baire and Cantor space as well as general Polish
spaces see Moschovakis [282].



Chapter 5
Modified realizability

5.1 The soundness and program extraction theorems

In the following we make use of the notation

yx := y1x, . . . ,ynx,

where y = y1, . . . ,yn and x = x1, . . . ,xk are tuples of functionals of suitable types and
yix := yix1 . . .xk.

Definition 5.1 (modified realizability, Kreisel [244, 246]). For each formula A of
L (E-HAω) we define a formula x mr A (in words: ‘x modified realizes A’) of L (E-
HAω) whose free variables are contained in that of A and x, where x is a – possibly
empty – tuple of variables which do not occur free in A. The length of x and the types
of these variables are determined by the logical structure of A, since the definition
of x mr A proceeds by induction over the logical structure of A:

(i) x mr A :≡ A with the empty tuple x, if A is a prime formula.
(ii) x,y mr (A∧B) :≡ x mr A ∧ y mr B.

(iii) z0,x,y mr (A∨B) :≡ [(z =0 0 → x mr A)∧ (z �=0 0 → y mr B)].
(iv) y mr (A → B) :≡ ∀x(x mr A → yx mr B).
(v) x mr (∀yρ A(y)) :≡ ∀yρ(xy mr A(y)).

(vi) zρ ,x mr (∃yρ A(y)) :≡ x mr A(z).

Definition 5.2. 1) A formula A ∈ L (E-HAω) is called ∃-free if it is built up from
prime formulas by means of ∧,→ and ∀ only.

2) A formula A ∈ L (E-HAω) is called negative if it is built up from negated prime
formulas by means of ∧,→ and ∀ only.

Remark 5.3. From corollary 3.18 we recall that in WE-HAω all prime formulas P
are decidable and, therefore, ¬¬P ↔ P is provable in WE-HAω . Hence every ∃-free
formula is equivalent to a negative formula in WE-HAω .
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Remark 5.4. 1) For ∃-free formulas A we have (x mr A)≡ A with x being the empty
tuple.

2) (x mr A) is always an ∃-free formula.

We will also need a variant ‘modified realizability with truth’ mrt of mr:

Definition 5.5. x mrt A is defined analogously to x mr A except that clause (iv) is
replaced by

(iv)′ y mrt (A → B) :≡ ∀x(x mrt A → yx mrt B)∧ (A → B).

The name ‘modified realizability with truth’ is motivated by the following

Lemma 5.6. WE-HAω � (x mrt A) → A, for every formula A.

Proof: Straightforward. �

Proposition 5.7. WE-HAω � (x mrt ¬A) ↔¬A for every formula A, where x is the
empty tuple.

Proof: Exercise! �

The schema of choice AC:=
⋃

ρ ,τ∈T
{ACρ ,τ} is given by

ACρ ,τ : ∀xρ∃yτ A(x,y) →∃Y τρ∀xρ A(x,Y x),

where A is an arbitrary formula of E-HAω .

The independence-of-premise-schema IPω
e f :=

⋃

ρ∈T
{IPρ

e f } for ∃-free formulas is

given by
IPρ

e f :
(
A →∃xρ B(x)

)
→∃xρ(

A → B(x)
)
,

where A is ∃-free and doesn’t contain x free.

In the following we use Oρ := λ xρ1
1 , . . . ,xρk

k .00 for ρ = 0(ρk) . . . (ρ1).

Theorem 5.8 (soundness of mr, Troelstra [366]). Let A be an arbitrary formula
in L (E-HAω) and Δe f be an arbitrary set of ∃-free sentences. Then the following
rule holds

E-HAω + AC + IPω
e f + Δe f � A ⇒ E-HAω + Δe f � t mr A,

where t is a suitable tuple of terms of E-HAω with FV (t) ⊆ FV (A) which can be
extracted from a given proof of A.

Remark 5.9. Let in A(a) the tuple a denote all the free variables in A. Then the
statement that there are terms t[a] containing at most the free variables a such
that t[a] mr A(a) can equivalently be stated as: there are closed terms s such that
sa mr A(a). Just take s := λ a.t[a].
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Proof of theorem 5.8: Induction on the length of the derivation of A: We first treat
the logical axioms and rules and then complete the proof by considering the non-
logical axioms.
1) Logical axioms. A∨A → A: If z0,x,y mr (A∨A), then tz0xy mr A, where t is

such that tz0xy :=

⎧
⎨

⎩

x, if z = 0

y, if z �= 0
(ti can easily be defined using R0: exercise!). Hence t mr (A∨A → A).
A → A∧A is realized by λ x.[x,x].
A → A∨B: Let x mr A, then (0,x,O) mr (A∨B) and hence λ x.[0,x,O] mr (A →
A∨B) (here O is a suitable tuple O

ρ1
1 , . . . ,O

ρk
k with suitable types ρi so that O mr B

is syntactically correct).
A∧B → A: if (x,y) mr A∧B, then x mr A. Hence
λ x,y.x mr (A∧B → A).
⊥→ A is realized by O where O is such that O mr A is syntactically correct. Then
O mr (⊥→ A).

A∨B → B∨A is realized by λ z0,x,y.[sg(z),y,x], where sg(z) :=

⎧
⎨

⎩

00, if z �= 0

10, otherwise.
A∧B → B∧A is realized by λ y,x.[x,y].
∀xρ A(x) → A(tρ): Let y mr ∀xA(x). Then y(t) mr A(t). Hence
λ y.y(t) mr

(
∀xA(x) → A(t)

)
.

A(tρ) → ∃xρ A(x) is realized by λ y.[t,y], where y is a tuple of variables such that
y mr A(t) is well-formed.
2) Rules. A ,A→B

B : Assume t mr A and s mr (A → B). Let r be the terms which result
from st by replacing all free variables a which occur in A but not in B by O . Then
r mr B.
A→B ,B→C

A→C : s mr (A → B), t mr (B → C). If x mr A, then sx mr B and hence
t(sx) mr C. Thus λ x.t(sx) mr (A → C) (if necessary replace free variables which
don’t occur in A →C by O).

A∧B→C
A→(B→C) and A→(B→C)

A∧B→C are trivially satisfied: use the terms from the premise for the
conclusion.

A→B
C∨A→C∨B : Assume t mr (A →B) and z0,x,y mr (C∨A). Then either z = 0, x mr C or
z �= 0, y mr A. In the second case we have t y mr B. Hence λ z0,x,y.[z0,x,t y] mr (C∨
A →C∨B).

B→A(xρ )
B→∀xρ A(x) : Assume t[x] mr (B → A(x)) and z mr B. Then λ x.(t[x]z) mr ∀xA(x) and,
therefore, λ z,x.(t[x]z) mr (B →∀xA(x)).

A(xρ )→B
∃xρ A(x)→B : Assume t[x] mr (A(x) → B) and x,z mr ∃xA(x). Then z mr A(x) and,
therefore, t[x]z mr B. Thus λ x,z.(t[x]z) mr (∃xA(x) → B).
3) Axioms for =0,S,Π ,Σ ,R and Eρ : These axioms are all ∃-free and, therefore,
realized by themselves.
4) The induction schema: Let x mr A(0) and y mr ∀z0(A(z) → A(z+ 1)

)
. Define t

by simultaneous primitive recursion such that
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⎧
⎨

⎩

t xy0 = x

t xy(z+ 1) = yz(t xyz).

By induction on z0 one shows that t x yz mr A(z) and hence t x y mr ∀zA(z).
5) The interpretations for AC and IPω

e f are trivial (note that AC and IPω
e f are not

needed to verify their mr-interpretation).
6) The sentences in Δe f are (by remark 5.4.1) realized by themselves with the empty
tuple of realizers. �

Remark 5.10. At various places in the soundness proof we could have used an ar-
bitrary term of suitable type and, for definiteness, chose O. In applications it can
sometimes be crucial to use a variable instead which will be fixed only later de-
pending on the parameters of the situation at hand.

Remark 5.11. Theorem 5.8 (and its proof) also extends immediately to the case
where the language L (E-HAω) is extended by new constants cρ of any type ρ
which may occur in the axioms Δe f . Then the terms t are built-up out of the original
constants, the new constants and the free variables of A.

Theorem 5.12 (Characterization theorem for mr, Troelstra [366]). Let A be an
arbitrary formula of L (E-HAω). Then

E-HAω + AC + IPω
e f � A ↔∃x(x mr A).

Proof: Easy induction on the logical structure of A. �

The soundness theorem together with the characterization theorem for modified re-
alizability allows us to derive the following

Theorem 5.13 (Main theorem on program extraction by mr).
Let ∀xρ∃yτ A(x,y) be a sentence of L (E-HAω) with arbitrary types ρ ,τ and Δe f be
an arbitrary set of ∃-free sentences. Then the following rule holds

E-HAω + AC + IPω
e f + Δe f � ∀xρ∃yτ A(x,y) ⇒

E-HAω + AC + IPω
e f + Δe f � ∀xρ A(x, tx),

where t is a closed term of E-HAω which is extracted from a given proof of the
premise by modified realizability.
In particular, the conclusion yields that

S ω |= ∀xρ A(x,tx),

if S ω |= Δe f .

The theorem also applies to the situation with tuples x,y of variables (of any types).

Proof: From the premise we get by the soundness theorem a tuple of closed terms
t1, . . . ,tn such that
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E-HAω + Δe f � t mr ∀x∃yA(x,y),

i.e.
E-HAω + Δe f � t2, . . . ,tn mr ∀xA(x, t1x).

Together with the characterization theorem this yields the conclusion of the theorem
with t := t1. �

The (proof of the) previous theorem shows in particular that subproofs of ∃-free
lemmas used in a given proof do not need to be analyzed at all for the extraction
of programs by modified realizability. The significance of this is further expressed
by the following proposition which implies that theorem 5.13 also holds for arbi-
trary negated sentences ¬A included into Δe f and with the independence-of-premise
schema IPω

¬ =
⋃

ρ∈T
{IPρ

¬} for negated formulas

IPρ
¬ :

(
¬A →∃xρ B(x)

)
→∃xρ(

¬A → B(x)
)

instead of IPω
e f .

Proposition 5.14. Let A be an arbitrary formula of L (E-HAω ). Then one can con-
struct an ∃-free formula B such that

E-HAω + AC + IPω
e f � ¬A ↔ B.

Proof: By the characterization theorem we have

E-HAω + AC + IPω
e f � ¬A ↔∀y((y mr A) →⊥),

where ‘∀y(y mrA) →⊥)’ is ∃-free as – by remark 5.4.2) – ‘y mr A’ is ∃-free. �

Remark 5.15. For HA instead of E-HAω+AC+IPω
e f the above result is not correct:

as shown in Troelstra [366] (3.8.2) the negated sentence

¬∀x(¬¬∃yT (x,x,y) →∃yT (x,x,y))

is not equivalent to any ∃-free sentence in L (HA) over HA.

Conversely (as mentioned already in remark 5.3), every ∃-free formula A is already
in E-HAω provably equivalent to ¬¬A and hence to a negated formula (here one
uses that the prime formulas of E-HAω are decidable).

Corollary 5.16. 1) Over E-HAω+AC, the principles IPω
e f and IPω

¬ are equivalent.
2) In theorem 5.13 we can also allow arbitrary negated sentences in Δe f .

A class of formulas that is more general than the ∃-free formulas are the Harrop
formulas:

Definition 5.17. A formula in L (E-HA)ω is called a Harrop formula if it belongs
to the following inductively defined class of formulas:

1) Prime formulas are Harrop formulas.
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2) With A,B also A∧B and ∀xA are Harrop formulas.
3) If B is a Harrop formula, then also A → B is a Harrop formula (where A is arbi-

trary).

Clearly any negated formula ¬A ≡ A →⊥ is a Harrop formula. Over E-HAω every
Harrop formula A is equivalent to a negated formula, namely to ¬¬A :

Lemma 5.18. For any Harrop formula A one has

E-HAω � A ↔¬¬A.

Proof: Induction on A, using the stability of prime formulas. We leave the details as
an exercise. �

From corollary 5.16 and lemma 5.18 it follows that we may also include Harrop
formulas in our set of axioms Δe f .

Definition 5.19 (Troelstra [366]). The subset Γ1 of formulas ∈ L (E-HAω) is de-
fined inductively by

1) Prime formulas are in Γ1 (note that in our theories quantifier-free formulas can
be written as prime formulas s =0 t, see proposition 3.17).

2) A,B ∈ Γ1 ⇒ A∧B,A∨B,∀xA(x),∃xA(x) ∈ Γ1.
3) If A is ∃-free and B ∈ Γ1, then (∃xA → B) ∈ Γ1.

Lemma 5.20. For A ∈ Γ1 we have

E-HAω � (x mr A) → A.

Proof: Straightforward induction on the generation of Γ1. �

Corollary 5.21. E-HAω+ AC + IPω
e f is conservative over E-HAω with respect to

formulas A ∈ Γ1.
In particular E-HAω+ AC + IPω

e f is consistent relative to E-HAω since (0 = 1) ∈
Γ1.

Remark 5.22. One can show by much more complicated methods that E-HAω+ AC
is conservative over HA. For a ‘neutral’ version of E-HAω without extensionality
this is due to [138, 139, 140] (see also [277, 312]). The extension to E-HAω is
due to [14].
In contrast to corollaries 5.21 and 5.24 (below), this result does not relativize to
subsystems with restricted induction (see [214]).

In the following, the notation T +
−A indicates that we consider both cases: T and

T + A.

Theorem 5.23 (soundness of mrt, Troelstra [369]). Let Λ be an arbitrary set of
negated formulas ¬B of L (E-HAω ) and Hω := E-HAω +

− AC +
− IPω

¬
+
−Λ and A be

an arbitrary formula in L (E-HAω). The following rule holds

Hω � A ⇒ Hω � t mrt A,
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where t is a suitable tuple of terms of E-HAω with FV (t) ⊆ FV (A) which can be
extracted from a given proof of A.

Proof: The treatment of the logical axioms is analogous to the one for the mr-
interpretation in the proof of theorem 5.8. The same applies for the modus ponens.
For the remaining rules the new second clause in the mrt-interpretation of the con-
clusion follows from the corresponding second clause(s) of the premise(s) using the
same rule. Only in the case of the exportation rule one has to be a bit more careful
because of the nested implications in the conclusion:
By induction hypothesis we have terms s such that

s mrt (A∧B →C).

Hence
∀x,y(x mrt A∧ y mrt B → sxy C)∧ (A∧B →C),

which is equivalent to

∀x(x mrt A →∀y(y mrt B → sxy mrt C))∧ (A → (B →C)).

By lemma 5.6 we have (x mrt A) → A. Hence

∀x(x mrt A →∀y(y mrt B → sxy mrt C)∧ (B →C))∧ (A → (B →C))

and hence
∀x(x mrt A → sx mrt (B →C))∧ (A → (B →C)),

i.e.
s mrt A → (B →C).

We leave it as an exercise to the reader to adopt the mr-interpretation of the non-
logical axioms and rules from the proof of theorem 5.8 to the mrt-interpretation. For
the interpretation of Λ and IPω

¬ we use proposition 5.7 (and – in the case of IPω
¬ –

also lemma 5.6). �

Corollary 5.24. Let Hω := E-HAω +
− AC +

− IPω
¬

+
−Λ . Then the following rules hold:

1)
Hω � A∨B ⇒ Hω � A or Hω � B,

for closed formulas A∨B (disjunction property DP)
2)

Hω � ∃xρ A(x) ⇒ Hω � A(t),

for a suitable term tρ of Hω with FV (t) ⊆ FV (A)\{xρ} (the special case of this
property for closed formulas ∃xρ A(x) is called existence property EP)

3)
Hω � ∀xρ∃yτ A(x,y) ⇒ Hω � ∃Y τρ∀xρ A(x,Y x)

(closure of Hω under the rule of choice ACR).
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4)
Hω � (¬A →∃xρ B(x)) ⇒ Hω � ∃xρ(¬A → B(xρ)),

where A is an arbitrary formula that doesn’t contain x free (closure of Hω under
the rule of independence of premise for negated formulas IPRω

¬ ).

2)–4) also hold for tuples of variables x,y.

Proof: 1) Suppose that Hω � A∨B for a closed formula A∨B. By theorem 5.23 one
finds closed terms t0,s,r such that

Hω � (t =0 0 → s mrt A)∧ (t �=0 0 → r mrt B).

In E-HAω the closed number term t0 can be reduced (computed) to a numeral n and
so

Hω � t =0 n.

The conclusion now follows from the fact that

Hω � n = 0 or Hω � n �= 0

and lemma 5.6.
2) By theorem 5.23 the assumptions yields terms tρ ,s with FV (t,s) ⊆ FV (A)\ {x}
such that

Hω � s mrt A(t).

The claim now follows using lemma 5.6.
3) By 2) applied to the open formula ∃yτ A(xρ ,yτ) we get a term t[xρ ]τ such that

Hω � A(x,t[x]).

The conclusion follows by taking Y := λ xρ .t[xρ ].
4) Theorem 5.23 applied to

Hω � ¬A →∃xρ B(x)

yields terms tρ ,s such that (using exercise 5.7)

Hω � ¬A → s mrt B(t)

and hence (by lemma 5.6)
Hω � ¬A → B(t)

and so
Hω � ∃x(¬A → B(x)),

where x is not free in A. �

Remark 5.25. 1) Corollary 5.24 is proved analogously for

Hω := WE-HAω +
− AC +

− IPω
¬

+
−Λ

since the soundness proof for mrt also applies to the weakly extensional case.
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2) For E-HAω+AC+IPω
¬ this corollary can be obtained by ordinary modified real-

izability alone using theorem 5.12 and corollary 5.16.

Definition 5.26. The so-called Markov Principle in all finite types is the schema
Mω :=

⋃

ρ∈T
{Mρ}, where

Mρ : ¬¬∃xρ A0(x) →∃xρ A0(x),

where A0 is an arbitrary quantifier-free formula of WE-HAω and x is a tuple of
variables of arbitrary types ρ (A0(x) may contain further free variables in addition
to x).

Even the special case M0 of the Markov principle has no modified realizability in-
terpretation by computable realizers (see exercise 2 below). Actually, one of the
main early applications of modified realizability was to show the underivability of
the Markov principle in Heyting arithmetic. In chapter 8 we will develop Gödel’s
functional interpretation which can be viewed as a much refined version of modified
realizability and which does interpret Mω in a simple way. Whereas modified realiz-
ability leaves ∃-free formulas unchanged, functional interpretation analyses ∃-free
formulas further down to purely universal formulas.

5.2 Remarks on fragments of E-HAω

The main theorems of this chapter, namely the soundness theorems for the mr- and
mrt-interpretations (theorems 5.8, 5.23) as well as the main theorem on program
extraction (theorem 5.13) can – with minor adaptations of their proofs – also be
obtained for any of the fragments T ω

i := Ê-HA
ω
|\, E-GnAω

i (n ≥ 2) instead of E-
HAω . Then the terms extracted, of course, are closed terms of T ω

i . For this it is
sufficient to note that

• the mr,mrt-interpretation of the logical axioms and rules, as well as of the axioms
of extensionality, axiom of choice and the independence of premise principles
we considered can be carried out using only λ -terms (i.e. Π ,Σ -combinators),
constants 0,1, definition by cases and the function sg which are available in T ω

i ,
• every quantifier-free formula A0(a) can be written as tA0(a) =0 0 (provably in

T ω
i ) using only propositional logic and x · y =0 0 ↔ x =0 0∨ y =0 0, x + y =0

0 ↔ x =0 0∧ y =0 0, sg(x) =0 0 ↔ x �= 0, and |x− y| =0 0 ↔ x =0 y which all
have mr,mrt-interpretations in T ω

i (except for the first one these equivalences
are left unchanged by the interpretation),

• the axiom schema of quantifier-free induction can be realized using bounded
search (again available in T ω

i ,) using the previous item,
• all other non-logical axioms can be written as purely universal axioms.

Using this one can show also the following:
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Definition 5.27. 1) IA¬ denotes the schema of induction for arbitrary negated for-
mulas, i.e.

IA¬ : ¬A(0)∧∀x0(¬A(x) →¬A(S(x))) →∀x0¬A(x).

2) IAe f denotes the schema of induction for arbitrary ∃-free formulas Ae f , i.e.

IAe f : Ae f (0)∧∀x0(Ae f (x) → Ae f (S(x))) →∀x0Ae f (x),

where Ae f is ∃-free.

Proposition 5.28. Ê-HA
ω
|\+AC+IPω

¬+IA¬ has a modified realizability interpreta-
tion in Ê-HA

ω
|\+IAe f (and hence a-fortiori in Ê-HA

ω
|\+IA¬) by closed terms of

Ê-HA
ω
|\.

Proof: Exercise!

Remark 5.29. By the comment after proposition 3.21, the schema Σ0
1 -IA is already

derivable in Ê-HA
ω
|\+AC and hence also covered by proposition 5.28.

Corollary 5.30. The provably recursive functions of

Ê-HA
ω
|\+AC+IPω

¬+IA¬

are just the ordinary primitive recursive ones.

Definition 5.31. IAΠ0
∞-¬ denotes the schema of induction for formulas of the form

∀x0
1∃x0

2∀x0
3 . . .¬A(x1,x2,x3, . . .),

where A is an arbitrary formula.

Definition 5.32. A function is definable by Gödel primitive recursion of level n if it
can be defined by 0,S,Π ,Σ and Rρ where deg(ρ)≤ n.

In the following proposition Ê-HA
ω
|\+ R1 is the extension of Ê-HA

ω
|\ by the con-

stant R1 and its defining axioms.

Proposition 5.33. Ê-HA
ω
|\+R1+AC+IPω

¬+IAΠ0
∞-¬ has a modified realizability in-

terpretation in Ê-HA
ω
|\+R1+IAe f (and hence a-fortiori in Ê-HA

ω
|\+R1+IA¬) by

closed terms of Ê-HA
ω
|\+ R1.

Proof: Exercise! �

Corollary 5.34. The provably recursive functions of

Ê-HA
ω
|\+ R1+AC+IPω

¬+IAΠ0
∞-¬

are definable by Gödel primitive recursion of level 1, i.e. by closed terms in T1.
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More information on the use of modified realizability for fragments of E-HAω can
be found in [207] and [212]. For an adaptation of the mr,mrt-interpretations to sys-
tems of feasible arithmetic see [71].

5.3 Exercises, historical comments and suggested further reading

Exercises:

1) Prove proposition 5.7.
2) Prove lemma 5.18.
3) Show, using modified realizability, that M0 (even with parameters of type 0 only)

is not derivable in E-HAω+AC+IPω
e f .

4) (P. Freyd) Show that E-HAω+AC proves the axiom schema of dependent choice
DAC:= ∪ρ∈T{DACρ}, where

DACρ : ∀xρ∃yρ A(x,y) →∀xρ∃ f ρ0( f (0) = x∧∀z0A( f (z), f (S(z)))
)
.

5) Prove proposition 5.28.
6) Prove proposition 5.33.

Historical comments and suggested further reading: Modified realizability was
introduced by Kreisel in [244, 246]. One of its main purposes was to show the in-
dependence of the Markov principle from HA. Troelstra [366] (chapter III, section
4) provides a very concise and detailed treatment of modified realizability inter-
pretation. For a general survey on various forms of realizability interpretations see
Troelstra [369]. Applications of modified realizability in the context of bounded
arithmetic are given in Cook-Urquhart [71]. For applications of modified realiz-
ability to the extraction of a program from a specific proof see Berger [18] and
Berger-Schwichtenberg [25] where it shown that the so-called ‘normalization-by-
evaluation’ algorithm (due to Berger-Schwichtenberg [24]) can be extracted from
the standard Tait-Troelstra proof of strong normalization for the typed λ -calculus
by an appropriate form of modified realizability. Recently, an automated extrac-
tion of this algorithm has been carried out in Berger et al. [20]. For applications of
other forms of realizability for the extraction of programs from proofs see Hayashi
[150]. In chapter 7 we will discuss applications of a monotone variant of modified
realizability (Kohlenbach [212]) to semi-constructive systems, i.e. system based on
E-HAω but with various highly non-constructive classical comprehension principles
added. Recently, a new bounded modified realizability was introduced in Ferreira-
Nunes [103] and has interesting connections to the monotone variant.



Chapter 6
Majorizability and the fan rule

6.1 A syntactic treatment of majorization and the fan rule

In this chapter we combine modified realizability with the structural property of
majorizability which we already used in chapter 3 to prove results on the growth
of the definable functions of GnAω . We first show – following Howard [163] – that
majorizability applies as well to the closed terms of WE-HAω . We will indicate the
far-reaching use one can make of majorizability combined with proof interpreta-
tions by showing the closure of E-HAω +

−AC +
− IPω

¬ under the so-called fan rule.
Many more applications of this majorization technique combined with proof inter-
pretations will be given throughout the rest of this book. We first recall the concept
of majorizability from definition 3.34:

x∗ ma jρ x (read as ‘x∗ majorizes x’) between functionals of type ρ is defined by
induction on ρ :

⎧
⎨

⎩

x∗ ma j0 x :≡ x∗ ≥0 x,

x∗ ma jτρ x :≡ ∀y∗,y(y∗ ma jρ y → x∗y∗ ma jτ xy).

Definition 6.1. Define ϕ1(1) by recursion (using only R0) such that (provably in
WE-HAω )

ϕ(x1,0) =0 x0

ϕ(x,z+ 1) =0 max0(ϕ(x,z),x(z+ 1)),

where max0 is the usual (primitive recursively – using only R0 – definable) max-
imum between natural numbers. We write xM := λ z0.ϕ(x,z) (note that xM(z) =
max
i≤z

(x(i))).

This definition easily extends to finite types by λ -abstraction: For x of type ρ0 with
ρ = 0ρk . . .ρ1 we define xM := λ z,v.ϕ(λ z.xzv,z), where v = vρ1

1 , . . . ,vρk
k .

One easily proves the following
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Lemma 6.2. WE-HAω � ∀xρ0(xM0 =ρ x0 ∧ xM(z + 1) =ρ maxρ(xMz,x(z + 1))
)
,

where maxτρ(x1,x2) := λ yρ .maxτ (x1y,x2y) for complex types.

Remark 6.3. Using recursion of type ρ one can define xM directly by iteration of
maxρ . However our a bit more complicated approach shows that actually R0 is suf-
ficient.

Lemma 6.4. WE-HAω � ∀xρ0, x̃ρ0(∀n0(x̃n ma jρ xn) → x̃M ma jρ0x
)
.

Proof: Let ρ = 0ρk . . .ρ1 and v = vρ1
1 , . . . ,vρk

k . One easily shows by (quantifier-free)
induction on n that

∀n0(∀m ≤ n(x̃Mnv ≥0 x̃mv)
)
.

Together with the assumption that ∀n(x̃n ma jρ xn) this yields

∀n,m,v∗,v
(
n ≥0 m∧ v∗ ma j v → x̃Mnv∗ ≥0 xmv

)

and hence x̃M ma jρ x by lemma 3.35(iii) and remark 3.36.2). �

Corollary 6.5. WE-HAω � ∀x1(xM ma j1 x).

Proposition 6.6 (W.A. Howard [163]). For each closed term tρ of WE-HAω one
can construct a closed term t∗

ρ
of WE-HAω such that

WE-HAω � t∗ ma jρ t.

Proof: Induction on the structure of t:
Constants c: 00 ma j0 00, S ma j1 S. Using lemma 3.35(iii),(i) we also have

Πρ ,τ ma j Πρ ,τ and Σδ ,ρ ,τ ma j Σδ ,ρ ,τ .

Rρ : Let y∗ ma j y, i.e.
k∧

i=1
(y∗i ma j yi), and z∗ ma j z. By induction on x0 one shows

∀x0(Rρ xy∗z∗ ma j Rρ xyz
)
,

which, again by lemma 3.35(iii), implies

∀x0(Rρ x ma j Rρ x
)
.

Hence by lemma 6.4

R∗
i := (Ri)

M
ρ ma j (Ri)ρ for i = 1, . . . ,k,

i.e. R∗ ma j R.
So for every constant c of WE-HAω we have a closed term t∗ such that

WE-HAω � t∗ ma j c.
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The proposition now follows from that fact that t∗ ma jτρ t ∧ s∗ ma jρ s implies
t∗s∗ ma jτ ts. �

Remark 6.7. Proposition 6.6 also holds with ‘s-ma j’ from definition 3.48 instead of
‘ma j’ and one can use the same term t∗ as constructed in the proof of proposition
6.6.

Theorem 6.8. Hω :=E-HAω +
− AC +

− IPω
¬ . Let s be a closed term, A(x,y,z) a formula

containing only x,y,z as free variables and deg(τ) ≤ 2. Then the following rule
holds: ⎧

⎨

⎩

Hω � ∀x1∀y ≤ρ sx∃zτ A(x,y,z) ⇒

Hω � ∀x1∀y ≤ρ sx∃z ≤τ txA(x,y,z),

where t is a suitable closed term which can be extracted from a given proof of the
assumption.
The theorem also holds for tuples of variables x = xδ1

1 , . . . ,xδk
k ,y = yρ1

1 , . . . ,yρm
m ,s =

s1, . . . ,sm,z = zτ1
1 , . . . ,zτn

n with deg(δi) ≤ 1, y j ≤ρ j s jx and deg(τl) ≤ 2 for i =
1, . . . ,k; j = 1, . . . ,m; l = 1, . . . ,n. Then we have a tuple of closed terms t instead of
t.

Remark 6.9. 1) Note that in the previous theorem the bound tx on ‘∃z’ does not
depend on y.

2) In the following, we will in order to keep the notational complexity down only
treat here and in other results the case k = m = n = 1. The proof immediately
extends to the case with tuples. Actually, the result for the special case also im-
plies directly the one with tuples on the expense of using the coding of tuples of
variables as mentioned in chapter 3.

Corollary 6.10 (Fan Rule, Kreisel, Troelstra [368]). Let A be a formula of
L (E-HAω) containing only free variables of type levels ≤ 1. Then for Hω as above
the following rule holds

⎧
⎨

⎩

Hω � ∀y1∃n0A(y,n) ⇒

Hω � ∀x1∃m0∀y ≤1 x∃n ≤0 mA(y,n).

Proof of theorem 6.8: Suppose that

Hω � ∀x1∀y ≤ρ sx∃zτ A(x,y,z).

Then by corollary 5.24,2)–4) one can extract a closed term t such that

Hω � ∀x1∀y ≤ρ sxA(x,y, txy).

By proposition 6.6 there are closed terms s∗,t∗ such that

E-HAω � s∗ ma j s∧ t∗ ma j t.
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By corollary 6.5 we have in E-HAω :

∀x1(s∗xM ma jρ sx)

and, therefore, by lemma 3.35.2

∀x1∀y ≤ρ sx(s∗xM ma jρ y).

Hence
∀x1∀y ≤ρ sx

(
t∗(xM,s∗xM) ma jτ txy

)
.

For simplicity lets now consider only the case τ = 2:

∀x1∀y ≤ρ sx∀z1((t∗(xM,s∗xM))zM ≥0 txyz
)
.

Hence
∀x1∀y ≤ρ sx(t̃x ≥2 txy),

where t̃ := λ x,z.[(t∗(xM,s∗xM))(zM)]. Thus t̃ satisfies the claim of the theorem. �

The proof of theorem 6.8 shows that the conditions on x (to be of type at most 1)
and y (to be bounded by sx) where only used to construct majorants xM and s∗xM.
The condition deg(τ) ≤ 2 was only needed to get from a majorant for txy a bound
on txy. Hence we can also state the following variant of theorem 6.8:

Proposition 6.11. Let Hω be as in theorem 6.8 and A(x,y) a formula containing
only xρ ,yτ free where ρ ,τ are arbitrary types. Then the following rule holds:

⎧
⎨

⎩

Hω � ∀xρ∃yτ A(x,y) ⇒

Hω � ∀x,x∗(x∗ ma j x →∃y(tx∗ ma jτ y∧A(x,y)),

where t is a suitable closed term which can be extracted from a given proof of the
assumption.
The result also holds for tuples x,y of variables.

Application of theorem 6.8: Consider the special representation of the unit interval
[0,1] given at the end of chapter 4. Let Φ1(1)(0)

(·) ,Φ1(1) be closed terms of E-HAω

which (provably in E-HAω) represent functions [0,1]→ R, i.e. which satisfy

∀x,y ≤1 N∀n0 (
x̃ =R ỹ → Φn(x̃) =R Φn(ỹ)∧Φ(x̃) =R Φ(ỹ)

)

and so, by proposition 4.23, are (uniformly) continuous. Then (switching back to
the level of the mathematical meaning of the representation) theorem 6.8 implies
the following rule:
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⎧
⎨

⎩

E-HAω+AC+IPω
¬ � ∀k0∀x ∈ [0,1]∃n0∀m ≥ n

(
|Φm(x)−Φ(x)| <R 2−k

)
⇒

E-HAω+AC+IPω
¬ � ∀k0∃n0∀x ∈ [0,1]∀m ≥ n

(
|Φm(x)−Φ(x)| <R 2−k

)
,

i.e. provable pointwise convergence of Φn towards Φ on [0,1] implies provable
uniform convergence on [0,1]. It is well-known that already for E-HAω -definable
functions Φn,Φ : [0,1] → R uniform convergence does not need to hold (not even
ineffectively) if pointwise convergence is established using classical logic. Our ap-
plication shows that such counterexamples do not exist if the pointwise convergence
is proved essentially by constructive means. In chapter 7 we will show that this re-
mains true even in the presence of various highly ineffective principles like full
comprehension for negated formulas and others.
In chapter 10 we will prove versions of theorem 6.8 for systems based in full classi-
cal logic. Then, however, A has to be a purely existential formula which the formula
in our application

(∗) ∀m ≥ n
(
|Φm(x)−Φ(x)| <R 2−k)

is not.
Nevertheless, in the important special case where the pointwise convergence is
monotone, e.g. decreasing, i.e. Φn ↘Φ , (∗) can be written equivalently as the purely
existential formula

|Φn(x)−Φ(x)| <R 2−k

(recall that <R∈ Σ0
1 ). In this case, we will be able to extract moduli of uniform

convergence even from ineffective proofs of pointwise convergence, which gives an
effective rule-form of what is known as Dini’s Theorem.

For further applications of modified realizability combined with majorization see
[212] as well as chapter 7 which generalizes the results of this chapter to semi-
constructive systems.

Remarks on fragments of E-HAω :

Inspection of the proofs of this chapter easily shows that the results also hold for the
fragments T ω

i := Ê-HA
ω
|\, E-GnAω

i (n ≥ 2) instead of E-HAω . Here we use the
remark at the end of chapter 5 and the fact that the majorization technique applies
to these fragments as well. For E-GnAω

i (n = 1,2,3) we carried this out explicitly

in chapter 3. For ̂(W)E-HA
ω
|\ we just have to observe that quantifier-free induction

suffices to prove that RM
0 ma j R0 and that RM

0 can be defined in ŴE-HA
ω
|\ using R0.

Fore more details see [201] and [207].
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6.2 Exercises, historical comments and suggested further reading

Exercises:

1) Show that theorem 6.8 and corollary 6.10 both become false if E-HAω is replaced
by E-PAω (or just E-HAω + Σ0

1 -LEM) already for Π 0
1 -formulas A(y1,n0) (with

only y,n free).
2) Show that theorem 6.8 becomes false (already for quantifier-free A0) if ‘x’ is

permitted to be of type 2 rather than 1 and that corollary 6.10 becomes false is
A0 is allowed to contain a parameter of type 2.

3) Study one of the usual counterexamples of sequences of functions fn ∈ C[0,1]
which converge pointwise but not uniformly toward the constant-0 function and
find out which part of the proof uses classical logic.

Historical comments and suggested further reading: Closure of E-HAω under
the fan rule was first established in Troelstra [368] using a complicated technique
of fan-computability. In Beeson [15] and Troelstra-van Dalen [371] different proofs
(based on a forcing technique) are given. The proof presented here and the more
general theorem 6.8 are taken from Kohlenbach [201].
Further applications of the combination of modified realizability with majoriza-
tion can be found in Kohlenbach [201, 212] and (in a more general context) in
Gerhardy-Kohlenbach [119]. Some of these applications will be treated in the next
chapter.



Chapter 7
Semi-intuitionistic systems and monotone
modified realizability

7.1 The soundness and bound extraction theorems

In the following we show that the results from chapter 6 even extend to the situation
where large classes of non-effective sentences are added to the theories in question
without having an impact on the extractability and complexity of uniform bounds.
This rests on the following observation:

In the proof of theorem 6.8 the term t extracted by modified realizability (with truth)
was only used to construct a majorizing term t∗. Only the latter term was then ex-
ploited for the construction of the uniform bound. This suggests a variant of the
formulation in the soundness theorem where we extract instead of closed terms t
such that

(∗) ∀a
(
t a mr A(a)

)

closed terms t∗ such that

(∗∗) ∃z
(
t∗ ma j z∧∀a(za mr A(a))

)
.

We then say that ‘t∗ satisfies the monotone modified realizability interpretation of
A(a)’ (here a are all the free variables of A(a)). Similarly for mrt.
The soundness theorems for mr and mrt proved in chapter 5 also hold with (∗∗)
instead of (∗) which follows just by combining them with Howard’s proposition
6.6. However, it is not actually necessary to first construct t by ordinary modified
realizability and then – in a second step – to carry out the majorizing construction. In
fact, inspection of the soundness proofs shows that one can directly construct t∗ and
prove property (∗∗) by induction on the given proof. This simplifies the construction
and, moreover, allows one to extend the soundness theorem (in the form (∗∗)) to
further axioms as long as these axioms allow a monotone modified realizability
interpretation (resp. monotone modified realizability-with-truth interpretation) by
closed terms of E-HAω . We will now show that this holds true for many highly non-
effective axioms:
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Let Θ be a set of sentences of the form ∃v ≤σ rBe f (v), where Be f is ∃-free, and Ξ
be a set of sentences of the form ∃v ≤σ r¬B(v). In both cases r = rσ1

1 , . . . ,rσn
n is a

tuple of closed terms of E-HAω of arbitrary types and v ≤σ r :≡
n∧

i=1
(vi ≤σi ri).

Theorem 7.1.
1) Soundness of monotone modified realizability:

Let Hω := E-HAω+ AC + IPω
e f +Θ and A(a) be an arbitrary formula in L (E-

HAω ) containing only a free. Then the following rule holds

Hω � A(a) ⇒ E-HAω +Θ � ∃x (t∗ maj x∧∀a(xa mr A(a))),

where t∗ is a suitable tuple of closed terms of E-HAω which can be extracted
from a given proof of A.

2) Soundness of monotone modified realizability with truth:
Let Hω := E-HAω +

− AC +
− IPω

¬
+
−Ξ and A(a) be an arbitrary formula in L (E-

HAω ) containing only a free. Then the following rule holds

Hω � A(a) ⇒ Hω � ∃x (t∗ maj x∧∀a(xa mrt A(a))),

where t∗ is a suitable tuple of closed terms of E-HAω which can be extracted
from a given proof of A.

Proof: 1) To simplify matters we use the deduction theorem to reduce the task of
verifying the soundness of the monotone modified realizability interpretation to just
the verification of the modus ponens rule. Any proof of the premise only uses finitely
many Θ -sentences. For notational simplicity assume that only one such sentence Θ
is used. Then we get

Hω \ {Θ} �Θ → A(a).

By the soundness theorem 5.8 for modified realizability we can extract closed terms
t of E-HAω such that (using subsequent λ -abstraction)

E-HAω � ∀a (t a mr (Θ → A(a))).

By proposition 6.6 we can construct majorizing terms t∗ for t. Hence

E-HAω � ∃x(t∗ maj x∧∀a (xa mr (Θ → A(a)))),

i.e. t∗ satisfies the monotone modified realizability interpretation of Θ → A(a). Us-
ing lemma 3.35.2 we see that the monotone modified realizability interpretation of
Θ is (provably in E-HAω +Θ ) satisfied by any tuple of closed terms r∗ such that

E-HAω �
n∧

i=1

(r∗i ma j ri).

One now easily verifies in E-HAω +Θ that λ a.t∗ar∗ satisfies the monotone modi-
fied realizability interpretation of A(a).
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2) is proved analogously using the soundness theorem 5.23 for mrt and proposition
5.7 to show that Ξ has (provably in E-HAω + Ξ ) a monotone mrt-interpretation by
r∗ constructed as above. �

Remark 7.2. 1) As mentioned already, an easier extraction of the terms t∗ is ob-
tained by treating directly all the rules by the monotone interpretations.

2) Theorem 7.1 holds analogously for ‘s-maj’ instead of ‘maj’.

Proposition 7.3. Hω :=E-HAω +
− AC +

− IPω
¬ . Let s be a closed term, A(x1,yρ ,zτ ) a

formula containing only x,y,z as free variables and deg(τ) ≤ 2. Then the following
rule holds: ⎧

⎨

⎩

Hω + Ξ � ∀x1∀y ≤ρ sx∃zτ A(x,y,z) ⇒

Hω + Ξ � ∀x1∀y ≤ρ sx∃z ≤τ txA(x,y,z),

where t is a suitable closed term of E-HAω which can be extracted from a given
proof of the assumption.
As in theorem 6.8 the result also holds for tuples of variables.

Proof: The proposition follows similarly to theorem 6.8 using theorem 7.1.2). �

Remark 7.4. One easily obtains the variant of proposition 7.3 corresponding to
proposition 6.11 (exercise).

As in the proof of corollary 6.10 one derives from proposition 7.3:

Corollary 7.5. Let Hω and Ξ be as in proposition 7.3. Then Hω +Ξ is closed under
the fan rule.

Definition 7.6. The schema of comprehension in all types for arbitrary negated for-
mulas is given by

CAω
¬ : ∃Φ0(σ)∀xσ (

Φ(x) =0 0 ↔¬A(x)
)
,

where A is an arbitrary formula not containing Φ free and σ an arbitrary tuple of
types.

Corollary 7.7. Under the same assumptions as in proposition 7.3 we have the fol-
lowing rule: ⎧

⎨

⎩

Hω + CAω
¬ � ∀x1∀y ≤ρ sx∃zτ A(x,y,z) ⇒

Hω + CAω
¬ � ∀x1∀y ≤ρ sx∃z ≤τ txA(x,y,z),

where t is a suitable closed term of E-HAω which can be extracted from a given
proof of the assumption.
As in theorem 6.8 the result also holds for tuples of variables.

Proof: The corollary follows from 7.3 observing that

1) we only have to consider closed instances of CAω
¬ as parameters can be included

together with x in the comprehension,



118 7 Semi-intuitionistic systems and monotone modified realizability

2) every closed instance of CAω
¬ can be written as a sentence of the form Ξ as Φ

can be ‘normed’ to a 0/1-functional and E-HAω proves that

∀xσ(
Φ(x) =0 0 ↔¬A(x)

)
↔¬¬∀xσ(

Φ(x) =0 0 ↔¬A(x)
)

using the stability of =0.

�

Corollary 7.8. Hω+CAω
¬ is closed under the fan rule.

Some consequences of CAω
¬ : Relative to (weak fragments of) E-HAω , CAω

¬ implies

1) the schema of comprehension for arbitrary Harrop formulas

CAω
Harrop : ∃Φ∀xσ (

Φ(x) =0 0 ↔ A(x)
)
,

where A is Harrop (which includes the case CAω
e f where A is ∃-free),

2) as a special case of CAω
e f ⊆ CAω

Harrop we get

∃Φ2∀ f 1(Φ( f ) =0 0 ↔∀x0( f (x) =0 0)
)
,

3) the binary (‘weak’) König’s lemma WKL and its uniform version UWKL, where
WKL is defined as

WKL: ∀ f 1
(

T ( f )∧∀x0∃n0(lth n = x∧ f n = 0)→∃b ≤1 λ k.1∀x0( f (bx) = 0
))

,

where T ( f ) :≡∀n,m
(

f (n∗m) = 0→ f n = 0
)
∧∀n,x

(
f (n∗< x >) = 0→ x≤ 1

)
.

T ( f ) asserts that f represents a 0,1-tree.
UWKL is defined as

UWKL:

∃Φ ≤1(1) 1∀ f 1
(

T ( f )∧∀x0∃n0(lth n = x∧ f n = 0) →∀x0( f (Φ( f )x) = 0
))

.

These principles are discussed in detail in chapters 9 and 10 below. We only men-
tion here a result due to H. Ishihara ([171, 175]) which states that relative to e.g.
E-HAω , WKL implies the following contrapositive form – called fan principle –
which in contrast to the ineffective WKL is accepted in intuitionistic analysis.

FANKL : T ( f )∧∀b ≤1 1∃x0( f (bx) =0 0
)
→∃x0∀b ≤1 1∃x̃ ≤ x

(
f (bx̃) =0 0

)
.

This and more general fan principles will be discussed in chapter 12.
4) the law-of-excluded-middle schema for negated formulas ¬A∨¬¬A (and conse-

quently for Harrop and ∃-free formulas) as well as the independence-of-premise
principle for these formulas.

As a consequence of the fact that UWKL is equivalent to a sentence of the form Ξ
we obtain from corollary 7.5:
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Corollary 7.9. Let Hω be as in proposition 7.3. Then Hω+UWKL is closed under
the fan rule.

Let Σ0
1 -DNE denote the principle of double-negation-elimination for Σ0

1 -formulas
containing only number parameters:

Σ0
1 -DNE : ¬¬∃x0P(a0,x0) →∃x0P(a0,x0),

where P is a primitive recursive predicate and all parameters are shown. It is clear
that Σ0

1 -DNE is the special case M0 of the Markov principle Mω when restricted to
the language of HA (identifying HA with its canonical embedding into E-HAω ).

Similarly we define the schemas of Π 0
1 -LEM (resp. Σ0

1 -LEM) of the law-of-excluded-
middle restricted to Π 0

1 (resp. Σ0
1 )-formulas containing only number parameters:

Π 0
n -LEM : A∨¬A, A ∈ Π 0

n containing only number parameters

(analogously for Σ0
1 -LEM).

In the following, we implicitly refer to the obvious embedding of HA into E-HAω .

Corollary 7.10. E-HAω+AC+CAω
¬ � Σ0

1 -DNE, Σ0
1 -LEM.

Proof: Let T (x,y,z) denote the primitive recursive Kleene T -predicate.
If Σ0

1 -DNE would be derivable we would get

E-HAω+AC+CAω
¬ � ∀x(¬¬∃yT (x,x,y) →∃zT (x,x,z))

and so (using IPω
¬ which is derivable from CAω

¬ )

E-HAω+AC+CAω
¬ � ∀x∃z(¬¬∃yT (x,x,y) → T (x,x,z)).

By corollary 7.7 we can extract a closed term t1 of E-HAω such that

E-HAω+AC+CAω
¬ � ∀x∃z ≤ tx(¬¬∃yT (x,x,y) → T (x,x,z)).

t denotes a computable function. Since T is decidable we can define a computable
function f such that

∀x( f (x) = 0 ↔∃z ≤ txT (x,x,z))

which contradicts the undecidability of the (special) halting problem. The underiv-
ability of Σ0

1 -LEM follows a-fortiori. �

Corollary 7.11. HA+Π 0
1 -LEM � Σ0

1 -DNE, Σ0
1 -LEM.

Proof: The corollary follows from the previous one by observing that HA+Π 0
1 -

LEM is (modulo the aforementioned embedding) a subsystem of E-HAω+CAω
e f

and hence of E-HAω+CAω
¬ . �

We now give another application of corollary 7.7: we show that the so-called weak
Markov principle WMP is not derivable in E-HAω+AC+CAω

¬ .
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Definition 7.12. 1) A real number a ∈ R is pseudo-positive if

∀x ∈ R(¬¬(0 < x)∨¬¬(x < a)).

2) a ∈ R is positive if a > 0.

Remark 7.13. 1) Without loss of generality we may restrict x ∈ R in the definition
of pseudo-positivity to x ∈ [0,1].

2) ‘x > y’ for x,y ∈ R is to be read as a positive existence statement
‘∃n ∈ N(x ≥ y + 2−n)’ which has – constructively – to be distinguished from
the negative statement ‘¬(x ≤ y)’. Using the representation of real numbers from
chapter 4 it actually becomes the following Σ0

1 -formula

∃n0( f̂x(n + 1)−Q f̂y(n + 1)≥Q 〈2−n〉
)
,

where fx ( fy) is a representative of x (y).

Definition 7.14. Weak Markov’s principle is the statement

WMP: Every pseudo-positive real number is positive.

WMP has first been considered by Mandelkern in [271, 272] (in the former pa-
per under the name ‘almost separating principle’ (ASP) and in the latter as ‘weak
limited principle of existence’ (WLPE)). Under the currently common name of
weak Markov’s principle it has been studied by Ishihara ([172, 173]). WMP follows
easily from the usual Markov principle as well as from an appropriate continuity
principle and also from the extended Church’s thesis ECT0 (see [174]). So WMP
holds both in Russian constructive mathematics as well as in intuitionistic mathe-
matics (in the sense of [47]). For many years it was open whether WMP can be de-
rived in systems used to formalize constructive mathematics in the sense of Bishop
such as e.g. E-HAω+AC. In [222] it was shown that it is even underivable in E-
HAω+AC+CAω

¬ . We will present here the amazingly simple proof of this as an
application of corollary 7.7.

Theorem 7.15. E-HAω+AC+CAω
¬ � WMP.

Proof: Let Hω :=E-HAω+AC+CAω
¬ and assume that Hω � WMP. Restricting

w.l.o.g. a,x to [0,1] and making use of our representation of [0,1] from definition
4.24 and lemma 4.25.1) and 4.25.2) this gives us

Hω � ∀a1(∀x1(¬¬(0 <R x̃)∨¬¬(x̃ <R ã)) →∃k0(ã >R 2−k).

Using lemma 4.25.3) and 4.25.4) this is equivalent to

Hω � ∀a ≤1 N
(
∀x1(¬¬(0 <R x̃)∨¬¬(x̃ <R ã)) →∃k0(ã >R 2−k)

)
,

where N is the function from lemma 4.25.4). This in turn is equivalent to
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Hω � ∀a ≤1 N
(
∀x1∃n ≤0 1[(n =0 0 →¬¬(0 <R x̃))∧ (n = 0 →¬¬(x̃ <R ã))]

→∃k0(ã >R 2−k)
)
,

which implies

Hω � ∀a ≤1 N ∀Z ≤2 1
(
∀x1[(Z(x) =0 0 →¬¬(0 <R x̃))∧ (Z(x) = 0 →¬¬(x̃ <R ã))] →∃k0(ã >R 2−k)

)
.

The premise ‘∀x1[(Z(x) = 0 →¬¬(0 <R x̃))∧ (Z(x) = 0 →¬¬(x̃ <R ã))]’ is (rela-
tive to E-HAω ) equivalent to its double negation and hence is equivalent to a negated
formula ¬B. Thus (using IPω

¬ which follows from CAω
¬ )

Hω � ∀a ≤1 N ∀Z ≤2 1∃k0

(
∀x1[(Z(x) = 0 →¬¬(0 <R x̃))∧ (Z(x) = 0 →¬¬(x̃ <R ã))] → ã >R 2−k

)
.

Now corollary 7.7 yields a closed number term t0 which can be reduced to a numeral
m (see e.g. [366]) such that

Hω � ∀a ≤1 N ∀Z ≤2 1
(
∀x1[(Z(x) = 0 →¬¬(0 <R x̃))∧ (Z(x) = 0 →¬¬(x̃ <R ã))] → ã >R 2−m

)
.

Applying AC1,0 this implies

Hω � ∀a ≤1 N
(
∀x1∃n ≤0 1[(n = 0 →¬¬(0 <R x̃))∧ (n = 0 →¬¬(x̃ <R ã))] → ã >R 2−m

)
.

The premise is equivalent to (our formalization of) ã being pseudo-positive. Hence
we obtain

Hω � ∀a ∈ [0,1]
(
a pseudo-positive → a > 2−m)

which obviously is false. Thus we conclude that Hω
� WMP. �

We now come back to the main topic of this section, namely the extraction of uni-
form bounds from proofs in semi-constructive systems, and summarize our results
in the most useful form:

Let Ω be a set of sentences of the form

∀uδ (
C(u) →∃v ≤σ r u¬B(u,v)

)
,

where B,C are arbitrary formulas. For a given such set Ω let Ω̃ be the set of sen-
tences

∃V ≤ r∀u
(
C(u) →¬B(u,V u)

)
.
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Theorem 7.16 (Main theorem on uniform bound extraction by monotone mr).
Let Hω ,A,s and τ be as in proposition 7.3. Then we have the following rule:

⎧
⎨

⎩

Hω + Ω � ∀x1∀y ≤ρ sx∃zτ A(x,y,z) ⇒

Hω + Ω̃ � ∀x1∀y ≤ρ sx∃z ≤τ txA(x,y,z),

where t is a suitable closed term of E-HAω which can be extracted from a given
proof of the assumption.

For H:=E-HAω+AC+IPω
¬ one can replace Ω̃ in the conclusion by Ω .

As in theorem 6.8 the result also holds for tuples of variables.

Proof: The theorem follows from proposition 7.3 by observing that

1) E-HAω + Ω is contained in E-HAω + Ω̃ and
2) every sentence in Ω̃ is – relative to E-HAω – equivalent to a sentence

∃V ≤ r¬¬∀u
(
C(u) →¬B(u,V u)

)

of the form Ξ .

The second claim in the theorem follows using the fact that (over E-HAω+AC+IPω
e f

and hence over E-HAω+AC+IPω
¬ ) the formula C(u) is equivalent to a formula of

the form ∃a Ce f (u,a) with Ce f (u,a) :≡ a mr C(u) being ∃-free (see theorem 5.12).
We now use the sentences

(∗) ∃V ≤ λ a.r∀u
(
Ce f (u,a) →¬B(u,V au)

)

instead of the sentences Ω̃ which, again, are (over E-HAω) equivalent to sentences
of the form Ξ , namely

∃V ≤ λ a.r∀u¬¬
(
Ce f (u,a) →¬B(u,V au)

)
.

It remains to show that (∗) is equivalent to

(∗∗) ∀uδ (
C(u) →∃v ≤σ r u¬B(u,v)

)

over E-HAω+AC+IPω
¬ : Over this theory, clearly (∗∗) is equivalent to

∀u,a∃v
(
Ce f (u,a) → v ≤ r u∧¬B(u,v)

)
.

So, obviously, (∗) implies (∗∗). For the converse direction take v′ with v′i :=
minσi(vi,riu) to obtain (using the extensionality axiom)

∀u,a∃v ≤ r u
(
Ce f (u,a) →¬B(u,v)

)
.

Finally, apply AC. �
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Remark 7.17. The case H:=E-HAω+AC+IPω
¬ in the above theorem can actually

be established using only mr instead of mrt since over this theory we have that
∃x (x mr A) ↔ A (by theorem 5.12).

With a similar proof one can show that in theorem 7.16 one can allow Ω to depend
on x,y : Let Ω be a formula of the form

∀uδ (
C(u,x,y) →∃v ≤σ r u¬B(u,v,x,y)

)

containing only x,y free. Let Ω̃ be the formula

∃V ≤ r∀u
(
C(u,x,y) →¬B(u,V u,x,y)

)
.

Theorem 7.18. Let Hω ,A,s and τ be as before. Then we have the following rule:
⎧
⎨

⎩

Hω � ∀x1∀y ≤ρ sx
(
Ω(x,y) →∃zτ A(x,y,z)

)
⇒

Hω � ∀x1∀y ≤ρ sx
(
Ω̃ (x,y) →∃z ≤τ txA(x,y,z)

)
,

where t is a suitable closed term of E-HAω which can be extracted from a given
proof of the assumption.
As in theorem 6.8 the result also holds for tuples of variables.

7.2 Fragments, exercises, historical comments and suggested
further reading

Proposition 7.3, corollaries 7.7,7.8 and theorem 7.16 are also valid with E-HAω

replaced by T ω
i := Ê-HA

ω
|\, E-GnAω

i (n ≥ 2) instead of E-HAω . This follows by
an inspection of the proofs and the fact that monotone modified realizability applies
to these systems as we sketched in the remark at the end of the previous chapter.

Exercises:

1) Prove the claims in remark 7.2.
2) Give the details of the proof of proposition 7.3.
3) Prove the claim in remark 7.4.
4) Argue using corollary 7.7 that not even ¬A∨¬¬A (for arbitrary A) suffices to

construct a sequence ( fn) in C[0,1] that pointwise but not uniformly converges
to 0. Which instance of LEM is used in the usual classical counterexamples?

Historical comments and suggestions for further reading: The results presented
in this chapter are mostly taken from Kohlenbach [212] which contains further
related material. The corollaries 7.10, 7.11 were prompted by recent work of S.
Hayashi on his so-called limit computable mathematics (see Hayashi-Nakata [151]).
A thorough study of a hierarchy of restricted forms of the law-of-excluded middle
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schema LEM and related principles is given in Akama et al. [3]. In [361], Toft-
dal calibrates (over HA) various ineffective principles in mathematics in terms of
restricted forms of LEM. Theorem 7.15 is taken from Kohlenbach [222].



Chapter 8
Gödel’s functional (‘Dialectica’) interpretation

8.1 Introduction

The Gödel functional interpretation, introduced in [133], assigns to each formula
A(a) of WE-HAω a formula AD ≡ ∃x∀yAD(x,y,a), where AD is quantifier-free (and
hence decidable) and x,y are tuples of variables of finite type.

In contrast to the no-counterexample interpretation, which we briefly discussed in
chapter 2, the functional interpretation does not require A to be in prenex normal
form and, therefore, is applicable in an intuitionistic context like WE-HAω where
not every formula is provably equivalent to a prenex one.

Like modified realizability, but in contrast to the no-counterexample interpretation,
functional interpretation has a nice behavior with respect to the logical deduction
rules (modus ponens).

In contrast to the modified realizability interpretation, functional interpretation sat-
isfies the Markov principle Mω which is crucial in all applications to mathematical
analysis discussed in chapters 16 and 18.

Consider a proof in WE-HAω of a theorem of the form

(+) ∀yA0(y) →∀xB0(x)

where A0,B0 are quantifier-free.
Since (+) is ∃-free it is unchanged by modified realizability with the realizing tuple
being empty. However, there is an obvious computational challenge provided by
(+) which becomes apparent if we consider the following strong version of (+)

(++) ∀x∃y
(
A0(y) → B0(x)

)
.

The challenge is to extract a program t such that
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(+++) ∀x
(
A0(tx) → B0(x)

)
.

Modified realizability doesn’t accept this challenge as the passage from (+) to
(++) requires the Markov principle (plus the decidability of quantifier-free for-
mulas which holds in all our systems). However, as a consequence of the fact that
functional interpretation does satisfy Markov’s principle it interprets (+) as (++)
and extracts from a given proof of (+) a term t satisfying (+++).

In chapter 10 we will introduce a translation of the classical variant WE-PAω of
WE-HAω (i.e. WE-HAω plus the law-of-excluded-middle schema A∨¬A) into WE-
HAω , the so-called negative translation A �→ A′ due to [130]. We will see that the
composition of ′ and D, A �→ (A′)D provides a very subtle constructive interpreta-
tion of A which faithfully reflects the proof-theoretic and computational strength of
A (in contrast to the no-counterexample interpretation of (a prenex normal form of)
A which in general is a much weaker interpretation and can be established as a par-
ticular corollary of the functional interpretation). The price to be paid for this is the
necessity to use functionals of arbitrary finite types already for A ∈ L (PA). More-
over, the functional interpretation is more involved than the modified realizability
interpretation since (closely related to the fact that it satisfies the Markov princi-
ple) it analyses logically complex formulas down to the level of purely universal
formulas whereas modified realizability stops at the ∃-free level. It is this feature
which makes the composition of negative translation and functional interpretation
a powerful tool of extractive proof theory for classical non-constructive proofs. In
contrast to this the combination of negative translation and modified realizability
interpretation x mr A′ would be useless since A′ always is an ∃-free formula and,
therefore, (x mr A′)≡ A′ where x is the empty tuple (one can, however, use modified
realizability in connection with the negative translation if one applies the so-called
Friedman-Dragalin A-translation as an intermediate step, see chapter 14).

There are two facts any interpretation which

1) satisfies the Markov principle (whose definition we recall here)

Mω : ¬¬∃xA0(x) →∃xA0(x), A0 quantifier-free,

and
2) extracts computational witnesses from proofs

has to face:

1) full extensionality will not be permissible,
2) only a weakened form of IPω

e f will be satisfied.

Let us discuss the extensionality issue first.

By the extensionality axiom combined with Mω we can prove in E-HAω+Mω in
particular

(1) ∀ϕ2, f 1,g1∃x0( f (x) =0 g(x) → ϕ( f ) =0 ϕ(g))
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and
(2) ∀Φ3,ϕ2,ψ2∃ f 1(ϕ( f ) =0 ψ( f ) → Φ(ϕ) =0 Φ(ψ)).

As we discussed already it was shown in [163] that no term of E-HAω provides a
witness for ‘∃x’ in (1) (uniformly in ϕ , f ,g).
For (2) there is not even a functional definable in ZF set theory which realizes ‘∃ f ’
as a functional in Φ,ϕ ,ψ as was shown again in [163].

So as a consequence of the fact that functional interpretation satisfies Mω we have
to restrict E-HAω to its weakly extensional version WE-HAω . For applications to
numerical analysis, this restriction will later turn out to be inessential due to an
‘elimination of extensionality’-technique developed by Gandy and Luckhardt which
we will briefly treat in chapter 10.

Let us now discuss the need to further restrict the independence of premise principle
(the argument given below and further results in this direction are due to [179]):
Suppose we would have a computational proof interpretation for
T :=WE-HAω+IPω

e f +Mω . By Mω , T proves (here again T denotes the Kleene-T
predicate)

∀x
(
¬¬∃yT (x,x,y) →∃zT (x,x,z)

)

and hence by IPω
e f (using that intuitionistically ¬¬∃↔ ¬∀¬)

∀x∃z
(
¬¬∃yT (x,x,y) → T (x,x,z)

)
.

But any witness function f (x) := z for this statement would allow to solve the spe-
cial halting problem and, therefore, cannot be computable.
This argument shows that already independence-of-premise for premises¬¬∃yA0(y)
is too strong in the presence of Mω to allow a computational interpretation. We will
see below, however, that functional interpretation does satisfy the independence-of-
premise principle for purely universal premises.

Motivation of the functional interpretation:

The definition of AD (like x mr A) proceeds by induction on the logical structure of
A (i.e. the length and the types of x,y only depend on the logical structure of A).
The most interesting and difficult case again is the implication whose treatment we
are going to motivate now:
Suppose we have already defined the functional interpretations AD ≡ ∃x∀yAD(x,y)
and BD ≡ ∃u∀vBD(u,v). We are trying to define (A → B)D :
First consider

(AD → BD) ≡
(
∃x∀yAD(x,y) →∃u∀vBD(u,v)

)
.

Our strategy to obtain from this a formula of the form ∃a∀b(A → B)D (with
(A → B)D quantifier-free) is to transform (AD → BD) into prenex normal form and
then to apply the axiom of choice AC.
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It is an easy exercise to verify that there are four different prenex normal forms
of AD → BD. We try to choose the most constructive (or rather: the least non-
constructive) one:

For the first step we have two possibilities:

∃x∀yAD(x,y) →∃u∀vBD(u,v)

�→

⎧
⎨

⎩

(1) ∀x
(
∀yAD(x,y) →∃u∀vBD(u,v)

)

(2) ∃u
(
∃x∀yAD(x,y) →∀vBD(u,v)

)
.

Here the choice is obvious: the passage to (1) is intuitionistically valid, whereas the
passage to (2) not even holds in ILω+ IPω

e f + Mω .
From (1) there are two ways to proceed further:

(1) �→

⎧
⎨

⎩

(1.1)∀x∃u
(
∀yAD(x,y) →∀vBD(u,v)

)

(1.2)∀x∃y
(
AD(x,y) →∃u∀vBD(u,v)

)
.

This time the choice is more difficult since both implications (1) → (1.1) and
(1) → (1.2) are not provable in ILω . So we have to compromise our goal to use
only strictly constructive transformation steps. However the first implication only
requires a weak form of IPω

e f (for purely universal formulas A) in addition to ILω

which has some constructive justification by the results of chapter 5. So lets choose
(1.1).
From there we have two possibilities to finish our prenexation:

(1.1) �→

⎧
⎨

⎩

(1.1.1)∀x∃u∀v∃y
(
AD(x,y) → BD(u,v)

)

(1.1.2)∀x∃u∃y∀v
(
AD(x,y) → BD(u,v)

)
.

Again the choice is not obvious: both implications are not provable in ILω .
Lets consider (1.1) → (1.1.1) first: The first step to

∀x∃u∀v
(
∀yAD(x,y) → BD(u,v)

)

is perfectly valid from an intuitionistic point of view. However from there we –
intuitionistically – only get (using the decidability of the quantifier-free formulas
AD,BD, see the exercise below)

∀x∃u∀v¬¬∃y
(
AD(x,y) → BD(u,v)

)

and so we need the Markov principle Mω to obtain (1.1.1).
For (1.1) → (1.1.2) the first step to

∀x∃u∃y
(
AD(x,y) →∀vBD(u,v)

)
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is not intuitionistically valid but again only the passage to the weaker

∀x∃u¬¬∃y
(
AD(x,y) →∀vBD(u,v)

)
.

However this time not even Mω suffices to get rid of ¬¬ since ‘AD(x,y) →
∀vBD(u,v)’ is not quantifier-free.
So the implication ‘(1.1)→ (1.1.1)’ is less non-constructive than ‘(1.1)→ (1.1.2)’.
Hence we now ‘officially’ choose (1.1.1) as our prenex normal form of AD → BD.
Applying AC to (1.1.1) we finally obtain

(A → B)D :≡ ∃U ,Y∀x,v
(

AD(x,Y xv) → BD(U x,v)
︸ ︷︷ ︸

(A→B)D:≡

)
.

Despite of the fact that we had to make various compromises to end up with
(A → B)D, this interpretation works while any of the remaining three prenex normal
forms of AD → BD would result in a definition of (A → B)D which even for B :≡ A
in general would fail to have a constructive (computable) realization (exercise).

8.2 The soundness and program extraction theorems

We now give the complete definition of Gödel’s functional interpretation:

Definition 8.1 (Gödel [133]). To every formula A of L (WE-HAω ) we assign a
translation AD ≡ ∃x∀yAD(x,y) in the same language. The free variables of AD are
that of A. The types and length of x,y only depend on the logical structure of A. AD
is a quantifier-free formula (even without ∨).

(i) AD :≡ AD :≡ A for prime formulas A.

Let AD ≡ ∃x∀yAD(x,y) and BD ≡ ∃u∀vBD(u,v). Then

(ii) (A∧B)D :≡ ∃x,u∀y,v[A∧B]D
:≡ ∃x,u∀y,v[AD(x,y)∧BD(u,v)],

(iii) (A∨B)D :≡ ∃z0,x,u∀y,v[A∨B]D
:≡ ∃z0,x,u∀y,v[(z = 0 → AD(x,y))∧ (z �= 0 → BD(u,v))],

(iv) (A → B)D :≡ ∃U ,Y∀x,v(A → B)D :≡ ∃U ,Y∀x,v
(
AD(x,Y xv) → BD(U x,v)

)
,

(v) (∃zρ A(z))D :≡ ∃z,x∀y(∃zA(z))D :≡ ∃z,x∀yAD(x,y,z),
(vi) (∀zρ A(z))D :≡ ∃X∀z,y(∀zA(z))D :≡ ∃X∀z,yAD(Xz,y,z),

Remark 8.2. (AD)D ≡ AD.

Remark 8.3. As a consequence of the treatment of implication we obtain

(i) (¬A)D ≡ ∃Y∀x¬AD(x,Y x),
(ii) (¬¬A)D ≡∃X∀Y¬¬AD(X Y ,Y (X Y ))↔∃X∀YAD(X Y ,Y (X Y )), where the equiv-

alence is provable in WE-HAω .
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Definition 8.4. The independence-of-premise schema IPω
∀ for universal premises is

the union (for all types) of

IPρ
∀ : (∀xA0(x) →∃yρ B(y)) →∃yρ(∀xA0(x) → B(y)),

where y is not free in ∀xA0(x).

Remark 8.5. There are even closed instances of IP0
∀ in the language L (HA) that are

not provable in HA. See Troelstra [366] (3.1.11).

Theorem 8.6 (soundness of functional interpretation, Gödel [133], Yasugi [380],
Troelstra [366]).
Let P be an arbitrary set of purely universal sentences ∀xσ B0(x) (B0 quantifier-
free) of L (WE-HAω ) and A(a) be a formula of L (WE-HAω) containing only a
free.
Then the following rule holds:

⎧
⎨

⎩

WE-HAω+ AC + IPω
∀ + Mω +P  A(a) implies that

WE-HAω +P  ∀yAD(t a,y,a),

where t is a suitable tuple of closed terms of WE-HAω which can be extracted from
a given proof of the assumption.

Proof: As in the proof of the soundness theorem for modified realizability we pro-
ceed by induction on the length of the derivation.

I) Logical axioms and rules:

1) A → A∧A:

(A → A∧A)D ≡
(
∃x∀yAD(x,y,a) →∃x′,x′′∀y′,y′′

(
AD(x′,y′,a)∧AD(x′′,y′′,a)

))D ≡

∃Y ,X ′,X ′′∀x,y′,y′′
(
AD(x,Y xy′y′′,a) → AD(X ′x,y′,a)∧AD(X ′′x,y′′,a)

)
.

Hence
tX ′ := tX ′′ := λ a,x.x

tY axy′y′′ :=

⎧
⎨

⎩

y′, if tADxy′a �= 0

y′′, if tADxy′a = 0,

(proposition 3.19) satisfy the functional interpretation of A → A∧ A (here tAD

is a closed term of WE-HAω such that WE-HAω  tADxya =0 0 ↔ AD(x,y,a),
proposition 3.17).

2) A∨A → A :
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(A∨A → A)D ≡ ∃Y ,Y ′,X ′′∀z0,x,x′,y′′
((

z =0 0 → AD(x,Y zxx′y′′,a)
)
∧

(
z �= 0 → AD(x′,Y ′zxx′y′′,a)

)

→ AD(X ′′zxx′,y′′,a)
)
.

Define

tX ′′ := λ a,z,x,x′.

⎧
⎨

⎩

x, if z = 0

x′, if z �= 0,

tY := tY ′ := λ a,z,x,x′,y′′.y′′.

These terms realize ‘∃Y ,Y ′,X ′′’, and hence satisfy the functional interpretation
of the axiom.

3) A → A∨B :

(A → A∨B)D ≡
(
∃x∀yAD(x,y,a) →

∃z0,x′,u∀y′,v
(
(z = 0 → AD(x′,y′,a))∧ (z �= 0 → BD(u,v,a′)))

)D

≡ ∃Z,X ′,U ,Y∀x,y′,v
(
AD(x,Y xy′v,a) →

(Zx = 0 → AD(X ′x,y′,a))∧ (Zx �= 0 → BD(U x,v,a′))
)
.

Hence tY := λ ã,x,y′,v.y′, tZ := λ ã,x.00, tX ′ := λ ã,x.x, tU := λ ã,x.O , where
ã = {a}∪{a′}, satisfy the functional interpretation of A → A∨B.

4) A∧B → A :

(A∧B → A)D ≡
(
∃x,u∀y,v

(
AD(x,y,a))∧BD(u,v,a′)) →∃x′∀y′AD(x′,y′,a)

)D

≡ ∃X ′,Y ,V∀x,u,y′
(
AD(x,Y xuy′,a)∧BD(u,V xuy′,a′) → AD(X ′xu,y′,a)

)
.

Hence tX ′ := λ ã,x,u.x, tY := λ ã,x,u,y′.y′, tV := λ ã,x,u,y′.O, where ã = {a}∪
{a′}, satisfy the functional interpretation of A∧B → A.

5) A∨B → B∨A :

(A∨B → B∨A)D ≡ ∃Z′,X ′,U ′,Y ,V∀z0,x,u,y′,v′

{
(
z = 0 → AD(x,Y zxuy′v′,a)

)
∧

(
z �= 0 → BD(u,V zx uy′v′,a′)

)

→
(
Z′zx u = 0 → BD(U ′zxu, v′,a′)

)
∧

(
Z′zxu �= 0 → AD(X ′zxu,y′,a)

)
}.

Define tU ′ := λ ã,z,x,u.u, tX ′ := λ ã,z,x,u.x, tY := λ ã,z,x,u,y′,v′.y′,
tV := λ ã,z,x,u,y′,v′.v′ and tZ′ := λ ã,z,x,u.sg(z0), where

sg(z0) :=

⎧
⎨

⎩

0, if z �= 0

1, if z = 0
and ã = {a}∪{a′}.

6) A∧B → B∧A :
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(A∧B → B∧A)D ≡ ∃U ′,X ′,Y ,V∀x,u,v′,y′
(
AD(x,Y xuv′y′,a)∧BD(u,V xuv′y′,a′)

→ BD(U ′xu,v′,a′)∧AD(X ′xu,y′,a)
)
.

Define

tU ′ := λ ã,x,u.u, tX ′ := λ ã,x,u.x, tY := λ ã,x,u,v′,y′.y′, tV := λ ã,x,u,v′,y′.v′.

7) ⊥→ A :
(
⊥→∃x∀yAD(x,y,a)

)D ≡ ∃x∀y(⊥→ AD(x,y,a)). Take tx := λ a.O.
8) ∀zA → A[t/z] : Let a be all the free variables in A[t/z].

(
∀zA → A[t/z]

)D ≡
(
∃X∀z,yAD(Xz,y,z) →∃x′∀y′AD(x′,y′,t)

)D

≡ ∃X ′,Z,Y∀X ,y′
(
AD(X(ZXy′),Y Xy′,ZXy′) → AD(X ′X ,y′, t)

)
.

Now take

tX ′ := λ a,X .Xt, tZ := λ a,X ,y′.t, tY := λ a,X ,y′.y′.

9) A[t/z] →∃zA : Let a be all the free variables in A[t/z].

(
A[t/z]→∃zA

)D ≡
(
∃x∀yAD(x,y,t) →∃z,x′∀y′AD(x′,y′,z)

)D

≡ ∃Z,X ′,Y∀x,y′
(
AD(x,Y xy′,t) → AD(X ′x,y′,Zx)

)
.

Define
tZ := λ a,x.t, tX ′ := λ a,x.x, tY := λ a,x,y′.y′.

10) The modus ponens rule: Assume

(1) ∀yAD(t1a,y,a)

and
(2) ∀x,v

(
AD(x,t2ã xv,a) → BD(t3ãx,v,a′)

)
,

where ã = {a}∪{a′}.
We have to construct t4 such that

∀vBD(t4a′,v,a′).

Apply (2) to x := t1a. Then

(3) ∀v
(
AD(t1a,t2(ã,t1a,v),a) → BD(t3(ã,t1a),v,a′)

)
.

Apply (1) to y := t2(ã,t1a,v), then
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(4) ∀vAD(t1a,t2(ã,t1a,v),a).

Hence
(5) ∀vBD(t3(ã,t1a),v,a′).

Let t[a′] be the result of replacing all variables ai in t3(ã, t1a) which do not occur
in a′ by O of appropriate type. Then t4 := λ a′.t[a′] does the job.

11) The syllogism rule: For notational simplicity we omit the free parameters this
time.
Assume

(1) ∀x,v
(
AD(x,t1xv) → BD(t2x,v)

)

and
(2) ∀u,w

(
BD(u,t3uw) →CD(t4u,w)

)
.

We have to construct t5,t6 such that

∀x,w
(
AD(x,t5xw) →CD(t6x,w)

)
.

Apply (1) to v = t3(t2x,w) and (2) to u = t2x. Then

(3) ∀x,w
(
AD(x,t1(x,t3(t2x,w))) →CD(t4(t2x),w)

)
.

Hence
t5 := λ x,w.t1(x,t3(t2x,w)), t6 := λ x.t4(t2x)

do the job.
12) The importation and exportation rules: Note that

(A∧B →C)D ≡ ∃P,Y ,V∀x,u,q
(
AD(x,Y xuq)∧BD(u,V xuq) →CD(Pxu,q)

)

and

(A → (B →C))D ≡

∃P,Y ,V∀x,u,q
(
AD(x,Y xuq) → (BD(u,V xuq) →CD(Pxu,q))

)
.

Hence any solution of (A∧B → C)D also is a solution of (A → (B → C))D and
vice versa. So we simply can copy the solutions from the premise of these rules
to obtain a solution for the conclusion.

13) The expansion rule: Again we omit the parameters for notational simplicity. Let
CD ≡ ∃p∀qCD(p,q). By induction hypothesis we have closed terms t1,t2 such
that

(1) ∀x,v
(
AD(x,t1xv) → BD(t2x,v)

)
.



134 8 Gödel’s functional (‘Dialectica’) interpretation

(C∨A →C∨B)D ≡
(
∃z0

1, p,x∀q,y [(z1 = 0 →CD)∧ (z1 �= 0 → AD)] →

∃z0
2, p′,u∀q′,v [(z2 = 0 →CD)∧ (z2 �= 0 → BD)]

)D

≡ ∃Z2,P′,U ,Q,Y∀z0
1, p,x,q′,v

(
[(z1 = 0 →CD(p,Qz1 pxq′v))∧ (z1 �= 0 → AD(x,Y z1 pxq′v))] →

[(Z2z1 px = 0 →CD(P′z1 px,q′))∧ (Z2z1 px �= 0 → BD(Uz1 px,v))]
)
.

Now take

tZ2 := λ z1, p,x.z1, tP′ := λ z1, p,x.p, tU := λ z1, p,x.t2x,

tQ := λ z1, p,x,q′,v.q′, tY := λ z1, p,x,q′,v.t1xv.

Using (1) it follows that these terms provide a solution for (C∨A →C∨B)D.
14) Quantifier rules: Consider B→A

B→∀zA , where z is not free in B. Let a be all the free
variables of B →∀zA. By induction hypothesis we have closed terms t1,t2 such
that

∀a,z,u,y
(
BD(u,t1azuy) → AD(t2azu,y,z)

)
.

(B →∀zA)D ≡ ∃X ,V∀u,z,y
(
BD(u,V uzy) → AD(X uz,y,z)

)
.

Now take
tV := λ a,u,z,y.t1a zuy, tX := λ a,u,z.t2azu.

The rule A→B
∃zA→B is treated analogously.

II) Axioms for =0,S,Π ,Σ ,R: These purely universal axioms are identical with their
own functional interpretation.

III) The quantifier-free extensionality rule QF-ER: Both the premise and the
conclusion are (modulo pulling out the universal quantifiers hidden in =ρ ,=τ to the
front) purely universal and so are identical to their functional interpretation. Note
that we may assume that A0 in QF-ER does not contain any ∨, since A0(x) can
be written as tA0x =0 0 in WE-HAω using only instances of QF-ER which do not
involve ‘∨’ to get x =0 y → t[x] =0 t[y] and to get functional completeness (lemma
3.15).

IV) The schema of induction: It is easier to use the equivalent induction rule: Let
B(y0)D ≡ ∃u∀vBD(u,v,y,a) and assume that we have already proved

⎧
⎨

⎩

∀vBD(t1a,v,0,a) and

∀u,w
(
BD(u,t2yauw,y,a) → BD(t3yau,w,y + 1,a)

)
.

Define t by simultaneous primitive recursion in higher types such that
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⎧
⎨

⎩

t(a,0) = t1a

t(a,y + 1) = t3(y,a,t(a,y)).

Then
⎧
⎨

⎩

∀vBD(t(a,0),v,0,a) and

∀w
(
BD(t(a,y),t2(y,a,t(a,y),w),y,a) → BD(t(a,y + 1),w,y + 1,a)

)

and therefore
⎧
⎨

⎩

∀vBD(t(a,0),v,0,a) and

∀vBD(t(a,y),v,y,a) →∀vBD(t(a,y + 1),v,y + 1,a).

Hence by the induction rule we obtain

∀vBD(t(a,y),v,y,a).

V) The functional interpretations of AC, Mω and IPω
∀ result in instances of (A →

A)D since for these principles the functional interpretations of the premise and the
conclusion are identical (in the case of Mω one has to use the stability of quantifier-
free formulas). Hence we only need simple projection terms for their solution which
can be verified already in WE-HAω without the use of AC, Mω and IPω

∀ (here we
may assume that the quantifier-free formulas A0 in Mω and IPω

∀ do not contain ∨ as
A0(a) can be written as tA0(a) =0 0).

VI) In the universal axioms P we can assume again that B0 does not contain ∨ so
that they are identical to their functional interpretations. �

Warning: The soundness theorem does not hold for E-HAω (see [163]). This is
indeed a consequence of the fact that the soundness of the functional interpretation
of a system implies that this system is closed under the Markov rule which E-HAω

is not (see [179]).

Remark 8.7. Remarks 5.10 and 5.11 (with P instead of Δe f ) apply to the soundness
theorem for functional interpretation as well. As in the proof of theorem 5.8 we
could also have extracted terms with free variables and only at the end (as in remark
5.9) perform a λ -abstraction rather than doing this at each step in the soundness
proof. Actually this would be more efficient in an implementation of the extraction
algorithms (see [156]).

Remark 8.8. Gödel actually established the conclusion of the soundness theorem in
(an intensional variant of) a quantifier-free fragment qf-(WE-HAω) of WE-HAω

which results if quantifiers are omitted from the language, the axiom schema of
induction is replaced by a quantifier-free rule of induction
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QF-IR :
A0(0) , A0(x0) → A0(x + 1)

A0(x)

and a substitution rule
Sub :

A
A[tρ/xρ ]

(replacing ∀-elimination) is added. The universal axioms P are added as open for-
mulas.
To verify AD(t a,y,a) in qf-(WE-HAω) requires a somewhat more complicated
treatment of induction (see e.g. [366]).

Corollary 8.9. Let A,B be formulas in L (WE-HAω). Then the following rule holds

WE-HAω+ AC + IPω
∀ + Mω  A ↔ B ⇒ WE-HAω  AD ↔ BD.

Proof: By the soundness theorem 8.6 the assumption implies that

WE-HAω  (A → B)D ∧ (B → A)D

and hence the claim since

WE-HAω  (A → B)D → (AD → BD).

�

Definition 8.10 ([366]). The subset Γ2 of formulas ∈ L (WE-HAω ) is defined in-
ductively by

1) Prime formulas are in Γ2.
2) A,B ∈ Γ2 ⇒ A∧B,A∨B,∀xA,∃xA ∈ Γ2.
3) If A is purely universal and B ∈ Γ2, then (∃xA → B) ∈ Γ2.

Lemma 8.11. For A ∈ Γ2 one has WE-HAω  AD → A.

Proof: Easy induction on the logical structure of A. �

Corollary 8.12. WE-HAω+ AC + IPω
∀ + Mω is conservative over WE-HAω with

respect to formulas A ∈ Γ2.

Proof: The corollary follows from theorem 8.6 and lemma 8.11. �

Proposition 8.13 (Characterization theorem for D, Yasugi [380], Troelstra [366]).

For all formulas A of WE-HAω one has

WE-HAω+ AC + IPω
∀ + Mω  A ↔ AD.
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Proof: Easy induction on the logical structure of A using exercise 5 below. �

Corollary 8.14. Let P be an arbitrary set of purely universal sentences ∀aσ B0(a)
(B0 quantifier-free) of WE-HAω . WE-HAω+ AC + IPω

∀ + Mω +P has the disjunc-
tion property DP, the existence property EP and is closed under the rules of choice
ACR and of independence-of-premise for purely universal formulas IPRω

∀ .

Proof: The corollary follows similarly to corollary 5.24 but with theorem 8.6 and
proposition 8.13 instead of modified realizability with truth. �

Theorem 8.15 (Main theorem on program extraction by D-interpretation). Let
P be an arbitrary set of purely universal sentences ∀aσ P0(a) (P0 quantifier-free)
of L (WE-HAω) and A0(xρ ,uδ ) be quantifier-free formula containing only x,u free
and B(xρ ,yτ ) an arbitrary formula containing only x,y free and ρ ,δ ,τ are arbitrary
types. Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-HAω+ AC + IPω
∀ + Mω +P  ∀xρ(

∀uδ A0(x,u) →∃yτ B(x,y)
)

then one can extract a closed term t of WE-HAω s.t.

WE-HAω+ AC + IPω
∀ + Mω +P  ∀xρ(

∀uδ A0(x,u) → B(x, tx)
)
.

In particular, if S ω |= P, then the conclusion holds in S ω .
The result also holds for tuples of variables x,u,y where then t is a tuple of closed
terms.

Proof: Let
Hω := WE-HAω+ AC + IPω

∀ + Mω +P

and assume that
Hω  ∀xρ(

∀uδ A0(x,u) →∃yτ B(x,y)
)
.

The by IPω
∀ we get

Hω  ∀xρ∃yτC(x,y),

where
C(x,y) :≡ (∀uδ A0(x,u) → B(x,y)).

Let CD(x,y) ≡ ∃a∀bCD(a,b,x,y). Then

(
∀x∃yC(x,y)

)D ≡ ∃Y,A∀x,bCD(Ax,b,x,Y x).

By theorem 8.6 there are closed terms t,s such that

WE-HAω +P  ∀x,bCD(sx,b,x, tx).

Hence
WE-HAω +P  ∀x∃a∀bCD(a,b,x, tx)

︸ ︷︷ ︸
≡CD(x,tx)

.
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By proposition 8.13 we have

Hω CD(x,tx) ↔C(x, tx)

and hence
Hω  ∀xC(x,tx).

�

8.3 Fragments, exercises, historical comments and suggested
further reading

Fragments:

Using the remark made at the end of chapter 5 one easily verifies that the sound-
ness theorem for the functional interpretation also holds if WE-HAω is replaced by
T ω

i := ŴE-HA
ω
|\, GnAω

i (n ≥ 2). Moreover, corollary 8.12 and proposition 8.13
and – most importantly – theorem 8.15 hold for these fragments as well (see [207]
for more details). In [71] functional interpretation is applied to systems of bounded
arithmetic corresponding to poly-time computability.

Exercises:

1) Let M′ be the schema

¬∀xA0(x) →∃x¬A0(x) (A0 quantifier-free).

Show that over WE-HAω the two schemas M′ and Mω are equivalent.
2) Solve the functional interpretation of

¬¬(∃xA0(x)∨¬∃xA0(x))

by a closed term of WE-HAω (where the quantifier-free formula A0 can be as-
sumed not to contain ∨).

3) Solve the functional interpretation of

¬¬A∧¬¬B →¬¬(A∧B).

4) (Troelstra [366]) In addition to the prenex normal form we used in the definition
of (A→B)D, there are three more prenex normal forms of (AD →BD) which give
rise to corresponding functional interpretations (A → B)i (i = 1,2,3) of A → B.
For all three of them already (A → A)i fails to have a computable solution for
suitable A.
Compute these interpretations (A → B)i and give counterexamples to the com-
putable solvability of (A → A)i for each of them.

5) Let P,Q be arbitrary formulas and x a variable not free in Q. Prove:
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a. IL+(¬¬P → P)  (∀xP → Q) →¬¬∃x(P → Q)
(Hint: First use Q∨¬Q and then argue using (A → B) → (¬¬A →¬¬B) that
actually the intuitionistic ¬¬(Q∨¬Q) is sufficient).

b. IL+(¬¬Q → Q)  ¬¬∃x(P → Q) → (∀xP → Q).

6) Prove the stronger form of the soundness theorem stated in remark 8.8.
7) Prove lemma 8.11.
8) Prove proposition 8.13.

Historical comments and suggested further reading: Gödel’s functional inter-
pretation as presented in this chapter was first published in Gödel [133] (an English
translation with extended introductory notes by A.S. Troelstra can be found in Gödel
[135]). However, Gödel arrived at this interpretation already around 1938 as is clear
from his lectures [131] and, in particular, [132] which were published only posthu-
mously in [136]. The same applies to Gödel’s more detailed 1972 version [134]
of [133] which first appeared in [135]. The system of primitive recursive function-
als of finite type was anticipated in Hilbert [161] as we mentioned already at the
end of chapter 3. Thorough treatments of functional interpretation can be found in
Troelstra [366] (chapter 3, section 5), Schütte [324] and Luckhardt [266]. The latter
covers in detail C. Spector’s extension of functional interpretation to analysis by
means of bar recursion as will be discussed in chapter 11. A more recent presen-
tation of functional interpretation is given in Avigad-Feferman [7] which is a very
readable and comprehensive treatment of the whole subject. A study of functional
interpretation based on a natural deduction calculus is given in Jørgensen [179].
For general background information on Gödel’s interpretation see also Kohlenbach
[230]. A nice parametric version of the soundness proof of D that also works for
various variants of functional interpretation as well as ‘mr’ and a family of realiz-
ability interpretations ‘in between’ mr and D (due to Stein [346]) is given in Oliva
[292]. Hernest [155] develops a so-called ‘Light functional interpretation’ (making
use of U. Berger’s concept of ‘uniform quantifiers’, Berger [19]) which allows one
to drop certain contractions connected to computationally empty quantifiers. A nice
application of this approach is given in Hernest [157]. A variant of functional in-
terpretation which interprets A → A∧A in a simpler way so that the decidability
of prime formulas is not needed was developed in Diller-Nahm [88]. For a recent
discussion of this version see Diller [87]. In Jørgensen [179, 180] the possibility of
a ‘with truth’-variant (analogous to ‘mrt’ discussed in chapter 5) of the Diller-Nahm
variant is investigated and it is shown that such an interpretation would not be sound
for the exportation rule (this shows that the claim made in Diller [87] that such an
interpretation would be sound is not correct). However, there exists a so-called q-
variant of ‘mr’ that is closely related to ‘mrt’ and which – for Kleene realizability
– was first introduced in Kleene [193]. An analogous q-version of the Diller-Nahm
interpretation is possible (see Stein [345]). Jørgensen [180] shows that this variant
can be used to give proof (alternative to the use of ‘mrt’) for the existence prop-
erty of a version HAω of WE-HAω that does not have an extensional treatment of
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equalities of higher type. A thorough investigation of functional interpretation from
the perspective of categorical proof theory is given in Hyland [170]. Bishop [33]
contains an interesting discussion about the functional interpretation of ‘→’ from a
constructive point of view. Applications of functional interpretation to systems of
bounded arithmetic are given in Cook-Urquhart [71]. A functional interpretation for
constructive set theories has been developed in Burr [61]. A type-free form of func-
tional interpretation applicable to Feferman’s systems EM of explicit mathematics
is developed in Beeson [13]. In Oliva [294], a decomposition of functional interpre-
tation into a functional interpretation of linear logic and Girard’s ([123]) embedding
of intuitionistic logic into linear logic is discussed. A monotone version of func-
tional interpretation (suitable for the extraction of uniform bounds) was introduced
in Kohlenbach [206] and will be discussed in chapter 9 below. Recently, a bounded
variant which is related in certain ways to the monotone version was developed in
Ferreira-Oliva [104]. For applications of (the combination of negative translation
and) functional interpretation to systems based on classical logic see chapter 10
and the references given there. A detailed analysis of functional interpretation in
terms of proof complexity is given in Hernest-Kohlenbach [159]. In Schwichten-
berg [329] functional interpretation is used to extract an algorithm which is close
to Euclid’s algorithm from a seemingly trivial proof. Semantical interpretations of
Gödel’s functional interpretation in terms of so-called ‘Dialectica categories’ have
been developed in de Paiva [78] and further studied in Hyland [170] and Biering
[31].



Chapter 9
Semi-intuitionistic systems and monotone
functional interpretation

9.1 The soundness and bound extraction theorems

Most of the applications of functional interpretation to concrete proofs in numeri-
cal functional analysis which were obtained in recent years (see chapters 16 and 18
for a survey of some of them) use a combination of functional interpretation with
Howard’s majorizability construction similarly to the corresponding combination in
the case of modified realizability. Analogously to the monotone modified realizabil-
ity interpretation one can define a monotone functional interpretation which directly
extract terms which majorize some functionals realizing the usual functional inter-
pretation. More precisely one can prove a soundness theorem with the statement in
the soundness theorem for functional interpretation replaced by

(+) ∃x
(
t∗ ma j x∧∀a,yAD(x(a),y,a)

)

for suitable closed terms t∗.
We then say that t∗ satisfies the monotone functional interpretation of A. The
soundness proof for the monotone functional interpretation proceeds by establishing
(+) by induction on the proof. It is similar to the usual soundness proof combined
with some easy majorization arguments. The construction of terms t∗ is even sim-
pler than the construction of t in the usual functional interpretation. E.g. consider
the case of the axiom A → A∧A, which is – as we saw in chapter 8 – by far the most
complicated axiom for the construction of terms satisfying the usual functional in-
terpretation (a detailed complexity analysis is carried out in [159]), the monotone
functional interpretation is simply satisfied by the terms

t∗X ′ := t∗X ′′ := λ a,x.x, t∗Yi
:= λ a,x,y′,y′′.max(y′i,y

′′
i ),

which avoids the complicated construction of tAD needed to satisfy the usual func-
tional interpretation of A → A∧A.
The most important feature of monotone functional interpretation is that a large
class of sentences Δ (including such important non-effective principles as the bi-
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nary König’s lemma which will be discussed further below in this chapter) have a
trivial monotone functional interpretation and, therefore, can – similarly to the uni-
versal sentences P considered in chapter 8 – just added as axioms without having
any impact neither on the extraction procedure nor on the extracted terms them-
selves.
Let Δ be a set of sentences of the form ∀aδ∃b ≤σ r a∀cγ B0(a,b,c), where B0 is
quantifier-free (which can as before be assumed not to contain ∨ since it can be
written as tB0 =0 0) and does not contain any further free variables than those shown
and r is a tuple of closed terms (of suitable types) of WE-HAω . The types δ ,σ ,γ
are arbitrary. Here ‘b ≤σ r a’ stands for

k∧

i=1

(bi ≤σi ria).

For a given set Δ we define Δ̃ as the corresponding set of the Skolem normal forms
of the sentences in Δ

{
ϕ̃ :≡ ∃B ≤ r∀a,cB0(a,Ba,c) : ϕ :≡ ∀aδ∃b ≤σ r a∀cγ B0(a,b,c) ∈ Δ

}
.

Note that for ϕ ∈ Δ
WE-HAω + b-AC � ϕ → ϕ̃ ,

where b-AC :≡ ⋃

δ ,ρ∈T

{
b-ACδ ,ρ

}
with

b-ACδ ,ρ :≡ ∀Zρδ (
∀xδ∃y ≤ρ Zx A(x,y,Z) →∃Y ≤ρδ Z∀xA(x,Y x,Z)

)

which in turn follows from AC (exercise).
We will denote the monotone functional interpretation by MD.

Theorem 9.1 (Soundness Theorem for MD).
Let Δ be as above and A(a) be a formula of L (WE-HAω ) containing only a free.
Then the following rule holds:

⎧
⎨

⎩

WE-HAω+ AC + IPω
∀ + Mω + Δ � A(a), then

WE-HAω + Δ̃ � ∃x(t∗ ma j x∧∀a,yAD(xa,y,a)),

where t∗ is a suitable tuple of closed terms of WE-HAω which can be extracted from
a given proof of the assumption.

Proof: Induction on the length of the proof. For the axioms (except Δ ), the re-
sult follows from the fact that the usual functional interpretation is satisfiable by
suitable closed terms t and Howard’s construction of majorizing functionals t∗ of
t (proposition 6.6). As mentioned above, the construction of t∗ when done directly
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is sometimes even simpler than that of t. This, in particular, applies to the axioms
A → A∧A and A∨A → A (for notational simplicity we drop the tuple notation and
assume that a comprises all the free variables occurring in any formula involved
with the understanding that – as in the soundness proof for functional interpretation
– variables which do not occur in the end formula can be replaced by constants Oρ

of appropriate type):

1) [A → A∧A]D ≡ ∃Y,X ′,X ′′∀x,y′,y′′(
AD(x,Y xy′y′′,a) → AD(X ′x,y′,a)∧AD(X ′′x,y′′,a)

)
.

Define
t∗Y := λ a,x,y′,y′′.max(y′,y′′), t∗X ′ := t∗X ′′ := λ a,x.x.

‘∃Y,X ′,X ′′’ is realized by

tY axy′y′′ :=

⎧
⎨

⎩

y′, if ¬AD(x,y′,a)

y′′, if AD(x,y′,a)
and tX ′ := tX ′′ := λ a,x.x.

Since t∗Y ma j tY , t∗X ′ ma j tX ′ and t∗X ′′ ma j tX ′′ , the terms t∗Y , t∗X ′ and t∗X ′′ fulfill our
claim.

2) [A∨A → A]D ≡ ∃Y,Y ′,X ′′∀z0,x,x′,y′′{
(
z =0 0 → AD(x,Y zxx′y′′,a)

)
∧(

z = 0 → AD(x′,Y ′zxx′y′′,a)
)
→ AD(X ′′zxx′,y′′,a)}.

Define

⎧
⎨

⎩

t∗X ′′ := λ a,z,x,x′.max(x,x′),

t∗Y := t∗Y ′ := λ a,z,x,x′,y′′.y′′.
The terms t∗X ′′ ,t∗Y and t∗Y ′ majorize the functionals

tX ′′az0xx′ :=

⎧
⎨

⎩

x, if z = 0

x′, if z = 0,

tY := t∗Y and tY ′ := t∗Y ′ , which realize ‘∃Y,Y ′,X ′′’, and hence satisfy the monotone
functional interpretation of the axiom.

3) The interpretation of A∨B → B∨A is also simplified if only a majorizing func-
tional has to be constructed:

(A∨B → B∨A)D ≡ ∃Z′,X ′,U ′,Y,V∀z0,x,u,y′,v′

{
(
z = 0 → AD(x,Y zxuy′v′,a)

)
∧

(
z = 0 → BD(u,Vzxuy′v′,a)

)

→
(
Z′zxu = 0 → BD(U ′zxu,v′,a)

)
∧

(
Z′zxu = 0 → AD(X ′zxu,y′,a)

)
}.

t∗U ′ := λ a,z,x,u.u, t∗X ′ := λ a,z,x,u.x, t∗Y := λ a,z,x,u,y′,v′.y′,
t∗V := λ a,z,x,u,y′,v′.v′ are defined as in the usual functional interpretation, but
t∗Z′ is now simply t∗Z′ := λ a,z,x,u.10 whereas the usual interpretation requires for
the realization of “∃Z′” the functional tZ′ := λ a,z,x,u.sg(z0), where sg(z0) :=
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⎧
⎨

⎩

0, if z = 0

1, if z = 0.

It is clear that t∗Z′ majorizes tZ′ .
4) The monotone functional interpretation of an axiom ∀aδ∃b ≤σ r a∀cγ B0(a,b,c)

in Δ is satisfied (provably in WE-HAω +∃B≤ r∀a,cB0(a,Ba,c)) by any tuple r∗

of closed terms which (provably in WE-HAω ) majorize r. Again, the construction
of r∗ is guaranteed by Howard’s technique.

5) Modus ponens and syllogism: Let t∗1 ,t∗2 ,t∗3 be such that
(1) ∃x1

(
t∗1 ma j x1 ∧∀y,aAD(x1a,y,a)

)
and

(2) ∃x2,x3

(
t∗2 ma j x2 ∧ t∗3 ma j x3 ∧∀x,v,a

(
AD(x,x2axv,a) → BD(x3ax,v,a)

))
.

Then t∗4 := λ a.t∗3 a(t∗1 a) ma j λ a.x3a(x1a) and λ a.x3a(x1a) realizes BD. As in the
proof of the soundness theorem for functional interpretation, we replace those
free variables ai from a that do not occur in B by O of appropriate type.
The rule A→B , B→C

A→C is treated similarly.
6) The monotone interpretation of the remaining logical rules uses the λ -terms of

the usual functional interpretation since they preserve majorizability. The treat-
ment of the quantifier-free extensionality rule as as trivial as for the usual func-
tional interpretation.

7) Induction rule:
B(0) , ∀y0(B(y) → B(y + 1)

)

∀yB(y)
.

Let (B(y))D ≡ ∃u∀vBD(u,v,y,a) and t∗1 ,t∗2 ,t∗3 be such that

∃x1
(
t∗1 ma j x1 ∧∀v,aBD(x1a,v,0,a)

)

and
∃x2,x3

(
t∗2 ma j x2 ∧ t∗3 ma j x3 ∧∀u,w,y,a

(
BD(u,x2yauw,y,a)

→ BD(x3yau,w,y + 1,a)
))

.

Define t∗ := tM , where t is defined by recursion
⎧
⎨

⎩

ta0 = t∗1 a

ta(y + 1) = t∗3 ya(tay).

One easily verifies (in WE-HAω ) that

t∗ ma j x, where x is defined by

⎧
⎨

⎩

xa0 = x1a

xa(y + 1) = x3ya(xay)
As in the soundness proof for functional interpretation it follows that

∀y0,vBD(xay,v,y,a).

�
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Remark 9.2. Theorem 9.1 holds analogously for ‘s-ma j’ instead of ‘ma j’.

Theorem 9.3 (Main theorem on uniform bound extraction by MD).
Let Δ as above and A(x1,yρ ,zτ ) an arbitrary formula containing only x,y,z free. Let
deg(τ) ≤ 2 and sρ(1) a closed term of WE-HAω . Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-HAω+ AC + IPω
∀ + Mω + Δ � ∀x1∀y ≤ρ sx∃zτ A(x,y,z)

then one can extract a closed term t of WE-HAω s.t.

WE-HAω+ AC + IPω
∀ + Mω + Δ � ∀x1∀y ≤ρ sx∃z ≤τ txA(x,y,z).

In particular, if S ω |= Δ , then the conclusion holds in S ω . As in theorem 6.8 the
result also holds for tuples of variables.
An analogous results holds for ŴE-HA

ω
|\ instead of WE-HAω .

Proof: Without loss of generality we can assume that τ = 2. As an abbreviation we
define T :=WE-HAω+AC+IPω

∀ +Mω . By the assumption and IPω
∀ we obtain

T + Δ � ∀x,y∃z(y ≤ sx → A(x,y,z)).

Monotone functional interpretation extracts a closed term t∗ in WE-HAω such that

T + Δ̃ � ∃Z
(
t∗ ma j Z ∧∀x∀y(y ≤ sx → A(x,y,Zxy))D

)
.

By proposition 8.13 we have T � GD ↔ G for all formulas G. Hence (using similar
reasoning as in the proof of theorem 6.8)

T + Δ̃ � ∃Z∀x∀y ≤ sx
(

λ w1.t∗xM(s∗xM)wM
︸ ︷︷ ︸

tx:=

≥2 Zxy∧A(x,y,Zxy)
)
,

and thus
T + Δ̃ � ∀x∀y ≤ sx∃z ≤2 txA(x,y,z).

Since – using AC –
T + Δ � Δ̃

this implies the conclusion of the theorem. �

Corollary to the proof of theorem 9.3: Using lemma 8.11 it follows from the proof
above that if A∈Γ2 as defined in 8.10, then the conclusion of theorem 9.3 is provable
in WE-HAω + Δ̃ .

As in the proof of corollary 6.10 one concludes

Corollary 9.4. WE-HAω+ AC + IPω
∀ + Mω + Δ is closed under the fan rule.

Remark 9.5. One easily obtains the variant of theorem 9.3 corresponding to propo-
sition 6.11 (exercise).
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9.2 Applications of monotone functional interpretation

Application I:
Analogously to the application of theorem 6.8 given at the end of chapter 6 we obtain
from theorem 9.3 the following rule for Hω := WE-HAω+AC+IPω

∀ +Mω + Δ :
⎧
⎨

⎩

Hω � ∀k0∀x ∈ [0,1]∃n0∀m ≥ n
(
|Φm(x)−Φ(x)| <R 2−k

)
⇒

Hω � ∀k0∃n0∀x ∈ [0,1]∀m ≥ n
(
|Φm(x)−Φ(x)| <R 2−k

)
,

where Φ1(1)(0)
(·) ,Φ1(1) again are closed terms of WE-HAω which (provably in WE-

HAω ) represent functions [0,1]→ R. Thus even in the presence of Mω we have that
provable pointwise convergence of Φn towards Φ on [0,1] implies provable uniform
convergence on [0,1].

Application II:

Definition 9.6 (Hereditarily extensional equality, Troelstra [366]). Between func-
tionals xρ

1 ,xρ
2 of type ρ we define the following relation by induction on ρ

⎧
⎨

⎩

x1 ≈0 x2 :≡ (x1 =0 x2),

x1 ≈τρ x2 :≡ ∀yρ
1 ,yρ

2

(
y1 ≈ρ y2 → x1y1 ≈τ x2y2

)
.

Lemma 9.7. 1) WE-HAω � x1 =ρ x̃1 ∧ x2 =ρ x̃2 ∧ x1 ≈ρ x2 → x̃1 ≈ρ x̃2.
2) Let ρ = τρk . . .ρ1. Then

WE-HAω � x ≈ρ x̃ ↔∀y1, ỹ1, . . . ,yk, ỹk
( k∧

i=1

(yi ≈ρi ỹi) → xy1 . . .xk ≈τ x̃ỹ1 . . . ỹk
)
.

Proof: 1) Induction on ρ . 2) induction on k. �

Proposition 9.8 (Troelstra [366]). Let tρ be a closed term of WE-HAω . Then

WE-HAω � t ≈ρ t.

Proof: Induction on the structure of t.
(i) Constants: Using the previous lemma one easily verifies that 00 ≈0 00, S ≈1 S,
Πρ ,τ ≈ Πρ ,τ , Σδ ,ρ ,τ ≈ Σδ ,ρ ,τ .

Rρ : We show by induction on x0 that Rρ x ≈ Rρ x, i.e.
k∧

i=1
((Ri)ρ x ≈ (Ri)ρ x):

Suppose that y1 ≈ y2,z1 ≈ z2:
Rρ 0y1z1 = y1 ≈ y2 = Rρ 0y2z2 ⇒ Rρ 0y1z2 ≈ Rρ 0y2z2.
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Rρ(x + 1)y1z1 = z1(Rρ xy1z1)x
I.H.≈ z2(Rρ xy2z2)x = Rρ(x + 1)y2z2

⇒ Rρ(x + 1)y1z1 ≈ Rρ(x + 1)y2z2.

Since x1 =0 x2 ↔ x1 ≈0 x2, we have by the =0-axioms and the previous lemma

∀x1,x2
(
x1 ≈0 x2 → Rρ x1 ≈ Rρ x2

)
,

i.e. Rρ ≈ Rρ .
(ii) t ≈τρ t ∧ s ≈ρ s → ts ≈τ ts. �

Corollary 9.9. Let t1(1) be a closed term of WE-HAω . Then

WE-HAω � ∀x1,y1(x =1 y → tx =1 ty).

This also holds for tuples of variables x,y of types of degree ≤ 1.

Proof: This follows from proposition 9.8 since WE-HAω � x =1 y ↔ x ≈1 y. �

Proposition 9.10. Let t1(1) be closed. Then t1(1) is uniformly continuous on each set
{x : x ≤1 y} with a modulus of uniform continuity which is definable in WE-HAω

(uniformly in y), i.e. there is a closed term t̃0(1)(0) of WE-HAω :

WE-HAω � ∀k0∀x, x̃ ≤1 y
( t̃ky∧

i=0

(xi =0 x̃i) →
k∧

j=0

(tx j =0 tx̃ j)
)
.

The proposition also holds for tuples x,y with xi ≤1 yi for all components.

Proof: By the corollary above we have

WE-HAω � ∀x, x̃
(
∀i(xi =0 x̃i) →∀k∀ j ≤ k(tx j =0 tx̃ j)

)
.

Hence

WE-HAω + Mω � ∀k∀x, x̃∃i
(
xi =0 x̃i →

k∧

j=0

(tx j =0 tx̃ j)
)

and so a-fortiori

WE-HAω + Mω � ∀y1∀k∀x, x̃ ≤1 y∃i
(
xi =0 x̃i →

k∧

j=0

(tx j =0 tx̃ j)
)
.

By theorem 9.3 (and the corollary to its proof) one can extract a closed term t̃ of
WE-HAω such that

WE-HAω � ∀y1∀k∀x, x̃ ≤1 y∃i ≤ t̃ky
(
xi =0 x̃i →

k∧

j=0

(tx j =0 tx̃ j)
)

which finishes the proof. �
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Application of monotone functional interpretation III:

We now use theorem 9.3 to prove that WE-HAω does not even for Π 0
1 -axioms satisfy

the deduction theorem:

Theorem 9.11. There exists a Π 0
1 -sentence A and a quantifier-free formula B such

that
WE-HAω + A � B, but WE-HAω

� A → B.

Proof: Let ConPA denote the standard consistency predicate for Peano arithmetic
PA, i.e.

ConPA ≡ ∀x¬ProvPA(x,�0 = 1�),

where ProvPA is the usual primitive recursive proof predicate for PA. In the language
L (WE-HAω) of WE-HAω we can write ConPA in the form

A :≡ ∀x0(tPAx =0 0),

where tPA is a suitable closed term of WE-HAω . By the definition of =1 we, trivially,
have

WE-HAω + A � tPA =1 01,

where 01 := λ x0.00. An application of QF-ER to this yields

WE-HAω + A � x2(tPA) =0 x(01),

where x2 is a free variable of type 2. Suppose now that

(+) WE-HAω � A → x2(tPA) =0 x(01)

and so, in particular,

WE-HAω � A →∀x ≤2 12(x(tPA) =0 x(01)).

Then, using (the special case M0 of) Mω ,

WE-HAω + Mω � ∀x ≤2 12∃y0(tPAy =0 0 → x(tPA) =0 x(01)
)
,

where 12 := λ x1.S0.
By theorem 9.3 there exists a closed term s0 of WE-HAω such that

WE-HAω � ∀y ≤0 s(tPAy =0 0) →∀x ≤2 1(x(tPA) =0 x(01)).

In WE-HAω , every fixed closed term s0 of type 0 can be reduced to a numeral (see
e.g. [366]), i.e. there exists a number n ∈ N such that

WE-HAω � s =0 n.

By the Σ0
1 -completeness of WE-HAω we have
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WE-HAω � ∀y ≤0 n(tPAy =0 0).

Hence
WE-HAω � ∀x ≤2 12(x(tPA) =0 x(01)).

It is an easy exercise to conclude from this that

WE-HAω � tPA =1 0, i.e.

WE-HAω �ConPA.

This, however, contradicts Gödel’s second incompleteness theorem, since WE-HAω

is conservative over Heyting arithmetic HA (as follows by formalizing the model
HEO of all hereditarily effective operations in HA, see [366]). Thus (+) above is
false and we conclude that the theorem holds taking B :≡

(
x2(tPA) =0 x(0)

)
and A

as above. �

Corollary 9.12. The deduction theorem for WE-HAω fails already for closed Π 0
1 -

axioms.

Remark 9.13. Combined with the negative translation discussed in chapter 10 it fol-
lows that also WE-PAω does not satisfy the deduction theorem for Π 0

1 -axioms.

9.3 Examples of axioms Δ : Weak König’s lemma WKL

We first recall the definition of the weak König’s lemma (in our language with func-
tion variables) from chapter 7:

WKL: ∀ f 1
(

T ( f )∧∀x0∃n0(lth n = x∧ f n = 0) →∃b ≤1 λ k.1∀x0( f (bx) = 0
))

,

where T ( f ) :≡ ∀n,m
(

f (n ∗m) = 0 → f n = 0
)
∧∀n,x

(
f (n∗ < x >) = 0 → x ≤ 1

)
.

T ( f ) asserts that f represents a 0,1–tree. This definition was first given in [367].

WKL has (in the context of the language of 2nd order arithmetic with set variables)
received quite some attention during the last 20 years. In the program of so-called
reverse mathematics (see e.g. [107, 335, 336, 57, 58, 168, 331] and, in particu-
lar, [338] for a comprehensive account) it has been shown that WKL – relative to
the second order fragment RCA0 of ŴE-PA

ω
|\+QF-AC0,0 – allows one to derive

many (ineffective) theorems in mathematics (in particular in analysis) and that
conversely many of those theorems imply WKL. Moreover, H. Friedman proved
that WKL0 := RCA0+WKL is Π 0

2 -conservative over primitive recursive arithmetic
PRA. Later a proof-theoretic argument for this result based on cut elimination was
given in [334]. In [203], this was extended to ŴE-PA

ω
|\+QF-AC0,0+WKL using

monotone functional interpretation (see [7] for a very readable account of that argu-
ment). In chapter 12 we will prove a further generalization of this result. From the
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applied perspective of proof mining these facts are of relevance because they allow
one to extract primitive recursive algorithms and bounds from proofs in those parts
of classical analysis which can be carried out by WKL. However, as we will see in
chapter 10, for this purpose it is not necessary to eliminate WKL but only to observe
that WKL can be written in the form of an axiom Δ . We will now show that this is
also possible in the intuitionistic context of ŴE-HA

ω
|\. Hence we can apply theo-

rem 9.3 to WKL. This is of interest as we on the one hand now can use the highly
ineffective principle WKL whereas on the other hand maintain the ‘intuitionistic’
feature of our system that bounds are extractable for arbitrary formulas A (and not
just purely existential formulas A to which we have to restrict things in the presence
of full classical logic, see chapter 10). We will show that this even holds in the pres-
ence of the ‘full’ König’s lemma KL where the condition on the tree being binary is
replaced by ‘finitely branching’, i.e.

KL: ∀ f 1
(

T̃ ( f )∧∀x0∃n0(lth n = x∧ f n = 0) →∃b1∀x0( f (bx) = 0
))

,

where T̃ ( f ) :≡∀n,m
(

f (n∗m)= 0→ f n = 0
)
∧∀n∃m∀x

(
f (n∗< x >)= 0→ x≤m

)
.

Classically, more precisely relative to RCA0, KL is known to be equivalent to the
schema of arithmetical comprehension and hence adds enormously to the provable
recursive functions when added to e.g. ŴE-PA

ω
|\ (since now induction for all first

order formulas becomes derivable). The reason for this is that to get a bound on
‘∃m’ in T̃ ( f ) one needs AC0,0 for Π 0

1 -formulas which – classically yields Π 0
1 -

comprehension and so – by iteration Π 0
∞-comprehension. Intuitionistically, however,

even full AC is rather weak and allowed in the metatheorems of this chapter. Using
AC we will in the end derive KL from WKL. Firstly, however, we have to consider
WKL:

Since we will later discuss in more detail strengthened versions of Friedman’s con-
servation result, we will now explicitly work in the fragment ŴE-HA

ω
|\. Except for

the derivation of KL from WKL and AC, the proofs below can be carried out already
in G3Aω

i but not in G2Aω
i since already the very formulation of WKL uses the (ex-

ponential) coding of sequences ( f (0), . . . , f (n−1)) into numbers f n. In chapter 12
we will, therefore, introduce a ‘non-standard’ principle which allows already rela-
tively to G2Aω to carry out many of the usual WKL applications with even simpler
proofs and still guarantees the extractability of polynomial bounds.

In order to show that WKL can be written in the form of a sentence ∈ Δ we first
observe that WKL is (already relative to ŴE-HA

ω
|\) equivalent to

(+) ∀ f ,g
(

T ( f )∧∀x
(
lth(gx) = x∧ f (gx) = 0

)
→∃b ≤1 λ k.1∀x0( f (bx) = 0

))
.

This follows from the fact that by T ( f ) we have

∀x0∃n0(lth n = x∧ f n = 0
) T(f)→ ∀x∃n ≤ 100x

(
lth n = x∧ f n = 0

)
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and so the proof of this equivalence does not need QF-AC0,0 but only (primitive
recursive) bounded search.
(+) is a sentence having the logical form

(∗) ∀x1(∀n0A0(n,x) →∃y ≤1 sx∀z0B0(x,y,z)
)
,

where A0 and B0 are quantifier-free formulas and, therefore, still not of the form
of sentences permitted in Δ .
However, we will show now that (+) (and hence WKL), in fact, is equivalent (prov-
ably in ŴE-HA

ω
|\) to a sentence WKL′ of the form ∀x1∃y ≤1 λ k.1∀z0AK

0 (x,y,z)
which is allowed in Δ . For this we need the following constructions:

1) f̂ n :=

⎧
⎨

⎩

f n if f n = 0∨
(
∀k, l(k ∗ l = n → f k = 0)∧∀i < lth n

(
(n)i ≤ 1

))
,

10 otherwise.

2) fgn :=

⎧
⎨

⎩

f n if f
(
g(lth n)

)
= 0∧ lth

(
g(lth n)

)
= lth n,

00 otherwise.

Remark 9.14. f̂ ( fg) are definable in ŴE-HA
ω
|\ uniformly as functionals in f ( f

and g).

As the next lemma shows, the construction f̂ guarantees that f̂ does represent a
binary tree, i.e. T ( f̂ ), while it doesn’t change f if f already satisfies T ( f ) :

Lemma 9.15. 1) ŴE-HA
ω
|\ � ∀ f

(
T ( f̂ )

)
,

2) ŴE-HA
ω
|\ � ∀ f

(
T ( f ) → f =1 f̂

)
.

Proof:

1) The fact that f̂ represents a tree follows from the following chain of implications:

f̂ (n ∗m) = 0 → f̂ (n ∗m) = f (n ∗m) = 0 →

∀k, l
(
k ∗ l = n ∗m → f k = 0

)
∧∀i < lth(n ∗m)

(
(n ∗m)i ≤ 1

)
→

∀k, l
(
k ∗ l = n → f k = 0

)
∧∀i < lth n

(
(n)i ≤ 1

)
→ f̂ n = f n = 0.

That f̂ represents a binary tree follows from

f̂ (n∗ < x >) = 0 → f̂ (n∗ < x >) = f (n∗ < x >) = 0 →

∀i < lth(n∗ < x >)
(
(n∗ < x >)i ≤ 1

)
→ x ≤ 1.

2) We assume that T f . Then

f n = 0 →∀k, l
(
k ∗ l = n → f k = 0

)
∧∀i < lth n

(
(n)i ≤ 1

)
.

Hence f̂ n = f n for all n ∈ N.

�
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We now show that

• fg always satisfies the condition ∀x∃n
(
lth n = x∧ fgn = 0

)
.

• If already f satisfies this condition and g is such that it selects a realizer for ‘∃n’,
then the construction fg does not change f .

Lemma 9.16. 1) ŴE-HA
ω
|\ � ∀ f ,g∀x∃n

(
lth n = x∧ fgn = 0

)
,

2) ŴE-HA
ω
|\ � ∀ f ,g

(
∀x

(
lth(gx) = x∧ f (gx) = 0

)
→ fg =1 f

)
.

Proof:

1) We leave the proof of this claim, which we will not need further below, as an
exercise.

2) ∀x
(
lth(gx) = x∧ f (gx) = 0

)
→∀n

(
lth

(
g(lth n)

)
= lthn∧ f

(
g(lth n)

)
= 0

)

→∀n( fgn = f n).

�

We are now in the position to define WKL′ :

Definition 9.17. WKL′ :≡ ∀ f 1,g1∃b ≤1 λ k.1∀x0
((̂

f̂
)

g(bx) =0 0
)
.

The next proposition shows that an ‘ε-weakening’ (see chapter 10 for a discussion
of this notion) of WKL′ is provable already in ŴE-HA

ω
|\ while WKL′ itself is

equivalent to WKL:

Proposition 9.18. 1) ŴE-HA
ω
|\ � ∀ f ,g,x∃b ≤1 λ k.1∀y ≤ x

((̂
f̂
)

g(by) =0 0
)
.

2) ŴE-HA
ω
|\ � WKL ↔ WKL′.

Proof: 1) We show by induction on x that

(∗) ∀x∃n
(

lth n = x∧∀i < x
(
(n)i ≤ 1

)
∧

(̂
f̂
)

g(n) = 0
)
.

Note that the quantifier ‘∃n’ can be bounded by 11x. Hence we only need QF-IA
which is available in ŴE-HA

ω
|\. It is clear that (∗) implies 1): Let n (for given x)

satisfy (∗) and define b := λ i.(n)i. Then
(̂

f̂
)

g(bx) = 0 which implies

∀y ≤ x
((̂

f̂
)

g(by) = 0
)

by lemma 9.15.1.
x = 0 : lth n = x ↔ n =<>= 0.
Case (i): f̂ (g0) = 0∧ lth(g0) = 0 : Then g0 = 0 and so f̂ (0) = 0 which implies
(

f̂
)

g(0) = 0 and, furthermore,
(̂

f̂
)

g(0) = 0.
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Case (ii): f̂ (g0) = 0∨ lth(g0) = 0 : Then
(

f̂
)

g(0) = 0 which implies
(̂

f̂
)

g(0) = 0.
x → x + 1: The induction hypothesis yields the existence of an n0 such that

lth n0 = x,
(̂

f̂
)

g(n0) = 0 and ∀i < lth n0
(
(n0)i ≤ 1

)
. Now put n1 := n0∗ < 0 >.

Case (i): f̂
(
g(lth n1)

)
= 0∧ lth

(
g(lth n1)

)
= lth n1:

Then n := g(lth n1) fulfills the claim: first note that

lth n = lth
(
g(lth n1)

)
= lth n1 = x + 1.

Moreover,

f̂ n = 0 l.9.15.1→ ∀k, l
(
n = k ∗ l → f̂ k = 0

)
∧∀i < lth

(
(n)i ≤ 1

)

→∀k, l
(
n = k ∗ l →

(
f̂
)

g(k) = 0
)
∧∀i < lth

(
(n)i ≤ 1

)

→
(̂

f̂
)

g(n) = 0∧∀i < lth n
(
(n)i ≤ 1

)
.

Case (ii): f̂
(
g(lth n1)

)
= 0∨ lth

(
g(lth n1)

)
= lth n1: Then n := n1 fulfills the claim:

By the case and the fg-definition we get

(+)
(

f̂
)

g(n1) = 0.

From
(̂

f̂
)

g(n0) = 0 and the f̂ -definition we, moreover, have

∀k, l
(
n0 = k ∗ l →

(
f̂
)

g(k) = 0
)
.

Together with (+) and n1 = n0∗ < 0 > this finally implies

(̂
f̂
)

g(n1) = 0,

which concludes the proof of (∗) and hence of 1).

2) ‘→’: By lemma 9.15.1, T
((̂

f̂
)

g

)
holds for all f ,g. Using 1), WKL′ now imme-

diately follows from WKL.
‘←’: Assume that T ( f ) and ∀x∃n

(
lth n = x∧ f n = 0

)
, which implies (using that

by T ( f ) the number n encodes a binary sequence and relying on the monotonicity
properties of our sequence coding)

(++) ∀x∃n ≤ 11x
(
lth n = x∧ f n = 0

)
.

Define

gx :=

⎧
⎨

⎩

min n ≤ 11x[lth n = x∧ f n = 0] if such an n exists,

00 otherwise.

g is primitive recursive in f and (++) implies ∀x
(
lth(gx) = x∧ f (gx) = 0

)
. Applying

lemma 9.16.2 we conclude that fg =1 f . Since f =1 f̂ by lemma 9.15.2), this proves
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that
(̂

f̂
)

g =1 f . WKL′ now yields ∃b ≤1 λ k.1∀x0( f (bx) = 0
)
. �

Before we can treat KL we need one intermediate version of König’s lemma:

Definition 9.19.
WKL∗ :≡ ∀ f 1,h1

(
T ∗(h, f

)
∧∀x∃n

(
lth n = x∧ f n = 0

)
→∃b ≤1 h∀x0 f (bx) = 0

)
,

where

T ∗( f ,h
)

:≡

⎧
⎨

⎩

∀n,m
(

f (n ∗m) = 0 → f n = 0
)

∧∀n,x
(

f (n∗ < x >) = 0 → x ≤ h
(
lth(n)

))
.

To see that WKL∗ is admissible as well one can either (using Troelstra (1973), 1.9.24)
show that – relative to ŴE-HA

ω
|\ – it is equivalent to WKL or – alternatively –

check that similarly to WKL we can write WKL∗ directly as an axiom of the form
Δ (exercise).

Lemma 9.20. ŴE-HA
ω
|\+AC � WKL∗ → KL.

Proof: By AC applied to

∀n∃m∀x
(

f (n∗ < x >) = 0 → x ≤ m
)

provides a function g such that

∀n,x
(

f (n∗ < x >) = 0 → x ≤ g(n)
)
.

Primitive recursively in g (using only R0) one can define a function h such that

∀n,x
(

f (n∗ < x >) = 0 → x ≤ h
(
lth(n)

)
.

Now apply WKL∗. �

Corollary 9.21. Theorem 9.3 holds true if ‘Δ ’ is replaced by ‘Δ+KL’.

Proof: The corollary follows from the fact that ŴE-HA
ω
|\+AC proves the equiva-

lence of KL and WKL′ (as shown above), where WKL′ has the form of a sentence
admissible in Δ . �

Corollary 9.22.

WE-HAω+ AC + IPω
∀ + Mω + KL � Π 0

1 -LEM.

Proof: Suppose

WE-HAω+ AC + IPω
∀ + Mω + KL � Π 0

1 -LEM.

Then by M0 (and hence by Mω ) we could even derive Σ0
1 -LEM. This would yield

WE-HAω+ AC + IPω
∀ + Mω + KL � ∀x0∃y0(∃z0T (x,x,z) → T (x,x,y)

)
.
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Corollary 9.21 would now give us a closed term t of WE-HAω such that

WE-HAω+ AC + IPω
∀ + Mω + KL � ∀x0∃y ≤0 t(x)

(
∃z0T (x,x,z) → T (x,x,y)

)

contradicting the undecidability of the (special) halting problem. �

Corollary 9.23.
Let A0(x1,y0) a quantifier-free formula of L (WE-HAω) containing only x,y free.
Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-HAω+ AC + IPω
∀ + Mω + KL � ∀x1∃y0A0(x,y)

then one can extract a closed term t2 of WE-HAω s.t.

WE-HAω + b-AC+WKL � ∀x1 A0(x,t(x)).

So WE-HAω+ AC + IPω
∀ + Mω+KL has the same provably recursive functionals

of type ≤ 2 as WE-HAω and, in particular, the same provably recursive functions
as HA.
Analogously one shows a corresponding result for ŴE-HA

ω
|\ instead of WE-HAω .

In particular, the provably recursive functions of ŴE-HA
ω
|\+ AC + IPω

∀ + Mω +
KL are exactly the ordinary primitive recursive functions.

Proof: By lemma 9.20, the comment made before that lemma and proposition 9.18.2
the assumption yields

WE-HAω+ AC + IPω
∀ + Mω + WKL′ � ∀x1∃y0A0(x,y).

Hence by theorem 9.1 we get a closed term t̃ such that

WE-HAω + W̃KL′ � ∀x1∃y ≤0 t̃(x)A0(x,y).

Let tA0 be a closed term with

WE-HAω � ∀x,y
(
tA0(x,y) =0 0 ↔ A0(x,y)

)
.

Now define t(x) := miny ≤ t̃(x)[tA0(x,y) =0 0]. Then

WE-HAω + W̃KL′ � ∀x1A0(x,t(x))

and hence (using proposition 9.18.2)

WE-HAω + b-AC+WKL � ∀x1A0(x,t(x)).

�

Remark 9.24. Together with lemma 10.32 and corollary 10.34 (both to be proved in
chapter 10) it follows from the proof above that if
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WE-HAω+ AC + IPω
∀ + Mω � KL →∀x1∃y0A0(x,y),

then even
WE-HAω � ∀x1A0(x,t(x)).

Remark 9.25. Theorem 9.3 and its corollaries above crucially depend on the fact
that WE-HAω only contains the quantifier-free extensionality rule. With full ex-
tensionality, already E-HAω+AC+Mω+WKL has a much bigger class of provably
recursive functions than WE-HAω . This is due to the fact that AC+WKL allow one
to derive the uniform weak König’s lemma UWKL (mentioned already in chapter
7) which, in the presence of full extensionality and Mω suffices to get the compre-
hension functional

∃ϕ2∀ f 1(ϕ( f ) =0 0 ↔∃x0( f (x) =0 0)
)

(see chapter 10 for details).

If on the other hand

• AC is restricted to AC0,1,
• Mω is restricted to M1,
• IPω

∀ is restricted to the case where both the variables x in the premise as well as
the variable y which is moved over that premise are of types ≤ 1,

• the type ρ in theorem 9.3 is ≤ 1,

then an elimination-of-extensionality procedure to be discussed in chapter 10 allows
one to reduce the context with E-HAω to that with WE-HAω .
In particular

E-HAω+AC0,1+M1+KL � Π 0
1 -LEM

and a-fortiori
E-HAω+AC0,1+M1+LLPO � Π 0

1 -LEM

where LLPO is the so-called ‘lesser limited principle of omniscience’

LLPO :≡∀ f 1,g1(¬(∃n( f (n) = 0)∧∃n(g(n) = 0))→∀n( f (n) = 0)∨∀(g(n) = 0)
)

(see e.g. [47]). For this last result we use the well-known fact that KL and even
WKL implies intuitionistically LLPO. Alternatively, one can easily verify directly
that LLPO has a trivial monotone functional interpretation, see [218].

9.4 WKL as a universal sentence Δ

We now show that over WE-HAω+WKL every sentence A of the form

∀x1∃y ≤1 sx∀z0/1A0(x,y,z) (A0 quantifier-free, s closed)

is equivalent to a suitable Π 0
1 -sentence
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∀n0B0(n)

which can be constructed from A.

Lemma 9.26. Let A0(x,y1) be a quantifier-free formula whose free variables are
included in x = x1, . . . ,xn and y1, where the types of the xi are of degree ≤ 1 (i =
1, . . . ,n). Then the following holds

WE-HAω ��y1A0(x,y) ↔�k0A0(x,λ m.(k)m),

where � ∈ {∀,∃}.

Proof: We may assume that n = 1 and that x has type 1 (since tuples of variables of
types of degree ≤ 1 can be encoded into a single variable of type 1). By proposition
3.17 we can construct a closed term tA0 of WE-HAω such that

WE-HAω � ∀x1,y1(tA0xy =0 0 ↔ A0(x,y)
)
.

By proposition 9.10 applied to max1(x,y) we obtain a closed term t̂A0 such that

WE-HAω � ∀x1,y1∀z ≤1 y
(

t̂A0 (max(x,y))
∧

i=0

(zi =0 yi) → tA0xz =0 tA0xy
)
.

Hence
WE-HAω � tA0(x,λ m.(y(̂tA0(max(x,y))+ 1))m) =0 tA0xy

and so
WE-HAω � A0(x,λ m.(y(̂tA0(max(x,y))+ 1))m) ↔ A0(x,y).

�

Lemma 9.27. For each sentence of the form

∀xρ∃y ≤1 sxA0(x,y)

(where ρ is a tuple of types of degree ≤ 1) one can construct a closed term χ of
WE-HAω such that

WE-HAω � ∀x[
(
∃y ≤ sxA0(x,y) ↔ A0(x,χx)

)
∧χx ≤1 sx].

Proof: Again we may assume that x = x, where x is of type 1. By the proof of lemma
9.26 we have (provably in WE-HAω ) that

A0(x,y) → A0(x,λ m.(y(̂t(max1(x,sx))))m)

for a suitable closed term t̂ of WE-HAω .
Define tx := t̂(max1(x,sx)).
If y ≤1 sx, then (using basic monotonicity properties of our sequence coding from
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chapter 3) we get
y(tx) ≤0 (sx)(tx) =: Φx.

Hence

∃y ≤1 sxA0(x,y) →∃k ≤0 Φx [A0(x,λ m.(k)m)∧∀i < lth(k)
(
(k)i ≤ sxi)]).

Now define

χ0x :=

⎧
⎨

⎩

mink ≤ Φx[A0(x,λ m.(k)m)∧∀i < lth(k)
(
(k)i ≤ sxi)], if existent

00, otherwise

and in turn
χx := λ m.(χ0x)m.

�

Proposition 9.28. Let ∀x1∃y ≤1 sx∀z1A0(x,y,z) be a sentence of L (WE-HAω)
(with s closed). Then

WE-HAω + WKL � ∀x1,k0∃y ≤1 sx
k∧

i=0

A0(x,y,λ m.(i)m) ↔∀x1∃y ≤1 sx∀z1A0.

Proof: ‘⇐’ is trivial.
‘⇒’: By lemma 9.26 it suffices to consider

∀x∃y ≤ sx∀k0A0(x,y,k).

∀x,k∃y ≤ sx
k∧

i=0
A0(x,y, i) implies

(1) ∀x,k∃n
(

lth n = k∧∀ j < k
(
(n) j ≤ sx j

)
∧∃y ≤ sx

k∧

i=0

A0(x,n ∗λ m.y(m+ k), i)

︸ ︷︷ ︸
A0(x,k,n):≡

)
.

By lemma 9.27 (and lemma 3.17 plus the fact that the primitive recursive function-
als in the sense of Gödel, i.e. in the sense of WE-HAω , are closed under bounded
quantification) A0 is quantifier–free definable in WE-HAω . Therefore – by lemma
3.17 – we can define (uniformly in x) in WE-HAω a function fx such that

fxn :=

⎧
⎨

⎩

0 if A0(x, lth n,n),

1 otherwise.

For all x we have T ∗( fx,sx). Furthermore, (1) implies

∀x,k∃n(lth n = k∧ fxn = 0).
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Therefore, WKL∗ (which relative to WE-HAω follows from WKL using [366]
(1.9.24)) applied to fx,sx yields

(2) ∀x∃y0 ≤ sx∀k
(
∃y ≤ sx

k∧

i=0

A0(x,y0k ∗λ m.y(m+ k), i)
)
.

It remains to show that ∀kA0(x,y0,k): Assume there exists a k0 such that

¬A0(x,y0,k0).

Since A0 is quantifier–free, there exists (again be lemma 3.17) a closed term t of
WE-HAω such that

WE-HAω � ∀x,y,k
(
txyk =0 0 ↔¬A0(x,y,k)

)
.

By proposition 9.10 there exists a modulus of uniform continuity t̃ for t when
restricted to y ≤ sx (given by a closed term of WE-HAω ):

(3) WE-HAω � ∀x∀y, ỹ ≤ sx∀k
(
tx(y(t̃xk)∗λ m.ỹ(m+ t̃xk))k =0 txyk

)
.

Define n0 := t̃xk0. Since txy0k0 = 0, (3) implies

∀i ≥ n0∀y ≤ sx
(
¬A0(x,y0i∗λ m.y(m+ i),k0)

)
.

Define i := max(n0,k0). (2) yields

∃y ≤ sxA0(x,y0i∗λ m.y(m+ i),k0),

which is a contradiction. Hence

¬∃k¬A0(x,y0,k)

and so (by intuitionistic logic)

∀k¬¬A0(x,y0,k)

and finally (using 3.18)
∀k A0(x,y0,k).

�

Corollary 9.29. For each sentence of the form

∀x1∃y ≤1 sx∀z0/1A0(x,y,z)

in L (WE-HAω) one can construct a corresponding Π 0
1 -sentence

∀n0B0(n)

in L (WE-HAω) such that
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WE-HAω + WKL � ∀x1∃y ≤1 sx∀z0/1A0(x,y,z) ↔∀n0B0(n).

Proof: By proposition 9.28 it suffices to construct a sentence ∀n0B0(n) such that

WE-HAω � ∀x1,k0∃y ≤1 sx
k∧

i=0

A0(x,y,λ m.(i)m) ↔∀n0B0(n).

By lemma 3.17 and the fact that the primitive recursive functionals in the sense of
Gödel (i.e. in the sense of WE-HAω ) are closed under bounded quantification it

follows that
k∧

i=0
A0(x,y,λ m.(i)m) can be written as a (prime and hence) quantifier-

free formula A′
0(x

1,y1,k0). The claim now follows by lemma 9.27 and lemma 9.26.
�

9.5 Fragments, exercises, historical comments and suggested
further reading

Remarks on fragments:

As we discussed in the remark at the end of chapter 6, the majorization technique is
available for the fragments T ω

i := ŴE-HA
ω
|\, GnAω

i (n ≥ 2) of WE-HAω as well.
Together with the fact that functional interpretation can be applied to these systems
(see the remark at the end of chapter 8) one easily verifies that theorems 9.1 and
9.3 hold if WE-HAω is replaced by one of these fragments. corollary 9.21 holds for
ŴE-HA

ω
|\ instead of WE-HAω . If KL in corollary 9.21 is replaced by WKL, it also

holds for GnAω
i for n ≥ 3. Lemmas 9.26 and 9.27, proposition 9.28 and corollary

9.29 also hold for ŴE-HA
ω
|\ and GnAω

i for n ≥ 3.

Exercises:

1) a. Prove that WE-HAω+b-AC � ϕ → ϕ̃ for ϕ of the form Δ and the correspond-
ing Skolem normal form ϕ̃ ∈ Δ̃ .

b. Prove that WE-HAω+AC � b-AC.
2) Prove remark 9.5.
3) Prove lemma 9.16.1).

Historical comments and suggested further reading: Monotone functional inter-
pretation was introduced in Kohlenbach [206] but the systematic use of combina-
tions of functional interpretation with majorizability is due already to Kohlenbach
[200, 201, 203] which contain much more information about it. An early use of
a combination of functional interpretation with a variant of Howard’s majorizabil-
ity in the context of a theory for inductive definitions (IDc

1(O)) has been given by
Zucker in [383]. Theorem 9.3 is from Kohlenbach [212]. Application II basically is
contained in Kohlenbach [201] (the fact that closed terms t1(1) of WE-HAω have –
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restricted to the Cantor space – a modulus of uniform continuity functional given by
a term t∗ in WE-HAω is due to Kreisel and Schwichtenberg [325]). Using an imple-
mentation of monotone functional interpretation in the MINLOG system, Hernest
gave an automated synthesis of moduli of uniform continuity based on application
II in [158]. Application ‘III’ is taken from Kohlenbach [217]. Most of the material
from sections 9.3 and 9.4 is taken from Kohlenbach [203]. In Kohlenbach-Oliva
[236] it is shown that often monotone functional interpretation just creates the en-
richment of data used prominently in Bishop’s constructive analysis (Bishop [32],
Bishop-Bridges [34]) and it is argued that the monotone functional interpretation can
be viewed as a proper ‘numerical implication’ (rather than Gödel’s original inter-
pretation of the implication as suggested in Bishop [33]). A new so-called ‘bounded
functional interpretation’ was recently introduced by Ferreira and Oliva in [104].
It has many similarities to monotone functional interpretation (and can be used to
prove some results similar to those first obtained by monotone functional interpre-
tation), but also has important differences in the treatment of bounded quantifiers.
This makes it possible to use bounded functional interpretation to prove interesting
results for systems of feasible analysis which could not be obtained by monotone
functional interpretation so far (see Ferreira-Oliva [105]). The issue to what ex-
tent some basic analysis can be formalized in such systems of feasible analysis is
addressed in Fernandes-Ferreira [102]. For a unified treatment of the soundness the-
orem for modified realizability, functional interpretation (and variants thereof) as
well as their bounded and monotone versions see Oliva [292].



Chapter 10
Systems based on classical logic and functional
interpretation

10.1 The negative translation

There are several interpretations – so-called ‘negative’ or ‘double-negation’ transla-
tions – of classical logic as well as many theories based on classical logic into their
intuitionistic variant. All these translations A �→ A′ have in common that A′ is (or is
intuitionistically equivalent to) a negative formula.
The first such translation is due to Gödel [130] (although G. Gentzen independently
discovered a similar translation). There is some preceding work by Kolmogorov
[237] and Glivenko [124]. Two further variants of Gödel’s translation are due to
Kuroda [259] and it is one of these which we will adopt here:

Definition 10.1. Let A be a formula in a theory based on L (ILω
−=). A′ is defined as

A′ :≡ ¬¬A∗, where A∗ is defined by induction on the logical structure of A:

(i) A∗ :≡ A, if A is a prime formula,
(ii) (A�B)∗ :≡ (A∗�B∗), where � ∈ {∧,∨,→},

(iii) (∃xρ A)∗ :≡ ∃xρ A∗,
(iv) (∀xρ A)∗ :≡ ∀xρ¬¬A∗.

Remark 10.2. The Kuroda negative translation A′ from 10.1 of A is intuitionistically
equivalent to a negative formula Bneg, i.e.

ILω
−= � A′ ↔ Bneg

for a suitable negative formula Bneg.

Proof: Exercise! �

Proposition 10.3. (i) PLω
−= � A ⇒ ILω

−= � A′,
(ii) (W)E-PAω � A ⇒ (W)E-HAω � A′.

Proof: (i) Induction on the length of the derivation: (I) We first treat the axioms:
(a) For instances F of all intuitionistic axioms except ∀xA → A[t/x] the translation
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F∗ again is an instance of the same axiom (since ∗ commutes with ∧,∨,→ and ∃)
and so F ′ ≡ ¬¬F∗ follows intuitionistically.
(b) For ∀xA→A[t/x], the negative translation yields ¬¬(∀x¬¬A∗ →A∗[t/x]) which
intuitionistically is equivalent to ∀x¬¬A∗ → ¬¬A∗[t/x] which is an instance of the
same axiom.
(c) (A∨¬A)′ ≡ ¬¬(A∗ ∨¬A∗) which is provable in ILω

−= (it is an easy exercise that
¬¬(A∨¬A) holds intuitionistically for arbitrary formulas A).
(II) We now treat the rules. Modus ponens A ,A→B

B : By induction hypothesis we have

¬¬A∗ and ¬¬(A∗ → B∗).

By intuitionistic logic we get ¬¬A∗ → ¬¬B∗ and hence by modus ponens ¬¬B∗,
i.e. B′.
The syllogism, exportation, importation rules and the ∃-rule are treated similarly
using again the intuitionistic laws ¬¬(A → B) ↔ (A →¬¬B) ↔ (¬¬A →¬¬B).
For the expansion rule one additionally needs that intuitionistically
A∨¬¬B →¬¬(A∨B).
Now consider the ∀-rule A→B

A→∀xB : By induction hypothesis we have ¬¬(A∗ → B∗)
and therefore (by intuitionistic logic) A∗ → ¬¬B∗. By the ∀-rule we obtain A∗ →
∀x¬¬B∗, i.e. (A →∀xB)∗ and, therefore, a-fortiori (A →∀xB)′.
(ii) We only have to extend the proof of (i) by the treatment of the non-logical
axioms and rules: The negative translation of the purely universal =0,S,Π ,Σ ,R-
axioms trivially follows from the axioms themselves (note that WE-HAω �¬¬A0 ↔
A0 and so the translation of purely universal axioms is in fact equivalent – relative
to WE-HAω – to the axioms since intuitionistically ¬¬∀x¬¬A(x) ↔∀x¬¬A(x)).
Similarly the negative translation of (E) (resp. of the premise and the conclusion of
QF-ER) can be seen to be equivalent to (E) in WE-HAω .
The induction rule: By the induction hypothesis we have

¬¬(A(0))∗ and ¬¬
(
(A(x))∗ → (A(x + 1))∗

)
.

Hence also ¬¬(A(x))∗ → ¬¬(A(x + 1))∗. Thus by the induction rule we obtain
¬¬(A(x))∗ , i.e. (A(x))′. �

Definition 10.4. The schema QF-AC of quantifier-free choice in all finite types is
the restriction of AC to quantifier-free formulas A0 ≡ A. For convenience we formu-
late this schema for tuples:

QF-AC : ∀x∃yA0(x,y) →∃Y∀xA0(x,Y x),

where A0 is quantifier-free and x,y are tuples of variables of arbitrary types.
For single variables xρ and yτ of types ρ and τ respectively, we denote the corre-
sponding special case of QF-AC by QF-ACρ ,τ .

Remark 10.5. Since one can show in WE-HAω that finite tuples x of variables (of
different types) can be coded together into a single variable x whose type depends
on the types of x (see [366] for details on that) the version with single variables in
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fact implies the one with tuples. However, the direct use of tuples is much simpler.
Moreover, in the context of the extensions of the systems to the new ground type X
treated in chapter 17 such a contraction of tuples is no longer possible.

Proposition 10.6. Let P be an arbitrary set of purely universal sentences ∀zσ B0(z)
(B0 quantifier-free) in L (WE-PAω). Then

WE-PAω+ QF-AC +P � A ⇒ WE-HAω+ QF-AC +P+ Mω � A′.

Proof: Since WE-HAω proves that P ↔ P′ for all P ∈ P we only have to extend
the proof of proposition 10.3 by showing that

WE-HAω+ QF-AC + Mω � (QF-AC)′.

We have in WE-HAω

(
∀x∃yA0(x,y) →∃Y∀xA0(x,Y x)

)′
↔

¬¬
(
∀x¬¬∃yA0(x,y) →∃Y∀x¬¬A0(x,Y x)

)
,

which clearly is implied by

(∗) ∀x¬¬∃yA0(x,y) →∃Y∀xA0(x,Y x),

which in turn follows from Mω and QF-AC. �

10.2 Combination of negative translation and functional
interpretation

We now combine the negative translation with functional interpretation. In the fol-
lowing we denote the combination of negative translation and functional interpreta-
tion ‘ND-interpretation’.

Theorem 10.7 (soundness of ND). Let P be an arbitrary set of purely universal
sentences ∀zσ B0(z) (B0 quantifier-free) of L (WE-PAω) and A(a) be an arbitrary
formula of L (WE-PAω) containing only a free. Then the following rule holds

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC +P � A(a)

⇒ ND extracts closed terms t of WE-HAω such that

WE-HAω +P � ∀y
(
A′)

D(t a,y,a).

Proof: The theorem follows from proposition 10.6 together with theorem 8.6. �

Theorem 10.8 (Main theorem on program extraction by ND). Let P be an arbi-
trary set of purely universal sentences ∀zσ B0(z) (B0 quantifier-free) of L (WE-PAω )
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and A0(xρ ,yτ ) be a (quantifier-free) formula of L (WE-PAω) which only contains
xρ ,yτ as free variables. Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC +P � ∀xρ∃yτ A0(x,y)

⇒ ND extracts a closed term t of WE-HAω such that

WE-HAω +P � ∀xA0(x,tx).

In particular, if S ω |= P, then the conclusion holds in S ω .
The result also applies to tuples x,y where we then have a tuple t of closed terms.

Proof: Again we use proposition 10.6 as in the proof above.

WE-PAω+QF-AC +P � ∀x∃yA0(x,y)
prop.10.6⇒

WE-HAω+QF-AC+ Mω +P � ∀x¬¬∃yA0(x,y)
Mω

⇒

WE-HAω+QF-AC+ Mω +P � ∀x∃yA0(x,y)
thm.8.6⇒

WE-HAω +P � ∀xA0(x,tx) for a suitable closed term t

(note that A0 can be treated as a prime formula in WE-HAω ). �

As an application of theorem 10.8 we obtain the no-counterexample interpretation
of PA by terms of WE-HAω :

Proposition 10.9. Let A ∈ L (PA) be a prenex sentence. Then the following rule
holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PA � A

⇒ one can extract closed terms Φ of WE-HAω such that

WE-HAω � Φ n.c.i. A.

Proof: Apply theorem 10.8 to the Herbrand normal form AH of A. �

Remark 10.10. As mentioned already in chapter 3 in connection with HA, PA is
strictly speaking not a subsystem of WE-PAω since we have included symbols for
all primitive recursive functions as primitive notions in PA whereas they are defined
notions in WE-PAω . However PA is a subsystem of a corresponding definitorial
extension of WE-PAω to which theorem 10.8 applies as well.

Lemma 10.11. Let Ae f be an ∃-free formula of L (WE-PAω ). Then

(1) WE-PAω+ QF-AC � Ae f ↔ AD
e f

and
(2) WE-HAω � AD

e f ↔∃x∀yA∗(xy,y)

for a suitable quantifier-free A∗ (without ∨).
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Proof: Both claims are proved simultaneously by induction on the complexity of
Ae f using corollary 8.9:
1) A prime: Then A ≡ AD ≡ AD, x,y are the empty tuples and we take A∗ :≡ AD.
2) ∀zA(z) : WE-HAω proves

(∀zA(z))D def.↔

(∀zAD(z))D (2)−I.H.,8.9↔
(
∀z∃x∀yA∗(xy,y,z)

)D def.↔ ∃X∀z,yA∗(Xzy,y,z)

and so we can put (∀zA(z))∗ :≡ A∗(z).
WE-PAω+QF-AC proves

(∀zA(z))D above↔ ∃X∀z,yA∗(Xzy,y,z) QF−AC↔

∀z,y∃xA∗(x,y,z) QF−AC↔ ∀z∃x∀yA∗(xy,y,z)
(1),(2)−I.H.↔ ∀zA(z).

3) A∧B : WE-HAω proves

(A∧B)D def.↔ (AD ∧BD)D (2)−I.H.,8.9↔
(
∃x∀yA∗(xy,y)∧∃u∀vB∗(uv,v)

)D def.↔

∃x,u∀y,v(A∗(xy,y)∧B∗(uv,v)) !↔∃X ,U∀y,v(A∗(X yv,y)∧B∗(U yv,v))

and so we can put

(A∧B)∗(α ,β ,y,v) :≡ A∗(α ,y)∧B∗(β ,v).

Ad !: ‘→’: X := λ yλ v.xy, U := λ yλ v.uv. ‘←’: x := λ y.X yO, u := λ v.U Ov.
WE-PAω+QF-AC proves

(A∧B)D above↔ ∃x,u∀y,v(A∗(xy,y)∧B∗(uv,v)) ↔

∃x∀yA∗(xy,y)∧∃u∀vB∗(uv,v)
(1),(2)−I.H.↔ A∧B.

4) A → B : WE-HAω proves

(A → B)D def.↔ (AD → BD)D (2)−I.H.,8.9↔
(
∃x∀yA∗(xy,y) →∃u∀vB∗(uv,v)

)D def.↔

∃U ,Y∀x,v(A∗(x(Y xv),Y xv) → B∗(U xv,v)).

So we can put

(A → B)∗(α ,β ,x,v) :≡ (A∗(xβ ,β ) → B∗(α,v)).

WE-PAω+QF-AC proves
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(A → B)D above↔ ∃U ,Y∀x,v(A∗(x(Y xv),Y xv) → B∗(U xv,v))
QF−AC↔

∀x,v∃u,y(A∗(xy,y) → B∗(u,v))
class.logic↔ (∃x∀yA∗(xy,y) →∀v∃uB∗(u,v))

QF−AC↔

(∃x∀yA∗(xy,y) →∃u∀vB∗(uv,v))
(1),(2)−I.H.↔ (A → B).

�

Remark 10.12. 1) In lemma 10.11, WE-HAω can be replaced by any fragment con-
taining the combinators and the minimal amount of arithmetic needed to carry
out the functional interpretation of the logical axioms and rules. WE-PAω can be
replaced by the classical variant of such a fragment. In fact, instead of full classi-
cal logic only Mω+IPω

∀ is needed. We can even drop IPω
∀ since every formula in

the negative fragment is intuitionistically equivalent to one in the fragment based
on ∧,¬,∀ only and for the latter already Mω suffices.

2) For Ae f not containing ∧ even the stronger statement (Ae f )D(x,y) ≡ A∗(xy,y)
holds. However, as observed by L. Leuştean, this is no longer true in the presence
of ∧ and so the corresponding claim in [366] (p. 241) (as well as the original
proof in [244]) is not correct as it stands.

As a consequence of lemma 10.11 we obtain that the combination of negative trans-
lation and functional interpretation (A′)D is much closer related to A than the no-
counterexample interpretation (or the Skolem normal form) is (for prenex arithmeti-
cal A), since the equivalence of A and (A′)D can be proved using only quantifier-free
choice (although in higher types) whereas the no-counterexample interpretation of
A only implies A in the presence of (number-theoretic) choice for arithmetical for-
mulas:

Proposition 10.13 (Characterization theorem for ND, Kreisel [244]). Let A be
an arbitrary formula of L (WE-PAω ). Then

WE-PAω+ QF-AC � A ↔ (A′)D.

Proof: Let Bneg be as in remark 10.2 a negative formula such that

WE-HAω � A′ ↔ Bneg.

Corollary 8.9 then yields

WE-HAω � (A′)D ↔ BD
neg.

Since Bneg is ∃-free the claim now follows from lemma 10.11. �

We now compare the three classical ∃∀-normal forms considered in this book: Let
A be a formula of L (WE-PAω ) in prenex normal form. Let AS be the Skolem nor-
mal form of A, An.c.i :≡ ∃Φ(Φ n.c.i. A) be its no-counterexample interpretation and
(A′)D be its ND-interpretation (so far we defined the Skolem normal form and the
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no-counterexample interpretation only for prenex arithmetical formulas but the def-
initions immediately extend to higher types; note that AS ≡ AD since A is in prenex
normal form).

Theorem 10.14.
WE-HAω � AS → (A′)D → An.c.i.

Proof: Proof of the first implication: let Bneg as in 10.2. Since

WE-PAω � AS → Bneg

we can conclude from lemma 10.11 that

WE-PAω+ QF-AC � AS →∀y∃xB∗(x,y),

where B∗ is quantifier-free and

WE-HAω � BD
neg ↔∃X∀yB∗(X y,y).

Let AS ≡ ∃a∀bAS
q f (a,b) with AS

q f quantifier-free. Then

WE-PAω+ QF-AC � ∀a,y∃b,x(AS
q f (a,b) → B∗(x,y)).

Theorem 10.8 now yields closed terms t such that

WE-HAω � ∀a,y(∀bAS
q f (a,b) → B∗(tay,y)).

Hence
WE-HAω � AS → BD

neg.

Arguing as in the proof of proposition 10.13 one shows that

WE-HAω � (A′)D ↔ BD
neg.

Hence the first implication follows.
Proof of the second implication: By proposition 10.13 we have

WE-PAω+ QF-AC � (A′)D → A.

Since
WE-PAω � A → AH ,

where AH ≡ ∀c∃dAH
q f (c,d) (with AH

q f being quantifier-free) is the Herbrand normal
form of A, we obtain

WE-PAω+ QF-AC � (A′)D →∀c∃d AH
q f (c,d).

The rest of the proof now proceeds as above (using that (A′)D is in ∃∀-form). �



170 10 Systems based on classical logic and functional interpretation

Remark 10.15. In theorem 10.14 WE-HAω can actually be replaced by a fragment
sufficient for the functional interpretation of the logical axioms and rules only
(which only requires a very minor amount of arithmetic). This is the case because
proposition 10.13 holds for the classical variant of such a fragment instead of WE-
PAω .
The proof of theorem 10.14 actually shows that there are closed terms in that frag-
ment of WE-HAω that transform realizers of AS into realizers of (A′)D and closed
terms that transform realizers of (A′)D into realizers of An.c.i. These terms built up
out of typed λ -terms with the few basic operations like min,max, | ·− · |,sg needed
to define characteristic terms for quantifier-free formulas plus 0,1.

Whereas AS raises the maximal type degree of quantified variables in A at most by
1 and An.c.i at most by 2 (so for arithmetical formulas A, i.e. formulas which only
contain quantifiers over type-0 variables, AS only contains quantifiers of degree ≤ 1
and An.c.i. only quantifiers of degree ≤ 2) the type increase in forming (A′)D is
unbounded (even for the class of arithmetical formulas). The benefit, however, is
that (A′)D is the only ∃∀-normal form which satisfies proposition 10.13:

Proposition 10.16. WE-PAω+QF-AC does neither derive A → AS nor An.c.i. → A
in general.

Proof: It is clear that for general A, the schemas A → AS and AH → A are equivalent
to full AC over WE-PAω which is well-known to be unprovable in WE-PAω+QF-
AC. The proposition now follows from the fact that WE-PAω+QF-AC � AH →
An.c.i.. �

Corollary 10.17. The converse directions of the implications in theorem 10.14 are
not even provable in WE-PAω+QF-AC.

Proof: The claim follows from proposition 10.13 and proposition 10.16. �

Looking back to the treatment of the special case

A :≡ ∀x∃y∀zA0(x,y,z) and B :≡ ∀u∃vB0(u,v)

of the modus ponens problem in chapter 2, we see that the solution we finally aimed
at in this case is precisely what the ND-interpretation does in this case: A′ and (A →
B)′ are (intuitionistically equivalent to)

∀x¬¬∃y∀zA0(x,y,z) and ∀u¬¬∃vB0(u,v)

and the functional interpretation of proofs of these formulas provides precisely func-
tionals Φ0, . . . ,Φ3 whose existence we stipulated in the discussion of the modus
ponens problem in chapter 2, i.e. functionals Φ0,Φ1,Φ2,Φ3 such that

∀x,gA0(x,Φ0(x,g),g(Φ0(x,g)))

and
Φ1(u,Y ),Φ2(u,Y ),Φ3(u,Y ) realizing x,g,v in (∗),
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where
(∗) ∀u,Y∃x,g,v

(
A0(x,Y (x,g),g(Y (x,g))) → B0(u,v)

)
.

As discussed in chapter 2, the Skolem normal form (which coincides with ND for
B) is to strong to be useful for A since in general a classical proof of A will not pro-
vide an effective Skolem function. The no-counterexample interpretation (which –
essentially – coincides with ND for A) is too weak an interpretation of (any prenex-
ation of) A → B to allow for a simple solution of the modus ponens problem.
Here we have a situation where the application of negative translation actually
strengthens a statement from a computational point of view: suppose we had an
intuitionistic proof (say in HA or WE-HAω ) of

(+) ∀x∃y∀zA0(x,y,z) →∀u∃vB0(u,v).

Then functional interpretation would have extracted from this WE-HAω -functionals
ϕ1,ϕ2,ϕ3 such that

∀ f ,u(A0(ϕ1(u, f ), f (ϕ1(u, f )),ϕ2(u, f )) → B0(u,ϕ3(u, f ))

which allows for a direct application of the modus ponens if we are provided with
a function f satisfying the Skolem normal form of A (which as we discussed above
will in general not be computable). Similarly, modified realizability applied to (+)
would provide a functional ψ (given by a closed term of WE-HAω ) such that

∀ f ,u(∀x,zA0(x, f (x),z) → B0(u,ψ(u, f ))

which again requires a Skolem function for A to discharge the premise. In contrast
to this, applying negative translation first, yielding

(+)′ ∀x¬¬∃y∀zA0(x,y,z) →∀u¬¬∃vB0(u,v),

works for our benefit even in cases where (+) is already provable intuitionistically:
the fact that the conclusion gets slightly weakened to ∀u¬¬∃vB0(u,v) does not
cause a problem for functional interpretation (which immediately removes these
double negations by trivially interpreting the Markov principle) though it would
for modified realizability which would produce the empty realizer. However, the
severe weakening of the premise to ∀x¬¬∃y∀zA0(x,y,z) strengthens the implica-
tion and we now only need a functional satisfying the functional interpretation of
∀x¬¬∃y∀zA0(x,y,z), i.e. Φ0 above since in this case the functional interpretation
coincides with the no-counterexample interpretation of A, to get a realizing func-
tional for the conclusion. In further comparing functional interpretation with modi-
fied realizability let us note that even applied to (+) (instead of (+)′) it is functional
interpretation which gives the much stronger result: whereas the modified realiz-
ability of (+) really requires a ‘full’ Skolem function f for A to drop the premise,
the functional interpretation of (+) (which coincides with the no-counterexample
interpretation of (A → B)pr :≡ ∀u∃x∀y∃z,v(A0(x,y,z) → B0(u,v))) only requires to
be able to compute a sequence ( fu)u∈N of functions satisfying
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∀uA0(ϕ1(u, fu), fu(ϕ1(u, fu)),ϕ2(u, fu)).

As mentioned already in chapter 2 such an fu can in fact be constructed by bar
recursion (to be discussed in chapter 11) from a functional Φ0 satisfying the no-
counterexample interpretation of A and ϕ1,ϕ2. This is achieved by solving (in the
parameter u) the following equations for x, f ,g

x = ϕ1(u, f ), Φ0(x,g) = f (ϕ1(u, f )), g(Φ0(x,g)) = ϕ2(u, f ).

So in the end even applying functional interpretation to (+) instead of (+)′ would
allow us to construct a solution using just the information Φ0 on (the proof of) A.
However, the use of bar recursion will in general increase the complexity of the so
obtained solution significantly. The same is true for yet another alternative to be
discussed in chapter 14 below.

Remark 10.18. Further interesting observations concerning the weakness of a con-
structive interpretation of implications of the form Π 0

3 → Π 0
3 and Π 0

3 → Π 0
2 can be

found in [252] and [251].

In chapter 18 the special instance of the modus ponens just discussed will play an
important role in the form of a lemma

∀k ∈ N∃n ∈ N∀m ∈ N (|an+m −an| ≤ 2−k) →∀k ∈ N∃n ∈ N(an ≤ 2−k),

where (an)n∈N is a nonincreasing sequence of non-negative real numbers (namely
the sequence of distances d(xn, f (xn)) of certain iteration sequences (xn) of nonex-
pansive functions f , see chapter 17). By discharging the valid assumption

∀k ∈ N∃n ∈ N∀m ∈ N (|an+m −an| ≤ 2−k)

it is proved that (an) converges towards 0. Clearly, any Cauchy rate of (an) is a rate
of convergence for an → 0. Using ND, however, we see that we can extract from the
proof a rate of convergence for an → 0 using only a functional Φ satisfying the no-
counterexample interpretation of ∀k ∈ N∃n ∈ N∀m ∈ N (|an+m −an| ≤ 2−k). If we
use a combination of negative translation and monotone functional interpretation
(to be discussed next) we actually only need a majorant Φ∗ for such a Φ and we
may (as proved in proposition 2.26) take e.g.

Φ∗(g,k) := g̃(2k)(0),

where g(n+1)(0) := g(g(n)(0)) and g(0)(0) := 0 and g̃(n) := n+g(n). Strictly speak-
ing, Φ∗ has a further function argument h coming from the universal quantifier
hidden in ‘≤R 2−k’, however the majorant we give does not depend on h. The de-
tails are left as an exercise. So although the convergence is proved using the non-
computational (by E. Specker’s result discussed in chapter 2) principle that bounded
monotone sequences are Cauchy one can use negative translation combined with
(monotone) functional interpretation to extract a simple subrecursive rate of conver-
gence towards 0 which, taking advantage of the fact that Φ∗ does not depend on
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(an), will have strong uniformity features (see chapter 18 for the actual extraction).

We next continue the discussion of the infinite pigeonhole principle (IPP) from
chapter 2: as we saw already, the no-counterexample interpretation of (IPP) is too
weak to be useful due to the weakness of its Herbrand normal form. Let us instead
consider the ND-interpretation of (IPP): The negative translation of (IPP) is (modulo
the use of ¬¬∀¬¬↔ ∀¬¬ and ¬¬s =0 t ↔ s =0 t)

(IPP)N :≡ ∀n ∈ N∀ f : N →Cn¬¬∃i ≤ n∀k ∈ N¬¬∃m ≥ k
(

f (m) = i
)
.

Functional interpretation now yields the following ND-interpretation of (IPP) which
we had already anticipated in chapter 2:

(IPP)ND ≡ ∀n ∈ N∀ f : N →Cn∀K : Cn ×N
N → N∃i ≤ n∃g : N → N

(
g(K(i,g)) ≥ K(i,g)∧ f (g(K(i,g))) = i

)
.

Strictly speaking, the real combination of negative translation and functional inter-
pretation (IPP′)D of (IPP) is the ∃∀-form resulting from a final application of QF-AC
to (IPP)ND which we omit here for the sake of better readability. Moreover, officially
(to fit into our finite types over N), ‘∀ f : N→Cn A( f )’ is represented as ‘∀ f 1 A( fn)’
with fn(k) := min{ f (k),n} and ‘∀K : Cn ×N

N → N’ as ‘∀K : N×N
N → N’, i.e.

as ‘∀K0(1)(0)’.
The functional interpretation of (IPP) requires functionals I(n, f ,K) and G(n, f ,K)
realizing ‘∃i’ and ‘∃g’ in (IPP)ND. We now give the solution for n = 1 :
Define

g0 :=1 λ a0.max(a,K(1,λ b0.max(a,b))),

c :=0 K(0,g0), g1 :=1 λ b0.max(c,b).

Then
g0(K(0,g0)) = max(K(0,g0),K(1,λ b.max(K(0,g0),b)))

= max(c,K(1,g1)) = g1(K(1,g1)).

Moreover, for i ∈ {0,1} :
gi(K(i,gi)) ≥ K(i,gi).

Now let
I( f ,K) := i := f (g0(K(0,g0))) (= f (g1(K(1,g1)))).

Then
i = f (gi(K(i,gi)))∧gi(K(i,gi)) ≥ K(i,gi).

Hence I( f ,K) and G( f ,K) := gI( f ,K) satisfy the ND-interpretation of the special
case of (IPP) where n = 1. The general case can be treated by an appropriate iteration
of this procedure using R1. The reader will appreciate the complexity of the solution
by writing down the solution for n = 2 (exercise). In order to get a manageable
description of the solution it is very convenient to use (as observed by Oliva in
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[293]) a finite form of Spector’s principle of bar recursion to be treated in the chapter
11. Bar recursion of lowest type suffices to give an ND-interpretation of countable
choice for Π 0

1 -formulas (which actually implies countable choice for arithmetical
formulas). The finite version of this choice principle gives the collection principle
for Π 0

1 -formulas needed to prove (IPP). Hence it is not surprising that using a finite
version of bar recursion (which in principle could be re-written as a messy R1-
recursion) helps to spell out the ND-interpretation of the full (IPP)-principle which
we will provide in chapter 11.

We now make uses of monotone functional interpretation combined with negative
translation. Let NMD denote the combination of negative translation and monotone
functional interpretation.

As in the previous chapter, Δ denotes a set of sentences of the form

∀aδ∃b ≤σ r a∀cγB0(a,b,c),

where B0 is quantifier-free and does not contain any further free variables than those
shown and r is a tuple of closed terms (of suitable types) of WE-HAω . The types
δ ,σ ,γ are arbitrary.
Δ̃ is defined as the corresponding set of sentences

∃B ≤ r∀a,cB0(a,Ba,c).

One easily observes that for B∈ Δ we have WE-HAω � B→ B′. Hence 10.6 extends
to axioms Δ :

Proposition 10.19.

WE-PAω+ QF-AC +Δ � A ⇒ WE-HAω+ QF-AC +Δ + Mω � A′.

The above proposition combined with the soundness theorem 9.1 for MD immedi-
ately yields the following

Theorem 10.20 (Soundness Theorem for NMD).
⎧
⎨

⎩

WE-PAω+ QF-AC + Δ � A(a), then

WE-HAω + Δ̃ � ∃x(t∗ ma j x∧∀a,y(A′)D(xa,y,a)),

where t∗ is a suitable tuple of closed terms of WE-HAω which can be extracted by
NMD from a given proof of the assumption.

Combined with the majorization technique used already in the previous chapter we
obtain

Theorem 10.21 (Main theorem on uniform bound extraction by NMD).
Let A0(x1,yρ ,zτ ) be a (quantifier-free) formula of L (WE-PAω) containing only
x,y,z as free variables, deg(τ) ≤ 2 and s be a closed term. Then
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC + Δ � ∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

⇒ NMD extracts a closed term t of WE-HAω such that

WE-HAω + Δ̃ � ∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

In particular, if S ω |= Δ , then the conclusion holds in S ω . As in theorem 6.8 the
result also applies to tuples of variables.

Proof:
WE-PAω+ QF-AC + Δ � ∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

implies by proposition 10.19

WE-HAω+ QF-AC + Δ + Mω � ∀x1∀y ≤ρ sx¬¬∃zτ A0(x,y,z)

and so using Mω

WE-HAω+ QF-AC + Δ + Mω � ∀x1∀y ≤ρ sx∃zτ A0(x,y,z).

Theorem 9.3 together with the corollary to its proof now yields a closed term t such
that

WE-HAω + Δ̃ � ∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z)
)
.

�

The vast potential for applications of this theorem to problems in analysis will be
discussed in detail in chapter 15.

Remark 10.22. One easily obtains the variant of theorem 10.21 corresponding to
proposition 6.11 (also combined with the format in theorem 10.21): exercise!

Remark 10.23. As mentioned already, theorem 10.21 also holds for tuples of vari-
ables as long as they satisfy the conditions stated. For a tuple ∃z where some of the
zi’s have types of degree ≤ 2 while others have not one can still extract bounds for
the former.

Remark 10.24. In theorem 10.21 one may also have more general axioms Δ∗ of the
form

∀aδ 1
1 ∃b1 ≤σ1 r1a1∀aδ 2

2 ∃b2 ≤σ2 r2a1a2 . . .∀aδ n
n ∃bn ≤σn rna1 . . .an∀cγ B0

with Δ̃∗ be
∃B1 ≤ r1, . . . ,Bn ≤ rn∀a1, . . . ,an,cB0

in the conclusion (exercise).

Corollary 10.25. Let Δ as before and A0(x1,z0) be a (quantifier-free) formula of
WE-PAω containing only x,z free. Then the following rule holds:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC + Δ � ∀x1∃z0A0(x,z)

⇒ using NMD one extracts a closed term t of WE-HAω such that

WE-HAω + Δ̃ � ∀x1 A0(x,tx).

Proof: The corollary follows from theorem 10.21, the fact that one can construct
a characteristic term tA0 for A0 (lemma 3.17) and (primitive recursive) bounded
search. �

Theorem 10.26. Let Δ be a sentence of the form

∀aδ∃b ≤σ ra∀cγB0(a,b,c)

where deg(γ) ≤ 2 and define the so-called ε-weakening of its Skolem normal form
Δ̃ by

Δ̃ε :≡ ∀cγ∃B ≤σδ r∀a∀c̃ ≤γ cB0(a,Ba, c̃).

Then for A0 and τ as in theorem 10.21 the following rule holds:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC � Δ →∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

⇒ NMD extracts a closed term t of WE-HAω such that

WE-HAω � Δ̃ε →∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

Proof:
WE-PAω+ QF-AC � Δ →∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

implies
WE-PAω+ QF-AC � Δ̃ →∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

and hence

WE-PAω+ QF-AC � ∀x1∀y ≤ sx∀B ≤ r∃a,c,z
(
B0(a,Ba,c)→ A0(x,y,z)

)
.

Theorem 10.21 (with Δ = /0) together with remark 10.23 now yields closed terms
t,t ′ such that

WE-HAω � ∀x1∀y ≤ sx∀B ≤ r∃a∃c ≤ t ′x∃z ≤ tx
(
B0(a,Ba,c) → A0(x,y,z)

)

and hence

WE-HAω � ∀x1(∃B ≤ r∀a∀c ≤ t ′xB0(a,Ba,c) →∀y ≤ sx∃z ≤ txA0(x,y,z)
)
.

Thus

WE-HAω � ∀x1(∀c∃B ≤ r∀a∀c̃ ≤ cB0(a,Ba, c̃) →∀y ≤ sx∃z ≤ txA0(x,y,z)
)

and, therefore,
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WE-HAω � Δ̃ε →∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

�

Remark 10.27. 1) For arbitrary γ we still can reduce Δ to

∀cγ∃B ≤σδ r∀a∀c̃(c ma jγ c̃ → B0(a,Ba, c̃))

since the condition deg(γ) ≤ 2 was used only to construct a bound for c̃ from a
majorant of c̃. The reduction of Δ to Δ̃ε is also possible for arbitrary τ except that
in this case we will not get a bound on z (but only a majorant).

2) Instead of a single sentence Δ we may also have a finite conjunction of such sen-
tences and the sentences themselves may have tuples of variables as in theorem
10.21 above, i.e.

∀aδ∃b ≤σ r a∀cγB0(a,b,c)

as long as all deg(γi) ≤ 2. If some of the γi are not of degree ≤ 2 one can still
bound the ci’s of the other types which are of degree ≤ 2.

3) Δ needs to be an implicative premise rather than an axiom in the sense of
WE-PAω+QF-AC+Δ since WE-PAω does (due to the fact that it contains the
quantifier-free extensionality rule QF-ER) not satisfy the deduction theorem.

4) Analogously to theorem 7.18 one can even allow the sentence Δ to depend on
the parameters x and y. For many more results in this direction see [203].

Remark 10.28. Theorem 10.21 resp. theorem 10.26 (taken together with the remark
above) implies the seemingly stronger version where we allow Δ̃ to be used in the
premise rather than only Δ : Δ̃ itself has the form of just another sentence Δ with the
initial universal quantifier being empty but with increased types and c replaced by
the pair a,c and ˜̃Δ ≡ Δ̃ .

In view of this remark one may ask why we formulated theorems 10.21 and 10.26
with Δ rather than Δ̃ . The reason is that in concrete applications to mathematics,
the ineffective principles used typically come in the form Δ with all types of degree
≤ 1. By an elimination procedure for the full extensionality axioms to be discussed
below we can in such situations even allow E-PAω instead of WE-HAω to be used
(which also satisfies the deduction theorem so that we then actually can treat Δ
as an ordinary axiom). For the Δ̃ form the elimination of extensionality would not
be available in such cases since B usually is already of type 2. In fact, we will
see that in general Δ̃ (e.g. UWKL, see below) is much stronger in the presence of
extensionality than Δ (e.g. WKL).

The usefulness of theorem 10.26 becomes clear by the following

Proposition 10.29. Let Δ and Δ̃ε be as in theorem 10.26 and

Δε :≡ ∀a,c∃b ≤ ra∀c̃ ≤ cB0(a,b, c̃).

Then
WE-HAω � Δε ⇔ WE-HAω � Δ̃ε .
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Proof: The proposition is immediate from that fact that Δ̃ε follows from Δε by the
rule of choice ACR and the fact that WE-HAω is closed under ACR (see corollary
5.24 and remark 5.25). �

Proposition 10.30. Let Δ be as in theorem 10.26 with δ ,σ ,γ of degree ≤ 1 and Δε
as in proposition 10.29. Then

WE-HAω � Δε ↔ Δ̃ε .

Proof: The proposition follows by applying lemma 9.27 twice. �

The relevance of theorem 10.26 in connection with propositions 10.29 and 10.30
comes from the fact that for many ineffective theorems of the form Δ in analysis Δε
has a simple constructive proof so that one can eliminate Δ altogether from the proof
of the conclusion. An example for this is e.g. the weak König’s lemma WKL which
can, as we saw in the previous chapter, be written in the form WKL′ of a sentence
Δ such that (WKL′)ε is provable even in ŴE-HA

ω
|\ (see proposition 9.18). Hence

we get the following

Corollary 10.31. For A0 and τ as in theorem 10.21 the following rule holds:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC � WKL →∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

⇒ NMD extracts a closed term t of WE-HAω such that

WE-HAω � ∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

As in theorem 6.8 the result also holds for tuples of variables.

10.3 Application: Uniform weak König’s lemma UWKL

Let us recall the definition of the binary (‘weak’) König’s lemma WKL from chapter
9:

WKL: ∀ f 1
(

T ( f )∧∀x0∃n0(lth n = x∧ f n = 0) →∃b ≤1 λ k.1∀x0( f (bx) = 0
))

.

Defining
T ∞( f ) :≡ T ( f )∧∀x0∃n0(lth n = x∧ f n = 0)

(i.e. T ∞( f ) expresses that f represents an infinite binary tree), WKL writes as fol-
lows:

∀ f 1
(

T ∞( f ) →∃b ≤1 λ k.1∀x0( f (bx) = 0
))

.

From chapter 7 we recall the definition of the uniform weak König’s lemma
UWKL:
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UWKL : ≡ ∃Φ ≤1(1) 1∀ f 1
(

T ∞( f ) →∀x0( f ((Φ f )x) = 0
))

.

In chapter 9 we saw that WKL can be written equivalently as WKL′ which has the

form of an axiom Δ . With WKL′, also W̃KL′ has the form of an axiom Δ .

Lemma 10.32.
ŴE-HA

ω
|\ � UWKL ↔ W̃KL′.

Proof: W̃KL′ is the statement

∃B ≤ 1∀ f 1,g1,x0
((̂

f̂
)

g((B f g)x) =0 0
)
.

‘⇒’: Let Φ be a functional satisfying UWKL. Define B( f ,g) := Φ
(

̂( f̂ )g

)
.

By lemma 9.15.1 and proposition 9.18.1 T ∞
(

̂( f̂ )g

)
. Hence by UWKL

∀x0
((̂

f̂
)

g((B f g)x) =0 0
)
.

‘⇐’: Primitive recursively in f we define

f̃ (x) :=

⎧
⎨

⎩

minn ≤ 11x[lth(n) = x∧ f (n) = 0] if existent,

00 otherwise.

Then by lemmas 9.15.2 and 9.16.2 (and monotonicity properties of our sequence
coding)

∀ f 1(T ∞( f ) → f =1
̂( f̂ ) f̃

)
.

Let B satisfy W̃KL
′
, then Φ( f ) := B( f , f̃ ) satisfies UWKL. �

Corollary 10.33. In theorem 10.21 we can replace ‘Δ ’ and ‘Δ̃ ’ by ‘Δ+UWKL’ and
‘Δ̃+UWKL’. In particular with A0,s,τ as in theorem 10.21:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC+UWKL � ∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

⇒ NMD extracts a closed term t of WE-HAω such that

WE-HAω + UWKL � ∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

As in theorem 6.8 the result also holds for tuples of variables.
Analogously for ŴE-PA

ω
|\, ŴE-HA

ω
|\ instead of WE-PAω , WE-HAω .

Proof: The corollary follows from the fact that (by lemma 10.32) UWKL is equiv-
alent to a sentence of the form Δ (with a being the empty tuple) namely W̃KL

′

together with theorem 10.21 and the fact that
˜
W̃KL

′
≡ W̃KL

′
. �
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Analogously to corollary 10.31 we obtain (using again lemma 10.32) the follow-
ing: under the slight restriction that UWKL must not be used in the proof of the
premise of an instance of the extensionality rule QF-ER and therefore can be moved
to the right of ‘�’ as an implicative assumption, one can actually eliminate UWKL
from the proof of the conclusion of corollary 10.33, thereby establishing a strong
conservation result for UWKL (see [221]):

Corollary 10.34. With A0,s,τ as in theorem 10.21:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WE-PAω+ QF-AC � UWKL →∀x1∀y ≤ρ sx∃zτ A0(x,y,z)

⇒ NMD extracts a closed term t of WE-HAω such that

WE-HAω � ∀x1∀y ≤ρ sx∃z ≤τ txA0(x,y,z).

As in theorem 6.8 the result also holds for tuples of variables.
Analogously for ŴE-PA

ω
|\, ŴE-HA

ω
|\ instead of WE-PAω , WE-HAω .

Remark 10.35. For general axioms Δ allowing arbitrary types, the truth of theorems
10.21 and 10.26 and corollaries 10.33 and 10.34 crucially depends on the fact that
in WE-PAω we permit only a restricted use of extensionality. Further below, we will
show that indeed corollary 10.33 fails for E-PAω as UWKL implies in the presence
of full extensionality a strong comprehension axiom. If, however, the degrees of the
types σ in all axioms Δ are restricted to ≤ 1 (which still covers WKL but no longer
UWKL), QF-AC is restricted to QF-AC1,0+QF-AC0,1 and the degree of the type ρ
of y is ≤ 1, then an elimination of extensionality procedure sketched below allows
one to derive a version of theorem 10.21 for E-PAω (see theorem 10.47).

10.4 Elimination of extensionality

In this section we discuss a syntactic method for the elimination of the extension-
ality axiom from proofs of theorems having appropriate type restrictions on their
variables. The technique goes back essentially to R. Gandy but was carried out for
the systems at hand in Luckhardt [266]. We give a simplification of the treatment
from [266]: the basic idea is to restrict all quantifiers to the hereditarily extensional
functionals xρ where ‘hereditarily extensional’ is understood as x ≈ρ x as defined in
9.6. However, for reasons similar to the use of strong majorizability in the definition
of the model M ω we use a strong variant of ≈ρ which ensures that x ≈ y implies
x ≈ x. We denote this variant by =e

ρ :

Definition 10.36. Between functionals of type ρ we define a relation =e
ρ by induc-

tion on ρ :
⎧
⎨

⎩

x =e
0 y :≡ x =0 y,

x =e
τρ y :≡ ∀uρ ,vρ(u =e

ρ v → xu =e
τ xv∧ xu =e

τ yv).
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The next seven lemmas are all provable in WE-HAω .

Lemma 10.37. x =e
ρ y → x =e

ρ x.

Proof: For both ρ = 0 and ρ �= 0 the claim is immediate. �

Lemma 10.38. x1 =e
ρ x2 ∧ x2 =e

ρ x3 → x1 =e
ρ x3.

Proof: Induction on ρ . The case ρ = 0 is trivial.
Let x1 =e

τρ x2,x2 =e
τρ x3 and assume that u =e

ρ v. Then x1u =e
τ x1v and x2u =e

τ x3v.
By lemma 10.37 we also have u =e

ρ u and so x1u =e
τ x2u. Hence by I.H. x1u =e

τ x3v.
In total this yields x1 =e

τρ x3. �

Lemma 10.39. x =e
ρ y → y =e

ρ x.

Proof: Induction on ρ . The case ρ = 0 is trivial.
Let x =e

τρ y and assume that u =e
ρ v. By I.H. we have v =e

ρ u and so xv =e
τ yu. Again

by I.H. this gives (1) yu =e
τ xv. Lemma 10.37 implies u =e

ρ u and so xu =e
τ yu. By

I.H. this yields yu =e
τ xu. Since also xu =e

τ yv, lemma 10.38 yields (2) yu =e
τ yv.

(1),(2) give y =e
τρ x. �

Lemma 10.40. 1) x1 =ρ x̃1 ∧ x2 =ρ x̃2 ∧ x1 =e
ρ x2 → x̃1 =e

ρ x̃2.
2) Let ρ = τρk . . .ρ1.

x =e
ρ x̃ ↔∀y1, ỹ1, . . . ,yk, ỹk

( k∧

i=1

(yi =e
ρi

ỹi) → xy =e
τ xỹ∧ xy =e

τ x̃ỹ
)
.

Proof: 1) Induction on ρ .
2) Induction on k. The case k = 1 is immediate from the definition.
k �→ k + 1 :

x =e
ρ x̃ I.H.⇔

∀y1, ỹ1, . . . ,yk, ỹk
( k∧

i=1
(yi =e

ρi
ỹi) → xy1 . . .yk =e

τρk+1
xỹ1 . . . ỹk ∧ xy1 . . .yk =e

τρk+1
x̃ỹ1 . . . ỹk

)

⇔

∀y1, ỹ1, . . . ,yk, ỹk
( k∧

i=1
(yi =e

ρi
ỹi) →∀yk+1, ỹk+1(yk+1 =e

ρk+1
ỹk+1 →

xy1 . . .yk+1 =e
τ xy1 . . .ykỹk+1 ∧ xy =e

τ xỹ∧ xy =e
τ x̃ỹ)

)

lemma10.37⇔ ∀y1, ỹ1, . . . ,yk+1, ỹk+1
( k+1∧

i=1
(yi =e

ρi
ỹi) → xy =e

τ xỹ∧ xy =e
τ x̃ỹ

)
.

�

Lemma 10.41. Let ρ be of degree ≤ 1. Then x =e
ρ x.

Proof: Immediate from lemma 10.40.2. �
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Notation: In the following, for u = uρ1
1 , . . . ,uρk

k and v = vρ1
1 , . . . ,vρk

k , we abbreviate
k∧

i=1
(ui =e

ρi
vi) by u =e v.

Lemma 10.42. Let t[x] be term of WE-HAω of arbitrary type with at most x as free
variables. Then

x =e x → t[x] =e t[x].

Proof: Induction on t[x] : The case of the variables x is clear by assumption. For the
constants cρ one shows c =e

ρ c using lemma 10.40 similarly to the proof of c ≈ρ c
in proposition 9.8.
The induction step follows from

s[x] =e
τρ s[x]∧ t[x] =e

ρ t[x] → (s[x])(t[x]) =e
τ (s[x])(t[x]).

�

Lemma 10.43. x =e
ρ y∧∀v(v =e v → yv =0 zv) → x =e

ρ z.

Proof: Assume that x =e
ρ y and ∀v(v =e v → yv =0 zv). Assume furthermore that

u =e v. Then by lemma 10.40.2 xu =0 yv and (1) xu =0 xv. By lemmas 10.39 and
10.37 we have v =e v and so yv =0 zv by the assumption. Hence (2) xu =0 zv. (1),(2)
imply x =e

ρ z using again lemma 10.40.2. �

Definition 10.44. For every formula A of L (E-PAω) we define a translation Ae by
relativizing all quantifiers to hereditarily extensional functionals in the sense of =e:

(i) Ae :≡ A, if A is a prime formula,
(ii) (A�B)e :≡ (Ae�Be), where � ∈ {∧,∨,→},

(iii)
(
∃xρ A

)

e :≡ ∃xρ(
x =e

ρ x∧Ae
)
,

(iv)
(
∀xρ A

)

e :≡ ∀xρ(
x =e

ρ x → Ae
)
.

The following result is (for a slightly more complicated definition of Ae) due to
[266]:

Proposition 10.45. The following rule holds:
⎧
⎨

⎩

E-PAω+ QF-AC0,1+ QF-AC1,0 � A(a) ⇒

WE-PAω+ QF-AC0,1+ QF-AC1,0 � a =e a → Ae(a),

where a are all the free variables of A.

Proof: Induction on the derivation: (i) for the propositional axioms A the claim is
trivial since Ae is an instance of the same axiom (as the relativization commutes
with all propositional connectives). Hence a =e a → Ae follows logically.
(ii) For the quantifier axioms the result follows from lemma 10.42.
(iii) For the logical rules, the correctness of the e-translation follows by simple log-
ical manipulations.
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(iv) The =0-axioms and the definition axioms for the constants are all purely uni-
versal and so get at most weakened under the relativization.
The induction axiom gets translated into another instance of the induction axiom
using that trivially x =e

0 x.
(v) The extensionality axiom (for ρ = 0ρk . . .ρ1)

(Eρ) : ∀zρ ,x1, . . . ,xk,y1, . . . ,yk(
k∧

i=1

(xi =ρi yi) → zx =0 zy)

translates into

∀zρ ,x1, . . . ,xk,y1, . . . ,yk

(z =e z∧
k∧

i=1
(xi =e xi)∧

k∧

i=1
(yi =e yi)∧

k∧

i=1
∀vi(vi =e vi → xivi =0 yivi)

→ zx =0 zy).

Now assume z =e z,
k∧

i=1
(xi =e xi),

k∧

i=1
(yi =e yi), and

k∧

i=1
∀vi(vi =e vi → xivi =0 yivi).

Then by lemma 10.43
k∧

i=1
(xi =e yi) and so using lemma 10.40.2 zx =0 zy. Hence we

have shown that
WE-PAω � (Eρ)e.

(vi) (QF-AC0,1)e follows from QF-AC0,1 using lemma 10.41. For QF-AC1,0 one
uses that for type-2 functionals Y =e

2 Y just means that Y is extensional, where the
existence of an extensional choice functional follows by taking the least value: if
∀x1∃y0A0(x,y,a), then by QF-AC1,0 ∃Y 2∀x1A0(x,Y x,a). Now define (by primitive
recursive bounded search in x,a) Y ∗(x) := miny ≤ Y (x)[A0(x,y,a)]. It is easy to
show that (under the assumption a =e a) the functional Y ∗ is extensional, i.e. Y ∗ =e

2
Y ∗. Since A0 ≡ (A0)e it follows that (QF-AC1,0)e. �

Remark 10.46. 1) The proposition above also holds if the rule QF-ER is removed
from WE-PAω provided that the equality axiom x =0 y → t[x] =0 t[y] is added
instead.

2) The proposition also holds for the intuitionistic systems E-HAω and WE-HAω

instead of E-PAω and WE-PAω respectively.

Using proposition 10.45 we now prove the following theorem, where ENMD de-
notes the combination of elimination of extensionality, negative translation and sub-
sequent monotone functional interpretation:

Theorem 10.47 (Main theorem on uniform bound extraction by ENMD).
Let Δ be a set of sentences of the form as in theorem 10.21 but with the condition
that the degrees of the types σ are all ≤ 1 and those of γ all ≤ 2. Let A0(x1,y1,zτ )
be a (quantifier-free) formula of L (E-PAω ) containing only x,y,z as free variables,
deg(τ) ≤ 2 and s be a closed term. Then
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-PAω+ QF-AC1,0+QF-AC0,1 + Δ + WKL � ∀x1∀y ≤1 sx∃zτ A0(x,y,z)

⇒ ENMD extracts a closed term t of WE-HAω such that

WE-HAω + Δ̃ε � ∀x1∀y ≤1 sx∃z ≤τ txA0(x,y,z).

In particular, if S ω |= Δ , then the conclusion holds in S ω . As in theorem 6.8 the
result also applies to tuples of variables satisfying the type restrictions.

Proof: We may assume that Δ is finite and so can form the conjunction of its ele-
ments which we also denote by Δ . By the deduction theorem we have

E-PAω+ QF-AC1,0+QF-AC0,1 � Δ ∧ WKL →∀x1∀y ≤1 sx∃zτ A0(x,y,z)

and so by proposition 10.45

WE-PAω+ QF-AC1,0+QF-AC0,1 �
(
Δ ∧ WKL →∀x1∀y ≤1 sx∃zτ A0(x,y,z)

)

e.

By the restrictions on the types of the positively occurring ∀-quantifiers and the
negatively occurring ∃-quantifiers and lemma 10.41 we have

WE-PAω � (. . .)e → (. . .).

Hence

WE-PAω+ QF-AC1,0+QF-AC0,1 � Δ ∧ WKL →∀x1∀y ≤1 sx∃zτ A0(x,y,z).

Now by theorem 10.26 and the proof of corollary 10.31 the claim in the theorem
follows. �

Remark 10.48. By proposition 10.30 we can replace in theorem 10.47 Δ̃ε by Δε if
all the quantified variables in Δ have types of degree ≤ 1.

In one of the applications to approximation theory which will be given in chapter 16
below, we will analyze a proof of a ∀∃-theorem which is based on a lemma having
the logical form

(%) ∀x1(∀w0B0(x,w) →∃y ≤1 sx∀z0C0(x,y,z)),

where B0 and C0 are quantifier-free. The logical form looks similar to that of lemmas
Δ as in the previous theorem, for which we have shown that their proofs do not
contribute to the construction of extractable bounds so that they can be taken simply
as axioms. Nevertheless, due to the additional universal premise ‘∀w0B0(x,w)’ this
is no longer true for lemmas of the form (%) : Let T be the Kleene-T -predicate
and consider the following sentence which holds by classical logical (and hence is
provable in WE-PAω ):

∀m0(∀n0¬T (e,m,n) → 0 = 1
)
→∀k0∃l0T (e,k, l),
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where e is the code of a total recursive function which growths faster than any WE-
PAω -definable function. Note that by treating ‘∃y ≤ sx’ and ‘∀z0’ as dummy quan-
tifiers (and via the obvious embedding of the type 0 into the type 1) the premise

∀m0(∀n0¬T (e,m,n) → 0 = 1
)

has the logical form (%). Suppose we could extract from the proof a closed term t
of WE-PAω such that

∀m0(∀n0¬T (e,m,n) → 0 = 1
)
→∀k0∃l ≤0 tk T (e,k, l)

is true, then by the truth of the premise (since e encodes a total recursive function)
the conclusion

∀k∃l ≤0 tk T (e,k, l)

would be true in contradiction to the construction of e.
Given this situation, the next theorem gives the best possible answer to the question
to what extent proofs of lemmas (%) do contribute to the extractable bound for the
conclusion:

Theorem 10.49. Let Δ be as in proposition 10.26 with δ ,σ ,γ types of degree ≤ 1
and B0(x,w),C0(x,y,z) be quantifier-free formulas of L (E-PAω) containing only
x,w and x,y,z free respectively.
Assume that

(i) E-PAω+QF-AC1,0+QF-AC0,1 + Δ �

∀x1(∀w0B0(x,w) →∀z0∃y ≤1 sx
z∧

j=0
C0(x,y, j)

)

and

(ii) E-PAω+QF-AC1,0+QF-AC0,1 + Δ �

∀x
(
∀w0B0(x,w) →∃y ≤1 sx∀z0C0(x,y,z)

)
→∀u1;v ≤1 tu∃k0D0(u,v,k)

)
.

Then:
From (i) one can extract a closed term χ of WE-HAω such that

(i)∗ WE-HAω + Δε � ∀x,z
( χxz∧

i=0
B0(x, i) →∃y ≤ sx

z∧

j=0
C0(x,y, j)

)
.

From (ii) – using χ – one can extract a closed term Ψ of WE-HAω such that

(ii)∗ WE-HAω + Δε � ∀u∀v ≤ tu
Ψu∨

k=0

D0(u,v,k).

Proof: From (i) one concludes that
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E-PAω+QF-AC1,0+QF-AC0,1 + Δ � ∀x1,z0∃w0
(

B0(x,w) →∃y ≤1 sx
z∧

j=0
C0

)
.

By lemma 9.27 there exists (effectively) a quantifier-free formula F0 ∈L (WE-PAω)
such that

WE-HAω � F0(x,w,z) ↔
(

B0(x,w) →∃y ≤ sx
z∧

j=0

C0

)
.

Theorem 10.47 and proposition 10.30 now yield a closed term χ of WE-HAω such
that

WE-HAω + Δε � ∀x,z
( χxz∧

i=0

B0(x, i) →∃y ≤ sx
z∧

j=0

C0

)

which implies (i)∗.
(ii) implies (using the deduction theorem for E-PAω and elimination of extensional-
ity)

WE-PAω+QF-AC �

Δ →∀x∃y ≤ sx∀z∃w
( w∧

i=0
B0(x, i) →

z∧

j=0
C0(x,y, j)

)
→∀u;v ≤ tu∃kD0.

Hence

WE-PAω+QF-AC �

Δ →∃Y ≤ s,W 001∀x,z
(Wxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,Y x, j)

)
→∀u;v ≤ tu∃kD0.

Therefore

WE-PAω+QF-AC �

Δ →∀Y ≤ s;W,u;v ≤ tu∃x,z,k
((W xz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,Y x, j)

)
→ D0(u,v,k)

)
.

Substituting χ for W yields

WE-PAω+QF-AC �

Δ →∀Y ≤ s;u;v ≤ tu∃x,z,k
(( χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,Y x, j)

)
→ D0(u,v,k)

)
.

By theorem 10.26 and proposition 10.30 we extract closed terms Φ,Ψ of WE-HAω

from the given proof such that
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(∗) WE-HAω + Δε � ∀Y ≤ s;u;v ≤ tu
(
∀x∀z ≤ Φu

( χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,Y x, j)

)

→
Ψu∨

k=0
D0(u,v,k)

)
.

Hence also

WE-HAω + Δε � ∀u
(
∃Y ≤ s∀x;z ≤ Φu

( χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,Y x, j)

)

→∀v ≤ tu
Ψ u∨

k=0
D0(u,v,k)

)
.

Using lemma 9.27 this yields

(∗∗) WE-HAω + Δε � ∀u
(
∀x∃y ≤ sx∀z ≤ Φu

( χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,y, j)

)

→∀v ≤ tu
Ψ u∨

k=0
D0(u,v,k)

)
.

It remains to show that

WE-HAω � ∀x,z
( χxz∧

i=0
B0(x, i) →∃y ≤ sx

z∧

j=0
C0(x,y, j)

)
→

∀u,x∃y ≤1 sx∀z ≤0 Φu
( χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,y, j)

)
.

(Together with (∗∗) and (i)∗ this implies (ii)∗).

Assume (+) ∀x,z
( χxz∧

i=0
B0(x, i) →∃y ≤ sx

z∧

j=0
C0(x,y, j)

)
.

We have to show that

∀u,x∃y ≤1 sx∀z ≤0 Φu
( χxz∧

i=0

B0(x, i) →
z∧

j=0

C0(x,y, j)
)
.

Since this is trivial if ∀z ≤ Φu¬
χxz∧

i=0
B0(x, i) (take y := 01), we may assume that

∃z ≤ Φu
χxz∧

i=0

B0(x, i).

Define primitive recursively in x,u (in the sense of WE-HAω ) zu,x such that zu,x =

max
{

z ≤0 Φu|
χxz∧

i=0
B0(x, i)

}

. Then
χxzu,x∧

i=0
B0(x, i). By (+) there exists an y ≤ sx with

(++)
zu,x∧

j=0
C0(x,y, j). We show
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(+++) ∀z ≤0 Φu
( χxz∧

i=0

B0(x, i) →
z∧

j=0

C0(x,y, j)
)

:

Case 1: z ≤ zu,x. Then by (++)
z∧

j=0
C0(x,y, j).

Case 2: Φu ≥ z > zu,x. By the maximality of zu,x it follows that ¬
χxz∧

i=0
B0(x, i) and

hence
χxz∧

i=0
B0(x, i) →

z∧

j=0
C0(x,y, j). �

Remark 10.50. 1) The above theorem is useful in analyzing proofs which can be
split into the two parts

(i) ∀α∃β ≤ rα∀nA0 →∀x
(
∀wB0 →∃y ≤ sx∀zC0

)
and

(ii) ∀x
(
∀wB0 →∃y ≤ sx∀zC0

)
→∀u∀v ≤ tu∃kD0 :

One analyses separately the proof of (i), which, in particular, is a proof of

(i)∗ ∀α∃β ≤ rα∀nA0 →∀x
(
∀wB0 →∀z∃y ≤ sx

z∧

j=0

C0
)
,

and the proof of (ii) and combines the results to a bound for ‘∃k’.
In section 2 of chapter 16 we will give an application of this strategy in the
context of the logical analysis of the standard proof of the uniqueness of best
Chebycheff approximation.

2) Theorem 10.49 gives an alternative proof of the fact that E-PAω+QF-AC1,0+QF-
AC0,1+WKL is conservative over WE-HAω w.r.t. ∀u1∀v ≤1 tu∃k0A0-sentences
(analogously for the systems with restricted induction), since ŴE-HA

ω
|\ proves

WKL ↔∀ f ,g
(

T f ∧∀x(lth(gx) = x∧ f (gx) = 0)→∃b≤1 λ k.1∀x
(

f (bx) = 0
))

as well as

∀ f ,g
(

T f ∧∀x
(
lth(gx) = x∧ f (gx) = 0

)
→∀x∃b ≤ λ k.1

x∧

j=0

(
f (b j) = 0

))
.

10.5 Fragments of (W)E-PAω

As we discussed already at the end of the previous chapter, monotone functional
interpretation applies also to the fragments T ω

i := ŴE-HA
ω
|\, GnAω

i (n ≥ 2) of
WE-HAω . Since also the negative translation is applicable (as is the extensionality
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elimination) we can obtain the main results of this chapter also for T instead of
(W)E-PAω where T is the variant of Ti with classical logic. In particular, we obtain

Theorem 10.51. Theorems 10.21 and 10.26 also hold for GnAω , GnAω
i (n ≥ 2)

resp. ŴE-PA
ω
|\,ŴE-HA

ω
|\ instead of WE-PAω , WE-HAω , where then t is a closed

term of GnAω
i resp. ŴE-HA

ω
|\.

Adapting the proof of theorem 10.47 to E-G2Aω and using corollary 3.42 and propo-
sition 3.43 we get

Theorem 10.52 (Polynomial bound extraction by ENMD).
Let Δ be a set of sentences in L (E-G2Aω ) as in theorem 10.47 and A0(x0,y1,z0) be
a (quantifier-free) formula of L (E-G2Aω) containing only x,y,z as free variables
and s be a closed term. Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-G2Aω+ QF-AC1,0+QF-AC0,1 + Δ � ∀x0∀y ≤1 sx∃z0A0(x,y,z)

⇒ ENMD extracts a polynomial p such that

G2Aω
i + Δ̃ε � ∀x0∀y ≤1 sx∃z ≤0 p(x)A0(x,y,z).

Proof: See Kohlenbach [207] for full details. �

We now derive some further results for (W)Ê-PA
ω

:

Proposition 10.53 (Feferman [98]).
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŴE-PA
ω
|\+ QF-AC � A(a)

⇒∃ closed terms t of ŴE-HA
ω
|\ such that

ŴE-HA
ω
|\ � ∀y

(
A′)

D(t a,y,a)

(Here a are all of the free variables of A(a).

Proof: The proof of theorem 10.7 easily relativizes to ŴE-PA
ω
|\. �

As in theorem 10.8 we get the following immediate consequence of proposition
10.53:

Corollary 10.54 (Feferman [98]). Let A0(x,y) be a (quantifier-free) formula of
L (ŴE-PA

ω
|\) which only contains x,y as free variables. Then the following rule

holds:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŴE-PA
ω
|\+ QF-AC � ∀xρ∃yτ A0(x,y)

⇒ one can extract a closed term t of ŴE-HA
ω
|\ such that

ŴE-HA
ω
|\ � ∀xA0(x,tx).
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The result also holds for tuples of variables xρ ,yτ where then t is a tuple of closed
terms.

One can show that the function(al)s of types of degree ≤ 2 definable by closed
terms in ŴE-HA

ω
|\ are just the usual primitive recursive ones in the sense of Kleene

(see [98]). From the proof of this fact combined with the previous proposition plus
elimination of extensionality one gets

Proposition 10.55 (Feferman [98]). Let R(x,y) be a primitive recursive relation (in
the sense of PRA). Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ê-PA
ω
|\+ QF-AC1,0 + QF-AC0,1 � ∀x0∃y0R(x,y)

⇒∃ primitive recursive function p such that

PRA � R(x, px).

Let PA1 be the restriction of PA to induction for Σ0
1 -formulas only.

Corollary 10.56. (Parsons,Mints,Takeuti,...) PA1 is Π 0
2 -conservative over PRA.

Analogously to proposition 10.9 we get

Proposition 10.57. Let A be a prenex sentence of L (PA1). Then the following rule
holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PA1 � A

⇒ one can extract primitive recursive functionals Φ in the sense of Kleene

ŴE-HA
ω
|\ � Φ n.c.i. A.

Conservative fragments of analysis

As we mentioned already in the previous chapter, weak König’s lemma WKL has
received quite some attention in the last 20 years as despite of its ability to derive
large portions of classical mathematics it is proof-theoretically weak by the afore-
mentioned theorem of H. Friedman stating that RCA0+ WKL is Π 0

2 -conservative

over PRA, where RCA0 basically is the second order fragment of ŴE-PA
ω
|\+ QF-

AC0,0

Adapting theorem 10.47 to the restricted context of Ê-PA
ω
|\ yields the following

generalization of Friedman’s result:

Theorem 10.58. Let A0(x,y,z) be a (quantifier-free) formula of L (Ê-PA
ω
|\) con-

taining only x1,y1,z0 as free variables and let s be a closed term. Then the following
rule holds:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ê-PA
ω
|\+ QF-AC1,0 + QF-AC0,1 + WKL � ∀x1∀y ≤1 sx∃z0A0(x,y,z)

⇒ one can extract a primitive recursive (in Kleene’s sense) Φ such that

ŴE-HA
ω
|\ � ∀x1∀y ≤1 sx∃z ≤0 ΦxA0(x,y,z).

An analogous result holds for E-PAω , WE-HAω instead of Ê-PA
ω
|\, ŴE-HA

ω
|\.

Then Φ will be a primitive recursive functional in the sense of Gödel’s T (i.e. given
by a closed term of WE-HAω ).

In chapter 12 we will obtain this theorem again as a corollary to the even stronger
theorem 12.8.

Corollary 10.59. Ê-PA
ω
|\+QF-AC1,0 +QF-AC0,1 + WKL is Π 0

2 -conservative over
PRA.

10.6 The computational strength of full extensionality

As we have shown above, over the weakly extensional systems WE-PAω and
ŴE-PA

ω
|\ the uniform weak König’s lemma UWKL is just as weak (proof theo-

retically and w.r.t. the provable recursive function(al)s of type ≤ 2) as WKL. In
this section we establish that this radically changes if we switch to the fully exten-
sional context of E-PAω or Ê-PA

ω
|\. Already over the corresponding intuitionistic

systems E-HAω and Ê-HA
ω
|\ the uniform weak König’s lemma UWKL is much

stronger than WKL w.r.t. proof-theoretic strength. In the presence of M0 for num-
bers – and a-fortiori for the classical systems – UWKL is also stronger w.r.t. the
class of provably recursive functions. In order to establish this we first show that in
the presence of full extensionality UWKL is equivalent to a strong uniform version
of Π 0

1 -comprehension:

Proposition 10.60.
Ê-HA

ω
|\ � UWKL ↔∃ϕ2∀ f 1(ϕ f =0 0 ↔∀x0( f x =0 0)

)
.

Proof: 1) ‘→’: We use an argument from higher type recursion theory due to T.J.
Grilliot [143] which is also known as ‘Grilliot’s trick’ and can be formalized in
our weak context already. The argument shows how to construct the comprehension
functional out of a functional that is effectively discontinuous. In order to apply it
we first show that any Φ satisfying UWKL is – provably in Ê-HA

ω
|\ – (effectively)

discontinuous, i.e.

Ê-HA
ω
|\ �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀Φ1(1)(∀ f 1(T ∞( f ) →∀x0( f ((Φ f )x) =0 0)
)
→

∃g1(0)
(·) ,g1(T ∞(g)∧∀iT ∞(gi)∧∀i∀ j ≥ i(g j(i) =0 g(i))

∧∀i, j
(
Φ(gi,0) = Φ(g j,0) �= Φ(g,0)

)))
.
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Furthermore, g(·) and g can be computed uniformly in Φ by closed terms of

Ê-HA
ω
|\.

Let g be primitive recursively defined such that

g(k) =

⎧
⎨

⎩

0, if ∀m < lth(k)
(
(k)m = 0

)
∨∀m < lth(k)

(
(k)m = 1

)

1,otherwise.

g represents a tree with two infinite paths, corresponding to an infinite sequence of
0’s and an infinite sequence of 1’s. So obviously

Ê-HA
ω
|\ � T ∞(g).

Suppose now that we have (by UWKL) a functional Φ1(1) be such that

∀ f 1(T ∞( f ) →∀x( f ((Φ f )x) =0 0)
)
.

Case 1: Φ(g,0) = 0. Let λ i,k.gi(k) be primitive recursively defined such that

gi(k) =

⎧
⎨

⎩

0, if [lth(k) ≤ i∧∀m < lth(k)
(
(k)m = 0

)
]∨ [∀m < lth(k)

(
(k)m = 1

)
]

1,otherwise.

gi represents the same tree as g except that the left branch has been truncated at level
i. So again we easily verify within Ê-HA

ω
|\ that ∀iT ∞(gi). It is immediate from the

definitions of gi and g that

∀k∀l ≥ lth(k)
(
gl(k) = g(k)

)
.

It is easy to check that our sequence coding from chapter 3 has the property that
lth(k) ≤ k. Thus

∀k∀l ≥ k
(
gl(k) = g(k)

)
.

Clearly, λ x.1 is the only infinite path of the binary tree represented by gi. Hence

∀i
(
Φ(gi,0) = 1

)
.

Case 2: Φ(g,0) = 1. The proof is analogous to case 1 with

gi(k) :=

⎧
⎨

⎩

0, if [lth(k) ≤ i∧∀m < lth(k)
(
(k)m = 1

)
]∨ [∀m < lth(k)

(
(k)m = 0

)
]

1,otherwise.

This finishes the proof of the effective discontinuity of Φ . Using the aforementioned
Grilliot’s trick we now show the provably in Ê-HA

ω
|\ we can define primitive recur-

sively in Φ a functional ϕ2 such that
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(+)∀ f 1(ϕ f =0 0 ↔∀x( f x =0 0)).

By primitive recursion define a closed term t1(1) of Ê-HA
ω
|\ such that (provably in

Ê-HA
ω
|\) we have

thi =

⎧
⎨

⎩

g j(i), for the least j < i such that h( j) > 0, if such a j exists

g(i), otherwise.

Together with ∀i∀ j ≥ i
(
g j(i) = g(i)

)
this implies

∃ j(h( j) > 0) → th =1 g j for the least such j

and
∀ j(h( j) = 0) → th =1 g.

Applying the extensionality axiom to the type-2-functional Φ we get

(∗) ∀ j(h( j) = 0) ↔ Φ(th,0) =0 Φ(g,0).

Hence ϕ := λ h1.|Φ(th,0)−Φ(g,0)| fulfills our claim.
We conclude the proof by combining the two constructions of ϕ corresponding to
the two cases above into a single functional which defines ϕ primitive recursively
in Φ: Let χ be a closed term such that

Ê-HA
ω
|\ � ∀x0((x =0 0 → χx =1(1) t)∧ (x �= 0 → χx =1(1) t̃)

)
,

where t is defined as above with gi from case 1 whereas t̃ is defined analogously but
with gi as in case 2. Then define ϕ := λ h1.|Φ((χ(Φ(g,0))(h),0)−Φ(g,0)|.
2) ‘←’: Primitive recursively in ϕ one can easily compute a functional Φ which
selects an infinite branch of an infinite binary tree, say the leftmost one. �

Remark 10.61. 1) Grilliot’s argument plays an important role in the context of the
Kleene/Kreisel countable functionals (see [287], whose formulation of it we
adopted here) and will be used again in chapter 12. Other proof-theoretic ap-
plications of this argument can be found in [225].

2) It is the direction ‘→’ of (∗) which needs (E). The direction ‘←’ can be shown
using only QF-ER, since free variables are allowed to occur in premises A0 of
QF-ER.

3) Further refinements of proposition 10.60 can be found in [320].

Corollary to the proof of proposition 10.60: One can construct closed terms t1, t2
of Ê-HA

ω
|\ such that

Ê-HA
ω
|\ �

⎧
⎨

⎩

∀Φ1(1)
(
∀ f 1

(
T ∞( f ) →∀x0

(
f ((Φ f )x) = 0

))
→

∀ f 1((t1Φ) f =0 0 ↔∀x( f x = 0)
))
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and

ŴE-HA
ω
|\ �

⎧
⎨

⎩

∀ϕ2(∀ f 1(ϕ f = 0 ↔∀x( f x = 0)) →

∀ f 1(T ∞( f ) →∀x0( f ((t2ϕ f )x) = 0
)))

.

Corollary 10.62.
Ê-HA

ω
|\+ M0 � UWKL ↔∃ϕ̃2∀ f 1(ϕ̃ f =0 0 ↔∃x0( f x =0 0)

)
.

While over WE-PAω (resp.ŴE-PA
ω
|\) the addition of UWKL does not add to the

proof-theoretic strength (corollary 10.34), which is that of PA (resp. PRA) by well-
known results e.g. from [98], this changes in the presence of full extensionality:

Proposition 10.63. 1) Ê-HA
ω
|\+ UWKL and Ê-PA

ω
|\+ UWKL have the same

proof-theoretic strength as PA.
2) E-HAω+UWKL and E-PAω+UWKL prove the consistency of PA and have the

same proof-theoretic strength as (Π 0
1 -CA)<ε0 (as defined in [98]).

Proof: 1) By the corollary above,
Ê-PA

ω
|\+UWKL= Ê-PA

ω
|\+∃ϕ̃∀ f 1(ϕ̃ f =0 0↔∃x0( f x =0 0)

)
. The latter systems

allows one (by iterated use of ϕ̃) to prove the schema of arithmetical comprehen-
sion which in turn yields (with QF-IA) the schema for induction for all arithmetical
formulas. Hence PA can be viewed as a subsystem of Ê-PA

ω
|\+UWKL and so his

negative translation as a subsystem of Ê-HA
ω
|\+UWKL.

That PA is also an upper bound for the proof-theoretic strength of the systems in
question follows from classical results due to Feferman (see [98]).
2) follows analogously to 1) using the classical results from [98] on the strength of

∃ϕ̃2∀ f 1(ϕ̃ f =0 0 ↔∃x0( f x =0 0)
)

over E-PAω and subsequent negative translation for the intuitionistic case. �

Although already Ê-HA
ω
|\+UWKL has the same proof-theoretic strength as PA its

provably recursive functions are still the same ones as that of PRA. This follows
from proposition 7.3 (relativized to Ê-HA

ω
|\ as indicated in the remark at the end of

that chapter) and the fact that UWKL is just an axiom of the form Ξ . However, as
soon as Mω or just M0 is added this changes drastically:

Proposition 10.64. The provably recursive functions of Ê-HA
ω
|\+UWKL+M0 and

Ê-PA
ω
|\+UWKL are precisely the ones of PA, i.e. the α(< ε0)-recursive functions.

Proof: By the negative embedding of PA into Ê-HA
ω
|\+UWKL from the previous

proof, the negative translation of every Π 0
2 -sentence A provable in PA can be proved

in Ê-HA
ω
|\+UWKL. Hence A itself can be proved in Ê-HA

ω
|\+UWKL+M0. Again

the upper bound follows from [98]. �
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10.7 Exercises, historical comments and suggested further
reading

Exercises:

1) Prove the claim in remark 10.2.
2) (Krivine, [348, 347]) Consider PA in the language fragment with ∨,¬,∀ only

(which in the classical context of PA is not a real restriction). The following
negative translation A �→ AK is due to Krivine:

P− :≡ ¬P, for prime formulas P,

(A∨B)− :≡ A−∧B−,

(¬A)− :≡ ¬A−,

(∀xA)− :≡ ∃xA−.

Now define AK :≡ ¬A−.
Show that IL � A′ ↔ AK and, consequently,

PA � A ⇒ HA � AK .

3) The following variant (due to Shoenfield [332]) of the combination of functional
interpretation with negative translation gives a direct interpretation of PA into the
WE-PAω . Again we only consider the fragment with ∨,¬,∀: to each formula A
of L (PA) we assign (omitting the obvious embedding of PA into WE-PAω ) a for-
mula ASh ≡ ∀u∃xASh(u,x) on L (WE-HAω) with ASh quantifier-free as follows
(with Bsh ≡ ∀v∃yBSh(v,y))

PSh :≡ PSh :≡ P for prime formulas P,

(¬A)Sh :≡ ∀ f∃u¬ASh(u, f u),

(A∨B)Sh :≡ ∀u,v∃x,y(ASh(x,u)∨BSh(v,y)),

(∀zA)Sh :≡ ∀z,u∃xASh(z,u,x).

Show that from a proof of a sentence A in PA one can extract closed terms t of
WE-HAω such that WE-HAω � ∀uASh(u,tu).

4) ([347]) Let AK ≡ ¬A− be Krivine’s negative translation from above. Show that
for every formula A of L (PA) the following holds

(1) (A−)D(u,x) ⇔¬ASh(u,x), where (A−)D ≡ ∃u∀x(A−)D(u,x)

(2) (AK)D( f ,u) ⇔ ASh(u, f u), where (AK)D ≡ ∃ f∀u(AK)D( f ,u),
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where ⇔ stands for provability in WE-HAω .
Roughly speaking (2) says: Shoenfield = Gödel ◦ Krivine. Use this to conclude
the second exercise from the first and the soundness of Gödel’s functional inter-
pretation.

5) Solve the ND-interpretation of the special case of (IPP) where n = 2.
6) Prove the claim in remark 10.24.

Historical comments and suggested further reading:
As mentioned in the 2nd exercise, the combination of negative translation and func-
tional interpretation has been studied as a single interpretation in Shoenfield [332].
An extension of functional interpretation to full classical analysis was given by
C. Spector using so-called bar recursive functionals (Spector [343], Howard [162],
Luckhardt [266]). This will be treated in the next chapter. For an interesting alter-
native to functional interpretation in this context see Berardi et al. [17] and Berger-
Oliva [22]. In Friedrich [109], Spector’s approach is extended to still stronger sys-
tems using bar recursive functionals of infinite types.
A different extension of functional interpretation to classical analysis was achieved
by Girard in [121] using his well-known system F of polymorphic functionals.
The combination of negative translation and monotone functional interpretation is
due to Kohlenbach [206]. The material on WKL and UWKL is taken mainly from
Kohlenbach [203] and [221]. Some further conservation results concerning WKL
can be found in Simpson [338] and Simpson et al. [339]. For conservation results of
suitable forms of WKL over systems for feasible analysis see Ferreira-Oliva [105].
Theorem 10.49 (without Δ ) is from Kohlenbach [203] while theorem 10.52 is from
Kohlenbach [207].
Many important applications of functional interpretation to classical systems us-
ing certain ineffective functionals (representing strong forms of comprehension) are
carried out in Feferman [98].
In Parsons [299] fragments of Peano arithmetic are investigated using functional in-
terpretation (see also Avigad-Feferman [7]).
For a nice comparison of functional interpretation and modified realizability see
Jørgensen [179] and Oliva [292].
For further applications of functional interpretation combined with majorization to
classical systems and the development of monotone functional interpretation see
Kohlenbach [203, 206, 207, 208, 213, 210]. For applications to specific proofs in the
context of approximation theory see Kohlenbach [204, 205, 206] and Kohlenbach-
Oliva [235] as well as chapter 16 below. For applications in fixed point theory
see Briseid [50, 51, 52, 53], Gerhardy [116], Kohlenbach [219, 220, 224, 227],
Kohlenbach-Lambov [231], Kohlenbach-Leuştean [232, 233, 234], Leuştean [263]
and chapter 18 below. For a recent application of functional interpretation in ergodic
theory see Avigad et al. [8]. In Hertz [160] the ND-interpretation is used to unwind



10.7 Exercises, historical comments and suggested further reading 197

two proofs of the Hilbert basis theorem. One proof (based on Simpson [337]) even
yields results which are the optimal (w.r.t. to the complexity class they belong to).
In Mints [281], Shoenfield’s variant of functional interpretation is used to unwind a
non-effective proof for cut elimination.



Chapter 11
Functional interpretation of full classical
analysis

11.1 Functional interpretation of full comprehension

In this section we carry out the proof of C. Spector’s ([343]) fundamental result
that the functional interpretation of the negative translation of the schema of full
comprehension over numbers

CA0 : ∃ f 1∀x0( f (x) =0 0 ↔ A(x)
)
,

where A(x) is an arbitrary formula of L (WE-PA)ω (not containing f free), can be
solved by the so-called bar recursive functionals.
Together with (the proof of) theorem 8.6 this gives (via negative translation) a func-
tional interpretation of WE-PAω+QF-AC+CA0 and (with a preceding elimination
of extensionality) of E-PAω+QF-AC1,0+QF-AC0,1+CA0, i.e. a system which con-
tains (via the identification of subsets of N with their characteristic functions) full
2nd order arithmetic (in the sense of [338]) and is known to formalize most parts of
classical analysis.

In the presence of classical logic and QF-AC0,0 the schema of comprehension CA0

is equivalent to the following schema

AC0,0 : ∀x0∃y0A(x,y) →∃ f 1∀x0A(x, f (x)),

where, again, A(x,y) is an arbitrary formula (not containing f free).

Proposition 11.1. Over WE-PAω+QF-AC0,0 the schemes CA0 and AC0,0 are equiv-
alent.

Proof: ‘⇒’: By CA0 (using pairing) applied to A(x,y) we get a function g such that

∀x0,y0(g(x,y) =0 0 ↔ A(x,y)).

Hence ∀x∃yA(x,y) yields ∀x∃y(g(x,y) = 0) and so by QF-AC0,0

∃ f 1∀x0(g(x, f (x)) = 0),
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i.e.
∃ f 1∀x0A(x, f (x)).

‘⇐’: CA0 follows from AC0,0 applied to

∀x0∃n0(n =0 0 ↔ A(x)),

which is a consequence of the law-of-excluded-middle and 0 �= 1. �

Spector even proved that the negative translation of the stronger axiom schema of
countable choice AC0 :=

⋃

ρ∈T
{AC0,ρ}, where

AC0,ρ : ∀x0∃yρ A(x,y) →∃ f ρ(0)∀x0A(x, f (x)),

has a functional interpretation in the bar recursive functionals.
In order to approach this, let us first consider the Kuroda negative translation (from
chapter 10) (AC0)′ of AC0 which – over WE-HAω – is equivalent to

∀x0¬¬∃yρ A∗(x,y) →¬¬∃ f ρ(0)∀x0¬¬A∗(x, f (x)),

where A∗ is defined as in definition 10.1.
This is derivable in WE-HAω+AC0+DNS, where

DNS : ∀x0¬¬A(x) →¬¬∀x0A(x)

is the so-called double-negation-shift schema which is intuitionistically underivable.
The problem of solving the functional interpretation of (AC0)′, therefore, reduces to
finding a solution for the functional interpretation DNSD of DNS. We first have to
compute DNSD: Let ∃a∀bAD(x,a,b) be the functional interpretation of A(x). Then

DNSD ≡
(
∀x0¬¬∃a∀bAD(x,a,b) →¬¬∀y0∃u∀vAD(y,u,v)

)D
≡

(
∀x0∃A∀B¬¬AD(x,AB,B(AB)) →¬¬∃u∀y0,vAD(y,uy,v)

)D
≡

⎛

⎝
∃A∀x0,B¬¬AD(x,AxB,B(AxB)) →

∃U∀Y,V¬¬AD(Y (UYV ),UYV (Y (UYV )),V (UYV ))

⎞

⎠

D

≡
⎛

⎝
∀A∃U∀Y,V∃x,B

(
¬¬AD(x,AxB,B(AxB)) →

¬¬AD(Y (UYV ),UYV (Y (UYV )),V (UYV ))
)

⎞

⎠

D

.

So by the final step in the functional interpretation of an implication, noticing that
U only occurs with the arguments Y,V , we have to construct terms tx, tU and tB that
only contain A,Y,V free and satisfy

(∗) ∀A,Y,V
(
¬¬AD(tx,A(tx,tB),tB(A(tx,tB))) →¬¬AD(Y (tU), tU(Y (tU)),V (tU ))

)
.
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We achieve this by constructing such terms satisfying the following system of equa-
tions (for all A,Y,V ):

(+)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tx = Y (tU )

A(tx,tB) = tU (Y (tU))

tB(A(tx,tB)) = V (tU ).

This even provides a solution to (∗) which is independent from the prime formulas
occurring in A (and the free variables of A).

We now extend WE-HAω by new constants Bρ ,τ for simultaneous bar recursion
together with the following defining axioms (writing n′ for n + 1):

(BRρ ,τ ) :
⎧
⎨

⎩

y(x,n0) <0 n → B
ρ ,τ
i y zunx =τi zin(x,n)

y(x,n) ≥0 n → B
ρ ,τ
i y zunx =τi ui(λ Dρ .Bρ ,τ yzun′(x,n∗D))n(x,n)

for i = 1, . . . ,k, where

(x,n) j(k0) =ρ j

⎧
⎨

⎩

x j(k), if k < n

0ρ j , otherwise

and

(x,n∗D) j(k0) =ρ j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x j(k), if k < n

D j, if k = n

0ρ j , otherwise.

The union of all these axioms for all ρ ,τ ∈ T is denoted by (BR). Using the fact
(discussed already in chapter 3) that we could contract tuples of variables of any
types into single variables we could actually also assume without loss of general-
ity that we have only single variables and terms in (+) and (∗) as we could have
contracted the tuples a,b,u,v stemming from the functional interpretation of A into
single variables a,b,u,v.
So it would suffice to solve

(+)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tx =0 Y (tU )

A(tx,tB) =ρ tU(Y (tU))

tB(A(tx,tB)) =τ V (tU)

using the bar recursor Bρ ,ρ0, where Bρ ,τ is characterized by
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(BRρ ,τ ) :
⎧
⎨

⎩

y(x,n0) <0 n → Bρ ,τyzunx =τ zn(x,n)

y(x,n) ≥0 n → Bρ ,τyzunx =τ u(λ Dρ .Bρ ,τ yzun′(x,n ∗D))n(x,n),

where

(x,n)(k0) =ρ

⎧
⎨

⎩

x(k), if k < n

0ρ , otherwise

and

(x,n∗D)(k0) =ρ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(k), if k < n

D, if k = n

0ρ , otherwise.

We will, however, not follow this approach since we will consider extensions of
our systems to new types in chapter 17 where the contraction of tuples would only
be possible on the expense of adding certain product types. So officially we use
simultaneous bar recursion as a primitive concept and solve directly the version
of (+) with tuples. Nevertheless, from now on we will – for notational simplicity
– omit the tuple-notation in (+) and the schema of simultaneous bar recursion,
keeping in mind, however, that we have instead of single terms s,t actually tuples of
terms t,s and that an equation t = s stands for the conjunction of the equations

t1 = s1, . . . , tn = sn

for tuples tρ1
1 , . . . ,tρn

n and sρ1
1 , . . . ,sρn

n of terms of length n.

Following closely [343] we actually will use only the following special form of bar
recursion:

Φρ yunxm =ρ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xm, if m <0 n

0ρ , if m ≥0 n∧ y(x,n) < n

Φρ yun′(x,n ∗D0)m, otherwise,

where
D0 =ρ un(λ Dρ .Φρ yun′(x,n∗D)).

Φρ is primitive recursively definable from Bρ ,ρ(0) by

Φρ yunx =ρ0 Bρ ,ρ0 yzũnx,

where

znxm :=ρ

⎧
⎨

⎩

xm, if m < n

0ρ , otherwise
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and

ũvnxm :=ρ

⎧
⎨

⎩

xm, if m < n

v(unv)m, otherwise.

The following lemmas are first proved informally. We will then show how they can
be derived in WE-HAω+ (BR) and even qf-(WE-HAω)+(BR), where qf-(WE-HA)ω

is a quantifier-free fragment of WE-HAω in the sense of remark 8.8.

Lemma 11.2. Define
x0 := Φρ 000ρ0 := Φρ yu000ρ0.

Then
x0 =ρ0 Φρ z(x0,z) for all z0.

Proof: We prove the claim by induction on z :
For case z = 0 it holds by definition since x0,00 =ρ0 0ρ0.
z �→ z′ : By the induction hypothesis we have

x0 =ρ0 Φρ z(x0,z).

Case 1: y(x0,z) < z. Then

x0 =ρ0 Φρ z(x0,z) =ρ0 x0,z

and, therefore,
x0,z =ρ0 x0,z′.

Hence
y(x0,z′) =0 y(x0,z) < z < z′

and so
Φρ z′(x0,z′) =ρ0 x0,z′ =ρ0 x0,z =ρ0 x0.

Case 2: y(x0,z) ≥ z. Then

x0 =ρ0 Φρ z(x0,z) =ρ0 Φρ z′(x0,z∗D0).

In particular, x0z =ρ D0 and, therefore,

x0 =ρ0 Φρ z′(x0,z′)

since x0,z′ =ρ0 x0,z∗D0. �

Lemma 11.3. For x0 as in lemma 11.2 and n :=0 yx0 we have that y(x0,n) ≥ n.

Proof: Assume that y(x0,z) < n. Then, by lemma 11.2,

x0 =ρ0 Φρ n(x0,n) =ρ0 x0,n

and so



204 11 Functional interpretation of full classical analysis

n > y(x0,n) = yx0 = n

which is a contradiction. �

Lemma 11.4. For x0,n as in lemmas 11.2 and 11.3 we have

x0n =ρ un(λ Dρ .Φρ n′(x0,n∗D)).

Proof: Using lemmas 11.2 and 11.3 we get

x0n l.11.2= ρ Φρ n(x0,n)n l.11.3= ρ Φρ n′(x0,n∗D0)n =ρ D0 =ρ un(λ Dρ .Φρ n′(x0,n∗D)).

�

It is straightforward to see that the proof of lemma 11.2 can be formalized in E-
HAω+ (BR). The formalization of the proofs of lemmas 11.3 and 11.4 is then trivial.
However, to see that the proof of lemma 11.2 (and consequently also of lemmas 11.3
and 11.4) can be formalized WE-HAω+ (BR) is already not that easy and for qf-
(WE-HAω)+(BR) it is not trivial at all. Actually, there does not seem to exist a
detailed proof in the literature: in [343] (p.16) it only is remarked that the proofs
‘can be converted to formal proofs in Σ4 without excessive effort’. In [266] (p.80),
where a thorough treatment of Spector’s result is given, it even is claimed that ‘it
seems that so far nobody has observed that a precise formalization of all details in
Spector’s proof ... using only =0 requires an additional constructive ω-rule.’ In [109]
it is stated (without proof) in footnote 3 that ‘Die in [266] verwendete zusätzliche
ω-Regel ist vermeidbar, wenn man den in [266], S. 81–83, gegebenen informalen
Beweis der entscheidenden (BR)-Eigenschaften formalisiert.’

Lemma 11.5. Lemmas 11.2–11.4 can be carried out in WE-HAω+ (BR) and even
in qf-(WE-HAω)+ (BR).

Proof: As mentioned already, the only problematic case is the proof of lemma 11.2
which uses both higher induction as well as the full extensionality axiom to establish
in the induction step that

x0,z =ρ0 x0,z′ → y(x0,z) =0 y(x0,z′)

and
x0z =ρ D0 → Φρ z′(x0,z′) =ρ0 Φρ z′(x0,z∗D0).

The use of the extensionality axiom can be reduced to that of the quantifier-free rule
of extensionality by proving by induction on z a claim different from the one in the
proof of lemma 11.2, namely

(%) ∀ϕ0ρ0(ϕx0 =0 ϕ(Φρ z(x0,z)).

(%) implies the original claim by using ϕvx :=0 xv, where for ρ = 0ρk, . . . ,ρ1 we
have v = vρ1

1 , . . .vρk
k .

In this way the proof of lemma 11.2 can be carried out in WE-HAω+(BR). As men-
tioned in remark 8.8, WE-HAω has a functional interpretation in qf-(WE-HA)ω .
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The proof of this fact immediately extends to WE-HAω+(BR) as (BR) are purely
universal (resp. open) axioms which are interpreted by themselves. Since the state-
ment of lemma 11.2 can be written as an open formula, functional interpretation
applied to the proof of lemma 11.2 in WE-HAω+(BR) yields a proof of this lemma
already in qf-(WE-HA)ω+(BR). �

Theorem 11.6 (Spector [343]). Let A(a) be an arbitrary formula of L (WE-PAω )
containing only the free variables a. Then the following rule holds:

⎧
⎨

⎩

WE-PAω+ QF-AC + AC0 � A(a) implies that

WE-HAω+ (BR) � ∀y(A′)D(t a,y,a),

where t is a suitable tuple of closed terms of WE-HAω+ (BR) which can be ex-
tracted from a given proof of the assumption and A′ denotes the negative translation
of A.
The verification can even be carried out in qf-(WE-HAω)+(BR).

Proof: As discussed at the beginning of this chapter, WE-PAω+QF-AC+AC0 has
a negative interpretation in WE-HAω+QF-AC+AC0+Mω+DNS and hence in WE-
HAω+AC+Mω+DNS. It, therefore, suffices to extend the proof of theorem 8.6 by
showing that the functional interpretation of DNS can be solved by closed terms
of qf-(WE-HAω)+ (BR) (provably in that very theory). As mentioned already we
will establish this by solving the systems of equations (+). The following terms
(containing only A,Y,V free) provide a solution:

(1) tx :=0 Y x0, tU :=ρ0 x0, tB :=τρ λ Dρ .V (EY x0 D),

where
(2) x0 :=ρ0 ΦρYu000ρ0

and
(3) En :=ρ0ρ λ D.ΦρYun′(x0,n ∗D)

with
(4) unv :=ρ An(λ D.V(v(D))).

By lemma 11.4 we have

(5) x0(Y x0) = u(Y x0)(EY x0),

and lemma 11.2 yields (for z := Yx0)

(6) x0 =ρ0 ΦρYuz′(x0,z∗ (u(Yx0)(EY x0))) = EYx0(u(Yx0)(EY x0)).

Moreover, by (1), we get
(7) tx = Yx0 = Y (tU).

(1), (4) and (5) yield
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(8) A(tx,tB)
(4),(1)
= u(tx)(EY x0)

(1)
= u(Y x0)(EY x0)

(5)
= x0(Y x0)

(1)
= tU(Y (tU)).

Finally, using (1), (6) and (8), we also solve the third equation of (+):

(9) tB(A(tx, tB))
(1)
= V (EY x0(A(tx,tB)))

(8)
= V (EY x0(u(tx)(EY x0)))

(6)
= Vx0

(1)
= V (tU ).

By lemma 11.5 it is clear that the whole argument can be carried out in
qf-(WE-HAω)+(BR). �

Corollary 11.7. Let A(a) be an arbitrary sentence of L (WE-PAω ). Then the fol-
lowing rule holds:

⎧
⎨

⎩

E-PAω+ QF-AC1,0+ AC0 � A implies that

WE-HAω+ (BR) � ∀y((Ae)′)D(t,y),

where t is a suitable tuple of closed terms of WE-HAω+ (BR) which can be
extracted from a given proof of the assumption. Here Ae is the elimination-of-
extensionality translation of A from definition 10.44 and (Ae)′ the negative trans-
lation of Ae
The verification can even be carried out in qf-(WE-HAω)+(BR).

Proof: The corollary follows from theorem 11.6 combined with the elimination of
extensionality procedure from chapter 10 (proposition 10.45) observing that (AC0)e
is again an instance of AC0. �

11.2 Functional interpretation of dependent choice

We now prove (following [162] and – in particular – [266]) that (BR) even suffices
for the functional interpretation of the negative translation of dependent choice DC.
where DC:= {DCρ : ρ ∈T} is defined as follows

DCρ : ∀x0,yρ∃zρ A(x,y,z) →∃ f ρ(0)∀x0A(x, f (x), f (S(x))).

As before, we will most of the time suppress the tuple notation.

Remark 11.8. The formulation of DC above (first considered in [167] under the
name (A.1), see also [266] where our formulation of DC is called ‘dependent ω-
choice’ωAC) combines the usual formulation of dependent choice DAC:= {DACρ :
ρ ∈T}, where

DACρ : ∀xρ∃yρ A(x,y) →∀xρ∃ f ρ(0)[ f (0) =ρ x∧∀z0A( f (z), f (S(z)))]

and countable choice

AC0 : ∀x0∃yρ A(x,y) →∃ f ρ(0)∀x0A(x, f (x))
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which are both provable from DC relative to WE-PAω .

Proof:
1) DC ⇒ AC0: Assume

∀x0∃zρ A(x,z).

Then by DC (treating ‘∀yρ ’ as a dummy quantifier) we obtain a functional f ρ(0)

such that
∀x0A(x, f (S(x))).

Now define f ′(x) := f (S(x)).
2) DC ⇒ DAC: Assume

(∗) ∀aρ∃bρ A(a,b)

and define (for any yρ )

Ay(x0,a,b) :≡

⎧
⎨

⎩

x =0 0 → A(y,b)

x �=0 0 → A(a,b).

Then
∀x0∀aρ∃bρ Ay(x,a,b)

(for x = 0 take b for y as a in (∗), and for x �= 0 the claim is immediate from (∗)).
Hence we can apply DC to obtain (for any y) a functional f ρ(0) such that

∀x0Ay(x, f (x), f (S(x))).

So, in particular,
Ay(0, f (0), f (S(0))), i.e. A(y, f (1))

and
∀x > 0Ay(x, f (x), f (S(x))), i.e. ∀x > 0A( f (x), f (S(x))).

Now define f ′(0) := y and f ′(S(x)) := f (S(x)).
Then

f ′(0) = y, A( f ′(0), f ′(1)) and ∀x > 0A( f ′(x), f ′(S(x))),

i.e.
f ′(0) = y∧∀x0A( f ′(x), f ′(S(x))).

�

Theorem 11.9 (Howard [162], Luckhardt [266]). Let A(a) be an arbitrary for-
mula of L (WE-PAω) containing only the free variables a. Then the following rule
holds: ⎧

⎨

⎩

WE-PAω+ QF-AC + DC � A(a) implies that

WE-HAω+ (BR) � ∀y(A′)D(t a,y,a),

where t is a suitable tuple of closed terms of WE-HAω+ (BR) which can be ex-
tracted from a given proof of the assumption and A′ denotes the negative translation
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of A.
The verification can even be carried out in qf-(WE-HAω)+(BR).

Proof: As in the proof of theorem 11.6 it suffices to consider DC. By proposition
10.13, every formula A(z) is (relative to WE-PAω+ QF-AC) equivalent to a formula
of the form ∃a∀bA0(z,a,b), where A0 is quantifier-free. It, therefore, suffices to
consider

DC-∃∀ : ∀x0,yρ∃zρ ,a∀bA0(x,y,z,a,b) →∃ f ρ0∀x0∃a∀bA0(x, f (x), f (x′),a,b).

By introducing ‘dummy’ variables ‘ã’ corresponding to ‘a’ this follows from DC-∀
defined as

∀x0,yρ , ã∃zρ ,a∀bA0(x,y, ã,z,a,b) →∃ f ,g∀x0,bA0(x, f (x),g(x), f (x′),g(x′),b).

Hence we can restrict ourselves in fact to DC-∀ whose negative translation is (using
some renaming of variables to fit with the proof of theorem 11.6) equivalent to
(suppressing once again the tuple notation)

(∗) : ∀x0,cρ¬¬∃aρ∀bτ A0(x,c,a,b) →¬¬∃uρ0∀y0,vτ A0(y,uy,uy′,v).

So it suffices to solve the functional interpretation of (∗) which can be achieved in
almost the same way as for DNS:

(∗)D ≡
⎛

⎝
∀A∃U∀Y,V∃x,B

(
¬¬AD(x,c,AxcB,B(AxcB)) →

¬¬AD(Y (UYV ),UYV (Y (UYV )),UYV (Y (UYV )′),V (UYV ))
)

⎞

⎠

D

.

So (arguing as in the proof of theorem 11.6) we have to construct terms tx, tc,tU and
tB that only contain A,Y,V free and satisfy

(+)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tx =0 Y (tU)

tc =ρ tU(Y (tU ))

A(tx,tc,tB) =ρ tU(Y (tU)′)

tB(A(tx,tc,tB)) =τ V (tU).

Define

(1) Y ′x :=0 (Y x)′, tx :=0 Y x0, tU :=ρ0 x0, tB :=τρ λ Dρ .V (EY ′x0 D),

where
(2) x0 :=ρ0 ΦρY ′u000ρ0

and
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(3) tc :=ρ tU(Y (tU)), En :=ρ0ρ λ Dρ .ΦρY ′un′(x0,n∗D)

with
(4) unv :=ρ A(n−· 1,v0ρ(n−· 1),λ D.V(v(D))).

By lemma 11.4 we have

(5) x0(Y ′x0) = u(Y ′x0)(EY ′x0).

Define z := Y x0. Then z′ = Y ′x0.
Lemma 11.2 yields

(6) x0 =ρ0 ΦρY ′uz′′(x0,z∗ (u(Y ′x0)(EY ′x0)) = EY ′x0(u(Y ′x0)(EY ′x0)).

The first two equations of (+) follow immediately from (1) and (3).
(1),(4),(5) and the Φ-definition yield

(7)

A(tx,tc,tB)
(1)
= A(z,x0z,tB) Φ-def.=

A(z,ΦρY ′uz′′(x0,z′ ∗ 0ρ)(z),λ Dρ .V (ΦρY ′uz′′(x0,z′ ∗D)))
(4)
=

uz′(λ D.ΦρY ′uz′′(x0,z′ ∗D))
(5)
= x0(Y ′x0)

(1)
= tU(Y (tU)′).

(8) tB(A(tx,tc,tB))
(1)
= V (Ez′(A(tx,tc,tB)))

(8)
= V (Ez′(u(z′)(Ez′)))

(6)
= Vx0

(1)
= V (tU).

�

As shown in [266], the elimination-of-extensionality result from proposition 10.45
can also be applied to DC since

WE-PAω+DC � (DC)e,

where this time some classical logic has to be used. We leave the proof as an exercise
and conclude:

Corollary 11.10. Corollary 11.7 also holds with AC0 replaced by DC.

11.3 Functional interpretation of arithmetical comprehension

An important special case of comprehension over numbers is the schema of so-
called arithmetical comprehension

CA0
ar : ∃ f 1∀x0( f (x) =0 0 ↔ Aar(x)

)
,

where Aar(x) is an arbitrary arithmetical formula of L (WE-PAω ) (not containing
f free but otherwise with arbitrary parameters of arbitrary types). Here a formula
is called arithmetical if it contains only quantifiers for variables of type 0. This is
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equivalent to saying that Aar ∈ Π 0
∞ (where the arithmetical hierarchy Π 0

n is under-
stood to permit parameters of higher types).

As was observed already by H. Weyl in [378] and further elaborated by P. Loren-
zen [265] as well as in the context of reverse mathematics [338] and arithmetical
comprehension suffices to carry out a substantial amount of ordinary mathematics
(in particular analysis of separable spaces and algebra for countable structures). See
also Feferman [100] for further modern developments along this theme.

It is easy to see that over WE-PAω (and weak fragments thereof) CA0
ar is equivalent

to the seemingly weaker single axiom

Π 0
1 -CA : ∀ f 0(0)(0)∃g1∀x0(g(x) =0 0 ↔∀y0( f (x,y) =0 0)).

Clearly, Π 0
1 -CA is a special case of CA0

ar. The converse follows by making iterated
use of Π 0

1 -CA (to climb-up the arithmetical hierarchy), λ -abstraction and pairing as
well as the fact that we have characteristic functions for quantifier-free formulas in
WE-PAω (proposition 3.17):

Proposition 11.11. Each instance of the schema of arithmetical comprehension
CA0

ar is derivable in WE-PAω + Π 0
1 -CA.

Proof: Exercise! �

Just as before in the case of full comprehension one shows that Π 0
1 -CA (and hence

CA0
ar) is implied over WE-PAω by

Π 0
1 -AC : ∀ f 0(0)(0)(0)(∀x0∃y0∀z0 f (x,y,z) =0 0 →∃g1∀x0,z0 f (x,g(x),z) =0 0

)
.

Conversely, Π 0
1 -AC follows from Π 0

1 -CA and QF-AC0,0.
Using this fact we conclude

Proposition 11.12. Each instance of the schema of number choice AC0,0
ar for arith-

metical formulas

AC0,0
ar : ∀x0∃y0Aar(x,y) →∃ f 1∀x0 Aar(x, f (x)), Aar arithmetical,

is derivable in WE-PAω + Π 0
1 -AC.

Proof: Exercise! �

In the following, let (BR0,1) be the restriction of (BR) to the bar recursor constant
B0,1.

Theorem 11.13. Let A(a) be an arbitrary formula of L (WE-PAω ) containing only
the free variables a. Then the following rule holds:

⎧
⎨

⎩

WE-PAω+ QF-AC + AC0,0
ar � A(a) implies that

WE-HAω+ (BR0,1) � ∀y(A′)D(t a,y,a),
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where t is a suitable tuple of closed terms of WE-HAω+ (BR0,1) which can be ex-
tracted from a given proof of the assumption and A′ denotes the negative translation
of A.
The verification can be be carried out in qf-(WE-HAω) +(BR0,1).

Proof: By proposition 11.12 it is sufficient to consider Π 0
1 -AC. Since

‘∃y0∀z0 f (x,y,z) =0 0’ is its own functional interpretation, we only have (arguing as
in the proof of theorem 11.6) to interpret instances of DNS where a and b (namely
x,y) are both of type 0. Inspection of the proof of theorem 11.6 reveals that the
functional interpretation of this special case can be solved already by (BR0,1). �

Next, we prove the counterpart of theorem 11.13 for the fragments ŴE-PA
ω
|\ and

ŴE-HA
ω
|\ of WE-PAω and WE-HAω :

Theorem 11.14. Let A(a) be an arbitrary formula of L (ŴE-PA
ω
|\) containing

only the free variables a. Then the following rule holds:
⎧
⎨

⎩

ŴE-PA
ω
|\+ QF-AC + AC0,0

ar � A(a) implies that

ŴE-HA
ω
|\+ (BR0,1) � ∀y(A′)D(t a,y,a),

where t is a suitable tuple of closed terms of ŴE-HA
ω
|\+ (BR0,1) which can be ex-

tracted from a given proof of the assumption and A′ denotes the negative translation
of A.

The verification can be be carried out in qf-(ŴE-HA
ω
|\) + (BR0,1).

Proof: It is clear from the proof of theorem 11.13 that the solution of the func-
tional interpretation of (the negative translation of) AC0,0

ar only needs closed terms
in ŴE-HA

ω
|\+ (BR0,1). So together with proposition 10.53 it follows that the

functional interpretation of ŴE-PA
ω
|\ + QF-AC + AC0,0

ar can be carried out with
closed terms in ŴE-HA

ω
|\+ (BR0,1). What remains to be checked is that the ver-

ification of the solution in the case of AC0,0
ar can indeed be carried out already in

ŴE-HA
ω
|\ + (BR0,1) rather than WE-HAω+(BR0,1). Even for the case ρ = 0 at

hand, the induction formula used in the formalization of the proof of lemma 11.2 as
indicated in the proof of lemma 11.5 is too complicated (due to the quantifier ‘∀ϕ1’)
to have a functional interpretation in ŴE-HA

ω
|\.

However, for ρ = 0 we can use the original induction formula

(∗) ∀z0(x0 =1 Φ1z(x0,z))

from the proof of lemma 11.2 since in this case all the uses of extensionality can be
derived from QF-ER. This follows from the fact that

x0z =0 00 → x0,z =1 x0,z′,

where
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x0z =0 00

is a quantifier-free formula.
The proof of (∗) is an instance of Π 0

1 -IA which has a functional interpretation in

qf-(ŴE-HA
ω
|\) using R0 as can easily be verified. �

Proposition 11.15. Let A ∈ L (PA) be a prenex sentence. Then the following rule
holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PA � A

⇒ one can extract closed terms Φ of ŴE-HA
ω
|\+(BR0,1) such that

ŴE-HA
ω
|\+ (BR0,1) � Φ n.c.i. A.

Proof: PA can be embedded into ŴE-PA
ω
|\ + QF-AC + AC0,0

ar just as in remark
10.10 since the schema of induction for arithmetical formulas is derivable from
quantifier-free induction and CA0

ar. The proposition now follows by applying theo-
rem 11.14 to the Herbrand normal form AH of A. �

Proposition 10.9 and proposition 11.15 provide two alternative ways of extracting
functionals satisfying the no-counterexample interpretation of PA. In fact, both ways
are optimal w.r.t. the class of type-2 functionals used: let T denote the set of all
closed terms of WE-PAω , i.e. those terms which define in S ω the class of primitive
recursive functionals in the sense of Gödel [133]. Let T0 denote the closed terms of
ŴE-PA

ω
|\, i.e. those terms that define in S ω the class of primitive recursive func-

tionals in the sense of Kleene [195]. In [215] it is shown that T and T0 + B0,1 (i.e.
the closed terms of ŴE-PA

ω
|\+ (BR0,1)) define the same class of functionals of type

2 in S ω , where in the case of closed terms t2 in ŴE-PA
ω
|\+ (BR0,1) we take as

our interpretation [t]M ω ∈ S2 since M ω is a model of bar recursion whereas S ω is
not (see the next section). Together with the previous theorem this implies that the
provable recursive function(al)s of type 2 of ŴE-PA

ω
|\+ QF-AC+AC0,0

ar are primi-
tive recursive in the sense of Gödel. Using the fact that ŴE-PA

ω
|\+ QF-AC+AC0,0

ar
proves induction for arbitrary arithmetical formulas one – conversely – can show
that all primitive recursive functionals of type 2 (in the sense of Gödel) are provably
recursive in ŴE-PA

ω
|\+ QF-AC+AC0,0

ar . For more details we refer to [215].

In Safarik [319], a detailed analysis of the ND-interpretation of the Bolzano-
Weierstraß property of sequences in [0,1]d in terms of bar recursion of lowest type is
given. The Bolzano-Weierstraß property can be proved using an extension Π 0

2 -WKL
of WKL where the tree predicate is Π 0

2 rather than quantifier-free as in WKL. Using
Σ0

1 -CA (or equivalently Π 0
1 -CA) this can be reduced to Π 0

1 -WKL which in turn re-
duces to WKL (the latter fact is well-known, see e.g. [338]). By Howard [164], WKL
has a functional interpretation using a weak binary form of bar recursion of type 0
which is trivially majorizable. As we saw above, the functional interpretation of Π 0

1 -
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CA only requires B0,1 relative to T0 (i.e. relative to the closed terms of ŴE-PA
ω
|\).

Based on this, Safarik constructs an explicit solution of the monotone functional
interpretation (more precisely the NMD-interpretation) of the Bolzano-Weierstraß
property for [0,1]d by terms in T0 + B0,1 containing only an unnested use of B0,1.
Together with results in Schwichtenberg [327] on the closure of Gödel’s T under
the rule of bar recursion of type 0 and results from [215], Safarik shows using this
that the (monotone) functional interpretation of proofs of Π 0

2 -theorems using fixed
single instances of the Bolzano-Weierstraß principle relative to ŴE-PA

ω
|\ yields a

T1-definable bound (and hence witness by bounded search). In chapter 13 below
we will show (following Kohlenbach [208, 210]) that over G∞Aω one even obtains
T0-definable bounds.

11.4 Functional interpretation of (IPP) by finite bar recursion

Following Oliva [293], we now show how a finite version B0(0)(0)
f in of B0,1 can be

used to give a short description of the solution for the ND-interpretation of (IPP)
discussed already in chapter 10: recall the formulation of (IPP)ND :

∀n ∈ N∀ f : N →Cn∀K : Cn ×N
N → N∃i ≤ n∃g : N → N

(
g(K(i,g)) ≥ K(i,g)∧ f (g(K(i,g))) = i

)
,

where, again, ‘∀ f : N → Cn A( f )’ is represented as ‘∀ f 1 A( fn)’ with fn(k) :=
min{ f (k),n} and ‘∀K : Cn ×N

N → N’ as ‘∀K : N×N
N → N’, i.e. as ‘∀K0(1)(0)’.

As shown in chapter 10 we have to find x0, . . . ,xn ∈ N and g0, . . . ,gn ∈ N
N such that

(+) xi = K(i,gi)∧gi(xi) = max{x0, . . . ,xn} (0 ≤ i ≤ n).

Then we can put

I(n, f ,K) := i := f (g0(K(0,g0))) = . . . = f (gn(K(n,gn)))∧G(n, f ,K) := g := gi.

Solution of (+) : let B f in : (N×N
N → N)×N×N→ N

(i.e. of type 0(0)(0)(0(1)(0))) satisfy

(BR f in) : B f in(K,n,s) =0

⎧
⎨

⎩

〈〉, if lth(s) ≥ n + 1

〈cs〉 ∗B f in(K,n,s∗ 〈cs〉), otherwise,

where
cs := K(lth(s),hs)∧hs := λ x.M(s∗ 〈x〉 ∗B f in(K,n,s∗ 〈x〉)),

with
M(k) := max{(k)0, . . . ,(k)lth(k)−1}.
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In the following we omit the argument K.
Now define 〈x0, . . . ,xn〉 := B f in(n,〈〉) (i.e. xi := (B f in(n,〈〉))i for i ≤ n).
By induction on i one shows that
Claim:

∀i ≤ n + 1
(
〈xi, . . . ,xn〉 = B f in(n,〈x0, . . . ,xi−1〉)

)

(here for i = n + 1 resp. i = 0, 〈xi, . . . ,xn〉 resp. 〈x0, . . . ,xi−1〉 denote 〈〉).
Proof of claim: i = 0 : Immediate from the definition of 〈x0, . . . ,xn〉.
i �→ i+ 1 ≤ n + 1 : By I.H.

〈xi, . . . ,xn〉 = 〈c〈x0,...,xi−1〉〉 ∗B f in(n,〈x0, . . . ,xi−1〉 ∗ 〈c〈x0,...,xi−1〉〉).

Hence xi = c〈x0,...,xi−1〉 and B f in(n,〈x0, . . . ,xi〉) = 〈xi+1, . . .xn〉.
End of proof of claim.
By the claim we, in particular, have that xi = c〈x0,...,xi−1〉 for 0 ≤ i ≤ n.
Now define gi := h〈x0,...,xi−1〉 for 0 ≤ i ≤ n. Then

xi = c〈x0,...,xi−1〉 = K(i,h〈x0,...,xi−1〉) = K(i,gi)

and
gi(xi) = h〈x0,...,xi−1〉(xi) =

M(〈x0, . . . ,xi−1〉 ∗ 〈xi〉 ∗B f in(n,〈x0, . . . ,xi−1〉 ∗ 〈xi〉))
Claim= M(〈x0, . . . ,xn〉) = max{x0, . . . ,xn}

for all 0 ≤ i ≤ n.

11.5 Models of bar recursion

WE-HAω+(BR) proves that

(1) ∀y0(ρ0),xρ0∃n0(y(x,n) < n).

In fact, by a closed term of WE-HAω+(BR) one can define a μ-operator satisfying
the following axioms

(2) y(x,μxy) < μxy∧ (n < μxy → y(x,n) ≥ n)

for all y,x,n of appropriate types (exercise).
As mentioned already in an exercise to chapter 3, there is no such functional in S ω

for the simple reason that (1) does not hold in S ω . Hence S ω a-fortiori is not a
model of bar recursion.
As shown by Scarpellini ([321]), the type structure C ω is a model of E-PAω+(BR).
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For the details we refer to [321] and only indicate here why (1) holds in C ω : Let
x ∈ Cρ0, x̂ ∈ Cρ . Furthermore, let (kn) be a sequence in C1 such that kn →0 k for
some k ∈ N. Then ∀n ≥ n0(kn = k) for some n0. Hence

(x,n)(kn) = (x,n)(k) = x(k) = x(kn)

for all n ≥ max(k + 1,n0). This implies that

x,n →ρ x̂.

Thus
y(x,n) →0 yx̂, i.e. ∃N∀n ≥ N(y(x,n) = yx̂).

Now (1) is satisfied with n := max(N,yx̂ + 1).

For the type structure ECFω the following was proved first in [366]:

Proposition 11.16. ECFω is a model of E-PAω+(BR). Moreover, as interpretations
of the closed terms of E-PAω+(BR) we can choose computable associates α ∈ N

N.

For many years all models of bar recursion (see the historical comments at the end
of this chapter) made use of continuity to establish (1). However, in 1985 M. Bezem
proved ([27]) that his model M ω of all strongly majorizable functionals is a model
of bar recursion (for bar recursion of type 0 this essentially is due to W.A. Howard
already) despite of the fact that it contains discontinuous functionals such as

ϕ2( f 1) :=

⎧
⎨

⎩

1, if ∃n( f (n) = 0)

0, otherwise.

Since (an extension of) this model will play a crucial role in chapter 17 we give here
a detailed proof of this result:

Theorem 11.17 (Bezem [27]). M ω is a model of E-PAω+(BR).

Proof: By proposition 3.69 it suffices to show that M ω |= (BR). The proof will be
based on the following form of dependent choice which in the intuitionistic literature
is discussed under the name of ‘bar induction’ (see [266] and [366] for a thorough
discussion of various forms of bar induction):

(BI) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀x ∈ Mρ0∃n0 ∈ N∀n ≥ n0 Q(x,n;n)∧

∀x ∈ Mρ0,n ∈ N
(
∀D ∈ Mρ Q(x,n ∗D;n′) → Q(x,n;n)

)

→∀x ∈ Mρ0,n ∈ N Q(x,n;n).

To show that (BI) holds in M ω we argue by contraposition: Suppose that

∃x0 ∈ Mρ0,n0¬Q(x0,n0;n0)

and
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∀x ∈ Mρ0,n ∈ N
(
∀D ∈ Mρ Q(x,n∗D;n′) → Q(x,n;n)

)
,

i.e.
∀x ∈ Mρ0,n ∈ N

(
¬Q(x,n;n) →∃D ∈ Mρ¬Q(x,n ∗D;n′)

)
.

Then (using dependent choice on the meta-level) there exists a sequence x̃ (extend-
ing x0n0) in MM0

ρ with
∀n ≥ n0¬Q(x̃,n;n).

By corollary 3.68 x̃ ∈ Mρ0 which contradicts the first premise of (BI). Hence M ω

is a model of (BI).
We now define the following candidate for our majorant of Bρ ,τ :

B∗
ρ ,τ := λ y,z,u,n,x.(Bρ ,τ ymzmuz)Mnx,

where (using for z the notation zm instead of zM since the latter is already defined
differently)

ym(x) := y(xM), zmnx := znxM, uz := λ v,n,x.max(znxM,uvnxM)

using the construction x �→ xM from definition 3.65 for sequence types σ0. As an
intermediate functional we consider

Bp
ρ ,τ := λ y,z,u,n,x.Bρ ,τ ymzmuznx.

Let y∗,y∈M0(ρ0),z∗,z∈Mτ(ρ0)0,u∗,u∈Mτ(ρ0)0(τρ) be such that y∗ s-ma j y,z∗ s-ma j z
and u∗ s-ma j u.
Define

Q(x;n) :≡

∀x̃∈Mρ0
(
∀k<n(xk s-ma jρ x̃k)→Bpy∗z∗u∗nx s-ma jτ Bpy∗z∗u∗nx̃,Bpyzunx̃,Byzunx̃

)
.

We will show – using (BI) – that ∀x ∈ Mρ0,nQ(x,n;n). Since for all x ∈ Mρ0 there
exists an x∗ ∈ Mρ0 with x∗ s-ma j x (lemma 3.63.1) and, therefore, ∀k(x∗k s-ma j xk)
this implies that

∀x ∈ Mρ0(Bpy∗z∗u∗nx,Bpyzunx,Byzunx ∈ Mτ)

and

∀x∗,x ∈ Mρ0,n(x∗ s-ma j x → Bpy∗z∗u∗nx∗ s-ma j Bpy∗z∗u∗nx,Bpyzunx,Byzunx).

This yields
∀n(Bpy∗z∗u∗n s-ma j Bpyzun,Byzun).

Lemma 3.66 implies that

B∗y∗z∗u∗ = (Bpy∗z∗u∗)M s-ma j (Bpyzu)M = B∗yzu,Byzu.
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Using again lemma 3.63 we conclude that

B∗ s-ma j B ∈ M.

It, therefore, remains to show that ∀x ∈ Mρ0,nQ(x,n;n) :
(i) ∀x ∈ Mρ0∃n0∀n ≥ n0 Q(x,n;n) :
Let x ∈ Mρ0. Then ∃x∗ ∈ Mρ0 such that x∗ s-ma j x. Take n0 := y∗(x∗)M + 1. Then
for all n ≥ n0

(y∗)m(x,n) = y∗(x,nM) < n

since (x∗)M s-ma j (x,n)M by lemma 3.66 and y∗ s-ma j y∗ by lemma 3.63.1).
Now let n ≥ n0 and x̃ ∈ Mρ0 with ∀k < n(xk s-ma j x̃k). Then (using again lemma
3.66 as well as lemma 3.63.1)

n > (y∗)m(x,n) = y∗(x,nM) ≥ y∗(x̃,nM)
︸ ︷︷ ︸
=(y∗)m(x̃,n)

,y(x̃,nM)
︸ ︷︷ ︸
=ym(x̃,n)

,y(x̃,n)

and so
Bpy∗z∗u∗n(x,n) = B(y∗)m(z∗)mu∗z∗n(x,n) = z∗n(x,nM)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s-ma j z∗n(x̃,nM) = Bpy∗z∗u∗n(x̃,n)

s-ma j zn(x̃,nM) = Bpyzun(x̃,n)

s-ma j zn(x̃,n) = Byzun(x̃,n).

(ii) ∀x ∈ Mρ0,n
(
∀D ∈ Mρ Q(x,n∗D;n′) → Q(x,n;n)

)
:

Let n ∈ N and x, x̃ ∈ Mρ0 with ∀k < n(xk s-ma j x̃k). Also let D∗,D ∈ Mρ with
D∗ s-ma j D. Using that (with lemma 3.63.1)

∀k
(
(x,n ∗D∗)(k) s-ma j (x,n ∗D)(k),(x̃,n∗D)(k)

)

it follows from Q(x,n ∗D∗;n′) that

Bpy∗z∗u∗n′(x,n∗D∗)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s-ma j Bpy∗z∗u∗n′(x,n ∗D)

s-ma j Bpy∗z∗u∗n′(x̃,n∗D)

s-ma j Bpyzun′(x̃,n∗D)

s-ma j Byzun′(x̃,n∗D).

Hence

λ D.Bpy∗z∗u∗n′(x,n ∗D)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s-ma j λ D.Bpy∗z∗u∗n′(x̃,n∗D)

s-ma j λ D.Bpyzun′(x̃,n ∗D)

s-ma j λ D.Byzun′(x̃,n∗D).

By lemma 3.63.1) it, in particular, follows that all these functionals are in M ω .
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Case 1: (y∗)m(x,n) = y∗(x,nM) < n. Then

n > (y∗)m(x̃,n),yM(x̃,n),y(x̃,n).

Hence

Bpy∗z∗u∗nx = z∗n(x,nM)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s-ma j z∗n(x̃,nM) = Bpy∗z∗u∗nx̃

s-ma j zn(x̃,nM) = Bpyzunx̃

s-ma j zn(x̃,n) = Byzunx̃.

Case 2: (y∗)m(x,n) = y∗(x,nM) ≥ n. Then (using lemma 3.63.1)

Bpy∗z∗u∗n(x,n) = u∗z∗(λ D.Bpy∗z∗u∗n′(x,n ∗D))n(x,n) =

max(z∗n(x,nM),u∗(λ D.Bpy∗z∗u∗n′(x,n ∗D))n(x,nM)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s-ma j max(z∗n(x̃,nM),u∗(λ D.Bpy∗z∗u∗n′(x̃,n∗D))n(x̃,nM)),z∗n(x̃,nM)

s-ma j max(zn(x̃,nM),u(λ D.Bpyzun′(x̃,n∗D))n(x̃,nM)),zn(x̃,nM)

s-ma j zn(x̃,n),u(λ D.Byzun′(x̃,n∗D))n(x̃,n).

Hence

Bpy∗z∗u∗n(x,n)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s-ma j Bpy∗z∗u∗n(x̃,n)

s-ma j Bpyzun(x̃,n)

s-ma j Byzun(x̃,n)

and so Q(x,n;n).
By (BI), (i) and (ii) imply that

∀x ∈ Mρ0,nQ(x,n,n)

which finishes the proof. �

Corollary to the proof: For any closed term tρ of E-PAω+(BR) one can construct
a closed term t∗ of E-PAω+(BR) such that

[t∗]M ω s-ma jρ [t]M ω .

In view of remark 3.62 we can also write this as

M ω |= t∗ s-ma jρ t,

where now s-ma jρ refers to the syntactic relation from definition 3.48.

Corollary 11.18. Let A(a) be an arbitrary formula of L (WE-PAω ) containing only
the free variables a. Then the following rule holds:
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⎧
⎨

⎩

WE-PAω+ QF-AC + DC � A(a) implies that

M ω |= ∀y(A′)D(t a,y,a),

where t is a suitable tuple of closed terms of WE-HAω+ (BR) which can be ex-
tracted from a given proof of the assumption and A′ denotes the negative translation
of A.

Proof: By theorem 11.9 and theorem 11.17. �

Proposition 11.19. Proposition 3.71 extends for C ω , ECFω and M ω (but not for
S ω ) to closed terms of type degree ≤ 2 of E-PAω+(BR).

Proof: One only has to extend the proof of proposition 3.71 by showing that

[Bρ ,τ ]C ω ≈ [Bρ ,τ ]ECFω ≈ [Bρ ,τ ]M ω

for the corresponding logical relations ≈ . This is done using (BI) in a way similar
(but much simpler) to the use of (BI) in the majorization proof of Bρ ,τ . Exercise. �

Corollary 11.20. Let t2 be a closed term of E-PAω+(BR) of type 2. Then [t]M ω ∈ S2
is a computable functional, i.e. there exists a code e of an oracle Turing machine
such that

∀ f ∈ N
N({e}( f ) � [t]M ω ( f )).

Proof: Immediate from propositions 11.16, 11.19 and the comment after definition
3.58. �

11.6 Exercises, historical comments and suggested further
reading

Exercises:

1) ([266]) Consider the following variants of (BR):

(BR−
ρ ,τ ) :

⎧
⎨

⎩

y(x,n0) <0 n → B−
ρ ,τ yzunx =τ z

y(x,n) ≥0 n → B−
ρ ,τ yzunx =τ u(λ Dρ .B−

ρ ,τ yzun′(x,n∗D)),

and

(BR+
ρ ,τ ) :

⎧
⎨

⎩

y(x,n0) <0 n → B+
ρ ,τ yzunx =τ znx

y(x,n) ≥0 n → B+
ρ ,τ yzunx =τ u(λ Dρ .B+

ρ ,τ yzun′(x,n ∗D))nx,
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Show that over WE-HAω the schemata (BR−), (BR) and (BR+) are equivalent
(though the type τ might change).

2) Prove proposition 11.11.
3) Prove proposition 11.12.
4) Compare Spector’s solution of the functional interpretation of DNS with the

functional interpretation of the intuitionistically valid schema

¬¬A∧¬¬B →¬¬(A∧B)

which only requires typed λ -terms (see the exercises to chapter 8).
5) Show (using induction on k) that

(∗) WE-HAω � ∀k0(∀x ≤0 k¬¬A(x,k) →¬¬∀x ≤0 k A(x,k)).

Compare the functional interpretation of (∗) (by closed terms of WE-HAω ) with
Spector’s interpretation of DNS.

6) Show that the functional μ satisfying

x(y,μxy) < μxy∧ (n < μxy → x(y,n) ≥ n)

is definable in WE-HAω+(BR).
7) ([266]) Show that WE-PAω+DC � (DC)e.
8) ([164]) Solve the functional interpretation of the negative translation of WKL

in ŴE-HA
ω
|\+ (BR0,1) (since WKL is provable in ŴE-PA

ω
|\+ QF-AC+AC0,0

ar
theorem 11.14 applies). Formulate the special ‘binary’ version of B0,1 sufficient
for this.

9) Complete the proof of proposition 11.19.
10) Construct majorants I∗,G∗ for the solution I,G to the functional interpretation of

(IPP) as given in section 11.4.

Historical comments and suggested further reading: Bar recursion was first con-
sidered in Spector’s fundamental paper [343]. Spector’s work was further improved
and extended in Howard [162] and Luckhardt [266]. A nice motivation for Spector’s
solution of the functional interpretation of DNS by bar recursion is due to Oliva
[293] on which also the material in section 11.4 is based. An intensional functional
interpretation of analysis by bar recursion was given in Diller-Vogel [89]. A pow-
erful extension of bar recursion to infinite types was developed in Friedrich [109]
where – via a game quantifier interpretation as intermediate step – even a functional
interpretation of comprehension over functions (of type 1) rather than numbers was
given. In Kohlenbach [226] and Gerhardy-Kohlenbach [120] an extension of bar
recursion to new types is used to interpret formal systems with abstract metric, hy-
perbolic and normed spaces added as ‘Urelemente’ (see chapter 17 below). More
information on the proof theory of bar recursion can be found in Kreisel [248]. A
detailed ordinal analysis of bar recursion of type 0 is given in Howard [164, 165].
Other ordinal information on (BR) is provided in Vogel [374]. In Schwichtenberg
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[327] it is shown that the primitive recursive functionals in the sense of Gödel are
closed under the rule of bar recursion of type 0 and 1. Bar recursion in the context
of fragments of PAω is used in Kohlenbach [215, 216] and Oliva [291].
The first model of bar recursion was given by Scarpellini in [321] (in two variants)
by his type structure of sequentially continuous functionals. Term models for bar re-
cursion were first defined in Luckhardt [266] (constructively) and Tait [352] (classi-
cally). Inspired by [266], Scarpellini gave a more constructive refinement of his first
model in [322]. In Troelstra [366] it is shown that the extensional Kleene/Kreisel
continuous functionals ECF form a model of bar recursion. In the important paper
Bezem [27], the model of strongly majorizable functionals is introduced and shown
to be a model of bar recursion. Bezem’s proof proceeds by first showing that the
usual bar recursors are primitive recursively equivalent to a variant of bar recursion
and then majorizing the latter. In Kohlenbach [200] majorization is shown directly
for Spector’s bar recursors by first establishing a so-called pointwise majorizability
and then using a general procedure for converting pointwise majorants to strong ma-
jorants. The proof given in this chapter resulted from that strategy where the latter
procedure is directly implemented into the definition of B∗.
Strong normalization of the bar recursive functionals is proved in Vogel [373] and
(without using infinite terms) in Bezem [28]. Simultaneous bar recursion is consid-
ered in Luckhardt [266] and Diller-Vogel [89]. In Bezem [29] the equivalence of a
number of known variants of bar recursion is established. Kohlenbach [200] (chap-
ter III) introduces various new forms of bar recursion which are not equivalent to
(BR) and based on different bar conditions. Yet another new version of bar recursion
(called ‘modified bar recursion’) is used in Berger-Oliva [22] to solve the Friedman
A-translation of the modified realizability interpretation of the negative translation
of dependent choice (see also chapter 14). That version is motivated by construc-
tions in [17]. The relationship between modified bar recursion, Spector’s bar recur-
sion and the variant introduced by Kohlenbach in [200] (chapter III) is clarified in
Berger-Oliva [23]. Yet another approach to the axiom of dependent choice is Kriv-
ine’s realizability developed in [253] which has some relations to the approach in
Berger-Oliva [22] (see Oliva-Streicher [295] for a discussion of this point).
Other approaches to systems based on restricted forms of comprehension based on
ineffective uses of functional interpretation resp. on cut-elimination can be found in
Feferman [98] and Takeuti [356] respectively. An alternative functional interpreta-
tion of classical analysis based on a polymorphic λ -calculus was given in Girard
[121].



Chapter 12
A non-standard principle of uniform
boundedness

12.1 The Σ 0
1 -boundedness principle

In intuitionistic mathematics certain axioms are used which are classically incon-
sistent but are valid under an appropriate constructive interpretation. Examples are
axioms stating that all functions f : N

N → N
N resp. f : 2N → N are continuous

resp. uniformly continuous. Such axioms sometimes allow one to simplify proofs
even for classically valid theorems. One of the principles behind such axioms is the
so-called fan principle which has been considered in various different forms in in-
tuitionistic mathematics. The simplest form is just the contraposition of the binary
König’s lemma which can be written in the following form (where we denote for
simplicity the constant-1 function λ x0.10 by 1):

FANKL : T ( f )∧∀b ≤1 1∃x0( f (bx) �=0 0
)
→∃x0∀b ≤1 1∃x̃ ≤ x

(
f (bx̃) �=0 0

)
,

where T ( f ) expresses that f is the characteristic function of a binary tree and is
defined as in chapter 7.
In this form the fan principle, of course, is classically valid as WKL is. However,
in intuitionistic mathematics one also considers the following much more general
form

FAN : ∀ f ≤1 1∃x0A( f ,x) →∃x0∀ f ≤1 1∃x̃ ≤0 xA( f , x̃)

where the property
f (bx) �=0 0

is replaced by an arbitrary formula A.
In the presence of a minimal amount of arithmetic, FAN is inconsistent with classi-
cal logic. FAN applied to the logically (classically) valid sentence

∀ f ≤1 1∃x0(∃y0( f (y) =0 0) → f (x) =0 0
)

yields
∃x0∀ f ≤1 1

(
∃y( f (y) =0 0) ↔∃y ≤ x( f (y) =0 0)

)
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which obviously is false.
In contrast to FANKL, the property A( f ,x) :≡

(
∃y( f (y) =0 0) → f (x) =0 0

)
to

which FAN is applied in this counterexample is not quantifier-free (and not decid-
able). This leads us to consider the restriction of FAN to quantifier-free formulas

QF-FAN : ∀ f ≤1 1∃x0A0( f ,x) →∃x0∀ f ≤1 1∃x̃ ≤0 xA0( f , x̃),

where A0 is a quantifier-free formula (of say E-PAω or Ê-PA
ω
|\).

Is QF-FAN classically consistent? The answer to this question depends on whether
higher type parameters are allowed to occur in A0 or not. If A0 contains at most
parameters g of type ≤ 1, then one classically verify QF-FAN as follows: Let
A0(g1, f 1,x) be a quantifier-free formula containing only g, f ,x free. Consider the
function

F( f ,g) :=

⎧
⎨

⎩

minx[A0(g,min1( f ,11),x)], if existent

undefined, otherwise,

where min1( f ,1)(x) := min( f (x),1).
If ∀ f ≤1 1∃xA0(g, f ,x) then F(·,g) is a total functional of type-2 which is com-
putable in g since A0 is decidable. By standard recursion theoretic arguments F(·,g),
therefore, is uniformly continuous on the Cantor space 2N of all 0/1-functions f .
Hence F is bounded on that space which implies the conclusion of QF-FAN.
This argument breaks down for general A0 with parameters of arbitrary types and in
fact QF-FAN can be classically refuted as follows: Let F : N

N → N be an arbitrary
function. By extensionality and classical logic (in fact only the Markov principle for
numbers is needed here) we get

∀ f ,g ≤1 1∃x0( f (x) =0 g(x) → F( f ) =0 F(g)
)
.

QF-FAN yields (using that we can encode ‘∀ f ,g ≤1 1’ as ‘∀h ≤1 1’ by putting
f (x) := h(2x),g(x) := h(2x + 1))

∃x∀ f ,g ≤1 1
(
∀y ≤ x( f (y) =0 g(y)) → F( f ) =0 F(g)

)
,

i.e. the uniform continuity of F on the Cantor space which, of course, can classically
be refuted by taking e.g.

F( f ) :=

⎧
⎨

⎩

0, if ∃x( f (x) =0 0)

1, otherwise.

So even QF-FAN is classically false. However, whereas FAN was already in con-
flict with pure classical logic (and a trivial amount of arithmetic), the counterex-
ample for QF-FAN required the definition of a comprehension functional F which
is not available in the classical systems like E-PAω+QF-AC or even E-PAω+QF-
AC+AC0 which we have considered so far. This suggests the possibility to add
QF-FAN consistently to these systems thereby exploiting some of the uses of non-
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classical axioms even in a classical setting. Below we will show that the addition of
QF-FAN to e.g. E-PAω+QF-AC or Ê-PA

ω
|\+QF-AC not only is consistent but has

no impact on the provably recursive functionals of type-2.
In fact, we will use an extension of QF-FAN where the bound x in the conclusion
is obtained as a function in a number parameter of A. Intuitionistically, one usually
assumes the full axiom of choice for numbers

AC0,0 : ∀x0∃y0A(x,y) →∃ f∀xA(x, f (x))

which allows one to derive this form from our formulation. However, AC0,0, which
is intuitionistically weak (as we saw in chapters 5 and 8) would classically imply
the full comprehension schema

∃ f 1∀x0( f (x) =0 0 ↔ A(x)
)

with dramatic effects on the computational content of the proof (see chapter 11). On
the other hand, a generalization of FAN usually considered in intuitionistic mathe-
matics (see e.g. [366] (1.9.24))

FANc : ∀ f ≤1 1∃x0A( f ,x) →∃y∀ f ≤1 1∃x∀g ≤1 1
(

f y =0 gy → A(g,x)
)

which has a uniform continuity principle built-in would (restricted to quantifier-free
A0) classically be redundant for QF-FAN since – as we saw above – QF-FAN al-
lows already (in the presence of classical logic) to derive the uniform continuity of
all type-2 functionals on the Cantor space (which together with QF-AC1,0 would
imply this extension). Finally, we observe that we can allow A0 in QF-FAN to be
a Σ0

1 -formula as we can code further existential quantifiers and x together. More-
over, instead of the special bound 1 one may have any bounding function. So the
right formulation of QF-FAN is the following schema which we call uniform Σ0

1 -
boundedness in order to avoid confusion with other more common forms of FAN
as discussed above.

Definition 12.1. The schema of uniform Σ0
1 -boundedness is defined as

Σ0
1 -UB :

⎧
⎨

⎩

∀y1(0)(∀k0∀x ≤1 yk∃z0 A(x,y,k,z)

→∃χ1∀k0∀x ≤1 yk∃z ≤0 χk A(x,y,k,z)
)
,

where A ≡ ∃lA0(l) and l is a tuple of variables of type 0 and A0 is a quantifier–free
formula (which may contain parameters of arbitrary types).

Proposition 12.2. Ê-PA
ω
|\+ Σ0

1 -UB 
 WKL.

Proof: Let f be such that T ( f ). We prove WKL by contraposition. Assume

∀b ≤1 1∃x0( f (bx) �=0 0
)
.

Then by Σ0
1 -UB



226 12 A non-standard principle of uniform boundedness

∃x0∀b ≤1 1∃x̃ ≤ x
(

f (bx̃) �=0 0
)

and therefore by T ( f )

∃x∀n0(lth(n) =0 x → f (n) �=0 0).

�

Proposition 12.3.

Ê-PA
ω
|\+ Σ0

1 –UB 


∀Φ1(1)∀y1∃χ1∀k0∀z1,z2 ≤1 y
( ∧

i≤0χk
(z1i =0 z2i) → ∧

j≤0k
(Φz1 j =0 Φz2 j)

)
,

i.e. Φ is uniformly continuous (w.r.t. the topology induced by the metric on the
Baire space) on {z : z ≤1 y} and has a modulus of uniform continuity χ .

Proof: ∀z1,z2 ≤1 y(z1 =1 z2 → Φz1 =1 Φz2) implies

∀z1,z2 ≤1 y∀k0∃n0(
∧

i≤0n

(z1i =0 z2i) →
∧

j≤0k

(Φz1 j =0 Φz2 j)
)
.

Using Σ0
1 -UB (and the aforementioned encoding of ‘∀z1,z2 ≤ y’ into a single quan-

tifier) we obtain

∃χ1∀k0∀z1,z2 ≤1 y
( ∧

i≤0χk

(z1i =0 z2i) →
∧

j≤0k

(Φz1 j =0 Φz2 j)
)
.

�

Corollary 12.4.
E-PAω + QF-AC+ WKL � Σ0

1 -UB.

Proof: The full set-theoretic type structure S ω is a model of E-PAω+QF-AC+WKL
but – because of proposition 12.3 – not of Σ0

1 -UB. �

Definition 12.5. 1) F denotes the sentence

F :≡ ∀Φ2(0),y1(0)∃y0 ≤1(0) y∀k0∀z ≤1 yk
(
Φkz ≤0 Φk(y0k)

)
.

2) F− is the following weakening of F :

F− :≡∀Φ2(0),y1(0)∃y0 ≤1(0) y∀k0,z1,n0(
∧

i<0n

(zi≤0 yki)→Φk(z,n)≤0 Φk(y0k)
)
,

where, for z1, (z,n)(k0) :=0 zk, if k <0 n and := 00, otherwise.

Proposition 12.6. 1) ŴE-PA
ω
|\+QF-AC1,0 
 F → Σ0

1 -UB.
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2) ŴE-PA
ω
|\+QF-AC1,0 
 F− → Σ0

1 -UB−, where

Σ0
1 -UB− :

⎧
⎪⎨

⎪⎩

∀y1(0)(∀k0∀x ≤1 yk∃z0 A(x,y,k,z) →∃χ1∀k0,x1,n0

( ∧

i<n
(xi ≤0 yki) →∃z ≤0 χk A((x,n),y,k,z)

))
.

Here A≡∃lA0(l) and l is a tuple of variables of type 0 and A0 is a quantifier-free
formula (which may contain parameters of arbitrary types).

Proof: 1) The assumption

∀k0∀x ≤1 yk∃z0 A(x,y,k,z)

implies that
∀k0∀x1∃z0,v0, l

(
xv ≤0 ykv → A0(l,x,y,k,z)

)
.

Now applying QF-AC1,0 and the fact that k,x as well as z,v, l can be coded together,
one obtains the existence of a functional Φ2(0) such that

∀k0∀x ≤1 yk A(x,y,k,Φkx).

By applying F to Φ and y we get a y1(0)
0 such that

∀k0∀x ≤1 yk(Φkx ≤0 Φk(y0k)).

So the proposition holds with χk := Φk(y0k).
The proof of 2) is analogous. �

Proposition 12.7. Ê-PA
ω
|\+QF-AC1,0 + F− 
 F.

Proof: We reason in Ê-PA
ω
|\+QF-AC1,0 + F−. Clearly, F follows from F− pro-

vided we can establish

(1) ∀Φ2∀ f 1∃n0(Φ( f ) =0 Φ( f ,n)
)
.

Suppose, therefore, that on the contrary there would exist Φ2 and f such that

(2) ∀n0(Φ( f ) �=0 Φ( f ,n)
)
.

Then taking fi := f , i+ 1 we get

(3) ∀i0∀ j ≥ i
(

f j(i) =0 f (i)
)

and
(4) ∀i0

(
Φ( f ) �=0 Φ( fi)

)
.

Now one can use again Grilliot’s trick (which we already used in the proof of propo-
sition 10.60 in chapter 10) to derive from (3) and (4)
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(5) ∃ϕ2∀g1(ϕ(g) =0 0 ↔∃x(gx =0 0)
)

Proof of (5): We can construct a closed term t1(1)(1) of Ê-PA
ω
|\ such that (provably

in Ê-PA
ω
|\) we have

t f gi =0

⎧
⎨

⎩

f j(i), for the least j < i such that g( j) > 0, if such a j exists

f (i), otherwise.

Together with (3) this yields

∃ j(g( j) > 0) → t f g =1 f j for the least such j

and
∀ j(g( j) =0 0) → t f g =1 f .

Hence using the extensionality axiom of Ê-PA
ω
|\ and (4) we get

∀ j(g( j) =0 0) ↔ Φ(t f g) =0 Φ( f ).

So ϕ := λ g1.sg(|Φ(t( f ,sg ◦g))−Φ( f )|) where sg(x) := 0 for x �= 0 and sg(x) := 1
otherwise, does the job.
End of proof of (5).
The proof now is concluded by observing that (5) contradicts F− (relative to
Ê-PA

ω
|\+QF-AC1,0), since F− implies that every Φ2 is bounded on the set of all

functions g,n with g ≤1 1,n ∈ N, whereas QF-AC1,0 together with (5) yields the
existence of a functional μ such that

(6) ∀g1(∃x0(gx =0 0) → g(μ(g)) =0 0
)
.

It is obvious that μ is unbounded on this very set. �

Theorem 12.8. Let A0(x1,y1,z0,vτ ) ∈ L (E-PAω ) be a quantifier-free formula con-
taining only x,y,z,v as free variables (where τ is an arbitrary type) and s a closed
term of E-PAω . Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-PAω + QF-AC1,0 + QF-AC0,1 + Σ0
1 -UB 
 ∀x1∀y ≤1 sx∃z0,vτ A0(x,y,z,v)

⇒ one can extract a closed term Ψ in E-PAω s.t.

WE-HAω 
 ∀x1∀y ≤1 sx∃z ≤0 Ψx∃vτ A0(x,y,z,v).

The result also holds in the presence of additional axioms Δ as in theorem 10.47.
Then the conclusion is provable in WE-HAω + Δ̃ε .
The result also holds for tuples of variables xδ ,yρ (with deg(δ ,ρ) ≤ 1), z0,vτ and
terms s.
An analogous result holds for Ê-PA

ω
|\,ŴE-HA

ω
|\ instead of E-PAω and WE-HAω .



12.1 The Σ 0
1 -boundedness principle 229

Proof: We can assume that Δ is finite. The finite conjunction of the axioms in Δ
(resp. in Δ̃ε ) we also denote by Δ (resp. by Δ̃ε ). In the following we abbreviate ‘QF-
AC1,0+QF-AC0,1’ by ‘QF-AC’. The assumption and propositions 12.7, 12.6 imply

E-PAω + QF-AC 
 Δ ∧F− → ∀x1∀y ≤1 sx∃z0,vτ A0(x,y,z,v).

By the elimination of extensionality (proposition 10.45) we get

WE-PAω + QF-AC 
 Δ ∧F− → ∀x1∀y ≤1 sx∃z0,vτ A0(x,y,z,v)

and therefore

WE-PAω + QF-AC 
 Δ →
(
∃Y ≤ λ Φ2(0),y1(0).y∀Φ2(0), ỹ1(0),k0, z̃1,n0

( ∧

i<n
(z̃i ≤ ỹki) → Φk(z̃,n) ≤0 Φk(Y Φ ỹk)

)
→∀x1∀y ≤1 sx∃z0,vτ A0(x,y,z,v)

)
,

and thus

WE-PAω + QF-AC 
 Δ →∀Y ≤ λ Φ,y.y∀x1∀y ≤1 sx∃Φ, ỹ,k, z̃,n,z,v(. . .).

By theorem 10.26 and remarks 10.23, 10.27.2 we can extract closed terms Ψ1,Ψ2 of
WE-PAω such that

WE-HAω + Δ̃ε 
 ∀Y ≤ λ Φ,y.y∀x1∀y ≤1 sx∃Φ, ỹ,k, z̃∃n ≤0 Ψ1x∃z ≤0 Ψ2x∃v(. . .).

Moving quantifiers inwards yields

WE-HAω + Δ̃ε 
 ∀x
(
∃Y ≤ λ Φ2(0),y1(0).y∀Φ, ỹ1(0),k0, z̃1∀n ≤0 Ψ1x

( ∧

i<n
(z̃i ≤ ỹki) → Φk(z̃,n) ≤ Φk(Y Φ ỹk)

)
→∀y ≤1 sx∃z ≤0 Ψ2x∃vA0(x,y,z,v)

)
.

To conclude the proof we have to show that

WE-HAω 
 ∀n0∃Y ≤ λ Φ2(0),y1(0).y∀Φ, ỹ1(0),k0, z̃1∀n ≤0 n0
( ∧

i<n
(z̃i ≤ ỹki) → Φk(z̃,n) ≤ Φk(Y Φ ỹk)

)
:

Taking advantage of the fact that our definition of f x implies that
∧

i<n

(z̃i ≤0 ỹki) → z̃n ≤0 (ỹk)n0 for n ≤0 n0

we now define

Ỹ := λ Φ, ỹ,k,n0. max
j≤0(ỹk)n0

Φk
(
min1(λ i.( j)i, ỹk),n0

)
.

One easily shows (using the fact that Φ〈·〉 ∈ WE-HAω ) that Ỹ is definable as well.
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Ŷ := λ Φ, ỹ,k,n0. min
j≤0(ỹk)n0

[
Φk

(
min1(λ i.( j)i, ỹk),n0

)
=0 ỸΦ ỹkn0

]
.

For every n0 we now put

Y := λ Φ, ỹ,k.
(
min1

(
λ i.(Ŷ Φ ỹkn0)i, ỹk),n0

)
.

The proof for Ê-PA
ω
|\,ŴE-HA

ω
|\ is analogous. �

Remark 12.9. Note that in the theorem above, the conclusion is valid in S ω al-
though the proof of the premise may have used Σ0

1 -UB which is not valid in S ω .
The theorem also gives a (relative) consistency proof for

E-PAω+QF-AC1,0+QF-AC0,1 + Σ0
1 -UB.

Remark 12.10. For

(WE-PAω + QF-AC1,0 + QF-AC0,1)⊕Σ0
1 -UB−

instead of
E-PAω + QF-AC1,0 + QF-AC0,1 + Σ0

1 -UB

the proof of this theorem is much simpler and does not need elimination of ex-
tensionality since we do not need proposition 12.7. Here ‘(...) ⊕Σ0

1 -UB−’ means
that Σ0

1 -UB− must not be used in the proof of the premise of an application of the
quantifier-free rule of extensionality QF-ER. WE-PAω satisfies the deduction theo-
rem w.r.t ⊕ but not w.r.t +. In this context we may even use QF-AC for all types as
the restriction to the types 1,0 resp. 0,1 was caused only by the necessity to apply
the elimination of extensionality procedure.

As a corollary to theorem 12.8 and proposition 12.2 we obtain another proof of
theorem 10.58.

Let us now switch to an intuitionistic context. In such a context we can treat much
more general forms of uniform boundedness:

• Instead of considering only Σ0
1 -formulas we can allow arbitrary formulas.

• Since the extensionality axiom is treated trivially by monotone modified realiz-
ability and we, therefore, do not need to apply any elimination of extensionality
procedure, we can, furthermore, consider ∀x ≤ρ y for all types ρ rather than just
for ρ = 1.

Definition 12.11. 1) The generalization of the axiom F to arbitrary types ρ is de-
fined as follows

Fρ :≡ ∀Φ0ρ0,yρ0∃y0 ≤ρ0 y∀k0∀z ≤ρ yk
(
Φkz ≤0 Φk(y0k)

)
.

The union of these axioms for all types ρ we denote by Fω .
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2) The full uniform boundedness principles in all types is defined in the following
way

UBρ : ∀yρ0(∀k0∀x≤ρ yk∃z0A(x,y,k,z)→∃χ1∀k0∀x≤ρ yk∃z≤0 χkA(x,y,k,z)
)
.

The union of all these axioms for arbitrary formulas A we denote by UBω .

Remark 12.12. 1) For ρ = 1, Fρ coincides with F.
2) For ρ = 1 and A ∈ Σ0

1 , UBρ coincides with Σ0
1 -UB.

Lemma 12.13. E-HAω+AC+Fρ 
 UBρ .

Proof: Exercise! Hint: Use that over E-HAω we can write ∀x ≤ρ yk∃zA(x,y,k,z)
equivalently as ∀xρ∃zA(minρ(x,yk),y,k,z). �

Theorem 12.14. Let A(x1,yρ ,zτ ) be a formula of L (E-HAω) (containing only
x,y,z free) which is in Γ1 (see definition 5.19) such that all positively (resp. nega-
tively) occurring ∀-quantifiers (resp. ∃-quantifiers) are of types of degree ≤ 1 while
all other quantifiers are of types of degree ≤ 2. Assume that deg(ρ),deg(τ)≤ 2 and
let s be a closed term. Then the following rule holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-HAω+AC+IPω
e f +UBω 
 ∀x1∀y ≤ρ sx∃zτ A(x,y,z)

⇒ one can extract a closed term t of E-HAω such that

S ω |= ∀x1∀y ≤ρ sx∃z ≤τ tx A(x,y,z).

The theorem also holds in the presence of further S ω -valid axioms of the form
Θ as in theorem 7.1.1) provided that all positively (resp. negatively) occurring ∃-
quantifiers (resp. ∀-quantifiers) are of types of degree ≤ 1 while all other quantifiers
are of types of degree ≤ 2.

Proof: We may assume that τ = 2. By lemma 12.13 the premise of the rule implies
that

E-HAω+AC+IPω
e f + Fω 
 ∀x1∀y ≤ρ sx∃zτ A(x,y,z)

and so a-fortiori

E-HAω+AC+IPω
e f + F̃ω 
 ∀x1∀y ≤ρ sx∃zτ A(x,y,z),

where

F̃ρ :≡ ∃Y0 ≤ λ Φ,y.y∀Φ,y,k0∀z ≤ρ yk
(
Φkz ≤0 Φk(Y0(Φ,y,k))

)
.

F̃ρ is of the form of the axioms Θ considered in theorem 7.1.1). Hence we can apply
that theorem to extract closed terms t∗ such that, provably in E-HAω + F̃ω , these
terms satisfy the monotone modified realizability interpretation of the conclusion,
i.e.

E-HAω + F̃ω 
 ∃u
(
t∗ ma j u∧u mr ∀x1∀y ≤ρ sx∃zτ A(x,y,z)

)
.
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Since A ∈ Γ1, lemma 5.20 yields from this

E-HAω + F̃ω 
 ∃u1
(
t∗1 ma j u1 ∧∀x1∀y ≤ρ sx A(x,y,u1xy)

)
.

Arguing as in the proof of theorem 6.8 it follows that

E-HAω + F̃ω 
 ∀x1∀y ≤ρ ∃z ≤τ tx A(x,y,z),

where
tx := λ z1.t∗1(xM)(s∗xM)zM

for some majorizing term s∗ of s. The model of strongly majorizable functionals
M ω (see definition 3.61) is a model of F̃ω (exercise). Hence

M ω |= ∀x1∀y ≤ρ sx∃z ≤τ tx A(x,y,z).

Using the restrictions on the types of the quantifiers in A and remark 3.72 it follows
that (note that for y ∈ Sρ , y ≤ sx implies that y ∈ Mρ since s∗xM is a majorant and
deg(ρ) ≤ 2 so that Mρ ⊆ Sρ )

S ω |= ∀x1∀y ≤ρ sx∃z ≤τ tx A(x,y,z).

The extension by axioms Θ follows immediately from the proof above and the fact
that the type restrictions imply that Θ also holds in M ω . �

Remark 12.15. Other results on even more general forms of UB have been ob-
tained by F. Ferreira and P. Oliva using their novel bounded functional interpretation
([104]).

12.2 Applications of Σ 0
1 -boundedness

In this section we show how Σ0
1 -UB can be used to give very short proofs of impor-

tant theorems in analysis (whose proofs based on, say, WKL would be much more
involved). Moreover, whereas proofs based on WKL rely on complicated represen-
tations of e.g. f ∈C[0,1] we can treat such functions now directly as type-2 objects
and can even avoid to state any continuity assumptions in most applications. This
is due to the fact that Σ0

1 -UB implies that every function f : [0,1] → R is uniformly
continuous as we show in the first application (illustrating again the ‘non-standard’
character of this principle).
In the following d is an arbitrary but fixed natural number ≥ 1.

Application 1:

Proposition 12.16. E-PAω + Σ0
1 -UB proves:

Every function F : [0,1]d → R is uniformly continuous and possesses a modulus of
uniform continuity.
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Proof: Referring to the representation of [0,1]d and R from chapter 4, the assertion
above has the following form when expressed in L (E-PAω ):

‘If Φ1(1) represents a function [0,1]d → R, i.e.

∀x1
1,x

1
2(

d∧

i=1
(0 ≤R νd

i (x1),νd
i (x2) ≤R 1∧νd

i (x1) =R νd
i (x2)) → Φx1 =R Φx2),

then Φ is uniformly continuous on [0,1]d and possesses a modulus of uniform
continuity.’

Here νd ,νd
i are the coding functions for d-tuples of number-theoretic functions from

definition 3.30. Making use of the representation of [0,1] from lemma 4.25, we can
restrict ourselves to representatives x1 of elements of [0,1]d which satisfy νd

i (x) ≤1
N for i = 1, . . . ,d (where N := λ n. j(2n+3,2n+2 −1)).

∀x1,x2 ≤1 νd(N, . . . ,N)(
d∧

i=1

( ˜νd
i (x1) =R

˜νd
i (x2)) → Φ x̃1 =R Φ x̃2)

is equivalent to

∀x1,x2 ≤1 νd(N, . . . ,N)∀k0∃n0

(
‖x̃1 −Rd x̃2‖max ≤R 2−n → |Φ x̃1 −R Φ x̃2|R <R 2−k

︸ ︷︷ ︸
≡:A∈Σ0

1

)
,

where ‖ · ‖max denotes the maximum metric on R
d and x̃ is an abbreviation for

νd( ˜νd
1 (x1), . . . , ˜νd

d (xd)). From chapter 4 we recall that ≤R∈ Π 0
1 and <R∈ Σ0

1 .
Since x1,x2 can be coded together, Σ0

1 -UB yields (using the monotonicity of A with
respect to n)

∃χ1∀x1,x2 ≤1 νd(N, . . . ,N)∀k0(‖x̃1 −Rd x̃2‖max ≤ 2−χk → |Φ x̃1 −R Φ x̃2|R < 2−k).

�

Remark 12.17. 1) This result generalizes also to variable rectangles [a1,b1]× . . .×
[ad,bd ] instead of [0,1]d (where ai < bi for i = 1, . . . ,d).

2) Instead of ‖ · ‖max we can also use e.g. the Euclidean metric on R
d thereby ob-

taining a modulus of continuity w.r.t. this metric. However, since both norms
on R

d are constructively equivalent, a modulus of uniform continuity w.r.t. one
norm can be easily transformed into a modulus for the other norm.

Remark 12.18. 1) Proposition 12.16 also holds with WE-HAω+M0 instead of E-
PAω , where M0 is the restriction of the Markov principle Mω to x = x0.

2) If F is assumed to be pointwise continuous, then Σ0
1 -UB− (in the sense of remark

12.10) suffices for the proof of proposition 12.16.
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Corollary 12.19. E-PAω +Σ0
1 -UB proves: Every Φ1(1) which represents a function

F : R
d → R is pointwise continuous on R

d and possesses a modulus of pointwise
continuity operation.

Proof: As a corollary to the proof of proposition 12.16 above we obtain a function
χ1(0) such that χ(m) is a modulus of uniform continuity for Φ on [−m,m]d by
applying Σ0

1 -UB to

∀m0∀x1,x2 ≤1 νd(N(m), . . . ,N(m))∀k0∃n0

(
‖x1 −Rd x2‖max ≤2−n →|Φx1 −R Φx2|R <2−k

︸ ︷︷ ︸
∈Σ0

1

)
,

where N(m) := λ n. j(m2n+3,2n+2 −1) is the boundedness function from our repre-
sentation of [−m,m].

Define ξ 0(1) ∈ E-PAω by ξ (x1) := max0(� ̂(νd
1 (x))(0)�+ 2, . . . ,� ̂(νd

d (x))(0)�+ 2).
The natural number ξ (x1) is an upper bound for ‖x1‖max+1. Finally define ω(x1) :=
λ k0.χ(ξ (x),k). Since ‖x− y‖max ≤ 2−ω(x,k) implies that ‖x‖max,‖y‖max ≤ ξ (x),
ω(x) not only is a modulus of uniform continuity on {y ∈ R

d : ‖y‖max ≤ ξ (x)}
but also a modulus of pointwise continuity of Φ : R

d → R in (the point represented
by) x. �

Remark 12.20. Note that the above modulus of pointwise continuity ω(x1,k0) de-
pends on the representation x1 of a given point in R

d , i.e. it is not extensional w.r.t.
=

Rd . So ω is only an operation and not a function of x as an element of R
d (but a

function of x ∈ N
N as an representative of such an element).

Application 2: Sequential form of the Heine-Borel covering property of [0,1]d

and other compact spaces
Consider the open ball with center x0 ∈ R

d and radius ε > 0 ( w.r.t. the Euclidean
norm):

Bε(x0) := {y ∈ R
d : ‖x0 − y‖E < ε}.

The next proposition even holds in the intuitionistic context of E-HAω (in fact also
WE-HAω ).

Proposition 12.21. E-HAω +Σ0
1 -UB proves that every sequence of open balls in R

d

which covers [0,1]d contains a finite subcover.

Proof: To show

(1)

⎧
⎨

⎩

∀ f : N → R+ \ {0}∀g : N → [0,1]d
(
∀x ∈ [0,1]d∃k ∈ N(x ∈ B f k(gk))

→∃k0∀x ∈ [0,1]d∃k ≤ k0(x ∈ B f k(gk))
)
.

Reasoning as in application 1 above we see that (1) has – when formalized in L (E-
HAω ) – the following logical form
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(2)

⎧
⎨

⎩

∀ f 1(0),g1(0)(∀l0( f (l) >R 0)∧∀x ≤1 νd(N, . . . ,N)∃k0(‖x̃−
Rd g(k)‖E <R f k)

→∃k0
0∀x ≤1 νd(N, . . . ,N)∃k ≤0 k0(‖x̃−

Rd g(k)‖E <R f (k))
)
,

which immediately follow using Σ0
1 -UB and the fact that <R∈ Σ0

1 . �

Similarly one shows this result for [a1,b1]× . . .× [ad,bd ] and also for other compact
spaces as e.g. Kc,λ := { f ∈C[0,1] : ‖ f‖∞ ≤ c∧ f has Lipschitz constant λ}.

Remark 12.22. A slightly more complicated argument shows that Σ0
1 -UB− (in the

sense of remark 12.10) suffices for the proof of proposition 12.21. Also E-HAω can
be replaced by WE-HAω .

Application 3: Attainment of the maximum value for f ∈C([0,1]d ,R)

Proposition 12.23. E-PAω + Σ0
1 -UB proves:

Every function F : [0,1]d → R attains it maximum value on [0,1]d.

Proof: By proposition 12.16, we may use that F is (uniformly) continuous. We
proceed by contradiction: suppose that

(1) ∃F : [0,1]d → R
(
F continuous∧∀x ∈ [0,1]d∃r ∈ [0,1]d ∩Q

d(F(x) < F(r))
)
.

Bearing in mind that F again is represented as some extensional (w.r.t. =[0,1]d ,=R)
functional Φ1(1), the proposition ∀x ∈ [0,1]d∃r ∈ [0,1]d ∩Q

d(F(x) < F(r)) has the
following logical form

(2) ∀x ≤1 νd(N, . . . ,N)∃n0(Φ x̃ <R Φ(λ k0.q(n))
︸ ︷︷ ︸

∈Σ0
1

),

where q is a primitive recursive enumeration of (the codes of) [0,1]d ∩Q
d . (2) im-

plies
(3) ∀x ≤1 νd(N, . . . ,N)∃n0, l0(Φ x̃ <R Φ(λ k0.q(n))−2−l).

Σ0
1 -UB applied to (3) yields

∃n0∀x ≤1 νd(M, . . . ,M)∀l0∃n ≤0 n0(Φ x̃ <R Φ(λ k0.q(n))−2−n0).

In E-PAω one can show that there exists an n1 ≤ n0 be such that

(4) Φ(λ k0.q(n1)) =R maxR(Φ(λ k0.q(0)), . . . ,Φ(λ k0.q(n0))).

Since there exists an x1 such that x≤1 νd(N, . . . ,N) and x̃ =[0,1]d λ k0.q(n1) (namely,

e.g. x̃ :=1 νd( ˜νd
1 (λ k0.q(n1)), . . . , ˜νd

d (λ k0.q(n1)))) we obtain (using the extensional-
ity of Φ) a contradiction. Hence (moving back to the informal mathematical formu-
lation)
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(5)∀F : [0,1]d →R
(
F pointwise cont. →∃x∈ [0,1]d∀r ∈ [0,1]d∩Q

d(F(x)≥F(r))
)
,

which implies

(6) ∀F : [0,1]d → R(F pointwise cont. →∃x ∈ [0,1]d∀y ∈ [0,1]d(F(x) ≥ F(y))
)
.

�

Remark 12.24. The proof of proposition 12.23 also works with WE-PAω , and if F is
assumed to be pointwise continuous, then Σ0

1 -UB− suffices (in the sense of remark
12.10).

Application 4: Dini’s theorem

Maybe the most striking application of Σ0
1 -UB is the following trivial derivation of

Dini’s theorem:

Proposition 12.25. E-HAω + Σ0
1 -UB proves: Every sequence (Fn) of functions:

Fn : [0,1]d → R which non-decreases pointwise to a function F : [0,1]d → R con-
verges uniformly on [0,1]d to F, and there exists a modulus of uniform convergence.

Proof: By the assumption we have

∀k0∀x ∈ [0,1]d∃n0(F(x)−Fn(x) <R 2−k).

As in the proof of proposition 12.23 Σ0
1 -UB can be used to show that

∃χ1∀k0∀x ∈ [0,1]d∃n ≤0 χ(k)(F(x)−Fn(x) <R 2−k).

Since (Fn)n∈N is nondecreasing by assumption this implies

(∗) ∃χ1∀k0∀x ∈ [0,1]d∀n ≥0 χ(k)(F(x)−Fn(x) <R 2−k),

which concludes the proof. �

Remark 12.26. The proof of proposition 12.25 also works with WE-HAω . If F and
Fn are assumed to be pointwise continuous, then Σ0

1 -UB− suffices (in the sense of
remark 12.10).

Applications 1–4 generalize to other compact spaces K instead of [0,1]d as long as
these space have a representation in the sense of chapter 4 where the simplified form
of this representation discussed at the end of that chapter is sufficient.

Application 5: Existence of the inverse function of a strictly monotone function

Proposition 12.27. E-PAω + Σ0
1 -UB proves:

Every strictly increasing function F : [0,1] → R possesses a strictly increasing in-
verse function F−1 : [F(0),F(1)] → [0,1] which is uniformly continuous on
[F(0),F(1)] and has a modulus of uniform continuity.



12.2 Applications of Σ 0
1 -boundedness 237

Proof: Let Φ1(1) be the representation of a function strictly increasing function
F : [0,1] → R. By application 1, F is uniformly continuous so that the intermediate
value theorem applies.
The strict monotonicity of F implies

(1) ∀x,y ∈ [0,1]∀k0∃n0(x ≥ y + 2−k → F(x) > F(y)+ 2−n).

Modulo our representation of [0,1], F, ≥R and >R, (1) has the logical form

∀x,y ≤1 N∀k0∃n0( x̃ ≥R ỹ+R 2−k → Φ x̃ >R Φ ỹ + 2−n
︸ ︷︷ ︸

≡:A∈Σ0
1

)
.

By Σ0
1 -UB we obtain (using the monotonicity of A w.r.t. n) a modulus of uniform

strict monotonicity, i.e.

(2) ∃χ1∀x,y ≤1 N∀k0(x̃ ≥R ỹ+R 2−k → Φ x̃ >R Φ ỹ + 2−χk).

Observing that χ is a modulus of uniform continuity for the inverse function F−1

the rest of the proof is now straightforward and left to the reader. �

Remark 12.28. Since the proof of 12.27 actually only uses the constructive ε-version
of the intermediate value theorem, the result can be proved in E-HAω +Σ0

1 -UB if F
is assumed to be pointwise continuous. If F, moreover, is assumed to have moduli
of uniform continuity and of uniform strict monotonicity, Σ0

1 -UB is not needed (see
also [328]).

Remark 12.29. The proof of proposition 12.27 also works with WE-PAω , and if F is
assumed to be pointwise continuous, then Σ0

1 -UB− suffices (in the sense of remark
12.10).

Application 6: No injection of N
N into N

That there is no injection Φ2 : N
N → N can be formalized as follows

(no-injection) : ∀Φ2 ∃ f 1,g1 (
∃n0( f (n) �=0 g(n))∧Φ( f ) =0 Φ(g)

)
.

Proposition 12.30. WE-PAω + Σ0
1 -UB 
 (no-injection).

Proof: Assume that the negation of ‘(no-injection)’ would hold, i.e.

∃Φ2∀ f 1,g1(∃n0( f (n) �=0 g(n)) → Φ( f ) �=0 Φ(g))

and hence a-fortiori for some Φ2

∀ f ,g ≤1 1(∃n0( f (n) �=0 g(n) → Φ( f ) �=0 Φ(g)).

By Σ0
1 -UB (applied to ∀ f ≤1 1∃n(n = Φ( f )))
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(K) ∃K0∀ f ≤1 1(K ≥ Φ( f )).

No consider all the (pairwise different) binary functions fn defined as fn(k) := 1
for k ≤ n and fn(k) = 0 for k > n. Then Φ( fi) �= Φ( f j) for (in particular) all
0 ≤ i < j ≤ K + 1 which – by the (finite) pigeonhole principle – contradicts (K).
�

From proposition 12.30 and theorem 12.8 we immediately can conclude that E-
PAω+QF-AC1,0+QF-AC0,1 plus the principle (no-injection) proves the same Π 0

2 -
sentences as WE-HAω .

Without appeal to Σ0
1 -UB one apparently needs a (non-trivial) use of countable

choice AC0 applied to

∀Φ2,k0∃ f 1(∃g1(k =0 Φ(g) → k =0 Φ( f ))

to prove ‘(no-injection)’ which can be interpreted via bar recursion as we saw in
chapter 11 (the functional interpretation of ‘(no-injection)’ has been carried out by
P. Oliva in [293]).

Remark 12.31. The proof of proposition 12.30 actually establishes that already 2N

has no injection into N.

12.3 Remarks on the fragments E-GnAω

The proof of theorem 12.8 can easily be adapted to the systems E-GnAω instead
of E-PAω for n ≥ 3. Let us now consider the case of E-G2Aω : one observes that
the formulation of Σ0

1 -UB as well as the proofs of propositions 12.6, 12.7 can be
carried out with E-G2Aω . This is the case because we don’t use the (exponential)
sequence coding f n := 〈 f (0), . . . , f (n−1)〉 which codes an initial segment of f into
a number. Instead we use the function f ,n which can be defined (uniformly in f ,n)
just using definition of cases which is available in E-G2Aω . Inspecting the proof of
theorem 12.8 we realize that the sequence coding f n is used only in the final part
of the proof to eliminate the ‘remains’ of F− after the bound Ψ2 has been extracted
already. As a result, we do get a polynomial bound when working in E-G2Aω . It
is only the verification of that bound which uses the exponential sequence coding
and, therefore, has to take place in G3Aω

i . In particular, we can extend the proof of
theorem 10.52 to obtain the following theorem:

Theorem 12.32. Let A0(x0,y1,z0) ∈ L (E-G2Aω ) be a quantifier-free formula con-
taining only x,y,z as free variables and s a closed term of E-G2Aω . Then the fol-
lowing rule holds:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-G2Aω + QF-AC1,0 + QF-AC0,1 + Σ0
1 -UB 
 ∀x0∀y ≤1 sx∃z0 A0(x,y,z)

⇒ one can extract a polynomial p s.t.

G3Aω
i 
 ∀x0∀y ≤1 sx∃z ≤0 p(x) A0(x,y,z).

The result also holds in the presence of additional axioms Δ as in theorem 10.47.
Then the conclusion is provable in G3Aω

i + Δ̃ε .

It is this feature of Σ0
1 -UB which makes this principle so superior in proof mining

to the weak König’s lemma WKL: not only are proofs of usual WKL-applications
much easier when Σ0

1 -UB is used instead but also, Σ0
1 -UB often allows one to carry

out such proofs even relative to E-G2Aω where WKL is not available as the very
formulation of WKL is based on exponential sequence codings. Indeed, the appli-
cations 1–5 above all can be carried out relative to E-G2Aω if the representation of
real numbers is based on Cauchy sequences of rationals with rate of convergence
1/(n+1) instead of 2−n (at a few places the proofs have to be slightly modified, see
[213] for details).

We conclude this chapter with a reformulation of WKL which can be formulated
already in the language of E-G2Aω :

We first generalize WKL to a sequential version WKLseq which states that for every
sequence of infinite 0,1-trees there exists a sequence of infinite branches:

Definition 12.33.

WKLseq :≡

⎧
⎨

⎩

∀ f 1(0)(∀k0(T ( f k)∧∀x0∃n0(lth n =0 x∧ f kn =0 0))

→∃b ≤1(0) λ k0, i0.1∀k0,x0( f k((bk)x) =0 0)
)
.

We now introduce a different formulation WKL2
seq of WKLseq which avoids the

coding of finite sequences (of variable length) as numbers and can be used in G2Aω :

Definition 12.34.

WKL2
seq :≡

⎧
⎪⎨

⎪⎩

∀Φ0010(∀k0,x0∃b ≤1 λ n0.10
x∧

i=0
(Φk(b, i)i =0 0)

→∃b ≤1(0) λ k0,n0.1∀k0,x0(Φk(bk,x)x =0 0)
)
.

Over G3Aω
i (where the sequence coding functional Φ〈·〉 is available) the new for-

mulation WKL2
seq is equivalent to WKLseq :

Proposition 12.35. G3Aω
i 
 WKL2

seq ↔ WKLseq.

Proof: ‘→’: Consider the functional

Φk0b1x0 := f k(bx)
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and assume that

∀k0T ( f k) and (+) ∀k,x∃n(lth n = x∧ f kn = 0).

Then, putting b := λ i.(n)i for ‘n’ from (+), we get

∀k,x∃b ≤ λ n.1
x∧

i=0

(Φk(b, i)i =0 0).

We now can apply WKL2
seq and obtain

∃b ≤ λ k,n.1∀k,x(Φk(bk,x)x =0 0),

i.e.
∃b ≤ λ k,n.1∀k,x

(
f k((bk)x) =0 0

)
.

‘←’: Define

f kn :=

⎧
⎨

⎩

Φk(λ i.(n)i)(lth n), if ∀ j ≤ lth n
((

Φk(λ i.(n)i, j) j =0 0
)
∧ (n) j ≤ 1

)

10, otherwise.

The assumption

∀k,x∃b ≤1 λ n0.10
x∧

i=0

(
Φk(b, i)i =0 0

)

implies that
∀k,x∃n(lth n = x∧ f kn = 0).

Furthermore, since T ( f k) for all k (by f -definition), we can use WKLseq which
gives

∃b ≤1(0) λ k,n.1∀k0,x0( f k((bk)x) =0 0
)
,

i.e.
∃b ≤ λ k,n.1∀k,x(Φk(bk,x)x =0 0).

�

Theorem 12.36. G2Aω+QF-AC0,1 
 Σ0
1 -UB− → WKL2

seq.

Proof: We prove the contraposite form of WKL2
seq and assume

∀b ≤1(0) λ k0, i0.1∃k0,x0(Φk(bk,x)x �=0 0
)
.

Since the type 1(0) can be coded in type 1, we can apply Σ0
1 -UB− and obtain

(∗) ∃x0∀b ≤1(0) λ k, i.1∃k,x ≤0 x0
(
Φk

(
(bk,x0),x
︸ ︷︷ ︸

=1bk,x

)
x �=0 0

)
.
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Now suppose that

∀k0,x0∃b1(
x∧

i=0

(bi ≤0 1∧Φk(b, i)i =0 0)
)
.

Applying QF-AC0,1 gives

∀x0∃b1(0)∀k0(
x∧

i=0

(bki ≤0 1∧Φk(bk, i)i =0 0)
)
.

Observe that bk, i =1 (bk,x), i for i ≤ x and bk,x ≤1 λ i.1 if
x∧

i=0
(bki ≤0 1).

Hence

∀x0∃b ≤1(0) λ k, i.1∀k
x∧

i=0

(
Φk(bk, i)i = 0

)
,

which contradicts (∗). �

Together with theorem 12.32 this theorem implies the following

Corollary 12.37.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E-G2Aω + QF-AC1,0 + QF-AC0,1+WKL2
seq 
 ∀x0∀y ≤1 sx∃z0A0(x,y,z)

⇒ one can extract a polynomial p s.t.

G3Aω
i 
 ∀x0∀y ≤1 sx∃z ≤0 p(x) A0(x,y,z),

where s ∈ G2Rω and A0 is a quantifier-free formula of G2Aω which contains only
x,y,z as free variables.

12.4 Exercises, historical comments and suggested further
reading

Exercises:

1) Show that E-PAω+AC1,0 + Σ0
1 -UB− is inconsistent.

2) Show that M ω |=/Σ0
1 -UB−, but C ω |= Σ0

1 -UB.
3) Let Σ0

2 -UB be defined as Σ0
1 -UB but with A being a Σ0

2 -formula (with parameters
of arbitrary types). Show that E-PAω + Σ0

2 -UB is inconsistent.
4) Prove lemma 12.13.
5) Show that M ω |= F̃ρ .
6) Complete the proof of proposition 12.27.
7) Verify the statements in remarks 12.18, 12.22, 12.24, 12.26 and 12.29.
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Historical comments and suggested further reading:

A special case of F and F− was first considered in Kohlenbach [206] where it was
shown that this weaker form of F− can be eliminated by monotone functional inter-
pretation. In the form discussed in this chapter, F and F− as well as Σ0

1 -UB and a
corresponding weakening Σ0

1 -UB− were studied in Kohlenbach [207]. In that paper
a proof-theoretic elimination procedure of Σ0

1 -UB− was established and a combi-
nation of monotone functional interpretation with a model theoretic argument was
used to show that Σ0

1 -UB does not create new provably recursive functionals of type-
2 even relative to weak systems as G2Aω . In Kohlenbach [223], it was observed that
in the presence of full extensionality, F− already implies F . In Kohlenbach [213],
is was shown that Σ0

1 -UB allows one (even relative to systems as weak as G2Aω )
to give short proofs of important analytic theorems, such as Dini’s theorem, the ex-
istence of an inverse for strongly monotone functions f ∈ C[0,1], the attainment of
the maximum of such functions, the (sequential) Heine-Borel compactness of [0,1]d

and others. Since the use of Σ0
1 -UB makes it superfluous to state the (uniform) conti-

nuity assumptions explicitly, these proofs – as we saw above – are particularly sim-
ple and don’t require any encoding of functions f ∈ C[0,1] as type-1 objects which
would be necessary to obtain the same results by WKL (see Simpson [338] and
Kohlenbach [223]). The results in section 12.3 are taken from Kohlenbach [207]. In
Kohlenbach [210], a combination of (function parameter-free) Π 0

1 -comprehension
and Σ0

1 -UB was used to derive fixed instances of the Bolzano-Weierstraß principle
and the Ascoli-lemma relative to G2Aω which allowed a precise calibration of the
contribution of the use of such instances to the provably recursive functionals (see
also chapter 13).
For applications of F in an (semi-)intuitionistic context see [212]. More general
forms of F and Σ0

1 -UB are discussed in Kohlenbach [212] and Ferreira-Oliva [104].
The latter paper contains a systematic approach to conservation results for general-
ized fan principles including Σ0

1 -UB over classical systems based on a new bounded
functional interpretation. In Kohlenbach [228], Σ0

1 -UB is extended to the new types
for abstract metric and hyperbolic spaces which we will discuss in chapter 17 below.
In [6], Avigad defines a nonstandard extension of a system of elementary recursive
arithmetic in higher types (roughly corresponding to G3Aω ) which has certain fea-
tures that are similar to the Σ0

1 -UB consequences shown in this chapter. E.g. this
system also proves that all functions f : [0,1] → R are uniformly continuous.



Chapter 13
Elimination of monotone Skolem functions

13.1 Skolem functions of type degree 1 in fragments of finite type
arithmetic

Let us begin with a

Notational convention: throughout this chapter, when dealing with the systems
GnAω ,GnAω

i from chapter 3, we will not include all the arbitrary universal axioms
‘11)’ but only universal sentence that w.r.t. to the canonical embedding of GnAω

into ŴE-PA
ω
|\ (i.e. with the standard primitive recursive definitions of the con-

stants and the relation ≤ from L (GnAω ) that are not included as primitive notions
in L (ŴE-PA

ω
|\)) are provable in ŴE-PA

ω
|\. Most notably this yields the schema of

quantifier-free induction QF-IA. In this way these systems will (modulo that afore-
mentioned canonical embedding) be subsystems of ŴE-PA

ω
,ŴE-HA

ω
. Since we

allow in the main results of this chapter arbitrary further axioms of the form Δ (as
introduced in theorem 10.21) this, anyway, covers any additional universal axioms
we might want to use as well. The reason why we included arbitrary universal ax-
ioms when defining the systems GnAω in chapter 3 was that for the cases where
n = 1,2 it would be quite tedious to verify whether certain basic arithmetical facts
are provable. However in this chapter we mainly deal with the case n ≥ 3 or even
n = ∞ where these things are much easier to verify.

Let A be a sentence in prenex normal form (in the language of some first order the-
ory T ) and AH its Herbrand normal form, where the index functions f1, . . . , fn used
to built the Herbrand normal form are new (i.e. they do neither occur in A nor in any
axiom of T ). Let, furthermore, T [ f ] be the theory which results from T by adding
the function symbols f to the language without extending any non-logical axiom
schema of T to the new language. As mentioned already in chapter 2, A → AH al-
ready holds in first order logic, while AH → A is not logically valid (in first order
logic). However, for first order theories T one easily verifies (interpreting the index
functions by appropriate choice functions) that



244 13 Elimination of monotone Skolem functions

(+) T [ f ] |= AH ⇒ T |= A

and so, by the completeness theorem for first order logic,

(++) T [ f ] � AH ⇒ T � A.

Moreover, from a constructive (syntactic) proof of Herbrand’s theorem one obtains a
procedure that transforms a T [ f ]-proof of AH into a T -proof of A. If no f -equality
axioms are used in the T [ f ]-proof of AH , this procedure follows the strategy illus-
trated at an example in chapter 2 (see the discussion before Herbrand’s theorem 2.18
in chapter 2). If =-axioms of the form

i∧

j=1

(s j = t j) → fi(s1, . . . ,si) = fi(t1, . . . ,ti)

are used in the given proof for some 1≤ i≤ n, then things are already more involved
(see e.g. [332] for a textbook treatment).

We will show next, that (++) is no longer true in general for systems with function
quantifiers since then new function symbols f may automatically become subject
to axioms of the form ∀gA via ∀g-elimination resulting in A[ f/g]. Similarly, for
systems with free function variables only (but no function quantifiers) but the sub-
stitution rule

(Sub) :
A

A[ϕ/ f ]
,

where f is an n-ary function variable and ϕ an n-ary function term, instead. In fact,
this failure already shows up as soon as we have axiom schemata such as QF-IA
around in which function variables are allowed to occur. In particular, this applies
to our systems GnAω and ̂(W)E-PA

ω
|\.

Let Π 0
∞-IA− denote the schema of induction for all arithmetical formulas (i.e. for-

mulas only containing quantifiers over variable of type 0) of L (G∞Aω ) which only
have parameters of type 0. Then (via a canonical embedding) PA is a subsystem
of G∞Aω + Π 0

∞-IA−. Since we have function variables available in L (G∞Aω ) we
formulate the Herbrand normal form AH of a sentence

∃x0
1∀y0

1 . . .∃x0
n∀y0

n A0(x1,y1, . . . ,xn,yn)

as in the case of the no-counterexample interpretation (see chapter 2) with univer-
sally quantifier function variables, i.e.

AH :≡ ∀ f1, . . . , fn∃y1, . . . ,yn A0(x1, f1(x1), . . . ,xn, fn(x1, . . . ,xn)).

Proposition 13.1. Let A ∈ Π 0
∞ be a theorem of PA. Then one can construct a sen-

tence Ã ∈ Π 0
∞ in the language L (PA) of PA such that (modulo the embedding of PA

into G∞Aω + Π 0
∞-IA−)
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G∞Aω � ÃH and G∞Aω � A ↔ Ã.

In fact, the proof of A ↔ Ã only uses classical logic and 0 �= 1.

Proof: Let A be a sentence in L (PA) such that PA � A. Now let F̂1, . . . , F̂k denote the
arithmetical instances (even without function parameters) of the induction schema
IA in L (G∞Aω) resulting from the instances of the induction schema in L (PA)
used in the proof under the canonical embedding of PA into G∞Aω +Π 0

∞-IA−. Con-
sider their respective universal closures F̃1, . . . , F̃k. Then the following holds

G∞Aω �
k∧

i=1

F̃i → A.

The formulas F̂i have the form

F̂i ≡ Fi(0)∧∀x(Fi(x) → Fi(x + 1))→∀xFi(x).

Let B be any prenex normal form of
( k∧

i=1
(yi =0 0 ↔ Fi(xi)) → A

)
.

Then
Ã :≡ ∃a,x1, . . . ,xk∀y1, . . . ,yk B(x1, . . . ,xk,y1, . . . ,yk,a)

is a prenex normal form of

∀a,x1, . . . ,xk∃y1, . . . ,yk

k∧

i=1

(yi = 0 ↔ Fi(xi)) → A,

where a comprises all the (number) parameters of the induction formulas Fi for
i = 1, . . . ,k.
Because of

G∞Aω � ∀a,x1, . . . ,xk∃y1, . . . ,yk

k∧

i=1

(yi = 0 ↔ Fi(xi)),

we obtain
G∞Aω � A ↔ Ã.

Now define

C :≡ ∀ f1, . . . , fk∃a,x1, . . . ,xk B(x1, . . . ,xk, f1ax1 . . .xk, . . . , fkax1 . . .xk,a).

C is a partial Herbrand normal form of Ã and so implies the full Herbrand normal
form ÃH even logically.
It, therefore, remains to show that G∞Aω �C:

Assume ∀a,x1, . . . ,xk
k∧

i=1

(
fiax1 . . .xk = 0 ↔ Fi(xi)

)
. Quantifier-free induction ap-

plied to
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A0(xi) :≡
(

fi(a,0, . . . ,0,xi,0, . . . ,0) = 0
)

(instead of using IA applied to Fi) yields F̃i.
Hence it follows that

G∞Aω � ∀ f
(
∀a,x1, . . . ,xk

k∧

i=1

(
fiax1 . . .xk = 0 ↔ Fi(xi)

)
→ A

)
,

i.e. G∞Aω �C.
�

Corollary 13.2. For each n ∈ N one can construct a sentence A ∈ Π 0
∞ such that

G∞Aω � AH , but G∞Aω + Σ0
n -IA ⊆ ŴE-PA

ω
|\+ Σ0

n -IA � A.

Proof: It is well-known (see e.g. [298](theorem 5),[299] and [355]) that for n ≥ 1
there are functions that are provably recursive in ŴE-PA

ω
|\ + Σ0

n+1-IA that grow

faster than any function provably recursive in ŴE-PA
ω
|\+Σ0

n -IA. So there is a Π 0
2 -

sentence A ≡ ∀x∃yT (e,x,y) (for some e ∈ N) that is provable in ŴE-PA
ω
|\+Σ0

n+1-

IA but not in ŴE-PA
ω
|\+Σ0

n -IA. Now take the corresponding sentence Ã according
to proposition 13.1. It follows that G∞Aω � ÃH , but ŴE-PA

ω
|\+ Σ0

n -IA � Ã. �

Remark 13.3. 1) The proof above can be used to show that corollary 13.2 remains
valid even if we add to ŴE-PA

ω
|\ + Σ0

n -IA all S ω -true universal sentences as
axioms since the latter do not contribute to the provably recursive functions as
follows by the ND-interpretation.

2) Applying the elimination of the primitive recursive function symbols (included in
our formulation of PA) in terms of formulas expressing their graphs and 0,S,+, ·
only (on which the standard proof of the fact that our version of PA is a conserva-
tive extension over that with 0,S,+, · only is based), one can improve corollary
13.2 to get A in this restricted language with even G2Aω proving AH while still
having ŴE-PA

ω
|\+ Σ0

n -IA � A.

The reason for the provability of ÃH in proposition 13.1 is that the schema of
quantifier-free induction is applicable to the index functions used in defining ÃH .
In fact, the proof did not use any of the higher type functionals. In particular, propo-
sition 13.1 is also valid for a fragment of G∞Aω which no higher type variables and
quantifiers and only free function variables (in QF-IA) plus a substitution rule (Sub)
that would allow to replace a function variable by any function term (see [208] for
more details).



13.2 Elimination of Skolem functions for monotone formulas 247

13.2 Elimination of Skolem functions for monotone formulas

Corollary 13.2 shows that for theories like G∞Aω and (by remark 13.3) GnAω (with
n ≥ 2) with or without further universal axioms added the Herbrand normal form
AH of an arithmetical formula A in general is much weaker than A with respect to
provability in GnAω .
In this section we will show the rather nontrivial fact that this phenomenon does not
occur if A satisfies a certain monotonicity condition. This will enable us to replace
certain implicative assumptions on the existence of Skolem functions in provable
theorems by weaker purely arithmetical assumptions which do not involve Skolem
functions (see corollary 13.12 below).
In the subsequent sections this is used to calibrate the contribution of single uses
of the monotone convergence principle and the Bolzano-Weierstraß principle to the
growth of bounds extractable from provable ∀∃-statements.

Definition 13.4. Let A ∈ L (GnAω ) be a formula having the form

A ≡ ∀u1∀v ≤τ tu∃y0
1∀x0

1 . . .∃y0
k∀x0

k∃wγ A0(u,v,y1,x1, . . . ,yk,xk,w),

where A0 is quantifier–free and contains only u,v,y,x,w free. Furthermore let t be ∈
GnRω and τ,γ are arbitrary finite types.

1) A is called monotone if

Mon(A) :≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀u1∀v ≤τ tu∀x1, x̃1, . . . ,xk, x̃k,y1, ỹ1, . . .yk, ỹk
( k∧

i=1
(x̃i ≤0 xi ∧ ỹi ≥0 yi)∧∃wγA0(u,v,y1,x1, . . . ,yk,xk,w)

→∃wγ A0(u,v, ỹ1, x̃1, . . . , ỹk, x̃k,w)
)
.

2) The Herbrand normal form AH of A is defined to be

AH :≡ ∀u1∀v ≤τ tu∀hρ1
1 , . . . ,hρk

k ∃y0
1, . . . ,y

0
k ,w

γ

A0(u,v,y1,h1y1, . . . ,yk,hky1 . . .yk,w)
︸ ︷︷ ︸

AH
0 :≡

,where ρi = 0(0) . . .(0)
︸ ︷︷ ︸

i

.

Remark 13.5. Note that our above notion of Herbrand normal form of A is nothing
else but the usual Herbrand normal form of the following prenex normal form

∀u1∀vτ∃y0
1∀x0

1 . . .∃y0
k∀x0

k∃wγ∃z(vz ≤0 tuz → A0(u,v,y1,x1, . . . ,yk,xk,w)),

of A.

Definition 13.6. An n-ary number theoretic function f 0(0)...(0) is called monotone if
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∀x1, . . . ,xn,y1, . . . ,yn
( n∧

i=1

(xi ≥0 yi) → f x ≥0 f y
)
.

Theorem 13.7. Let n ≥ 1 and Ψ1, . . . ,Ψk ∈ GnRω . Then

GnAω + Mon(A) � ∀u1∀v ≤τ tu∀h1, . . . ,hk

( k∧

i=1
(hi monotone)

→∃y1 ≤0 Ψ1uh . . .∃yk ≤0 Ψkuh∃wγ AH
0

)
→ A.

Remark 13.8. In theorem 13.7 one may also have tuples ‘∃w’ instead of ‘∃wγ ’ in A.

Proof of theorem 13.7: Let us assume the premise of the implication to be proved.
In fact, by taking Ψuh := max0(Ψ1uh, . . . ,Ψkuh), we may assume that

(0)∀u1∀v ≤τ tu∀h1, . . . ,hk
( k∧

i=1

(hi monotone) →∃y1, . . . ,yk≤0 Ψuh∃wγ AH
0
)
.

Note that the function variables u,h1, . . . ,hk all have types of degree ≤ 1. Hence –
by corollary 3.42 – one can construct a term Ψ ∗[u,h]0 such that

1) Ψ∗[u,h] is built up from u,h,00,A0, . . . ,An only (by application).
2) λ u,h.Ψ∗[u,h] ma j Ψ .

1) in particular implies:
1∗) Every occurrence of an h j ∈ {h1, . . . ,hk} in Ψ∗[u,h] has the form
h j(rn1 , . . . ,rn j ), i.e. h j occurs only with a full stock of arguments but not as a func-
tion argument in the form s(h jrn1 . . . rnl ) for some l < j.
By 2), ∀u1(uM ma j u) (where uMx := max

i≤x
ui) and (hi monotone → hi ma j hi) we

have

2∗) GnAω � ∀u∀h1, . . . ,hk
( k∧

i=1
(hi monotone) →Ψ∗[uM,h] ≥0 Ψuh

)
.

Note that the replacement of hi by hM
i := λ x1, . . . ,xi. max

x̃1≤x1
...

x̃i≤xi

h(x̃1, . . . , x̃i), which would

make the monotonicity assumption on hi superfluous, would destroy property 1∗) on
which the proof below is based. This is the reason why we have to assume hi to be
monotone. In order to overcome this assumption we will use essentially the mono-
tonicity of A.
Let r1, . . . ,rl be all the subterms of Ψ ∗[uM,h] that occur as an argument of some of
the functions h1, . . . ,hk in Ψ∗[uM,h] plus the term Ψ∗[uM,h] itself.
Let r̂ j[a1, . . . ,aq j ] be the term which results from r j by replacing every occur-
rence of a maximal h1, . . . ,hk-subterm (i.e. a maximal subterm which has the form
hi(s1, . . . ,si) for an i = 1, . . . ,k) by a new variable and let a1, . . . ,aq j denote these
variables. We now define
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r̃ ja1 . . .aq j := max
(

max
ã1≤a1

...
ãq j ≤aq j

r̂ j[ã1, . . . , ãq j ],a1, . . . ,aq j

)
,

with r̃ j := r̂ j in the case where r̂ j does not contain any variable a1, . . . ,aq j (which is
the case when r j does not contain any h1, . . . ,hk-term). Note that r̃ j can be defined
in GnRω from r̂ j by successive use of Φ1.
By the construction of r̃ j we get

GnAω �
(
r̃ j ma j λ a.r̂ j[a1, . . . ,aq j ]

)
∧∀a(r̃ ja ≥0 a1, . . . ,aq j ).

Since Ψ∗[uM,h] is built up from r̂ j,h only (by substitution) and (hi monotone →
hi ma j hi), uM ma j u, this implies

GnAω � ∀u,h1, . . . ,hk
( k∧

i=1

(hi monotone) →Ψ [uM,h] ≥0 Ψ∗[uM,h] ≥0 Ψuh
)
,

where Ψ [uM,h] is built up as Ψ∗[uM,h] but with r̃ j(a1, . . . ,aq j) instead of
r̂ j[a1, . . . ,aq j ].
Summarizing the situation achieved so far we have obtained a term Ψ [uM,h] such
that

(α) ∀u1∀v ≤τ tu∀h
(
h monotone→∃y1, . . . ,yk ≤0 Ψ [uM,h]∃wγ AH

0
)
.

(β ) h1, . . . ,hk occur in Ψ [uM,h] only as in 1∗), i.e. with all places for arguments filled
and not as function arguments themselves.

(γ) For Ψ [uM,h] and all subterms s which occur as an argument of a function
h1, . . . ,hk in Ψ [uM,h] we have GnAω � ŝ[a1, . . . ,aq] ≥0 a1, . . . ,aq, where ŝ re-
sults by replacing every occurrence of a maximal h1, . . . ,hk-subterm in s by a
new variable al .

(α) follows from (0), i.e.
GnAω � (0) → (α),

and (β ),(γ) do not depend on any assumption.

For the rest of the proof we only use (α)-(γ) and Mon(A) :
From now on let r1, . . . ,rl denote all subterms of Ψ [uM,h] which occur as an argu-
ment of a function ∈ {h1, . . . ,hk} in Ψ [uM,h] plus Ψ [uM,h] itself. M := {r1, . . . ,rl}
(This set formation is meant w.r.t. syntactic identity ≡ of terms and not =0, i.e.
‘s ∈ M’ means ‘s ≡ r1 ∨ . . .∨ s ≡ rl’).
We now show that we can reduce ‘∃y1, . . . ,yk ≤Ψ [uM,h]’ in (α) to a disjunction
with fixed length, namely to the disjunction over M. Moreover, it suffices to assume
that the functions h1, . . . ,hk are monotone on M :
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(1)

⎧
⎨

⎩

∀u1∀v ≤τ tu∀h
(
h monotone on M →∃s1, . . . ,sk ∈ M∃wγ

A0(u,v,s1,h1s1, . . . ,sk,hks1 . . . sk,w)
)
.

Proof of (1): Let h1, . . . ,hk be monotone on M. We order the terms ri w.r.t. ≤0. The
order of the resulting ordered tuple depends of course on u,h1, . . . ,hk. For notational
simplicity we assume that r1 ≤0 . . . ≤0 rl . We now define (again depending on u,h)
functions h̃1, . . . , h̃k by

h̃iy0
1 . . .y0

i := hi(r jy1
, . . . ,r jyi

),where

jyq :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if yq ≤0 r1

j + 1, if r j <0 yq ≤0 r j+1

l, if rl <0 yq.

Since l (and therefore the number of cases in this definition of h̃i) is a fixed number
depending only on the term structure of Ψ [uM,h] but not on u,h, the functions h̃i
can be defined uniformly in u,h within GnAω using proposition 3.29. Note that on
arguments from M, the values of h̃i and hi coincide.
By the definition of h̃i and the assumption that h1, . . . ,hk are monotone on M we
conclude

(a) h̃1, . . . , h̃k are monotone everywhere.

By (β ) we know that h1, . . . ,hk occur in Ψ [uM,h] only in the form hi(s1, . . . ,si) for
certain terms s1, . . . ,si ∈ M. Hence we can define the h-depth of a term s ∈ M as
the maximal number of nested occurrences of h1, . . . ,hk in s and show by induction
on this rank (on the meta-level):

(b)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l∧

i=1
(ri =0 r̃i), where r̃i results if in ri ∈ M the functions h1, . . . ,hk

are replaced by h̃1, . . . , h̃k everywhere.

In particular Ψ [uM, h̃] =0 Ψ [uM,h].

By (a) we can apply (α) to h̃1, . . . , h̃k which – using (b) – yields the following:
for all u1,v ≤ tu and all h which are monotone on M) we have that

(c) ∃y1, . . . ,yk ≤0 Ψ [uM,h]∃wγ A0(u,v,y1, h̃1y1, . . . ,yk, h̃ky1 . . .yk,w).

Let y1, . . . ,yk ≤0 Ψ [uM,h] be such that (c) is fulfilled. Because of h̃iy1 . . .yi =
hi(r jy1

, . . . ,r jyi
) this implies

(d) ∃wγ A0(u,v,y1,h1r jy1
, . . . ,yk,hkr jy1

. . . r jyk
,w).
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With yq ≤ r jyq for q = 1, . . . .k (since yq ≤Ψ [uM,h] ≤ rl –because of Ψ [uM,h] ∈ M
and the yq-assumption– the case ‘yq > rl’ does not occur) and Mon(A) we conclude

∃wγ A0(u,v,r jy1
,h1r jy1

, . . . ,r jyk
,hkr jy1

. . . r jyk
,w)

and therefore

(e) ∃s1, . . . ,sk ∈ M∃wγ A0(u,v,s1,h1s1, . . . ,sk,hks1 . . .sk,w).

This concludes the proof of (1) which can easily be carried out in GnAω (assuming
Mon(A),(α) and using (β )), i.e.

GnAω � Mon(A)∧ (α) → (1).

We now define N :=
k⋃

i=1
Ni, where Ni := {hi(s1, . . . ,si) : s1, . . . ,si ∈ M} (Again this

set is meant w.r.t. syntactic identity ≡ between terms). With the terms in N we
associate new number variables according to their h-depth as follows: Let p the
maximal h-depth of all terms ∈ N.

1. Let t ∈ N be a term with h-depth(t) = p. Then t �→ y1
i , if t ∈ Ni.

2. Let t ∈ N be a term with h-depth(t) = p−1. Then t �→ y2
i , if t ∈ Ni.

...
p. Let t ∈ N be a term with h-depth(t) = 1. Then t �→ yp

i , if t ∈ Ni.

This association of variables to the terms in N has the following properties:

(i) Terms s1,s2 ∈ N with different h-depth have different variables associated with.
(ii) If s1,s2 ∈ N have the same h-depth, then the variables associated with s1 and s2

are equal iff s1,s2 ∈ Ni for an i = 1, . . . ,k, i.e. s1 and s2 start with a common
function variable hi.

For r ∈ M∪N we define r̂ as the term which results if every maximal h-subterm oc-
curring in r is replaced by its associated variable. Thus r̂ does not contain h1, . . . ,hk.
For r ∈ N, r̂ is just the variable associated with r. M̂ := {r̂ : r ∈ M}.
We now show that (1) implies a certain index function-free (i.e. h1, . . . ,hk-free)
disjunction (see (4) below):
For q with 2 ≤ q ≤ p let r̂q

1, . . . , r̂
q
nq be all terms ∈ M̂ whose smallest upper index

i of a variable yi
j occurring in them equals q (i.e. there occurs a variable yq

j in the
term and for all variables yi

m occurring in the term, i ≥ q holds). Since for r ∈ M
the h-depth of h1(r) ∈ N is strictly greater than those of subterms of r, there are no
terms r̂ ∈ M̂ containing a variable y1

j . r̂p+1
1 , . . . , r̂p+1

np+1 denote those terms ∈ M̂ which
do not contain any variable yi

j at all.
To begin with we show that (1) implies that for all u and for all v ≤ tu the following
holds
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(2)

⎧
⎪⎨

⎪⎩

∀y1
1, . . . ,y

1
k ; . . . ;yp

1 , . . . ,yp
k(

(+) → ∨

s1,...,sk∈M
∃wγ A0(u,v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk,w)

)
,

where

(+) :≡

⎧
⎪⎪⎨

⎪⎪⎩

∧

q=1,...,p−1
l=1,...,p−q

(
yq

1, . . . ,y
q
k > r̂q+l

1 , . . . , r̂q+l
nq+l ,y

q+l
1 , . . . ,yq+l

k

)
∧

∧

q=1,...,p

(
yq

1, . . . ,y
q
k > r̂p+1

1 , . . . , r̂p+1
np+1

)
.

Here a1, . . . ,ak > b1, . . . ,bl means
∧

1≤i≤k
1≤ j≤l

(ai > b j).

Assume that there are values y1
1, . . . ,y

1
k ; . . . ;yp

1 , . . . ,yp
k such that (+) holds and

∧

ŝ1,...,ŝk∈M̂

¬∃wγ A0(u,v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk,w).

We construct (working in GnAω ) functions h1, . . . ,hk which are monotone on M and
satisfy

∀s1, . . . ,sk ∈ M¬∃w A0(u,v,s1,h1s1, . . . ,sk,hks1 . . .sk,w)

yielding a contradiction to (1): Define for i = 1, . . . ,k

hi(x1, . . . ,xi) :=
⎧
⎪⎪⎨

⎪⎪⎩

ymin1≤l≤i(ql)−1
i , if

∨

r̂
q1
j1

,...,r̂
qi
ji
∈M̂

(
(x1, . . . ,xi) =0 (r̂q1

j1
, . . . , r̂qi

ji )
)

00, otherwise.

Note that for r̂qi
ji ∈ M̂ we have qi ≥ 2 since e.g. h1r ji(∈ N) has an h-depth which is

strictly greater than those of subterms in r ji . Hence min1≤l≤i(ql)−1 ≥ 1.

To see that this definition is well-defined and does what we want we have to verify
that (+) implies the following:

(i) The hi are well-defined i-ary functions : N
i → N and the definition above can be

carried out in GnAω .
(ii) r̂ =0 r for all r ∈ M∪N (for these h1, . . . ,hk).

(iii) h1, . . . ,hk are monotone on M̂ (and hence –by (ii)– on M).

Ad (i): Consider (r̂q1
j1

, . . . , r̂qi
ji ) and (r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i
). We show that ymin1≤l≤i(ql)−1

i �=

ymin1≤l≤i(q̃l)−1
i implies (r̂q1

j1 , . . . , r̂qi
ji ) �= (r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i
):
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We may assume min
1≤l≤i

(ql) < min
1≤l≤i

(q̃l). Let l0 be such that ql0 = min
1≤l≤i

(ql)∧1 ≤ l0 ≤ i.

r̂
ql0
jl0

contains a variable y
ql0
d for some d = 1, . . . ,k. By the property (γ) of Ψ [uM,h]

this implies

r̂
ql0
jl0

≥ y
ql0
d

(+),ql0<q̃l0
> r̂

q̃l0
j̃l0

and thus (r̂q1
j1 , . . . , r̂qi

ji ) �= (r̂q̃1
j̃1

, . . . , r̂q̃i
j̃i
).

Hence hi can be defined in GnAω by a definition by cases which are pairwise exclu-
sive.
Ad (ii): (ii) follows from the definition of h1, . . . ,hk by induction on the h-depth of
r.

Ad (iii): Assume
i∧

l=1

(
r̂ql

jl
≤0 r̂q̃l

j̃l
). Let l0 (1 ≤ l0 ≤ i) be such that ql0 = min

1≤l≤i
(ql). By

contraposition of the implication established in the proof of (i) one has: min
1≤l≤i

(ql) ≥
min

1≤l≤i
(q̃l).

Case 1: min
1≤l≤i

(ql) = min
1≤l≤i

(q̃l). Then (by hi-definition)

hi
(
r̂q1

j1
, . . . , r̂qi

ji

)
= ymin(ql)−1

i = ymin(q̃l)−1
i = hi

(
r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i

)
.

Case 2: ql0 = min
1≤l≤i

(ql) > min
1≤l≤i

(q̃l) = q̃l̃0
(where 1 ≤ l0, l̃0 ≤ i). Then

hi
(
r̂q1

j1 , . . . , r̂qi
ji

)
= y

ql0−1
i

(+)
< y

q̃l̃0
−1

i = hi
(
r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i

)
.

Hence h1, . . . ,hk are monotone on M̂ and therefore (by (ii)) on M, which concludes
the proof of (2) from (1) in GnAω (using (β ),(γ)). Over GnAω , (1) in turn follows
from Mon(A)∧ (α) (using (β )), and (0), i.e.

F :≡ ∀u1∀v ≤τ tu∀h
(
h monotone →∃y1, . . . ,yk ≤0 Ψuh∃wγ AH

0
)
.

Put together, we so far have established the following h-free finite ‘Herbrand’ dis-
junction

(3)

⎧
⎪⎨

⎪⎩

GnAω + Mon(A) �

F→
[
v ≤ tu∧ (+)→ ∨

s1,...,sk∈M
∃wγ A0(u,v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . .sk,w)

]
.

Since ŝ1 ≡ ŝ′1 ∧ . . .∧ ŝi ≡ ŝ′i implies ̂his1 . . .si ≡ ̂his′1 . . .s′i for s1,s′1, . . . ,s
′
i,s

′
i ∈ M

(where again ‘≡’ denotes syntactic identity between terms) we, actually, can con-
tract the above disjunction to
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(4)

⎧
⎪⎨

⎪⎩

GnAω + Mon(A) �

F→
[
v ≤ tu∧ (+)→ ∨

ŝ1,...,ŝk∈M̂
∃wγ A0(u,v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk,w)

]
.

The remainder of this proof in devoted to establish that (4) indeed implies

(5) GnAω + Mon(A) � F → A,

what we have to show.

We achieve this by an appropriate order of quantifier introductions, suitable quanti-
fier shifts (made possible my Mon(A)) and contraction. We start with the variables
with smallest upper index, i.e. y1

1, . . . ,y
1
k . Among these variables we first take that of

maximal lower index, i.e. y1
k : We split the conjunctive premise

(+) ≡

⎧
⎪⎪⎨

⎪⎪⎩

∧

q=1,...,p−1
l=1,...,p−q

(
yq

1, . . . ,y
q
k > r̂q+l

1 , . . . , r̂q+l
nq+l ,y

q+l
1 , . . . ,yq+l

k

)
∧

∧

q=1,...,p

(
yq

1, . . . ,y
q
k > r̂p+1

1 , . . . , r̂p+1
np+1

)

of our implication as well as its disjunctive conclusion

Ad :≡
∨

ŝ1,...,ŝk∈M̂

∃wγ A0(u,v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . .sk,w)

into the part in which y1
k occurs and into its y1

k-free part:

(6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F →
[
v ≤ tu∧ ∧

l=1,...,p−1

(
y1

k > r̂1+l
1 , . . . , r̂1+l

n1+l
, r̂p+1

1 , . . . , r̂p+1
np+1 ,y

1+l
1 , . . . ,y1+l

k

)

∧
∧′

(. . .)
︸ ︷︷ ︸

y1
k-free part of (+)

→ ∨

j
∃wγ A0(u,v, ŝ j

1,
̂h1s j

1, . . . , ŝ
j
k,y

1
k ,w)∨

∨

j′
(. . .)

︸ ︷︷ ︸

y1
k-free part of Ad

]
.

y1
k does not occur at any place other than indicated. Hence ∀-introduction applied

to y1
k yields:

(7) F →∀y1
k
[
v ≤ tu∧

∧

l

(y1
k > .. .)∧

∧′
(. . .) →

∨

j

∃wγ A0(. . . ,y1
k ,w)∨

∨

j′
(. . .)

]
,

where y1
k does not occur at any place other than indicated.

We now instantiate ‘∀y1
k’ in (7) by

ỹ1
k := max

1≤l≤p−1
max

(
y1

k, r̂
1+l
1 , . . . r̂1+l

n1+l
, r̂p+1

1 , . . . , r̂p+1
np+1

,y1+l
1 , . . . ,y1+l

k

)
+ 1.
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This results in

F →
[
v ≤ tu∧

∧′
(. . .) →

∨

j

∃wγ A0(. . . , ỹ1
k,w)∨

∨

j′
(. . .)

]
.

Mon(A) and
∨

j
∃wγ A0(. . . , ỹ1

k ,w) imply
∨

j
∃wγ A0(. . . ,y1

k ,w), since ỹ1
k ≥ y1

k . Now ∀-

introduction applied to y1
k and shifting ∀y1

k in front of
∨

j
, which is possible since y1

k

occurs only in this disjunction, yields

(8) F →
[
v ≤ tu∧

∧′
(. . .) →∀y1

k

∨

j

∃wγ A0(. . . ,y1
k ,w)∨

∨

j′
(. . .)

]
.

From Mon(A) it follows that

∀y1
k

∨

j

∃wγ A0(. . . ,y1
k ,w)

in fact yields ∨

j

∀y1
k∃wγ A0(. . . ,y1

k ,w).

For this we proceed by contraposition: suppose that
∧

j
∃y1

k∀wγ¬A0(. . . ,y1
k ,w). Then

∃y
∧

j
∃y1

k ≤0 y∀wγ¬A0(. . . ,y1
k ,w). By Mon(A) this implies ∃y

∧

j
∀wγ¬A0(. . . ,y,w).

So in total, (8) implies (since y1
k does not occur in ŝ j

k)

(9)

⎧
⎪⎨

⎪⎩

F →
[
v ≤ tu∧∧′(. . .) →
∨

j
∃x∀y∃wA0(u,v, ŝ j

1,
̂h1s j

1, . . . ,
̂hk−1s j

1 . . .s j
k−1,x,y,w)∨∨

j′
(. . .)

]
.

Next we apply the same procedure to the variable y1
k−1 and then to y1

k−2 and so on
until all the variables y1

1, . . . ,y
1
k with upper index 1 are bounded. We then continue

with y2
k , y2

k−1 and so on. This corresponds to the sequence of quantifications used in
Herbrand’s theorem for first order logic to show that there is a direct proof from an
index function-free Herbrand disjunction of a first order formula A to A itself. Tak-
ing always variables of minimal upper index guarantees that a ∀-introduction only
gets applied to a variable that at this stage only occurs in places where it is univer-
sal quantified in the original formula A. By quantifying among these variables first
the one with maximal lower index one ensures that a universal quantifier is intro-
duced only once the quantifiers to the right-hand side of it in A have already been
introduced. In addition to these two reasons for the special order of quantifications
there is in our situation another (essentially used) property which is fulfilled only
if variables which have minimal upper index are quantified first: If yi

j has minimal
index i (under all variables which still have to be quantified), then yi

j occurs in the
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still remaining part of the implicative assumption (+) only in the form ‘yi
j > (. . .yi

j-
free. . .)’. Hence we are in the same situation as we were in the beginning w.r.t. y1

k
and, therefore, are able to eliminate this part of (+) which is connected with yi

j alto-
gether using Mon(A) (just as we did for y1

k above). Once all the universal quantifier
for the yi

j and all the existential quantifiers for the Herbrand terms ŝ j i are introduced,
we have obtained

(10) F →
[
v ≤ tu →

∨
∃x0

1∀y0
1 . . .∃x0

k∀y0
k∃wγ A0(u,v,x1,y1, . . . ,xk,yk,w),

where
∨

is a disjunction of identical copies of

∃x0
1∀y0

1 . . .∃x0
k∀y0

k∃wγ A0(u,v,x1,y1, . . . ,xk,yk,w).

Hence contraction of
∨

yields

(11) F →
[
v ≤ tu →∃x0

1∀y0
1 . . .∃x0

k∀y0
k∃wγA0(u,v,x1,y1, . . . ,xk,yk,w)

and so – using ∀-introduction applied to u,v – we finally obtain

(12) F → A.

�

Corollary to the proof of theorem 13.7: The proof of theorem 13.7 does not de-
pend at all on the structure of the quantifier-free part A0 of A or on the special type
of parameters u1 and v ≤τ tu in A0. In fact as long as the boundsΨi in addition to the
index functions h only depend on parameters α whose types have degrees ≤ 1, the
proof goes through. Moreover, Mon(A) can be taken as an implicative assumption.
So in total one even obtains

GnAω � ∀X ,α
(

Mon(A(X))∧∀α∀h1, . . . ,hk

( k∧

i=1
(hi monotone)

→∃y1 ≤0 Ψ1α h . . .∃yk ≤0 Ψkα h∃wγ A(X)H
0

)
→ A(X)

)
,

where
A(X) :≡ ∃y0

1∀x0
1 . . .∃y0

k∀x0
k∃wγ(X(y1,x1, . . . ,yk,xk,w) =0 0).

Here X is a functional variable of type 0(γ)(0) . . . (0) and α is a tuple of variables of
type degree ≤ 1. Of course, in applications such bounding terms Ψi will be available
only for special X , e.g. for X being the characteristic term of the quantifier-free
part A0 of A in theorem 13.7. Then from a proof GnAω+QF-AC+Δ of AH one can
extract by NMD uniform bounds depending (in addition to h) only on the type-1
parameter u but not on the bounded parameter v ≤τ tu, see (the proof of) theorem
13.10 below. This is the reason why we focussed on that format in theorem 13.7.

Remark 13.9. By the corollary to the proof of theorem 13.7 above this theorem im-
mediately applies to sentences A formulated in extensions T of the system GnAω
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as long as the bounding terms Ψi belong to some class S that shares certain crucial
features of the terms in G∞Rω , namely:

1) Every term Ψρ ∈ S with deg(ρ)≤ 2 has a majorant Ψ ∗[h1] such that

(i) T � λ h.Ψ ∗[h] ma j Ψ ,
(ii) Ψ ∗[h] is built up only from h and terms ∈ S of type level ≤ 1 (by substitution).

2) S is (provably in T ) closed under the successor, definition by cases, λ -abstraction
and contains the variable maximum functional Φ1.

Condition 1) puts of an upper bound on the allowed complexity of S. E.g. 1)
is not satisfied if S contains the iteration functional Φit defined by Φit0y f =0 y,
Φit x′y f =0 f (Φit xy f ) definable by R0 and hence available already in ŴE-PA

ω
|\. In

fact, in section 13.4 we will show that theorem 13.7 becomes false already if GnRω

is replaced by the primitive recursive functionals in the sense of Kleene, i.e. the
closed terms of ŴE-PA

ω
|\. The crucial structural difference between Φit and func-

tionals Ψ ∈ G∞Rω is the following one: each term Ψ001 ∈ G∞Rω can be majorized
by a term Ψ∗[x0,h1] which uses h only at a fixed number of arguments, i.e. there
exists a fixed number n (which depends only on the structure of Ψ∗ but not on x,h)
such that for all h,x the value of Ψ∗[x,h] only depends on (at most) n-many h-
values. Let us illustrate this by an example: Φ defined by Φhx = max(h0, . . . ,hx)
depends on x + 1–many h–values but is majorized by Φ∗ defined by Φ∗hx := hx
which for every x depends only on one h-value, namely on hx. If a term Ψ has a
majorant which satisfies 1) we say that Ψ is majorizable with finite support. One
easily convinces oneself that Φit is not majorizable with finite support.
2) is a lower bound on the complexity of T ,S, which also is essential. E.g. take
T := L 2 and S := {00}, where L 2 is first order logic with =0,≤0 extended by
quantification over functions and two constants 00,10. Consider now

G :≡ ∃x0∀y0∃z0, f 1(F0( f ,z) → A0(x,y)),

where F0( f ,z) :≡ ( f z = 0∧0 �= 1) and A0(x,y) :≡ (y �= 0∧ x = x →⊥). Then

L 2 � ∀g1∃x,z ≤0 0∃ f (F0( f ,z) → A0(x,gx))∧Mon(G), but L 2
� G,

i.e. theorem 13.7 fails for L 2,S. If however L 2 is extended by λ -abstraction, then
G becomes derivable since we can form f := λ x0.10 now.

Theorem 13.10. Let n ≥ 1 and A be as in theorem 13.7 and Δ be as in theorem
10.21, i.e. a set of sentences ∀xδ∃y ≤ρ sx∀zη G0(x,y,z) where s is a closed term of
GnAω and G0 a quantifier-free formula, and let A′ denote the (Kuroda) negative
translation of A. Then the following rule holds:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GnAω+QF-AC+ Δ � AH ∧Mon(A) ⇒

GnAω + Δ̃ � A and by monotone functional interpretation

one can extract a tuple Ψ ∈ GnRω such that

GnAω
i + Δ̃ �Ψ satisfies the monotone functional interpretation of A′,

where Δ̃ := {∃Y ≤ρδ s∀xδ ,zη G0(x,Y x,z) : ∀xδ∃y ≤ρ sx∀zη G0(x,y,z) ∈ Δ}.

Proof: By theorem 10.51, NMD applied to a proof of AH in GnAω + Δ+ QF-AC
extracts uniform boundsΨ1, . . . ,Ψk ∈ GnRω on ∃y1, . . . ,yk (not depending on v) such
that

(1) GnAω
i + Δ̃ � ∀u∀v ≤ tu∀h∃y1 ≤0 Ψ1uh . . .∃yk ≤0 Ψkuh∃wAH

0 ,

where

Δ̃ := {∃Y ≤ρδ s∀xδ ,zη G0(x,Y x,z) : ∀xδ∃y ≤ρ sx∀zη G0(x,y,z) ∈ Δ}.

Since Mon(A) is implied by the monotone functional interpretation of its negative
translation, the soundness theorem 10.20 for NMD applied to the assumption

GnAω + Δ+ QF-AC � Mon(A)

yields
(2) GnAω

i + Δ̃ � Mon(A).

By (1) and (2) we are now in the position to apply theorem 13.7 and obtain

GnAω + Δ̃ � A.

The second part of the theorem follows again by NMD (theorem 10.51) since Δ̃ is
just another set of axioms of the form Δ (just with higher types and the missing
initial universal quantifier treated as ‘dummy quantifier’).

�

Remark 13.11. 1) As a corollary to the proof above (using theorem 10.26 and theo-
rem 10.51) it follows that if the axioms Δ (which we may assume to be finitely
many) are as in theorem 10.26 and one has

GnAω+ QF-AC � Δ → AH ∧Mon(A)

then the conclusions of theorem 13.10 hold with Δ̃ε (defined as in theorem 10.26)
instead of Δ̃ . If Δ is even as in proposition 10.30, one can reduce Δ in fact to Δε .
If only for some of the axioms Δ this is the case then we can replace those by the
corresponding ε-weakening (resp. the ε-weakening of their Δ̃ -form).

2) If the types τ,γ in the sentence A are of degree ≤ 1, QF-AC is restricted to QF-
AC1,0 and QF-AC0,1 and Δ is has the type restriction as in theorem 10.47, then
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theorem 13.10 even holds for E-GnAω instead of GnAω . Since E-GnAω satisfies
the deduction theorem, the previous point applies provided that Δ satisfies the
respective type restrictions.

For our applications in the next sections we need the following corollary of theorem
13.10:

Corollary 13.12. Let n ≥ 1 and ∀x0∃y0∀z0A0(u1,vτ ,x,y,z) ∈ L (GnAω) be a for-
mula which contains only u,v as free variables and satisfies provably in GnAω +Δ+
QF-AC the following monotonicity property:

(∗)∀u,v,x, x̃,y, ỹ(x̃ ≤0 x∧ ỹ ≥0 y∧∀z0A0(u,v,x,y,z) →∀z0A0(u,v, x̃, ỹ,z)),

(i.e. Mon(∃x∀y∃z¬A0)). Furthermore, let B0(u,v,wγ ) ∈L (GnAω) be a (quantifier-
free) formula which contains only u1,vτ ,wγ as free variables where deg(γ) ≤ 2.
Then the following rule holds:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If GnAω + Δ + QF-AC �

∀u1∀v ≤τ tu
(
∃ f 1∀x,z A0(u,v,x, f x,z) →∃wγ B0(u,v,w)

)
∧ (∗)

then

GnAω + Δ̃ � ∀u1∀v ≤τ tu
(
∀x∃y∀z A0(u,v,x,y,z) →∃wγ B0(u,v,w)

)

and one can extract a term χ ∈ GnRω such that

GnAω
i + Δ̃ � ∀u1∀v ≤τ tu∀Ψ∗(Ψ∗ ma j Ψ∗ ∧∀x0,g1∃y ≤0 Ψ∗xgA0(u,v,x,y,gy)

→∃w ≤γ χuΨ∗ B0(u,v,w)
)
.

Proof: We may assume that γ = 2. The monotonicity property (∗) already logically
implies Mon(G), where

G :≡ ∀u1∀v ≤τ tu∃x0∀y0∃z0,w2(A0(u,v,x,y,z) → B0(u,v,w)
)
.

Moreover,

∀u1∀v ≤τ tu
(
∃ f 1∀x,z A0(u,v,x, f x,z) →∃wγ B0(u,v,w)

)

is logically equivalent to GH . Hence the assumption of the rule to be proved yields
that

GnAω + Δ + QF-AC � GH + Mon(G).

From this we conclude by theorem 13.10 that

GnAω + Δ̃ � G, i.e.

GnAω + Δ̃ � ∀u1∀v ≤τ tu
(
∀x∃y∀z A0(u,v,x,y,z) →∃wγ B0(u,v,w)

)
.

By classical logic and QF-AC0,0 this implies
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GnAω + Δ̃+QF-AC0,0 �

∀u1∀v ≤τ tu
(
∀x0,g1∃yA0(u,v,x,y,gy) →∃wB0(u,v,w)

)

and hence a fortiori

GnAω + Δ̃+QF-AC0,0 �

∀u1∀v ≤τ tu∀Ψ
(
∀x0,g1∃y ≤0 ΨxgA0(u,v,x,y,gy) →∃wB0(u,v,w)

)
.

The proof is concluded using (the proof of) theorem 10.21 (adapted to GnAω ) and
remarks 10.22 and 10.28 (note that ∀x0,g1∃y ≤0 ΨxgA0(u,v,x,y,gy) can be writ-
ten as a purely universal formula and hence the whole implication ‘(. . .)’ as an
∃-formula). �

Remark 13.13. The comments made in remark 13.11 apply analogously to corollary
13.12.

The monotonicity property (∗) is crucial for corollary 13.12 to be true: it is well-
known that using Σ0

1 -IA or – equivalently – Π 0
1 -IA (with number parameters only)

every primitive recursive function (in the sense of Kleene) can be proved to be total
relative to G3Aω . Now let n ≥ 3 and consider a Π 0

2 -sentence B :≡ ∀u0∃w0B0(u,w)
expressing the totality of An+1 which grows faster than any function definable in
GnRω . Let A(x) :≡ ∀y0 A0(x,y,a0) be the (function parameter-free) induction for-
mula sufficient to show B, where A0 is a quantifier-free formula in the language of
GnAω and a encodes the tuple of number parameters of the induction formula. Now
consider the logically valid sentence

∀x,a∃y∀z(A0(x,z,a)∨¬A0(x,y,a))

which – coding x,a together – becomes

(+) ∀x∃y∀z(A0( j1x,z, j2x)∨¬A0( j1x,y, j2x)),

where
C0(x,y,z) :≡ A0( j1x,z, j2x)∨¬A0( j1x,y, j2a)

is quantifier-free. Now let f be a Skolem function for (+). Then with

g(x) :=

⎧
⎨

⎩

0, if A0( j1x, f x, j2x)

1, otherwise,

g̃(x) := g( j(x,a)) is the characteristic function of A(x). Hence plugging g̃ into the
second order axiom of quantifier-free induction from GnAω one obtains the instance
of Π 0

1 -IA needed to proof B. So in total

GnAω � ∃ f 1∀x,zC0(x, f x,z) →∀u0∃w0B0(u,w).
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If corollary 13.12 would hold in the absence of the monotonicity condition (∗) this
would (using that, trivially, (+) is provable in GnAω ) imply that

GnAω � ∀u0∃w0B0(u,w)

and hence (applying NMD to GnAω ) a GnRω -definable bound on An+1 which is a
contradiction. In section 13.4 below we will show that the correct contribution of
fixed instances of Π 0

1 -CA can be calibrated using corollary 13.12 if – instead of
(+) – one uses a monotone version of (+) which no longer is provable in GnAω but
only in ŴE-PA

ω
|\+QF-AC0,0 (see proposition 13.19 below).

From the fact that corollary 13.12 fails in the absence of the monotonicity prop-
erty (∗) it also follows that theorem 13.10 becomes false if the property Mon(A) is
dropped. In turn this yields that theorem 13.7 fails without the axiom Mon(A).

Corollary 13.12 makes it possible in many cases to reduce the use of an analytical
premise

∃ f 1∀x,zA0(x, f x,z)

in a proof to an arithmetical premise

∀x0∃y0∀z0A0(x,y,z)

provided that the latter is monotone. The main benefit of this for the growth of
bounds extractable from given proofs rests on the following fact: direct monotone
functional interpretation MD applied to a GnAω + Δ+ QF-AC-proof of a sentence

∀u1∀v ≤τ tu
(
∃ f 1∀x,z A0(u,v,x, f x,z) →∃w0B0(u,v,w)

)

extracts a functional Ψ ∈ GnRω which only in a Skolem function f (satisfying
∀x,z A0(u,v,x, f x,z)) as oracle produces a bound on ‘∃w0’. However, in the appli-
cations below (PCM,BW), f will be noncomputable in general as the principles
considered all imply Π 0

1 -CA. Combined with negative translation one only needs a
solution of the functional interpretation of

¬¬∃ f∀x,z A0(u,v,x, f x,z)

as input, but even this needs bar recursion B0,1 as we saw in chapter 11. In contrast to
this the bound χ in corollary 13.12 only depends on a functional which satisfies the
monotone functional interpretation of the negative translation of ∀x∃y∀z A0(x,y,z),
i.e. a functional solving the no-counterexample interpretation of ∀x∃y∀z A0(x,y,z).
In our applications below such a functional is easily be constructed as a closed term
of ŴE-HA

ω
|\.

In the remaining sections of this chapter we apply the results presented in this sec-
tion in order to determine the impact on the rate of growth of uniform bounds for
provably ∀u1∀v ≤τ tu∃wγA0–sentences which may result from the use of sequences
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(which however may depend on the parameters of the proposition to be proved) of
instances of:

1) The principle of convergence for bounded monotone sequences of real numbers
(PCM).

2) Π 0
1 -CA and Π 0

1 -AC.
3) The Bolzano-Weierstraß property (BW) for bounded sequences in R

d .

Further principle which can be treated in this way are the Ascoli lemma and the
existence of limsup and liminf for bounded sequences in R. However, for these we
refer to the literature ([210]).

13.3 The principle of convergence for bounded monotone
sequences of real numbers (PCM)

Let a1(0) be (a representative in the sense of chapter 4) of a nonincreasing sequence
of nonnegative real numbers, i.e.

(0) ∀n0(0 ≤R a(n + 1)≤R an).

The convergence of this sequence can be expressed as

(1) ∃b1∀k0∃n0∀m ≥ n(|a(m)−R b|R <R 2−k).

Clearly, for b satisfying (1) one has (using (0))

(2) ∀n0(an ≥R b).

Over, say G3Aω+QF-AC0,0, (1) is equivalent to

(3) ∃h1∀k0,m0(m ≥ hk → |a(m)−R a(hk)|R <R 2−k).

(1) ⇒ (3) : Since <R∈ Σ0
1 we can apply Σ0

1 -AC0,0 (and hence QF-AC0,0 by coding
of pairs) to

(4) ∀k0∃n0(a(n)−R b <R 2−k)

and obtain a function h1 such that

(5) ∀k0(a(hk)−R b <R 2−k).

From (0),(2) it follows that h satisfies (3).
(3) ⇒ (1) : If h satisfies (3), then (a(hk))k is a Cauchy sequence with rate 2−k and
so (using lemma 4.3) has a limit b1 which, clearly, also is the limit of (a(k))k. Hence
(1) follows.

We define the principle of monotone convergence PCM in the form (3) (where it
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will be convenient to replace <R by ≤R). In order to simplify the logical form of
PCM we use the construction ã(n) := maxR(0,min

i≤n
(a(i)) which ensures that ã is

nonincreasing and bounded from below by 0. If a already fulfills these properties
nothing is changed by the passage from a to ã).

From general results in reverse mathematics (see e.g. [338]) it follows that the full
2nd order closure

PCM :≡ ∀a1(0) PCM(a)

of
PCM(a1(0)) :≡ ∃h1∀k0,m0(m ≥0 hk → |ã(m)−R ã(hk)|R ≤R 2−k).

is (over a weak base system) equivalent to arithmetical comprehension. A more
refined treatment (given in [216]) shows the existence of closed terms ξ1,ξ2 in G3Rω

such that, provably in G3Aω+QF-AC0,0,

∀ f 1(0)( PCM(ξ1( f )) → Π 0
1 -CA( f )

)

and
∀a1(0)(Π 0

1 -CA(ξ2(a)) → PCM(a)
)
,

where
Π 0

1 -CA( f 1(0)) :≡ ∃g1∀x0(gx =0 0 ↔∀y0( f xy =0 0)
)

(the actual result proved in [216] is still more refined than this).
So fixed instances PCM(t) of PCM only yield fixed instances of Π 0

1 -CA (or, equiv-
alently, Σ0

1 -CA) but not of higher arithmetical comprehension which would require
an iterated use of PCM. Since this form of comprehension plugged into the schema
of quantifier-free induction gives any instance of Π 0

1 - and Σ0
1 -induction one has to

expect arbitrary primitive recursive (in the sense of Kleene) complexity for Π 0
2 -

sentences proved over G∞Aω from fixed instances of PCM. We show below that
this lower bound also is an upper bound.
PCM(a1(0)) is the Skolem normal form of the arithmetical principle

PCMar(a1(0)) :≡ ∀k0∃n0∀m0(m ≥0 n → |ã(n)−R ã(m)|R ≤R 2−k),

which expresses the Cauchy property of the sequence (ã(n))n.

Remark 13.14. The restriction to the lower bound 0 is (convenient but) not essential:
If ∀n0(c ≤R a(n + 1) ≤R an) we may define a′(n) := a(n)−R c. PCM applied to
a′ implies PCM for a. Everything holds analogously for nondecreasing sequences
which are bounded from above.

We now show that the contribution of single instances PCM(a) of PCM to the
growth of uniform bounds is (at most) given by a primitive recursive (in the sense
of Kleene) functional, i.e. a closed term of ŴE-HA

ω
|\ :

Proposition 13.15. Let B0(u1,vτ ,wγ ) ∈ L (G∞Aω) be a quantifier–free formula
which contains only u1,vτ ,wγ free, where γ ≤ 2. Furthermore let ξ , t ∈ G∞Rω and
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Δ be as in theorem 13.10. Then the following rule holds
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G∞Aω + Δ + QF-AC � ∀u1∀v ≤τ tu
(

PCM (ξ uv) →∃wγ B0(u,v,w)
)
⇒

G∞Aω + Δ̃ � ∀u1∀v ≤τ tu
(

PCMar (ξ uv) →∃wγ B0(u,v,w)
)

and one can extract a closed term Φ of ŴE-HA
ω
|\ such that

ŴE-HA
ω
|\+ Δ̃ � ∀u1∀v ≤τ tu∃w ≤γ Ψ(u)B0(u,v,w).

Proof: One easily observes that

G∞Aω � ∀a1(0)∀k, k̃,n, ñ
(
k̃ ≤0 k∧ ñ ≥0 n∧∀m ≥0 n(ã(n)−R ã(m) ≤R 2−k)

→∀m ≥0 ñ(ã(ñ)−R ã(m) ≤R 2−k̃)
)
.

Clearly, this sentence as well as the premise of the rule to be proved can already be
established with GnAω instead of G∞Aω for sufficiently large n ∈ N. Hence we can
apply corollary 13.12 and conclude that the assumption of the proposition implies

G∞Aω + Δ̃ � ∀u1∀v ≤τ tu
(

PCMar (ξ uv)→∃wγ B0(u,v,w)
)
.

∀a1(0) PCMar(a) is provable using Σ0
1 -IA and hence in ŴE-PA

ω
|\+QF-AC0,0 (using

proposition 3.21). Thus we obtain in total

ŴE-PA
ω
|\+ Δ̃ + QF-AC0,0 � ∀u1∀v ≤τ tu∃wB0(u,v,w).

By the main theorem on uniform bound extraction by NMD (theorem 10.21) adapted
to ŴE-PA

ω
|\ this yields the extractability of a closed term Ψ of ŴE-HA

ω
|\ such that

(note that Δ̃ again is of the general form Δ with ˜̃Δ = Δ̃ )

ŴE-HA
ω
|\+ Δ̃ � ∀u1∀v ≤τ tu∃w ≤γ Ψ(u)B0(u,v,w).

�

Remark 13.16. 1) Instead of proving ∀a1(0)PCMar(a) by Σ0
1 -IA and then using

NMD as we did in the proof above one can alternatively also directly produce
a functional in ŴE-HA

ω
|\ solving the NMD-interpretation of ∀a1(0)PCMar(a)

as we – essentially – did already in chapter 10 and then use the second conclu-
sion of corollary 13.12.

2) The variations of the above result corresponding to remark 13.11 hold as well.

Proposition 13.15 also holds for fixed sequences (̃al) of nonincreasing sequences
ã(·) of real numbers in R+ instead of fixed nonincreasing sequences. Consider

PCM∗(a1(0)(0)
(·) ) :≡ ∃h1(0)∀l0,k0∀m ≥0 hkl

(
(̃al)(hkl)−R (̃al)(m) ≤R 2−k),

PCM∗(a) is implied by
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PCM+(a) :≡ ∃h1∀k0∀m ≥0 hk∀l ≤0 k
(
(̃al)(hk)−R (̃al)(m) ≤R 2−k)

which is the Skolem normal form of the monotone formula

PCM+
ar(a) :≡ ∀k0∃n∀m ≥0 n∀l ≤0 k

(
(̃al)(n)−R (̃al)(m) ≤R 2−k).

Proposition 13.17. Proposition 13.15 also holds with PCM+(ξ uv) and
PCM+

ar(ξ uv) instead of PCM(ξ uv) and PCMar(ξ uv).

Proof: Exercise! �

13.4 Π 0
1 -CA and Π 0

1 -AC

As mentioned in the previous section the use of fixed instances of Π 0
1 -CA in a proof

can be reduced to that of instances of PCM. In this section we give a more direct
treatment of Π 0

1 -CA.

Definition 13.18. Define

AC
0 ( f 1(0),x0,y0,z0) :≡ ∀x̃ ≤0 x∃ỹ ≤0 y∀z̃ ≤0 z

(
f x̃ỹ �=0 0∨ f x̃z̃ =0 0

)
.

AC
0 can be expressed as a quantifier-free formula in L (G1Aω ).

Proposition 13.19. For n ≥ 3 one has:

1) GnAω
i proves

∀ f ,x, x̃,y, ỹ
(
x̃ ≤0 x∧ ỹ ≥0 y∧∀z0AC

0 ( f ,x,y,z) →∀z0AC
0 ( f , x̃, ỹ,z)

)
,

i.e. ∀x∃y∀zAC
0 ( f ,x,y,z) satisfies the monotonicity condition (∗) in corollary

13.12.
2) The Skolem normal form of ∀x∃y∀zAC

0 ( f ,x,y,z) implies Π 0
1 -CA( f ) :

GnAω
i � ∀ f 1(0)(∃g1∀x0,z0AC

0 ( f ,x,gx,z) → Π 0
1 -CA( f )

)
.

3) The functional defined by Φx0h1 := max
i≤x+1

h(i)(0) satisfies NMD (i.e. the mono-

tone functional interpretation of the negative translation) of ∀x∃y∀zAC
0 ( f ,x,y,z) :

ŴE-HA
ω
|\ � Φ ma j Φ ∧∀ f 1(0),x0,h1∃y ≤0 ΦxhAC

0 ( f ,x,y,hy).

4) ŴE-PA
ω
|\+ QF-AC0,0 � ∀ f 1(0),x0∃y0∀z0 AC

0 ( f ,x,y,z).

Proof: 1) follows immediately from the definition of AC
0 .

2) Let g be such that ∀x,z∀x̃ ≤ x∃ỹ ≤ gx∀z̃ ≤ z
(

f x̃ỹ �= 0∨ f x̃z̃ = 0
)
. Now take x̃ := x

and z̃ := z. It follows that
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∀x,z∃ỹ ≤ gx
(

f xỹ �= 0∨ f xz = 0
)

and so in turn
∀x

(
∀ỹ ≤ gx( f xỹ = 0) ↔∀z( f xz = 0)

)
.

Thus

hx :=

⎧
⎨

⎩

0, if ∀ỹ ≤ gx( f xỹ = 0)

1, otherwise

satisfies Π 0
1 -CA( f ).

3) We proceed by contradiction. Let f ,x,h be such that

(∗) ∀y ≤ Φxh∃x̃ ≤ x∀ỹ ≤ y∃z̃ ≤ hy
(

f x̃ỹ = 0∧ f x̃z̃ �= 0
)
.

Case 1: ∃i < x + 1
(
h(h(i)0) ≤ h(i)0

)
:

(∗) applied to y := h(i)0 ≤ Φxh yields an x̃ ≤ x such that

(∗∗) ∀ỹ ≤ h(i)0∃z̃ ≤ h(h(i)0)
(

f x̃ỹ = 0∧ f x̃z̃ �= 0
)

and thus for ỹ := 0 one has a z̃ ≤ h(h(i)0) such that f x̃z̃ �= 0. But on the other hand
–again by (∗∗)– one has f x̃z̃ = 0 (since z̃≤ h(h(i)0)≤ h(i)0) which is a contradiction.
Case 2: ∀i < x + 1

(
h(h(i)0) > h(i)0

)
:

By the (finite) pigeonhole principle, (∗) implies that there exists i < j ≤ x + 1 and
x̃ ≤ x such that

(1) ∀ỹ ≤ h(i)0∃z̃ ≤ h(h(i)0)
(

f x̃ỹ = 0∧ f x̃z̃ �= 0
)

and
(2) ∀ỹ ≤ h( j)0∃z̃ ≤ h(h( j)0)

(
f x̃ỹ = 0∧ f x̃z̃ �= 0

)
.

Hence ∃z̃ ≤ h(h(i)0)
(

f x̃z̃ �= 0
)

by (1) (take ỹ := 0) and ∀ỹ ≤ h( j)0
(

f x̃ỹ = 0
)

by (2)
which is a contradiction since by the case (and i < j ≤ x + 1) h(h(i)0) = h(i+1)0 ≤
h( j)0.
Put together we have proved that ∀ f ,x,h∃y ≤0 ΦxhAC

0 ( f ,x,y,hy). We leave it as an

exercise to formalize the above proof in ŴE-HA
ω
|\.

It remains to show that Φ ma j Φ: Assume that h̃ ma j1 h. By quantifier-free in-
duction on x one shows that ∀x

(
h̃(x)0 ≥ h(x)0

)
. Using this it follows (using again

quantifier-free induction on x̃) that

∀x̃,x(x̃ ≥ x → Φ x̃h̃ ≥ Φxh).

and hence the claim.
4) follows from 3).

�

Corollary 13.12 combined with proposition 13.19 yields
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Proposition 13.20. Let B0(u1,vτ ,wγ ) ∈ L (G∞Aω) be a quantifier-free formula
which contains only u1,vτ ,wγ free, where γ ≤ 2. Furthermore let ξ , t ∈ G∞Rω and
Δ be as in theorem 13.10. Then the following rule holds

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G∞Aω + Δ + QF-AC � ∀u1∀v ≤τ tu
(

Π 0
1 -CA(ξ uv) →∃wγ B0(u,v,w)

)

then one can extract a closed term Φ of ŴE-HA
ω
|\ such that

ŴE-HA
ω
|\+ Δ̃ � ∀u1∀v ≤τ tu∃w ≤γ Ψ(u)B0(u,v,w).

Remark 13.21. The variations of the above result corresponding to remark 13.11
hold as well.

As in the case of PCM∗(a) one might consider instead of fixed instances of Π 0
1 -CA

fixed sequences of such instances, i.e. fixed instances of

Π 0
1 -CA∗( f ) :≡ ∀l0∃g1∀x0(g(x) =0 0 ↔∀y0( f lxy =0 0)

)
.

However, this is trivial in this case since (provably in G3Aω )

Π 0
1 -CA(ϕ( f )) → Π 0

1 -CA∗( f ),

where ϕ( f ) := f ( j1x, j2x,y).

We now sketch a proof for the fact that proposition 13.20 (and hence also theorem
13.10 as well as theorem 13.7) fails (even for Δ = /0) if we add to G∞Aω either
the schema Σ0

1 -IA of Σ0
1 -induction (with function parameters), which can also be

written as a single second order axiom

Σ0
1 -IA :

⎧
⎨

⎩

∀ f
(
∃y( f (0,y) = 0)∧∀x(∃y( f (x,y) = 0) →∃y( f (x + 1,y) = 0))

→∀x∃y( f (x,y) = 0)
)

as we did in chapter 2, or the (Kleene)-primitive recursor constant R0 for primitive
recursion of type 0 with its defining axioms. As the proof of proposition 3.21 in
chapter 3 shows, Σ0

1 -IA follows in the presence of QF-AC0,0 and R0. Hence we
only have to produce a counterexample for the case where Σ0

1 -IA is added: let
B ≡ ∀u0∃w0B0(u,w) be a Π 0

2 -sentence in the language of G∞Aω expressing the
totality of the Ackermann function. B can be proved using Π 0

2 -induction or – equiv-
alently – Σ0

2 -induction with number parameters only. However, any such instance
of Σ0

2 -induction can be reduced to Σ0
1 -IA by absorbing the inner universal quanti-

fier in the induction formula by Π 0
1 -CA(ξ ) for suitable closed ξ (using the above

reduction of Π 0
1 -CA∗ to Π 0

1 -CA). So if proposition 13.20 would hold for G∞Aω

being replaced by G∞Aω +Σ0
1 -IA, we would get a ŴE-HA

ω
|\-definable (and hence

primitive recursive in the sense of Kleene) bound on the Ackermann function which
contradicts the well-known fact that the Ackermann function grows faster than any
primitive recursive function.
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Remark 13.22. The counterexample just given crucially uses that function variables
are allowed to occur in Σ0

1 -IA. Any instance of Σ0
1 -IA containing only number

variables in fact follows from Π 0
1 -CA(ξ ) for suitable closed ξ together with the

quantifier-free induction schema from G∞Aω and hence is permissible to be used
in connection with proposition 13.20. In fact also the fixed function(al) parameters
u,v are allowed to occur in Σ0

1 -IA instances (see below where we even include such
instances of Δ 0

2 -induction).

We now consider sequences of Π 0
1 -instances of ACar:

Π 0
1 -AC( f 1(0)(0)(0)):≡ ∀l0(∀x0∃y0∀z0( f lxyz =00) →∃g1∀x0,z0( f lx(gx)z =0 0)

)
.

Π 0
1 -AC( f ) can be reduced to Π 0

1 –CA(g) uniformly by

Proposition 13.23.

G2Aω + QF-AC0,0 � ∀ f 1(0)(0)(0)(Π 0
1 -CA( f ′) → Π 0

1 -AC( f )
)
,

where f ′ := λ v0,z0. f (ν3
1 (v),ν3

2 (v),ν3
3 (v),z).

Proof: By Π 0
1 -CA( f ′) there exists a function h1 such that

∀v0(hv = 0 ↔∀z( f ′vz = 0)).

h̃lxy := h(ν3(l,x,y)). Then

∀l,x,y(h̃lxy = 0 ↔∀z( f lxyz = 0)).

QF-AC0,0 applied to ∀x∃y(h̃lxy = 0) yields ∃g∀x,z( f lx(gx)z = 0).
�

As a consequence of proposition 13.23 we obtain

Proposition 13.24. Proposition 13.20 also holds with Π 0
1 -AC(ξ uv) instead of Π 0

1 -
CA(ξ uv).

Definition 13.25. 1) The principle of Δ 0
2 -IA( f ,g) of Δ 0

2 -induction for sequences of
Δ 0

2 -formulas given by f ,g is defined as follows

Δ 0
2 -IA( f ,g) :≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀l0
(
∀x0(∃u0∀v0( f lxuv =0 0) ↔∀ũ0∃ṽ0(glxũṽ =0 0)

)
→

[
∃u∀v( f l0uv = 0)∧∀x(∃u∀v( f lxuv = 0) →∃u∀v( f lx′uv = 0))

→∀x∃u∀v( f lxuv = 0)
])

.

2) The principle Π 0
1 -CP of bounded collection for a sequence of Π 0

1 -formulas given
by f is defined as follows

Π 0
1 -CP( f ) :≡

∀l0,x0(∀x̃ < x∃y0∀z0( f lxx̃yz =0 0) →∃y0∀x̃ < x∃y <0 y0∀z( f lxx̃yz = 0)
)
.
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Δ 0
2 -IA( f ,g) follows from appropriate instances Π 0

1 -CA(ξ1( f )) and Π 0
1 -CA(ξ2( f ))

of Π 0
1 -CA (provably in G3Aω , exercise) which can be encoded into a single in-

stance Π 0
1 -CA(ξ3( f )). Similarly, Π 0

1 -CP( f ) can be reduced to Π 0
1 -AC(ξ4( f )) for

appropriate ξ4 ∈ G3Rω . Hence in the previous results we can also allow instances
Δ 0

2 -IA(ξ̃1uv, ξ̃2uv) and Π 0
1 -CP(ξ̂ uv) in addition to Π 0

1 -CA(ξ uv) and Π 0
1 -AC(ξ ′uv)

to be used in a proof. So as long as it is prevented to have the comprehension resp.
choice functions from Π 0

1 -CA(ξ uv) and Π 0
1 -AC(ξ ′uv) to occur in instances of Δ 0

2 -
IA or Σ0

1 -IA (except for QF-IA where we allow arbitrary function parameters) we
may use these principles as well. For precise formulations and additional informa-
tion we refer to [208]. In [211] the whole hierarchies Π 0

n -CA and Π 0
n -AC and the

corresponding arithmetical principles Δ 0
n+1-IA and Π 0

n -CP are calibrated w.r.t. their
contribution to the complexity of extractable bounds.

13.5 The Bolzano-Weierstraß property for bounded sequences in
R

d

We now consider the Bolzano-Weierstraß principle for sequences in [−1,1]d ⊂ R
d .

The restriction to the special bound 1 is convenient but not essential: If (xn)⊂ R
d is

bounded by C > 0, we define x′n := 1
C · xn and apply the Bolzano-Weierstraß princi-

ple to this sequence. For simplicity we formulate the Bolzano- Weierstraß principle
w.r.t. the maximum norm ‖ · ‖max. This of course implies the principle for the Eu-
clidean norm ‖ · ‖E since ‖ · ‖E ≤

√
d · ‖ · ‖max.

We start with the investigation of the following formulation of the Bolzano-Weierstraß
principle:

BW : ∀(xn) ⊂ [−1,1]d∃x ∈ [−1,1]d∀k0,m0∃n >0 m
(
‖x− xn‖max ≤ 2−k),

i.e. (xn) possesses a limit point x.
Using the representation of [−1,1] from chapter 4, the principle BW has the form
∀x1(0)

1 , . . . ,x1(0)
d BW(x1, . . . ,xd), where

BW(x) :≡ ∃a1, . . . ,ad ≤1 M∀k0,m0∃n >0 m
d∧

i=1

(
|ãi −R x̃in| ≤R 2−k).

Here M and y1 �→ ỹ are the constructions from the representation of [−1,1] in chapter
4. We now prove (using the sequence coding from chapter 3 the following results
can be formulated even for variable dimension d though – for notational simplicity
– we only formulate things for fixed d).

Lemma 13.26.

(∗) G3Aω + QF-AC1,0 � F− → ∀x1(0)
1 , . . . ,x1(0)

d

(
Π 0

1 -CA(χx) → BW(x)
)
,
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for a suitable χ ∈ G3Rω .

Proof: BW(x) is equivalent to

(1) ∃a1, . . . ,ad ≤1 M∀k0∃n >0 k
d∧

i=1

(
|ãi −R x̃in| ≤R 2−k)

which in turn is equivalent to

(2) ∃a1, . . . ,ad ≤1 M∀k0∃n >0 k
d∧

i=1

(
|ãik−Q (x̃in)(k)| ≤Q 3 ·2−k).

Assume ¬(2), i.e.

(3) ∀a1, . . . ,ad ≤1 M∃k0∀n >0 k
d∨

i=1

(
|ãik−Q (x̃in)(k)| >Q 3 ·2−k).

Let χ ∈ G2Rω be such that

G2Aω � ∀x1(0)
1 , . . . ,x1(0)

d ∀l0,n0
(
χxln =0 0 ↔

[
n >0 νd+1

d+1 (l) →
d∨

i=1
|νd+1

i (l)−Q (x̃in)(νd+1
d+1 (l))| >Q 3 ·2−νd+1

d+1(l)+1]).

Π 0
1 –CA(χx) yields the existence of a function h such that

(4) ∀l0
1 , . . . , l0

d ,k0(hl1 . . . ldk =0 0 ↔∀n >0 k
d∨

i=1

(
|li −Q (x̃in)(k)| >Q 3 ·2−k).

Using h, (3) has the form

(5) ∀a1, . . . ,ad ≤1 M∃k0(h(ã1k, . . . , ãdk,k) =0 0
)
.

By Σ0
1 -UB− (which follows from QF-AC1,0 and F− by adapting the proof of propo-

sition 12.6.2) to G3Aω ) we obtain

(6) ∃k0∀a1, . . . ,ad ≤1 M∀m0∃k≤0 k0∀n >0 k
d∨

i=1

(
|(ãi,m)(k)−Q (x̃in)(k)|>Q 3 ·2−k)

and therefore

(7) ∃k0∀a1, . . . ,ad ≤1 M∀m0∀n >0 k0

d∨

i=1

(
|(ãi,m)−R x̃in| >R 2−k0

)
.
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Since | ˜ai,m+ 3−R ãi| ≤R 2−m (see the definition of y �→ ỹ from chapter 4, after
remark 4.26) it follows that

(8) ∃k0∀a1, . . . ,ad ≤1 M∀n >0 k0

d∨

i=1

(
|ãi −R x̃in| >R 2−k0−1), i.e.

(9) ∃k0∀(a1, . . . ,ad) ∈ [−1,1]d∀n >0 k0
(
‖a− xn‖max > 2−k0−1).

By applying this to a := x(k0 + 1) yields the contradiction

‖x(k0 + 1)− x(k0 + 1)‖max > 2−k0−1,

which concludes the proof. �

Proposition 13.27. Let B0(u1,vτ ,wγ ) ∈ L (G∞Aω) be a quantifier-free formula
which contains only u1,vτ ,wγ free, where γ ≤ 2. Furthermore let ξ ,t ∈ G∞Rω and
Δ be as in theorem 13.10. Then the following rule holds

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G∞Aω + Δ + QF-AC � ∀u1∀v ≤τ tu
(

BW(ξ uv) →∃wγB0(u,v,w)
)

then one can extract a closed term Φ of ŴE-HA
ω
|\ such that

ŴE-HA
ω
|\+ Δ̃ � ∀u1∀v ≤τ tu∃w ≤γ Ψ(u)B0(u,v,w).

Proof: The proof follows from proposition 13.20 combined with lemma 13.26 and
remark 13.11.1) using that F− is of the form of an axiom Δ as in theorem 10.26
with (as shown in the proof of theorem 12.8)

ŴE-HA
ω
|\ � (F̃−)ε .

�

Remark 13.28. The variations of the above result corresponding to remark 13.11
hold as well.

In a somewhat more involved way one can show the above proposition also with
BW(ξ uv) replaced by BWseq(ξuv) where BWseq(x) expresses that the sequence in
[−1,1]d represented by x has a convergent subsequence, i.e.

BWseq(x) :≡ ∃a1, . . . ,ad ≤1 M∃ f 1(∀k0( f (k) < f (k + 1)∧
(
|ãi −R x̃i( f k)| ≤R 2−k).

Note that the straightforward proof of BWseq from BW involves an application of
the recursor R0 which is not allowed in our context as discussed in the previous
section. However, this can be avoided by a use of a fixed sequence of instances of
Σ0

1 -induction which does not involve a from BW so that we can apply the comments
made at the end of the previous section. For details we refer to [210] which also pro-
vides analogous results for the Ascoli lemma stating that a sequence of functions in
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C[0,1] which has a common modulus of uniform continuity (i.e. which is equicon-
tinuous) and has a common bound in the uniform norm has a limit point (and a
convergent subsequence). Only fixed instances of the existence of the limit superior
for sequences in [0,1] cause (relative to G∞Aω ) growth rates of bounds beyond the
primitive recursive ones. In [210] an upper bound on the complexity is given: one
can always extract bounds definable in T1, i.e. by primitive recursion in the sense of
Gödel with the recursors Rρ restricted to the type degree 1. In [216] this is shown to
be best possible.

13.6 Exercises, historical comments and suggested further
reading

Exercises:

1) Prove proposition 13.17.
2) Complete the proof of proposition 13.19.3).
3) Show that proposition 13.23 also holds with ‘Π 0

1 -CA(ξ uv)’ be replaced by

‘Π 0
1 -CA(ξ1uv)∧Π 0

1 -CP(ξ2uv)∧Δ 0
2 -IA(ξ3uv)’,

where ξ1,ξ2,ξ3 ∈ G∞Rω .

Historical comments and suggested further reading: Most of the results in sec-
tions 13.1, 13.2 and 13.4 are due to Kohlenbach [208] which contains many more
results. The treatment of PCM in section 13.3 and of BW in section 13.5 is taken
from Kohlenbach [210]. That paper also contains a similar study of the version
of BW asserting the existence of a convergent subsequence as well as the Ascoli
lemma. Moreover, it is shown in [210] that over G∞Aω the use of fixed instances
of the principle asserting the existence of the limit superior of bounded sequences
of real numbers in proofs of sentences as considered in this chapter can be reduced
to Σ0

2 -induction. Hence by Parsons [299] the extractability of uniform bounds in T1
from such proofs in guaranteed. That this result is optimal is shown in Kohlenbach
[216]. In Kohlenbach [211], vast extensions of the results presented in section 13.4
are obtained. In particular, the whole hierarchy of principles Δ 0

n+1-CA,Π 0
n -AC (for

all n ∈ N) as well as generalized forms of uniform bounded principles are treated
and a number of consequences for fragments of first order arithmetic are derived.
In Kohlenbach [216] it is shown that even over G2Aω , PCM (then formulated with
rate 1/(k + 1) instead of 2−k) is equivalent to Σ0

1 -IA. Concrete applications of this
chapters technique of arithmetizing uses of analytical principles based on sequential
compactness in proofs can be found in Kohlenbach [227] (see also theorem 18.58
below) and Avigad et al. [8].



Chapter 14
The Friedman A-translation

14.1 The A-translation

In [108] H. Friedman introduced a strikingly simple device to establish closure un-
der the Markov rule in the form

Ti � ¬¬∃xP(a,x) ⇒ Ti � ∃xP(a,x)

(P is a prime formula) which works for many intuitionistic theories Ti. In theo-
ries in which every quantifier-free formula A0(x) can be written as a prime formula
tA0(x) = 0 this implies the usual form of the Markov rule. As we have seen one can
use functional interpretation to obtain closure under the Markov rule of those theo-
ries to which functional interpretation applies. The important feature of Friedman’s
so-called A-translation however is that it is much easier to apply and also works
for some systems like intuitionistic Zermelo-Fraenkel set theory ZFI for which no
functional interpretation has been developed yet.
Combined with the negative translation, Friedman’s A-translation, therefore, can be
used to show Π 0

2 -conservation of many classical theories T over their intuitionistic
counterpart Ti.
As a corollary of this one gets that T has the same provably recursive functions as
Ti.
By combining negative translation and A-translation with modified realizability one
obtains an alternative method (to the use of negative translation and functional in-
terpretation) for unwinding proofs of Π 0

2 -sentences in e.g. PA. Note that the direct
combination of negative translation and modified realizability without the interme-
diate step of the A-translation would be useless since the modified realizability in-
terpretation is trivial for negative formulas which result under negative translation.

However one should mention also some serious limitations of the approach based
on the A-translation:
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1) the A-translation is not sound for QF-ER and so doesn’t apply to our systems
WE-HAω and ŴE-HA

ω
|\ while functional interpretation does.

2) A-translation only shows closure under the Markov rule but doesn’t establish
conservation results for the Markov principle with respect to general classes
of formulas (which functional interpretation does). In particular it is not sound
for the negative translation of QF-AC (which follows from QF-AC only in the
presence of the Markov principle) and therefore cannot be used to show that e.g.
the provably recursive functions of WE-PAω+ QF-AC are just the ones definable
by closed terms of WE-HAω even if we omit the extensionality rule QF-ER.
However, [75] introduces a refinement of the A-translation which is able to treat
Markov’s principle and quantifier-free choice for numbers.

3) The combination of negative translation, A-translation and modified realizability
is not known to be faithful for subsystems PAn of PA with restricted induction
(respectively for corresponding finite type extensions of PAn) whereas negative
translation combined with functional interpretation is (see [299] for the latter).
Indeed, we will show below that the approach via the A-translations in some im-
portant cases seems to require realizers which are no longer primitive recursive
(in the sense of Kleene) whereas negative translation and functional interpreta-
tion extract primitive recursive realizers.
Again, the refinement of the A-translation due to [75] improves this situation (see
[5]).

Remark 14.1. The A-translation was independently also discovered by A. Dragalin
in [91].

In this chapter we will establish the A-translation only for HA since this suffices
to illustrate the general pattern. For extensions to other systems like ZFI the reader
should consult Friedman’s original paper [108].

Definition 14.2 (Friedman [108], Dragalin [91]). Let A ∈ L (HA) be a formula
of HA. For every formula F ∈ L (HA) (such that A doesn’t contain free variables
which are bound in F) we define the A-translation FA of F as follows: FA results if
all prime formulas P in F are replaced by P∨A.

Proposition 14.3 (Friedman [108]). HA � F ⇒ HA � FA.

Proof: Easy induction on the length of the derivation. �

Corollary 14.4 (Friedman [108]). HA � ∀x¬¬∃yA0(x,y) ⇒ HA � ∀x∃yA0(x,y).

Proof: In HA, A0(x,y) can be written as a prime formula tA0(x,y) = 0. Hence (since
¬G is an abbreviation for G → 0 = 1)

HA � ∀x¬¬∃yA0(x,y)

implies
HA �

(
∃y(tA0(x,y) = 0) → 0 = 1

)
→ 0 = 1.
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By the A-translation for A :≡ ∃y(tA0(x,y) = 0) we get

HA �
((
∃y(tA0(x,y) = 0) → 0 = 1

)
→ 0 = 1

)∃y(tA0 (x,y)=0)
,

i.e.

HA �
(
∃y(tA0(x,y)= 0∨∃y(tA0(x,y)= 0))→∃y(tA0(x,y)= 0)

)
→∃y(tA0(x,y)= 0),

and hence

HA �
(
(∃ytA0(x,y)= 0∨∃y(tA0(x,y)= 0))→∃y(tA0(x,y)= 0)

)
→∃y(tA0(x,y)= 0).

Since G∨G → G holds by intuitionistic logic, we get

HA � ∃y(tA0(x,y) = 0)

and hence
HA � ∀x∃yA0(x,y).

�

We now present an example: in the applications to be treated in chapter 18 we will
make heavy use of the ND-interpretation of proofs which involve a modus ponens
instance A , A→B

B with A ∈ Π 0
3 and B ∈ Π 0

2 , where, in particular, the case

A :≡ ∀k∃n∀m(|rn+m −R rn| ≤R 2−k)

with (rn) being a monotone sequence of real or rational numbers in [0,N] for some
N ∈ N is of interest (see the discussion in chapter 2). As shown already in chapter 2
(see the discussion in chapter 10), the ND-interpretation of this A can be realized by
a primitive recursive functional (in the sense of Kleene) which does not seem to be
the case for the modified realizability interpretation of the B-translation (where we
treat B as an open Σ0

1 -formula) of the negative translation A′ of A which, however,
can be solved with a realizer defined by recursion of type-1:

For simplicity we restrict ourselves to the case of nonincreasing sequences (rn) of
rational numbers in [0,1]. The negative translation of A is (equivalent over HA[(rn)],
i.e. HA[(rn)] extended by a function constant representing a nonincreasing sequence
of rational numbers in [0,1], to)

(∗) ∀k¬¬∃n∀m(|rn+m −Q rn| ≤Q 2−k).

Let B :≡ ∃v0B0(v), where B0 is quantifier-free (we again may assume that B0 even
is atomic). The B-translation (∗)B of (∗) is given by

∀k
{(

∃n∀m(|rn+m −Q rn| ≤Q 2−k ∨∃v0B0(v0)) →∃v1B0(v1)
)
→∃vB0(v)

}
.
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Modified realizability applied to this asks for a functional Φ of type degree 3 that
(given k0,ϕ2) produces v := Φ(k,ϕ) with

∀n0,g1
(
∀m0(|rn+m −Q rn| ≤Q 2−k ∨B0(g(m))) → B0(ϕng)

)
→ B0(v)

(here we disregard for simplicity the ‘∃z0’-part in the mr-interpretation of ‘∨’ since
|rn+m −Q rn| ≤Q 2−k and B0(v0) are primitive recursively decidable).
One easily verifies that we can take

Φkϕ :=0 Ψ (2k)00,

where
Ψ0 :=1 01, Ψ(x + 1) :=1 λ y.ϕy(Ψx)

is defined by the recursor R1 for type-1 recursion (which is powerful enough to de-
fine the Ackermann function, see chapter 3).

Of course, that a program involves R1 does not per se imply that it has to be in-
efficient. In fact, results in Berger et al. [26] indicate that applied to special Π 0

2 -
consequences B and small inputs such programs might well be efficient (see also
Raffalli [307] for a particularly interesting program extracted – by a related tech-
nique close to Krivine’s realizability [253] – from a proof of Dickson’s lemma).

Remark 14.5. The combination of negative translation and A-translation has the fol-
lowing variant: Let the R-translation be the result of replacing in a formula every
occurrence of ⊥ (i.e. in HA ‘0 = 1’) by R (so, in contrast to the A-translation, prime
formulas P different from ⊥ are not affected). The resulting interpretation is not
sound for intuitionistic logic and hence not for HA since it does not translate the ‘ex
falso quodlibet’-axiom ⊥→ F correctly, but it is sound for MA which results from
HA by dropping ‘ex falso quodlibet’ from the logical axioms, i.e. by formulating
HA with so-called minimal logic instead of intuitionistic logic. Since the original
Gödel negative translation (but not the Kuroda variant) actually translates PA not
only into HA but even into MA (see [371]) we can use the combination of Gödel’s
negative translation and R-translation as well (see e.g. [21]). This prima facie is a
simplification as we insert R at fewer places than the A-translation would do. How-
ever, there is a warning in place here: in the example above we made use of the fact
that over HA (and even a small fragment thereof) we can prove the stability of prime
formulas and hence change the ‘official’ Gödel negative translation (written here in
an equivalent form over minimal logic)

(1) ∀k¬¬∃n∀m¬¬(|rn+m −Q rn| ≤Q 2−k)

of
(2) ∀k∃n∀m(|rn+m −Q rn| ≤Q 2−k)

first into
(3) ∀k¬¬∃n∀m(|rn+m −Q rn| ≤Q 2−k)
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and then apply the A-translation to the latter (which results in only 3 occurrences of
B instead of 5, see above).
However, this ‘pre-processing’ is not possible if we use the R-translation since
¬¬(s =0 t) → s =0 t cannot be proved in MA and in fact does not have a valid
R-translation. So we need to apply the simpler R-translation to the more compli-
cated formula (1) resulting in 4 occurrences of B and hence in the end in a more
complicated (though over a weak fragment of HA using the stability of =0) equiva-
lent translation compared to the A-translation of (3).

14.2 Historical comments and suggested further reading

The A-translation was introduced in Friedman [108] and independently by Dragalin
in [91]. For more information on the A-translation see Leivant [261]. Applications
of (refined) combinations of negative translation, A-translation and realizability can
be found e.g. in [25, 21, 26, 283]. For the interesting refinement of the A-translation
mentioned above see Coquand-Hofmann [75] and – for applications of that refine-
ment – Avigad [5]. In Berger-Oliva [22], a modified realizability interpretation of
the A-translation of the negative translation of the axiom of dependent choice is
given by a novel form of bar recursion called modified bar recursion. Modified bar
recursion allows one to define Spector’s bar recursion but the converse is not true.
In fact, modified bar recursion is not S1-S9 computable (in the sense of Kleene)
over the continuous functionals whereas Spector’s bar recursion is. Bezem’s model
of strongly majorizable functionals discussed in chapters 3 and 11 is also a model of
modified bar recursion but the construction of the majorant is ineffective (and uses
discontinuous functionals). Since the interpretation given in Berger-Oliva [22] uses
a continuity axiom it is not clear whether the result of the interpretation does hold
in Bezem’s model. For all this see Berger-Oliva [22, 23].



Chapter 15
Applications to analysis: general metatheorems I

15.1 A general metatheorem for Polish spaces

In this chapter we show how some of the main results from chapters 8–12 can be
combined with the representation of Polish spaces from chapter 4 to establish gen-
eral metatheorems on the extractability of effective uniform bounds from proofs in
analysis. ‘Uniform’ here means the independence of the bounds from parameters in
compact metric spaces. In chapter 16 we will apply these results to concrete proofs
in best approximation theory and extract effective rates of so-called strong unic-
ity for both best Chebycheff as well as L1-approximations of continuous functions
f ∈ C[0,1] by polynomials of degree ≤ n (and more general so-called Haar spaces
in the case of Chebycheff approximation). In chapter 17, the metatheorems will be
much generalized to guarantee even strongly uniform bounds which are independent
from parameters in abstract bounded metric spaces. These more general theorems
will then be applied to proofs in metric fixed point theory in chapter 18.

In many problems in numerical (functional) analysis the task is to construct solu-
tions x ∈ K for equations

A(x) :≡ (F(x) = 0),

where K is a compact metric space and F : K → R a continuous function.

Typically, this involves two steps:

1) one constructs approximate solutions xn ∈ K satisfying

An(xn) :≡
(
|F(xn)| < 2−n),

2) using the compactness of K and the continuity of F one then concludes that either
(xn)n∈N itself or some subsequence converges to a solution of A(x).

If F has exactly one root x̂∈K the – in general non-computational – step of selecting
a convergent subsequence is not necessary but still an effective rate of the conver-
gence xn → x̂ is missing. Further below we will see how proof-theoretic analysis
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of a given proof for the uniqueness of x̂ can be applied to extract such an effective
rate of convergence under quite general circumstances and give some applications
to approximation theory.

If the solution x̂ is not necessarily unique, one often cannot effectively obtain a solu-
tion but weaker tasks like obtaining so-called effective rates of asymptotic regularity
(see below) might be solvable. In chapter 18 we will illustrate this in the area of fixed
point theory.
In the following, when we write e.g. A :≡ ∀n0∀x ∈ X ,y ∈ K∃m0A1(n,x,y,m) for a
Polish space X and a compact metric space K in standard representation by N

N

resp. { f ∈ N
N : f ≤1 M} for some fixed M and a purely existential property A1 so

that A formalized has the form

∀n0,x1∀y ≤1 M∃m0A1(n,x,y,m),

we assume that A1(n,x,y,m) is extensional in x,y with respect to =X and =K and
so really expresses a property of elements of X ,K. Although the proof of this exten-
sionality is not needed for our extraction, we will assume this extensionality to be
provable in the theory at hand as this will be the case in all our applications.

The applications to approximation theory (i.e. the extraction of rates of convergence
towards a unique solution) fall under the schema of the following

Theorem 15.1 (General metatheorem on proof mining: the compact case). Let
X be a Polish space, K a compact metric space and A1(n0,x1,y1,m0) a purely ex-
istential formula of L (E-PAω) (where the types of the existential quantifiers are of
degree ≤ 1) having only n,x,y,m as free variables. We assume that X ,K are explic-
itly representable in E-PAω in the sense of chapter 4. Let A1 be provably extensional
in x ∈ X ,y ∈ K, i.e. assume that E-PAω+QF-AC1,0+QF-AC0,1+WKL proves that

∀n0,m0,x1
1,x

1
2,y

1
1,y

1
2(x1 =X x2 ∧ y1 =K y2 ∧A1(n,x1,y1,m) → A1(n,x2,y2,m)).

If a sentence
(∗) ∀n ∈ N∀x ∈ X∀y ∈ K∃m ∈ NA1(n,x,y,m)

is proved in E-PAω+QF-AC1,0+QF-AC0,1+WKL, then one can extract a uniform
bound Φ(n,x) for ∃m, i.e.

WE-HAω 
 ∀n ∈ N∀x ∈ X∀y ∈ K∃m ≤ Φ(n,x)A1(n,x,y,m),

where Φ is a closed term of E-PAω . More precisely, the bound Φ(n,x) depends on
x via a representation fx ∈ N

N of x ∈ X in the sense of chapter 4.
Furthermore, the extensionality of A1 w.r.t. x ∈ X ,y ∈ K is provable in WE-HAω .
Supplement: We may add arbitrary axioms Γ of the form

(∗∗) ∀x ∈ X ′∃y ∈ K′∀w ∈W (F ′(x,y,w) =R 0)

to E-PAω , where X ′,W are a Polish spaces, K′ a compact metric space and F ′ :
X ′ ×K′ ×W → R a continuous function (all assumed to be explicitly definable in
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E-PAω ). Then the verification takes place in WE-HAω +Γε , where

Γε :≡ ∀x ∈ X ′∀k,n ∈ N∃y ∈ K′(
n∧

i=0

|F ′(x,y,wi)| < 2−k)

is the ‘ε-weakening’ of Γ (here (wn) is the enumeration of the countable dense
subset on which the representation of W is based).
An analogous result holds for

Ê-PA
ω
|\+QF-AC1,0+QF-AC0,1+WKL+Γ and ŴE-HA

ω
|\+Γε

instead of

E-PAω+QF-AC1,0+QF-AC0,1+WKL+Γ and WE-HAω +Γε .

Then Φ is a closed term of Ê-PA
ω
|\.

A crucial feature of the bound Φ(n,x) is that it does not depend on y ∈ K!

In many cases, ∃mA1 is monotone in m (see sections 15.2–15.4 below). Then Φ(n,x)
even provides a uniform realizer for ∃m.

Remark 15.2. 1) By the dependence of the bound Φ on the choice of a represen-
tation (‘name’) fx ∈ N

N of x ∈ X , Φ is not an extensional function on X but an
intensional operation which, however, is extensional on the space N

N of names of
X-elements. More precisely, one should, therefore, have formulated (and some-
times we do so when this is important) the conclusion of theorem 15.1 as

WE-HAω 
 ∀n ∈ N∀x ∈ X∀ f 1
x ( fx represents x

→∀y ∈ K∃m ≤ Φ(n, f 1
x )A1(n,x,y,m)),

where we write ‘x’ in ‘A1(n,x,y,m)’ to indicate that the formula is extensional
w.r.t. =X but we write ‘ fx’ in ‘Φ(n, fx)’ to indicate that the value of Φ(n, fx)
does depend on the given representative fx of x. For simplicity, however, we
often simply write Φ(n,x) and just remark that the bound depends on the chosen
representative of x.

For the case of C[0,1] this intensionality means that Φ will depend on f ∈C[0,1]
endowed with a modulus of uniform continuity ω f ∈ N

N of f , i.e.

∀k ∈ N∀x,y ∈ [0,1]
(
|x−R y|R <R 2−ω f (k) → | f (x)−R f (y)|R <R 2−k).

Note that by the effective Weierstraß theorem (see e.g. [303]) this input is equiva-
lent to the ‘official’ representation of f ∈C[0,1] from chapter 4 by a 2−n Cauchy
sequence (w.r.t. to the uniform norm) of polynomials with rational coefficients
converging to f .
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2) The extraction algorithm in theorem 15.1 is based on the combination of negative
translation and monotone functional interpretation discussed in chapters 9 and 10
and used in the proof of theorems 10.47, 10.52. This algorithm, of course, only
serves as a general guideline and is only applied step-by-step if nothing better is
available. In practice, we will make use of obvious mathematical simplifications
and optimizations all the time.

3) Instead of a single compact metric space K one can also have certain uni-
formly (in parameters of type 0,1) representable families of such spaces as e.g.
[−m,m](d), where m ranges over N (here one uses the representation of [−m,m]
given after remark 4.26 in chapter 4). Then the extracted bound will additionally
depend on these parameters, i.e. on m in the example just mentioned.

4) The supplement to theorem 15.1 allows one in concrete applications to treat lem-
mas Γ having the form (∗∗) in a given proof simply as axioms which means that
their proofs (which might be the most tedious part of the overall proof) do not
need to be analyzed at all. It is this feature (again a consequence of the mod-
ularity of proof interpretations such as functional interpretation) which is most
crucial for the applicability of the theorem to rather involved (and not fully for-
malized) proofs in mathematics. In all the applications presented in this book we
make heavy use of this fact.

5) Whereas the extra axioms Γ (like WKL which just happens to be a special case
of such an axiom Γ by proposition 9.18.2) from chapter 9) in general are in-
effective, Γε usually is constructively provable, e.g. for WKLε this follows from
proposition 9.18.1). So, as a by-product, the theorem also yields a constructiviza-
tion of the original proof. However, there is an important remark in order here:
the construction of the bound Φ follows the original non-constructive proof and
is first verified non-constructively. The reduction to a constructive verifying sys-
tem is achieved by subsequent proof theoretic procedures (which again are based
on monotone functional interpretation) and is completely superfluous for con-
structing Φ . So to say it again, Φ is not extracted by first transforming the given
proof into a constructive one (e.g. by eliminating WKL) and then analyzing the
latter. Such a procedure would be much too complicated in practice.

Proof of theorem 15.1: The proof of theorem 15.1 proceeds (for E-PAω+QF-
AC1,0+QF-AC0,1+WKL) by applying the representations from chapter 4 to the
Polish space X and the compact metric space K which reduces the statement to
theorem 10.47. The provability of the extensionality of A1 in WE-HAω also follows
immediately from theorem 10.47.
As a consequence of the general logical form of these representations we also see
that the additional axioms Γ have the logical form of the axioms Δ permitted in
theorem 10.47. In fact, using the continuity of F ′(x,y,w) in w (proposition 4.18),
(∗∗) can be stated equivalently as

∀x ∈ X ′∃y ∈ K′∀n ∈ N(F ′(x,y,wn) =R 0)

and – in turn – as
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∀x ∈ X ′∃y ∈ K′∀n,k ∈ N(|F ′(x,y,wn)| ≤R 2−k).

Using the representation from chapter 4 this sentence has the following logical form

(+) ∀x1∃y ≤1 N∀n0,k0, l0 A0(x,y,wn,k, l),

where ∀l0 A0(x,y,wn,k, l) is the Π 0
1 -formula expressing that (|F ′(x,y,wn)| ≤R 2−k).

Here N is some closed function term of WE-HAω resulting from the representation
of K.
(+) has the logical form of an axiom Δ in theorem 10.47.
Moreover, since all variables in (+) have types of degree ≤ 1, proposition 10.30
applies. Hence the use of (+) can be reduced to that of its ε-weakening

(+)ε ∀x1,m0∃y ≤1 N∀n,k, l ≤ mA0(x,y,wn,k, l)

which is implied by

∀x1,m0∃y ≤1 N∀n,k ≤ m∀l A0(x,y,wn,k, l),

i.e. by

∀x ∈ X ′∀k,n ∈ N∃y ∈ K′(
n∧

i=0

|F ′(x,y,wi)| ≤ 2−k).

�

We conclude this section by showing that both components of the constructive no-
tion of compactness of K, namely total boundedness and completeness, are nec-
essary for theorem 15.1 to hold in general. The following examples hold e.g. for
T ω :=E-PAω+QF-AC0,0 :
Necessity of total boundedness: Let B be the closed unit ball in C[0,1] (the lat-
ter represented as in chapter 4). B is bounded and constructively representable in
(weak fragments of) T ω but not totally bounded. By the Weierstraß approximation
theorem

T ω 
 ∀ f ∈ B∃n ∈ N
(
n code of p ∈ Q[X ] s.t. ‖p− f‖∞ <

1
2
)

but there is no uniform bound on ∃n : take the sequence of functions fk := sin(kx).
Here by a ‘n code of p ∈ Q[X ]’ we mean that n encodes the finite tuple of (codes of
the) rational coefficients of p.

Necessity of completeness: The set [0,2]Q of all rational numbers 0 ≤ q ≤ 2 is
totally bounded and constructively representable and

T ω 
 ∀q ∈ [0,2]Q ∃n ∈ N(|q−R

√
2|R >R 2−n).

However, there clearly is no uniform bound on ∃n ∈ N.

Remark 15.3. One might think to represent [0,2]Q with the discrete metric w.r.t.
which it is a Polish space. However, with this metric it no longer is totally bounded.
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Necessity of the intensionality of the bound Φ: Consider the following obvious
fact

T ω 
 ∀x ∈ R∃n0((n)R >R x).

Suppose there would exist an =R-extensional computable functional Φ : N
N → N

bounding (and hence realizing) ‘∃n’. Then Φ would represent a computable and
hence continuous (see chapter 4) function R → N so that Φ had to be a constant
function which cannot be true.
Necessity of A∃ being an ‘∃-formula’:

Let ( fn) be the usual sequence of spike-functions in C[0,1], s.t. ( fn) converges point-
wise but not uniformly towards 0. Then

T ω 
 ∀x ∈ [0,1]∀k ∈ N∃n ∈ N∀m ∈ N(| fn+m(x)| ≤ 2−k),

but there is no uniform bound (not even an ineffective one) on ‘∃n’.

15.2 Applications to uniqueness proofs

Let X be a Polish space, K a compact metric space and F : X ×K → R a continuous
function. Suppose that all these objects are explicitly representable in e.g. T ω :=E-
PAω+QF-AC1,0+QF-AC0,1+WKL and assume that we can prove in T ω that for
every x ∈ X , F(x, ·) has at most one root in K, i.e.

(1) ∀x ∈ X∀y1,y2 ∈ K
( 2∧

i=1

F(x,yi) = 0 → y1 = y2
)
.

Let dK denote the metric on K. (1) can be rewritten as

(1)∗ ∀x ∈ X∀k ∈ N∀y1,y2 ∈ K∃l ∈ N
( 2∧

i=1

(|F(x,yi)| ≤R 2−l)→ dK(y1,y2) <R 2−k),

where
(∧2

i=1(|F(x,yi)| ≤R 2−l) → dK(y1,y2) <R 2−k
)
∈ Σ0

1 , since ≤R∈ Π 0
1 and

<R∈ Σ0
1 given the representation of reals from chapter 4 as Cauchy sequences of

rational numbers with fixed rate of convergence.
Thus by the general logical metatheorem 15.1 one can extract from such a proof an
explicit bound Φ(x,k) (given by a closed term of the underlying arithmetical system
E-PAω ), which will depend on the chosen representation f 1

x of x such that

(2) ∀x ∈ X∀k ∈ N∀y1,y2 ∈ K
( 2∧

i=1

(|F(x,yi)| < 2−Φ(x,k)) → dK(y1,y2) < 2−k).
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Moreover, by theorem 15.1, (2) can be proved without using WKL and even in
the intuitionistic and weakly extensional variant WE-HAω of E-PAω (and hence in
constructive analysis in the sense of Bishop).
Put together, we have shown the following

Theorem 15.4. Let X be a Polish space, K a compact metric space (both E-PAω

definable) and F : X ×K → R a function given by a closed term of E-PAω (in the
sense of chapter 4 and therefore automatically continuous).

If a sentence

∀x ∈ X∀y1,y2 ∈ K
( 2∧

i=1

(F(x,yi) =R 0) → y1 =K y2
)

is proved in E-PAω+QF-AC1,0+QF-AC0,1+WKL, then one can extract a closed
term Φ of E-PAω (depending on a representative f 1

x of x in the sense of chapter 4)
such that

WE-HAω 
∀x∈X∀k∈N∀y1,y2 ∈K
( 2∧

i=1

(|F(x,yi)|< 2−Φ(x,k))→ dK(y1,y2)< 2−k).

As before we may add arbitrary axioms Γ of the form

∀x ∈ X ′∃y ∈ K′∀w ∈W (F ′(x,y,w) =R 0)

to T ω , where X ′,W are a Polish spaces, K′ a compact metric space and F ′ : X ′ ×
K′ ×W → R a continuous function (all assumed to be explicitly definable in E-
PAω ). Then the verification of the bound Φ can be carried out in WE-HAω + Γε ,
where Γε is defined as in theorem 15.1.
An analogous result holds for Ê-PA

ω
|\ and ŴE-HA

ω
|\ instead of E-PAω and WE-

HAω .

As in theorem 15.1, Φ does not depend on y1,y2 ∈ K (but will depend on a given
representative f 1

x of x). Because of this fact, Φ(x,k) – which we call a modulus
of uniqueness – can be used to compute the unique root (if existent) from any
algorithm χ(x,k) computing approximate so-called ε(= 2−k)-roots of F(x, ·):

(3) ∀x ∈ X∀k ∈ N
(
χ(x,k) ∈ K ∧|F(x,χ(x,k))| < 2−k).

One easily verifies that (2) and (3) imply that (χ(x,Φ(x,k)))k∈N is a Cauchy se-
quence in K which converges with rate of convergence 2−k to the unique root y ∈ K
of F(x, ·). So Ψ(x) := y = lim

k→∞
χ(x,Φ(x,k)) can be computed with arbitrarily pre-

scribed precision (which can also be proved in WE-HAω(+Γε), see theorem 15.5
below) and the computational complexity of Ψ can be estimated in terms of the
complexities of Φ and χ . From the uniqueness of the solution, the extensionality of
Ψ(x) in x follows, i.e. Ψ represents a function X → K.
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In numerical analysis (in particular in best approximation theory) such moduli of
uniqueness have been considered in various special situations under the names of
‘strong unicity’ or ‘rate of strong uniqueness’. We will study this in detail in the
next chapter.
For another interesting general use of the concept of modulus of uniqueness see
Lambov [260].

Theorem 15.5. Under the same assumptions as in theorem 15.4, if a sentence

∀x ∈ X∀y1,y2 ∈ K
( 2∧

i=1

(F(x,yi) =R 0) → y1 =K y2
)

is proved in E-PAω+QF-AC1,0+QF-AC0,1+WKL, then one can extract a closed
term Ψ of E-PAω such that

WE-HAω 


⎧
⎨

⎩

∀x ∈ X ,k ∈ N∃y ∈ K(|F(x,y)| ≤ 2−k) →

Ψ ∈C(X ,K)∧∀x ∈ X(F(x,Ψ (x)) =R 0R).

Here ‘Ψ ∈C(X ,K)’ expresses that the term Ψ1(1) represents a continuous function
X → K.

As before we may add arbitrary axioms Γ of the form

∀x ∈ X ′∃y ∈ K′∀w ∈W (F ′(x,y,w) =R 0)

to T ω , where X ′,W are a Polish spaces, K′ a compact metric space and F ′ : X ′ ×
K′ ×W → R a continuous function (all assumed to be explicitly definable in E-
PAω ). Then the verification of the bound Φ can be carried out in WE-HAω + Γε ,
where Γε is defined as in theorem 15.1.
An analogous result holds for Ê-PA

ω
|\ and ŴE-HA

ω
|\ instead of E-PAω and WE-

HAω .

Proof: By the assumption that X ,K and F are E-PAω -definable there are closed
terms M1 and ΦF of E-PAω so that the premise

∀x ∈ X ,k ∈ N∃y ∈ K(|F(x,y)| ≤ 2−k)

has the form
∀x1,k0∃y ≤1 M(|ΦF (x,y)|R ≤R 2−k)

and, therefore (using lemma 4.2),

∀x1,k0∃y ≤1 M( ̂|ΦF (x,y)|R(k) ≤Q 2−k+1).

Since
A0(x1,y1,k0) :≡ ( ̂|ΦF (x,y)|R(k) ≤Q 2−k+1)
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is quantifier-free we can use lemma 9.27 to construct a closed term χ1(0)(1) of WE-
PAω such that

∀x1,k0(χ(x,k) ≤1 M∧ ̂|ΦF(x,χ(x,k))|R(k) ≤Q 2−k+1).

Hence for χ̃(x,k) := χ(x,k + 2) we obtain

∀x1,k0(χ̃(x,k) ≤1 M∧|ΦF(x, χ̃(x,k))|R <R 2−k),

i.e., switching back from the representations to the level of the objects being repre-
sented,

(1) ∀x ∈ X ,k ∈ N(χ̃(x,k) ∈ K ∧|F(x, χ̃(x,k))| < 2−k)

(strictly speaking we have to write here χ̃( fx,k) for some representative f 1
x of x but

we avoid this to improve the readability). By theorem 15.4, we can extract a closed
term Φ of WE-HAω such that (provably in WE-HAω )

(2) ∀x ∈ X∀k ∈ N∀y1,y2 ∈ K
( 2∧

i=1

(|F(x,yi)| < 2−Φ(x,k)) → dK(y1,y2) < 2−k)

(again, Φ strictly speaking depends on a representative f 1
x of x).

Hence (χ̃(x,Φ(x,k)))k∈N is (a representation of) a Cauchy sequence in K with
Cauchy rate 2−k.
Now define

Ψ ′(x,k) := (Ψ̂1(x,k))(k + 5), where Ψ1(x,k) := χ̃(x,Φ(x,k + 5)).

Then, by lemma 4.5, Ψ ′(x) represents the limit of the Cauchy sequence

(χ̃(x,Φ(x,k)))k∈N

in K which – using the construction from section 4.3 of chapter 4 – can be converted
into a representative Ψ(x) such that Ψ(x) =K Ψ ′(x) and Ψ(x) ≤1 M. That Ψ(x)
satisfies the theorem is now proved using the uniform continuity of F(x, ·) : K → R

(proposition 4.23): choose k ∈ N arbitrarily and let l ∈ N be such that

(3) ∀y1,y2 ∈ K
(
dK(y1,y2) < 2−l+1 → |F(x,y1)−F(x,y2)| < 2−k).

By (1) we have that

(4) |F(x, χ̃(x,max(k,Φ(x, l))))| < 2−k.

Furthermore, using (2),

(5) dK(χ̃(x,max(k,Φ(x, l))), χ̃(x,Φ(x, l))) < 2−l.

Moreover,
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(6) dK(Ψ(x), χ̃(x,Φ(x, l))) < 2−l.

By (5),(6) we get

(7) dK(Ψ(x), χ̃(x,max(k,Φ(x, l)))) < 2−l+1.

(3),(4) and (7) imply that

(8) |F(x,Ψ (x))| < 2−k+1.

Since k was arbitrary, we have shown that

(9) F(x,Ψ (x)) =R 0.

Now let x1
1,x

1
2 be such that x1 =X x2. From (9) it follows that

2∧

i=1

F(xi,Ψ (xi)) =R 0.

Since, by assumption, F is extensional w.r.t. =X (provably in WE-HAω ) this yields

F(x1,Ψ (x1)) =R 0 =R F(x1,Ψ (x2)).

So by (2)
Ψ (x1) =K Ψ(x2),

i.e. Ψ represents a function X → K. Since Ψ is a closed term of WE-HAω it follows
from proposition 4.18 that this function is continuous. �

Remark 15.6. In the proof above we actually only need the pointwise continuity of
F(x, ·) : K → R in the point Ψ (x) so that we could have used also proposition 4.18
instead of proposition 4.23. However, for the proof of the former we referred to a
result from the literature whereas proposition 4.23 follows easily from results proved
in this book which makes the proof above (except for the pointwise continuity of
Ψ : X → K) self-contained.

Remark 15.7. In the results above we may even have functions F : X ×Y → R,
where X ,Y are general Polish spaces and can allow certain constructively definable
families (Kx)x∈X of compact subspaces of Y which are effectively parametrized by
x ∈ X instead of a fixed K. See Kohlenbach [204] for details.

In the uniqueness proofs from best approximation theory which will be analyzed in
the next chapter, WKL actually is used in the form of the principle

∀ f ∈C[0,1]∃x ∈ [0,1]
(

f (x) = inf
y∈[0,1]

f (y)
)

(15.1)

which – despite of the fact that f by our representation of f ∈ C[0,1] is given with
a modulus of uniform continuity – is equivalent to WKL.



15.2 Applications to uniqueness proofs 289

We now show that the conditions for the conversion of ineffective existence into
effective existence in the results above, namely the uniqueness of the solution, the
compactness of K and the fact that the conclusion ‘F( f ,x) =R 0’ is purely universal,
are all necessary even for X := N and K being a bounded subset of N :

1) Necessity of uniqueness: There is a quantifier-free formula A0(u,v,w) in L (PA)
containing only u,v,w free such that

PA 
 ∀u∃v ≤ 1∀wA0(u,v,w),

but there is no recursive f : N → N so that

∀u,wA0(u, f (u),w)

is true.
Proof: From classical recursion theory we know that there are recursive enumer-
able (r.e.) subsets sets

A = {u : ∃v(α(u,v) = 0)} and B = {u : ∃v(β (u,v) = 0)}

of N with α,β being primitive recursive such that

a) PA
 ∀u
(
∀w

(
α(u,w) �= 0

)
∨∀w

(
β (u,w) �= 0

))
, i.e. A∩B = /0 provably in

PA, and
b) there exists no recursive function f : N → N such that

∀u
(
[ f (u) = 0 →∀w

(
α(u,w) �= 0

)
]∧ [ f (u) �= 0 →∀w

(
β (u,w) �= 0

)
]
)

(i.e. A,B are recursively inseparable r.e. sets).

E.g. we may take α and β as the characteristic functions of

T (u,u,v)∧U(v) = 0

and
T (u,u,v)∧U(v) = 1,

respectively, where T is the Kleene T -predicate and U is the primitive recursive
function reading off the output of the computation (carried out by the Turing
machine with code u applied to u) with code v, both known from the well-known
Kleene normal form theorem.
a) implies that PA 
 ∀u∃v ≤ 1∀wA0(u,v,w), where
A0(u,v,w) :≡ [v = 0 → α(u,w) �= 0]∧ [v �= 0 → β (u,w) �= 0]. Now let f : N → N

be such that ∀u,wA0(u, f (u),w), i.e.

∀u[ f (u) = 0 →∀w
(
α(u,w) �= 0

)
]∧ [ f (u) �= 0 →∀w

(
β (u,w) �= 0

)
].

Then, by b), f is not recursive. �
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2) Necessity of the boundedness of v: There exists a quantifier-free formula
A0(u,v,w) of L (PA) containing only u,v,w free such that

PA 
 ∀u∃!v∀wA0(u,v,w),

but there is no recursive f so that

∀u,wA0(u, f (u),w)

is true.
Proof: Define

A0(u,v,w) :≡ T (u,u,v)∨ [¬T (u,u,w)∧ v = 0],

where again T denotes Kleene’s T -predicate. Then, using that

T (u,u,v1)∧T (u,u,v2) → v1 = v2,

one proves that
PA 
 ∀u∃!v∀wA0(u,v,w).

Now let f : N → N be such that

∀u,wA0(u, f (u),w).

Because of
T (u,u, f (u)) ↔∃vT (u,u,v),

the recursive undecidability of the special halting problem now implies that f is
not recursive. �

3) Necessity of the assumption that ∀wA0 is Π 0
1 : There exists a quantifier-free

formula A0(u,v,w,z) of L (PA) containing only u,v,w,z free such that

PA 
 ∀u∃!v ≤ 1∀w∃zA0(u,v,w,z),

but for no recursive f : N → N

∀u,w∃zA0(u, f (u),w,z)

is true.
Proof: We consider again the first example:

PA 
 ∀u∃v ≤ 1∀wA′
0(u,v,w),

where

A′
0(u,v,w) :≡ [v = 0 → α(u,w) �= 0]∧ [v �= 0 → β (u,w) �= 0].
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Hence

PA 
 ∀u∃!v ≤ 1
(
∀wA′

0(u,v,w)∧ (v �= 0 →¬∀wA′
0(u,0,w))

)

and therefore
PA 
 ∀u∃!v ≤ 1∀w∃zA0(u,v,w,z),

where
A0(u,v,w,z) :≡ A′

0(u,v,w)∧ (v �= 0 →¬A′
0(u,0,z)).

Let f : N → N be such that ∀u,w∃zA0(u, f (u),w,z).
Then

∀u
(
[ f (u) = 0 →∀w(α(u,w) �= 0)]∧ [ f (u) �= 0 →∀w(β (u,w) �= 0)]

)
.

Hence (as in the first example) f is not recursive. �

Remark 15.8. The proof above shows that even for A ∈ Δ 0
2 (instead of A ∈ Π 0

1 ) it
may happen that

PA 
 ∀u∃!v ≤ 1A(u,v), but (¬∃ f rec.: ∀uA(u, f (u)) is true),

since
A(u,v) :≡ ∀wA′

0(u,v,w)∧ (v �= 0 →¬∀wA′
0(u,0,w)) ∈ Δ 0

2 .

15.3 Applications to monotone convergence theorems

For definiteness let us fix T ω :=E-PAω+QF-AC1,0+QF-AC0,1+WKL.
Let X be a Polish space and K be a compact metric space which both areT ω -
definable. Moreover, let F : X ×K×N → R+ be a T ω -definable function such that
for any x ∈ X and y ∈ K the sequence (F(x,y,n))n∈N is nonincreasing. Suppose that
(F(x,y,n))n∈N converges (provably in T ω ) to zero, i.e.

T ω 
 ∀x ∈ X∀y ∈ K∀k ∈ N∃n ∈ N∀m ≥ n(F(x,y,m) <R 2−k).

Thus a-fortiori

T ω 
 ∀x ∈ X∀y ∈ K∀k ∈ N∃n ∈ N(F(x,y,n) <R 2−k)

which has the logical form required in theorem 15.1. Hence we can apply this the-
orem and extract a modulus δ (x,k) (depending on a representation f 1

x of x) such
that

∀x ∈ X∀y ∈ K∀k ∈ N∃n ≤ δ (x,k)(F(x,y,n) <R 2−k).

Since the sequence (F(x,y,n))n∈N is assumed to be nonincreasing this yields

∀x ∈ X∀y ∈ K∀k ∈ N∀n ≥ δ (x,k)(F(x,y,n) <R 2−k),
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i.e. theorem 15.1 extracts from proofs of the pointwise convergence of K-families
of monotone sequences of reals rates of K-uniform convergence.
In chapter 18 this will be applied in the context of metric fixed point theory, where
such monotone convergence results show up in the context of asymptotic regularity:
For a given function F : K → K and a starting point x ∈ K, let xn denote the n-th
iteration of F on x, i.e. xn :≡ Fn(x). If (d(xn,xn+1))n∈N

n→∞→ 0 for all x ∈ K, then F
is called asymptotically regular.
In many cases (e.g. for nonexpansive functions F as considered in chapter 17 below)
the sequence (d(xn,xn+1))n∈N is nonincreasing so that, by the discussion above,
theorem 15.1 can be used to extract uniform rates of convergence. In chapter 18 we
will actually obtain various such uniform convergence results even for just bounded
(convex) sets which need not be compact. This follows from more general metathe-
orems which we will prove in chapter 17.

The monotonicity in these convergence statements is used only to be able to write
the convergence in the logical form required in theorem 15.1. This is crucial for ap-
plications in a context based on classical logic in which one applies monotone func-
tional interpretation to the negative translation of formulas. Without monotonicity
the negative translation of

∃n ∈ N∀m ≥ n(F(x,y,m) <R ε)

would yield

¬¬∃n ∈ N∀m ≥ n(F(x,y,m) <R ε)

from which monotone functional interpretation no longer extracts a modulus of con-
vergence. In the semi-intuitionistic contexts of chapters 7 and 9, however, one can
extract moduli of convergence even without any monotonicity assumptions.

15.4 Applications to proofs of contractivity

Let us take again T ω :=E-PAω+QF-AC1,0+QF-AC0,1+WKL.
Let (K,d) be a T ω -definable compact metric space. A function F : K →K is defined
to be contractive if

∀x,y ∈ K(x �= y → d(F(x),F(y)) < d(x,y)).

Edelstein’s fixed point theorem [92] says that F has a unique fixed point and that
the Picard iteration (Fn(x))n∈N converges to this fixed point for any x ∈ K. Let
F : K → K be T ω -definable and provably in T ω be contractive. Then by theorem
15.1 we can extract an (additive) modulus of uniform contractivity η : N → N

satisfying
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∀x,y ∈ K∀k ∈ N(d(x,y) > 2−k → d(F(x),F(y))+ 2−η(k) < d(x,y)).

The concept of contractivity can be written also in the trivially equivalent form

∀x,y ∈ K(x �= y →∃n ∈ N(d(F(x),F(y)) < (1−2−n) ·d(x,y))),

in which case the interpretation yields a (multiplicative) modulus of uniform con-
tractivity η̃ : N → N satisfying

∀x,y ∈ K∀k ∈ N(d(x,y) > 2−k → d(F(x),F(y)) < (1−2−η̃(k)) ·d(x,y)).

Remark 15.9. We may in fact consider the more general case of functions F : X ×
K → K, where X is a Polish space, in which case the modulus η will also depend
on (a representative of) x ∈ X . Similarly in section 16.75 below.

Such a modulus α(k) :≡ 1−2−η̃(k) has in fact been considered in the literature by
Rakotch [308] and – in the context of Bishop style constructive analysis – in [48].
Using the boundedness of K, we can easily produce an η out of a given α and
vice-versa.
As shown in [236, 119], it is exactly such a modulus which is needed to obtain a
rate of convergence in Edelstein’s fixed point theorem [92, 308]. As in the case of
moduli of uniqueness it is crucial here that η does not depend on x,y.
Numerous variants of the notion of ‘contractive mapping’ have been considered
in the literature. The main purpose of these variants is to obtain generalizations
of Edelstein’s classical fixed point theorem to more general classes of functions.
Under monotone functional interpretation, these notions again give rise to appro-
priate moduli and we expect that in many cases explicit rates of convergence can
be provided in terms of the corresponding moduli of contractivity. For a survey of
25 notions of contractivity and generalizations of Edelstein’s result see [315]. This
line of work is further continued in [69, 275, 316], to list only a few references.
The most general among the notions of contractivity considered in Rhoades [315]
is the concept of generalized p-contractive mappings. A fixed point theorem for
continuous generalized p-contractive mappings on compact metric spaces is proved
in Kincses-Totik [182]. Using logical proof analysis, a fully effective version of a
generalization of this result to complete bounded metric spaces is given in Briseid
[51] (see theorem 17.122 in chapter 17 below). Yet another notion of contractiv-
ity, the so-called asymptotic contractions, is studied in Kirk [188] together with a
fixed point theorem. Building on Gerhardy [116] (which in turn uses logical proof
analysis) a fully effective version is this result (which originally was proved using
ultrapowers) is presented in Briseid [52].

15.5 Remarks on fragments of T ω

In Kohlenbach [209] a system PBA of polynomially bounded analysis was de-
signed (where axioms Γ of the form (∗∗) as in theorem 15.1 are freely used when-
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ever convenient) which guarantees that Φ(n,x) in theorem 15.1 will be a polynomial
in n and f M

x (in the sense of definition 3.44), where fx is a representative of x. Basi-
cally, this system is

E-G2Aω+QF-AC1,0+QF-AC0,1 + Δ + Σ0
1 -UB,

where Δ consists of all true (in the sense of the full set-theoretic type structure S ω )
sentences of the form ∀xδ∃y ≤ρ tx∀zτ A0(x,y,z) with A0 quantifier-free, t closed and
δ ,ρ ,τ of degree ≤ 1.

EBA:=PBA+exp is the system

E-G3Aω+QF-AC1,0+QF-AC0,1 + Δ + Σ0
1 -UB.

It guarantees that Φ(n,x) is elementary recursive (again in the sense of definition
3.44) in n, f M

x for any representative fx of x.

As a matter of fact, these systems contain quite some parts of analysis including
many non-computational principles related to Heine-Borel compactness (which log-
ically corresponds to the use of weak König’s lemma WKL, see [338]). In particular,
this captures:

1) Basic properties of the operations +,−, ·,(·)−1, | · |,max,min and the relations
=,≤, < for rational numbers and real numbers (which are given by Cauchy se-
quences of rationals with fixed Cauchy rate 1/(n + 1) of convergence).

2) Basic properties of maximum and sum for sequences of real numbers of variable
length.

3) Basic properties of continuous functions f : [a,b]d →R, sup
x∈[a,b]

f (x) and
∫ x

a f (x)dx

for f ∈C[a,b] where a < b and x ∈ [a,b].
4) The Leibniz criterion, the quotient criterion, the comparison test for series of

real numbers. The convergence of the geometric series together with its summa-
tion formula. The non-convergence of the harmonic series. (But not: The Cauchy
property of bounded monotone sequences in R or the Bolzano-Weierstraß prop-
erty for bounded sequences in R, see chapter 13 and Kohlenbach [210]).

5) Characteristic properties of the trigonometric functions sin,cos, tan, arcsin,
arccos,arctan and of the restrictions expk and lnk of exp, ln to [−k,k] for every
fixed number k (in EBA we have the unrestricted functions exp, ln).

6) The fundamental theorem of calculus.
7) The equivalence (local and global) of sequential continuity and ε-δ -continuity

for f : R → R.
8) The mean value theorem of differentiation.
9) The mean value theorem for integrals.

10) The Cauchy-Peano existence theorem.
11) Brouwer’s fixed point theorem for continuous functions f : [a,b]d → [a,b]d .
12) The attainment of the maximum of f ∈C([a,b]d,R) on [a,b]d .
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13) The uniform continuity (together with the existence of a modulus of uniform
continuity) of pointwise continuous functions f : [a,b]d → R.

14) The sequential form of the Heine-Borel covering property of [a,b]d ⊂ R
d .

15) Dini’s theorem: Every sequence (Gn) of continuous functions Gn : [a,b]d → R

which increases pointwise to a continuous function G : [a,b]d → R converges
uniformly on [a,b]d to G and there exists a modulus of uniform convergence.

16) Every strictly increasing continuous function G : [a,b] →R possesses a continu-
ous strictly increasing inverse function G−1 : [Ga,Gb] →[a,b].

Principles based on sequential compactness, like the monotone convergence prin-
ciple PCM or the Bolzano-Weierstraß principle BW, cannot be included into the
realm of polynomially bounded analysis as even fixed instances PCM(t) of PCM
amount to corresponding instances of Π 0

1 -CA and hence (over GnAω ) to all first
order instances of Σ0

1 -IA which suffices to introduce all the primitive recursive func-
tions. As shown in chapter 13, however, over GnAω the contribution of fixed (se-
quences of) instances of these principle also is not stronger than this. Only the use
of fixed instances of the existence of the limit superior for bounded sequences in R,
in fact, causes a growth beyond primitive recursive growth as such instances can be
used to prove corresponding instances of Σ0

2 -induction. This and many more results,
not covered in chapter 13, can be found in Kohlenbach [210, 216].

15.6 Historical comments and suggested further reading

Most of the results from sections 15.1 and 15.2 were first proved in Kohlenbach
[204]. The material in sections 15.3 and 15.4 is based on Kohlenbach-Oliva [236]
where further discussions can be found. The results mentioned in section 15.5 are
proved in Kohlenbach [209, 210].



Chapter 16
Case study I: Uniqueness proofs in
approximation theory

16.1 Uniqueness proofs in best approximation theory

An area in which complicated uniqueness proofs feature prominently is approxi-
mation theory and, in particular, the topic of best approximation. Here the setting
is as follows: Let (X ,‖ · ‖) be a real normed linear space and E ⊆ X be a finite
dimensional subspace. An element yb ∈ E is said to approximate x ∈ X best if
‖x− yb‖ = inf

y∈E
‖x− y‖ =:dist(x,E). We have the following easy (but ineffective)

existence theorem:

Theorem 16.1. Let (X ,‖·‖) be a real normed space and E ⊆ X a finite dimensional
subspace of X. Then ∀x ∈ X∃yb ∈ E

(
dist(x,E) = ‖x− yb‖

)
.

Proof: Assume ‖x−y‖≤ ‖x−0‖(= ‖x‖), where 0 is the zero vector in E (x∈ X ,y∈
E). Then ‖y‖ ≤ 2‖x‖. Hence dist(x,E) =dist(x,Kx), where
Kx := {y ∈ E : ‖y‖ ≤ 2‖x‖} is compact in E (since E is finite dimensional). The the-
orem now follows from the fact that the continuous function F : E → R, F(y) :=
‖x− y‖ attains its infimum on Kx. �

In addition to the importance of concept of ‘modulus of uniqueness’ for the compu-
tation of the unique solution (discussed already in section 15.2) the special relevance
in the context of best approximation theory is further witnessed by the following
proposition which shows that any such modulus, in particular, yields a modulus of
pointwise continuity for the corresponding projection operator:

Proposition 16.2. Let (X ,‖·‖) be a real normed linear space, E ⊆ X a finite dimen-
sional subspace. Assume that every x ∈ X possesses a uniquely determined best ap-
proximation in E and that the operation Φ for x ∈ X ,q ∈ Q

∗
+ satisfies Φ(x,q) ∈ Q

∗
+

and

∀y,yb ∈ E(‖x− y‖ ≤ dist(x,E)+ Φ(x,q)∧‖x− yb‖ = dist(x,E) → ‖y− yb‖ ≤ q).

Then the following holds
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1) 1
2 ·Φ is a modulus of pointwise continuity for the projection P : X → E which
maps x ∈ X to its best approximation yb ∈ E, i.e.

∀x,x0 ∈ X ,q ∈ Q
∗
+
(
‖x− x0‖ ≤

1
2

Φ(x0,q) → ‖P(x)−P(x0)‖ ≤ q
)
.

2) If Φ is linear in q,i.e. Φ(x,q) = q · γ(x) with γ ∈ Q
∗
+, then γ(x) is a ‘constant of

strong unicity’ ([286]), i.e.

∀x ∈ X ,y ∈ E
(
‖x− y‖ ≥ ‖x− yb‖+ γ(x) · ‖y− yb‖

)
,

where yb is the best approximation of x in E.
3) For γ(x) as in ‘2)’ we get that λ (x) := 2

γ(x) is a pointwise Lipschitz constant for
P , i.e.

∀x,x0 ∈ X
(
‖P(x)−P(x0)‖ ≤ λ (x0) · ‖x− x0‖

)
.

Proof: 1) It easily follows that dist(·,E) is a nonexpansive (i.e. Lipschitz continuous
with Lipschitz constant 1) function in x, i.e.

(∗) ‖x− x0‖ ≤ ε → |dist(x,E)−dist(x0,E)| ≤ ε.

Let us assume that ‖x− x0‖ ≤ 1
2 Φ(x0,q). We then obtain

(1)

⎧
⎨

⎩

‖x0 −P(x)‖ ≤ ‖x0 − x‖+‖x−P(x)‖= dist(x,E)+‖x0 − x‖
(∗)
≤ dist(x0,E)+ 1

2 Φ(x0,q)+‖x− x0‖ ≤ dist(x0,E)+ Φ(x0,q)

and
(2) ‖x0 −P(x0)‖ =dist(x0,E).

Together with the assumption on Φ it follows that ‖P(x)−P(x0)‖ ≤ q.
2) The assumption on Φ implies that

‖y− yb‖ ≥ q → ‖x− y‖ ≥ dist(x,E)
︸ ︷︷ ︸
=‖x−yb‖

+γ(x) ·q · n
n + 1

for all n ∈ N,q ∈ R
∗
+.

q := ‖y− yb‖ yields

∀n ∈ N
(
‖x− y‖ ≥ ‖x− yb‖+ γ(x) · ‖y− yb‖ ·

n
n + 1

)
.

Hence
‖x− y‖ ≥ ‖x− yb‖+ γ(x) · ‖y− yb‖.

3) follows easily from 1). �

Remark 16.3. 1) The fact that in the previous proposition it suffices to have the prop-
erty of Φ being a modulus of uniqueness for y,yb rather then for general y1,y2 is
up to a factor 1/2 equivalent to the official definition (except that for convenience
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we use ≤ instead of <) but sometimes allows one to save that factor yielding a
slight numerical improvement.

2) Part 3) in the previous proposition is (for Chebycheff approximation) due to [66]
(p. 82).

Let us now move to the case of best polynomial approximation of continuous func-
tions f ∈ C[0,1] by polynomials of degree ≤ n (Pn). We will consider approxima-
tions both w.r.t. to the uniform norm ‖ f‖∞ := sup

x∈[0,1]
| f (x)| (Chebycheff approxi-

mation) as well as the norm ‖ f‖1 :=
1∫

0
| f (x)dx (L1-approximation or approxima-

tion in the mean). Both cases of best approximation have been studied extensively
since Chebycheff’s classical work around 1850. The following discussion applies to
‖ · ‖ := ‖ · ‖∞ as well as to ‖ · ‖ := ‖ · ‖1. In both cases the best approximation of f
by an element of Pn is unique:

(4) ∀n ∈ N∀ f ∈C[0,1]∀p1, p2 ∈ Pn
( 2∧

i=1

(‖ f − pi‖ = dist( f ,Pn)) → p1 ≡ p2
)
,

where dist( f ,Pn) := inf
p∈Pn

‖ f − p‖. Moreover, the usual classical proofs for this

uniqueness rely for both norms on WKL and classical logic (see sections 16.2, 16.3
and 16.4 below).

As indicated already above, in (4) we can without loss of generality replace the
non-compact subspace Pn of C[0,1] with the compact convex subset
K̃f ,n := {p ∈ Pn : ‖p‖ ≤ 2‖ f‖} and dist( f ,Pn) = dist( f , K̃f ,n) can easily be seen to
be computable (uniformly in f as represented above, i.e. given together with a mod-
ulus of uniform continuity, and n).

Moreover, the existence of best Chebycheff resp. L1-approximations now easily fol-
lows from the fact that the continuous function λ p.‖ f − p‖ attains its infimum
on K̃f ,n. Note, that this existence proof also relies on WKL (which is needed to
show that continuous functions on compact subsets of R

n+1 attain their infimum).
Whereas the use of WKL cannot be eliminated from the existence proof just pre-
sented, it can be eliminated from the uniqueness proof and, moreover, the metathe-
orem 15.4 on the extractability of an effective modulus of uniqueness is applicable
with F( f ,n, p) := ‖ f − p‖−dist( f ,Pn). This means that the extractabilty of a prim-
itive recursive (in the sense of Gödel) modulus of uniqueness Φ (given by a closed
term of E-PAω ) satisfying

(5)

⎧
⎪⎨

⎪⎩

∀n,k ∈ N∀ f ∈C[0,1]∀p1, p2 ∈ K̃f ,n
( 2∧

i=1
(‖ f − pi‖−dist( f ,Pn) < 2−Φ( f ,n,k)) → ‖p1 − p2‖ < 2−k

)

is guaranteed, where Φ depends on f via the representation of C[0,1] from chapter
4, i.e. via the enrichment by a modulus of uniform continuity ω f of f .
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The same is true for the slightly altered compact subspace Kf ,n := {p : ‖p‖≤ 5
2‖ f‖}

which we will use (instead of K̃f ,n) in sections 16.2 and 16.4 below (with ‖ ·‖ being
‖ ·‖∞ and ‖ ·‖1 respectively) for the following reason: a simple trick (see the proofs
of theorems 16.30 and 16.71 below) allows one to extend a modulus of uniqueness
for Kf ,n to Pn so that (with a slightly altered Φ)

(6)

⎧
⎪⎨

⎪⎩

∀n,k ∈ N∀ f ∈C[0,1]∀p1, p2 ∈ Pn
( 2∧

i=1
(‖ f − pi‖−dist( f ,Pn) < 2−Φ( f ,n,k)) →‖p1 − p2‖ < 2−k

)
.

As we discussed above, the modulus of uniqueness can be used to compute the best
approximation (it can also be used to give a constructive existence proof for the best
approximation in WE-HAω (see theorem 16.13 below and [204]).

Even in the L1-case we have to represent C[0,1] as the space (C[0,1],‖ · ‖∞) to ap-
ply the logical metatheorem mentioned above since (C[0,1],‖ · ‖1) is not a Polish
space. As we discussed already, this amounts to enriching the input f by a modulus
of uniform continuity ω f so that Φ again will depend on ω f .

Note that if C[0,1] is replaced by the (pre-)compact (w.r.t. ‖ · ‖∞) set Kω,M of all
functions f ∈ C[0,1] which have the common modulus of uniform continuity ω
and the common bound ‖ f‖∞ ≤ M, then the same logical metatheorem guarantees
(using the representation of that subspace as given at the end of chapter 4) the ex-
tractability of a modulus of uniqueness Φ which only depends on Kω,M i.e. on ω ,M
(in addition to n,k). Moreover, even the M-dependency can be eliminated as the ap-
proximation problem for f can be reduced to that for f̃ (x) := f (x)− f (0) so that
only a bound N ≥ supx∈[0,1] | f (x)− f (0)| is required, which can easily be computed
from ω (e.g take N :=  1

ω(1)�). Therefore, from the logical metatheorem and the
fact that the uniqueness proofs both for the Chebycheff approximation as well as
for the L1-approximation can be formalized in E-PAω+WKL we obtain already the
extractability of primitive recursive (in the sense of Gödel) moduli of uniqueness Φ
which only depend on ω f ,n and k: a-priori information.

(Pn,‖ · ‖∞) can be identified with (Rn+1,‖ · ‖∞) via coefficients, where

‖(c0, . . . ,cn)‖∞ := sup
x∈[0,1]

|cnxn + . . .c1x + c0|.

Similarly, (Pn,‖ · ‖1) can be identified with (Rn+1,‖ · ‖1).
Since all norms on the finite dimensional space R

n+1 are equivalent, a rate of con-
vergence w.r.t. ‖ · ‖∞ resp. ‖ · ‖1 yields a rate of convergence w.r.t. ‖ · ‖max (and
conversely) by a multiplication with a suitable constant which can be determined
by the so-called Markov inequality (for a proof of this non-trivial inequality see e.g.
[66]):
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Proposition 16.4 ([274]). Markov’s inequality states that for any polynomial p of
degree ≤ n, ‖p′‖∞ ≤ 2n2‖p‖∞, where p′ denotes the first derivative of p.

Using this inequality one can show that for any polynomial p ∈ Pn

‖p‖∞ ≤ 2(n + 1)2‖p‖1.

Hence, any upper bound on ‖p1 − p2‖1 gives also an upper bound on ‖p1 − p2‖∞
and we can use this to get a bound on the coefficients of p1− p2. Namely, if p1(x)−
p2(x) = anxn + . . . + a1x + a0 and ‖p1 − p2‖1 ≤ M then |ai| ≤ (2(n+1)2)i+1

i! M (see
remark 16.59 in section 16.4). In terms of the uniform norm we get the following
estimate from Markov’s inequality

|ai| ≤
(2n2)i

i!
‖p‖∞.

So in both cases (‖·‖∞ and ‖·‖1), the modulus of uniqueness can be used to compute
the coefficients of the best approximating polynomial pb with arbitrary prescribed
precision.

In the next three sections we will extract explicit moduli of uniqueness from

• ([200, 204]) the most common uniqueness proof for the best polynomial Cheby-
cheff approximation given in 1919 by de La Vallée Poussin [304] (and in a fully
detailed form in [284]);

• ([200, 205]) a slightly older argument for the uniqueness of best Chebycheff
approximation due to Young [381] from 1907 for general Haar spaces (with full
details in [313]) and – in a variant – due to Borel [39] in 1905 for the polynomial
case;

• ([235]) a proof for the uniqueness of best polynomial L1-approximation (of con-
tinuous functions) from 1965 due to Cheney [65], which avoids the use of mea-
sure theory made in the original uniqueness proof from 1921 due to Jackson
[178].

We like to point the attention of the reader to the following main general outcomes
of this extended case study:

1) Both proofs for the uniqueness of best Chebycheff approximation – the one from
1919 ([304]) as well as the one from 1907 ([381]) – yield moduli of uniqueness
which (when given a lower bound 0 < l ≤dist( f ,Pn) on the distance) are linear
in the error q and hence provide effective estimates for what is called ‘constant
of strong unicity’ in Chebycheff approximation theory (see above). Moreover,
the estimates depend on f only via a modulus of uniform continuity and a norm
upper bound and so are uniform for classes K of equicontinuous functions with
a common norm upper bound (which can be removed by the shift f �→ f̃ above)
and a common (strictly positive) lower bound l on the distance. The ineffective
existence of a constant of strong unicity was first proved in 1963 ([286]) and the
existence of a common such constant for classes K only in 1976 ([153]).
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2) Both uniqueness proofs mentioned in 1) above use the ineffective so-called al-
ternation theorem. Whereas the proof from [304] uses a simple interpolation ar-
gument to conclude from the alternation theorem the uniqueness, the proof from
[381, 313] needs a more complicated argument and, additionally, the intermedi-
ate value theorem. Nevertheless, that latter proof is much easier to analyze and
gives the numerically better results. This can be explained on the logical level by
the fact that using the existence of a best approximation the proof can be formu-
lated in a way which uses the alternation theorem only in the form of a sentence
Γ (of the kind included in theorems 15.1 and 15.4) which can be treated just as
an axiom whereas the alternation theorem itself has a more complicated form,
namely that of a sentence (%) as defined just before theorem 10.49 in chapter
10. As a result of this, the analysis of the second proof avoids to have to an-
alyze the proof of the alternation theorem itself which, however, is crucial for
the analysis of the uniqueness proof from [304] which proceeds according to
theorem 10.49 (see section 16.3 for a detailed discussion of this point). Using
already the uniqueness (and existence) of the best approximation, the alternation
theorem and its variant of the form Γ used in the proof from [381, 313] are triv-
ially equivalent. However, the proofs we discuss here are about to establish at
all the uniqueness so that this observation does not help to logically improve the
situation concerning the proof from [304].

3) In connection with 2) it is interesting to note that the proof of first result towards
strong unicity in the literature, namely the proof of the local Lipschitz property of
the Chebycheff projection operator due to [106] (which – as was observed much
later in [37] – can also be used to obtain strong unicity), implicitly refers back to
that older – more complicated – argument for the uniqueness from [381]. So one
might speculate that the reason for the long time it took in the history of approxi-
mation theory to discover strong unicity has been that the more complicated (but
comparatively easy to analyze) older uniqueness proof had been ‘forgotten’ after
the discovery of the simpler (but very complicated to analyze quantitatively) new
argument. Nevertheless, it is remarkable that by logical analysis even that latter
argument can be seen to contain implicitly the strong unicity result.

4) The effective bounds extracted from the uniqueness proof from [381] numeri-
cally improve the previously known estimates due to D. Bridges [44, 45, 46] and
K.-I. Ko [198].

5) The logical analysis of the uniqueness proof for best L1-approximation due to
[65] in 1965 yields a modulus of uniqueness of (essentially) the form dn ·ε ·ω(cn ·
ε) where ω is a modulus of uniform continuity of the function f ∈ C[0,1] to be
approximated, n the degree of the polynomials and dn,cn constants depending
only on n. The existence of such constants was established ineffectively first
in 1978 by Kroó [254] (see also [256]) improving a result from 1975 due to
Björnestal [35] which, moreover, shows that the (nonlinear) ε-dependency of
the form above is optimal (see section 16.4 for a more precise and much more
detailed discussion). So again, logical analysis of a given proof leads even to
qualitative results which were obtained only much later. The explicit effective
description of the modulus with all the constants involved obtained in [235] by
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proof-theoretic analysis has been the first of this kind and was used subsequently
for the first complexity upper bound for best L1-approximations in Oliva [290].

In this chapter we only consider rather classical uniqueness proofs for problems
where many additional qualitative as well as numerical features have been known
meanwhile. This makes it possible to demonstrate the power of the logical analysis
of such proofs by showing that (as discussed above) several of these subsequent re-
sults follow directly by a logical analysis of the classical (much earlier) uniqueness
proofs and that even new quantitative estimates can be obtained as well. Of course,
one could analyze in a similar way more recent uniqueness and strong uniqueness
proofs for more advanced approximation problems e.g. for best uniform approxi-
mation by various forms of spline functions (see e.g. [288] and [382]) or one-sided
uniform as well as L1-approximation (see e.g. [301] for the latter). To carry out a
logical analysis of such more advanced uniqueness proofs would be an interesting
research project.

For the moduli and bounds extracted in the rest of this chapter we usually switch
from error estimates given as ‘2−k’ or ‘2−n’ to the more flexible formulation with
‘q ∈ Q

∗
+’ or ‘ε ∈ Q

∗
+’ which still makes the effective nature of the bounds explicit.

If the moduli involved as impute data such as the modulus of uniform continuity ω f
of f are taken as functions R

∗
+ → R

∗
+ (rather than Q

∗
+ → Q

∗
+) then our moduli of

uniqueness etc. also become (in the error argument ε) functions R
∗
+ → R

∗
+ and we

sometimes use this formulation when comparing our effective bounds with results
from the literature.

16.2 Best Chebycheff approximation I

As discussed above, the existence of a polynomial pb ∈ Pn such that

‖ f − pb‖∞ = dist∞( f ,Pn) := inf{‖ f − p‖∞ : p ∈ Pn}

follows from a simple (though ineffective) compactness argument. The uniqueness
of pb is much more difficult to prove and was first established rigorously in [183]
(based on prior work by Chebycheff [64]). The most common uniqueness proof in
the literature appeared first in de La Vallée Poussin’s monograph [304]. A more ex-
plicit presentation of this proof is given in [284] on which the following outline is
based. In this section we show that theorem 15.4 can be applied to this proof and
carry out its proof-theoretic analysis and the extraction of a modulus of unique-
ness with all numerical details. In the next section we will present a different – and
slightly more complicated – uniqueness proof which will result in numerically bet-
ter bounds and an easier extraction. Finally, we will explain these empirical findings
by logical metatheorems.
The results in this section are mostly taken from Kohlenbach [204].

Let (A∗) denote the sentence
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(A∗) ∀ f ∈C[0,1],a,b ∈ [0,1],a < b∃x0 ∈ [a,b]( f (x0) = sup
x∈[a,b]

f (x))

and take f ∈C[0,1],n∈N as fixed but arbitrary in the following. En, f :=dist∞( f ,Pn).
We show that the uniqueness proof from de La Vallée Poussin/Natanson ([304, 284])
can be formalized in WE-PAω +(A).
(A∗) is equivalent (over WE-PAω ) to the sentence (15.1), i.e.

(A) ∀ f ∈C[0,1]∃x0 ∈ [0,1]( f (x0) = sup
x∈[0,1]

f (x))

(just apply (A) to f̃ (λ ) := f ((1−λ )a + λ b) to get (A∗)) which has the form

∀x ∈ X∃y ∈ K(F(x,y) =R 0),

where X is Polish and K compact so is a sentence Γ as permitted in theorems 15.1
and 15.4.
For brevity we will write for the rest of this section just ‘‖ ·‖’ instead of ‘‖ ·‖∞’. For
En, f = 0, the uniqueness of the best approximation is trivial since then pb = f for
any best approximation pb ∈ Pn. Hence, we may assume without loss of generality
that En, f > 0. Let pb ∈ Pn be a best approximation of f , i.e. ‖ f − pb‖ = En, f . From
(A) it follows that |pb(x)− f (x)| ∈ C[0,1] attains its maximum on [0,1], i.e. ∃x0 ∈
[0,1]

(
|pb(x0)− f (x0)| = En, f

)
. A point having this property is called an extremal

point (abbreviation: (e)-point) of pb − f . An (e)-point x0 is a (+)-point if pb(x0)−
f (x0) = En, f and a (–)-point if pb(x0)− f (x0) = −En, f .

Lemma 16.5 (A). Let f ∈ C[0,1] and pb ∈ Pn be a best approximation of f . Then
there exist both (+)-points and (–)-points of pb − f .

Proof: Assume without loss of generality that no (–)-point exists, i.e.

∀x ∈ [0,1]
(

pb(x)− f (x) > −En, f
)
.

Applying (A) we conclude that

inf
x∈[0,1]

(
pb(x)− f (x)

)
> −En, f .

Now define
h :=

1
2
(

inf
x∈[0,1]

(
pb(x)− f (x)

)
+ En, f

)
.

Then h > 0 and inf
x∈[0,1]

(
pb(x)− f (x)

)
= −En, f + 2h and so −En, f + 2h ≤ pb(x)−

f (x) ≤ En, f . Hence −En, f + h ≤ pb(x)−h− f (x)≤ En, f −h for all x ∈ [0,1]. This,
however, implies that pb −h ∈ Pn is a better approximation of f than pb, contradict-
ing the assumption that pb was a best approximating polynomial in Pn. �

Remark 16.6. It is clear that the proof of lemma 16.5 can be formalized in WE-
PAω + (A) (and hence e.g. in WE-PAω+WKL+QF-AC0,0). The use of (A) is un-



16.2 Best Chebycheff approximation I 305

avoidable since, conversely, lemma 16.5 implies (A) already for n = 0 (relative to
WE-PAω ): Let m resp. M denote the infimum resp. supremum of f on [0,1]. Then
E0, f =dist( f ,P0) = 1

2(M −m) and 1
2 (M + m) is the best approximation of f in P0.

Lemma 16.5 yields the existence of an x0 ∈ [0,1] such that f (x0)− 1
2 (M + m) =

1
2 (M−m), i.e. f (x0) = M (this argument is taken from [46]).

We now prove the fundamental alternation theorem

Theorem 16.7 (Chebycheff [64], Kirchberger [183]). Let f ∈C[0,1] and pb ∈ Pn
be a best approximation of f . Then there exists a strictly increasing sequence of n+2
points x1 < x2 < .. . < xn+2 in [0,1] which are alternating (+)-points and (–)-points
in, i.e.

n+2∧

i=1

(
pb(xi)− f (xi) = (−1)i+ jEn, f

)

where j = 0 or j = 1. Any such system of points is called an alternant of pb − f .

Proof (Natanson [284]): For En, f = 0 the statement is trivial and so we may assume
that En, f > 0. Since f ∈ C[0,1] is uniformly continuous on [0,1] we can construct
(for suitable s ∈ N) points ξ0 = 0 < ξ1 < ξ2 < .. . < ξs = 1 such that

sup
x∈Ii

(
pb(x)− f (x)

)
− inf

x∈Ii

(
pb(x)− f (x)

)
<

1
2

En, f ,

where Ii = [ξi,ξi+1] for i = 0, . . . ,s− 1. Ii is called an (e)-interval if it contains an
(e)-point of pb − f . If Ii is an (e)-interval then pb(x)− f (x) �= 0 for all x ∈ Ii. An
(e)-interval Ii is called (+)-interval if ∀x ∈ Ii(pb(x)− f (x) > 0) and (–)-interval if
∀x ∈ Ii(pb(x)− f (x) < 0). We number the (e)-intervals consecutively from the left
to the right I j1 , . . . , I jN and assume without loss of generality that I j1 is a (+)-interval.
As a result of this we end up with the following schema of alternating blocks of (+)-
and (–)-intervals:

(∗)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I j1 , . . . , I jk1
(+)-intervals

I jk1+1 , . . . , I jk2
(−)-intervals

...

I jkm−1+1 , . . . , I jkm
(−1)−m−1-intervals (km = N).

By lemma 16.5 we know that m ≥ 2. We now show that in fact m ≥ n + 2.
Assume: (∗∗) m < n+2. pb− f has different signs in I jk1

and I jk1+1 . Hence the right
boundary of I jk1

does not coincide with the left boundary of I jk1+1 . Therefore, there
exists a point z1 ∈ [0,1] which is strictly greater than all points of I jk1

and strictly
less than all points of I jk1+1 (for short we write: I jk1

< z1 < I jk1+1). In the same way,
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one shows the existence of points z2,z3, . . . ,zm−1 ∈ [0,1] such that I jki
< zi < I jki+1

for i = 2, . . . ,m−1. Now define

ρ(x) := (z1 − x)(z2 − x) · . . . · (zm−1 − x).

From (∗∗) it follows that ρ(x) ∈ Pn. Since no interval I j1 , . . . , I jN contains one of the
zeroes z1, . . . ,zm−1 of ρ(x), ρ(x) has constant sign on each I ji (1 ≤ i ≤ N) which,
moreover, coincides the sign of pb(x)− f (x) on I ji . Now consider an interval Ii of the
initial partition I0, . . . , Is−1 of [0,1] which is not an (e)-interval, i.e. ∀x ∈ Ii(|pb(x)−
f (x)| < En, f ). (A) implies that supx∈Ii |pb(x)− f (x)| < En, f and so we conclude that

E∗ :=max
{

supx∈Ii |pb(x)− f (x)| : Ii is not an (e)-interval
}

< En, f .

Let R := supx∈[0,1] |ρ(x)|. For sufficiently small λ > 0 one has that λ R < En, f −E∗

and λ R < 1
2 En, f . Define Q(x) := pb(x)−λ ρ(x) ∈ Pn.

We now show that ∀x ∈ [0,1]
(
|Q(x)− f (x)| < En, f

)
(using (A) this implies ‖Q−

f‖ < En, f which contradicts the definition of En, f ):
Case 1: Ii is not an (e)-interval:

|Q(x)− f (x)| ≤ |pb(x)− f (x)|+ λ |ρ(x)| ≤ E∗ + λ R < En, f for all x ∈ Ii.
Case 2: Ii is an (e)-interval: Let x ∈ Ii. pb(x)− f (x) and λ ·ρ(x) have the same sign
and |pb(x)− f (x)| > λ · |ρ(x)|, since |pb(x)− f (x)| ≥ 1

2 En, f and λ · |ρ(x)| < 1
2 En, f .

It follows that

|Q(x)− f (x)| = |pb(x)− f (x)−λ ρ(x)|= |pb(x)− f (x)|−λ · |ρ(x)|.

Hence |Q(x)− f (x)| ≤ En, f −λ · |ρ(x)| < En, f , since ρ(x) �= 0 on (e)-intervals. �

Corollary 16.8. There exists at most one (and so – by the existence proof above –
exactly one) polynomial of best approximation for f ∈C[0,1] in Pn.

Proof: Suppose that p1, p2 ∈ Pn are best approximations of f , i.e. ‖p1 − f‖ =
‖p2 − f‖ = En, f . It is straightforward to show that p(x) := p1(x)+p2(x)

2 ∈ Pn is
a best approximation of f as well. By theorem 16.7 there exists an alternant
x1 < x2 < .. . < xn+2 for p(x)− f (x) in [0,1]. If xk is a (+)-point of p(x)− f (x),
then p1(xk)− f (xk)

2 + p2(xk)− f (xk)
2 = En, f . Since p2(xk)− f (xk) ≤ En, f it follows that

p1(xk)− f (xk)
2 + En, f

2 ≥ En, f . Hence p1(xk)− f (xk) ≥ En, f and, therefore, p1(xk)−
f (xk) = En, f (since p1 is a best approximation). By a similar argument one shows
that p2(xk)− f (xk) = En, f . Thus p1(xk) = p2(xk) for the (+)-points of the alternant
x1, . . . ,xn+2. For the (–)-points among x1, . . . ,xn+2 this is established analogously.
Thus it follows that p1, p2 ∈ Pn coincide on n+2 distinct points, which implies that
p1 ≡ p2. �

Remark 16.9. The argument used in the proof of corollary 16.8 to derive the unique-
ness of the best approximation pb from the existence of n+2 distinct points xi such
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that |pb(xi)− f (xi)| = En, f first appeared in [362]. Note that it would have been
sufficient to have an alternant of length n+1 in the alternation theorem to conclude
the uniqueness of pb.

We now indicate, how the uniqueness proof can be formalized in WE-PAω +(A).
Relative to theorem 16.7, the corollary 16.8 is easily be seen to be provable in WE-
PAω , e.g. using any standard proof of the fact that a nonvanishing polynomial p ∈
Pn can have at most n roots (see further below for a specific proof of this in our
quantitative analysis). Therefore, it remains to show that the proof of theorem 16.7
can be formalized within WE-PAω +(A): The proof of theorem 16.7 uses essentially
(A) and classical logic. Furthermore for the definition of E∗ and the schema (∗) we
need the following schema of bounded comprehension:

(+) ∀k0,x1
0, . . . ,x

1
k∃i00, . . . , i

0
k−1

k−1∧

j=0

(
i j = 0 ↔ A(x j,x j+1)

)
,

which can be expressed in L (WE-PAω) via primitive recursive coding of sequences
of type-1 objects as follows

(++) lth1(x)=0 k+1→∃i0
(
lth(i)= k∧∀ j0( j < k→ [(i) j =0 0↔A((x) j,(x) j+1)]

))

for all k0,x1, where A ∈ L (WE-PAω ). Using such codings we can in general talk
about e.g. sequences x1, . . . ,xn+2 in [0,1] (such as alternants etc.) where n is a vari-
able. (++) can easily be proved in WE-PAω using classical logic and induction on k.
By lemma 16.5 and (++) it follows that for every n ∈ N, f ∈ C[0,1] the schema (∗)
(in the proof of theorem 16.7) and E∗ exist, which – by (A) – leads to a contradiction
to the assumption (∗∗).

Remark 16.10. Since the points ξ0, . . . ,ξs constructed in the beginning of the proof
of theorem 16.7 can be chosen to be rational, it actually suffices to use (++) for
objects x0 of type 0 instead of 1.

Putting things together we have shown that

WE-PAω +(A) � ∀ f ∈C[0,1],n ∈ N,(c0, . . . ,cn),(c̃0, . . . , c̃n) ∈ R
n+1

(
‖ f − (cnxn + . . .+ c0)‖ = En, f = ‖ f − (c̃nxn + . . .+ c̃0)‖ →

n∧

i=0
ci = c̃i

)
.

As discussed above, Pn can be replaced by Kf ,n :=
{

p ∈ Pn : ‖p‖ ≤ 5
2‖ f‖

}
, and a

modulus of uniqueness for p1, p2 ∈ Kf ,n can – see below – be extended to a modulus
on Pn. p∈Kf ,n implies that the coefficients c0, . . . ,cn of p are bounded |ci| ≤ χ( f ,n),
where χ is a primitive recursive function on f and n (see the comments after propo-
sition 16.4). Applying theorem 15.4 (though with a compact metric space A f ,n which
is parametrized by n and any upper bound on ‖ f‖) to the result above yields a mod-
ulus of uniqueness Ψ on
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A f ,n :=

{

(c0, . . . ,cn) :
n∧

i=0

|ci| ≤ χ( f ,n)

}

⊂ R
n+1,

provable in WE-HAω +(Aε), where

(Aε) : ∀ f ∈C[0,1]∀k ∈ N∃x0 ∈ [0,1]
(
| f (x0)− sup

x∈[0,1]
f (x)| < 2−k).

This modulus extends to R
n+1 by taking Ψ ′( f ,n,k) := max{k +3,Ψ( f ,n,k)} : If at

least one of p1, p2 (say p1) is not in Kf ,n then ‖ f − p1‖ > 3
2 En, f . If now

‖ f − pi‖ ≤ En, f + 2−Ψ ′( f ,n,k) ≤ En, f + 2−k−3 for i = 1,2,

then En, f < 2−k−2. Hence

‖ f − pi‖ ≤ 2−k−2 + 2−k−3 < 2−k−1 for i = 1,2

and so ‖p1 − p2‖ < 2−k.

Since this ‘ε-version’ of (A) is provable in WE-HAω we can conclude

Theorem 16.11. WE-HAω proves that for all f ∈C[0,1],n ∈ N,k ∈ N,(c0, . . . ,cn),
(c̃0, . . . , c̃n) ∈ R

n+1

⎧
⎪⎨

⎪⎩

‖ f − (cnxn + . . .+ c1x + c0)‖,‖ f − (c̃nxn + . . .+ c̃1x + c̃0)‖ ≤ En, f + 2−Ψ( f ,n,k) →
n∧

i=0
|ci − c̃i| ≤ 2−k,

where the functional Ψ 0001 is given by a closed term of WE-HAω and represents an
operation on the standard representation of C[0,1] and n,k, i.e. primitive recursive
in f ,n,k where f is given together with a modulus of uniform continuity on [0,1].

Remark 16.12. As mentioned already, using the special representation of the space
of functions Kω,M given at the end of chapter 4 it is clear a-priori that we can ex-
tract a modulus of uniqueness which depends on f only via a modulus of uniform
continuity ω of f and a (rational) upper bound on ‖ f‖. Even the latter can be re-
moved by replacing f by f̃ (x) := f (x)− f (0) (without having to change the modulus
of uniqueness) and observing that an upper bound for f̃ can be computed from ω
alone (see the corollary to the proof of theorem 16.34 below for details).

From (the proof of) theorem 15.5 it follows that we can (using the modulus of
uniqueness Ψ above) construct an algorithm Φ for the computation of the coeffi-
cients of the best approximation with prescribed precision. Moreover, this algorithm
can be verified in WE-HAω and so, in particular, yields a proof on the existence of
the best Chebycheff approximation in WE-HAω (we have not verified in detail that
Markov’s inequality can be proved in this system, but by fully elementary and con-
structive arguments one can construct a bound χ on the coefficients, though of lesser
quality than that resulting from the Markov inequality):
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Theorem 16.13.
WE-HAω � ∀ f ∈C[0,1],n ∈ N

(
Φ f n ∈ A f ,n ⊂ R

n+1 ∧‖ f − Φ̂ f n‖ = En, f
)
,

where ̂(c0, . . . ,cn) denotes the polynomial cnxn + . . .+ c0 and Φ is a closed term of
WE-HAω .

Remark 16.14. By the uniqueness of the best approximation Φ( f ,n) is extensional
in f and thus f �→ Φ( f ,n) represents a (by proposition 4.18 pointwise contin-
uous) function C[0,1] → R

n+1. Moreover, by (the proof of) proposition 16.2.1,
Ψ( f ,n,k)+ 1 is a modulus of pointwise continuity for this function.

We now carry out the extraction of an explicit modulus Ψ of uniqueness from the
above uniqueness proof. The result is not only primitive recursive in the sense of
Gödel’s (WE-)HAω (and even in the sense of Kleene’s ̂(WE-)HA

ω
|\) but will be a

very elementary operation in f ,n and k and – if in addition a positive rational lower
bound 0 < q≤ En, f for En, f is given – even linear in the error ε = 2−k, i.e. a constant
of strong unicity (in the sense of [286]).

The key part of the extraction of the modulus is the analysis of the proof of the alter-
nation theorem 16.7 which yields a new quantitative version of the ε-weakening of
this theorem: we construct an effective operation χ which is linear in ε ∈ Q

∗
+ such

that

∀ f ∈C[0,1], p ∈ Pn,q,ε ∈ Q
∗
+
(
ε,q < En, f ∧‖ f − p‖ ≤ En, f +(χ f nkq) · ε →

∃ an ε-alternant of length k for p− f
)
,

where k = 2, . . . ,n + 2 (see corollary 16.27 below).
The moduli Ψ resp. χ are simple constructions in the data f (where f is always
endowed with a modulus of uniform continuity on [0,1]) and n,ε resp. in f ,n,ε
and a positive rational lower bound q on En, f (which is only needed to get a χ
which is linear in ε , see theorem 16.26). In particular Ψ ,χ do not depend on the
best approximation or the alternation points (as is guaranteed by theorem 15.1 since
they live in the compact spaces Kf ,n and [0,1] respectively). Thus, these moduli are
a-priori estimates.

Notation. 16.15 Kf ,n :=
{

p ∈ Pn : ‖p‖ ≤ 5
2‖ f‖

}
.

Let f ∈ C[0,1],n ∈ N, p ∈ Pn and 1 ≤ k ≤ n + 2. (x1, . . . ,xk) ∈ [0,1]k is called an
alternant of length k for p− f if

x1 < x2 < .. . < xk ∧
k∧

i=1

(
(−1)i+ j(p(xi)− f (xi)) = En, f

)
for j = 0 or j = 1.

As before, ω f : Q
∗
+ → Q

∗
+ is called modulus of uniform continuity of f ∈C[0,1] on

[0,1] if

∀q ∈ Q
∗
+,x,y ∈ [0,1]

(
|x− y|< ω f (q) → | f (x)− f (y)| < q

)
.
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The above given uniqueness proof (from [304, 284]) can be split into the following
parts:

1) ∀p1, p2 ∈ Kf ,n
(
‖ f − p1‖ = En, f = ‖ f − p2‖→ ‖ f − p1+p2

2 ‖ = En, f
)
,

2) ∀p ∈ Kn, f
(
‖ f − p‖ = En, f →∃(x1, . . . ,xn+1) ∈ [0,1]n+1

(
(x1, . . . ,xn+1) is an alternant for p− f of length n + 1

))
,

3) ∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1(‖p1 − f‖ = En, f = ‖p2 − f‖

∧(x1, . . . ,xn+1) is an alternant for p1+p2
2 − f →

n+1∧

i=1
p1(xi) = p2(xi)

)
,

4) ∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1(
n∧

i=1
(xi+1 > xi)∧

n+1∧

i=1
(p1(xi) = p2(xi))

→ p1 ≡ p2
)
,

5) ∀p ∈ Pn
(
‖ f − p‖ = En, f → p ∈ Kf ,n

)
.

Claim: 1)–4) →∀p1, p2 ∈ Kf ,n
(
‖ f − p1‖ = En, f = ‖ f − p2‖→ p1 ≡ p2

)

5)→∀p1, p2 ∈ Pn
(
‖ f − p1‖ = En, f = ‖ f − p2‖→ p1 ≡ p2

)
.

Proof: 1) → ‖ f − p1+p2
2 ‖ = En, f

2)→∃(x1, . . . ,xn+1) ∈ [0,1]n+1 : (x1, . . . ,xn+1) is an

alternant for p1+p2
2 − f

3)→ ∃(x1, . . . ,xn+1) ∈ [0,1]n+1(
n∧

i=1
(xi+1 > xi)∧

n+1∧

i=1
p1(xi) =

p2(xi)
) 4)→ p1 ≡ p2. �

Remark 16.16. 1) The alternation theorem 16.7 actually yields the existence of an
alternant of length n+2 in 2). However, in the proof of corollary 16.8 only n+1
points are necessary. This can be utilized in the extraction of Ψ and yields a
numerical improvement.

2) The restriction to Kn, f instead of Pn and the use of 5) are necessary only for the
extraction of Ψ (in order to apply theorems 15.1 and 15.4) but not for the proof
of the uniqueness.

The most difficult part of the proof of the uniqueness is the proof of the alternation
theorem 2). Let us assume that En, f > 0, then

n∧

i=1

(xi+1 ≥ xi)∧∃ j ∈ {0,1}
n+1∧

i=1

(
(−1)i+ j(p(xi)− f (xi)) = En, f

)

implies that (x1, . . . ,xn+1) is an alternant of length n + 1 for p− f , i.e.

n∧

i=1

(xi+1 > xi)∧∃ j ∈ {0,1}
n+1∧

i=1

(
(−1)i+ j(p(xi)− f (xi)) = En, f

)
.

Obviously, the alternation theorem (as well as the uniqueness of the best approx-
imation) holds trivially in the case En, f = 0. That is why we can without loss of
generality replace ‘2)’ by
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2.1) ∀p ∈ Kf ,n

(
‖p− f‖ = En, f →∃(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}

( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
(−1)i+ j(p(xi)− f (xi)) = En, f

)))
.

Modulo the standard representation from chapter 4 of the spaces involved and the
coding of finite tuples of variables of types 0,1, the formula 2.1) has the form

(∗) ∀x1(∀k0A0(k,x) →∃y ≤ sx∀z0B0(x,y,z)
)
,

where A0,B0 are quantifier-free. Because of the premise ‘∀k0A0(k,x)’, (∗) is not
an admissible sentence Γ in theorems 15.1 and 15.4 (in contrast to (A)), i.e. it is
not enough to consider the proof of ‘(∗) → uniqueness of best approximation’. We
also have to analyze the proof of ‘A → (∗)’ in WE-PAω . In theorem 10.49 we have
shown that it is sufficient to analyze the proof of ‘(A)→ ε-weakening of (∗)’, where
the ε-weakening of (∗) is

∀x1,z0(∀k0A0(k,x) →∃y ≤ sx
z∧

i=0

B0(x,y, i)
)
.

From the proof of this weakening one can extract a functional χ such that

∀x,z
( χxz∧

k=0

A0(k,x) →∃y ≤ sx
z∧

i=0

B0(x,y, i)
)
.

Applying the functional obtained from the proof of ‘(∗) → uniqueness’ to χ then
yields the modulus of uniqueness (see theorem 10.49). In our situation, this strat-
egy means that we have to analyze the proof of the following ε-weakening of the
alternation theorem (under the assumption (A)):

(+) ∀p ∈ Kf ,n

(
‖ f − p‖ = En, f →∀q,r ∈ Q

∗
+∃(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}

(n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q

)
∧

n∧

i=1
(xi < xi+1 + r)

))
.

For q < En, f , l < En, f −q and r := ωp− f (2l) (where ωp− f is a modulus of uniform
continuity of p− f )

n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q

)
∧

n∧

i=1

(xi < xi+1 + r)

implies
n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q

)
∧

n∧

i=1

(xi < xi+1).

Since (+) is trivial for En, f = 0 it is equivalent to
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2̂.1) ∀p ∈ Kf ,n

(
‖ f − p‖ = En, f →∀q ∈ Q

∗
+∃(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}

(n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q

)
∧

n∧

i=1
(xi+1 > xi)

))
.

Moreover, the argument used for this shows that (for all p ∈ Kf ,n,(x1, . . . ,xn+1) ∈
[0,1]n+1, j ∈ {0,1})

2.2)
n∧

i=1

(xi+1 ≥ xi)∧
n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < En, f

)
→

n∧

i=1

(xi+1 > xi).

By simple manipulations (e.g. writing ∀q∈Q
∗
+
(
‖ f − p‖≤ En, f +q

)
instead of ‖ f −

p‖= En, f ) and a suitable (partial) prenexation,1), 2̂.1), 2.2), 3) and 4) are equivalent
to

1∗)

⎧
⎪⎨

⎪⎩

∀p1, p2 ∈ Kf ,n,q ∈ Q
∗
+∃r ∈ Q

∗
+

( 2∧

i=1
(‖ f − pi‖ ≤ En, f + r)→ ‖ f − p1+p2

2 ‖ < En, f + q
)
.

2∗.1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p ∈ Kn, f ,q ∈ Q
∗
+∃r ∈ Q

∗
+(

‖ f − p‖ ≤ En, f + r →∃(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
(n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q)∧

n∧

i=1
(xi+1 > xi)

))
.

2∗.2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀p ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1,q ∈ Q
∗
+, j ∈ {0,1}∃l ∈ Q

∗
+

( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f |+ q ≤ En, f

)

→
n∧

i=1
(xi+1 − xi > l)

)
.

3∗)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1,q ∈ Q
∗
+, j ∈ {0,1}∃r, l ∈ Q

∗
+

( 2∧

i=1
(‖ f − pi‖ ≤ En, f + r)∧

n+1∧

i=1

(
|(−1)i+ j

( p1(xi)+p2(xi)
2 − f (xi)

)
−En, f | ≤ l

)

→
n+1∧

i=1

(
|p1(xi)− p2(xi)| < q

))
.

4∗)

⎧
⎪⎨

⎪⎩

∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1,r,q ∈ Q
∗
+∃l ∈ Q

∗
+

( n∧

i=1
(xi+1 − xi) ≥ r)∧

n+1∧

i=1
(|p1(xi)− p2(xi)| ≤ l) → ‖p1 − p2‖ < q

)
.

Modulo the Σ0
1 -collection principle (Σ0

1 -CP) (which can be proved in WE-PAω and

– in the presence of QF-AC0,0 – also in ŴE-PA
ω
|\ and even GnAω , see exercise

3.7.8) and the representation of Q, [0,1]n etc. from chapter 4 the matrix in each
of the sentences 1∗)–4∗) is equivalent to a ∃x0/1A0-formula A. Moreover, A is
monotone in the ∃-data ‘∃r ∈ Q

∗
+’ and ‘∃l ∈ Q

∗
+’. Hence we can apply theorem



16.2 Best Chebycheff approximation I 313

15.1 in order to extract functionals (switching tacitly from ‘2−k’ etc. to ‘q ∈ Q
∗
+’)

Φ1,Φ2,Φ̃2,Φ3,Φ̃3,Φ4 which realize ‘∃r’ and ‘∃l’ and depend only on f (more pre-
cisely: a representative of f in the sense of the representation of C[0,1] from chapter
4) and n,q (resp. f ,n,r,q in 4∗)). For notational simplicity, we omit the arguments
f and n of the functionals in the following:

1∗∗)

⎧
⎪⎨

⎪⎩

∀p1, p2 ∈ Kf ,n,q ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖ ≤ En, f + Φ1(q)) → ‖ f − p1+p2

2 ‖ < En, f + q
)
.

2∗∗.1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p ∈ Kf ,n,q ∈ Q
∗
+(

‖ f − p‖ ≤ En, f + Φ2(q) →∃(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
(n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f | < q

)
∧

n∧

i=1
(xi+1 > xi)

))
,

2∗∗.2)

⎧
⎪⎪⎨

⎪⎪⎩

∀p ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+

( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f |+ q ≤ En, f

)
→

n∧

i=1
(xi+1 − xi > Φ̃2(q))

)
.

3∗∗)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖ ≤ En, f + Φ3(q))

∧
n+1∧

i=1

(
|(−1)i+ j

( p1(xi)+p2(xi)
2 − f (xi)

)
−En, f | ≤ Φ̃3(q)

)

→
n+1∧

i=1
(|p1(xi)− p2(xi)| < q)

)
.

4∗∗)

⎧
⎪⎨

⎪⎩

∀p1, p2 ∈ Kf ,n,(x1, . . . ,xn+1) ∈ [0,1]n+1,r,q,∈ Q
∗
+

( n∧

i=1
(xi+1 − xi ≥ r)∧

n+1∧

i=1
(|p1(xi)− p2(xi)| ≤ Φ4(r,q)) → ‖p1 − p2‖ < q

)
,

where Φi(q),Φ4(r,q) ∈ Q
∗
+ for all q,r ∈ Q

∗
+; i=1,2,3.

For f ∈C[0,1],n ∈ N,q, l ∈ Q
∗
+ we now define

Φ(l,q) :=

min
{

Φ1

[
Φ2

(
min

(
l
4 ,Φ̃3

(
Φ4(Φ̃2( 3l

4 ),q
))))]

,Φ3
(
Φ4

(
Φ̃2( 3l

4 ),q
))}

∈ Q
∗
+.

Proposition 16.17.

∀p1, p2 ∈ Kf ,n, l,q ∈ Q
∗
+

(
l ≤ En, f ∧

2∧

i=1
(‖ f − pi‖ ≤ En, f + Φ(l,q)) → ‖p1 − p2‖ ≤ q

)
.
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Proof: By 1∗∗), the assumption yields

‖ f − p1 + p2

2
‖ ≤ En, f + Φ2(c), where c := min

( l
4
,Φ̃3

(
Φ4(Φ̃2(

3l
4

),q)
))

.

Hence 2∗∗) yields the existence of (x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} with

(1)
n+1∧

i=1

(
|(−1)i+ j( p1(xi)+ p2(xi)

2
− f (xi)

)
−En, f | < c

)

and

(2)
n+1∧

i=1

(
xi+1 − xi > Φ̃2(

3l
4

)
)
,

where (2) follows since

|(−1)i+ j( p1(xi)+ p2(xi)
2

− f (xi)
)
−En, f | <

l
4
≤ En, f

4

implies that

|(−1)i+ j( p1(xi)+ p2(xi)
2

− f (xi)
)
−En, f |+

3l
4
≤ En, f .

By 3∗∗) we obtain from (1) that

(3)
n+1∧

i=1

(
|p1(xi)− p2(xi)| < Φ4

(
Φ̃2(

3l
4

),q
))

since by Φ-definition

‖ f − p1/2‖ ≤ En, f + Φ3
(
Φ4(Φ̃2(

3l
4

),q)
)
.

Finally, 4∗∗) together with (2) and (3) implies that

‖p1 − p2‖ < q.

�

Corollary to the proof of proposition 16.17: In 1∗∗)–4∗∗) it is sufficient to have
‘≤’ and ‘≥’ in the conclusion instead of ‘<’ and ‘>’respectively (which was used
only to get the logical form required in theorem 15.1). In the following we, there-
fore, only realize these statements up to this change.
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Φ can easily be modified to yield a modulus Φ∗ which no longer depends on l and
thus avoids the assumption ‘l ≤ En, f ’: Φ∗(q) := min

( q
4 ,Φ( q

4 ,q)
)

:

Proposition 16.18.

∀p1, p2 ∈ Kf ,n,q ∈ Q
∗
+
(
‖ f − p1‖,‖ f − p2‖ ≤ En, f + Φ∗(q) →‖p1 − p2‖ ≤ q

)
.

Proof: Case 1: En, f ≥ q
4 . Then the assertion follows immediately from proposition

16.17.
Case 2: En, f < q

4 . Then ‖ f − p1‖,‖ f − p2‖ ≤ En, f + Φ∗(q) < q
4 + q

4 = q
2 →

‖p1 − p2‖ ≤ ‖p1 − f‖+‖ f − p2‖ < q
2 + q

2 = q. �

The extraction of Φ1,Φ3,Φ̃3 as well as the functionals themselves are very simple.
Φ4 can be constructed using the Lagrange interpolation formula and majorization.
The extraction of Φ̃2 again uses majorization in an essential way. The main part
of our extraction, however, is the construction of Φ2. While the other steps in the
uniqueness proof are constructive, the proof of the alternation theorem (from which
Φ2 is extracted) is essentially nonconstructive both by the use of classical logic as
well as the ineffective theorem (A).

Definition 16.19. For n ∈ N, f ∈C[0,1], p ∈ Pn and ε ∈ Q
∗
+ we define:

1) x ∈ [0,1] is an ε-(e)-point (‘ε-extremal-point’) of p− f if
En, f − ε ≤ |p(x)− f (x)| ≤ En, f + ε .

2) x ∈ [0,1] is an ε-(+)-point (ε-(–)-point) of p− f if
En, f − ε ≤ p(x)− f (x) ≤ En, f + ε (−En, f − ε ≤ p(x)− f (x) ≤−En, f + ε).

3) (x1, . . . ,xk) ∈ [0,1]k (1 ≤ k ≤ n + 2) is an ε-alternant of p− f (having length k)

if x1 < .. . < xk and
k∧

i=1
|(−1)i+ j(p(xi)− f (xi))−En, f | ≤ ε

for j = 0 or j = 1.
4) p ∈ Pn is an ε-best approximation of f if ‖p− f‖ ≤ En, f + ε .

Remark 16.20. 1) Although, formally, definition 16.19.3) is defined for all ε ≥ 0, it
is useful only in the case 0 ≤ ε < En, f since only then the sign of p(xi)− f (xi)
alternates for i = 1, . . . ,k.

2) For ε = 0, definition 16.19 coincides with the usual definitions of (e)-point, (+),
(–)-point, alternant and best approximation.

3) A definition which is similar to 16.19 can be found in [43].

Extraction of Φ1,Φ2,Φ̃2,Φ3,Φ̃3,Φ4 :

Extraction of Φ1: The extraction is trivial and we can define Φ1(q) := q :
Assume that

‖ f − p1/2‖ ≤ En, f + q.

Then
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−En, f −q ≤ f (x)− pi(x) ≤ En, f + q for i = 1,2.

Thus
−2En, f −2q ≤ 2 f (x)−

(
p1(x)+ p2(x)

)
≤ 2En, f + 2q

and so

−En, f −q ≤ f (x)− p1(x)+ p2(x)
2

≤ En, f + q

for all x ∈ [0,1] which implies that

‖ f − p1 + p2

2
‖ ≤ En, f + q.

�

Extraction of Φ3,Φ̃3 : Again the extraction is easy: Φ3(q) := q
4 ,Φ̃3(q) := q

4 .
Assume ‖ f − p1‖,‖ f − p2‖ ≤ En, f + q

4 . Let (x1, . . . ,xn+1) ∈ [0,1]n+1 be a q
4 -

alternant of p1+p2
2 − f and let xi be a q

4 -(+)-point. Then

En, f −
q
4
≤ p1(xi)+ p2(xi)

2
− f (xi) =

p1(xi)− f (xi)
2

+
p2(xi)− f (xi)

2

which (using that p2(xi)− f (xi) ≤ En, f + q
4 ) implies

En, f −
q
4
≤ p1(xi)− f (xi)

2
+

En, f + q
4

2

and so
2En, f −

q
2
≤ p1(xi)− f (xi)+ En, f +

q
4
.

Hence (using that p1(xi)− f (xi) ≤ En, f + q
4 )

(1) En, f −
q
2
− q

4
≤ p1(xi)− f (xi) ≤ En, f +

q
4
.

In the same way one shows that

(2) En, f −
q
2
− q

4
≤ p2(xi)− f (xi) ≤ En, f +

q
4
.

(1) and (2) imply |p1(xi)− p2(xi)| ≤ q. An analogous reasoning applies if xi is a
q
4 -(–)-point. �

Extraction of Φ4: By the Lagrange interpolation formula we have for all p ∈ Pn

(∗) p(x) =
n+1

∑
i=1

li(x)p(xi), where li(x) :=

n+1
∏

j=1, j �=i
(x− x j)

n+1
∏

j=1, j �=i
(xi − x j)

(1 ≤ i ≤ n + 1).
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Since xi+1 − xi ≥ r (by the assumption) it follows that

(∗∗) |li(x)| ≤
1

n+1
∏

j=1, j �=i
r · |i− j|

≤ 1
rn(i−1)!(n− i+ 1)!

for all x ∈ [0,1].

For p1 − p2 such that
n+1∧

i=1

(
|p1(xi)− p2(xi)| ≤ q

)
, (∗) implies

|p1(x)− p2(x)| ≤
n+1
∑

i=1
|li(x)| · |p1(xi)− p2(xi)| ≤ q ·

n+1
∑

i=1
|li(x)|

(∗ ∗ ∗)
(∗∗)
≤ q ·

n+1
∑

i=1

1
rn(i−1)!(n−i+1)! .

One easily verifies that

(i−1)!(n− i+ 1)!≥ �n
2
�!n

2
�! (1 ≤ i ≤ n + 1).

Hence
|p1(x)− p2(x)| ≤ q · n + 1

� n
2�! n

2�!rn .

So

Φ4(r,q) :=
� n

2�! n
2�!rn

n + 1
·q

does the job. Note that Φ4 does not depend on f ! This is due to the fact that (∗ ∗
∗) holds for all p1, p2 ∈ Pn and not only for p1, p2 ∈ Kf ,n ⊂ Pn. Put together the
reasoning above yields

n∧

i=1

(xi+1 − xi ≥ r)∧
n+1∧

i=1

(
|p1(xi)− p2(xi)| ≤ Φ4(r,q)) →‖p1 − p2‖ ≤ q

for all p1, p2 ∈ Pn,(x1, . . . ,xn+1) ∈ [0,1]n+1,r,q ∈ Q
∗
+. �

Extraction of Φ̃2: Assume

k−1∧

i=1

(xi+1 ≥ xi)∧
k∧

i=1

(
|(−1)i+ j(p(xi)− f (xi))−En, f |+ q ≤ En, f

)
,

where j = 0 or j = 1. It is clear that

k−1∧

i=1

(
|(p− f )(xi+1)− (p− f )(xi)| ≥ 2q

)
.

Let ωp− f be a modulus of uniform continuity for p− f on [0,1]. Then
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k−1∧

i=1

(xi+1 − xi ≥ ωp− f (2q)).

Define Φ̂2(q, p) := ωp− f (2q). In the following, we use majorization to obtain a Φ̃2

from Φ̂2 such that

∀p ∈ Kf ,n,q ∈ Q
∗
+
(
0 < Φ̃2(q) ≤ Φ̂2(q, p)

)
.

Φ̂2 depends on p via ωp− f . Hence we obtain Φ̃2 by replacing ωp− f in Φ̂2 by a
common modulus of uniform continuity for all p− f with p ∈ Kf ,n: Let p(x) =
cnxn + . . .c1x + c0 ∈ Pn,x,y ∈ [0,1]. By the Markov inequality (proposition 16.4)
p ∈ Kf ,n implies that ‖p′‖ ≤ 2n2(5

2‖ f‖
)

= 5n2‖ f‖, where p′ is the derivative of p.
By the mean value theorem this yields that p is Lipschitz continuous on [0,1] with
the Lipschitz constant 5n2‖ f‖. Thus

ωn(q) :=
q

5n2‖ f‖

is a uniform modulus of continuity for all p ∈ Kf ,n on [0,1] if n ≥ 1 (for n = 0 define
ωn(q) := 1). Let ω f be a modulus of uniform continuity for f ∈C[0,1]. Then

ω̃ f ,n(q) := min
(
ωn(

q
2
),ω f (

q
2
)
)

is a common modulus of uniform continuity for
{

p− f | p ∈ Kf ,n
}

on [0,1]. Hence
Φ̃2(q) := ω̃ f ,n(2q) fulfills 2∗∗.2). More precisely, this is true not for Φ̃2 but for its
variant with ‖ f‖ being replaced by some rational upper bound χ( f ) ∈ Q

∗
+ for ‖ f‖,

since Φ̃2(q) /∈ Q in general. It is clear that such a bound χ( f ) for ‖ f‖ can easily be
computed (since f ∈C[0,1] is endowed with a modulus of uniform continuity ω f ).
Note that χ( f ) may depend on ω f . In fact, any rational upper bound on ‖ f‖ can be
used. �

Extraction of Φ2: For the extraction of Φ2 we need the following majorization:

Lemma 16.21. Let z1, . . . ,zn ∈ [0,1] (n ≥ 1) be real numbers with (for n > 1)
n−1∧

i=1
(zi+1 − zi ≥ 2α) for a fixed α ∈ Q

∗
+,α ≤ 1 and define

K :=

{

x ∈ [0,1] :
n∧

i=1

(|zi − x| ≥ α
2

)

}

.

Then for p(x) := (z1 − x)(z2 − x) · . . . · (zn − x) ∈ Pn the following holds:

inf
x∈K

|p(x)| ≥
n

∏
i=1

|2i− 1
2
−n| ·αn =

 n
2 �

∏
i=1

(2i− 3
2
) ·

� n
2 �

∏
i=1

(2i− 1
2
) ·αn
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(Note that the right side does not depend on the zi).

Proof: For n = 1 the lemma is trivial. Assume n > 1 and define

z̃i := 2(i−1)α (1 ≤ i ≤ n).

Now we put
p̃(x) := (z̃1 − x)(z̃2 − x) · . . . · (z̃n − x)

and define

K̃ :=

{

x ∈ [0,1] :
n∧

i=1

(|z̃i − x| ≥ α
2

)

}

.

i) Claim: inf
x∈K̃

|p̃(x)| ≤ inf
x∈K

|p(x)|. The claim is proved by showing

∀x ∈ K∃x̃ ∈ K̃
(
|p̃(x̃)| ≤ |p(x)|

)
. This is easily verified by treating the cases 0 ≤ x ≤

z1 − α
2 , zn + α

2 ≤ x ≤ 1 and ∃i(1 ≤ i ≤ n−1∧ zi + α
2 ≤ x ≤ zi+1 − α

2 ) separately.

ii) Claim: inf
x∈K̃

|p̃(x)| =
n
∏
i=1

|2i− 1
2 −n| ·αn =

 n
2 �

∏
i=1

(2i− 3
2 ) ·

� n
2 �

∏
i=1

(2i− 1
2 ) ·αn.

Case 1: n even. We show that inf
x∈K̃

|p̃(x)| = |p̃(z̃ n
2
+ α

2 )| = |p̃(z̃ n
2 +1 − α

2 )|. Let x0 ∈

K̃ and assume x0 ≤ z̃ n
2
− α

2 . Then |p̃(x′0)| < |p̃(x0)| for x′0 := x0 + 2α ∈ K̃ since
n−1∧

i=1
(z̃i − x0| = |z̃i+1 − x′0|) and |z̃n − x0| > |z̃1 − x′0|. Analogously for x0 ≥ z̃ n

2 +1 + α
2

and x′0 := x0 −2α . One easily verifies for i = 0, . . . , n
2 −1:

|(z̃ n
2−i − x)(z̃ n

2 +1+i− x)| attains its minimum on I := [z̃ n
2
+ α

2 , z̃ n
2 +1 − α

2 ] at the point
x = z̃ n

2
+ α

2 . Hence |p̃(x)| attains its minimum on I at this point. Together with the
reasoning above we can conclude that |p̃(z̃ n

2
+ α

2 )| = inf
x∈K̃

|p̃(x)|.
Since

z̃ n
2
+

α
2

= (n− 3
2
)α ∧|z̃i − (n− 3

2
)α| = α|2i− 1

2
−n|

it follows that

|p̃(z̃ n
2
+

α
2

)| =
n

∏
i=1

|2i− 1
2
−n| ·αn.

Furthermore, we have

n

∏
i= n

2 +1
|2i− 1

2
−n|=

n
2

∏
i=1

(2i− 1
2
) and

n
2

∏
i=1

|2i− 1
2
−n|=

n
2

∏
i=1

(2i− 3
2
).

Case 2: n odd. We show |p̃(z̃ n
2 � −

α
2 )| = |p̃(z̃ n

2 � + α
2 )| = inf

x∈K̃
|p̃(x)| (This implies

(as in case 1) the claim since z̃ n
2 � −

α
2 = (n− 3

2 )α).
a) 0 ≤ x < z̃ n

2 � −
α
2 → |p̃(x)| > |p̃(z̃ n

2 � −
α
2 )| :

p̃(x) = q̃(x) ·(z̃n−x), where q̃(x) = (z̃1−x) · . . . ·(z̃n−1−x). 0≤ x < z̃ n
2 �−

α
2 implies

(by case 1, since n−1 is even)
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|q̃(x)|
!
≥ |q̃

(
z̃ n

2 �−
α
2

)
|∧|z̃n−x|> |z̃n−

(
z̃ n

2 �−
α
2

)
| and therefore |p̃(x)|> |p̃

(
z̃ n

2 �−
α
2

)
|.

(! holds since  n
2� = n−1

2 + 1 and |q̃
(
z̃ n−1

2 +1 −
α
2

)
| = inf

x∈K̃
|q̃(x)|).

b) 1 ≥ x > z̃ n
2 �+

α
2 → |p̃(x)|> |p̃

(
z̃ n

2 �+
α
2

)
| follows analogously (consider p̃(x) =

(z̃1 − x) · ˆ̃q). �

Remark 16.22. 1) The proof of lemma 16.21 shows that the estimate is optimal (as
an estimate which depends on α and n only), since the polynomial p̃(x) is ad-
missible.

2) The (less good) estimate inf
x∈K

|p(x)| ≥
(α

2

)n is trivial.

The following lemma is easy:

Lemma 16.23. Let 0 < α ≤ 1
n . Then for all j,k ≤ n:

k < j →
 j

2 �

∏
i=1

(2i− 3
2
) ·

� j
2 �

∏
i=1

(2i− 1
2
) ·α j <

 k
2 �

∏
i=1

(2i− 3
2
) ·

� k
2 �

∏
i=1

(2i− 1
2
) ·αk ≤ 1.

Lemma 16.24. Assume that En, f > 0 and let q ∈ Q
∗
+ be such that En, f ≥ q. Then

ω̃ f ,n(
q
2 ) ≤ 1

2(n+1) (here and in the following ω̃ f ,n denotes the common modulus of

uniform continuity for all p− f with p ∈ Kf ,n from the construction of Φ̃2, i.e. ω̃ f ,n,
in particular, is a modulus of uniform continuity of pb − f with pb ∈ Kf ,n being the
best approximation of f ).

Proof: We divide [0,1] into subintervals of length ω̃ f ,n(
q
2) (the last one may have

shorter length). Since q ≤ En, f /2, the amplitude of pb − f on each of these subin-
tervals is at most En, f

2 (where pb ∈ Kf ,n is the best approximation of f in Pn). By the
alternation theorem the number of these subintervals is at least 2(n + 1). �

Lemma 16.25. For f ∈ C[0,1],n ∈ N, p ∈ Pn,0 ≤ ε < En, f assume that ‖p− f‖ ≤
En, f + ε . Then there exist both ε-(+)-points and ε-(–)-points of p− f .

Proof: The proof is very similar to the proof of lemma 16.5. �

Theorem 16.26. Let 0 ≤ ε <
En, f

4 , 0 < q ≤ En, f (ε,q ∈ Q) and 2 ≤ k ≤ n + 2. If

pε ∈Pn is a
� k−2

2 �
∏
i=1

(2i− 1
2) ·

 k−2
2 �

∏
i=1

(2i− 3
2) ·min

( 1
n ,ω f ,pε (

q
2)
)k−2 ·ε-best approximation

of f ∈ C[0,1], where ω f ,pε is a modulus of uniform continuity of pε − f , then there
exists an ε-alternant having length k for pε − f .

Proof: We may assume that ω f ,pε (
q
2 ) ≤ 1

n (For otherwise we define ω ′
f ,pε

(q) :=

min
( 1

n ,ω f ,pε (q)
)
). Define Cl :=

� l
2 �

∏
i=1

(2i− 1
2 ) ·

 l
2 �

∏
i=1

(2i− 3
2 ) ·

(
ω f ,pε (

q
2 )
)l for 0 ≤ l ≤ n.

We divide [0,1] into subintervals I0, . . . , Is−1 of length ω f ,pε (
q
2) (Is may have shorter
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length). The amplitude of pε − f on Ii = [ξi,ξi+1] is ≤ q
2 ≤ En, f

2 . Ii is called ε-(e)-

interval if it contains an ε-(e)-point of pε − f . Since ε <
En, f

2 , (pε − f )(x) is distinct
from 0 on every ε-(e)-interval and therefore has constant sign. An ε-(e)-interval Ii is
an ε-(+)-interval (ε-(–)-interval) if pε(x)− f (x) > 0 (pε (x)− f (x) < 0) for all x ∈ Ii
(Thus an ε-(+)-interval contains an ε-(+)-point but no ε-(–)-point). Enumerating
all ε-(e)-intervals from left to right (I j1 , . . . , I jN ) we obtain the following schema
(assuming without loss of generality that I j1 is an ε-(+)-interval):

(∗)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I j1 , . . . , I jk1
ε-(+)-intervals

I jk1+1 , . . . , I jk2
ε-(–)-intervals

...

I jkm−1+1 , . . . , I jkm
ε-(−1)m−1-intervals (km = N).

The assumption on pε implies that ‖ f − pε‖ ≤ En, f +Ck−2 ·ε
lemma16.23

≤ En, f +ε . By
lemma 16.25, the schema (∗) consists of at least two groups (with at least one ε-(+)-
interval and one ε-(–)-interval), i.e. m ≥ 2. We now show that in fact m ≥ k: Assume
that on the contrary m < k (∗∗). pε − f has different sign on I jk1

and I jk1+1 . Hence
the right endpoint of I jk1

is distinct from the left endpoint of I jk1+1 . Thus there exists
at least one interval Ii1 = [ξi1 ,ξi1+1] of I0, . . . , Is−1 which lies between I jk1

and I jk1+1

and hence is not an ε-(e)-interval. Define z1 :=
ξi1+ξi1+1

2 . Analogously, we define

z2, . . . ,zm−1 ∈ [0,1] by zl :=
ξil +ξil+1

2 , where Iil = [ξil ,ξil+1] is an interval located in
between I jkl

and I jkl+1 (1 ≤ l ≤ m−1).

Define ρ(x) := (z1 − x)(z2 − x) · . . . · (zm−1 − x). By our assumption (∗∗) it follows
that ρ(x) ∈ Pn (since m− 1 ≤ k− 2 ≤ n). z1, . . . ,zm−1 are the only zeroes of ρ(x).
Since none of the ε-(e)-intervals contains one of these zeroes, ρ(x) has constant
sign on each I ji . This sign equals the sign of pε(x)− f (x) on I ji .
(∗ ∗ ∗) R := sup

x∈[0,1]
|ρ(x)| ≤ 1 (since z1, . . . ,zm−1 ∈ [0,1]). By the definition of zl we

have zl+1−zl ≥ 2ω f ,pε (
q
2 ). Furthermore, |zl −x| ≥ ω f ,pε ( q

2 )
2 (1≤ l ≤m−1) for every

x which lies in an ε-(e)-interval. Hence lemma 16.21 implies:

(∗ ∗ ∗∗)

⎧
⎨

⎩

If x is element of an ε-(e)-interval, then

|ρ(x)| ≥Cm−1
l.16.23
≥ Ck−2 and, therefore, |ερ(x)| = ε|ρ(x)| ≥ ε ·Ck−2.

Let Ii be an interval of I0, . . . , Is−1 which is not an ε-(e)-interval. Then
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Ei := sup
x∈Ii

|pε(x)− f (x)| < En, f − ε.

Let E∗ be the maximum of these Ei (for all non-ε-(e)-intervals Ii). Then E∗ <

En, f − ε. Choose λ > 0 so small that λ R < En, f −E∗ − ε and λ R ≤ En, f
4 − εR. The

latter can be achieved since En, f
4 − εR > 0 holds because of R ≤ 1 and ε <

En, f
4 .

Define Q(x) := pε(x)− (λ + ε)ρ(x) ∈ Pn. We have to show that

∀x ∈ [0,1](|Q(x)− f (x)| < En, f )

and so – using (A) – that ‖Q− f‖ < En, f which contradicts the definition of En, f :
Case 1: Ii is not an ε-(e)-interval:

x ∈ Ii → |Q(x)− f (x)| ≤ |pε(x)− f (x)|+(ε + λ )|ρ(x)| ≤ E∗ + ε|ρ(x)|+ λ |ρ(x)|
(∗∗∗)
< E∗ + ε|ρ(x)|+ En, f −E∗ − ε ≤ ε ·R− ε + En, f

(∗∗∗)
≤ En, f .

Case 2: Ii is an ε-(e)-interval, x ∈ Ii. Then pε(x)− f (x) and (ε + λ )ρ(x) have
the same sign and |pε(x)− f (x)| > (ε + λ )|ρ(x)| since |pε(x)− f (x)| ≥ En, f − ε −
En, f

2 >
En, f

4 and (ε + λ )|ρ(x)| ≤ εR + λ R ≤ En, f
4 . Hence

|Q(x)− f (x)| = |pε(x)− f (x)− (ε + λ )ρ(x)| = |pε(x)− f (x)|− (ε + λ )|ρ(x)|

≤ En, f + ε ·Ck−2 − ε|ρ(x)|
︸ ︷︷ ︸

(∗∗∗∗)
≥ ε·Ck−2

−λ |ρ(x)|
︸ ︷︷ ︸

>0

< En, f .

�

Corollary 16.27 (ε-alternation theorem). Suppose that 0 < q ≤ En, f , 0 ≤ ε <
En, f (q,ε ∈ Q) and 2 ≤ k ≤ n + 2. Define

χ( f ,n,q,k) :=

⎧
⎪⎨

⎪⎩

1, if k = 2

1
4

� k−2
2 �

∏
i=1

(2i− 1
2 ) ·

 k−2
2 �

∏
i=1

(2i− 3
2 ) ·

(
ω̃ f ,n(

q
2 )
)k−2

, if k > 2.

If p ∈ Pn is a
(
χ( f ,n,q,k)

)
· ε-best approximation of f ∈ C[0,1], then there exists

an ε-alternant of length k for p− f in [0,1] (note that χ( f ,n,q,k) does not depend
on p). If ε <

En, f
4 then the factor 1

4 can be omitted.

Proof: If k = 2, then the corollary follows from lemma 16.25. Thus we may assume
k > 2:
Case 1: p ∈ Kf ,n. By construction, ω̃ f ,n is a modulus of uniform continuity for
p− f on [0,1]. Since ε

4 <
En, f

4 the corollary follows from theorem 16.26 using that
by lemma 16.24 we have ω̃ f ,n(

q
2 ) ≤ 1

n .
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Case 2: p /∈ Kf ,n. In this case we have ‖p‖ > 5
2‖ f‖ and so

(+) ‖ f − p‖ >
3
2
‖ f‖ ≥ 3

2
En, f .

Hence p cannot be a
(
χ( f ,n,q,k)

)
· ε-best approximation of f since

‖p− f‖ ≤ En, f +
1
4
(. . .) · ε

16.23
≤ En, f +

ε
4

would imply (by (+)) ε
4 >

En, f
2 , contradicting ε < En, f . �

Remark 16.28. 1) Corollary 16.27 immediately implies that also
χ̃( f ,n,ε,k) :=

(
χ( f ,n,ε,k)

)
· ε is an alternation modulus, i.e. if p ∈ Pn is a

χ̃( f ,n,ε,k)-best approximation of f then there exists an ε-alternant of length
k for p− f in [0,1]. χ̃ no longer depends on q but also is not linear in ε anymore.

2) For ε = 0, the proof of theorem 16.26 transforms into the classical proof of the
usual alternation theorem 16.7.

By remark 16.28.1), χ̃ fulfills the demands for Φ2. Nevertheless, we use χ instead
of χ̃ for the construction of the modulus of uniqueness Φ although it depends in
addition to f ,n,ε also on an estimate 0 < q ≤ En, f . The reason for this is that χ is
linear in ε and so the whole modulus of uniqueness will be linear in ε which is an
important property in view of proposition 16.2. Furthermore, the construction of Φ∗

from Φ in proposition 16.18 yields a modulus which no longer depends on q (but
also is not linear). Thus we define

Φ2(r,q) :=

1
4

� n−·1
2 �

∏
i=1

(2i− 1
2) ·

 n−·1
2 �

∏
i=1

(2i− 3
2 ) ·

(
ω̃ f ,n

( r
2

))n−·1 ·q = 1
4C̃n−·1 ·

(
ω̃ f ,n

( r
2

))n−·1 ·q

for r,q ∈ Q
∗
+, where

C̃l :=
� l

2 �

∏
i=1

(2i− 1
2
) ·

 l
2 �

∏
i=1

(2i− 3
2
) ·

(
ω̃ f ,n(

r
2
)
)l

.

By corollary 16.27, we have for all f ∈C[0,1],n ∈ N, p ∈ Pn and r,q ∈ Q
∗
+ such that

q < En, f ,r ≤ En, f :

‖ f − p‖ ≤ En, f + Φ2(r,q) →∃q–alternant of length n + 1 for p− f .

Lemma 16.29. Let ω̃ f ,n be the modulus from the construction of Φ̃2. Then for 0 <
q ≤ En, f :

k̃(q) :=
� n

2�! n
2�!

n + 1
·
(

ω̃ f ,n

(
3q
2

))n

≤ 1.
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Proof: The lemma follows easily from the fact that ω̃ f ,n(
3q
2 )≤ 1

n+1 , which is proved
similarly to lemma 16.24. �

Now we are ready to define our modulus of uniqueness (using proposition 16.17
and the fact that fact Φ1(q) = q):

Φ(l,r,q) := min
{

Φ2

(
r,min

( l
4
,Φ̃3(Φ4(Φ̃2(

3l
4

),q))
))

,Φ3
(
Φ4(Φ̃2(

3l
4

),q)
)
}

.

By (the corollary to the proof of) proposition 16.17, Φ is a modulus of uniqueness
for p1, p2 ∈ Kf ,n if 0 < r, l ≤ En, f . By lemmas 16.23 and 16.24, we have

Φ2

(
r,min

( l
4 ,Φ̃3(Φ4(Φ̃2( 3l

4 ),q))
))

≤ min
( l

4 ,Φ̃3(Φ4(Φ̃2( 3l
4 ),q))

)

≤ Φ̃3(Φ4(Φ̃2( 3l
4 ),q)) = Φ3(Φ4(Φ̃2( 3l

4 ),q))

since Φ̃3(q) = q
4 = Φ3(q). Hence

Φ(l,r,q) = Φ2

(
r,min

( l
4 ,Φ̃3(Φ4(Φ̃2( 3l

4 ),q))
))

= 1
4 ·C̃n−·1 ·

(
ω̃ f ,n( r

2 )
)n−·1 ·min

( l
4 , 1

4 k̃(l) ·q
)
.

Furthermore, min
( l

4 , 1
4 k̃(l) ·q

)
can be replaced by min

(En, f
4 , 1

4 k̃(l) ·q
)

since the min-
imum with l

4 is only used in proposition 16.17 to derive

|(−1)i+ j( p1(xi)+ p2(xi)
2

− f (xi)
)
−En, f |+

3l
4
≤ En, f

from
|−−”−−|< l

4
≤ En, f

4
.

But the former follows also from |−−”−−|< En, f
4 and l ≤ En, f .

Replacing 1
4 k̃(l) by 1

10 k̃(l) makes Φ(l,r,q) only smaller and, therefore, a fortiori
yields a modulus of uniqueness. Finally we identify r and l. Thus Φ is redefined as
follows

Φ̃(l,q) :=
1
4

C̃n−·1 ·
(

ω̃ f ,n(
l
2
)
)n−·1

·min
(En, f

4
,

1
10

k̃(l) ·q
)
.

Now suppose that 1
10 q <

En, f
4 . Then (by lemma 16.29)

1
10

k̃(l) ·q <
En, f

4
and so Φ̃(l,q) =

1
4

C̃n−·1 ·
(

ω̃ f ,n

(
l
2

))n−·1
· 1

10
k̃(l) ·q.
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In this case we can omit the factor 1
4 by corollary 16.27.

In the following, we show that the resulting functional is in fact a modulus of unique-
ness for arbitrary q > 0 and p1, p2 ∈ Pn:

Theorem 16.30. Proof–theoretic analysis of the uniqueness proof from [304] and
[284] yields the following quantitative version of uniqueness: For f ∈ C[0,1],n ∈
N, l ∈ Q

∗
+ define

Ψ( f ,n, l) :=

1
10(n+1)

� n−·1
2 �

∏
i=1

(2i− 1
2) ·

 n−·1
2 �

∏
i=1

(2i− 3
2 ) ·

⌊n
2

⌊
!
⌈ n

2

⌉
!
(
ω̃ f ,n

( l
2

))n−·1 ·
(
ω̃ f ,n

( 3l
2

))n
,

where

ω̃ f ,n(q) := min
( q

10n2‖ f‖∞
,ω f (

q
2
)
)

for n ≥ 1 and := 1 otherwise.

Then for all f ∈C[0,1],n ∈ N and all p1, p2 ∈ Pn the following holds:

∀l,q ∈ Q
∗
+
(
l ≤ En, f ∧

2∧

i=1

(‖ f − pi‖∞ ≤ En, f +
(
Ψ( f ,n, l)

)
·q) →‖p1 − p2‖∞ ≤ q

)
.

In instead of ‖ f‖∞ one may use any strictly positive upper bound M ≥‖ f‖∞ instead.

Proof: As before, we simply write ‖ · ‖ instead of ‖ · ‖∞.

Case 1: 1
10 q <

En, f
4 : If p1, p2 ∈ Kf ,n, then the theorem follows from the reasoning

above. Thus suppose w.l.o.g. that p1 /∈ Kf ,n. Then ‖p1‖ ≥ 5
2‖ f‖ and therefore ‖p1−

f‖ ≥ 3
2‖ f‖ ≥ 3

2 En, f . Hence ‖p1 − f‖ ≤ En, f +
(
Ψ ( f ,n, l)

)
·q implies

(
Ψ( f ,n, l)

)
·

q ≥ En, f
2 , which contradicts the fact that – using lemmas 16.23, 16.24 and 16.29 –

(
Ψ( f ,n, l)

)
·q≤ 1

10 q <
En, f

4 . Thus p1 cannot be a
(
Ψ( f ,n, l)

)
·q-best approximation

of f .
Case 2: 1

10 q ≥ En, f
4 , i.e. En, f ≤ 2

5 q. Hence

‖ f − p1‖,‖ f − p2‖ ≤ En, f +
(
Ψ( f ,n, l)

)
·q ≤ En, f +

1
10

q

implies that

‖p1 − p2‖ ≤ ‖p1 − f‖+‖ f − p2‖ ≤ 2En, f +
1
5

q ≤ 4
5

q +
1
5

q = q.

For the case n = 0 note that we can take the trivial modulus of uniqueness q/2. �

Corollary 16.31. Let Ψ( f ,n, l) be defined as in theorem 16.30 and l ∈ Q
∗
+ such

that 0 < l ≤ En, f .

1) Ψ( f ,n, l) is a constant of strong unicity, i.e.
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∀ f ∈C[0,1],n ∈ N, p ∈ Pn
(
‖ f − p‖∞ ≥ ‖ f − pb‖∞ +

(
Ψ( f ,n, l)

)
· ‖p− pb‖∞

)
,

where pb is the best approximation of f in Pn.
2) λl( f ,n) := 2

Ψ( f ,n,l) is a pointwise Lipschitz constant for the Chebycheff projection
P:

∀ f , f0 ∈C[0,1],n ∈ N
(
‖P( f ,n)−P( f0,n)‖∞ ≤ λl( f0,n) · ‖ f − f0‖∞

)
.

3) Ψ̃( f ,n,q) := min
( q

4 ,Ψ( f ,n, q
4 ) ·q

)
is a modulus of uniqueness:

∀p1, p2 ∈ Pn,q ∈ Q
∗
+
( 2∧

i=1

(‖ f − pi‖∞ ≤ En, f +Ψ̃( f ,n,q)) →‖p1 − p2‖∞ ≤ q
)
.

4) 1
2Ψ̃( f ,n,q) (Ψ̃ as in 3)) is a modulus of pointwise continuity of P .

Note that Ψ̃ is a constructive operation in f (endowed with a modulus of uniform
continuity) and n,q and does not depend on any estimate 0 < l ≤ En, f .

Proof: 1) and 2) follow immediately from theorem 16.30 and proposition 16.2.
3) follows from theorem 16.30 and the proof of proposition 16.18.
4) follows from 3) and proposition 16.2. �

Remark 16.32. Since theorem 16.30 (and corollary 16.31) is provable in WE-PAω +
(A) it follows that by theorem 15.1 that it can already be proved in WE-HAω plus the
ε-weakening Aε of A and so (since the latter is provable in WE-HAω ) in WE-HAω

alone.

Let A be a subset of C[0,1] and assume that ωA,n is a common modulus of uni-
form continuity for all p− f where f ∈ A and p ∈ Kf ,n. Assume, furthermore, that
0 < lA ≤ inf

f∈A
En, f . Then the modulus ΨA obtained from Ψ by replacing ω̃ f ,n by ωA,n

and l by lA is a common constant of strong unicity for all f ∈ A.
In particular, if K ⊂ C[0,1] is totally bounded, i.e. pre-compact, w.r.t. ‖ · ‖∞, then
there exists a common modulus of uniform continuity ωK for all f ∈ K and a con-
stant MK ∈ Q

∗
+ such that ‖ f‖∞ ≤ MK for all f ∈ K. Define

ωK,n(q) := min
(
ωn,MK (

q
2
),ωK(

q
2
)
)
, where ωn,MK (q) :=

q
5n2MK

.

As in the case of ω̃ f ,n it follows that ωK,n is a common modulus of uniform continu-
ity for all p− f with f ∈ K and p ∈ Kf ,n. If, moreover, K is compact and K∩Pn = /0,
then inf f∈K En, f > 0. Put together we have shown the following theorem:

Theorem 16.33. 1) Let K ⊂C[0,1]\Pn compact (w.r.t. ‖ ·‖∞) with a common mod-
ulus of uniform continuity ωK for all f ∈ K and MK ∈ Q

∗
+ such that ∀ f ∈

K(‖ f‖∞ ≤ MK) and define ωK,n as above. Let ΨK denote the result obtained
from Ψ (defined as in theorem 16.30) by replacing ω̃ f ,n by ωK,n and l by lK ∈ Q

∗
+

such that 0 < lK ≤ inf
f∈K

En, f . Then (ΨK(n, lK) (resp. λK := 2
ΨK(n,lK) ) is a common

constant of strong unicity (resp. Lipschitz constant) for all f ∈ K.
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2) Let K ⊂C[0,1] be pre-compact with ωK and MK as above and define Ψ̃K(n,q) :=
min

( q
4 ,ΨK(n, q

4 ) · q
)

(resp. 1
2Ψ̃K(n,q)) is a common modulus of uniqueness

(pointwise continuity for the Chebycheff projection) for all f ∈ K. This result
also applies if inf f∈K En, f = 0 since we do not use any positive lower bound on
inf f∈K En, f .

As mentioned already at the end of the previous section, the (ineffective) existence
of a constant of strong unicity was first proved in 1963 [286] and the existence of a
common constant in the sense of theorem 16.33 even only in 1976 [153].
Let γ∗n ( f ) be the largest constant of strong unicity for given f ∈ C[0,1],n ∈ N. In
[152] it is proved that {1/γ∗n ( f ) : f ∈ B} is unbounded for all n ≥ 1, where B is the
closed unit ball in C[0,1]. So there is no common constant of strong unicity for all
of B. In [302] it is shown that liminfn→∞ γ∗n ( f ) = 0 for certain classes of functions.
In [152] it was conjectured that this would be the case for all functions f ∈ C[0,1]
except polynomials (note that our lower estimate on γ∗n ( f ) does indeed have this
property which – of course – does not prove the conjecture). This conjecture was
finally established (without providing any bounds) in 1999 by W. Gehlen ([112]).
In [113], Gehlen even proved that the smallest Lipschitz constants λ ∗

n ( f ) for the
Chebycheff projection operator satisfy limsupn→∞ λ ∗

n ( f ) = ∞, whenever f is not a
polynomial.

General remarks on the extraction: Theorem 16.11 (based on theorem 15.4 and
hence in turn on theorem 15.1) guaranteed the extractability of a primitive recursive
(in the sense of WE-HAω ) modulus of uniqueness without having to invest any new
mathematical ideas. In the above analysis we, nevertheless, used general mathemat-
ical knowledge at various places to achieve obvious numerical improvements. This
applies e.g. to the proof of lemma 16.21 which led to a somewhat better estimate
than the direct one from remark 16.22.2). Lemmas 16.24 and 16.29 can be avoided
by just replacing ω̃ f ,n(q/2) by min(1/n, ω̃ f ,n(q/2)) and k̃(q) by min(1, k̃(q)) (which
is, however, superfluous as these lemmas show). Also the original uniqueness proof
didn’t specify any particular argument for the interpolation property of the polyno-
mials in Pn. For the quantitative analysis it is clear that it is reasonable to use the
Lagrange interpolation formula since it explicitly provides the unique interpolating
polynomial. For an explicit version of the compactness of Kf ,n (in terms of a com-
mon modulus of uniform continuity) one naturally uses the (as a uniform bound)
optimal Markov inequality. Both this inequality as well as the Lagrange interpola-
tion formula can be written as purely universal sentences and hence can be treated
as axioms (without having to analyze their proofs at all). Since the fact that without
any additional ideas an effective modulus of uniqueness can be extracted from the
above discussed uniqueness proof is already established by theorem 16.11 to carry
out an explicit extraction only makes sense if one aims at obtaining a modulus as
good as possible from the given proof, i.e. one that does not seem to allow for a
substantial improvement unless a genuinely new uniqueness argument is used. Such
a new argument resulting in a significantly better modulus (and an easier extraction)
is analyzed in the next section.
Theorem 16.11 not only guarantees the extractability of an effective modulus but
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also the constructive verification (in the sense of WE-HAω ) of the resulting modu-
lus. In our reasoning above, however, we made free use of classical reasoning, when-
ever this was useful. Nevertheless, it is clear how to ‘constructivize’ the treatment
either directly or by the use of theorem 15.1: e.g. already lemma 16.25 requires the
principle (A), but if we strengthen the assumption that p is an ε-best approximation
to the assumption that it is a δ -best approximation for some δ < ε (e.g. ε/2) then
the proof can be carried out constructively. This, however, would make the proofs
only more complicated without any improvement of the numerical content. More-
over, despite of the fact that the modulus Ψ in theorem 16.30 was obtained making
free use of classical reasoning, one can (as we did in remark 16.32) appeal to theo-
rem 15.1 to get the assurance that it also can be verified constructively whatever the
benefits of this information might be.

16.3 Best Chebycheff approximation II

In this section (which is based largely on Kohlenbach [205]) we analyze a second
proof for the uniqueness of the best Chebycheff approximation due to [381] and
[313]. It turns out that the analysis is much simpler although the uniqueness proof
is somewhat more complicated and again uses the difficult alternation theorem (and
hence (A), i.e. WKL). However, this time the alternation theorem is used in the
form of a sentence Γ (in the sense of theorem 15.1) so that – guaranteed by that
general metatheorem – we can treat it as an axiom and don’t need to analyze its
proof. Furthermore, the numerical bounds on strong uniqueness are significantly
better than the ones obtained in the previous section. For the polynomial case (we
will also treat the case of general so-called Haar spaces below) we get:

Theorem 16.34. Proof-theoretic analysis of the uniqueness proof from [381] (with
full details in [313]) gives the following result: Let En, f := inf

p∈Pn
‖ f − p‖∞ and

Φ̃(ω ,n,ε) := min
(

ε/4,

⌊ n
2

⌋
!
⌈ n

2

⌉
!

2(n + 1)
· (ωn(ε/2))n · ε

)
,

with

ωn(ε) :=

⎧
⎪⎨

⎪⎩

min
(

ω
( ε

2

)
, ε

8n2 1
ω(1) �

)

, if n ≥ 1

1 if n = 0.

Then Φ̃ is a common modulus of uniqueness for all f ∈ C[0,1] which have the
modulus of uniform continuity ω , i.e.

∀n∈N; p1, p2 ∈Pn;ε ∈Q
∗
+
( 2∧

i=1

(‖ f − pi‖∞ ≤En, f +Φ̃(ω ,n,ε))→‖p1− p2‖∞ ≤ ε
)
.



16.3 Best Chebycheff approximation II 329

Moreover if En, f > 0 and l ∈ Q
∗
+ such that l ≤ En, f and

Φ(ω ,n, l) :=

⌊ n
2

⌋
!
⌈ n

2

⌉
!

2(n + 1)
· (ωn(2l))n

then Φ(ω ,n, l) is a constant of strong unicity for f (see the previous section).
Instead of ‘1/ω(1)�’ we may have an arbitrary upper bound Q

∗
+ � M ≥ ‖ f‖∞.

We will now extract this bound as well as a generalization to arbitrary so-called Haar
subspaces of C[0,1] instead of Pn. It will turn out that this improves numerically
the only prior known bounds (due to [43, 45] and – implicitly – [198, 199]). As
mentioned already in the previous section, ineffectively the existence of constants of
strong unicity was first proved in [286] and the existence of uniform such constants
in [153]. In the following, (φ1, . . . ,φn) always is a tuple of n linearly independent
functions in C[0,1].

Definition 16.35. (φ1, . . . ,φn) is called a Chebycheff system (of dimension n over
[0,1] if every non-trivial generalized polynomial c1φ1 + . . .+ cnφn has at most n−1
roots. In this case

Hφ := LinR(φ1, . . . ,φn) := {c1φ1 + . . .+ cnφn | c1, . . . ,cn ∈ R}

is called a Haar subspace of C[0,1].

The following proposition is an easy exercise in linear algebra:

Proposition 16.36. The following statements are equivalent:

1) (φ1, . . . ,φn) is an n-dimensional Chebycheff system over [0,1].
2) For any n pairwise distinct points x1, . . . ,xn ∈ [0,1] we have that

Det(A(x) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(x1) φ2(x1) . . . φn(x1)

φ1(x2) φ2(x2) . . . φn(x2)

. . . . . . . . . . . . . . . . . . . . . .

φ1(xn) φ2(xn) . . . φn(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

3) For any n pairwise distinct points x1, . . . ,xn ∈ [0,1] and arbitrary points
y1, . . . ,yn ∈ R there exists exactly one ψ ∈ Hφ such that

ψ(xi) = yi for i = 1, . . . ,n.

Example 16.37. (see e.g. [70]) The following tuples are Chebycheff systems (in par-
ticular over [0,1]):

1) (1,x,x2, . . . ,xn) is a Chebycheff system of dimension n + 1 over any interval,
2) (1,ex,e2x, . . . ,enx) is a Chebycheff system of dimension n + 1 over any interval,
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3) (1,sin(x), . . . ,sin(nx),cos(x), . . . ,cos(nx)) is a Chebycheff system of dimension
2n + 1 over any interval [a,a + 2π).

The uniqueness proof we analyze in this section is a slight simplification of a clas-
sical proof which goes back to [381] and relies on the alternation theorem which in
turn relies on (and also implies) WKL (see the previous section).

We now sketch this uniqueness proof: let f ∈ C[0,1], (φ1, . . . ,φn) be a Cheby-
cheff system over [0,1], H := LinR(φ1, . . . ,φn), EH, f :=dist( f ,H). Assume that
ψ1,ψ2 ∈ H are best approximations of f in H, i.e. ‖ f −ψ1‖∞ = EH, f = ‖ f −ψ2‖∞.
The alternation theorem extends to arbitrary Chebycheff systems (see again [66] for
a proof; since this time we will be able to by-pass the proof of the alternation theo-
rem and treat it as an axiom Γ , there is no need to give the proof here). Hence there
exists an alternant x1 < .. . < xn+1 in [0,1] for ψ1 − f , i.e. for j = 0 or j = 1:

n+1∧

i=1

(
(−1)i+ j(ψ1(xi)− f (xi)

)
= EH, f

)
.

Since ‖ f −ψ2‖∞ ≤ EH, f , it follows that

n+1∧

i=1

(
(−1)i+ j( f (xi)−ψ2(xi)

)
≥−EH, f

)
.

Hence

n+1∧

i=1

(
(−1)i+ j

(
ψ1(xi)−ψ2(xi)

)

= (−1)i+ j
(
ψ1(xi)− f (xi)

)
+(−1)i+ j

(
f (xi)−ψ2(xi)

)
≥ 0

)
.

Using the fact that (φ1, . . . ,φn) is a Chebycheff system and x1 < .. . < xn+1 one
concludes that ψ1 ≡ψ2 (see lemma 16.38 below). In order to make our metatheorem
15.1 applicable we restrict – as before – H to a compact set. As it will turn out we
this time can even take

K̃f ,H := {ψ ∈ H : ‖ψ‖∞ ≤ 2‖ f‖∞} ,

i.e. with the bound 2‖ f‖∞ instead of 5
2‖ f‖∞, and will still be able to extend in the

end the modulus we obtain from K̃f ,n to H. Moreover, we modify the proof above
in such a way that the alternation theorem is used only in the form

(+)

⎧
⎪⎨

⎪⎩

∀ f ∈C[0,1]∃ψb ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
(−1)i+ j(ψb(xi)− f (xi)) = EH, f

))
.
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(+) follows immediately from the alternation theorem, the existence of a best ap-
proximation of f in H and the fact that each best approximation of f must be in
K̃f ,H . Conversely, (+) implies the alternation theorem if we use already the unique-
ness of the best approximation. Since we are just about to prove the uniqueness, the
uniqueness proof itself does not ‘know’ that (+) actually is as strong as the alter-
nation theorem itself and in fact, in the context of this proof, (+) behaves rather
different from the alternation theorem in the previous uniqueness proof (analyzed in
the preceding section): since (+) has the form Γ (which, as we saw in the previous
section, the alternation theorem does not) it can be treated as a ‘black box’ in the
course of the extraction of the modulus of uniqueness.

The uniqueness proof given above can be decomposed into the following main steps:

1. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
( n+1∧

i=1

(
(−1)i+ j(ψ1(xi)− f (xi)) = EH, f

)
∧

n+1∧

i=1
(|ψ2(xi)− f (xi)| ≤ EH, f )

→
n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) ≥ 0

))
.

2. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
( n∧

i=1
(xi+1 > xi)∧

n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) ≥ 0

)
→ ‖ψ1 −ψ2‖∞ = 0

)
.

3. ∀ψ ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1}
( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
(−1)i+ j(ψ(xi)− f (xi)) = EH, f > 0

)
→

n∧

i=1
(xi+1 > xi)

)
.

4. ∀ψ ,ψ1,ψ2 ∈ H
(
‖ψ −ψ1‖∞ = ‖ψ −ψ2‖∞ = 0 → ψ1 ≡ ψ2

)
.

Together with (+), 1.–4. imply that for all f ∈C[0,1] :

EH, f > 0 →∀ψ1,ψ2 ∈ K̃f ,H
(
‖ f −ψ1‖∞ = EH, f = ‖ f −ψ2‖∞ → ψ1 ≡ ψ2

)
.

Assume EH, f > 0: By (+) and ‘3.’ there exists ψb, (x1, . . . ,xn+1) such that (for, say,
j = 0)

n∧

i=1

(xi+1 > xi)∧
n+1∧

i=1

(
(−1)i(ψb(xi)− f (xi)

)
= EH, f > 0

)
.

Applying ‘1.’ to ψ ′
1 := ψb,ψ ′

2 := ψ1 as well as to ψ ′
1 := ψb,ψ ′

2 := ψ2 and
(x1, . . . ,xn+1) yields that
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n+1∧

i=1

(−1)i(ψb(xi)−ψk(xi)
)
≥ 0 (k = 1,2)

and thus, by ‘2.’, ‖ψb −ψ1‖∞ = 0 and ‖ψb −ψ2‖∞ = 0. Hence by ‘4.’ ψ1 ≡ ψ2.

Since (+) (as discussed above) is of the form of a sentence Γ in theorem 15.1 its
proof is not relevant for the extraction of the modulus of uniqueness as we may sim-
ply treat (+) as an axiom (for the course of the extraction).

Rewriting e.g. ‘| . . . | ≤En, f ’ as ‘∀r ∈Q
∗
+(| . . . | ≤ En, f +r)’ and using partial prenex-

ation ‘1.’–‘4.’ can be transformed into:

1∗. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+∃r ∈ Q

∗
+

( n+1∧

i=1

(
(−1)i+ j(ψ1(xi)− f (xi)) = EH, f

)
∧

n+1∧

i=1
(|ψ2(xi)− f (xi)| ≤ EH, f + r)

→
n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) > −q

))
.

2∗. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q, l ∈ Q
∗
+∃r ∈ Q

∗
+

( n∧

i=1
(xi+1 − xi ≥ l)∧

n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) ≥−r

)
→ ‖ψ1 −ψ2‖∞ < q

)
.

3∗. ∀ψ ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+∃r ∈ Q

∗
+

( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
(−1)i+ j(ψ(xi)− f (xi)) = EH, f ≥ q

)
→

n∧

i=1
(xi+1 − xi > r)

)
.

The quantitative version of 4. is trivial:

4∗. ∀ψ ,ψ1,ψ2 ∈ H,q ∈ Q
∗
+
( 2∧

i=1

(‖ψ −ψi‖∞ ≤ q
2
) → ‖ψ1 −ψ2‖∞ ≤ q

)
.

‘1∗.’ and ‘3∗.’ can easily be proved in E-PAω . As we will see below, ‘2∗.’ is provable
in E-PAω+intermediate value theorem (IVT). The intermediate value theorem has
the form of another sentence Γ (alternatively, we could just formalize the proof of
the intermediate value theorem in E-PAω+QF-AC0,0):

(IVT) : ∀ f ∈C[0,1]∃x0 ∈ [0,1]
(

f (0) < 0∧ f (1) > 0 → f (x0) = 0
)
;

define F( f ,x) :=min( f (0),0)·max( f (1),0) · f (x). Then

F( f ,x) = 0 ↔
(

f (0) < 0∧ f (1) > 0 → f (x) = 0
)
.

So (IVT) can be written as
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∀ f ∈C[0,1]∃x0 ∈ [0,1]
(
F( f ,x0) =R 0

)
,

which is of the form Γ . Hence we can apply theorem 15.1 to extract bounds from
below for ‘∃r ∈ Q

∗
+’ (i.e. ‘∃r ≥Q Φ f q’) which depend only on f (together with a

modulus of uniform continuity of f ) and q (resp. f ,q, l). These bounds realize in
fact ‘∃r ∈ Q

∗
+’ since ‘1∗.’–‘3∗.’ are monotone in r. Thus one can obtain effective

operations Φ1,Φ2,Φ3 such that Φ1( f ,q),Φ2( f , l,q),Φ3( f ,q) ∈Q
∗
+ for all q, l ∈Q

∗
+

and

1∗∗. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+

( n+1∧

i=1

(
(−1)i+ j(ψ1(xi)− f (xi)) = EH, f

)
∧

n+1∧

i=1
(|ψ2(xi)− f (xi)| ≤ EH, f + Φ1( f ,q))

→
n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) > −q

))
.

2∗∗. ∀ψ1,ψ2 ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q, l ∈ Q
∗
+

( n∧

i=1
(xi+1 − xi ≥ l)∧

n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) ≥−Φ2( f , l,q)

)

→‖ψ1 −ψ2‖∞ < q
)
.

3∗∗. ∀ψ ∈ K̃f ,H ,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q ∈ Q
∗
+

( n∧

i=1
(xi+1 ≥ xi)∧

n+1∧

i=1

(
(−1)i+ j(ψ(xi)− f (xi)) = EH, f ≥ q

)

→
n∧

i=1
(xi+1 − xi > Φ3( f ,q))

)
.

Define Φ( f , l,q) := Φ1
(

f ,Φ2( f ,Φ3( f , l), q
2)
)
. One easily verifies that for all f ∈

C[0,1] and l ∈ Q
∗
+ such that EH, f ≥ l:

(++) ∀ψ1,ψ2 ∈ K̃f ,H ,q∈Q
∗
+
( 2∧

i=1

(‖ψi− f‖∞≤EH, f +Φ( f , l,q))→‖ψ1−ψ2‖∞≤ q
)
.

Proof: Assume that EH, f > 0 with EH, f ≥ l and that

‖ψ1 − f‖∞,‖ψ2 − f‖∞ ≤ EH, f + Φ( f , l,q).

Let ψb ∈ K̃f ,n and (x1, . . . ,xn+1) ∈ [0,1]n+1 be by (+) such that (formulating for
simplicity only the case j = 0):

n∧

i=1

(xi+1 ≥ xi)∧
n+1∧

i=1

(
(−1)i(ψb(xi)− f (xi)) = EH, f

)
.
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Then ‘1∗∗.’ applied to ψb,ψ1 (for ψ1,ψ2) yields that

(1)
n+1∧

i=1

(
(−1)i(ψb(xi)−ψ1(xi)) ≥−Φ2

(
f ,Φ3( f , l),

q
2
))

.

Also ‘3∗∗.’ applied to ψ := ψb gives

(2)
n∧

i=1

(
xi+1 − xi ≥ Φ3( f , l)

)
.

Because of (1),(2) we can use ‘2∗∗.’ applied to ψb,ψ1 (for ψ1,ψ2) to conclude that
‖ψb −ψ1‖∞ ≤ q

2 . An analogous reasoning shows that ‖ψb−ψ2‖∞ ≤ q
2 which yields

the claim. �

Only for the verification of Φ , i.e. the proof of (++), the assumption (+) is used.
The construction of Φ does not use (a proof of) (+).
From the proof above it is clear that we need ‘1∗∗.’–‘3∗∗.’ only with ‘≥’ and ‘≤’
instead of ‘>’ and ‘<’ respectively.

We are now going to construct Φ1,Φ2,Φ3 explicitly (in particular for the special
case H := Pn−1):

Extraction of Φ1: The construction of Φ1 is trivial. One easily verifies that
Φ1( f ,q) := q fulfills ‘1∗∗.’ with ψ1(xi)−ψ2(xi) ≥−q instead of ψ1(xi)−ψ2(xi) >
−q for all ψ1,ψ2 ∈ H which – as we just noticed – is sufficient for (++).

Extraction of Φ2: We first show that for all ψ ∈ H,(x1, . . . ,xn+1) ∈ [0,1]n+1

(∗)
n∧

i=1

(xi+1 > xi)∧
n+1∧

i=1

(
(−1)iψ(xi) ≥ 0

)
→ ψ ≡ 0,

which immediately gives ‘2.’

A zero x∗ ∈ (0,1) of ψ is called ‘simple’ if ψ changes its sign in x∗ and ‘double’

otherwise. From
n+1∧

i=1
(−1)iψ(xi) ≥ 0 one can show that ψ has at least n zeroes pro-

vided that one, indeed, counts double zeroes twice, which then yields ψ ≡ 0. This
argument is due to [381] and presented in detail by J.R. Rice in [313] (pp. 61–62).
In order to prove (∗) from this, one has to show that double zeroes in fact do count
twice. This is done e.g. in [313] (p. 57): To every ψ ∈ H with ψ �≡ 0 Rice constructs
a ψε ∈ H, with ψε �≡ 0, which has the same simple zeroes as ψ but two simple ze-
roes for each double zero yi of ψ (ψ(yi) is disturbed by a sufficiently small ε).

We simplify this proof in that we apply such an ε-perturbation directly to the points
x1, . . . ,xn+1 in (∗) and reduce (∗) to
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(∗∗) ∀ψ ∈ H,(x1, . . . ,xn+1) ∈ [0,1]n+1¬
( n∧

i=1

(xi+1 > xi)∧
n+1∧

i=1

(
(−1)iψ(xi) > 0

))
,

which follows from the intermediate value theorem and the definition of a Cheby-
cheff system.

Lemma 16.38. For all ψ ∈ H,(x1, . . . ,xn+1) ∈ [0,1]n+1 the following holds

n∧

i=1

(xi+1 > xi)∧
n+1∧

i=1

(
(−1)iψ(xi) ≥ 0

)
→ ψ ≡ 0.

Proof: Suppose that
n∧

i=1
(xi+1 > xi)∧

n+1∧

i=1

(
(−1)iψ(xi)≥ 0

)
and (−1)i0ψ(xi0) =: α >

0 for some i0 ∈ {1, . . . ,n + 1}. Since H is a Haar subspace there exists a (uniquely
determined) χ ∈ H such that

χ(xi) = (−1)i for i = 1, . . . , i0 −1, i0 + 1, . . . ,n + 1.

Let ε > 0 be so small that ε · ‖χ‖∞ < α . Then
n+1∧

i=1

(
(−1)i(ψ + εχ)(xi) > 0

)
. But

this is impossible by (∗∗) (since ψ + εχ ∈ H). Hence
n+1∧

i=1

(
(−1)iψ(xi) = 0

)
which

implies ψ ≡ 0. �

(∗∗) is equivalent to a purely universal formula (and hence a–fortiori to a formula
having the form ∀x ∈ X∃y ∈ K

(
F(x,y) = 0

)
). Thus by theorem 15.1 we only have

to analyze the proof of the implication ‘(∗∗)→ lemma 16.38’ which can be carried
out in E-PAω (+QF-AC1,0+ QF-AC0,1 + axioms Γ ) if (φ1, . . . ,φn) is, provably in
E-PAω(+QF-AC1,0+ QF-AC0,1 + axioms Γ ), a Chebycheff system. An unwinding
of the proof of (∗∗) or a constructivization of the proof of lemma 16.38 which uses
only ε-instances of the nonconstructive intermediate value theorem is neither nec-
essary nor would it help in any way to improve the extracted bound.
In the proof of lemma 16.38 we used the norm ‖χ‖∞ of the interpolation ‘polyno-
mial’ χ . Hence for a quantitative version of lemma 16.38 (i.e. for the construction
of a Φ2 satisfying ‘2∗∗.’) we have to give an upper estimate for ‖χ‖∞ which depends

on q ∈ Q
∗
+ only, where

n∧

i=1
(xi+1 − xi ≥ q), but not on the points xi themselves which

is achieved by the majorization technique implicit in the proof of theorem 15.1:

Lemma 16.39. Let φ = (φ1, . . . ,φn) be a Chebycheff system over [0,1] where
φ1, . . . ,φn ∈ C[0,1] are definable by closed terms of E-PAω and φ is provably in
E-PAω+QF-AC1,0+QF-AC0,1 plus (possibly) lemmas of the form Γ a Chebycheff
system. Then one can extract from such a proof a function δ : Q

∗
+ → Q

∗
+ (given by

a closed term of E-PAω ) satisfying
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WE-HAω +Γε �

∀ψ ∈ H,x1, . . . ,xn ∈ [0,1],q,r ∈ Q
∗
+

( n−1∧

i=1
(xi+1 − xi ≥ q)

∧
n∧

i=1

(
|ψ(xi)| ≤ δ (q) · r

)
→ ‖ψ‖∞ ≤ r

)
.

(Here H :=LinR(φ1, . . . ,φn)).

Proof: By the assumption that φ is a Chebycheff system we have (provably in
E-PAω+QF-AC1,0+ QF-AC0,1 +Γ )

∀m ∈ N,(x1, . . . ,xn) ∈ Nm∃k ∈ N
(
|det

(
A(x)

)
| > 2−k),

where Nm :=
{

(x1, . . . ,xn) ∈ [0,1]n :
n−1∧

i=1
(xi+1 − xi ≥ min( 1

n ,2−m))
}

and A(x) is the

matrix
(
φi(x j)

)

1≤i, j≤n. Since Nm is a (uniformly in the parameter m) E-PAω -
definable (see chapter 4) compact metric space we can apply theorem 15.1 to obtain
a primitive recursive (in the sense of E-PAω ) function β : N → N such that

WE-HAω +Γε � ∀m ∈ N,(x1, . . . ,xn) ∈ Nm

(
|det

(
A(x)

)
| > 2−β (m)

)
.

Using β one can compute ‖A−1(x)‖ as a function in x and therefore also an η :
N → N such that η(m) ≥ sup

x∈Nm

‖A−1(x)‖, where the norm is given by ‖(ai j)‖ :=

max
i=1,...,n

n
∑

k=1
|aik|. Let ψ = c1φ1 + · · ·+ cnφn, m ∈ N be given and suppose that

n∧

i=1

|ψ(xi)| ≤
r

η(m)

for an x ∈ Nm. Then ‖(c1, . . . ,cn)‖max ≤ r. Let K ∈ N be such that K ≥ max
i=1,...,n

‖φi‖∞.

‖(c1, . . . ,cn)‖max ≤ r implies that ‖c1φ1 + · · ·+ cnφn‖∞ ≤ r ·n ·K. Hence

δ (m) := (η(m) ·n ·K + 1)−1,

satisfies the claim for q = 2−m. δ can easily be extended to q ∈ Q
∗
+. �

Remark 16.40. (to the proof of lemma 16.39): An explicit formula for the compu-
tation of δ in terms of β has been given by D. Bridges in [44] (see lemma 16.51.2
below).

In applications of lemma 16.39 to specific Chebycheff systems one, of course, uses
known results such as interpolation formulas etc.:

Example 16.41. Let Hφ := Pn(=LinR(1,X , . . . ,Xn)). The fact that Pn is a Cheby-
cheff system is easily proved using the interpolation formula of Lagrange used al-
ready in the previous section. From the extraction of Φ4 in that section we see that
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δ (q) :=
� n

2�! n
2�!

n + 1
·qn

fulfills lemma 16.39.

Using δ from lemma 16.39, we are now able to define Φ2:
Claim 1: Φ2( f , l,q) := δ (l)2 ·q fulfills ‘2∗∗.’.
Proof of Claim 1: Let ψ ∈ H and suppose that

(+)
n∧

i=1

(xi+1 − xi ≥ l)∧
n+1∧

i=1

(
(−1)iψ(xi) > −δ (l)2 ·q

)
.

We have to show that ‖ψ‖∞ ≤ q: Assume that |ψ(xi0)| > δ (l) · q for an i0 ∈
{1, . . . ,n + 1}. Then (−1)i0ψ(xi0) > δ (l) ·q since (by (+)) (−1)i0ψ(xi0) >−δ (l)2 ·
q ≥ −δ (l) · q because of δ (l) ≤ 1 (δ (l) > 1 would yield a contradiction when ap-
plied to χ below).
Define ψq := ψ + δ (l)2 · q · χ where χ is the interpolation ‘polynomial’ from the
proof of lemma 16.38. Then for i ∈ {1, . . . ,n + 1}\{i0}:

(−1)iψq(xi) = (−1)iψ(xi)+ (−1)iδ (l)2 ·q · (−1)i = (−1)iψ(xi)+ δ (l)2 ·q
(+)
> 0

and for i = i0

(−1)i0ψq(xi0) = (−1)i0ψ(xi0)+ (−1)i0δ (l)2 ·q · χ(xi0)

≥ (−1)i0ψ(xi0)− δ (l)2 ·q · ‖χ‖∞.

By lemma 16.39 and the definition of χ it follows that ‖χ‖∞ ≤ 1
δ (l) .

Hence
(−1)i0ψq(xi0) ≥ (−1)i0ψ(xi0)− δ (l) ·q > 0.

In total we have shown that

n+1∧

i=1

(−1)iψq(xi) > 0

which is impossible in view of (∗∗). Hence
n+1∧

i=1
|ψ(xi)| ≤ δ (l) ·q which in turn yields

‖ψ‖∞ ≤ q by lemma 16.39. �

By a refinement of the reasoning above we can improve Φ2:

Claim 2: Φ2( f , l,q) := δ (l) ·q fulfills ‘2∗∗.’.
Proof of claim 2: Let again ψ ∈ H and assume
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n∧

i=1

(xi+1 − xi ≥ l)∧
n+1∧

i=1

(
(−1)iψ(xi) > −δ (l) ·q

)

and the existence of an x∗ ∈ [0,1] such that |ψ(x∗)| > q.
Case 1: ∃i0 ∈ {1, . . . ,n} : x∗ ∈ [xi0 ,xi0+1].

1.1 (−1)i0ψ(x∗) > q. Consider x̃i :=

⎧
⎨

⎩

xi if i �= i0

x∗ if i = i0.

Let χ ∈ H be such that χ(x̃i) = (−1)i for i = 1, . . . , i0 − 1, i0 + 1, . . . ,n + 1 and
ψq := ψ + δ (l) ·q · χ . Then for i ∈ {1, . . . ,n + 1}\{i0}

(−1)iψq(x̃i) = (−1)iψq(xi) = (−1)iψ(xi)+ (−1)iδ (l) ·q · (−1)i > 0

and for i = i0

(−1)i0ψq(x̃i0) = (−1)i0ψq(x∗) = (−1)i0ψ(x∗)+ (−1)i0δ (l) ·q · χ(x∗)

≥ (−1)i0ψ(x∗)− δ (l) ·q · ‖χ‖∞ > 0 (since ‖χ‖∞ ≤ δ (l)−1).

Put together we have
n+1∧

i=1
(−1)iψq(x̃i) > 0 which is impossible by (∗∗).

1.2: (−1)i0+1ψ(x∗) > q: Analogous to 1.1 with i0 + 1 instead of i0.
Case 2: x∗ ∈ [0,x1]. 2.1 (−1)1ψ(x∗) = −ψ(x∗) > q. Consider

x̃i :=

⎧
⎨

⎩

xi for i = 2, . . . ,n + 1

x∗ for i = 1

and let χ ∈ H be such that χ(x̃i) = (−1)i for i = 2, . . . ,n + 1. Define

ψq := ψ + δ (l) ·q · χ .

As in case 1 one shows that
n+1∧

i=1
(−1)iψq(x̃i) > 0 which again yields a contradiction.

2.2 (−1)0ψ(x∗) = ψ(x∗) > q. Consider

x̃i :=

⎧
⎨

⎩

xi for i = 1, . . . ,n

x∗ for i = 0

and let χ ∈H be such that χ(x̃i)= (−1)i for i = 1, . . . ,n. Define ψq := ψ +δ (l)·q ·χ .

As in case 1 one shows that
n∧

i=0
(−1)iψq(x̃i) > 0 which again yields a contradiction.

Case 3: x∗ ∈ [xn+1,1] is treated analogously to case 2.
Cases 1–3 together imply that ‖ψ‖∞ ≤ q. �
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Altogether we have proved that for Φ2( f , l,q) := δ (l) ·q:

∀ψ1,ψ2 ∈ H,(x1, . . . ,xn+1) ∈ [0,1]n+1, j ∈ {0,1} ,q, l ∈ Q
∗

( n∧

i=1
(xi+1 − xi ≥ l)∧

n+1∧

i=1

(
(−1)i+ j(ψ1(xi)−ψ2(xi)) > −Φ2( f , l,q)

)

→ ‖ψ1 −ψ2‖∞ ≤ q
)
.

Clearly this also holds if ‘>’ in the premise is weakened to ‘≥’ (our conclusion
‖ψ1 −ψ2‖∞ ≤ q instead of ‖ψ1−ψ2‖∞ < q in ‘2∗∗.’ is sufficient for the verification
of Φ).

Extraction of Φ3: For the construction of Φ3 we need the following explicit version
of the fact that K̃f ,H is compact:

Lemma 16.42. Let φ := (φ1, . . . ,φn) be as in lemma 16.39 and M ∈ Q
∗
+. Then one

can construct a closed term of WE-HAω which provably in WE-HAω +Γε defines a
common modulus ωH,M of uniform continuity on [0,1] for all ψ ∈H with ‖ψ‖∞ ≤M.

Proof: Let x = (x1, . . . ,xn) be defined by xi := i
n for i = 1, . . . ,n and K ∈ N such

that K ≥ ‖A−1(x)‖ (where ‖ · ‖ and A are defined as in the proof of lemma 16.39).
Then for ψ = c1φ1 + . . .+ cnφn with ‖ψ‖∞ ≤ M it follows that ‖(c1, . . . ,cn)‖max ≤
K ·M, i.e.

n∧

i=1
(|ci| ≤ K ·M). Let ωφ be a common modulus of uniform continuity

for φ1, . . . ,φn (which can be given by a closed term of WE-HAω as the φi are given
by such closed terms (see proposition 4.23) and define ωH,M(q) := ωφ

(
q

n·K·M

)
for

q ∈ Q
∗
+. For ψ = c1φ1 + . . .+ cnφn such that ‖ψ‖∞ ≤ M, we have

|x− y|< ωH,M(q) → |ψ(x)−ψ(y)| ≤
n
∑

i=1
|ci| · |φi(x)−φi(y)|

< q
n·K·M

n
∑

i=1
|ci| ≤ q.

�

Remark 16.43. Again an explicit formula for a modulus ωH,M in terms of the func-
tion β from the proof of lemma 16.39 has been given in [44] and will be presented
in lemma 16.51.1.

Corollary 16.44. Let φ and ωH,M be as in lemma 16.42, f ∈ C[0,1],ω f a modulus
of uniform continuity for f and M ∈ Q

∗
+ such that M ≥ ‖ f‖∞. Then ω f ,H(q) :=

min
(

ω f (
q
2),ωH,2M( q

2 )
)

is a common modulus of uniform continuity for all ψ − f

where ψ ∈ K̃f ,H (in particular for ψb − f where ψb is the best approximation of f
in H).

Example 16.45. Let H := Pn, K̃f ,n := {p ∈ Pn : ‖p‖∞ ≤ 2‖ f‖∞}. A very explicit
proof of the compactness of K̃f ,n results from the Markov inequality (proposition
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16.4). As shown already in the previous section, Markov’s inequality can be used to
prove that

ωM
n (q) :=

⎧
⎨

⎩

q
4n2M if n ≥ 1

1 if n = 0

is a common modulus of uniform continuity on all p ∈ K̃f ,n whenever ‖ f‖∞ ≤ M ∈
Q

∗
+. Thus

ωM
f ,n(q) := min

(
ωM

n (
q
2
),ω f (

q
2
)
)

is a modulus of uniform continuity for all p− f with p ∈ K̃f ,n if M ≥ ‖ f‖∞.

Using ω f ,H from corollary 16.44 we are now able to construct Φ3:

n+1∧

i=1

(
(−1)i+ j(ψ(xi)− f (xi)

)
= En, f ≥ q

)

implies

n∧

i=1

(
|
(
ψ(xi)− f (xi)

)
−
(
ψ(xi+1)− f (xi+1)

)
| = 2EH, f ≥ 2q

)
.

Using corollary 16.44, ψ ∈ K̃f ,H and
n∧

i=1
(xi+1 − xi ≥ 0) this yields

n∧

i=1
(xi+1 − xi ≥

ω f ,H(2q)). Hence we can define Φ3( f ,q) := ω f ,H(2q). Φ3 satisfies ‘3∗∗.’ (with
‘≥ Φ3( f ,q)’ instead of ‘> Φ3( f ,q)’ which is sufficient for (++)).

We are now ready to combine Φ1,Φ2 and Φ3 into a modulus of uniqueness Φ:

Φ( f , l,q) := Φ1
(

f ,Φ2( f ,Φ3( f , l),
q
2
)
)

=
1
2

δ
(
ω f ,H(2l)

)
·q,

where δ ,ω f ,H are from lemma 16.39 resp. corollary 16.44.
The restriction to ψ1,ψ2 ∈ K̃f ,H instead of ψ1,ψ2 ∈ H has been used only for the
construction of Φ3. However as the proof of (++) shows, ‘3∗∗.’ is applied only
to the best approximation ψb ∈ K̃f ,H which by (+) exists. Hence Φ is not only a
modulus of uniqueness on K̃f ,H but on H.

Theorem 16.46. Let φ := (φ1, . . . ,φn) be a Chebycheff system over [0,1] and δ :
Q

∗
+ → Q

∗
+ a function such that for all ψ ∈ H := LinR(φ1, . . . ,φn) and x1, . . . ,xn ∈

[0,1]

∀l,q ∈ Q
∗
+

( n−1∧

i=1

(xi+1 − xi ≥ l)∧
n∧

i=1

|ψ(xi)| ≤ δ (l) ·q →‖ψ‖∞ ≤ q
)
.
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Furthermore, let ω f ,H be a common modulus of uniform continuity for all ψ− f with
ψ ∈ H,‖ψ‖∞ ≤ 2‖ f‖∞, and EH, f :=dist( f ,H) where f ∈C[0,1]. Then the following
holds:

1)
∀ f ∈C[0,1], l ∈ Q

∗
+

(
l ≤ EH, f →∀ψ1,ψ2 ∈ H,q ∈ Q

∗
+

( 2∧

i=1
(‖ψi − f‖∞ ≤ EH, f + 1

2 δ
(
ω f ,H(2l)

)
·q)→ ‖ψ1 −ψ2‖∞ ≤ q

))
.

In particular, δ
(
ω f ,H(2l)

)
is a constant of strong unicity (and 2

δ
(

ω f ,H (2l)
) is a

Lipschitz constant for the Chebycheff projection in f ) for f such that l ≤ EH, f .

2) Φ̃( f ,q) := min
(

q
4 , 1

2 δ
(
ω f ,H( q

2)
)
· q

)
is a modulus of uniqueness (and also a

modulus of pointwise continuity for the Chebycheff projection) for arbitrary f ∈
C[0,1] which does not depend on a lower estimate l ≤ EH, f .

For every E-PAω -definable Chebycheff system φ provably so in

E-PAω+QF-AC1,0+QF-AC0,1 +Γ -lemmas,

δ and ω f ,H are definable by closed terms of E-PAω . Then 1) and 2) above are
provable in WE-HAω +Γε .
Instead of ω f ,H one may use any modulus of uniform continuity for ψb − f , where
ψb ∈ H is the best approximation of f .

Proof: 1) From the reasoning above it follows that 1
2 δ

(
ω f ,H(2l)

)
· q is a modulus

of uniqueness for f such that l ≤ EH, f . Furthermore if we replace ψ2 by the best
approximation ψb then the factor 1

2 can be omitted (since it is used only in 4∗.).
Hence by proposition 16.2 δ

(
ω f ,H(2l)

)
(resp. 2

δ
(

ω f ,H (2l)
) ) is a constant of strong

unicity (resp. local Lipschitz constant).
2) Case 1: q

2 < 2EH, f : The claim follows from 1). Case 2: q
2 ≥ 2EH, f , i.e. EH, f ≤ q

4 :

2∧

i=1

(‖ψi − f‖∞ ≤ EH, f + Φ̃( f ,q) ≤ q
4

+
q
4
) →‖ψ1 −ψ2‖∞ ≤ q.

The second part of the claim follows with the proof of 1) and proposition 16.2.
δ and ω f ,H are given as closed terms of E-PAω by lemma 16.39 and corollary 16.44.
The provability (in this case) in WE-HAω +Γε follows using theorem 15.1 and the
fact that the alternation theorem (even for general E-PAω+WKL+QF-AC1,0+QF-
AC0,1 +Γ -provable Chebycheff systems) is provable in

E-PAω+WKL+QF-AC1,0+QF-AC0,1 +Γ .

�

Corollary to the proof of theorem 16.46: Instead of ω f ,H(2l) one can use also any
rational lower bound 0 < α ≤ ω f ,H(2l).
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Corollary 16.47. 1) Let A ⊂C[0,1] be totally bounded with a common modulus of
uniform continuity ωA and M ≥ ‖ f‖∞ for all f ∈ A. Let ωH,2M be the modulus
from lemma 16.42 and define

ωA,H(q) := min
(

ωA(
q
2
),ωH,2M(

q
2
)
)
.

Then ωA,H is a common modulus of uniform continuity for all ψ − f with

f ∈ A,ψ ∈ H,‖ψ‖∞ ≤ 2‖ f‖∞. Hence min
(

q
4 , 1

2 δ
(
ωA,H( q

2 )
)
· q

)
is a common

modulus of uniqueness (and a common modulus of pointwise continuity for the
Chebycheff projection in f ) for all f ∈ A.

2) Let A ⊂ C[0,1] be compact with A∩ H = /0, which implies that inf
f∈A

EH, f > 0,

and let 0 < l ≤ inf
f∈A

EH, f . Then theorem 16.46 yields that δ
(
ωA,H(2l)

)
(resp.

2/δ
(
ωA,H(2l)

)
) is a common constant of strong unicity (resp. Lipschitz constant

for the Chebycheff projection in f ) for all f ∈ A.

Remark 16.48. The 2nd claim in corollary 16.47 is an effective version of a result
by [153].

Using example 16.41 and 16.45 we obtain for the special Haar space Pn (observing
that for n = 0 the trivial modulus of uniqueness q/2 applies):

Corollary 16.49. Let Φ be defined by

Φ( f ,n, l,M) := � n
2 �! n

2 �!
2(n+1)

(
ωM

f ,n(2l)
)n

, where

ωM
f ,n(q) :=

⎧
⎨

⎩

min
(

ω f (
q
2 ), q

8n2M

)
, if n ≥ 1

1, if n = 0.

Then

1) ∀ f ∈C[0,1], l,M ∈ Q
∗
+

(
‖ f‖∞ ≤ M∧ l ≤ En, f →∀p1, p2 ∈ Pn,q ∈ Q

∗
+

( 2∧

i=1
(‖ f − pi‖∞ ≤ En, f +

(
Φ( f ,n, l,M)

)
·q)→ ‖p1 − p2‖∞ ≤ q

))
.

In particular 2Φ( f ,n, l,M) (resp. 1
Φ( f ,n,l,M) ) is a constant of strong unicity (a

Lipschitz constant for the projection) for f if ‖ f‖∞ ≤ M and l ≤ En, f .

2) Φ̃( f ,n,M,q) := min
(

q
4 ,
(
Φ( f ,n, q

4 ,M)
)
· q
)

is a modulus of uniqueness (and a

modulus of pointwise continuity for the projection) for arbitrary f ∈C[0,1] with
‖ f‖∞ ≤ M (note that Φ̃ no longer depends on l).

If f is Lipschitz continuous on [0,1] with Lipschitz constant η > 0 then ωM
f ,n can be

defined as ωM
f ,n(q) := q

η+4n2M .

We now show that even the remaining dependency of Φ̃ in corollary 16.49 from
f ∈C[0,1] via ω f and M can be further reduced to a dependency from ω alone:
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Proof of theorem 16.34: For f ∈C[0,1] and p1, p2 ∈ Pn define f̃ (x) := f (x)− f (0)
and p̃i(x) := pi(x)− f (0). Then

‖ f̃ − p̃i‖∞ = ‖ f − pi‖∞ ∧‖ p̃1 − p̃2‖∞ = ‖p1 − p2‖∞ ∧En, f̃ = En, f .

Moreover, any modulus of uniform continuity ω for f is also a modulus of uniform
continuity for f̃ . Hence we can take as moduli of uniqueness for f ∈ C[0,1] not
only Φ( f ,n, l,M) ·q and Φ̃( f ,n,M,q) but also Φ( f̃ ,n, l,M) ·q and Φ̃( f̃ ,n,M,q) for
M ≥ ‖ f̃‖∞. However, one easily verifies that ‖ f̃‖∞ ≤  1

ω(1)� which concludes the
proof. �

Remark 16.50. 1) Inspection of the logical proof-analysis above yields the follow-
ing result which, essentially, is due to Cline [68] (Theorem 5) (combined with
e.g. Theorem 3.5 in [313]) whose proof is quite different:
Let (x1, . . . ,xn+1) ∈ [0,1]n+1 be an alternant of ψb − f and, for i = 1, . . . ,n + 1,
χi the uniquely determined function in H such that χi(x j) = (−1) j for j ∈
{1, . . . , i−1, i+ 1, . . .,n + 1}. Then 1

max
i=1,...,n+1

‖χi‖∞
(resp. 2 · max

i=1,...,n+1
‖χi‖∞) is a

constant of strong unicity (Lipschitz constant). Note, however, that these esti-
mates use the knowledge of alternation points which in general are not com-
putable at all (since – as we saw in the previous section – already for H := Pn−1
and n = 1 the existence of alternation points implies (A) and hence WKL).

2) The logical analysis of the uniqueness proof by Young/Rice given above has
some similarities with the proof of the Lipschitz continuity of the Chebycheff
projection by G. Freud in [106] mentioned already in section 16.1. In fact,
Freud’s proof may be conceived of as a (partial) proof-analysis in our sense.
Although Freud himself does not exhibit the numerical content of his proof one
can extract the (ineffective) estimate of [68] (mentioned in ‘2)’ above) for the
Lipschitz constant from his proof as was observed by Blatt in [37]. Blatt also
noticed that a slight modification of Freud’s proof yields the corresponding esti-
mate for the constant of strong unicity although the concept of strong unicity is
not even mentioned in Freud’s paper.

3) Let us compare the estimates in corollary 16.49 with the ones obtained from
de La Vallée Poussin’s proof in the previous section: If γY/R (resp. γP) denotes
the constant of strong unicity obtained from Young/Rice’s (resp. de La Vallée
Poussin’s) proof then γY/R is roughly 2

√γP and similarly for the other estimates.
So the bounds obtained by logical analysis from the proof by Young/Rice are
(when specialized to the polynomial case) significantly better than the ones ex-
tracted from de La Vallée Poussin’s proof.

4) If the moduli δ and ωφ (used in the definition of ωH,2M) are given as functions
R
∗
+ → R

∗
+ (rather than Q

∗
+ → Q

∗
+) then the moduli constructed in the theorem

above apply to all q ∈ R
∗
+ with values in R

∗
+ as well.

A variant uniqueness proof due to E. Borel [39]:

Even prior to the uniqueness proof given by Young/Rice (and analyzed above) yet
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another uniqueness proof can be found in Borel [39], though only for the special
case H := Pn−1. This proof proceeds similarly to the one by Young/Rice (in particu-
lar the alternation theorem again is used only in the form of an axiom Γ in theorem
15.1) but uses a different argument for lemma 16.38: in fact, lemma 16.38 for Pn
can simply be followed from the fundamental theorem of algebra (this form of the
uniqueness proof appeared first in the unpublished part of Kirchberger’s dissertation
[183]). However, in his proof for the continuity of the Chebycheff projection (which
can also be used to establish even the local Lipschitz continuity) Borel uses a more
explicit argument: the derivative p′ of p ∈ Pn again belongs to a Haar space, namely
Pn−1. From this, Borel concludes the following (exercise):
⎧
⎪⎨

⎪⎩

∀p ∈ Pn,(x1, . . . ,xn+2) ∈ [0,1]n+2,q ∈ Q
∗
+

(n+1∧

i=1
(xi+1 > xi)∧

n+2∧

i=1

(
(−1)i p(xi) > −q

)

→∃k ∈ {1, . . . ,n + 1}∀x ∈ [xk,xk+1]
(
|p(x)| ≤ q

))
.

(16.1)
If we let q tend to 0 this yields lemma 16.38, since p|[xk,xk+1] ≡ 0 implies p ≡ 0.
The formula above is (modulo the Σ0

1 -collection principle Σ0
1 -CP if n is treated as

a variable) equivalent to a statement of the logical form Γ ≡ ∀x ∈ X∃y ∈ K∀w ∈
W

(
F(x,y,w) = 0

)
from theorem 15.1. Hence theorem 15.1 guarantees that it is pos-

sible to extract a bound Φ2 (satisfying 2∗∗.) without using the proof of 16.1. Indeed,
consider

xk+1 − xk ≥ l →∃y1, . . . ,yn+1 ∈ [xk,xk+1]
(
yi+1 − yi ≥

l
n

)
for i = 1, . . . ,n + 1.

Taken together with the bound δ from example 16.41 one concludes that

Φ2( f ,n, l,q) :=
� n

2�! n
2�!

n + 1
( l

n

)n ·q =
� n

2�! n
2�!

nn · (n + 1)
ln ·q

fulfills ‘2∗∗.’ Due to the presence of the factor 1
nn the bound extracted from Borel’s

argument (for the special case of H := Pn−1) is less good less than the modulus of
uniqueness obtained by logical analysis of our simplification of Young/Rice’s proof.
However, the bound is better than the one obtained from de La Vallée Poussin’s
proof in the previous section.

We conclude this section by comparing theorem 16.46 and corollary 16.47 with
prior results due to D. Bridges in [44, 45, 46]. It will turn out that our results can
be used to significantly improve the bounds obtained by Bridges whose approach is
based on a thorough constructivization of large parts of Chebycheff approximation
theory:
Let φ := (φ1, . . . ,φn) be a Chebycheff system over [0,1], φ (x) :=

(
φ1(x), . . . ,φn(x)

)
∈

R
n,‖φ‖ := sup

x∈[0,1]
‖φ(x)‖2. Here ‖ · ‖2 denotes the Euclidean norm on R

n.

We now define β ,γ,κ : (0, 1
n ] → R

∗
+ as follows
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β (α) :=

⎧
⎪⎪⎨

⎪⎪⎩

inf
x∈[0,1]

|φ1(x)|, if n = 1

inf
{

|det(φ j(xi))| : 0 ≤ x1, . . . ,xn ≤ 1,
n−1∧

i=1
(xi+1 − xi ≥ α)

}

, if n > 1

and

γ(α) := min

⎛

⎜
⎜
⎝‖φ‖, β (α)

n
1
2 (n−1)!

n
∏
i=1

(1 +‖φi‖∞)

⎞

⎟
⎟
⎠ , κ(α) := γ(α)−1 · ‖φ‖

for α ∈ (0, 1
n ]. Note that the fact that φ is a Chebycheff system implies that β (α)> 0.

Now define H :=LinR(φ1, . . . ,φn) and let ωφ denote a modulus of uniform continu-
ity of φ .

Lemma 16.51 (Bridges ([44, 45])).

1) Suppose that A ⊂ C[0,1] is totally bounded and equicontinuous with a common
modulus of uniform continuity ωA for all f ∈ A. Let M > 0 be a common bound
M ≥ ‖ f‖∞ for all f ∈ A. Then

ωA,H(ε) := min

⎛

⎜
⎜
⎝ωA(

ε
2
),ωφ

⎛

⎜
⎜
⎝

ε ·β ( 1
n)

4Mn
3
2 (n−1)!

n
∏
i=1

(1 +‖φi‖∞)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

is a common modulus of uniform continuity for all ψb − f where f ∈ A and ψb is
the best approximation of f in H. In fact, ωA,H is a common modulus of uniform
continuity for all ψ − f with f ∈ A and ‖ψ‖∞ ≤ 2M.

2) Suppose that 0 < α ≤ 1
n and

n−1∧

i=1
(xi+1 − xi ≥ α) (x1, . . . ,xn ∈ [0,1]) for n ≥ 2.

Then

∀ψ ∈ H,ε > 0
( n∧

i=1

|ψ(xi)| ≤
γ(α)

n · ‖φ‖ · ε → ‖ψ‖∞ ≤ ε
)
.

Proof: 1) Is proved in Bridges [45] (Lemma). 2) is proved in Bridges [44] (4.3).

Theorem 16.46 taken together with corollary 16.47 and lemma 16.51 yields the fol-
lowing moduli of uniqueness and pointwise continuity as well as common constants
of strong unicity and Lipschitz constants:

Corollary 16.52. Let A,γ,κ be as in lemma 16.51 and EH,A := inf
f∈A

EH, f . With EH, f

being replaced by EH,A, ω f ,H by ωA,H and δ (α) by γ(α)
n·‖φ‖ , theorem 16.46 holds

uniformly for all f ∈ A. This, in particular, yields that
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ΦA(ε) :=

min
(

ε
4 , 1

2
γ
(

min
(

1
n ,ωA,H ( ε

2 )
))

n·‖φ‖ · ε
)

= min
(

ε
4 , ε

2nκ
(

min
(

1
n ,ωA,H ( ε

2 )
))

)

is a common modulus of uniqueness (and a common modulus of pointwise continuity
for the Chebycheff projection in f ) for all f ∈ A.
For lH,A ∈ Q

∗
+ such that lH,A < EH,A and 0 < α ≤ min

( 1
n ,ωA,H(2 · lH,A)

)
we obtain

that γ(α)
n·‖φ‖ (resp. 2nκ(α)) is a common (for all f ∈ A) constant of strong unicity

(resp. Lipschitz constant).

Using again the transformation f �→ f̃ , with f̃ (x) := f (x)− f (0), an argument sim-
ilar to the one used in the proof of theorem theorem 16.34 allows one to conclude:

Theorem 16.53. Let (φ1, . . . ,φn) be a Chebycheff system such that
1 ∈ H :=LinR(φ1, . . . ,φn) and let ω : R

∗
+ → R

∗
+ be any function. Then

ΦH(ω ,ε) := min

(
ε
4
,

ε
2nκ

(
min

( 1
n ,ωH( ε

2 )
))

)

with

ωH(ε) := min

⎛

⎜
⎜
⎝ω(

ε
2
),ωφ

⎛

⎜
⎜
⎝

ε ·β ( 1
n)

4 1
ω(1)�n

3
2 (n−1)!

n
∏
i=1

(1 +‖φi‖∞)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

is a common modulus of uniqueness (and a common modulus of pointwise continu-
ity for the Chebycheff projection) for all functions f ∈ C[0,1] which have ω as a
modulus of uniform continuity.

As a corollary we obtain that for arbitrary Haar spaces having the constant function
1 the continuity behavior of the Chebycheff projection is uniform for any class of
equicontinuous functions which generalizes a result of [255] for the case of (trigono-
metric) polynomials.

In [44, 45], D. Bridges obtained the following bounds which are numerically sig-
nificantly less good than the bounds in corollary 16.52 and theorem 16.53 which
were extracted by proof theoretic analysis of the classical uniqueness proof from
[381] and [313]: let 0 < lH,A ≤ EH,A and 0 < α ≤ min

( 1
n ,ωA,H(lH,A)

)
. Bridges

shows that n−2
(

γ(α)
‖φ‖

)2n+1
resp. 2nκ(α) ·

(n+1
∑

i=1
κ(α)n+i−1 − 1

)
is a common con-

stant of strong unicity resp. a Lipschitz constant for all f ∈ A. As a modulus of
continuity for the corresponding Chebycheff projection (on A), Bridges obtains
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Ω(ε) := min

⎛

⎜
⎜
⎝

ε
8
,

ε

2nσ(ε) ·
(n+1

∑
i=1

σ(ε)n+i−1 −1
)

⎞

⎟
⎟
⎠ ,

where σ(ε) := κ
(

min
( 1

n ,ωA,H( ε
4 )
))

. In [46], Bridges also constructs a full modu-
lus of uniqueness which, however, is even more complex than Ω . Since, in practice,
γ(α)
‖φ‖ (≤ 1) will be very close to 0 (for the concrete case of Pn−1 Bridges takes β (α)

to be αn(n−1)/2), it is clear that the moduli and constants in corollary 16.52 provide
a significant improvement compared to those obtained by Bridges in the course of
his global constructivization of Chebycheff approximation theory. The bounds in
corollary 16.52 yield effective moduli if β can be estimated by a computable func-
tion β̃ : Q

∗
+ → Q

∗
+ such that 0 < β̃ (α) ≤ β (α) for all α ∈ Q

∗
+. If φ is a Chebycheff

system as in lemma 16.39 then such a function β̃ can be primitive recursively (in
the sense of Gödel) constructed (see the proof of lemma 16.39). In practice it will be
better to extract the operation δ in lemma 16.39 directly from a proof of the Cheby-
cheff system property instead of extracting first β̃ and then constructing γ above via
β̃ (e.g. for H := Pn our δ is roughly αn while β̃ in this case is already α(n+1)n/2).

From [198] (proofs of thm. 4.1 and lemma 4.2) or [199] (proofs of thm. 8.30 and
lemma 8.29) one can also exhibit a modulus of uniqueness Φ for the special case Pn
namely:
Φ( f ,n,q) := 1

8(n+1)2 ·
(
ω f ,n(

q
2 )
)2n ·q, where ω f ,n denotes a modulus of uniform con-

tinuity for all p− f where ‖p‖∞ ≤ 2‖ f‖∞ ( f ∈C[0,1], p ∈ Pn). Ko’s proof is similar
to the analysis above but based on our first crude analysis of the proof of lemma
16.38 as formulated in Claim 1 (compare with the proof of lemma 4.2 in [198]).
Note, however, that Ko erroneously uses simply a modulus ωn for all p∈Pn such that
‖p‖∞ ≤ 2‖ f‖∞ instead of ω f ,n. For the latter he takes ωn(q) := q/(4‖ f‖∞ ·n2n ·n2)
compared to our ωn(q) := q/(4‖ f‖∞ · n2) which we used in defining ω f ,n. Neither
the continuity of the Chebycheff projection nor estimates on strong unicity are ex-
plicitly considered in [198, 199] but estimates on those similar to Ko’s modulus of
uniqueness could be obtained as well.

The numerical estimates given by Bridges are derived as a by-product of his de-
velopment of Chebycheff approximation theory within the framework constructive
analysis in the sense of E. Bishop [32]. Due to this approach even proofs of lem-
mas which do not contribute to the bounds of the theorem in question are proven
in a sometimes more complicated way than necessary classically. Moreover, occa-
sionally, obvious – but partially ineffective – arguments like our proof of ‘2.’ based
on the nonconstructive intermediate value theorem (IVT) are not used in favor of
constructive arguments based on induction. The latter may well result in less good
bounds (e.g. the exponent 2(n + 1) in Bridges’ estimate for the constant of strong
unicity is caused by this) while the use of IVT is totally unproblematic from the
point of view of ‘proof mining’ since it has the form of an axiom Γ , i.e.
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∀x ∈ X∃y ∈ K(∀w ∈W )
(
F(x,y,w) =R 0

)
,

and so does not contribute to extractable bounds at all (see theorem 15.1). In fact,
we showed that the whole use of the alternation theorem can be reduced to such
an axiom Γ (if one follows the proof due to Young and Rice). As a result of this,
only a small part of the corresponding uniqueness proof needed to be analyzed at
all. A logical treatment of proofs of lemmas of the form Γ is superfluous as it is to
circumvent them by new constructive arguments. This is all the more true as even if
one is interested in a fully constructive verification in the end one can just apply our
metatheorem 15.1 to get the constructive verification of the final result guaranteed.

16.4 Best L1-approximation

The material in this section is taken largely from Kohlenbach-Oliva [235]. We ana-
lyze the proof of the uniqueness of best polynomial L1-approximation of f ∈C[0,1]
given by Cheney [65]. The main result will be the following strong uniqueness the-
orem:

Theorem 16.54 (Kohlenbach-Oliva [235]). Let dist1( f ,Pn) := inf
p∈Pn

‖ f − p‖1 and

Φ(ω ,n,ε) := min{ cnε
8(n+1)2 ,

cnε
2 ωn( cnε

2 )}, where

cn := �n/2�!n/2�!
24n+2(n+1)3n+1 and

ωn(ε) := min{ω( ε
4 ), ε

40(n+1)4 1
ω(1) �

}.

The functional Φ is a uniform modulus of uniqueness for the best L1-approximation
of any function f in C[0,1] having modulus of uniform continuity ω from Pn, i.e.

∀n ∈ N, p1, p2 ∈ Pn,ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ(ω ,n,ε)) →‖p1 − p2‖1 ≤ ε

)
.

The uniqueness for the best polynomial L1-approximation of continuous functions
(‘Jackson’s theorem’) was first proved in [178]. The proof analyzed in [235] is a
simplification of that proof due to [65] which avoids the use of measure theory but
relies on WKL. [35, 36] proved the existence of a modulus of uniform continuity of
the form c f ,nεω f (c f ,nε) with an (unknown) constant c f ,n depending on f ,n. [254]
shows the existence of such constants cω f ,n depending only on a modulus of uniform
continuity ω f of f and n and showed that the ε-dependency in the result of [35] is
optimal. Our bound above is the first explicit modulus (in all parameters). Moreover,
it also depends only on ω and has the optimal ε-dependency.
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The remainder of this section is devoted to the proof of theorem 16.54 as obtained
in [235] by a logical analysis of the Cheney’s ([65]) proof of Jackson’s theorem.

16.4.1 Logical preliminaries on Cheney’s proof

Cheney’s proof is formulated for the best L1-approximation of f ∈ C[0,1] by ele-
ments of a general Haar space. We will only treat the most important case of poly-
nomial approximation i.e. of the best L1-approximation of f by polynomials p ∈ Pn
of degree ≤ n. The most complicated part will be the logical analysis of the follow-
ing lemma (label ‘Lemma 1’ in Cheney’s proof, [66], p. 219) whose formalization
prima facie seems to require a decision functional for =R and hence the functional
E2 ≤ λ f 1.1 defined by

∀ f 1(E( f ) =0 0 ↔∀x0( f (x) =0 0)).

The functional interpretation of this axiom would require the non-majorizable func-
tional μ2 defined by

μ( f ) :=

⎧
⎨

⎩

minx[ f (x) =0 0], if existent

00, otherwise.

However, it will turn out that a slight reformulation of this lemma can – in the way
it is used in the uniqueness proof – in fact be proved in e.g. E-PAω plus the already
mentioned analytical principle (15.1), i.e.

(A) ∀ f ∈C[0,1]∃x0 ∈ [0,1]( f (x0) = sup
x∈[0,1]

f (x))

and hence in E-PAω+WKL (or – much more conveniently – in E-PAω + Σ0
1 -UB as

studied in chapter 12).

Lemma 16.55 (Cheney [66], Lemma 1). Let f ,h ∈C[0,1]. If f has at most finitely
many roots and if

∫ 1
0 hsgn( f ) �= 0, then for some λ ∈R,

∫ 1
0 | f −λ h|<

∫ 1
0 | f |, where

sgn( f )(x) R=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if f (x) >R 0

0, if f (x) =R 0

−1, if f (x) <R 0.

In the restriction of Cheney’s proof to the Haar space Pn (i.e. to Jackson’s theorem),
h ∈ Pn is a polynomial of degree ≤ n. Moreover, it will be used in the form stating
that if f (for the particular f at hand) has at most n roots one can construct an h
such that

∫ 1
0 hsgn( f ) �= 0. This means that the lemma is applied only in the case

where f not just has at most finitely many but in fact not more than n roots. At first
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glance, the existence of sgn( f ) seems to presuppose the existence of the characteris-
tic function χ=R

which is not available in systems amenable to monotone functional
interpretation. The use of sgn can be eliminated, however, in favor of a finite tuple
of sign values: if f has at most n roots then there exist points x0 < .. . < xn+1 in
[0,1] (where x0 = 0 and xn+1 = 1) which contain all the roots of f . By induction
on n and the law-of-excluded middle one easily shows in E-PAω the existence of a
vector (σ1, . . . ,σn+1) ∈ {−1,1}n+1 such that

σi =0

⎧
⎨

⎩

1, if f is positive on (xi−1,xi),

−1, if f is negative on (xi−1,xi)

for i = 1, . . . ,n + 1. Using this vector σ , the integral
∫ 1

0 hsgn( f ) can be written as
∑n+1

i=1 σi
∫ xi

xi−1
h (which avoids the use of sgn( f )) and the proof of the lemma can

be carried out in E-PAω + (A), i.e. in E-PAω+WKL (the principle (A) is used in
the middle of p. 219 of [66] to conclude that ‘δ > 0’; see also section 16.4.10 and
section 16.4.14).
The logical quantitative analysis of this reformulation of lemma 1 will be the most
difficult part in our analysis of Cheney’s proof (see 16.4.10). In particular, the mono-
tone functional interpretation of (the negative translation of) this version of Lemma
1 will automatically introduce a key notion for the quantitative analysis of the proof,
namely the concept of so-called ‘r-clusters of δ -roots’. Moreover, it is this concept,
on which the elimination of the use of (A) – i.e. of WKL – in Cheney’s proof of
lemma 1 will be based.

16.4.2 The general logical structure of the proof

As a preparatory step towards the logical analysis of Cheney’s proof we now study
the overall logical structure of the proof. To this end we make a list the main for-
mulas used in the proof and to show how they are combined into various lemmas.
The lemmas will then be analyzed subsequently once the overall logical structure of
the proof has become clear. The monotone functional interpretation of the lemmas
shows which functionals can be can be extracted from the proof of the lemma. As
usual not all the functionals need to be presented, since some of them will disap-
pear in the analysis of the proof. This can be seen already in the treatment of the
modus ponens in the proof of the soundness of functional interpretation in chapter 8
where the terms t2 disappeared in the conclusion. For the individual lemmas we will
use monotone functional interpretation mainly in the form of the ‘macro’ provided
by the logical metatheorem 15.1. However, by analyzing the structure of the whole
proof by monotone functional interpretation we see which functionals are relevant
and need to be extracted and the treatment of modus ponens by monotone functional
will tell us how to combine them into the final modulus Φ (see section 16.4.13).



16.4 Best L1-approximation 351

For better readability, we below omit the parameters f ,n, p1 and p2 in our list of
propositions A-K. This means that A strictly speaking has to be read as A( f ,n, p1, p2),
where n ranges over N, f ∈C[0,1] and p1, p2 ∈ Pn (resp. Kf ,n further below). Anal-
ogously, this applies also to the other propositions.
For the rest of this section we make the following notational conventions: p(x) :=
p1(x)+p2(x)

2 and f0(x) := f (x)− p(x). In the formulas and in the sketch of the proof
presented below we use x := x1, . . . ,xn and σ := σ1, . . . ,σn+1. The following formu-
las play a key role in Cheney’s proof:

A :≡
2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) = 0), i.e.

p1 and p2 are best L1-approximations of f from Pn.
B :≡ ‖ f − p‖1−dist1( f ,Pn) = 0, i.e. p is a best L1-approximation of f .
C :≡ ‖ f0‖1 = 1

2‖ f − p1‖1 + 1
2‖ f − p2‖1.

C1 :≡ ∀ε ∈ Q
∗
+∃δ ∈ Q

∗
+∀x,y ∈ [0,1](|x− y|< δ → |g(x)−g(y)|< ε),

where g(x) := | f0(x)|− 1
2 | f (x)− p1(x)|− 1

2 | f (x)− p2(x)|.
The formula C1 states that g is uniformly continuous.

D :≡ ∀x ∈ [0,1](| f0(x)| = 1
2 (| f (x)− p1(x)|+ | f (x)− p2(x)|)).

E :≡ ∃x0, . . . ,xn ∈ [0,1]
( n∧

i=0
f0(xi) = 0∧

n∧

i=1
xi−1 < xi

)
, i.e.

f0 has at least n + 1 distinct roots.

F :≡ ∃x0, . . . ,xn ∈ [0,1]
( n∧

i=0
p1(xi) = p2(xi)∧

n∧

i=1
xi−1 < xi

)
, i.e.

p1 and p2 coincide on at least n + 1 distinct points.
G :≡ ∀x ∈ [0,1](p1(x) = p2(x)), alternatively, ‖p1 − p2‖1 = 0 or p1 ≡ p2.
H(h) :≡ ‖ f0 −h‖1 ≥ ‖ f0‖1.

I(x,σ ,h) :≡
n+1
∑

i=1
σi

∫ xi
xi−1

h(x)dx > 0, where x0 := 0 and xn+1 := 1.

J(x) :≡ ∃y ∈ [0,1]( f0(y) = 0∧
n+1∧

i=0
xi �= y), where x0 := 0 and xn+1 := 1.

K :≡ ∀x ∈ [0,1]( f0(x) = 0 → p1(x) = p2(x)).

The first part of the proof (which we call derivation D1) derives K from the as-
sumption A (later to be discharged) and the lemmas ‘A → B’, ‘A∧B → C’, ‘C1’,
‘C∧C1 → D’ and ‘D → K’:

[A]

[A] A → B

B

A∧B A∧B →C

C C1

C∧C1 C∧C1 → D

D D → K

K
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The logically most complicated part of the proof is where – using lemma 1 – the
existence of (at least) n + 1 distinct roots of f0 is established. In the following
derivations we use σ ′ := σ ′

1, . . . ,σ ′
n+1, where σ ′

i := sgn( f0)(
xi−1+xi

2 ). Moreover,
∀x := ∀x1 ≤ . . . ≤ xn, where ∀x1 ≤ . . . ≤ xn Q(x) is an abreviation for ∀x1, . . . ,xn ∈
[0,1](x1 ≤ . . . ≤ xn → Q(x)). h, h̃ always are polynomials in Pn. We denote the
derivation

∀x,σ∃h̃x,σ I(x,σ , h̃x,σ )

∀x,h (∀λ H(λ h)∧ I(x,σ ′,h) → J(x))

∀x (∀λ H(λ h̃x,σ ′)∧ I(x,σ ′, h̃x,σ ′) → J(x))

∀x,λ H(λ h̃x,σ ′) →∀xJ(x)

by D2. Using again D2, the assumption A and the lemma ‘B →∀hH(h)’ we obtain
a proof that f0 has n + 1 distinct roots:

[A] A → B

B B →∀h H(h)

∀h H(h)

D2

∀x,λ H(λ h̃x,σ ′) →∀xJ(x)

∀x J(x)

The above derivation we denote by D3. With D1,D3 as subderivations we can now
write the whole proof in the form of an informal natural deduction derivation using
the additional lemma ‘∀xJ(x) → E’, ‘K ∧E → F’ and ‘F → G’ and the fact that F
trivially follows from K and E (essentially by the modus ponens rule):

D1

K

D3

∀x J(x) ∀x J(x) → E

E

F F → G

G
[A]

A → G

As in the previous section on Chebycheff approximation and explained in the in-
troduction to this chapter we need (in general though not always) to restrict Pn to
a suitable compact subspace which – for the case of the norm ‖ · ‖1 at hand – is
Kf ,n := {p ∈ Pn : ‖p‖1 ≤ 5

2‖ f‖1} in order to apply our metatheorem 15.1. Similarly
to the trick used already in the proof of theorem 16.30 for Chebycheff aproximation
(where then Kf ,n was taken as {p ∈ Pn : ‖p‖∞ ≤ 5

2‖ f‖∞}) we will in the end be able
to extend our modulus of uniqueness from Kf ,n to Pn (see the proof of theorem 16.71
below).
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16.4.3 Lemma A → B

This lemma expresses the convexity of the set of best approximations:
⎧
⎪⎨

⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n
( 2∧

i=1
‖ f − pi‖1 = dist1( f ,Pn) → ‖ f − p‖1 = dist1( f ,Pn)

)
.

As a first step in the logical analysis we make explicit the quantifiers hidden in the
two occurrences of ‘=’ between real numbers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n
(
∀δ ∈ Q

∗
+(

2∧

i=1
‖ f − pi‖1 −dist1( f ,Pn) ≤ δ ) →

∀ε ∈ Q
∗
+(‖ f − p‖1−dist1( f ,Pn) < ε)

)
.

Next we bring this into ∀∃-form as guided by functional interpretation:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+∃δ ∈ Q

∗
+

( 2∧

i=1
‖ f − pi‖1 −dist1( f ,Pn) ≤ δ →

‖ f − p‖1−dist1( f ,Pn) < ε
)
.

(16.2)

The matrix

2∧

i=1

‖ f − pi‖1 −dist1( f ,Pn) ≤ δ →‖ f − p‖1−dist1( f ,Pn) < ε

in (16.2) can be prenexed as a Σ0
1 -formula and so (16.2) has the logical form re-

quired in theorem 15.1. Hence (officially representing δ as 2−k, which we avoid
for better readability, and using the monotonicity of the formula in k) it is clear
that one can extract a functional Φ1, depending at most on n, f and ε , such that
Φ1( f ,n,ε) ∈ Q

∗
+ and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ1( f ,n,ε) →

‖ f − p‖1−dist1( f ,Pn) < ε
)
.

(16.3)

Given the triviality of the proof of the lemma it is obvious how to construct Φ1 (for
better readability we usually drop the arguments the functionals do not depend on):

Claim. 16.56 The functional Φ1( f ,n,ε) := Φ1(ε) := ε satisfies (16.3).
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Proof: Assume (i) ‖ f − p1‖1−dist1( f ,Pn)< ε and (ii) ‖ f − p2‖1−dist1( f ,Pn)< ε .
Multiplying (i) and (ii) by 1/2 and adding them together yields 1/2(‖ f − p1‖1 +
‖ f − p2‖1)− dist1( f ,Pn) < ε . By the triangle inequality for the L1-norm we get
1/2(‖2 f − p1 − p2‖1)−dist1( f ,Pn) < ε , i.e. ‖ f − p‖1 −dist1( f ,Pn) < ε . �

Remark 16.57. Moving from (16.2) to (16.3) we tacitly changed ‘≤’ to ‘<’ in the
premise of the implication. We wrote ≤ first to establish that the matrix in (16.2) is
(equivalent to) a Σ0

1 -formula as required in theorem 15.1. Obviously, replacing ‘≤’
by ‘<’ results in an equivalent statement (but a simpler Φ1). We will use similar
variations below even without mentioning them.

16.4.4 Lemma A∧B →C

The lemma states,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n
( 2∧

i=1
(‖ f − pi‖1 = dist1( f ,Pn)) →

‖ f − p‖1−1/2‖ f − p1‖1 −1/2‖ f − p2‖1 = 0
)
.

After presenting the hidden quantifiers and performing the functional interpretation
we come again to the same logical structure of the formula in Theorem 15.1, and so
we know that there must exist a functional Φ2 depending at most on n, f and ε such
that,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n;ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ2( f ,n,ε)) →

| ‖ f − p‖1 −1/2‖ f − p1‖1 −1/2‖ f − p2‖1 | < ε
)
.

(16.4)

Again, the choice of Φ2 is simple:

Claim. 16.58 The functional Φ2( f ,n,ε) := Φ2(ε) := ε satisfies (16.4).

Proof: Assume (i) ‖ f − p1‖1−dist1( f ,Pn)< ε and (ii) ‖ f − p2‖1−dist1( f ,Pn)< ε .
By claim 16.56 (i.e. the logical analysis of the previous lemma) we get (iii) ‖ f −
p‖1−dist1( f ,Pn)< ε . (i)+(ii)

2 yields (iv) 1/2(‖ f − p1‖1+‖ f − p2‖1)−dist1( f ,Pn)<
ε . Finally, (iii) and (iv) imply | ‖ f − p‖1−1/2‖ f − p1‖1−1/2‖ f − p2‖1 |< ε , since
if a ∈ [0,m) and b ∈ [0,m) then |a−b| ∈ [0,m). �
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16.4.5 Lemma C1

Let g(x) := | f0(x)|− 1
2 | f (x)− p1(x)|− 1

2 | f (x)− p2(x)|. Since f and p1, p2 are con-
tinuous it follows that g is continuous and so, in particular, the extensionality of g
can be proved:

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+,x,y ∈ [0,1]∃δ ∈ Q

∗
+

(
|x− y| ≤ δ → |g(x)−g(y)|< ε

)
.

Using the compactness of Kf ,n (and [0,1]), monotone functional interpretation in the
form of the metatheorem 15.1 yields – given f ∈C[0,1] (represented with a modulus
of uniform continuity ω f ), an upper bound for ‖ f‖∞ (which can be computed in the
representation of f ∈ C[0,1]) and n – a function Δ depending only f ,n and ε such
that Δ( f ,n,ε) ∈ Q

∗
+ and

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+,x,y ∈ [0,1]

(
|x− y|< Δ( f ,n,ε) → |g(x)−g(y)|< ε

)
,

i.e. a modulus of uniform continuity of g. We write Δ( f ,n,ε) as ω f ,n(ε). From
the representation of the space Kω,m given at the end of chapter 4 it, moreover, is
clear already that ω f ,n will depend on ω only via a modulus of uniform continuity
ω f of f and an upper bound M ≥ ‖ f‖∞. As discussed in the introduction to this
chapter, we can in the end even eliminate the dependency on M by replacing f by
f̃ (x) := f (x)− f (0) whose uniform norm ‖ f‖∞ can be bounded by e.g.  1

ω f (1)�, so
that the final result only depends on ω f and n). The modulus of uniform continuity of
a function is not unique. Therefore, when we write ω f (ε) := ‘ . . .’ in the following
we mean that ‘ . . .’ can be taken as some modulus of uniform continuity of the
function f .

16.4.5.1 Modulus of the sum

Suppose that ω f and ωg are moduli of uniform continuity for the functions f and g
respectively. We now construct a modulus of uniform continuity ω f+g for f + g.
From

|x− y|< ω f (ε/2) → | f (x)− f (y)| < ε/2

and
|x− y|< ωg(ε/2) → |g(x)−g(y)|< ε/2,

we obtain that

|x− y|< min{ω f (ε/2),ωg(ε/2)}→ | f (x)− f (y)| < ε/2∧|g(x)−g(y)|< ε/2
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and

|x− y|< min{ω f (ε/2),ωg(ε/2)}→ | f (x)+ g(x)− f (y)−g(y)|< ε.

So we can take ω f+g(ε) := min{ω f (ε/2),ωg(ε/2)}.
Analogously, one establishes that ω f−g(ε) := min{ω f (ε/2),ωg(ε/2)} also is a
modulus for f −g.

16.4.5.2 Modulus for multiplication by a scalar

For all a ∈ Q
∗
+, if |x− y| < ω f ( ε

a ) then | f (x)− f (y)| < ε
a , and therefore, |a f (x)−

a f (y)| < ε . Hence we can take ωa f (ε) := ω f ( ε
a ).

16.4.5.3 Moduli of uniform continuity for p1, p2 ∈ Kf ,n

pi ∈Kf ,n implies that ‖pi‖1 ≤ 5
2‖ f‖1 ≤ 5

2‖ f‖∞. Now let pi(x)= anxn + . . .+a1x+a0

and define p∗i (x) = anxn+1

n+1 + . . .+ a1x2

2 + a0x. Then

|p∗i (x)| = |
∫ x

0
pi(x)dx| ≤

∫ x

0
|pi(x)|dx ≤ ‖pi‖1 ≤

5
2
‖ f‖∞, ∀x ∈ [0,1]

and so ‖p∗i ‖∞ ≤ ‖pi‖1 ≤ 5
2‖ f‖∞. We now apply the Markov inequality (proposition

16.4), used already in previous sections, and conclude that

‖pi‖∞ = ‖(p∗i )
′‖∞ ≤ 2(n + 1)2‖p∗i ‖∞ ≤ 2(n + 1)2‖pi‖1 ≤ 2(n + 1)2( 5

2‖ f‖∞) =

5(n + 1)2‖ f‖∞.

Another application of the Markov inequality finally yields

‖p′i‖∞ ≤ 2n25(n + 1)2‖ f‖∞ ≤ 10(n + 1)4‖ f‖∞.

Together with the mean value theorem this implies that pi is Lipschitz continuous
on [0,1] with Lipschitz constant 10(n + 1)4‖ f‖∞, i.e. ε

10(n+1)4‖ f‖∞
is a modulus of

uniform continuity for pi on [0,1]. Given an upper bound Mf on ‖ f‖∞ (which is
easily computable in the representation of f e.g. by Mf := max{| f (i ·ω f (1))| : 0 ≤
i ≤ � 1

ω f (1)�}+ 1) we obtain

ωpi(ε) := ωn,Mf :=
ε

10(n + 1)4Mf
.
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Remark 16.59. Let p := anxn + . . .a1x+a0 ∈ Pn. Using Markov’s inequality and the
inequality ‖p‖∞ ≤ 2(n+1)2‖p‖1 proved above it follows that |ai| ≤ (2(n+1)2)i+1

i! ‖p‖1
for i ≤ n.

Proof: Exercise! �

16.4.5.4 The modulus of uniform continuity ω f ,n

Putting the above results together we are now able to construct a modulus of uniform
continuity ω f ,n for g as a function of ω f and n (here we use that any modulus of
uniform continuity of f is a modulus of uniform continuity for | f | as well):

ω f ,n(ε) = min{ω| f−p|(ε/2),ω1/2| f−p1|(ε/4),ω1/2| f−p2|(ε/4)}
= min{ω f−p(ε/2),ω f−p1(ε/2),ω f−p2(ε/2)}
= min{ω f (ε/4),ωp1(ε/4),ωp2(ε/4)}

= min{ω f (
ε
4
),

ε
40(n + 1)4Mf

}.

Note that the construction above made essential use of the fact that we had restricted
the space Pn to the compact set Kf ,n.

16.4.6 Lemma C∧C1 → D

Consider again

g(x) := | f (x)− p(x)|−1/2| f (x)− p1(x)|−1/2| f (x)− p2(x)|.

Using g the lemma can be stated as

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n
(∫ 1

0
g(x)dx = 0 →∀x ∈ [0,1](g(x) = 0)

)
.

After presenting the hidden quantifiers and applying functional interpretation we
observe that again we can apply theorem 15.1 to extract a functional Φ3( f ,n,ε)
such that Φ3( f ,n,ε) ∈ Q

∗
+ and

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+

(
|
∫ 1

0 g(x)dx| ≤ Φ3( f ,n,ε) →‖g‖∞ ≤ ε
)
.

(16.5)

In the following ω f ,n : Q
∗
+ → Q

∗
+ denotes the modulus of uniform continuity of the

function g ∈C[0,1] constructed in section 16.4.5.
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Claim. 16.60 The functional Φ3( f ,n,ε) := Φ3(ω f ,n,ε) := ε
2 ·min{ 1

2 , ω f ,n( ε
2 )} sat-

isfies (16.5).

Proof: One easily verifies that ∀x ∈ [0,1](g(x) ≤ 0). Now assume that ‖g‖∞ > ε.
Then we can conclude that ∃x0 ∈ [0,1](g(x0) ≤ −ε). By the continuity of g (with
modulus ω f ,n) this implies

∀x ∈ [0,1]
(
|x− x0| < ω f ,n(ε/2) → g(x) < −ε/2

)
.

Case 1: x0 < 1/2. Then

|
∫ 1

0
g(x)dx| > |

∫ min{1,x0+ω f ,n(ε/2)}

x0

−ε/2 dx| ≥ ε
2

min{1
2
,ω f ,n(

ε
2
)}.

Case 2: x0 ≥ 1/2. One, analogously, has

|
∫ 1

0
g(x)dx| > |

∫ x0

max{0,x0−ω f ,n(ε/2)}
−ε/2 dx| ≥ ε

2
min{1

2
,ω f ,n(

ε
2
)}.

So in either case

|
∫ 1

0
g(x)dx| > ε

2
min{1

2
,ω f ,n(

ε
2
)}.

�

16.4.7 Lemma D → K

Define f1(x) := 1/2(| f (x)− p1(x)|+ | f (x)− p2(x)|). The lemma in question can be
formally written as:

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,x ∈ [0,1]
(
‖| f0|− f1‖∞ = 0 → (| f0(x)| = 0 → p1(x) = p2(x))

)
.

Making the quantifiers hidden in the three equalities between real numbers explicit
and prenexing the statement into ∀∃-form theorem 15.1 again predicts the existence
of functionals Φ4( f ,n,ε) ∈ Q

∗
+ and Φ5( f ,n,ε) ∈ Q

∗
+ satisfying

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,x ∈ [0,1],ε ∈ Q
∗
+

(
‖| f0|− f1‖∞ ≤ Φ4( f ,n,ε) → (| f0(x)| ≤ Φ5( f ,n,ε) → |p1(x)− p2(x)| ≤ ε)

)
.

(16.6)

Claim. 16.61 The functionals Φ4( f ,n,ε) := Φ4(ε) := ε/4 and
Φ5( f ,n,ε) := Φ5(ε) := ε/4 satisfy (16.6).

Proof: Exercise! �
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16.4.8 Lemma F → G

This lemma expresses that Pn is a Haar space which we used already in the previous
sections on Chebycheff approximation:

⎧
⎪⎨

⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n∀x0, . . . ,xn ∈ [0,1]
( n∧

i=1
(xi < xi+1)∧

n∧

i=0
(p1(xi) = p2(xi)) →‖p1 − p2‖∞ = 0

)
.

Presenting the hidden quantifiers, prenexing and using the metatheorem 15.1 we get
a functional Φ6( f ,n,r,ε) ∈ Q

∗
+ realizing ‘∃δ > 0’ in

⎧
⎪⎨

⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,r,ε ∈ Q
∗
+∀x0, . . . ,xn ∈ [0,1]∃δ ∈ Q

∗
+

( n∧

i=1
(xi−1 + r ≤ xi)∧

n∧

i=0
(|p1(xi)− p2(xi)| ≤ δ ) → ‖p1 − p2‖∞ ≤ ε

)
.

(16.7)

Claim. 16.62 The functional Φ6( f ,n,r,ε) := Φ6(n,r,ε) := �n/2�!n/2�!rn

(n+1) ε produces
a δ satisfying (16.7).

Proof: See the construction of the functional Φ4 after remark 16.20 in section 16.2.
�

In fact, the result above applies not only to p1, p2 ∈ Kf ,n but even to p1, p2 ∈ Pn.

16.4.9 Lemma B →∀h H(h)

The lemma
⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n
(
‖ f0‖1 = dist1( f ,Pn) →∀h ∈ Pn(‖ f0 −h‖1 ≥ ‖ f0‖1)

)

is an immediate consequence of the definitions of f0 and dist1 and the fact that Pn is
a vector space. Observing that the statement trivially holds true if ‖h‖1 ≥ 2‖ f‖1 so
that h can be restricted to the compact set Kf ,n without loss of generality, monotone
functional interpretation (in form of the metatheorem 15.1) guarantees a functional
Φ7( f ,n,ε) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+

(
‖ f0‖1 −dist1( f ,Pn) ≤ Φ7( f ,n,ε) →

∀h ∈ Pn(‖ f0 −h‖1 + ε ≥ ‖ f0‖1)
)
.

(16.8)
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Again, the task in fact is trivial:

Claim. 16.63 The functional Φ7( f ,n,ε) := Φ7(ε) := ε satisfies (16.8).

Proof: Assume (i) ‖ f0‖1 − dist1( f ,Pn) ≤ ε . By the definition of dist1 we have
(ii) ‖ f0 − h‖1 = ‖ f − (p + h)‖1 ≥ dist1( f ,Pn) for all h ∈ Pn since with p,h ∈ pn
also p + h ∈ Pn. (i) and (ii) yield ‖ f0 −h‖1 + ε ≥ ‖ f0‖1. �

16.4.10 Lemma ∀x,h (∀λH(λh)∧ I(x,σ ′,h) → J(x))

This is the most difficult lemma to analyze logically and we now motivate our anal-
ysis in some detail. We first consider the related lemma 1 in the form it is used in
Cheney’s proof in [66].

Lemma 16.64 (Lemma 1). Let f ∈ C[0,1], n ∈ N and h, p1, p2 ∈ Pn. If f0 has at
most n roots then either

∫ 1
0 (h(x)sgn( f0)(x))dx = 0 or there exists a λ ∈ R such that

∫ 1
0 | f0(x)−λ h(x)|dx <

∫ 1
0 | f0(x)|dx.

Proof: Since f0 is assumed to have at most n-many roots there are points 0 =
x0 ≤ x1 ≤ . . . ≤ xn+1 = 1 which comprise all roots of f0. We now assume that
∫ 1

0 (h(x)sgn( f0)(x))dx �= 0. We only treat the case
∫ 1

0 (h(x)sgn( f0)(x))dx > 0 as the
other one is analogous. Let B′ :=

⋃n+1
i=0 (xi−r,xi +r), B := B′⋂[0,1] and define A :=

[0,1]\B. By making r sufficiently small we can ensure that
∫

A(h(x)sgn( f0)(x))dx >
∫

B |h(x)|dx. Since that A is a finite union of compact intervals which contain no
roots of f0 it follows that δ := min{| f0(x)| : x ∈ A} > 0. Consequently, there is a
λ such that 0 < λ‖h‖∞ < δ and sgn( f0 −λ h)(x) = sgn( f0)(x) for all points x ∈ A.
As shown in [66] (as well as in the proof of Claim 16.66 below) this implies that
∫ 1

0 | f0(x)−λ h(x)|dx <
∫ 1

0 | f0(x)|dx. �

16.4.10.1 Logical analysis of lemma 1

We now indicate that a slight modification of Lemma 1 can be used in Cheney’s
proof as well which has the benefit that (due to its logical form) we can apply di-
rectly the metatheorem 15.1 to its proof. Again, define B′ :=

⋃n+1
i=0 (xi − r,xi + r),

B := B′⋂[0,1] and A := [0,1]\B, where x0 := 0 and xn+1 := 1. It is clear that A
coincides up to at most finitely many points with the union of the smaller intervals
Ai := [xi−1 + min{r, xi−xi−1

2 },xi −min{r, xi−xi−1
2 }], for 1 ≤ i ≤ n + 1. As a conse-

quence of this, the two terms ∑
∫

Ai
and

∫

A coincide. In the following we always use
x0,xn+1,A,B and Ai as defined above and refer explicitly to r only in cases where
this might not be clear from the context. The variant of Lemma 1 we consider is the
following one: for all f ∈C[0,1] and n ∈ N
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,r ∈ Q
∗
+

(
∀y ∈ A( f (y) �= 0)∧

∫

A h sgn( f ) >
∫

B |h| →

∃λ ∈ R(‖ f −λ h‖1 < ‖ f‖1)
)

(16.9)

where A,B depend on x1 ≤ . . . ≤ xn and r.
We start by indicating how (16.9) can be used in Cheney’s uniqueness proof. In
our applications of (16.9) we always take as f the function f0 with p1, p2 being
best approximations (so that p := (p1 + p2)/2 again is a best approximation). From
this it follows (see below) that ∀λ ∈ R,h ∈ Pn(‖ f0 −λ h‖1 ≥ ‖ f0‖1). Hence for all
f ∈C[0,1] and n ∈ N

⎧
⎨

⎩

∀x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,r ∈ Q
∗
+

(
∃y ∈ A( f0(y) = 0)∨

∫

A h sgn( f0) ≤
∫

B |h|
)
.

(16.10)

Furthermore, one can show that
⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N,x1 ≤ . . . ≤ xn ∈ [0,1]

∃h ∈ Pn,r ∈ Q
∗
+
(
∀y ∈ A( f0(y) �= 0) →

∫

A h sgn( f0) >
∫

B |h|
)
.

(16.11)

Let the polynomial h from (16.11) be denoted by ĥ. Then applying (16.10) to ĥ and r
from (16.11) yields

∀x1 ≤ . . . ≤ xn ∈ [0,1]
(
∃y ∈ A( f0(y) = 0)

)
(16.12)

from which we can obtain the existence of n + 1 roots by induction since y ∈ A
implies that y has distance ≥ r from all the points x0, . . . ,xn+1 (recall that x0 :=
0,xn+1 := 1).

As this proof sketch shows, in our analysis of (16.9) it is sufficient to replace f
by f0 := f − p1+p2

2 with p1, p2 ∈ Kf ,n since the lemma will only be used for such
f0. Finally, as described above, we rewrite the integral of hsgn( f0) over A as the
sum of the integrals over the smaller intervals Ai. From the assumption that ∀y ∈
A( f0(y) �= 0) it follows that none of these intervals contains any root of f0. In total,
we formulate the following version of (16.9): for all f ∈C[0,1] and n ∈ N

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,r ∈ Q
∗
+

(
∀y ∈ A( f0(y) �= 0)∧

n+1
∑

i=1
σi

∫

Ai
h >

∫

B |h| →

∃λ ∈ R(‖ f0 −λ h‖1 < ‖ f0‖1)
)
,

(16.13)

where σi := sgn( f0)(
xi−1+xi

2 ), x0 := 0 and xn+1 := 1. Presenting the hidden quan-
tifiers and weakening (16.13) by strengthening the premise ‘∀y ∈ A( f0(y) �= 0)’ to
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‘∃δ ∈ Q
∗
+∀y ∈ A(| f (y)| ≥ δ )’ we obtain: for all f ∈C[0,1] and n ∈ N

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,δ ,r,η ∈ Q
∗
+∃l ∈ Q

∗
+

(
∀y ∈ A(| f0(y)| ≥ δ )∧

n+1
∑

i=1
σi

∫

Ai
h ≥

∫

B |h|+ η →

∃λ ∈ R(‖ f0 −λ h‖1 + l < ‖ f0‖1)
)
.

(16.14)

Remark 16.65. In the presence of WKL the premises ‘∀y ∈ A( f0(y) �= 0)’ and ‘∃δ ∈
Q

∗
+∀y ∈ A(| f0(y)| ≥ δ )’ are in fact equivalent (the equivalence is particularly easy

if one uses Σ0
1 -UB instead of WKL, see chapter 12). In the course of the quantitative

logical analysis of the proof the notion of ‘root’ gets replaced by that of ‘δ -root’ so
that it suffices to prove (16.14) which (in contrast to (16.13)) does not need WKL
anymore. This kind of possibility of the elimination of WKL is guaranteed already
by the metatheorem 15.1 (see also the discussion below).

Note that in (16.14) we can take η = 1 w.l.o.g. since h/η ∈ Pn. Hence, get for all
f ∈C[0,1] and n ∈ N

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,δ ,r ∈ Q
∗
+ ∃l ∈ Q

∗
+

(
∀y ∈ A(| f0(y)| ≥ δ )∧

n+1
∑

i=1
σi

∫

Ai
h ≥

∫

B |h|+ 1 →

∃λ ∈ R(‖ f0 −λ h‖1 + l < ‖ f0‖1)
)

(16.15)

16.4.10.2 Extraction of a functional realizing Lemma 1

The matrix

∀y ∈ A(| f0(y)| ≥ δ )∧
n+1

∑
i=1

σi

∫

Ai

h ≥
∫

B
|h|+ 1 →∃λ ∈ R(‖ f0 −λ h‖1 + l < ‖ f0‖1)

of (16.15) can be prenexed into a formula of the form ∃l0/1A0 with quantifier-free
A0.

1 Hence we can apply theorem 15.1 to the proof of (16.15) and know a-priori the
extractability of a functional Φ8( f ,n,δ ,r,h), depending at most on the data shown,
which bounds – and hence realizes (due to monotonicity) – ‘∃l’ in (16.15). Thus for
all f ∈C[0,1] and n ∈ N the following holds (where for convenience used below we
strengthen the two occurrences of ≥ in the premise to >):

1 Note that we can treat σi as ∀σ1, . . . ,σn+1 ∈ {−1,1} with the purely universal assumption
∧n+1

i=1 (σi = 1 → sgn( f0)(
xi−1+xi

2 ) ≥ 0∧σi = −1 → sgn( f0)(
xi−1+xi

2 ) ≤ 0),
since the case where sgn( f0)(

xi−1+xi
2 ) = 0 does not matter.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,δ ,r ∈ Q
∗
+

(
∀y ∈ A(| f0(y)| > δ )∧

n+1
∑

i=1
σi

∫

Ai
h >

∫

B |h|+ 1 →

∃λ ∈ R(‖ f0 −λ h‖1 + Φ8( f ,n,δ ,r,h) < ‖ f0‖1)
)
.

(16.16)

Claim. 16.66 The functional Φ8( f ,n,δ ,r,h) := Φ8(n,δ ,h) := δ
‖h‖∞

satisfies (16.16).

Proof: We have to prove that, for all f ∈C[0,1] and n ∈ N

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],h ∈ Pn,δ ,r ∈ Q
∗
+

(
∀y ∈ A(| f0(y)| > δ )∧

n+1
∑

i=1
σi

∫

Ai
h >

∫

B |h|+ 1 →

∃λ ∈ R(‖ f0 −λ h‖1 + δ
‖h‖∞

< ‖ f0‖1)
)
.

Let f ∈ C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,h ∈ Pn,δ ,r ∈ Q
∗
+ be fixed. Note that now we

not only require f0 not to have roots in A but not even δ -roots (i.e. ∀y ∈ A(| f0(y)| >
δ ). As a consequence, any δ -root y has to be ‘r-apart’ from all xi. We say that y
does not belong to the (xi,r)-clusters whose union gives B′. Now we follow the
original proof. Take n points, x1, . . . ,xn, such that (i) 0 = x0 ≤ x1 ≤ . . . ≤ xn+1 = 1
and suppose that (ii) all δ -roots of f0 belong to at least one of the (xi,r)- clusters.
Moreover, suppose that (iii) ∑n+1

i=1 σi
∫

Ai
h >

∫

B |h|+1, where σi = sgn( f0)(
xi−1+xi

2 ).
By assumption (ii) we have σi = sgn( f0)(x), for x ∈ Ai and so ∑n+1

i=1 σi
∫

Ai
h(x) dx =

∫

A(h(x)sgn( f0)(x)) dx. Furthermore, we have | f0(x)| > δ for all x ∈ A. Therefore,
taking λ := δ

‖h‖∞
we have (iv) sgn( f0 −λ h)(x) = sgn( f0)(x), for x ∈ A. Using this

we can now reason exactly as in Cheney’s original proof and obtain the following
inequality:

‖ f0 −λ h‖1 =
∫

A
| f0 −λ h|+

∫

B
| f0 −λ h|

(iv)
=

∫

A
( f0 −λ h)sgn( f0)+

∫

B
| f0 −λ h|

=
∫

A
f0 sgn( f0)−λ

∫

A
hsgn( f0)+

∫

B
| f0 −λ h|

≤
∫

A
f0 sgn( f0)−λ

∫

A
hsgn( f0)+

∫

B
| f0|+ λ

∫

B
|h|

=
∫

A
| f0|+

∫

B
| f0|+ λ

∫

B
|h|−λ

∫

A
hsgn( f0)

=
∫ 1

0
| f0|+ λ

∫

B
|h|−λ

∫

A
hsgn( f0).

We now add δ
‖h‖∞

on both sides of the inequality and choose λ := δ
‖h‖∞

. Then
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‖ f0 −λ h‖1 +
δ

‖h‖∞
≤ ‖ f0‖1 +

δ
‖h‖∞

(1 +
∫

B
|h|−

∫

A
hsgn( f0))

(iii)
< ‖ f0‖1.

�

Remark 16.67. 1) The functional Φ8 does not depend on r. This can be explained
by fact that (as we will see in section 16.4.11) r is taken to be a function of ‖h‖∞,
and such a dependency already appears in Φ8.

2) The functional Φ8 is not defined for ‖h‖∞ and even when defined will in general
not have a value in Q

∗
+. Both issues can be resolved by replacing the argument h

by an natural number upper bound N on ‖h‖∞ and defining Φ8(n,δ ,N) := δ/N.
In fact, for the concrete h, to be constructed in the next section, to which we
actually apply Φ8, we can show that ‖h‖∞ ≤ 8(n + 1)2 so that we in the end can
replace Φ8 by Φ̃8(n,δ ) := δ/(8(n + 1)2).

16.4.11 Lemma ∀x,σ∃h I(x,σ ,h)

Let us recall how Lemma 1 is used in Cheney’s proof. Assuming that f0 has less
than n+1 roots, Cheney concludes from Lemma 1 that ∀h ∈ Pn(

∫
h sgn( f0) = 0). In

the second part of his proof Cheney shows, however, that ∀h ∈ Pn(
∫

h sgn( f0) = 0)
can be refuted, i.e. it holds that

∃h ∈ Pn(|
∫

h sgn( f0)| > 0)

and so (taking if necessary −h)

∃h ∈ Pn(
∫

h sgn( f0) > 0). (16.17)

As a consequence, the assumption that f0 has at most n roots has been refuted. As
mentioned already before (16.17) yields

∃r ∈ Q
∗
+(

∫

A
h sgn( f0) >

∫

B
|h|).

We now show that for any given n points x1 ≤ . . . ≤ xn in the interval [0,1] and
for any σ1, . . . ,σn+1 ∈ {−1,1} (where σi will denote the sign of the function f0
in the interval Ai) it is possible to find a function h ∈ Pn and r ∈ Q

∗
+ such that

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h|, where x0 = 0 and xn+1 = 1. Formally,

⎧
⎪⎨

⎪⎩

∀n ∈ N,x1 ≤ . . . ≤ xn ∈ [0,1],σ1, . . . ,σn+1 ∈ {−1,1}∃h ∈ Pn,r ∈ Q
∗
+

(n+1
∑

i=1
σi

∫

Ai
h >

∫

B |h|
)
.
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In the same way as we did in Section 16.4.10.1 we present the hidden quantifier η
in the inequality and since h/η ∈ Pn we have,

⎧
⎪⎨

⎪⎩

∀n ∈ N,x1 ≤ . . . ≤ xn ∈ [0,1],σ1, . . . ,σn+1 ∈ {−1,1}∃h∈ Pn,r ∈ Q
∗
+

(n+1
∑

i=1
σi

∫

Ai
h >

∫

B |h|+ 1
)
.

The sentence above states the existence of an r ∈ Q
∗
+ and a function h ∈ Pn. There-

fore, there exists also a k ∈ Q
∗
+ such that k ≥ ‖h‖∞. Here we can again apply our

metatheorem 15.1 and we are sure to find functions Φ9 and Φ10 depending only on
n such that,2

⎧
⎪⎨

⎪⎩

∀n ∈ N,x1 ≤ . . . ≤ xn ∈ [0,1],σ1, . . . ,σn+1 ∈ {−1,1}∃h ∈ Pn,r ≥ Φ9(n)
( n+1

∑
i=1

σi
∫

Ai
h >

∫

B |h|+ 1∧Φ10(n) ≥ ‖h‖∞
)
,

(16.18)
where A and B are defined as before.

Claim. 16.68 The functions Φ9(n) := 1
16(n+1)3 and Φ10(n) := 8(n + 1)2 satisfy

(16.18).

Proof: Let 0 = x0 ≤ x1 ≤ . . . ≤ xn+1 = 1 and σ1, . . . ,σn+1 ∈ {−1,1} be given. We
first drop all the points x j such that xi = x j and i < j. We are left with ñ+ 2 points
0 = xa0 < xa1 < .. . < xañ+1 = 1 where ai−1 < ai, ai ∈ {0, . . . ,n+1} and ñ≤ n. Define
x̃i := xai and σ̃i := σai . Since we have eliminated only trivial intervals we have for all
h ∈ Pn that ∑n+1

i=1 σi
∫ xi

xi−1
h(x) dx = ∑ñ+1

i=1 σ̃i
∫ x̃i

x̃i−1
h(x) dx. Among the points x̃1, . . . , x̃ñ

we only keep the points x̃i for which σ̃i �= σ̃i+1. Finally, we are left with m+2 points
0 = x̃b0 < x̃b1 < .. . < x̃bm+1 = 1 where bi−1 < bi, bi ∈ {0, . . . , ñ+1} and m ≤ ñ. Let
yi := x̃bi and σ∗

i := σ̃bi . Again we have ∑ñ+1
i=1 σ̃i

∫ x̃i
x̃i−1

h(x)dx = ∑m+1
i=1 σ∗

i
∫ yi

yi−1
h(x)dx,

for any h ∈ Pn. Let h̃ ∈ Pn be defined by h̃(x) := (x− y1) . . . (x− ym). Finally, we
re-norm h̃ to

h(x) :=
+/−8(n + 1)2

‖h̃‖∞
h̃(x)

so that ‖h‖∞ = 8(n + 1)2. Here we select +/− in such a way that

m+1

∑
i=1

σ∗
i

∫ yi

yi−1

h(x)dx =
m+1

∑
i=1

∫ yi

yi−1

|h(x)|dx

holds. Then

2 Note that Φ9 and Φ10 do not depend on the points x1, . . . ,xn nor on σ1, . . . ,σn+1 since they are
elements from the compact spaces [0,1] and {−1,1}, respectively, and

∧n−1
i=1 xi ≤ xi+1 is purely

universal.
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n+1

∑
i=1

σi

∫ xi

xi−1

h(x)dx =
∫ 1

0
|h(x)|dx.

As shown in section 16.4.5.3, the Markov inequality (proposition 16.4) implies that

‖h‖∞ ≤ 2(n + 1)2‖h‖1.

Hence ∫ 1

0
|h(x)|dx = ‖h‖1 ≥

‖h‖∞

2(n + 1)2 = 4.

Let r := Φ9(n). The total length of all the intervals B is at most 1
8(n+1)2 and so

∫

B |h(x)|dx ≤ ‖h‖∞ · 1
8(n+1)2 = 1. Hence,

n+1

∑
i=1

σi

∫

Ai

h(x)dx =
∫

A
|h(x)|dx >

∫

B
|h(x)|dx + 1.

�

Corollary to the proof of claim 16.68: The proof above shows that we actually can
take r = Φ9(n) whereas the claim itself (as guaranteed by theorem 15.1) only states
the existence of an r ≥ Φ9(n). This can be explained by the fact that h is taken in the
proof in such way that ∑i σi

∫

Ai
h =

∫

A |h| which has the consequence that the matrix
of the claim becomes monotone in ∃r.

16.4.12 Elimination of the polynomial h in (16.16)

By claim (16.18) and the corollary to its proof we have
⎧
⎪⎨

⎪⎩

∀x1 ≤ . . . ≤ xn ∈ [0,1],σ1, . . . ,σn+1 ∈ {−1,1}∃h ∈ Pn
( n+1

∑
i=1

σi
∫

Ai
h >

∫

B |h|+ 1∧Φ10(n) ≥ ‖h‖∞
)
,

(16.19)

where Ai and B are defined with r replaced by Φ9(n).

Now, let f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n and x1 ≤ . . . ≤ xn ∈ [0,1],δ ∈ Q
∗
+ be fixed,

assume (as in (16.16)) that
∀y ∈ A(| f0(y)| > δ

with r = Φ9(n) as above and let ĥ be the function from (16.19) where σi is the sign
of f0(

xi−1+xi
2 ) with x0 := 0 and xn+1 := 1. Applying claim 16.66 to ĥ and Φ9(n) (i.e.

taking h = ĥ) we get,

∃λ ∈ R(‖ f0 −λ ĥ‖1 + Φ8(n,δ , ĥ) < ‖ f0‖1).
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Taking the contraposition we have shown
⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],δ ∈ Q
∗
+

(
∀λ ∈ R(‖ f0 −λ ĥ‖1 + Φ8(n,δ , ĥ) ≥ ‖ f0‖1) →∃y ∈ A(| f0(y)| ≤ δ )

)
.

Note that in the argument above, the value of σi only matters in the case where Ai is
not a singleton interval [(xi−1 + xi)/2] (since otherwise

∫

Ai
h = 0) and in this case it

is easily computable as −1 or 1 under the assumption of (16.16) which implies that
| f0(y)| > δ on such Ai.

Using the fact that Φ8 is monotone in ‖h‖∞ and the estimate ‖ĥ‖∞ ≤ Φ10(n) =
8(n + 1)2 from (16.19) we can eliminate the dependency of Φ8 from h (and hence
also from x1, . . . ,xn) by defining Φ̃8(n,δ ) := δ

8(n+1)2 . As a result we conclude

⎧
⎨

⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,x1 ≤ . . . ≤ xn ∈ [0,1],δ ∈ Q
∗
+

(
∀λ ∈ R(‖ f0 −λ ĥ‖1 + Φ̃8(n,δ ) ≥ ‖ f0‖1) →∃y ∈ A(| f0(y)| ≤ δ )

)
.

This in turn implies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,δ ∈ Q
∗
+

(
∀h ∈ Pn(‖ f0 −h‖1 + Φ̃8(n,δ ) ≥ ‖ f0‖1) →

∀x1 ≤ . . . ≤ xn ∈ [0,1]∃y ∈ A(| f0(y)| < δ )
)
.

(16.20)

Remark 16.69. Note that from the proof of the metatheorem 15.1 it follows that Φ8
is a majorant of a realizing functional and hence only requires a majorant of h as an
argument where the latter can easily be computed given an upper bound l on ‖h‖∞
(rather than referring to the proof of theorem 15.1 one can also just take a majorant
Φ∗

8 of Φ8). So the construction of a functional doing the job of Φ̃8 is always possible.

In fact, we can replace the conclusion of (16.20) above with the actual existence of
n + 1 roots in the following way (lemma ∀xJ(x) → E). Assume

∀x1 ≤ . . . ≤ xn ∈ [0,1]∃y ∈ A(| f0(y)| < δ ),

i.e.

∀x1 ≤ . . . ≤ xn ∈ [0,1]∃y ∈ [0,1](| f0(y)| < δ ∧
n+1∧

i=0

|xi − y| ≥ Φ9(n))
)
. (16.21)

Suppose that there would not exist n + 1-many δ -roots of f0 which are all pairwise
apart from each other by at least Φ9(n). Then let m < n + 1 be the biggest number
m such that m-many such δ -roots of f0 exist. Take a (possibly empty in the case of
m = 0) tuple of such δ -roots in increasing order and fill in (in case m < n) further
points in this order to get n points x1 < .. . < xn which include these m δ -roots.
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Then by (16.21) we get a further δ -root which is Φ9(n)-apart from each of the other
m-many δ -roots and so in total a tuple of m+ 1-many δ -roots all pairwise apart by
Φ9(n). However, this contradicts the maximality of m. Hence (16.20) implies

∃x0, . . . ,xn ∈ [0,1](
n∧

i=0

| f0(xi)| < δ ∧
n∧

i=1

(xi−1 + Φ9(n) ≤ xi)). (16.22)

So we have shown that (16.20) in fact implies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀ f ∈C[0,1],n ∈ N, p1, p2 ∈ Kf ,n,δ ∈ Q
∗
+

(
∀h ∈ Pn(‖ f0 −h‖1 + Φ̃8(n,δ ) ≥ ‖ f0‖1) →

∃x0, . . . ,xn ∈ [0,1](
n∧

i=0
| f0(xi)| < δ ∧

n∧

i=1
xi−1 + Φ9(n) ≤ xi)

)
.

(16.23)

16.4.13 The modulus of uniqueness for L1-approximation

Having extracted all the relevant functionals from the various lemmas used in the
uniqueness proof we can now combine them into the final modulus of uniqueness.
Let f ∈C[0,1], n ∈ N, p1, p2 ∈ Kf ,n and ε ∈ Q

∗
+ be fixed. Assume (for i ∈ {1,2}),

‖ f − pi‖1 −dist1( f ,Pn) <

⎧
⎨

⎩

min{Φ1(Φ7(Φ̃8(n,Φ5(Φ6(n,Φ9(n),ε))))),

Φ2(Φ3(ω f ,n,Φ4(Φ6(n,Φ9(n),ε))))}.
(16.24)

(16.24) and claim 16.58 yield

| ‖ f0‖1 −1/2‖ f − p1‖1 −1/2‖ f − p2‖1 | < Φ3(ω f ,n,Φ4(Φ6(n,Φ9(n),ε))).

By claim 16.60 (using that
∫
| f0|− 1

2 | f − p1|− 1
2 | f − p2| = ‖ f0‖1 − 1

2‖ f − p1‖1 −
1
2‖ f − p2‖1) this gives

‖ | f0|−1/2| f − p1|−1/2| f − p2| ‖∞ ≤ Φ4(Φ6(n,Φ9(n),ε)).

Hence, by claim 16.61
⎧
⎨

⎩

∀x ∈ [0,1](| f0(x)| ≤ Φ5(Φ6(n,Φ9(n),ε)) →

|p1(x)− p2(x)| ≤ Φ6(n,Φ9(n),ε)).
(16.25)

By assumption (16.24) and claim 16.56 we also have
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‖ f0‖1 −dist1( f ,Pn) < Φ7(Φ̃8(n,Φ5(Φ6(n,Φ9(n),ε)))).

By claim 16.63 we have

∀h ∈ Pn
(
‖ f0 −h‖1 + Φ̃8(n,Φ5(Φ6(n,Φ9(n),ε))) ≥ ‖ f0‖1

)
.

Hence, by (16.23) (taking δ = Φ5(Φ6(n,Φ9(n),ε)))
⎧
⎪⎨

⎪⎩

∃x0, . . . ,xn ∈ [0,1]

(
n∧

i=0
| f0(xi)| < Φ5(Φ6(n,Φ9(n),ε))∧

n∧

i=1
xi−1 + Φ9(n) ≤ xi).

Together with (16.25), this gives
⎧
⎪⎨

⎪⎩

∃x0, . . . ,xn ∈ [0,1]

(
n∧

i=0
|p1(xi)− p2(xi)| ≤ Φ6(n,Φ9(n),ε)∧

n∧

i=1
xi−1 + Φ9(n) ≤ xi).

By claim 16.62 (applied to r = Φ9(n)) this, finally, implies the desired conclusion

‖p1 − p2‖∞ ≤ ε. (16.26)

If we write out the definitions of the linear functionals, Φ1,Φ2,Φ4,Φ5 and Φ7, to
make the modulus Φ more transparent, the implication 16.24 → 16.26 becomes

⎧
⎨

⎩

‖ f − pi‖1 −dist1( f ,Pn) <

min{Φ̃8(n, Φ6(n,Φ9(n),ε)
4 ),Φ3(ω f ,n,

Φ6(n,Φ9(n),ε)
4 )} → ‖p1 − p2‖∞ ≤ ε.

Next we unpack the definitions of Φ̃8 and Φ9 which leads to
⎧
⎪⎨

⎪⎩

‖ f − pi‖1 −dist1( f ,Pn) <

min{
Φ6(n, 1

16(n+1)3
,ε)

32(n+1)2 ,Φ3(ω f ,n,
Φ6(n, 1

16(n+1)3
,ε)

4 )}→ ‖p1 − p2‖∞ ≤ ε.

Inserting the definition of Φ6 gives
⎧
⎪⎨

⎪⎩

‖ f − pi‖1 −dist1( f ,Pn) <

min{
�n/2�!n/2�!

24n+2(n+1)3n+1 ε

8(n+1)2 ,Φ3(ω f ,n,
�n/2�!n/2�!

24n+2(n+1)3n+1 ε)}→ ‖p1 − p2‖∞ ≤ ε.

To make the result more readable we use as an abbreviation cn := �n/2�!n/2�!
24n+2(n+1)3n+1 . The

above statement then becomes
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⎧
⎨

⎩

‖ f − pi‖1 −dist1( f ,Pn) <

min{ cnε
8(n+1)2 ,Φ3(ω f ,n,cnε)} → ‖p1 − p2‖∞ ≤ ε.

Finally, we unpack the definition of Φ3 and obtain
⎧
⎨

⎩

‖ f − pi‖1 −dist1( f ,Pn) <

min{ cnε
8(n+1)2 ,

cnε
2 ω f ,n( cnε

2 )}→ ‖p1 − p2‖∞ ≤ ε.

Putting things together, we have shown the following

Proposition. 16.70 Let Φ̃( f ,n,ε) := min{ cnε
8(n+1)2 ,

cnε
2 ω f ,n( cnε

2 )}, where

ω f ,n := min{ω f (
ε
4
),

ε
40(n + 1)4Mf

}

and Mf is a bound on ‖ f‖∞. Then Φ̃( f ,n,ε) is a modulus of uniqueness for the best
L1-approximation of f ∈C[0,1] from Pn for p1, p2 ∈ Kf ,n, i.e.
⎧
⎪⎨

⎪⎩

∀n ∈ N, p1, p2 ∈ Kf ,n,ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ̃( f ,n,ε)) →‖p1 − p2‖1 ≤ ‖p1 − p2‖∞ ≤ ε

)
.

Proof: The proposition follows from what we just proved together with ‖p1 −
p2‖1 ≤ ‖p1 − p2‖∞. �

We now extend (similarly to the way used already in the previous sections) propo-
sition 16.70 from Kf ,n to the whole space Pn. At the same time, we eliminate the
dependency of Φ̃ on Mf and obtain a modulus of uniqueness that depends on f only
via a modulus of uniform continuity of f . As a result we obtain theorem 16.54 stated
at the beginning of this section:

Theorem 16.71 (Kohlenbach-Oliva [235]). Let

Φ(ω ,n,ε) := min{ cnε
8(n + 1)2 ,

cnε
2

ωn(
cnε
2

)},

where the constant cn := �n/2�!n/2�!
24n+2(n+1)3n+1 and ωn(ε) := min{ω( ε

4 ), ε
40(n+1)4 1

ω(1) �
}.

For all f ∈C[0,1] with modulus of uniform continuity ω
⎧
⎪⎨

⎪⎩

∀n ∈ N, p1, p2 ∈ Pn,ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ(ω ,n,ε)) → ‖p1 − p2‖1 ≤ ε

)
.



16.4 Best L1-approximation 371

Proof: We first argue that proposition 16.70 also holds with Pn instead of Kf ,n and
then show that we may replace Φ̃ by Φ which no longer depends on Mf . Suppose
without loss of generality that p1 ∈ Pn\Kf ,n. Then ‖p1‖1 > 5

2‖ f‖1 and hence ‖ f −
p1‖1 > 3

2‖ f‖1 ≥ 3
2 dist1( f ,Pn). Assume that ‖ f − pi‖1 < dist1( f ,Pn)+ Φ̃( f ,n,ε) ≤

dist1( f ,Pn)+ ε
8 . We conclude that ε

8 > 1
2 dist1( f ,Pn), i.e. dist1( f ,Pn) < ε

4 . So ‖ f −
pi‖1 < dist1( f ,Pn)+ ε

8 < ε
2 and, therefore, ‖p1 − p2‖1 ≤ ε . Analogous to the proof

of theorem 16.34 (after corollary 16.49) one concludes the proof by showing that
the upper bound Mf ≥ ‖ f‖∞ in Φ̃ (used to define ω f ,n in proposition 16.70) can
be replaced by an upper bound Nf ≥ supx∈[0,1] | f (x)− f (0)| where the latter can be
computed just using a modulus of uniform continuity ω of f but not f itself, e.g. we
may take Nf :=

⌈
1

ω(1)

⌉
. �

As mentioned in remark 16.59, the function Ψ (n) := n!
2n+1(n+1)2n+2 relates the L1-

norm of a polynomial p ∈ Pn to its actual coefficients, i.e.

∀n ∈ N∀p ∈ Pn
(
‖p‖1 ≤Ψ(n) · ε →‖p‖max ≤ ε

)
,

where ‖p‖max denotes the maximum absolute value of the coefficients of p. There-
fore, we obtain the following corollary.

Corollary 16.72. Let Φ(ω ,n,ε) be as defined above. For all f ∈ C[0,1] with mod-
ulus of uniform continuity ω
⎧
⎪⎨

⎪⎩

∀n ∈ N, p1, p2 ∈ Pn,ε ∈ Q
∗
+

( 2∧

i=1
(‖ f − pi‖1 −dist1( f ,Pn) < Φ(ω ,n,Ψ (n) · ε)) → ‖p1 − p2‖max ≤ ε

)
.

For special classes of functions the above modulus of uniqueness can be further
simplified:

Definition 16.73. f ∈ C[0,1] is λ/α-Hölder-Lipschitz-continuous with constant
λ ∈ R

∗
+ and exponent 0 < α ≤ 1, if

| f (x)− f (y)| ≤ λ |x− y|α (∀x,y ∈ [0,1]).

If f ∈ C[0,1] is λ/α-Hölder-Lipschitz-continuous, then ( ε
λ )1/α is a modulus of

uniform continuity in our sense for f . Moreover, for f ∈C[0,1] being λ/α-Hölder-
Lipschitz-continuous we have supx∈[0,1] | f (x)− f (0)| ≤ λ and so we can take λ
instead of  1

ω(1)� in theorem 16.71. Hence theorem 16.71 implies the following

Corollary 16.74. If f ∈C[0,1] is Lipschitz-α continuous with constant λ and expo-
nent 0 < α ≤ 1, then the functional

ΦLα (λ ,α,n,ε) := min{ cnε
8(n + 1)2 ,

cnε
2

(
cnε
8λ

)1/α ,
c2

nε2

160(n + 1)4λ
}
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is a modulus of uniqueness for f .

Theorem 16.71 together with (the proof of) proposition 16.2.1) implies

Theorem 16.75. Let P( f ,n) denote the operator which assigns to any given func-
tion f ∈ C[0,1] and any n ∈ N the best L1-approximation of f ∈ C[0,1] from Pn.
Then ΦP(ω f ,n,ε) := Φ(ω f ,n,ε)

2 , Φ as defined in Theorem 16.71, is a modulus of
pointwise continuity for the operator P( f ,n), i.e.,

⎧
⎨

⎩

∀ f , f̃ ∈C[0,1],n ∈ N,ε ∈ Q
∗
+

(‖ f − f̃‖1 < ΦP(ω f ,n,ε) → ‖P( f ,n)−P( f̃ ,n)‖1 ≤ ε).

16.4.14 General logical remarks on the extraction of the modulus
of uniqueness

In the previous sections we carried out the extraction of an effective modulus of
uniqueness from Cheney’s uniqueness proof as a-priori guaranteed to be possible
by theorem 15.4 and the fact that Cheney’s proof can be formalized in E-PAω +(A)
(and hence in E-PAω+WKL), where

(A) ∀ f ∈C[0,1]∃x0 ∈ [0,1]( f (x0) = sup
x∈[0,1]

f (x)).

That theorem not only provides the extractability of such a modulus but also its
verification already in WE-HAω as the latter proves the ε-weakening (Aε) of (A).
In our extraction we did not discuss this issue as we were interested in the modulus
itself and not in a necessarily constructive verification. However, the reader might
have noticed that by our quantitative analysis of Lemma 1 in section 16.4.10 the
need of (A) has indeed disappeared: whereas in Cheney’s original proof (A) was
used to show

∀x ∈ [xi−1 + r,xi − r]( f (x) > 0) → inf
x∈[xi−1+r,xi−r]

f (x) > 0

this has become in the quantitative analysis (replacing ‘roots’ by ‘r-clusters of δ -
roots’) just

∀x ∈ [xi−1 + r,xi − r]( f (x) > δ ) → inf
x∈[xi−1+r,xi−r]

f (x) ≥ δ

which follows constructively without the use of (A). The use of classical logic can
be eliminated either by appealing to theorem 15.4 (in fact just negative translation
from chapter 10 is needed) or by making use throughout the proof that e.g. in the
quantitative version we no longer have to find σi such that
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σi =0 0 ↔ f (
xi−1 + xi

2
) ≥R 0

since we now have that

f (
xi−1 + xi

2
) ≥R δ ∨ f (

xi−1 + xi

2
) ≤R −δ

which easily is decidable for δ ∈ Q
∗
+.

16.4.15 Estimating the computational complexity of best
L1-approximation

As shown in section 16.1, an effective modulus of uniqueness for best
L1-approximation (as the one extracted above) can be used to compute uniformly
in n ∈ N the coefficients of the unique best L1-approximation pn,b( f ) of f ∈C[0,1]
in Pn with arbitrary prescribed precision. In particular, the sequence (pn,b( f ))n∈N is
computable in the sense of computable analysis ([377]). Moreover, from a concrete
subrecursive modulus of uniqueness one can obtain an upper bound on the com-
putational complexity (in the sense of [199]) of (pn,b( f ))n∈N. This is achieved by
combining the complexity of the computation of approximate best approximations
pn( f ) ∈ Kf ,n, i.e.

‖ f − pn( f )‖1 ≤ dist1( f ,Pn)+ 2−n,

and the complexity of the modulus of uniqueness. pn( f ) can be computed by search-
ing through a sufficiently fine ε-net for Kf ,n or – more precisely – for the compact
rectangle {

(a0, . . . ,an) :
n∧

i=0

(|ai| ≤
5(2(n + 1)2)i+1

i!2
‖ f‖1)

}

in R
n+1 (see remark 16.59), where that net consists of (n + 1)-tuples of rational

coefficients.

The complexity upper bound on (pn,b( f ))n∈N resulting from this approach and the
modulus of uniqueness constructed in theorem 16.71 has been calculated in [290]:

Theorem 16.76 (Oliva [290]). For polynomial time computable f ∈ C[0,1] the se-
quence (pn,b( f ))n∈N is strongly NP computable in NP[B f ], where B f is an oracle
deciding left cuts for integration.

Proof: See [290]. �
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16.4.16 Comparison with previously known results in the literature

The uniqueness of the best L1-approximation of f ∈ C[0,1] by polynomials in Pn
was proved first in 1921 by Jackson [178] making some use of measure theory.
The uniqueness proof the analysis given in this section was based upon is due to
Cheney [65] in 1965 (reprinted in [66]). Cheney’s proof again is ineffective but more
elementary than Jackson’s original proof in the sense that it uses only the Riemann
integral. Moreover, Cheney actually considers arbitrary Haar spaces (in the sense of
the previous section). The first result towards the general qualitative form of the rate
of strong unicity for the best L1-approximation of f ∈ C[0,1] by polynomials in Pn
was obtained in 1975 by Björnestål [35]:

Theorem 16.77 (Björnestål [35]). Let f ∈ C[0,1] and the modulus Ω f be defined
as

Ω f (ε) := sup
|x−y|<ε

| f (x)− pb(x)− f (y)+ pb(y)|,

where pb is the best L1-approximation of f from Pn. Then, for p ∈ Pn, ε sufficiently
small and for some constant c depending on f and n,

‖p− pb‖1 ≥ ε →‖ f − p‖1 −‖ f − pb‖1 ≥ 2
∫ Ω−1

f (cε)

0
cε −Ω f (x) dx,

where Ω−1
f (ε) is defined as

Ω−1
f (ε) := inf{δ : Ω f (δ ) = ε}.

Note that Ω−1
f (ε) (for ε small enough so that Ω−1

f (ε) is defined) is a special mod-
ulus of uniform continuity for f − pb in our sense.

The constant c, however, is not presented by Björnestål and, moreover, the function
Ω−1

f is usually noncomputable.
In 1978, Kroó [254] showed that the constant c in Björnestål’s can be chosen not
to depend on the function f as such but only on its modulus of continuity. As in
Björnestål [35], also Kroó does not present any explicit constant.

We now prove that theorem 16.71 provides an effective version of Kroó’s result and
so, a-fortiori, of Björnestål’s theorem. First we rewrite the latter as a statement about
a modulus of uniqueness:

‖ f − p‖1 < dist1( f ,Pn)+ 2
∫ Ω−1

f (cε)

0
cε −Ω f (x) dx →‖p− pb‖1 < ε. (16.27)

We start by showing that
∫ Ω−1

f (cε)
0 cε −Ω f (x) dx can be written as c′ εΩ−1

f (c′ ε),
for some constant c

2 ≤ c′ ≤ c. For that purpose note that
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∫ Ω−1
f (cε)

0
cε −Ω f (x) dx ≤

∫ Ω−1
f (cε)

0
cε dx = cεΩ−1

f (cε).

On the other hand we have

∫ Ω−1
f (cε)

0
cε −Ω f (x) dx ≥

∫ Ω−1
f ( c

2 ε)

0
cε −Ω f (x) dx

≥
∫ Ω−1

f ( c
2 ε)

0

c
2

ε dx =
c
2

εΩ−1
f (

c
2

ε).

So, for some c
2 ≤ c′ ≤ c, (16.27) is equivalent to

‖ f − p‖1 < dist1( f ,Pn)+ 2c′ εΩ−1
f (c′ ε) →‖p− pb‖1 < ε.

Taking p1 := pb and p2 := p in the definition of f0 we can rewrite g from section
16.4.5 as

g(x) = |( f − pb)+
1
2
(pb − p)|− 1

2
| f − pb|−

1
2
|( f − pb)+ (pb − p)|.

Now let ω f -pb be any modulus of uniform continuity for f − pb. Since the best
approximation pb is in Kf ,n we can prove as in section 16.4.5 that

ω f -pb,n(ε) := min

⎧
⎨

⎩
ω f -pb(

ε
4
),

ε
40(n + 1)4 1

ω f (1)�

⎫
⎬

⎭

is a modulus of uniform continuity of g for all p ∈ Kf ,n where ω f is a modulus of
uniform continuity of f .

Hence we can replace ω f ,n in the modulus of uniqueness by ω f -pb,n and obtain that
for all p ∈ Pn,ε > 0

‖ f − p‖1 < dist1( f ,Pn)+ min{ cnε
8(n + 1)2 ,

cnε
2

ω f -pb,n(
cnε
2

)}→ ‖p− pb‖1 ≤ ε.

Assuming that ω f -pb(ε) ≤ ε and taking c̃n,ω f := cn
20(n+1)4 1

ω f (1) �
this yields for all

0 < ε ≤ 1 and all p ∈ Pn

‖ f − p‖1 < dist1( f ,Pn)+ c̃n,ω f ε ω f -pb(
cnε
8

) →‖p− pb‖1 ≤ ε.

Hence we got an effective version of Kroó’s result since our constant c̃n,ω f indeed
only depends on n and ω f .
Moreover, this result holds for an arbitrary modulus of uniform continuity of f − pb
rather than only for the special one Ω−1

f considered by Björnestål and Kroó and
such a modulus can (using ωn,Mf from section 16.4.5) be constructed in terms of a
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modulus of uniform continuity ω f for f and an upper bound for ‖ f‖∞ which led to
our fully effective modulus of uniqueness Φ(ω f ,n,ε) in theorem 16.71.

16.5 Exercises, historical comments and suggested further
reading

Exercises:

1) Prove proposition 16.36.
2) Prove the statement (16.1) in the analysis of the uniqueness proof due to Borel.
3) Prove the claim in remark 16.59.
4) Prove claim 16.61.

Historical comments and suggested further reading:
Most of the material from sections 16.1 and 16.2 is taken from Kohlenbach [204].
The computability (without any subrecursive complexity information though) of
solutions for unique existence theorems of the kind considered in 16.1 (uniformly
in the data) was first obtained in Kreinovich [239] (see also Kreinovich [240] and
– for a modern treatment of a special case of this – Weihrauch [377]). The ma-
terial of section 16.3 is taken from Kohlenbach [205]. Kohlenbach [204, 205] in
turn are based on chapters viii and ix of Kohlenbach [200]. A survey of these re-
sults is given in Kohlenbach [206]. The first effective moduli of uniqueness for best
Chebycheff approximation were obtained by Bridges in [44, 46] (and – for the poly-
nomial case – also in Ko [198]). The material of section 16.4 is mostly taken from
Kohlenbach-Oliva [235]. The fact that Cheney’s uniqueness proof can be formalized
in E-PAω+WKL and hence permits the extraction of a primitive recursive (in the
sense of Gödel) modulus of uniqueness was already observed in Kohlenbach [200].
Theorem 16.76 is from Oliva [290]. For general information on best Chebycheff
approximation we refer to Cheney [66]. The most comprehensive treatment of best
L1-approximation can be found in Pinkus [301]. A general survey on the relevance
of the concept of strong uniqueness can be found in Bartelt-Li [12].



Chapter 17
Applications to analysis: general metatheorems
II

17.1 Introduction

In chapter 15 we proved a general metatheorem (theorem 15.1) on the extractability
of effective uniform bounds which are independent from parameters in compact
metric spaces K but only depend on (representatives) of elements in Polish spaces
X . We saw that both the total boundedness as well as the completeness of K were
necessary for this result to hold in general. In this chapter we show that if we deal
with general classes of abstract metric spaces (rather than individual spaces) we can
in certain contexts obtain bounds which are independent even from noncompact but
only metrically bounded (sub-)spaces. It will turn out that for this to hold we – in
particular – must not use any separability assumptions on the spaces. In the area
of metric fixed point theory there are numerous theorems which hold for general
classes of spaces such as arbitrary metric, hyperbolic, normed, uniformly convex or
inner product spaces. In chapter 18 we will present a number of applications of the
general metatheorems proved in this chapter to (proofs of) such theorems and show
how to obtain even qualitatively new information concerning the independence of
certain convergence results from parameters in bounded metric spaces.

In order to motivate the results in this chapter we start with a simple example which
again is taken from approximation theory. Instead of considering the concrete Polish
space (C[0,1],‖ · ‖∞) we treat a general class of abstract spaces namely so-called
strictly convex spaces:

Definition 17.1. A normed linear space (X ,‖ · ‖) is called strictly convex if

∀x1,x2 ∈ X
(
‖x1‖,‖x2‖ ≤ 1∧‖1

2
(x1 + x2)‖= 1→ x1 = x2

)
.

Proposition 17.2. Let (X ,‖ · ‖) be a strictly convex space and C ⊆ X be a convex
subset. Each element x ∈ X has at most one element yb ∈ C of best approximation
in C, i.e. at most one element yb ∈C such that ‖x− yb‖= d := inf{‖x− y‖ : y ∈C}.

Proof: Let x ∈ X and y1,y2 ∈C be such that ‖x− y1‖= d = ‖x− y2‖. Then
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∥
∥
∥
∥x− y1 + y2

2

∥
∥
∥
∥≤

1
2
‖x− y1‖+

1
2
‖x− y2‖= d.

Since (y1 + y2)/2 ∈C we get
∥
∥x− y1+y2

2

∥
∥ = d.

Case 1: d = 0. Then y1 = x = y2.

Case 2: d > 0. x−y1
d , x−y2

d and 1
2

( x−y1
d + x−y2

d

)
= x− 1

2 (y1+y2)
d all have norm 1. By the

strict convexity of (X ,‖ · ‖) it follows that (x− y1)/d = (x− y2)/d, i.e. y1 = y2. �

Remark 17.3. Note that neither (C[0,1],‖·‖∞) nor (C[0,1],‖·‖1) are strictly convex
(exercise!) so that this simple uniqueness proof does not apply to best Chebycheff
or to best L1-approximation.

The property of (X ,‖ · ‖) being strictly convex can be written in the following triv-
ially equivalent form: let B := {x ∈ X : ‖x‖ ≤ 1}. Then

∀x1,x2 ∈ B∀k ∈ N∃n ∈N
(
∥
∥
∥
∥

1
2
(x1 + x2)

∥
∥
∥
∥≥ 1−2−n →‖x1− x2‖< 2−k),

where ‘
∥
∥ 1

2(x1 + x2)
∥
∥ ≥ 1− 2−n → ‖x1 − x2‖ < 2−k’ is (logically equivalent to) a

Σ0
1 -formula (if we use the representation of real numbers from chapter 4 and take

the space X together with the vector space operations and the norm as primitive el-
ements of the language).

Now suppose that (X ,‖ ·‖) would be a (real) separable Banach space which is prov-
ably (say in E-PAω+WKL+QF-AC1,0) strictly convex with the property that B is
compact (which, however, only is the case when X is finite dimensional, i.e. when
X is isomorphic to R

n for some n endowed with a suitable norm). Moreover, sup-
pose that C is a (constructive) representable convex subset. Then the metatheorems
from chapter 15 would allow us to extract a (in this case primitive recursive in
the sense of Gödel) modulus of uniqueness from the above uniqueness proof. The
first step would be to extract from the proof of strict convexity a B-uniform bound
Φ0 : N → N on ‘∃n’, i.e. a bound (and so by the monotonicity of ‘∃n’ in fact a
realizer) that does not depend on x1,x2 ∈ B but only on k:

∀x1,x2 ∈ B∀k ∈ N
(
∥
∥
∥
∥

1
2
(x1 + x2)

∥
∥
∥
∥≥ 1−2−Φ0(k) → ‖x1− x2‖< 2−k).

Writing this in the more convenient ε/δ -notation we get a Φ1 : Q
∗
+ →Q

∗
+ with

∀x1,x2 ∈ B∀ε ∈Q
∗
+
(
∥
∥
∥
∥

1
2
(x1 + x2)

∥
∥
∥
∥≥ 1−Φ1(ε)→ ‖x1− x2‖ ≤ ε

)

(e.g. take Φ1(ε) := 2−Φ0(mink[2−k≤ε]). We may assume that Φ1(ε) < 1.

Such a Φ1 is called a modulus of uniform convexity. We now show that if we drop all
the completeness/separability/compactness assumptions, the provability of the strict
convexity and the constructive representability of C and just assume that we have
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such a modulus of uniform convexity, we still can extract a modulus of uniqueness
(despite the fact that the y1,y2 no longer can be assumed to range over a compact
subspace only). Spaces (X ,‖ · ‖) which have such a modulus of uniform convexity
are called uniformly convex spaces and by no means have to be finite dimensional.
E.g. the Lp-spaces with 1 < p < ∞ and all Hilbert spaces uniformly convex. So we
obtain a vast generalization of the compact case. This is due to the fact that the orig-
inal uniqueness proof did not use any completeness, separability or compactness
conditions. Moreover, the resulting modulus will hold in any Φ1-uniformly convex
normed space and for any convex subset C and will only depend on an upper bound
on d.

The main part of this chapter will be devoted to proving general logical metatheo-
rems which guarantee such uniform-bound-extraction results for large classes of ab-
stract structures (metric spaces, hyperbolic spaces, CAT(0)-spaces, normed spaces
(X ,‖ · ‖) with convex subsets C, uniformly convex such spaces and inner product
spaces) and proofs. However, before we start to embark on this we will continue
with the example and prove the claim we made:

A straightforward analysis of the above uniqueness proof yields the following mod-
ulus of uniqueness:

Proposition 17.4. Let (X ,‖ · ‖) be a uniformly convex normed space with modulus
of uniform convexity Φ1 : Q

∗
+ →Q

∗
+∩ (0,1) and C ⊆ X be convex.

Define

Φ(ε) := min
{

1,
ε
4
,D̃ · Φ1(ε/(D+ 1))

1−Φ1(ε/(D+ 1))

}

,

where D,D̃∈N with D≥ d := infy∈C ‖x−y‖ and D̃≤max
{ ε

4 ,d
}

(e.g. we may take
D̃ := ε/4). Then Φ is a modulus of uniqueness, i.e.

∀y1,y2 ∈C∀ε ∈Q
∗
+
( 2∧

i=1

(‖x− yi‖ ≤ d + Φ(ε))→ ‖y1− y2‖ ≤ ε
)
.

Proof: Let ε ∈Q
∗
+.

Case 1: d ≥ ε
4 . Put

Φ2(ε) := min
{

1,D̃ · Φ1(ε)
1−Φ1(ε)

}

and assume that y1,y2 ∈C with

2∧

i=1

(‖x− yi‖ ≤ d + Φ2(ε)(≤ d + 1).

Then ∥
∥
∥
∥

x− yi

d + Φ2(ε)

∥
∥
∥
∥≤ 1

and
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∥
∥
∥
∥

1
2

(
x− y1

d + Φ2(ε)
+

x− y2

d + Φ2(ε)

)∥
∥
∥
∥ =

∥
∥
∥
∥

x− (y1 + y2)/2
d + Φ2(ε)

∥
∥
∥
∥≥

d
d + Φ2(ε)

≥ 1−Φ1(ε)

since

Φ2(ε)≤ D̃
Φ1(ε)

1−Φ1(ε)
≤ d

Φ1(ε)
1−Φ1(ε)

=
d

1−Φ1(ε)
−d.

By the properties of Φ1 we conclude that
∥
∥
∥
∥

x− y1

d + Φ2(ε)
− x− y2

d + Φ2(ε)

∥
∥
∥
∥ =

1
d + Φ2(ε)

‖y1− y2‖ ≤ ε

and so
‖y1− y2‖ ≤ ε(D+ Φ2(ε)) ≤ ε(D+ 1).

Take Φ3(ε) := min
{

1,D̃ · Φ1(ε/(D+1))
1−Φ1(ε/(D+1))

}
. Applying the above results to ε ′ :=

ε/(D+ 1) (note that with d ≥ ε/4 also d ≥ ε ′/4) we conclude that

∀y1,y2 ∈C
( 2∧

i=1

(‖x− yi‖ ≤ d + Φ3(ε)→‖y1− y2‖ ≤ ε
)

for all ε ∈Q
∗
+ with d ≥ ε/4.

Case 2: d < ε/4. Let y1,y2 ∈C with
2∧

i=1
(‖x− yi‖ ≤ d + ε/4). Then

‖y1− y2‖ ≤ ‖y1− x‖+‖x− y2‖ ≤ 2d +
ε
2

<
ε
2

+
ε
2

= ε.

Case 1 and 2 together yield the claim since Φ(ε) = min
{ ε

4 ,Φ3(ε)
}

. �

In this chapter we will prove general metatheorems which allow us to conclude be-
forehand that a uniform bound such as Φ is extractable which only depends on upper
bounds N ≥ ‖x− y1‖,‖x− y2‖ and M ≥ ‖x‖ (see theorem 17.69 and its corollaries
below). Note that

2∧

i=1

(‖x− yi‖ ≤ d + 2−n)→‖y1− y2‖< 2−k

can be written as

∀y ∈C(
2∧

i=1

(‖x− yi‖ ≤ ‖x− y‖+ 2−n))→ ‖y1− y2‖< 2−k

and hence as ∃-formula without assuming the existence of d.
To have a bound N is – in the example above – in fact equivalent to having an upper
bound D on d : clearly D := N works in one direction and in the other direction
we can take N := D + 1 since we only consider y1,y2 with ‖x− y1‖,‖x− y2‖ ≤
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d + Φ(ε) ≤ D + 1. The dependence of the extracted bound on some upper bound
M ≥ ‖x‖ can (in the setting of normed spaces) in general not be avoided as the
following example shows

∀x,y ∈ X∃n(n > ‖x‖+‖y‖).

Clearly any upper bound on n depends on upper bounds on ‖x‖ and ‖x− y‖. The
reason why the modulus of uniqueness extracted above does not depend on an up-
per bound M on ‖x‖ has to do with the fact that the argument can be re-casted in
a setting where the whole context X is just a convex subset of a normed space and
‖ · ‖ only is applied to measure the distance of two points in that subset rather than
a normed space itself (see the beginning of section 17.3 below for how to make this
precise). In fact, the proof works in the even more general context of (uniformly
convex) hyperbolic spaces (see [128] and [262] for the definition of uniform con-
vexity in this setting) and – as we will prove below – in such contexts (as well as for
convex subsets of normed spaces) one can achieve that indeed uniform bounds are
guaranteed which only depend on bounds on the relative distances of x and yi rather
than the absolute norms of elements (see theorem 17.52 and its corollaries below).

From uniform uniqueness to existence

In chapter 15 we showed how to extract moduli of uniqueness from ineffective
uniqueness proofs in the presence of compactness and how they can be used to con-
vert ineffective compactness-based existence proofs into effective existence proofs.
In the absence of compactness, uniform uniqueness (as expressed by the existence
of a modulus of uniqueness) can yield existence theorems which even ineffectively
might not be able to arrive at without this: e.g. in the example above we get as an
immediate corollary the following (well-known) existence theorem which, in con-
trast to the plain uniqueness proof but just as the proof of uniform uniqueness, does
need uniform convexity rather than just strict convexity:
Proposition 17.5. Let (X ,‖ · ‖) be a uniformly convex Banach space and C ⊆ X a
closed convex subset. Then to any given point x∈ X there exists a unique point y∈C
of best approximation in C.

Proof: By the definition of d there is a sequence (yn) in C such that ‖x− yn‖ ≤
d + 2−n. With proposition 17.4 it follows that (ỹn)n with ỹn := y�log2(1/Φ(2−n))�
is a Cauchy sequence (with rate 2−n) which converges in C since C is closed:
Let m ≥ n. Case 1: Φ(2−n) ≥ Φ(2−m). Then ‖x− ỹm‖,‖x− ỹn‖ ≤ d + Φ(2−n).
Hence ‖ỹm− ỹn‖ ≤ 2−n. Case 2: Φ(2−n) < Φ(2−m). As in case 1 one shows that
‖ỹm− ỹn‖ ≤ 2−m ≤ 2−n.
By the continuity of the norm it is clear that the limit ŷ of (ỹ)n is a (unique) best ap-
proximation: Let l := max{k+2,�log2(1/Φ(2−k−2))�}. Then ‖x−yl‖ ≤ d +2−k−2

as well as ‖x− yl‖ ≤ d + Φ(2−k−2). The latter, together with ‖x− ỹk+2‖ ≤ d +
Φ(2−k−2), implies that ‖yl − ỹk+2‖ ≤ 2−k−2. Hence ‖x− ỹk+2‖ ≤ d +2−k−1 and so
‖x− ŷ‖ ≤ d + 2−k since ‖ŷ− ỹk+2‖ ≤ 2−k−2. Since k ∈ N was arbitrary, the propo-
sition follows. �
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Remark 17.6. Using special properties of the modulus Φ from proposition 17.4 such
as Φ(ε) ≤ ε) the above proof can be much simplified and essentially becomes triv-
ial. However, we wrote the proof in such a way that the argument works for any
modulus of uniqueness.

A less trivial application of this methodology which led to a new fixed point the-
orem by removing a compactness assumption in a previously known theorem was
recently given in [50, 51], see theorem 17.122 below.

In order to be able to talk about – say – an arbitrary metric space we axiomatically
‘add’ abstract structures like general (classes of) metric spaces (X ,d) (or normed
spaces) to systems A ω like WE-PAω and extensions thereof resulting in theories
A ω [X ,d] which are based on two ground types 0,X rather than only 0. Since the
main focus in the applications is on qualitative uniformity results (rather than com-
plexity issues) we aim at making the underlying system as strong as possible and
take

A ω := WE-PAω+QF-AC+DC

as the underlying system, where DC:= {DCρ : ρ ∈T} is the axiom schema of
dependent choice

DCρ : ∀x0,yρ∃zρ A(x,y,z)→∃ f ρ(0)∀x0A(x, f (x), f (S(x)))

which was studied already in chapter 11. Here A is an arbitrary formula and ρ a

tuple of arbitrary type. f ρ(0) stands for f ρ1(0)
1 , . . . , f ρn(0)

n . We formulate DC here
with tuples since for the extension to the new types discussed below we do not have
pairing functionals.
As we will also indicate, the main results can also be adapted to fragments (e.g. with
WKL instead of DC) where then additional properties concerning the growth of the
extractable bounds can be guaranteed.

The extension of A ω , which we will introduce now, is based on functionals of all
finites types over 0,X including, in particular, variables xX ,yX ,zX , . . . and quantifiers
∀xX ,∃xX , where these variables are intended to vary over the elements of the set X .
We also add a new constant dX for the (pseudo-)metric to the system with the usual
axioms. In order to do so we rely on the representation of real numbers from chapter
4, i.e. dX is of type 1(X)(X) where the type-1 value is interpreted as a representative
of a real number. In interpreting this constant in the full set-theoretic model over
the base types 0 and X where X is a metric space with some metric d (to be defined
further below) we have to select a canonical representative (x)◦ for the real number
d(x,y) (x,y ∈ X). This, moreover, has to be done in such a way that the order on the
reals x ≤ y gets translated into the (strong) majorization relation (y)◦ s-ma j1 (x)◦.
As mentioned already in chapter 4 such a selection operator necessarily will be
discontinuous and hence noncomputable. However, it will be easily majorizable (by
a simple effective functional) which is all we need in the proofs of the results in this
chapter.
We now define the following (ineffective) construction which selects to a given real
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number x ∈ [0,∞) a unique representative (x)◦ ∈ N
N out of all the representatives

f ∈ N
N of x such that certain properties are satisfied (here and in the next lemma

and definition, [0,∞) refers to the ‘real’ space of all positive reals, i.e. not to the sets
of representatives,≤1 is pointwise order on N

N, and ≤ the usual order on [0,∞)):

Definition 17.7. 1) For x ∈ [0,∞) define (x)◦ ∈N
N by

(x)◦(n) := j(2k0,2n+1−1),

where
k0 := maxk

[ k
2n+1 ≤ x

]

and j is the Cantor pairing function considered already in chapter 3, definition
3.30.

2) M(b) := λ n. j(b2n+2,2n+1−1).

Lemma 17.8. 1) If x ∈ [0,∞), then (x)◦ is a representative of x in the sense of the
representation of real numbers from chapter 4. In particular: (̂x)◦ =1 (x)◦.

2) If x,y ∈ [0,∞) and x ≤ y (in the sense of R), then (x)◦ ≤R (y)◦ and also (x)◦ ≤1
(y)◦ (i.e. ∀n ∈ N((x)◦(n)≤0 (y)◦(n))).

3) If x ∈ [0,∞), then (x)◦ is monotone, i.e. ∀n ∈ N((x)◦(n)≤0 (x)◦(n + 1)).
4) If x,y ∈ [0,∞) and x≤ y (in the sense of R), then (y)◦ s-ma j1 (x)◦.
5) If b ∈ N and x ∈ [0,b], then (x)◦ ≤1 M(b).
6) M(b) is monotone, i.e. ∀n ∈ N

(
(M(b))(n)≤0 (M(b))(n + 1)

)
.

Proof: 1) We only have to verify that (x)◦ satisfies the condition (∗) from the repre-
sentation of real numbers as carried out in chapter 4 (and hence passes the (∗∗)-test),
i.e. (̂x)◦ =1 (x)◦.
2) follows from the definition of (x)◦ and 1) using the monotonicity of j (in its first
argument).
3), 5) and 6) follow from the monotonicity of the Cantor pairing function j in its
arguments, while 4) follows from 2) and 3). �

In the applications to metric fixed point theory carried out in this and the follow-
ing chapter we will work in the context of hyperbolic spaces which generalizes the
context of normed linear spaces:

Definition 17.9. (X ,d,W ) is called a hyperbolic space if (X ,d) is a metric space
and W : X ×X× [0,1]→ X a function satisfying

(i) ∀x,y,z ∈ X∀λ ∈ [0,1]
(
d(z,W (x,y,λ )) ≤ (1−λ )d(z,x)+ λ d(z,y)

)
,

(ii) ∀x,y ∈ X∀λ1,λ2 ∈ [0,1]
(
d(W (x,y,λ1),W (x,y,λ2)) = |λ1−λ2| ·d(x,y)

)
,

(iii) ∀x,y ∈ X∀λ ∈ [0,1]
(
W (x,y,λ ) = W (y,x,1−λ )

)
,

(iv)

⎧
⎨

⎩

∀x,y,z,w ∈ X ,λ ∈ [0,1]
(
d(W (x,z,λ ),W (y,w,λ )) ≤ (1−λ )d(x,y)+ λ d(z,w)

)
.
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Definition 17.10. Let (X ,d,W ) be a hyperbolic space. The set

seg(x,y) := {W (x,y,λ ) : λ ∈ [0,1] }

is called the metric segment with endpoints x,y.

Remark 17.11. 1) The condition (ii) ensures that seg(x,y) is an isometric image of
the real line segment [0,d(x,y)]. For this reason we will often write [x,y] instead
of seg(x,y).

2) A subset C⊆X of a hyperbolic space (X ,d,W ) is called convex is W (x,y,λ )∈C,
whenever x,y ∈C,λ ∈ [0,1]. C itself is a hyperbolic space with the restriction of
d and W to C.

Condition (i) has been first considered by W. Takahashi in [354] where a triple
(X ,d,W ) satisfying (i) (and with (X ,d) being a metric space) is called a convex
metric space. Note, however, that our term ‘W (x,y,λ )’ corresponds to ‘W (y,x,λ )’
in [354]. (i)–(iii) together are equivalent to (X ,d,W ) being a space of hyperbolic
type in the sense of Goebel and Kirk [126]. The condition (iv) (first considered as
‘condition III’ in [177]) is used by Reich and Shafrir in [310] to define the class of
hyperbolic spaces as well as in [185]. The notion of hyperbolic space in our sense
contains all normed linear spaces and convex subsets thereof (where a subset C⊆ X
is called convex if with x,y ∈ C and λ ∈ [0,1] also W (x,y,λ ) ∈ C) but also the
open unit ball in complex Hilbert space with the hyperbolic metric (or ‘Poincaré
distance, see below) as well as Hadamard manifolds (see [128, 309, 310, 311]) and
CAT(0)-spaces in the sense of Gromov (see definition 17.14 below). In order to
achieve this, our definition of ‘hyperbolic space’ has, in fact, been made slightly
more general than the one given in [310] (following [185]): [310] considers a metric
space (X ,d) together with a family M of metric lines (rather than metric segments).
Hence nontrivial hyperbolic spaces in this sense always are unbounded. This, in
particular has the consequence, that only those CAT(0) spaces which have the so-
called unique geodesic line extension property are hyperbolic spaces in the sense
of [310]. Our definition (like the notion of space of hyperbolic type from [126] and
Takahashi’s notion of convex metric space) is in contrast to this such that every
convex subset of a hyperbolic space is itself a hyperbolic space.
Using a set M of segments has the consequence that in general it is not guaranteed
(as it is in the case of metric lines) that for u,v ∈ seg(x,y) with (u,v) different from
(x,y), seg(u,v) is a subsegment of seg(x,y) unless M is closed under subsegments (a
consequence of this is that, apparently, one cannot derive (iv) from the special case
for λ := 1

2 as in the setting of [310] which follows [185] rather than [126] and that
is why we formulate (iv) for general λ ∈ [0,1]). So all the examples listed above are
a-fortiori hyperbolic spaces in our sense. Also the main result of [40] whose proof
we will analyze in chapter 18 is valid for our extended notion of hyperbolic space
(see [233]) but does not seem to hold for general spaces of hyperbolic type (however
some results in [330] do seem to require the existence of metric lines). As we will
see below, adding the axiom (iv) to the concept of ‘space of hyperbolic type’ has the
additional benefit that the extensionality of WX can be derived in a formal context
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which only contains a weak quantifier-free extensionality rule. For all these reasons
it seems that our definition is the most useful one.

Definition 17.12. Let (X ,d) be a metric space. A geodesic in X is a mapping γ :
[0, I]→ R satisfying

∀s,t ∈ [0, I]
(
d(γ(s),γ(t)) = |s− t|

)
.

A geodesic segment is the image of a geodesic γ : [0, I] → R in X and the points
x := γ(0) and y := γ(I) are called the endpoints of that segment. We say that x and
y are joint by this segment. In this case, obviously, I = d(x,y). (X ,d) is a (unique)
geodesic space if every two points in X are joint by a (unique) geodesic segment.

Note that by remark 17.11 each hyperbolic space is a geodesic space and the metric
segment from definition 17.10 always is a geodesic segment, namely γ([0,d(x,y)]),
where γ : [0,d(x,y)]→ R is the geodesic defined by

γ(α) := W
(

x,y,
α

d(x,y)

)

.

Example 17.13. 1) Every convex subset C⊆X of a normed linear space (X ,‖·‖) is a
hyperbolic space w.r.t. the metric induced by ‖·‖ and W (x,y,λ ) := (1−λ )x+λ y.

2) Another important example of a hyperbolic space is the open unit disk Δ in C

w.r.t. the Poincaré metric (also called ‘Poincaré distance’)

dΔ (z,w) := argtanh
∣
∣
∣
∣

z−w
1− zw

∣
∣
∣
∣ = argtanh(1−σ(z,w))

1
2 ,

where

σ(z,w) :=
(1−|z|2)(1−|w|2)

|1− zw|2 , z,w ∈ Δ .

For each pair x,y ∈ Δ there is a unique geodesic [x,y] joining x,y. Now define
W (x,y,λ ) as the unique point z ∈ [x,y] with dΔ (x,z) = λ dΔ (x,y) and dΔ (z,y) =
(1−λ )dΔ(x,y), where λ ∈ [0,1]. (Δ ,dΔ ,W ) is a hyperbolic space.
The example is of importance in metric fixed point theory since holomorphic
mappings f : Δ → Δ are nonexpansive w.r.t. dΔ , i.e.

∀z,w ∈ Δ
(
dΔ ( f (z), f (w)) ≤ dΔ (z,w)

)
.

See Goebel et al. [129] and Goebel-Reich [128] for all this.
3) Example 2) can be extended from C to general complex Hilbert spaces (H,〈·, ·〉) :

let BH be the open unit ball in H. Then

kBH (x,y) := argtanh(1−σ(x,y))
1
2 ,

where

σ(x,y) :=
(1−‖x‖2)(1−‖y‖2)

|1−〈x,y〉|2 , x,y ∈ BH ,
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defines a metric on BH (also called Kobayashi distance). (BH ,kBH ) is also called
Hilbert ball. Again, (BH ,kBH ) is a unique geodesic space and becomes a hyper-
bolic space by defining W via this fact as in example 2. Holomorphic mappings
f : BH → BH are kBH -nonexpansive. See [129, 128, 257] for details.

Definition 17.14. A CAT(0)-space is a geodesic space that satisfies the so-called
CN-inequality

CN :

⎧
⎨

⎩

∀x,y0,y1,y2 ∈ X
(
d(y0,y1) = 1

2 d(y1,y2) = d(y0,y2)→

d
(
x,y0

)2 ≤ 1
2 d(x,y1)2 + 1

2 d(x,y2)2− 1
4 d(y1,y2)2)

of Bruhat and Tits ([60], see also [187]).

Remark 17.15. It is easy to show that each CAT(0)-space is a unique geodesic space
(exercise).

From [49] (p.163) it follows that this definition of a CAT(0)-space is equivalent to
the more usual definition in terms of comparison triangles (see again [49]). Since
every hyperbolic space as we noticed already, in particular, is a geodesic space it
follows that a hyperbolic space which satisfies CN is CAT(0). The converse also
holds since a CAT(0)-space (X ,d) becomes a hyperbolic space with W defined via
the unique geodesic segment in X connecting two points x,y ∈ X , i.e. W (x,y,λ ) :=
γ(λ ·d(x,y)), where γ is the unique geodesic γ : [0,d(x,y)]→ R with γ(0) = x and
γ(d(x,y)) = y (see Kirk [189]). When referring to a CAT(0)-space as a hyperbolic
space (satisfying CN) we always refer to this unique convexity structure W (note
that if there would exist two such convexity structures W and W ′ satisfying the
axioms (i)–(iv) but being different on some arguments x,y,λ , this would give rise to
different geodesic segments joining x,y contradicting that fact that CAT(0)-spaces
are unique geodesic spaces). Hence a CAT(0)-space can be defined equivalently as
a hyperbolic space that satisfies CN.

Example 17.16. 1) In normed spaces whose norm satisfies the parallelogram law
(i.e. in inner product or pre-Hilbert spaces, see below) the CN-inequality holds
with ‘=’ instead of ‘≤’. So, trivially, any pre-Hilbert space is a CAT(0)-space.
Conversely, any real normed linear space which is a CAT(0)-space already is a
pre-Hilbert space (see Bridson-Haefliger [49], proposition II.1.14).

2) The Hilbert ball from example 17.13.3) is a CAT(0)-space as follows from Reich-
Shafrir [310] (inequality (4.3) and the subsequent remarks).

3) The planar set X defined as the complement of the quadrant

{(x,y) : x > 0,y > 0}

in R
2 endowed with the induced length metric on X ⊂R

2 is a CAT(0)-space (see
Bridson-Haefliger [49]). The induced length metric between two points in X is
defined as the infimum of the length of rectifiable curves in X joining them. Here
‘rectifiable curve’ is understood w.r.t. the Euclidean metric.
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Metric fixed point theory in the context of CAT(0)-spaces has received quite some
interest recently, see e.g. [187, 189, 190, 95, 263].

The following basic facts hold in any hyperbolic space (actually in any convex met-
ric space, see the comments after remark 17.11):

Proposition 17.17 (Takahashi [354]).
1) W (x,y,0) = x and W (x,y,1) = y for all x,y ∈ X .
2) d(x,W (x,y,λ )) = λ d(x,y) and d(y,W (x,y,λ )) = (1−λ )d(x,y) for all x,y ∈ X

and λ ∈ [0,1].
3) W (x,x,λ ) = x for all x ∈ X ,λ ∈ [0,1].

Proof: 1) follows immediately from 2).
2) By axiom (i) we have

(1) d(x,W (x,y,λ )) ≤ (1−λ )d(x,x)+ λ d(x,y)≤ λ d(x,y)

and
(2) d(y,W (x,y,λ )) ≤ (1−λ )d(x,y).

Hence
d(x,y)≤ d(x,W (x,y,λ ))+ d(W (x,y,λ ),y)

≤ λ d(x,y)+ (1−λ )d(x,y) = d(x,y)

and, therefore,

(3) d(x,y) = d(x,W (x,y,λ ))+ d(W (x,y,λ ),y).

(1)–(3) yield the proposition.
3) is an immediate consequence of (i). �

Remark 17.18. We have shown in proposition 17.17.3) above that the axiom (i) im-
plies that

(i)′ ∀x ∈ X∀λ ∈ [0,1]
(
W (x,x,λ ) = x

)
.

It is easy to show that conversely in the presence of (i)′ one can derive (i) from (iv)
(exercise). So one would get an equivalent axiomatization of hyperbolic spaces by
replacing (i) by (i)′. We have not chosen this option since our axiomatization allows
us to define other important classes of structures such as spaces of hyperbolic type
and convex metric spaces by dropping (iv) resp. (ii)–(iv) as discussed above.

By proposition 17.17.2), CN implies (relative to the axioms for hyperbolic spaces)

CN− : ∀x,y1,y2 ∈ X
(
d(x,W (y1,y2,

1
2
))2 ≤ 1

2
d(x,y1)2 +

1
2

d(x,y2)2− 1
4

d(y1,y2)2).

Conversely, CN− implies CN since by CN− any midpoint y0 of y1,y2 (i.e. any point
y0 such that d(y0,y1) = 1

2 d(y1,y2) = d(y0,y2)) must coincide with W (y1,y2,
1
2 ) :

Apply CN− to x := y0. Then
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d(y0,W (y1,y2,
1
2
))2 ≤ 1

2
(

1
4

d(y1,y2)2)+
1
2
(

1
4

d(y1,y2)2)− 1
4

d(y1,y2)2 = 0

and hence y0 = W (y1,y2,
1
2 ).

So a CAT(0) space can also be defined as a hyperbolic space (X ,d,W ) that satisfies
CN− which (in contrast to CN) is purely universal (when formalized as below).

Remark 17.19. CN− even implies a formally stronger quantitative version CN∗ of
CN (and hence is also equivalent to CN∗):

CN∗ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀x,y1,y2,z ∈ X∀ε ∈Q
∗
+
(

max(d(z,y1),d(z,y2)) < 1
2 d(y1,y2)(1 + ε)→

d(x,z)2 ≤ 1
2 d(x,y1)2 + 1

2 d(x,y2)2− 1
4 d(y1,y2)2

+2d(x,W (y1,y2,
1
2 ))δy1,y2(ε)+ δy1,y2(ε)2),

where δy1,y2(ε) := 1
2 d(y1,y2)

√
ε2 + 2ε. Just as CN− also CN∗ is purely universal

and, therefore, could be used as well for another (equivalent) universal axiomatiza-
tion of the class of CAT(0)-spaces. In fact, it is used in [226] as axiom. However,
CN− is simpler to state so that we use this below.

CN∗ trivially implies CN since the error term tends to zero as ε does (note that in
the case where y1 = y2, CN is trivial). That the converse is also true follows in the
following way:
CN∗ holds in every CAT(0)-space since it follows from CN− by the following easy
lemma which we leave as an exercise to the reader (see also [49], p. 286):

Lemma 17.20. Let (X ,d,W ) be a hyperbolic space satisfying CN−. Then for all
y1,y2,z ∈ X and ε ∈Q

∗
+ the following holds

max(d(z,y1),d(z,y2))≤ 1
2 d(y1,y2)(1 + ε)

→ d(z,W (y1,y2,
1
2 ))≤ 1

2 d(y1,y2)
√

ε2 + 2ε.

Definition 17.21. The set of all finite types TX over the ground types N,X is defined
inductively as follows (where, again, the type N is denoted by 0):

0,X ∈ TX , ρ ,τ ∈ TX ⇒ τ(ρ) ∈ TX .

The theories A ω [X ,d], A ω [X ,d,W ] and A ω [X ,d,W,CAT(0)] :

The language L (A ω [X ,d]) of A ω [X ,d] results from L (A ω) by extending it to
all the types in the set TX , i.e. we have (countably many) variables and quantifiers
for each type in TX and the constants Πρ ,τ ,Σδ ,ρ ,τ ,Rρ are now included for all types
δ ,ρ ,τ,ρ ∈ TX . Moreover we have additional constants 0X of type X , bX of type 0
and a constant dX of type 1(X)(X).

Axioms and rules of A ω [X ,d]:
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1) We have all the axioms and rules of A ω extended to the new set of types TX .
In particular, the defining axioms for Πρ ,τ ,Σδ ,ρ ,τ ,Rρ as well as the schemas IA,
QF-AC, DC and the rule QF-ER are now formulated for all types in TX .

2) For the new constants dX and bX we have the following axioms:

(1) ∀xX (dX(x,x) =R 0R),
(2) ∀xX ,yX

(
dX(x,y) =R dX(y,x)

)
,

(3) ∀xX ,yX ,zX
(
dX(x,z)≤R dX(x,y)+R dX(y,z)

)
,

(4) ∀xX ,yX (dX(x,y)≤R (bX )R(:=1 λ k0. j(2bX ,00)).

In the formulation of these axioms we refer to the representation of real numbers
(including the definition of =R,≤R) from chapter 4.

Remark 17.22. 1) Since it does not seem to be possible to contract tuples of vari-
ables in our system (unless we add a new product type 0×X) we have to take
simultaneous primitive recursion as a primitive concept while it was merely a
matter of convenience in the case of the types T.

2) Note that the axioms (1)–(3) of dX imply that dX(x,y)≥R 0R for all xX ,yX .

Equality =0 at type 0 is the only primitive equality predicate. xX =X yX is an abbre-
viation for dX(x,y) =R 0R. As in the case of WE-PAω , equality for complex types
is defined as extensional equality using =0 and =X for the base cases.

Clearly, A ω [X ,d] proves that =X is an equivalence relation: the reflexivity follows
from axiom (1) whereas symmetry and transitivity follow from axioms (2) and (3)
respectively (using in the case of transitivity also remark 17.22.2).

A ω [X ,d,W ] results from A ω [X ,d] by adding a new constant WX of type X(1)(X)(X)
to the language together with the axioms (where λ̃ refers to definition 4.24 from
chapter 4):

(5) ∀xX ,yX ,zX∀λ 1(dX(z,WX (x,y,λ ))≤R (1R−R λ̃ ) ·R dX(z,x)+R λ̃ ·R dX(z,y)
)
,

(6) ∀xX,yX∀λ 1
1 ,λ 1

2
(
dX(WX (x,y,λ1),WX (x,y,λ2)) =R|λ̃1−R λ̃2|R ·R dX(x,y)

)
,

(7) ∀xX ,yX∀λ 1(WX(x,y,λ ) =X WX(y,x,(1R−R λ ))
)
,

(8)

⎧
⎨

⎩

∀xX ,yX ,zX ,wX ,λ 1

(
dX(WX (x,z,λ ),WX (y,w,λ )) ≤R (1R−R λ̃ ) ·R dX(x,y)+R λ̃ ·R dX(z,w)

)
.

Remark 17.23. The intended interpretation of WX in a hyperbolic space (X ,d,W )
is that WX(x,y,λ ) denotes for each x,y ∈ X the element W (x,y,rλ̃ ) ∈ X where rλ̃
is the uniquely determined real number in [0,1] which is represented by λ̃ . The
axiomatization above coincides with that from [120] and is obtained from the one
used in [226] if one adds the axiom WX(x,y,λ ) =X WX(x,y, λ̃ ) to the latter.

A ω [X ,d,W,CAT(0)] results from A ω [X ,d,W ] by adding the formalized form of
the CN−-inequality, i.e.

∀xX ,yX
1 ,yX

2
(
dX(x,WX(y1,y2,

1
2
))2 ≤R

1
2

dX(x,y1)2 +
1
2

dX(x,y2)2− 1
4

dX(y1,y2)2),
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as axiom.

Remark 17.24. The new axioms (1)–(4) of A ω [X ,d] express (via the representa-
tion of R from chapter 4) that dX represents a pseudo-metric d (on the domain the
variables of type X are ranging over) which is bounded by bX . Thus dX represents
a (bX -bounded) metric on the set of equivalence classes generated by =X . We do
not form these equivalence classes explicitly but talk instead only about representa-
tives xX ,yX . However, we have to keep in mind that a functional f X→X represents a
function X → X only if it respects this equivalence relation, i.e.

∀xX ,yX(x =X y→ f (x) =X f (y)).

Since our systems only include the weak (quantifier-free) rule of extensionality we
cannot prove that each f X→X represents a function : X → X but, in general, only
can infer f (s) =X f (t) from a proof of s =X t. This restriction on the availability of
extensionality is crucial for our results to hold (see the discussion further below).
Fortunately, however, the mathematical properties of the functions we are consider-
ing in various applications usually imply the full extensionality of the functions in
questions. In particular, our systems are strong enough to establish the extensional-
ity of the new constants dX and WX which we will prove next.

Proposition 17.25. 1) A ω [X ,d] proves that

∀xX
1 ,xX

2 ,yX
1 ,yX

2 (x1 =X x2∧ y1 =X y2 → dX(x1,y1) =R dX(x2,y2)).

2) A ω [X ,d,W ] proves the extensionality of WX , i.e. for all xX
1 ,xX

2 ,yX
1 ,yX

2 ,λ 1
1 ,λ 1

2

x1 =X x2 ∧ y1 =X y2 ∧ λ1 =R λ2 →WX(x1,y1,λ1) =X WX(x2,y2,λ2).

Proof: 1) dX(x1,x2) =R 0R and dX(y1,y2) =R 0R imply (using axioms (2) and (3))

dX(x1,y1)≤R dX(x1,x2)+R dX(x2,y2)+R dX(y2,y1) =R dX(x2,y2).

Analogously, it follows that dX(x2,y2)≤R dX(x1,y1).
2) Assume that dX(x1,x2) =R 0R =R dX(y1,y2) and λ1 =R λ2. From axioms (6) and
(8) together with lemma 4.25.6 it follows that

dX(WX (x1,y1,λ1),WX (x2,y2,λ2))≤R

dX(WX (x1,y1,λ1),WX (x2,y2,λ1))+R dX(WX (x2,y2,λ1),WX (x2,y2,λ2))≤R

(1R−R λ̃1) ·R dX(x1,x2)+R λ̃1 ·R d(y1,y2)+R |λ̃1−R λ̃2|R ·R dX(x2,y2) =R 0R.

�

Hence (5)–(8) in fact express (via the representation of R and [0,1] from chapter 4)
that WX represents a function W : X ×X × [0,1]→ X (actually even on X ×X ×R

via the composition with the retract on [0,1] implicit in λ �→ λ̃ ) which makes the
bounded metric space induced by d into a bounded hyperbolic space. We include a



17.2 Main results in the metric and hyperbolic case 391

constant 0X of type X in order to make explicit the fact that X is nonempty (which
is already implicit in the logical laws) and to have closed terms of each type in our
language. Further below, when we treat normed linear spaces, the role of 0X will be
taken by the zero vector. That is why we already here call this (up to now arbitrary)
constant ‘0X ’.
In the proofs of the metatheorems below we will make use of the fact that the axioms
(1)–(8) are all purely universal (recall from chapter 4 that =X ,=R,≤R∈Π 0

1 ).

Remark 17.26. 1) As in chapter 3 (lemma 3.15) we can define λ -abstraction in
A ω [X ,d] and A ω [X ,d,W ] for all types ρ ∈ TX .

2) Every type ρ ∈ TX can be written as ρ = τ(ρk) . . . (ρ1) where τ = 0 or τ = X .
We define 0ρ := λ vρ1

1 , . . . ,vρk
k .00 resp. 0ρ := λ vρ1

1 , . . . ,vρk
k .0X .

Notation. 17.27 Following [310] we often write ‘(1−λ )x⊕λ y’ for ‘W (x,y,λ )’.

17.2 Main results in the metric and hyperbolic case

A bounded hyperbolic space is a hyperbolic space (X ,d,W ) whose underlying met-
ric space (X ,d) is a bounded, i.e. for some C ∈ N: d(x,y)≤C for all x,y ∈ X .

Definition 17.28. Let X be a nonempty set. The full set-theoretic type structure
S ω,X := 〈Sρ〉ρ∈TX over N and X is defined by

S0 := N, SX := X , Sρ(τ) := SSτ
ρ .

Here SSτ
ρ is the set of all set-theoretic functions Sτ → Sρ .

Let (X ,d) be a nonempty bounded metric space. S ω,X becomes a model of
A ω [X ,d] by letting the variables of type ρ range over Sρ if we give the obvious
interpretations to 00,S1,Πρ ,τ ,Σδ ,ρ ,τ and Rρ for all types δ ,ρ ,τ,ρ ∈ TX , interpret
0X by an arbitrary element of X , interpret bX by some natural number which is an
upper bound for d and – finally – interpret dX(x,y) for x,y ∈ X by (d(x,y))◦, where
(·)◦ refers to the construction in definition 17.7.
Note that this model satisfies the quantifier-free rule of extensionality (and even full
extensionality) since in a metric space d(x,y) = 0↔ x = y and so

x [=X ]S ω,X y ≡ [dX(x,y) =R 0R]S ω,X ↔ x = y

for all x,y ∈ X .

Let (X ,d,W ) be, moreover, a nonempty bounded hyperbolic space. Then S ω,X be-
comes a model of A ω [X ,d,W ] if we extend the above interpretation by interpreting
(for x,y ∈ X ,λ ∈ N

N) WX(x,y,λ ) as W (x,y,rλ̃ ), where rλ̃ ∈ [0,1] is the unique real
number represented by λ̃ (see definition 4.24).
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Definition 17.29. We say that a sentence of L (A ω [X ,d]) or of L (A ω [X ,d,W ])
holds in a nonempty bounded metric space (X ,d) or hyperbolic space (X ,d,W ) if it
holds in the models of A ω [X ,d] or A ω [X ,d,W ], respectively, obtained from S ω,X

as specified above.

Remark 17.30. We use the plural ‘models’ in definition 17.29 since the interpreta-
tions of 0X and bX are not uniquely determined.

Notation. 17.31 When we want to express that a sentence A holds in (X ,d,W )
we usually write ‘d(x,y) ≤ 2−k’ or ‘∀λ ∈ [0,1](W(x,y,λ ) = . . .)’ in A instead of
‘dX(x,y) ≤R 2−k’ or ‘∀λ 1(WX (x,y,λ ) =X . . .)’ etc. in order to improve the read-
ability. Only in as much as the syntactical form of A as a formal sentence of
L (A ω [X ,d,W ]) matters we will spell out the precise formal representation. Simi-
larly for (X ,d) and L (A ω [X ,d])

Definition 17.32. For ρ ∈ TX we define ρ̂ ∈ T inductively as follows:

0̂ := 0, X̂ := 0, τ̂(ρ) := τ̂(ρ̂).

Definition 17.33. We say that a type ρ ∈ TX has degree (≤)n ∈ N if ρ ∈ T and
deg(ρ)≤ n, where deg is defined as in section 3.3 of chapter 3.
ρ has degree (0,X) if ρ = X(0) . . . (0) (including ρ = X). A type ρ ∈ TX has degree
(1,X) if it has the form X(τk) . . . (τ1) (including ρ = X), where τi has degree≤ 1 or
(0,X). ρ is of degree n∗ if ρ̂ is of degree≤ n ∈ N.

Definition 17.34. A formula F is called ∀-formula (resp. ∃-formula) if it has the
form F ≡ ∀aσ Fq f (a) (resp. F ≡ ∃aσ Fq f (a)) where Fq f is quantifier-free and the
types in σ are of degree 1∗ or (1,X).

In the following theorem, for ρ ∈ T, ‘≤ρ’ is the relation from definition 3.32:

Theorem 17.35. 1) Let σ ,ρ be types of degree≤ 1 and τ be a type of degree (1,X).
Let sρ(σ) be a closed term of A ω [X ,d] and B∀(xσ ,yρ ,zτ ,u0)
(C∃(xσ ,yρ ,zτ ,v0)) be a ∀-formula containing only x,y,z,u free (resp. a ∃-formula
containing only x,y,z,v free).
If

∀xσ∀y≤ρ s(x)∀zτ(∀u0B∀(x,y,z,u)→∃v0C∃(x,y,z,v)
)

is provable in A ω [X ,d], then one can extract a computable functional
Φ : Sσ ×N→ N such that for all x ∈ Sσ and all b ∈ N

∀y≤ρ s(x)∀zτ [∀u≤Φ(x,b)B∀(x,y,z,u)→∃v≤Φ(x,b)C∃(x,y,z,v)
]

holds in any (nonempty) metric space (X ,d) whose metric is bounded by b ∈ N

(with ‘bX’ interpreted by ‘b’).
2) If the premise is proved in ‘A ω [X ,d,W ] instead of ‘A ω [X ,d]’, then the conclu-

sion holds in all b-bounded hyperbolic spaces.
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3) If the premise is proved in ‘A ω [X ,d,W,CAT(0)], instead of ‘A ω [X ,d]’, then the
conclusion holds in all b-bounded CAT(0)-spaces.

Instead of single variables x,y,z,u,v we may also have finite tuples of variables
x,y,z,u,v as long as the elements of the respective tuples satisfy the same type re-
strictions as x,y,z,u,v. Moreover, instead of a single premise of the form
‘∀u0B∀(x,y,z,u)’ we may have a finite conjunction of such premises.

Remark 17.36. In practice, the bounds extracted on u and on v will be different but
taking their maximum one can always achieve a common bound which makes the
general metatheorems easier to state. Numerically, of course, it is not advisable
to throw away information by taking the maximum and we will keep the bounds
separate in concrete unwindings of proofs.

The theorem will be proved in section 17.4 below.

Arguably, the most remarkable aspect of theorem 17.35 is that the bound Φ(x,b) not
only is independent from y but, moreover, does not depend on z nor does it depend
on (X ,d) (or W ) as long as (X ,d) is b-bounded. In the compact case of theorem
15.1 it mainly was the subrecursive complexity of the bound Φ extractable from a
given proof which was of interest as the existence of an effective uniform bound
could have been achieved by unbounded search and subsequent use of the fact that
computable functionals of type 2 on Cantor space are uniformly continuous (with
a computable – in additional function parameters – modulus of uniform continuity)
and hence bounded. In the absence of compactness, however, it is not clear at all
why even an ineffective uniform bound (independent of z) should exist.

Remark 17.37. 1) The proof of theorem 17.35 which we will give below is based
on ND from chapter 10 extended to the new types and subsequent majorization
(in a novel sense). Hence the proof, actually, provides an extraction algorithm
for Φ . The functional Φ is given by a closed term of WE-PAω+(BR) where
(BR) refers to Spector’s ([343]) schema of bar recursion studied in chapter 11,
i.e. Φ is a bar recursive functional. However, for concrete proofs usually only
small fragments of A ω [X ,d,W ] (corresponding to fragments of A ω such as
WE-PAω+QF-AC+WKL) will be needed to formalize the proof. For many such
fragments the complexity of the extractable uniform bounds has been calibrated
(see chapter 13 and [207, 210] and also the results from other previous chap-
ters). In particular, it follows from the results in chapter 13 and [210] that a sin-
gle use of sequential compactness (over a sufficiently weak base system such as
G∞Aω+QF-AC) only gives rise to at most primitive recursive complexity in the
sense of Kleene (often only simple exponential complexity) and this corresponds
exactly to the complexity of the bounds we will extract in chapter 18 following
[220, 232] (see applications 18.12, 18.16 and 18.17 below and [236] for a general
discussion). In other cases (e.g. if instead of sequential compactness only Heine-
Borel compactness is used relative to weak arithmetic reasoning) even bounds
which are polynomial in the input data can be obtained adapting the method of
proof from theorem 12.32.
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2) It is the interpretation of dependent choice using bar recursion that necessitates
the restriction on the types ρ ,τ (as well as in the definition of ∀- and ∃-formulas)
since we have to pass through (an extension to the new types of) the model M ω

of strongly majorizable functionals from chapter 3 to satisfy (BR) (see chapter
11). If a given proof does not use dependent choice, we can allow far more gen-
eral types in the parameters.

We now show by means of a counterexample that theorem 17.35 would no longer
hold if we had included the full extensionality axiom or just the special case

(EX) ∀ f X→X∀xX ,yX(
x =X y→ f (x) =X f (y)

)

as an axiom: suppose that the theorem would still hold. (EX ) can equivalently be
written as

(ẼX) ∀ f X→X∀xX ,yX∀k ∈N∃n ∈ N
(
dX(x,y)≤R 2−n → dX( f (x), f (y)) <R 2−k),

where dX(x,y) ≤R 2−n (resp. dX( f (x), f (y)) <R 2−k) is a ∀-formula (resp. an ∃-
formula), see chapter 4.
If (EX) had been included as an axiom, then the resulting system would prove (ẼX).
Theorem 17.35 applied this would then yield the existence of a (computable) func-
tion g : N×N→N such that

∀ f X→X ,∀xX ,yX∀k ∈ N
(
dX(x,y)≤R 2−g(k,b) → dX( f (x), f (y)) <R 2−k)

holds for any b-bounded metric space (X ,d), i.e. we would get that all functions
f : X →X are equicontinuous with a common modulus of uniform continuity which,
of course, is false for general b-bounded spaces (X ,d). Similarly, if we add a new
function constant FX→X of type X →X to the system together with the axiom stating
that F is extensional: if the resulting system would still satisfy theorem 17.35 then
we could apply theorem 17.35 again to infer that F is uniformly continuous on X . If,
on the other hand, we add in addition a function symbol ω1

F to the system together
with the (up to logical equivalence) purely universal axiom

(UC) ∀k0,xX ,yX (dX(x,y) <R 2−ωF (k) → dX(F(x),F(y))≤R 2−k)

stating that ωF is a modulus of uniform continuity of F, then theorem 17.35 remains
valid (since we can – essentially – treat ωF as just another parameter x1 type 1) and
yields a bound Φ depending additionally on ωF . Clearly, (UC) implies the exten-
sionality of F. So the only way to be a able to use full extensionality for objects
of type X → X is by stipulating an appropriate uniform continuity axiom. This pre-
cisely is how we proved the full extensionality of dX , WX from the dX ,WX -axioms
implying the uniform continuity of dX ,WX . Similarly, in the case of normed spaces
to be treated below we will be able to prove the extensionality of the norm and the
vector space operations from their uniform continuity properties. Also in our appli-
cations to various classes of functions f X→X we often will be able to derive their
full extensionality from uniform equicontinuity assumptions. E.g. this applies to the
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important class of nonexpansive functions (see below) or the more general class of
L-Lipschitzian functions which are equicontinuous with a common modulus of uni-
form continuity. There seems to be a relation to the notion of ‘uniform families of
L-structures’ which plays in important role in the model theory of Banach spaces
(see e.g. [154]). In our proof theoretic approach based on weak extensionality, how-
ever, we do not have to make such strong uniform continuity assumptions if the only
use of extensionality we make is that provided by QF-ER. This allows us to apply
our results not only to classes of functions such as the nonexpansive ones but also to
e.g. directionally nonexpansive functions and weakly quasi-nonexpansive functions
etc. (see below) which no longer can be proved to be extensional in our setting (due
to the lack of continuity). In addition to the effective nature of our results, this is
yet another benefit of the proof theoretic approach to functional analysis and there
does not seem to be any natural model theoretic counterpart to the weak form of
extensionality formalized by QF-ER.

Remark 17.38. Theorem 17.35 holds also for convex metric spaces (resp. spaces of
hyperbolic type) if in A ω [X ,d,W ] the WX -axioms (6)–(8) (resp. (8)) are dropped.
However, as discussed above, this has the consequence that the extensionality of
WX is no longer provable so that one has to rely on the weak rule of quantifier-free
extensionality instead. If only (8) is dropped one still has full extensionality in λ by
(6). In the absence of (6), one naturally would extend the existing rule QF-ER by

(+)
A0 → s1 =R t1

A0 →WX(x,y, s̃) =X WX (x,y, t̃)
(A0 quantifier-free)

(which is redundant in the presence of (6)) to have also for the scalar at least weak
extensionality of WX (A0 is quantifier-free). This is not an instance of QF-ER as
formulated so far since the ‘official’ equality relation for type-1 objects is =1 . The
proofs of the main results also hold with this extended form of QF-ER.

Definition 17.39. 1) Let (X ,d) be a metric space. A function f : X → X is called
nonexpansive (short: ‘ f n.e.’) if

∀x,y ∈ X
(
d( f (x), f (y)) ≤ d(x,y)

)
.

2) f is quasi-nonexpansive if

∀p,x ∈ X(d(p, f (p)) = 0→ d( f (x), p) ≤ d(x, p)).

3) f is weakly quasi-nonexpansive if

∃p ∈ X∀x ∈ X
(
d( f (x), p) ≤ d(x, p))

)
.

4) f is Lipschitz continuous with Lipschitz constant L > 0 if

∀x,y ∈ X(d( f (x), f (y)) ≤ L ·d(x,y)).

5) f is Hölder-Lipschitz continuous with constants L > 0 and 0 < α ≤ 1 if
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∀x,y ∈ X(d( f (x), f (y)) ≤ L ·d(x,y)α).

6) f is uniformly continuous with modulus of uniform continuity ω : N→ N if

∀x,y ∈ X∀n ∈ N
(
d(x,y) < 2−ω(n) → d( f (x), f (y)) ≤ 2−n).

7) f is bounded with bounding function Ω : N→ N if

∀x,y ∈ X∀n ∈ N
(
d(x,y) < n→ d( f (x), f (y)) ≤Ω(n)

)
.

8) If (X ,d,W ) is a hyperbolic space, then f : X → X is called directionally nonex-
pansive (short ‘ f d.n.e’) if

∀x ∈ X∀y ∈ seg(x, f (x))
(
d( f (x), f (y)) ≤ d(x,y)

)
.

For normed linear spaces (X ,‖ ·‖) definition 17.39 is understood with respect to the
induced metric d(x,y) := ‖x− y‖.

Remark 17.40. Whereas the concepts ‘quasi-nonexpansive’, ‘weakly quasi-nonex-
pansive’ and ‘directionally nonexpansive’ only apply to selfmappings f : X →X , the
other notions defined above, of course, generalize in the obvious way to functions
f : X → Y, where (X ,dX) and (Y,dY ) are potentially different metric spaces.

Lemma 17.41. f is weakly quasi-nonexpansive iff

∃p ∈ X(d(p, f (p)) = 0∧∀x ∈ X(d( f (x), f (p)) ≤ d(x, p))).

Proof: ‘→’: Let f be weakly quasi-nonexpansive, i.e.

∃p ∈ X∀x ∈ X
(
d( f (x), p) ≤ d(x, p)

)
.

Taking x := p it follows that f (p) = p and hence also

∀x ∈ X
(
d( f (x), f (p)) ≤ d(x, p)

)
.

So in total

∃p ∈ X
(

f (p) = p∧∀x ∈ X
(
d( f (x), f (p)) ≤ d(x, p)

))
.

‘←’: obvious. �

Quasi-nonexpansive mappings were first considered by Dotson in [90] (based on a
related earlier notion due to Diaz and Metcalf [85, 86]). Weakly quasi-nonexpansive
mappings were introduced (implicitly) by Kohlenbach and Lambov in [231] in the
equivalent formulation of lemma 17.41 (and in an asymptotic version of this notion).
In contrast to the notion of ‘quasi-nonexpansive functions’ the concept of weakly
quasi-nonexpansive functions has a nice logical behavior w.r.t. our metatheorems to
be proved below. Most proofs of results about quasi-nonexpansive functions imme-
diately generalize also to weakly quasi-nonexpansive functions although the latter
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is a bigger class of functions (quasi-nonexpansive functions are only considered in
contexts where f has at least one fixed point so that it is a stronger requirement
to be quasi-nonexpansive than only weakly quasi-nonexpansive): e.g. all selfmap-
pings of a subset C of a normed space which contains the zero vector 0X that satisfy
‖ f (x)‖ ≤ ‖x‖ obviously are weakly quasi-nonexpansive w.r.t. the fixed point 0, but
in general are not quasi-nonexpansive as the following example shows:

Example 17.42. Consider the function f : [0,1] → [0,1],x �→ x2. Clearly, the fixed
point set of f is {0,1}. However, quasi-nonexpansivity fails for 1 since e.g. for
x := 1/2 we have | f (x)−1|= 3

4 > 1
2 = |x−1|.

Note that the restriction of f to [0,1) is a quasi-nonexpansive selfmapping of [0,1).

These examples were communicated to us by Laureņtiu Leuştean. The notion
of ‘weakly quasi-nonexpansive’ functions was recently also considered (indepen-
dently) under the name of J-type mappings in Garcia-Falset et al. [96]. In that paper
the importance of this notion is demonstrated by numerous fixed point results which
hold for this class of functions.
The notion of directionally nonexpansive mappings is due to Kirk in [186]. Ob-
viously, any nonexpansive selfmapping of a hyperbolic space is directionally non-
expansive, but the converse fails as directionally nonexpansive mappings not even
need to be continuous on the whole space as the example below shows.

Example 17.43. (simplified by Paulo Oliva): Consider the convex subset [0,1]2 of
the normed space (R2,‖ · ‖max) and the function

f : [0,1]2 → [0,1]2, f (x,y) :=

⎧
⎨

⎩

(1,y), if y > 0

(0,y), if y = 0.

Clearly, f is directionally nonexpansive (even directionally constant) but discontin-
uous at (0,0).

All the above properties of f (with the exception of ‘quasi-nonexpansive’ and
‘weakly quasi-nonexpansive’) can be written as ∀-formulas when formalized in
A ω [X ,d] resp. A ω [X ,d,W ] if the data L,α ∈ Q

∗
+,ω or Ω are given which can

be represented as objects of degree ≤ 1 and hence can be added to the parameter
x1 in theorem 17.35 (in the case of uniformly continuous and of bounded functions
f this is due to the display of < and ≤ we have chosen). Of course, one can also
consider proofs where L,α or Ω are given by fixed terms of the underlying sys-
tems as long as these terms only contain free variables of degree ≤ 1. Even the
property of f being weakly quasi-nonexpansive becomes an ∀-formula if the fixed
point p is pulled out as an additional parameter. Because of this we can (see fur-
ther below) apply our metatheorems to weakly quasi-nonexpansive functions but
not to quasi-nonexpansive ones. Note, however, that while the conditions on f to
be nonexpansive, (Hölder-)Lipschitz continuous or uniformly continuous imply the
extensionality of f , this is not the case for the other notions considered above.

In the following results we use the representation of Polish spaces X and compact
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metric spaces K from chapter 4. Using this representation a statement of the kind,
say,

(∗) ∀x ∈ P∀y ∈ K
(
∀n ∈NA(x,y,n)→∃m ∈ NB(x,y,m)

)

has – formalized in A ω [X ,d,W ] – the form

∀x1∀y≤1 M
(
∀n0A(x,y,n)→∃m0B(x,y,m)

)
.

We make the convention that when writing (∗) we always tacitly assume that
A(x1,y1,n0) and B(x1,y1,m0) are (when interpreted in S ω,X in the sense of defi-
nition 17.28) extensional w.r.t. =P,=K

x1 =P x2 ∧ y1 =K y2 ∧ A(x1,y1,n)→ A(x2,y2,n)

(analogously for B(x,y,m)) and therefore really express properties about elements
in P,K. Actually, it suffices to use the weak form of the representation of compact
metric spaces discussed at the end of chapter 4 here as this just adds another purely
universal premise.

Notation. 17.44 Let f : X → X be a selfmapping of a metric space (X ,d). Then the
fixed point set of f is defined as Fix( f ) := {x ∈ X | x = f (x)}.
In the following, we usually write the type X(X) more suggestively as X → X . Also
Fix( f ) �= /0 denotes the formalized statement

∃pX(
f X→X (p) =X p

)
.

Corollary 17.45. 1) Let P (resp. K) be a A ω -definable Polish space (resp. compact
metric space) and B∀,C∃ be as before ∀- resp. ∃-formulas.
If A ω [X ,d,W ] proves a sentence

∀x ∈ P∀y ∈ K∀zX , f X→X (
f n.e. ∧Fix( f ) �= /0∧∀u0 B∀ → ∃v0 C∃

)
,

then one extract from the proof a computable functional Φ : N
N×N → N (on

representatives rx : N→ N of elements x of P) such that for all rx ∈ N
N,b ∈ N

∀y ∈ K∀zX∀ f X→X (
f n.e.∧∀u≤Φ(rx,b)B∀ → ∃v≤Φ(rx,b)C∃

)

holds in any (nonempty) hyperbolic space (X ,d,W ) whose metric is bounded by
b ∈ N (where ‘bX’ is to be interpreted by ‘b’).
For A ω [X ,d,W,CAT(0)] instead of A ω [X ,d,W ] the conclusion holds in any
(nonempty) CAT(0)-space (X ,d) whose metric is bounded by b.

2) An analogous result holds if ‘ f n.e.’ is replaced by ‘ f d.n.e’.
Except for the elimination of the assumption ‘Fix( f ) �= /0’, the result holds as
well for A ω [X ,d],(X ,d). However, even in the latter case we still can reduce
‘Fix( f ) �= /0’ to ‘∀k0∃pX(dX( f (p), p) ≤R 2−k)’.
Instead of single Polish and compact metric spaces P,K we have tuples of (poten-
tially different) such spaces and corresponding tuples x,y.
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Remark 17.46. Remark 17.37 applies to corollary 17.45 as well.

Proof: 1) The statement provable, by assumption, in A ω [X ,d,W ] can be written as

∀x ∈ P∀y ∈ K∀zX , pX , f X→X (
f n.e. ∧ f (p) =X p∧∀u0 B∀ → ∃v0 C∃

)
.

‘ f (p) =X p’ can be formalized as ‘∀k0
(
dX(p, f (p)) ≤R 2−k)’, where

‘dX(p, f (p)) ≤R 2−k’ and ‘ f n.e.’ are ∀-formulas. Moreover, using the representa-
tion of P (resp. K) in A ω (see chapter 4) quantification over x ∈ P (resp. y ∈ K) is
expressed as quantification over all x1 (all y1 ≤ s for some closed function term s).
Hence by theorem 17.35 there is a functional Φ such that for all x ∈ P,b ∈ N, if
rx ∈N

N represents x then
⎧
⎨

⎩

∀y ∈ K∀zX , pX∀ f X→X

(
f n.e. ∧dX(p, f (p)) ≤R 2−Φ(rx,b)∧∀u≤0 Φ(rx,b)B∀ → ∃v≤0 Φ(rx,b)C∃

)

holds in any b-bounded hyperbolic space (X ,d,W ), where Φ(rx,b) depends on the
representative rx ∈N

N of x ∈ P.
By theorem 1 in [126] (see proposition 18.25 in chapter 18 below) we have (since
X is a bounded hyperbolic space),

∀k ∈ N∃p ∈ X
(
d(p, f (p))≤ 2−k).

Hence the corollary follows.
2) follows like 1) observing that ‘ f directionally nonexpansive’ is – formalized in
L (A ω [X ,d,W ]) – a ∀-formula as well, namely

∀xX∀λ 1(dX( f (x), f (WX (x, f (x), λ̃ )))≤R dX(x,WX (x, f (x), λ̃ ))
)
.

�

Remark 17.47. From the proof above it follows that parameters x in N or N
N can

be treated directly (without having to represent these spaces as Polish spaces). The
same is true for Q

∗
+ since rational numbers can be encoded by natural numbers.

The reduction of the assumption Fix( f ) �= /0 on f to its ε-weakening

∀ε > 0∃pε ∈ X(d(pε , f (pε )) < ε)

(and subsequent elimination) in the proof of the corollary is reminiscent of the re-
duction of the axioms Γ to Γε in theorem 15.1 in chapter 15 and the corresponding
WKL-elimination (from chapter 10). However, whereas in these cases the benefit
of this only was to replace the use of ineffective principles by classically equivalent
(using WKL) constructive versions of these principles, in the absence of compact-
ness this allows one to replace assumptions by even classically strictly weaker ones:
while nonexpansive selfmappings of bounded hyperbolic spaces always have ap-
proximate fixed points they, in general, do not have fixed points (not even for closed
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bounded convex subsets of Banach spaces such as c0 (see [340] for a general sur-
vey on such fixed point free mappings) unless e.g. X is a bounded convex subset
of a uniformly convex Banach space. Even in the latter case this reduction is of
relevance as it allows one to remove the use of the corresponding nontrivial fixed
point theorem (due to Browder [55], Göhde [137] and Kirk [184]) and the addi-
tional completeness and closedness assumptions of this theorem, yielding in many
cases fully elementary proofs. In the context of metric fixed point theory there are
numerous proofs of theorems having the form required in the corollary which use
the assumption that fixed points exist. In [224] it is shown how to achieve the elimi-
nation of this assumption in the concrete case of a proof due to Groetsch [144]. The
corresponding results in [224] vastly generalize bounds from [191]. An extension
of this result to uniformly convex hyperbolic spaces (with a monotone modulus of
uniform convexity) is given in [263]. Further applications of this type can be found
in [219, 231]. In the latter paper the use of an even more complicated fixed point
theorem for so-called asymptotically nonexpansive mappings due to [125] could be
eliminated from a proof of a result on the asymptotic behavior of certain iterations
of these mappings (the paper even treats asymptotically weakly quasi-nonexpansive
mappings and permits error terms in the iteration). Again this has been extended to
uniformly convex hyperbolic spaces (with monotone modulus of uniform convex-
ity), see [234].

We will now show that the elimination of the assumption ‘Fix( f ) �= /0’ can be car-
ried out for a much more general class of formulas than just ∃-formulas (the latter
restriction was necessary in the previous corollary only for the extractability of the
bound Φ).

Definition 17.48. The class K of formulas consists of all formulas F that have a
prenexation F ′ ≡ ∃xρ1

1 ∀yτ1
1 . . .∃xρn

n ∀yτn
n F∃(x,y) where F∃ is an ∃-formula, the types

ρi are 0 and the types τi are of degree≤ 1 or (1,X). If τi, . . . ,τn are of degree (1,X),
then ρi might even be of degree ≤ 1 or (0,X).

Corollary 17.49. Let P (resp. K) be a A ω -definable Polish space (resp. compact
metric space) and let the formula A be in the class K . If A ω [X ,d,W ] proves a
sentence

∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e.∧Fix( f ) �= /0→ A

)
,

then the following holds in all (nonempty) bounded hyperbolic spaces (X ,d,W ):

∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e.→ A

)
.

For A ω [X ,d,W,CAT(0)] instead of A ω [X ,d,W ] the conclusion holds in all
(nonempty) bounded CAT(0)-spaces (X ,d).
For A ω [X ,d] one still can (as in corollary 17.45) replace Fix( f ) �= /0 by the exis-
tence of approximate fixed points.

Proof: Let A be in prenex normal form of the form guaranteed by A ∈K . Consider
the Herbrand normal form
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AH :≡ ∀Y1, . . . ,Yn∃x1, . . . ,xn A∃(x1, . . . ,xn,Y1x1, . . . ,Ynx1 . . .xn)

of A. Since A→ AH holds by logic, the assumption implies that

A ω [X ,d,W ] � ∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e.→ AH)

.

The types of Y are of degree 1 or (1,X) and so meet the requirements on τ and σ
made in theorem 17.35 Moreover, the types of x are of degree 1 or (0,X) and hence
a-fortiori of degree 1 or (1,X) so that

∃x1, . . . ,xn A∃(x1, . . . ,xn,Y1x1, . . . ,Ynx1 . . .xn)

is an ∃-formula. So we can apply theorem 17.35 (reasoning similarly to the proof of
corollary 17.45) to conclude that

∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e.→ AH)

holds in any (nonempty) bounded hyperbolic space (X ,d) (with ‘bX ’ being inter-
preted by an upper bound b ∈ N of d). Since

S ω,X |= AH → A

(using the axiom of choice on the meta-level), the corollary follows. �

Theorem 17.35 originally was proved in Kohlenbach [226] using the combination
of negative translation and functional interpretation ND from chapter 10 extended to
the new types using bar recursion (BR) for these types and interpreting the result in
an extension of the model of strongly majorizable functionals (see chapter 11) to the
situation at hand. For the latter we defined s-ma jX on the ground type X in a trivial
way as the always true relation which was possible by the boundedness of (X ,d).
We now – following Gerhardy-Kohlenbach [120] – develop an approach which also
works for unbounded spaces and which will yield theorem 17.35 as a special case.
This approach is based on a nontrivial extension of the strong majorizability relation
which we need first as a syntactic relation and then in the proof also for the definition
of the according type structure of strongly majorizable (in this sense) functionals.
The main features of the new majorizability relation are the following:

• Majorants of functionals of type ρ ∈ TX are functionals of type ρ̂ ∈ T as defined
in definition 17.32. Consequently, as all constructions take place on the level
of the majorants, we can use the ordinary notions of computability or primitive
recursive computability etc. for functionals over N and do not have to stipulate
in any way that the underlying space (X ,d) is equipped with a computability
structure or anything of this sort.

• The majorization relation is a ternary relation which additionally depends on a
reference point a ∈ X .

• While the construction of majorants will depend on the choice of a ∈ X , the
domains of all strongly majorizable functionals of a given type will not.
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• For types ρ ∈ T, our relation coincides with the Bezem’s original strong ma-
jorizability relation s-ma jρ and so, in particular, is independent from the choice
of a ∈ X in this case.

The theories A ω [X ,d]−b,A
ω [X ,d,W ]−b and A ω [X ,d,W,CAT(0)]−b : These the-

ories result from A ω [X ,d],A ω [X ,d,W ] and A ω [X ,d,W,CAT(0)] by dropping the
axiom dX(x,y)≤R (bX)R and deleting the constant bX from the language.
The notions of a model (over S ω,X ) and of validity in this model are the same as
before except that the interpretation of bX is dropped.

We now define the new strong majorizability relation for all types ρ ∈ TX which we
denote – following [120] – by �a

ρ :

Definition 17.50. We define a ternary relation �a
ρ between objects x,y and a of type

ρ̂ ,ρ and X respectively as follows:

• x0 �a
0 y0 :≡ x≥0 y,

• x0 �a
X yX :≡ (x)R ≥R dX(y,a),

• x �a
τ(ρ) y :≡ ∀z′,z(z′ �a

ρ z→ xz′ �a
τ yz)∧∀z′,z(z′ �a

ρ̂ z→ xz′ �a
τ̂ xz).

In the case of normed linear spaces (to be treated below) we always choose a to be
the zero vector 0X , i.e. dX(x,a) =R ‖x‖X .

As �a is a relation between objects of different types, the definition of �a
τ(ρ) is

slightly more complicated than the corresponding definition of s-ma jτ(ρ). The first
part of the clause ensures that x is a ‘majorant’ for y, the second part ensures that
x also majorizes itself. Since majorants are of type ρ̂ , this corresponds to requiring
that for all majorants x s-ma j x, and so the definition of �a

τ(ρ) could equivalently be
rewritten as:

x �a
τ(ρ) y :≡ ∀z′,z(z′ �a

ρ z→ xz′ �a
τ yz)∧ x s-ma jτ̂(ρ̂) x.

Remark 17.51. Restricted to the types T, the relation �a is equivalent to Bezem’s
notion of strong majorizability s-ma j.

In the following, majorization relative to the relation �a will be called (strong) ‘a-
majorization’, i.e. if t1 �a t2 for terms t1,t2 we say that t1 a-majorizes t2 and we call
t1 an a-majorant. If the term t1 does not depend on a and a-majorizes t2 for any a we
say that t1 uniformly a-majorizes t2. We will in general aim for uniform majorants
so as to produce uniform bounds.

Below we write again F∀ (resp. F∃) for ∀-formulas (resp. ∃-formulas).

When dealing with the theories A ω [X ,d]−b,A
ω [X ,d,W ]−b and

A ω [X ,d,W,CAT(0)]−b we usually will assume that the constant 0X does not occur
in the sentences we consider. This is no restriction since 0X just is an arbitrary
Skolem constant which could have been replaced by any new variable of type X
which – taking the universal closure – would just add another input that had to be
a-majorized. In the case of normed spaces, however, the constant 0X denotes the
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zero vector whose use is crucial. Nevertheless, since in this case we always take
a := 0X this constant is trivially a-majorized by 00.

Theorem 17.52 (General theorem on proof mining: the abstract metric and hy-
perbolic case, Gerhardy-Kohlenbach [120]).

1) Let ρ be of degree (1,X) or ≤ 2 and let B∀(x,u), resp. C∃(x,v), be ∀- resp. ∃-
formulas that contain only x,u free, resp. x,v free. Assume that 0X does not occur
in B∀,C∃. From a proof in A ω [X ,d]−b of

∀xρ(∀u0B∀(x,u)→∃v0C∃(x,v)).

one can extract a partial functional Φ : Sρ̂ ⇀ N whose restriction to the strongly
majorizable elements of Sρ̂ is a total computable functional of M ω (in the sense
of [195] relativized to M ω ) such that the following is true: for all (nonempty)
metric spaces (X ,d) and for all x∈ Sρ ,x∗ ∈ Sρ̂ if there exists an a∈ X s.t. x∗ �a x
then

∀u≤Φ(x∗)B∀(x,u)→∃v ≤Φ(x∗)C∃(x,v))

holds in (X ,d).
In particular, if ρ is of degree 1∗, then Φ : Sρ̂ �→ N is a total computable func-
tional (in the ordinary sense of type-2 recursion theory).

2) If the premise of the theorem is provable in A ω [X ,d,W ]−b (resp. in
A ω [X ,d,W,CAT(0)]−b) instead of A ω [X ,d]−b, then the conclusion is valid in
any nonempty hyperbolic space (X ,d,W ) (resp. CAT(0)-space (X ,d)).

Instead of single variables x,u,v and a single premise ∀uB∀(x,u) we may have tuples
of variables x and a finite conjunction of premises, where in the case of x = x1, . . . ,xn
there have to exist componentwise majorants x∗ = x∗1, . . . ,x

∗
n for a common point

a ∈ X .

The theorem will be proved in section 17.4 below.

Remark 17.53. Note that in the above theorem the functional Φ is defined for x∗.
since x∗ �a x implies that x∗ s-ma j x∗.

In concrete applications specially designed corollaries of the general metatheorem
17.52 will be used. For most of our applications, the following two, more concrete,
versions of the metatheorem are sufficient:

Corollary 17.54 (Gerhardy-Kohlenbach [120]).

1) Let P (resp. K) be a A ω -definable Polish space (resp. compact metric space), let
τ be of degree 1∗ and let B∀(x,y,z,u), resp. C∃(x,y,z,v), be ∀- resp. ∃-formulas
that contain only x,y,z,u free, resp. x,y,z,v free, where furthermore 0X does not
occur in B∀,C∃. From a proof of a sentence

∀x ∈ P∀y ∈ K∀zτ(∀u0B∀(x,y,z,u)→∃v0C∃(x,y,z,v)
)
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in A ω [X ,d]−b one can extract a computable functional Φ : N
N×N

(N×...×N) →N

s.t. the following holds in every nonempty metric space: for all representatives
rx ∈N

N of x ∈ P and all z ∈ Sτ ,z∗ ∈ N
(N×...×N) if there exists an a ∈ X for which

z∗ �a
τ z then

∀y ∈ K
(
∀u≤Φ(rx,z∗)B∀ → ∃v ≤Φ(rx,z∗)C∃

)
.

As in theorem 17.52 we have a tuple of variables zτ as long as all the types
in τ are of degree 1∗ and in the conclusion z∗i �a

τ zi is assumed for a common
a ∈ X for all τi in τ = τ1, . . . ,τn. Also instead of single Polish and compact met-
ric spaces P,K we may have tuples of (potentially different) such spaces and
corresponding tuples x,y.

2) If the premise of the theorem is provable in A ω [X ,d,W ]−b (resp. in
A ω [X ,d,W,CAT(0)]−b) instead of A ω [X ,d]−b, then the conclusion is valid in
any nonempty hyperbolic space (X ,d,W ) (resp. CAT(0)-space (X ,d)).

Proof: Using the representation of P and K in A ω from chapter 4 as in the proof of
corollary 17.45, quantification over x ∈ P and y ∈ K can be expressed as quantifica-
tion over all x1, resp. all y1 ≤ s for some closed function term s. Clearly, xM s-ma j1x
for all x1 (and so we have xM �a x for all a ∈ X) and – likewise – sM �a y for all
y ≤1 s, where xM(n) := max{x(i) : i≤ n}.
Since τ has degree 1∗, by Theorem 17.52 we obtain a computable functional Φ̃ such
that Φ̃(rM

x ,sM ,z∗) is a bound on u and v, whenever r1
x ∈ N

N is a representative of
x ∈ P. Now define Φ(rx,z∗) := Φ̃(rM

x ,sM ,z∗). �

Corollary 17.55 (Gerhardy-Kohlenbach [120]).

1) Let P (resp. K) be a A ω -definable Polish space (resp. compact metric space).
Assume one can prove in A ω [X ,d,W ]−b a sentence:

∀x ∈ P∀y ∈ K∀zX∀ f X→X (f n.e.∧∀u0B∀(x,y,z, f ,u)→∃v0C∃(x,y,z, f ,v)),

where 0X does not occur in B∀ and C∃. Then one can extract a computable func-
tional Φ : N

N ×N → N s.t. for all representatives rx ∈ N
N of x ∈ P and all

b ∈ N

∀y ∈ K∀zX ,∀ f X→X ( f n.e. ∧ dX(z, f (z)) ≤R (b)R∧

∀u0 ≤Φ(rx,b)B∀(x,y,z, f ,u)→∃v0 ≤Φ(rx,b)C∃(x,y,z, f ,v))

holds in all (nonempty) hyperbolic spaces (X ,d,W ).
If the premise of this rule is proved in A ω [X ,d,W,CAT(0)]−b, then the conclu-
sion holds in all (nonempty) CAT(0)-spaces (X ,d).

2) The corollary also holds for an additional parameter ∀z̃X if one adds the addi-
tional premise dX(z, z̃)≤R (b)R in the conclusion, i.e.
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∀y ∈ K∀zX z̃X∀ f X→X ( f n.e. ∧ dX(z, f (z)) ≤R (b)R∧dX(z, z̃)≤R (b)R

∀u0 ≤Φ(rx,b)B∀(x,y,z, z̃, f ,u)→∃v0 ≤Φ(rx,b)C∃(x,y,z, z̃, f ,v))

holds in all (nonempty) hyperbolic spaces.
3) Furthermore, the corollary holds for an additional parameter ∀cX(0) if one adds

the additional premise ∀n(dX(z,c(n)) ≤R (g(n))R) in the conclusion, where the
extracted bound then additionally depends on g : N→ N.

4) The results 1), 2) and 3) also hold if we replace ‘ f n.e.’ with f being Lipschitz
continuous and Hölder-Lipschitz continuous functions (with L, resp. L,α ∈ Q

∗
+,

where α ≤ 1, as parameters), as well as uniformly continuous functions (with a
modulus of uniform continuity ω : N→N taken as parameter). For Lipschitz and
Hölder-Lipschitz continuous functions the bound depends on parameters L resp.
L,α. For uniformly continuous functions the bound depends on a given modulus
of uniform continuity ω1.

5) Furthermore, if we replace ‘ f n.e.’ with ‘ f weakly quasi-nonexpansive (with fixed
point p)’, then 1), 2) and 3) hold if one adds the premise ‘dX(z, p) ≤R (b)R’ in
the conclusion.

6) Moreover, 1), 2) and 3) also hold if we replace ‘ f n.e.’ with f satisfying

∀xX ,yX ,n0(dX(x,y) <R (n)R → dX( f (x), f (y)) ≤R (Ω(n))R),

where Ω 1 is treated as parameter. Then the bound will depend additionally on
the function Ω : N→N.

7) Finally, 1), 2) and 3) also hold if we replace ‘ f n.e. ∧dX (z, f (z)) ≤R (b)R)’ with
f satisfying

∀z̃,n0(dX(z, z̃) <R (n)R → dX(z, f (z̃))≤R (Ω̃ (n))R),

which – for monotone Ω̃ and with ‘dX(z, z̃)≤R (n)R’ instead of ‘dX(z, z̃) <R (n)R

– just expresses that Ω̃ is a z-majorant of f .
Then the bound will depend instead of b on the parameter Ω̃ : N→ N.

Remark 17.56. 1) The conditions on f in 1)–4) automatically imply the extension-
ality of f . For 5)–7) this is no longer the case so that in these cases one has to
rely on the weak quantifier-free rule of extensionality instead in applications.

2) Even if ‘z’ does not occur in neither B∀ nor C∃ we need in 1)–4) and 6) for the
bound Φ a number b which is an upper bound of d(z, f (z)) for some z as this is
used to construct a majorant for f . In 5), we can instead use the fixed point p and
as b e.g. 1 since 1 ≥ d(p, f (p)) even for ε-fixed points of f as long as ε ≤ 1. In
7) we don’t need any b as λ n0.Ω̃ M(n + 1) is already a z-majorant of f (see the
proof below).

3) In ‘4)’ and ‘6)–7)’ above we may even allow that the formulas B∀,C∃ may depend
on the additional parameters L,α,ω ,Ω ,Ω̃ . Instead of having L,α,ω ,Ω ,Ω̃ as
free variables these quantities might also be given as terms of the formal systems
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in question as long as these terms only contain free variables of degree≤ 1. Then
the bound extractable will depend in general on these variables as additional
inputs.

Proof: 1) By the comment after example 17.42 the premise ‘ f n.e.’ is a ∀-formula
and hence an admissible premise in Theorem 17.52. The quantifiers ∀x ∈ P,y ∈ K
ranging over the Polish space P, resp, compact metric space K, are treated as in
the proof of corollary 17.54. Choose a := z, then trivially 00 �a z. Moreover, using
d(z, f (z)) ≤ b and the nonexpansivity of f we get

d(z, z̃)≤ n→ d(z, f (z̃))≤ d(z, f (z))+ d( f (z), f (z̃))≤ b + d(z, z̃)≤ n + b.

Hence λ n0.(n + b) �a f .

For better readability we write here and for the rest of this proof simply d and b
instead of dX and (b)R etc.
For 2) and 3) is suffices to additionally observe that with a := z and b ≥ d(z, z̃),
trivially b �a z̃ and, with g such that ∀n(d(z,c(n))≤ g(n)), gM �a c.
For 4), 6), we will show that d(z, f (z)) ≤ b in conjunction with the requirement
that f is Lipschitz continuous (with constant L ∈Q

∗
+), Hölder-Lipschitz continuous

(with constants L,α ∈Q
∗
+,α ≤ 1), uniformly continuous (with modulus ω : N→N)

or bounded (with bounding function Ω : N → N) allows one to construct in these
data a modulus Ω̃ as in 7). Similarly, for 5), we show that if f is weakly quasi-
nonexpansive and the additional premise d(z, p) ≤ b is satisfied, then one can con-
struct in b a modulus Ω̃ as in 7) for f . As mentioned above, all conditions can be
written as ∀-formulas and may hence serve as a premise according to our metatheo-
rem. Hence it then remains to prove 7) which, however, is almost trivial: if f satisfies

(∗) ∀z̃ ∈ X(d(z, z̃) < n→ d(z, f (z̃))≤ Ω̃ (n)),

then trivially λ n.Ω̃ M(n + 1) �a f for a := z since

d(z, z̃)≤ n→ d(z, z̃) < n + 1
(∗)→ d(z, f (z̃))≤ Ω̃ (n + 1).

Using the fact that <R is a Σ0
1 -statement and ≤R is a Π 0

1 -statement we can express
(∗) as a ∀-formula. The results then follow using corollary 17.54 and remark 17.47.
To conclude the proof of 4), let f be Hölder-Lipschitz continuous with constants
L,α ∈ Q

∗
+, where 0 < α ≤ 1, and assume that d(z, f (z)) ≤ b ∈ N and d(z, z̃) ≤ n.

Then

d(z, f (z̃))≤ d(z, f (z))+d( f (z), f (z̃))≤ L ·d(z, z̃)α +b≤ L ·nα +b≤�L�·n+b∈N.

This means that f satisfies (∗) with Ω̃(n) := �L� ·n + b.
Next, let f : X → X be uniformly continuous with modulus ω1, i.e.

∀x,y ∈ X∀k ∈N(d(x,y) < 2−ω(k) → d( f (x), f (y)) ≤ 2−k).
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Then f satisfies (∗) with Ω̃(n) := n · 2ω(0) + 1 + b. We now use that (X ,d,W ) is a
hyperbolic space: given z, z̃∈X with d(z, z̃)≤ n we can (using the fact that W (x,y, 1

2 )
is a midpoint of x,y) inductively construct n ·2ω(0)-many points z1, . . . zk−1 such that

d(z,z1),d(z1,z2), . . . ,d(zk−1, z̃) < 2−ω(0)

and hence

d( f (z), f (z1)),d( f (z1), f (z2)), . . . ,d( f (zk−1), f (z̃))≤ 1(= 2−0).

Then by the triangle inequality d( f (z), f (z̃)) ≤ k = n ·2ω(0) + 1 and another use of
the triangle inequality yields d(z, f (z̃))≤ d(z, f (z))+d( f (z), f (z̃))≤ n ·2ω(0) +1+
b.
The proof of 5) is concluded as follows: in order to express ‘ f is weakly quasi-
nonexpansive’ as a ∀-condition, we need to take the fixed point p as an additional
parameter. Therefore, for weakly quasi-nonexpansive functions f , we need to add
an additional premise: ‘d(z, p)≤ b’. Then for a = z the function f satisfies (∗) with
Ω̃(n) := n + 2b, as given d(z, z̃) < n

d(z, f (z̃)) ≤ d(z, p)+ d( f (z̃), p)≤ d(z, p)+ d(z̃, p)

≤ d(z, p)+ d(z̃,z)+ d(z, p)≤ n + 2b.

Alternatively, choosing a = p (and adjusting the other majorants accordingly) f
even satisfies (∗) with Ω̃(n) := n, as given d(p, z̃) < n

d(p, f (z̃))≤ d(p, z̃)≤ n.

Finally, for f ,b and Ω as in 6) one easily shows that Ω̃ (n)+b satisfies the condition
in 7) so that this case, which was already treated, applies. �

Remark 17.57. Except for the case of f being uniformly continuous all results also
hold for A ω [X ,d]−b and general metric spaces (X ,d) instead of A ω [X ,d,W ]−b
and hyperbolic spaces (X ,d,W ). Note, that in metric spaces uniformly continuous
functions f need not be bounded in the sense of having a modulus Ω as in 6) and,
in general, will not even have a modulus Ω̃ as in 7). This is due to the fact that for
given x,y ∈ X one in general cannot construct intermediate points (see also [289]
for some related discussion).
Consider e.g. (N2,D), where

D
(
(n1,m1),(n2,m2)

)
:= |n1−n2|+ min{1, |m1−m2|}.

One easily verifies that D is a metric and that any function f : N
2 → N

2 is uni-
formly continuous (e.g. we may take ω f (ε) := 1/2 as modulus of uniform con-
tinuity). However, ϕ

(
(n,m)

)
:= (m,n) is not (0,0)-majorizable (and so also not a-
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majorizable for any other a∈N
2). This follows from the fact that D

(
(0,0),(0,n)

)
≤

1 for all n ∈ N while D
(
(0,0),ϕ(0,n)

)
= n.

Definition 17.58. Let f : X → X , then Fixε( f ,y,b) := {x ∈ X | d(x, f (x)) ≤ ε ∧
d(x,y)≤ b}, i.e. Fixε( f ,y,b) �= /0 expresses f has an ε-fixed point in a b-neighborhood
of y.

As a generalization of corollary 17.45 to the unbounded case (for nonexpansive
functions) we prove the following:

Corollary 17.59 (Gerhardy-Kohlenbach [120]).

1) Let P (resp. K) be a A ω -definable Polish space (resp. compact metric space)
and let B∀ and C∃ be as before. From a proof of a sentence

∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e. ∧Fix( f ) �= /0∧∀u0B∀ → ∃v0C∃

)
.

in A ω [X ,d]−b one can extract a computable functional Φ : N
N ×N → N (on

representatives x : N→ N of elements of P) s.t. for all x ∈ N
N,b ∈ N

∀y ∈ K ∀zX , f X→X
(

f n.e. ∧∀ε > 0(Fixε( f ,z,b) �= /0)

∧dX (z, f (z)) ≤R (b)R∧∀u0 ≤Φ(x,b)B∀ → ∃v0 ≤Φ(x,b)C∃
)
.

holds in any (nonempty) metric space (X ,d).
Similarly, if f instead of being nonexpansive satisfies one of the other conditions
from the previous corollary (modulo rem. 17.57).

2) If the premise of the theorem is provable in A ω [X ,d,W ]−b (resp. in
A ω [X ,d,W,CAT(0)]−b) instead of A ω [X ,d]−b, then the conclusion is valid in
any nonempty hyperbolic space (X ,d,W ) (resp. CAT(0)-space (X ,d)).

Proof: 1) The statement assumed to be provable can be written as

∀x ∈ P ∀y ∈ K ∀zX ,wX , f X→X (
f n.e. ∧ f (w) =X w∧∀u0B∀ → ∃v0C∃

)
,

where ‘ f (w) =X w’ can be written as ∀k0(d(w, f (w)) ≤ 2−k), and both
‘d(w, f (w)) ≤ 2−k’ and ‘ f n.e. ’ are ∀-formulas.
By corollary 17.55 and rem. 17.57, we extract a functional Φ s.t. for all x ∈ P if
rx ∈ N

N represents x then

∀y ∈ K ∀zX ,wX , f X→X
(
d(z,w),d(z, f (z) ≤ b∧ f n.e. ∧

d( f (w),w) ≤ 2−Φ(rx,b)∧∀u0 ≤Φ(rx,b)B∀ → ∃v0 ≤Φ(rx,b)C∃
)

holds in all (nonempty) metric spaces (X ,d).
The statement d(z,w) ≤ b∧ d( f (w),w) ≤ 2−Φ(rx,b) expresses that f has 2−Φ(rx,b)-
fixed points in a b-neighborhood of z, which, since 2−Φ(rx,b) does not depend on w,
is implied by Fixε( f ,z,b) �= /0, so the corollary follows. �

2) is proved analogously.
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Similarly to corollary 17.49 also in the above context one can carry out the reduction
of the assumption

Fix( f ) �= /0

to
∃b0∀ε > 0

(
Fixε( f ,z,b) �= /0

)

for a rather general class H of formulas A instead of purely existential ones. How-
ever, compared to the class K in corollary 17.49 we have to restrict the types
slightly more in order to ensure the majorizability of the Herbrand index functions
in the absence of the assumption on X being bounded. The appropriate class is the
following one:

Definition 17.60. The class H consists of all formulas (in the language of the the-
ory in question) that have a prenex normal form

∃x0
1∀yτ1

1 . . .∃x0
n∀yτn

n F∃(x,y),

where F∃ is an ∃-formula and the types τi are of degree ≤ 1 or (0,X).

The proof of the following result is similar to the one of corollary 17.49 and can be
found in [120]:

Corollary 17.61. Let P (resp. K) be a A ω -definable Polish (resp. compact) metric
space and let the formula A be in the class H . If A ω [X ,d]−b proves a sentence

∀x ∈ P ∀y ∈ K ∀zX , f X→X (
f n.e.∧Fix( f ) �= /0→ A

)

then the following holds in every nonempty metric space (X ,d):

∀x ∈ P ∀y ∈ K ∀zX , f X→X

(
f n.e.∧∃b0∀ε > 0(Fixε( f ,z,b) �= /0)→ A

)
.

The analogous statement holds for A ω [X ,d,W ]−b (resp. A ω [X ,d,W,CAT(0)]−b)
and nonempty hyperbolic spaces (X ,d,W ) (resp. CAT(0)-spaces (X ,d)).

Instead of Fix( f ) �= /0 one can also treat different assumptions, e.g.

∃pX (
Ψ (x1,y1,zX , f X→X , pX) =R 0R

)
,

where Ψ is a functional given by a closed term of type 1(X)(X → X)(X)(1)(1) of
the underlying system. Then for the same class of formulas H as in corollary 17.61
one can reduce this assumption in a proof to the existence of approximate roots
within some ball around z, i.e. to

∃b0∀ε > 0∃pX(
dX(z, p)≤R (b)R∧|Ψ(x,y,z, f , p)|R ≤R ε).

We leave it to the reader to carry out the details.
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17.3 The case of normed spaces

In the following, we adapt the results obtained above to the setting of (real) normed
linear spaces with convex subsets C. As we saw above, our metatheorems for metric
and hyperbolic spaces became particularly easy to formulate in the case where these
spaces were assumed to be bounded. For normed spaces this is not possible since
nontrivial normed spaces always are unbounded, while many theorems using convex
subsets C of normed spaces assume C to be bounded. It, therefore, sometimes is
convenient to be able to formulate theories dealing with bounded convex subsets
of normed spaces without having to formalize the underlying (unbounded) normed
space. According to a nice result due to Machado [269], one, in fact, can characterize
convex subsets of normed spaces (up to an isometric embedding) in the setting of
hyperbolic spaces by adding two further axioms on W. The additional conditions are

• (I) that the convex combinations do not depend on the order in which they are
carried out, and

• (II) that the distance is homothetic.

Formally stated, the conditions (I) and (II) read as follows:

(I) ∀x,y,z ∈ X∀λ1,λ2,λ3 ∈ [0,1]
(
λ1 + λ2 + λ3 =R 1→

W (z,W (y,x, λ1
1−λ3

),1−λ3) = W (x,W (z,y, λ2
1−λ1

),1−λ1)
)
,

(II)∀x,y,z ∈ X∀λ ∈ [0,1]
(
d(W (z,x,λ ),W (z,y,λ )) = λ ·d(x,y)

)
.

In order to express axiom (I) as a purely universal sentence we have to avoid the
universal premise λ1 + λ2 + λ3 =R 1 (recall that equality on the reals is a universal
statement and hence the axiom itself would no longer be purely universal).
Instead, given λ1,λ2 we explicitly define λ̄1, λ̄2 and λ̄3 so that provably (in A ω )
λ 1,λ 2,λ 3 always represent real numbers in [0,1] with λ̄1 + λ̄2 + λ̄3 =R 1 and, con-
versely, for λi ∈ [0,1] with λ1 + λ2 + λ3 =R 1 we have that λ̄i = λi for i = 1,2,3.
The formal versions of the axioms are then as follows:

(I) ∀xX ,yX ,zX∀λ 1
1 ,λ 1

2(
WX(z,WX (y,x, λ̄1

1−λ̄3
),1− λ̄3) = WX(x,WX (z,y, λ̄2

1−λ̄1
),1− λ̄1)

)
,

where λ̄1 =1 λ̃1, λ̄2 =1 minR(λ̃2,1−R λ̄1) and λ̄3 =1 1−R (λ̄1 +R λ̄2),
(II)∀xX ,yX ,zX∀λ 1(dX(WX(z,x,λ ),WX (z,y,λ )) =R λ̃ ·R dX(x,y)

)
,

where λ̃ is the construction in Definition 4.24. As discussed for the other (X ,d,W )
axioms in Remark 17.24, the axiom (II) is formulated with WX to implicitly satisfy
WX (x,y,λ ) =X WX(x,y, λ̃ ).

From the proofs of theorems 17.35 and 17.52 to be given further below it will be
clear that the theorems immediately apply also to any extension of the systems con-
sidered so far by new axioms which can be written as ∀-formulas (like (I), (II)
above), where then the conclusion holds in all spaces (X ,d) resp. (X ,d,W ) which
satisfy these additional axioms. Hence just as we treated the case of CAT(0)-spaces
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by adding the ∀-axiom CN− to the system for hyperbolic spaces, we can treat the
case of convex subsets of normed spaces by adding instead (I), (II). However, for
many applications it is useful or even necessary to be able to speak also about the
underlying (real) normed space directly. For this reason we now develop formal sys-
tems for abstract (real) normed spaces as well as normed spaces together with an ab-
stract convex subset C. The latter will be formalized via its characteristic function,
where again we will have to consider extensionality issues as we only can stipu-
late weak extensionality for that characteristic function. Nevertheless, our theorems
cover substantial applications to fixed point theory as the ones given in Kohlenbach
[224] (providing an effective form of a theorem of [144]) as well as in Kohlenbach-
Lambov [231] (dealing with asymptotically weakly quasi-nonexpansive selfmap-
pings of convex subsets of uniformly convex normed spaces).

The theory A ω [X ,‖ · ‖]:
A ω [X ,‖ · ‖] is defined as follows:

(i) Just as in the case of A ω [X ,d] we first extend A ω to the larger set TX of all
finite types over the two ground types 0 (representing as before N) and X .

(ii) Next, constants 0X ,1X of type X are added.
(iii) Finally, instead of b0

X and dX and their corresponding axioms we now include
constants +X of type X(X)(X), −X of type X(X), ·X of type X(X)(1), ‖ · ‖X of
type 1(X) together with the axioms (writing as usual x +X y, x−X y, ‖x‖X and
α ·X x (or even αx) for +X(x,y), +X(x,−X y), ‖ · ‖X(x) and ·X (α,x)):

(0) The (purely universal) vector space axioms for +X , −X , ·X ,0X , formulated
with the equality relation =X between objects of type X as defined below,

(1) ∀xX
(
‖x−X x‖X =R 0R

)
,

(2) ∀xX ,yX
(
‖x−X y‖X =R ‖y−X x‖X

)
,

(3) ∀xX ,yX ,zX
(
‖x−X z‖X ≤R ‖x−X y‖X +R ‖y−X z‖X

)
,

(4) ∀α1,xX ,yX
(
‖αx−X αy‖X =R |α|R ·R ‖x−X y‖X

)
,

(5) ∀α1,β 1,xX
(
‖αx−X β x‖X =R |α−R β |R ·R ‖x‖X

)
,

(6)

⎧
⎨

⎩

∀xX ,yX ,uX ,vX

(
‖(x +X y)−X (u +X v)‖X ≤R ‖x−X u‖X +R ‖y−X v‖X

)
,

(7) ∀xX ,yX
(
‖(−Xx)−X (−X y)‖X =R ‖x−X y‖X

)
,

(8) ∀xX ,yX
(
|‖x‖X −R ‖y‖X |R ≤R ‖x−X y‖X

)
.

(9) ‖1X‖X =R 1R.

As before, the language of A ω [X ,‖·‖] only contains equality =0 for objects of type
0 as a primitive predicate. xX =X yX is an abbreviation for ‖x−X y‖X =R 0R. Equal-
ity for complex types is defined as before as extensional equality using =0 and =X
for the base types.

It is clear that the axioms (0)–(8) all express valid (modulo our representation of
R) facts about (real) normed spaces. Conversely, the usual axioms for (real) normed
linear spaces can be derived in A ω [X ,‖ · ‖]. To see this we have to check that the
equality axioms (reflexivity, symmetry and transitivity) hold for our defined equality
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=X and that the vector space operations and the norm function are provably exten-
sional w.r.t. =X (it then follows that we can carry out the usual proofs of the basic
identities in normed spaces which – together with the extensionality of ‖ · ‖X – im-
ply the usual norm axioms):

The equality axioms follow immediately from (1)–(3).
The extensionality of the scalar product

∀α1,β 1,xX ,yX(
α =R β ∧ x =X y→ αx =X β y

)

follows from (4),(5).
The extensionality of +X and −X

∀xX ,yX ,uX ,vX(
x =X u∧ y =X v→ x +X y =X u +X v

)

and
∀xX ,yX(

x =X y→−X x =X −X y
)

follows from (6),(7).
Finally, (8) yields the extensionality of ‖ · ‖X

∀xX ,yX(
x =X y→‖x‖X =R ‖y‖X

)
.

Hence ‖ · ‖X is a norm on the set of equivalence classes generated by =X and we
can now prove all the usual basic vector space laws and properties of the norm
(exercise).

Axiom (9) is a Skolemized form of expressing that the normed space is nontrivial,
i.e. contains an element x whose norm is strictly positive. We then can define 1X :=

x
‖x‖X

for such an x to get an element of norm 1.

The theory A ω [X ,‖ · ‖,η ] results from A ω [X ,‖ · ‖] by adding a new constant η1

of type 1 together with the axiom (writing more short ‖ · ‖ instead of ‖ · ‖X )

(10)∀xX ,yX∀k0 (
‖x‖,‖y‖<R 1R∧

∥
∥
∥
∥

x +X y
2

∥
∥
∥
∥ >R 1−2−η(k) →‖x−X y‖ ≤R 2−k).

As mentioned already in the introduction to this chapter, the fact that η is a modulus
of uniform convexity is usually defined as follows:

(10∗)∀xX ,yX∀k0 (
‖x‖,‖y‖ ≤R 1R∧

∥
∥
∥
∥

x +X y
2

∥
∥
∥
∥≥R 1−2−η(k) →‖x−X y‖ ≤R 2−k).

It is clear that (10∗) implies (10). Conversely, A ω [X ,‖ · ‖,η ] proves (10∗) with
η̃(k) := η(k)+1 using the continuity of the norm and the scalar product which can
be derived in A ω [X ,‖ · ‖]. The reason why we use the formulation (10) as our ax-
iom is that this formulation – in contrast to (10∗) – is logically equivalent to a purely



17.3 The case of normed spaces 413

universal statement since <R∈ Σ0
1 and ≤R∈Π 0

1 .

The theory A ω [X ,〈·, ·〉] is obtained from A ω [X ,‖ · ‖] by the addition of the paral-
lelogram law as a further axiom (11) to (1)− (9) :

(11) ∀xX ,yX(
‖x +X y‖2

X +R ‖x−X y‖2
X =R 2R ·R (‖x‖2

X +R ‖y‖2
X),

where (·)2 is a functional of type 1(1) which represents on the representations of
real numbers the function x �→ x2 on R.
Any norm that satisfies (11) gives rise to an inner product function 〈·, ·〉 : X×X →R

in the following way: define a functional 〈·, ·〉X of type 1(X)(X) by (writing 〈x,y〉X
for 〈·, ·〉X (x,y)):

(+) 〈xX ,yX〉X :=1 (〈1
4
〉)R ·R (‖x +X y‖2

X −R ‖x−X y‖2
X).

〈·, ·〉X represents an inner product on the space (of =X -equivalence classes of) X and
the norm ‖ · ‖X can be recovered from 〈·, ·〉X in the usual way

(++) ‖x‖X := sqrt(〈x,x〉X ),

where sqrt1→1 represents the square root function R+ → R+ on the representation
of R (which can easily be defined by a closed term of A ω ). Conversely, whenever a
norm ‖ ·‖ is given by a (real valued) inner product via (++), then the norm satisfies
(11) and the inner product can be recovered from that norm by (+). The standard
proofs of these facts (see e.g. [375]) can easily be carried out in our formal setting.
Thus A ω [X ,〈·, ·〉] contains a proper axiomatization of the notion of a real inner
product space (also called pre-Hilbert space).

Let (X ,‖ · ‖) be a nontrivial real normed linear space. S ω,X becomes a model of
A ω [X ,‖ · ‖] by letting the variables of type ρ range over Sρ if

• we give the obvious interpretations to 00,S1,Πρ ,τ ,Σδ ,ρ ,τ and Rρ for all types
δ ,ρ ,τ,ρ ∈ TX ,

• 0X is interpreted by the zero vector 0X of the linear space X , 1X by some vector
a ∈ X with ‖a‖ = 1, +X is interpreted as addition in X , −X is the inverse of x
w.r.t. + in X , ·X is interpreted as λ α ∈ N

N,x ∈ X .rα · x, where rα is the unique
real number represented by α and ‘·’ refers to the scalar multiplication in the
R-linear space X . Finally, ‖ · ‖X is interpreted by λ x ∈ X .(‖x‖)◦, where (r)◦ –
for r ∈ R+ – is the function from definition 17.7.

Similarly for A ω [X ,‖·‖,η ] and A ω [X ,〈·, ·〉], where than X is has to be a uniformly
convex space (and η must be interpreted by some modulus of uniform convexity)
or a pre-Hilbert space, respectively.

Definition 17.62. We say that a sentence of L (A ω [X ,‖ · ‖]) holds in a nontrivial
(real) normed linear space (X ,‖·‖) if it holds in the models of A ω [X ,‖·‖] obtained
from S ω,X as specified above.
Analogously for A ω [X ,‖ · ‖,η ] and A ω [X ,〈·, ·〉].
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Remark 17.63. Again we strictly speaking have to use the plural ‘models’ since the
interpretation of 1X is not uniquely determined. What is meant is that the sentence
holds no matter how one interprets 1X as long as it is interpreted by an element
having norm 1. In the case of A ω [X ,‖ · ‖,η ] also the interpretation of η1 is not
uniquely determined but may be interpreted by any modulus of uniform convexity
of the underlying space (X ,‖ · ‖).

In A ω [X ,‖ · ‖] we can extend the relation x≤ρ y from types ρ ∈ T to ρ ∈ TX :

Definition 17.64. For functionals xρ ,yρ of type ρ ∈ TX define x≤ρ y by

x ≤0 y :≡ x≤ y,

x ≤X y :≡ ‖x‖X ≤R ‖y‖X ,

x ≤τ(ρ) y :≡ ∀zρ(x(z) ≤τ y(z)).

Lemma 17.65. The following is provable in A ω [X ,‖ · ‖]

∀x∗,x,x(x∗ �0X
ρ x∧ x≥ρ y→ x∗ �0X

ρ y).

Proof: Induction on ρ ∈ TX . �

The theory A ω [X ,‖ · ‖,C]:
A ω [X ,‖ · ‖,C] results from A ω [X ,‖ · ‖] by adding new constants bX of type 0, cX
of type X and χC of type 0(X) together with the axioms

(12) ∀xX (χC(x) =0 0→‖x‖X ≤R (bX)R,
(13) ∀xX ,yX ,α1(χC(x) =0 χC(y) =0 0→ χC((1−R α̃) ·X x +X α̃ ·X y) =0 0),
(14) χC(cX ) =0 0,
(15) ∀xX (χC(x)≤0 1).

The theories A ω [X ,‖ · ‖,η ,C] and A ω [X ,〈·, ·〉,C] are defined analogously
Note that although the vector space operations and ‖ · ‖X are provably extensional
(w.r.t. =X ,=R), the characteristic function χC is not. However, by QF-ER we have
the following weak form of χC-extensionality

A0 → s =X t
A0 → χC(s) =0 χC(t)

for quantifier-free A0

(see also the discussion at the end of this section).
The axioms (12)–(14) express that the set C := {x∈ X |∃y∈X(x =X y∧χC(y) =0 0}
is a nonempty b-bounded convex subset of X .

The intended interpretation of χC is to be the characteristic function of some
nonempty convex subset C ⊆ X .

In the following ‘∀xC A(x)’, ‘∀ f 1→C A( f )’, ‘∀ f X→C A( f )’ and ‘∀ fC→C A( f )’ ab-
breviate
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∀xX (χC(xX ) =0 0→ A(x)),

∀ f 1→X
(
∀y1(χC( f (y)) =0 0)→ A( f )

)
,

∀ f X→X
(
∀yX (χC( f (y)) =0 0)→ A( f )

)
and

∀ f X→X
(
∀xX (χC(x) =0 0→ χC( f (x)) =0 0)→ A( f̃ )

)
,

where f̃ (x) :=

⎧
⎨

⎩

f (x), if χC(x) =0 0

cX , otherwise.
Analogously for the corresponding ∃-quantifiers with ‘∧’ instead of ‘→’. This ex-
tends to types of degree (1,X ,C) where ρ is of degree (1,X ,C) if it has the form
C(τk) . . . (τ1), where τi has degree 1,τi = X or τi = C.

Remark 17.66. Note that for ρ of degree (1,X ,C) a quantifier ‘∀xρ ’ abbreviates

∀xρ ′(B(x)→ . . .
)
,

where ρ ′ is the type of degree (1,X) resulting from ρ by replacing everywhere ‘C’
by ‘X’ and B is (logically equivalent to) a ∀-formula.

Officially, the types involvingC are not included in our language and a statement like
‘∀xρ A(x)’ for ρ of degree (1,X ,C) is used an abbreviation for ‘∀xρ ′(B(x)→ A(x))’
for ρ ′ and B as in remark 17.66.

Remark 17.67. If one defines

f X→X =C→X gX→X :≡ ∀xX (χC(x) = 0→ f (x) =X g(x))

then for all f X→X ,gX→X the following provably holds

f =C→X f̃ and f̃ =C→X g̃↔ f̃ =X→X g̃.

In the following, when writing ‘∀ fC→CA( f )’ we not only assume that A( f̃ ) is –
when interpreted in S ω,X – extensional w.r.t. =C→X (which in the light of the pre-
vious remark always is the case) but that already A( f ) is in this sense extensional
for functions f satisfying

∀xX (χC(x) =0 0→ χC( f (x)) =0 0)

which automatically is satisfied whenever A( f ) results from formalizing a property
of functions f : C →C. This guarantees that the meaning of A( f̃ ) does not depend
on the interpretation of the constant cX used to define f �→ f̃ .

For fC→C (i.e. for f X→X satisfying ∀xX (χC(x) =0 0 → χC( f (x)) =0 0)) ‘ f nonex-
pansive’ is the ∀-formula

∀xX ,yX (χC(x) =0 0 =0 χC(y)→‖ f (x)−X f (y)‖X ≤R ‖x−X y‖X).
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Definition 17.68. We say that a sentence A holds in a nontrivial real normed linear
space (X ,‖ · ‖) and a nonempty bounded convex subset C ⊆ X if in addition to the
requirements in definition 17.62 we stipulate that χC is interpreted as the charac-
teristic function for C, cX by some arbitrary element in C and bX by some integer
b ∈ N with b≥ ‖x‖ for all x ∈C.

The theory A ω [X ,‖ · ‖,C]−b results from A ω [X ,‖ · ‖,C] if we delete the constant
bX and drop the axiom expressing that the elements of C are bounded in norm by
bX . The previous definition is then adapted accordingly. Analogously, we define the
theories A ω [X ,‖ · ‖,η ,C]−b and A ω [X ,〈·, ·〉,C]−b

Theorem 17.69 (Gerhardy-Kohlenbach [120]).

1) Let ρ be of degree (1,X),(1,X ,C) or 2 and let B∀(x,u), resp. C∃(x,v), be ∀- resp.
∃-formulas that contain only x,u free, resp. x,v free. Assume that

A ω [X ,‖ · ‖,C]−b � ∀xρ(∀u0B∀(x,u)→∃v0C∃(x,v)),

Then there exists a partial functional Φ : Sρ̂ ×N ⇀ N s.t. Φ is defined on all
strongly majorizable elements of Sρ̂ , the restriction to those elements is a (bar
recursively) computable functional of M ω and the following holds in all non-
trivial (real) normed linear spaces (X ,‖ · ‖,C) and all nonempty convex subsets
C ⊆ X: for all x ∈ Sρ , x∗ ∈ Sρ̂ and n ∈ N if x∗ �0X x and (n)R ≥R ‖cX‖X then

∀u≤Φ(x∗,n)B∀(x,u)→∃v≤Φ(x∗,n)C∃(x,v)).

In particular, if ρ is in addition of degree 1∗, then Φ : Sρ̂ ×N → N is totally
computable.

2) For nontrivial (real) uniformly convex spaces with modulus of uniform convexity
η statement 1) holds with (X ,‖ · ‖,η ,C), A ω [X ,‖ · ‖,η ,C]−b instead of (X ,‖ ·
‖,C), A ω [X ,‖ · ‖,C]−b, where the extracted bound Φ additionally depends on
η .

3) Analogously, for A ω [x,〈·, ·〉,C]−b and nontrivial (real) inner product spaces
(X ,〈·, ·〉).

As in the metric case, instead of single variables x,u,v and single premises
∀uB∀(x,u) we may have tuples of variables and finite conjunctions of premises.

Again, this theorem will be proved in section 17.4 below.

In the case of metric and hyperbolic spaces the proofs of the main metatheorems (to
be given in section 17.4) use the fact that all the constants (except 0X ) are uniformly
a-majorizable and – since we can interpret 0X arbitrarily (if it does not occur in the
theorem to be proved) and so, in particular, by a – this essentially also applies to 0X .
In the normed case, however, this is no longer true as the norm ‖x‖ measures the
distance of x from the zero vector 0X and so we have to choose the reference point
a ∈ X as 0X . More precisely, if we would choose a different reference point a ∈ X
then the a-majorant for ‖x‖ would depend on (an upper bound of) ‖a‖ and so would
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not be uniform in a. So to keep a as a variable parameter which can be fixed later
(e.g. as one of the input data of the theorem to be proved as we did in the proof of
corollary 17.55) without changing the extracted bound does not work out here. As a
consequence of this, when dealing with theorems say of the form

∀xX ,yX∃n0A∃(x,y,n),

then differently from the metric case it will no longer suffice to have a bound b on
the relative distance ‖x− y‖ in order to obtain a bound on n but we need in addition
an absolute norm bound on either ‖x‖ or ‖y‖. This is clear e.g. from the trivial
example

∀xX ,yX∃n0(n > ‖x‖+‖y‖),

which we briefly mentioned already in the introduction to this chapter.
The constant cX is necessary to witness the nonemptyness of C and since we fix a
as 0X our bounds depend on an upper bound n for the norm of cX as well. However,
if cX does not occur in the formulas B∀ and C∃ and we have another parameter z ∈C
for which we have a bound on the norm, we do not need a further bound on ‖cX‖,
since in the model cX may be interpreted by an arbitrary element of C and we then
may interpret cX by z.

Corollary 17.70. 1) Let σ be of degree 1 and ρ of degree 1 or (1,X) and let τ be a
type of degree (1,X ,C). Let s be a closed term of type ρ(σ) and B∀,C∃ as before.
If a sentence

∀xσ∀y ≤ρ s(x)∀zτ(∀u0B∀(x,y,z,u)→∃v0C∃(x,y,z,v)
)

is provable in A ω [X ,‖ · ‖,C] then one can extract a computable functional Φ :
Sσ ×N→ N s.t. for all x ∈ Sσ

∀y≤ρ s(x)∀zτ(∀u0 ≤Φ(x,b)B∀(x,y,z,u)→∃v0 ≤Φ(x,b)C∃(x,y,z,v)
)

holds in any nontrivial (real) normed linear space (X ,‖ · ‖) and any nonempty
b-bounded convex (in the norm) subset C ⊂ X (with ‘bX ’ interpreted by ‘b’).

2) ‘1)’ holds analogously with A ω [X ,‖ · ‖,η ,C] and nontrivial (real) uniformly
convex spaces (X ,‖ ·‖,η ,C) and convex subsets C instead of A ω [X ,‖ ·‖,C] and
(X ,‖ · ‖,C). This time Φ is a computable functional in x,b and a modulus η of
uniform convexity for (X ,‖ · ‖) (which interprets the constant ‘η’).

3) Analogously, for (real) inner-product spaces (X ,〈·, ·〉).
Instead of single variables x,y,z,u,v we may also have finite tuples of variables
x,y,z,u,v as long as the elements of the respective tuples satisfy the same type re-
strictions as x,y,z,u,v. Moreover, instead of a single premise of the form
‘∀u0B∀(x,y,z,u)’ we may have a finite conjunction of such premises.

Proof: 1) W.l.o.g. we may assume that σ = 1. We, therefore, have xM �0X
σ x and,

consequently, s∗(xM) �0X sx, where s∗ is some majorant of s (which exists by (the
proof of) lemma 17.83 below as a closed term of A ω ). By lemma 17.65, therefore,
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s(x) ≥ρ y implies that s∗(xM) �0X y.
Next, given a norm bound b ∈ N on C, trivially (b)R ≥ ‖cX‖ and writing τ = C(τ),
then also λ xτ̂i .b �0X

τ z.
Hence by theorem 17.69 we can extract a bar recursive functional φ such that
φ(xM ,s∗(xM),λ xτ̂i .b,b) is a bound on both ‘∃v’ and ‘∀u’, for any nontrivial real
normed linear space and any (nonempty) b-bounded convex subset C. Since both
the functional (·)M , the 0X -majorant s∗ for s and the 0X -majorant λ xτ̂i .b for z are
given by closed terms of A ω , the functional

Φ :≡ λ x,b.φ(xM,s∗(xM),λ xτ̂i .b,b)

is computable and yields the desired bound.
Note, that in A ω [X ,‖ · ‖,C] we have the boundedness of C as an axiom, while the-
orem 17.69 only allows one to treat the boundedness as an implicative assumption.
Therefore, this corollary strictly speaking does not follow from theorem 17.69 but
easily from its proof (to be given below) which works for any extension by purely
universal axioms. �

2) and 3) are proved analogously.

Corollary 17.71 (Gerhardy-Kohlenbach [120]).

1) Let P (resp. K) be a A ω -definable Polish space (resp. compact metric space).
Suppose that A ω [X ,‖ · ‖,C]−b proves a sentence

∀x ∈ P∀y ∈ K∀zC∀ fC→C( f n.e.∧∀u0B∀(x,y,z, f ,u)→∃v0C∃(x,y,z, f ,v)),

where cX does not occur in B∀ and C∃. Then one can extract from the proof a
computable functional Φ : N

N ×N → N s.t. for all representatives rx ∈ N
N of

x ∈ P and all b ∈N

∀y ∈ K∀zC∀ fC→C( f n.e.∧‖z‖X ,‖z− f (z)‖X ≤R (b)R

∧∀u0 ≤Φ(rx,b)B∀(x,y,z, f ,u)→∃v0 ≤Φ(rx,b)C∃(x,y,z, f ,v))

holds in all nontrivial (real) normed linear spaces (X ,‖·‖) and nonempty convex
subsets C.
Analogously, for uniformly convex spaces (X ,‖ ·‖,η ,C) and (real) inner product
spaces (X ,〈·, ·〉), where for uniformly convex spaces the bound Φ additionally
depends on the modulus of uniform convexity η .

2) The corollary also holds for an additional parameter ∀z̃C, if we add the addi-
tional premise ‖z− z̃‖X ≤R (b)R to the conclusion.

3) Furthermore, the corollary holds for an additional parameter ∀c0→C if we add
the additional premise ∀n(‖z− c(n)‖X ≤R (g(n))R) to the conclusion, where the
bound then additionally depends on g : N→N.

4) Moreover, 1), 2) and 3) also hold if we replace ‘ f n.e.’ with ‘ f Lipschitz con-
tinuous’ and ‘ f Hölder-Lipschitz continuous (with parameters L,α ∈Q

∗
+, where

α ≤ 1) or ‘ f uniformly continuous’ (with modulus ω : N → N as parameter).
For Lipschitz and Hölder-Lipschitz continuous functions the bound depends on
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the parameters L resp. L,α and for uniformly continuous functions the bound
depends on a given modulus of uniform continuity.

5) Furthermore, 1), 2) and 3) hold if we replace ‘ f n.e.’ with ‘ f weakly quasi-
nonexpansive’. For weakly quasi-nonexpansive functions (with fixed point p) we
need to state the additional premise ‖p‖X ≤R (b)R in the conclusion.

6) 1), 2) and 3) also hold if we replace ‘ f n.e.’ in the premise and the conclusion by

∀n0,zC
1 ,zC

2 (‖z1− z2‖X <R (n)R →‖ f (z1)− f (z2)‖X ≤R (Ω0(n))R), (∗)

where Ω0 is a function N→N treated as a parameter and the bound additionally
depends on Ω0.

7) Finally, 1), 2) and 3) hold if the previous conditions on f are replaced by

∀n0, z̃C(‖z̃‖X <R (n)R → ‖ f (z̃)‖X ≤R (Ω(n))R), (∗∗)

where Ω is a function N→ N is treated as a parameter and the bound addition-
ally depends on Ω . In this case we can drop the assumption ‘‖z− f (z)‖X ≤ (b)R’
in the conclusion whereas ‘‖z‖X ≤ (b)R’ has to remain.

Note that (∗),(∗∗) are logically equivalent to ∀-formulas.

Proof: The corollary follows from theorem 17.69 in a similar way as we proved
corollary 17.55 from theorem 17.52, except for two points: (1) as discussed already
above we need to fix a = 0X and hence have to add the premise ‖z‖ ≤ b, which
implies that b �0X

X z, in the conclusion. (2) the 0X -majorization of f (actually f̃ )
requires extra care. From the definition of f̃ it is obvious that n �0X

X f (x) for x∈X \C
if n ≥ ‖cX‖. Also note, that since we assume cX does not occur in B∀ and C∃ we
may interpret cX by the parameter z in the model, so that ‖cX‖ ≤ b. Hence, given
an a-majorant λ n. f ∗(n) �0X

X f on the convex subset C, we obtain the 0X -majorant
λ n.max( f ∗(n),b) for f̃ and thus the extracted bound does not depend on an explicit
bound on the norm of cX . In the following we may, therefore, focus on 0X -majorants
for f on the convex subset C.
For 1), 2) and 3) we have that b �0X z, 2b �0X z̃ and λ n.gM(n) + b �0X c. For
λ n0.n + 3b �0X f , where f is nonexpansive, we reason as follows: assume ‖z̃‖ ≤ n
then

‖ f (z̃)‖ = ‖ f (z̃)− f (z)+ f (z)− z+ z‖

≤ ‖ f (z̃)− f (z)‖+‖ f (z)− z‖+‖z‖

≤ ‖z̃− z‖+ b + b

≤ ‖z̃‖+‖z‖+ 2b

≤ n + 3b.

The proofs of 4), 5), 6) and 7) are now very similar to the corresponding clauses of
corollary 17.55 and are left to the reader (alternatively, the details can be found in
[120]). �
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17.4 Proofs of theorems 17.35, 17.52 and 17.69

This section is devoted to the proofs of theorems 17.52 and 17.69. As an immediate
corollary to the proof of theorem 17.52 we also obtain theorem 17.35.
We focus on the case of the theory A ω [X ,d,W ]−b. The case of A [X ,d]−b then fol-
lows simply by dropping all considerations involving the constant W and its axioms.
For A ω [X ,d,W,CAT(0)]−b we only need to observe that lemma 17.72 below im-
mediately extends to the situation where the purely universal axiom CN− is added
(as such axioms are interpreted by themselves).
The next lemma extends theorem 11.9 due to Spector ([343]) and Howard ([162,
266]), which we proved in chapter 11, from A ω to A ω [X ,d,W ]−b and states that
A ω [X ,d,W ]−b has (via negative translation) a Gödel functional interpretation in
A ω [X ,d,W ]−b \ {QF-AC,DC} (actually even in a quantifier-free fragment of this
theory) augmented by the schema (BR) of simultaneous bar recursion from chapter
11 which now is extended to all types of TX . Here we use the constant-0 functionals
0ρ extended to all types in TX (needed in the formulation of (BR)) by defining

0ρ := λ x.0X

for types ρ = X(ρk) . . . (ρ1) and x = xρ1
1 , . . . ,xρk

k .

Let A ω [. . .]−−b := A ω [. . .]−b \ {QF-AC,DC}.

Lemma 17.72. Let A(a) be an arbitrary formula in the language of A ω [X ,d,W ]−b
containing only the free variables a. Then the following rule holds:

⎧
⎨

⎩

A ω [X ,d,W ]−b � A(a) implies that

A ω [X ,d,W ]−−b + (BR) � ∀y(A′)D(t a,y,a),

where t is a suitable tuple of closed terms of A ω [X ,d,W ]−−b+(BR) which can be
extracted from a given proof of the assumption, A′ is the negative translation of A
(see definition 10.1) and (A′)D ≡ ∃x∀y(A′)D(x,y,a) is the Gödel functional inter-
pretation of A′(a) (see definition 8.1).

Proof: For A ω the theorem was prove already in chapter 11 (theorem 11.9). Both
the negative translation as well as the subsequent functional interpretation general-
ize without any changes to the extension of the axioms and rules of A ω to the new
types TX since we extended the simultaneous recursors and bar recursors to these
types as well and still the only prime formulas we have are of the form s =0 t and
hence decidable (recall that =X is a defined notion). Moreover, it is clear that the
definability of λ -terms from the combinators Π ,Σ extends to the new types using
the fact that we extended our combinators accordingly. The new axioms for met-
ric, hyperbolic and CAT(0) spaces are all purely universal and do not contain ∨.
Hence they are intuitionistically equivalent to their negative interpretation and sub-
sequently interpreted by themselves by the functional interpretation.
The only subtle point to check is that the fact (used in the proof of lemma 11.5) that
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the Leibniz identity
∀Φ0ρ(Φs =0 Φt)

implies the extensional equality s =ρ t still holds for the extended types. Obviously,
the only critical case is ρ = X : Assume that

∀Φ0X (ΦsX =0 ΦtX )

and apply this to Φn := λ xX .dX(x,t)(n0). Then

∀n0(dX(s,t)(n) =0 dX(t,t)(n)), i.e. dX(s, t) =1 dX(t, t)

and hence dX(s, t) =R dX(t,t) =R 0R. So dX(s,t) =R 0R, i.e. s =X t. �

Based on �a, we define an extension of Bezem’s [27] type structure of hereditar-
ily strongly majorizable set-theoretic functionals from chapter 3 to all types TX .
The definition is performed by induction on |ρ |, where |0| := |X | := 0, |τ(ρ)| :=
max{|ρ |, |τ|}+ 1 :

Definition 17.73. Let (X ,d) be a nonempty metric space and let a ∈ X be given.
The extensional type structure M ω,X of all hereditarily strongly a-majorizable set-
theoretic functionals of type ρ ∈ TX over N and X is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 := N, n �a
0 m :≡ n ≥ m ∧ n,m ∈ N,

MX := X , n �a
X x :≡ n≥ d(x,a)∧n ∈M0,x ∈MX ,

where ≥ is the usual order on R;

x∗ �a
τ(ρ) x :≡ x∗ ∈M

Mρ̂
τ̂ ∧ x ∈MMρ

τ

∧∀y∗ ∈Mρ̂ ,y ∈Mρ (y∗ �a
ρ y → x∗y∗ �a

τ xy)

∧∀y∗,y ∈Mρ̂ (y∗ �a
ρ̂ y → x∗y∗ �a

τ̂ x∗y),

Mτ(ρ) :=
{

x ∈MMρ
τ

∣
∣
∣ ∃x∗ ∈M

Mρ̂
τ̂ : x∗ �a

τ(ρ) x
}

(ρ ,τ ∈ TX ) .

Remark 17.74. For the types ρ ∈ T over N only, this type structure is identical to
Bezem’s type structure M ω of strongly hereditarily majorizable functionals as de-
fined in chapter 3 and �a

ρ coincides with s-ma jρ from definition 3.61. This follows
by an easy induction on ρ (using that ρ̂ = ρ for ρ ∈ T). Hence for such types we
may write s-ma jρ instead of �a

ρ and, in particular, the relation does not depend on
the parameter a ∈ X .

Lemma 17.75. x∗ �a
ρ x→ x∗ �a

ρ̂ x∗ ∧ x∗ ∈Mρ̂ for all ρ ∈ TX .

Proof: The lemma is immediate for ρ = 0,X and follows using that x∗ �a
τ(ρ) x

implies ∀z∗,z(z∗ �a
ρ̂ z→ x∗z∗ �a

τ̂ x∗z) for complex types. �
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Remark 17.76.
x∗ �a

τ(ρ) x ↔ x∗ ∈M
Mρ̂
τ̂ ∧ x ∈M

Mρ
τ ∧

∀y∗, ŷ ∈Mρ̂ ,y ∈Mρ (y∗ �a
ρ y ∧ y∗ �a

ρ̂ ŷ → x∗y∗ �a
τ xy ∧ x∗y∗ �a

τ̂ x∗ŷ).

Proof: ‘→’ is obvious. ‘←’ follows by applying the right-hand side twice: first to
general y∗,y with defined ŷ := Oρ̂ and again to general y∗, ŷ with defined y := Oρ

if ρ = 0ρk . . .ρ1 and y := λ v.aX if ρ = Xρk . . .ρ1, respectively. Here we use lemma
17.75. �

Remark 17.77. The remark 3.62 applies here accordingly using for the case ρ =
X that for n ∈ N,x,a ∈ X the interpretation of (n)R ≥R dX(x,a) in M ω,X gives
(n)R ≥R (d(x,a))◦ which is equivalent to n≥ d(x,a).

The a-majorization relation is parametrized by an element a ∈ X (and prima-facie
this also applies to the definition of Mρ ). However, the resulting type structure of all
hereditarily strongly a-majorizable functionals is in fact independent of the choice
of a ∈ X . This is a consequence of the next lemma (by the previous remark this is
already clear for types ρ̂ with ρ ∈TX which we will use implicitly in the formulation
and the proof of this lemma):

Lemma 17.78. For every ρ ∈ TX there is a (primitive recursive) functional Φρ of
type ρ̂0ρ̂ in Mρ̂0ρ̂ s.t. for all a,b ∈ X, all x∗ ∈ Mρ̂ , x ∈ Ma

ρ and all n ∈ N with
d(a,b)≤ n,

x∗ �a
ρ x→Φρ(x∗,n) �b

ρ x.

In particular, Ma
ρ = Mb

ρ for all a,b ∈ X .
Moreover, for all x∗, x̂ ∈Mρ̂ and all n,m ∈ N with n≥ m

x∗ s-ma jρ̂ x̂ →Φρ(x∗,n) s-ma jρ̂ Φρ (x̂,m),

i.e. Φρ s-ma j Φρ .

Proof: The lemma is proved using induction on ρ ∈ TX to simultaneously construct
Φρ with the properties above and showing that Ma

ρ = Mb
ρ .

For ρ = 0 define Φ0(x,n) := x. Ma
0 = Mb

0 holds by definition.
For ρ = X we define ΦX by ΦX (x∗,n) := x∗+ n for x∗,n ∈ N. Now let x∗ ∈ N and
x ∈ X be such that x∗ �a

X x, i.e. x∗ ≥ d(x,a). Then the triangle inequality implies
x∗ + n ≥ d(x,b) and hence x∗ + n �b

X x. The second condition on ΦX (to majorize
itself) is trivial. Again, by definition, we also have Ma

X = Mb
X .

For ρ = τ(σ) we need to construct the mapping Φτ(σ) and show that x ∈Ma
τ(σ) im-

plies x∈Mb
τ(σ). Assume x∗ �a

τ(σ) x for x∈Ma
τ(σ), and let y∗ ∈Mσ̂ and y∈Mb

σ
I.H.= Ma

σ

be given such that y∗ �b
σ y. By the induction hypothesis for σ we have constructed

Φσ such that, using the symmetry in a and b, Φσ (y∗,n) �a
σ y. Next, by the definition

of �a
τ(σ) we have that x∗(Φσ (y∗,n)) �a

τ xy. But then, by the induction hypothesis
for τ, we have constructed Φτ such that

Φτ(x∗(Φσ (y∗,n)),n) �b
σ xy.
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Also for y∗ s-ma jσ̂ ŷ and n≥m we have by I.H. that Φσ (y∗,n) s-ma jσ̂ Φσ (ŷ,m) and
so for x∗ s-ma jρ̂ x̂ we get x∗(Φσ (y∗,n)) s-ma jτ̂ x̂(Φσ (ŷ,m)) which in turn implies
that Φτ (x∗(Φσ (y∗,n)),n) s-ma jτ̂ Φτ(x̂(Φσ (ŷ,m)),m).
Since, in particular, x∗ s-ma jτ̂ x∗ we obtain

Φτ(x∗(Φσ (y∗,n)),n) s-ma jτ̂ Φτ (x∗(Φσ (ŷ,n)),n).

So Φτ(σ) := λ x∗ ∈ Mτ̂(σ̂)λ n ∈ Nλ y∗ ∈ Mσ̂ .Φτ (x∗(Φσ (y∗,n)),n) satisfies the con-
ditions to be proven. In particular, Φτ(σ)(x∗,n) is a b-majorant for x and hence
x ∈Mb

τ(σ). �

Remark 17.79. 1) Although the question whether or not a certain functional is
a-majorizable is independent from the particular choice of a∈ X , the complexity
and possible uniformities of the majorants may depend crucially on that choice.

2) Φρ in the previous lemma is already definable by a closed term of G1Aω .

We also need to extend lemma 3.63 from chapter 3 to the new types:

Lemma 17.80. Let ρ = τρk . . .ρ1. Then for x∗ : Mρ̂1
→ (Mρ̂2

→ . . .→Mτ̂ ) . . .) and
x : Mρ1 → (Mρ2 → . . .→Mτ) . . .) the following holds
x∗ �a

ρ x iff

(I) ∀y∗1,y1, . . . ,y∗k,yk
( k∧

i=1
(y∗i �a

ρi
yi)→ x∗y∗1 . . .y∗k �a

τ xy1 . . .yk
)

and

(II) ∀y∗1,y1, . . . ,y∗k ,yk
( k∧

i=1
(y∗i �a

ρ̂i
yi)→ x∗y∗1 . . .y∗k �a

τ̂ x∗y1 . . .yk
)
.

Proof: The lemma is proved by induction on k using lemma 17.75. The case k = 1
follows from the definition of �a.
k = n+1: Let τ0 = τ(ρn+1). For ‘⇒’, we argue as follows: x∗ �a

ρ x, in particular, im-
plies that x∗ : Mρ̂1

→ (Mρ̂2
→ . . .→Mτ̂0

) . . .) and x : Mρ1 → (Mρ2 → . . .→Mτ0) . . .).
Hence,by induction hypothesis, we have

∀y∗1,y1, . . .y∗n,yn
( n∧

i=1

(y∗i �a
ρi

yi)→ x∗y∗1 . . .y∗n �a
τ0

xy1 . . .yn
)
.

Now assume y∗n+1 �a
ρn+1

yn+1. By definition of �a
τ0

we have

x∗y∗n . . .y∗ny∗n+1 �a
τ xy1 . . .ynyn+1,

so (I) follows. (II) can be treated analogously.
For ‘⇐’, assume

∀y∗1,y1, . . .y∗n+1,yn+1
(n+1∧

i=1

(y∗i �a
ρi

yi)→ x∗y∗1 . . .y∗n+1 �a
τ xy1 . . .yn+1

)

and
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∀y∗1,y1, . . .y∗n+1,yn+1
(n+1∧

i=1

(y∗i �a
ρ̂i

yi)→ x∗y∗1 . . .y∗n+1 �a
τ̂ x∗y1 . . .yn+1

)
.

We need to show that under these assumptions

(1) ∀y∗1,y1, . . . ,y∗n,yn(
n∧

i=1

y∗i �a
ρi

yi → x∗y∗1 . . .y∗n �a
τ0

xy1 . . .yn)

and

(2) ∀y∗1,y1, . . . ,y∗n,yn(
n∧

i=1

y∗i �a
ρ̂i

yi → x∗y∗1 . . .y∗n �a
τ̂0

x∗y1 . . .yn)

hold. Then using the induction hypothesis we are done (note that (1),(2) imply, in
particular, that x∗ : Mρ̂1

→ (Mρ̂2
→ . . . → Mτ̂0

) . . .) and x : Mρ1 → (Mρ2 → . . . →
Mτ0) . . .)).

There are four clauses to verify:

(1a) ∀y∗1,y1, . . . ,y∗n+1,yn+1(
n+1∧

i=1
y∗i �a

ρi
yi → (x∗y∗1 . . .y∗n)y

∗
n+1 �a

τ (xy1 . . .yn)yn+1),

(1b) ∀y∗1,y1, . . . ,y∗n+1,yn+1(
n∧

i=1
y∗i �a

ρi
yi ∧ y∗n+1 �a

ρ̂n+1
yn+1 → (x∗y∗1 . . .y∗n)y∗n+1 �a

τ̂

(x∗y∗1 . . .y∗n)yn+1),

(2a) ∀y∗1,y1, . . . ,y∗n+1,yn+1(
n+1∧

i=1
y∗i �a

ρ̂i
yi → (x∗y∗1 . . .y∗n)y∗n+1 �a

τ̂ (x∗y1 . . .yn)yn+1),

(2b) ∀y∗1,y1, . . . ,y∗n+1,yn+1(
n+1∧

i=1
y∗i �a

ρ̂i
yi → (x∗y∗1 . . .y∗n)y∗n+1 �a

τ̂ (x∗y∗1 . . .y∗n)yn+1).

(1a) and (2a) hold by assumption, (1b) and (2b) follow from (2a) using lemma 17.75.
�

The following (primitive recursive) functionals, which we only need for the types
ρ ∈ T, were already defined in chapter 3 (definition 3.65). We recall the definition
here:

Definition 17.81. For ρ = 0ρk . . .ρ1 ∈ T we define maxρ by

maxρ(x,y) := λ vρ1
1 , . . . ,vρk

k .maxN(xv,yv)

For types ρ0 with ρ = 0ρk . . .ρ1, we define functionals (·)M in Mρ0(ρ0) by :

xM(y0) := λ vρ .maxN{x(i,v) | i = 1, . . . ,y}.

The next lemma is proved analogously to lemma 3.66 whose extension to the new
types it constitutes:

Lemma 17.82. Let ρ ∈ TX .
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1) Let x∗1,x
∗
2 ∈Mρ̂ and x1,x2 ∈Mρ .

Then x∗1 �a
ρ x1∧ x∗2 �a

ρ x2 →maxρ̂(x∗1,x
∗
2) �a

ρ x1,x2.

2) Let x∗ ∈MM0
ρ̂ ,x ∈MM0

ρ and ∀n(x∗(n) �a
ρ x(n)). Then (x∗)M �a

ρ0 x ∈Mρ0.

Let x∗,x ∈MM0
ρ̂ and ∀n(x∗(n) �a

ρ̂ x(n)). Then (x∗)M �a
ρ̂0 xM ∈Mρ̂0.

In particular, MM0
ρ = Mρ0 for each ρ ∈ TX .

Note that ρ̂ ∈ T for ρ ∈ TX so that the previous definition applies.

Lemma 17.83. Let (X ,d,W ) be a nonempty hyperbolic space. Then M ω,X is a
model of A ω [X ,d,W ]−−b +(BR) (for a suitable interpretation of the constants of
A ω [X ,d,W ]−−b +(BR) in M ω,X ), where we may interpret 0X by an arbitrary ele-
ment a ∈ X .
Moreover, for any closed term t of A ω [X ,d,W ]−−b +(BR) one can construct a closed
term t∗ of A ω +(BR) – so, in particular, t∗ does not contain the constants 0X ,dX
and WX – such that

M ω,X |= ∀aX∀n0((n)R ≥ d(0X ,a)→ t∗(n) �a t).

In particular, if we interpret 0X by a ∈ X , then it holds in M ω,X that t∗(00) is a
uniform a-majorant of t (note that t∗(00) does not depend on a).

Proof: The constants of A ω+(BR) – which are characterized by their defining ax-
ioms – are interpreted and majorized as in chapter 11, theorem 11.17, except that
they are now taken over the extended set of types TX , where MX := X . Using lemma
17.80 one easily verifies that:

• 0 �a
0 0,

• S �a
1 S,

• Πρ̂,τ̂ �a Πρ ,τ ,
• Σσ̂ ,ρ̂ ,τ̂ �a Σσ ,ρ ,τ .

In particular, these majorants do not depend on a.
In the construction of majorants for the recursors R and the bar-recursors B in chap-
ters 3 (proposition 3.69) and 11 (theorem 11.17) we only used the functionals maxρ
and xρ0 �→ xM and the properties which we established in lemma 17.82 for the ex-
tended types.
As a-majorants for R and B only involve types in T, we do not need to extend these
functionals to the types TX . We now again suppress the tuple notation.
As in the proof of proposition 3.69 one shows by induction on n that ∀n(Rρ̂n �a

ρ
Rρ n). Here we use lemma 17.80. Lemma 17.82 now implies that R∗ρ := RM

ρ̂ �a
ρ Rρ .

Again, the majorants do not depend on a.
In the case where we interpret 0X by a, the a-majorant for Bρ ,τ is defined exactly
as in the proof of theorem 11.17, i.e. B∗ρ ,τ := λ y,z,u,n,x.(Bρ̂ ,τ̂ ymzmuz)Mnx, where
ym(xρ̂0) := y(xM), zmnx := znxM and uz := λ v,n,x.max(znxM,uvnxM) and B∗ does
not depend on a. The general case can be reduced to this by lemma 17.78: given a
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bound n on d(a,0X) we may transform this majorant into a majorant for any choice
of a. If 0X does not occur in the theorems whose proofs we are analyzing (see be-
low) then we are free to interpret 0X by a ∈ X and the dependency on n disappears.
Using remark 17.76 the majorization proof proceeds exactly as in the proof of the-
orem 11.17.

For the new constants we take in accordance with definition 17.29 (writing simply
M for M ω,X )

[0X ]M := c for some c ∈ X ,

[dX ]M := λ x,y ∈ X .(d(x,y))◦,

[WX ]M := λ x,y ∈ Xλ α ∈ N
N.W (x,y,rα̃ ),

where (x)◦ is the construction from definition 17.7 and rα̃ ∈ [0,1] is the unique real
number represented by α̃ (see lemma 4.25). To show that these functionals are in
M ω,X we have to construct a-majorants as follows:

• n0 �a 0X for every n with (n)R ≥R dX(a,0X). If we interpret 0X by a, then we
may simply take n := 0.

• λ x0,y0.(x + y)◦ �a d1(X)(X)
X , where (·)◦ : N → N

N here denotes the restriction
of the operator from definition 17.7 to N which can be simply calculated as
(x0)◦(n) = j(x ·2n+2,2n+1−1),

• λ x0,y0,z1.max0(x,y) �a W X(1)(X)(X)
X .

The a-majorant for 0X is obvious. The a-majorant for dX follows using the triangle
inequality: assume n1 �a x and n2 �a y then

d(x,y)≤ d(x,a)+ d(y,a)≤ n1 + n2.

In the model M ω,X the expression dX(x,y) is interpreted by (d(x,y))◦ and by lemma
17.8 n1 + n2 ≥ d(x,y) implies (n1 + n2)◦ s-ma j1(d(x,y))◦. Moreover, for n∗1 ≥0 n1
and n∗2 ≥0 n2 we have (n∗1 +n∗2)◦ s-ma j1 (n1 +n2)◦. Hence (using that s-ma j1 ≡�a

1)
the validity of the a-majorant for dX follows by lemma 17.80.
Finally, the a-majorant for WX can be justified by the first axiom for hyperbolic
spaces:

∀xX ,yX ,zX∀λ 1(dX(z,WX (x,y,λ )) ≤R (1−R λ̃ )dX(z,x)+R λ̃ dX(z,y)).

The construction λ̃ turns representatives λ of arbitrary real numbers into represen-
tatives λ̃ of real numbers in the interval [0,1] (lemma 4.25). Hence it follows that
dX(a,WX (x,y,λ )) is less than the maximum of dX(a,x) and dX(a,y) and hence less
than the maximum of respective upper bounds on dX(a,x) and dX(a,y). Since the
self-majorizability of max0 is trivial, the claim follows (using again lemma 17.80).
Note, that the a-majorants for dX ,WX are uniform, i.e. they do not depend on a.
Only the a-majorant for 0X depends on a. Also note, that the (·)◦-operator, which
is ineffective in general, only is applied to natural numbers, where it is trivially
computable (see above).
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Since we managed to construct for each constant of A ω [X ,d,W ]−−b +(BR) a closed
term of A ω +(BR) majorizing the respective constant we have established that we
can construct such an a-majorant t∗ for any closed term t of A ω [X ,d,W ]−−b +(BR)
where we furthermore λ -abstract the majorant n for 0X . So in total (using implicitly
remark 17.77) we have shown that

M ω,X |= ∀aX∀n0((n)R ≥R dX(0X ,a)→ t∗(n) �a t),

where t∗ does not contain 0X ,dX and WX (and Πρ ,τ ,Σδ ,ρ ,τ ,Rρ ,Bρ ,τ only for types
in T). Moreover, we may take n := 0 if we interpret 0X by a. �

Lemma 17.83 also covers A ω [X ,d]−−b, simply by omitting the parts concerning
the W -function, and A ω [X ,d,W,CAT(0)]−−b, as this theory contains no additional
constants that need to be majorized.

The next lemma extends proposition 3.71 and remark 3.72

Lemma 17.84. Let t0ρ be a closed term of A ω [X ,d,W ]−b where ρ = ρ1, . . . ,ρk with
the ρi’s being of degree 2,1∗ or (1,X). Then

∀x1 ∈Mρ1 , . . . ,xk ∈Mρk([t]S ω,X (x) = [t]M ω,X (x))

(here we tacitly assume that 0X is interpreted in both models M ω,X and S ω,X by
the same element in X).

Proof: The proof proceeds as in the case of proposition 3.71 and remark 3.72 where
we now extend ≈ρ to the new types by taking

x≈X y :≡ x,y ∈ X ∧ x = y.

We only need to observe that Mρi ⊆ Sρi which follows using lemma 17.82. �

Proof of Theorem 17.52: Assume

A ω [X ,d,W ]−b � ∀xρ(
∀u0B∀(x,u)→∃v0C∃(x,v)

)
.

The formulas B∀(x,u),C∃(x,v) have the form ∀aBq f (x,u,a) and ∃bCq f (x,v,b) with
quantifier-free Bq f and Cq f respectively. Hence using classical logic we get

A ω [X ,d,W ]−b � ∀xρ∃u,v,a,b
(
Bq f (x,u,a)→Cq f (x,v,b)

)
.

By lemma 17.72 we obtain (disregarding the realizers for ‘∃a,b’) closed terms tU
and tV of A ω [X ,d,W ]−−b+(BR) such that (pushing back ‘∃a,b’ inside)

A ω [X ,d,W ]−−b + (BR) � ∀xρ(
B∀(x,tU(x))→C∃(x, tV (x))

)
.

Applying in turn lemma 17.72 to tU ,tV yields closed terms tU∗ , tV ∗ of A ω+(BR) (i.e.
not involving the new type X and, in particular, do not contain 0X ,dX ,WX ) such that
for all a ∈ X and n ∈ N with n0 ≥ d(0X ,a)



428 17 Applications to analysis: general metatheorems II

M ω,X |=

⎧
⎨

⎩

tU∗(n) �a tU ∧ tV∗(n) �a tV∧

∀xρ(
B∀(x,tU (x))→C∃(x, tV (x))

)
,

where M ω,X is defined in terms of an arbitrarily chosen nonempty hyperbolic
space (X ,d,W ). For notational simplicity we identify 0X with its interpretation in
M ω,X and write tU∗(n)(x) more conveniently as tU∗(n,x). Now define the functional
Φ(xρ̂ ,n) := max(tU∗(n,x),tV ∗(n,x)). Then

(+) M ω,X |= ∀u≤Φ(x∗,n)B∀(x,u)→∃v ≤Φ(x∗,n)C∃(x,v)

holds for all n ∈ N, x ∈ Mρ and x∗ ∈ Mρ̂ for which there exists an a ∈ X such that
n≥ d(0X ,a) and x∗ �a x.
For the types γ of degree 1∗ or (1,X) of the quantifiers hidden in the definition of
∀/∃-formulas we have at least Mγ ⊆ Sγ , which is sufficient for our purposes. This is
because types of that kind have arguments for whose types δ one has – using lemma
17.82 – that Mδ = Sδ . For parameters xρ with ρ of degree 2 or (1,X), we restricted
ourselves to those x ∈ Sρ which have a-majorants x∗ ∈ Sρ̂ . Since functionals of such
types ρ only have arguments of types τ for which Mτ = Sτ we get from x∗ �a

ρ x
(which implies that x∗ �a

ρ̂ x∗) that x∗ ∈Mρ̂ ,x∈Mρ . HenceΨ(x∗,n) := [Φ]M ω (x∗,n)
is defined and (+) together with lemma 17.84 yields

(++) S ω,X |= ∀u≤Ψ (x∗,n)B∀(x,u)→∃v≤Ψ(x∗,n)C∃(x,v)

holds for all n ∈ N, x ∈ Sρ and x∗ ∈ Sρ̂ for which there exists an a ∈ X such that
n0 ≥ d(0X ,a) and x∗ �a x.
Φ is a bar recursively defined and hence denotes a computable (in the sense of
Kleene’s S1-S9 schemata read over M ω ) functional Ψ = [Φ]M ω in M ω which is
defined on all majorizable elements of Sρ̂ . Note that this functional does not depend
on (X ,d,W ). Moreover, for ρ ∈ TX such that ρ̂ is of degree ≤ 1, Ψ defines a com-
putable functional (in the sense of ordinary type-2 computability theory) in S ω by
corollary 11.20.
In the case where 0X does not occur in either B∀ or C∃, we may freely interpret
0X by a ∈ X so that n := 00 can be taken as an �a-majorant of 0X which leads to
majorants tU∗ ,tV ∗ and a resulting term Φ which no longer depend on a bound n on
d(0X ,a) as an extra argument. �

Proof of theorem 17.35: For the proof of theorem 17.35 we first observe that lemma
17.72 also applies to A ω [X ,d,W ] as this theory only contains one additional purely
universal axiom (iv) (4) (expressing the fact that bX is a bound for dX ) which is
interpreted by itself. Lemma 17.83 extends as well with A ω [X ,d,W ]− in the con-
clusion if we interpret bX in M ω,X by any number b∈N which is a bound on d. We
now can reason as in the proof of 17.52 with a taken as the interpretation of 0X and
a suitable constant-b functional λ v.b as 0X -majorant of x (instead of x∗). �
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Proof of theorem 17.69: we first have to prove a lemma analogous to lemma 17.83

Lemma 17.85. Let (X ,‖·‖) be a nontrivial real normed linear space with a nonempty
convex subset C. Then M ω,X is a model of A ω [X ,‖ · ‖,C]−−b+(BR) (for a suitable
interpretation of the constants of A ω [X ,‖ · ‖,C]−−b +(BR) in M ω,X where we have
to interpret 0X by the zero vector 0X in X and use �0X ).
Moreover, for any closed term t of A ω [X ,‖ · ‖,C]−−b +(BR) one can construct a
closed term t∗ of A ω +(BR) such that

M ω,X |= ∀n0((n)R ≥R ‖cX‖X → t∗(n) �0X t).

Similarly for A ω [X ,‖ · ‖,η ,C]−−b +(BR) and A ω [X ,〈·, ·〉,C]−−b +(BR).

Proof: The proof proceeds similarly to the one of lemma 17.83. The main differ-
ence to the proof of Lemma 17.83 is that we fix a = 0X (where 0X now has to be
interpreted by the zero vector of X).
The constants of A ω +(BR) (extended to the types TX ) are interpreted as before.
For the new constants we take (writing simply M for M ω,X ):

[0X ]M := 0X , where 0X is the zero vector of the linear space X ,

[1X ]M := a for some a ∈ X with ‖a‖= 1 (since X is assumed to be nontrivial

there exists a v ∈ X with ‖v‖> 0 and hence an a := v
‖v‖ with ‖a‖= 1,)

[cX ]M := c for some c ∈C (which exists since C is assumed to be nonempty),

[+X ]M := addition in X ,

[−X ]M := inverse of x w.r.t. + in X ,

[·X ]M := λ α ∈ N
N,x ∈ X .rα · x,where rα is the unique real number represented

by α in the sense of chapter 4 and ‘·’ refers to the scalar multiplication of the

R-linear space X ,

[‖ · ‖X ]M := λ x ∈ X .(‖x‖)◦, where (r)◦ for r ∈R+ is the construction from 17.7,

[χC]M := λ x ∈ X .

⎧
⎨

⎩

00, if x ∈C

10, if x /∈C.

We now have to construct 0X -majorants for the new constants:

• 00 �0X 0X ,
• 10 �0X 1X ,
• λ x0.(x)◦ �0X ‖ · ‖X→1

X (again with (·)◦ restricted to N),
• λ x0,y0.x + y �0X +X→X→X

X ,
• λ x0.x �0X −X→X

X ,
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• λ α1,x0.(α(0)+ 1) · x �0X ·1→X→X
X .

For the convex subset C, we have the characteristic term χC for the subset C, which
is majorized as follows:

λ x0.1 �0X χX→0
C .

For the constant cX ∈C we have, given an n≥ ‖cX‖, the 0X -majorant

n0 �0X
X cX .

For uniformly convex spaces we 0X -majorize the modulus η : N → N of uniform
convexity by

(η)M �0X
1 η .

The 0X -majorants for 0X ,1X ,χC,cX and η are obvious. For ‖ · ‖X we need to con-
sider the interpretation of ‖ · ‖X in the model M ω,X : the norm ‖x‖X of an element
x ∈ X is interpreted by the actual norm using the ()◦-operator, i.e. by (‖x‖)◦. In or-
der to show that (in the model) λ x.(x)◦ �a ‖ · ‖X we need to show two things: (1) if
n �0X x then (n)◦ s-ma j1(‖x‖)◦ and (2) if n ≥ m then (n)◦ s-ma j1(m)◦ (recall that
s-ma j1 and �a

1 are the same relations). For (1), if n �0X x then by definition n≥ ‖x‖
and hence (n)◦ s-ma j1(‖x‖)◦ by lemma 17.8. For (2) the result follows directly from
lemma 17.8 (or – even more simple – from the definition of (n)◦).
For −X , the 0X -majorant is derived straightforwardly from basic properties of the
norm ‖ · ‖X .
For +X , we additionally use the triangle inequality to verify the majorant, i.e.
‖x + y‖ ≤ ‖x‖+‖y‖ : if n1 �0X x and n2 �0X y then n1 +n2 ≥ ‖x + y‖ which shows
the correctness of the majorant.
For the verification of the majorant for the scalar multiplication ·X we have to re-
call the details of how α1 represents (in the sense of chapter 4) a real number via a
Cauchy sequence of rational numbers with fixed rate of convergence. The rational
numbers in turn are represented by natural numbers using a monotone coding func-
tion (see chapter 4) such that (α(n))Q ≥Q |α(n)|Q for all n, where (·)Q refers to
the embedding of N into Q modulo the representation of rational numbers. I.e. the
inequality expresses that the natural number α(n) is an upper bound for the abso-
lute value of the rational number encoded by α(n). Since |λ n0.α(0)−R α| ≤ 1 the
natural number α(0)+1 is an upper bound for the real number represented by |α|R.
Now let α∗ s-ma j1α . Then α∗(0)+1≥0 α(0)+1. Since ‖α ·x‖X =R |α|R ·R ‖x‖X
we, therefore, have that α∗(0) + 1 taken as a natural number multiplied with an
n �0X x is a 0X -majorant for α ·X x. �

With this lemma in place, the proof of theorem 17.69 now proceeds as in the case
of theorem 17.52. �
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17.5 Further variations

From the proofs above it is clear that the same results hold true for extensions of the
theories treated so far obtained by adding

• new axioms which have the form of ∀-sentences.
• new constants (possibly together with further ∀-axioms) provided that the latter

have sufficiently low types to ensure their a-majorizability (or the majorizability
is guaranteed by the defining axioms for these constants as long as they have a
type of degree (1,X)). In particular this applies to constants of type 1 which will
be sufficient in the following.

We made use of this already when we treated the case of CAT(0)-spaces by adding
the additional axiom CN− or the case of uniformly convex normed spaces, where
we added a constant η1 together with the ∀-sentence (10) as an axiom.
As observed by Leuştean in [262] this approach can also be used to adapt the above
metatheorems to two further classes if structures, namely

• R-trees as introduced by J. Tits ([360]) and
• (δ -)hyperbolic spaces in the sense of M. Gromov ([145]).

R-trees generalize the concept of local Bruhat-Tits buildings.

Definition 17.86 (Tits [360]). (X ,d) is an R-tree iff it is a geodesic space containing
no homeomorphic image of a circle.

Remark 17.87. It is a well-known fact that R-trees always are unique geodesic
spaces.

Using a number of results from the literature, L. Leuştean [262] gave the following
characterization of R-trees in terms of hyperbolic spaces (X ,d,W ) :

Proposition 17.88 (Leuştean [262]). Let (X ,d) be a metric space. Then the follow-
ing are equivalent:

1) (X ,d) is an R-tree,
2) For some W : X×X× [0,1]→ X , (X ,d,W ) is a hyperbolic space and the follow-

ing inequality holds for all x,y,z,w ∈ X

d(x,y)+ d(z,w)≤max{d(x,z)+ d(y,w),d(x,w)+ d(y,z)}.

3) There is a unique function W : X ×X × [0,1] → X w.r.t. which (X ,d,W ) is a
hyperbolic space and for all x,y,z,w ∈ X

d(x,y)+ d(z,w)≤max{d(x,z)+ d(y,w),d(x,w)+ d(y,z)}.

We now can define the theory A ω [X ,d,W,R-tree](−b) by adding to A ω [X ,d,W ](−b)
the universal axiom
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∀xX ,yX ,zX ,wX
(
dX(x,y)+R dX(z,w) ≤R

≤R maxR{dX(x,z)+R dX(y,w),dX (x,w)+R dX(y,z)}
)
.

The previous results on A ω [X ,d,W ](−b) also hold for A ω [X ,d,W,R-tree](−b),
where then the conclusions of the rules hold in all (bounded in the case of
A ω [X ,d,W,R-tree]) nonempty R-trees (X ,d).

In order to treat Gromov-hyperbolic spaces we need the notion of Gromov product:

Definition 17.89. Let (X ,d) be a metric space. The Gromov product (x ·y)w of x,y∈
X with respect to the base point w ∈ X is defined by

(x · y)w :=
1
2
(
d(x,w)+ d(y,w)−d(x,y)

)
.

Definition 17.90. Let R  δ ≥ 0. A metric space (X ,d) is called δ -hyperbolic if for
all x,y,z,w ∈ X

(x · y)w ≥min{(x · z)w,(y · z)w}− δ .

(X ,d) is called Gromov-hyperbolic if it is δ -hyperbolic for some δ ≥ 0.

The condition on a metric space (X ,d) to be δ -hyperbolic can easily be seen to be
equivalent to

∀x,y,z,w ∈ X
(
d(x,y)+ d(z,w)≤max{d(x,z)+ d(y,w),d(x,w)+ d(y,z)}+ 2δ

)
.

So we can define a corresponding theory A ω [X ,d,δ -hyperbolic](−b) for an abstract
δ -hyperbolic space (X ,d) by extending A ω [X ,d](−b) in the following way:

• add a constant δ 1
R

of type 1 (representing the nonnegative real number δ ),
• add the purely universal axioms δR ≥R 0R and

∀xX ,yX ,zX ,wX
(
dX(x,y)+R dX(z,w) ≤R

maxR{dX(x,z)+R dX(y,w),dX (x,w)+R dX(y,z)}+R (2)R ·R δR

)
.

Extending the interpretation of the constants in the model S ω,X over a δ -hyperbolic
metric space (X ,d) by interpreting δ 1

R
as some representative of δ ≥ 0, e.g. as (δ )◦,

the results for A ω [X ,d](−b) also hold for A ω [X ,d,δ -hyperbolic](−b) where then
the conclusion of our rules hold in all nonempty δ -hyperbolic spaces (X ,d). Note
that for N  k ≥ δ we can take δ ∗

R
:= λ n. j(k ·2n+2,2n+1−1) as majorant of (δ )◦.

Remark 17.91. Using the notion of δ -hyperbolic space the concept of R-tree can
also be defined as a geodesic metric space (X ,d) that is 0-hyperbolic.

We conclude this section by showing how to adapt our metatheorems (similarly to
the cases treated above) to complete metric, hyperbolic etc. spaces. We axiomatize
completeness by adding an operator CX(X0) to the systems whose intended meaning
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it is to assign to any Cauchy sequence xX0
(·) in X a limit (for better readability we

sometimes switch to the more common notation (xn) for sequences once there is no
danger of confusing the sequence (xn) with the element xn). In order to be able to do
this by a purely universal axiom we restrict ourselves to Cauchy sequences with a
fixed Cauchy rate (say 2−n) and use a construction similar to the construction f �→ f̂
from the representation of general Polish spaces in chapter 4 to even avoid to have to
write the assumption that (xn) is a Cauchy sequence with rate of convergence 2−n.
In A ω [X ,d](−b) we can define a functional (xn) �→ (x̂n) of type X0(X0) such that

x̂n =X

⎧
⎨

⎩

xn if ∀k < n
(
[dX(xk,xk+1)](k + 1) <Q 6 ·2−k−1),

xk for mink < n : [dX(xk,xk+1)](k + 1)≥Q 6 ·2−k−1, otherwise.

Note that here dX denotes the constant from the language of A ω [X ,d] of type
1(X)(X) whereas in the definition of ĥ in chapter 4 it denoted a function of type
1(0)(0).

It is clear that (x̂n) always satisfies

∀n
(
dX(x̂n, x̂n+1) <R 7 ·2−n−1)

and so is a Cauchy sequence with Cauchy rate 2−n+3. Conversely, if (xn) is a Cauchy
sequence with rate 2−n, then xn =X x̂n for all n ∈N.
Now our official completeness axiom (C ) is formulated as follows

(C ) ∀xX0
(·) ,∀k0(dX(C(x(·)), x̂k)≤R 2−k+3),

which is an ∀-formula in the sense of definition 17.34. Let us first verify that (over
A ω [X ,d](−b)) this axiom implies the completeness of the space (X ,d) : let (xn) be
an arbitrary Cauchy sequence in X , i.e.

∀k0∃n0∀m,m̃≥ n
(
dX(xm,xm̃) <R 2−k).

By AC0,0 (which follows from DC as we showed in chapter 11) – in fact Π 0
1 -AC is

sufficient here – we obtain

(+) ∃ f 1∀k0∀m,m̃ ≥ f (k)
(
dX(xm,xm̃) <R 2−k).

We now define yn := x f (n) and show that:

1) (yn) is a Cauchy sequence with rate 2−n.
2) If (yn) is convergent with limit y, then (xn) converges as well and its limit again

is y.

Ad 1): Let m,m̃≥ n. W.l.o.g. we may assume that f (m)≤ f (m̃). Then by (+)

dX(ym, ỹm) =R dX(x f (m),x f (m̃)) <R 2−m ≤ 2−n.
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Ad 2): Let y be the limit of (yn). Then, in particular,

(a) ∀k∃n ≥ k
(
dX(y,x f (n)) =R dX(y,yn) <R 2−k).

Since n≥ k, (+) yields that

(b) ∀l ≥ f (n)
(

dX(xl,x f (n)) <R 2−k
)
.

(a) and (b) together give

∀l ≥ f (n)
(
dX(y,xl) <R 2−k+1).

So, in total, we have shown that

∀k∃m∀l ≥ m(dX(y,xl) <R 2−k+1).

By ‘1)’ we have yn =X ŷn for all n ∈ N and so (C ) implies that C((yn)) is the limit
of (yn) and hence, using ‘2)’, also of (xn). In particular, we have shown that (C )
implies that (xn) is convergent.

Conversely, it is clear that (C ) can be satisfied in any complete metric space (X ,d)
if we extend the interpretation given in definition 17.29 by interpreting C(x(·)) as
the limit of the Cauchy sequence given by x̂(·) (with dX interpreted as before, i.e. as
(d(x,y))◦).

It remains to show that the constant C is (in fact uniformly) a-majorizable: let C∗ :=
λ g1.g(0)+ 8. Then C∗ �a

X(X0) C : assume that g �a
X0 x(·). Then, in particular,

(g(0))R ≥R dX(a,x0) =R dX(a, x̂0)≥R dX(a,C(x(·)))−8,

where the last inequality holds by (C ). Hence

(g(0)+ 8)R ≥R dX(a,C(x(·))).

Clearly, C∗ is self-majorizing. Hence the claim follows.

As a corollary to the above treatment we obtain that the main metatheorems proved
in this section also apply to proofs which make completeness assumptions on the
underlying space if these proofs can be formalized then in A ω [X ,d,C ](−b) (and
analogously for the other systems) which results from A ω [X ,d](−b) by adding the
constant C and the axiom (C ). Then the conclusion holds in all complete metric
spaces (resp. complete hyperbolic spaces etc.).
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17.6 Treatment of several metric or normed spaces X1 . . . ,Xn
simultaneously

In the sections above we only considered extensions of A ω by a single metric, hy-
perbolic or normed space X and finite types over N,X . This is sufficient for the
applications in fixed point theory discussed in the next chapter, where one considers
selfmappings f : X →X of some space X (or of a convex subset C⊆ X in the normed
case). It also provides the framework needed for applications in ergodic theory like
the recent results in Avigad et al. [8]. However, our approach easily extends to con-
texts which involve several spaces X1, . . . ,Xn simultaneously as might be needed in
future applications. We sketch here only some of the changes caused by this. Firstly,
we have to extend our set of types:
By TX1,...,Xn we denote the set of all finite types ρ over the ground types 0,X1, . . . ,Xn.
For ρ ∈ TX1,...,Xn the type ρ̂ is the type that results from ρ by replacing all occur-
rences of Xi,1≤ i≤ n by 0. For each ground type Xi we choose a reference point ai
of type Xi (i.e. an element of Xi in the intended interpretation). For a = aX1

1 , . . .aXn
n

we then define a relation �a extending �a as follows:

Definition 17.92. Given an n-tuple a = aX1
1 , . . . ,aXn

n of objects of types X1, . . . ,Xn,

respectively, we define a relation �a
ρ between objects xρ̂ ,yρ of type ρ̂ ,ρ inductively

on ρ ∈ TX1,...,Xn as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 �a
0 y0 :≡ x ≥0 y,

x0 �a
Xi

yXi :≡ (x)R ≥R dXi(y,ai),

x �a
ρ→τ y :≡ ∀z′,z(z′ �a

ρ z→ xz′ �a
τ yz)∧∀z′,z(z′ �a

ρ̂ z→ xz′ �a
τ̂ xz).

For those Xi that represent normed linear spaces we again require ai = 0Xi so that
dXi(x,ai) =R ‖x‖Xi .

Remark 17.93. Note that if the type Xi does not occur in ρ , then �a
ρ does not depend

on ai.

Let us illustrate this definition for the special case of two metric spaces X1 and X2
and the type X1(X2) (which we write as X1 → X2) of functions f : X1 → X2 : for
given aX1

1 and aX2
2 an (a1,a2)-majorant for f X1→X2 is a monotone function f ∗ of

type 1 such that

∀n0,xX1
(
dX1(x,a1)≤R (n)R → dX2( f (x),a2)≤R ( f ∗(n))R

)
.

Since we can now choose a1 and a2 separately, some classes of functions have par-
ticularly simple majorants: e.g. let f be nonexpansive and a2 := f (a1). Then f is
(a1,a2)-majorized by the identity function λ n.n0. Since we cannot ‘compare’ the
elements x ∈ X1 and f (x) ∈ X2 (as we could in the case of a common metric space
X1 := X2 := X) we don’t need the bound b≥ d(x, f (x)) that was required before.



436 17 Applications to analysis: general metatheorems II

Given two metric spaces X1,X2 we can also consider elements of the product of
these spaces X1×X2 and functions between such product-elements. Functions in-
volving product types are treated using ‘currying’ (going back to Schönfinkel [323]
and hence also called ‘Schönfinkelisation’ occasionally) based on the following de-
vices (for better readability we use here the notation τ → ρ instead of ρ(τ)):

• a function f : X1× . . .×Xn → ρ is represented by f : X1 → . . .→ Xn → ρ ,
• a function ρ → X1× . . .×Xn is represented by an n-tuple of functions fi : ρ → Xi.

Thus e.g. a function f : X1×X2 → X1×X2 will be represented by a pair f1,2 : X1 →
(X2 → X1,2). A function g : (X1×X2 → X1×X2)→ X1×X2 by a pair g1,2 : (X1 →
(X2 → X1))→ ((X1 → (X2 → X2))→ X1,2) and similar for products of greater arity
and functions of more complex types. Clearly, given constants dX1 and dX2 for the
respective metrics on X1 and X2 one can define the usual product metrics e.g.

d∞((xX1
1 ,xX2

2 ),(yX1
1 ,yX2

2 )) := maxR(dX1(x1,y1),dX2(x2,y2)),

where d∞ is of type X1 → X2 → X1 → X2 → 1 and similarly for the p-product metric
dp (with 1≤ p < ∞).

17.7 A generalized uniform boundedness principle ∃-UBX

In this section we generalize the Σ0
1 -uniform boundedness principle from chap-

ter 12 to bounded metric, hyperbolic or CAT(0)-spaces. Since we do not have an
elimination-of-extensionality procedure for A ω [X ,d] and the other theories (e.g.
the constant dX is not provable extensional as a functional of type 1(X)(X) but only
when considered w.r.t. =R instead of =1) we proceed differently from the syntactic
approach of the proof of theorem 12.8 and use the model-theoretic argument from
the proof of theorem 12.14 instead (compare also the proof of theorem 4.9 in [207]).

Definition 17.94. A formula F is called a generalized ∃-formula if it has the form
∃aσ Fq f (a) where Fq f is quantifier-free and σ are arbitrary types in TX .

Definition 17.95. 1) A type ρ ∈ TX is of degree (·,0) (resp. (·,X)) if it has the form
0(ρk) . . . (ρ1) (resp. X(ρk) . . . (ρ1) with ρ1, . . . ,ρk ∈ TX which includes 0 (resp.
X) as special case.

2) Let ρ be a type of degree (·,0). Then

minρ(xρ ,yρ) := λ v.min0(xv,yv).

Definition 17.96. The uniform boundedness schema ∃-UBX for generalized
∃-formulas is defined as follows

∃-UBX :≡

⎧
⎨

⎩

∀yα(0)(∀k0,xα ,zβ∃n0A∃(y,k,minα(x,yk),z,n)→

∃χ1∀k0,xα ,zβ∃n≤0 χk A∃(y,k,minα(x,yk),z,n)
)
,
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where α is of degree (·,0), β = β1, . . . ,βm is a tuple of types in TX of degree (·,X)
and A∃ is a generalized ∃-formula which in addition to the variables indicated may
have further parameters of arbitrary types.

Remark 17.97. Just as in the case of z which we have formulated for tuples, since it
is used this way in our applications, we may also have tuples xα of variables of types
α = α1, . . . ,αm, where αi is of degree (·,0). However, for notational simplicity we
do not formulate this. In fact, one can utilize contractions of tuples of variables of
degree (·,0) into a single variable of degree (·,0) to reduce the case with tuples to
the case with a single variable xα .

Remark 17.98. Using the axiom of countable choice (derivable in A ω [X ,d] by re-
mark 11.8) we, in fact, can prove ∃-UBX from the prima-facie weaker version

∀yα(0)(∀k0,xα ,zβ∃n0A∃(y,k,minα(x,yk),z,n)→

∀k0∃ñ∀xα ,zβ∃n≤0 ñA∃(y,k,minα(x,yk),z,n)
)
.

However, this does not seem to be possible for the fragment of A ω [X ,d] without
DC or weaker fragments. We formulate ∃-UBX as above since our proof of theorem
17.101 below establishes that ∃-UBX does not contribute to the complexity of the
extractable bounds even for these fragments whereas DC (and already AC0,0) does
(see chapter 11).

In the presence of full extensionality, our formulation of ∃-UBX is equivalent to the
following formulation which literally contains Σ0

1 -UB from chapter 12 as a special
case: ⎧

⎨

⎩

∀yα(0)(∀k0∀x ≤α yk∀zβ∃n0A∃(y,k,x,z,n)→

∃χ1∀k0∀x ≤α yk∀zβ∃n≤0 χk A∃(y,k,x,z,n)
)
,

In fact, for this it suffices to have the following instance of extensionality available

∀y,k,z,n,x1,x2(x1 =α x2∧A∃(y,k,x1,z,n)→ A∃(y,k,x2,z,n)).

In the absence of full extensionality, however, we have to formulate ∃-UBX with
minα(x,yk) instead in order to achieve that the corresponding extension of the axiom
F has the form of an axiom treated trivially by monotone functional interpretation:

Definition 17.99. Let β be as before.

FX :≡ ∀Φ,y∃X ≤ y∃Z∀k0,xα ,zβ (
Φ(k,Xk,Zk)≥0 Φ(k,minα(x,yk),z)

)
.

Here X has type α(0), Zi has type βi(0) and Φ has type 0βm . . .β1α0.

The next lemma correspond to proposition 12.6 in chapter 12:

Lemma 17.100.
A ω [X ,d]+ FX � ∃-UBX .

Analogously for A ω [X ,d,W ] and the other extensions we consider.
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Proof: Let us assume the premise

∀k0,xα ,zβ∃n0A∃(y,k,minα(x,yk),z,n)

of ∃-UBX . Applying the schema of quantifier-free choice QF-AC from A ω [X ,d]
(recall that QF-AC is formulated for tuples of variables) it follows that there exists
a functional Φ such that

∀k0,xα ,zβ A∃(y,k,minα(x,yk),z,Φkxz).

Clearly,
A ω [X ,d] � minα(minα(x,yk),yk) =α minα(x,yk)

Hence by the quantifier-free extensionality rule QF-ER from A ω [X ,d] we obtain

∀k0,xα ,zβ A∃(y,k,minα(x,yk),z,Φ(k,minα(x,yk),z)).

Applying FX to Φ and y yields the existence of functionals X(≤ y) and Z with

∀k0,xα ,zβ (
Φ(k,Xk,Zk)≥0 Φ(k,minα(x,yk),z)

)
.

Obviously, χ(k) := Φ(k,Xk,Zk) satisfies the conclusion of ∃-UBX . �

We now show that theorem 17.35 remains valid if we add ∃-UBX to A ω [X ,d] :

Theorem 17.101. 1) Let σ ,ρ be types of degree ≤ 1 and τ be a type of degree
(1,X). Let sρ(σ) be a closed term of A ω [X ,d] and B∀(xσ ,yρ ,zτ ,u0)
(C∃(xσ ,yρ ,zτ ,v0)) be a ∀-formula containing only x,y,z,u free (resp. an ∃-
formula containing only x,y,z,v free).
If

∀xσ∀y≤ρ s(x)∀zτ(∀u0B∀(x,y,z,u)→∃v0C∃(x,y,z,v)
)

is provable in A ω [X ,d]+∃-UBX , then one can extract a computable functional
Φ : Sσ ×N→ N such that for all x ∈ Sσ and all b ∈ N

∀y≤ρ s(x)∀zτ [∀u≤Φ(x,b)B∀(x,y,z,u)→∃v ≤Φ(x,b)C∃(x,y,z,v)
]

holds in any (nonempty) metric space (X ,d) whose metric is bounded by b ∈ N

(with ‘bX’ is to be interpreted by ‘b’).
The computational complexity of Φ can be estimated in terms of the strength of
the A ω -principle instances actually used in the proof (see remark 17.37 below).

2) If the premise is proved in ‘A ω [X ,d,W ] + ∃-UBX ’ instead of ‘A ω [X ,d] + ∃-
UBX ’, then the conclusion holds in all b-bounded hyperbolic spaces.

3) If the premise is proved in ‘A ω [X ,d,W,CAT(0)]+∃-UBX’ instead of
‘A ω [X ,d,W ] + ∃-UBX ’, then the conclusion holds in all b-bounded CAT(0)-
spaces.

Instead of single variables x,y,z,u,v we may also have finite tuples of variables
x,y,z,u,v as long as the elements of the respective tuples satisfy the same type re-
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strictions as x,y,z,u,v. Moreover, instead of a single premise of the form
‘∀u0B∀(x,y,z,u)’ we may have a finite conjunction of such premises.

Remark 17.102. The proof of theorem 17.101, which we will give below, is based is
an extension of the proof of theorems 17.52 and 17.35 above and will again provide
an extraction algorithm for Φ . The functional Φ is given by a closed term of WE-
PAω+BR. Also our remark 17.37 on fragments made in connection with theorem
17.35 still applies as ∃-UBX contributes only trivial terms as majorants.

Remark 17.103. Note that the conclusion is true in all b-bounded metric spaces
(X ,d), hyperbolic spaces (X ,d,W ) and CAT(0)-spaces, respectively, although the
axiom ∃-UBX even in the absence of xα (so that the discussion in chapter 12 does
not apply) is not. In fact, it is not even true in M ω,X : e.g. consider the formula

(∗) ∀xX∃n0(Ψ (x) =0 0→ dX(x,0X) >R 2−n),

where Ψ is a parameter of type 0(X). Now take X := [0,1], d(x,y) := |x− y| and
interpret 0X by 0 and choose as Ψ ∈M0(X) ⊂ S0(X) the functional

Ψ(x) :=0

⎧
⎨

⎩

0, if x > 0

1, if x = 0.

Then (∗) holds true, but, obviously, there is no bound on ‘∃n’ that does not depend
on x ∈ [0,1]. This example shows that ∃-UBX is already false for the special case
z := zX (and without xα ). In fact, as the next example shows, one does not even
have to invoke a parameter Ψ but can consider a closed formula of L (A ω [X ,d]) to
obtain a counterexample: consider the sentence

∀xX ,yX∃n0(dX(x,y)≤R 2−n → dX(x,0X )(0) =0 dX(y,0X )(0)
)

which is true in M ω,[0,1] and S ω,[0,1] with the metric above and 0X := 0. One easily
calculates that (|x|)◦(0) = j(4,1), if x = 1, but (|x|)◦(0) = j(2,1), if 1

2 ≤ x < 1.
Hence for y := 1 ∈ [0,1] there is no x-uniform bound on ‘∃n’. Further examples of
this kind follow from the applications of ∃-UBX given below.

Proof of theorem 17.101: 1) By the previous lemma, the assumption implies that
A ω [X ,d]+ FX proves that

∀xσ∀y≤ρ s(x)∀zτ (∀u0B∀(x,y,z,u)→∃v0C∃(x,y,z,v)
)
.

Let A ω [X ,d,X ,Z ] result from A ω [X ,d] by adding new constants X and Z of
type α0(α0)(0βm . . .β1α0) resp. βi0(α0)(0βm . . .β1α0) to the language.

As in the proof of lemma 17.72 one shows that A ω [X ,d]+ FX has a Gödel func-
tional interpretation in A ω [X ,d,X ,Z ]−+ F̃X+(BR), where

A ω [X ,d,X ,Z ]− := A ω [X ,d,X ,Z ]\ { QF-AC,DC }



440 17 Applications to analysis: general metatheorems II

and

F̃X :≡X ≤ λ Φ,y.y∧∀Φ,y,k,x,zβ (
Φ(k,X Φyk,Z Φyk)≥0 Φ(k,minα(x,yk),z)

)
.

In addition to the proof of lemma 17.72 we only have to consider the functional
interpretation ((FX)′)D of the negative translation (FX )′ of FX : clearly (FX)′ is in-
tuitionistically implied by FX so that it suffices to solve the functional interpretation
(FX )D of FX . However, (FX )D precisely asks for functionals X ,Z satisfying

∀Φ,y,k0,xα ,zβ (
X Φy ≤ y∧Φ(k,X Φyk,Z Φyk) ≥0 Φ(k,minα(x,yk),z

))
.

But this is just what we provided for in A ω [X ,d,X ,Z ]+ F̃X .
The next step in the proof of theorem 17.52 (on which the proof of theorem 17.35
above was based) consisted in establishing that the model M ω,X of all strongly
majorizable functionals over N and an arbitrary nonempty bounded metric space
(X ,d) is a model of A ω [X ,d]−+(BR) (here b0

X is to be interpreted by an inte-
ger upper bound on the metric of X) and, moreover, that for any closed term t of
A ω [X ,d]−+(BR) one can construct a closed term t∗ of A ω+(BR) (plus bX ) such
that

M ω,X |= t∗ �0X t.

We now extend this by showing that

M ω,X |= A ω [X ,d,X ,Z ]−+ F̃X + (BR)

for a suitable interpretation of the new constants X and Z and that for any closed
term t of A ω [X ,d,X ,Z ]−+(BR) we can construct a closed term t∗ of A ω+(BR)
(plus bX ) such that

M ω,X |= t∗ �0X t.

We reason in M ω,X . Let Φ,y,k be in M ω,X with types as above and let Φ∗,y∗ be
�0X -majorants for Φ,y in M ω,X . Since minα(x,yk)≤α yk and β are types of degree
(·,X) it follows (using the bX -boundedness of X) that

y∗k �0X minα(x,yk)∧ z∗i := λ v.bX �0X zi

for all k ∈ N and all x,z in M ω,X of types α and β and suitable tuples of variables
v. Hence

∀x ∈Mω,X
α ,z ∈Mω,X

β
(
Φ∗(k,y∗k,z∗)≥0 Φ(k,minα (x,yk),z)

)
.

Thus
MaxΦ ,y,k := max{Φ(k,minα(x,yk),z) : x ∈Mω,X

α ∧ z ∈Mω,X
β }

exists (note that Mω,X
ρ �= /0 for all ρ ∈ TX ) and hence

(+) ∀Φ,y,k ∈M ω,X∃x,z ∈M ω,X(
x≤α yk∧Φ(k,x,z) =0 MaxΦ ,y,k

)
.
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By the axiom of choice applied to (+) we obtain functionals Ξ ≤ λ Φ,y.y and Θ
such that x := ΞΦyk and z := ΘΦyk satisfy (+). We now put

[X ]M ω,X := Ξ ∧ [Z ]M ω,X := Θ .

In order to show that Ξ ,Θ ∈ M ω,X we construct closed terms X ∗ and Z ∗ such
that

M ω,X |= X ∗ �0X X ∧Z ∗ �0X Z .

The terms
X ∗ := λ Φ,y.y, Z ∗

i := λ v.bX

do the job (using that M ω,X |= X ≤ λ Φ,y.y) for a suitable tuple v of variables,
where the length of the tuple and the types of its components only depend on βi. It
is clear that with this interpretation of X ,Z in M ω,X the axiom F̃X is satisfied.
The construction of t∗ from t now proceeds as in the proof of theorem 17.52 with
the additional clauses that all occurrences of X ,Z are replaced by X ∗,Z ∗. The
rest of the proof is exactly as in the proof of theorems 17.52 and 17.35 (replacing
bX everywhere by a variable b0 satisfying that ∀xX ,yX((b)R ≥R dX(x,y))).
2) and 3) are proved analogously. �

Corollary 17.104. 1) Let A be a sentence in K (as defined in 17.48). If

A ω [X ,d]+∃-UBX � A,

then A holds in any (nonempty) bounded metric space (X ,d) (with ‘bX’ being
interpreted by some upper bound b ∈N for d).

2) If the premise is proved in ‘A ω [X ,d,W ] + ∃-UBX ’ instead of ‘A ω [X ,d] + ∃-
UBX ’, then the conclusion holds in all bounded hyperbolic spaces.

3) If the premise is proved in ‘A ω [X ,d,W,CAT(0)]+∃-UBX’ instead of
‘A ω [X ,d,W ] + ∃-UBX ’, then the conclusion holds in all bounded CAT(0)-
spaces.

Proof: The corollary follows from theorem 17.101 applying the same reasoning that
was used already in the proof of corollary 17.49. �

17.8 Applications of ∃-UBX

As the proofs of theorem 17.35 and theorem 17.52 above clearly show, what mainly
is required for a class of structures to satisfy these theorems is that they are axioma-
tized by axioms which have a monotone functional interpretation in the sense of �,
i.e. which have a sufficiently strong uniformity built in. This becomes particularly
obvious in the bounded metric case: e.g. the separability of a bounded space (X ,d)
would be translated by monotone functional interpretation into its total boundedness
and, in fact, if e.g. theorem 17.35 would be valid for the class of bounded separable
spaces we could use it to conclude the false statement that every such space would be
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totally bounded. This puts into a general context the phenomenon eluded to already
in the counterexample given after remark 15.2 in chapter 15. Similarly, the exten-
sionality axiom for f X→X would be translated into the uniform (equi-)continuity of
all f : X → X . In the case of strictly normed spaces, uniform convexity would be re-
quired by monotone functional interpretation etc. While these facts simply show that
our metatheorems are not applicable to certain classes of structures (or properties of
functions), the principle ∃-UBX brings this point to the more radical consequence
that we now can prove all these incorrect rules even as implications (while at the
same time preserving the truth of theorems of the form A ∈K that are proved via
∃-UBX as we saw in corollary 17.104). These implications take the form

A → (A)U ,

where (A)U is the uniform version of A. So the consequences of ∃-UBX are much
more serious than those of Σ0

1 -UB given in chapter 12 which, after all, always be-
come classically correct when applied only to contexts in which all function(al)s are
assumed to be continuous (where then Σ0

1 -UB holds true by a simple compactness
argument).
We formulate our results over A ω [X ,d] resp. A ω [X ,d,W ] base systems but rather
weak fragments of these systems would suffice as well.
As before, we usually write in the following ‘ f X→X ’ instead of ‘ f X(X)’ for better
readability.

17.8.1 Application 1:

Our first application is due to F. Ferreira (private communication): we apply ∃-UBX

to ‘A := (X ,d) is incomplete’ to conclude a uniform version (A)U of incompleteness
which, however, is inconsistent, i.e. under ∃-UBX we get

∃-UBX : ‘incompleteness⇒ falsity’, i.e. ‘completeness’.

Proposition 17.105. A ω [X ,d]+∃-UBX proves that (X ,d) is complete.

Proof: Suppose that (X ,d) is not complete. Then there is a Cauchy sequence (xn) in
X such that for any x ∈ X the sequence does not converge towards x, i.e. ¬(limxn =
x). Since A ω [X ,d] contains AC0,0 we may assume that (xn) has Cauchy modulus
2−k, i.e.

(+) ∀k∀m,n ≥ k(d(xm,xn) <R 2−k).

From ¬(lim xn = x) for all xX we conclude

∀xX∃n0(dX(xn,x) >R 2−n+1).

By ∃-UBX is follows that

∃n0∀xX∃ñ≤ n(dX(xñ,x) >R 2−ñ+1).
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Using (+) this yields
∃n0∀xX(dX(xn,x) >R 2−n)

which leads to a contradiction for x := xn. �

17.8.2 Application 2:

We now give the details of the aforementioned fact that ∃-UBX ‘uniformizes’ the as-
sumption of separability of the bounded metric space (X ,d) to its total boundedness,
i.e.

∃-UBX : ‘separability ⇒ total boundedness (with modulus)’.

We first need the following

Definition 17.106. Let (X ,d) be a totally bounded metric space. A function α : N→
N satisfying

∃(an)n in X∀k ∈N∀x ∈ X∃n≤ α(k)(d(x,an) < 2−k)

is called a modulus to total boundedness.

Remark 17.107. Obviously, using countable choice, every totally bounded metric
space posses a modulus of total boundedness.

Proposition 17.108. A ω [X ,d]+∃-UBX proves the following:
‘If (X ,d) is separable, then (X ,d) is totally bounded and has a modulus of total
boundedness α’. Formalized in L (A ω [X ,d]), this reads as:

A ω [X ,d]+∃-UBX � ∀ f X(0)
(
∀k0,xX∃n0(dX( f (n),x) <R 2−k)→

∃α1∀k0,xX∃n≤ α(k)(dX ( f (n),x) <R 2−k)
)
.

Proof: ∃-UBX applied to

∀k0,xX∃n0(dX( f (n),x) <R 2−k)

yields (observing that ‘dX( f (n),x) <R 2−k’ is an ∃-formula) that

∃α1∀k0,xX∃n≤ α(k)(dX ( f (n),x) <R 2−k).

�

17.8.3 Application 3:

Definition 17.109. Let (X ,d,W ) be a hyperbolic space.



444 17 Applications to analysis: general metatheorems II

1) (X ,d,W ) is called strictly convex if

∀x,y,a ∈ X∀r > 0
(
d(x,a)≤ r∧d(y,a)≤ r∧d

(1
2

x⊕ 1
2

y,a
)

= r → x = y
)
.

2) ([128, 263]) (X ,d,W ) is called uniformly convex if

∀r > 0∀ε > 0∃δ > 0∀x,y,a ∈ X
(
d(x,a)≤ r∧d(y,a)≤ r∧d

( 1
2 x⊕ 1

2 y,a
)

> (1− δ )r→ d(x,y) < εr
)
.

We now show that

∃-UBX : ‘strictly convex⇒ uniformly convex’.

Proposition 17.110. A ω [X ,d,W ]+∃-UBX proves the following:
‘If (X ,d,W ) is strictly convex, then it is uniformly convex’.

Proof: When formalized, the assumption of strict convexity reads as follows

∀r1∀xX ,yX ,aX , l0

(
r ≥R 2−l ∧dX(x,a)≤R r∧dX(y,a)≤R r∧dX

( 1
2 x⊕ 1

2 y,a
)

=R r → x =X y
)

which - by the first W -axiom – is equivalent to

∀r1∀xX ,yX ,aX .l0

(
r ≥R 2−l ∧dX(x,a)≤R r∧dX(y,a)≤R r∧dX

( 1
2 x⊕ 1

2 y,a
)
≥R r → x =X y

)

and hence in turn to

∀r1∀xX ,yX ,aX , l0,k0∃n0

(
r ≥R 2−l ∧dX(x,a)≤R r∧dX(y,a)≤R r∧dX

( 1
2 x⊕ 1

2 y,a
)
≥R (1−2−n)r

→ dX(x,y) <R 2−k · r
)
.

Applying to this ∃-UBX yields

∀r1, l0,k0∃n0∀xX ,yX ,aX

(
r ≥R 2−l ∧dX(x,a)≤R r∧dX(y,a)≤R r∧dX

( 1
2 x⊕ 1

2 y,a
)
≥R (1−2−n)r

→ dX(x,y) <R 2−k · r
)

which (switching to the more common ε/δ -formulation is just the formalized ver-
sion of
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∀r > 0∀ε > 0∃δ > 0∀x,y,a ∈ X
(
d(x,a)≤ r∧d(y,a)≤ r∧d

( 1
2 x⊕ 1

2 y,a
)

> (1− δ )r→ d(x,y) < εr
)
.

�

Remark 17.111. Restricted to rational r,ε ∈ Q
∗
+ (which can be encoded by natural

numbers as in chapter 4) one even obtains a function η(r,ε) ∈ Q
∗
+ producing a

rational δ > 0 satisfying the uniform convexity statement, i.e. a modulus of uniform
convexity.

17.8.4 Application 4:

The uniform version of ‘ f X→X is extensional’ is ‘ f is uniformly continuous’. When
the extensionality is taken for all functions f X→X (or subclass axiomatized by ∀-
axioms), then the uniform version even becomes ‘all functions f : X → X have a
common modulus of uniform continuity’, i.e.

∃-UBX : ‘extensionality⇒ uniform continuity with (common) modulus’.

This corresponds to the counterexample given above to the possibility to add full
extensionality in theorem 17.35 which shows: if full extensionality is used for some
function f X→X (resp. for some class of functions f X→X axiomatized by universal
axioms) in a proof it has to follow as a consequence of the existence of a modu-
lus uniform continuity of f (resp. the existence of a common modulus of uniform
continuity for the whole class as in the case of the class of nonexpansive functions).
Otherwise, only extensionality in the weak form of the quantifier-rule of extension-
ality may be used.

Proposition 17.112. Let

Ext( f X→X ) :≡ ∀xX ,yX (x =X y→ f (x) =X f (y)).

1) A ω [X ,d]+∃-UBX proves that

∀ f X→X (Ext( f )→

∃ω1∀k0,xX ,yX(dX(x,y) <R 2−ω(k) → dX( f (x), f (y)) <R 2−k).

2) A ω [X ,d]+∃-UBX proves that

∀ f X→X (Ext( f ))→

∃ω1∀ f X→X ,k0,xX ,yX(dX(x,y) <R 2−ω(k) → dX( f (x), f (y)) <R 2−k).

Proof: 1) By the definition of =X , the assumption Ext( f ) can be written as

∀xX ,yX (∀n0(dX (x,y)≤R 2−n)→∀k0(dX( f (x), f (y)) <R 2−k))
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and so in turn as

(+) ∀xX ,yX∀k0∃n0(dX (x,y)≤R 2−n → dX( f (x), f (y)) <R 2−k).

Note that
dX(x,y)≤R 2−n → dX( f (x), f (y)) <R 2−k

is (logically equivalent to) an ∃-formula which, moreover, is monotone w.r.t. ‘∃n’.
Hence ∃-UBX applied to (+) yields

∃ω1∀k0,xX ,yX(dX(x,y)≤R 2−ω(k) → dX( f (x), f (y)) <R 2−k)

which establishes the claim.
2) is proved analogously by applying ∃-UBX to

(++) ∀ f X→X∀xX ,yX∀k0∃n0(dX(x,y)≤R 2−n → dX( f (x), f (y)) <R 2−k).

Note that the type X → X is admissible as a type β in ∃-UBX just as well as X is. �

17.8.5 Application 5:

The uniform version of ‘there exists no root of, say, Φ : X → R in X’ is ‘there
exist not even approximate roots of Φ’. So, taking the contraposite, this can be
paraphrased as

∃-UBX : ‘existence of approximate solutions ⇒ existence of a real solution’.

This has the consequence that ∃-UBX extends the usual WKL-applications for com-
pact spaces and continuous functions to bounded spaces and arbitrary functions.

Proposition 17.113. Let β be of degree (·,X). Then A ω [X ,d]+∃-UBX proves the
following

∀Φ1(β )(∀k0∃yβ (|Φ(y)|R <R 2−k)→∃yβ (Φ(y) =R 0)
)
.

This also holds for tuples of variables yβ as long as the types β are all of degree
(·,X).

Proof: Suppose that
∀yβ (Φ(y) �=R 0).

Then
∀yβ∃k0(|Φ(y)|R >R 2−k)

and hence by ∃-UBX

∃k0∀yβ (|Φ(y)|R >R 2−k)

contradicting the assumption. �
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17.8.6 Application 6:

This application is a special case of application 17.8.5: any fixed point problem
for f : X → X can be written equivalently as a root problem ‘∃x ∈ X (d(x, f (x)) =
0)’. As follows from a theorem due to Ishikawa [176] (for the normed case) and
Goebel-Kirk [126] (theorem 1, for the hyperbolic case), to be discussed in detail in
chapter 18, nonexpansive selfmappings f : X → X of bounded hyperbolic spaces
(X ,d,W ) always have approximate fixed points. Moreover, this fact is provable in
A ω [X ,d,W ]. Hence by application 17.8.5 we obtain the following result:

Proposition 17.114. A ω [X ,d,W ]+∃-UBX proves the following

∀ f X→X (
f nonexpansive →∃xX ( f (x) =X x)

)
.

Proof: Since f (x) =X x ↔ dX(x, f (x)) =R 0 we obtain from application 17.8.5 ap-
plied to Φ(x) := dX(x, f (x)) that it suffices to show (in A ω [X ,d,W ])

∀k0∃xX (dX(x, f (x)) <R 2−k).

This, however, follows by the discussion above. �

The remarkable consequence of proposition 17.114 is that ∃-UBX allows one to
make free use of fixed points of nonexpansive mappings in proofs (and still obtain
correct K -conclusions) despite the fact that such fixed points in general do not
exist (not even for nonexpansive selfmappings of bounded, closed, convex subsets
of Banach spaces such as c0, see the counterexample given in the introduction to
chapter 18).

Remark 17.115. The existence of approximate fixed points of nonexpansive map-
pings between bounded hyperbolic spaces used in the proof above rests strongly
on the presence of the hyperbolic structure provided by W and is false for general
bounded metric spaces: consider R equipped with the truncated metric D(x,y) :=
min(|x− y|,1) and f : R→R with f (x) := x+1. f is a nonexpansive (even isomet-
ric) selfmapping of the bounded metric space (R,D) but has no ε-fixed points for
0 < ε < 1.

17.8.7 Application 7:

An important line of research in metric fixed point theory is concerned with gen-
eralizations of the famous Banach fixed point theorem from contractions to more
general classes of functions that are of some generalized form of ‘contractive type’
(see e.g. [92, 308, 315, 316, 188]). As discussed already in section 15.4, often com-
pactness assumptions are imposed in the respective fixed point theorems in order to
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ensure certain uniform versions of contractivity. In many cases it has turned out that
the assumption of compactness can be replaced by boundedness if the functions are
assumed right away to satisfy the uniform contractivity notions (which in the ab-
sence of compactness usually is a strictly stronger condition). In many applications
of proof mining to such fixed point theorems, the need to uniformize contractivity
conditions on f has turned out to be crucial as well (see e.g. [119, 116, 50, 51]).
In fact, as shown by Briseid [54], under quite general conditions of ‘uniform con-
tractivity’ the logical metatheorems proved in this chapter can be utilized to obtain
uniform effective rates of convergence of the Picard iteration f n(x) of f towards the
unique fixed point. Interestingly, this is possible despite of the fact that the Cauchy
property of (( f n(x))n) is in Π 0

3 so that the metatheorems cannot be applied directly
(see [54] for details). The principle ∃-UBX provides a general tool for producing ap-
propriate uniformizations of contractivity notions for bounded metric spaces. From
section 15.4 we recall:

Definition 17.116. Let (X ,d) be a metric space and f : X → X a selfmapping of X .

1) f is called contractive (see [92]) if

∀x,y ∈ X(x �= y→ d( f (x), f (y)) < d(x,y)).

2) f is called uniformly contractive with modulus α : N→ N (see [308]) if

∀k ∈ N∀x,y ∈ X(d(x,y) > 2−k → d( f (x), f (y)) < (1−2−α(k))d(x,y)).

The next proposition can be summarized as

∃-UBX : ‘contractive⇒ uniformly contractive with modulus’.

Proposition 17.117. A ω [X ,d] + ∃-UBX proves the following: ‘every contractive
mapping f : X → X is uniformly contractive with some modulus α’.

Proof: Assume that

∀xX ,yX(x �=X y → dX( f (x), f (y)) <R dX(x,y)).

Then

∀xX ,yX ,k0∃n0(dX(x,y)≥R 2−k → dX( f (x), f (y)) <R (1−2−n)dX(x,y)),

where
dX(x,y)≥R 2−k → dX( f (x), f (y)) <R (1−2−n)dX(x,y)

is an ∃-formula. Hence ∃-UBX yields (using the monotonicity in ‘∃n’)

∃α1∀k0,xX ,yX(dX (x,y)≥R 2−k → dX( f (x), f (y)) <R (1−2−α(k))dX(x,y)).

�
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In a similar way, ∃-UBX implies corresponding uniform versions of many other
more liberal notions of contractivity including the generalized p-contractive map-
pings ([315, 316]). Such a uniform version is used by E.M. Briseid in his effective
form of a fixed point theorem of [182] thereby eliminating the compactness assump-
tion.

Definition 17.118 (Rhoades [315]). Let (X ,d) be metric space and p ∈ N. A self-
mapping f : X → X is called generalized p-contractive if

∀x,y ∈ X
(
x �= y → d( f p(x), f p(y)) < diam{x,y, f p(x), f p(y)}

)
.

Theorem 17.119 (Kincses-Totik [182]). Let (K,d) be a compact metric space and
f : K → K be a continuous and generalized p-contractive mapping for some p ∈N.
Then f has a unique fixed point ξ and for every x ∈ K : lim

n→∞
f n(x) = ξ .

Definition 17.120 (Briseid [50, 51]). Let (X ,d) be a metric space, p∈N. f : X →X
is called uniformly generalized p-contractive with modulus η : Q

∗
+ → Q

∗
+ if for all

x,y ∈,ε ∈Q
∗
+

d(x,y) > ε → d( f p(x), f p(y))+ η(ε) < diam{x,y, f p(x), f p(y)}.

As above one easily shows that A ω [X ,d]+ ∃-UBX proves that every generalized
p-contractive mapping f : X → X is uniformly generalized p-contractive with some
modulus η .

Remark 17.121. Instead of an additive modulus η one also can consider a multi-
plicative version (see the discussion in section 15.4).

The significance of this notion of uniform generalized p-contractivity is witnessed
by the following result of E.M. Briseid:

Theorem 17.122 (Briseid [50, 51]). Let (X ,d) be a complete metric space and
p ∈ N. Let f : X → X be a uniformly continuous and uniformly generalized
p-contractive with moduli of uniform continuity ω and uniform generalized p-
contractivity η . Let x0 ∈ X and assume that ( f n(x0)) is bounded by b ∈ Q

∗
+. Then

f has a unique fixed point ξ and ( f n(x0)) converges to ξ with rate of convergence
Φ : Q

∗
+ →N,

Φ(ε) :=

⎧
⎨

⎩

p�(b− ε)/ρ(ε)� if b > ε,

0,otherwise

with

ρ(ε) := min
{

η(ε),
ε
2
,η(

1
2

ω p(
ε
2
))

}

.
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17.9 Fragments of A ω [. . .]

Instead of A ω [. . .](−b) one can also consider T ω [. . .](−b) which for T :=WE-

PAω ,ŴE-PA
ω
|\,G∞Aω is defined as in the case of A ω except that DC is dropped

and – in the cases of T := ŴE-PA
ω
|\,G∞Aω – WE-PAω is replaced by T . As indi-

cated already in remark 17.37.1), the proofs of the general metatheorems 17.52 and
17.69 above can be adapted to these systems, where then the extractable bounds Φ
are even given by closed terms of T . Moreover, as mentioned in remark 17.37.2),
some of the type restrictions can be liberalized that were only used for the passage
from M ω,X to S ω,X which now is superfluous as we do not need (BR) anymore and
so can work directly in S ω,X . For this it suffices to note that all the majorants used
for the extra constants of the structures (X ,d,W ),(X ,‖ · ‖) etc. are even in G3Rω .

Rather than going into any details on this we sketch how the technique of elimination
of monotone Skolem functions from chapter 13 can be adapted to G∞Aω [X ,d,W ]−b
(and similarly for G∞Aω [X ,‖ · ‖,C]−b etc.).

By the corollary to the proof of theorem 13.7 it is clear that this theorem also
applies to G∞Aω [X ,d,W ]−b (as long as the bounds Ψi still are closed terms of
G∞Aω ). Moreover, since the majorants for the closed terms of G∞Aω [X ,d,W ]−b
are in G∞Rω , i.e. closed terms of G∞Aω , in principle also theorem 13.10 and corol-
lary 13.12 can be adapted. However, one technical point to address is that in our
metatheorems proved in this chapter the extracted uniform bound is not verified in
the formal system at hand but only shown to be true in S ω,X . So we cannot apply
again (monotone) functional interpretation to the result from the first use of (mono-
tone) functional interpretation used to extract the bound as we did in the proof of
theorem 13.10. This problem, however, can be solved (in most cases) by not only
extracting the bounds Ψiuh as we did in the proof of theorem 13.10 but also exact
witnesses for the remaining existential quantifier ‘∃wAH

0 ’ by which the statement in
question becomes purely universal so that its proof does not matter. We will not give
the most general formulation but only a special case corresponding to the adaption
of corollary 13.12 to the context of corollary 17.55:

Proposition 17.123. Let A(a) :≡ ∀x0∃y0∀z0A0(x,y,z,a) be a formula in L (G∞Aω )
containing only ‘a’ free, where A0 is quantifier-free. We assume that A satis-
fies (provably in G∞Aω ) the monotonicity condition (∗) in corollary 13.12 and
that A is provable in G∞Aω + Σ0

1 -IA. Let B∃(uX , f X→X ,n0) be an ∃-formula in
L (G∞Aω [X ,d,W ]−b) containing only u, f ,n free. Neither of A,B contains 0X and
ξ is a closed term of G∞Aω [X ,d,W ]−b.
Suppose that G∞Aω [X ,d,W ]−b proves that

∀uX , f X→X (
f n.e. ∧∃g∀x,zA0(x,g(x),z,ξ (u, f ))→∃n0B∃(u, f ,n)

)
,

then one can extract a closed term ϕ1 of ŴE-PA
ω
|\, i.e. an ordinary primitive re-

cursive function, such that
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S ω,X |= ∀uX , f X→X ,b0( f n.e. dX(u, f (u)) ≤R (b)R →∃n≤ ϕ(b)B∃(u, f ,n)
)
.

Proof: B∃(u, f ,n) is of the form ∃vρ B0(u, f ,n,v) with B0 being quantifier-free.
From a proof in G∞Aω [X ,d,W ]−b of

∀uX , f X→X (
f n.e. ∧∃g∀x,zA0(x,g(x),z,ξ (u, f ))→∃n0B∃(u, f ,n)

)

one extracts (adapting lemma 17.72 to G∞Aω [X ,d,W ]−b) closed terms q,r, t,s of
G∞Aω [X ,d,W ]−b such that

S ω,X |= ∀u, f ,g
(

f n.e. ∧A0(ru f g,g(ru f g),qu f g,ξ u f )→ B0(u, f ,tu f g,su f g)
)
.

By the proof of lemma 17.83 there exists a closed term r∗ of G∞Aω such that

S ω,X |= ∀aX (r∗ �a r)

(in the absence of (BR) the terms and their majorants always define functionals in
S ω,X and the majorizing property is valid in S ω,X ).
If f is nonexpansive and (b)R ≥R dX(u, f (u)), then 00 �u u and λ n.n + b �u f .
Hence with r̂bg := r∗0(λ n.n + b)gM we have

(1)

⎧
⎨

⎩

S ω,X |= ∀u, f ,b
(

f n.e. ∧dX(u, f (u))≤R (b)R

→∀g
(
∀x≤ r̂bgA0(x,g(x),qu f g,ξ u f )→ B0(u, f ,tu f g,su f g)

))
.

By the corollary to the proof the theorem 13.7 (applied to ∃x∀y∃z,n,v (A0 → B0))
and the fact that G∞Aω is contained in G∞Aω [X ,d,W ]−b it follows that

G∞Aω [X ,d,W ]−b �

∀u, f ,b
(
∀g(∀x≤ r̂bg∀zA0 →∃nB∃)→ (∀x∃y∀zA0 →∃nB∃)

)
.

Hence, a-fortiori,

G∞Aω [X ,d,W ]−b �

∀u, f ,b
(
∀g(∀x≤ r̂bgA0(x,g(x),qu f g,ξ u f )→ B0(u, f ,tu f g,su f g))

→ (∀x∃y∀zA0 →∃nB∃)
)

and so

G∞Aω [X ,d,W ]−b + Σ0
1 -IA �

∀u, f ,b
(
∀g

(
∀x≤ r̂ubgA0 → B0(u, f ,tu f g,su f g)

)
→∃nB∃

)
.
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By functional interpretation (i.e. by adapting lemma 17.72 to ŴE-PA
ω
|\[X ,d,W ]−b)

we extract a closed term ψ of ŴE-PA
ω
|\[X ,d,W ]−b such that

(2) S ω,X |= ∀u, f ,b
(
∀g(. . .)→ B∃( f ,u,ψu f b)

)
.

(1) and (2) imply that

(3) S ω,X |= ∀u, f ,b
(

f n.e. ∧dX(u, f (u))≤R (b)R → B∃( f ,u,ψu f b)
)
.

ψ has a majorizing term ψ∗ in ŴE-PA
ω
|\ such that

S ω,X |= ∀uX (ψ∗ �u ψ).

Hence with ϕ(b) := ψ∗0(λ n.n + b)b we see that (3) implies

S ω,X |= ∀u, f ,b
(

f n.e. ∧dX(u, f (u))≤R (b)R →∃n≤ ϕ(b)B∃( f ,u,n)
)
.

�

Remark 17.124. The proposition above, in particular, applies to A(a) being PCMar(a),
where then ∃g∀z,zA0 is PCM(a) (see chapter 13).

17.10 Exercises, historical comments and suggested further
reading

Exercises:

1) Prove the claim in remark 17.3.
2) Prove the claim in remark 17.18.
3) Prove the claim in remark 17.15.
4) Prove lemma 17.20
5) Verify the claim in example 17.43.

Historical comments and suggested further reading:

Most of the material from sections 17.1 (except for the material on best approxima-
tions in uniformly convex spaces), 17.2, 17.3 and 17.4 is based on Kohlenbach [226]
and Gerhardy-Kohlenbach [120] where additional information can be found. In par-
ticular the treatment of unbounded metric and hyperbolic spaces is from Gerhardy-
Kohlenbach [120]. The treatment of the generalized uniform boundedness principle
∃-UBX in section 17.7 and its applications 17.8.2 and 17.8.4–17.8.7 in section 17.8
are taken from Kohlenbach [228] while the other applications are new. The treat-
ment of δ -hyperbolic spaces and R-trees in section 17.5 is due to Leuştean [262]
which also includes an adaptation of the metatheorems to uniformly convex hyper-
bolic spaces.
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Versions the results in a semi-intuitionistic setting (extending the framework from
chapter 7 to the setting of the new type X for an abstract metric, hyperbolic or
normed space) can be found in Gerhardy-Kohlenbach [119]. For general back-
ground information on geodesic spaces, hyperbolic spaces and CAT(0)-spaces we
refer to Goebel-Reich [128], Bridson-Haefliger [49] and Papadopoulos [297].



Chapter 18
Case study II: Applications to the fixed point
theory of nonexpansive mappings

18.1 General facts

The fixed point theory for selfmappings f : X → X of complete metric spaces (X ,d)
with Lipschitz constant < 1 (i.e. contractions) is essentially trivial (even from a
computational point of view) because of the well-known Banach fixed point theo-
rem: there always exists a unique fixed point and for any x ∈ X the Picard iteration
( f n(x)) of f starting at x converges to the fixed point with an explicit rate of con-
vergence. Already for the wider class of contractive mappings (mentioned before in
sections 15.4 and 17.8.7), satisfying

∀x,y ∈ X
(
x �= y → d( f (x), f (y)) < d(x,y)

)
,

things are more difficult but still some crucial features of the fixed point theory of
contractions prevail, most notably the uniqueness of the fixed point in cases where
it exists, e.g. for compact X (see [92]). In this case, again ( f n(x)) converges to the
fixed point, where the rate of convergence depends on a (either additive or multi-
plicative) modulus of uniform contractivity of f in the sense of sections 15.4 and
17.8.7. In fact, if f is uniformly contractive even the assumption of the compactness
of X can be replaced by just completeness (see [308] and – for explicit uniform
rates of convergence – [119, 236]). As mentioned already in section 17.8.7 this has
been extended by E. Briseid to the much more general class of (uniformly contin-
uous and) uniformly generalized p-contractive mappings (assuming that ( f n(x)) is
bounded, [50, 51]). Finally, P. Gerhardy and E. Briseid obtained effective quanti-
tative versions for Kirk’s ([188]) so-called asymptotic contractions ([116, 52, 53]).
All these results were obtained with the help of proof mining techniques such as the
ones developed in chapter 17 (see also the comments at the end of this chapter and
the survey [229]).
In contrast to this, the fixed point theory for nonexpansive mappings (as defined in
definition 17.39.1)

∀x,y ∈ X
(
d( f (x), f (y)) ≤ d(x,y)

)
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is rather different and very intricate. In fact, it has been one of the most active
research areas in nonlinear functional analysis from the 50’s until today.

Since the identity function idX on X always is nonexpansive, fixed points are no
longer unique in general. Moreover:

1) Whereas in Banach’s fixed point theorem no conditions on (X ,d) other than com-
pleteness are necessary, fixed points of nonexpansive selfmappings of complete
metric spaces in general do not exist. E.g. take X := R and f (x) := x + 1.

2) Even for closed bounded convex subsets of Banach spaces such as c0 fixed points
in general will not exist: e.g. consider in c0 the closed bounded convex subset

C := {(xn) ∈ c0 : ∀n ∈ N(0 ≤ xn ≤ 1)}

and the nonexpansive (and even isometric) selfmapping f : C →C defined by

f ((xn)) := (1,x1,x2, . . .)

which obviously is fixed point free in c0. Many more examples are given in [340].
3) Even when C is compact (and therefore fixed points exist by the fixed point the-

orems of Brouwer and Schauder) and even in cases where in addition the fixed
point is unique, it will in general not be approximated by the Picard iteration
xn+1 := f (xn): take X := R,C := [0,1], f (x) := 1− x and x0 := 0. Then xn al-
ternates between 0 and 1. In fact, the only starting point for which the Picard
iteration (xn) converges to the unique fixed point 1

2 is that fixed point itself.

The last example already indicates that having only a metric structure might not be
sufficient to set up useful iterations in the context of nonexpansive functions and,
indeed, one makes use of some convexity structure (see below) provided in normed
spaces but also in hyperbolic spaces. The early history of the fixed point theory of
nonexpansive mappings mainly was concerned with mappings on convex subsets of
uniformly convex Banach spaces. From chapter 17 we recall the following defini-
tion:

Definition 18.1 (Clarkson, 1936). A normed space (X ,‖ · ‖) is uniformly convex
if

∀ε > 0∃δ > 0∀x,y ∈ X
(
‖x‖,‖y‖ ≤ 1∧‖x− y‖≥ ε → ‖1

2
(x + y)‖ ≤ 1− δ

)
.

A function η : (0,2]→ (0,1] providing such a δ := η(ε) ∈ (0,1] for given ε ∈ (0,2]
is a modulus of uniform convexity.

The classical fixed point theory for nonexpansive mappings in uniformly convex
spaces rests on the following two pillars:

Theorem 18.2 (Browder [55], Göhde [137], Kirk [184]). Let (X ,‖ · ‖) be a uni-
formly convex Banach space, /0 �= C ⊆ X convex, closed and bounded and f : C →C
nonexpansive. Then f has a fixed point.
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From the example of a fixed point free nonexpansive mapping in c0 given above
it follows that the condition on X being uniformly convex cannot be dropped in
theorem 18.2.

The next theorem shows that under an additional compactness condition one can
define an effective iteration schema converging towards a fixed point:

Theorem 18.3 (Krasnoselski’s theorem, [238]). Let K be a convex, closed and
bounded set in a uniformly convex Banach space (X ,‖ · ‖), f a nonexpansive map-
ping of K into a compact subset of K. Then for every x0 ∈ K, the sequence (called
the Krasnoselski iteration of f starting at x0)

xk+1 :=
xk + f (xk)

2

converges to a fixed point p ∈ K of f .

While the existence of an effective iteration converging towards a fixed point is
reminiscent of the Banach fixed point theorem, the following counterexample to a
(uniformly) effective rate of convergence shows that things, in fact, are quite differ-
ent (essentially due to the lack of uniqueness of the fixed point):

Theorem 18.4. There exists a (primitive recursively) computable sequence ( fl)l∈N

of nonexpansive functions fl : [0,1] → [0,1] such that for λn := 1
2 and xl

0 := 0 and
the corresponding Krasnoselski iterations (xl

n) there is no computable function δ :
N → N such that

∀m ≥ δ (l)
(
|xl

m − xl
δ (l)| ≤

1
2
)
.

Proof: Using the primitive recursive Kleene T -predicate (see chapter 2) we define
a (primitive recursively) computable function α : N×N → N by

α(l,n) :=

⎧
⎨

⎩

1, if ¬T (l, l,n)

0, otherwise.

Using α we in turn define an again (primitive recursively) computable sequence
( fl)l∈N of nonexpansive mappings fl : [0,1] → [0,1] :

fl(x) := alx + 1−al, where al :=
∞

∑
i=0

α(l, i)2−i−1 ∈ [0,1].

Note that the sequence of partial sums
n
∑

i=0
α(l, i)2−i−1 is a Cauchy sequence with

Cauchy modulus 2−n−1 of rational numbers and so its limit is trivially definable
(in fact the sequence itself represents that limit in the sense of chapter 4). So, in
particular, ( fl) is a computable sequence (in the sense of computability theory, see
e.g. [303] or [377]) of nonexpansive functions.
Suppose now that there would exist a computable function δ satisfying
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∀m ≥ δ (l)
(
|xl

m − xl
δ (l)| ≤

1
2
)
.

Then for m := δ (l) we have

al < 1 ⇒ limn→∞ xl
n = 1 ⇒ xl

m ∈ [ 1
2 ,1] and

al = 1 ⇒∀n(xl
n = 0) ⇒ xl

m = 0.

This implies that using δ one can construct (by computing xl
δ (l) up to say an error

1/3) a computable function χ : N → N such that

∀l ∈ N(χ(l) = 0 ↔ al = 1).

Using that al = 1 ↔∀n ∈ N(α(l,n) = 1) ↔∀n ∈ N¬T (l, l,n) this yields

∀l ∈ N(χ(l) = 0 ↔∀n ∈ N¬T (l, l,n))

which contradicts the well-known undecidability of the special halting problem {l ∈
N : ∃n ∈ NT (l, l,n)}. �

Logically, this ineffectivity in Krasnoselski’s theorem corresponds to the fact that
the statement that (xk)k∈N is a Cauchy sequence is Π 0

3 .
On the other hand if we consider the weaker question of how far we have to go in
the iteration to obtain an ε-fixed point, then we notice that the logical form of the
statement

(+) ∀k ∈ N∃n ∈ N
(
‖xn − f (xn)‖ < 2−k)

is Π 0
2 (assuming that real numbers are represented as Cauchy sequences with fixed

rate of convergence as in chapter 4 so that <R∈ Σ0
1 ).

The following crucial monotonicity property holds (see lemma 18.7 below):

‖xm+1 − f (xm+1)‖ ≤ ‖xm − f (xm)‖

Hence the formula
‖xn − f (xn)‖ < 2−k

is equivalent to
∀m ≥ n

(
‖xm − f (xm)‖ < 2−k).

Thus any bound on (+) provides a rate of convergence for

(++) ‖xn − f (xn)‖ n→∞→ 0,

where (++) is called the asymptotic regularity of f . By remark 18.6.3 this coincides
with the previously defined notion for fλ .

We now come to a vast generalization of Krasnoselski’s theorem due to Ishikawa
([176]) and – slightly less general – Edelstein and O’Brien ([93]):
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• Krasnoselski’s theorem holds in arbitrary Banach spaces. So in contrast to the
Browder-Göhde-Kirk theorem, Krasnoselski’s theorem surprisingly does not de-
pend on the geometry of the unit ball.

• Asymptotic regularity holds for arbitrary bounded convex sets C. In fact, it even
suffices that the iteration sequence (xn) is bounded.

• More general, so-called Krasnoselski-Mann iterations [273], can be allowed.

Definition 18.5. Let (X ,‖ · ‖) be a normed space, C ⊆ X convex and (λk) be a
sequence in [0,1]. The general Krasnoselski-Mann iteration of a selfmapping
f : C →C starting from x ∈C is defined by

x0 := x, xk+1 := (1−λk)xk + λk f (xk).

Remark 18.6. 1) If λk := 1 for all k ∈N, then (xk) coincides with the Picard iteration
( f k(x)) of f .

2) If λk := 0 for all k ∈ N, then (xk) is the constant-x sequence.
3) If λk := λ is a constant sequence, then (xk) is the Picard iteration ( f k

λ (x)) of
fλ (x) := (1−λ )x + λ f (x).

Lemma 18.7. Let C ⊆ X be a convex subset of a normed space, f : C → C a non-
expansive mapping, x ∈ C and (λk) a sequence in [0,1]. Then for the Krasnoselski-
Mann iteration of f starting at x the following holds:

∀k ∈ N
(
‖xk+1 − f (xk+1)‖ ≤ ‖xk − f (xk)‖

)
.

Proof:

‖xk+1 − f (xk+1)‖ = ‖(1−λk)xk + λk f (xk)− f ((1−λk)xk + λk f (xk))‖ =

‖((1−λk)xk − (1−λk) f (xk))+ ( f (xk)− f ((1−λk)xk + λk f (xk)))‖ ≤

‖(1−λk)xk − (1−λk) f (xk)‖+‖ f (xk)− f ((1−λk)xk + λk f (xk))‖ ≤

‖(1−λk)xk − (1−λk) f (xk)‖+‖xk − ((1−λk)xk + λk f (xk))‖ =

(1−λk)‖xk − f (xk)‖+ λk‖xk − f (xk)‖ = ‖xk − f (xk)‖.

�

In the following theorems we assume (following [176]) that (λk)k∈N satisfies the
following conditions:

• (λk) is divergent in sum, i.e.

(A) ∀n, i ∈ N∃k ∈ N

(
i+k

∑
j=i

λ j ≥ n

)

.

• limsup
k→∞

λk < 1, i.e.
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(B) ∃K,k0 ∈ N∀k ≥ k0
(
λk ≤ 1− 1

K

)
.

Theorem 18.8 (Borwein-Reich-Shafrir theorem [40]). Let (X ,‖ ·‖) be a normed
space, C ⊆ X convex, f : C → C nonexpansive and (λk)k∈N be a sequence in [0,1]
which satisfies (A),(B) above. Then for the Krasnoselski-Mann iteration (xk) of f
starting from x ∈C one has

‖xk − f (xk)‖
k→∞→ rC( f ),

where rC( f ) := inf
x∈C

‖x− f (x)‖ is the so-called minimal displacement of f .

Theorem 18.9 (Ishikawa’s theorem [176]). Under the same assumptions as in the
previous theorem the following holds:

(xk)k∈N bounded → ‖xk − f (xk)‖
k→∞→ 0.

Remark 18.10. As we will see in proposition 18.15 below, if C (or just f (C)) is com-
pact, then it follows from theorem 18.9 that (xk) converges towards a fixed point of
f and so (as mentioned already) theorem 18.9 provides a far reaching generalization
of Krasnoselski’s theorem.

Under the stronger assumption of C being bounded (which trivially implies the
boundedness of the sequence (xk)k∈N) one can easily obtain theorem 18.9 as a corol-
lary to theorem 18.8 using the following simple

Proposition 18.11. Let (X ,‖ ·‖) be a normed linear space, let /0 �= C ⊆ X be convex
with bounded diameter d(C) < ∞ and let f : C →C be nonexpansive. Then f has ε-
fixed points in C for every ε > 0, where x ∈C is an ε-fixed point of f if ‖x− f (x)‖ ≤
ε.

Proof: Let ε > 0. Obviously, the lemma is trivial for ε > d(C). Hence we may
assume that ε ≤ d(C). To reduce the situation to the Banach fixed point theorem we
use the following well-known construction (see e.g. [137]): Pick a point c ∈ C and
define for t ∈ (0,1] a selfmapping ft : C →C as follows

ft(x) := (1− t) f (x)+ tc.

ft : C → C is a contraction and therefore (the usual proof of) Banach’s fixed point
theorem applies and yields the existence of approximate fixed points of ft (since we
do not assume X to be complete and C to be closed we will not get a fixed point in
general). In particular, for t := ε/d(C) the function ft has an ε-fixed point which is
a 2ε-fixed point of f . �

The proofs of the Borwein-Reich-Shafrir theorem and of the Ishikawa theorem both
use as the main ineffective tool the convergence of the nonincreasing sequence
(‖xn − f (xn)‖), i.e. the principle PCM discussed already in chapter 13. This prin-
ciple, however, is easily provable from Π 0

1 -AC and Σ0
1 -IA and so in A ω and its
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extensions discussed in chapter 17. Moreover, as we will see below, the proofs can
easily be modified in such a way that only the arithmetic version PCMar, i.e. the
Cauchy property of (‖xn − f (xn)‖), is needed (see chapter 13). Note that the proof
analysis then crucially involves the treatment of the Π 0

3 → Π 0
2 modus ponens (when

the Π 0
3 -Cauchy property is discharged to derive the Π 0

2 -asymptotic regularity con-
clusion) which we discussed already in chapter 2 and then in detail in chapter 10.

18.2 Applications of the metatheorems from chapter 17

Both, the Borwein-Reich-Shafrir theorem 18.8 as well as Ishikawa’s theorem 18.9
hold in the more general setting of hyperbolic spaces as introduced in chapter 17.
For the former this is proved also in [40] and for the latter by Goebel and Kirk in
[126] (Ishikawa’s theorem even holds for spaces of hyperbolic type, i.e. hyperbolic
spaces with the axiom ‘(iv)’ dropped, see [126]). We call the extension of Ishikawa’s
theorem to hyperbolic spaces the Ishikawa-Goebel-Kirk theorem. It is not hard to
see that the proofs given in [40] and [126] can be formalized in A ω [X ,d,W ]−b
(both proofs will be presented below where the extraction of effective rates of con-
vergence will be carried out) so that the metatheorems from chapter 17 apply which
guarantees the following results:

Application. 18.12 Let (X ,d,W ) be an arbitrary hyperbolic space, k ∈ N, k ≥ 1

and (λn)n∈N a sequence in [0,1− 1
k ] with

∞
∑

n=0
λn = ∞ and define for f : X → X ,x ∈ X

the Krasnoselski-Mann iteration (xn)n starting from x by

x0 := x, xn+1 := (1−λn)xn ⊕λn f (xn).

In [126](Theorem 1) and [176] (for the normed case) the following is proved

∀x ∈ X , f : X → X
(
(xn)n bounded and f nonexpansive → lim

n→∞
d(xn, f (xn)) = 0

)
.

Corollary 17.55 a-priori guarantees (see the proof below) the extractability of
computable bounds Φ(k,α,b, b̃, l), Ψ (k,α,b, b̃, l) so that in any hyperbolic space
(X ,d,W ), for any l,b, b̃,k ∈ N, k ≥ 1, and any α : N → N such that

∀n ∈ N(λn ≤ 1− 1
k
∧n ≤

α(n)

∑
i=0

λi)

the following holds

∀x ∈ X∀ f : X → X(d(x, f (x)) ≤ b̃∧∀i, j ≤Ψ(k,α,b, b̃, l) (d(xi,x j) ≤ b)

∧ f nonexpansive →∀m ≥ Φ(k,α,b, b̃, l) (d(xm, f (xm)) < 2−l)).
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Proof: As mentioned already, A ω [X ,d,W ]−b proves the formalized version of
Ishikawa’s theorem (Theorem 1 in [126]): if k ≥ 1,λ 0→1

(·) represents an element of

the compact metric space [0,1]N (with the product metric) and α : N → N such that

(∗) ∀n ∈ N
(
λn ≤R 1− 1

k
∧n ≤R

α(n)

∑
i=0

λi
)
,

where
α(n)
∑

i=0
λi represents the corresponding summation of the real numbers in [0,1]

represented by λi, then for all l0,b0,xX , f X(X)

∀i, j(dX (xi,x j) ≤R b)∧ f nonexpansive →∃n0(dX(xn, f (xn)) <R 2−l)
)
,

where ‘(∗)’ and ‘dX(xi,x j) ≤R b’ are a ∀-formulas and ‘dX(xn, f (xn)) <R 2−l’ is an
∃-formula.
Now corollary 17.55 yields the existence of computable functionals Φ,Ψ (of course,
by taking the maximum, one can make a single functional out ofΨ ,Φ as in corollary
17.55, but, numerically, it is better to keep them separate) such that for all (λm) ∈
[0,1]N,x ∈ X , f : X → X

⎧
⎨

⎩

(∗)∧d(x, f (x)) ≤ b̃∧∀i, j ≤Ψ(k,α,b, b̃, l) (d(xi,x j) ≤ b)∧ f n.e.

→∃m ≤ Φ(k,α,b, b̃, l) (d(xm, f (xm)) < 2−l)

holds for all k,α,b, b̃, l in any hyperbolic space (X ,d,W ).
Since (d(xn, f (xn)))n is a nonincreasing sequence (exercise) the conclusion actually
implies

∀m ≥ Φ(k,α,b, b̃, l)
(
d(xm, f (xm)) < 2−l).

�

Remark 18.13. By a simple trick (which uses the truth of the theorem whose proof
we are analyzing) one can see the that the assumption to have a bound b̃ on
d(x, f (x)) as an input of Ψ ,Φ is redundant if we assume that (xn) is b-bounded: by
Ishikawa’s theorem we know, in particular, that d(xn, f (xn)) → 0 and so a-fortiori

∃n ∈ N
(
d(xn, f (xn)) ≤ b

)
.

Using d(xi,x j) ≤ b for all i, j and the nonexpansivity of f yields (note that x0 := x)

d(x, f (x)) ≤ d(x,xn)+ d(xn, f (xn))+ d( f (xn), f (x)) ≤ 3b.

As a qualitative consequence of the bound Φ one immediately concludes that for
bounded hyperbolic spaces (X ,d,W ) the convergence d(xn, f (xn))→ 0 is uniform in
x, f and – except for a bound b on the metric – in (X ,d,W ). This fact was first proved
as theorem 2 (called ‘main result’) in [126] but – as we just saw – follows directly
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from theorem 1 of that paper by a general logical metatheorem. For this particular
application, corollary 17.45 above already suffices (see [226] for a discussion of
this point). However, whereas the proof of theorem 2 in [126] (and similarly the
alternative proof, for the case of constant λn = λ , from [186]) makes essential use of
the fact that the whole space is bounded, the uniform bound obtained from corollary
17.55 (together with the remark above) shows that a bound on just (xn) is sufficient.

Remark 18.14. For the case of bounded convex subsets of normed spaces and con-
stant λn = λ ∈ (0,1) the uniformity in x was already shown in [93] and – for (λn)n
in [a,b]⊂ (0,1) and nonincreasing – in [67].

In [232], the extraction of a concrete effective uniform rate of convergence was
carried out. In that paper, this result was obtained using a logical analysis of the
proof of the Borwein-Reich-Shafrir theorem to be discussed below (rather than the
proof of Ishikawa’s theorem from [126]). In fact, combining Ishikawa’s theorem
with the Borwein-Reich-Shafrir theorem it follows that instead of assuming (xn) to
be bounded it suffices to assume that for some x∗ ∈ X the Krasnoselski-Mann iter-
ation (x∗n) starting with x∗ is bounded: By Ishikawa’s theorem it then follows that
rX ( f ) = 0 and so by the Borwein-Reich-Shafrir theorem we get d(xn, f (xn)) → 0.
In [120] it is shown how the existence of an effective rate of convergence depending
on x,x∗, f and (X ,d,W ) only via a bound b on (x∗n) follows from the refined logical
metatheorems established in that paper (our corollary 17.55 above).

As we will see below, for the extraction of such a bound it suffices to analyze the
proof of the Borwein-Reich-Shafrir theorem and to use the truth (rather a proof) of
Ishikawa’s theorem. Then, however, no information on how much of the bounded-
ness of (x∗n) is needed (i.e. no bound Ψ ) is obtained. Further below we will carry
out all this in detail and extract bounds on the convergence in Ishikawa’s theorem
both via the logical analysis of the proof of the Borwein-Reich-Shafrir theorem as
in done in [232] (see theorem 18.42 below) as well as (for x∗ := x) via the direct
analysis of the proof of Ishikawa’s theorem in [126] for hyperbolic spaces (see the-
orem 18.49).

As a preparation for the next application we need the following

Proposition 18.15 (Ishikawa, Goebel, Kirk [176, 126]). Let (X ,d,W ) be a com-
pact hyperbolic space and (λn), f ,(xn) as in application 18.12. Then (xn)n con-
verges towards a fixed point of f .

Proof: From Ishikawa’s theorem it follows that d(xn, f (xn))→ 0 since the compact-
ness of X implies that X – and hence (xn)n – is bounded. Using again the compact-
ness of X , we know that (xn)n has a convergent subsequence (xnk)k with limit x̂.
One easily shows (using the continuity of f ) that x̂ is a fixed point of f . The proof
is concluded by verifying the easy fact that for any fixed point x̂ of f

(∗) ∀n ∈ N(d(xn+1, x̂) ≤ d(xn, x̂))

which implies that already (xn)n converges towards x̂.
Proof of (∗):
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dX(xn+1, x̂) =R dX((1−λn)xn ⊕λn f (xn), x̂)

≤R (1−λn)dX(xn, x̂)+R λndX( f (xn), x̂)

=R (1−λn)dX(xn, x̂)+R λndX( f (xn), f (x̂))

≤R (1−λn)dX(xn, x̂)+R λndX(xn, x̂)

=R dX(xn, x̂).

�

Application. 18.16 Let us consider the proof of the Cauchy property of (xn) from
the asymptotic regularity (i.e. d(xn, f (xn))→ 0) (taken as assumption) under the ad-
ditional assumption of X being compact. The sequential compactness used in the
proof follows relative to A ω [X ,d,W,C ]−b (which already contains the complete-
ness axiom for X) from the total boundedness of X . Using again the fact that the
proof of Ishikawa’s theorem from [126] can be formalized in A ω [X ,d,W ]−b it fol-
lows in total that

(+) X tot. bounded ∧lim d(xn, f (xn)) = 0→∀k∈N∃n∈N∀m≥ n(d(xn,xm)≤ 2−k)

is provable in A ω [X ,d,W,C ]−b.
The proof of the implication (+) only uses that (λn)n is a sequence in [0,1] but not
the other assumptions on (λn)n (which are only needed to prove that d(xn, f (xn))→
0).
Before we can see how to apply corollary 17.55 to the proof of (+) we have to make
explicit the logical form of the various clauses involved.

• since (d(xn, f (xn))n is nonincreasing, we can – as before – write the asymptotic
regularity equivalently as ∀l ∈ N∃n ∈ N(d(xn, f (xn)) ≤ 2−l) which asks for a
witnessing rate of asymptotic regularity δ : N → N such that

(1) ∀l ∈ N(d(xδ (l), f (xδ (l))) ≤ 2−l).

If we provide such a δ as input, the remaining formula (1) is a ∀-formula.
• the total boundedness of X is expressed by the existence of a sequence (an)n of

points in X and a function γ : N → N such that

(2) ∀l ∈ N,x ∈ X∃n ≤ γ(l)(d(x,an) ≤ 2−l).

A function γ such that a sequence (an)n in X satisfying (2) exists is called a
modulus of total boundedness for X . So we add γ as yet another input and verify
(using Σ0

1 -CP) that (2) is equivalent to a ∀-formula.

As discussed already above, i.e. the Cauchy property of (xn), a Π 0
3 -formula, is log-

ically too complicated to be covered by our metatheorems and, in fact, we showed
in theorem 18.4 that there simply is no (uniformly) effective Cauchy rate in general.
We, therefore, modify the conclusion to its Herbrand normal form (or ‘metastable’
version to use the terminology from T. Tao [357])
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(H) ∀l0∀g1∃n0∀i, j ∈ [n;n + g(n)](d(xi,x j) < 2−l),

where [n;m] denotes the subset {n,n + 1, . . . ,m−1,m} of N for m ≥ n and – using
just Σ0

1 -CP – ‘∀i, j ∈ [n;n + g(n)](d(xi,x j) < 2−l)’ is equivalent to an ∃-formula.
More precisely, (H) is the Herbrand normal form of a slightly different but trivially
equivalent formulation of the Cauchy property.
Classically, (H) is a equivalent to the Cauchy property for (xn)n but – since the proof
is ineffective – a computable bound on (H) does not yield a computable Cauchy
modulus for (xn)n (see the discussion of the Herbrand normal form in chapters 2
and 10).
A ω [X ,d,W,C ]−b proves that

∀(λm) ∈ [0,1]N∀xX∀ f X(X),(an)X(0), l0,γ1,δ 1,g1

((1)∧ (2)∧ f n.e. →∃m ∈ N∀i, j ∈ [m;m+ g(m)](d(xi,x j) < 2−l)).

The total boundedness of X implies that X is bounded and a bound can be com-
puted by b := max{d(ai,a j) : i, j ≤ γ(0)}+ 2. However, in order to guarantee our
result to be independent from (an)n we add a bound b of X as an additional input.
Hence by either corollary 17.45 or corollary 17.55 (together with the treatment of
the completeness axiom at the end of section 17.5) we obtain a computable bound
Ω(l,b,γ,δ ,g) such that for all (λn) in [0,1],x ∈ X ,(an) in X , f : X → X , l ∈ N and
γ,δ ,g : N → N :

(1)∧ (2)∧ f n.e. →∃m ≤ Ω(l,b,γ,δ ,g)∀i, j ∈ [m;m+ g(m)](d(xi,x j) ≤ 2−l)

holds in any complete, b-bounded, totally bounded (with modulus γ) hyperbolic
space (X ,d,W ) (using a standard completion argument one sees that this conclu-
sion even holds without the completeness assumption).
A concrete bound Ω of this kind has in fact been extracted in [227], where there ex-
traction itself was guided by the algorithm provided by the proof of corollary 17.45
as well as the proof-theoretic study of the Bolzano-Weierstraß principle carried out
in [210]. This concrete Ω even is independent from b and is defined as follows

Ω(l,g,δ ,γ) := max
i≤γ(l+3)

Ψ0(i, l,g,δ ),

where
⎧
⎪⎨

⎪⎩

Ψ0(0, l,g,δ ) := 0

Ψ0(n + 1, l,g,δ ) := δ
(

l + 2 + �log2(max
i≤n

g(Ψ0(i, l,g,δ ))+ 1)�
)

.

This bound will be derived in detail further below (see theorem 18.58).

For X being b-bounded and (λn) in [0,1− 1
k ] (k ≥ 1) with n ≤

α(n)
∑

i=0
λi we can take
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δ (m) := Φ(k,α,b, b̃,m) from application 18.12. Even the fact that the bound
does not depend on b can largely be explained based on our metatheorems if
one expresses that (X ,d) has a modulus of total boundedness γ in the form
∀l0,aX(0)∃i, j(0 ≤ i < j ≤ γ(l)∧d(a(i),a( j)) ≤ 2−l) (see also [117]) which avoids
the reference to an ε-net.

Discussion on the Herbrand normal form (H) (of the Cauchy property of (xn)): a
bound on the Herbrand normal form (H) of the Cauchy property of (xn), which
classically is equivalent to the convergence of (xn) (given the completeness of
(X ,d,W )), also is rather natural from an ordinary mathematical point of view as
a generalization of a rate of asymptotic regularity, where with the latter we mean

(AR) d(xn, f (xn))
n→∞→ 0.

Let λn ∈ (a,b) with 0 < a < b < 1 for all n ∈ N, i.e. (λn) is bounded away from 1
and 0. Because of

(+) d(xn,xn+1) = λn ·d(xn, f (xn))

we then have that (AR) holds iff

(++) d(xn,xn+1)
n→∞→ 0

which in turn is equivalent to the special case (H1) of (H) where g ≡ 1 :
‘⇒’: Since, in particular, λn ≤ 1, (++) – and so a-fortiori (H1) – trivially follows
from (AR) using (+).
‘⇐’: Let k ∈ N and k̃ ∈ N be such that 2−k̃ ≤ a ·2−k. Then by (H1) there exists an
n ∈ N such that

d(xn,xn+1) ≤ 2−k̃ ≤ a ·2−k.

Hence by (+)
d(xn, f (xn)) ≤ a ·2−k/λn ≤ 2−k

and so, using that (d(xn, f (xn)))n∈N is nonincreasing, (AR) follows.
This proof also shows that any rate of asymptotic regularity can effectively be con-
verted into a bound on (H1) and vice versa.

Now whereas (H1 (i.e. (AR)) holds without any compactness assumption on (X ,d,W )
(as long as (X ,d,W ) is bounded), the full Herbrand normal form (H) in general fails
for noncompact spaces (X ,d,W ) : e.g. consider as X the closed bounded convex
subset C := {(xn) ∈ c0 : ∀n ∈ N(0 ≤ xn ≤ 1)} of c0. As we have seen above, there
are fixed point free nonexpansive selfmappings of C. Since (H) is equivalent to the
Cauchy property and hence convergence of (xn) and the limit of (xn) necessarily
would be a fixed point of f (because of (AR)) it is clear that (H) for general g fails
for C (while it holds for g :≡ 1 and even for all constant functions g(n) := k).

Application. 18.17 Let (X ,d,W ),k,(λn), f ,x and (xn) be as in application 18.12.
In [40], the following result is proved:

∀x ∈ X , f : X → X
(

f nonexpansive → lim
n→∞

d(xn, f (xn)) = rX ( f )
)
,
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where rX ( f ) := inf
y∈X

d(y, f (y)) is the so-called minimal displacement of f . As (xn) is

no longer assumed to be bounded, rX ( f ) can very well be strictly positive: e.g. for R

(with the natural metric) and f : R → R, f (x) := x + 1 we have rR( f ) = 1 although
f is nonexpansive.
The most direct formalization of the above theorem is as follows (using again that
(d(xn, f (xn))) is nonincreasing):

(a) ∀l ∈ N∀x ∈ X , f : X → X∃n ∈ N∀x∗ ∈ X(d(xn, f (xn)) < d(x∗, f (x∗))+ 2−l).

Due to the quantifier ‘∀x∗ ∈X’, this statement does not have the ∀∃-form required by
our metatheorem. Indeed, an effective bound on ‘∃n∈N’ would allow us to compute
(in x0, f ) the infimum rX ( f ) which is unlikely to be possible in general. However,
the following seemingly weaker formulation is (ineffectively) actually equivalent to
(a) :

(b) ∀l ∈ N∀x,x∗ ∈ X , f : X → X∃n ∈ N(d(xn, f (xn)) < d(x∗, f (x∗))+ 2−l).

The proof given in [40] (for both of the formulations (a) and (b) of the theorem) can
be formalized in A ω [X ,d,W ]−b and so corollary 17.55 (see the next section) yields
(like in the proof of application 18.12 above) an effective bound Ψ(k,α,b, b̃, l) such
that in any hyperbolic space (X ,d,W ), for any l,b, b̃,k ∈ N, k ≥ 1, and any α : N →

N, satisfying λn ≤ 1− 1
k and n ≤

α(n)
∑

i=0
λi for all n ∈ N, the following holds

∀x,x∗ ∈ X∀ f : X → X( d(x,x∗) ≤ b∧d(x, f (x)) ≤ b̃∧ f nonexpansive

→∃m ≤Ψ(k,α,b, b̃, l) (d(xm, f (xm)) < d(x∗, f (x∗))+ 2−l))

and so (by the fact that (d(xn, f (xn)))n is nonincreasing)

∀x,x∗ ∈ X∀ f : X → X
(

d(x,x∗) ≤ b∧d(x, f (x)) ≤ b̃∧ f nonexpansive

→∀m ≥Ψ (k,α,b, b̃, l)
(
d(xm, f (xm)) < d(x∗, f (x∗))+ 2−l

))
.

An explicit such bound Ψ (which is very similar to the bound Φ mentioned in
connection with application 18.12) has been extracted in [232] (for the special case
of convex subsets of normed spaces this is already due to [220]). We will carry out
the extraction in detail in theorem 18.30 and remark 18.31 below.

Instead of replacing (a) by (b) we could consider also the following intermediate
version (c) of (a) which, constructively speaking, is stronger than (b) :

(c) ∀l ∈ N∀x ∈ X , f : X → X∀(yn) ∈ XN∃n ∈ N(d(xn, f (xn)) < d(yn, f (yn))+2−l),

i.e. instead of just considering a constant sequence yn := x∗ we allow an arbitrary
sequence (yn) in X (not necessarily a Krasnoselski-Mann iteration!). Now corollary
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17.55 yields (as above) an effective boundΨ̃(k,α1,b1, l) such that in any hyperbolic
space (X ,d,W ), for any l,k ∈N, k ≥ 1, any b : N→N and any α : N→N, satisfying

λn ≤ 1
k and n ≤

α(n)
∑

i=0
λi for all n ∈ N, the following holds

∀x ∈ X∀ f : X → X∀(yn) ∈ XN( ∀m(d(x,ym),d(x, f (x)) ≤ b(m))∧ f nonexp. →

∃n ≤ Ψ̃(k,α1,b1, l) (d(xn, f (xn)) < d(yn, f (yn))+ 2−l)).

We will extract an explicit such Ψ̃ in theorem 18.34 below (which for the normed
case is due to [224] and for the hyperbolic case to [229]).

18.3 Logical analysis of the proof of the Borwein-Reich-Shafrir
theorem

In the following, let (λn)n∈N ⊆ [0,1).
For i,n ∈ N, we define

Si,n :=
i+n−1

∑
s=i

λs,

Pi,n :=
i+n−1

∏
s=i

1
1−λs

.

For n = 0 we adopt the usual conventions that the empty sum is defined as 0 whereas
the empty product is defined to be 1. In the following, (X ,d,W ) is an arbitrary
nonempty hyperbolic space. Let (xn)n∈N,(yn)n∈N be two sequences in X such that
for all n ∈ N,

xn+1 = (1−λn)xn ⊕λnyn.

The main lemma used in the proof of the Borwein-Reich-Shafrir theorem is an in-
equality (see proposition 18.20) which in turn is based on the following quite non-
trivial result (first was proved in [126]) for spaces of hyperbolic type (a related in-
equality for the case of normed spaces was already proved in [176]) and so a-fortiori
holds for hyperbolic spaces.

Proposition 18.18 (Goebel-Kirk [126]). Suppose that (xn)n∈N,(yn)n∈N satisfy for
all n ∈ N,

d(yn,yn+1) ≤ d(xn,xn+1).

Then the sequence (d(xn,yn))n∈N is nonincreasing and for all i,n ∈ N,

(1 + Si,n)d(xi,yi) ≤ d(xi,yi+n)+ Pi,n[d(xi,yi)−d(xi+n,yi+n)].

Remark 18.19. In our applications further below the premise of proposition 18.18
will always be satisfied. Since the conclusion is a ∀-formula A∀ (in the sense of
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definition 17.34) it can be treated simply as another universal premise in applications
of our metatheorems. This is the reason why we will not have to consider the (rather
tedious) proof of proposition 18.18.

In [40], the following consequence of the above inequality is derived:

Proposition 18.20 (Borwein-Reich-Shafrir [40]). Under the assumptions of propo-
sition 18.18,

Si,nd(xi,yi) ≤ d(xi,xi+n)+ Pi,n[d(xi,yi)−d(xi+n,yi+n)].

Proof: Using that (d(xn,yn)n is nonincreasing it follows that

d(xi,yi+n)−d(xi,yi) ≤ d(xi,xi+n)+ d(xi+n,yi+n)−d(xi,yi) ≤ d(xi,xi+n).

Together with proposition 18.18 this proves the claim. �

The following theorem is due to [126] (see, however, also [176] for the normed
case):

Theorem 18.21. Let (X ,d,W ) be a nonempty hyperbolic space and (λn)n∈N a se-
quence in [0,1). Suppose that (λn)n∈N is divergent in sum and limsup

n→∞
λn < 1.

Let (xn)n∈N, (yn)n∈N be two sequences in X which satisfy for all n ∈ N:

xn+1 = (1−λn)xn ⊕λnyn and

d(yn,yn+1) ≤ d(xn,xn+1).

If (xn)n∈N is bounded, then lim
n→∞

d(xn,yn) = 0.

Proof: The proof is given in [126]. Modulo the use of proposition 18.18 we will
present this proof in the next section. �

18.3.1 Uniform asymptotic regularity for directionally
nonexpansive mappings

In the following we not only give a quantitative analysis of the generalization of
the theorem of Borwein-Reich-Shafrir to hyperbolic spaces in our general sense but
also extend things to the wider class of directionally nonexpansive mappings whose
definition given in chapter 17 we recall here:

Definition 18.22 (Kirk [186]). Let (X ,d,W ) be a nonempty hyperbolic space. A
mapping f : X → X is called directionally nonexpansive if

d( f (x), f (y)) ≤ d(x,y),

for all x ∈ X and y ∈ [x, f (x)].
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In chapter 17 we observed that both conditions ‘ f is nonexpansive’ as well as ‘ f is
directionally nonexpansive’ are ∀-formulas.
In the following, (X ,d,W ) will be an arbitrary nonempty hyperbolic space and f :
X → X a directionally nonexpansive mapping. Let us recall the definition of the
minimal displacement of f :

rX ( f ) := inf{d(x, f (x)) | x ∈ X}.

Again, we consider the Krasnoselski-Mann iteration starting from x ∈ X

x0 := x, xn+1 := (1−λn)xn ⊕λn f (xn),

where (λn)n∈N is a sequence of real numbers in [0,1).

Lemma 18.23. For all n ∈ N,

d( f (xn), f (xn+1)) ≤ d(xn,xn+1).

Proof: Since xn+1 ∈ [xn, f (xn)], we can apply the fact that f is directionally nonex-
pansive to obtain that d( f (xn), f (xn+1)) ≤ d(xn,xn+1). �

Thus, the sequences (xn)n∈N,( f (xn))n∈N satisfy the hypotheses of proposition 18.18
with yn := f (xn). We get immediately the following results.

Proposition 18.24. The sequence (d(xn, f (xn)))n∈N ⊆ R is nonincreasing and for
all i,n ∈ N,

Si,nd(xi, f (xi)) ≤ d(xi,xi+n)+ Pi,n[d(xi, f (xi))−d(xi+n, f (xi+n))].

Proof: Apply lemma 18.23, proposition 18.18 and proposition 18.20. �

For nonexpansive mappings the following proposition (which we call the Ishikawa-
Goebel-Kirk theorem) is due to [176] (for normed spaces and – for constant λn := λ
– independently also to [93]) and [126] for hyperbolic spaces. Using Lemma 18.23,
the proof from [126] extends to directionally nonexpansive mappings:

Proposition 18.25.
Suppose that (λn)n∈N is divergent in sum and limsup

n→∞
λn < 1.

If (xn)n∈N is bounded, then lim
n→∞

d(xn, f (xn)) = 0.

Proof: By theorem 18.21 and lemma 18.23. �

Corollary 18.26. Suppose that (λn)n∈N is divergent in sum and limsup
n→∞

λn < 1.

If X is bounded, then for every x ∈ X, lim
n→∞

d(xn, f (xn)) = 0.

Corollary 18.27. Suppose that (λn)n∈N is divergent in sum and limsup
n→∞

λn < 1.
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If X is bounded or – even weaker – there is x ∈ X such that (xn)n∈N is bounded, then
rX ( f ) = 0.

Let x∗ ∈ X and (x∗n)n∈N be the Krasnoselski-Mann iteration starting from x∗.
The next inequality is due to [40]:

Lemma 18.28. If f is nonexpansive, then for all n ∈ N,

d(xn+1,x∗n+1) ≤ d(xn,x∗n).

Proof: Applying axiom (iv) of hyperbolic spaces and the definition of a nonexpan-
sive mapping, we get that

d(xn+1,x∗n+1) = d((1−λn)xn ⊕λn f (xn),(1−λn)x∗n ⊕λn f (x∗n))

≤ (1−λn)d(xn,x∗n)+ λnd( f (xn), f (x∗n))

≤ (1−λn)d(xn,x∗n)+ λnd(xn,x∗n)

= d(xn,x∗n).

�

Since in general x∗n ∈/[xn, f (xn)], we cannot prove the inequality

d( f (xn), f (x∗n)) ≤ d(xn,x∗n)

on which the proof of lemma 18.28 is based for directionally nonexpansive map-
pings f .

We now present the
Proof of the Borwein-Reich-Shafrir theorem (formulated in the setting of hyper-
bolic spaces based on [40] with some steps referred in [40] to the literature filled in):
Let (X ,d,W ) be a hyperbolic space, f : X →X a nonexpansive selfmapping and (λn)
a sequence in [0,1] satisfying (A),(B) above with K,k0 ∈ N, where we may assume
w.l.o.g. that k0 = 0. For x ∈ X let (xn) denote the Krasnoselski-Mann iteration of f
based on (λn) and define yn := f (xn). By proposition 18.24 the sequence (d(xn,yn))n
is nonincreasing and bounded from below by 0. Hence r(x) := limd(xn,yn) exists.
We first show that r(x) does not depend on x : suppose on the contrary that there
are x,x∗ ∈ X with r(x) > r(x∗). Let ε > 0 be small enough so that r(x) > r(x∗)+ ε.
Choose i ∈ N large enough so that

(+) ∀ j ≥ i
(
d(x j,y j) < r(x)+ ε ∧d(x∗j ,y

∗
j) < r(x∗)+ ε

)
.

Next (reasoning as in [176]), we have
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Pi,n =
i+n−1

∏
s=i

(1 + λs
1−λs

) = exp(ln
i+n−1

∏
s=i

(1 + λs
1−λs

))

= exp(
i+n−1

∑
s=i

ln(1 + λs
1−λs

))

≤ exp(
i+n−1

∑
s=i

λs
1−λs

), since ln(1 + x)≤ x for x ≥ 0

≤ exp(K ·
i+n−1

∑
s=i

λs) = exp(K ·Si,n),

since λs ≤ 1− 1
K implies 1− λs ≥ 1

K , so 1
1−λs

≤ K for all s ∈ N. By proposition
18.24 and (+) we obtain

Si,n · r(x) ≤ Si,n ·d(xi,yi) ≤ d(xi,xi+n)+ ε · exp(K ·Si,n)

≤ d(x∗i ,x
∗
i+n)+ d(xi,x∗i )+ d(xi+n,x∗i+n)+ ε · exp(K ·Si,n)

lemma18.28
≤ d(x∗i ,x

∗
i+n)+ 2d(x,x∗)+ ε exp(K ·Si,n).

Moreover, using the definition of the Krasnoselski-Mann iteration (x∗n) and the fact
that also (d(x∗n,y∗n))n is nonincreasing we have

d(x∗i ,x
∗
i+n) ≤

n+i−1
∑
s=i

d(x∗s ,x
∗
s+1) =

n+i−1
∑
s=i

λsd(x∗s ,y
∗
s )

≤
n+i−1

∑
s=i

λsd(x∗i ,y
∗
i ) = Si,n ·d(x∗i ,y

∗
i )

(+)
≤ Si,n(r(x∗)+ ε).

So put together we have shown that

(∗) Si,n[r(x)− r(x∗)− ε]≤ 2d(x,x∗)+ ε exp(K ·Si,n).

Now define

M :=
1 + 2d(x,x∗)
r(x)− r(x∗)

.

Using the assumption that (λn) is divergent in sum and λi < 1 for all i it is clear that
there is an n ∈ N such that

M ≤ Si,n ≤ M + 1.

Hence

(1 + 2d(x,x∗)) · r(x)− r(x∗)− ε
r(x)− r(x∗)

≤ 2d(x,x∗)+ ε · exp(K(M + 1)).

Note that x,x∗,K,M,r(x),r(x∗) do not depend on ε. So letting tend ε → 0 we obtain

1 + 2d(x,x∗) ≤ 2d(x,x∗).
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This contradiction shows that r(x) ≤ r(x∗). Hence we have established that r(x)
is independent of x ∈ X . Since r(x) ≤ d(x, f (x)) this implies that r(x) = rX( f ) =
inf{d(y, f (y)) : y ∈ X}. �

Some logical pre-processing of the proof: We now indicate how to formalize the
above proof: firstly as we cannot form rX ( f ) in A ω [X ,d,W ]−b we have to restate
the conclusion of the theorem as in application 18.17 either in the form (a) or (the
formally weaker form) (b). We first consider (b) and then discuss how to derive (a)
from (b). A straightforward formalization of the proof above seemingly requires the
use of the principle PCM of convergence of monotone bounded sequences of real
numbers which – as discussed before in chapter 13 – amounts to the use of arithmeti-
cal comprehension which is formalizable using Π 0

1 -AC (and so clearly is available
in A ω [x,d,w]−b, see chapter 11). However, it is easy to see that if the conclusion
is stated as ∃n ∈ N(d(xn, f (xn)) < d(x∗, f (x∗))+ ε) as in (b) we do not even have
to form explicitly the limits r(x) or r(x∗) : to eliminate r(x∗) just note that the result
that r(x) is independent of x is only used to conclude that r(x) ≤ r(x∗) ≤ d(x∗,y∗).
Hence we can run that proof also directly with the assumption r(x) > r(x∗) + ε
(made in the course of the reductio-ad-absurdum) replaced by r(x) ≥ d(x∗,y∗)+ ε
and, in turn, by ∀n ∈ N(d(xn,yn) ≥ d(x∗,y∗)+ ε) which instead of (∗) leads to

(∗∗) Si,n[d(xi,yi)−d(x∗,y∗)] ≤ 2d(x,x∗)+ ε̃ exp(K ·Si,n)

if we replace (+) by

(++) ∀ j ≥ i
(
d(xi,yi) < d(x j,y j)+ ε̃

)

for ε̃ > 0 being arbitrary (the term ‘−ε’ in (∗) came from d(x∗i ,y
∗
i ) ≤ r(x∗) + ε

which now is replaced by d(x∗i ,y
∗
i ) ≤ d(x∗,y∗)). The proof then goes through with

M := 1+2d(x,x∗)
ε . Since in eliminating r(x) we no longer can form the denominator

r(x)− r(x∗) resp. r(x)−d(x∗,y∗), we use the lower estimate ε instead and so need
to rename the original ε used in (+) into ε̃ in (++) to led ε̃ tend to 0 while ε is kept
fixed.
So while we do not have to use the ineffective principle of the convergence of
(d(xn, f (xn)))n and (d(x∗n, f (x∗n)))n anymore, we still do need the Cauchy property
of (d(xn, f (xn)))n to find an i satisfying (++). As discussed already in chapter 2
this can be proved using Σ0

1 -IA and has an ND-interpretation (which in this case
coincides with the no-counterexample interpretation) which is solvable using only
R0. The various inequalities used in the above proof are all purely universal and so
can be treated in the logical proof analysis just as additional universal assumptions
(just like ‘ f is nonexpansive’). Hence we do not have to consider their proofs. For
completeness we note, however, that they all easily follow from proposition 18.24
which in turn is an easy consequence (see [40]) of the deep inequality proved first
in [126] (based on prior work in [176]) stated already in proposition 18.18:

(1 + Si,n)d(xi, f (xi)) ≤ d(xi, f (xi+n))+ Pi,n[d(xi, f (xi))−d(xi+n, f (xi+n))].
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This inequality is proved in [126] by a very complicated (but elementary) induction
which can be formalized in A ω [X ,d,W ]−b \ {DC} though (as mentioned above)
we don’t need this.

We now sketch how to obtain the formulation (a) of the Borwein-Reich-Shafrir
theorem from (b) : obviously it suffices to show that

∀k ∈ N∃x∗ ∈ X∀y ∈ X(dX(x∗, f (x∗)) ≤R dX(y, f (y))+ 2−k)

or -equivalently –

∀k ∈ N∃x∗ ∈ X∀y ∈ X( ̂dX(x∗, f (x∗))(k + 1) ≤Q
̂dX(y, f (y))(k + 1)+ 2−k+1).

The latter follows from dependent choice in the form DAC (and hence from DC,
see chapter 11; actually only a finite form of DAC is necessary). Since the matrix in
this application of DAC is quantifier-free we actually can prove it using QF-ACX ,X

together with RX so that the proof can be formalized already in A ω [X ,d,W ]−b \
{DC}. By the use of RX we need R0 in order to majorize RX and so (as we will see
in theorem 18.34 below) the bound for (c) in application 18.17 resulting from the
functional interpretation of the proof of (a) will (in addition to the use of R0 for (b))
need another use of R0.

Remark 18.29. The formulation (c) of the Borwein-Reich-Shafrir theorem in ap-
plication 18.17 can even be proved without QF-ACX ,X as follows from the above
discussion and functional interpretation. Since (c) implies (a) using only QF-AC0,X

it follows that the latter version of QF-AC is sufficient as well to prove (a).

We now first give a detailed quantitative analysis of the proof of the Borwein-Reich-
Shafrir theorem (being pre-processed as indicated above and ε̃ being denoted by
δ ) formulated in the form (b) which – in general terms – was obtained already
in application 18.17 as a consequence of the logical metatheorems developed in
chapter 17. The explicit logical analysis actually shows that under an additional
assumption (which is redundant for nonexpansive mappings) the result even holds
for directionally nonexpansive mappings.

Theorem 18.30 (Kohlenbach-Leuştean [232]). Let (X ,d,W ) be a nonempty hy-
perbolic space and f : X → X a directionally nonexpansive mapping. Let (λn)n∈N

be a sequence in [0,1) which is divergent in sum and satisfies

∀n ∈ N
(
λn ≤ 1− 1

K

)

for some K ∈ N, K ≥ 1.
Let α : N×N→ N be such that

∀i,n ∈ N
(
(α(i,n) ≤ α(i+ 1,n))∧ (n ≤

i+α(i,n)−1

∑
s=i

λs)
)
.

Let x,x∗ ∈ X and b, b̃ > 0 be such that
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∀n ∈ N
(
d(xn,x∗n) ≤ b

)
and d(x, f (x)) ≤ b̃

where (xn)n∈N and (x∗n)n∈N are the Krasnoselski-Mann iterations starting from x
and x∗.
Then the following holds

∀ε > 0∀n ≥ h(ε,b, b̃,K,α)(d(xn, f (xn)) < d(x∗, f (x∗))+ ε),

where (suing n −·1 = max(0,n−1))

h(ε,b, b̃,K,α) := α̂(�2b̃ · exp(K(M + 1))�−· 1,M), with

M :=
⌈ 1+2b

ε
⌉

and

α̂(0,n) := α̃(0,n), α̂(i+ 1,n) := α̃(α̂(i,n),n) with

α̃(i,n) := i+ α(i,n) (i,n ∈ N)

Proof: Let ε > 0 and define

(1) γ := d(x∗, f (x∗)).

Choose M ∈ N in such a way that

(2) M ≥ 1 + 2b
ε

.

For example, we may take M :=
⌈ 1+2b

ε
⌉
.

Next choose δ > 0 so small that

(3) δ exp(K(M + 1)) < 1.

This is satisfied e.g. for δ := 1
2exp(K(M+1)) .

Let i,n ∈ N. Then (as shown in the proof above) for all i,n ∈ N,

(4) Pi,n ≤ exp(K ·Si,n).

We now define α∗ : N×N → N by

(5) α∗(i,n) := min{m ∈ N | n ≤ Si,m}.

Since (λn)n∈N is divergent in sum, it follows that for all i ∈ N, the sequence
(Si,m)m∈N is not bounded above, so for all n ∈ N the set Ai,n := {m ∈ N | n ≤ Si,m}
is nonempty, hence it has a least element. Thus, α∗ is well-defined. For α∗(i,n) > 0
we also have that α∗(i,n)−1 ∈/Ai,n and so Si,α∗(i,n)−1 = Si,α∗(i,n)−λi+α∗(i,n)−1 < n.
Hence Si,α∗(i,n) < n + λi+α∗(i,n)−1 < n + 1. Hence, for all i,n ∈ N
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(6) n ≤ Si,α∗(i,n) < n + 1

(observing that this holds trivially in the case where α∗(i,n) = 0 and so Si,α∗(i,n) =
n = 0).
Let (x∗n)n∈N be the Krasnoselski-Mann iteration starting from x∗ and (xn) be the
Krasnoselski-Mann iteration starting from x. Then

d(x∗i ,x
∗
i+n) ≤

i+n−1
∑
s=i

d(x∗s ,x
∗
s+1) =

i+n−1
∑
s=i

λsd(x∗s , f (x∗s ))

≤ (
i+n−1

∑
s=i

λs)d(x∗i , f (x∗i )) = Si,n ·d(x∗i , f (x∗i )) ≤ Si,n ·d(x∗, f (x∗)),

since, by proposition 18.24, (d(x∗n, f (x∗n)))n∈N is nonincreasing. Hence, for all i,n ∈
N,

(7) d(x∗i ,x
∗
i+n) ≤ Si,n ·d(x∗, f (x∗)).

Applying again proposition 18.24, we also know that the sequence (d(xn, f (xn)))n∈N

is nonincreasing and hence – since it is bounded from below by 0 – a Cauchy se-
quence. Thus, for δ > 0 there exists an i such that

(8) d(xi, f (xi))−d(xi+α∗(i,M), f (xi+α∗(i,M))) ≤ δ .

Let i now be such that (8) is satisfied.
Applying proposition 18.24 and (8), we get that

Si,α∗(i,M) ·d(xi, f (xi)) ≤ d(xi,xi+α∗(i,M))+ δ ·Pi,α∗(i,M)

≤ d(xi,x∗i )+ d(x∗i ,x
∗
i+α∗(i,M))+ d(x∗i+α∗(i,M),xi+α∗(i,M))+ δ ·Pi,α∗(i,M)

≤ 2b + Si,α∗(i,M) ·d(x∗, f (x∗))+ δ ·Pi,α∗(i,M), by the hypothesis and (7)

= 2b + Si,α∗(i,M) · γ + δ ·Pi,α∗(i,M), by (1).

So in total we have shown that

(9) Si,α∗(i,M) ·d(xi, f (xi)) ≤ 2b + Si,α∗(i,M) · γ + δ ·Pi,α∗(i,M).

We are now ready to prove that i satisfies the claim, i.e.

(10) d(xi, f (xi)) < γ + ε.

Suppose that on the contrary d(xi, f (xi)) ≥ γ + ε . This implies that

Si,α∗(i,M)(γ + ε) ≤ Si,α∗(i,M) ·d(xi, f (xi))

and so – using (9) –
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Si,α∗(i,M)(γ + ε) ≤ 2b + Si,α∗(i,M) · γ + δ ·Pi,α∗(i,M).

Thus
(11) Si,α∗(i,M) · ε ≤ 2b + δ ·Pi,α∗(i,M).

Putting things together we conclude

1 + 2b ≤ M · ε by (2)

≤ Si,α∗(i,M) · ε by (6)

≤ 2b + δ ·Pi,α∗(i,M) by (11)

≤ 2b + δ · exp(K ·Si,α∗(i,M)) by (4)

< 2b + δ · exp(K(M + 1)) by (6)

< 2b + 1 by (3).

This contradiction concludes the proof of (10).
Summarizing, we have proved that if i ∈ N satisfies

(8) d(xi, f (xi))−d(xi+α∗(i,M), f (xi+α∗(i,M))) ≤ δ ,

then
(10) d(xi, f (xi)) < γ + ε.

It remains to show that the bound in the theorem is indeed an upper bound below
which we can find an i satisfying (8).

Define α̃∗, α̂∗ : N×N→ N by

α̃∗(k,n) := k + α∗(k,n) and

α̂∗(0,n) := α̃∗(0,n) and α̂∗(k + 1,n) := α̃∗(α̂∗(k,n),n).

Since α̂∗(k +1,n) = α̃∗(α̂∗(k,n),n) = α̂∗(k,n)+α∗(α̂∗(k,n),n) ≥ α̂∗(k,n), it fol-
lows that for all k,n ∈ N,

(12) α̂∗(k,n) ≤ α̂∗(k + 1,n).

Claim: Let j :=
⌈

d(x, f (x))
δ

⌉
−· 1. For all n ∈ N,

(13) ∃k ≤ j
(
d(xα̂∗(k,n), f (xα̂∗(k,n)))−d(xα̂∗(k+1,n), f (xα̂∗(k+1,n))) ≤ δ

)
.

Proof of Claim: Let n ∈ N. For k ∈ N we define

Tk := d(xα̂∗(k,n), f (xα̂∗(k,n)))−d(xα̂∗(k+1,n), f (xα̂∗(k+1,n))).
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Now suppose that the claim would be false. Then Tk > δ for all k ≤ j, and so

j

∑
k=0

Tk > δ · ( j + 1).

Hence
d(xα̂∗(0,n), f (xα̂∗(0,n)))−d(xα̂∗( j+1,n), f (xα̂∗( j+1,n)))

> δ · ( j + 1)≥ δ ·
⌈

d(x, f (x))
δ

⌉
≥ d(x, f (x)).

This, in particular, implies that

d(xα̂∗(0,n), f (xα̂∗(0,n))) > d(x, f (x)),

which contradicts the fact that the sequence (d(xn, f (xn)))n∈N is nonincreasing (re-
call that x0 := x) and so concludes the proof of the claim.

By the claim, now choose a k ≤ j satisfying (13) with n := M and let i := α̂∗(k,M).
Then by (13) and the definition of α̂∗, it follows immediately that i satisfies (8) and
hence (by the reasoning above) also (10).
Define

h(ε,b, b̃,K,α∗) := α̂∗(�2b̃ · exp(K(M + 1))�−· 1,M)

and fix (as above) δ := 1
2exp(K(M+1)) . Then

d(x, f (x))
δ

= 2d(x, f (x)) · exp(K(M + 1)) ≤ 2b̃ · exp(K(M + 1))

and, consequently,

k ≤
⌈

d(x, f (x))
δ

⌉

−· 1 ≤ �2b̃ · exp(K(M + 1))�−· 1.

Applying (12), it follows that i ≤ h(ε,b, b̃,K,α∗). Since i satisfies (10) and
(d(xm, f (xm)))m∈N is nonincreasing we conclude from this that

(14) ∀n ≥ h(ε,b, b̃,K,α∗)(d(xn, f (xn)) < d(x∗, f (x∗))+ ε).

So we have obtained the conclusion of the theorem but with α∗ instead of α . We
now use a majorization argument to replace α∗ by any α satisfying the more liberal
requirements from the hypothesis of the theorem, i.e.

(15) ∀i,n ∈ N
(
(α(i,n) ≤ α(i+ 1,n))∧ (n ≤

i+α(i,n)−1

∑
s=i

λs)
)
.

From n ≤ Si,α(i,n) and the definition of α∗ it follows that for all i,n ∈ N



18.3 Logical analysis of the proof of the Borwein-Reich-Shafrir theorem 479

(16) α∗(i,n) ≤ α(i,n).

We now show that for all i,n ∈ N

(17) α̂∗(i,n) ≤ α̂(i,n).

Let n ∈ N be fixed. We proceed by induction on i : the case i = 0 is clear since

α̂∗(0,n) = α̃∗(0,n) = α∗(0,n) ≤ α(0,n) = α̃(0,n) = α̂(0,n).

Suppose that α̂∗(i,n) ≤ α̂(i,n). The induction step follows using (16) and the fact
that, by assumption, α is nondecreasing in the first argument. Indeed

α̂∗(i+ 1,n) = α̃∗(α̂∗(i,n),n) = α̂∗(i,n)+ α∗(α̂∗(i,n),n) ≤

α̂(i,n)+ α(α̂∗(i,n),n) ≤ α̂(i,n)+ α(α̂(i,n),n) = α̃(α̂(i,n),n) = α̂(i+ 1,n).

Using (17) we can conclude that

h(ε,b, b̃,K,α∗) = α̂∗(�2b̃ · exp(K(M + 1))�−· 1,M)

≤ α̂(�2b̃ · exp(K(M + 1))�−· 1,M)

= h(ε,b, b̃,K,α).

Hence (14) implies

∀n ≥ h(ε,b, b̃,K,α)(d(xn, f (xn)) < d(x∗, f (x∗))+ ε)

which concludes the proof of the theorem. �

Remark 18.31. If f is nonexpansive, applying lemma 18.28, it follows that the se-
quence (d(xn,x∗n))n∈N is nonincreasing, so letting b ≥ d(x,x∗) we get that

∀n ∈ N
(
d(xn,x∗n) ≤ b

)
.

Hence, theorem 18.30 holds with

h(ε,b, b̃,K,α) = α̂(�2b̃ · exp(K(M + 1))�−· 1,M), where

M :=
⌈ 1+2b

ε
⌉
, b̃ ≥ d(x, f (x)) and

α̃ and α̂ are as above.

It is this bound (together with remark 18.32 below) whose general form was guar-
anteed already in application 18.17 by our metatheorems from the previous chapter.

Remark 18.32. 1) The condition on α in theorem 18.30 to be monotone in the first
argument obviously is not any real restriction: let α : N×N → N be such that
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(∗) ∀i,n ∈ N
(
n ≤

i+α(i,n)−1

∑
s=i

λs
)
,

then α+ : N×N → N defined by

α+(i,n) := max
j≤i

α( j,n)

still satisfies (∗) and is nondecreasing in the first argument.
2) Instead of requiring an α satisfying (∗) it also is sufficient to have a function

β : N → N satisfying the weaker requirement

(∗∗) ∀n(n ≤
β (n)

∑
s=0

λs).

If we now define β ′(i,n) := β (n + i)− i + 1 and α(i,n) := max
j≤i

β ′( j,n), then

α satisfies the conditions in theorem 18.30 (exercise). However, in practice it
usually is better to directly choose an α satisfying these conditions than to apply
the above construction.

3) Instead of �2b̃ · exp(K(M + 1))� one can use any other natural number upper
bound m ≥ 2b̃ · exp(K(M + 1)) in the bound h as well.

As a corollary to theorem 18.30 we get the following (non-quantitative) generaliza-
tion of the original Borwein-Reich-Shafrir theorem to directionally nonexpansive
mappings:

Corollary 18.33. Let (X ,d,W ) be a nonempty hyperbolic space and f : X → X a
directionally nonexpansive mapping. Let (λn)n∈N be a sequence in [0,1) which is
divergent in sum and satisfies that limsup

n→∞
λn < 1. Then for all x ∈ X if

∀ε > 0∃x∗ ∈ X
(
d(xn,x∗n) bounded ∧d(x∗, f (x∗)) ≤ rX ( f )+ ε

)

then
d(xn, f (xn))

n→∞→ rX ( f ).

As predicted at the end of application 18.17 we also get a quantitative version of
the following version of the Borwein-Reich-Shafrir theorem for sequences (yn) of
points in X instead of a single point x∗ only. Recall that whereas (yn) is an arbitrary
sequence of points in X , (xn) denotes the Krasnoselski-Mann iteration of f starting
from x.

Theorem 18.34. Under the same assumptions on (X ,d,W ),(λn),K,α as in theorem
18.30 the following holds: Let f : X → X be nonexpansive and (bn) be a sequence
of strictly positive real numbers. Then for all x ∈ X , (yn)n∈N ∈ XN with

∀n ∈ N(d(x, f (x)),d(x,yn) ≤ bn)

and all ε > 0 there exists an i ≤ j(K,α,(bn)n∈N,ε) s.t.
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d(xi, f (xi)) < d(yi, f (yi))+ ε,

where (omitting the arguments K,α for better readability)

j((bn)n∈N,ε) := max
i≤h̃((bn)n∈N,ε)

h(ε/2,bi,b0,K,α)

with

h̃((bn)n∈N,ε) := max
i<N

gi(0), g(n) := h(ε/2,bn,b0,K,α),N :=
⌈

6b0

ε

⌉

.

Here h is the bound from theorem 18.30 and gn(0) is defined primitive recursively:
g0(0) := 0, gn+1(0) := g(gn(0)).
Instead of N, we can take any integer upper bound for 6b0/ε .

Proof: By theorem 18.30 and remark 18.31 we have that

(1) ∀n ∈ N
(
d(xg(n), f (xg(n))) < d(yn, f (yn))+

ε
2
)
,

where g(n) := h(ε/2,bn,b0,K,α). Let N :=
⌈

6b0
ε

⌉
and l := max

i<N
gi(0). Using that

(2) d(y0, f (y0))≤ d(y0,x)+d(x, f (x))+d( f (x), f (y0))≤ 2d(y0,x)+d(x, f (x))≤ 3b0

we now show that

(3) ∃i < N
(
d(y(gi(0)), f (y(gi(0)))) ≤ d(y(gi+1(0)), f (y(gi+1(0))))+

ε
2
)

:

Suppose not, then for all i < N

d(y(gi+1(0)), f (y(gi+1(0)))) < d(y(gi(0)), f (y(gi(0))))−
ε
2

and, therefore,

d(y(gN(0)), f (y(gN (0)))) < d(y0, f (y0))−N
ε
2

(2)
≤ 3b0 −N

ε
2
≤ 0,

which is a contradiction and finishes the proof of (3).
Let i be as in (3). Then by (1) we get for p := gi(0)

(4) ∀n ∈ N
(
d(xg(p), f (xg(p))) < d(yg(p), f (yg(p)))+ ε

)
,

where p ≤ l. Hence the theorem is satisfied with j((bn)n,ε) := max
i≤l

g(i). �

As a first application of the quantitative version of the Borwein-Reich-Shafrir theo-
rem we derive a fully uniform bound on the asymptotic regularity d(xn, f (xn)) → 0
in the case of bounded hyperbolic spaces (X ,d,W ). ‘Fully uniform’ here means that
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the rate of convergence only depends on the error ε , an upper bound b on the metric
d and the quantities K,α on λk but not on x, f or any special features of X . For
the special case of a bounded convex subsets C ⊂ X of a normed space (X ,‖ · ‖)
uniformity in x for constant λk := λ was first established in [93] and for (λn) in
[a,b] ⊂ (0,1) and nonincreasing in [67]. In [126], uniformity in x and f has been
proved for in the setting of bounded spaces X of hyperbolic type for general λk and
b, but no uniformity in X or λk. Moreover, no effective bounds were obtained. In
([186], Theorem 1), Kirk established in the context of bounded convex subsets of
normed spaces uniformity in x, f for directionally nonexpansive mappings in the
case of constant λk := λ .
The next result contains all these previous ones as special case:

Corollary 18.35 (Kohlenbach-Leuştean [232]). Let (X ,d,W ) be a nonempty and
b-bounded hyperbolic space. Let f : X → X a directionally nonexpansive mapping.
Let (λn)n∈N be a sequence in [0,1) which is divergent in sum and satisfies

∀n ∈ N
(
λn ≤ 1− 1

K

)

for some K ∈ N, K ≥ 1.
Let α : N×N→ N be such that

∀i,n ∈ N
(
(α(i,n) ≤ α(i+ 1,n))∧ (n ≤

i+α(i,n)−1

∑
s=i

λs)
)
.

Then the following holds

∀x ∈ X∀ε > 0∀n ≥ h(ε,b,K,α)
(
d(xn, f (xn)) ≤ ε

)
,

where

h(ε,b,K,α) := α̂(�2b · exp(K(M + 1))�−1,M)) with M :=
⌈ 1+2b

ε
⌉

and

α̂(0,n) := α̃(0,n), α̂(i+ 1,n) := α̃(α̂(i,n),n) with

α̃(i,n) := i+ α(i,n).

Proof: Let x ∈ X and ε > 0. Then for every x∗ ∈ X , we have that d(xn,x∗n) ≤ b
and d(x, f (x)) ≤ b since X is bounded by b. Hence, for every x∗ ∈ X , we can apply
Theorem 18.30 to get

∀n ≥ h(ε,b,K,α)(d(xn, f (xn)) < d(x∗, f (x∗))+ ε),

where
h(ε,b,K,α) := α̂(�2b · exp(K(M + 1))�−· 1,M), with

M :=
⌈ 1+2b

ε
⌉

and α̃ , α̂ are defined as above.

Let n ≥ h(ε,b,K,α). Since h(ε,b,K,α) does not depend on x∗, it follows that
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∀x∗ ∈ X
(
d(xn, f (xn)) < d(x∗, f (x∗))+ ε

)
,

hence
d(xn, f (xn)) ≤ inf{d(x∗, f (x∗)) | x∗ ∈ X}+ ε,

that is
d(xn, f (xn)) ≤ rX ( f )+ ε.

Apply now the fact that rX ( f ) = 0, by corollary 18.27. �

Remark 18.36. Although we work in the more restricted setting of hyperbolic spaces
rather than that of spaces of hyperbolic type as used in [126] one actually realizes
that the proof above does not use the axiom (iv) of hyperbolic spaces since we no
longer need lemma 18.28. Hence 18.35 also holds for spaces of hyperbolic type.

Remark 18.37. In corollary 18.35, the bound h(ε,b,K,α) can be replaced by
h(ε/b,1,K,α) just by applying the old bound to the modified hyperbolic space,
where db(x,y) := 1

b d(x,y). With (X ,d,W ) also (X ,db,W ) is a hyperbolic space and
(directionally) nonexpansive mappings w.r.t. d again are (directionally) nonexpan-
sive w.r.t. db.

Corollary 18.38 (Kohlenbach-Leuştean [232]). Let b,ε > 0, K ∈ N, K ≥ 1, and
β : N → N be an arbitrary mapping. Then there exists an N ∈ N such that for any
nonempty b-bounded hyperbolic space (X ,d,W ), any directionally nonexpansive

mapping f : X → X, any sequence λn ∈ [0,1− 1
K ] satisfying n ≤

β (n)
∑

s=0
λs (for all

n ∈ N) and any x ∈ X, the following holds

∀n ≥ N
(
d(xn, f (xn)) ≤ ε

)
.

Proof: From n ≤
β (n)
∑

s=0
λs for all n ∈ N, it follows that (λn)n∈N is divergent in sum.

Apply remark 18.32 and corollary 18.35. �

Corollary 18.39 (Kohlenbach-Leuştean [232]). Let (X ,d,W ) be a nonempty b-
bounded hyperbolic space and f : X → X a directionally nonexpansive mapping.
Let K ∈ N,K ≥ 2 and (λn)n∈N be a sequence in [ 1

K ,1− 1
K ]. Then the following

holds:
∀x ∈ X∀ε > 0∀n ≥ h(ε,b,K)

(
d(xn, f (xn)) ≤ ε

)
,

where

h(ε,d,K) := K ·M · �2b · exp(K(M + 1))� with M :=
⌈

1 + 2b
ε

⌉

.

Proof: Define α : N×N → N by

α(i,n) = Kn.
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Then
i+α(i,n)−1

∑
s=i

λs ≥
i+α(i,n)−1

∑
s=i

1
K = 1

K α(i,n) = n and α(i,n) = α(i+1,n) = Kn, so α

satisfies the conditions of corollary 18.35.
We also get immediately that

α̃(i,n) = i+ α(i,n) = i+ Kn and

α̂(i,n) = K(i+ 1)n.

Applying corollary 18.35, it follows that

∀x ∈ X∀ε > 0∀n ≥ h(ε,b,K,α)
(
d(xn, f (xn)) ≤ ε

)
,

where
h(ε,b,K,α) = α̂(�2b · exp(K(M + 1))�−1,M)

= K ·M · �2b · exp(K(M + 1))�

= h(ε,b,K).

�

Remark 18.40. For the special case of constant λn = λ ∈ (0,1), normed spaces and
nonexpansive functions the exponential bound in corollary 18.39 is not optimal. In
fact, [10] establishes – using an extremely complicated proof involving computer
aided calculations – an optimal quadratic bound in this special case. Later that com-
puter part (due to P. Paule) was replaced by a classical proof in [300] and a simpler
proof for the quadratic bound in the case λ = 1

2 was given in [59]. However, even for
normed spaces and nonexpansive mappings the bounds presented above (and first
established in [220] using proof mining) are the only effective bounds known at all
for non-constant sequences λn.

Corollary 18.41. Let b,ε > 0 and K ∈ N,K ≥ 2. Then there exists an N ∈ N such
that for any nonempty b-bounded hyperbolic space (X ,d,W ), any directionally non-
expansive mapping f : X → X, any sequence (λn)n∈N in [ 1

K ,1− 1
K ] and any x ∈ X,

the following holds
∀n ≥ N

(
d(xn, f (xn)) ≤ ε

)
.

Proof: Apply corollary 18.39. �

In the following we extend corollary 18.35 for nonexpansive mappings to the situa-
tion where X no longer is required to be bounded but only the existence of a point
x∗ ∈ X whose iteration sequence (x∗n)n∈N is bounded is assumed. This results in a
fully uniform bound on Ishikawa’s theorem which only depends on an upper bound
b on d(x,x∗) and d(x∗n,x

∗
m) (and ε,K,α). This is of interest since the functional

analytic embedding techniques from [126, 186] requires that the whole space X is
bounded. The following theorem presents (taken together with remark 18.32) the
bound predicted (in its general form) already in application 18.12:
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Theorem 18.42 (Kohlenbach-Leuştean [232]). Let (X ,d,W ) be a nonempty hy-
perbolic space and f : X → X a nonexpansive mapping, (λn)n∈N,α and K be as
before. Let b > 0,x,x∗ ∈ X be such that

d(x,x∗) ≤ b∧∀n,m ∈ N(d(x∗n,x
∗
m) ≤ b).

Then the following holds

∀ε > 0∀n ≥ h(ε,b,K,α)
(
d(xn, f (xn)) ≤ ε

)
,

where
h(ε,b,K,α) := α̂(�10b · exp(K(M + 1))�−1,M)), with

M :=
⌈ 1+4b

ε
⌉

and α̂ as before.

Proof: The assumptions on b imply

d(x,x∗n) ≤ 2b.

With the nonexpansiveness of f and using that x∗ = x∗0 we obtain

d( f (x∗), f (x∗n)) ≤ b and d( f (x∗), f (x)) ≤ b.

By proposition 18.25 we know that for any δ > 0 there exists an n such that

d(x∗n, f (x∗n)) ≤ δ .

Thus

d(x, f (x)) ≤ d(x,x∗)+ d(x∗,x∗n)+ d(x∗n, f (x∗n))+ d( f (x∗n), f (x∗))+ d( f (x∗), f (x))

≤ 5b + δ .

Letting δ tend to 0 this yields

d(x, f (x)) ≤ 5b.

Let nδ again be such that
d(x∗nδ

, f (x∗nδ
)) ≤ δ .

Applying now theorem 18.30 and remark 18.31 to x and x∗nδ
with the upper bounds

5b and 2b on d(x, f (x)) and d(x,x∗nδ
) respectively, we obtain

∀ε > 0∀n ≥ h(ε,b,K,α)
(
d(xn, f (xn)) < δ + ε

)
.

Since δ > 0 was arbitrary, the theorem follows. �

If in the proof of theorem 18.42 we add a bound b̃ ≥ d(x, f (x)) as a new input rather



486 18 Case study II: Applications to the fixed point theory of nonexpansive mappings

than using d(x, f (x)) ≤ 5b and consider only the case x∗ := x so that we even have
d(x,xnδ ) ≤ b instead of d(x,x∗nδ

) ≤ 2b, then we get the following bound:

Theorem 18.43. Let (X ,d,W ) be a nonempty hyperbolic space and f : X → X a
nonexpansive mapping, (λn)n∈N,α and K be as before. Let b, b̃ > 0,x ∈ X be such
that

d(x, f (x)) ≤ b̃∧∀n,m ∈ N(d(xn,xm) ≤ b).

Then the following holds

∀ε > 0∀n ≥ h(ε,b, b̃,K,α)
(
d(xn, f (xn)) ≤ ε

)
,

where
h(ε,b, b̃,K,α) := α̂(�2b̃ · exp(K(M + 1))�−1,M)), with

M :=
⌈ 1+2b

ε
⌉

and α̂ as before.

In the case of directionally nonexpansive mappings we no longer can derive the
estimate d(x, f (x)) ≤ 5b used in the proof of theorem 18.42. Even to add an upper
bound b̃≥ d(x, f (x)) as an additional input as we did in theorem 18.43 does not help
since the proof still relies on remark 18.31 which requires f to be nonexpansive.

In the following we, nevertheless, are able to extend theorem 18.42 to directionally
nonexpansive mappings where we will, however, only consider the case where (xn)
itself is bounded (i.e. x = x∗) and use an additional assumption which for the case
of constant λk := λ though is redundant. Using this we will obtain a different bound
on d(x, f (x)) which depends on α .

For any k ∈ N, we define the sequence ((xk)m)m∈N by:

(xk)0 = xk, (xk)m+1 = (1−λm)(xk)m ⊕λk f ((xk)m).

Hence, for any k ∈ N, ((xk)m)m∈N is the Krasnoselski-Mann iteration starting with
xk.

Remark 18.44. ((xk)m)m∈N is not in general a subsequence of (xn)n∈N. But if
(λn)n∈N is a constant sequence, λn = λ , then (xk)m = xk+m for all m,k ∈ N, hence
((xk)m)m∈N is a subsequence of (xn)n∈N.

Theorem 18.45 (Kohlenbach-Leuştean [232]). Let (X ,d,W ) be a nonempty hy-
perbolic space and f : X → X a directionally nonexpansive mapping. Let (λn)n∈N

be a sequence in [0,1) which is divergent in sum and satisfies

∀n ∈ N
(
λn ≤ 1− 1

K

)

for some K ∈ N, K ≥ 1.
Let α : N×N→ N be such that
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∀i,n ∈ N
(
(α(i,n) ≤ α(i+ 1,n))∧ (n ≤

i+α(i,n)−1

∑
s=i

λs)
)
.

Let b > 0 and x ∈ X such that

∀n,k,m ∈ N
(
d(xn,(xk)m) ≤ b

)
.

Then the following holds

∀ε > 0∀n ≥ h(ε,b,K,α)
(
d(xn, f (xn)) ≤ ε

)
,

where

h(ε,b,K,α) := α(0,1)+ α̂∗(�2b ·α(0,1) · exp(K(M + 1))�−1,M), with

M :=
⌈ 1+2b

ε
⌉

and α̂∗(0,n) := α̃∗(0,n), α̂∗(i+ 1,n) := α̃∗(α̂∗(i,n),n) with

α̃∗(i,n) := i+ α∗(i,n),

α∗(i,n) := α(i+ α(0,1),n) (i,n ∈ N).

Proof: Since d(xnxm) = d(xn,(x0)m) the assumption on b implies that the sequence
(xn)n∈N is b-bounded, i.e.

∀m,n ∈ N
(
d(xn,xm) ≤ b

)
.

From the second property of α it follows that

α(0,1)−1

∑
s=0

λs ≥ 1.

So, clearly, there exists an N ∈ N, N ≤ α(0,1)−1 such that

λN ≥ 1
α(0,1)

.

Using that ((d(xn, f (xn)))n∈N is nonincreasing we conclude that

(1) d(xα(0,1), f (xα(0,1))) ≤ d(xN , f (xN)) =
1

λN
d(xN ,xN+1) ≤ b ·α(0,1).

Define μn := λα(0,1)+n for all n ∈ N. Obviously, (μn)n∈N still is divergent in sum
and μn ≤ 1− 1

K for all n ∈ N.
Now consider the Krasnoselski-Mann iteration (yn)n∈N of f with starting point y :=
xα(0,1) associated with (μn)n∈N

y0 := y := xα(0,1), yn+1 := (1− μn)yn ⊕ μn f (yn).
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By an easy induction on n one verifies that

yn = xα(0,1)+n

for all n ∈ N. So

∀m,n ∈ N
(
d(yn,ym) = d(xα(0,1)+n,xα(0,1)+m) ≤ b

)
.

Now we are in the position to apply proposition 18.25 to conclude that
lim
n→∞

d(yn, f (yn)) = 0, i.e.

(2) ∀δ > 0∃Nδ∀n ≥ Nδ
(
d(yn, f (yn)) < δ

)
.

Let y∗ := yNδ and (y∗n)n∈N be the Krasnoselski-Mann iteration of f starting from y∗

based on (μn)n∈N. Then, by the assumption on b,

∀n ∈ N
(
d(yn,y∗n) = d(xα(0,1)+n,(xNδ +α(0,1))n) ≤ b

)
.

Define for all i,n ∈ N,
α∗(i,n) := α(i+ α(0,1),n).

It follows immediately that α∗(i,n) ≤ α∗(i+ 1,n) and that

i+α∗(i,n)−1

∑
s=i

μs =
i+α(i+α(0,1),n)−1

∑
s=i

λα(0,1)+s =
i+α(0,1)+α(i+α(0,1),n)−1

∑
s=i+α(0,1)

λs ≥ n.

The hypotheses of theorem 18.30 are satisfied with μn,α∗,y,y∗ instead of λn,α,x,x∗,
so we can apply it to get

∀ε > 0∀n ≥ h∗(ε,b, b̃,K,α∗)(d(yn, f (yn)) < d(y∗, f (y∗))+ ε),

where

h∗(ε,b, b̃,K,α∗) := α̂∗(�2b̃ · exp(K(M + 1))�−· 1,M), where

M :=
⌈ 1+2b

ε
⌉

and b̃ > 0 is such that b̃ ≥ d(y, f (y)).

By (1), we have that

d(y, f (y)) = d(xα(0,1), f (xα(0,1))) ≤ b ·α(0,1)

and so we can take b̃ := b ·α(0,1).
Now consider

h′(ε,b,K,α) := α̂∗(�2b ·α(0,1) · exp(K(M + 1))�−1,M).

Applying now (2), it follows that
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(3) ∀ε > 0∀n ≥ h′(ε,b,K,α)(d(yn, f (yn)) < δ + ε).

Since δ > 0 was arbitrary, this yields

∀ε > 0∀n ≥ h′(ε,b,K,α)(d(yn, f (yn)) ≤ ε
)
, i.e.

∀ε > 0∀n ≥ h′(ε,b,K,α)(d(xα(0,1)+n, f (xα(0,1)+n)) ≤ ε
)
.

Finally, letting h(ε,b,K,α) := α(0,1)+ h′(ε,b,K,α), we get

∀ε > 0∀n ≥ h(ε,b,K,α)(d(xn, f (xn)) ≤ ε
)
.

�

As mentioned already, the condition

∀n,k,m ∈ N(d(xn,(xk)m) ≤ b)

is equivalent to the boundedness of (xn) by b

∀n,m ∈ N(d(xn,xm) ≤ b)

in the case of constant λn = λ . Hence we obtain the following strong uniform ver-
sion of theorem 2 in [186] (note that theorem 2 in [186] does not state any uniformity
of the convergence at all).

Corollary 18.46. Let (X ,d,W ) be a nonempty hyperbolic space and f : X → X a
directionally nonexpansive mapping. Let b > 0, K ∈ N,K ≥ 2 and λ ∈ [ 1

K ,1− 1
K ].

Let λn := λ for all n ∈ N. Let x ∈ X such that d(xn,xm) ≤ b for all m,n ∈ N. Then
the following holds

∀ε > 0∀n ≥ h(ε,b,K)
(
d(xn, f (xn)) ≤ ε

)
,

where

h(ε,b,K) := K + K ·M · �2b ·K · exp(K(M + 1))� and M :=
⌈

1 + 2b
ε

⌉

.

Proof: The corollary follows using theorem 18.45 by a reasoning similar to the one
used in the proof of corollary 18.39. We leave the details to the reader (alternatively:
see [232]). �

The quantitative version of the Ishikawa-Goebel-Kirk theorem provided in theorem
18.43 was obtained from our analysis of the proof of the Borwein-Reich-Shafrir the-
orem using the truth of the Ishikawa-Goebel-Kirk theorem rather than its proof. We
now give a direct logical analysis of the proof of the Ishikawa-Goebel-Kirk theorem
yielding another quantitative version of this theorem (as predicted in application
18.12 above but treating as in [126] only the case x∗ := x ). This time we will also
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be able to weaken the requirement of (xn) being bounded by not growing to fast (in
distance from x). We first present this proof (extended at the same time to direction-
ally nonexpansive mappings).

For the proof of proposition 18.25 we need the following

Lemma 18.47. Under the hypotheses of proposition 18.18, the following are equiv-
alent
(i) (xn)n∈N is bounded;
(ii) (yn)n∈N is bounded;

(iii) the set {d(xn,yn+i) | n, i ∈ N} is bounded.

Proof: Let n, i ∈ N.
(i)⇒(ii): d(yn,yn+i)≤ d(yn,xn)+d(xn,xn+i)+d(xn+i,yn+i)≤ 2d(x0,y0)+d(xn,xn+i),
since (d(xn,yn))n∈N is nonincreasing, by proposition 18.18.
(ii)⇒(iii): d(xn,yn+i) ≤ d(xn,yn)+ d(yn,yn+i) ≤ d(x0,y0)+ d(yn,yn+i).
(iii)⇒(i): d(xn,xn+i) ≤ d(xn,yn+i)+ d(yn+i,xn+i) ≤ d(xn,yn+i)+ d(x0,y0). �

Proof of proposition 18.25 (Ishikawa-Goebel-Kirk theorem for directionally non-
expansive mappings): Let (X ,d,W ) be a hyperbolic space, f : X → X directionally
nonexpansive and (λn) a sequence in [0,1− 1

K ] for some K (assuming w.l.o.g. that
(λn) is bounded away from 1 already from the beginning). Let (λn) be divergent in
sum and let (xn) be the Krasnoselski-Mann iteration of f starting from x based on
(λn). We assume that (xn) is bounded. By lemma 18.47 there exists a b ∈ N such
that

(0) ∀i,n ∈ N(b ≥ d(xi,yi+n)),

where yk := f (xk). By the fact that (d(xi,yi))n is nonincreasing (proposition 18.24)
r := lim

n→∞
d(xn,yn) exists. To show: r = 0. Assume that r > 0 and let δ > 0 be so

small that

(1) δ exp
(

K
(

b
r

+ 1
))

≤ r.

Choose i ∈ N so that

(2) ∀ j ∈ N
(
d(xi,yi)−d(xi+ j,yi+ j) ≤ δ

)
.

Let n ∈ N be so that
(3) r ·Si,n−1 ≤ b ≤ r ·Si,n.

Then
(4) r ·Si,n < b + r.

In the proof of the Borwein-Reich-Shafrir theorem above we already established
that

(5) Pi,n ≤ exp(K ·Si,n).

By the inequality of Goebel and Kirk stated in proposition 18.18 and the choices of
δ > 0 and i,n ∈ N we get
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b + r
(3)
≤ (1 + Si,n)r ≤ (1 + Si,n)d(xi,yi)

(2),(5),prop.18.18
≤ d(xi,yi+n)+ δ · exp(K ·Si,n)

(0),(4)
< b + δ · exp

(
K
( b

r + 1
)) (1)

≤ b + r.

This contradiction shows that r = 0. �

Remark 18.48. Inspection of the proof above shows that it also establishes theorem
18.21.

Logical analysis of the proof: as in the case of the proof of the Borwein-Reich-
Shafrir theorem it is clear that the proof above can be formalized in A ω [X ,d,W ]−b
using PCM (i.e. arithmetical comprehension) to show the existence of r. Again (and
much easier than in the case of the proof of the Borwein-Reich-Shafrir theorem)
it even follows that instead of PCM we only need the Cauchy property PCMar of
(d(xn,yn))n (to satisfy (2)): this is verified by replacing the assumption that r > 0
by

∀n ∈ N(d(xn,yn) ≥ ε)

for some arbitrarily chosen ε > 0. The proof then goes through unchanged with r
replaced by ε. If b̃ ≥ d(x0,y0) and b is a bound on (xn) then (by the proof of lemma
18.47) 3b̃+b is a bound on d(xi,yi+n) for all i,n ∈ N. As δ we, therefore, may take

δ :=
ε

exp
(

K ·
(

3b̃+b
ε + 1

)) .

Put

M :=
⌈

3b̃+ b
ε

⌉

and define n ∈ N as

n := α∗(i,M) := mink
[

3b̃+ b
ε

≤ Si,k

]

.

Then 3b̃ + b ≤ ε · Si,n and ε · Si,n−1 ≤ 3b̃ + b and so also ε · Si,n < 3b̃ + b + ε. Let
i ∈ N be such that

d(xi,yi)−d(xi+α∗(i,M),yi+α∗(i,M)) ≤ δ .

As in the proof above one concludes that d(xi,yi) < ε. We now can reason exactly
as in the second half of the proof of theorem 18.30 (logical analysis of the Borwein-
Reich-Shafrir theorem) to conclude that the following function provides a bound on
i :

h∗(ε,b, b̃,K,α) := α̂

⎛

⎝

⎡

⎢
⎢
⎢

b̃ · exp
(

K ·
(

3b̃+b
ε + 1

))

ε

⎤

⎥
⎥
⎥
−·1,M

⎞

⎠ ,
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where α̂ as before. Thus

∀n ≥ h∗(ε,b, b̃,K,α)
(
d(xn, f (xn)) ≤ ε)

)
.

Inspection of the proof shows that instead of the fact that the whole sequence (xn)
is bounded by b we have only used that for i ≤ h∗(ε,b, b̃,K,α)

d(xi,xi+α∗(i,M)) ≤ b

to conclude (using again the proof of lemma 18.47) that

d(xi,yi+α∗(i,M)) ≤ 3b̃+ b.

For i ≤ h∗(ε,b, b̃,K,α) it follows from (15) and (16) in the proof of theorem 18.30
that

α∗(i,M) ≤ α(h∗(ε,b, b̃,K,α),M).

So instead of ∀i, j (d(xi,x j) ≤ b), actually the assumption

∀i ≤ h∗(ε,b, b̃,K,α)∀ j ≤ α(h∗(ε,b, b̃,K,α),M)
(
d(xi,xi+ j) ≤ b

)

suffices for the above conclusion. Thus in total we have shown the following:

Theorem 18.49. Direct logical analysis of the proof of the Ishikawa-Goebel-Kirk
theorem shows the following: Let (X ,d,W ) be a nonempty hyperbolic space, f :
X → X a directionally nonexpansive mapping, (λn),K,α as in theorem 18.30, x ∈ X
and (xn) the Krasnoselski-Mann iteration of f starting from x and b̃ > 0 so that
d(x, f (x)) ≤ b̃. Let h∗ be defined as above. Then for every ε,b > 0 the following
holds (abbreviating h∗(ε,b, b̃,K,α) by h∗):

∀i ≤ h∗∀ j ≤ α(h∗,M) (d(xi,xi+ j) ≤ b) →∀n ≥ h∗
(
d(xn, f (xn)) < ε

)
.

For the case of sequences (λn) in [a,b] for 0 < a < b < 1 we obtain from theorem
18.49 the following qualitative improvement of the Ishikawa-Goebel-Kirk theorem
concerning the requirement of (xn) being bounded (which for the case of constant
λn := λ ∈ (0,1) and convex subsets of normed spaces was first observed in [11]
(theorem 2.1)):

Theorem 18.50. Let (X ,d,W ) be a hyperbolic space and f : X → X nonexpansive.
For x ∈ X and (λn) in [a,b], where 0 < a < b < 1, let (xn) be the corresponding
Krasnoselski-Mann iteration of f starting from x. Let

c(n) := max{d(x,x j) : j ≤ n}.

Then

lim
n→∞

c(n)
n

→ 0

implies that
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lim
n→∞

d(xn, f (xn)) = 0.

Proof: Let K ∈ N, K ≥ 2, so that λn ∈ [ 1
K ,1− 1

K ] for all n ∈ N and ε > 0. As in the
proof of corollary 18.39 we can use in this case in the previous result α(i,M) :=
K ·M = K ·

⌈
3b̃+b

ε

⌉
. Let b̃ ≥ 1 such that d(x, f (x)) ≤ b̃. By the assumption that

lim c(n)
n

n→∞→ 0 it follows that

∃N∀n ≥ N
(
c(n) ≤ ε

3Kb̃
·n
)
.

Let b ≥ 2 be such that N � K(3b̃+b)
ε ≥ N. Then

c
(

K(3b̃+ b)
ε

)

≤ K(3b̃+ b)
ε

· ε
3Kb̃

≤ b.

Hence
∀ j ≤ K ·M (d(x,x j) ≤ b).

Since xi+n = (xn)i, where ((xn)i)i denotes the Krasnoselski-Mann iteration starting
from x∗ := xn, we can apply lemma 18.28 to conclude that

∀i,n ∈ N (d(xi,xi+n) ≤ d(x,xn)).

So put together we have that

∀i ∈ N∀ j ≤ K ·M (d(xi,xi+ j) ≤ b).

Hence by the previous result we obtain d(xn, f (xn)) < ε for all n ≥ h∗(·).
Since ε > 0 was arbitrary, the conclusion follows. �

Remark 18.51. The previous result shows that d(xn, f (xn))→ 0 provided (xn) grows
with a lower than linear (in n) rate. This is optimal in the sense that linear growth
does not suffice as follows from the following simple example: X := R, f (x) :=
x + 1 and λ := 1

2 . For the starting point x0 := 0 we have for the Krasnoselski-Mann
iteration (xn) that xn = n

2 , but d(xn, f (xn)) = 1 for all n ∈ N.

Discussion: The bound obtained in theorem 18.49 is very similar to the one we got
combining our quantitative version of the Borwein-Reich-Shafrir theorem with the
Ishikawa-Goebel-Kirk theorem in theorem 18.43. However, while the latter applied
to general x∗ and not only x∗ := x the former also extended to directionally non-
expansive mappings without any extra assumption as we needed in theorem 18.45.
The main difference, however, is that in the above direct analysis we could also in-
vestigate how much of the boundedness assumptions of (xn) is actually needed for
the proof of the Ishikawa-Goebel-Reich theorem, whereas in the approach via the
Borwein-Reich-Shafrir theorem this was blocked since we used only the truth of the
former (rather than its proof).

We continue our case study of proof mining in fixed point theory by establishing the
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bound Ω predicted already in application 18.16 as an instance of the metatheorems
derived in chapter 17.

We recall the definition of the concept of modulus of total boundedness in a slightly
different from:

Definition 18.52. Let (M,d) be a totally bounded metric space. We call γ : N → N

a modulus of total boundedness for M if for any k ∈ N there exist elements
a0, . . . ,aγ(k) ∈ M such that

∀x ∈ M∃i ≤ γ(k)
(
d(x,ai) ≤ 2−k).

Remark 18.53. Every modulus of total boundedness in the sense of application
18.16 is also one in the sense of the previous definition. Conversely, if γ is a modulus
in the sense of the previous definition then k ·δ (k) is one in the sense of application
18.16.

Definition 18.54. Let (M,d) be a metric space, f : M → M a selfmapping of M and
(xn) a sequence in M. A function δ : N → N is called an approximate fixed point
bound for (xn) if

∀k ∈ N∃m ≤ δ (k)
(
d(xm, f (xm)) ≤ 2−k).

Of course, an approximate fixed point bound only exists is (xn) contains arbitrarily
good approximate fixed points.

In the following, (X ,d,W ) is a nonempty hyperbolic space, f : X →X is a nonexpan-
sive selfmapping of X and (λn) a sequence in [0,1]. (xn) denotes the corresponding
Krasnoselski-Mann iteration starting from x0 ∈ X .

Remark 18.55. As we have proved already above, the sequence (d(xn, f (xn)) is al-
ways nonincreasing. Hence any approximate fixed point bound Φ for (xn) is in fact
a rate of convergence for d(xn, f (xn)).

Lemma 18.56. Let ε > 0 and u ∈ X be an ε-fixed point of f , i.e. d(u, f (u)) ≤ ε.
Then

∀n,m ∈ N(d(xn+m,u) ≤ d(xn,u)+ m · ε).

Proof: Let n ∈ N be fixed. We proceed by induction on N :
For m = 0, the lemma trivially is true.
m �→ m+ 1 :

d(xn+m+1,u) = d((1−λn+m)xn+m ⊕λn+m f (xn+m),u)
W -axiom (i)

≤ (1−λn+m)d(xn+m,u)+ λn+md( f (xn+m),u)

≤ (1−λn+m)d(xn+m,u)+ λn+md( f (xn+m), f (u))+ λn+md( f (u),u)
f n.e.
≤ (1−λn+m)d(xn+m,u)+ λn+md(xn+m,u)+ ε

I.H.
≤ d(xn,u)+ (m+ 1)ε.

�
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Notation. 18.57 For n,m ∈ N with m ≥ n, we use [n;m] to denote the set
{n,n + 1, . . . ,m} ⊂ N.

We now assume that X is totally bounded.

Theorem 18.58. Let k ∈ N,g : N → N,δ : N → N and γ : N → N. We define a func-
tion Ω(k,g,δ ,γ) (primitive) recursively as follows:

Ω(k,g,δ ,γ) := max
i≤γ(k+3)

Ψ0(i,k,g,δ ),

where
⎧
⎪⎨

⎪⎩

Ψ0(0,k,g,δ ) := 0

Ψ0(n + 1,k,g,δ ) := δ
(

k + 2 + �log2(max
l≤n

g(Ψ0(l,k,g,δ ))+ 1)�
)

.

If δ is an approximate fixed point bound for (xn) and γ a modulus of total bounded-
ness for X, then

∀k ∈ N∀g : N → N∃n ≤ Ω(k,g,δ ,γ)∀i, j ∈ [n;n + g(n)]
(
d(xi,x j) ≤ 2−k).

Proof: We first note that by remark 18.55 xδ (k) is a 2−k-fixed point for any k ∈ N.
Define ni := Ψ0(i,k,g,δ ).
Claim: ∃i, j ≤ γ(k + 3)+ 1, i �= j(d(xni ,xn j) ≤ 2−k−2).
Proof of claim: By the assumption on γ it follows that there exist points
a0, . . . ,aγ(k+3) ∈ X such that for at least two of the (γ(k + 3) + 2)-many indices
0 ≤ i ≤ γ(k+3)+1 the corresponding xni’s must be in a common 2−k−3-ball around
some al with l ≤ γ(k + 3), i.e.

∃i, j ≤ γ(k + 3)+ 1, i �= j,∃l ≤ γ(k + 3) :

d(al,xni) ≤ 2−k−3 ∧d(al,xn j ) ≤ 2−k−3

and hence d(xni ,xn j ) ≤ 2−k−2.
End of the proof of the claim.
By the claim, let i < j ≤ γ(k + 3)+ 1 be such that

d(xni ,xn j ) ≤ 2−k−2.

By construction and j > 0, xn j is a (2
−k−2−�log2(max

l< j
g(Ψ0(l,k,g,δ ))+1)�

)-fixed point of
f and hence a-fortiori a (2−k−2−�log2(g(Ψ0(i,k,g,δ ))+1)�) = (2−k−2−�log2(g(ni)+1)�)-fixed
point of f . By the lemma above we, therefore, obtain for all l ≤ g(ni) :
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d(xni+l,xn j) ≤ d(xni ,xn j)+ l ·2−k−2−�log2(g(ni)+1)�

≤ d(xni ,xn j)+ 2−k−2 ≤ 2−k−1.

Thus
∀ j1, j2 ∈ [ni;ni + g(ni)](d(x j1 ,x j2) ≤ 2−k),

where i≤ γ(k+3). Since Ω(k,g,δ ,γ) = max{ni : i≤ γ(k+3)}, the theorem follows.
�

Remark 18.59. Note that Ψ is a primitive recursive functional in the sense of Kleene
[194] which corresponds to proposition 13.27.

If (λn) is in [0,1− 1
K ] (for some K ∈ N,K ≥ 1) and divergent in sum with ∀n(n ≤

α(n)
∑

i=0
λi) and X is b-bounded then we can take the approximate fixed point bound δ

as δ (k) := h(2−k,b,K,α) where h is the bound from corollary 18.35.

18.4 Asymptotically nonexpansive mappings

As discussed already earlier in this chapter, asymptotic regularity results prior to
Ishikawa’s theorem [176] were proved only in the special context of uniformly con-
vex normed spaces (see e.g. Krasnoselski [238] and Browder-Petryshyn [56]). While
these results to a large extent are superseded by Ishikawa’s theorem the particular
proof technique used first in Krasnoselski’s pioneering paper [238] is still of interest
for the following reasons (among others):

• The technique can be used to show asymptotic regularity in uniformly convex
normed spaces for Krasnoselski-Mann iterations based on sequences of scalars
(λn) in [0,1] that only have to satisfy the condition

∞

∑
i=0

λi(1−λi) = ∞.

This was shown in Groetsch [144] for the normed case and generalized in
Leuştean [263] to the hyperbolic case.
The above condition is more general than the condition in Ishikawa’s theorem
and, in fact, is optimal even in the special case of Hilbert spaces.

• In uniformly convex spaces one can generalize many results to the class of
asymptotically nonexpansive mappings (see below) while for the general normed
case almost nothing is known for this class. However, one now has to require that
λn ∈ [ 1

L ,1− 1
L ] for some L ≥ 2.

• The bounds extracted from such proofs that are based on the uniform convex-
ity usually are very simple constructions in the modulus of uniform convex-
ity and, in fact, often yield quadratic bounds in the case of Hilbert spaces (see
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[219, 224, 231]). Since the proofs usually generalize to uniformly convex hyper-
bolic spaces one even gets such quadratic bounds in the case of CAT(0)-spaces
(see [263, 234]). Only for the special case of constant λn := λ ∈ (0,1) and the
normed setting quadratic bounds could be obtained so far without assuming uni-
form convexity by the deep work of Baillon-Bruck [10].

Typical for all these asymptotic regularity proofs relying on uniform convexity is
that they assume the existence of a fixed point of the function in question. In the
bounded case this assumption usually can be shown to be true using appropriate
fixed point theorems. At the time of Krasnoselski’s paper [238] only Schauder’s
fixed point theorem was available and hence he had to restrict himself to the com-
pact case. Browder and Petryshyn [56] could rely on the Browder-Göhde-Kirk
fixed point theorem that was established shortly before and so replaced compact-
ness by ‘closed and bounded’. For asymptotically nonexpansive mappings a fixed
point theorem corresponding to the Browder-Göhde-Kirk theorem was established
in Goebel-Kirk [125] which introduced this class of functions. By the corollary
17.59 (that can be adapted to the uniformly convex hyperbolic case [262] and which
also holds for the uniformly convex normed case [120]) it follows that in the course
of an asymptotic regularity proofs the assumption of the existence of a fixed point
can be replaced by the existence of approximate fixed points in some fixed neighbor-
hood. In the bounded case, the latter condition usually can easily be established (and
e.g. for the normed case and nonexpansive mappings trivially follows, see proposi-
tion 18.11) without the use of completeness/closedness-assumptions. In particular,
one obtains by logical analysis of Krasnoselski’s original proof not only an explicit
rate of asymptotic regularity but even a totally elementary proof of asymptotic regu-
larity (at the same time generalized from the compact to the bounded case) that nei-
ther needs Schauder’s fixed point theorem nor the Browder-Göhde-Kirk fixed point
theorem and that could have been conceived of already by Banach (see Kohlenbach
[219]).

In the following we present (without proof) the maybe most advanced result of this
type so far achieved by the logical metatheorems proved in chapter 17. This result
is concerned with the aforementioned asymptotically nonexpansive mappings:

Definition 18.60. Let (X ,d) be a metric space. A function f : X → X is called
asymptotically nonexpansive if for some sequence (kn) in [0,∞) with limn→∞ kn = 0
one has (with f n denoting the n-th iteration of f )

d( f nx, f ny) ≤ (1 + kn)d(x,y), ∀n ∈ N,∀x,y ∈ X .

In the case of asymptotically nonexpansive mappings one considers the following
version of the Krasnoselski-Mann iteration:

x0 := x, xn+1 := (1−λn)xn ⊕λn f n(xn).

We recall the definition of uniformly convex hyperbolic spaces from definition
17.109 in chapter 17:
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Definition 18.61 ([128, 262]). A hyperbolic space (X ,d,W ) is uniformly convex if
for any r > 0 and any ε ∈ (0,2] there exists δ ∈ (0,1] such that for all a,x,y ∈ X ,

d(x,a) ≤ r

d(y,a) ≤ r

d(x,y) ≥ εr

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⇒ d
(

1
2

x⊕ 1
2

y,a
)

≤ (1− δ )r. (18.1)

A mapping η : (0,∞)× (0,2]→ (0,1] providing such a δ := η(r,ε) for given r > 0
and ε ∈ (0,2] is called a modulus of uniform convexity.
We say that η is monotone if it decreases with r (for any fixed ε).

Using an appropriate version of the metatheorems from chapter 17 the following re-
sult was recently extracted from an asymptotic regularity proof that – for the normed
case – essentially was implicit in the literature (see Kohlenbach-Lambov [231] for
details) and which could be generalized to the hyperbolic case. For the uniformly
convex normed case the theorem below was first established in Kohlenbach-Lambov
[231].

Theorem 18.62 (Kohlenbach-Leuştean [234]). Let (X ,d,W ) be a uniformly con-
vex hyperbolic space with a monotone modulus of uniform convexity η and f : X →
X be asymptotically nonexpansive with sequence (kn).
Assume that K ≥ 0 is such that ∑∞

n=0 kn ≤ K and that L ∈ N,L ≥ 2 is such that
1
L ≤ λn ≤ 1− 1

L for all n ∈ N.
Let x ∈ X and b > 0 be such that for any δ > 0 there is p ∈ X with

d(x, p) ≤ b∧d( f (p), p) ≤ δ .

Then for all ε ∈ (0,1] and for all g : N → N,

∃N ≤ Φ(K,L,b,η ,ε,g)∀m ∈ [N,N + g(N)](d(xm, f (xm)) < ε) ,

where
Φ(K,L,b,η ,ε,g) := h(M)(0), h(n) := g(n + 1)+ n + 2,

M :=
⌈

3(5KD+D+ 11
2 )

δ

⌉

, D := eK (b + 2),

δ := ε
L2F(K) ·η

(
(1 + K)D+ 1, ε

F(K)((1+K)D+1)

)
,

F(K) := 2(1 +(1 + K)2(2 + K)).

Moreover, N = h(i)(0)+ 1 for some i < M.
If η(r,ε) can be written as ε · η̃(r,ε), where, for any fixed r, the function η̃(r,ε)
decreases with ε, then even

∃N ≤ Φ(K,L,b, η̃ ,ε,g)∀m ∈ [N,N + g(N)](d(xm, f (xm)) < ε)

with Φ as above.
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Proof: See Kohlenbach-Leuştean [234]. �

In the case where (X ,d,W ) is bounded one can show that asymptotically nonexpan-
sive mappings have approximate fixed points and – if (X ,d) is complete – even fixed
points (see [234]) so that the condition on x made in the previous theorem always is
satisfied with bX being any upper bound on the metric d.

For CAT(0)-spaces (X ,d) one can take as modulus of uniform convexity η(ε) :=
η(r,ε) := ε2

8 . Since η(ε) = ε · η̃(ε) with η̃(ε) := ε/8 being monotone, the last part
in the theorem above applies. Moreover, if instead of metastability one only is in-
terested in a bound on some N such that d(xN , f (xN)) < ε (which is the special case
where g ≡ 0), then this yields the following quadratic bound:

Corollary 18.63 (Kohlenbach-Leuştean [234]). Let (X ,d) be a bounded CAT(0)-
space with diameter bX and f : X → X be asymptotically nonexpansive with se-
quence (kn).
Assume that K ≥ 0 is such that ∑∞

n=0 kn ≤ K and that L ∈ N,L ≥ 2 is such that
1
L ≤ λn ≤ 1− 1

L for all n ∈ N.
Then the following holds for all x ∈ X:

∀ε ∈ (0,1]∃N ≤ Φ(K,L,bX ,ε)(d(xN , f (xN)) < ε) ,

where
Φ(K,L,bX ,ε) := 2M,

M :=
⌈

1
ε2 ·24L2 (5KD+ D+ 11

2

)
(F(K))3((1 + K)D+ 1)2

⌉
,

D := eK (bX + 2) , F(K) := 2(1 +(1 + K)2(2 + K)).

18.5 Applications of proof mining in ergodic theory

The field of ergodic theory has close connections to metric fixed point theory as
nonexpansive mappings f as well as isometries again feature prominently. In re-
cent years, ergodic theory has become a powerful tool in combinatorics and number
theory. This line of research has its origin in Furstenberg’s proof of the famous Sze-
merédi Theorem using ergodic theory and has given rise to ergodic theoretic proofs
of combinatorial results including van der Waerden’s theorem (see Furstenberg
[110]). Most recently, this development has culminated in the spectacular Green-
Tao theorem on the existence of arbitrarily long progressions in the set of prime
numbers (see Green-Tao [142]). This interplay between (often ineffective) infinitary
ergodic theoretic methods and their use in finite combinatorics makes the applica-
tion of proof interpretations (that unwind the combinatorial skeleton of the ergodic
theoretic arguments used) particularly promising.
An early use of proof mining in this context was Girard’s ([122], pp. 237–251, 483–
496) logical analysis of two versions of the proof of van der Waerden’s theorem
given by Furstenberg and Weiss (based on topological dynamics). This work led to
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interesting logical insights (e.g. on the phenomenon that small changes in a proof
can result in big differences w.r.t. the growth of extractable bounds; see also [117])
but not to new information on van der Waerden’s theorem. Recently, however, new
quantitative results in ergodic theory have been achieved (based on the metatheo-
rems from chapter 17) in connection with the so-called von Neumann mean ergodic
theorem:

Ergodic theory, in particular, studies the asymptotic behavior of the averaging oper-
ator defined by

An(x) :=
1
n

Sn(x), where Sn(x) :=
n−1

∑
i=0

f i(x).

The context, typically, is that of Hilbert spaces (or, more generally, uniformly con-
vex Banach spaces).
A classical result is the following

Theorem 18.64 (von Neumann mean ergodic theorem). Let X be a Hilbert space
and f : X → X a nonexpansive linear operator. Then for any point x ∈ X the se-
quence (An(x))n defined above converges (in the Hilbert space norm).

Based on (the extraction algorithm from the proofs of) the metatheorems from chap-
ter 17 as well as the methodology of eliminating fixed instances of PCM from chap-
ter 13, Avigad-Gerhardy-Towsner [8] give a thorough logical analysis of a standard
(ineffective) proof of the mean ergodic theorem. Since, as the authors show, there is
(in general) no computable bound on the convergence itself, one instead extracts (as
in theorem 18.58 above) a bound on the no-counterexample version of the Cauchy
property (i.e. metastability in the sense of Tao):

∀g : N → N∀ε > 0∀x ∈ X ∃n∀i, j ∈ [n;n + g(n)](‖Ai(x)−A j(x)‖ < ε).

From corollary 17.71.1) proved in chapter 17 (together with the treatment of the
completeness assumption in section 17.5) it can be inferred (after some preprocess-
ing of the proof) that one can extract a computable bound Φ(d,ε,g) on ∃n that only
depends on a norm upper bound d ≥ ‖x‖,ε and g (note that since f is linear and
nonexpansive, one has ‖ f (x)‖ ≤ ‖x‖ so that ‖ f (x)− x‖ ≤ 2‖x‖).
Among many other results, the following explicit bound Φ is extracted in [8]:

Theorem 18.65 (Avigad-Gerhardy-Towsner [8]). Let X and f be as in theorem
18.64. Then

∀g : N → N∀ε > 0∀x ∈ X ∃n ≤ Φ ∀i, j ∈ [n;n + g(n)](‖Ai(x)−A j(x)‖ ≤ ε),

where Φ = h(k)(0) with ρ := �‖x‖
ε �, k := 29ρ2, h(n) := n+213ρ4g̃((n+1)g̃(2nρ)ρ2)

and g̃(n) := max{i+ g(i) : i ≤ n}.
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18.6 Exercises, historical comments and suggested further
reading

Exercises:

1) Show that lemma 18.7 also holds for hyperbolic spaces (X ,d,W ) instead of C.
2) Prove the statements in remark 18.32.
3) Fill in the details in the proof of corollary 18.46.

Historical comments and suggested further reading: For general information on
metric fixed point theory see Goebel-Kirk [127] and Kirk-Sims [192]. Ishikawa’s
theorem is due to Ishikawa [176] and was generalized to spaces of hyperbolic type
in Goebel-Kirk [126]. The Borwein-Reich-Shafrir theorem was established in [40].
The results from section 18.2 are essentially due to Gerhardy-Kohlenbach [120].
Many of the results from section 18.3 are taken from Kohlenbach-Leuştean [232]
(the case of convex subsets in normed spaces was first treated in Kohlenbach [220]
with some additions in Kohlenbach [224]). That paper was based on the somewhat
more restricted notion of hyperbolic space as defined in Kirk [185] and Reich-
Shafrir [310]. However, is was stressed that most results remain correct in the setting
of hyperbolic spaces which is even more general as our notion of hyperbolic space.
The few other results, where the more restricted concept of hyperbolic space in the
sense of [310] was needed, easily extend to our notion as we showed above. Since
for our concept of hyperbolic space we have that a convex subset of a hyperbolic
space is hyperbolic itself, we did not have to consider convex subsets in this chap-
ter. Theorems 18.49 and 18.50 are proved here for the first time. Theorem 18.34 was
proved in the normed case first in Kohlenbach [224] and was generalized to hyper-
bolic spaces in Kohlenbach [229]. Theorem 18.58 is taken from Kohlenbach [227]
which also contains a generalization to asymptotically nonexpansive functions as
well as the noncomputability theorem 18.4.
The uniform bounds on the Borwein-Reich-Shafrir result as well as on Ishikawa’s
theorem presented in this chapter are used by Kohlenbach and Leuştean in [233]
to prove new qualitative results on the asymptotic fixed point property of product
spaces.
Many other applications of proof mining and the general metatheorems from chap-
ter 17 are concerned with the case of convex subsets of uniformly convex normed
spaces: In Kohlenbach [224] a full quantitative version of a theorem of Groetsch
is given. This is generalized in Leuştean [263] to uniformly convex hyperbolic
spaces yielding, in particular, a quadratic rate of asymptotic regularity for CAT(0)-
spaces. Kohlenbach-Lambov [231] gives effective approximate fixed point bounds
for Krasnoselski-Mann iterations of asymptotically weakly quasi-nonexpansivemap-
pings in uniformly convex spaces. For asymptotically nonexpansive mappings these
results are generalized to uniformly convex hyperbolic spaces in Kohlenbach-
Leuştean [234] (see section 18.4). Lambov [260] uses proof mining to obtain a
quantitative version of Hillam’s theorem (a generalization of Krasnoselski’s theo-
rem to Lipschitz continuous functions on the real line). In Leuştean [264] effective
uniform rates on the asymptotic regularity of so-called Halpern iterations of nonex-
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pansive mappings are extracted. Gerhardy [116] provides effective bounds on Kirk’s
fixed point theorem for asymptotic contractions (Kirk [188]) which has been further
improved in Briseid [52]. Using results from [52] it is shown in Briseid [53] that
Picard iterations of asymptotic contraction are always bounded so that the corre-
sponding assumption in Kirk’s theorem is redundant. Briseid [50] gives a thorough
logical analysis (based on the metatheorems developed in chapter 17) of the proof
of a fixed point theorem due to Kincses and Totik [182] for so-called ‘generalized
p-contractive mappings’ which is a particularly general class of mappings of con-
tractive type (see Rhoades [315, 316]). In fact, Briseid [50] (and the subsequent
Briseid [51]) obtains the first effective quantitative version of this theorem. A sur-
vey on all these results can be found in Kohlenbach [229].
The result discussed in section 18.5 is due to Avigad et al. [8] which contains many
further interesting applications of proof mining in the context of ergodic theory.



Chapter 19
Final comments

In this book we have studied various proof interpretations and demonstrated their
use as tools for extracting new (both qualitative and quantitative) information from
given proofs. In particular, we presented extended case studies with applications of
these techniques to concrete proofs in the areas of approximation theory and metric
fixed point theory.

A common feature of proof interpretations is that they translate a system T into
another system S by assigning to every formula A of the former a formula AI of
the latter such that the implication

T � A ⇒ S � AI

holds. Moreover the proof of AI in S can be obtained by a simple recursion over a
given proof of A in T since the interpretations respect the logical deduction rules
(locality or modularity of proof interpretations).

As a consequence of this such proof interpretations preserve to a certain extent the
structure of the original proof and the resulting S -proof of AI will not be much
longer than the original proof of A in T (see [159]). This is in sharp contrast to struc-
tural proof transformations like cut-elimination or normalization which in general
cause a non-elementary recursive blow-up of the original proof ([344, 296, 305]).
Of course, at a few places (proposition 10.55, corollary 10.59) we had to normal-
ize the term extracted by the proof interpretation which again is of non-elementary
complexity. However, as we have seen one can also make substantial use of terms
involving higher types by exploiting the mathematical structure of the functionals
denoted by these terms without having to normalize them (see e.g. theorem 6.8,
corollary 6.10, proposition 9.10 and – if we allow Φ to be an arbitrary closed term
of ŴE-HA

ω
|\ – also theorem 10.58)! So proof interpretations of the sort we inves-

tigated in this book allow one to separate those aspects of unwinding proofs which
can be carried out locally by recursion over the proof from those which involve a
global rebuilding of a proof or a term like normalization.
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The metatheorems obtained in chapter 17 even guarantee a-priori (without any
compactness assumptions) new qualitative uniformity results (i.e. the existence of
strongly uniform bounds) without having to carry out any actual extraction (which,
however, is possible as well by the algorithm provided by the proof of the respective
metatheorem).

Another important consequence of the modularity of proof interpretations is that
they can easily be extended to systems T̃ ⊇ T obtained by adding further non-
logical axioms Γ to T . If the interpretation Γ I of Γ is provable in S (resp. in
some extension S̃ of S ), then the given interpretation immediately extends to an
interpretation of T̃ in S (resp. in S̃ ). So it suffices to consider the new axioms.

As a simple example for such an extension we recall e.g. the following: both func-
tional interpretation and negative translation are trivial for purely universal sen-
tences P := ∀xA0(x). Because of this the proofs of e.g. theorem 10.7 and theorem
10.8 immediately applied to WE-PAω +P , WE-HAω +P and not just to WE-PAω ,
WE-HAω (for P in the language of WE-PAω ).
As a corollary we obtained that the addition of (S ω -true) universal axioms to WE-
PAω+ QF-AC doesn’t change the provably recursive functionals of the system. This
observation – which has been stressed in the context of first order arithmetic by G.
Kreisel – can be extended also to more general classes of formulas. In the context
of our general metatheorem on proof mining 15.1 from chapter 15 it turned out that
we may add arbitrary lemmas Γ of the form

∀x ∈ X∃y ∈ K(F(x,y) =R 0)

as axioms where X ,K are (constructively representable) Polish spaces, K is compact
and F : X ×K →R is a constructive and hence continuous function. The fact that the
proofs of such lemmas need not to be analyzed in applications of monotone func-
tional interpretation to the extraction of uniform bounds was extensively used in the
applications presented in chapters 16 and 18. The general metatheorems obtained in
chapter 17 make it possible to add even certain principles of the form above where
K does no longer need to be compact but only metrically bounded.

Finally, proof interpretations can easily be combined with each other: e.g. in chapter
10 we used a combination of three different interpretations: elimination of exten-
sionality, negative translation and (monotone) functional interpretation. These tech-
niques, moreover, can be combined with the method of elimination of monotone
Skolem functions as we showed in chapter 13.

In the applications to proofs in mathematics presented in this book we focussed
on approximation theory and nonlinear analysis. However, the applicability of the
proof-theoretic methods developed in this book by no means is restricted to these
areas. We conclude the book with some wild speculations on rather ambitious future
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projects for proof mining that seem to be approachable by the techniques developed
in this book (or suitable extensions thereof):

1) W.r.t. to applications of the metatheorems for the case of concrete Polish and
compact metric spaces presented in chapter 15 an interesting candidate for proof
mining is A. Bressan’s celebrated uniqueness (and stability result) for entropy-
weak solutions of hyperbolic systems of conservation laws (see Bressan [41]
and Bianchini-Bressan [30]). Here the existence of global solutions is proved
by applying a sequential compactness argument (Helly’s theorem) to a sequence
of approximate solutions. This example (communicated to us by A. Yoshikawa)
looks very promising from our point of view since logical metatheorems suggest
the possibility to

(a) extract a rate Φ of convergence towards approximate solutions,
(b) extract of a rate of strong unicity Ψ from the uniqueness proof,
(c) and to combine Φ and Ψ (as we did in chapter 15) to provide an algorithm

computing the unique exact solution.

2) A proof mining project in the context of algebraic number theory that recently has
been suggested to the author by G. Kreisel is the following one: As conjectured
by G. Frey and proved by K. Ribet, the modularity of a certain class of elliptic
curves (called ‘Frey curves’) implies Fermat’s last theorem: let an + bn = cn be
a counterexample to Fermat’s last theorem, then the corresponding Frey curve is
defined by

y2 = x(x−an)(x + bn).

The Taniyama-Shimura conjecture and now theorem (also called Taniyama-Weil
conjecture T/W) states that all elliptic curves over Q are modular. Wiles and
Taylor [379, 359] proved this conjecture for a large class of elliptic curves that
includes all Frey curves (let us denote the corresponding special case of T/W
by (T/W)F ) thereby establishing Fermat’s last theorem. Meanwhile the full T/W-
conjecture has been proved by Breuil-Conrad-Diamond-Taylor [42].
(T/W)F can be expressed in (maybe a suitable extensions of) the language of
Peano arithmetic PA as a Π 0

1 -sentence as can – trivially – Fermat’s last theorem
(FLT). So

(T/W)F → FLT

has the form Π 0
1 → Π 0

1 . As recently outlined by A. Macintyre, the proof of T/W
apparently can be reformulated in such a way that it becomes formalizable in PA
and it also seems to follow that

PA � (T/W)F → FLT.

(Monotone) functional interpretation would allow one to extract from such a
proof (but also from proofs in theories stronger than PA that are closer to the
original proof) of this implication an explicit function that tells one how much of
(T/W)F actually is needed to prove a particular instance (or family of instances
of) Fermat’s last theorem which could shed new light on the relation between
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T/W and FLT and could be of interest in connection with number fields other
than Q (or even other structures).

3) Concerning further applications of the metatheorems developed in chapter 17
we mentioned already the area of ergodic theory (in particular when related to
combinatorics). The success of Avigad-Gerhardy-Towsner [8] discussed briefly
at the end of chapter 18 makes it very promising to analyze proofs of more re-
cent results in ergodic theory in a similar way. Although usually proofs based on
general ergodic theory may only yield numerically poor bounds, this approach
might lead to new uniformity results as well as generalized parametric version of
the theorems in question. Also already known results may receive a new under-
standing as instances of general logical metatheorems.
Based on the so-called Gowers uniformity norms, much better bounds have been
achieved in a number of cases, notably van der Waerden’s theorem and Sze-
merédi’s theorem (see e.g. Gowers [141]). An interesting question seems to be
to investigate whether Gowers’ technique can be viewed as a sophisticated form
of majorizability that could be incorporated into a specially designed monotone
functional interpretation.

4) The metatheorems proved in chapter 17, in particular, apply to CAT(0)-spaces
and R-trees. These structure have played an important role e.g. in M. Gromov’s
(see e.g. [145, 146]) work on geometric aspects of group representations. There
are many interesting problems in this context (e.g. related to Gromov’s theorem
that finitely generated groups have polynomial growth iff they have a nilpotent
subgroup of finite index) involving both quantitative as well as qualitative unifor-
mity aspects which should be amenable to apply our proof-theoretic machinery
to.

We hope that the material presented in this book has succeeded to convince the
reader about the theoretical importance of proof interpretations as well as their ap-
plicability to different parts of mathematics.



References

The numbers at the end of each item refer to the pages on which the respective paper
is cited.

1. Ackermann, W., Zum Aufbau der rellen Zahlen. Math. Ann. 99, pp. 118–133 (1928).
(54)

2. Aigner, M., Ziegler, G.M., Proof from THE BOOK, 3rd edn. Springer, Berlin (2003).
viii+239 pp. (17)

3. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U., An arithmetical hierarchy of the
law of excluded middle and related principles. Proc. of the 19th Annual IEEE Sym-
posium on Logic in Computer Science (LICS’04), pp. 192–201, IEEE Press (2004).
(124)

4. Artemov, S., Explicit provability and constructive semantics. Bull. Symb. Log. 7, pp.
1–36 (2001). (43)

5. Avigad, J., Interpreting classical theories in constructive ones. J. Symb. Log. 65, pp.
1785–1812 (2000). (274, 277)

6. Avigad, J., Weak theories of nonstandard arithmetic and analysis. In: Simpson, S. (ed.),
Reverse Mathematics. Lecture Notes in Logic 21, pp. 19–46. A K Peters (2005). (242)
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136. Gödel, K., Collected Work, Vol. 3, S. Feferman et al. (eds.). Oxford University Press,

New York (1995). (139, 512)



References 513
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ern Birkhäuser Classics, 2nd printing. Birkhäuser, Boston (2001). xix+585 pp. (506)

147. Grzegorczyk, A., Some classes of recursive functions. Rozprawny Matematyczne, 46
pp. Warsaw (1953). (54)

148. Hacks, J., Einige Anwendungen der Funktion [x]. Acta Math. 14, pp. 329–336 (1890).
(38)

149. Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers, 5th edn., Oxford
Science Publications, Oxford (1979). (17, 22)

150. Hayashi, S., Nakano, H., PX: A Computational Logic. MIT Press, Cambridge (1988).
xiv+200 pp. (107)

151. Hayashi, S., Nakata, M., Towards limit computable mathematics. In: Callaghan, P. (ed.),
TYPES 2000. LNCS 2277, pp. 125–144. Springer, New York (2002). (123)

152. Henry, M.S., Roulier, J.A., Lipschitz and strong unicity constants for changing dimen-
sions. J. Approx. Theory 22, pp. 86–94 (1978). (327)

153. Henry, M.S., Schmidt, D., Continuity theorems for the product approximation opera-
tor. In: Law, A.G., Sahney, B.N. (eds.), Theory of Approximation with Applications,
Alberta 1975, pp. 24–42. Academic, New York (1976). (301, 327, 329, 342)

154. Henson, C.W., Iovino, J., Ultraproducts in analysis. In: Analysis and Logic. London
Mathematical Society LNS 262, pp. 1–112. Cambridge University Press, Cambridge
(2002). (395)

155. Hernest, M.-D., Light functional interpretation. An optimization of Gödel’s technique
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Analysis. Akademische Verlagsgesellschaft, Frankfurt a.M. (1965). v+293 pp. (210)
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DC 206
DCρ 206
Δ 0

2 -IA( f ,g) 268
Δ 0

1 -CA 53
DNS 200

Eρ,τ 49

Eρ 48
∃-UBX 436

F 226
Fρ 230
F− 226
FX 437
FAN 223
FANc 225
FANKL 118, 223

IA 44, 48
IA¬ 106
IAΠ0

∞-¬ 106
IAe f 106
IPω

∀ 130
IPω

¬ 101
IPω

e f 98
IPρ

∀ 130
IPρ

¬ 101
IPρ

e f 98
(IPP) 35, 173
IR 45

KL 150

LEM 44, 46, 51
LLPO 156

M′ 138
M0 105
M1 156
Mω 105, 126
(μb) 55

PCM 263
PCM(a) 263
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PCMar(a) 263
PCM∗(a) 264
PCM+(a) 264
PCM+

ar(a) 265
(Π) 48
Π 0

1 -AC 210
Π 0

1 -AC( f ) 268
Π 0

1 -CA 210
Π 0

1 -CA( f ) 263
Π 0

1 -CA∗( f ) 267
Π 0

1 -CP( f ) 268
Π 0

1 -LEM 119

QF-AC 164
QF-AC0,0 53
QF-AC0,1 183
QF-AC1,0 75
QF-ACρ,τ 164
QF-ER 49
QF-FAN 224
QF-IA 52
QF-IR 135

(R) 48

(Σ) 48
Σ 0

1 -DNE 119
Σ 0

1 -IA 53
Σ 0

1 -LEM 119
Σ 0

1 -UB 225
Σ 0

1 -UB− 227
(Sub) 136, 244

UBω 231
UBρ 231
UWKL 118, 178

WKL 118, 149, 178
WKL′ 152
WKL∗ 154
WKL2

seq 239
WKLseq 239
WMP 120



Index

A-translation 126, 274
Ackermann function 46, 54, 56
almost separating principle 120
alternant 305
alternation theorem 302, 305
arithmetical comprehension 33, 84, 150,

194, 209, 210, 263, 473
Ascoli lemma 242, 262, 271
associate of a continuous functional 68
asymptotically nonexpansive mapping 497
asymptotically regular 292, 458
averaging operator 500

Baire space 72, 80, 85, 95
Banach’s fixed point theorem 456
bar recursion 33, 139, 172, 201, 202, 212,

214, 215, 220, 221, 277, 393, 394, 401,
420

finite 174, 213
Bolzano-Weierstraß principle 242, 262, 269
Borwein-Reich-Shafrir theorem 460
bounded collection principle 74

for sequences of Π 0
1 -formulas 268

for Σ 0
1 -formulas 74

bounded functional interpretation 161
bounded modified realizability 107
bounded recursion 55
Brouwer’s fixed point theorem 456
Brouwer-Heyting-Kolmogorov interpretation

42
Bruhat-Tits inequality 386

Cantor pairing function 29, 58
Cantor space 88, 95
CAT(0)-space 386
Cauchy-Peano existence theorem 7, 294

characterization theorem for
D 136
mr 100
ND 168

Chebycheff
approximation 188, 279, 299
projection 302, 326, 327, 341
system 329

choice
rule of 103
schema 98
schema for arithmetical formulas 168
schema for quantifier-free formulas 53,

164
schema of countable 200
schema of dependent 107, 206

classical predicate logic 42
coding of

sequences 59
tuples 58

combinator 47
compact metric space 88
contraction, axiom schema of 42
contractive mapping 292, 448
convex metric space 384
Curry-Howard isomorphism 47, 52
currying 436
cut elimination theorem 39

deduction theorem 116, 148
δ -hyperbolic space 431
Dini’s theorem 113, 236, 242, 295
directionally nonexpansive mapping 396
disjunction property 103
double negation shift 200
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Edelstein’s fixed point theorem 292
elimination of extensionality 127, 180
ε-alternation theorem 322
ε-weakening 176, 258, 281, 311, 326, 372,

399
ε-substitution 39
equality axioms 25, 44
ergodic theory 499
ex falso quodlibet, axiom schema of 42
excluded middle schema 44
existence property 103
expansion rule 42
exportation rule 42
extensionality axioms 48, 49
extensionality rule (quantifier-free) 49
extremal point 304

fan
functional 75
principle 118, 223
rule 111

Fermat’s last theorem 505
finite convergence principle 32
formula

∃-free 97
∃-formula 392
∀-formula 392
Harrop 101
negative 97
Π 0

n -formula 20
quantifier-free 1, 14
Σ 0

n -formula 20
stable 46, 51

Frey curves 505
functional 47

computable in the sense of Kleene 428
continuous 67
effectively discontinuous 191
elementary recursive 65
linear 65
polynomial 65
primitive recursive in the sense of Gödel

51
primitive recursive in the sense of Kleene

52
strongly majorizable 69, 421

functional interpretation 32, 125

generalized p-contractive mapping 449
geodesic 385

segment 385
space 385

Gödel’s 2nd incompleteness theorem 19,
149

Grilliot’s trick 191, 227
Gromov product 432
Gromov-hyperbolic space 432
Grzegorczyk hierarchy 54

Haar space 279
Hadamard manifold 384
halting problem 2
Helly’s theorem 505
Herbrand disjunction 25
Herbrand index function 22
Herbrand normal form 22, 247
Herbrand’s Theorem 24
hereditarily effective operations 149
Heyting arithmetic 44
Heyting arithmetic in all finite types 46
Hilbert ball 386
Hilbert basis theorem 197
Hilbert’s 17th problem 40
Hölder-Lipschitz continuous mapping 395
hyperbolic conservation laws 505
hyperbolic space 383

importation rule 42
independence of premise

rule for negated formulas 104
schema for ∀-formulas 130
schema for negated formulas 101
schema for ∃-free formulas 98

induction
rule 45
rule for quantifier-free formulas 135
schema 44, 48
schema for quantifier-free formulas 52
schema for Σ 0

1 -formulas 53
infinite pigeonhole principle 35, 173
inner product space 386, 413
intuitionistic predicate logic 41
Ishikawa’s theorem 460
Ishikawa-Goebel-Kirk theorem 461

Jackson’s theorem 348, 349

König’s lemma 150
Kleene T -predicate 29
Kleene realizability 43
Kobayashi distance 386
Krasnoselski iteration 457
Krasnoselski’s theorem 457
Krasnoselski-Mann iteration 459

L1-approximation 299, 348
Lagrange interpolation formula 315, 316
λ -abstraction 50
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length metric 386
lesser limited principle of omniscience 156
limit space 67
Littlewood’s theorem 39

majorizability relation 61
many-sorted logic 47
Markov

inequality 83, 301
principle 105, 119, 126
rule 135, 273

mean ergodic theorem 500
metastability 32
metastable region 32
metatheorem on proof mining: the compact

case 280
metric line 384
metric segment 384
midpoint 387
minimal logic 276
(−)-point 304
modified bar recursion 221, 277
modified realizability 43, 97
modified realizability with truth 98
modulus of

pointwise continuity 88, 234, 297
total boundedness 443, 464, 494
uniform continuity 83, 91, 94, 226, 232,

396
uniform contractivity 448, 455
uniform convexity 378, 379, 400, 412, 445
uniqueness 285, 286, 297

modus ponens
problem 32
rule 42

monotone functional interpretation 141
monotone modified realizability 115

negative translation 86, 126, 149, 163, 195
no-counterexample interpretation 26, 166
nonexpansive mapping 385, 395
normed linear space 410

open theory 25

parallelogram law 386, 413
partial continuous function application 72
Peano arithmetic 27, 44
Peano arithmetic in all finite types 46
permutation, axiom schema of 42
(+)-point 304
Poincaré distance 385
Polish metric space 77
polynomial time computable 373

polynomially bounded analysis 293
Primitive Recursive Arithmetic 149, 190
primitive recursive function 27
primitive recursive functional (Kleene) 27
product metric 436
projector 47
pseudo metric 81
pseudo-positive real number 120

quantifier
axiom schema 42
rule 42

quasi-nonexpansive mapping 395
quasi-tautology 24

R-translation 277
R-tree 431
Ramsey’s theorem 40
rectifiable curve 386
recursively countable 75
recursively inseparable r.e. sets 289
recursor 47
Roth’s theorem 21

Schauder’s fixed point theorem 456, 497
sequential compactness 88
Shoenfield variant 195
simultaneous recursion 47
Skolem normal form 23, 142, 263
soundness of

functional interpretation D 130
monotone functional interpretation MD

142
monotone mr 116
monotone mrt 116
mr 98
mrt 102
ND 165
NMD 174

space of hyperbolic type 384
Specker sequence 31
standard representation of

compact metric spaces 89
Polish spaces 77, 82

strictly convex
hyperbolic space 444
normed space 377

strong majorizability relation 66, 402
strong normalization theorem 62, 221
strong unicity 279, 374
strong unicity constant 298, 301, 309,

325–327, 329, 341–343, 346
syllogism rule 42
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Taniyama-Weil conjecture 505
tautological consequence 24
theorem on

polynomial bound extraction by ENMD
189

program extraction by D-interpretation
137

program extraction by mr 100
program extraction by ND 165
uniform bound extraction by ENMD 183
uniform bound extraction by MD 145
uniform bound extraction by monotone mr

122
uniform bound extraction by NMD 174

totally bounded metric space 88
type

degree 47
finite over N 46
finite over N,X 388
finite over N,X1, . . .,Xn 435
pure 47

uniform boundedness principle
for generalized ∃-formulas 436
for Σ 0

1 -formulas 225, 436
full 231

uniform weak König’s lemma 118
uniformly contractive mapping 448
uniformly convex

hyperbolic space 400, 444
normed space 379

uniformly generalized p-contractive mapping
449

unique geodesic space 385

validity normal form 23
van der Waerden’s theorem 40

weak König’s lemma 88, 118
weak limited principle of existence 120
weak Markov principle 119
weakening, axiom schema of 42
weakly extensional variant 49
weakly quasi-nonexpansive mapping 395
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