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Automated deduction has been one of the cornerstones of modern
research in computer sciences, having a wide diversity of applica-
tions, from artificial intelligence to formal verification of computer
systems to new paradigms for programming languages.

The intention of this monograph is to present a theory of unification
based on the notion of “transformations on svstems of terms.”
presenting the unification computation as a set of non-deterministic
transformation rules for converting a “term system” consisting of
pairs of terms to be unified into an explicit representation of a
unifier (if such exists). The emphasis, therefore, is to present
unrestricted and very general paradigms for unification, and to
present the basic definitions in a lucid and rigorous style.

Unification, in one form or another, plays an important role in
many areas of theoretical computer science. A PROOF THEORY
FOR GENERAL UNIFICATION brings together a variety of
results in a consistent framework, facilitating interaction between
these, often disparate, lines of investigation. Researchers, grad-
uate students, and advanced undergraduate students in such fields
as automated deduction, programming languages and artificial
intelligence will find it a valuable tool in their work and study,
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Preface

In this monograph we study two generalizations of standard unification,
E-unification and higher-order unification, using an abstract approach orig-
inated by Herbrand and developed in the case of standard first-order unifi-
cation by Martelli and Montanari. The formalism presents the unification
computation as a set of non-deterministic transformation rules for con-
verting a set of equations to be unified into an explicit representation of
a unifier (if such exists). This provides an abstract and mathematically
elegant means of analysing the properties of unification in various settings
by providing a clean separation of the logical issues from the specification
of procedural information, and amounts to a set of ‘inference rules’ for
unification, hence the title of this book.

We derive the set of transformations for general E-unification and higher-
order unification from an analysis of the sense in which terms are ‘the same’
after application of a unifying substitution. In both cases, this results in
a simple extension of the set of basic transformations given by Herbrand-
Martelli-Montanari for standard unification, and shows clearly the basic
relationships of the fundamental operations necessary in each case, and
thus the underlying structure of the most important classes of term unifi-
cation problems.

In addition to the presentation of a proof theory for unification which
unifies and clarifies the diverse approaches currently being developed for E-
unification and higher-order unification, in particular we present the first
rigorous analysis of a method for E-unification which is fully general in
the sense that it is capable of enumerating a complete set of E-unifiers for
arbitrary sets of equations E.

I would like to dedicate this monograph to my wife Jane, for her constant
love and encouragement for the last ten years; to Jean Gallier, for his
boundless enthusiasm, for teaching me the joy of creative mathematics,
and for introducing me to eau d’vie; and finally to my parents, Norma and
Albert, for all the years of support and love. Thanks to Frank Pfenning,
Dale Miller, Paliath Narendran, Dan Dougherty, Patty Johann, and Pierre
Lescanne for many useful comments on this work. I would also like to
thank Pierre Lescanne and the members of CRIN for another wonderful
visit during summer 1991 where I finished the final corrections to this text.
Finally, thanks to Phillip Lockhart and our common friend Vergil: amicus
certus in re incerta cernilur.



CHAPTER 1

INTRODUCTION

Most researchers consider the modern period of automated logic to have
begun with the discovery of resolution by J.A. Robinson in 1963 at the
Argonne National Laboratory. Previously, it was known by the Herbrand-
Skolem-Godel theorem that semi-decision procedures could be designed for
first-order logic by reducing the question of the unsatisfiability of a set of
first-order formulae to the question of unsatisfiability of (roughly) a set
of certain ground formulae derived from the original set in an effective
way (for example, see [32]). But until Robinson invented the simple and
powerful inference rule known as resolution [139], no practically efficient
semi-decision procedure had been found. The crucial component of this
seminal discovery was in fact the rediscovery by Robinson of the process of
unification, which had been discovered by Herbrand in his thesis 33 years
earlier (see Appendix 3).!

The unification problem is the following: Given two first-order terms
s and t, does there exist a substitulion 6 of terms for the variables in s
and t such that 0(s) = 6(t)? Robinson [139] showed that this problem
is decidable and that whenever a solution, or unifier, exists, there always
exists a most general unifier (or mgu) from which all other solutions can
be generated, and which is unique in a certain sense (see Section §3.3).
After Herbrand and Robinson, this problem was studied extensively by
various researchers [27,30,72,109,122,142,155] and, among other results, it
was shown that linear time algorithms for unification exist [110,122].

Undoubtedly unification has become familiar to most computer scientists
through the revolutionary development of a restricted form of resolution
(SLD-resolution) into a programming language, Prolog, in the early 1970’s
by A. Colmerauer, R. Kowalski and others [29,106,95]. But it has also
found applications in generalizations of functional programming languages
(105, 134], in type inferencing for polymorphic programming languages

! As an interesting sidelight, we should remark that Dag Prawitz in 1960 revived the
notion of unification and used it in a theorem proving method on a computer [132],
and in 1964 J.R. Guard quite independently reported on a project in semi-automated
mathematics which used unification in its inference rules [60].
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[116] (but see also [89]), in expert systems [147], and in the calculation of
critical pairs in the Knuth-Bendix completion procedure [94)], which is the
most important theorem proving method yet developed in equational logic.
In addition, Peter Andrews invented a new theorem proving method very
different from resolution, called matings, which also uses unification as a
central operation [4] (a dual version of this was developed independently
by W. Bibel [19]). Thus it is apparent that unification is fundamental to
many diverse aspects of computational logic.

Since the early 1960’s there have been many attempts to generalize the
basic paradigm of theorem proving (and, more recently, logic program-
ming), and these have stimulated research into more general forms of uni-
fication. The two most significant developments in this regard are the in-
corporation of equality into theorem proving procedures, and the attempts
to automate higher-order logic. Each of these has spawned a new kind of
unification.

The prevalence of equational reasoning, i.e., the “substitution of equals
for equals” in ordinary mathematical reasoning, and the expressive power of
first-order logic to define algebraic structures convinced many researchers to
attempt to introduce equality into resolution [2,14,15,21,38,68,100,101,117,
124,137,138,143,146,152,160]. In view of the inherent inefliciency of these
methods, Robinson and then Plotkin [131] suggested that when the set
of clauses can be partitioned into a set of equational axioms and a set of
standard (non-equational) clauses, theorem provers should be stratified into
a (non-equational) refutation mechanism and an E-unification mechanism,
which performs equational reasoning only during unification steps.

Given a (finite) set E of equations and two terms u and v, a substi-
tution 6 is called an E-unifier of u and v iff 0(u) and 6(v) are provably
equal under the equations in E, that is, congruent modulo the least stable
congruence «——pg containing E (see Section §4.1). Unlike standard uni-
fication (i.e., where E = ), E-unification is undecidable in general, due
to the undecidability of the word problem for semigroups. Another major
difference is that if u and v are E-unifiable there may not be a single mgu,
but (possibly) an infinite set of unrelated E-unifiers. Thus the complete-
ness of E-unification procedures must be defined in terms of complete sets
of E-unifiers.

E-unification is important not only in pure theorem proving, where it
allows one to automate reasoning about various algebraic structures de-
fined by sets of equations, but also in the context of logic programming,
where it provides a theoretical basis for the incorporation of functional and
equational languages into the basic paradigm as represented, for example,
by Prolog [50, 57, 133]. This research has received much attention in the

last fifteen years, primarily due to the development of the Knuth-Bendix
completion procedure. To date, many special purpose E-unification proce-
dures have been defined for particular equational theories (for a good sum-
mary see [145]), and several general algorithms [22,46,48,80,78,91,111,120,
136,135,158] for the class of theories which can be compiled into a canonical
set of rewrite rules. Unfortunately, the general problem of E-unification for
arbitrary theories has been little studied, and there has been no attempt, as
far as we know, to define a computationally feasible procedure for general
E-unification separate from a refutation procedure. In general there seems
to be a need for some integrated approach which will show the structure
of the class of all E-unification problems.

Higher-order unification is a method for unifying terms in the Simple
Theory of Types [28], that is, given two typed lambda-terms e; and es,
finding a substitution o of lambda-terms for the free variables of e; and
e such that o(e;) and o(ez) are equivalent under the conversion rules
of the calculus. Like E-unification, higher-order unification is undecidable
and mgus may not exist, requiring the consideration of complete sets of
higher-order unifiers.

This problem is fundamental to automating higher-order reasoning, as
convincingly shown for example in the automated proof of Cantor’s Theo-
rem (that there is no surjection from a set to its powerset) found by the TPS
system [5], where the higher-order unification procedure finds a term which
corresponds to the diagonal set {a € A|a ¢ f(a)} used in the standard
proof (for details, see [5]). Higher-order unification has formed the basis for
generalizations of the resolution principle to second-order logic [31,128] and
general w-order logic [69,123,129] (but see also [3]), the generalization of the
method of matings [4] to higher-order [6,5, 112,125], higher-order logic pro-
gramming in the language AProlog [113,118], a means for providing flexible
implementations of logical inference rules in theorem provers [47,123], pro-
gram synthesis, transformation, and development [74,62,63, 114,127], and
also has applications to type inferencing in polymorphic languages [126],
computational linguistics [115], and certain problems in proof theory con-
cerning the lengths of proofs [44]. Higher-order unification was studied by
a number of researchers [31,59,60,61, 128,129] before Huet [71,72] made a
major contribution in showing that a restricted form of unification, called
preunification, is sufficient for most refutation methods and in defining a
method for solving this restricted problem which is used by most current
higher-order systems.

In this monograph, we study these two generalizations of unification
using the formalism described by Herbrand for standard unification, and
developed by Martelli and Montanari [109]. This method, which will be
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presented in Section §3.3 and developed in Chapters §5 through §7, presents
the unification computation as a non-deterministic set of transformations
on systems of equations, and amounts to an inference system for transform-
ing a unification problem into an explicit representation of its own solution,
if such exists. This method—which has certain similarities to the method of
Gaussian Elimination in linear algebra—provides an abstract and mathe-
matically elegant means of analyzing the invariant properties of unification
in various settings by providing a clean separation of the logical issues from
the specification of procedural information.? In addition, this abstract ap-
proach clarifies the fundamental mathematical properties of the procedure,
such as termination and completeness. Using this method we were able to
prove for the first time the completeness of a general E-unification method.

But we also intend this approach to be a formalism for studying the basic
properties of unification in its various guises, to form the basis for a “proof
theory of unification.” By presenting the unification computation as a set
of basic abstract operations on equation systems, we are able to isolate and
study the significance of these fundamental operations in various settings,
and to understand something of the structure of the class of all unification
problems. The method for investigating these generalizations of unification
is the same in each case: by a close examination of what it means for two
terms to become ‘the same’ after application of a unifying substitution, we
derive the appropriate extension to the basic set of transformations S7°
for standard unification (given in Section §3.3). We then use this abstract
formalism to prove the appropriate soundness and completeness results,
and then see what restrictions can be made on the basic set to improve
efficiency while retaining completeness.

In the case of E-unification, the analysis of the relation g suggests
two different sets of transformations BT and T which account for the pres-
ence of arbitrary equations in a unification problem. These sets are proved
to be complete in the sense that for every set E of equations, a complete set
of E-unifiers can be enumerated using transformations from either of these
sets. The set 7 is an improvement of BT, however, in that many redun-
dant E-unifiers produced by BT will be weeded out by 7. Although BT
only contains two more transformations than 87, and T one more trans-
formation than 87T, proving the completeness of BT and 7 turned out to
be quite difficult. We were led to define a new representation of equational
proofs as certain kinds of (sets of) trees. These proof trees are used to prove
the completeness of the set BT in a rather direct fashion that parallels the
completeness of the simple set ST in the case of (standard) unification. In
order to prove the completeness of 7, inspired by the concept of unfailing

2 Cf. Kowalski's famous dictum from [96]: “Algorithm = Logic + Control”.

completion [8,12,9], we developed an abstract (and simpler) not%on of the
completion of a set of equations that allowed us to use thfe previous com-
pleteness proof. We also use this abstract form of cornpletlo? to prove the
completeness of a generalization of narrowing (or surreduction) and then
give a second proof of the completeness of 7 based on the completeness of
the generalization of surreduction. Finally, we prove the co.rnpleteness ofa
refined version 7’ of the inference rules based on the technique of Relaxed
Narrowing (which it itself a refinement of Lazy Paramodula-tion). .

This part of the book generalizes the approach initiated m.th‘e ploneer-
ing work of Kirchner [91] to arbitrary theories. One of .the main }mportant
technical differences between our work and Claude Kirchner’s is that we
use transformations extending naturally those proposed by Herbrand [64],
whereas Kirchner uses transformations closer to those Martelli and Monta-
nari developed for multiequations [109]. Also, Kirchner’s transfm:mations
are only complete for a subclass of all equational theories, the strict theo-
ries. Nevertheless, our work would not have been possible without Claude
Kirchner’s previous contribution. Another concept that inspired us at a
crucial time is the idea of unfailing completion, due to Bachmair, Der-
showitz, Hsiang, and Plaisted [8,12,9]. Without this research, we would
not have been able to show the completeness of our improved set of trans-
formations 7.

In the case of higher-order unification, we present two sets of transfor-
mations, 7 and PT, which are developed from an analysis of the manner
in which substitution and B-reduction make two terms identical. The set
HT is proved to be complete for arbitrary higher-order terms, but unfor-
tunately, the search space (the tree of all transformation sequences) can be
infinitely branching, which forbids a reasonable implementation. The set
PT incorporates Huet’s well-known solution to this problem. Our presenta-
tion of the higher-order unification problem in this formalism shows clearly
the logically invariant properties of first-order unification, higher—ord'er Qre—
unification, and general higher-order unification. Our major contribution
in this chapter of the monograph is three-fold. First, we have extended
the Herbrand-Martelli-Montanari method of transformations on systems
to higher-order unification and pre-unification; second, we have used this
formalism to provide a more direct proof of the completeness of a method
for higher-order unification than has previously been available; and, finally,
we have shown the completeness of the strategy of eager variable elimina-
tion. In addition, this analysis provides another Jjustification of the design
of Huet’s procedure, and shows how its basic principles work in a more

general setting.
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The plan of this book is as follows. In Chapter §2 we provide an overview
of the method of transformations for unification in order to motivate their
use as a general framework for investigating unification problems. In Chap-
ter §3, we present a comprehensive introduction to the the major definitions
and results which form the background to the results in the later chapters,
including a detailed presentation in Section §3.3 of the Herbrand-Martelli-
Montanari method for standard unification via transformations on systems
of equations. The soundness and completeness results in this section form
the basic paradigm under which we shall study the more general sets of
transformations later in the book. The next three chapters present our
results on general E-unification. Chapter §4 outlines the basic results and
definitions relating to E-unification, and contains a detailed proof of the
completeness of the method of narrowing, which is the most general form
of E-unification investigated to date. Chapter §5 presents the set of trans-
formations B7 and proves its soundness and completeness for arbitrary
E using a new representation for proofs of E-unifiability, known as equa-
tional proof trees. Chapter §6 contains the improved set of transformations
T and the associated soundness and completeness results. We conclude
this chapter with a comparison with previous work done on more general
forms of E-unification and a discussion of an open problem regarding the
use of one of the transformation rules, known as variable elimination. In
Chapter §7 we extend the Herbrand-Martelli-Montanari method to higher-
order unification. After Presenting a detailed review of the basic notions of
the typed lambda-calculus, the conversion rules, and higher-order substi-
tutions, we present the two sets of transformations H7 and P7 and prove
their soundness and completeness. Chapter §8 summarizes our major re-
sults. The appendices contain material felt to be incidental to the main
thread of the monograph.

CHAPTER 2

PREVIEW

The method of transformations for solving unification problems is n%uch
like the well-known method used for solving systems of linear equations
known as Gaussian elimination. In Gaussian elimination, the orig'inal sys-
tem of equations is transformed step by step (by variable elimin?,tl(?n) into
a solved system, that is, a system whose solution is obvious. Similarly, a
unification problem is a set {u; = v1,...,u, = v,} of equatior{s between
terms (sometimes called a disagreement set) to be (jointly) unified. (We
consider these equations to be unoriented.) The method of transformat{ons
consists of applying simple transformations, some akin to variable elimina-
tion, until a “solved” system S’ is obtained whose solution is obvious (in a
sense to be made precise below).

Gaussian elimination and first-order unification are somewhat similar.
For example, the transformations for first-order unification given in Sgc—
tion §3.3, like Gaussian elimination, must terminate and hence the exis-
tence of solutions is decidable. Also, these transformations preserve th¢
set of solutions as an invariant, just as in Gaussian elimination the vari-
able elimination step preserves solutions; and in both the set of solutions
Is either empty, a singleton, or infinite. But for higher-order unification
and E-unification the analogy breaks down. For example, unlike Gaussian
elimination, it is undecidable whether a higher-order system has unifiers or
whether a first-order system has E-unifiers, and the transformations do not
terminate in general. Also, the transformations used for these more com-
plex forms of unification do not necessarily preserve the set of solutions. In
general, if a system S’ is derived from a system S, it can only be claimed
that the set of unifiers of S’ is a subset of the set of unifiers of S. Thus,
we face a completeness problem: we have to show that every unifier of S
will be produced as the obvious solution of some system S’ derivable from
S. In fact, it is practically impossible to require that every unifier of S be
produced, and normally we are only interested in whether a complete set of
unifiers can be enumerated using the transformations. Roughly speaking,
a complete set of unifiers for S is a set of unifiers for S from which every
unifier for S can be generated.
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Thus the interesting issue is in finding natural sets of transformations
which present in an abstract form the fundamental operations of unifica-
tion, but which are complete in this sense. In order to introduce the notion
of E-unification and of higher-order unification, we shall first demonstrate
the full method in the first-order case, and then sketch what changes need
to be made to deal with equations on the one hand and with higher-order
terms on the other. This will hopefully provide the necessary intuition for
the more detailed treatment in the remainder of the monograph.

Suppose we wish to find a unifier for the two terms f(z, f(h(z, gz),2"))
and f(z, f(h(fy,2),¥')). Now any substitution which unifies these terms
can not affect the topmost function symbol f, and so it is easy to see that
a substitution @ unifies the terms if and only if it pairwise unifies each of
the immediate subterms. For example, # unifies the system

{f(z, f(h(z,92),2")) % f(z, f(h(fy, 2),¥')))
iff it unifies
{z~z, f(h(z,92),2") ~ F(h(fy,2),9")}.

In general, we may define a transformation on systems which we call term
decomposition:

{f(ul,...,u,,)zf(vl,...,v,,)}US = {ulzvl,...,unzvn}US,

where S is any system (possibly empty). After two more iterations of this
transformation, we have

{xzz,xzfy,g:czz,z'zy'}.

Now in this system, it is clear that the equation z =~ z is in fact already
unified, and contributes no information about possible solutions, since any
substitution unifies an equation u ~ u for some term u. Thus we may
define a transformation which simply removes such trivial equations:

{fumu}usS = &S
In our example, we may derive the new system
{z~ fy, 9z ~ 2,2 ~ ).

These two transformations simplify a system (by reducing the total num-
ber of symbols in the whole system) but do not in any way change the set
of solutions; hence the set of solutions is tnvariant under the transforma-
tions. But it is not yet obvious what the set of solutions is. The reader

may check for example that [fy/z,gfy/z,2' /Y], [fy/z,9fy/z,¥ /2], and
[fha/z,gfha/z, ha/y,a/z' a/y] are all unifiers of the system. In each of
these however, the binding made for  has the form ft for some t'erm t,
since if a substitution unifies the equation z =~ fy then thet binding f:or
z must have f as a top symbol. In this case, we m?,y Provnde a partial
binding for z (since we do not yet know the entire 'bmdmg, but only t:.he
top symbol) by transforming the previous system into a new one which
contains this partial binding:

{mzfxlszfyvgzzz;z/zy/}‘

Now we may eliminate the variable z from the rest of the system by replac-
ing it by fzi, i.e., by applying the substitution [fz;/x]. After applying
decomposition once more, we get the system

{e~ fo,e1ry,9fer m 2,2 =y}

In general, we may define an imitation rule for partially solving variables

in systems: If £ does not occur in the term f(¢1, ... ,t,) then we have:
{z= f(t1,...,tn)}US = ,
{.’I)N f(yl, 7yﬂ)af(y1a )yn) zf(tl’ )tﬂ)}US!
where y1,...,y, are new variables occurring nowhere else, and S’. is
the result of replacing every occurrence of  in S by the partial binding
F(y1, ... ,yn)- Note that if £ were to occur in the term f(t1, ...,t,) then

the system would not be unifiable. . ‘ 7

The point of the imitation rule is that we find a partial soliutlon fO'l‘ a
variable z, and then solve z partially by substituting the partial solutfon
for the remaining occurrences of z, thus reduced the problc%m .of finding
a binding to solving for the new variables in the partial binding for z.
Intuitively, if we transform a system using the rule

{z=t}uS = {z=~t}US[t/z],

where z is a variable occurring in S but not occurring in ¢ and S[t/z]
represents the result of replacing every occurrence of z in S by ¢, then, as in
Gaussian Elimination, we have solved the system for the variable z; hence
this transformation is called variable elimination. As in the case oi: our
first two transformations, the set of solutions is invariant under van.able
elimination. (Imitation does not preserve solutions, since it potentllally
introduces new variables.) In our example, we can eliminate the variable
z; to obtain the system

{zzfy,zlzy,gfyzz,:c'zy'}.
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If we say that an equation z ~ ¢ is in solved form in a system if 2 does
not occur in the rest of the system and does not occur in ¢, then clearly the
last system is solved in the sense that all its equations are in solved form.
The basic idea of the transformation method as represented by these
four transformations is to successively build up bindings for variables and
simplify the systems produced by decomposing and eliminating trivial equa-
tions. The intent is to transform a unification problem into a solved system,
since a solved system {mamty, ...z, ~ s} gives explicitly the bindings
of a unifying substitution [t1/z4, ... ytn/2y). In our example, we have the
unifying substitution [fy/z,y/z:l,gfy/z,:c’/y’], which, since we are only
interested in bindings made for the variables in the original system, may
be restricted to the form [fy/z,qfy/z, ' Jy). (It is interesting to note that
we could also have extracted the substitution [fy/m,gfy/z,y’/z’].) This
set of four transformations can be easily shown to be sound in the sense
that if S = S’ and @ unifies S’, then 6 unifies S; thus the method
is correct since any solution found will unify the original system. Showing
that the method is complete is harder, since we must show that for any uni-
fier @ of the original system S, we can find a sequence of transformations
S = g resulting in a solved form S’ such that the substitution ¢g:
extracted from S’ is more general than 6 (over the set of variables in S).
The intuitive reason that we can find mgu’s (and, more generally, we can
find complete sets in the case of E-unification and higher-order unification)
using this method is that imitation and variable elimination are capable of
incrementally building up the bindings in the unifying substitution Jjust as
much as is necessary to unify the original system. The reader may check for
example that each of the substitutions found above for S is more general
than any unifier of the original system, i.e., they are most general unifiers
or mgu’s.
There are several important things to note about this method. The first
Is that it is a non-deterministic set of abstract operations for unification;
we can think of it as a set of inference rules for unification. This removal
of control and data structure specification allows us to examine the funda-
mental properties of the problem more clearly. The notion of completeness
is also non-deterministic, since we show only that for an arbitrary unifier
¢ there is some sequence of transformations which produces a unifier more
general than 0. In order to design a practical procedure, we would have
to specify data structures and a search strategy to explore the search tree
of possible transformation paths. The second point is that if we need to
find all unifiers, then in the case of an equation between two variables we
would need to apply imitation by ‘guessing’ a partial binding for one of the
variables or by guessing an arbitrary variable as a binding. For example, to
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find the unifier [fz/z, fz/y] of the system {:c =~ y} we would ha.?/e Fo fu?ss
the function symbol f in the imitation equatlon. a:.z fu, then 1m];i‘,a e for
y, and finally guess that y; is bound to z. ’I.‘hls is cl?a.rly a problem for
ir,nplementation, but it turns out that for umﬁca:tlon in theorzm proving
we need only find most general solutions, z?nd. 80 in the first-order case v;’e
can avoid this guessing by using variable elimination 013 s.u.ch e%uat.xgnst.‘. n
fact, if we are interested in stopping as soo'n as the possxbfllty o fuﬁl cal ‘1:3
is detected, without necessarily transforming the system into a fu ?'ts.o !
form, we may define the notion of a presol.ved syste'm .as one consis ‘mbgl o
either solved equations, as above, or equations consisting of two. vanah ej,
and stop the transformation process as soon as a presolved form is reached.

For example, the system
) / ! "
{zray=fz, 2 =y, ' =2, 2 ="}

is presolved. It turns out that it is alway§ possible‘ to unify su'ch syst',ltla.ln}f,;z
applying variable elimination to the variable-variable equ'atlf)ns'w ic re
not yet solved. This shows that we need nevc?r apply the 1m1tat1&;n r‘u o
a variable-variable equation, since such equations can a.lways be e 1}rlr.1ma. e
using variable elimination; in the higher-order generalization of t is ca‘si,
this is not true, as we shall see, and the notion of presolYed form.s 1slcru01a .
It is interesting that in first-order, the presence of varlablt?-varlab elie(:;lla;
tions is the reason that mgu’s are, strictly speaking, not um.que; recl::' y a
in our example above, we had two choices about the f,extractlon ofa ml /1;]g
from the equation z’ & ¢/, resulting in the two mgu’s [fy/z,9fy/z,z

z 2,y [2'].
an(’il‘lzy!tl;eifii{e;gst/ing] point is that in the first-order case we have. ;)
sented, we can in fact have a complete set of transfo.rmatlon'ru.les 1 we
exclude the imitation rule, i.e., if we find bindings by simply eliminating a
variable all at once if we find an equation z ~ ¢ wl.lere.a: d’oes not occ::
in . In our previous example, we could have ‘short—c1r'cu1ted the se?iuen :
of transformations by immediately eliminating the variable z to produce

re-

solved form:

{f(=, f(h(z,92),2") = f(z, F(h(fy,2),¥' )}
= {z~ fy, 9z~ z,2' =y}
= {e~ fy,9fy~z2' =y}
In Section §3.3 we shall develop this improved method in detail; the com-
pleteness of these transformations is particularly easy to prove.

The method we have just sketched can be generalized to E-unlﬁcatu:)I;
by adding just a single new transformation to account for the presence
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an equational theory (that is, we attempt to solve a system, i.e., a set of
equations, wrt another set of equations representing an equational theory).
The basic idea is that if some substitution 6 unifies two terms s and ¢
modulo a set of equations E, then there must exist a sequence of rewrite

steps (to be defined precisely in the next chapter) between the two terms
f(s) and 6(t):

0(s) = s0 «—E 81 ——F 83 —g ... —p s, =0(t).

For example the substitution 6 = [a/z,b/y] unifies the terms s = f(z)
and ¢ = g(y) modulo the set of equations E = {f(a) = g(b)}, since

0(s) = f(a) T (a)2g(h)) 9(b) = 6(¢),

where the notation T l(a)2e(0)] simply indicates that we have rewritten
f(a) to g(b) (we are simplifying here, since in general, equations will
have variables). We must define a new transformation which allows us
to simulate these rewrite steps. Since the equational proof step replaced
a term at the root of f(s) by another term, we can think of reducing the
problem of E-unifying the system {f(z) ~ g(y)} to the problem of E-
unifying the new system {f(z) ~ f(a),9(b) =~ g(y)}, that is, we must try
to make s look like one side of the equation, and ¢ like the other. After
that, we can apply decomposition to each equation to obtain the solution
{z =~ a,b ~ y}. This motivates the new transformation which we call root
rewriting:
{s=t}uS = {s~lrx~t}us,

where S is any system (possibly empty) and either I = » or r = ! is an
equation from E. The point is that we try to simulate rewrite steps between
the two terms which occur at the root. The reader may then wonder what
happens when rewrite steps occur below the root of s and ¢. If both terms
are compound, e.g., s = f(s1,...,s,) and t = f(ty, ... ,tn), then we
can use term decomposition to break this problem into the n subproblems
of E-unifying s; with 1, sy with ¢5, etc. Since no rewrites occur at the
root, all the rewrite steps occur between these subterms and can then be
discovered separately. But what if no rewrite occurs at the root and one of
the terms is a variable? For example, § = [f(a)/z] is a unifier of the terms
s = f(g(z)) and t = z modulo the set of equations E = {9(f(a)) = a},
that is,
0(s) = f(g9(f(a))) T le(f(a))=a] f(a) = b(z),

but the replacement of g(f(a)) by a does not take place at the root. It
happens that in this case, we can use the imitation rule, since if no rewrite

13

takes place at the root, then the binding for z must be in t:,he form f(u)
for some u. Thus, we transform the system {f(¢(z)) ~ z} into

{z = f(y), Fla(FW))) = f(¥)}
and then, by decomposition, into
{z~ f(v),9(f(¥)) = v}
Now we can apply root rewriting to obtain

{z ~ f(y), 9(f(¥)) = 9(f(a)),a =y},

which, after decomposition, becomes
{z~ f(y),y = a}

(where we suppress the redundant equation a = y, sinc? fo? the pury?oses
of this preview we defined a system as a set). An application of v?.rlable
elimination produces the solved system {z = f(a),y =~ a}, from which the
solution [f(a)/z] can be extracted. '

It turns out that by adding this rule to the four already given, we have
a complete set of transformations for E-unification for .j:my .'—:Lrbltrary set
of equations E. There are several additional conl.pllcatlc?ns in the equa-
tional case, however. The first is that it is undec1dablfe if two terms are
E-unifiable, and so the transformations may not terminate. The second
is that most general E-unifiers may not exist, and so we mus't define the
completeness of the method in terms of most general sets of unlﬁe'rs, c‘alle.d
complete sets of unifiers (which may be infinite!). A final complication .1(51
that in using this set of transformations it is not obv1f)us that we can avol
the ‘guessing’ of partial bindings in the case of equations consisting of t.wo
variables, as discussed in the non-equational case above, and so a naive
implementation of this method would be impractical. Fortl?na‘tely, we can
show that in the case of E-unification, this guessing of bindings can be
avoided without sacrificing completeness, and in a later pz.a‘rt of t'he'mOI'IO-
graph we shall present a set of transformations in which V'fmable elimination
is always applied to such equations, and we shall prove its completeness.

The extension of the original Herbrand transformations to higher-order
unification can similarly be made with relatively few changes. The most
important differences have to do with the imitation rule and thfa gt?ner-
alization of the notion of a partial binding to higher—orderh substlt'utxons.
Consider the system S = {F(f(a)) ~ f(F(a))}, where F is a variable of
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functional type (say int — int). It is easily seen that 6 = [Az.f(z)/F] is
a unifier for S, since

0(F(f(a))) = (Az.f(z)) f(a)
—p f(f(a))
—p f((Az.f(z))a) = 6(f(F(a))),

where — 3 denotes S-reduction. (This is not the only solution, for exam-
ple the reader may check that any substitution in the form [Az. f¥(z)/F]
for k > 0 is also a unifier.) This time, it is a little more tricky to build
up 6 using partial bindings. In the first-order case, we generate bindings of
the form [f(yy,..., Yn)/z], where yy,...,y, are first-order variables. The
generalization (roughly) is to consider partial bindings of the form

[/\:cl...:nk.a(Yl(:cl, o ZE)y oo, Ya(zy, .. ,:ck))/F],

where Y7,...,Y,, are some higher-order variables of appropriate types and
a is an atom (i.e., a constant, a free variable, or a bound variable z; for
1 < ¢ < k). The idea is that we have to generalize the partial bind-
g f(y1,...,yn) to higher-order, and so the top function symbol @ may
be a variable, and the variables Y1, ---,Yyn and the term itself may be
of functional type; furthermore, each y; must be generalized to a term
Yi(z1, ... ,z,) since the subterms of the binding may be some function
of the bound variables z, ... yZn. A further level of complexity is intro-
duced by the constraints imposed by the type structure. The notion of
higher-order partial bindings will be carefully defined in Chapter 7.

The imitation rule must accommodate this more complex form of partial
binding. In the first order case, we applied imitation to an equation z
f(t1,...,t) using a partial binding f(y1, ... ,yn);in the higher-order case
we must be able to apply imitation to equations such as F(f(a)) = f(F(a))
to partially solve for F. A partial binding for F' which imitates the symbol
f in this case would have the form Az. f(Y (2)), so that we would transform
the system {F(f(a)) ~ Jf(F(a))} into

{F~ 2z f(Y(2)), (Y (f(a)) % F(f(Y (a)))}

using the imitation rule; note that we have performed f-reduction after
applying the substitution [Az. f(Y(2))/F]. After decomposition we have

{F =2z f(Y(2), Y (f(a)) = £(¥(a))}.

Unfortunately, the imitation rule alone is not sufficient for building up
bindings in higher-order unification. This is easy to see in considering
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the subproblem of finding a partial binding for ?’,.which .is exactly the
problem we faced with F; simply continuing to 1m1t:ate will prod}tll‘ceh an
infinite sequence of transformations. The problem arises because hig er;
order terms may have variables as their top-most symbol and s we Ir;lus
allow bindings such as Az.z to be found by our tranif_ormatlons. 1 i\‘ave
abbreviate a lambda binder Ax;...z; into the form AT, the new rule for

finding partial bindings has (roughly) the form:

{AF5. F(uy,...,un) ® ATr.a(v1, ..., 0m)} US =
{F =t} Uo({3T.F(uy,. .., un) & ATg.a(v1, ..., vm)} US),

where a is a function symbol, constant, or variable (either free or bound),
and where £ is either an imitation binding, i.e.,

t = AT, a(Y1(Tn), - - -» Ym(Tn)),
or a projection binding, i.e.,
t = Ayn. yi(Yl(-y_n), ceey Yq(ZT/-;:_))

for some i, 1 < i < n, and ¢ = [t/F] (after applying o, we also reduce
the resulting terms to their normal form using ,B—conversmn.). For eXémPle,
we can transform the system {F(f(a)) = f(F(a))} by adding a projection

binding to get
slos {F =~ Az.z, F(f(a)) = f(F(a))}

and then applying the substitution [Az.z/F] and B-reducing to get
{F =~ Az.z, f(a) =~ f(a)}.

After removing the trivial equation, gives us the solved systen.l {F =~ /.\:I:..'z:}.
The reader may check that a similar projection for the variable Y in our
example above results in the solved system {F /\z.. f(2),Y = /\:‘c.:c}.'

Besides the more complicated form of the rule which finds partial bind-
ings, there are complications in the higher-order case a'malogous' to those
discussed above for F-unification. First of all, unification here is defined
modulo the conversion rules of the lambda calculus, so that we sh.:«.xll have t'o
carefully justify our method from an analysis of the means by which sub‘stl-
tution and subsequent B-reduction makes terms equal. Another c?mphc‘a-
tion is that, as with E-unification, higher-order unification is undecidable in
general and most general unifiers do not necessarily exist, so that Yve mu§t
define the notion of completeness in terms of complete sets of unifiers; in
fact, the completeness proof is not much harder than in first-order.
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A final important difference from the first-order case has to do with the
higher-order equivalent of a variable-variable equation of terms, namely, a
pair of terms with variables at their heads, e.g. Az.F(a,z)~ Az.G(z,a).
(These are called flezible-flezible equations.) Unfortunately, it is not pos-
sible to avoid the arbitrary ‘guessing’ of bindings discussed above and pre-
serve completeness, and so the search tree for unifiers may be infinitely
branching. This posed an insurmountable problem for implementation un-
til Huet showed that in the context of a refutation method, it is usually
only necessary to determine the possibility of unification, and since such
flexible-flexible equations are always unifiable, we can stop after finding a
presolved form. This restricted form of unification is termed preuntfication.

CHAPTER 3

PRELIMINARIES

This section contains an outline of the major definitions and results related
to unification and equational logic, and is basically consistent with '[77] a:nd
[49]. A separate section of preliminaries relating to higher-order unification
will be given in Chapter §7.

We start with the fundamental algebraic definitions of terms and sub-
stitutions, and then introduce the basic concepts of (first-order) matchin‘g
and unification, including a presentation of the method of (standard) uni-
fication by transformations on systems of equations. We then present the
basic definitions and results in equational logic, rewriting systems, and
completion procedures.

3.1 Algebraic Background
We first review some fundamental algebraic notions.

Definition 3.1.1 Let N be the set of natural numbers. A ranked alphabet
is a set ¥ with an associated function arity : ¥ — N assigning a,'rank or
arity n to each symbol f in £. We denote the set of symbols of arity n by
Z,. (For example, the set of constants is just Xg.)

We may develop the notion of terms explicitly by defining th.em as (fi-
nite) functions over certain sets of integers, known as tree domains.

Definition 3.1.2 Let N denote the set of positive natural numbers and
N7 the set of all strings of positive natural numbers, where we denote the
empty string by the symbol ¢. A tree domain D is a nonempty subset of
N satisfying the conditions:

(i) Forall a,f€ N% |if af € D then e € D.

(ii) For all @ € N?% , for every ¢ € Ny, if ai € D then, for every

1<j<i,aj€eD.

For any two tree addresses a and f in some tree domain D, we s::‘xy that
« is an ancestor of 3, denoted « < B, iff a (considered as a string in N3 )
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is a prefix (not necessarily proper) of g, i.e., there exists some 4 such that
B =an.

Definition 3.1.3 Given a ranked alphabet I, a X-tree is any function
t: D — % where D is a tree domain denoted by Dom(t) and such that
if & € Dom(t) and {i|ai€ Dom(t)} = {1, ...,n}, then t(a) EX,. We
shall denote the symbol t(€) by Root(t). Given a tree ¢ and some tree
address a € Dom(t), the subtree of t rooted at o is the tree, denoted t/o,
whose domain is the set {3|ag ¢ Dom(t)} and such that t/a(f) = t(ap)
for all # € Dom(t/a).! Given two trees t1 and t; and a tree address
o € Dom(ty), the result of replacing t3 at « in ¢;, denoted by t1[a — 3],
is the function whose graph is the set of pairs

{B1(8) | a £ Band B € Dom(t1)} U {(af,tx(8)) | B & Dom(t,)}.

We shall denote the depth of a tree t, i.e., the length of the longest path
in t (or, equivalently, the length of the longest string in Dom(t)), by |t|.
For example, |f(a)] = 1 and [z = 0. The size of a tree will be the number
of symbols (i.e., the cardinality of Dom(t)), and will be denoted by |[¢]].
The set of all finite T-trees (i.e. trees with finite domains) is denoted by
Ts.

It will be useful to use the notation t[s] to indicate that the tree ¢
contains a subtree s, and more generally, to use t[sy, ... +8n] to indicate
the presence of subtrees S1,...,8,.

Definition 3.1.4 Given a ranked alphabet ¥, a L-algebra A is a pair
(A, 1), where A is a hon-empty set, called the carrier, and I is an in-
terpretation function assigning functions to the function symbols in
such that if f € T, then the symbol f is interpreted as some function
I(f)y : A" - A;in particular, when n =0 (i, fis a constant), we have
I(f) € A. For a given algebra A, we shall denote the function I(f) by
fa.

For any alphabet ¥ there exists a special kind of algebra, variously
called the free 3-algebra, the term algebra, or the initial algebra.

Definition 3.1.5 The free X-algebra is the algebra (Ty,I) where for
every f € X, with n > 0 and for all ty oo tn €Tx, fro(ty, ..., t,) is
the tree denoted flty, ..o, t).

1 Note carefully that ¢/« is the subtree of t at o and t(a) is the symbol labelling the
node at a.
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In other words, the resulting algebra, which will also be deinoted by Ty,
is an algebra of finite trees where the functions in ¥ are interpreted as
tree constructors. It is well-known that Ty is a free algebra (see [49]). To
prevent free algebras from having empty carriers, we assume that X, #0.
It follows that the set 7% is nonempty.

The following definition will also be useful.

o~

Definition 3.1.6 Given a Z-algebra A, a congruence = on A is an
equivalence relation such that, for any f € £, with n > 0 and for any

a1, ... ,8n,b1, ... by € A if a; 2 b; for 1 <i< n,then
fA(al, e ,a,,) >~ f.A(bly e ,bn).
Given a countably infinite set of variables X = {zq,z,...}, we can

form the X-algebra T%(X) by adjoining the set X to the set . Th}ls,
Ts(X) is the set of all finite trees formed from the constant and function
symbolsin ¥ and the variables in X. In order that Tg(X) b'e non-empty,
we assume that Yo U X # 0. It is well-known that Tx(X) is the free X-
algebra generated by X (see [49]). This property will allow us to define
substitutions.

Definition 3.1.7 A term is any member of Tx(X). The set of variables
occurring in a term ¢ is the set

Var(t) = {z € X | t(a) = z for some o € Dom(t) }.

Any term ¢ for which Var(t) =0 (i.e., a member of Tx) is called a ground
term. The set of variable addresses in Dom(t) is

VarDom(t) = {a € Dom(t)|t(a) € X},
and the set of non-variable occurrences in Dom(t) is

NonVarDom(t) = Dom(t) — VarDom(t).

Convention: In the rest of this thesis, we shall use the letters a, b, ¢,
and d to denote constants; f, g, and h to denote functions; z, y, and z to
indicate variables; I, r, s, ¢, u, v, and w for terms; and «, 8, v, and § for

tree addresses.

Additional notational conventions will be introduced as needed, part%cu—
larly in the introductory material in the chapter on higher-order unification.
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Finally, the notion of a multiset will be used in several different contexts
in this thesis.

Definition 3.1.8 Given a set A, a multiset over A is an unordered col-
lection of elements of A which may have multiple occurrences of identical
elements. More formally, a multiset over A is a function M : A - N
(where N is the set of natural numbers) such that an element a in A has
exactly n occurrences in M iff M(a) = n. In particular, @ does not belong
to M when M(a) = 0, and we say that a € M iff M(a) > 0. The union of
two multisets M; and M, denoted by M; U M,, is defined as the multiset
M such that for alla € A, M(a) = Mi(a) + Ms(a).

To avoid confusion between multisets and sets, we shall always state
carefully when an object is considered to be a multiset. Note carefully that
multiset union is a distinct notion from the union of sets.

3.2 Substitutions

‘The notion of a substitution is central to unification and matching problems.

Definition 3.2.1 A substitution is any function 6 : X — Ts(X) such
that 6(z) # 2 for only finitely many z € X .

Since Tx(X) is the free T-algebra generated by X, every substitution
0 : X — Tx(X) has a unique homomorphic extension  : Ts(X) — Te(X)
(see [49]). In the sequel, we will identify 8 and its homomorphic extension
6. Less formally, we have the recursive definition

a(t) _ [ 9(z), if t =2z for some z € X ;
~ LAB(t), ... ,6(tn)), otherwise, for t = f(ty, ... 1n),
for some function symbol f and terms t1,...,ty, where n > 0.

In the rest of this thesis, we use the greek letters 0, o, 7, p, and ¢ to
denote substitutions.

Definition 3.2.2 Given a substitution o, the support (or domain) of ¢
is the set of variables

D(o) = {z | o(z) # z}.
A substitution whose support is empty is termed the wdentity substitution,
and is denoted by Id. The set of variables introduced by o is the set of
variables

Io)= | Var(o(a)).

z€D(0)
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Given a substitution g, if its support is the set {1, ...,2,}, and if ¢; =
o(zi) for 1 << n, then o is also denoted by [t,/z,, ... ,t,/z,]. Given
a term u, we also denote o(u) as u[ty/z1, ... ,tn/zs]-

Given a set of ‘protected variables’ W, a substitution p is a renaming
substitution away from W if p(z) is a variable for every z € D(p), I(p) N
W =0, and for every z,y € D(p), p(z) = p(y) implies that z = y. If W
is unimportant, then p is simply called a renaming.

The restriction of a substitution @ to a set of variables V, denoted by
Oy , is defined as the substitution # such that

¥ (z) = {0(:1:), ifreV;

z, otherwise.

Definition 3.2.3 The union of two substitutions ¢ and 6, denoted by
o U4, is defined by
o(z), if z € D(o);
oUl(z) =< 0(z), if z € D();
‘ z, otherwise,
and is only defined if D(o) N D(0) = 0.
The composition of o and 6§ is the substitiltion denoted by ¢ o6 such
that for every variable  we have o0 8(z) = 6(o(z)) .

Definition 3.2.4 Given aset V of variables, we say that two substitutions
o and 6 are equal over V, denoted o = 0[V] iff Vz € V, o(z) = 0(z). We
say that o is more general than 0 over V, denoted by o < 9[V], iff thgre
exists a substitution 7 such that 6 = o o n{V]. When V is the set of all
variables, we drop the notation [V].

Definition 3.2.5 A substitution o is idempotent if coo =o.

It is easy to give a necessary and sufficient condition for idempotency.

Lemma 3.2.6 A substitution o is idempotent iff I(c) N D(c) = 0.

Proof. By a simple induction on [t|, we can show that for any term %,
o(t) =t iff Var(t) N D(s) = 0. Applying this to the term o(z) ff)r
each z € D(o), we see that o0 o0 = o iff Vz € X.o(0(z)) = o(x) fff
Vz € D(0).0(o(z)) = o(z) iff V2 € D(o).Var(o(z)) N D(e) = 0 iff
Ile)NnD(e)=0. O

Idempotent substitutions are easier to manipulate and the assumption
of idempotency often simplifies a proof. For example, it sometimes turns
out to be useful in a proof to ‘partially instantiate’ a term by an idempotent
substitution, a technique which is justified by our next resuls.
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Lemma 3.2.7 If 6 is an idempotent substitution and t is a arbitrary
term, then 6(t) = 0(t[a — 6(t/a)]) for any a € Dom(t).

Proof. We simply observe that

0(t) = 0(t)[o — 6(t/ )]
= 0(tfa — 00 8(t/a)])

= 0(ta — 0(t/a))). O

We now formally justify that we may often restrict our attention to
idempotent substitutions without loss of generality, by showing that any
substitution is equivalent (over an arbitrary superset of its support) up to
renaming with an idempotent substitution.

Lemma 3.2.8 For any substitution o and set of variables W such that
D(c) C W, there exists an idempotent substitution o’ such that D(o) =
D(d’), ¢ < o', and o’ < o[W).

Proof. Let D(o) NI(0) = {z, ... yZn}, let {y1, ..., .} be a set of
new variables disjoint from W and I(o), let py = [y1/x4, ... »Yn/Tn],
and let py = [z1/yy, ... 22 /Yn]. Now let o/ = oo p1, so that clearly
o < ¢ and D(s) = D(¢') as required. Since p1opz = Id[W U I(0)],
then ¢ = 0 0p; 0py = o/ 0 p2[W], and thus o’ < o[W]. But by our
previous lemma, ¢’ must be idempotent, since D(c’') = D(o) is disjoint
from I(¢') = (I(0) — {z1, ...,z ) U{y1, ... W} O

Since most uses of substitutions in this thesis are modulo renaming,
this lemma will allow us to assume that substitutions are idempotent if
necessary. We shall prove specific results related to the use of idempotent
unifiers in later sections.

Finally, we define the notion of a substitution instance and a matching
substitution.

Definition 3.2.9 For any term ¢, a term 6(t) is called a substitution
instance of t. Given two terms s and t, a substitution o is called a matching
substitution of s and ¢ iff s = o(t). We say that ¢ has been matched to s.
(Our convention will be say that two terms can be matched if the second
can be matched to the first.)

In other words, two terms match if the first is a substitution instance of
the second. The associated decision problem (i.e., whether such a o exists)
is called the matching problem for s and ¢.2

2 We remark that s = o(t) does not in itsell guarantee that D(o) C Var(t), so that
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3.3 Unification by Transformations on Systems

We now define unification of terms and present an abstract view of the
unification process as a set of non-deterministic rules for transforming a
unification problem into an explicit representation of its solution, if such
exists; in Chapters §5 and §6 this will be extended to E-unification, and
in Chapter §7 to higher-order unification. This elegant approa'ch is due
to [109], but was implicit in Herbrand’s thesis [64] (see Appenduf Thl:ee,
where we quote the passage in full). Our representation for unification
problems is the following.

Definition 3.3.1 An equation is a pair of terms, denoted, e.g., by s = ¢,
and if Var(s,t) =0 then s =1 is called a ground equation. We use s gt
to stand (ambiguously) for either s = ¢t or t = s (thus we may think
of s ~ 1 as a multiset {s,t} of two terms). A substitution 6 is called a
standard unifier (or just a unifier) of an equation s = t if 6(s) = 4(¢).
A equation system (or just system) is a multiset of such equations, and a
substitution 6 is a unifier of a system if it unifies each equation. The set
of unifiers of a system S is denoted U(S), and if S consists of only a single
equation s = t, the set of unifiers is denoted by Uf(s,t).

Definition 3.3.2 A substitution o is a most general unifier, or mgu, of
a system S iff

(i) D(o) C Var(S);

(i) o €U(S);

(iii) For every 6 € U(S), 0 < 6.

It is well known that mgu’s always exist for unifiable systems, and. it
can be shown that mgu’s are unique up to composition with a renaming
substitution, and so we shall follow the common practice of glossing over
this distinction by referring to the mgu of a system, denoted by mgu(S).

Definition 3.3.3 An equation £ &t is in solved form in a system S and
z in this equation is called a solved variable if x is a variable which infes
not occur anywhere else in S; in particular, £ &€ Var(t). A system is in
solved form if all its equations are in solved form; a variable is unsolved if
it occurs in S but is not solved.

there may exist some 6 more general than ¢ which also matches /t to s. We cant:
however, assert that for any two matching substitutions ¢ and ¢’ of ¢ ontohs,t l‘{
must be the case that o|yar(r) = o'|var(s) - Thus we shall in general assume that i

p matches t to s, then D{p) C Var(t).
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Note that a solved form system is always a set of solved equations. The
importance of solved form systems is shown by

Lemma 3.3.4 et S = {xl = T t,,} be a system in solved
form. If ¢ = [t,/z,, ... »tn/Ts], then o is an idempotent mgu of S.
Furthermore, for any substitution 6 € U(S), wehave 0 =g o4 .

Proof. We simply observe that for any 6, 0(xi) = 0(t;) = 0(o(z;)) for
1<i<n,and 6(z) = §(o(z)) otherwise. Clearly o is an mgu, and since
D(s) N I(e) = 0 by the definition of solved forms, it is idempotent. [

Strictly speaking the substitution o here is ambiguous in the case that
there is at least one equation consisting of two solved variables; but since
mgu’s are considered unique up to renaming, and such equations can be
arbitrarily renamed, we denote this substitution by og. As a special case,
note that o5 = Id.

We may analyse the process of finding mgu’s as follows. If 0(u) = 0(v),
then either (i) u = v; or (i) u= f(uy, ... yun) and v = f(vy, ... ) Un)
for some f € ¥, and 0(ui) = 0(v;) for 1 < i< n;or (iii) u is a variable
not in Var(v) or vice versa. If u is a variable and ¢ Var(v), then
[v/u] € U(u,v) and [v/u] < 6. By extending this analysis to account for
systems of equations, we have a set of transformations for finding mgu’s.

Definition 3.3.5 (The set of transformation rules ST) Let S denote any

system (possibly empty), f € £, and u and v be two terms. We have the
following transformations. .

Trivial:
{fumujus = § (1)

Term Decomposition: For any f € L, for some n > 0,

{f(ul,...,u,,)zf(vl,...,vn)}US = {uimv,..,us v} US (2)

Variable Elimination:
{zxv}jus = {z = v}Ua(S), 3)

where z ~ v is not in solved form, z ¢ Var(v), and o = [v/z].

Recall that systems are multisets, so the unions here are multiset unions;
the intent of the left-hand side of each of these rules is to isolate a single
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equation to be transformed. We shall say that Unify(S) = 6 iff there
exists some sequence of transformations

S = ... = 95,
where S’ is in solved form and 8 = g5/ . (If no transformation applies, but
the system is not in solved form, the procedure given here fails.)

Clearly, by choosing S = {u = v}, we can attempt to find a unifier for
two terms u, and v, as the following example shows.3

Example 3.3.6

f(z,9(a,9)) = f(z, 9(y, 2))
=Pdec TR, g(a,y) = g(y, z)
=wiv 9(a,Y) =~ 9(y, 2)
=dec ARY, YR

vl AR Y, AR 2.

The sense in which these transformations preserve the logically invariant
properties of a unification problem is now shown.

Lemma 3.3.7 If S — S’ using any transformation from 87, then
uis)=u(s").
Proof. The only difficulty is in Variable Elimination. Suppose {z ~ v} U
S =>va {z~v}Ud(S) with o = [v/z]. For any 0, if 8(z) = 6(v), then
6 =008, since ool differs from 6 only at z, but 6(z) = 6(v) = 0o b(z).
Thus,
e U({z~v}US)

iff 6(z) =60(v) and 6 € U(S)

iff 0(z) =60(v) and 5080 € U(S)

iff 6(z) =60(v) and 8 € U(o(S5))

iff e U({z=~v}Uea(9)). O

The central point here is that the most important feature of a uniﬁcz¥tlon
problem—its set of solutions—is preserved under these transformations,
and hence we are justified in our method of attempting to transform suc‘h
problems into a trivial (solved) form in which the existence of an mgu is

evident.

= ~ 2 in.
3 In examples, we often drop set brackets for systems, e.g., $ = z; & t1, ... ,&n n
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We may now show the soundness and completeness of these transforma-
tions following [109).

Theorem 3.3.8 (Soundness) If § =% S’ with &’ in solved form, then
os: € U(S).

Proof. Using the previous lemma and a trivial induction on the length
of transformation sequences, we see that U (8) = U(S'), and so clearly

osr€U(S). O

Theorem 3.3.9 (Completeness) Suppose that 6 € U (S). Then any se-
quence of transformations

S=85 = S = S = ...

must eventually terminate in a solved form S’ such that gs: < 8.

Proof. We first show that every transformation sequence terminates. For
any system S, let us define a complexity measure u#(S) =< n,m >, where
n is the number of unsolved variables and m is the sum of the sizes of all the
terms in the system. Then the lexicographic ordering on < n,m > is well-
founded,* and each transformation produces a new system with a measure
strictly smaller under this ordering: Trivial and Term Decomposition must
decrease m and can not increase n, and Variable Elimination must decrease
n.

Therefore the relation = is well-founded, and every transformation
sequence must end in some system to which no transformation applies.
Suppose a given sequence ends in a system S’. Now 0 € U(S) implies by
Lemma 3.3.7 that 6 € U(S’), and so S’ can contain no equations of the
form f(ty, ... ,ta) ~ g(t], ... ,1.,) or of the form = ~ ¢ with z € Var(t).
But since no transformation applies, all equations in S’ must be in solved
form. Finally, since 6 € U(S’), by Lemma 3.3.4 we must have os: < 6.

O

In fact, we have proved something stronger than necessary in Theorem
3.3.9: it has been shown that all transformation sequences terminate and
that any sequence of transformations issuing from a unifiable system must
eventually result in a solved form. This is possible because the problem is
decidable. Strictly speaking, it would have been sufficient for completeness
to show that if S is unifiable then there exists some sequence of transforma-
tions which results in a solved form, since then a complete search strategy,

* For a definition of the lexicographic ordering, see Definition 3.5.4, and for the notion
of well-foundedness, see Definition 3.5.3.
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such as breadth-first search, could find the solved form. This form of com-
pleteness, which might be termed non-deterministic completeness, will be
used in finding results on E-unification and higher-order unification, where
the general problem is undecidable.

In some contexts it may be useful to deal with idempotent unifiers which
are renamed away from some set of ‘protected’ variables but which are most
general over the set of variables in the original system. The next definition

makes this precise.

Definition 3.3.10 Given a system S and a finite set V of ‘protected’
variables, a substitution o is a most general unifier of S away from V
(abbreviated mgu(S)[V]) iff

(i) D(o) CVar(S) and I(e)N(VUD(c)) =0;

(i) o €U(S);

(ii1) For every 8 € U(S), o < 8[Var(S)].

That such substitutions may always be found for unifiable systems is

shown by

Lemma 3.3.11 If S is a unifiable system and V' a protected set of vari-
ables, then there exists a substitution ¢ which is a mgu(S)[V].

Proof. Let 6 = Unify(S), as in Definition 3.3.5, so that @ is an idempotent
mgu of S such that D(#) UI(0) C Var(S). If VNI(@) = Q, then o =60
is a mgu(S)[V]. Otherwise, let p be a renaming substitution away from
V U Var(S) such that D(p) = I(f), and let ¢ =@ op. .C'learly D(o) =
D) U I(#) C Var(S). Since I(c) = I(p), by the deﬁnltu?n .of p, o s
idempotent and also I(¢) NV = @, and hence condition (i) is ‘satlsﬁed.
Condition (ii) is satisfied also, since for any equation u ~ v in S, we
have that 6(u) = 6(v), and-thus o(u) = p(6(u)) = p(6(v)) = o(v), so
that ¢ € U(S). To show the last condition, we first observe that from
the definition of a remaming there must exist an inverse p~! such that
pop~! = Id[I(9)] (since I(§) = D(p)). Now, for every z € D(o),
o(z) = p(8(z)), and so p~(o(z)) = po p~1(8(z)) = 6(z), with the result
that 8 = o o p~}[D(s)]. But since D(p~!') N Var(S) = @, then also
6 = oo p~1[Var(S)]. Now suppose ¢ € U(S), so that §' = fon for some
n. Then ¢ =00 p~! on[Var(S)] and finally o < ¢'[Var(S)]. O

The following corollary will be used in a later result.

Corollary 3.3.12 If ¢ is a mgu(S)[V] for some S and some V, then for
every 0 € U(S) we have o < ¢'[Var(S)u V).
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Proof. By examining the details of the previous proof, we see that in fact
0 =0gop~t[Var(S)U V], since D(p~')NV =0, andso 6 = sop~lo
n[Var(S)UV] and finally o < ¢'[Var(S)UV]. 0O

3.4 Equational Logic

In this section we review the basic notions of the model and proof theory of

equational logic. First we recall some simple concepts regarding relations
on terms.

Definition 3.4.1 Let — be a binary relation on a set A, that is, — C
Ax A. The converse (or inverse) of the relation — is the relation denoted
! or «—, defined such that u «— v iff v — u. The symmetric
closure of —, denoted by «—, is the relation — U «—. The transitive
closure, the reflexive and transitive closure, and the reflexive, symmetric,
and transitive closure of — are denoted respectively by l», - and
——. The n-fold composition of — is denoted by —.

as ——

Definition 3.4.2 Let — C Ty(X) x Tx(X) be a binary relation on
terms. The relation — is monotonic iff for any three terms s, ¢, and v,
for any o € Dom(u), if s — ¢, then ule — s] — u[a «— t] (some-
times a monotonic relation is called a precongruence). The relation — is

stable (under substitution) if s — ¢ implies that o(s) — o(t) for every
substitution o.

Definition 3.4.3 Let E C Tx(X) x Ts(X) be a set of equations. We
define the relation «——g over Tx(X) as the smallest symmetric, stable,
and monotonic relation that contains E. This relation is defined explicitly
as follows: Given any two terms t1,¢, € Tx(X), we have t; «——g ¢, iff
there is some variant® s = ¢ of an equation in £ U E~!, some tree address
o in t;, and some substitution o, such that

t1/a=0(s), and i3 =t1[a — o(t)].

(Thus, o is a matching substitution of s onto ¢; /&.) Note that the equation
s ~ t is used as a two-way rewrite rule (that is, non-oriented). When
ty «— g t2, we say that we have an equality step. When we want to fully
specify an equality step, we use the notation

t [a,s=t,0] t2

5 In what follows we shall assume that before an equation is used it has been renamed
apart from all variables in current use. This is essential to prevent clashes among the
variables. Thus we shall always state that a variant of an equation is being used.
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(where some of the parameters may be omitted).

It is well known that the reflexive and transitive closure «——pg of «—— g
is the smallest stable congruence on Tx(X) containing E. This relation is
the central object of study in the proof theory of equational logic, and is
called E-congruence. Note that from our previous definitions, for any two
terms u and v and set of equations E, we have u g v iff there exists
some sequence of equality steps
—>

]u,,=v,

_ . — . Ug... -
u = Uo [ay,la=ry,p1] U1 [oa,da=ra,p2] 2 [andn=rn,pn

for n > 0, where the sequence of equations l; = r; consists of variants of
equations from EU E~!,

The decision problem associated with E-congruence, i.e., for a given E
and two terms u and v, whether u«——g v, is called the word problem for
E. That this is not a decidable problem is shown by our next result.

Theorem 3.4.4 The relation ——g is in general only semi-decidable.

Proof. It should be obvious that it is decidable whether a given sequence of
rewrite steps proves that u 2 p v, and by the previous results, if u ——gv
for some set E, then there must exist a finite equational proof of this fact.
Thus, by dovetailing the enumeration of all possible proofs, this sequence
must eventually be discovered. But by picking E to contain the axioms for
monoids, we see that ——p can never be decidable in general, since the
word problem for monoids is only semi-decidable (see [108]). O

(For different proof of this result, see [36], where it is shown that any
Turing Machine can be represented by an equational theory with only two
equations.)

We now sketch the model theory of equational logic, where the language
under consideration has equality and a set of function and constant symbols
¥, but no predicate symbols, and where the only sentences allowed e%re
atomic, i.e., equations over Tx(X). The only theories considered consist
of sets of equational axioms, where all variables are implicitly universally
quantified. Validity in this formal system is defined as follows.

Definition 3.4.5 Let A be a T-algebra. Since an equation is implicitly
universally quantified, i.e., [ = r is interpreted as the atomic formula
Yz, ...z,.(I = r), where {z1,...,2,} = Var(l,r), we must deﬁne.the
semantics of equations with respect to assignments ¢ : X — A. First,
the meaning of a term ¢ in the algebra A with respect to an assignment ¢,
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denoted [t]¥, is defined recursively on the structure of ¢ as follows:

[z]4 = ¢(z), for a variable z;
[c]% = ca, for a constant c;

[ft, - )]G = fa(ta]%, - [ta]%)-

(When the assignment ¢ is not significant, we omit it.) Using this defini-
tion, we say that

Ak (=),

that is, A satisfies I = r with the assignment ¢, iff we have

0% = [

Thus, the algebra A satisfies the equation ! = r, or is a model of | = r,
denoted

AE(l=r),
Iff for every assignment ¢ we have A E (I =r)?. An algebra A is a
model of an equational theory F if it is a model of every equation in FE.
The wvariety of a theory E is the class of all models of E. Finally; we

say that a set of equations E logically implies an equation [ = r, denoted
E | (I = r), iff any model of E is also a model of { = 7.6

We conclude with the major result of equational logic, which asserts the
soundness and completeness of the syntactic notion of E-congruence with
respect to the model-theoretic semantics just presented. This result assures
us that two terms are semantically equal modulo an equational theory E
if and only if they can be proved congruent, by syntactically substituting
equals for equals (i.e., terms equal under the theory E), in a finite number
of steps.

Theorem 3.4.6 (Birkhoff) For any set of equations £ and terms s and
t, EEs=tiff s pt.

Before proceeding to the proof, we first define a “standard model” for a
set of equations.

Definition 3.4.7 For any E, let T/E be the structure with universe
Te(X)/ +—g (i.e., the set of congruence classes of Tx(X) such that [s] =
[t] iff s<>gt) and such that, for every fe %, , for n >0,

fT/E([tl]) e ,[tn]) = [f(tl, e ,tn)]

6 We remark here that we have not considered negations of equations or compound
sentences made up of equations, since this will not be needed in what follows. The
reader interested in a fuller treatment may consult [49].
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(in particular, cr/g = [c])-

It is easy to see that this interpretation of the function symbols enforces
an interpretation of ground terms such that for any ¢ € Ty, the meaning
the T/E assigns to t is simply [t]. Recall that for any function o : X —
Ts(X), there is always a unique homomorphic extension of ¢ Ef) Ts(X),
namely, ¢ : Tx(X) — Tg(X). In the sequel we shall identify & and o.
Before we prove that T/E is indeed a model of the set E, we need the
following technical lemma.

Lemma 3.4.8 For any E, let ¢ : X — Tx(X)/ ——E be some assign-
ment of the variables into the universe of T/E, and let ¢ : X — Tg(X)
be any function such that o(z) € ¢(z) for every ¢ € X (i.e., o picks
“representatives” for the classes in the range of ¢). Then for any term ¢,

42,5 = o))
Proof. (By induction on [t|.) If t = ¢ € Xp, then [[c][;/‘E =cr/g =[] =
[o(c)]; andif t = z € X, then |[:L']I;/E = p(z) = [o(z)], since o(z) € p(z).
Now suppose t = f(t1,...,t,) for n > 1. Then

[fts - e g = Frre([idf) e - - [tadF) )
= frie(let)), -, [o(ta)))
= [f(o(tl), ,a(tn))]
=[o(fts, ... )],

where in the second step we applied the induction hypothesis. [

Lemma 3.4.9 For any set of equations E, T/E E E.

Proof. Suppose | = r € E; we must prove that |[I]]¥/E = I[r]l,l"i/f; for
any assignment ¢ (which interpretes the universally quantified varla.bles
in [ = r). But then there must exist some o as specified in the previous
lemma (for example let o(z) be the least member of ¢(z) v*vrt some total
ordering on Tx(X)). But then [o()] = [o(r)], since o(l) —Eo(r), and
so by the previous lemma we have

7/5 = leD] = [o(M] = Irl7/5

Proof of Theorem 3.4.6.
For the only if direction (completeness), since T/E is a model of E,
then T/E s =t, e, [[I7,5 = [r]7,g for any assignment ¢ . Thus let
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¢ be the particular assignment which maps each z to [z], and let ¢ be
the identity on X. Clearly o(z) € ¢(z) for any z, and so by Lemma 3.4.8,

[s]= [o(s)] = [, = [}, 5 = lo(®)] = [4,

which means that s —g¢.

For the if direction (soundness), first we prove that E |= p(I) = p(r) for
any substitution p and I =r ¢ E, by showing that [p(1)]4 = [o(r)]% for
any model A of E and any assignment ¢:X — A. For any such A and
@,let 6 : X — A be the assignment such that for every z, 6(z) = [p()]%
(or, equivalently, 8 = po @, where § : Ts(X) — A is the homomorphic
extension of ¢ ).

We claim that [p(¢)]% = [t]% for any ¢t ¢ Tx(X), and proceed by
induction on |¢|. If t = ¢ € Ty, then % =ca=[]=[]4%; and if t =
¢ € X, then [z]% = ¢(z) = [2]% . Now suppose that ¢ = flty, ... )
for n > 0. Then

[o(f@1s - a1 = [ (o(ta), - .., p(ta))]5
= fa(le)]%, -, [o(ta)]%)
= fa(t:id%, ., [ta]8)
=[f@t, ..., t.)]5

where in the second line we applied the induction hypothesis. This con-
cludes the proof of the claim.

Now because A |=1=r, we have [1% = [714, and so

[P(D1% = 1% = [T = [o(n)],

and since ¢ was arbitrary, we conclude that E Ep(l) = p(r).

Next we show that if E|=s=1¢, then E = u[s] = u[t] for any context
u[], by induction on [u|. For the base case, if |u| = 1, then u[s] = s and
uft] =t and the result is trivial. Now suppose |u| > 1. Again, if u[s] = s
and uft] = ¢ the result is trivial. Otherwise, if u = f(u1, ... ,u,), then
uls] = fluy, ..., wls), ... vun) and uft] = fluy, ..., uft], ... yUn) for
some ¢, 1 <7 < n, and by hypothesis E F ui[s] = wt], and then (since
the rest of the context is identical) clearly

EE flu, ... Juils], ... yun) = f(ug, conwift] o ug).

Finally, if s ——g ¢, then we prove the soundness of this rewrite proof by
induction on the number of rewrite steps n between s and ¢. If n = 0, then
s = t and the result is trivial. If n > 0, then either s —p s <—*—>Et,
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or § —p 81 ——pgt, where E |= s; =t by the induction hyp'ot:,hesis.
‘We prove the first case, the second being similar. By the definition of
—g, s = s[p(l)] and s; = s[p(r)] for some | = r € E and some
substitution p. But then from the previous two paragraphs, we know
that E = s[p(l)] = s[p(r)], since clearly E =1 = r, and we c-onclude
that [s]% = [s10% = [t]% for any model A of E and any assignment
p:X—A,andso EEs=t. 0O

3.5 Term Rewriting

One of the major problems with theorem proving in equational logic is that,
even if a particular theory E has a decidable word problem, the sea{‘ch space
for equational proofs is homogeneous and circular, so that a naive proof
method has little choice but to enumerate proofs in some complete, brute
force fashion. This means that even if the theory E has a decidable v‘ford
problem, unless some ad-hoc method can be found, it may not be obvious
how to design a decision procedure. The technique which has had th'e most
success in the face of this combinatorial explosion is to attempt to 1m1?ose
a well-founded ordering on the set of terms, and to orient equations lI‘ltO
rewrite rules which are always used in the same direction, thereby reducufg
the size of the terms being rewritten at each stage of the proof. If in
addition the oriented set of equations forms a confluent relation, the'n we
can find if two terms are congruent by simply reducing each to a (ul}lque)
normal form under the relation. If the set of oriented equations‘ is not
confluent, then sometimes it is possible to complete the set of equations by
adding equational consequences in such a way that the result is co‘nﬂuent.
This scheme has many advantages, although it can not be used in every
case. In this section and the next, we review the major results.m this
area, and show how in some cases, by using the notion of terminating a‘nd
confiuent sets of rewrite rules, we can transform a set of equati.ons w.hl.ch
has a decidable word problem into a set of rules for which there is a trivial

algorithm to solve the word problem.

Definition 3.5.1 When an equation s = ¢ € F is used only iI.I one di-
rection (from left to right), we call it a rule. The reductio'n relation —E
is the smallest stable and monotonic relation that contains E. We can
define t; — g t explicitly as in definition 3.4.3, the only diﬂ"ere:we being
that s = ¢ is a variant of an equation in £ (and not in EU E~ ).. When
t;, —E ta, we say that ¢; rewrites to ty, or that we have a rewrite step.
When Var(r) C Var(l), then a rule is called a rewrite rule and denoted by
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I = r; a set of such rules is called a rewrite system.”

3.5.1 Termination Orderings

We now proceed to discuss the conditions under which a rewrite system can

be proved to always terminate, first reviewing the basic notions of orderings
we shall need.

Definition 3.5.2 A preorder (or quasi-order) < on a set A is a binary
relation < C A x A that is reflexive and transitive. A partial order < on a
set A is a preorder that is also antisymmetric. The converse of a preorder
(or partial order) < is denoted as >. A strict partial order (or strict order)
< on aset 4 is a transitive and irreflexive relation. A pair (A, <) where
X is a partial order on A is called a poset. Following [104] and [36], we
also use the name ‘poset’ for a pair (4, <) where < is a strict order on
A. Given a preorder (or partial order) < on a set A, the strict order <
associated with < is defined such that s < ¢ iff s <t and ¢ 2 s. Conversely,
given a strict order <, the partial order < associated with < is defined such
that s <t iff s <t or s =¢. The converse of a strict order < is denoted by
>. Note that (A4,>) and (4,>) are posets whenever (4, <) and (4, <)
are posets. A partial order < (respectively a strict order <) on a set A
is said to be total iff for any two distinci elements a and b of A, we have
either @ X b or b < a (respectively a < b or b<a).?

Definition 3.5.3 A relation > on a set A is Noetherian or well-founded
iff there are no infinite sequences ay, . .., a,, Gn41, ... of elements in A such
that an > a,41 for all n > 0. Given a preorder (or partial order) =<, we
say that < is well-founded iff > is well-founded. A set of rewrite rules R is
called noetherian if the relation —pg is noetherian.

Remark: We warn our readers that this is not the usual way of defining
a well-founded relation in set theory, as for example in Levy [104]. In set
theory, the condition is stated in the form Gny1 < ay, for all n > 0, where
<=>"1. It is the dual of the condition we have used, but since < = =1
the two definitions are equivalent. When using well-founded relations in the
context of rewriting systems, since it is customary to give rewrite sequences

” The motivation for this restriction is that whenever there is some variable z ¢
Var(r) = Var(l) then there can never exist a stable simplification ordering for this
rule, since we may apply the substitution [t/z] to the rule, for example. Such patho-
logical cases are eliminated by the restriction; cf. the problems which arise with
global variables in functional programming languages.

8 Clearly if < is a partial order, then this holds for any two elements of A4, distinct or
not.
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from left to right, we are usually interested in the reduction relation —

- and the fact that there are no infinite sequences ao,...,an, Gn41, ... such

that @, — @n41 for all n > 0. Thus, following other authors, including
Dershowitz, we adopt the dual of the standard set theoretic definition. For
the same reason, in the next two definitions we use posets of the form
(A,>) rather than of the form (4, <).

Definition 3.5.4 For each positive integer n and n posets (S;,>;), for
1 < i < n, we may define the lezicographic order =% on the set Sy x...x
Sn_as?ollows. Let ay, ...,a, and by, ..., b, be membersof S;x...xSy.
Then

ay, ...,0n >_Ie:r: by, ... ,bn

if and only if there exists some 1 < i < n such that a; >; b;, and for all
1 <j<i, aj =b;. Unless stated otherwise, we will normally assume that

all the n posets are identical.

Definition 3.5.5 Let (S,>) be a poset, let M be some finite multiset of
objects from S, and finally let n, n{, ... ,n}, € S. Define the transformation
(relation) =>,, on finite multisets as

MuU{n} =, Mu{nal,...,n},

where k> 0 and n > n! for all i, 1 <i < k. Then the multiset ordering

> is simply the transitive closure & . In other words, N > N’ iff N’ is
produced from a finite multiset N by removing one or more elerrvlents‘and
replacing them with any finite number of elements, each of which is strictly
smaller than at least one element removed. ‘

For a given strict order >pqme we denote the corresponding multiset
extension by Sname and the lexicographic extension by =17 .. We may
extend these to partial orders as shown in Definition 3.5.2.

It is easy to show that for any poset (S,>) we have associated posets
(M,>) (where M is the set of all finite multisets of members of S) and
(8", ='¢*) for n > 0. Furthermore > is total (respectively, well—fo.unded)
iff -'e* (for any n) is total (respectively, well-founded) iff >> is total
(respectively, well-founded).

We are interested of course in using orderings on terms to prove ter-
mination of rewrite systems, and, more generally, to do inductive proofs.
The most general of these orderings are based on the notion of syntactic

simplification.
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Definition 3.5.6 A strict ordering < has the subterm property if
s < f(...,s,...) for every term f(...,s,...). A simplification ordering <
is a strict ordering that is monotonic and has the subterm property (since
we are considering symbols having a fixed rank, the deletion property is
superfluous, as noted in Dershowitz [36]). A reduction ordering < is a strict
ordering that is monotonic, stable, and such that > is well-founded. With
a slight abuse of language, we will also say that the converse > of a strict
ordering < is a simplification ordering (or a reduction ordering).

The importance of these orderings is shown by this next fundamental
result, from [35].

Lemma 3.5.7 A set of rules R is noetherian if and only if there exists a
reduction ordering > on Ts(X) such that for every l SreR, | > r.

Unfortunately, it is undecidable in general if an arbitrary system R is
noetherian [75], since it is possible to encode Turing machines using rewrite
rules [36], and this would imply the decidability of the halting problem.

The most powerful forms of reduction orderings are based on the relative
syntactic simplicity of two terms, i.e., on the notion of a simplification
ordering. Although there are many types of simplification orderings, one
of the most elegant and useful is the recursive path ordering with status,
and since we shall not make detailed use of term orderings in this thesis,
we shall content ourselves with presenting just this one ordering.

Let a precedence ordering be an irreflexive partial order > on ¥ . The
mulliset path ordering (also called the recursive path ordering) and lezico-
graphic path ordering are two well-known methods for extending a prece-

dence ordering to terms; a generalization encompassing both may be given
as follows.?

Definition 3.5.8 Let us assume every function symbol in ¥ is assigned
a status from the set {mul,le:c}. The recursive path ordering with status
is defined as follows. For any two s,¢ € (%), s =rpos t iff s and ¢ are
identical up to permutation of immediate subterms under function symbols

with mul status; and
5= f(s1,...,8,) >rpos §(t1, ... ty) =1t
iff
(i) f>g and s >rpos i for all i, 1 < i< m;or
(i) s Zrpos t for some i, 1< ¢ <n;or

% In [38], various orderings are defined in terms of of a quasi-order on Z; we shall not
thi

is increased generality in this note, and so we give a simpler definition.
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(iii) f = g has mul status and {s, ...,s,} >-;’;‘;;,w{t1, e ,t,,,}t; ;)rand
(iv) f = g has lex status and (s1,...,sn) >0, (t1,...,tn
$>rpos ti forall i, 1 <i<m. .

(For the purposes of this monograph, the ordering ca‘m be extenlded :}2
T(Z, X) by considering the variables to be constants lnf:omparal.)b le lvlw
any other symbols.) The ordering obtained v‘vhen all function symbols ?ve
mul status is simply the multiset path ordering [36], an(.i when all havethez;
status, the lezicographic path ordering, due to [84]. It is well—knO\‘avnt t:l
>rpos is well-founded when > is, for any status, and that when > is (t)h ,
then so is the Ipo, although if any function symbols have mul status, then

>rpos is at most a preorder.

For our purposes, the most important thing a‘bout this definition is that
for any signature, there exists a reduction ordering t?tal on ground t'em;ls,
which is also a simplification ordering. (‘This result'wﬂl be necessary in the
proof of the completeness of our set of transformations 7 given in Ch;;‘)t?r
§6.) However, note that this ordering may not be total on TE(XI) T 1(si is
a major problem with term orderings: in order to preserve stability unher
substitution, they must treat variables as incompar.able symbols. T IIDIS
equations such as commutative axioms (e.g. f(z',.y) = f(y,z)) can r‘1ot 35e
oriented. A more general discussion of term orderings may be found in [35,

36, 77].

3.5.2 Confluence

For the rest of this section, we discuss the confluence of rewrite systems a:nd
an important result which provides a sufficient condition for a noetherian

system to be confluent.

Definition 3.5.9 A system R is confluent if for any term*s t, t1, imd tg,
whenever t; — gt —pgt,, there exists a w such that ) —RwW—p t‘g .
We shall call such a w the confluence term for t; and t,, and shall write
t1] t2 if there exists a confluence term for ¢; and 5.

The following definition and lemma provide an alternate characterization

of confluence.

Definition 3.5.10 A system R is Church-Rosser if for any terms ¢, and
ty, t1 — gty implies that ¢, ¢5.
Lemma 3.5.11 A system R of rules is confluent iff it is Church-Rosser.

Proof, The if part is trivial, since u ——pt ——pg v implie.s that‘u «——»R}ti,
and hence that u ]| v. The only if part proceeds by induction on the
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number of rewrite steps in «~~p . The base case if trivial. Now suppose

the result holds for all sequences of less than n rewrite steps, and let
§=8p R S] “—R ...Sp_1 ——p S, = 1.

By the hypothesis, there is some w such that s —pw <R Sp_1 and
some v such that s,_; — R ve— rt, regardless of the direction of the last
rewrite step. But then w«— R Sn— 1 —>R v and by confluence, there must
exist some u such that s ——spw ~ru PR *—Rt as illustrated by:

S Sa‘ (-*.)S =

\/\
N

a

A rewrite system R is termed canonical if it is noetherian and confluent.
The significance of canonical systems of rewrite rules is that they have a
decidable word problem, as shown by the next two results.

Definition 3.5.12 Let R be a set of rewrite rules. A term ¢ is in normal
form with respect to R or in R-normal form if for no ' does t —p t'. If
R is available from context we shall simply say that ¢ is in normal form.

Lemma 3.5.13 Let R be a canonical system of rewrite rules. Then any
term ¢ has a unique normal form with respect to R.

Proof. Suppose u«——pt-—sp v, with u and v in normal form. Then by
the confluence of R, there must exist a term w such that u ~rw < rv.
Since u and v are in normal form, this can only happen if u = w = v. |

The unique normal form of a term ¢ will be denoted by t].

Theorem 3.5.14 Let R be a canonical set of rewrite rules and s and ¢t
be two terms. Then s ;Rt iff s|]=1¢].

Proof. The if part must hold since s —»gs|=1t| <~pt. To prove only
if, we observe that by Lemma 3.5.11, R is Church- Rosser, so there must
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exist some term w such that s “»pw«—gt. But then by the previous
lemma, w) is the unique normal form of w, s, and t. O

This theorem gives us a simple decision procedure for the word problem
in canonical theories: we simply reduce both terms to their unique normal
forms and compare. Confluence is undecidable in general [77], but, in fact,
if we can prove that the system has the termination property, it is possible
to localize the test for confluence to single applications of rewrite rules.
This is the key result which will allow us to define the completion of a set
of equations in the next section.

Definition 3.5.15 A system R is locally confluent iff for terms ¢, ¢y,
and {5, whenever t; «—pg t —g i3, there exists a term w such that

*
t1 .—*—>Rw4——th.

Theorem 3.5.16 A noetherian system R is confluent iff it is locally con-
fluent.

Proof. The only difficulty is showing that a noetherian and locally conﬂuest
system is confluent, since the other direction is trivial. Thus suppose R is
noetherian under >. We proceed by induction on the well-founded term
ordering > to show that for any term u, if uy —— pu—pus, then .thel:e
exists some term w such that u; — g w <—p ua . For the base case, if u is
in normal form, then the result is trivial. Now assume the result holds for
all terms v’ such that u > ', and suppose uy S pu-pus. fn=0
then let w = us; if m =0 let w = u;. Otherwise, we have

n-—1 1 7 m-1 u
Uy +—RU;] R U —R Uy —FR U2,

where by local confluence there must exist some terrx'l v suc’h that
u) g v<—gub, and by the induction hypothesis (applied to u}), thsre
must exist a term vy such that u; —gv; —g v, and, finally, by the in-
ductxon hypot11e51s (applied to u}), there must exist a term w such that
V] —— R W —— R U, as illustrated by:
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This important result shows us that when considering a noetherian set
of rewrite rules, we can localize the test for confluence, in the sense that the
notion of local confluence centers on the application of two rewrite rules
to an arbitrary term t. By considering the possible ways that two rules
can interact in rewriting a single term, we show in our next theorem that
a system can only fail to be locally confluent when a particular kind of
overlap is possible between the matching of rules onto a term. In this way
we can define the sufficient condition for local confluence which motivates
the design of the completion procedure presented in the next section.

Definition 3.5.17 Suppose t, g lara] b oyl Sra,pn] -

Then we say there is a critical overlap of the two rules on ¢ if the projections
of the non-variable symbols in each of the terms !; and I ontot intersect,
that is, if {01 8|8 € NonVarDom(l1)}n{ayy |7 € NonVarDom(l)} # 0.

Before we present the theorem, we need one lemma which generalizes a
proposttion from [73].

Lemma 3.5.18 Let R be a set of rewrite rules and 6 and 6 be substi-
tutions with D(f) = D(#') such that Vz € D(6), 6(z) =g 0'(z). Then
for any ¢, 6(t) —g0'(t).

Proof. (By induction on [t].)

Basis. [t| = 0. If t € D(8), then trivially 6(¢t) <> 0'(t); otherwise
0(t)=06'(2).

Induction. Assume for all terms of depth less than k, with k > 0. Then ¢
of depth k must be in the form f(t1, ... ,t,), where each ¢; has a depth

1o more than k—1 and 6(t;) —>g6'(t;) for 1<i<n. By concatenating
these n disjoint rewrite sequences, we obtain

0(t) = f(6(t1), ... ,0(tn)) g fO'(t), ... ,0(ta)) = 6'(2).
O

We now show that the existence of critical overlaps is a necessary con-
dition for a system to be non-confluent.

Theorem 3.5.19 (Knuth-Bendix) Let ¢, ¢;, and ¢» be terms and let

ta [a!,l2—=r2,p03] t [e,l1-5r1,01] i,

where I; = r; and I, = 7, are variants of rules from some set R. Then
. . * %*

either there exists a confluence term w such that ty—pwe——pgt; orthere

is a critical overlap of I; = r; and Iy 5 ry ont.
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Proof. As regards the locations of the addresses a and a’ in ¢, there are

two cases. ‘ . b tha
(A) @ and o are disjoint, in which case there must exist a w such tha

— — . i
t2 [a,l1=>71,01]) w [af 12 =rg,00) U0

in other words, the rewrite steps commute, which may be illustrated:

(B) One of a, o is a prefix of the other. Without loss of general-
ity, assume that o’ = af. Then t/a = pi(l;) and t/af = p1(L)/B =
p2(l2), and we have two subcases: either (i) 3 ¢ NonVarDom(Il), that
is, p1(l)/B is a subterm of pi(z) for some z € Var(Il.), or (ii) B €
NonVarDom(ly). This latter case is a critical overlap, so if we can show
the existence of a confluence term in case (i) we are done.

Let B = 3182, where I1/8; = z,s0 that t/af = p1(l1)/B = p1(2)/B2 =
p2(lz) as shown in the following figure: ,

t, t

t,
. yaad
// A o.(r)

Now let the substitution pj be defined as

) p(W)[B2 — p2(r2)], fy=2z=04/b;
py) = p1(y) otherwise.

We now show that w = t[a « p{(r1)] is a confluence term for t; and
ty. Clearly, p1(z) —r pi(z), and so by Lemma 3.5.18, we have that
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p1(r1) =R p}(r1). But then by monotonicity we have
t1 = tla — pi(r1)] —rtla — pi(r)] = w.

To show that t; ~ g w, we observe that since t/a = p;(I;) and t/af; =
p1(z), then ta/a = p1(11)[B1 — p/(z)]. Now because the rewrite rules used
were variants, Var(pj(z)) N D(p1) = @ and therefore py(pi(z)) = pi(2).
Thus we have

ta/a = p1(1)[B1 — pi(2)]
= p1(li[B1 — pi(2)])
LN p1(L[B1 «— pi(2)]) ; by Lemma 3.5.18

= p1(h)-

But then by monotonicity, we must have

ts = tla — t2/a] —>ptla — pi(11)] T ol r1,04] tloe — pi(r1)] = w.

O

This result shows us that the test for local confluence may be restricted
to critical overlaps. But the variant assumption for the use of rules allows
us to sharpen this test so that we may confine our search for critical overlaps
to an examination of the rules themselves.

Lemma 3.5.20 Suppose that ¢, o’ lara,pa) t o111 t1,
where (without loss of generality) ¢’ = a8, and where I} = 7, and I3 =
ry are two variants of (not necessarily distinct) rewrite rules. Then there
exists a critical overlap of the two rules on t iff there exists a substitution
o = mgu(l,/B,12), where B € NonVarDom(l).

Proof. The if part of the proof is trivial, by taking ¢t = o(l;). For the
other direction, since 8 € NonVarDom(ly), we have t/aff = p1(lh)/8 =
p1(l1/B) = p2(lz) . Now, by the variant assumption it must be the case that
Var(l;)NVar(lz) =0, and so D(p1)ND(p2) =0, and thus pyUp2(l1/8) =
p1 U p2(l2). Therefore there must exist a substitution o = mgu(ly/3,12).

O

The point is that anytime there is a critical overlap, this must have been
caused by a most general overlap between the two rules, independent of the
term ¢ in which the overlap occurs. This leads us to our next definition.

Definition 3.5.21 Let I; — r; and Il = rg be two variants of (not
necessarily distinct) rewrite rules, and ¢ = mgu(l;/8,12), with 3 a non-
variable position in ;. Then the pair of terms p, ¢ is called a critical pair,
where p = o([1[# — r3]) and q¢ =a(r}).
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A critical pair is always a consequence of the set of rules, that is,
p——R4{, since o(h[ — r2]) —r o(h) —r a(rl-). We may thi'n'k
of a critical pair as a most general instance of the way in which two criti-
cally overlapping rules can rewrite a term.

Lemma 3.5.22 (Knuth-Bendix, Huet) Let &4 = ry and I — r2 be
variants from a set of rules R and let t, t;, and t2 be terms such that
t;, with 8 € NonVarDom(l,), as

t2 [aB,12=r2,p2] ¢ [e,l1=71,01])

shown by the following figure:

£.

Then there exists a critical pair p,q for the two rules, and a substitution
7 such that to/a = n(p) and t1/a = n(q).

Proof. By the previous lemma, there must exist a critical pair p,q and a
substitution o such that p = o(hh[ — r2]) and ¢ = o(r1). Now, since
o is a mgu, it must be the case that o < p; U p2, and so there m'ust
be some 7 such that p; Ups = g on. Also, by the variant assumption,
D(p1) N Var(ry) = 0 and D(p2) N Var(ly) = 0. Therefore, we have

ta/a = t/a[B — pa(r2))
= pr1(l1)[B « pa(r2)]
= p1Upa(lh[B « r2])
= n(o(L[B — r2]))
= n(p)-

Finally, by the variant assumption, D(p2) N Var(ry) = 0, and so
ti/a = pi(r1)
= p1 U pa(r1)
= n(a(r1))
=n(q)- a
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We may now bring all these results together in presenting the major
theorem of this section, which shows that the test for local confluence may
be restricted to the critical pairs of a system of rewrite rules. Clearly, if
the system is also noetherian, then this constitutes a test for confluence as
well.

Theorem 3.5.23 (Knuth-Bendix, Huet) A set of rewrite rules R is locally
confluent iff for every critical pair p, q formed from variants of rules in R,
plyq.

Proof. (=) Suppose R is locally confluent and let P, q be a critical pair
formed from variants l; = r; and I < 7y of rules from R. But then
P «—r o(li) —r q, and by local confluence there must exist a term w
such that p—‘-»Ruu—*—Rq.

(=) Suppose every critical pair has a confluence term, and let

t2 (__[ﬂ',lz—"f‘z,le t T el ra,p1) tr

By Theorem 3.5.19, we see that if there is no critical overlap, there must
exist a confluence term for ¢; and ¢,. If there is a critical overlap, i.e.,
B € NonVarDom(l,), then by Lemma 3.5.22, there must exist a critical
pair p,q and a substitution 7 such that t2/a = n(p) and t/a = 5(q).
By the hypothesis, there must exist a term w such that pP——pw < rgq,
and thus, by the stability of —~z , we have 1(p) ——r n(w) < g n(q) .
But then t, ~pt[oa — n(w)] <—g t1, completing the proof. [J

The reader interested in further results concerning the confluence of term
rewriting systems is referred to [73].

3.6 Completion of Equational Theories

The last result in our previous section showed us that a sufficient condition
for the confluence of a finite noetherian system may be verified by checking,
for each critical pair (of which there are only finitely many), if the normal
forms of each term in the pair are equal.If this test fails, we may attempt
to complete the system of rules by adding the critical pairs to the system
as rules, if they can be oriented with respect to the termination ordering.
Since each pair is a logical consequence of the original system, this is a
conservative extension of the theory, and each of the original critical pairs
is now trivially confluent. Unfortunately, new critical pairs may be created.
By iterating this process, we may eventually succeed in finding a canonical
system of rules R,, equivalent to the original system E, i.e., such that
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—ap = <~ k., and then we may use the decision procedure for R,
(implicit in Theorem 3.5.14) to solve the word problem in E. Of course,
since the word problem for arbitrary E is not decidable in general, this

method will not work in every case.

This is the basic method of the Knuth-Bendix Completion Procedure
first presented in [94] and thereafter refined by many different researchers
(for a good survey of the history of completion and 'its parallel development
in polynomial ideal theory, with an excellent bibllography, see [24]). We
shall follow [37] in presenting an abstract version of this procedure along
the lines of [8]. The result will be a non-deterministic version of the Knuth-

Bendix completion procedure.

Definition 3.6.1 (The set KB) Let E be a set of equations, R be a set
of rules (either possibly empty) and > a reduction ordering on Tx(X).
The first transformation simply removes trivial equations from E.

Eu{u=u},R = E,R. (1)
We may reduce equations in F by rules in R, so that if u —pr w,
EUu{u=v},R = FU{w=v},R, (2a)
and if v —p w,
Eu{u=v},R = EUu{u=w},R (2b)
Furthermore, we may inter-reduce rules in R. If v — g w, then 7
E,RU{u>v} = E,RU{u=w}, (3)

and if & is a well-founded ordering on rewrite rules and u —laiorg Yo
where u - vl = 7, then

E,RU{u>v} = EU{w=v},R. (4)

(Notice that in transformation (3), the new rule remains in R, since
U > v > w, whereas in transformation (4), the new rule must be moved
back to E,in case wy v.)

If 4> v in the reduction ordering, then

Eu{u=v},R = E,RU{u-v}. (5)

The last transformation tries to make the system confluent by moving
€quational consequences into the equational theory. If u «—pg w —p v
then

E,R — FU{u=v},R. (6)
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Note in particular that u,v may be a critical pair of R. As in the transfor-
mations $7, we assume that union on the left-hand side of each of these
rules is a disjoint union.

The well-founded ordering > in rule (4) insures that the interreduction
process is correct by forcing the rewrite rule = 7 to be smaller in some
sense than u - v. The common practice is to require ! to be a proper
subterm of u or a proper substitution instance of u, but it can also be
advantagous to consider the age of the rules. In no case can a rule be used
to reduce its own left-hand side. (For details see [37] or [8].)

The soundness of the transformations is given by this next theorem,
whose proof (although tedious) is not hard and is omitted.

Theorem 3.6.2 (Soundness of the set KB) If E,R =>xp E',R' then

(_‘?EuR = (—‘-—}EIURI .

A completion procedure is a strategy for applying these transformations;
specifically, it takes as input a finite set of equations E and a reduction
ordering > and generates a sequence of pairs

E,0 = kB E1,R1 =>kp E2,Ry =>kp ...

It should be obvious that the systems Ry, R,,... are all noetherian with

respect to the reduction ordering >. The intent of the set KB is to find a
finite sequence of transformations

E,0 = kB E1,Ri =>kp ...0,R,,

where R, is canonical (if possible). In particular, this will be true if R, has
has no new critical pairs (i.e. that have not already been generated). In this
case, by Theorem 3.5.23, R,, is locally confluent and hence canonical under
>. In this case we say that R is a completion for E. This shows that if a set
of equations E is completed into a set of rules R, then ——p = LN
Le., the word problem in each is identical—except that there is a simple
decision procedure for R.

If no transformation applies, but E is non-empty, the procedure is said
to fail (this may happen, for instance, if there is some | = r € E such
that [ % r and r % l). It is also possible that the procedure may run
forever, even given certain fairness assumptions regarding the selection of
equations and of critical pairs. In this case, we say that the result of a
(possibly) infinite sequence

E,@ =k Ei, R KB -.-.
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is E*®, R, where E® = U*'ZO j>i Ej is the set 9f persisting equatiorfs
and R® = U;>o > R; is the set of persistin‘g rewrite rules. 'A sequen;e 18
called successful if E*° =0 and R™ is canonical. A C(')mpletlon.prozf urg
(i.e. astrategy for applying transformations from ICB? 1's cor'rect if B = y
implies that R* is canonical (whether the sequence is infinite or not:i), al}l

it is complete if every sequence under the strategy is successful. (For details

d [8]. .

Seelr[13z]r§:r tE) ]pz'esent the completeness result for KB, we need .t}.le nOtlf)l’l
of a fair transformation sequence. Let cp(R) be the set of e.lll critical pairs
formed from the rules in R, and let us say that a system Ris rf:dtltced if for
every | = r in R, risin normal form with respect to R, and { is in normal

form with respect to R —{l = r}.

Definition 3.6.3 A KB-transformation sequence is fair if cp(R*) C
U;»o Eiy R® is reduced, and E* = 0.

The following result, from [76], gives the sense in which the set KB can
be considered to be complete. (See [37] or [8] for a proof.)

Theorem 3.6.4 If a KB-transformation sequence
E,(b —kp F1,Ri =kB .-
is fair, then whenever u ‘—i—*E.vu r, v for some i, we have a rewrite proof

* *
U —> Roo W+— Roo V.

This theorem shows that a completion procedure can be used as a semi-
decision procedure for the word problem for an ?.n'bitrary E. Thus, a fair
completion procedure will either fail, terminate with succ.ess, or run forevltlar
in creating an infinite canonical set of rewrite rules equlvalen: Fo E. Tde
procedure can halt with success if at some stage n, E, =0, R" is reduced,
and each of the critical pairs in cp(R™) has already been generated and
appeared in some E; for i < n; in this case, R, is a completion of E. It turns
out that fair completion sequences are not too hard to generate, .and so the
crucial problem turns out to be finding an ordering which can orient au the
equations and critical pairs generated. In most current 1mplementatlofls,
this involves human intervention to orient rules which can not 'otherw1se
be oriented by the given term ordering. The interested reader is referred
to the works mentioned above for further details. . '

An important consequence of Theorem 3.6.4 is that'by using the notlog
of ground confluence and the fact that reduction orderings t(?tal on .groun
terms always exist, it is possible to avoid failure due to equations which can
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not be oriented. This extension of completion, called unfailing completion
. ¥

ordorder:ed completion, was developed by Bachmair, Dershowitz, Hsiang
¥

and Plaisted [8, 12, 9], and turns out to be crucial in the completeness

results of Chapter §6; we shall i i
: ; present the necessary results i
form in Section §6.1. ’ o smplifed

CHAPTER 4

E-UNIFICATION

In Section §3.3 we defined the standard unification of terms, most gen-
eral unifiers, and showed how the abstract non-deterministic method of
transformations on systems of equations provides a procedure for unifica-
tion which either fails or terminates with an explicit representation of the
mgu of the original system. The notion of standard unification is based
on making two (first-order) terms syntactically identical, but in fact, we
could generalize this to any relation P on terms, defining “P-unification”
to be the problem of determining for two terms u and v if there exists some
substitution @ such that (8(u),8(v)) € P. In this section we present the
basic notions of E-unification, where this relation P is represented by a
finite set of equations E. The two following chapters will present a gen-
eral procedure for E-unification via the method of transformations; later in
this monograph, in Chapter §7, we present a generalization of unification
to higher-order terms, and develop a non-deterministic procedure in the
same fashion.

4.1 Basic Definitions and Results

Definition 4.1.1 Let E be a finite set of equations. We say that a sub-
stitution 8 is a unifier of an equation s ~t modulo E, or an E-unifier of s
and t, iff §(s) —— g 0(t). A substitution ¢ is an E-unifier of a system S if
it E-unifies every equation in S, and the set of all such E-unifiers will be
denoted Ug(S). If S = {s ~ t}, then this will be denoted by Ug(s,?).

Unfortunately, unification modulo a set of equations does not enjoy the
nice properties of standard unification. Since the word problem for an
arbitrary E is an instance of the E-unification problem, E-unification is
undecidable, but since we can dovetail the enumeration of all possible sub-
stitutions and equational proofs, the set of E-unifiers of any two terms is
always recursively enumerable. Another difference from standard unifica-
tion is that most general unifiers do not necessarily exist. In fact, it is
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possible that two terms have an infinite set of independent E-unifiers, as
we now show.

Example 4.1.2 Let ¥ = {-} U Zo, where £, contains at least one
constant symbol “a”, and, using infix notation, let £ = {(2’ - y) -2 =
z'-(y -2’)}. This set axiomatizes non-empty strings over the set of constant
symbols X, and so we represent terms as simply strings of constants and
variables. Now consider the problem of E-unifying the two “strings” az
and za. If X;...X, isan E-unifier, for X; € £oUX and n > 1, then since
aX1X2... X, = X1 Xy ... X, a we must have a=X1=Xs=...X,=a,
and so

Ug(az,za) = {[a/z], [aa/z], [aaa/z], ...}.

Clearly this set is infinite, and none of the substitutions subsumes any
other, since they are all ground, and so no most general E-unifier, nor even
a finite set of “more general E-unifiers,” can exist. We now discuss some
notions needed to deal with this more complex situation.

Definition 4.1.3 Given a finite set E of equations and any set V of
variables, we say that two substitutions ¢ and § are equal modulo E over
V, denoted by ¢ =g 0[V], iff Yz € V, o(z) g 0(z). We say that o is
more general modulo E than 0 over V, denoted by o <g 0[V], iff there
exists some substitution 7 such that 6§ =5 ¢ o 7[V]. When V is the set of

all variables, we drop the notation [V], and similarly we drop the subscript
E when F = §.

An important property of the relation =g which will be needed later is
given by

Lemma 4.1.4 If 6 =g o then for any system S, 6 € Ug(S) iff ¢ €
Ug(S).

Proof. For any equation u & v in S, a simple induction on the structure
of u and v suffices to show that 6(u) g 0(v) iff o(u) ——po(v). O

From this lemma and the stability of E-congruence we can show
Corollary 4.1.5 If o € Ug(S) and o <p 0[Var(S)] then 0 € Ug(S).

Note that this result is true in the special case that o < O[Var(S)).
Now we generalize the concept of a mgu(S)[V] to sets of E-unifiers; this
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formulation of a generating set for a set of E-unifiers is d'ue to [131];1we
resent a modification of the definition from [43] for equation systems.
p

D AL O tlen a s 51 of setons s . com
2?:: ssjtt o“)f E(')-t;tnlzjr‘i(:zrchir S away fr,om V (which we shall abbreviate by
C‘(Si()JEF(j‘)El/l]cz ng, D(s) C Var(S) and I(c) N (V U D(s)) = 0;

((113 I'[‘]org e(\{frgS)ﬂ; € Ug(S), there exists some o € U such that o <p
The ﬁi[s‘:zzgl‘?i)i]t.ion is called the 1ImtritZs‘csocnoazflz;:;:nt.hlef?c:;lnds ii;}tx: cho:e;:lrgz
::Zﬁtif)onn,uald; h§1ia:t\$: TlsC: T}feeaiirfzviation CSUg(u,v)[V]. V‘Vhenvtl'le
use of V is not relevant to our discussion we shall drop the notation [V]

We now justify the purity condition and show the generality of idempo-

tent E-unifiers.

Lemma 4.1.7 For any system S, substitution 6, and set of protected
variables W, if § € Ug(S) then there exists some substitution & such that
(i) D(¢) € Var(S) and I(o)N (WuD(o)) =9;
(i) o € Ue(S);
(iii) o < O[Var(S)] and 6 < o[Var(S)).

Proof. If o0 = Blvar(s) satisfies condition (i), then we have our result

be a
trivially. Otherwise, if I(6) = {z1, ... ,z,f} ther'l let {v1, 0 ,;/E,g}) :nd
set of new variables disjoint from the variables in W, D(6), , :
Var(S). Now define the renaming substitutions py = /21, - - Yn/Zn

and = [z1/y1, ... +&n/Yn), and then let o =9 o pilvar(s)- Clea,rlymor
s:tisﬁpjs (1)[, ar/ld since o = 0o p1[Var(S)], we have the second paft/zi(('lslﬁ.
Now since p;opz = Id[Var(S)UI(6)], we must have 6 = fopiop2 Var(s)].
But then by the fact that o = 0 p1[{Var(S)] we have 6 =0 0p2[~ e S,
proving the first part of (iii). To show (ii), o.b‘serve that for any u :;e €2
we have 6(u) — g 6(v), and so by the stability of E-congruence

o(u) = p1(8(w)) £ p1(0(v)) = o (v),

which shows that ¢ € Ug(S). 0O

Fages and Huet definition by allowing the. ]ili“c;;ez:lt:::
t of variables to be arbitrary. The original definition imposed the re;;:ielax oo
if nOVa,'r(S) = @ in order that variable renamingfnot, be Exg;:[e‘s}s]a:ZE e e and
't lization of a mgu -
iction so that we have a true general : :
I;lsiscrénaming to be imposed or not, by setting V appropriately.

1 We also generalize slightly the
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This shows us that for any S and W, the set of all unifiers satisfying
condition (i) and (ii) of Definition 4.1.6 is a CSU(S)[W], and so in partic-
ular there is no loss of generality in considering only idempotent E-unifiers
in what follows. This will simplify several of the definitions and proofs.

It would be desirable, as in the case of E = @ , to show the existence
of complete sets of E-unifiers satisfying some minimality conditions. Such

conditions were first proposed by Huet in the framework of higher-order
unification [72].

Definition 4.1.8 Two minimality conditions may be defined. Let s and
t be two terms, and U a complete set of unifiers for s and t.
(i) (Minimality) For any two substitutions ¢, 8 € U, if ¢ <g 0[V] then

oc=0;
(ii) (Non-congruence) For any two substitutions o, 0 € U, if o =g 0[V]
then o =9.

Note that minimality implies non-congruence. Unfortunately, there are
difficulties with these concepts. Both are non-recursively enumerable, and
minimality cannot always be achieved: there exists a set of equations E
and two terms s and ¢ such that there is no complete and minimal set of
E-unifiers for s and ¢.2 Thus, the notions of completeness and minimality
may conflict.

4.2 Methods for E-Unification

To date there have been two basic approaches to the problem of generating
complete sets of E-unifiers, neither one valid for arbitrary sets E. The
first is to examine a particular equational theory, such as the theory of
semigroups, and develop an ad-hoc method for the problem. This was the
approach taken in the pioneering work of [131], and extended to a large
number of specific theories since then. Many of these specialized theories
have very interesting properties, e.g., the E-unification problem may be
decidable, or it may be possible always to find finite CSUs. A good survey
of results of this sort may be found in [145] or [83]. In this book we
are interested in more general forms of E-unification, and so we shall not
discuss this ad-hoc approach further.

The second approach developed for E-unification is called narrowing
and depends on the special characteristics of canonical sets of rewrite rules.

2 This phenomenon was first noticed in higher-order unification (see [72]), and extended
to E-unification in [43]; for further results, see [7] and the references presented there.
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Narrowing was first presented in [146] and [100]: but the E-unification %:)l—
rithm based on this technique first appeared in [46] and. was refined by
508 Since then the basic method has been developed by various researchers
[;9,'85,91,48,111,120,136]. A survey of some of the important results con-
cerning the method can be found in [93]. . i
Since this approach applies to an important class (.)f theorlgs and forms
the background to the more general results presented in the.next tvtlo ch.ap-
ters, we shall present the technical results of 'the method in detail. First
we define the notion of a normalized substitution, and‘t?en (%eﬁne the omi‘
slep narrowing relation. For all the results and deﬁmt%ons in the rest (;l
this section we assume that R is a canonical set of relete r‘ules. We s’ha
therefore use the phrase ‘R-unifier’ in place of the previous ‘E-unifier.

Definition 4.2.1 A substitution 6 is called normalized with respect to R
or reduced w.r.i. R if for every z in the support of 8, 6(z) is in normal
form with respect to R. (If R is available from context, we simply say @

is normalized or reduced.)

A consequence of this is that if {57 € R and 0(t) —(4,12r,9) t', where
0 is normalized, then « € NonVarDom(t).

Definition 4.2.2 The one step narrowing relation >—p is defined so
that for any terms s and ¢ and set W of protected variables, we have

8 ¥ a,l2r,0,W] b

iff

(i) « € NonVarDom(s),

(i) o= mgu(s/a,l), and
(i) t = o(s[a « 1)), '
for some variant I->r of a rewrite rule in R. In this case, we say that t_ 18 a
one-step narrowing of s. (Narrowing is sometimes also called surreduction.)

Without loss of generality, we assume in what follows that the mgus
in narrowing sequences are such as would be produced by the se.t S’]".
Before we present the fundamental result which shows the relat_lonshlp
between normalized substitutions, rewriting, and one-step narrowing, we
give a lemma which is useful for the main proof.

Lemma 4.2.3 If s and t are two terms such that Var(s) N Var(t) = 0
and if ¢ is a mgu of s and ¢ such that D(o) C Var(s) U Var(t), then
I(o) = Var(o(s)) = Var(o(t)).
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Proof. Since o(s) = o(t) we must have Var(o(s)) = Var(s(t)), and
since D(o) C Var(s)uU Var(t) we have I(c) C Var(o(s)) = Var(o(t)).
Now suppose there is some z € Var(o(s)) = Var(o(t)) such that z ¢
I(c). Then z € Var(s)n Var(t), contradicting our assumption. Therefore
Var(o(s)) = Var(o(t)) C I(¢). O

The central result which shows the precise manner in which we may ‘lift’
rewrite steps to narrowing steps was first shown by [78], and was presented
in detail in [93]). We present a modified version of this result.

Lemma 4.2.4 (Lifting Lemma for Narrowing) Let R be a canonical set
of rewrite rules, u be a term, W be a set of ‘protected variables’ containing
Var(u), 8 be a normalized substitution such that D(0) C W, and suppose
6(u) ~la,l=r,p) ¥ I8 a reduction, where I-57 is a variant of a rewrite rule
in R (i.e., the variables in Var(l) are new and occur only in this rule, and
Var()nW = 0) and, w.l.g., D(p) = Var(l). Then there exists a set W’
extending W, a narrowing step u>—
such that
(1) Var(v') CW’ and D¢’y c w,
(ii) 6=000[W],
(i) v=6'(+"), and
(iv) @ is normalized.

loi=r,0,W] v’, and a substitution 6’

which can be illustrated by the following figure:

0(u) B R v

I 17

U leiarew]

Proof. Since @ is normalized, no rewrite can occur in any term 6(z) for
z € D(#), so that O(u)/a = 0(u/a). But since I<r is a variant,

6U p(u/a) = 6(u/a) = p(l) = 0 U p(1),

and thus there exists a o = mgu(u/a,l)[W U Var(l)] such that D(s) =
Var(u/a)UVar(l) and there exists some 1 such that (by Corollary 3.3.12)
U p = aon[W UVar(l)] and since ¢ is idempotent by definition, we can
assume that D(s)ND(n) = §. (Thus, Dm)nVar(u/a,l) = D(n)NnD(p) =
0.) Since o is also an mgu(u/a,l)[W] we can define the narrowing step
U4 1 0w) V' Where v/ = o(ula — 7]) and Var(s') C (Var(u) —
D(a)) UI(o). We define the new set of protected variables

W' = WulI(o).
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Since Var(u) C W then we must have Var(v') C W', proving the first
t of (i). o '
Pali\](?w (]3t ¢ = nlw:, so that the second part of (i) is {n}medlat?. Nowf,‘
since D(p) is disjoint from W and I(9), and by the definition of ¢ and o
W', we have
§=0Up=cgon=ocol[W],

ing (ii). ) ~
pro’;:) sgh(()w) (iii) we first observe that by (ii) we must hav<.a 6(u) = 0'(o(u)).
Also, by the definition of ¢’, the fact the |7 is a variant, and bece'muse
D(n)’ N Var(l) = 0, we must have p = g o5 = o o ¢'[Var(l)], and since
Var(r) C Var(l) then p(r) = 0'(o(r)). Therefore

v = 0(u)[a — p(r))
= §'(o(u))]o — 0'(o(r))]
= 0'(o(ua — 7))
=0'(v").

Finally, to prove (iv) we must show that for any z in D(B’. ), 0’(::)'c “:(s)
irreducible. Now the fact that D(#’) C W’ =W U:I(U) glvei u@ e
cases for any z € D(8). /If ):c € BVIIE, (th;an, sx;(c:) lzr(fi )S: ?/(((;)) :nust d
= / have 8'(z) = 0'(o(z)) =

iorr;dlfc;)fe,[ V:gc::e 8 is nirmalized. Otherwise, if = € I(o), then by at:;h;
previous lemma we have I{s) = Var(o(u/a)) and hence,ofor ivz:‘(ya(z))
I(o) N D(0"), there exists a z € Var(u/a) C W suc‘h that (;L;e P
and @'(z) = 6(z)/B, where (3 is the address of z in a(2).

irreducible, so are all its subterms, including 6'(z), and we are done. 0O

The use of the sets of protected variables W and W' is a techn;::inléz;

cessity in order to use this lemma inotll[lsvi]nfiuct??snlzfzfn (;fst}'.l};ew (;olrlr;pt clenes
ow. The fact that § =g o in th » sho that

E;?';)ivl;iig substitution ¢ contains a ‘piece"of the SUbStltufthI;z i, nll;eic ;ii::
let ¢’ = olvar(u) then o’ < 6. The narrowing pr.()cedure c;; o
iterates this process in order to incrementall.y bul.ld up an ‘—un O.c due

Recall that if R is canonical, then theie is a simple d§c1s1o:1 ;)lr o
for the word problem for R; to test; if se——pgt we check 1f.fsvlvz 1et,e;1 -l;e d
finding a rewrite proof s ~spw—gt for some w. Now 1 .
new function symbol not occurring in X, this can be collapse
convenient form using a single rewrite sequence

eq(s,t) —r €q(s1,t1) —R ... — R €4(sn,in),
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where s, = t,, and no rewrite steps can take place at the root. Therefore,
if 6 is an R-unifier of two terms s and ¢, i.e., 0(s) g 8(t), then there
must exist some rewrite sequence

O(eq(s,t)) = eq(sh, t}) h-r €9(s1,17). .. lara) €4(55, 1)
for some n > 0, where s, =1,

The method of narrowing basically searches the narrowing tree of all
narrowing sequences originating from two terms to be R-unified, in order to
find a narrowing sequence which simulates a rewrite proof (as above) which
proves that the two terms are R-unifiable. Before we present the technical

results which show the soundness and completeness of this method, we give
an illustration.

Example 4.2.5 Let ¥ = {a,-} (where “” represents concatenation of
strings), R = {z1(3121)>(2191)71}, and consider the terms az and za.
Since [a/z] is a mgu of az and za, then [a/2] is an R-unifier of az and

za (this was found after a narrowing sequence of length 0). Now consider
the narrowing sequence

eq(az, za) >_-')[1,ar:x(!/xZ!)‘"("»‘:!Il)21.‘7] Eq((ayl)zl’ (21 )a)’

where o = [a/z1, 412, /2] and the final term has a mgu pu = [a/y1,a/2].

Then 6 =gopu= [a/z1,aa/z, a/y1,a/z1] is an R-unifier of az and za, as
shown by the following rewrite sequence:

f(eq(az, za)) = eq(a(aa), (aa)a) Tlea(yi21) S (2191)21,0) eq((aa)a, (aa)a),
where p = [a/z1, a/y, a/z1).
We now show that the result of narrowing two terms until a (standard)

unifiable equation is obtained, and then concatenating the mgu found with

all the narrowing substitutions generated, always results in an R-unifier of
the original two terms.

Theorem 4.2.6 (Soundness of Narrowing) Let R be a canonical set of

rewrite rules, s and t be two terms in T2(X) and eq be a new function
symbol not in ¥. For any narrowing sequence

eq(s,t) "ty <ary,00) €9(51, 1) " laraoa) - " linorn,an] €4(5n, 1n),

such that each §;—r; is a variant of a rule in R and s,, and ¢,, are (standard)
unifiable, the substitution

0 = g10...00,0p,

is an R-unifier of s and ¢, where K= mgu(sn,iy,).
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Proof. (By induction on n) If n = 0 then the r(jsult is triv:a: Iof nis>a(r)1
then by the induction hypothesis, we ha)Ie that ¢’ = 012 o.. .Su n,:e tﬁat 2o
R-unifier of s; and t;, i.e., 8'(s1) —r 0 (t1). Now,.w. & ast ume that the
first narrowing step takes place inside u (note that it Ciﬁl no(t) re l;hen o
the root, since eq € X), i.e. 5>"_’[11—'»r1,01] s1 and t; = o1(t), then by
the definition of one-step narrowing, we have 01(s) —p,=r, 4,] 51,

the result that by the stability of — g we have

6(s) = 0'(01(s)) —r 0'(s1) =R 0 (t:) = 0'(1(2)) = 6(t).

The next result uses the lifting lemma to shoYv that any time a 51.1b-
stitution @ R-unifies two terms, it is always possible to find a narrowing
sequence which generates a substitution more general than 6.

Theorem 4.2.7 (Completeness of Narrowing) Let R be a cano?lcalt'set
i terms in 7x(X) and eq a new function
f rewrite rules, s and £ be two : . I
(s)ymbol not in . For any substitution 6, if 8(s) «——g0(t) then for :Sni
set of protected variables W containing Var(u,v) and D(6) there exis

narrowing sequence
: eq(sn,t
€q(8,8) =1, Zepp 00] €4(51581) ™y 2erg 0a] -+ Tl rm,0a] €4(Snsn),
for some n > 0, and a mgu p of s, and t, such that

o10...0050u <g O[W].

Proof. First of all, let @' be the normalized version of 8, i.e., for iveryo Izj
D(6) 'let ¢'(z) = 0(z)|. Thus, for every z € D(0) we have 6(z) —r
and s,o 0 =g ¢ and 8(u) ——g 0'(u) for any term u. Therefore

0'(s) <R 6(s) ~—r0(t) —r0'(t)

d thus N
an 9/(3) .L;Ruﬂ——RH’(t)

for some w, so that we must have some rewrite sequence
! 1
—_ ! —r 1 eq(sh,t)
Bl(eq(s, t)) = eq(sg,tg) [Il;’rl] eq(s’l,tl) e [ln—’f'n] q( nitn

W e = VV 1 W y Such
her sn tlﬂ € Proceed by induct]on onn tO ShO that fOl‘ an =
‘ i i t LL COntalIllIlg
I‘ maliz d a. d IO] a. y se
rew lte Sequence Whele 0 1S nor l € n . n ]
L 2] (s t) and D(G ), there exiStS the Correspondlng narr0w1ng Sequence

. eq\s tn)’
eq(5,8) >0, 2oy 100] €9(51, 1) 25 00] -+ T a5 00 alon,
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I:or some‘ n > 0,and a mgu p of s, and t,, such that 0,0
ro‘m which our result will follow. If n =0 then s/ a
unifiable, and thus if y = mgu(s, t)[W] 0

Otherwise, if n > 0 then by the liftin
step

eq(s,t) Pl ery,00,w) €4(51,81)
and new set of protected variables W’
substitution 6" such that D
and eq(s],t]) = 0"(eq(s;,
hypothesis to the rewrite sequence

0" (eq(s1,t1)) = eq(s' 1)) — —
1)) = ¥ :
) q(s1,17) [la=sra] -+ [In=sra] eq(sy, 1),

and th ! i i
e set W’ to obtain the corresponding narrowing sequence

e

q(s1,11) iy ara,0q] < P larg,0n] €4(50, tn),
and a rr.zgu u of s, and ¢,, such that 020...0050u < 0]
narrowing step eq(s,t) ey, 69081, e
we have our result, since by our ’choice of

W’']. By adding the
t1) to the front of this sequence,
W’ we must have

910020...00,0u< 0100 =0'[W]

Finally, since § =g ¢, we must have

010020...00,0pu<p O[W].

F
or any terms u and v and set of variables W let us call a sequence

eq(u,v) >—y eq(u
[l r1,01] q( l’vl) H[l;-—lr;,ag] e H[I,,—'»rman] eg(un) ’Un)

soaat.ed with a set of variables W, as shown in the previous result
rarrowing sequence away from W and denote this by a
eq(u) U) >_"[H,W] 6‘1(Um vﬂ))

where 0 = o, o
19...00, op for some mgu # of u, and v,, as above. We

may sum up the results of this section with the following theorem

Oopou < 0’[W]’
=1ty and so s and ¢ are
< 0w, then by Corollary 3.3.12 we have

g lemma, there is some narrowing

! =W U I(01) and some normalized
(8", Var(eq(sl,tl)) CW, 0 =0 0 0"[W]
t1)). But then we may apply the induction
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Theorem 4.2.8 For any canonical set of rewrite rules R, any terms s
and t, and set of protected variables W containing Var(s,t), the set

{ 0|Var(s,t) I eq(S,t) H[o’wl Cq(s', t') }

is a CSUR(s, t)[W].

Proof. The soundness and completeness criteria have just been shown. For
the purity condition, we need only show that each such 6 is away from W,
and so we proceed by induction on the length of a given sequence

eq(u,v) >, 2ry.on eq(U1, V1) ™, 5rp005] 0 T llnsrw,00) eq(tn, vn)
[ ]

to show that (I(o1)U...UI(ep)UI(p))NW = @, for any given W, from
which the result will hold. For n = 0 the result is trivial, since p will be a
mgu(u, v)[W]. Otherwise, for n > 0, we have I(c1)NW = 0 by definition,
and then we choose W’ = W U I(c) and apply the induction hypothesis
to get (I(o2)U...UI(0n) U I(p)) disjoint from W’, and since W C w',
we are done. [

This result gives us a complete strategy for E-unification in the case that
E is equivalent to a canonical set of rewrite rules R: we simply search the
narrowing tree of all possible narrowing sequences from the term eq(s,t) in
some complete fashion (say breadth-first) and whenever a unifiable equa-
tion is found, return the composition of all the narrowing substitutions on
the path back to the root term. '

The fundamental idea behind the narrowing procedure is the lifting of
rewrite proofs to narrowing sequences. The interesting feature of canoni-
cal rewrite systems is of course that rewriting is non-deterministic, so that
any strategy (e.g. top-down, bottom-up, inner-most left-most) for rewrit-
ing will reduce a term to its normal form. It turns out that by examining
the result of lifting rewrite proofs found under various strategies, we can
improve the narrowing procedure by reducing the search space without
sacrificing completeness. There are two principal improved versions of nar-
rowing which have been defined. The first, basic narrowing, due to [78],
reduces the search space by forbidding narrowing at addresses in that part
of the term introduced by the narrowing substitution, and is a lifting of
an innermost rewrite proof (see Definition 6.1.11 and Lemma 6.1.12). The
second, normalized narrowing, due to [46], reduces the search space by
normalizing a term before applying a narrowing step, and is a lifting of
(roughly) a certain kind of top-down tewrite proof. Both these restrictions
reduce the size of the narrowing tree and are complete, but unfortunately,
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as discussed in [
Since these resul
them further, b
mentioned.

The major problem with this technique for E-
course only usable when E is in fact a canonical s
the theory can be compiled into a set of canonica
in the previous section on completion. This pro
eral, and, even if the theory is completable, may
to determine a termination ordering,
rules during the completion process.
of undecidability in such a system, fir
to a canonical set of rewrite rules, and
current approaches to the completion p
The extensions to narrowing which acc
completion procedure fails, such as when E contains a commutative axiom,
begin to look rather ad-hoc again, and so this approach seems rather un-

suitable as a basis for a theory of E-unification and as a general paradigm
in the larger context of automated reasoning. In the next two chapters we
examine the more general problem of E-unification in arbitrary theories,
and show how our abstract approach subsumes the technique of narrowing,

136], the naive combination of these two is not complete.
ts will not be used in this monograph, we shall not discuss
ut instead refer the interested reader to the references Jjust

unification is that it is of
et of rewrite rules or when
I rewrite rules as discussed
cess is undecidable in gen-
require human intervention
perhaps by explicitly ordering rewrite
Thus, not only are there fwo levels
st attempting to complete the set E
then performing narrowing, but the
hase often need human intervention.
ount for some of the cases where the

CHAPTER 5

E-UNIFICATION VIA TRANSFORMATIONS

We now show how to extend the set of transformations ST given in ?ctlog
s i rbitrary E, an
_unification of a system under some a
.3 to perform E-unifica .
fl?;velop r:;he non-deterministic completeness of the method using a;i:::;vl
formalism for ‘proofs’ that two terms are E-unifiable, knownla's eg}z:at ona!
. i i in that i
formations is fully genera
trees. The new set of trans i
pm‘;];)le of enumerating a CSUE(S) for any system S and set of eq:al:(:;ls
cEapand we intend this chapter to provide a paradigm for the abs.tfriac :ounﬂ
f’complete methods for general E-unification. The sethof E—\:mherst found
b i chapter,
1 is hi however, and in the nex
method is highly redundant, \ ar .
b}): gnljow to restrict this method to avoid rewriting at variable occurrences
sho
while still retaining the ability to enumerate a CSUE(S).

5.1 The Set of Transformations BT

i i to high-
We shall follow for the most part the plan of Section §3.3, 1(111 o(rid:il;1 i f(i)catfon
light the essential similarities and differences between stan Z.rf fieation
argld E-unification. First we examine the significance of solved form sy

in this new context.

i i lved
= ~t,...,2, = 1y} is a system 1n so
Lemma 5.1.1 If & = {z1 = t1, , o
foig then {05/} isa CSUg(S")[V] for any V such that vnVar(S') ‘
, - . , ls
Proof. The first two conditions in Definition 4.1.6 are satlsﬁe‘jl, m(r;c,()e U§ow
an idt;,mpotent mgu of S, VNVar(S') =0, and I*(asf) C _a-r o(a.’(z.)),
if 8 € Ug(S'), then 8 =g o5 o8, since 0(z;) —E0(t:) = ‘ indgso
1" 1<i<L n, and 0(z) = 6(os/(z)) otherwise. Thus o5 <E
or 1 <i<mn,
obviously o5 <g 8[Var(S")]. O
i i ite steps
This allows us to effectively ignore any E—unxﬁers v.vhlch usedr(?:zlo:n Sp lelze
between equations in solved systems, if we are just interested 1
sets of unifiers.

i ms u
We may analyse the process of finding a CSUg(u,v) for two ter
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and v as follows. If § € Ug(u,v) then there must exist some sequence
0(u) =t [01,11—;1‘1,}’1] !
laa,laZry,pp) Y2 -

HIQMyIm—;Tm;pm] Um = 0(0)

with m minimal (so that there are no redundant steps), D(p;) C Var(i
for 1 < i < m. Since all the equations are variants, then

that D(ﬂ), D(Pl), .
extended E-unifier §' = 9Up, U ..

i)ri)

-U pm, so that we have
/
¢ (U) = Uo [a1,l12ry,601] U1

T lag,a2r,00] Y2
—
T lomdmZr 87 Um =6 (v).

Given any such rewrite sequence and extended E-

unifier, we have several
cases.

(1) m=0 and ¢

=0 € U(u,v). Then the analysis for standard unification
is sufficient.

(2) m # 0 and some rewrite step occurs at the root of some u;. Assume

that if one of u, v is not a variable, it is u, and pick the left-most rewrite
step; then

0'(u) g o' () T 1,00 0'(ri) g o' (v),

for some %,
and 0’(1,').
(3) m # 0 and no rewrite step occurs at the root of any u;.

(a) u= f(uy, ... yUn), v=f(vy, ... yUn) for some f e X, with n > 0,
and therefore ¢'(u;) < g 0'(v;) for 1 <i < n.

(b) Either u or v is a variable; assume u is a variable.
(i) v = f(v,...,v,) for some f € Xy with n > 0, ¢(u) =
f(t1, ... ,t,) for some terms 1, ... ,tn, and thus t; ——p 0'(v;) for
1<i<n.

(ii) v is a variable and 6'(u) = f(ty, ... ,t,) and 0'(v) = f(t}, ... )
for some terms ¢4, . .. ytn, g,

1 < i < m, where there is no rewrite at the root between ¢'(u)

-»ln, where t; < pt! for 1 <i<n.
’'n 3 _ —

By recursively applying this analysis to the subsequences found in each
case, every rewrite step in the original sequence can be accounted for. We
use cases (2) and (3) to define two new transformation rules to account for
the presence of rewrite steps in a unification problem.

E-UNIFICATION via TRANSFORMATIONS

we can assume
-+, D(pm) are pairwise disjoint, and we can form an
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Definition 5.1.2 (The set of transformation rules B7) To the transfor-
mations S7 we add two more to deal with equations.

Root Rewriting: Let u = v be an equation and if one of u or v is not a
00 :
variable, assume that it is u. Then

{fumvluS= {umlr=v}US, (4)

where 1= r is an alphabetic variant of an ?qua.tion in EU E.‘1 such. tl;lzt
Var(l,r) N (Var(S) U Var(u,v)) = 8, and if neither u nor'l is a va;la ) ,
then j?oot(u) = Root(l). Root Rewri'ting may not belapphe(i ?ee;i?tzesrte;
the equation u =~ I. This transformathn represents a e].‘:‘mos ot
at the root, and avoids rewriting a variable occurrence 1f possible.

Root Imitation: If z is a variable and f € X, with n >0, then we have
{zxv}US=>{z~f(y1, .-, %), TR V}US, &)

where the y; yn are new variables and if v is not a variable, then. fbi__
o . - .
Root(v). As a part of this transformation, we immediately apply Variable

iminati i ~ eeeyUn)-
Elimination to the new equation z = f(y, , .

As in the transformations in ST, recall that systems are multisets, and
the unions above are multiset untons.

Thus, given a set of equations E and a system S to be E-umﬁe.d, w? szﬁr1
that E—iJnify(S) = @ iff there exists a sequence of transformations fro

T
the set B S = 5 = ... = Sly

with $’ in solved form and 6 = os/|var(s)-

Example 5.1.3 Let E = {fgz =z} anfi S = {hz ~ hgfz}. Then we
have the following sequence of transformations:

hz =~ hgft =—>dec T=gfz
=Pimit,vel Z X gY1, 9Y1 N 9f9y
=bdec TR YY1, Y1 = fen
—=nw TRGYL, VLR Z, f92 R fon
=>ve TGy, N1 R 2, foy = fon
—uiv TRGY, NN

ing li i tep at the
i ion i like a paramodulation s bt
1 i ing this transformation is some‘thmg para > > on
Stmtc tlicsgtat]zzfthe terms u and [ are not unified. The point is tl_\:lt. t:“;;‘z,l:::fs e
afane imi the way a rewrite ste !
i the terms u and v imitates - i e
o anfe&uit;?vx;b;x: Ig-\.mify, and is not just paramodulation, since further rewr
roof tha
Ez-m take place below the root of u and I.



64 E-UNIFICATION via TRANSFORMATIONS

Therefore, E-Unify(S) = l[9v1/z] = 6 is an E-unifier of the terms he
and hgfz, as shown by the rewrite sequence

O(hz) = hgy, T2 pga gy 20 9T = O(hg fz).

The general idea here is that given some § € Up(S), we wish to show
that it is always possible to find some o € Ug(S) such that o <p
0[Var(S)]; in particular, this will be accomplished if we can find a substi-
tution o € Up(S) such that § =g o 0f[Var(S)]. The basic method of the
transformations is to find solved equations z ¢ such that 0(z) g 6(1),
so that, by an argument similar to that used in lemma 3.3.4, we have
0 =g [t/z] o 6. The sequence of solved equations found may be thought
of as ‘pieces’ of the substitution 6, and the set of solved equations col-
lected constitute successive approximations of the substitution ¢, namely,
o1 = [ti/z1], 02 = [t1/21] o [t2/x2],.... When we have approximated 6
sufficiently to E-unify the system, we may stop.

In this context, Root Imitation represents a ‘minimal approximation’ of
a substitution. This corresponds to case 3.b in our previous analysis of

-unification, where some rewrite steps occur, but not at the root, and
one of the terms is a variable. We assume u is some variable z, and then
either (i) v is a compound term f(v1, ..., v,), where n #0,0r (i) vis a
variable. In case (i), we know that 0'(u) = f(ty, ... ,1,) for some terms
t, ..., tp, and t; —p 0'(v;) for 1 <4 < n. But we can not yet tell the
exact identity of the terms ¢, ... »n; we know only that Root(8(z)) =
f. Thus we assume that 0(z) = f(w, ... yYn), where the new variables
Y1, ..., Yn are “placeholders” for the rest of the binding, and will be found
at some later point. Such a binding for z may be called a general binding
Jor z. We may roughly think of this as extending the substitution ¢ =
[f(t1, ... ,2.)/2] U 0" into a substitution

o =[f(y, ... sYa)/z) o [t/ yr, ..t yn] UG,

where clearly ¢ = ¢'(D(¢")]. By solving the equation z = f(yy, ..., y,),
we have found a piece of this extended substitution. The bindings for
the new variables will be found later and substituted in using variable
elimination. In case (ii), where both u and v are variables, we know that
0'(u) = f(t1, ... ,t,) and 0'(v) = f(t}, ... ,t.) for some terms 1, .oty
1, ..., t, where ¢ —g ti for 1 < i < n. In this case we “guess” a
general binding for u, and then this case is reduced to the previous one.
Thus we must guess the root symbol of the binding; this ‘don’t know’
non-determinism clearly presents implementation problems, but for the
present we are only concerned with demonstrating the completeness of a
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very general set of transformations; in Section §6.2 we show how this can

avoided. o ‘ -
b One interesting special case where root imitation is applicable is in E:

i i =~ t, where z € Var(l), i.e., when
i an equation of the form z =~ ¢, ‘
E}I:;fyol:cgur check fails for z. Although such an equation cannot have a
u, it is potentially E-unifiable by rewriting at the root (e.g., [a/z] €
I[j'lg(a,r f(z)) for E = {a = f(a)}) or by rewriting below the root, as shown
E(Z,

in Example 5.1.3 for the equation = =~ g(f(a:)) To E-unify an';ql(:z:lc;rsl
z = f(v1, ... ,vn) where the occur check fails ‘fo‘r z and no lIl'ewn © oceurs
at the root of f(vi, ... ,vs), we simulate .n?wrlt.mg be‘low the ro:) )tth °
use of Root Imitation and Term Decompomtlon,.lml'tatlflg the root f w1h he
general binding for z, and decomposing, thus distributing thehoccur ocn ok
into at least one of the equations y; z Uiy oo Yn = z?l,:v eizl:il()m ve
may apply Root Rewriting or Root In.ntatlon again to " a ef; o4 ar.e "
some point we must find an application ‘of' Root .Rewrl ing tl vo ate 0
eliminate the occur check. Unfortunately, 1.t is possible to ;:rea e la ) infnite
series of equations isomorphic up to renaming by repeatedly applying

Imitation and Term Decomposition:

zx f(2) =>imitdec * = f(11), 11~ f(y1)
=>imitdec £~ F(f(y2)), 01 &~ f(y2) 2= fy2) ..

Obviously this problem can not arise unless the occur chec‘k fails. lcIrn §62
we show that we can eliminate such redundant sequences without affecting

the completeness of the procedure.

5.2 Soundness of the Set B7

i d.
The following lemmas will be used to show that our procedure is soun
The first is a straightforward adaptation of Lemma 3.3.7.

Lemma 5.2.1 If § = S’ using Trivial or Variable Elimination, then
e 2.

Ug(S) = Ue(S). |

. L bl

Proof. As with standard unification, the only difficulty is with \frlva} L(j
Elimination. We must show that Ug({z =~ v} US) = UE({:::Z e
o(S)) where ¢ = [v/z] and z ¢ Var(v). For any substitutio ],)ut
0(x) LN 6(v), then § =g 006, since oo ¢ differs from 8 only at z,

8(z) ——g 8(v) = o o f(z). Thus,

0 cUp({z=v}US)
iff 6(z) ——g0(v) and 0 € Ug(S)
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iff 8(z) —>gp0(v) and god ¢ Ug(S); by lemma 4.1.4
iff 6(z) ~~g0(v) and 6 e Uk(o(S))
iff 0€Up({z~v}u a(9)).

a

Lemma 5.2.2 If § — ¢ using one of Term Decomposition, Root
Rewriting, or Root Imitation, then Ug($’) C Ug(S).

Proof. The basic idea here is that thes

those E-unifiers which require a rewrite

ttation, but do not introduce the possib
three cases.

e transformations do not preserve
step or an application of root im-
ility of new E-unifiers. There are

(1) Term Decomposition: If we have 0(s;) ——g 0(t:), for1 < i < n,
then 8(f(s1,...,s,)) g 0(f(t1,...,ta)), so clearly S =dec S’
and 6 € Ug(S’) implies that 6 € Ug(S).

(ii) Root Rewriting: If (u) ——g6(1), 8(r) g 6(v) for some variant
I =7 of an equation from E U E=1 then

(u) —g o(l) letzrey 0(r) o 0(v).

Thus § =5, S’ and 6 ¢ Ug(S’) implies that 6 ¢ Ug(S).
(iii) Root Imitation: This is in two parts. First we add an equation

zx f(y, ..., Yn) tothe system, and then we apply Variable Elimina-
tion. Since we showed the soundness of Va,
ply observe that if S —>imit S’ then S
implies that 6 € Ug(S).
In the case of Root Rewriting,
1s not ground, since E-
variables in the equatio

riable Elimination, we sim-
C 5, so clearly 6 Ue(S")

the inclusion is always proper if the equation
unifiers of the new system must account for the

n used in the rewrite step. The inclusion is also
proper with Root Imitation, since new variables are introduced again. [

Using these lemmas, we have the‘major result of this subsection.

Theorem 5.2.3 (Soundness) If S =%» &' with S

in solved form, then
os'|varcsy € Up(S).

Proof. Using the previous two lemmas and
of transformation sequences, we have tha
restriction has no effect as regards the ter
os'lvar(sy € Ug(S). 0O

a trivial induction on the length
t os: € Ug(S). But since the
ms in S, we must have also that
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5.3 Completeness of the Set BT

is a testament to the power and elegance of the technique of uniﬁc?.tion.by
o i stems of equations that it can be adapted to E-unification
tranSfo%.mmg lSy two additional transformations, and that this method, as
” :(rl(()l\l/:ginozlh?s section, can non-deterministically find a CSUE(S)[V] for
we
arl}ﬁrf):ijlef’tf ’pizse‘iile completeness of the set BT, we must sh?w that
if 6 € Ug(S), then there exists some sequence of transforr}rllatltonst e1~e-
ing in a solved form S’ such that o5 <g 0[Var(S)]. The strategy
s‘ﬂt":ig Ti: to take a representation for the fact that 8 € Ug(S), fmd
;:: ;sosptructure determine the sequence of transformlz:,ti';ox;s. In psa;-::z;
i e observe that for any
. V}’e Shali proceeg ai f::l}o“lzierf u;i;tVZXist sequences of rewrite steps
= ~ ce sy Up N ‘
g(ul) ZLE 931,)1), vy 0(up) =g 0(vn) proving thatd 0ﬁ€ (li]zgzl,ezzzdslf
form an E-unifier # similar to the extension o,f 6 as define ove In Sec
tion §5.1. Then we define an extension 6 off0 andlai) syzfzrgr; (;y éoot ons
+ whi count for all the potential uses o genera in :
il:;ti:r}: lile?lcin building up parts of the substitution e' . Tge Tl)e):; :::;: ;irl:
show how, for every sequence of }:'ev}:rite S::::tsaf}l:; )S;; i § S:;f e o
; roof tree which repr e
isrlzoanijotee?::lt\f::iilrlp;; forfm, and then define a proof .system < g’ , Bi;;fi’ois,
where P is a set of equational proof trees correspondl.ng fo ?l: }Te eoiiqginal >
in S. This proof system is essentially a ‘pr'eprocessuég oU S hich
S, and the sequences of rewrite steps showing that ! € afion ,r > h;we
al,l the syntactic materials possibly used. by the transform lon rules v
been collected together in a fashion which makes the com$ e O
set BT more evident. We then define afset oftprogf v;;}rlz:,cnhs Z:compose s
analogous to the set of transformatlor'ls or sys emf e
vi m; this sequence of proo
- rzz p:zzz tiflez,s rr:t:r;l‘;:; i:: a ’sequence of transformationsdon sys::z
Z?requitions which, when applied to the original sys.te'm ti ; flrslsesn:eszf on
S’ in solved form such that ogs: <g 8[Var(S)]. Tl?ls is e e s
method of proving non-deterministic completeness: we 5 at for ans
0 € Ug(S), with E and S arbitrary, there always exists 301’;6 seq
transformations which finds a E-unifier more general t’.hz:rll1 (; coreesponds
We showed in Section §5.1 how for any 0 /€ UE(S), er el the
a set of rewrite sequences and an extension 0 of 6 fmcorl.l):tion e o
matching substitutions. We provide a more rigorous formu
follows. We need one preliminary lemma.
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Lemma 5.3.1 If

= — . . E— . =
u Yo [01,11='1,P1] U . [any’n=rn,l’n] Un Uy

for some sequence of equations from E U E~1 then for any o we have
U(UO) [Q’lyll =‘r1,Pl°0] J(UI) e [a,.,l,.ér,.,p,.oa] U(u"). (*)

Proof. We proceed by induction on n. If n = 0 then the result holds

trivially. Now assume the hypothesis for all such sequences of length less
than n for n > 0. For a sequence of length n we have

7 (uo) T lenhiEr,p100] o(w)... 4_>[Q’n—1;1n—1='rn—lypn—l°<7] o(un-1)

and u,_; T lamlpraon] Uns that is, u,_i/a, = pn(ly) and u, =

Un_ilen — po(r,)]. But then, since a, € Dom(un_1) we have
o(Un-1)/a, = o(un-1/ay) = o(pn(ln)) and

7(un) = o(un—1fan — Pr(rn)]) = o(un_1)[an — o(pn(ra))],
and so therefore o(u, ) T lamlara,pnoo] O(Un), from which () follows.

O

Lemma 5.3.2 For any system S = {u; ~ v, ... ,u, & v}, if 6 €
Ug(S) then there exists some idempotent ¢’ € Ug(S) such that ¢’ <
0[Var(S)] and some set of rewrite sequences R = {II;, ... ,II,} proving?

that 8 E-unifies each equation in S, where each such sequence has the
form

0'(u) = Up (__)[01,1157'1,9'] Up... ‘_—)[am,l,,.irm,o’] Um = 9'(1}). (1)
Proof. Let {p1,...,pn} be the set of all matching substitutions used in
all the n rewrite sequences in R; as in the beginning of Section §5.1 we may
create an extension incorporating all the matching substitutions used in a
rewrite sequence, since all occurrences of equations in all rewrite sequences
are assumed to be renamed away from each other and from Var(S). Thus,
let " =60 Up,U...Up,,, so that we have

0" (u) = up T o 2y ,00) UL - T am 2,00 Um = 0"(v). (2
Now, because all equations in R are variants, we have 6" = 0[Var(S)].
If 6" is not idempotent then there exists by Lemma 7.1.26 a renaming

2 Ris a set of specific sequences of rewrite steps, denoted by I1;; see Definition 6.1.1.
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0 < ¢"[W]
ituti i tent 8 = 0" o p’ such that < ¢
tution p’ and an idempo : . i
Su}?sm ;V 18 tlil)e set of all variables in S, in the set of via.nan,t;s ffoe{q/uz:” (1;;1]
. (zln:n R. and in the support of 8. Clearly we have 6’ < 0 _t t[ z l t(;
usil ﬁnall;' by our preceeding lemma, we may apply the substitution p
n , ;
:he entire sequence (2) to obtain the sequence (1. 0O

i s and
i that such a set of rewrite sequence .
t us assume in what follows d
I;le @' is fixed. We now proceed to define the set By and tl'xe extensio
a’ ) . . . . .
S0/1’1(:which account for the general bindings used by root imitation

i l ez-
iti i bstitution &, let us define a genera
tion 5.3.3 For a given su ‘ ral

Deﬁir:ln 1:} @' denoted @, and the corresponding system of é]lener;lﬂbmdz;gi

pans ) ) D(8"), let = 0'|(zy. Fo
llows. For each z € , "

or 0, denoted By, as fo z€ ) |

! h such @ define inductively the substitution ¢} and the set B?Iblas

ealcl If 04'”: [¢/x] with |t|=0,i.e., is either a constant or a vanz:h e,

i(l)x ?Xset o’ Z 0" and By = 0. Otherwise, if 0, = [f(t1, - - ,i,,)/:li],t en

: o va ) ' =t/ for 1<i<n,le
for some new variables y1, ..., yn, let 0y, = [ti/yi] for 1<
0 =008, u...ub

and let ,
By = {:L‘%f(yly 7y")}UB9;u U'“UBO"“'

7 7 = » Bor .
Finally, let & = U,epen 05 and Bo = Usepn(er) Bes
For example, if ¢ = [g(f(a),b)/z,z/y], then

& = [9(f(a),b)/, f(@)/u1,a/y2,b/ys, 2/4],

d
- Be = {& =~ g(y1,y3), 11 = f(y2)}-

. . 5 and
The following lemma demonstrates the essential properties of 6/ an

and By needed in our completeness proof.

ituti there exists
Lemma 5.3.4 For any substitution 8’ € Ug(S) for some S,

soEril)e g:/ ::((11 ll;:: zsi‘::hllrtl?:se up to the choice of new variables in D(é\’ ) —
1 D’(o'l);'dem otent iff & is idempotent; R
((113 g\’ j—_sé’[D(g') U Var(S)], with the result that 6’ € Ug (S);
(iv) & € U(By).
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Proof. By a simple induction on [t| we can show that t‘?’, exists for any
¢’ = [t/z], and so clearly ¢ and By, exist, and since the only place in
the construction for non-uniqueness is in picking the new variables, the
result is always unique up to this choice, showing (i). By an induction
which follows the construction of & we can show that I(0') = I (¢') and
D) = D(0") UY, where Y is the set of new variables chosen. Now,
since Y consists of new variables, we must have YNI@) =0, so that
D@)nI@) = 0 iff D(')n I1(6’) = 0. But then by Lemma 7.1.25, we
have (ii). Again, as a consequence of the set Y being new variables, (iii)
must hold. Finally, note that by our definition, for any single binding ¢/z

in ¢, either [t| =0 or ¢ is some compound term f(ty, ...,t,) such that
there exists an equation z a S(y1,...,ys) in By and some bindings

t1/y1, ... ,ta/yn in @. Thus by a simple induction on the construction of
By we see that (iv) holds. [

The idea here is that we wish to preprocess the substitution 8’ in order
to determine the set of general bindings which might be used in a trans-
formation by Root Imitation. Thus we determine in advance the set of
equations potentially introduced by Root Imitation and also the extensions
to the substitution which ‘fill in’ these general bindings.

Now we define our formalism for the fact that such a substitution E-
unifies a pair of terms.

Definition 5.3.5 Let ¢ be some idempotent substitution, and let &
and By be as above. The set of proof trees associated with @' is defined

inductively as follows. For simplicity we use x as a syntactic variable for
one of the symbols x, ~, or =.

(i) (Axioms) For every term u, the one node tree labeled with u = y
Is a proof tree associated with &', For every two terms u # v, at least
one of which is a variable and the other a constant or a variable, such
that @(u) = @(v), the one node tree labeled with u = v is a proof tree
associated with @', Thus, axioms are trivial proofs that identical terms are
E-unifiable or that a variable in the domain of the substitution associated
with the proof trivially E-unifies with some term. Note that in the latter
case, the axiom will be formed from two terms z and ¢, where z ¢ Var(t),
and that it is not necessary that 5’(.1:) =t.
(ii) (Term Decomposition) Let u and v be an pair of terms, f € ¥,,, and
ULy ... ,Un, V1, ...,v, be terms such that
(@) If u is a variable, then @(u) = f(u1, ... ,u,), otherwise
u= f(ui, ..., u,), and
(b) If v is a variable, then 5’(1})
v=f(vr, ..., v,).

f(vi, ..., v,), otherwise
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Given any n proof trees 71,...,T, aslslociated wtlltllex ti;evg{lzi :::}:03 iz
whose root is labeled with u; * v;, ‘
Tagzﬁ:if :v];iz u ~ v and such that T/i=T; for 1 5 i< n1 iis a'zl;oc;f ireve
associated with o Thus, a proof tree whose root is lab.e ed wi !
nts the fact that 0’ (u) «~—g 6'(v), where no revs'rlte steps occur a

:;zr:::)t. Note that if either of the terms uor v is a v.arlable, t?len we mus(;
instantiate it before decomposing it in the p.roof: tree; 1.f a terrr;‘lsdcompoun
it is simply decomposed, without the substitution being applied. ‘

(iii) (Root Rewriting) Let u and. v be an pair of_ferr;‘ls :l?d I:-)re: 11;
for 1 € i < m be variants of equations f1:om }Z‘ U E~. u.r erm ; ,tree
Ti,...,Tmy1 be proof trees associated with ¢, where T3 is i }?rzo -
whose root is labeled with either u = {} or. u~ 1, and for 2 <1 _l.m;mc,1
is a proof tree whose root is labeled with elth.er r;‘_l =1 or_ri_l m; ,,N ‘
T4 is a proof tree whose root is label?d with either ry, = ; :rT7 ~ T:
Then the tree T whose root is labeled with u‘x vAand S}lch tha A i ;f ;
for 1 <i<m+1is a proof tree associatedlvlth (i’. TLl,ls shows the effec
of all the :ewrites occurring at the root in §'(u) ——g 6/(v). '

In general, we regard the nodes of a proof tree as u‘nordeged pa;r:r::
terms, in accordance with the unordered na?ture of eq\'latlons. pfio:t)) e
associated with § whose root is labeled with u *'v W.lll bfe denc?:ebl ); e
pair (@,(u * v)), or simply (u *v) if the substitution is available fro
context.? It should be obvious that with any set of proof tr‘ees P we rr}ay
associate a system of equations S, namely, t}'le .set. of equations occ;u'rlngf
in the roots of the proof trees in the set P; this is called the root system o 7
P'Finally, a triple (@,Bg:,P) is a proof system fo7j 6 and S 1tf‘ 6’ 1;:2
idempotent substitution incorporating all the matc.hmg substitu [}onss .
in some particular sequences of rewrite step.s show1f1g that @ e }1;3( ; .
in Lemma 5.3.2, if ¢ is the general expansion of ' and By is ‘t edse ‘:)h
general bindings for ¢’, and finally if P is a set of proof trees assoc1'aFe w;
6 with a root system S. Note that as a conseqlhxence of tht?se deﬂmtlons,' (:lr
each subproof (z ~ v) occurring somewhere in a proof in P,-there ex.lsls
some equation z =~ t in By ; this corresponds to ‘the. equation poss;' y

added to the system by some application of Root Imitation to the equation

.

We shall prove that these proof systems are sound z'md corr}plete W}th
respect to the definition of E-unification after presenting an illustration

based on a variation of Example 5.1.3.

i tree
3 Note carefully that wxv is the label of a proof tree node, and (u xv) is a proof tre
whose root node is labeled with u * v.
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E _ .
xample 5.3.6 Let £ = { f(g(z)) = z}. The rewrite sequence which

proves that § = [g(a)/z] is an E-unifier of S = {h(z) =~ h(g(f(z)))} is

Oh(=) = h(9(@)) =12 gqaryyaren Ma(fl8(@))) = O(h(a(F(2))),

and so we may form the E-unifier 6’ = [9(a)/z,a/2'] and then the general

{ [9(a)/x,a/y1,a/2'] and the set of general bindings By =
T i 7% P
9(11)}. The proof system for @ and S is thus (¢, By, P), where P

expansion 6/ =

is the set consisting of the single proof tree

h(z) ~ h(g(f(z)))
z~ g(f(z))
ax f(z)
, N
e= f(9(z")) ~ f(=)
g(z") ~z

2 =a

’;‘}11e3r)oot system of P is {h(z) ~ h(g(f(z)))}. (Compare with Example

Wh?n convenient, we shall represent the (partial) structure of a proof
tree with root node u * v and subtrees Py, ...,P, in the prefix form
usv[Py, ..., P eg., variously representing the subtree with root node

a < f(z) above in any of the forms
(@< f(z)), axf(2)]a=2,(flg(z) ~ f(2))],
ax f(2)[a =2, f(g(") ~ f(@)lo(z") ~ 2[’ = a]]].

Thg linear notation will make it somewhat easier to manipulate proof trees
ur next‘ two theorems show that our proof representation is sound and
complete with respect to the definition of E-unification.

Theo.rem 5..3.7’\ For some given substitution #, system S, and set of
equations E, if (6, By, P) is a proof system for § and S, then 6 € Uge(S)
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Proof. By Lemmas 5.3.2 and 5.3.4, we have ¢ = ¢’ < 0[Var(S)], and so if
we can show that for each proof tree (u*v) in P, we have 0’ (u) ——p 0'(v),
then by Corollary 4.1.5 we shall have our result. Thus let T = (uxv) be
an arbitrary proof tree in P. We proceed by induction on the number n of
tree nodes in 7. If n = 1, then 0 (u) = §'(v) by definition. Now assume
that the result holds for all proof trees with less than n nodes, with n > 1,
and suppose T' contains n nodes. There are two cases.

(i) If the root node of T'is labeled with u ~ v, then as above we suppose

f is the root of @(u) and let u1, ..., Um, 01, .-, Um be terms such that
(a) If u is a variable, then 6'(u) = f(u1, ..., um), otherwise
u= f(ur, ..., Um), R
(b) If v is a variable, then 0'(v) = f(v1, ... ,vm), otherwise
v=f(v1, .- yVm)-

There are thus proof trees
T/1 = (w1 *v1), ..., T/m = (um * Vm)

and by the hypothesis, @(u,-) —Eg @\’(v;) for 1 < i < m. By changing the
rewrite addresses ay,qs,... in the i;; such sequence to iaj, iag, ..., and
concatenating these m new rewrite sequences, we see that @(u) —g @(v)
(Note how the idempotency of &' is used here.)

(ii) If the root node of T is labeled with u < v then there are proof
trees

T/1= (u*ll)) T/2 = (leklz), L TRE+1 = (rk*v),

where the I; = r; are variants of equations from E'U E~1, and, by hypoth-

esis, R R
§(u) =g 0'(L), ..., 0(re) —E0'(v),

and so

B (u) S B(h) — 2y OO0 m 0 (ry) g 0 (v),
with the result that again 0 (u) ——p GA’(v) a
Theorem 5.3.8 If 0 € Ug(S), then there exists a proof system

(7, Bys, P) associated with 6 and S.

Proof. As shown in Lemma 5.3.2,if 6 € Ug(S) then there must exist
some particular sequence of rewrites proving this fact, and an idempotent
E-unifier 8 incorporating all the matching substitutions used in rewrite
steps. Then by Lemma 5.3.4 we know that & and By must exist, so
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if we can show that for any u a~ v € S there exists an equational proof
tree (u % v) associated with 6, then we can simply collect all these trees
together to form P and we have our result.

Thus we shall show by induction that for any particular sequence

@\’(u)zuo — Up... —> un:@(v),

[01,1157119’] [a,,,l,.z'r,,,i']

we have a proof tree (u * v) associated with #. With any such rewrite
sequence, we associate a complexity measure

H= {IUOI, lullv s ,Iunl},

that is, a multiset of the depths of the terms ug, ..., Un. Our proof pro-
ceeds by induction on u, using the standard multiset ordering.

Basis. p = {k} and either u = v or one of u, v is a variable. Then by
Definition 5.3.5 (u = v) is a proof tree associated with &' (This constitutes
a sufficient basis since it includes the case k = 0 )

Induction. Assume there exists a corresponding proof tree for all such
rewrite sequences with complexity strictly less than u, and consider a se-
quence with complexity u, as above. There are three cases.

(i) # = {k} where u # v and neither of u, v is a variable. Now
we must have Root(u) = Root(v), and since u # v, both are compound
terms, i.e., k > 0. Thus @\’(u) = ug = é\’(v) and v = f(s1,...,s,) and
v=f(ty,...,tm) for some terms $1y -+ Smyt1, ... ,tm. Then é\’(s;) =
uo/i = a’(t;) with |ug/i| < |ug| for 1 < i < m, and by hypothesis, there
are proof trees (s;x1;), ..., (Sm *t,,) associated with o' , and so by defini-
tion there must exist a proof tree u ~ v[(s1%t1), ..., (Sm *tm)] associated
with @ (This proof tree will naturally contain no rewrite nodes.)

(ii) p = {ko, k1, ... yka} for n > 0, and there is no rewrite at the root

of any u;. In this case, Root(@(u)) = Root(@’(v)), and the subterms are
pairwise E-congruent. More precisely, let f = Root(0'(u)) be a function

symbol of arity m, and sq, ... ySm,t1, ..., 1y, be terms such that
(a) If u is a variable, then @(u) = f(s1,...,8m), otherwise
u= f(s1,...,5m), and
(b) If v is a variable, then é\’(v) = f(t1,...,tm), otherwise
v = f(tl, ,tm).

Then for each 1 < i <m we have that
é\’(s;) =w /i g u1fi ——g ... —p upfi = @(t,-),

with a complexity strictly less than # . By the induction hypothesis, there

exist proof trees (s; *1;), ... +(Sm *tm) associated with 8, and thus by
definition a proof tree

U~ v[(sl *tl), . ,(Sm *tm)]
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associated with o . (Note that the idempotency of §' is necessary in case

one of u, v is a variable.) . .
(iii) g = {ko, k1, ... , kn} for n >0, and there is a rewrite at the root

of some u; . Then we may represent the sequence as
~ . - T
G () p ) ez oy V()8

~ ~ .
0'(13) T el 2rh,07] 0'(ry) «—E
P ey ny iy 003 = 00)

= = i ed in the original
for some subset {I{ =71, ...,I, =rp} of the equations us g

sequence. But then the complexity of each of the sequences
~ ~ . A ~ 4y %
Fu) =g 01), G()opll), ..., 0(r)—rd()
/

1 i thesis, there are proof trees (u *[1),
is strictly less than g, and by hypothesis, . b
(ri *15) (r) * v) associated with §’. Finally, by definition there must

1 2 PRI | p
exist a proof tree

uxo[(ux*ly),... ,(r;, * v)]

associated with 0. 0

One interesting point about this completeness proof i.s that it gives ui‘
a canonical way of constructing a proof tree f?r any particular st.aqu;nce é\ol
rewrite steps proving that two terms are E—l.mlﬁable by the. SUbSttl)t‘tl- ;zgon;
This is particularly useful in eliminating variables by applying substi

to proof trees.

Lemma 5.3.9 If z is a variable, t a term, and § an idemp?tent general
expansion such that f'(z) = ¢'(t), and if u and v are two 'arbltrary tt'er:ns,
then there exists a proof tree (u *v) associated with ¢’ iff tpere <}31x1s Z;-
proof tree (u[t/z]* v[t/z]) associated with &'. Furthermore, if sudc pr
trees exist, there always exist two with the same number of <-nodes.

7 7 7 14
Proof. Since §'(z) = 0/(t) we must have ¢ = [t/z]o8', so by Lemma 4.1
we have

G (1) ——g 0'(v) iff [t/2] 0 O'(u) =g [t/x] 0 0'(V)
iff 0'(uft/]) < 0'(v[t/2]),

and so, by our previous two results, there exists a proof tree (u.* v)d assto}-l
, wi
ciated with @ iff there exists a proof tree (u[t/z]*v[t/z]) associate
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~

#'. Now by structural induction, it is easy to show that for any particular
sequence of m rewrite steps we have

@(u[t/m]) —

[an,dyZry,e,] Y1

(‘_‘)[02,’2&?2,92] Ug ...
T amdmzrm,om] O (V[E/2])

if and only if
0'(’&) H[O’],’lirlyl’ll U

[02,12.‘:_‘?2,‘)2] u2 ..

T am A Z o] 0'(v).

But then by multiset induction on this sequence, following the proof of
Theorem 5.3.8, it is easy to show that if such terms are E-congruent us-
ing this particular sequence, then proof trees exist for each equation, and
that the creation of <-nodes corresponds to the structure of this particular
sequence, and hence the number of such nodes is the same in both trees.

O

We remark that, depending on the set E, there may exist many equiva-
lent sequences of rewrite steps, so that we can not enforce that the number
of x-nodes always be the same for any two trees; we simply prove that there
always exist two such similar trees. Also, note that it would be possible to
be more precise about the structural similarity of trees created canonically
from the same rewrite sequence, in the sense that their <-nodes occur in
the same tree addresses, but this formality is unnecessary for our purposes,
so we omit it. Finally, we remark that it would not in general be possi-
ble to define a similar lemma for the case of two terms z and ¢ such that
@(z) g @(t) without extending the substitution & . The reason is that
we can not use the same rewrite sequence <25 in both cases, since there
may be more rewrite steps in one than the other, and since the rewrites
between 5(.7:) and @(t) may be used many times, by our assumption that
all rewrite sequences contain distinct variants of equations, these would be
additional instances of equations, and the extension 6 would no longer be
sufficient. This problem turns out to have serious consequences in proving

the completeness of the strategy of eager variable elimination (see Section
§6.7).

Now we show that the transformations on systems BT correspond to a
certain set of transformations on proof systems.
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Definition 5.3.10 Let P’ be a set of proof trees (possibly empty). We
have the following five proof transformations.

{(uxw)}UP = P’ (4)

(u~o[Th, ..., TaJUP = {T1,...,Ta}UP, (B)

where u and v are both compound terms.

{(zxt)}UP' = {(z=1)}UP'[t/s], (C)

where there are no <-nodes in the tree (z *t) (i.e., no rewrite steps)., z
occurs in some tree in P’ and where P’[t/z] denotes the result of re;?lacmg
each proof tree (u*v) in P by a proof tret? (uft/z] % v[t/z]) (the existence
of such a proof tree was shown in the previous lemma).

{uxv[Ty, ... TR]}UP = {1y, ..., Th}UP (D)

{(z~v)}UP = {(z=1t),(z~v)}UP, (E)

where z ~ t € By and where transformation (C) is immediately applied
to the axiom (z =1t).
These proof transformations are extended from trees to systems, so that
X Py ; .
we say (0, Bgr, P) = (0, Bg:, P') iff P = P".

It should be obvious that we have taken pains to define these pro;)f
transformations by analogy with our transformations on term systemz. SI;
particular, for some proof trees P and P’ with root' systems SBan ©
respectively, if P —» P’ using proof transforr.natlons (4), (t z, Stem,
or (E), then there is a corresponding trans'f(‘)rmatlor} on t.he‘ ro‘0 t.i')n ”
S = §' using Trivial , Term Decomposition, Vanabl/e Elimina L )
Root Imitation respectively. Similarly, if P =) P/, then we' av: a
sequence S = .rw S, with one transforl;ln.'fxti(});l step for each rewrite step

i 1 roof tree transformed in P. '
leftNt(;)wnv%:tr:;; l:)i(i/e the correctness of these proof transformations, after

which we shall give an example of their use.

-
Lemma 5.3.11 If (é\’,Bgl,P> i1s a proof system and P =>fP tl;illng

1 : .
one of the transformations (A)~(E), then (¢, Bg:, P') is a proof sys

. ;- £
Proof. Clearly, the only point at issue is whether the new set P l.S ahset';)
proof trees associated with §'. In case (A), P’ differs from P (?nly in ':}rl@g
one less proof tree, so clearly if P is a set of proof trees associated wi )
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so is P’. In the case of transformations (B) and (D), since proof trees were
defined inductively, for any proof tree T associated with §' , where T is not
an axiom, the subtrees T/1,...,T/n for some n must still be proof trees
associated with &’ , and thus the result of either of these transformations
must still be a set of proof trees associated with g. 1t P =) P,
then since no rewrites occur in (x *t), we must have 6"\’(.2) = é\’(t), and so
(z =) is a proof tree associated with ¢', and by Lemma 5.3.9, there exists
a proof tree (uft/z]*v[t/z]) associated with & Finally, if P =g P/,
then we have simply converted an equation z &t from By into a proof
tree (z =), and since, by Lemma 5.3 4, é\’(:v) = @(t), this is an axiom tree
associated with @. But then {(z =t)}UP isaset of proof trees associated
with &, and we have already shown that the subsequent application of (C)
is correct. [J

Example 5.3.12 The transformations on the single proof tree in the
proof system from Example 5.3.6 corresponding to the transformations in
Example 5.1.3 are as follows.

h(z) ~ h(g(f(x)))
z~ g(f(z))
ax f(z)
9(z') ~ z
L,
)
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z ~\,9(f(-‘v))
ax f(x)
a=2 flg(z")) I i

g(z') ~z

YE)

z=g(n) g(w1) ~ 9(f(9(v1)))

y1 < f(9(w1))

M) ~ f(g(y1))

y1=z’

9(2") ~ g(n1)

2=y

YB)

z=g(n1) y1 < f(g(y1))

' fg(z")) ~ fla(n))

y1 =2
9(2') ~ 9(n1)

=y

o)
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z=g(yp) =2 f(g(2')) ~ flg(y1))
9(z") ~ g(y1)
=y

Yoy

e=9(y) ni=2 flg(n)) = f(g(m))
Yeay

t=g(y1) n=2

Note that this corresponds to the solved system S’ = {z ~ g(y1), 1 ~ 2’}
found in Example 5.1.3, and that for § = [9(a)/z] as in Example 5.3.6 we
have o5 < 6[Var(S)]. Our next result formalizes this by showing that
the proof transformations always result in trivial

proofs corresponding to
solved form systems.

Lemma 5.3.13 Let (@,Bg:,P) be a proof system. Then any sequence
of proof transformations

P=P = P = ...
must terminate in a system P’ = {(¢, = t1), ..., (zn = t,)} associated
with 6’ where no transformation applies, and the root system of P’ is a
system in solved form.

Proof. First we show that every sequence of proof transformations must
terminate. Let us define a measure of complexity for a set P of proof trees
as p(P) = (n,m), where n is the number of variables in D(@) which
are not solved in the root system of P, and m is the number of nodes
in all the proof trees in P. Then the lexicographic ordering on (n, m)
well-founded, and each proof transformation produces a new proof system
whose measure is strictly smaller under this ordering: (A), (B), and (D)

must decrease m and can not increase n; and (C) and (E) must decrease
n.

is

Therefore the relation =— on proof systems is well-founded, and there

. * . .
must exist some sequence P == P’ where no transformation applies to
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P’. But then P’ must consist solely of axioms of the form (z; = ;) witl(;
z; not identical with ¢;, since otherwise either (A)., (B), (D), or (E}? woul

apply, no z; occurs in a i;, since the two. are unifiable, and furt (lermocl;e
each variable z; may not occur elsewhere in the proof system, ‘or else (C)
would apply. Clearly the root system {z) =11, ...,z, R 15} is a system

in solved form. .
By a simple induction on the length of the proof transformation se-

quence, and using Lemma 5.3.11 in the induction step, we see that Plisa
) —~
proof system associated with 6. [0

Now we are ready to state the major result of this section. The com-
pleteness of our method is shown in the following theorem.

Theorem 5.3.14 (Completeness) For every 0 € U E‘(S), there exists a
sequence of transformations S == §’ such that S’ is in solved form, and

0’51 S 9[Va1"(5)] .
Proof. Suppose 8 € Ug(S). Then by Theorem 5.3.8 there must exist an

equational proof system (é\’, By, P), where by Lemmas 5.3.2 and 5.3.4, W(ta
have @ = ¢’ < 6[Var(S)]. By Lemma 5.3.13 we see Itha't ther:a must ex1s_
some sequence of proof transformations P => p v‘v1thAlP = é(:;l =
t1), ..., (zx = tg)} a set of proof trees assocxaf,ed with 0- to wdli‘ no
transformation applies, and whose root system S’ is a system 11% solved form.
By a simple induction on the length of the proof transformatlor; sequ?lce;
we may show that there is a corresponding sequence of trans o:mta ion
on the root system S = §' with &' = {=; ~ ty, .“-’xk"IN k}}l in
solved form, and since P’ is a set of proof trees a.ssomateq\, w1t.h 0 ,hwe z:l\ii
0 e U(S'), so that by Lemma 3.3.4 we sce that o5/ < ¢, with the res

that og < 0 =0 < 0[Var(S)]. O

By the soundness of the transformations, clearly any such os: G Uf E(f)
Note that this theorem implies that os: <g 8[Var(S)], b1‘1t is in acde:
stronger result. The reason that we find more general s'ubsFltutlons unth
< and not just <g is that we only perform a generalization step at the
la W < lved form.
last stage, when we take the mgu of a so ‘ o

We may characterize the set of substitutions non-deterministically found

by the set of transformations BT as follows.

Theorem 5.3.15 For any system S and any set of equations E, the set
{os'lvar(sy | S = S, and §' is in solved form}

is a CSUE(S). By application of the appropriate renaming substitutions
away from V, this set is a CSUg(S)[V] for any V.
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Proof. We must simply verify the conditions in Definition 4.1.6. Coher-
ence was shown in Theorem 5.2.3 and our previous result demonstrated
completeness. By restricting the idempotent substitution os: to Var(S)
we satisfy purity for V empty. If V is not empty,
the variables introduced by each of the substituti
shown in Lemma 3.3.11.

we may suitably rename
ons oss; away from V| as

Using these results, it would be

possible to implement a general pro-
cedure for E-

unification in arbitrary theories by using a complete search
strategy over all possible transformation sequences. In [53],
procedure based on Robinson’s original algorithm for stand
[139] is given for a different set of transformations for E-unification, us-
ing depth-first iterative deepening to simulate breadth-first search without
excessive storage overhead. However, basing such a method on the set
BT would be very inefficient, due to the possibility of rewriting variables
in Root Rewriting. This creates many extraneous rewrite sequences, since
any rule can unify with a variable. In addition, we must guess general bind-
ings in the two variable case in Root Imitation to uncover potential rewrites
below such equations, and, finally, we admit the potential for infinite re-
cursion in the same rule, as remarked in Section §5.1. In the next chapter

we present a new set of transformations which rectify
a proof of its completeness.

a pseudo-code
ard unification

these problems, and

E-UNIFICATION via TRANSFORMATIONS

CHAPTER 6

AN IMPROVED SET OF TRANSFORMATIONS

In the last chapter we presented a set of transformat.ioTls. BT. comp.let: f;)rl;
nb'trary equational theories E, but which were prohibitively meﬁ[?c;}en 1

1 1 ves
:lrlis chapter we present a restricted version of BT, called 7, which so

these problems, and prove its completeness.

6.1 Ground Church-Rosser Systems

In this section, we shall develop techniques that will allov;/. ust'to Ove;(;):;i
: i inating sequences of applications o
roblem of possible nontermina ' ‘ | !
;}I:itition The key point is that if the equations in E were c;?:ler;tab;e::;
‘ i ubstitu-
i then we could work with normalized s
formed a canonical system R, d v ! e
tions, that is, substitutions such that 8(z) is 1rreduc1.b1e for iav;;y :zhire ES )a
IfR i’s canonical, for every equation z = v where z 1§ a va.r¥a e, ol
f of the form (v) ——r w ——g 0(z) for some 1rreduilble01€, )an A
b ne is i 6(v) —r 0(x), where
i fact of the form 6(v R
i rmalized, then the proof is in ‘ nore
:esv:ro rule p(I’) — p(r) used in this sequence applies at some nontva,r::ost
addr);ss B in v. Hence, for any rule in this sequenc<.e applied a.t a;; . opfor :
level, 6(v/B3) and p(I) must be E-congruent. This is the m‘c;t'lva al::il for »
new ,rule called Lazy Paramodulation, to replace Root Rewriting

Imitation:
{uzv}US=>{u/ﬁzl,u[ﬂ<—r]zv}US, (4a)

. . -
where 3 is a nonvariable occurrence in u. A formal deﬁfn:tl?:f(;i ::Z:i(t:;nrr
formation will be given in Section 6.2, an'd the s‘et of rSeﬁnition e
obtained by adding this new rule to ST will 'be given in B sntem
However, not every set of equations is equ‘lvalent to a cal e etion
of rewrite rules, and even if it is orientabl; w11th)reistp:if;yt;(r)l ;:) e T ot
i forming a noetherian set of rules}, / e C
(’;‘}?:;;n(ilfz?;;sobservatgions allow us to overcome these difficulties:

_— 4 tions:
(1) There is no loss of generality in considering only ground substitutions;
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(2) There are reduction orderings > that are total on ground terms;

(3) Ground confluence (or equivalently, being ground Church-Rosser) is
all that is needed.

These ingredients make possible the existence of unfailing completion
procedures (Bachmair, Dershowitz, Hsiang, and Plaisted [8, 12, 9]). The
main trick is that one can use ortentable ground instances of equations,
that is, ground equations of the form p(l) = p(r) with p(l) > p(r), where
[ = r is a variant of an equation in EUE~L. Even ifl = 7 is not orientable,
p(1) = p(r) always is if > is total on ground terms. The last ingredient is
that given a set £ of equations and a reduction ordering > total on ground
terms, we can show that £ can be extended to a set E“ equivalent to E
such that the set R(E“) of orientable instances of E“ is ground Church-
Rosser. Furthermore, E“ is obtained from E by computing critical pairs
(in a hereditary fashion), treating the equations in E as two-way rules.!

Our “plan of attack” for the completeness proof of the new set of trans-
formations T (given in Definition 6.2.1) is the following.

(1) Show the existence of the ground Church-Rosser completion E of £
(Theorem 6.1.7).

(2) Under the assumption that E is ground Church-Rosser, show how
to extract a sequence of transformations from a rewrite sequence

0(s) —~pw—pg f(t) which demonstrates that ¢ is an E-unifier of
s and t.

(3) For an arbitrary consistent E, show that the T-transformations are
complete using Theorem 6.1.7 and a lemma which shows that the

computation of critical pairs can be simulated by Lazy Paramodula-
tion.

In (2), we shall also show that given any E-unifier 6, there is another
normalized E-unifier o such that o =r 6.

Since whenever a set of equations E is inconsistent, then the identity
substitution is a most general E-unifier of any pair of terms, we shall in
what follows assume that the set of equations is consistent. This will have
a useful consequence at a later stage of the completeness proof for this
section.

It is actually more general (and more flexible) but no more complicated
to deal with pairs (E, R) where E is a set of equations and R a set of rewrite
rules contained in some given reduction ordering >. The set E represents

1 Although a consequence of the existence of fair unfailing completion procedures
proved by Bachmair, Dershowitz, Hsiang, and Plaisted [8, 12, 9], this result can
be proved more directly and with less machinery.
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the nonorientable part (w.r.t. >) of the system. Thus, as 12123,{;11:::;'1,

Dershowitz, Hsiang, and Plaisted [8, 12, 9], we pre:sent. our r;es s for such
stems. First, we generalize the notion of equational pr(?o . 2o

sE)"of equations and a rewrite system R, we define the notion of proof an

rewrite proof for the pair (E, R).

Definition 6.1.1 Let E be a set of equations and R a rewrite system.
e 1. :

For any two terms u, v, a proof step from u to v 1s a tu;?le (u,a,l,7,0,v),
where « is a tree address in u, o is a substitution, and either

u [a,i=r,0] v

where [ = r is a variant of an equation in EU E~!, or
U —a,l-ro] U

where | — r is a variant of a rewrite rule in R, or
vV —a,l—re] U

i i ite rule in R.
where | — r is a variant of a rewri ; ' .
A proof step may be (partially) described as either an eguality s}ie;t;
u +——p v, or a rewrile step u —pg voru ——pg v. A proof tha

u ——guR V IS a sequence
Ug, ¥ o1, u U, 0o, U Up—-1, X I Tn,On, U
(( 0 1,11,7’1, 1 1),( 1 2,12,7‘2, 2y 2))"'7( n=1y%&n,¢n, ', %n, n))
3

1 = = u,. Itis
obtained by concatenating proof steps, with u = .uo and v N Uy e
obvious that proofs can be concatenated or split into two subproofs.

. i
trivial proof that u = v is the empty sequence (). A p1:oof (fons1st1;1g(1 oar; y
of rewrite steps involving rules in R used from left to right is denote

Up —R U1...Un-1 —R Un

or wg —g un. A proof consisting only of rewrite steps involving rules in
0 n-
R used from right to left is denoted as

Ug «<—R U1...Up.1 “—R Un

or ug —pg un. A proof of the form u 2 ipw ——pg viscalled a reul)rzte
proof. A proof of the form u «——pg w —pg v is called a peak. Clearly, a
proof is a rewrite proof iff it is a proof without peaks.

We also need the concepts of orientable instance, ground Church-Rosser,

and critical pair.
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Definition 6.1.2 Let E be a set of equations and > a reduction ordering,.
, an equation o (1) = o(r)
I) > o(r) for some substi-
>, the set of all orientable instances
Note that if u —R(E) Y,

Given a variant ! = r of an equation in EU E~1
is an orientable instance (w.r.t. >) of 1 = riff o
tution 0.2 Given a reduction ordering

of equations in £ U E~! is denoted by R(E).

then u la,o)zo(r)] Y for some variant of an equation I = r in EuEp-!

such that o(l) > o(r), and since > is a reduction ordering, u > v.

Definition 6.1.3 Let E be a set of equations, R a rewrite system, and
> a reduction ordering. The pair (E, R) is ground Church-Rosser relative

to > iff (a) R C > and (b) for any two ground terms u, v, if u «—pyp v,
then there is a rewrite proof

* *
U —R(E)UR W —R(E)UR V

for some w. A reduction ordering > is total on E-equivalent ground terms
iff for any two distinct ground terms u,v, if u <5 v, then either u > v or
v > u. A reduction ordering > that is total on E-equivalent ground terms
is called a ground reduction ordering for E.

We shall assume in what follows that any reduction ordering is also a
simplification ordering; for our purposes what is important is that there
exist reduction/simplification orderings, such as the lexicographic path or-
dering, which are total on ground terms.

It is important to note that for every set R of rewrite rules which is
noetherian with respect to a given reduction ordering >, if R is Church-
Rosser, then it is ground Church-Rosser relative to >, but in general the
converse Is not true. For example, consider the set of rewrite rules

R = {fz—yz
fz — hz
fa—a
ga—a

ha —a},

where £ = {f,g,h,a}. It is easy to show that R is noetherian with respect
to the recursive path ordering generated by the precedence F>g>h>a,
and, since every ground term reduces to a, it is ground Church-Rosser

2 As remarked in Chapter 2, because > is stable and has the subterm property, for any
two terms v and v, © > v im

plies that Var(v) C Var(u). In the present case thus
Var(o(r)) C Var(a(l)).

AN IMPROVED SET oF TRANSFORMATIONS
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lative to >. But R is not Church-Rosser, since hy «—r f:y ——tn;ngg;
. d hy and gy are irreducible. In general, being Church-Rosser is a strong
an
1 -Rosser.
ition than being ground Church
conI(Jh'tlonLejlma 5.3.1, it is easy to show that for any two ground terms
511;'1 i —guRr v, then there is also a proof II with sequel?ce of (;,er.ms
o u.. where all the u; are ground. If > is a ground reductlortl li)r e:;:i
.- ' p
?(:r, F ;h:n each equality step w;—1 «——F uiIn the proof II must be
, 1 i Us.
he form u;_; ——R(E) Wi OF Ui-1 “—R(E) % ' -
o ?I‘l(:e next :leﬁnition and lemma extend those given in Section §3.5.2 to

this more general context.

Definition 6.1.4 Let E be a set of equations, R a rewrite system,' ant(i
1. "
o a reduction ordering containing R. Let I} — r; and l.z — T2 be van:,ion
f rules in EU E~1U R with no variables in common (viewing a(.iril equaﬂ ‘
! ress 3 in
= - . Suppose that for some a
l=r€ EUE™! as therule l — ) : e address § in
i i d I, are unifiable, and let &
l is not a variable and [,/ an t
i;’gul/o? I1/B and . If o(r1) # o(ly) and a(r?) b 0'('12), the sugeré)os:f]zizlri
f1, — r, on lp — ro at 3 determines a critical pair g,d of (E,R), y
, —10(1'1)1 and d = o(l;[8 — r3]). The term o(l1) is called the overlappe
term, and 8 the critical pair posilion.

. ¢
The importance of critical pairs lies in the fact that they can be used to

eliminate peaks in proofs.

Lemma 6.1.5 (Knuth-Bendix, Huet) Let E be a set of equations, 1(;:

rewrite system, and > a reduction ordering containing R. For ever);l ;;hat
EWR % —R(E)}R 1, either there exists some term v suc

s 4__-R U a, . .

s —s )(g :R v ;R(E)UR t, or there exists a critical pz.ur q, d of ELIJIIEI:;I

addre:s( 03 in u (s.t. u/c is not a variable) and a substitution 7 suc ,

s = u[a — n(g)) and t = ulo — n(d)].

i i derin

We shall now prove that given a pair (E, R) a.nd a reduct;gntﬁzr : isi
> containing R that is a ground reduction ordering for E'U (,1 chere = &
pair (E¥, R¥) containing (£, R) that is equivalent to (E, R) and is gan ind
Church-l,{osser relative to ». The pair (E*, R*) can l.)e v1;aweit}%:fn " e
stract completion of (E, R) (not produced by any sp.ec1ﬁc a gor l.etion

istence of (E¥, R*) follows from the existence of fair unfalhrlxg. c;)r(rilp[s "
e ) i 1 Isi d Plaiste , 12,

Dershowitz, Hsiang, an

ocedures proved by Bachmair, : .
g]r However, this proof requires more machinery th'an \.Ne ;el;ed f;)lr '(:u;rzof)

. i i d simpler proof (inspired by thei

ses. We give a more direct an P : ‘ T
It)l(:at isolates clearly the role played by Crltlci'll pairs. (In thlshp:olf)a‘,le e
will not be distracted by features of completion procedures tha
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do with efficiency, like simplification of e

The following definition is needud. quations or rules by other rules.)

Definiti

>.ea m::llon‘ 6.1.6 Ijet E be a set of equations, R a rewrite system, and

- r: uctlol} ordering containing R. Let CR(E, R) denote the s,etnf
critical pairs of (E, R) (w.r.t. >). The sets E® and R" are deﬁne(:i

inductively as follows: E° = E, R® = R, and for every n > (
n+l _ pn o
R =R U{g—»dlg,dECR(E",R")andg>—d}
U{d—g|g,de CR(E" R") and d > g},

and

EMtl = ErU{g=d|gde CR(E™, R"), g # d and d ¥ g}.
We also let
EY=JE" and R*=JR"
n>0 n>0
Thus, R“ consists of orientable critical S

tarily), and Ev
(hereditarily).

f pairs obtained from (E, R) (heredi-
consists of nonorientable critical pairs obtained fro)rrf (F Rl)

As the next theorem show i
s, (E¥ <1 i

ot (5.1 (E“,R“) is a kind of abstract completion
Th
T eorgm .6.1.7 L(.at E be a set of equations, R a rewrite system, and

a re uction ordering containing R that can be ’
redu?:tlon ordering % for E U R. Then, (E*, R¥
and is ground Church-Rosser relative to > ’

t}}’::to)E.E"fh;tw )(E"", tR“’) 18 equivalent to (E, R) follows easily from the fact

i ; ") (;on am;n(E,:%) and that critical pairs in CR(E™, R™) are

provably « qif ! i?in (E™, R™). We need to prove that for any two ground
, v, EwuR~ v, then there is a rewrite proof

extended to a ground
) is equivalent to (E, R)

*
*
U — R(Ew)URvw W “—R(Ew)uRw UV

for some w. Let IT =

({UO,CYI,I],T'I,O'],U]),(ul,a’2,12,7'2,0'2, u2)y-~-,(un—1;an,1n TnyOn, U ))
’ r¥ny Un

be a proof that u LN

urw v (where n is mini i
S mmal), with u = u,

and wh
o o and » el;; % and v are ground. Because » is a ground reduc-
g for £ U R, as observed earlier, we can always assume that
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the terms u; are all ground, and we have in fact a proof u “R(E)UR V-

We show that for every proof II of the form u 4—*—>3( E“)uRv Y, there is a
rewrite proof u ——*—>R( Ew)URw W P R(E“)UR® U, by induction on the mul-
tiset {uo, ...,un}, using the multiset ordering »m. For the base case, if
the rewrite sequence is either trivial (i.e. uw = v, corresponding to the
multiset {u}) or consists of a single step (corresponding to the multiset
{u,v}), then clearly the proof has no peaks and so is a rewrite proof.
For the induction step, suppose II is a proof with corresponding multiset
{uo, --- ,Up} with n > 2. If II has no peaks, then it is a rewrite proof and
we are done. Otherwise, let wj_y ¢—R(Ev)URs Ui —R(Ew)URw Ui41
be a peak in II. Note that u; » ui_1 and u; » uj;1 since R(EY) is
the set of orientable instances w.r.t. » of E“ U (E“)~1, and since R* is
contained in > by its definition. By the critical pair Lemma 6.1.5, either
there is some term v such that u;—; '—*"R(EW)URW v *L‘R(Eu)uRu Uji41, O
Uicl “p(g)En(d)]  YitD where 7(g) = n(d) is a ground instance of a
critical pair g,d of E¥ U R”. In the first case, we can replace the peak
by a rewrite proof relative to »- and we obtain a proof II’ with associated
SeqUENCE Ug, ..., Ui—1, V1, -y Uk Uity - +) Un such that u; » v; for all j,
1< j<k. Hence

{UO,---»Un} m {UO""sui—l)vly'"7vk)ui+17“'1uﬂ})

and we conclude by applying the induction hypothesis. In the second case,
observe that E¥ U R¥ is closed under the formation of critical pairs, and
so, g = d € E*UR“. Thus, n(g) = n(d) is orientable either because-
g =d € R“, or because g =d € EY and » is a ground reduction order-
ing relative to EU R. Hence, the peak can be replaced by a proof step
Ui—1 ——R(E“)URs Uitl, obtaining a proof II' with associated sequence
UG, .« .oy Uim1, Ui, - - - Un. SINCE

{uo,...,un} >m {U(),...,Ui—lyui+1,-..,un};

we conclude by applying the induction hypothesis. This concludes the

proof. O

Note that since a proof is finite, for any proof u s puyRv U, there is a
rewrite proof u —*—>R(Ek)URk w <—*——R(Ek)uRk v for some natural number k.
Thus, only finitely many critical pairs need to be computed. In some sense,
the number of critical pairs to be computed shows how “nonground Church-
Rosser” (E, R) is. Also, a sufficient condition for Theorem 6.1.7 to apply
is that the reduction ordering > containing R be also a total reduction
ordering on ground terms. In particular, the theorem applies when R = 0,
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in which case only a total simplification ordering on ground terms is needed.
As mentioned earlier, such orderings always exist. On the other hand,
given a set R of rewrite rules, there may not be any si
containing R that is also total on ground terms. Such
by the set R = {f(a) — £(b), ¢(b) — g(a)}.

The fact that a system (E, R) is ground Church-Rosser has the impor-
tant consequence that R(E)UR is canonical on ground terms. This is shown
as follows. First, note that R(E)UR is Noetherian on ground terms, since
R is contained in the reduction ordering > by hypothesis and R(E) is also
contained in » since it is the set of orientable insta

(which is total on ground terms). To show conflu
ground terms u,v;, vy, if

mplification ordering
behavior is illustrated

nces of E relative to >
ence, note that for any

* *
U1 “—R(E)UR Y —R(E)uR V2,

then v; <—*—>R(E)UR v2, and since (E, R) is ground Church-Rosser, there is
a rewrite proof

»* *
V1 = R(E)UR W “—R(E)UR V2

for some w. Hence, every ground term u ca

form u| (w.rt. R(E)U R).

It is very useful to observe that if a procedure P for finding sets of E-
unifiers satisfies the property stated in the next definition, then in order to
show that this procedure yields complete sets, there is no loss of generality
in showing completeness with respect to ground E-unifiers whose domains
contain Var(S) (that is, in clause (iii) of Definition 4.1.6, f(z) is a ground
term for every z € D(6), and Var(S) C D(9)).

n be reduced to a unique normal

Definition 6.1.8 We call an E-unification procedure P pure if for every
ranked alphabet ¥, every finite set E of equations over T=(X) and every
equation system S over Te(X), if U = P(E, S) is the set of E-unifiers
for S given by procedure P, then for every o € U, for every ¢ € D(o),

every constant or function symbol occurring in o(z) occurs either in some
equation in F or some equation in S.

In other words, P(E, S) does not contain constant or function symbols
that do not already occur in the input (E,S). (For example, it is easy
to prove that all the sets of transformations presented in this monograph
are pure.) To prove our previous claim, we proceed as follows. We add
countably infinitely many new (distinct) constants ¢, to X, each constant
¢z being associated with the variable z. The resulting alphabet is denoted
by Zsk. If 6 is not ground, we create the Skolemized version of 8, that s,
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. . . 0(z) b
the substitution 8 obtained by replacing the variables in the terms (z) by
e

3
new (distinct) constants.

i _unification procedure P, assume that for
o E.z'gl }?;;Zrtl ;J p:\f:ryE ﬁl;I::,f: set £ Ic))f equations over sz(X ) an;i
oy § ov ;’p(X ) the’ set U = P(E,S) of E-unifiers of S given byﬁ
tif " ove:litiins (;) and (ii) of Definition 4.1.6, and for every E-unll1 er
ppry cohnthat Var(S) C D(f) and 6(z) € Ty for every z € D(9), t. ere
'0 po U such that ;<E [V ar(S)] (c.f. condition (iii) ?f Definition
flszr)ne'I“rhfn every set U = }(E ,S) is a complete set of E-unifiers for S.

Proof. Let 6 be any E-unifier of S over Ts(X). If D(Hzl;isfg)ni)tl)c(oer;,
tain Var(S), extend 6 such that 0(y) =y for every y oef var(®) — DO

d let @ be the Skolemized version of this e.xtfznsmn‘ l. o are hov
o idering the extended alphabet sk . It is 1mm<id1ate y ve .
i o E-unifier of S such that Var(S) C D(f) and 0(.1:) € Tssx
ol s avnD(a) Then, there is some ¢ € U such that o <g 8[Var(S)],
for'all - thz;t there’ is some substitution n (over Tx, (X)) such that
e m: a%?Var(S)] Note that by the purity of P, since E a,tnd f ;ic:fnt(:
contain . tain Skolem constants. Le
cont{iin S:{ - cboni;z::i’nz (:::lsl rSliilZ?rIll constant back to tbe.corresl?ond-
'Obtame'db;omsyncz o does not contain Skolem constants, it is lmmedl?,tely
mg';:ilih:t‘ alo 7' =g 0. Thus, the set U is a complete set of E-unifiers
veri

for S over Tx(X). O
The following result is also useful.

t E be a set of equations, R a rewrite sys.tem, and
Le:l:;uft.it.nlgrdifing containing R, and assume tha‘t (E, f) 1:1 dgrvo::dl
ghurch-Rosser relative to >. If 6 is a ground (E,'R)—.umﬁert(})la:t ia: dvend
Var(u,v) C D(0), then there is a grou.nd SubStltutIOI‘lﬁO' that Js reducec
w.r.t. ’R(EYUR such that ¢ =gur 0, o is an (E, R)-unifier ,

ar(u,v) C D(0). |
‘;roo(f. S)ince (E, R) is ground Church—Ross*er relative to '>;eRg(f}‘s)gL:OIjn1§
canonical on ground terms. Thus,.if 6(u) —Eu Rf&(v), sin
and Var(u,v) C D(0), then there is a rewrite proo

* ‘_*_ ! ‘_"‘_ EYOR 0(’0)
0(u) ——gr(E)WR ¥ —R(E)UR W “—R(E)UR ¥ R(E)u

Wl[e[‘e w 18 g]()ll]l(l a]ld mn ]lOIIllal orm W.I-t. R(E) U 13) alld W}lele
f ( ’
t.he I‘eduCthIlS a(u) _ ’R(E‘)UR u and VU "R( E‘)UR G(U) Ieduce each 6(1:)

P Ys g every variable Yy ch term ZL‘)
3 More 1ecisel g is ()btained from [ by IeplaClIl ( ) 1 in each 0(
by the corres, ondin Skolem constant ¢ for each r € D(9).

Yy P g Y
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(z € D(8)) to its normal form 0(z)| (w.r.t. R(E)U R). Thus, defining
the reduced substitution ¢ such that o(z) = 0(z)] for each z € D(0), we
have v’ = o(u), v/ = o(v), o is a ground (E, R)-unifier of v and v, and
c=purf. 0O

For our next result, we need the following definition.

Definition 6.1.11 Given a rewrite system R, a step u — = v is

[8,1=r.p)
innermost (w.r.t. R) iff every proper subterm of u/B = p(l) is irreducible
wr.t. R.

The next lemma shows that in ground Church-Rosser systems, normal
forms can always be reached via certain canonical innermost rewrite se-

quences. The proof is not trivial because Var(r)—Var(l) may be nonempty
for an equation Il = r e EU E-1.

Lemma 6.1.12 Let E be a set of equations, R a rewrite system, and > a

reduction ordering containing R, and assume that (E, R) is ground Church-
Rosser relative to >-. Every ground term u reduces to its normal form ul
(w.r.t. R(E)U R) in a sequence of innermost reductions u —
such that for every rule p(I

(w.r.t. R(E)UR).

R(E)UR U],
) = p(r) used in the sequence, p is reduced

Proof. Since (E, R) is ground Church-Rosser relative to - R(EYUR s
canonical on ground terms. We proceed by induction on the well founded
ordering >. If u is in normal form, we are done. Otherwise, there is a
sequence of reduction steps u ‘*—’R( Eyur 4|, and and because u is ground,
Wwe can assume that every rule p(I) — p(r) used in such a proof is ground.
Note that p(I) > p(r) whenever either | — r € R or p(l) = p(r) € R(E),

and Var(l)UVar(r) = D(p) since p(1) and p(r) are ground.* If u is not in
normal form, there must be some innermost step

u 8,120 u[ﬂ<—p(r)].

For every z € Var(l), p(z) must be in normal form (wrt. R(E)UR),
since otherwise some proper subterm of p(1) = u/B would be reducible,
contradicting the fact that we have an innermost step. For each z ¢
(Var(r) — Var(l)), let p(z)] be the normal form of p(z) (w.r.t. R(E)UR),
and let p' be the reduced substitution such that p'(z) = p(z)] for each

* Certainly, p(!) and o(r) ground implies that Var(l) U Var(r) C D(p), but the fact
that p may be defined outside of Var(l)u Var(r) is not used anywhere, so we might
as well assume that Var(l) U Var(r) = D(p).
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. The defi-
z € (Var(r) — Var(l)), and p'(z) = p(z) for eac}: z era:((;) . eeD(p)‘
nition of p' implies that p'(1) = p(I) and p(z) = 4 (z) RorE<; Uzz - € D0
Thus, p(I) > p(r) implies that p'(I) = p'(r). Since (I R is canon
ical o’n ground terms, p'(1) = p(I), and u = u[B — p(l)], using
1 s
p'(1) = p'(r), we have a proof

u=ulf — ()] —rEpr ulf— o] —rEur vl
i U
where the first reduction step is innermost and p' is reduced (w.r.t. R(E)

R). Letting v = u[8 — p'(r)], we have u > u' since p() > p'(r). We
) - . . l
conclude by applying the induction hypothesis to u’. [1

This leads naturally to the following definition, which will be fundamen-

tal to our completeness proof.

Definition 6.1.13 Let (E, R) and > be as in the preceeding lem‘r;ila. Ii
ni .1. , s ] '

0 z an (E, R)-irreducible substitution which is a iground‘(E , R) u;n e;ogf

twlo terms ’s and t. then a basic rewrite proof of this fact 1s a rewrite p

0(s) ——r(Eyor W <—R(EWR O(1)

for some w, where for each instance p(l) — p(r) used in the proof, p is
reduced w.r.t. R(E)U R).

Note that we dO nOt I‘equn‘e w tO be ll‘red\lClble, since pel‘ha.ps thel‘e 18
a p 001 O € W t» ()t € C tlle lemma
T f f mlnlmal l ngth n hlch hlS 1Isn th ase. But )
. . :
l]ll]) 1€ W te p] OOf always exlStS. € esSe]ltlal faCt- 18
1 S that Such a baSlC rewrl Ill
h t n I‘eductlon ta.k S pla.ce at a«ny Substltutlon pOSltl n in the Sequence.
t a o € o}

6.2 Completeness of the Set T

i i derin
Let E be a set of equations, R a rewrite system, and > a reduction ordering
containing RE.

D iillltl()ll 6 2 1 l ‘le Sel ()I l]a]lSl()] a‘ O € 2 € 8¢ 2 (',()llSlStS
( m 10N I‘ul S ) Th S t
e oddo

it iable Eli
of the transformations Trivial, Term Decomposm(?n, and Vzrla fzuows:
tion from the set S7 plus one more transformation defined as
na

mi-

Lazy ar alll()dll atlol’.. leell a mu tlset O e(lllatl()]ls U v LJ .; then
~ LJ .; ——t ~ TN~ .; 4
{U U} {u/ﬂ I’ u ﬂ — U} U ’ ( a)

1 i i variable and
where ﬂ is a nonvariable occurrence i u (l.e., u/ﬁ is not a ) f)s
= 1 ~
l=risa variant (whose variables do not occur in {U ~ 'U} ol sO
= us me
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equation in EU E~!' U Ry R-1. Furthermore, if { is not a variable, then
Root(u/B) = Root(l) and Term Decomposition is immediately applied to
u/B = 1 (this corresponds to a leftmost rewrite at address B).®> Thus, if

l is not a variable, letting I = f(1,,. -, k) and u/B = Fti, ... t), Lazy
Paramodulation can be specialized to:

{uzv}uS=>{t1zll,...,tkzlk,u[ﬂhr]zv}US‘ (4a")

Recall that an equation u v is in fact a multiset, and so Lazy Paramod-
ulation also applies from v to u, as in

{uzv}US:{v/ﬂzl,uzv[ —rjjus, (4a)

where 3 is a nonvariable occurrence in v. As in our previous set of trans-
formations, we note that systems are multisets an

d the unions in this rule
are multiset unions.

In order to distinguish between the set BT and the set T, the former
will be called B7 -transformations and the latter 7-transformations. The
soundness of the 7-transformations is given by
Theorem 6.2.2 (Soundness of NIKES = ¢

, using transformations
from the set 7', with S’ in solved form, then g

'Var(S) € UE(S)
Proof. The only difference from Theorem 5.2.3 is that we must prove
the soundness of Lazy Paramodulation, i.e., that if S = S5’ using this

transformation, then Ug(S') C Ug(S). But clearly if 0(u/B) —g 6(1)
and 0(u[8 — r]) «“=p 0(v) then we have

0(u) =0(u[B — u/p))
g O(ulf — 1))
T [B,02r,8) 6(ulf — r])
——E 0(v),
from which the result follows. [

The completeness of the set of 7-

First, we assume that (E,R) is gro
the 7-

transformations is shown in two steps.
und Church-Rosser and we show that
transformations are complete, even when Lazy Paramodulation is

5 As with Root Rewriting, note that this is not simply a paramodulation step, nor
simply a paramodulation step where the unification of u/B and ! is delayed; it allows
further rewrite steps to occur below (but not at) the roots of u/f and I, hence the
name Lazy Paramodulation. In Section §6.5 this restriction will be strengthened.
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i = € (i oot) or
stricted so that it applies only when either 8 = ¢ (ie. at t:;e ’Il"heoiem
l'eh one of u,v is a variable (but not both).‘ Then, ‘we use corem
gle’lil da lem,ma that shows that the computation of critical pairs
.1.7 an

tion unrestricted. .
i ted by Lazy Paramodula —
Slm’Il‘lllli ﬁrstypart consists in showing that we can define a certain

p = y 1411 S.
()f l'esenta.tlon thatv a Substltutlon 0 1S an (E, R) unlﬁel‘ Of as Ste
B y lnductlon on the CompleXlty Of thlS l'epresentatloﬂ, we can ext I a(',l; l ]le

appropriate sequence of transformations.

i i tem, and > a
iti t of equations, R arewrite system,
tion 6.2.3 Let Ebease . nd>
D:l}ﬁ(:',;on ordering containing R, such that (E, R) is grounfi Churlzhtilt{l(l):ion
rel:;ive to . Furthermore, let # be an (E, R)-irreducible s; sC )
rehich is an (E, R)-unifier of a system S, and suchlth(e;t ;/;;( ‘Zlh;e ( iz;
w ! . .
d S is a triple {8,5,T),
] of system for 6, (E, R), an . ' ‘ :
" baslztciszzoo{ szic proofs such that there exists a basic rewrite p(;:lof :)o
U * . i
:nir;:imal length 6(s) —LR(E)UR W ——R(E)UR 6(t) in T' corresponding
~teS. ' ‘
eve’rl‘};: comilexity p((0,5, I‘)) of a basic proof system is a quadruple
ni,ng,ng) where o .
( (1) n1 is the number of reduction steps occurring in all the equation
1 1
roofs in T'; . s
(i) 22 is the number of unsolved variables in S; 'and. 5
(iii) n3 is the sum of the sizes of all terms occurring in 5. . .
i i ra
The ordering associated with this complexity measure 1sbthe ;ei(lec:cgh c;()) e
ordering using the standard ordering on th.e natural numbers oS each com
ponent. (Cf. the ordering used for proving the completeness of

ST))

ist i i iven the
The fact that such proof systems always exist 1s easily proved, gi

results above.

o, 6 . d 9
PI OPOSItlon '2'4 If (E R) iS gl‘Ound ChurCh—ROSSer I‘ela.tlve( t:o) >' arn( )
g ’ - 1 y S hel‘eb(ms CDG,
ﬁel‘ Of as Stem y
18 a I‘Ound, ll’l‘edUCIble (E, R) uni W '
then thel‘e eXlStS a baSiC pl‘OOf System fOl‘ 9, (E, R), and S

T when
We are now in the position to prove the completeness of the set
(E, R) is ground Church-Rosser.

L a 6.2.5 Let E be a set of equations, R a rewritej system(,i Znhi 1:}:
duction o d. ring containing R, and assume that (E, R) is grounc e
I.e(hlcmonlmt:' ee tf ». Given any system S if # is an (E,Rf)-umﬁ(?r 0t oi'
glosse:h:;eai;va sequ(;nce of T-transformations S = T (using variants

en
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equations in EU E—1 U R) yielding a solved system T such that if o7 is the
substitution associated with T, then or <gygp 0[Var(S)). Furthermore,
Lazy Paramodulation can be restricted so that it is applied only when
either = € or one of u, v is a variable (but not both).

Proof. First, observe that any procedure using the transformations in 7
satisfies the purity condition of Definition 6.1.8, and by Lemma 6.1.10 and
Lemma 6.1.9, we can assume that 0 is reduced w.r.t. R(E)UR, ground,
and that Var(S) C D(6). Thus there must exist a basjc proof system
Il = (6,5,T); we construct a requisite sequence of transformations by
induction on the complexity of this proof system.

The base case occurs when S is in solved form: the trivial transformation
sequence of length 0, viz. § = T, yields a substitution or, and by Lemma
9.1.1 we have that o7 <pyg 0[Var(S)].

For the induction step, suppose that S is not in solved form, so that if
p(II) = (ny, ny, ng), then n, # 0. Then there must exist some sx~te€ S
which is not in solved form. There are several cases (not all of which are
mutually exclusive).

(A) If in fact s = t, then we can apply Trivial to obtain a new sys-
tem S’ which has a basic proof system (0,5, T — {()}) of strictly smaller
complexity than IT, since ny and ny can not increase and n3 must de-
crease. By the induction hypothesis, there exists a proof S =p,,;, §' ==
T such that o7 <gug 0[Var(8’)], i.e., there exists some n such that
o1 =gur 0[Var(S')]. Now perhaps V = Var(S)-Var(S') is non-empty.
But if so, since all variables introduced in the proof &' == T are new,
VnVar(T)=0,s0 VN (D(or)UI(o7)) =0, but V C D(9). Since we
can assume wlg that D(n)NV = 0, then 6 =g p ornb[Var(S)], since for
any r € Var(S'), 0(z) =gur n(or(z)) = 8(n(or(z))) because n(or(z))
is ground, and for any yeV, nlor(y)) =y, so that 0(y) = 0(n(or(y))).
Thus o7 <gyr 6[Var(S)].

(B) If s ~ t is in the form fls1, oo ysk) =~ f(t, ... ytk) for some
f €%, and 8(s) = 6(t), then we can apply Decomposition, and clearly we
have a new computed answer proof (8,5, T') where we add &k — 1 trivial
equational proofs () to T to obtain I'; the complexity has decreased
because ng has decreased, but n, and n can not increase; since Var(S) =
Var(S’), we conclude as in the previous case.

(C)If s=t isin the form z ~ ¢ where 6(z) = (), then we can apply
Variable Elimination, and if S = {z=t}US” and ¢ = [t/z], then 6 = &6
(since 6(z) = 0(t) = 0(o(z)) and 0(y) = 0(c(y)) for y # z). Therefore

0{z ~ t}us") = 0({z =~ t} Uo(S")). Thus there exists a new proof
(6,5,T) with a strictly smaller complexity, since ny 1s unchanged but n,
has decreased. Since Var(S) = Var(S'), we conclude as above.
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i 6(s) >
(D) Finally, in the case that 6(s) # 6(t) , if we assume ;vlg that 0(s)
6(t), then there must exist a non-trivial basic rewrite proo

0(s) ——r(EWE —— R(E)E 0(t)

i i t, then suppose s = f(s1, ... ,Sk)
i . If there is no rewrite at the root, -
o dFt f(ta t) for some f € I;. We may apply Decompo§1tlon t;)
= ootk ,
arl:tain anew ;ystem S’ and also we may produce a new set T’ Zf bas;c ptl;)eo Z
° *
from T' by replacing the proof 8(s) 'L’R(E)UE*‘_'R(E)UE* (t) by ™
proofs obtained by decomposition, i.., 0(5;)——>R(§)UE +—R(E)1:,Vl;ys {)e
i < k t rewrites at disjoint addresses can a
for 1 < i < k (the fact tha . sses can alwas be
u i ition). It is not to hard to
muted allows this decomposi . ard
izrvlvl proofs are also basic, since the matching SubStltlzth‘;lls I1‘1Is)e(3l at; eca;:cll;
1 ri
i lexity of the resultant (6,5, iss

tep are still reduced. The comp Y

er?;ller than II, since n; and ns have not changed, but n3 has decrease
! done.

ince Var(S) = Var(S'), we are . . )
SlnIf there (is a rewrite at the root, then wlg assume it occurs in the rew;:a(;
sequence from 6(s), the other case being similar. Then our sequence

the form
: - ot
0(s) ——r(EyE PU) —( puzry A1) ——REWE “R(EWE 0(2)
hich, by the assumption that all equations and rewrite rules used are
w 1

i n be
variants whose variables are disjoint from the rest of the system, ca

equivalently expressed in the form
* * 0I(t)
— — "(r)— “——R(E)VE
6'(s) R(E)UE o' (1) [e,8'(1=7)] '(r) R(E)UE R(E)u

. - stinguish
where 8 = 0p. (For notational convenience, we shall not here dlstm.gmst
between an equation | = 7 € E and a rewrite rule | — r € R.) It is no

hard to see that the two rewrite sequences

' (s) —reeyE 0'(1)

and . .
0'(r) —— r(eyWwE — R(E)WE 0’ (1)

o . k.
are still basic, since the matching substitutions are still reduced after brea

ing apart the former proof. ‘ L )
1nng§)us we can use Lazy Paramodulation to transform S = {s ~ t}SLIJ, S_
into S’ 1 {s~1,r~t}uS”, and, since we can assume D(p)ﬂVg:( h) =
into ' ={s~lr=~ , , st o=
@ . there exists a new proof system (0,5, T') for ¢, (E, I?,tar;ci{ , where
I‘; is produced from T by removing the former proof for s ~ ¢ a
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by the two proofs given above. This is still a basic proof system, since the
rewrite proofs added are still basic, and clearly the rest of T' is essentially
unaffected by extending 6 to 6'. The complexity of I is strictly less than
that of T', since we have decreased ny by 1. By applying the induction
hypothesis, we obtain a proof S =, &' == T such that or <EuR
#'[Var(S")]. Since Var(S) C Var(S') and ¢ = 6[Var(S)], we have
or <EUR G[VGT(S)] .

Finally, it should be clear from the previous case that Lazy Paramodula-
tion can be restricted so that it need only be applied below the root when
one of the terms in the equation being solved is a non-variable. This is
because for an equation u 2 v, if v is a variable, say y, because 6 is reduced
we must have w = 6(y) and 6(u) _*"’R(E)UR 0(y). If u is also a variable,
say z, we must have 6(z) = w = 0(y). Thus, when u 2 v is an equation
consisting of two variables, Trivial or Variable Elimination always applies.

a

Note that the case analysis in this lemma is not mutually exclusive (i.e.,
some equation in S may fit more than one case), but that this does not
affect the result.

"The next result provides the motivation for our assumption that (E, R)
is consistent, and will be used in second part of our completeness result.

Lemma 6.2.6 If (E, R) is consistent and (o(r1),0(Li[B — ra])) is a crit-
ical pair in CR(E™, R"™) for some n, then both I, and {; are non-variable
terms.

Proof. The term ! is a non-variable by definition. If I is a variable, then,
since (E, R) is consistent and (E“, R¥) is equivalent to (E, R), (E¥, R¥)is
also consistent. But then r, must contain {2, and this violates the ordering
condition for critical pairs, since we assumed > is a simplification ordering.

O

In order to prove the completeness of the 7 -transformations in the gen-
eral case, the following lemma showing that the computation of critical
pairs can be simulated by Lazy Paramodulation is needed.

Lemma 6.2.7 Let E be a set of equations, R a rewrite system, and > a
reduction ordering containing R. For every finite system S, every sequence
of 7-transformations S == S to a solved system S using equations in
E“U(E“)"1URY can be converted into a sequence S == ' using equations
only in EUE~' URUR™, such that § is in solved form and o =
ocal[Var(S)].

6.2 COMPLETENESS OF THE SET T

ion® | = r in E¥ U(E¥)~

depth of an equation® [ = r in \ ;

fm:f;c slllli; ?lit Ie p— risin E¥U (E")"1 U R*. We proceed by induction on
eas =

the (finite) the dept)
base case occurs when the de ‘ 0 i
rlf(illils aJt:ivially. Now if the proof uses an equation a(ry) = a(L[B .1'2])

of depth greater than 0, obtained by forming a critical pair from L=mr
and I =ry at fin Iy,
component equations must be of smaller depth), then we ca

riginal use of the cr : : .
:)hesiomflated by two Lazy Paramodulation steps involving the component
e

ations, plus some number of ST transformations to (effectively) com-
equ ,

pute the ¢
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in the proof S = S.
iset of the depths of all clauses used in :
- . pth of each clause used is 0, and the result

W ltll mgu o Of l aIld l IlOte tha«t eaCh Of €se

itical pair in a Lazy Paramodulation step can

ritical pair “on the fly.” There are several cases, depending on
the form of the critical pair and how it was used in the proof.

Case One. Suppose o(r;) is a variable (which implies that ry is als:ha
variable) and we did the Lazy Paramodulation step from o(r1); then the

proof must have the form”
S=u=~xvT
=, u/a =~ o(r1), ula — o(h[ — )l =, T
=S
where u/a is a non-variable (note that the decomposition step which forms

the second half of the Lazy Paramodulation rule is not applied smlcle 0'(‘1'1)
is a variable). We can start the simulation of this proof step as follows:

S=u=uvT
=1p u/azrl,u[ou-ll] ~v,T

1 = < in u. Next, we have
using the equation I; =71 backwards at o 1n u ,

ufaxr,ula = L=, T
= ufa e, Q ula — LB — ro]]l v, T

using the equation lz = X . e
l /,Bg'v I, or the result of a decomposition step, 1.e., IL/B = s =>dec
1 ~

Also, we use the fact that
ufe — h]/af = L/B

ro at af in ula — h] and where Q is either

Q.

istingui uation | =7
6 For notational convenience, we shall not here distinguish between an eq
or
and a rewrite rule ! — 7.
7 Again for notational convenienc
by u = v, T, etc.

Wi i ~ T
e € 1*epresent, here a system in the form {u ~ ‘U} U
’
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and
ule — ][ —ry] = ufa — I [B — r3]].

Finally, since we assume in this monograph that all mgus are such as
produced by the set ST, there is a sequence of §7 -steps

Qéat Sa (*)

calculating a solved system S, representing o. Now, when we apply these
same transformations in the context of the whole sequence, plus (possibly)
some additional ST -steps to solve variables which are already solved when
they first appear in (x) (and hence do not need to be explicitly eliminated),
but which appear in [3 — 73], the overall effect is to calculate S, and
also to apply o everywhere. But since wlg we may assume that D(o) is
disjoint from the set of all variables used elsewhere in the proof, we have
for the next part of our new proof sequence:

w/amry, Qula — L[8 — 3] m v, T

= ufan o(r1), S, ula — o(l1[B — rq])] m v, T

Now if we add S, to the proof at this point, since all its equations are
solved, and no transformation can unsolve a pair, the only thing that will
happen is that perhaps some equation z ~t € S, will change into z ~ ¢’
during a later Variable Elimination step. Thus the subsystem S, may
evolve into some S, , but still we will have D(¢) = D(¢’) and D(¢’) N
Var(S) = 0. Thus we may finish our new proof with the same remaining
sequence of steps as in the original proof:

u/am o(r),S,, ula — o(l[8 — )] = v, T
=S5US,.

where 5,05 = o5[Var(S)]. We conclude by applying the induction
hypothesis.

Case Two. Suppose that r; is not a variable (which implies that o(r)
is not a variable) and the Lazy Paramodulation step Is again from o(r;).
In this case Head(u/a) = Head(r,); suppose that u/a = f(uy, ..., u,)
and ry = f(rf, ..., r.). Then our proof must have the form

S=umv,T
=p upro(r]), ... u, & o(ry), ula — o(l[B — ro)l &~ v, T
=35
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here u/a is a non-variable. The construction of the new proof proceeds
w

analogously with the previous case, resulting in

S=u=vT
= U T, - Jup e ula — L]0, T
=bip UL R T], - Un ~ v, Qula — LB —rf] =0, T
2 ur 2 o), ... tun = o(rh), So, ule — o(L[B — ) = v, T
s
:_*—>§US¢,/.

Case Three. Suppose the Lazy Paramodulation step still proceeds from

o(r1), but 7y is a variable and o(r1) is not a variable. Here the simulation
3

is slightly more delicate. Suppose that ufa = f(u, ..

.,up) and o(r) =

f(n ,Un), so that our original proof was in the form
) ,
S=u~uvT
=>1p Uy RV, ..., Un Uﬂ)u[a — a.(ll[ﬁ — 7"2])] = v)T
=S

We start our simulation as in case one,

S=ur~uvT
= u/a r,ufa — L]l =0, T
=, uf/amr,Qula— L[l —r]lm0,T
= ufam o(r1), So, ula o(lh[B — ra)) = v, T,

. .
but now, since the leftmost pair was in fact decomposed by our .orlgma
proof, we add an additional decomposition step before proceeding:

ufa~ a(r1), Se, ula — o[B8 — r)] = v, T

—Pdec U1 R V1, ..., Un = ”Un,Sa,U[C! - 0(11[:3‘_- 7‘2])] zv,T

——*_>§US,71.

i i logous to the first two.
In other respects this case is ana . s
This covers all the cases where the Lazy Paramodulation step proce

from o(r1). .
Case Four. Now suppose that the Lazy Paramodulation step proceeds

that

from o(l,[B « r2)). If B = ¢, then by Lemma 626 we may assu(;nl()e tﬁe
both I, and I, are non-variables, and so this possibility 1s coverlet ?

1 . . a —
previous three cases. Thus suppose B=if for 1 <i<nandletu
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f(ui, ..., up) and I) = fl, .

L) i igi
o) ,42). In this case our original proof must

S= uwrnvT

=np wiro(l), .. uimo(li[f — 1)), ... up a(ll)
R ulo — o(ry)] ~ v, T
= 5.

Our new proof is then

S=*>uzv,T

=p u ], .yl e ug
ula —r)x o, T

= w sl um By, . yUn 2 1,
Q ula —r]~v,T

*
=auro(l}), ..., uimo(ll[B—rl), ... u, ~o(l])
ns,

So,ula — o(ry)] = v, T

= SUS,,

P
whert'e Q' is either I/~ or l/B ~ Iy =>4, Q'. In other respects this
case is analogous to the previous three.8 [

I lna“y, we can pl()ve tlle COIllp]eteneSS Of the 7 —tla t €
IleOIIIlathllS m h

Thef)rem 6.2.8 (Completeness of T) Let E be a set of equations, R
rewrite S)"stem, and > a reduction ordering containing R total on o :;
f;erms. Given any finite system S, if 6 is an (E, R)-unifier of § therglr:lllm
Is a sequence of T-transformations S == § (using variants c;f equati e
in EU E~'URU R™) yielding a solved system S such that if a(']ilailsl(t);:
substitution associated with S, then o5 <gur 0[Var(9)] ’

p .
Cl:(;or.il }I3{y Theor;zm 6.1.7, E“ U R is equivalent to (E, R) and is ground
1-Rosser relative to >. By Lemma 6.2.5, there i
: ive to > . .2.9, there i1s a sequence of 7-
tr'allas'formatlons S == S using variants of equations in E“ U (E“)~'UR¥
ylelding a solved system S such that if o5 is the substitution associated

8
ZX:ors}x}:lilchremarkt}‘lers that the original proof of this lemma in
was noticed by Dan Doughert
W y and Patty Joh
definition of lazy paramodulation contained an implic‘?’t deczxrlrll1

cases was overlooked, and h i
See alte Sotiaooged: ence the proof of the lemma was in

[54] contained an
[39]; the fact that the
positionstep in certain
sufficient for the claim.

5 R PO Sl 0 10
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with S, then 05 <EUR [V ar(S)]. Finally, we use Lemma6.2.7 to eliminate
uses of critical pairs, obtaining a sequence where all equations are in E'U

E-'URUR™L O

Note that when (E, R) is ground Church-Rosser, equations in E are
used as two-way rules in Lazy Paramodulation, but rules in R can be used
oriented. This means that in a step

umv=u/frlulf —r|=v,

where £ is a nonvariable occurrence in u, thenl=r€ EUE Y ifl=ris
not in R, but r — [ is not tried if | — r isin R, and similarly for a step

unv = uxv[f—r],lxv/b

where f is a nonvariable occurrence in v. Furthermore, Lazy Paramodula-
tion can be restricted so that it applies only when either 8 = ¢ or one of
u, v is a variable (but not both). This is in contrast to the general case
where even rules in R may have to be used as two-way rules due to the
computation of critical pairs. Also, Lazy Paramodulation may have to be
applied with 8 # € even when both u and v are not variables. This case
only seems necessary to compute critical pairs. So far, we have failed to
produce an example where Lazy Paramodulation needs to be applied in its
full generality (that is, when neither u nor v is a variable and 3 # ¢€). We
conjecture that 7 is still complete if Lazy Paramodulation is restricted so
that it applies only when either 3 = € or one of u, v is a variable (but not
both). The following example might help the reader’s intuition.

Example 6.2.9 Let E = {fgz = z [1], ghy = gky [2], gkfz = z [3]},
and consider finding E-unifiers for the equation hu = u. Equations [1] and
[2] overlap at 1 in fgz, and we get the critical pair hv = fgkv [4]. We have
the sequence of transformations:

hu = u =>1p hu = hv, fgkv = u using [4]
=1, hu hv,gkv = gkfz, fz ~ u using [3]
=g unv kv kfz, fzru
g UV, VR fz, fzRu
—,guxv,ur fz,fzru applied to v
=y fzrv,ur fz,fzx f2

= triv fzzv,‘u.%fz

applied to u
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Thus, [fz/u, fz/v] is an E-unifier of hu =~ u, and [fz/u] belongs to a
complete set of E-unifiers for hu ~ u. Interestingly, [fz/u] can also be
found using the original equations [1], [2], [3].

hu~u=p, huxz, fgz ~u using [1]
=p huxz,ge~ghkfz, fzxu using [3]
=>vel hur z,ghum ghkfz, fz ~u applied to z

= p hu~ z,ghu ~ ghy, gky ~ gkfz, fz ~ u using [2]
=*>dechuz:c,uzy,yzfz,fz ~u
=ahurxzumyux fz fzru applied to y
=vahfrmz, foryuxf2,fzn f2 applied to u
=wivhfzre foxyus f2

Thus, [fz/u,hfz/z, fz/y] is an E-unifier of hu 2 u.

Lemma 6.2.5 also provides a rigorous proof of the correctness of the
transformations of Martelli, Moiso, and Rossi [111)in the case where E = 0
and R is canonical. In fact, we have shown the more general case where R
is ground Church-Rosser w.r.t. >.

6.3 Surreduction

An alternate proof of the completeness of the T-transformations is provided
in this section by showing that the rewrite steps occurring in a rewrite proof
of o(u) «——g o(v) can be simulated by certain generalizations of rewrite
steps called surreduction steps (or narrowing steps). It should be noted
that this completeness result is weaker than the completeness results given
by Lemma 6.2.5 and Theorem 6.2.8. This point will be clarified in the next
section. These results generalize those found in Chapter §4.

Definition 6.3.1 Let E be a set of equations (or a rewrite system) and
let W be a set of protected variables. Given any two terms u, v, we say that
there is a surreduction step (or marrowing step) from u to v away from W
iff there is some address 8 in u where u/f is not a variable, a variant | = r
of an equation in £ U E-! (or F if E is a rewrite system) such that u/g
and [ are unifiable and the variables in Var(l,r) are new and occur only in
l'and r (so that Var(l,r)N(Var(u)UW) = 0) and if o = mgu(u/B, )[W]
then v = o(u[B «— r]). A surreduction step is denoted as

)

U > v.

[8.1=r,0,W]
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(some arguments may be omitted). The substitution o is called the surref-
ducing substitution. A surreduction sequence (or narrowing sequence) is
defined as in Chapter §4. Recall that a surreduction step

U ipiazre) Y
corresponds to the rewrite step

o(u) —[8,1=1,0] v.

The crucial lemma in proving the completeness result of this section 1§ a
version of the “lifting lemma” from Chapter §4. Sir'xce we are not necesslar;ly
dealing with rewrite rules (Var(r) is not necessarily a sul?set of I}j'ar( ) 1(21'
an equation [ = r), we give a detailed proof of our extension of this result.

Lemma 6.3.2 Let E be a set of equations, R a rewrite system', - :«t
reduction ordering containing R, u a term, W a set of ‘protected v:;u'la,bleil
containing Var(u), 8 a ground substitution reduced w.r.t. R(E)U R suc

that D(§) C W, and p(I) — p(r) a ground rule such that either I — r
is a variant— of a rule in R or a variant of an equation in E such that

p(l) = p(r) € R(E), D(p) = Var(l,r) and by the variant assumption, the
variables in Var(l,r) are new and occur only in this rule. For any ground

term v, if
0(’“) —"[ﬁ,lz'r,p] Uy

for some address 3 € 8(u), then there are two substitutions #' and o, a new
set of protected variables W', and a term v’ such that:

(1) u/p is not a variable and o is the mgu of u/B and ! away from
WuVar(l,r)
’
(2) v' = o(u)[B — o(r)] and (1) — (g2, 0] ¥
(3) 8 = o0 [W] and ¢ |wur(o) is reduced w.r.t. R(E)UR
(4) v=0'(v') and
(5) Var(v') C W' and D(¢") C W'.
This may be illustrated as follows:
— {2
6(u) —pizrg VT ¢’ (v')
T To
,v/

u 18,1=r,0,W)
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Proof. Obviously, 6(u)/8 = p(1). Since 6 is reduced w.r.t R(EYUR
must be the address of a nonvariable symbol in u, and H(u)/ﬂ = 0(u/,,8ﬂ
Let ¢ = u./ﬁ. Since D(6)N.D(p) = @, we can form the union p= 0_U fth).
substitutions ¢ and p, and we have p(t) = (1), i.e., @ is a unifier :}ct) ;
l B).f Lemma 3.3.11 we have an mgu o of t and [ away from Wu Var(IaLn
proving (1). Also, by corollary 3.3.12 there is some substitution 7 such t,hrztj
¢ =0Up=con[WuVar(l)], where w.l.g.,since o is idempotent, we can
assume that D(n)N D(o) = 0. Also note that since Var(l) and Va;'(u) are
disjoint, then D(v) = Var(t)u Var(l). Let v/ = o(u)[8 — a(r)]. Ob

that the variables in v/ are contained in the union of the three di;joints‘;:t,e
W, I(c), and (Var(r)~ Var(l)). This last set is nonempty when Var(r) y
Pot a subset of Var(l), which is possible when p(l) = p(r) is an orientabllz
Instance. We define W’ = WU I(o) U (Var(r) — Var(l)) (proving the first
part of (5)), and we define the substitution 6’ as follows: )

o' = {7, ify e WU I(o);
(v) {p(y), ify € (Var(r) — Var(l)).

Clearly, the first part of (5) holds. Since v’ = o(u)[ — o(r)] and o(u)/8 =
o(t) = o(l) (because o is a unifier of ¢ and I}, we have -

o(u) (8,12 r,0] v

and (2) holds. Since
g(u) _>[ﬂ,l='r,p] v,

we have v = 0(u)[8 — p(r)]. We now show that v — ¢'(v'). Since v =

o(u)[B — o(r)], we have &' (v') = §'(o(u —
to show thai ) ) =8 — 0 (o(r))]. Hence, we need

0" (o(u)B — 0'(a(r))] = (u)[B «~ p()].

glu;c:dﬁl;lp = a'.on[WUVar(I.)] and ¢’ = n[WUI(0)], then by the definition of
- € variant assumption we have § = ¢ o ¢'[W] and 0'(o(u)) = ().
(;s;lso shows the first part of (3). Since 6 U p = oonWuVar(l)]
Zne Va:(rg[IiV;J I(clf)], .lf y E/ Var(l) N Var(r), then ¢'(o(y)) = ply). If
Vant ar(l), since 0'(y) = p(y) and o(y) = y (because D(s) =
. w) LillVar(t)), we also have 0'(d(y)) = p(y). Hence, 0'(a(r)) = p(r)
e Seceonzve s};ov;n that v =,t9’(v’). 'Ithus, (4) holds. It remains to sho“;
oo [;;;L;) (3), that @ Iwur(o) is reduced w.r.t. R(E)UR. Recall
Wt nFor ’ (0)]. Thus, we show that 5 is reduced w.r.t. R(E)URon
o Sinc. o Iny ¥ € D(n) N (W U I(0)), there are two cases. If yew,
, e D(0')ND(o) = 0, o(y) = y, and since 0Up = con[WuVar(l)]

)
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n(y) = n(o(y)) = 6(y). Since 0(y) is reduced w.r.t. R(E)U R, so is n(y).
Now by the definition of o and by the variant assumption, we have I(c) =
Var(e(t)) and Var(o(t))NVar(t) = 0. Also, since 6Up = gon[WuVar(l)],
then for every variable z in Var(t), 6(z) = n(o(z)). Hence, for every
y € I(0), n(y) = 0(z)/a for some z € Var(t), where a is the address of
y in a(z). Since 0(2) is reduced w.r.t. R(E) U R, so is its subterm 7(y).

Thus (3) holds, and the proof is complete.  [1

We now have the following result showing the crucial role played by

surreductions.

Lemma 6.3.3 Let E be a set of equations, R a rewrite system, and > a
reduction ordering containing R, and assume that (E, R) is ground Church-
Rosser relative to >. Let the symbol eq be a new binary function symbol
not in £. Given any two terms u,v, if a ground substitution ¢ reduced
w.r.t. R(E)U R and such that Var(u,v) C D(f) is an (E, R)-unifier of u
and v, then for any set of protected variables W containing D(6), there is

a surreduction sequence
eq(u,v) 2] eq(uy,v1). .. Pl e oa] eq(un,vn)

(where each l; = r; is a variant of an equation in EU E-!U R) and some

mgu p of u, and v, such that

g10...00,0u < O[W].

Furthermore, the substitution o1 0...0 05 0 ptlyar(u,v) Is an (E, R)-unifier
of u and v.
Proof. Since (E, R) is ground Church-Rosser relative to >, there is a rewrite
proof

8(u) —rEyWr N “~—pr(Eyr 0(v),

where N is irreducible (w.r.t. R(E)U R). Hence, there is a rewrite proof
0(6q(uv ’U)) _*"’R(E)UR eq(Ny N)a

where eq(N, N) is irreducible. We proceed by induction on the well-

founded ordering >. If 6(eg(u, v)) is irreducible, obviously eq(8(u), 0(v)) =

eq(N, N), and 0 is a unifier of u and v. The lemma is satisfied by choosing

p as a mgu(u, v)[W]. Otherwise, there is a rewrite proof

8(eq(u,v)) —(puzn, @ ——REWR €GN, N),
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Yvhere p(l) = p(r) € R(E)orl — r € R, and p(I

is not reduced, since R(E)U R is canonical onpg(rt))u:(f (t?rr::’/i‘;a:;:;:;;(c’;
each p(z) where'a:. € Var(r) — Var(l) to its normal form p(z) | (w.r.t.
R(E) U R), obtaining a reduced substitution p;. But then using the rul

p1(l) — p1(r) which also satisfies p;(I) > p1(r), since p[v, N = p1] N
and p(y) > p1(y) for each y € Var(r) — Var(l), we have a:;(vgritep;r(‘),g;(l)

bleg(w,v))  — s 20, Wi ——ReE)R eg(N, N).
Then, by Lemma 6.3.2, we have a surreduction step away from W

eq(u, v) >—>[p'1=.rm W] wy,

:lestituticl)ns o1 and 1, and W' = W U I(e) U (Var(r) — Var(l)) such
'a,t ?1(11)1) = wi, 0 = 010 0:[W], D(61),Var(w}) C W', and the sub-
stitution 61|wyr(s) is reduced w.r.t. R(E)U R. Since 01lvar(ry-var@y =
g(l;;r(rEVar(l) and p; is reduced (w.r.t. R(E)UR), 6, is reducedarvf,)r t
U R. But w; is of the form eg(u;,v;) and w :,0 so,

since pi({) > p1(r) and = leatua, o). Ao

0(6(1(“!”)) TBIEr ] 01(“1(“11”1))’

we have 8(e 1 *
e ! (eq(u,v)) > 01(eq(u1,v1)). Since w, —rE)r €q(N,N), we

01(eq(ur,v1)) —>prg)ur eg(N,N).

HWe,nce, the induction hypothesis applies using the new set of protected vars
= WUI(o)U(Var(r)—Var(l)), and there is some surreduction sequence

eq(u
a1, 01) >__>[Iz='rz,az] eq(u, v2). .. >-__>[Inir‘n,an] €q(tn, n)
and some mgu p of u, and v, such that
020...00,0pu < 0,[W'].

Since 6 = o1 0 ;[W], we have

010...oanop§6[W],

T .
(;leé)roof: that o;0...0 on o,ulvdr(u,,,) is an (£, R)-unifier of v and v is an
, R)-unifier of u and v is a routine extension of Lemma 4.2.6 O

The previous lemma implies the following important theorem.
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Theorem 6.3.4 Let E be a set of equations, R a rewrite system, and >
a reduction ordering containing R total on ground terms. Given any two
terms u, v, if 8 is an (E, R)-unifier of u and v, then for any set W containing
Var(u,v) and D(0) there is a surreduction sequence

eq(u,v) —mn eq(uy,v1). .. Uz o] eq(un, un)

=r1,01]
(where each I; = r; is a variant of an equation in E¥ U (E¥)~! U R¥) and
a mgu p of u, and v, such that

o10...00,0u <pur (W]
Furthermore, 01 0 ...0 0n © {t|var(u,v) 1S a0 (E, R)-unifier of u and v.

Proof. First, recall that by Lemma6.1.9 it can be assumed that 6 is ground
and that Var(u,v) C D() without any loss of generality. Next, we use
Theorem 6.1.7 which shows that E¥ U R¥ is equivalent to (E,R) and is
ground Church-Rosser relative to >. Then, by Lemma 6.1.10, we know
that there is a ground substitution §” reduced w.r.t. R(E*)U R” and
such that 8" =gug 0'[Var(u,v)]. Finally, we apply Lemma 6.3.3 to 8" and
R(EXYUR®. O

It is remarkable that Theorem 6.3.4 shows the completeness of surreduc-
tion together with the computation of critical pairs. Note that rules in R*
can be applied oriented, whereas equations in E¥ have to be used as two-
way rules. This adds considerably to the nondeterminism of the method,
and shows why oriented rules are preferred. We now show how a weaker
version of the completeness of our 7-transformations can be obtained from

Theorem 6.3.4.

6.4 Completeness of 7 Revisited

First, we show that the 7 _transformations can simulate surreduction in the
case of a pair (E, R) that is ground Church-Rosser (w.r.t. ).

Lemma 6.4.1 Let E be a set of equations, R a rewrite system, and >
a reduction ordering containing R. Assume that (E, R) is ground Church-
Rosser (w.r.t. »). For every surreduction sequence

eq(u,v) >——>[11£r1.01] eq(ul’vl)”' >—_)[l...'—.rn,an] eq(un’vn)

where each l; = r; is a variant of an equation in E'U E-!'UR and p is the
mgu of u, and vy, there is a sequence of T-transformations u = v =S
yielding a solved system S such that

os =010...00,0pu[Var(u,v)].
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Proof. The lemma is proved by induction on the length of surreduction se-
quences. If n = 0, then u and v are unifiable by y, and by the completeness
of the transformations for standard unification (without Lazy Paramodula-
tion), the result holds. Otherwise, since eg(u, v) (o] eq(uq,v1), either

u uy

[8,1=r,01]

for some address g in u and v; = o1(v), or u; = o1(u) and

v >__-)[,[3,I='r,¢71] U1

for some address 3 in v. We consider the first case, the other being sim-
ilar. By the induction hypothesis, u; ~ v; = S’ by a sequence of 7-
transformations, where S’ is a solved system such that

05 =030...00, op[Var(u,v))].
However, since eq(u, v) 8 0Er0n] eq(uy,v1), we have
unv=u/fxluf—rlxv
by Lazy Paramodulation, and
u/BrlLulf—r]l~v= S U0 (u[f — 7]),01(v) = Sy Uuy, vy,

by performing the sequence of transformations from the set $7° that com-

putes the mgu o) of u/8 and ! and the corresponding solved system Sj.
Thus,

urv== S;Uu ~ .
Since by the induction hypothesis
Uy = vy = s,
it is easy to see (by induction on the length of the sequence) that
SiUu ~ v == 05:(S))US,
and so .
umv=>05(S)US,

and letting S = 05:/(S1)US’, S is in solved form. Since S; is the system in
solved form associated with o, and since the substitutions o; and p have
pairwise disjoint domains, we have

s =010...00,0pu[Var(u,v))]. O

We can now give another proof of the completeness of the set of trans-
formations 7 when (FE, R) is ground Church-Rosser.
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Lemma 6.4.2 Let E be a set of equations, R a rewrite syster.n, and > a
reduction ordering containing R. The set of transformations 7 is complete
for all ground Church-Rosser pairs (E, R).

Proof. We need to prove that given any two terms u, v, if 9 is an (F, ]E)—
unifier of u and v, then there is a sequence of T -tra'nsfo.rmatlons U v =—>
S (using variants of equations in EUE™! U R) yle.ldmg a solved system
S such that if s is the substitution associated with S, then o5 < Euz
[V ar(u,v)]. Without loss of generality, by Lemma 6.1.9,1t can be assume
that @ is ground and that Var(u,v) C D(6). By Lemma 6.1.10, Ehere is
a ground substitution ¢’ reduced w.r.t. R(EYUR .and such that 0/ =gur
0[Var(u,v)]. By Lemma 6.3.3, there is a surreduction sequence

eq(u,v) u, eq(ui,v1) ... >— eq(tn,vn)

Zry,01] la=rn,oa]

where each I; = r; is a variant of an equation in EUE"'UR, u, and v,
are unifiable, and if p is the mgu of u, and vp, then

o10...00, op < O0'[Var(u,v)].

. *
By Lemma 6.4.1, there is a sequence of T-transformations u =~ v = S
yielding a solved system S such that

o5 =010...00,op[Var(u,v)].

Thus,
os=010...00,0p< 0 =pur o[V ar(u,v)],

and so o5 <gur 0[Var(y,v)]. O

It is worth noting that Lemma 6.4.2 is weaker than Lemma 6.2.5 in the
following sense. Lemma 6.2.5 shows the completeness of the tran.sforma-
tions T even when Lazy Paramodulation is restricted to apply either at
the top (8 = €) or when one of u, vis a variable (F)ut not both). However,
this is not the case for Lemma 6.4.2. The simulation of surreductl.or.l steII>s
requires Lazy Paramodulation unrestricted. This is r}ot 'very surprising. I;
the proof of Lemma 6.2.5, transformations are applied in a top-dow(rlt 88
lazy fashion. By lazy, we mean that unification steps can be dela.ye . On
the other hand, it is not clear that completeness is gyaranteed if such a
top-down strategy is applied in a sequence of surreduc‘tlon steps. Hovw;ever,
using Lemma 6.1.12, it can be shown that surreduction step§ c.an EY wai's
be applied bottom-up, that is, using innermost steps, z.md it is easy t;0
see that Lemma 6.4.2 still holds under this strategy. This corresponds to
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a bottom-up strategy for applying the transformations, and the proof of
Lemma 6.2.5 does not yield the completeness of this strategy. Thus, it ap-
pears that Lemma 6.2.5 and Lemma 6.4.2 correspond to different strategies
for applying the transformations, and that they are complementary.

In a recent paper, Nutt, Réty, and Smolka [120] investigate complete
sets of transformations for basic narrowing applied to ground confluent
systems. It would be interesting to explore the relationship between our
set of transformations 7 and the transformations presented in [120].

Finally, we give an alternate proof of the completeness of the set 7 in

the general case. The above comments also apply to this theorem and to
Theorem 6.2.8.

Theorem 6.4.3 Let F be a set of equations, R a rewrite system, and >
a reduction ordering containing R total on ground terms. The set 7 is a
complete set of transformations.

Proof. Without loss of generality, we can assume that § is ground and
that Var(u,v) C D(6). By Theorem 6.1.7, E¥ U R is equivalent to (E, R)
and is ground Church-Rosser relative to . Then, by Lemma 6.4.2, there
Is a sequence of 7-transformations u &~ v == S using equations in E¥ U
(E¥)~! U R“ yielding a solved system S such that o5 <gyp 0[Var(u,v)),
where o5 is the substitution associated with S. We conclude by applying
Lemma 6.2.7. [

6.5 Relaxed Paramodulation

It is possible to improve the set of transformations 7 further by strength-
ening the restriction on the Lazy Paramodulation rule, as shown recently
by D. Dougherty and P. Johann [39]. The basic idea is that the restric-
tion that u/a and !; have identical top function symbols when [; is not a
variable, and that decomposition is applied to the new equation as a part
of the rule, can be iterated down into the two terms. We may formalize
this new form of the Lazy Paramodulation rule by defining a new form of
partial unification as follows.

Definition 6.5.1 (Top Unification) Given an equation s~ t, TU(s ~ 1)
is a set of equations defined recursively:

TU(f(...)~g(.. ) is undefined if f # g;
TU(z~t)={z=xt);
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TU(f(s1, .- »8n) = f(ts, .., ta)) = |J TU(si m ),
1<i<n
for n > 0, provided these last are defined; otherwise the result is undefined.
Two terms s and ¢ are said to top unify if TU(s = t) is defined.

The idea is, informally, to decompose an equation down cornple.tc.ely {nt0
variable—term or term—variable equations; that is, since decomposmox'] isa
terminating relation, we normalize an equation s ~ ¢t wrt decomposition,

sl —=dec —Pdec --- —dec {slztl,...,sn%tn}

where no decomposition can be applied to any s; = t;. Then. s a1 1is top
unifiable iff at least one of s;, {; is a variable, for each 7, 1 < ¢ < n.

For example
TU(f(e, 2, 9(2, @) ~ (e, h(2),9(3,0)) = {z = h(z),z =},

but TU (f(c,z,9(z,a)) =~ f(d, h(z),9(y,a))) is undeﬁned. Note thzi:t top
unifiability does not imply unifiability, since perhaps in the secon.d llI'le‘ of
the definition £ € Var(t), but of course unifiability implies top unifiability.

Before we discuss the E-unification procedure based on th‘is pa?tial fo.rm
of unification, we give a collection of results related to top ‘umﬁcatlon wh}ch
will be necessary below. Most of these are simple properties of the relation
—4ec , and their proofs are left to the reader (see also [39]).

Proposition 6.5.2 Let s &t be an equation.
(1) If 0 = mgu(s,t), then there exists a sequence

SRt = gec TU(szt):—*—ntS.,.

(2) For any decomposition step s &t =g, T and any substitution o,
there exists a decomposition step o(s & t) =>dec‘ a(T).
(3) If ¢ is a substitution such that o(s & t) is top unifiable, then there

exists a sequence
o(s 1) =>gec o(TU(s = t)) =>gec TU(0(s = 1)).

(4) If B € Dom(s)NDom(t), and s 2 t is top unifiable, then TU (s = 1) =
TU(s/B = t/B) U T for some T". Furthermore, if s' = s[By — u],
then TU(s' =t) = TU(s/Bly —u]=t/B)UT'

Note that (3) implies that if o(s & t) is top unifiable, the'n S0 i.s s~ t.
The new method for E-unification based on this form of partial unification

may be defined.
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Definition 6.5.3 (The set of transformations 7* ) The set T’ consists of
the rules from S7 plus:

Relaxed Paramodulation: Given a pair (E, R) and a system {s ~ t}US,
{szt}US:TU(s/ﬂzl)U{s[ﬁhr]zt}US’

if B is a non-variable occurrence in 8,1 = ris a variant from EUE-1URU
R™', and TU(s/B8 ~ 1) is defined.

The completeness of this set is proved by strengthening Lemma 6.2.7
to accomodate this stronger restriction; the rest of the proof is essentially
unchanged from Section §6.2 (for an alternate proof see [39]).

For the purposes of the proof below it will be convenient to consider the
Relaxed Paramodulation rule in two parts, namely, a “Completely Lazy
Paramodulation” transformation

{smt}uS =y, {s/B~1 4 —rlxt}UusS
followed by a sequence of decomposition steps
{s/B~1s[—r]~t}us
=dec TU(s/B ) U{s[B — r]~ 1} US.
The new form of Lemma 6.2.7 we need will proceed by showing how to

manipulate =cp and =>4, to transform the proofs to accomodate
this more restrictive form of lazy paramodulation.

Lemma 6.5.4 Let E be a set of equations, R a rewrite system, and > a
reduction ordering containing R. For every finite system S , EVETy sequence
of T'-transformations S == § using equations in E“ U(E“)~'URY can be
converted into a sequence S == S using equations only in FU E-1URU
R~!, such that S and S are in solved form and 0'§|Var(s) = 0'5’~‘,|Var(5)~

Proof. We again proceed by induction on the (finite) multiset of the depths
of all clauses used in the proof § == 5. The base case is again trivial;
now suppose the proof uses some equation o(r1) = o(li[B — r3]) of depth
greater than 0, obtained by forming a critical pair from I; = riand Iy = ry
at 8 in I, with mgu o of 11/8 and 1.

Case One. Suppose that o(r1) is not a variable and the Lazy Paramod-
ulation step is from o(r1).% In this case our proof must have the form
S=umvT
=ep ufam o(ry),ufla — o(l,[f — ry))] v, T
> gee TU (u/a o(r1)), ula — o(L[B — r))] = v, T
=3

® This combines cases one through three of Lemma 6.2.7.
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where u/a and I/ are non-variables.
The new proof is

S=u=xvT
=>ep yfamr,ufa—L]xv,T
=4 TU(u/a = r),ula — ] =0, T
=ep TU(u/a =z 1), l1/B ~ b, ufla — L[B —r3]] = v, T
= agee TU(ufa ~ ), TU( /B = l2), ufe — L[B —ra]] v, T
=4 0(TU (u/a = 1)), Sy, u[a — o(L[f — r))] = v, T
= 4o TU (u/a = 0(r1)), So, u[e — (i [B «ra2))] ~ v, T
= 5, US,
where we have used Proposition 6.5.2 (1) in lines 4 — 6 and part (3) in

passing from line 6 to line 7. This is clearly a sequence in the requisite form
(in other respects the proof is treated analogously with Lemma 6.2.7).

Case Two. Now suppose that the Lazy Paramodulation step proceeds
from (11 [8 — r2]), namely, the proof has the form

S=u=xuvT
= p wfaxo(li[f — 7)), ula — a(r1)] =~ v, T
= 4ee TU (ufa = o(l[B — r2))), ule — a(r1)] & v, T
= S.
There are two subcases. First, suppose that § is nof a non-variable oc-
currence in u/a; since u/a = o(li[# « ro]) is top unifiable, then so is
uf/a = I}[B « rq], and thus there is a unique variable £ = u/af; where

B = B1B, for some B2. Now if t = 1;/B; (so that /8, = 11/, and hence
o = mgu(t/Bs,12)), then by Proposition 6.5.2 (3) and (4), the sequence

ufax o(l[B — ra]) =>aee TU (u/a = a(1[B — 1)) (%)
can be arranged into the form

ufam o(11[B — ra]) =aec o(TU(u/a = Li[B — ra]))
= oz = t[B — ), T)
= z = o(t[fs — ra]),a(T")
= gee TU (u/a = o (11 [B — 13))),

/
for some T”. Furthermore, we know that TU(v/a = ;) = {e =t} UT".
Our new proof uses these intermediate forms as follows:

S=uxuvT
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=ep ufaxl,ula —r]xv, T

gee TU (u/a = Lh),ulo —r] v, T

= zxt,T ua—r]~xT

=ep t/Pomly,zm By — o), T ula — r]x v, T
=4 TU(L/ By b),z=t[fs — 1), T ula — ]~ v, T
=41 S5,z % o(t[Bs — r3)),0(T"), u[a — o(r))]~v,T
=>dec So, TU (u/a = o(lL[B — 72])),ula — o(r)] = v, T
= S, US.

This is the required sequence, and the other details are as in Lemma 6.2.7.

Second, suppose f is a non-variable occurrence in u/o. In this case,
first consider the sequence

ufar LB — ry) = gecufaf w2 vy, T”
——*—-"dec TU(U/Q’IB ~ 7"2), TU(T”)
= TU(u/a=L[8 — ry)),

which we know to exist by Proposition 6.5.2 parts (3) and (4). By part 4)
of the same proposition, we also have a sequence

U/O/[ﬂ — 12] ~ [ :*>dec Iy = 11/,3, i
=>4 TU(ly = 1 /8), TU(T").
= TU(U/CY[,B(—Iz] zll)
(The point here is that 7" can be assumed to be identical in both se-

quences.) Now by considering the effect of & on the first of these, we can
rearrange the sequence (%) in the previous paragraph into the form

u/a =z o(l[B — ra)) = dee ufaf = o(rz), o(T")
= dec 0(TU (u/aB = r3)), o(TU(T"))
= dec TU(u/af = o(rs)), TU (o(T"))
= TU(u/a = a(l[B — r2))).

Then we can again use these intermediate forms to obtain the new proof:

S unvT
=ep v/af = ro,ufaf — bl x v, T
=>4 TU (u/af ~ 1), ufaf — o] ~ v, T
=>epp TU (u/af = 1), (u[aff — L)/ ax i, (u[af — bL))a —r]~v,T
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= TU (ufaf = ), ufaff — ) = I),u[a — r] = v,T

=4 TU(ufaB = 12), TU (u/af — L] = ), ula — r] = v,T

= TU(u/aB = r2), TU(l2 = 11/B8), TU(T"),ula — r] = v,T

=, 0(TU(u/aB = r2)),Ss,o(TU(T")), u[a — o(r1)] = v,T

=3 4ee TU(u/aB = 0(r2)), So, TU(o(T")), ula — o(r)]) = v, T

= TU (uje = o(IL[B — 72])), So, ue — o(r1)]) ® v, T = S, U s.

In other respects the proof is as above. This completes the induction and
the proof of the lemma. [

Readers interested in further discussion of this method should consult
the paper [39] and the thesis [81].

6.6 Previous Work

In this section we compare our approach to E-unification to current and
past research in this field. As remarked in Chapter §4, Since the work of
Plotkin [131], most of the energy of researchers in this field has been di-
rected either toward (i) isolating and investigating the E-unification prob-
lem in specific theories such as commutativity, associativity, etc., and var-
ious combinations of such specific axioms, and (ii) investigating the E-
unification problem in the presence of canonical rewrite systems. There
has been some work as well on various extensions to the latter.

The first area of research has not concerned us in this monograph, since
we have been interested only in more general forms of E-unification. The
second area represents the most general form of E-unification which has
been thoroughly investigated to date (but see also [66]).

Narrowing and its refinements represent a very clean and elegant solution
to an important subclass of E-unification problems, and we do not claim
to have improved upon these results. Instead we view our research as an
attempt to place these results in a more general context, by showing in a
very abstract way how the same proof techniques used in narrowing may
be applied to our more general problem. We should in particular note that
Martelli, Moiso, and Rossi have presented an E-unification procedure using
a set of transformations much the same as our set 7, but they attempted
to prove completeness only in the context of canonical systems.

The work of Kirchner [91] attempts to extend the basic paradigm of
E-unification in canonical theories by adapting the approach of Martelli
and Montanari [109] to standard unification which uses the operations of
merging and decomposition over multiequations to find mgu’s in ordered
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form; by respecting the ordering of variable dependencies among the various
terms, one may avoid explicit application of substitutions, and so Variable
Elimination is not used. Kirchner expands this basic method by defining
conditions under which decomposition may be done in the presence of equa-
tions, and by defining a new operation on multiequations, called mutation,
which is dependent upon the theory under consideration. He extends the
procedure for canonical theories by showing that if a theory permits the
use of variable dependency orderings to avoid explicit substitution (such
a theory is termed strict), and if a mutation operation can be deduced,
then his procedure returns a complete set of E-unifiers. He then gives
a general strategy for deriving the mutation operation via a critical pair
computation, and hence a way of automating the creation of specialized
E-unification procedures. As an example this strategy is applied to the
class of syntactic theories, which basically allow complete sets of E-unifiers
to be found by allowing at most one rewrite at the root between any two
terms. Our approach to E-unification owes much to Kirchner’s initial in-
spiration to adapt the method of transformations to E-unification, but our
motivations are very different. We have used only the abstract notion of
transformations on equation systems, and not the technique of multiequa-
tions. Our research concerns not the derivation of specific procedures, but
the abstract analysis of the general case. It is not surprizing, then, that
we can subsume the methods of Kirchner in an abstract way. We could
optimize our procedure for syntactic theories, for example, by simply al-
lowing at most one root rewrite between any two terms. As in the case of
narrowing, however, our general procedure is not likely to be as suitable for
specific theories as specially designed procedures, although in an absolute
sense it subsumes them.

Another form of more general E-unification which has been investigated
using the method of transformations, for example by Holldobler [66], is the
problem of E-unification in the presence of a confluent set of rewrite rules.
Unfortunately, narrowing is incomplete for this class of theories, as can be
seen by considering the rewrite system R = {a — fa} and the system
fe = ffz, both over the signature £ = {f, a}. Then clearly for any s and
t, s<"—pt iff either s =t or s = ffa and t = f™a for some n # m, and
thus in the second case if n < m we have a sequence s —> ¢, and similarly
in the other direction if m < n. Thus R is confluent (note that R is not
simply ground confluent). But there is no possible narrowing step out of
either fz or ffz, although any o of the form [f*a/z] for any k > 0 is an R-
unifier. As has been noted, for example in [121] and [67], for confluent but
non-terminating systems, narrowing is complete over the set of solutions in
normal form (if such exist—in the previous example there are none). Thus
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it seems that ground confluence with respect to some reduction ordering >
is needed if the transformations are to be applied oriented, as they are in
Holldobler’s paper.

In general, our approach to E-unification, although heavily indebted
to many researchers in this field, is fundamentally different. Whereas the
previous work in this field has concentrated on elucidating the structure
of specific E-unification problems or in gradually expanding the class of
theories for which complete E-unification procedures exist, our research
has concentrated on finding a very general method for which a rigorous
completeness proof was available, and then attempting to find techniques
to prove the completeness of restricted versions of this method.

6.7 Eager Variable Elimination

We discuss in this section an interesting open problem which remains in our
research on general E-unification. Notice that in our general discussion of
E-unification in Chapter §5, we prove the completeness of the method via
a strategy which applies transformation (C) only to trivial proofs (z = 1)
in which no rewrite steps occur. If the proof (z *t) contains rewrite
steps, we use transformation (D) or (E). This corresponds in the transfor-
mations on systems to non-deterministically allowing an equation z =~ ¢
where z ¢ Var(t) to be transformed by either Variable Elimination, Root
Rewriting, or Root Imitation in the set BT or, alternately, by either Vari-
able Elimination or Lazy Paramodulation in the set 7. The strategy of .
Eager Variable Elimination is to always apply Variable Elimination to an
equation (if possible) instead of Root Rewriting or Root Imitation (or Lazy
Paramodulation in the case of 7). In other words, we never look for rewrites
below the root of an equation z ~ t if ¢ ¢ Var(t), and can immediately
eliminate z via Variable Elimination. The question of whether such a set
of transformations is complete is still open.

In fact, our original formulation of E-unification via transformations
used this strategy, but a difficulty arose in finding a measure on which
to base our completeness proof. The problem is that—no matter what
formalism is used for E-unification proofs—performing Variable Elimina-
tion on an equation which needs rewrite steps between 6(x) and 6(t) will
have to incorporate these steps into the proof wherever « is replaced by .
The effect is that the same equation may end up being duplicated many
times. Then, if variables are renamed in duplicated equations to avoid
clashes, potentially not only the number of rewrite steps in the new system
is increased, but also the number of unsolved variables; but if duplicate
equations are not renamed, it must be ensured that no variable clashes will
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ever occur in any later sequence of transformations.

Actually, the notion of an equational proof tree was developed to clarify
these issues, but we were not able to prove the correctness or termination
of this new set of proof transformations, and so were led to the approach
presented above in Chapter §6 find useful restrictions on our transforma-
tions.

The literature has mostly overlooked this problem, and, as it is decep-
tively simple at first glance, it is generally assumed to be true. Martellj
et al. [111] claim the completeness of such a strategy in the context of
canonical rewrite systems. However, because their proof lacks many de-
tails, including a measure for a rigorous induction, we are unable to check
the validity of their argument about Variable Elimination. Holldobler [66]
claims the completeness of a set of transformations equivalent to our sys-
tem BT with Eager Variable Elimination. As remarked above, his proof
contains a gap, and no rigorous analysis of Variable Elimination is pre-
sented. Using the techniques developed in this chapter, we believe that
Holldobler’s completeness proof can be partially patched, but we do not
believe that the transformations are complete if Eager Variable Elimina-
tion is performed. We should remark that Kirchner has avoided this whole
problem by examining only those theories in which Variable Elimination
can be avoided by the use of variable dependency orderings.

6.8 Current and Future Work

The work discussed in this chapter has been extended in various ways since
the original paper [54]. Various other researchers have given inference sys-
tems for the general E-unification problem in addition to Dougherty and
Johann (discussed in Section §6.5). The system of Jouannaud and Hsiang,
first presented at the annual Unification Workshop in 1988, and given in
the survey [83], is interesting in that it breaks up the inference rules into
more cases (for example, various failure rules are given), but a completeness
proof is still forthcoming. An interesting preliminary report on a method
for improving the lazy paramodulation method was given by Bertrand Del-
sart at the Unification Workshop in Barbizon in 1991; the basic idea here
is to use a limited amount of forward reasoning (i.e., completion of the
set of equations) in order to restrict the use of the lazy paramodulation
rule. Another general E-unification inference system which uses forward
reasoning is studied in [144].

The issue of backward vs. forward reasoning (represented in this mono-
graph by the results in Sections §6.2 - §6.5 vs. Sections §6.3 — §6.4) is an
interesting one which has been studied for a long time in the context of
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resolution systems without equality. Backward reasoning consists of only
allowing inferences which are in some way derived from the goal. In equa-
tional logic, forward reasoning is best exemplified by completion, where
there is no reference to any goal while critical pairs are being generated;
and backward reasoning is used for example when checking for equality be-
tween two terms wrt a canonical rewriting system. In resolution theorem
provers [139], the strategy of backward reasoning is best exemplified by the
set of support strategy [157]. Formally, this strategy seeks a refutation for
an unsatisfiable set of clauses S by isolating a set T C S such that S —T
is satisfiable (for example, S — T' might be the set of hypotheses, and T
the negation of the theorem to be proved) and forbidding inferences which
take place only among the clauses in S — T (for a good discussion of the
crucial importance of this, see [130]).

Unfortunately, this restriction can not be used in the presence of equa-
tional axioms if paramodulation into variables is not allowed. For example,

{f(a,b) = a, a =b} E Jz. f(z,2) = =,
so that the set of clauses
{ {f(avb) = a}v {a = b}7 {ﬁf(zva") = 1:} }

is unsatisfiable, but if we pick the obvious set of support, namely the third
clause, then we can only obtain a refutation by paramodulating into a
variable.!® This is the motivation for the goal-directed transformations on
systems approach taken in this book, and recently the author and Christo-
pher Lynch have extended the principles laid out here to both Horn-Clause
logic [149] and to full first-order clausal logic with equality [151]. The
basic approach is similar to the proof given here; in particular, in both
papers, we need a lemma similar to Lemma 6.2.7 which shows how to con-
vert a proof which is in some ways “canonical” to a proof which uses lazy
paramodulation (in fact we work within the context of Relaxed Paramodu-
lation in both these papers). One interesting feature of the last mentioned
paper is that in order to prove completeness, it was necessary to extend
the basic strategy for narrowing (such as we have used above) to the full
paramodulation calculus; the resulting inference system, naturally called
Basic Paramodulation, is discussed in [152].

10 Technically, of course, we could define the set of support as the whole set, but this
is uninteresting, since then there is no restriction.
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6.9 Conclusion

Although research in E-unification has grown tremendously in the past 15
years, for some reason the problem of general E-unification in arbitrary
theories has been neglected. This is unfortunate, since progress in any area
of science is often frustrated when fundamental issues of the basic paradigm
are not well understood. In this section of the monograph we attempted to
provide a rigorous paradigm for the study of complete procedures for gen-
eral E-unification by adopting the method of transformations on systems of
terms and showing how a basic set BT of very general transformations for
E-unification corresponds to certain transformations on equational proof
trees. In this context, the completeness of our method is easily shown, and
highlights a number of features, such as the problem with eager variable
elimination discussed above, which are not obvious in completeness proofs
using other techniques. In order to make this method efficient enough to
be implemented, we then showed how restrictions may be placed on this
basic set to obtain a set 7', thereby increasing its efficiency while retaining
completeness for arbitrary equational theories. The method of proof here
was adapted from unfailing completion, and showed that we need not ever
rewrite at variable occurrences, which not only eliminates the guessing of
functional reflexivity axioms and the potential for infinite recursion on Root
Imitation, but also prunes out a large number of useless rewrite sequences.
In addition, we showed how other more general forms of E-unification, such
as narrowing, can be simulated by our method, by demonstrating that the
set of 7-transformations is complete for a set R of ground Church-Rosser
rewrite rules, and also that the strategy of surreduction plus the simulation
of critical pair computation is complete.

In the next chapter, we explore another general paradigm for unification,
this time for higher-order terms, again using the method of transformations
on systems of terms.

CHAPTER 7

HicHER ORDER UNIFICATION

Higher-order unification is a method for unifying terms in the Simple T'he-
ory of Types [28], that is, given two typed lambda-terms e; and e3, finding
a substitution ¢ for the free variables of the two terms such that o(e;)
and o(ez) are equivalent under the conversion rules of the .calcfulu.s. As
discussed above, this problem is fundamental to theorem proving in higher-
order contexts (see Chapter §1 for references). In this chapter, we adapt
the method of transformations to higher-order unification.

7.1 Preliminaries

In order that this section of the monograph be self-contained, we present
here a number of basic definitions and results related to the typed !am.bda.
calculus, including a detailed treatment of the notion of a substitution.
Our notation and approach is basically consistent with [16], [49], [65], and

[72).

Definition 7.1.1 Given a set Ty of basic types (e.g., such as int, .b(?ol,
etc.) we define the set of types 7 inductively as the smallest set containing

7o and such that if o, 3€ 7, then (@ — B) € 7.

The type (e — f) is that of a function from objects of t.ype a to ob!ects
of type B. We assume that the type constructor — associates to the right,
and we shall often write type expressions such as (a3 — (a2 — ...(an —
B)...)) in the form a3, ... ,a, — B, with 3 an arbitrary type.

Definition 7.1.2 Let us assume given a set T of symbols, which we
call function constants, each symbol f having a unique ty;.)e T(f) from
T. For each type a € 7, we assume given a countably infinite set of
variables of that type, denoted V,, and let V = UreT | 7 Furthermort.a,
let the set of atoms A be defined as V UX. The set £ of lambda-terms1s
inductively defined as the smallest set containing .4 and closed under the
rules of function application and lambda-abstraction, namely,
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(1) If e; € £ has type a — 3, and e3 € £ has type a, then (ejes) is
a member of £ of type 3.
(ii) If e€ £ has type 8 and z € Vo then (Az.e) is a member of £ of
type a — 3.
We shall denote the type of a term e by 7(e).

By convention, application associates to the left, with the result that a
term (...((e1ez)es).. .€n) may be represented as (erez...€,). In general
we represent a sequence of lambda abstractions

Azy. (Azz. (... (Azn.€)...)

in the form Az;...z,.e, where € is either an application or an atom. We
shall often drop superfluous parentheses when there is no loss of clarity,
and will use square brackets if necessary; also we follow the convention
that the dot includes as much right context as possible in the scope of its
binder, so that, e.g., a term Az. stu is to be interpreted as (Az. ((st)u)).

Definition 7.1.3 Inaterm Az;...z,.e where € is either an application
or an atom, we call ¢ the matriz of the term, the object Az;...z, is the
binder of the term, and the occurrences of the variables are called binding
occurrences of these variables. We define the size of a term u, denoted |ul,
as the number of atomic subterms of u. A variable z occurs bound in a
term e if e contains some subterm of the form Mz.e' , in which case the
term e’ is called the scope of this binding occurrence of z. A variable z
occurs free in e if it is a subterm of e but does not occur in the scope of a

binding occurrence of z. The set of free variables of a term e is denoted by
FV(e).

Definition 7.1.4 The order of a term or a variable is just the order of
its type, where the order of a type ¢ is defined as

1, if p € 7p;
Ord(p) = {mam(Ord(a) +1,0rd(B)), if p = a— 3.

A language of order n is one which allows terms of order at most n.

This formalizes the usual convention that a first-order term denotes an
individual, a term of second order denotes a function on individuals, etc.

Convention: In what follows we denote types by a, 3, v, and ¢; constants
of primitive type by b and ¢; constants of functional type by f, g, and h;
variables of arbitrary type by z, y, and z, and arbitrary atoms by a. We
shall often represent free variables of functional type by the letters F, G,
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H, and Y. Lambda terms will be denoted by e, r, s, ¢, u, v, and w. We
shall, in the interest of clarity, omit type information whenever possible,
since it is inferrable from context in the cases we consider.

The ‘computation rules’ of the lambda calculus are as follows.

Definition 7.1.5 Let u[t/z] denote the result of replacing each free oc-
currence of z in u by ¢, and BV (¢) be the set of bound variables in . We

have three rules of lambda conversion.
(i) (a-conversion) If y & FV(t)U BV (t), then

(Az.1) »a (Ay.(ty/z])).

(ii) (B-conversion)

((Az.8)t) »p s[t/z].
(iii) (n-conversion)! If z ¢ FV(t), then

(Az.(tz)) »p t.

The term on the left side of each of these rules is called a redez. A term ¢
which contains no S-redices is called a 8-normal form, and n-normal forms
and Bn-normal forms are defined similarly. If we denote by e[s] a lambda
term with some distinguished occurrence of a subterm s, then let e[t] denote
the result of replacing this single subterm by the term ¢, where 7(s) = 7(t).
We define the relation —, as

e[s] —q elt] if s >4 t,

and similarly for — s and —, . We define —g, as —p3 U —, . We
also define the symmetric closure «——, the transitive closure =, , a,nd. the
symmetric, reflexive, and transitive closure —— of each o{ these relations
in the obvious fashion. The relations ;'p , ——p,and <, are called
B-, n-, and Bn-equivalence respectively.

It is easy to show that the type of a lambda term is preserved under
these rules of lambda conversion.

Definition 7.1.6 We say that s is substitutible for = in t if, for every
subformula Ay.t" of t, if y € FV(s) then = & FV(t').

1 This rule is a special case of the the axiom of extensionality, viz., Vf,g(Vx(f(a:) =
g9{x)) => f = g), which asserts that two functions are equal if they behave the same

on all arguments, regardless of their syntactic representation.
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The motivation for this notion is that no free variable capture will take
place if s is substituted for 2 in #’. (The problem with this free variable
capture is that it violates the fundamental meaning of scope and the binding
of variables; in [16], for the untyped calculus it is shown that if this is
allowed, the calculus becomes inconsistent in the sense that any two terms
are equivalent.) In the S-conversion rule, in the pathological case that s is
not substitutible for z in ¢, i.e., z occurs in ¢ in the scope of some binding
occurrence of a variable which is free in s, then there is always a sequence
(z.t)s Lo, (Az.t")s —p t'[s/z], where s is substitutible for z in .
Thus, for simplicity and without loss of generality we adopt the following
assumption.

Convention: We assume in the following that in the set of terms being
discussed, the set of all free variables is distinct from the set of all bound
variables. (This allows us to be ‘naive’ in our use of B-conversion and sub-
stitution; for another approach, see [65].) In fact, in the rest of this chapter,
all comparisons of lambda terms are modulo a-conversion, which will allow
us to represent lambda binders using ‘generic’ variables z,, ... ,z; unless
confusion would result. By abuse of notation, using this naive approach
and following our representation of a sequence of lambda abstractions as
a term Az;...x.u, we shall consider the conversion of redices involving
such terms as a single reduction step instead of k steps, e.g.,

(/\121 ...:ck.u)vl eV —p u[vl/zl, ,’Uk/:l:k]
instead of (Azy ...z u)v;.. .0 —-k—+ﬂ ulvy/zq, ..., vp/zE).

Definition 7.1.7 The calculus which admits only the §-rule as a compu-
tation rule we call the typed 8-calculus and the calculus which also admits
the n-rule is called the typed Bn-calculus.

In this chapter, we wish to give an abstract method for higher-order
unification which presents the fundamental logical issues as clearly as pos-
sible, and for this purpose we feel it is sufficient to develop the notion of
unification of terms in the typed B7-calculus. This is a natural assumption
in practice, and all higher-order theorem proving systems known to the
author use this weak form of extensionality. The reader interested in the
details of the non-extensional case may consult [72].

‘Two of the major results concerning this calculus are the following.

Theorem 7.1.8 (Strong Normalization) Every sequence of 87n-reductions
is finite.
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Theorem 7.1.9 (Church-Rosser Theorem) If s, ¢ f?r two l*ambda
terms s and ¢, then there must exist a term u such that s—g, u—gyt.

(Proofs of these may be found in [65].) Each of these theorems remains
true when restricted to just n-conversion or just B-conversion. One of the
important consequences of these two results is that for eacll term ¢ .ther?
exists a unique (up to a-conversion) term t' such that t—p,t' v.v1th t
in By-normal form, and similarly for the restriction to just.: B- or just 7-
reduction. Another consequence is that the 8-, -, or fn-equivalence of two
arbitrary terms may be decided by checking if the corresponding normal
forms of the two terms are equal. For example, if we denote the unique
B-normal form of a term ¢ by ], then s;»pt iff s|=1].

Convention: We shall in general assume that terms under discussion are
in B-normal form unless otherwise stated. In particular, each term in g-
normal form may be represented in the form Az;...zn(ae;...en), where
the head a is an atom, i.e., a is either a function constant, bound variable,

or some variable free in this term, and the terms ey, ..., e, areinthesame
form. By analogy with first-order notation, such a term will be denoted
Azy...Zn.a(e1, ... ,€m). As an abbreviation, we represent lambda terms

using something like a ‘vector’ notation for lists, so that Az; ...z, € will. be
represented by AZ,.e. Furthermore, this principle will be extended to lists
of terms, so that AZ,. f(e1, ...,em) will be represented as AZ;. f(em),
and we shall even sometimes represent a term such as

AT a(y1(Tx), - -, Yn(Fk))
in the form AZx. a(yn(T%)).

Definition 7.1.10 A term whose head is a function constant or a bound
variable is called a rigid term; if the head is a free variable it will be called
a flezible term. (For example, the term Az. F(Ay.y(z, a), ¢) is flexible, but
both of its immediate subterms are rigid. )

As remarked above, we consider in this chapter only the problem of uni-
fying terms in the fA7-calculus, and since our analysis proceeds.by exam-
ining the manner in which substitution and subsequent S-reduction mz?,kes
two terms identical, we need not explicitly consider the role of 7-reduction.
The formal justification for this is given by the following result.

Lemma 7.1.11 For any two terms s and t, we have s—gy,t iff there
exists a term u such that s——g u——s,t.
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(For a proof see [16].) Asa consequence, we can decide An-equivalence by
reducing terms to their S-normal forms, and then testing for 7-equivalence,
that is, s«—'—»;;,, tiff s| «—"—»,, t|. This allows us to ‘factor out’ n-conversion,
by considering only n-equivalence classes of terms. We shall use the follow-
Ing means of representing such classes by canonical representatives (due to

[72).

Definition 7.1.12 Let e = Az, ...Zp.ale1, ... ,en) be a term in -
normal form of type ay, ... ,an, any1, ... y@nyk — (3, with § € Ty. The 5-
ezpanded form of e, denoted by 7[e], is produced by adding k new variables
of the appropriate types to the binder and the matrix of the term, and
(recursively) applying the same expansion to the subterms, to obtain

AT1 ... TaZngl .- Togr-a(nled], ..., nlem], Mental, - nlznsr]),
where 7(zp4i) = apyi for 1<i<k.

This is effectively the normal form of a term under the converse of the
n-reduction rule (so that nle]——, e) and is only defined on a term already
in B-normal form. It is easy to show that in an n-expanded form, every
atom appears applied to as many arguments as allowed by its type, and
that the matrices of all subterms are of base types. This form is more useful
than the 7-normal form because it makes the type of the term and all its
subterms more explicit, and is therefore a convenient syntactic convention
for representing the congruence class of all terms equal modulo the p—rule.
It is easy to show, by structural induction on terms, that these expanded
forms always exist and are unique (up to a-conversion), so that for any
two terms s and ¢ in f-normal form, we have s« ¢ iff 5[s] = [t] (see
(72], Lemma 4.3). Thus, we have a Church-Rosser theorem in the following
form.

Theorem 7.1.13 For every two terms s and ¢, we have se"gpt iff

nlsl] = nftl].

Definition 7.1.14 Let Lezp be defined as the set of all -expanded forms,
Le, Lesp = {nlel]|e € L}. Define the set L, as the smallest subset of
L containing L., and closed under application and lambda abstraction,
i.e., (ere2) and Az.e; are in L, whenever ¢; € L, and e3 € L,,.

The essential features of Lezp and L, which will allow us to restrict

our attention to 7-expanded forms are proved in the next lemma, which is
from [72].
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Lemma 7.1.15 For every variable £ and every pair of terms e and ¢’ of
the appropriate types:

(1) e,€ € Lezp implies that (Az.e) € Lesp and (ee’)|€ Legp;

(2) ee€ L, implies that el€ Lezp;

(3) e,e €L, implies that (Az.e) € £, and (ee’) € Ly;

(4) e€ Ly and e——ge' implies that €' € Ly;

(5) e, e’ € L, implies that €'[e/z] € L,.

These closure conditions for £, (not all of which are satisfied by the
set of n-normal forms) formally justify our leaving the 7-rule implic.it in
the following sections by developing our method for higher-order unifica-
tion in the language £, and considering explicitly only B-conversion as a
computation rule.? The reader interested in a more detailed treatment of
these matters, including proofs of the previous results, is referred to [72]

for details.

We now formalize the general notion of substitution of lambda terms
for free variables in the Bn-calculus, after which we show how this may be
specialized to substitutions over Lezp.

Definition 7.1.16 A substitution is any (total) function o : V — L such
that o(z) # z for only finitely many z € V' and for every z € V we ha\fe
7(o(z)) = 7(z). Given a substitution o, the support (or domain) of o is
the set of variables D(o) = {z | o(z) # z}. A substitution whose support
is empty is termed the identity substitution, and is denoted by Id. The
set of variables introduced by o is I(0) = U, ¢p(o) FV(o(x)).

A subtle point of this definition is that substitutions are total functions
which are non-trivial over only a finite number of variables; over the re‘st.of
V they simply map variables to themselves. Given a substitution o, if its

support is the set {z1,...,z,}, and if t; = o(z;) for 1 <i<n, ther.l o
is also denoted by listing its bindings explicitly: [t1/z1, ... ,tn/Za]. Given
a term u, we may also denote o(u) as uft1/z1, ..., tn/%n).

Definition 7.1.17 A substitution p is a renaming substitution away from
W if p(z) is a variable (modulo 7-conversion) for every z € D(p), I(p) 0
W = 0, and for every z and y in D(p), p(z)——, p(y) implies that z=y.
If W is unimportant, then p is simply called a renaming. The restriction

2 In fact, we shall depart from our convention in .the inte}'ests of simplicity Fc‘mly ;Vh:
representing terms which are (up to 'r;-converslox.\) variables, .8 Az:y. (:l:,yt. o
some contexts, such as solved form systems, we W.ls}l to emphasize their chara}(l:aﬁrbe
variables, and will represent them as such, e.g., _|u.st F. In these cases, we s
careful to say that ‘F is (up to n-conversion) a variable,’ etc.
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of a substitution o to some W’, denoted o|w- , is the substitution ¢’ such

that
o' (z) = a(:c), if ze W',
otherwise.

Since L is freely generated, every substitution ¢ : V — £ has a unique
extension ¢ : £ — L defined recursively as follows.

Definition 7.1.18 Let o__ denote the substitution o|p(s)-{z} - For any
substitution o,

o(z) = o(z) for z € V;
G(a) =aforac g
(Az.e) = Az.7_5(e);
7((ere2)) = (T(e1) T(e2) ).

Thus a substitution has an effect only on the free variables of a term.
In the sequel, we shall identify o and its extension &. Note that by
our assumption that the sets of bound variables and free variables in any
context are disjoint, no variable capture will ever take place by application
of a substitution. It is easy to show that the type of a term is unchanged
by application of an arbitrary substitution.

Remark: It is important to note that by o(e) we denote the result of
applying the substitution o to e without B-reducing the result; we shall
denote by o(e)| the result of applying the substitution and then reducing
the result to S-normal form. This rather non-standard separation we im-
pose between substitution and the subsequent B-reduction is useful because
we wish to examine closely the exact effect of substitution and g-reduction
on lambda terms in a later section.

Definition 7.1.19 The union of two substitutions o and 6, denoted by
g U, is defined by

o(z), if z € D(o);
ocUb(z) = ¢ 0(z), if z€ D();
z, otherwise,

and is only defined if D(c) N D(8) = @. The composition of o and @ is
the substltutlon denoted by o o @ such that for every variable z we have

oof(z) = 0(0(1-)) Note carefully that we denote composition from left to
right.
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Definition 7.1.20 Given a set W of variables, we say that two substi-
tutions ¢ and @ are equal over W, denoted o = 6[W], iff Vz € W,
0'(1:) = 6(z). Two substitutions o and 6 are (-equal over W, denoted

o =p O[W] iff Vz € W, o(z)——g0(z), or, equivalently, o(z)|= O(r)l
The relatlons =, and =g, are defined in the same way but using sy
and «——g,. We say that o is more general than 6 over W, denoted by
o < 6[W], iff there exists a substitution 7 such that 8 = ¢ o n[W], and we
have o <g 8[W] iff there exists some %’ such that 8 =5 o o 7'[W], and
<, and <g, are defined analogously. When W is the set of all variables,
we drop the notation [W]. If neither o <g, 0 nor 8 <g, o then o and
@ are said to be independent.

The comparison of substitutions modulo §-, 7-, and B7-conversion is for-
mally justified by the following lemma, which is easily proved by structural
induction on terms:

Lemma 7.1.21 If o and € are arbitrary substitutions such that ei-
ther 0 =5 0, 0 =, 0, or ¢ =g, 0, then for any term u we have either
o(u)——p0(u), o(u)—s,0(u), or o(u)—— g, 0(u), respectively.

We now show that we can develop the notion of substitution wholly
within the context of the language L, developed above without loss of
generality.

Definition 7.1.22 A substitution @ is said to be normalized if 0(z) €
Lezp for every variable z € D(0). :

We can assume without loss of generality that no normalized substitu-
tion has a binding of the form n[z]/z for some variable £. A normalized
renaming substitution has the form [n{y1]/z1, ... ,n[ya]/2n]; the effect of
applying such a substitution and then S-reducing is to rename the vari-
ables zy,...,z, to yi,...,Ys. The justification for using normalized
substitutions is given by the following corollary of Lemma 7.1.15.

Corollary 7.1.23 If 6 is a normalized substitution and e € L¢zp, then
0(e) € L, and 8(e)|€ Lezp.

It is easy to show that if o and 6 are normalized, then o =g, 0 iff
o =60 and if @ is the result of normalizing 8, then 6’ =g, 6.

Convention: In general, substitutions are assumed to be normalized in
the rest of this chapter, allowing us to factor out n-equivalence in com-
paring substitutions, so that we may, e.g., use <g instead of <g,. In
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fact, the composition of two normalized substitutions could be considered
to be a normalized substitution as well, so that o <p @ iff o < 0, but
this need not be assumed in what follows. For example, the composition
[Az.G(a)/F] o [Ay.y/G] is defined as [Az. ((Ay.y)a)/F, Ay y/G], not as
[Az.a/F, My. y/G]. We shall continue to use =p and <z to compare nor-
malized substitutions, although strictly speaking the subscript could be
omitted if no composition is involved.

Definition 7.1.24 A substitution o is idempotent if o0 o o =gy 0.
A sufficient condition for idempotency is given by3
Lemma 7.1.25 A substitution o is idempotent if I(c) N D(o) = 0.

That in most contexts we may restrict our attention to idempotent sub-
stitutions without loss of generality is demonstrated by our next result,
which shows that any substitution is equivalent (over an arbitrarily chosen
set of variables) up to renaming to an idempotent substitution.

Lemma 7.1.26 For any substitution ¢ and set of variables W containing
D(a), there exists an idempotent substitution ¢’ such that D(o) = D(d"),
o <py o', and o' <, o[W].

Proof. Let D(o) N I(¢) = {z1,...,z,}, let {yi, ... yUn} be a set of
new variables not occurring in W, p; = [y;/zy, ... yUn/2n], and py =
[z1/y1, ... ,zn/ys]. Now let o' = o o p1, where clearly o <g, ¢’ and
D(o) = D(0') as required. Since p; o ps =gy I1d[W U I(0)], then o =g,
0 0p10pa =gy 0’ 0py[W], and thus o’ <g, o[W]. Finally, by our previous
lemma, o' must be idempotent, since D(¢’) = D(o) is disjoint from
I(O'/)Z(I((T)—{:L‘l,...,.’L’n})U{yl,,,.,yn}. a

In general the assumption of idempotency simplifies matters. We shall
provide specific motivations for the use of idempotent unifiers in the ap-
propriate sections.

The net effect of these definitions, conventions, and results is that we
can develop our method for unification of terms in the Bn-calculus wholly

within £, leaving 7-equivalence implicit in the form of the terms under
consideration.

3 In the first-order case, this condition is necessary as well, but in our more general
situation we have counter-examples such as ¢ = [Az. F(a)/F].
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7.2 Higher Order Unification via Transformations

Higher-order unification is more complex than first-order unification due to
the presence of variables of functional type, the notion of scope and bound
variables, and the fact that unification is defined in terms of 8n-equivalence.
This additional syntactic complexity has several serious consequences. First
of all, the unification of terms of second-order and higher is undecidable
in general [58]. Next, most general unifiers do not exist in general, and
we must again consider complete sets of unifiers. Finally, due to the com-
plexity of the subproblem of unifying two flexible terms, the search space
for a complete unification procedure may be infinitely branching, which
forbids any reasonable implementation. (Note that the first two of these
consequences are shared by E-unification, but the third is not, as shown in
Chapter §6.)

Our analysis of the problem proceeds by examining the exact fashion in
which substitution and S-reduction makes two terms identical from the top-
down (i.e., from the head to the innermost subterms). We develop from this
a set of non-deterministic transformations extending those of the previous
section, and prove their non-deterministic completeness in an analogous
fashion. In Section §7.3, this is restricted to the problem of preunification.

Definition 7.2.1 The notion of pairs and systems of equations carries
over from the first-order case. A substitution 6 is a unifier of two lambda
terms e; and e, iff 0(61)4;>pn 0(e2).* A substitution is a unifier of a
system S if it unifies each pair in S. The set of all unifiers of S is denoted
U(S) and if S consists of a single pair s,t then it is denoted U(s, ).

This definition is more general than we shall need, in fact, since we
shall develop our approach in £, in order to factor out 7-conversion, as
was formally justified in Section §7.1. Thus for two terms s,t € L, , we
say that a normalized substitution @ is in U(s,t) iff 8(s)——p6(t), or,
alternately, if 6(s)|= 6(t)| .

A pair of terms is solved in a system S if it is in the form n[z],t, for
some variable z which occurs only once in S; a system is solved if each of its
pairs is solved. Our only departure from the use of 7-expanded form is th'a.t
we shall represent pairs of the form 75[z],t as z,¢ in order to emphasize
their correspondence to bindings ¢/z in substitutions, as in the first-order
case of the previous section.

4 This is in the #7n-calculus; in the S-calculus the condition would be 6(e; );5 6(e2).
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Example 7.2.2 If u = f(a,9(Az.G(Ay. 2(b)))) and v = F(Az. 2(2)),
then 0 = [/\:cg.f(a,g(zz))/F,/\:c;;.:L'3(22)/G,b/z] is in U(u,v), since
0(u) 1= (v, :

0(v) = f(a,9(Az. [(Azs. 23(22))(Ay- 2(3))]))
—p fla,9(Az. [(Ay. 2(b))z2]))
—p fla,9(Az.2(b)))
“—p (Az2. f(a,9(22)))(Az. 2(b)) = 6(v).

The basic decidability results concerning higher-order unification are as
follows.

Definition 7.2.3 For a given set of function constants 3, the untfication
problem for the language £ generated by X is to decide, for any arbitrary
terms e,e’ € L, whether the set Ul(e,€’) is non-empty. The n**-order
unification problem is to decide the unification problem for an arbitrary
language of order n.

For example, in Section §3.3 we showed that the first-order unification
problem is decidable. Unfortunately, this does not hold for higher-orders.

Theorem 7.2.4 The second-order unification problem is undecidable.

This result was shown by Goldfarb [58) using a reduction from Hilbert’s
Tenth Problem; previously, Huet [70] showed the undecidability of the
third-order unification problem, using a reduction from the Post Corre-
spondence Problem. These results show that there are second-order (and
therefore arbitrarily higher-order) languages where unification is undecid-
able; but in fact there exist particular languages of arbitrarily high-order
which have a decidable unification problem. Interestingly, Goldfarb’s proof
requires that the language to which the reduction is made contain at least
one 2-place function constant. It has been shown in [45] that the unifica-
tion problem for second-order monadic languages (i.e., no function constant
has more than one argument place) is decidable, which has applications in
certain decision problems concerning the lengths of proofs. A different ap-
proach to decidability is taken in [159], where decidable cases of the unifica-
tion problem are found by showing that the search tree for some problems,
although infinite, is regular, and that the set of unifiers can be represented
by a regular expression. More generally, it has been shown by Statman

[153] that the set of all decidable unification problems is polynomial-time
decidable.

7.2 HiGHER ORDER UNIFICATION VIA TRANSFORMATIONS 135

Besides the undecidability of higher-order unification, another problem
is that—as with E-unification—mgu’s may no longer exist, a result first
shown by [59]. For example, the two terms F'(a) and a have the uni-
fiers [Az.a/F] and [Az.z/F), but there is no unifier more general than
both of these. This leads us to extend the notion of a mgu(S)[W] to the
higher-order case by considering complete sets of unifiers (c¢f. Definition
4.1.6). Our definition is a generalization of the one found in [72] to equa-

tion systems.®

Definition 7.2.5 Given a system S and a finite set W of ‘protected’
variables, a set U of normalized substitutions is a complete sel of unifiers
for S away from W (which we shall abbreviate by CSU(S)[W]) iff

(i) Foralle € U, D(o) C FV(S) and I(c) N(WUD(c)) =0;

(i) UCU();

(iif) For every f € U(S), there exists some o € U such that o <g

6[FV(S)].

The first condition is called the purity condition, the second the coherence
condition, and the last the completeness condition. If S consists of a single
pair u,v then we use the abbreviation CSU(u,v)[W]. When W is not
significant, we drop the notation [W].

That there is no loss of generality in considering only normalized sub-
stitutions may be seen by the fact that any substitution is #7-equal to a
normalized substitution. By providing a version of Lemma 3.3.11 for this
new context, we see that condition (i) is without loss of generality as well.

Lemma 7.2.6 For any system S, substitution @, and set of protected
variables W, if § € U(S) then there exists some normalized substitution
o such that

(1) D(ec) C FV(S) and I(e)N(WUD(c)) =0;

(i) o € U(S);

(iii) o <gy 8[FV(S)] and 6 <g, o[FV(S)].
Proof. If o = 0|pv(s) satisfies condition (i), then we have our result
trivially. Otherwise, if I(0) = {z1, ... ,z,} thenlet {y1, ...,yn} be aset
of new variables disjoint from the variables in W, I(f), and FV(S) s'uch
that 7(z;) = 7(y;) for 1 < i < n. Now define the renaming substitutl(l)ns
pr = [nln)/z1, .. 1lunl/zn] and po = [aler]/ur, ... 1lzal/3n) let o =

5 The caveat given in footnote 1 of Chapter §4 applies here a}so, mutandis mutatis.
Note that our definition is based on our use of Ly; in the version for the ﬂn-calc?lu;y
condition (iii) would use <g,, , and substitutions would not have to b‘e normalized.
The original Huet definition of a complete set may also be found in [43] in the context
of E-unification.
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8 o p1|lFv(s), and then let o be the normalized version of o¢’. Clearly o
satisfies (1), and since o =g, 6 o p; [FV(S)] we have the second part of
(iii). Now, because p; o p, =gy Id[FV(S) U I(6)], we must have @ =pp
op10p2[FV(S)UI(0)]. But then by the fact that o =g 0op1 [FV(S)] we
have 6 =4, 0 0 p,[FV(S)], and so o <pn 0[FV(S)], proving the first part
of (iii). To show (ii), observe that for any u,v €5 we have 0(u)|= 0(v)],
and for any term ¢, we have o' (t)—p, o(t), and so

o(u)—py o'(v) = p1(8(u)) =3, p1(6(w)])
= p1(0(v)1)—py p1(8(v))

= 0'(v)py o (v),
which shows that ¢ € U(S). O

This shows us that for any S and W, the set of all normalized unifiers
satisfying condition (i) and (ii) of Definition 7.2.5 is a CSU(S)[W], and so
in particular there is no loss of generality in considering only normalized,
idempotent unifiers  such that D(0)NI(9) = 0 in what follows. This will
simplify our presentation.

Finally, we examine the relevance of solved form systems in L,.

Lemma 7.2.7 If S = {zy,¢1, ... +Zn,tn} is a system in solved form,
then {os} is a CSU(S)[W] for any W such that W N FV(S)=0.

Proof. The first two conditions in Definition 7.2.5 are satisfied, since og
is an idempotent mgu of S, W N FV(S) = 0, and I(os) C FV(S). Now,
if 0 € U(S), then 0 =5 o5 0 0, since (i) ——p 0(t;) = 0(os(z;)) for
1 <4< n, and 0(z) = 0(os(z)) otherwise. Thus os <g 6 and so
obviously o5 <g 6[FV(S)]. O

7.2.1 Transformations for Higher Order Unification

We may analyze the process of higher-order unification as follows. Let us
assume, without loss of generality, that u and v are two lambda terms in
Lezp and that 4 is an idempotent, normalized unifier of u and v. Thus
there exists some sequence of reductions to a pB-normal form:

0(u) g5 w—p 6(v).
(Note that if all the terms instantiated by the substitution are first-order,

then this sequence is trivial, since there are no f-reductions.) We may
analyse this sequence top-down, examining the way in which each binding in
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the substitution (with its subsequent S-reduction, if the binding is higher-
order) makes the two terms identical at each level of the terms. We have
the following five cases (which are not intended to be mutually exclusive).

(A) v = v and no unification is necessary. (Assume u # v in the
remaining cases.)

(B) No substitution takes place at the head in either term. In this case,
Head(u) = Head(v) and, since u # v, we must have |u],|v] > 0. Thus,
suppose u = AZT.a(lUn), w = ATx.a(Wy), and v = AZTf.a(?,), where
n > 0 and either @ € X, or a = z; for some i, 1 < i< k, or a is a free
variable not in D(#). In this case we must have

H(Aﬂ u;) —*—>p ATE. w; ;ﬁ 0(/\x—k. v,')

for 1 <7< n, that is, the subterms of u and v are pair-wise unifiable by
6.

(C) Our two terms are u = Azf. F(Tf) and v = AFf. v/, for some
variable F' and some term v’, and where F ¢ FV(v). In this case, we must

have
0(\TE. F(Tx))——p 0(ATF. V'),

where F' ¢ FV(v), and, if § = [M\7z.t/F]U ¢, then since 6(F) —p
0(ATx. F(T%)),® we have §(F)——56(\Z%.v"), where F' does not occur in
v’, so that we may use the same argument we used in the first-order case.
If we let 0 = [AT%.v'/F] then 8 =5 000, since # and oo differ only at
F, but

O(F)e=sp 0(XT5. V') = 0 0 O(F).

This in fact shows that a pair of terms in this form has a single mgu. (For
example, Az. F(z) and Az. f(z,z) are unified by 6 = [Ay. f(y,a)/F,a/z],
but ¢ = [Ay. f(y,2)/F] is an mgu.) It should be obvious that this is
a generalization of variable elimination to higher-order, since u is (up to
n-equivalence) simply a variable not occurring in FV(v).

(D) Some substitution takes place at the head of only one term; as-
sume that this term is u (so that Head(w) = Head(v)). Then let u =
ATy. F(u,) and v = A%%.a(vy,) for some atom a # F which is either a
function constant, a bound variable, or a free variable not in D(6). Now
in order for the two terms to unify, we must make the head of u become a
at some point in the sequence of G-reductions from 6(u) to w. There are
two possibilities: either we imitate the head of v by substituting a term
for F' whose head is a, or we substitute a term for F' which projects up a

6 Note that the S-reduction simply replaces the bound variables w1, ...,y with
Z1, ... ,Tk, a useless operation in view of our assumption of a-equivalence.
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subterm of u. (The latter case is only possible if F is of higher-order type.)
We consider each of these in turn.

(Imitation) The substitution for F' matches the head symbol of v by
imitating the head symbol a, where a € £ or a is a free variable not in
D(8), as we saw in Example 7.2.2.7 Thus we have 0(F) = Xz;. a(77;) for
some terms T, and we have a reduction sequence of the form

0(u) = 000Tx. (377 a(Tm))0R)) —p 0(ATx. a(r],)) 5 0(ATF. a(T7y)),

where ri = rifui/z1, ... ,un/za] for 1 < i < m. (Notice that by the
idempotency of 6, for illustration we can partially instantiate the term u
with just the binding for the head F in this sequence.)

(Projection) The substitution for F attempts to match the head sym-
bol a of v by projecting up a subterm of u. There are three ways to do
this, depending upon the head symbol of the term projected up. First of
all, perhaps a subterm of u has a head a which provides the match; for
example, F(Az.f(z,a)) and f(b,a) will be unified by the substitution
[Ay.y(b)/F] in this fashion (note that we had to provide an argument b
to the subterm Az. f(z,a) for the projection to work). The second rea-
son to project is that perhaps a subterm of u is flexible, allowing us to
start all over again in attempting to match the head of this new term to
v. For example F(Az.G(z,a)) and b can be unified by the substitution
[Ay. y(b)/ F, Az122. 21 /G] , where the binding for F' works in this way. The
third motivation for projection is that perhaps the subterm is itself a pro-
Jection, and after some sequence of reductions, we have a term which is
either flexible (and so we continue), or whose head is a and the match
succeeds. For example, 6 = [Ay1.y1(Ay2. y2(a))/F] unifies the two terms
u = F(Az1.z1(Azs. f(22))) and v = f(a) in this manner:

0(w) = [y1- y1(Ay2. y2(a))] Azy. 21 (Az2. f(22))
—p [Az1.21(Az2. f(22))] Ay2. y2(a)
—5 (Ay2.92(a)) Aza. f(22) |
—5 (Az2. f(z2))a
—p f(a) = 6(f(a)).
When we substitute a projection for the head of a flexible term v —

AZy. F(Uy), we are restricted by the type of F to projecting up a subterm
u; which will preserve the type of u. In particular, since we can only

7 Note that it is impossible to imitate a bound variable, since the rules of the calculus
disallow free variable capture.
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substitute a term of the same type as F, and since unification is only
defined between terms of the same type, if 7(u) = 7(v) = a1, ... ,ar — B,
then 7(u;) must be some type 1, ...,%m — B in order that the result
of the projection preserves the type of u. Thus the type of the matrix of
u; must be the same as the matrix of u, and the substitution must provide
arguments for each of the variables in the lambda binder of u;. Thus if
0(F) = Xz;. zi(Tpr) for some i, 1 < i < n, then u; must be in the form
u; = AYmr. u; where the type of the matrix u} is the same as the type of
the matrices of u and v. In this case, the head a of u can be a function
constant, a free variable, or a bound variable (i.e., one of the z;), and thus
we have a reduction sequence of the form

0(u) = 0XTE. [(AZn. 2:(For)))Tn]) —5 0(NTE. (AT u)r)])

—5 00Z5. d' (T)) =4 005 a(Tm)),

where v} = ri{ui/z1, ... ,up/z,] for 1 <i<m/,
325 d/(5) = (AZE. [ uf)r, )L,

and either o’ = a or d’ is a free variable in D(6).

(E) Substitutions take place at the heads of both terms. Then let u =
AZTr. F (@) and v = AF. G(V,;), where both F and G are in D(6). Here
we must eventually match the heads of the two terms, but we can do it in
a large number of ways. In order to simplify our analysis, we attempt to
reduce it to the previous case if we can. Let us (without loss of generality)
focus on the binding made for the variable F'. There are two subcases.

(i) 0 substitutes a non-projection term for F, e.g., 8(F) = Az;.a(35;),
where a # G is not a bound variable (and by idempotency is not
a variable in D(#)), and then (possibly) causes a S-reduction, after
which we can analyse the result using case (D).

(ii) @ substitutes a projection term for F (which obeys the typing con-
straints discussed above), e.g., 8(F) = Az,. z;(%,), and then, after we
reduce to normal form, if the head symbol is either a function con-
stant, a bound variable, or a variable not in D(#), we may analyse
the result using case (D); if the head is a variable in D(f), then we
(recursively) apply case (E) to these new terms.

By recursively applying this analysis to the subproblems generated we may
account for every binding made by ¢ and every S-reduction in the original
sequence. This forms the basis for the set of transformation rules below,
which find unifiers by ‘incrementally’ building up bindings using partial
bindings, as informally shown in the introduction. In case (D) above, this
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means that there will only be a finite number of choices for a partial bind-
ing, since there is only one possible imitation and only a finite number of
possible projections. In case (E), unfortunately, this is not true. As shown
in [72], the problem is that two flexible terms may not possess a finite CSU,
and in fact there may be an infinite number of independent unifiers which
contain flexible terms as bindings, so that even if we only attempt to find
the top function symbol of the binding, there are potentially an infinite
number of choices, since for each type there is always an infinite number of
function variables. Thus, even if there is only a finite number of function
constants in the language, it is not possible to reduce the non-determinism
of this case in general to a finite number of choices of partial bindings, and
so the search tree must be infinitely branching.®

Given a system S of terms from L.,, and some normalized 6 € U(S),
a complete unification procedure must always be able to find some substi-
tution o such that o € U(S) and o <g 8[FV(S)]. Recall from the in-
troduction that the basic idea of the transformation method is that, given
some 6 € U(S), we attempt to find ‘pieces’ of # by finding solved pairs
z,t such that (z)« 4 6(t); in this case, we know by an argument similar
to that used in Lemma 7.2.7 that § =g [t/z] 0 0, and by finding enough
such pairs, we eventually have a o =3 [t1/z1]0...0[tn/z,], where o is
a unifier of S more general than (or equivalent to) 6. In other words,
we may successively approximate  until we have built up just enough of
the substitution to unify the system. We do this by ‘solving’ variables (as
in case (C) above) or using approximations to individual bindings, as in
Huet’s method and in [54], which we call partial bindings.

Definition 7.2.8 A partial binding of type a1, ... ,a, — B is a term of
the form

Xn-a(Az)  Hy(Tm,2L), ... N2 Ho(Tm, 20)

for some atom a, where
(1) 7(gi) =i for 1 <i<m,

2) (@) =71, ---,Tm — B, where 1, = ¢, ..., ¢t — ) for 1 <i<
1 pi i
m7
(8) 7(z}) = ¢} for 1<i<mand 1< <pj
4) T(Hi) =, ... an, 9, oo, pp, — 7 for 1<i<m.

The immediate subterms of a partial binding (i.e., the arguments to the
atom a) will be called general flexible terms.

Note that these partial bindings are uniquely determined (up to renam-
ing of the free variables) by their type and by their head symbol a.

8 See Section §7.3, where we discuss Huet’s solution to this problem.
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Definition 7.2.9 For a partial binding as in the previous definition, if
a is either a function constant or a free variable, then such a binding is
called an imitation binding for a; if a is a bound variable y; for some i,
1 < i< n,then it is called an it? projection binding. A variant of a partial
binding ¢ is a term p(t)| , where p is a renaming of the set Hy, ..., Hp
of free variables at the heads of the general flexible terms in ¢t away from
all variables in the context in which ¢ will be used. For any variable F, a
partial binding ¢ is appropriate to F if 7(t) = 7(F). An imitation binding
is appropriate to XTy. F(uy) iff it is appropriate to F.

In the case of an i'* projection binding ¢ for some ¢, 1 < i < n, ap-
propriate to a term AF;. F(4,) of type an, ... ,a; — B3, the reader may
check that 7(u;) = @1, ..., — B for some types @1, ...,p,, so that
the result of substituting the binding and S-reducing will preserve the type
of the term.

For notational brevity we shall extend our vector style notation to rep-
resent partial bindings in the form

)\y_n a(/\f,T: H, (%a EP_m)) .

Following our analysis of higher-order unification given above, we have
the following set of transformations.

Definition 7.2.10 (The set of transformations H7 .) Let S be a system
of lambda-terms (possibly empty). We have the following transformations.
(1) Trivial:

{u,u}uS =S5

(2) Term Decomposition: For any arbitrary atom a,

{Dzx.a(@), Azr. (@)} uS = | {AZ5.wi, AER.ui} US.
1<i<n

(3) Variable Elimination: If u = AZ%. F(Z%) and v = AZg. v, for some
k, some variable F, and some term v', where F' ¢ FV(v), then

{u,2}US = {F,AZ%.v'}Ua(9)],

where o = [AT¢.v'/F].

These three transformations are analogous to the set S7. To provide
for function variables, we need one more transformation, which is divided
into three cases.
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(4a) Imitation:
{AZE. F(@), AZx. a(fm)}US = {F, t, X7%. F (@), A%5. a(%m)} U S,

where a is either a function constant or a free variable not equal to F and
where ¢ is a variant of an imitation binding for a appropriate to F, e.g.,
U= AUn.a(A%, . Hn(n, %0))-

(4b) Projection:

{AZe. F (W), ATx. a(Tm)}US => {F, , AZF. F (W), \%F. a(3m)} U S,

where a is some arbitrary atom (possibly bound) and # is a variant of an
i*h projection binding for some i, 1 < i < n, appropriate to the term
AT, F(uy), that is, t = Ay, ¥i(A%p,. Hy(Yn,7Z,,)), such that if Head(u;)
is a function constant, then Head(u;) = a.

(4c) Flex-Flex:

{A%e. F (@), ATk. G(Om)}US = {F, t, A%%. (), A%5. G(Tm)} U S,

where t = AYn. a()Z,,,. Hm(Yn,%..)) is a variant of some arbitrary partial
binding appropriate to the term AZy. F(%;) such that a # F and a #G.

As a part of the transformations (4a)-(4c), we immediately apply Vari-
able Elimination to the new pair F.t, which effectively amounts to just
applying the substitution [t/F] to the rest of the system. As in the other
sets of transformations presented in this monograph, note that the unions
above are multiset unions.

We shall say that Unify(S) = 6 iff there exists a series of transformations
S == S,, with S, in solved form, and 4 = os.|rv(sy-

Example 7.2.11 For example, the following series of transformations
leads to a system in solved form.®

F(f(a)), f(F(a))

=imic F, Az (Y (2)), QE{0HERIE p(Qufhizie)
=dec I, Az. f(Y(2)), Y(f(a))), f(Y (a))

=proj Fy Az f(RE2E) v, dg o, Quol(@) p(Qz2)a

=uiv Az, f(2), Y, Az. 2

Hence, [Az. f(z)/F] is a unifier of the original two terms.

® In order to show the effect of the B-reductions which follow the application of substi-
tutions in (3), we often explicitly represent these reductions using an ‘inference’ style

notation, e.g., we represent the effect of the substitution 8 on the term e as %5%,

to illustrate both the effect of the substitution and the subsequent #-normal form.
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7.2.2 Soundness of the Transformations

The following lemmas will enable us to prove the soundness of this set of
transformations.

Lemma 7.2.12 If S = §’ using Trivial or Variable Elimination, then
UusS)=U(s").

Proof. As in the first-order case, the only difficulty is in Variable Elim-
ination. We must show that U({z,v} US) = U({z,v} Uo(S)]) where
o = [v/z] and « & FV(v). For any substitution 6, if 8(z)——p 6(v), then
9 = 000, since oo differs from 6 only at z, but 8(z)——460(v) =
o o 6(z). But then, using Lemma 7.1.21, it is easy to see that 6 €
U(S) iff 008 € U(S). Furthermore, since for any term u we must have
o 00(u) = 0(a(u))——p 0(c(u)]), it can easily be shown that o8 € U(S)
iff 8 € U(o(S)|). Thus,

6 cU({z,v}US)
iff 8(z)——p0(v) and 0 € U(S)
iff 0(z)—40(v) and o o8 € U(S)
iff 0(z)——30(v) and 8 € U(o(S)])

iff 0 €U({z,v}Ua(S)l). -

This lemma shows that the invariant properties of a problem are pre-
served under these two transformations, as they were in the first-order
case.

Lemma 7.2.13 Suppose that § =—>gec S’ where the pair in S trans-
formed is AZ,. a(uy), AT,. a(7,). For any substitution 4,
(i) if a is either a constant or a bound variable or a free variable not in
D(8), then § € U(S) iff 6 € U(S');
(i) if a € D(8) then # € U(S’) implies that 8 € U(S).
Proof. If 8(\Tt.u;)e—p 0(NTr.v;) for 1 < i < n, then clearly we must
have

0(Tx. a(Tn)) =ATx. 0(a)(B(u1), - .. ,0(us))——p
AT. 0(a)(B(v1), ... ,0(vn)) = 0(XT%. a(vy)),

and so for any atom a we have § € U(S) whenever 6 € U(S'). If ais
either a function constant, a bound variable, or a variable not in D(§),
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then f(a) = a and it is easy to see that the reverse direction holds as well.

O

Lemma 7.2.14 If § — ¢ using Term Decomposition, Imitation,
Projection, or Flex-Flex then U(S’) CU(S).

Proof. For Term Decomposition the result is a consequence of our previous
lemma. The remaining transformations are two parts, first adding a pair
F,t to the system S, and then applying Variable Elimination to this new
pair. Clearly, since S C {F,t} US we must have U({F,t}uS) C U(S).
That the subsequent application of Variable Elimination to the new pair is
sound has been shown by Lemma 7.2.12. [J

Since in the last three transformations we effectively commit ourselves
to a particular approximation of a solution, it is hardly surprising that
the inclusion U(S’) C U(S) is in general proper. Similarly, in the case of
Term Decomposition, decomposing flexible pairs may eliminate unifiers; for
example F(a,b), F(c,d) has an infinite number of unifiers, but the system
a,c,b,d has none. These results show us that in higher-order unification,
the set of solutions is invariant only under Trivial, Variable Elimination,
and under Term Decomposition in the case of two rigid terms.

Finally, using these lemmas we have

Theorem 7.2.15 (Soundness) If S == S, with S in solved form, then
the substitution os:|py(sy € U(S).

Proof. By a simple induction on the length of transformation sequences,
and using the previous lemmas in the induction step, we may show that
os: € U(S). But since the restriction has no effect as regards the effect of
the substitution on the terms in S, we see that os'|lrvisy €U(S). O

7.2.3 Completeness of the Transformations

The completeness of our set of transformations will be proved in a manner
analogous to that used for the proof of completeness of the set ST, except
that now the transformation relation is not terminating in general, so we
shall prove only the non-deterministic completeness of the set, i.e., we
show that for any system S, if 8 € U(S), then there exists some sequence
of transformations which finds a unifier o such that o <g 6[FV(9)).

First we show the exact sense in which partial bindings can be considered
to be approximations to bindings in substitutions.

Lemma 7.2.16 If s = \7;,. a(35;) is any term, then there exists a variant
of a partial binding ¢ and a substitution 7 such that n(t)—zs.
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Proof. If m =0, i.e. s = AZ}.a, then the result is trivial by taking t = s
and n = Id. Otherwise, assume m > 0, and let

t =A% a(A%p,, . Hn(T0, %,,))

and 7 = [AZ;.s1/Hy, ..., Z,. 8 /Hp). Then by the type of the head
a, the i** subterm s; must be in the form Azp,. si, so that

n(\%r. Hi(T0,5,)) — s s,
for each 7, 1 <i < m. Thus n(t)——ss. O

Lemma 7.2.17 If 0 = [s/F]U# then there exists a variant of a partial
binding ¢ appropriate to F and a substitution 7 such that

0 = [s/Flunu¢'[D(0))
=5 [t/FlonUd'[D(9)].

Furthermore, if D(6) N I(6) = 0, then 6" = [s/F]Un U@ is a unifier of
the pair F,t and D(8”")N1(0") = 0.

Proof. Given the term s, let ¢ and 5 be as in the previous lemma. Since ¢
is a variant, D(n) N D(6) = 0, and since furthermore 7(t)——4 s, we have
[s/F] = [s/Flun =g [t/F]on[D(8)], from which the first part follows.
If D(@)NI(#) =0 (so that @ is idempotent), then since ¢ is a variant,
D(n) N I(6) = B, so that D(0”) N I(6") =0 (and 6”(s) = s) and finally,
0"(F) = g nt) = 0"(t). OO |

Note that if D(f) N I(9) # 0 in this lemma, then potentially # has a
binding for the head of s and ¢, and so possibly 6”(¢) # n(t). Also, notice
that [s/F]Un and [t/F]on are only B-equal (over D(8)) because we do not
assume that the implicit S-reductions are performed when substitutions
are composed. These lemmas show the motivation for the term ‘partial
binding’ and provide the formal justification for the assertion that partial
bindings can be used to build up substitutions incrementally.

Next we define a set of transformations on pairs 6,5 which shows how
the structure of a substitution 6 can determine an appropriate sequence of
transformations. For simplicity here we shall refer to the transformations
in H7T by number instead of name.

Definition 7.2.18 (The set C7) Let 6 be a normalized substitution and
S be an arbitrary system. The first three transformations are essentially

from the set HT:
0,S =i 0,5
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for 1<i<3 iff § =>; S in the set HT, with the restriction that (2)
is only applied to a pair u,v if the top function symbol in u and v is not
a free variable in D(6). Also, we have

[s/FlU8,{AT%. F(uy), ATk. v} US =>4
[s/Flunub,{F,t, \Tx. F(¥;), AZ¢. v} U S,

where F is not solved in the system on the left side, s is some term
AYn - a(5m),

t = X7 o(V, (G 7))

is a partial binding appropriate to F with the same (up to a-conversion)
head as s, and

n = [/\y_ﬂ.sl/Hl, ,/\ﬁ.sm/Hm].

(Note that perhaps m = 0 in which case 7 is omitted.) Transformation (3)
is immediately applied as a part of (4), as in the set H7. Again, notice
that [s/Flunué =5 [t/FlonUéd.

Example 7.2.19 Let 0 = [Az. f(z)/F] and S = {F(f(a)), f(F(a))}.

We have the following sequence of C7T-transformations.

Az. f(2)/FL,{F(f(a)), f(F(a)}}

=>4 2. f(2)/F, Az 2/ Y], {F, Az f(Y (2)), LR p(QrfCH)ey)

=2 [Az. f(z)/ F, Az. 2/ Y),{F, Az. f(Y(z)), Y(f(a))), F(Y(a))}
=>4 DAz f(2)/F, . 2/ Y], (F, Do, f(QZ22), ¥, dg. g, Qo)) g(O:n)ay)
=> [Az. f(z)/F, Az.2 /Y], {F, Az. f(z), Y, Az. z}

The next lemma shows us how these transformations are useful for prov-
ing completeness.

Lemma 7.2.20 If § € U(S) for some system S not in solved form, and W
is a set of variables, then there exists some transformation 4, — ¢, 5’
such that

(i) o=0[W)

(ii) If D(B)NI(6) =0 then ¢ € U(S’) and D(6')NI(8') = 0; and

(ili) S = S’ with respect to the set HT.
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Proof. Since S is not in solved form, there must exist some pair u, v which
is not solved in S. We have three cases: (A) If u = v then we may
apply (1) or (2); (B) if Head(u) = Head(v) ¢ D(#), then we can apply
(2); otherwise, (C) we have u # v and either Head(u) # Head(v) or
Head(u) = Head(v) € D(6). In case (C), either u or v has an unsolved
variable from D(8) at its head; without loss of generality, assume that u
has. Thus, we have u = AZx. F(%;) and v = AZ;.v' with F € D(6)
and F not solved in S and (4) must apply, and in the special case that
u——, F and F ¢ FV(v), we can alternately apply (3). Although there
may not be a unique choice about which transformation to apply, at least
one must apply, and thus we have some transformation 8,5 —>; #,5'.
In the case that 1 < ¢ < 3, (i) holds because 6’ = @, by our soundness
lemmas of the previous section we have (ii), and (iii) holds by the definition
of the set CT. If i = 4 then by our previous corollary we have extended
8 = [s/F]U ¢ to a substitution ¢’ = [s/F]UnU ¢ =g [t/F]onU ¢ where
we can assume that D(n) W = ( (showing (i)), and we have added a pair
F,t to 8 to form S’. From the definition of CT and the previous lemma
it is clear that we have D(¢')NI(¢") =0 and 0'(F) = se—gn(t) = 0'(t),
so that 8 € U(S'), showing (ii). Finally, since S is unifiable it is not hard
to see that the conditions imposed on (4) in CT are consistent with (4)
in HT. If Head(v) is not a variable in D(#), then we have two cases: if
Head(s) = Head(v), then S =>4, S’ (i.e., this is an imitation case);
otherwise, s is a projection, and § =4 S'. If Head(v) € D(6) then
S —>4c S O

Corollary 7.2.21 If # € U(S) and no transformation applies to 6,5
then S is in solved form.

Finally, we may present our completeness proof.

Theorem 7.2.22 (Completeness of HT) For any system S, if § € U(S)
then there exists some sequence of transformations

S=5 = 5 = S = ... = Sn,

where S, is in solved form and a5, <g 0[FV(S)].

Proof. By Lemma 7.1.26 we may assume without loss of generality that
D(#) N I(8) = B (since if not we may find a substitution 6" = §[FV(S)]
fulfilling these conditions). We prove this result using the set C7, first
showing that every sequence of C7 transformations terminates. For any ¢
and S, define the complexity measure u(6,S) =< M,n >, where n is the
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sum of the sizes (i.e., the number of subterms) of all terms in S, and M
1s a multiset of integers corresponding to the sizes of the bindings in 6 for
variables which are not solved in S:

M = {|6(z)|| = € D(8) — Sol(S)},

where Sol(S) is the set of all variables solved in S. The lexicographic
ordering on pairs which uses the standard multiset ordering for the first
component and < on the natural numbers for the second is well-founded
and any C7-transformation produces a pair strictly smaller under the or-
dering: (1) and (2) reduce n without affecting M, (3) reduces M by re-
moving a variable from D(0) — Sol(S), and (4) reduces M by removing a
variable from D(#) — Sol(S) and replacing it with some number of new,
unsolved variables whose bindings in ¢ are all smaller than the binding
removed (since they are proper subterms of it). Hence every sequence of
CT-transformations is finite.

Thus there must exist a sequence of transformations

9,5200,50 = 6,5 = ... = By Sm
such that no transformation applies, and by induction on m using the
previous lemma, with FV(S) for the set W, we have 8 = 0n[FV(S)],
0m € U(Sin), and there is a corresponding sequence of %7 -transformations
S:SO = S] = ... = Sm

and by the corollary we know that S, is in solved form. Finally, by Lemma
7.2.7 we have o5, <p b, =0[FV(S)]. O

The reader should note that this proof is essentially similar to that of
Theorem 3.3.9. Finally, combining our soundness and completeness re-
sults, we have that this method is capable of non-deterministically finding
a unifier of S more general than any given unifier. More formally, we may
characterize the set of substitutions non-deterministically found by the set
of transformations H7 as follows.

Theorem 7.2.23 For any system S, the set
{os/lPv(s) | S == S, and S is in solved form}

is a CSU(S). By application of the appropriate renaming substitution
away from W, this set is a CSU(S)[W] for any W.

R
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Proof. We must simply verify the conditions in Definition 7.2.5. Coher-
ence was shown in Theorem 7.2.15 and our previous result demonstrated
completeness. By restricting the idempotent substitution og: to FV(S) we
satisfy purity for W empty. If W is not empty, we may suitably rename the
variables introduced by each of the substitutions os: away from W, using
Lemma 7.2.6. 0O

The careful reader will note that we have made no assumptions about
the order in which transformations are performed, and so these results
apply in a very general way to the derivation of solved form systems from
initial systems of equations. In particular, we see that the strategy of
eager variable elimination, in which transformation Variable Elimination
is performed as soon as possible on any pair to which it applies, is complete
(in the case of general E-unification this problem is still open, as discussed
in section §6.7). The search space is thereby reduced, since we do not
need to build up such solved pairs one symbol at a time. In addition,
it shows how this set of transformations is a true generalization of the
transformations used for first-order unification.

7.3 Huet’s Procedure Revisited

The set of transformations given in the previous section were proved to
be complete for the problem of general higher-order unification, that is,
they can non-deterministically find any higher-order unifier of two arbi-
trary terms. Unfortunately, as remarked above, the ‘don’t know’ non-
determinism of this set causes severe implementation problems in the case
of two flexible terms (case (E) in our analysis), and, as discussed above,
this ‘guessing’ of partial bindings in this case can not be avoided without
sacrificing completeness, and so the search tree of all transformation se-
quences may be infinitely branching at certain nodes, causing a disastrous
explosion in the size of the search space.

Huet’s well-known solution to this problem [71,72] was to redefine the
problem in such a way that such flexible-flexible pairs are considered to be
already solved; this partial solution of the general higher-order unification
problem turns out to be sufficient for refutation methods (see [69]), and this
is the method used in most current systems. We show here how to explain
this approach in terms of transformations on systems. The only changes
have to do with redefining the notion of a solved system and restricting the
set of transformations.
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Definition 7.3.1 A pair of terms z, ¢ is in presolved form in a system S
if it is in solved form in S (as above) or if it is a pair consisting of two
flexible terms. A system is in presolved form if each member is in presolved
form. For a set S in presolved form, define the associated substitution og
as the mgu os: of the set S’ of solved pairs of S.

Definition 7.3.2 Let 2 be the least congruence relation on £ containing
the set of pairs {(u,v)|u,v are both flexible terms } . A substitution 0 is
a preunifier of w and v if 6(u)|= 6(v)} .

The importance of pre-unifiers is shown by our next definition and
lemma.

Definition 7.3.3 For every ¢ = ay,...,a, — B € T, with n >0,
define a term -

€6 = Azy...25. 0,
where 7(z;) = a; for 1 <i<n and v € Vs is a new variable which will
never be used in any other term. Let ¢ be an (infinite) set of bindings

¢ = {&@/zlze V).

Finally, if S’ is a pre-solved system containing a set S” of flexible-flexible
pairs, then define the substitution

Cst = Clrv(sm.
As in [72], it is easy to show this next result.

Lemma 7.3.4 If S is a system in pre-solved form then the substitution
os U is a unifier of S.

This lemma asserts that pre-unifiers may always be extended to true
unifiers by finding trivial unifiers for the flexible-flexible terms in the pre-
solved system.

The set of transformations for finding preunifiers is a slightly restricted
version of the set of transformations M7 .

Definition 7.3.5 (The set of transformations PT) Let S be a system,
possibly empty. To the transformations Trivial and Variable Elimination
from HT we add three (restricted) transformations.

Transformation (2') is

{Dzx. (@), @ a@)} uS = ] (Mzr.w, Memw}Us,
1<i<n
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where @ €L or a = z; forsome j, 1 < j < k. For (4a) we have
{AZ%. F(@3), A%5.a(Tm)} U S = {F,t, AZ¢. F(4n), ATk a(vm)} U S,

where a € £ and t is a variant of an imitation binding for a appropriate
to F. Finally, we define (4'd) as

(3z%. F(@), AT5. a(@m)}US = {F, t, ATk. F(@n), ATk a(Tm)} U S,

where either a € £ or a = z; for some j, 1 < j <k, and ? is a variant of
an i** projection binding for some i, 1 < i < n, appropriate to the term
AT F ().

After each of (4'a) and (4'b), we apply Variable Elimination to the new
pair introduced. As in our previous definitions, recall that the unions are
multiset unions.

We shall say that Pre-Unify(S) = # iff there exists a series of transfor-
mations from PT

S=5 = 5 = ... = Sn:
with S, in pre-solved form, and 8 = o5, |Fv(s)-

In terms of Huet’s procedure (see the Appendix) the first two trans-
formations represent approximately the effect of Simplify, and (4’a) and
(4'b) represent the processes of imitation and projection respectively in
Match. Variable Elimination represents the effect of applying substitu-
tions in Simplify, but also more generally allows solving certain pairs im-
mediately, which was remarked upon by Huet (see [72], p. 3-57) but not
emphasized.’® Note that the transformations Trivial, (2'), and Variable
Elimination in P7 preserve the set of solutions invariant, as discussed in
Section §7.2.2.

We now present the major results concerning this formulation of higher-
order unification, following [72]. Their proofs are simple modifications of
our previous results, and are omitted.

Theorem 7.3.6 (Soundness) If S = &', with § in presolved form,
then the substitution os/|py(s) is a preunifier of S.

Theorem 7.3.7 (Completeness) If 8 is some preunifier of the system
S, then there exists a sequence of transformations S = S’, with S in
presolved form, such that

os|rvesy <p .

10 Jensen and Pietrzykowski [1 23] suggest a similar rule as a heuristic improvement.
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The search tree for this method consists of all the possible sequences
of systems created by transforming the original two terms. Leaves consist
of pre-solved systems or systems where no transformation can be applied.
These correspond to the S and F nodes in Huet’s algorithm; in fact, the
search trees generated are essentially the same as the matching trees defined
in [71], except that here an explicit representation of the matching substi-
tutions found so far is carried along in the system (see the Appendix). The
set of pre-unifiers potentially found by our procedure is the set of pre-solved
leaves in the search tree.

As in the case of general higher-order unification, the strategy of eager
variable elimination is complete, allowing a reduction in the size of the
search space, since we do not need to build up the terms using partial
bindings. This rule had been suggested as a heuristic in [72] and [129], but
not emphasized as an essential part of the method of building up substi-
tutions, as here. We note also as a minor point that in some cases it is
possible to apply variable elimination to a presolved system so that that
this binding is incorporated into the mgu of the final solved form system.
For example, the following initial system is presolved, but in fact has a
mgu [Az.G(a,z)/F):

Az. F(z),  z.G(a, z), F(b), G(a,b)
=3 F,Az.G(a, x)’iﬂcﬁ(%lﬂ’ G(a,b)
=1 F,Az.G(a, z).

We give a pseudo-code version of Huet’s method for the typed An-
calculus in Appendix Two as an example of the way in which these trans-
formations can be used to design more practical procedures.

7.4 Conclusion

We have presented in this chapter a reexamination of the problem of general
higher-order unification, using the abstract approach of transformations on
systems of equations. As in the case of E-unification, this kind of analy-
sis provides the right level of abstraction by revealing the logical issues
in their purest form. We claim that this approach is more perspicuous
than those previously advanced, permits more direct soundness and com-
pleteness proofs, and unifies and justifies the various approaches taken to
unification problems. This abstract characterization of the process of uni-
fication in various settings clarifies the basic similarities and differences of
the problems by removing the notion of control and showing exactly where
non-determinism arises and where it may be eliminated. The three sets of
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transformations ST, P7T, and HT thus represent an (inclusion) hierarchy
of abstract methods for unification. One new result that came out of this
is that variable elimination can be extended from first-order unification to
both general higher-order unification and to pre-unification; in particular,
the strategy of eager variable elimination is still complete.



CHAPTER 38

CONCLUSION

In this monograph we studied general E-unification and higher-order uni-
fication using the method of non-deterministic transformations on systems
of equations originated by Herbrand and developed in the case of standard
first-order unification by Martelli and Montanari. This formalism provides
an abstract and mathematically elegant means of analysing the properties
of these more complex types of unification problems by providing a clean
separation of the logical issues from the specification of procedural infor-
mation. In each case, we extended the basic set of transformations ST
for standard unification by analysing the precise manner in which terms
are defined to be ‘the same’ in these two generalizations of unification,
Le., modulo the least congruence induced by the set of equations for E-
unification, and modulo the conversion rules of the typed lambda calculus
for higher-order unification.

In the case of E-unification, we extended the basic set of transforma-
tions ST for standard unification to two sets of transformations B7 and
T which are sound and complete for E-unification in arbitrary equational
theories. A new set 7’ may be obtained by refining the set 7" even further.
This section of the book provides the first presentation of an E-unification
procedure complete for arbitrary sets of equations.

In the higher-order case, our major contribution was the presentation
of an abstract and simplified non-deterministic method for general higher-
order unification of which first-order unification and higher-order preunifi-
cation are special cases, a more direct proof of completeness, and a proof
that the strategy of eager variable elimination in this context is complete.
This set of transformations is derived from an analysis of the role of sub-
stitution and f-reduction in unification, which we feel clarifies the design
of Huet’s procedure, and shows how its basic principles work in a more
general setting. We claim that this approach is more perspicuous than
those previously advanced, and unifies and justifies the various approaches
taken to unification problems. The three sets of transformations ST, PT,
and H7T thus represent an (inclusion) hierarchy of abstract methods for
unification.
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Since this research project was first undertaken, the techniques devel-
oped here have been applied with success to a new and very powerful form
of unification, namely, higher-order E-unification. In this problem, given
two higher-order terms e; and e, and a set of first-order equations E, we ask
whether there exists a substitution  such that 6(e;)——4,£60(ez), where
«—pnE is the union of «—p, and «——g. The results of Breazu-Tannen
and Gallier [23] essentially show that the higher-order and the first-order
equational parts of the problem interact smoothly and without pathologies,
and so the results presented here in Chapters §6 and §7 can be combined.
These results were presented by the author in preliminary for in [150]. In
addition, the method of transformations has been used to show that the
higher-order E-unification problem can be modularized to a large extent
into a higher-order unification module and an E-unification module, under
certain conditions, by Nipkow and Qian [119], and to show that higher-
order unification and higher-order E-unification can be developed in the
context of combinatory logic [40,81]. We might also mention several sur-
veys on unification which have appeared recently and which present their
subject in the formalism of transformations; two by J. Gallier and the au-
thor [55,56] which present the results of [53] and [148] (which form the basis
for this monograph), in abbreviated form, plus a presentation of Rigid E-
Unification [52]; the reader should also be aware of the recent survey by
Jouannaud and Kirchner [83].

The results presented in this monograph, and the recent developments
outlined above, show that the formalism of non-deterministic transforma-
tions on systems of equations—which is simply an inference system for
unification—provides the right level of abstraction to form the basis of a
proof theory of general unification by revealing the logical issues in their
purest form. It is our hope that this formalism, in addition to providing
a theoretical foundation both for the study of general unification methods
in theorem proving and logic programming, will provide a unifying con-
nection between the diverse approaches to E-unification and higher order
unification currently being developed and the larger concerns of the proof
theory of mathematical logic.



Appendix 1

DETERMINISTIC E-UNIFICATION

In this appendix, we design a deterministic procedure by emphasizing a
distinction implicit in BT, viz., whether a rewrite takes place at the root
(Root Rewriting) or not (the other transformations). Specifically, if v and v
are E-unifiable, then V8 € Ug(u, v) there exists a sequence 6(u) = ug «—g
Uy «——g ... — g u, = 0(v). Each such 8 can be classified into at least
one, and possibly both, of the following two cases. (Case 1 is further divided
into five mutually exclusive cases based on the stucture of the terms.)

1. No rewrite rule is applied at the root of any u;.
(a) Both u and v are compound terms, e.g., u = f(u1,...,u,) and v =
f(v1,-..,vs). Thus 0(u;) ——p 0(v;) for 1 < i < n.
(b) Either u or v is a variable; assume u is a variable.
i. v is a constant or a variable.
1. v is a compound term.
A u g Var(v).
B. u € Var(v), so if v = f(vq, ... ,vs) then 6(u) = f(t;...1,) for
some terms t1, ... ,1{,. )
(c¢) Both u and v are constants, i.e., u = v.
2. Some rewrite rule is applied at the root of some u;. Thus

0(u) g p(1) — p(r) ——g O(v),

where (I = r) is a variant of an equation in E U E~}, p is the matching
substitution used in the rewrite step, and no root rewrite takes place
between 6(u) and p(l).

The following Pseudo-Pascal procedure recursively applies this classifica-
tion to two terms, adapting the control strategy of Robinson’s original
algorithm for standard unification [139] to the case of E-unification, and
using depth-first iterative deepening to simulate breath-first search.
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global variables
currDepth, maxDepth : integer; E : eqSet;

procedure E-Unifiers( u, v : term );
begin
for maxDepth := 1 to oo do
begin
currDepth := 0;
output( E-Unifs(u, v, false, false ) )
end
end;

function E-Unifs( u, v : term; occur, noRootRW : boolean ) : unifSet;
var
unifsl, unifs2, subUnifs : unifSet; i, n : integer; 6, ¢ : unifier;
f : funcSymbol; y1,...,yy : variables;
begin
currDepth := currDepth + 1;
if currDepth > maxDepth
then return(®); { Terminate this call and return ¢ }
{ Case 1: Find unifiers of v and v which don’t rewrite root and collect in unifs! }

ifu=v
then unifsl := {Id}
else if fu| > 0 and [v| > 0 and (Root(u)=Root(v))
then begin
unifsl := E-Unifs( u/1, v/1, false, false );
for ¢ := 2 to Arity(Root(u)) do
begin
subUnifs := @;
for each # € unifsl do
subUnifs := subUnifs U § o E-Unifs(6(u/i), 8(v/i), false, false);
unifsl := subUnifs
end
end
else if Variable(u) or Variable(v)
then begin
if not Variable(u)
then Swap(u, v);
if v} =0 or (v} > 0 and (u ¢ Vars(v)))
then unifsl := {{v/u { Cases 1.(b).i to 1.(b).ii.B }
else begin { Case 1.(b).ii.B }
if not occur { start of new occur check case found }
then Mark all addresses o € Dom(v) where v{a) = u;
if Marked( v )
then begin
unifsl := §;
noRootRW := true
end
else begin
f := Root(v);
n = Arity(f);
0 :=[fly1,--. yn)/u]; { where the y; are new variables }
unifsl := § o E-Unifs(8(u), 8(v), true, true);
end
end {else}
end {then}
else unifsl := §;

{ This includes Case 1.(c) }
{ Case 1.(a) }

s oo |
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{ Case 2: Find unifiers which rewrite u and v at the root and collect in unifs2 }

if Id € unifsl or noRootRW
then unifs2 := @
else begin
if Variable(u)
then Swap(u, v);
unifs2 := @;
for each (I=r) e EUE~! do
for each ¢ € E-Unifs(u, !, false, true ) do
unifs2 := unifs2 U § o E-Unifs(6(r), 6(v), false, false );
end;

currDepth := currDepth - 1;
return( unifsl U unifs2 )
end; { E-Unifs }
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HUET’S UNIFICATION PROCEDURE

The basic idea of the higher order unification procedure, as developed by
Huet in [72], is to search for unifiers of two lambda-terms one substitution
at a time by alternately decomposing terms and finding matching substi-
tutions for the heads, stopping when the subterms are found to be either
trivially unifiable, or not unifiable. More specifically, the procedure gener-
ates a tree (of OR branches) from a root consisting of the original pair of
terms, whose nodes are disagreement sets of pairs of terms not yet unified,
and whose arcs are labelled by substitutions found and applied to generate
new descendants. The tree is explored and unifiers incrementally created
by decomposing pairs of terms until their heads are no longer equal and
then finding substitutions which match the heads of pairs, if possible. Iden-
tical pairs of terms are fully decomposed and eventually removed from the
disagreement set. When either a trivially unifiable disagreement set, com-
posed only of flexible-flexible pairs, is found (success) or an un-unifiable
pair, i.e., a rigid-rigid pair with dissimilar top function symbols, is found
(failure), a branch is terminated. In general this process may not terminate,
since whether two lambda terms are unifiable is only semi-decidable.

We now present a pseudo-Pascal version of Huet’s procedure for pre-
unifying two terms in the afBnp—calculus. The interested reader should
consult [71] or [72] for further details.
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global variable T : searchTree;

procedure LambdaUnifiers( ey, ez : A-terms );
{ This procedure enumerates a complete set of pre-unifiers for
two A-terms of the same type. }
var
N, N': treeNodes; e}, e} : A\-terms; T : substSet; o, p, § : unifier;
begin
T := the one node tree consisting of Simplify({(e1,€2)});
while exists an unmarked leaf node N in T do
begin
Pick some flezible-rigid pair (e1,e2) € N;
Y= Match(el €2, FV(N));
ifE=90
then mark N with “F”
else
for each o € ¥ do
begin
N’ := Simplify(c(N));
Add a descendant arc from N to N’ labelled by o;
if N’ is labelled “S”
then begin
8 := Id;
for each p on path from N’ to root of T do
§:=pob;
Output(8)
end
end
end
end.

function Simplify( N : disSet ) : node;

{ Takes a disagreement set of pairs of terms of the same type and returns
a node marked with “F” or “S”, or a new disagreement set containing
at least one flezible-rigid pair. }

begin
{ Dissolve all rigid-rigid pairs. }
while exists rigid-rigid pair (e1,e2) in N do

begin

{ Suppose ¢; = Azr; ceezn.@(ed, ... ,e},l)

and ez = Ayr...yn.@z(e?, ... €2 ) }
{ See if heads same. }
if not (Az;1...2,.@; g Ayr, ..., yn. @)
then Return(N marked with “F”);
{ Else we know 7(@;) = 7(@2) and thus p; = p3 }
Replace (e, e2) by the pairs
(Az1...zn e}, Ady1...yn.€?) for1<i<p;
end;
{ Orient pairs. }
while exists rigid-flezible pair (e1,e2) € N do
Replace (e1,€2) by (e2,¢€1);
if exists some flezible-rigid pairin N
then Return(N)

else Return(N marked with“S”)
end;

sl

e
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function Match(es, e2 : A—terms; V : setOfVars) : substSet;
{ Returns a set of substitutions which matches head of e; to head of e,.
e1 is a flexible term Ax; ... zn. F(el, ... vep,)
and e3 is a rigid term Ay; ...yn. @(e?, vee ,egz),
where 7(e;) = 7(e2) = a1, ... ,an — B. The set of unifiers
returned is obtained by imitating the head of e3 and
by projecting ey on each of its arguments which preserves the type. }
var ¥ : substSet; i : integer;
begin
{ Imitate heading of e, if possible. }
if Constant(@)
then L :={[Az1...2,.@(G1(21, ... ,2p; ), -+ , Gpy (21, ... vZ2p )M/ F1 }
{ Where 7(z) = 7(e;), for 1 < i < p;, and the G; are
variables not in V such that 7(G;) = 7(e}), ... ,'r(e}l,l) — ‘r(e?)}
else T := §;
{ Next project F' on each of its arguments which has appropriate type. }
for ¢ := 1 to p; do
if ‘r(e.l-) =1, ... y¥m; — B for some ; { Note that possibly m; = 0. }
then
E:=2u{[rn ...zpl.z.'(H;(zl, . e (21, .0 v2py )/ F1 )
{ Where 7(2;) = 7(e}) for1 < i < p1
and the H; for 1 < 7 £ m, are variables not in V
of type T(H;) = 'r(ei), ,T(e}l,l) — 7(v;)}
Return(X)
end;



Appenclix 3

HERBRAND’S UNIFICATION ALGORITHM

1t is remarkable that in his thesis, Herbrand gave all the steps of a unifi-
cation algorithm based on transformations on systems of equations. This
occurs in Chapter 5 of the thesis, entitled “Properties of True Proposi-
tions.” Property A concerns whether the matrix of a formula is a “normal
identity,” which is roughly determined by the presence of mated pairs (in
the terminology of [4]). The method Herbrand gives for finding such pairs
involves finding a set of “associated equations” for a pair of atomic for-
mulae, which are basically the same as our solved pairs. The following
passage, from [64], p.148, gives Herbrand’s algorithm:

Now, to find an appropriate set of associated equations is easy, if such
a set exists; it suffices, for each system of equations between arguments, to
proceed by recursion, using one of the following procedures which simplify
the system of equations to be satisfied.

(1) If one of the equations to be satisfied equates a restricted variable x

to an individual, either this individual contains &, and then the equations -
cannot be satisfied, or else the individual does not contain x, and then the
equation will be one of the associated equations that we are looking for; in
the other equations to be satisfied we replace # by the individual;

(2) If one of the equations to be satisfied equates a general variable to an
individual that is not a restricted variable, the equation cannot be satisfied;

(3) If one of the equations to be satisfied equates f(p1,®2, ... ,¢n) to
fo(¥1, %2, ... ,¥p), either the elementary functions f; and f are differ-
ent, and then the equation cannot be satisfied, or they are the same, and
then we turn to those equations that equate the ¢; to the ;.

Therefore, if we successively consider each prenex form of P, we shall

be able, after a finite and determinate number of steps, to decide whether
the proposition P is a normal identity.
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