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Preface 

This book conta ins  the s o m e w h a t  ex tended  lec ture  no tes  of  an in t roduc to ry  
course  in p r o o f  theory  I gave during the winter  t e r m  1987/88 at  the  Univers i ty  
of  Miinster ,  FRG. The decision to  publ ish  these  no tes  in the  Springer  ser ies  has 
g rown  ou t  of  the  demand  fo r  an in t roduc to ry  t e x t  on p r o o f  theory.  The books  
by K.Schiit te and G.Takeut i  are c o m m o n l y  cons idered  to  be qui te  advanced and 
J .Y.Girard ' s  br i l l iant  book  also,  is t oo  b road  to  serve as an in t roduct ion .  

I tr ied,  the re fo re ,  to  wr i te  a book  which needs  no previous  knowledge  o f  p r o o f  
theory  a t  all and only l i t t le  knowledge  in logic. This is o f  course  imposs ib le ,  
so  the  book  runs  on two  levels  - a very basic one, a t  which the  book  is 
s e l f - con ta ined ,  and a more  advanced one (chief ly  in the  exercises} wi th  some 
c r o s s - r e f e r e n c e s  to  definabi l i ty  theory .  The beginner  in logic should  neg lec t  
t he se  c r o s s - r e f e r e n c e s .  

In the  p r e sen t a t i on  I have t r ied not  to  use the  ' caba l  l anguage '  o f  p r o o f  theory  
bu t  a l anguage  famil iar  t o  s t u d e n t s  in ma themat i ca l  logic. 

Since p r o o f  theory  is a very lnhomogeneous  area  of  ma themat i ca l  logic, a choice 
had to  been  made abou t  the  pa r t s  to  be  p re sen t ed  here. I have decided to  op t  
for  wha t  I consider  to  be the  hear t  of  p r o o f  theory  - the  ordinal analysis  o f  
ax iom sys t ems .  Emphas is  is given to  the  ordinal analysis  o f  the  ax iom s y s t e m  
o f  the  impredicat ive theory  of  e l emen ta ry  inductive def in i t ions  on the  na tura l  
numbers .  A rough  s ke t ch  o f  the  ' cons t ruc t i ve '  consequences  o f  ordinal analysis  
is given in the  epi logue.  

Many people  helped me to  wri te  this book.  J.Columbus s u g g e s t e d  and checked  
nearly all the exerc ises .  A.Weiermann made a lo t  o f  valuable  sugges t ions  
especia l ly  in the  sec t ion  abou t  a l te rnat ive  in t e rp re t a t ions  for  D. A.Schliiter did 
the  p roo f - r ead ing ,  drew up the  subjec t  index and the  index of  no ta t ions  and 
s u g g e s t e d  many co r rec t ions  especia l ly  in the  pa r t  abou t  the  a u t o n o m o u s  ordinals  
of Zoo. 
I am a l so  indebted  to  the  s t u d e n t s  o f  the  workshop  on p r o o f  t heo ry  in 
MUnster  who s u g g e s t e d  many more  cor rec t ions .  Last  bu t  not  l eas t  I wan t  to  
thank  all the  s tuden t s  a t tending  my course  of  l ec tu res  during the win ter  t e r m  
1987/88. I t  was  their  in te res t  in the  topic  t h a t  encouraged  me to  wri te  this  
book.  

A f i rs t  vers ion of  the  t ypesc r ip t  was  typed  by my sec re t a ry  Mrs. J.Pr6bsting 
using the  Signum t e x t  sys tem.  Stie a lso  w r o t e  the  t ab le  of  con ten t s .  Many 
thanks  to  all  these  persons .  

July 19, 1989 

MUnster 

W. P. 
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INTRODUCTION 

The history of proof theory begins with the foundational crisis in the first 

decades of our century. At the turn of the century, as a reaction to the 

explosion of mathematical knowledge in the last two centuries, endeavours 

began to provide the growing body of mathematics with a firm foundation. 

Some of the notions used then seemed to be quite problematic. This was especially 

true of those which somehow depended upon that of infinity. On the one hand 

there was the notion of infinitesimals which embodied 'infinity in the small'. 

The elimination of infinitesimals by the introduction of limit processes repre- 

sented a great progress in foundational work (although one may again find a 

justification for infinitesimals as it is done today in the field of nonstandard 

analysis). But on the other hand there were also notions which, at least implicitly, 

depended on 'infinity in the large'. G.Cantor in his research about trigono- 

metrical series was repeatedly confronted with such notions. This led him to 

develop a completely new mathematical theory of infinity, namely set theory. 

The main feature of set theory is the comprehension principle which allows 

to form collection of possibly infinitely many objects {of the mathematical 

universe) as a single object. Cantor called the objects of the mathematical 

universe 'Mengen' usually translated by 'sets'. Set theory, however, soon 

turned out to be a source of doubt itself. Since Cantor's comprehension 

principle allows the collection of all sets x sharing an arbitrary property E(x) 

into the set {x: E(x)} one easily runs into contradictions. I) For instance if we 

form the set M := {x: x¢ x}, then we obtain the well-known Russellian antinomy: 

M eM if and only if M~ M. It is easy to construct further antinomies of a 

|) Cantor himself was well aware of the distinction between sets and other 
collections which may lead to contradictions. See his letter to Dedekind from 
27.7.1899 [Purkert et al. 1987] 
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similar sort. Another annoying fact was that the plausible looking axiom of 

choice 

(AC) For any family (Sk)kE I of non empty sets there is a choice function 

f: I-~U{Sk: kel} such that f(k)eS k for all kel 

had as a consequence the apparently paradoxical possibility of wellordering any 

set. Nobody could imagine what a wellordering of the reals could look like and 

D.Hilbert, in his famous list of mathematical problems presented in Paris in 

1900, stated in his remarks concerning problem one (the Continuum Hypothesis} 

that it would be extremely desirable to have a direct proof of this mysterious 

statement. 

Today we know that there is no elementary construction of a wellordering of 

the reals. Any wellordering of the reals has the same degree of constructiveness 

as the choice function itself. The existence of a choice function, however, is 

not even provable from the Zermelo Fraenkel axioms for set theory. 

All these facts contributed to a feeling of uncertainty among members of the 

mathematical society about the notion of a set that they were opposed to set 

theory in general. But it was of course not possible to simply ignore Cantor's 

discoveries. Hermann Weyl in his paper 'tiber die neue Grundlagenkrise der 
Mathematlk' [Weyl 1921] tried to convince his contemporaries that the founda- 

tional problems arising "In set theory were not just exotic phenomena of an 

isolated branch of mathematics but also concerned analysis, the very heart of 

mathematics. It was he who introduced the term 'foundational crisis' into the 

discussion. In his book 'Das Kontinuum' [Weyl 1918] he had already suggested a 

development of mathematics which avoided the use of unrestricted set construc- 

tions. In more modern terms one could say that he proposed a predicative 

development of mathematics. Others, llke L.E.J.Brouwer, already doubted the 

logical basis of mathematics. Their point of attack was the law of the excluded 

middle.  With  the  he lp  of  the  law o f  the  exc luded  middle  it  b ecomes  poss ib le  

to  prove  the  ex i s tence  of  ob jec t s  w i thou t  cons t ruc t i ng  t h e m  expl ic i t ly .  Brouwer  

s u g g e s t e d  developing m a t h e m a t i c s  on the  bas is  o f  a l t e rna t ive  intui t ive pr inciples  

which exc luded  the  law o f  the  exc luded  middle.  Their  fo rmal i za t ion  - due to  

Heyting- now is known as intui t ionis t ic  logic. Both approaches ,  W e y l ' s  as  well  

as  Brouwer ' s ,  mean t  rigid r e s t r i c t i ons  on ma thema t i c s .  D.HJIbert, t hen  one o f  

the  m o s t  p rominen t  ma themat ic i ans ,  was  no t  willing to  accep t  any founda t ion  

o f  m a t h e m a t i c s  which would mu t i l a t e  ex i s t ing  ma thema t i c s .  To him the  founda -  

t ional  cr is is  was  a n igh tmare  haunt ing  ma thema t i c s .  In his opinion m a t h e m a t i c s  

was the science,  the  model  for  all sc iences ,  whose  ' t r u t h s  had been proven  on 

the  bas is  o f  def ini t ions  via infal l ible  in fe rences '  and t h e r e f o r e  were  'va l id  overal l  

2 
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in real i ty ' .  He fel t  tha t  this posi t ion o f  mathemat ics  was in danger  and therefore  

wanted to  preserve it as it was. He was especially unwilling to  give up Can to r ' s  

se t  theory,  a paradise f rom which no one would expel hin~ In his opinion Can to r ' s  

t r ea tmen t  o f  t ransf ini te  ordinals was one of  the supreme achievements  of  human 

thought .  Therefore  he planned a p rogram to  save mathemat ics  in its exist ing 

form. He char ted  his p rogram in a couple  o f  writ ings and debated it in several 

ta lks  (cf. [Hilbert  1932-1935]). Therefore  it would  be inadequate to  t ry to  ske tch  

Hi lber t ' s  p rogram in only a few sentences .  Pot a serious evaluat ion o f  the  s t a tus  

o f  Hi lbe r t ' s  p rogram today  deeper considera t ions  are necessary (cf. ]SL 53 (1988)). 

The par t  o f  Hi lber t ' s  program,  however,  which was essent ial  for  the  development  

o f  the kind o f  p roo f  theory  we want  to  give an in t roduct ion to  in this  lecture 

may be roughly  character ized by the  fol lowing steps:  

L A x i o m a t l z e  the  whole  o f  ma themat i c s  

Ii. Prove that the axioms obtained in step I are consistent. 

Hilbert proposed that step II of his program, the consistency proof, should be 

carried out within a new mathematical theory which he called 'Bewetstheorie', 

i.e. Proof  Theory. According to Hilbert, proof theory should use contentual 

reasoning in contrast to the formal inferences of mathematics. Hllbert himself 

was aware of the fact that the reasoning of proof theory must itself not become 

the subject of criticism. He therefore required proof theory to obtain its 

results by methods beyond the shadow of a doubt. He suggested using only 

finitistic methods. By finitistic methods he understood those methods 'without 

which neither reasoning nor scientific action are possible'. In my personal 

opinion, finitistic reasoning may be interpreted as combinatorial reasoning over 

finite domains. Some of Hilbert's students (e.g. Ackermann, J.v.Neumann, 

P.Bernays) soon obtained concrete results. Following Hilbert's maxim of first 

developing the mathematical tools necessary for the solution of a general problem 

by studying special cases of the problem they first tackled subsystems of 

elementary arithmetic. In fact they succeeded in obtaining consistency proofs 

for subsystems not containing the scheme of complete induction. It thus seemed 

to be just a matter of technical refinement to extend these consistency proofs 

to systems containing the full induction scheme. However, the systems containing 

complete induction stubbornly resisted all attempts to prove their consistency. 

That this failure was neither an accident nor was due to the incompetence of 

the researchers, became clear after the publication of Kurt G6delts paper 

'Uber formal unentscheldbare S~itze der Principia Mathematics und verwandter 

Systeme' [G6del 1931]. In this paper GSdel proved his famous theorems which, 

roughly speaking, say the following: 
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L In any fo rmal  system, sat is fy ing certain natural  requirements, i t  is possible 

to fo rmula te  sentences which are true in the intended st ructure but are also 

undecidable wi th in the fo rmal  system (i.e. neither the sentence nor i ts  negation 

are provable in the formal  system). 

i l .  The consistency p r o o f  for  any fo rma l  system, again sat is fy ing canonical 

requirements, may not be formal ized in the system i tsel f .  

One migh t  think t ha t  GSde l ' s  t h e o r e m s  mean t  a sudden  end  to  H i l b e r t ' s  

p rogram.  The f i r s t  t h e o r e m  shows  t h a t  s t e p  I in H l l b e r t ' s  p r o g r a m  is indeed 

imposs ible .  This, however ,  migh t  be  remedied  by the  obe r se rva t ion  t h a t  in fac t  

it is not  necessary  to  formal ize  all poss ib le  ma themat i c s .  I t  would  suf f ice  jus t  

t o  ax iomat ize  exis t ing  ma themat i c s .  Today we know t h a t  nearly everyth ing in 

eve ryday ' s  m a t h e m a t i c s  (and, excep t  for  the  Cont inuum Hypothes i s ,  p robab ly  all 

which Hi lbe r t  may have t h o u g h t  of)  is fo rmal izab le  in one s ingle  fo rma l  

sys t em,  namely  Zermelo  Fraenkel  se t  theory  with  the  ax iom o f  choice (ZFC). 

Mos t  p a r t s  are even formal izab le  in much  weaker  sys t ems .  G~del II, however ,  

is a le thal  b low to  H i l b e r t ' s  p rogram.  Since the  me thods  ' w i t h o u t  which nei ther  

reasoning  nor  scient i f ic  ac t ion  are poss ib le '  (combinator ia l  reason ing  over  f inite 

domains ,  in our in te rpre ta t ion)  should  i t se l f  be  avai lable in ma thema t i c s ,  any 

reasonab le  ax iomat iza t ion  of  m a t h e m a t i c s  should  a l low the  fo rmal iza t ion  o f  

H i l b e r t ' s  f ini t is t ic  methods .  There fo re  the re  is no f ini t is t ic  cons i s t ency  p r o o f  

for  an ax iomat iza t ion  o f  s t ronge r  f r a g m e n t s  o f  ma thema t i c s  (i.e. e ssen t ia l ly  

t hose  conta ining the  scheme o f  c o m p l e t e  induction).  Luckily for  the  deve lopmen t  

of  p r o o f  theory ,  the  r e sea rche r s  in the  th i r t ies  did not  in te rp re t  t hese  r e s u l t s  

als having such dras t ic  consequences .  I t  is hard to  say why. G~de l ' s  r e su l t s  

were  known to  the  Hi lber t  school .  For ins tance  Bernays ment ions  t h e m  in 

[Bernays 1935a] bu t  a l though  he e x p r e s s e s  doub t s  abou t  the  feasibi l i ty  o f  

f ini t is t ic  cons i s t ency  p roo f s  he denies t h a t  G6de l ' s  r e s u l t s  imply their  imposs i -  

bility. 1 conjec ture  t ha t  the  t rue  r ea sons  were  H i l b e r t ' s  au thor i ty  as wel l  as the  

vagueness  o f  his p rogram.  Since he gave no precise  def ini t ion o f  wha t  he 

mean t  by f ini t is t ic  me thods  one could  hope t h a t  t hese  me thods  compr i sed  a 

kind o f  con ten tua l  reasoning  which canno t  be  ma themat i ca l ly  formal ized .  As a 

m a t t e r  o f  f ac t  ma themat ic i ans  did not  s t o p  searching for  cons i s t ency  p roo f s  

and in 1936 Gerhard G e n t z e n  succeeded  in proving the  cons i s t ency  o f  e l emen ta ry  

number  theory.  According to  G~de l ' s  second  t h e o r e m  G e n t z e n ' s  p r o o f  had to  

use  nonfini t is t ic  means.  Gentzen  succeeded  in concen t ra t ing  all nonf ini t is t ic  

means  in one single poin t  - induct ion a long a wel lorder ing  o f  t r ans f in i t e  order type .  

This r e s u l t  con f i rmed  the  Hi lber t  s c h o o l ' s  opinion t h a t  jus t  a s l igh t  modif ica t ion  
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of  the  f ini t is t ic  s t andpo in t  (i.e. accept ing  a weak f o r m  of  t r ans f in i t e  induction) 

would  suf f ice  to  make  the  whole  p r o g r a m  feasible.  In §16 we will d i scuss  the  

consequences  o f  th is  ' s l i gh t  modi f ica t ion '  for  Hi lbe r t t s  p rogram.  There we will 

t ry  to  argue,  in the  spir i t  o f  H i l b e r t ' s  p rog ram,  t h a t  Gentzen~s p r o o f  is o f  

l i t t le  help.  This,  however ,  does  no t  mean  t h a t  G e n t z e n ' s  p r o o f  and his r e s u l t s  

are o f  no impor tance .  Qui te  on the  con t ra ry ,  in our  opinion G e n t z e n ' s  p r o o f  is 

one o f  the  deepes t  r e s u l t s  in logic. To see why, we p r o p o s e  a r e in t e rp re t a t i on  

o f  his r e su l t s .  

In poin t  o f  fac t  i t  is very easy  to  prove  the  cons i s t ency  of  pure  number  

theory.  One s imply  has to  show t h a t  the re  ex i s t s  a model  for  it. So wha t  is the  

advan tage  o f  G e n t z e f f s  cons i s t ency  p roof?  The cons t ruc t i on  of  the  model  

i t s e l f  needs  a cer ta in  f r amework ,  e.g. se t  theory.  Thus wha t  is o b t a i n e d  by 

a cons i s t ency  p r o o f  via a model  cons t ruc t i on  in se t  theory  (or  s o m e  even 

weaker  theory)  is t ha t  the  cons i s t ency  of  s e t  theory  a lso  en ta i l s  the  cons i s t ency  

o f  pure  n u m b e r  theory .  G e n t z e n ' s  p roof ,  however ,  gives much  more  informat ion .  

I t  has  a l ready been ment ioned  t h a t  G e n t z e n ' s  p r o o f  is f ini t ls t ic  apa r t  f r o m  his 

use  o f  induct ion a long  a wel lorder ing  o f  t r ans f in i t e  order type .  In our  opinion 

this  is the  essen t ia l  con t r ibu t ion  o f  G e n t z e n ' s  p roof .  I t s  consequences  are  

twofo ld :  

1. The induct ion in Gen tzen t s  p r o o f  need only be appl ied to  f o rmu la s  o f  a 

very r e s t r i c t ed  complexi ty ,  in addi t ion the  cons i s t ency  p r o o f  never  uses  the  law o f  

the  exc luded  middle.  Thus  it may be formal ized  within a s y s t e m  T based  on 

lntui t ionis t ic  logic with induct ion a long  a wel lorder lng  o f  t r ans f in i t e  o rde r type  

where  this  induct ion scheme  is r e s t r i c t ed  to  fo rmu la s  o f  a very low complexi ty .  

So the  p r o b l e m  of  the  cons i s t ency  o f  pure  number  theory  may  be decided within 

the  s y s t e m  T. Al though  the  wel lorder lng  is o f  t r ans f in i t e  order  type  it  can 

easi ly  be visual ized.  So It  s eems  to  be c o m p l e t e l y  plain t h a t  the  s y s t e m  T is 

cons i s t en t .  By GSde l ' s  second  t h e o r e m  the  p r o o f  t heo re t i c  s t r e n g t h  of  the  

s y s t e m  T, as  it will be  def ined la te r  in th is  lecture ,  has to  exceed  t h a t  o f  

pure  n u m b e r  theory.  But  the  s u b s y s t e m  T O o f  T which is ob ta ined  f r o m  T by 

res t r i c t ing  induct ion to  initial s e g m e n t s  o f  the  wel lorder ing  only  can  be shown  

to  be  equ icons i s t en t  wi th  e l e m e n t a r y  num ber  theory .  Thus  G e n t z e n ' s  p r o o f  

provides  a reduc t ion  o f  the  cons i s t ency  p r o b l e m  for  e l e m e n t a r y  n u m b e r  theory  

to  t ha t  o f  a t heo ry  T o, which f r o m  a concep tua l  po in t  o f  view may  be regarded  

as ' s a f e r '  than  e l e m e n t a r y  num ber  theo ry  i tse l f .  

This is an exampl e  o f  reductive proof  theory. In reduct ive  p r o o f  theory  one 

genera l ly  t r ies  to  reduce  the  cons i s t ency  p ro b l em of  a theory  T 1 to  t h a t  o f  a 

theory  T 2. For a c lever  choice o f  T 2 bo th  s y s t e m s  will have the  s ame  p r o o f  
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theore t i c  s t r eng th .  The pr inciples  used  in T 2, however ,  may be eas ier  to  visualize 

and the re fo re  a jus t i f ica t ion  o f  the  s y s t e m  T 2 seems  more  plausible .  This type 

of  p r o o f  theory  is o f  g rea t  foundat ional  impor tance  (cf. the  in t roduc t ion  to  

[BFPS] by S .Feferman) .  One i m p o r t a n t  f ea tu re  of  H i l b e r t ' s  p r o g r a m  we did 

not  men t ion  is the  ' e l imina t ion  of  ideal e l e m e n t s ' .  In this  s ense  reduct ive  

p r o o f  t heo ry  con t r i bu t e s  to  H i l b e r t ' s  p r o g r a m  by e l iminat ing c o m p l i c a t e d  

unpersp icuous  principles.  Since b o t h  s y s t e m s  {Tl and T2 in the  above  example )  

are  o f  the  s ame  p r o o f  theore t i ca l  s t r e n g t h  reduct lve  p r o o f  t heo ry  Is in ful l  

accordance  with GSde l ' s  second  theo rem.  

2. The f ac t  t h a t  induction a long  the  wel lorder ing  is the  only nonf in i t i s t tc  

means  in G e n t z e n ' s  p r o o f  a l so  s u g g e s t s  us ing th is  wel lo rder tng  as  a measu re  

for  the  t r ans f in i t e  c o n t e n t  o f  pure  number  theory .  Pursuing th is  idea one had 

def ined the  p r o o f  theoret ic  ordinal of  a fo rma l  theory  T as the  o rde r type  o f  

the  s m a l l e s t  wel lorder ing  which is needed for  a cons i s t ency  p r o o f  o f  T. This 

defini t ion,  however ,  is s om ehow vague since it says  nothing a b o u t  the  means  

used  bes ides  the induct ion a long this  wel lorder ing  (one tac i t ly  has  to  a s s u m e  

t h a t  t he se  a t  l eas t  have to  be  fo rmal izab le  in T). To obtain  a more  precise  

def ini t ion one ca l l s  an ordinal  ~ p rovab le  in T if there  is a pr imit ive  recurs ive ly  

def inable  wel lorder ing  ~ o f  o rde r type  cc such  t ha t  the  wel lorder ing  o f  ~ is 

p rovable  in T. I t  is a consequence  o f  GS de l ' s  second  theo rem,  t h a t  the  p r o o f  

theore t i c  ordinal  o f  T (in the  previous  sense)  c anno t  be  a p rovab le  ordinal  o f  

T.  The re fo re  one may define the  p r o o f  t heo re t i c  ordinal  o f  T as the  l eas t  

ordinal  which is not  p rovab le  in T. This is the  c o m m o n  def in i t ion today.  The 

c o m p u t a t i o n  of  the  p r o o f  t heo re t i c  ordinal  o f  T is ca l led  the  ordinal anal¥is 

o f  T. G e n t z e n ' s  paper  ' Beweisbarkei t  und Unbewei sba rke i t  yon A n f a n g s -  

Fallen der  t r ans f in i t en  lndukt ion  in der  re inen Zah len theor ie '  [Gen tzen  1943] 

indicates  t h a t  he h imse l f  a l ready in t e rp re t ed  his r e s u l t  as  an ordinal  analysis  

(and not  jus t  as a cons i s tency  p roof ) .  

The in tent ion  of  th is  lec ture  is t o  give an in t roduc t ion  to  the  t echn iques  o f  

ordinal  analysis .  We suppre s s  the  a s pec t s  o f  reduct ive  p r o o f  theory .  Only in the  

epi logue it will be  indicated how the r e s u l t s  and me thods  o f  ordinal  analysis  

may be used  in reduct ive  p r o o f  theory .  To ge t  acqua in ted  wi th  the  basic  not ions  

and techniques  we reprove  G e n t z e n ' s  r e s u l t  in the  f i r s t  chap te r .  The second  

chap te r  will d i scuss  the  l imits  o f  G e n t z e n ' s  me thods .  There  we will r eprove  

S .Fe fe rman ' s  and K.Scht i t te ' s  r e s u l t s  on the  l imits  o f  predicat tvi ty.  The emphas i s ,  

however ,  is on the  ordinal analysis  o f  impredicat ive  fo rma l  sy s t ems .  To d e m o n -  

s t r a t e  th is  m e t h o d  we will give in chap t e r  Ill an ordinal  analys is  for  one  o f  

the  s i m p l e s t  impredicat ive  fo rma l  s y s t e m s ,  the  s y s t e m  ID 1 fo r  non i t e ra t ed  

inductive def in i t ions  by the  m e t h o d  o f  local predtcativity. A discuss ion  on the  

foundat iona l  s ignif icance o f  ordinal  analysis  will be  added in the  epi logue.  



C ~  I 

ORDINAL ANALYSIS OF PURE N U M B I ~  THEORY 

To begin with we fol low Hi lber t ' s  p rog ram and, in a f i rs t  s tep,  t ry  to  axiomatize 

- if not  the  whole  o f  mathemat ics  - bu t  the theory  o f  natural  numbers.  To 

obtain a feeling how this  might  be done we s t a r t  by some heurist ic cons idera-  

t ions. 

The aim of  the 'work ing '  mathemat ic ian in teres ted in the theory  o f  a certain 

s t ruc tu re  is to  discover the 'mathemat ica l  f ac t s '  which hold in this s t ruc ture .  

in order  t o  do this he f i rs t  has t o  be able to  fo rmula te  the 'mathemat ica l  

f ac t s ' .  This means tha t  he needs a language in which he may ta lk about  this  

s t ruc ture .  The mathemat ical  f ac t s  which possibly  may hold in the s t ruc tu re  

will then be expressed  by sen tences  in this  language. The problem then is t o  

figure ou t  which of  the sentences  are the t rue  ones. This may be done by 

pure intuition. But to  be really sure about  the t ru th  o f  a sentence  it needs a 

proof .  The only way to  prove a sentence,  however,  is to  show tha t  it is a logical 

consequence  o f  some o ther  sentences  which already are known to  be t rue  in 

the s t ruc tu re .  Tracking back this procedure  we finally end up with a set  of  

sentences ,  the mathematical  axioms of  the s t ruc ture ,  which canno t  be proved 

themselves  bu t  either are t rue by definit ion or by common  agreement .  Showing 

tha t  a sentence  is a logical consequence  o f  o ther  sentences  usually is done by 

deriving the s e n t e n c e  f rom those  o thers  th rough  a series o f  inferences.  A se t  

o f  inference rules  will be cal led a proof  procedure. Some of  the inferences in 

a p r o o f  procedure  may have no premises.  Those inferences will be cal led the 

logical axioms of  the p r o o f  p rocedure .  The choice o f  the axioms and of  the 

p r o o f  procedure  is o f  course  no t  arbitrary.  As a f i rs t  requirement  the  t ru th  o f  

every mathemat ica l  axiom really has to  be indubitable and it a l so  mus t  be 

c lear  tha t  the t ru th  o f  the premises  o f  an inference undoubtedly  entai ls  the  



truth of its conclusion (if there is no premise, then the conclusion must be 

true in every structure, i.e. logically valid.). This will guarantee that all proven 

sentences really are true. But the 'working' mathematician does not only want 

to ensure himself about his theorem but he also wants to convince his colleagues 

about its truth. Therefore there must be a way of checking a proof. Thus the 

second requirement is, that it must be decidable whether a given sentence is 

an axiom or not, and it also has to be decidable whether an inference is a 

correct application of an inference rule or not. Otherwise we had no possibility 

to check the correctness of a given proof. A proof procedure meeting these 

requirements will be called decidable. 

This little heuristic teaches us the following facts about axiomatization: 

In order to axiomatize the theory of a structure we 

- f i rs t  need a formalization o f  the language o f  the structure. The formal  

language o f  the  s t ruc tu re  has to  be given in such  a way tha t  it becomes  decidable 

whether  a symbol  s tr ing is a wel l fo rmed express ion or not; 

- second need a decidable set  o f  sentences  in this language which undoubted ly  

are true.  The sentences  in this se t  are the  axioms o f  the structure;, 

- th i rd  need a decidable proof  procedure which produces  logical consequences  

o f  the axioms. 

A decidable formal language toge the r  with a decidable se t  o f  mathematical  

axioms and a decidable p roo f  procedure  will be cal led a formal system or 

somet imes  also a formal theory for  the  s t ruc ture .  From this it immediately 

fo l lows tha t  the se t  o f  sentences  which are provable in one formal  sys tem 

always is a recursively enumerable  set.  

By resul t s  of  mathematical  logic there are comple te  p roof  procedures  for f i rs t  

order  languages,  i.e. there  are p r o o f  procedures  which produce  all logical 

consequences  o f  a given set  o f  mathemat ical  axioms. This o f  course  mus t  no t  

be mistaken in tha t  way tha t  the p roo f  procedure  toge the r  with the mathemat ical  

axioms produce all t rue f irst  order  sentences  of  the s t ruc ture .  In general the 

se t  o f  t rue sentences  of  a s t ruc tu re  is no t  recursively enumerable  but  of  

higher complexi ty.  Thus in general we canno t  expec t  a comple te  axiomat izat ion 

even for  the f i rs t  order  theory  of  a s t ruc ture .  Since we have to  abandon c o m -  

p le teness  anyway we may as well regard the second order  language of  the 

s t ruc tu re  a l though there is not  even a comple te  p roo f  procedure  for second 

order  logic. The only impor tant  thing is tha t  there  are sound p r o o f  procedures .  I t  

will then be the task o f  p roof  theoret ical  research to  determine the limits o f  a 

formal  system. 
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~1. T h e  l a n g u a g e  oF p u r e  n u m b e r  t h e o r y  

In the present lecture we will not use full second order logic but first order 

logic with free set variables. We will introduce the notion of a I/~-sentence and 

then examine the power of formal systems with respect to their provable II~- 

sentences. 

In the first sections of the following chapter we are going to develop a quite 

simple formal system for the structure of natural numbers which in the later 

sections will be analyzed proof theoretically. 

§1. The language .9 ~ o f  pure  number  theory 

A s t r u c t u r e  usua l ly  is given by a non void s e t  t o g e t h e r  wi th  c o l l e c t i o n s  o f  

c o n s t a n t s ,  o f  func t ions  and o f  r e l a t i o n s  on t h a t  se t .  in  o rde r  t o  ob ta in  a fo rmal  

language  for  the  s t r u c t u r e  of  na tu ra l  numbers  we f i r s t  need t o  spec i fy  our  

p ic tu re  o f  th is  s t r uc tu r e .  The s e t  o f  na tu ra l  numbers  is cha rac t e r i zed  by the  

f ac t s  t h a t  every na tu ra l  number  e i the r  is zero  or the  s u c c e s s o r  of  ano the r  

na tu ra l  number  and t h a t  every na tu ra l  number  p o s s e s s e s  a uniquely d e t e r m i n e d  

successo r .  Using th i s  c h a r a c t e r i z a t i o n  we ob ta in  a name (or  c o n s t a n t  as we 

are  going to  ca l l  it) for  every na tu ra l  number.  We s t a r t  wi th  O as a name for  

the  na tu ra l  number  zero  and a symbo l  _S for  the  successor funct ion.  Then a 

c o n s t a n t  for  every na tu ra l  number  is ob t a ined  by success ive ly  apply ing  the  

s u c c e s s o r  func t ion  t o  t he  symbol  _0. So i t  s h o u l d  be c l ea r  t h a t  we a t  l e a s t  

need a c o n s t a n t  for  ze ro  and the  s u c c e s s o r  func t ion  in our  language  (and then  

as wel l  may a s sume  t h a t  we a l ready  have a c o n s t a n t  n for  every na tura l  

number  n). The nex t  ques t ion  to  be a n s w e r e d  is which func t ions  and r e l a t i o n s  

b e s i d e s  t he  s u c c e s s o r  func t ion  on the  na tu ra l  numbers  we s h o u l d  cons ide r .  The 

m o s t  genera l  answer  is o f  cou r se  "al l  p o s s i b l e  func t ions  and r e l a t i o n s  on the  

s e t  of  na tu ra l  numbers" .  Since the re  are uncoun tab ly  many such func t ions  and 

r e l a t i ons  th i s  a l ready  would  lead to  a l anguage  wi th  uncoun tab ly  many bas ic  

symbol s .  In a fo rma l  s y s t e m  only t h o s e  c o n s t a n t s  for  which the re  a re  def in ing 

ax ioms  c o n t r i b u t e  t o  t he  power  o f  the  fo rma l  sys t em.  There fo re  we wou ld  

need an uncoun tab le  s e t  o f  ax ioms which is ou t s ide  the  scope  o f  a fo rma l  

s y s t e m  since every dec idab le  s e t  a l ready  is coun tab le ,  i f  we d i spense  wi th  

def in ing  ax ioms for  func t ion  or  r e l a t i on  c o n s t a n t s  we may as wel l  t r e a t  t hem 

as var iables .  In fac t  we wil l  i n t roduce  a language  which has  such  s e c o n d  o rde r  

va r i ab l e s .  In our  f r amework  i t  wi l l  su f f i ce  j u s t  t o  in t roduce  s e t  var iables .  The 

i n t roduc t i on  o f  bare  s e t  var iab les  (or  func t ion  var iab les )  wi l l  in genera l  a l so  



~1. The language o f  p u r e  n u m b e r  t h e o r y  

n o t  r a i s e  t h e  p o w e r  o f  a f o r m a l  s y s t e m  (cf ,  e x e r c i s e  3.15.4). But  i f  we  a d d  t h e  

d e f i n i n g  a x i o m s  fo r  s e t  v a r i a b l e s ,  i.e. t h e  c o m p r e h e n s i o n  s c h e m e ,  w e  wi l l  

o b t a i n  a s y s t e m  w h i c h  is s o  s t r o n g  t h a t  up t o  n o w  we  have n o t  b e e n  a b l e  t o  

do  i t s  p r o o f  t h e o r e t i c  a n a l y s i s .  T h e r e f o r e  we  wi l l  be  m o r e  m o d e s t  and  in a 

f i r s t  s t e p  wi l l  r e s t r i c t  o u r s e l v e s  t o  a s y s t e m  w h i c h  w e  a r e  g o i n g  t o  c a l l  t h e  

s y s t e m  o f  pare number theory. The  m o s t  i m p o r t a n t  f u n c t i o n s  in n u m b e r  

t h e o r y  a r e  'plus' a n d  'times'. ' P l u s '  a n d  ' t i m e s '  a r e  p r i m i t i v e  r e c u r s i v e  f u n c t i o n s  

a n d  i t  is  p o s s i b l e  t o  o b t a i n  a l l  p r i m i t i v e  r e c u r s i v e  f u n c t i o n s  f r o m  ' p l u s '  a n d  

' t imes*  (c f .  r e m a r k  3.12.). T h e r e f o r e  we  a r e  g o i n g  t o  i n t r o d u c e  a s e e m i n g l y  

s t r o n g e r  s y s t e m  in wh ich  we  have  a c o n s t a n t  fo r  eve ry  p r i m i t i v e  r e c u r s i v e  

f u n c t i o n  a n d  r e l a t i o n .  In  o r d e r  t o  d o  t h i s  w e  f i r s t  w i l l  i n t r o d u c e  n a m e s  fo r  a l l  

p r i m i t i v e  r e c u r s i v e  f u n c t i o n s .  In  d e f i n i t i o n  1.1. we  w i l l  g ive  t h e  s y n t a c t i c a l  

d e f i n i t i o n  o f  t h e  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m s ,  w h i l e  t h e  m e a n i n g  o f  

t h o s e  t e r m s  b e c o m e s  c l e a r  f r o m  d e f i n i t i o n  1.2. in wh ich  w e  d e f i n e  t h e  e v a l u a t i o n  

o f  an n - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m  f on  an  n - t u p l e  t t ..... t n o f  

natural numbers. 

1.1. P r i m i t i v e  r e c t t r s i v e  f u n c t i o n  t e r n m  

(i) S ( t h e  s y m b o l  fo r  t h e  s u c c e s s o r  f u n c t i o n ) i s  an una ry  p r i m i t i v e  r e c u r s i v e  

f u n c t i o n  t e r m .  
11 n 

(li) Pk ( t h e  s y m b o l  fo r  t h e  k - t h  p r o j e c t i o n  o f  an  n - t u p l e )  a n d  C k ( t h e  

s y m b o l  f o r  t h e  n - a r y  c o n s t a n t  f u n c t i o n  w i t h  va lue  k) a r e  n - a r y  p r i m i t i v e  

r e c u r s i v e  f u n c t i o n  t e r m s ,  w h e r e  in t h e  c a s e  o f  ~k  we  r e q u i r e  | ~ k ~ n .  

(r id I f  h i .... h m a r e  n - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m s  a n d  g is  an  

m - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m ,  t h e n  S u b ( g , h  t ..... h m)  is  a n  n - a r y  

p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m .  ( S u b s t i t u t i o n  o f  f u n c t i o n s ) .  

(iv) i f  g is an n - a r y  a n d  h an n + 2 - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m ,  

t h e n  R e c ( g , h )  is  an  n + l - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m .  ( P r i m i t i v e  r e c u r -  

s i on ) .  

1.2. l n d u c U v e  d e f i n i t i o n  o f  f(~ ..... t n)  = t f o r  an  n - s t y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  

t e r m  f a n d  n a t u r a l  n u m b e r s  t I . . . . .  t n , t  

(]) S ( t l ) = t  i f  t is  t h e  s u c c e s s o r  o f  t 1, 

(ii)  C ~ ( t  i . . . . .  t n) = t i f  t = k ,  
n 

(iii) P k ( t l  ..... t n )  = t  i f  t = t  k , 

(iv) S u b ( g , h  I ..... h m) ( t  I ..... t n ) = t  i f  t h e r e  a r e  n a t u r a l  n u m b e r s  u I ..... u m s u c h  

t h a t  h t ( t  I .. . . .  t n) = u t a n d  g ( u  I ..... u m)  = t .  
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§1. T h e  l a n g u a g e  o f  p u r e  n u m b e r  t h e o r y  

(iv) R e c ( g , h ) ( t  I ..... t n , k )  = t h o l d s  i f  k = 0  a n d  g ( t  I ..... t n) = t o r  i f  k is  t h e  

s u c c e s s o r  o f  k 0 and  h ( t  I ..... t n , k 0 , R e c ( g , h ) ( t  I ..... tn,k0)} = t.  

f ( t  I ..... t n) = t is t o  be  r e a d  as:  "The  evaluation o f  t h e  n - a r y  p r i m i t i v e  r e c u r s i v e  

f u n c t i o n  f o n  t h e  n - t u p l e  t I . . . . .  t n o f  n a t u r a l  n u m b e r s  y i e l d s  t h e  v a l u e  t" .  

1.3. Deflnltlon 

The g r a p h  o f  an n - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  t e r m  f is  t h e  n + l - a r y  

r e l a t i o n  {f} g iven  by  {f}( t t  ..... t n , t )  :¢~ f{t t  ..... t n )  = t .  

1.4. D e f i n i t i o n  

An  n - a r y  r e l a t i o n  R on  Rq is primitive recursive i f  i t s  c h a r a c t e r i s t i c  f u n c t i o n  

xRdef ined  by  

XR{tt  ..... t n )  := [ 1, i f  R ( t  ! ..... t n} 

/ 0, o t h e r w i s e  

is p r i m i t i v e  r ecu r s ive .  

W e  d o  n o t  w a n t  t o  g o  d e e p e r  i n t o  t h e  t h e o r y  o f  p r i m i t i v e  r e c u r s i v e  f u n c t i o n s .  

Th i s  is  t h e  t o p i c  o f  a n o t h e r  l e c t u r e .  The  a im  o f  t h e  p r e c e e d i n g  d e f i n i t i o n s  w a s  

t o  e m p h a s i z e  t h a t  i t  is  p o s s i b l e  t o  n a m e  e v e r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  by  

a t e r m .  This  a l s o  m e a n s  t h a t ,  v ia  i t s  c h a r a c t e r i s t i c  f u n c t i o n ,  we  have  a n a m e  

fo r  e v e r y  p r i m i t i v e  r e c u r s i v e  r e l a t i o n .  W e  n o w  a r e  p r e p a r e d  t o  i n t r o d u c e  t h e  

f o r m a l  l a n g u a g e  £a f o r  t h e  s t r u c t u r e  o f  n a t u r a l  n u m b e r s .  

1.5 Baalo symbols o f  t h e  l a n g u a g e  £a 

1. Logical symbols  

(i) C o u n t a b l y  m a n y  n u m b e r  v a r i a b l e s  d e n o t e d  by  u ,v ,w,x ,y ,z  .... 

(ii) C o u n t a b l y  m a n y  s e t  v a r i a b l e s  d e n o t e d  by  O,V,W,X,Y,Z  .... 

(iii) The sentential connectives I, ̂ ,v, the quantifiers V,3 and the member- 

ship relation s y m b o l  ~. 

2. Nonlogical symbols  

(i} A c o n s t a n t  n fo r  eve ry  n a t u r a l  n u m b e r  n. 

(ill A n  n - a r y  f u n c t i o n  c o n s t a n t  f f o r  e v e r y  n - a r y  p r i m i t i v e  r e c u r s i v e  f u n c t i o n  

t e r m  f. 

(i i i)  A n  n - a r y  r e l a t i o n  s y m b o l  R f o r  e v e r y  p r i m i t i v e  r e c u r s i v e  r e l a t i o n  R. 
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~1. T h e  l a n g u a g e  o f  p u r e  n u m b e r  t h e o r y  

When no confus ion  is to  be feared we of ten  will omit the underlining. 

3. Brackets serve as auxiliary symbols .  

1.6 Inductive definit ion of  the t e rms  of  the language £# 

(i) Every number  cons t an t  n is a t e rm and it is FVl(n)=~.  

(ill Every number variable x is a t e rm and it is FVl(x)={x}. 

{iiD If t t ..... t n are te rms  and f is an n -a ry  funct ion constant ,  then ( f t  I ..... t n) 

is a t e rm and it is FVl ( f t  I ..... t n) = FVl( t l )v . . .u  FVl(tn). 

We call FVt(t) the se t  o f  n u m b e r  variables occuring f ree  in t. 

1.7 Inductive deflal t lon of  the formulas  of  £P 

(i) I f  t I ..... t n are t e rms  and _P is an n-ary  relat ion symbol,  then ( P t r . . t  n) 

is a fo rmula  and it is FYl(Ptl . . . t  n) = FVI( t l )~ . . .uFVI( tn)  and BYl(Ptl. . . t  n} = 

FV2(_Ptl...t n) = BV2(Ptl.. .t  n} = ~. 

(ii) If  t is a term and X a set  variable, then t e X  is a formula  and it is 

FVI(te X) = FVl(t), FV2(t e X) = {X}, BVj(te X) = BV2(te X) = ~. 

(iii) I f  A and B are formulas,  then (qA) ,  (AAB) and ( A v B )  are formulas  and 

it is FVl(3 A) = FVi(A), FVi(A A B) = FVi(A)uFVI(B) for i=1,2 and BVt(~A) = BVI(A), 

BVi(A A B} = BVI(A)uBVi(B) for i=1,2. 

(iv) If  A is a formula  such tha t  x ~ BV 1 {A), then Yx A and 3x A are formulas  and 

we define FVI(QxA)  =FV 1 (A) \{  x }, FVz(QxA)  =FV2(A),  BVI{QxA) =BVI(A)u{  x } 

and BV2(QxA)=BV2(A)  for  Q~ {¥,3 }. 

Formulas  which are built  according to  (ii or  (ii) are cal led atomic.  

FVI(F) is the set  o f  f ree  n u m b e r  variables occuring in F, FVz(F) the set  of  

f ree  s e t  variables occuring in F. We call BVI(F) the set  o f  n u m b e r  variables 

occurring bound in F. By FV(F} we denote  the se t  FVI{F) w FV2(F) of  f r ee  variables 

of  F and by BV(F) the set  BVI(F)w BV2(F) o f  bound variables of  F 

Sen tences  are formulas  F wi thout  free variables, i.e formulas  F such tha t  

FVI(F}wFV~(F) = ft. 

I I~-sentences  are formulas  F such tha t  FV~(F) = fl, i.e. formulas  wi thout  free 

number  variables. 

Up to  now we have BV~(F)=fl for all formulas  E That  means tha t  F does no t  

contain bound se t  variables or bound s econd  order variables as they of ten  are 

synonymized. One therefore  calls  them f i rs t  order formulas .  We usually refer 

to  f i rs t  order  formulas  as XPl-formulas.  The second  order f o rmu las  or £#2-  

formulas  are obtained by adding the c lause 

12 



§1. T h e  l a n g u a g e  oF  p u r e  n u m b e r  t h e o r y  

(v) I f  F is a f o r m u l a  and XcBV2(F) ,  then  (¥XF)  and (3XF)  are fo rmu la s  

such t ha t  FVI (QXF)=  FVI(F), BVI(QXF)=  BVI(F), FV2(QXF)= FV2(F)\{X} and 

BV2(QXF) = BV2(F)~;{X} for  Q¢ {Y,3 }. 

1.8 Notational conventions 

As syntactical variables for number variables we use the letters u,v,w,x,y,z. 

Terms are denoted by r,s,t,a,b,c and number constants by ]lhn~J. LI,V,W,X,Y,Z 

are syntactical variables for set variables. All these symbols will also occur 

with indices. 

By A[x I ..... x n] we indicate that the variables xj ..... x n really do occur in A, i.e. 

FVI(A} = {x I ..... Xn}. A(x I ..... x n) just means that x I ..... x n may occur in A. We use 

analogous conventions for set variables. 

Ax(s) or tx(s) are obtained from A or t respectively by replacing all occurences 

of x by s. If there is no danger of confusion we omit the subscript x. 

Class  t e r m s  o f  the  fo rm {x:A(x)} do  no t  be long  to  the  language  bu t  will be  

used as  def ined objec ts ,  sc{x :A(x)}  then  s t ands  for  Ax(s) .  We o f t en  wr i te  

Ax(B)  ins tead o f  Ax({x:B(x)})  and omi t  the  subsc r ip t  X whenever  the re  is no 

danger  o f  confus ion.  

The sen ten t ia l  connect ives  --~ and ~-~ are def ined as usual by ~.. .v ___  and 

( . . . - -* - - - )  ^ (-__---~...) respectively. 

1.9 Exercises 

1. Suppose  t h a t  t ,  s are ,~a-terms.  

(i) Give an inductive def ini t ion o f  tx(S).  

(ii) Show tha t  tx(S) again is an ,~a-term. 

2. Suppose  t h a t  s is an 5 a - t e r m  and F is an ~ - f o r m u l a .  

(i) Give an inductive defini t ion of  Fx(S). 

(ii) Show t h a t  Fx(S) again is an L~-formula .  

3. Suppose  t h a t  F and B are ,~a-formulas. 

(i) Give an inductive def ini t ion o f  Fx({x :B(x)} ) .  

(ii) Find fo rmu l a s  F,B such tha t  Fx ({x :B(x )} )  is not  an ~ - f o r m u l a .  

iii) W h a t  p re requ is i t es  are needed fo r  F and B in order  to  obta in  Fx({x :B{x)})  

to  be an ~ a - f o r m u l a ?  
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§2. Semantics f o r  .~ 

2. Semantics f o r  

Hitherto we defined terms and formulas of .~ as mere syntactical objects. To 

give them a mathematical meaning we need an interpretation for the formal 

language .~. The development of such a semantics is the goal of the present 

section. We will, however, not develop a general theory of semantics for ~' 

but, according to our intention, will restrict ourselves to the so called standard 

i n t e r p r e t a t i o n  o f  ~ in t he  s t r u c t u r e  N o f  na tu ra l  number s .  

2.1. Definition 

An asaignment for ~ is a mapping • which assigns a number ~(x)eR~I to every 

number variable x and a set ~)(X)c~ to every set variable X. 

2.2. I n d u ~ l v e  Def ln lUon  o f  t he  value  t ° o f  an ~-~-term t w i t h  r e s p e c t  t o  an  

a s s i g n m e n t  

(i) n ° = n 

(ii) x°= ~(x) 

(ill) ( f t , . . . t n l O =  n if f ( t T  ..... t n  ~ ) = n a c c o r d i n g  t o  1.2. 

As an immed ia t e  c o n s e q u e n c e  o f  de f in i t ion  2.2. we ob ta in  t o e  N. 

2.3. I nduc t i ve  de f in i t ion  o f  ~ ~ A ° 

Suppose that • is an assignment for ~. 
o (i) ~I ~ ( P t l . . . t n ) O : ~ X p ( t ~  ..... t n ) = l  

i.e., we  have N ~  ( P t i . . . t n )  ° i f f  P(tl O ..... t~n) is t r u e  w h e r e  P is t he  pr imi t ive  

r ecur s ive  ) r ed ica te  d e n o t e d  by P 

(ii) N = (t~X) O ~ t°e~(X) 

( i i i )  N = ( 1 A )  ° ~ N J~ A ° 

(iv) N = (AA B) O , ~  ~ 1= A ° and  ~ t = B ° 

(v) N = (AvB) 0 ~ I~ 1 = A 0 or N ~= B O 

(vi) ~l = VxA O ~ N ~ A x ( n )  O fo r  all n ~ N  

(vii) N = 3 x A  ¢ ~  N ~ Ax(n)  ° f o r  s o m e  n e N  

This  g ives  t h e  s e m a n t i c s  f o r  . ~ l - f o r m u l a s .  W e  o b t a i n  t h e  s e m a n t i c s  f o r  ~ 2 -  

f o r m u l a s  by add ing  t h e  c l a u s e s  

(viii) N ~ VXA O ~ ~J ~ A * fo r  any  a s s i g n m e n t  ~ which  a t  m o s t  d i f f e r s  in 

t he  value  o f  ~ ( X )  f r o m  ~.  

(ix) N ~ 3 X A  ° ~ There  is an  a s s i g n m e n t  ~ which  a t  m o s t  d i f f e r s  in t h e  

va lue  o f  ~ ( X )  f r o m  ~ s u c h  t h a t  N ~ A ~'. 
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§2. Semantfcs f o r  . ~  

If FVt(t)=~ we have t~=t ~' for all assignments ~ and ~'. For closed terms t, 

i.e. terms t such that FVi(t) = ~, we therefore define tiN:= t ~ for an arbitrary 

assignment ~b. Two closed terms s and t such that siN= tiN are called equivalent. 

Two formulas F t and F 2 are said to be equivalent if they only differ in equivalent 

terms. 

The value of t ° and the relation IN ~ A ~ obviously only depend upon ~FV(t) 

or @[I=V(A) respectively. If FV(t) = {x I ..... x n} or FV(A) = {x I ..... xn, X 1 ..... Xm}, we 

of t en  wri te  t [k t  ..... k n] or  N ~ A[k I ..... kn,S ! ..... Sm]  repect ive ly  ins tead  o f  "t  ~ or 

I N C A  @ for  an a s s i g n m e n t  • such t ha t  ~ ( x  l} = k  I and ~ ( X  i) =S j  hold  for  

i = l  ..... n and j = l  ..... m". 

I f  F is a s en t ence  we obvious ly  have IN ~ F ~ ~ IN ~ F ~" fo r  all a s s i g n m e n t s  

and T. In th is  case  we wri te  IN ~ F and say t h a t  the  sen tence  F is  valid in ~ .  

For I I~-sentences  AIX 1 ..... X n] we have N ~ VXp..VXnA if and only  if  IN ~ A ~ 

holds  for  any a s s i g n m e n t  @. This is the  r e a son  for  cal l ing t h e m  HI - sen t ences  

a l though  they p r ima  facie are ~ l - f o r m u l a s .  For I I~-sentences  we a lways  wr i te  

IN ~ A ins tead  o f  IN ~ VXI...VXnA. This no ta t ion  s o m e t i m e s  will a l so  be used 

fo r  a rb i t r a ry  fo rmu l a s  A. So, for  a f o r m u l a  A, IN ~ A means  'IN ~ A ~ for  all 

a s s i g n m e n t s  ~ ' .  

2.4. l]xel~hle 

Suppose  t h a t  L is a f i r s t  o rder  language  which is given by a s e t  C o f  individual 

constants, a set [: of function constants and a set P of predicate constants. 

We define L~ and L 2 analogously to .~, or "~2 respectively. The semantics for 

L I and L 2 is defined in the following way. 

(i) A structure ~ for L~ is a quadruple (I,~¢, ~, ~} which satisfies the 

following conditions: 

(a) I*~ is a set. 

{b) We have ~¢cl such that for every c¢6 there is a c~e~. 

(c) ~ is a set of function on I, such that for any n-ary function symbol 

f¢ B: there is a function fY'- In--+ I in ~. 

{d) ~ is a set of predicates on I such that there is a P~c I n in ~ for every 

n-ary predicate symbol Pe P. 

(ii} A structure L/' for L 2 is a quintuple (I,M,~C,oT,~) such that (I,¢¢,oT,~} 

is a structure for L~ and Mc Power(1) (the power set of l). 

(iii) If LP is a structure for L~ or L 2, then an AP-assignment for ~i(i=l,2} is 

a mapping ~ which assigns to any x an element ~(x)e I and to any set variable 

X a set @(X)cl or ~{X)eM respectively. 
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~3. A Formal  s y a t e m  For p u r e  n u m b e r  t h e o r y  

For L-terms t and L-formulas F and an ~ga-assignment ~) we define t ¢ and 

~°~F~ analogously to 2.2 and 2.3 respectively. We write 3a~F for an Li-formula 

F if ~°~F~ holds for any ~C°-assignment ¢ and ~F if ~a~F holds for all 

Li-structures ~9 °. 

Prove the following claims: 

(i) S°~A- -~  F ~ S°~A---~ ¥ x F  if x ~ F V ( A )  

(ii) S ° ~ F - * A  =~ S ° ~ 3 x F - ~ A  if  x c F V ( A )  

(iti) ~ ¥ X F  ~ Fx(Y) 

(iv) ~ F x ( Y )  --+ 3 X F  

(v) ,S°~A--~ F ~ ,5°~A--~ YXF if X c F V ( A )  

(vi) ,5°pF- -~  A => ~ P 3 X F - - ~  A if X c F V ( A )  

~3. A formal system for pure number theory 

Still in the spirit of Hilbert's program we are trying to establish a formal 

system which derives as much valid sentences of IN as possible. In a first 

step we are going to deal with those sentences which are valid because of their 

logical structure. Every formula of ~a carries a sentential and a quantifier 

structure. To clarify the sentential structure of an ~-formula which is given by 

the logical connectives "I,^ and v we introduce the sentential subformulas of 

an ~a- formula. 

3.1 Induct ive  deflnlUon of the set AT(F) of sentential aubformulas of an L~ o- 

formula F 

{i) If F is atomic or a formula QxA or QXA respectively where Qe{V,3}, 

then AT(F) = {F}. 

(ii} If F is a formula IA, then AT(F) = {F} v AT(A). 

Oil) If F is a formula (A^B) or (AvB}, then AT(F} = {F}v AT(A)u AT{B). 

Formulas A such that AT(A) = {A} are called sententlal atoms. By AE we denote 

the set of all sentential atoms of ~a. We define AE(F) :=AE ¢~ AT(F). 

3.2. Def ini t ion 

(i) A sentential assignment is a mapping  B : AE -~  {t , f}.  

(ii) The t r u th  value A B o f  a f o r m u l a  A under  a given sen ten t la l  a s s ign-  

men t  @ is given by the  usual  i n t e rp re t a t ion  o f  the  logical connec t ives  as t r u t h  

functions (cf. 2.3.(iii)-(v) and 10.12. below). 
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~3. A F o r m a l  s y s t e m  For p u r e  n u m b e r  t h e o r y  

One should  notice t ha t  only the  values  of  B r e s t r i c t ed  to  AE(A) are needed in 

the  c o m p u t a t i o n  of  A ~. 

(iii) A fo rmu la  A is sen ten t ia l l¥  valid if  A ~ =  t holds  for  all  sen ten t ia l  

a s s i g n m e n t s  II~. 

3.3. l a m i n a  

I f  A ~ AT(F),  then FVi(A) c F¥i{F) for  i = 1,2. 

The p r o o f  is an easy  induct ion on the  defini t ion of  A~ AT{F). 

An a s s i g n m e n t  @ canonical ly  induces a sentent ia l  a s s i g n m e n t  B~  by defining 

A 8 ~  = t ¢~ Rq ~ A m for  all sen ten t ia l  a t o m s  A. For these  a s s i g n m e n t s  we have 

the  fo l lowing lemma.  

3.4. I~mma 

lq ~ A m holds  i f  and on ly  i f  A B~  = t. 

Proof by induction on the  length  of  the  fo rmu la  A 

1. I f  A e A E ,  then  we have ~I ~ A ¢ ~ A  B e  = t by definit ion.  

2. I f A i s a  formula 7B, t h e n w e  h a v e ~ l ~ A  m ~ = ~ l / :  B ~ B  e ¢ =  f ~ A  B ~ = t .  

3. I f  A is a f o rmu l a  (B ~ C), t hen  we have ~1 ~ A if and only if lq ~ B a n d / o r  

lq ~ C. By the  induction hypothes i s  this  holds  if and only if B B ¢ =  t a n d / o r  

C e ¢ =  t. But  this  is equivalent  to  (B ~/ C) 6 ¢  = t. 

As a coro l l a ry  to  3.4. we obtain the  fo l lowing theorem.  

3.5. Theorem 

I f  F is sen ten t ia l l y  valid, then  ~ ~ F. 

Concerning the  quant i f ie r  s t r u c t u r e  of  an .S°-formula we jus t  need the  fo l lowing 

observa t ion .  

3.6 I~rcumu~ 

If F is a formula iAx{t)v 9xA or -IVxAv Ax(t), then ~ ~ F. 
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~3. A Formal  s y s t e m  f o r  p u r e  n u m b e r  t h e o r y  

P r o o f  

From ~q ~ Ax( t )  ~ we have to  conc lude  N ~ 3xA ¢ .  By induction on the  length  

of  A we easi ly  obta in  IN~ Ax(t)  ¢ ¢~ ~l ~ Ax(_t¢} ¢. Hence IN ~ 3 x A  ¢. In the  

second case  we have to  show tha t  IN ~ VxA ¢ implies IN ~ Ax(t)  ¢. But IN ~ ¥xA ¢ 

implies  ~l ~ Ax(_t¢) ¢ and the re fo re  a lso  IN ~ Ax(t} ¢. 

I n  t h e  p r o o f  o f  3 .6 .  t h e  c a r e f u l  r e a d e r  w i l l  h a v e  n o t i c e d  t h a t  t h e  p r o o f  n e e d s  
t h e  a d d i t i o n a l  h y p o t h e s i s  t h a t  t h e  t e r m  t i s  s u b s t i t u t a b l e  f o r  x i n  A ,  i .e .  n o n e  
of the free variables occurring in t must be bound in A. Here and in future we 
will tacitly assume that this prerequlslt always is satisfied. This means no 

restriction since by renaming the bound varlab[es in A we may always obtain 

that t is substitutable in A. 

Now we are p repared  to  fo rmu la t e  the  ax ioms and inference ru les  o f  the  formal  

system Z I o f  pure  number  theory.  The language of  Z t is the  f i r s t  order  

language  ,,~° I. 

3.7. Logical  ax ioms  o f  the  fo rmal  s y s t e m  Z t 

(i) Every sen ten t ia l ly  valid fo rmula  is a logical axiom of  Z r 

(ii) Every fo rmula  of  the  fo rm l V x A v  Ax( t )  and q A x ( t ) v  3 x A  is a logical 

ax iom o f  Z 1. 

3.8. Logkml L'aferen¢~8 o f  the  fo rmal  s y s t e m  Z t 

(rap) A , - I A v  BI-  B (modus  ponens)  
% 

(V) IAv BI-- IAv VxB I if xcFV i (A) (V-rule) 
(:I) IBv AI--13xBv A J (3-rule) 

The variable x of  a quant i f ier  Inference is ca l led  i ts  eigenvariable. 

3.9. Equal i ty  ax ioms  o f  the  fo rma l  s y s t e m  Zj 

Among the  c o n s t a n t s  for  the  pr imit ive recurs ive  re la t ions  we have a c o n s t a n t  = 

for  the  equal i ty  relat ion.  Al though we could  derive the  p rope r t i e s  o f  the  equal i ty  

re la t ion  f r o m  its defining ax ioms (conta ined in 3.10.) we p re fe r  to  f o r m u l a t e  

t h e m  expl ic i t ly  as a separa te  g roup  of  axioms.  This is in coincidence with the  

usual  t r e a t m e n t  o f  fo rmal  s y s t e m s  where  the  equal i ty  symbo l  o f t en  is r ega rded  

as a logical symbol .  

(i) ¥x(x = x) 

(ii) VxVy ix = y - - ~ y  = x) 

(iii) VxlVx2Yx 3 (x I = x 2 ^ x  2 = X 3 --+ x! = X3) 

( i v )  V x Y y ( x  = y --~ t = t x ( y ) )  

(v) V x V y ( x  = y--+ (F--i Fx(Y))). 
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§3. A Forma l  s y s t e m  For p u r e  n u m b e r  t h e o r y  

3.10. Mathematical  axionm of  the formal  sys tem Z t 

(i) The s u c c e s s o r  ax ioms  

Vx( 1 O= Sx )  

¥xVy(_Sx =_Sy---, x = y)  

Sn = S n for all ne~l. 

(ii) The def in ing ax ioms  f o r  pr imi t i ve  recurs ive  func tJons  are given by the 

universal c losures  of  the fol lowing formulas  

(C~x t  ..... x.)=_k 
I P ~ x l  ..... x n ) = X k  

{Sub{g, h I ..... h m ) xl... x n } = (g {h! x! ...x n ) ... (hmx I ...x n )) 

{ x = 0 --* {(Rgh) xv..XnX ) = gx!...x n ) ̂  

i x  = _Sy --* ( ( R g h ) x t . . . X n X )  = hx! . . .XnY(iRgh)  Xt---XnY)) 
R X t . . . x  n *-* X R X I . . . X n  = 1 

(iii) The induct ion ax iom is given by the  scheme 

(IND) Ax(0 )  ^ VyiAxiY)  --~ Axi_~v)) --* VxA 

3.11. lnducUve definit ion o f  Z i F- F 

We are going to  define the formal  derivation predicate  for  Z v Z 1 ~- F should  

be read as 'F  is formal ly  derivable in Zt'.  

(i) I f  A is one o f  the axioms 3.7.,3.9. or 3.10, then  Z l ~- A. 

(ii) I f  Z 1 ~- A i (i = I or i = 1,2) holds  for the premiseis)  of  an interference 

according to  3.8. whose conclusion is A, then we also have Z L ~-A. 

3.12. Remark 

The sys tem Z l is an extension by definit ions of  the be t te r  known sys tem PA 

of  Peano arithmetic.  PA is fo rmula ted  in a f i rs t  order  logic with equality. The 

only nonlogical  symbols  of  PA are the binary funct ion symbols  '+ '  for  

addition and " ' for  multiplication,  the unary funct ion symbol _S for  the 

sucessor  funct ion and a c o n s t a n t  0 for  the natural  number  0. (The equal i ty  

symbol  is coun ted  among the  logical symbols ) .  The axioms of  the group 3.10.(ii) 

are then replaced by the defining axioms for 0, S, '+ '  and " ' ,  i.e. by the uni- 

versal c losure  o f  the fol lowing formulas  

x+O = x and x - O = O  

x+_Sy = S i x + y )  x-_Sy = i x - y ) + x  

Here as usual we have wri t ten ix+y) instead o f  (+xy) and (x .y )  instead o f  (-xy). 

Apparent ly  PA is a subsys tem of  Z 1, i.e. we have 
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(i) PA }- F ~ 7,1 }- F for  every formula  F m the  language o f  PA. 

We also have the opposi te  direct ion o f  (i) which means tha t  Z 1 is a conservat ive 

extens ion of  PK But we may even prove: 

(ii) For every ~-~1 - fo rmu la  F there is a formula Fp in the language o f  PA 

such that  Zl ~- F ~-* Fp. 

This means tha t  every symbol of  Z t can be defined in PA. For this reason Z t 

is cal led an extens ion of  PA by definit ions.  The proofs  of  (i) and (ii), however,  

require me thods  f rom the  theory  o f  recurslve funct ions  and will no t  be given 

here. 

3.13. Sotmdness  theorem for  Z t 

I f  Z 1 ~- F, then IN ~ F. 

Proof 

By induction on the definit ion o f  Z 1 ~-F we show tha t  Z t ~- F implies IN ~ F ~ 

for  any ass ignment  @. If F is a logical axiom then we obtain IN ~ F ~ by 3.5. 

or 3.6 respectively.  The claim is obvious for the equali ty axioms and the mathe-  

matical axioms. We only should  check the induction scheme. Here we have to  

show tha t  IN ~ A(O) ~ and IN ~ Yy(A(y) --* A{S_y)) ~ imply IN ~ A(n_) ~ for all 

neIN. But IN ~ Vy(A(y) --* A(S_y)) ~ and ~1 ~ A(n) ~ imply IN ~ A(Sn} ~. Since we 

have IN ~ A(O) ~ and every natural  number  is obtained f rom 0 by finite applica-  

t ions  o f  the  successor  funct ion  we easily obtain by meta induct ion  on n tha t  

~l ~ A(n_) ~ for all n e N .  In a las t  s tep  we show tha t  the validity in IN is con -  

served by the inference rules, From IN ~ A ~ and ~l ~ (A --* B) ~ we immediately 

obtain IN ~ B ~. If  F is the conclus ion  of  an instance o f  the V-rule then  F must  

be a formula  A --* YxB and we obtain by the induction hypothesis  IN ~ (A -~ B) ~ 

for  all ass ignments  @. It  remains t o  show tha t  IN ~ A ~ implies IN ~ Bx(n_)~ for  

all neIN. For an arbitrary neIN we obtain an ass ignment  • by defining ~'(x) := n, 

~(y) := ~{y) for  all y * x  and T ( X ) : =  ~{X). Since x~FVt(A) we have I N C A  a' .  

IN ~ (A--~ B) ~ therefore  also implies ~l ~ B V. But this implies IN ~ Bx(~'__~x)~ 

since in Bx{~'x) all occurences  o f  x are replaced by the cons t an t  ~x. Hence 

N ~ Bx(n) ~ for  all neIN. 

The case of  an 3- inference is t rea ted  analogously,  

3.14. Remark 

The soundness  theorem assures  tha t  Zt only derives II~-theorems of  IN, i.e. II~- 

sentences  which are valid in the s t ruc tu re  IN. On the o ther  hand we know tha t  
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~3. A F o r m a l  s y s t e m  For p u r e  n u m b e r  t h e o r y  

Z I cannot derive all theorems of ~I by G6del's theorem. As already mentioned 

in the beginning of this chapter, there is a tremendous gap between the set 

of formulas which are derivable in Z I or any other formal system and the 

formulas which are valid in N. The latter is a Hi-complete set while the set 

of formally derivable formulas always is Z~. This naturally arises the question 

if there is a classification of the formulas which are outside the scope of Z I 

(or of any other formal system). We are going to give such a characterization 

by defining a norm for the H~-sentences of ~ and then showing that only 

sentences whose norm is not too large may be derived in Z t. The definition of 

this norm function is the aim of the following sections. 

3.15. l ~ x ~ s  

1. Let F,A be ~t-formulas such that (BV(A)uFV(A))c~BV(F)=H. 

Prove that Zli-F already implies ZI~-Fx({X: A(x)}). 

2. Suppose that L is a language such that .~°c L and let c i be an arithmetization 

of L. Assume that T is a consistent theory for L such that an L-formula sb(x,y) 

exists which satisfies FV(sb(x,y)) = {x,y} and T ~-sb(VF1,y) *-* y = rFxo(CF1)1. Show 

that there is no L-formula Tr(x) such that T }-Tr(r__F I) *-* Fholds for all L- 

formulas F. 

A formal  theory  T for  a language Lt(T) (i = 1,2) is a se t  o f  formulas  o f  LI(T). 

The re la t ion  T [ - F  is def ined inductively by: 

(i) If FeT or if F is a logical axiom according to 3.7 or a formula of the 

shape ¥XF  -*  Fx(Y)  or F×(Y) -*  3XF, then  T~-F. 

(U) If  F is the conclus ion  of  a logical inference according to  3.8. whose 

premises  are F o or Fo ,F  ~ respect ive ly  and if  T[-F} holds  for  j = 0 or j = 0,1 

respect ively,  t hen  T~-F. 

(iii) If  i = 2  and T J - A - * F  or T ~ - F - * A ,  then T [ - A - ~ ¥ X F  or T I - - 3 X F - * A  

repect ively  provided tha t  X¢ FV(A). 

Suppose tha t  Tt ,T 2 are formal  theor ies  for  L(T t) or L(T2). We say t h a t  T 2 is 

a conservat ive  ex tens ion  o f  T t (wr i t t en  as Tt<T ~) if L ( T t ) c L ( T  2) and 

T t [ -F  ~ ,  T 2 J-F holds  for  all L (T t ) - fo rmu la s  F. 

3. Suppose tha t  TI is a sub theory  o f  the  formal  theory  T x. Assume tha t  for  

any L ( T t ) - s t r u c t u r e  ~ and any ~ - a s s i g n m e n t  • such tha t  ~ ~TtO there  is a 

L (T2) - s t ruc tu re  ~ and a S - a s s i g n m e n t  ~F which sat isf ies  ~5 ~ T ~  and 

~ F  O ~ ~ ~ F  o for  all L (T t ) - fo rmu la s  F . Show tha t  Tt<T 2. 

[Hint: Use the comple teness  theorem for  f i rs t  order  logic.] 
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§ 4. The ln f in i tary  language -~c~ 

4. Let the formal theory Z 2 for ~2 be given by the axioms of Z i with the 

scheme (IND) of complete induction expanded to all ~a2-formulas. Show that 

Z z [- F implies Z I [- F for all ~al-formulas F satisfying FV2(F) = ~. 

5. The formal theory ACA o for ~a 2 is given by the axioms of Z I, with the 

axiom (Ind) VX (_0¢ X A Vx (x e X --* Sx e X) -~ ¥x (x e X)) instead of the scheme 

(IND) of complete induction together with the scheme of arithmetical compre- 

hension, i.e. 3XVx(xeX ~ F) for any o~°i-formula F such that X~FV2(F). 

Show that ZI,(ACA o. 

6. The formal theory E~-IND for ~a s is given by the axioms of Z I with the 

scheme (IND) of complete induction restricted to En°-formulas. 

E~-INDR results from Zj by replacing the scheme (|ND) by the rule 

(E°n-INDR) J-A-*Fx(_O), F-A--~F-OFx(SX) =~ F-A--*VxF 
for every g°-formula F and every ~al-formula A such that x¢ FV(A). 

We obtain the formal theory Z°n-INDR ' by restricting the rule (E°n-INDR) to 

formulas F of the shape 3xIVx2...Qxn(~X,X I ..... xn~e X) only. 

Show that for every ~al-formula F the following are equivalent: 

(i) E~-IND I- F 
( i i )  EBB-IN'DR [- F 

(iii) E°B-INDR ' F- F. 

§ 4. The in£initary language ~oo 

We have already mentioned that it is impossible to obtain all II~-theorems of ~I 

by a finitary formal system. Therefore we are trying to (at least successfully} 

derive them by an infinitary system. For this purpose we reformulate the II~- 

sentences of ~I in an infinitary language o~ao0 for which there is a canonical 

infinite derivation procedure. As far as we know W. Talt was the first one who 

used exactly this approach. The use of infinitary systems in proof theory, 

however, was already implicitly suggested by D. Hilbert. K. SchUtte was the first 

one who systematically used infinitary systems in proof theoretlc research. The 

t e rm 'semi£ormal system' is due to  h im. 

4.1. B~Ic Bymbols of the language ~oo 

L Logical symbols 

(i) Countably many set variables 

(ii) The logical symbols A ,V, e, 4 • 

2. The nonlogical symbols of L~°oo are the same as those of ,~a. 
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§ 4.  The /n f ,  tn.~t:ary language  .-~oo 

4.2. Induc t ive  de f in i t ion  o f  the  terms o f  ~oo  

(i) Every  n u m b e r  c o n s t a n t  is a t e rm.  

(ii) I f  t 1 ..... t n are t e r m s  and if _f is a c o n s t a n t  fo r  an  n - a r y  pr imit ive  

recurs ive  func t ion ,  t h e n  ( f t  I ..... t n) is a t e rm.  

4.3. Induc t ive  de f in i t i on  o f  t he  formulas o f  ~oo  

(i) If  t I . . . . .  t n are  t e r m s  and  __R is an n - a r y  r e l a t i o n  c o n s t a n t ,  t h e n  

(R t l . . . t  n) is a fo rmu la .  

(ii) I f  t is a t e r m  and  X a s e t  var iable ,  t hen  ( t e  X)  and  ( t¢  X) are  f o r m u l a s .  

(iii) I f  l is a nonvo id  index s e t  a n d  (A i ) l e  I a s e q u e n c e  o f  f o r m u l a s ,  t h e n  

/ k { A  i : i ~ I }  and  V { A  t : i ~ ! }  a re  f o r m u l a s .  

We  o f t e n  wr i te  l/~i A t and  ieIV A t i n s t ead  o f / k  { A i : i c I } or  V { A t : i ~ I } r e spec t ive ly .  

As usua l  we  wr i t e  A t n ... n A n or  A! v ... v A n i n s t ead  o f / ~  { A l . . . . .  A n } o r  V { A I , . . - A  n } 

respec t ive ly .  

F o r m u l a s  bu i l t  a c c o r d i n g  t o  one  o f  t he  c l a u s e s  (i) o r  (ii) a re  ca l l ed  atomic. 

The language ~t~o is t he  s u b l a n g u a g e  o f  ~oo  which  is o b t a i n e d  by  r e s t r i c t i n g  

the  index s e t  ! in c l ause  (iii) t o  c o u n t a b l e  s e t s  only.  

For  t echn ica l  r e a s o n s  we  do n o t  c o u n t  the  nega t ion  s y m b o l  "1 a m o n g  the  bas ic  

s y m b o l s  o f  the  l anguage .  This,  however ,  d o e s  n o t  mean  any  r e s t r i c t i o n  s ince  

we may  def ine  it in the  f o l l o w i n g  way. 

4..4. I nduc t i ve  deflnlt . lon o f  3 A 

(i) 3 R t  t ...t n is t he  f o r m u l a  R_t t ...t n w h e r e  R m e a n s  t he  pr imive recurs ive  

r e l a t i o n  c o m p l e m e n t a r y  t o  R 

(ii) 3 ( t ~ X )  -= ( t ~ X ) ,  3 ( t ~ X )  =- ( t c X ) ,  

(ill) 1 A  ! Ai=- ~ l l A i .  "I ~ I  Ai z l t /~l lAi .  

4..5. L e m m a  

1 1 A = A  

The p r o o f  is an easy  induc t ion  on t he  de f in i t ion  o f  -IA, 

4.6. R e m a r k  

S o m e t i m e s  we will be f o r c e d  t o  e x t e n d  the  l anguage  ~ c o  by n u m b e r  var iables .  

We  usua l l y  will on ly  need  f in i te ly  m a n y  n u m b e r  var iables  x! . . . . .  x n. We  d e n o t e  

th is  e x t e n d e d  l anguage  by ~ o ( X !  . . . . .  Xn). The t e r m s  o f  t he  e x t e n d e d  l anguage  
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~5. Semant . lcs  #'or "~oo 

are then defined by adding the clause 

(O) Every number variable is a term 

to definition 4.2. 

§ 5. Semantics For ,i, aoo 

In £°oo we do not have any number variables and therefore do not need an assign- 

ment for them. An assignment for 5taoo is a mapping • from the set of variables 

into the power set of N. We define t ° for £Doo-terms t as in 2.2. Since there 

are no free number variables in t we always have t ° = t N. 

5.I. Inductive definition of ~ ~ F ° 

{i) N ~ {_Ptt...tn)¢¢~ X p ( t ~  ..... tn N) : 1 

( i i )  N D ( t  ~ X }  ¢ ¢ ~  t ~ e O ( X )  

N ]:: ( t  { X )  ¢ ¢ ~  t ~ ~ ¢ ( X )  

(iii) ~l ~ i/~EiAl ¢ ~ ~I ~ Al ¢ for all ie l  

(iv) N ~tyiAt O ~ N ~ Al O for some ie l  

As in the semantics forSP we denote by ~I ~ A that ~I ~ A ¢ holds for all 

assignments ¢. 

Our first goal is to obtain a more syntactical description of the validity relation 

for the language £0o. For this reason we are going to introduce a concept of 

Infinitary derivations which completely characterizes the validity of ,Wo-formulas 

in ~I. Again for technical reasons we will not solely derive single formulas but 

rather finite sets of formulas. These finite formula sets are to be interpreted 

as the disjunction of their members. As syntactical variables for finite sets of 

formulas we use capital greek letters such as A,F,A ..... We always will write 

A,F instead of Au{F}. 

5.2. Inductive deflnltlon of ~ A 

(Axl) If }(p(tl IN ..... tn N) = I and (Ptt...t n) cA, then ~ A 

(Ax2) If t ~=s IN then ~ A, teX, s~X 

( A )  If ~ A, A i for all i e l ,  then ~ A, A{A i : i e l }  

(V)  If ~ A, A i for some iel ,  then ~ A , V { A i : i e l }  
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~5. S e m a n t i c s  For .¢t~oo 

5.3. S o u n d n e s s  t h e o r e m  fo r  

l f ~  o A, then ~ [ b V { F  : FeA}. 

Proof 
W e  p r o v e  t h e  c l a i m  by  i n d u c t i o n  o n  t h e  d e f i n i t i o n  o f  ~o A. 

( A x l )  Then  A c o n t a i n s  an  a t o m i c  f o r m u l a  ( P t  I . . . t  n) s u c h  t h a t  X p ( t t  ~ . . . . .  t n  ~ )  = 1 

and by 5.1.(i) we obtain lq~(V{F : FeA}) ~ f o r  every assignment ~.  

(Ax2) For any assignment • and term s and t such that s ~¢ = t ~ we either 

have N~(teX) ~ or N~(s4X) ®. Hence N~(VAv(teX) v (seX)) ~. 

(A) By the induction hypothesis we have N ~(VAv Ai) ~ for all ie I. If lq ~VA ~, 

then also N~(VAvl/~A i )~. If IN~VA ~, then N~AI ~ for all iel. Hence 

N ~ i~e iAi 4~ which implies aq ~ ( V  A v te/~iAi)~. 

(V) This case is dual to the case of (A). 

5.4.  C o m p l e t e n e s s  t h e o r e m  f o r  ~o 

/ f  F is  an  ~q~ci-formula such that ~i ~ F, then ~ F. 

Due to the presence of free set variables the proof of the completeness 

theorem is not trivial. We need some preparations for the proof. In this section 

we briefly write formula instead of .$°t~-formula. 

5.5. D e f i n i t i o n  

(i) W e  ca l l  a f in i t e  f o r m u l a  s e q u e n c e  A = (A 0 ..... A 1) reducible If  i t  c o n t a i n s  

a f o r m u l a  o f  t h e  f o r m  t /~ lAi  o r  | y i A i  . T h e s e  f o r m u l a s  a r e  t h e  redexes o f  A. 

(ii) S u p p o s e  t h a t  A = (A 0 ..... A l) is  r e d u c i b l e .  A r e d e x  A k e A  is distinguished 

in A if  t h e r e  is  no  r e d e x  A i in A s u c h  t h a t  0 ~ i < k .  

(ii i)  I f  A is r e d u c i b l e  w e  o b t a i n  A r f r o m  A by  c a n c e l l i n g  t h e  d i s t i n g u i s h e d  

r e d e x .  

5.6. D e f i n i t i o n  

F o r  a f i n i t e  s e q u e n c e  A o f  f o r m u l a s  w e  d e f i n e  a t r e e  B A t o g e t h e r  w i t h  a l a b e l -  

f u n c t i o n  ~ : B A --* {r:  F is a f i n i t e  s e q u e n c e  o f  f o r m u l a s } .  W e  ca l l  B A t h e  quasi- 

deductiontree o f  A, 

( i )  < > ~B A a n d  ~(< >)  :=A 

(i l l  I f  o e B A a n d  ~(o) is n o t  r e d u c i b l e  o r  an  a x i o m  a c c o r d i n g  t o  ( A x l )  o r  

(Ax2) ,  t h e n  i t  is o i < j > ¢ B  A fo r  a l l  j < o  (i .e.  o is  a t o p  node  o f  t h e  t r e e ) .  

( i i i)  I f  a e B A a n d  ~ (a )  r e d u c i b l e  w i t h  d i s t i n g u i s h e d  r e d e x l / ~ A  i, t h e n  a s < i >  E B A 
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~5. S e m a n t i c s  For "~oo 

for  all i¢ I  and $ ( o * < i > )  = 8(o)r ,  Ai 

(iv) I f  o¢ BA and 8(o)  is reducible  wi th  d is t inguished redex iYiAi and there  

is a minimal k o ~ I (in a fixed enumera t ion  of  I) such tha t  Ako does  not  occur  in 

B&o := LJ{S(z) : ~ c B A ̂  ~ c o}, then  o * < k  o > ¢ B A and $ ( o * < k  o >) = 8(c)r,Ako,iX~ciAi . 

O the rwise  we put  o * < O > e B  A and define ~ ( o * < 0 > ) =  S(o)r ,  Ao 

A pa th  t h r o u g h  the  quas ideduc t ion t ree  (BA,S) is cal led a quasideduct ionpath 

of  a.  

We s o m e t i m e s  will no t  d is t inguish  be tween  A a sequence  and A as a f inite se t .  

As in the  fo l lowing lemma,  however ,  the  c o n t e x t  a lways  makes  c lear  which 

meaning is t o  be taken.  

5.7. Syntact ical  m a l n l e m m a  

I f  every quasideduct ionpath o f  A contains an axiom, then ~ A. 

Proof 

By the hypothes i s  t h a t  every quas ideduc t ionpa th  of  A con ta ins  an ax iom we have 

t ha t  every pa th  in B A is finite. Hence  B A is wel l founded  and we show Po ~(o) 

for  o~ B A by induct ion on B A. 

1. I f  S(o) is an ax iom we tr ivial ly have Po S(o). 

O the rwise  we know tha t  S(o) is reducible .  

2. I f  the  d is t inguished  redex o f  S(o)  is IE/~IAi, then  we have o J < i > ¢ B  A for  all  

i¢ I  and ob ta in  ~ S(o*<i>)  by the  induct ion hypothes is ,  i.e. ~ S(o)r,  Ai for  all  

i~l .  By an inference ( A )  this implies  ~ ~(o)r,iE/~A I, i.e. ~ S ( o ) .  

3. I f  the  d is t inguished redex is V A i, t hen  the re  is a k 0 ¢ I such  t h a t  o*<k0> ¢ B A. 
i ~ l  

By the  induct ion hypothes i s  we have ~ 8(o) r ,  Ako , i71Ai and this  implies  

S(o) by an ( V  ) - inference .  

5.8. Semantical m a i n l e m m a  

Suppose tha t  a f i n i t e  sequence A o f  f o r m u l a s  has a quas ideduct ionpath  which 

does not  conta in an axiom. Then there is an ass ignment  • such tha t  N J~ F ~ 

for  all F ~ A. 

P r o o f  

Pick a pa th  f in B A which does  not  conta in  an axiom. Then f has the  fo l lowing 

proper t ies :  

(I) If o~f and P~(o) is atomic, then P~(~) hoIds for all o cxef. 
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§S. Semantics  For "-~oo 

This is obvious  since P is no redex  and the re fo re  never will be cancel led.  

(2) Ifoef and R~(o) is a redex, then there is a ~ef such that oc~ and R 

is distinguished in ~ (~ ). 

The p r o o f  of  (2) is by induction on the  number  of  redexes  which have a smal le r  

index than  R. I f  th is  number  is 0 ,  then  R is already d is t inguished in 8(o ). 

O the rwise  le t  R o be  d is t inguished in 8(o) .  Then the re  is a j such  t ha t  o , < j >  e f 

and R O e i ther  is cancel led  or is the  redex  wi th  maximal  index in 5 ( o * < j > )  (cf. 

5.6.(iv)). By the induction hypothesis we then have a ~e f such that oc o ,<j>c 

and R is distinguished in 8(~). 

(3) l f  o e f  and ( / ~ A t ) e ~ ( o ) ,  then there is an i e l  and  ~ e f  such that Ate~( ' t ) .  

By (2) we have a xoef such that (i¢iAi) is the distinguished redex in ~(x0). 

By definition 5.6.(iii) we then have Xo *<i>e B A for all i el. Since f is a path 

through B A there is an iel such that to*<i>ef and we have AieS(~ o t<i>). 

We define t :=t0t<i>. 

(4) /foef and (VIA i )e~(o), then for every i el there is a ~lef such that 

AleS(%). 

Assume  t h a t  there  is an i e i  such t h a t  Al4~(~)  for  all ~ f. Choose  io minimal 

with this  proper ty .  This means  Yj <i o 3~je  fAie~(~j ) .  Let  rio be the  union of  all 

t hose  ~i (as finite sequences) .  Then ~ioef  and by defini t ion 5.6. we have 

(XIAt) e ~(~Io). By (2) there is a o0e f such that ~io c o 0 and (iylAi) is distinguished 

in ~(oo). By definition 5.6.{iv) we then have zio*<io>ef and AioeS(xto*<io>). 

Contradiction. 

Now we define an assignment ~ by: 

@(X) = { n e N :  ] t ( t  R~I = n A (30 e f )  ( ( t  ( X )  ¢ 5(o ) ) ) }  

Then we have 

(5) N J e F  ~ for  all o ~ f  and  F~5(o) .  

(5) is p roved  by induct ion on the  length  o f  F. 

I. If F - - ( P t !  ...tn), then ~lJ~(Pt t ...tn )¢ because otherwise 6(o) was an 

axiom. 

2. Assume F = (te X). If t~e ~(X), then there is a term s equivalent to t and 

a toe f such that (scX)eS(xo). But then by (I) {teX, scX}cS(t) where 

= max(o,Xo)ef and we obtain an axiom in f. Hence t~4t¢(X) which entails 

IN/e ( t~ X )~). 

3. F - ( t t X ) .  Then t ~ ( X )  and N ~ ( t t X )  6p. 

4. F = ( /~ IA~) .  By (3) the re  is a j  e l  and x e f  such  t h a t  A# eS(z) .  By the  induct ion 

hypothes i s  we t h e r e f o r e  obtain  ~4~=Aj ~ and this  en ta i l s  ~15= ( ~/2xiA})¢ . 

5. F-(jYiAj). By (4) there is a ~jef such that Aje~(tj) for every jel and we 
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.~6. O r d i n a l s  

obtain  by the  induction hypothes i s  ~I~=Aj ¢ for  all j~ I  and this  implies 

P roo f  o f  5.4. 

I f  ~ F, then  by the  syntac t ica l  ma in l emma  the re  is a quas ideduc t ionpa th  o f  F 

which does  not  conta in  an axiom. By the  semant ica l  m a i n l e m m a  we then  obta in  

an a s s i g n m e n t  • such t h a t  ~J X= F ~.  i.e. ~t ~ F. 

5.9. Exm~: l~s  

Show t h a t  ~q~F implies  ~o F for  every ~ D - f o r m u l a  F no t  conta in ing f ree  se t  

var iables  w i thou t  using 5.4. 

§ 6. Ordinals 

The re la t ion  ~ A is more  syn tac t ica l ly  def ined than  the  re la t ion  ~l ~ F in t h a t  

sense  t h a t  i ts  defini t ion does  not  re fe r  to  a s s ignment s .  For f inite se t s  o f  

s en tences  bo th  def in i t ions  essen t i a l ly  coincide.  The ques t ion  is now if the re  

real ly  is more  in format ion  in the  re la t ion  ~ than  we al ready had in the  re la t ion  

~. A der ivat ion ~ A may be visualized as an infinite branching we l l founded  

tree.  This was the  imaginat ion we had in the  defini t ion of  the  quas ideduc t ion-  

t rees .  The complex i ty  o f  th is  we l l founded  t ree  then  is a measu re  for  the  

complex i ty  of  the  validity of  the  fo rm u l a  s e t  A. Trees ,  however ,  are not  easy  

t o  compare .  There fo re  we are looking for  a cha rac te r i s t i c  magn i tude  o f  a 

we l l founded  t ree  in which the  essen t ia l  in format ion  o f  the  t ree  is incorpora ted .  

Such a magni tude  will be given by the  dep th  o f  the  t ree .  We then  may call  a 

t ree  more  compl ica ted  than  ano the r  if  i t  has a la rger  depth.  

In a we l l founded  t ree  every pa th  is finite.  We t h e r e f o r e  may def ine  the  dep th  

of  a t ree  as the  length  of  i ts  maximal  path.  Our  derivat ion t rees ,  however ,  are 

o - b r a n c h i n g  infinite t rees .  I f  we look for  example  a t  the  fo l lowing  t r ee  

4 
3 3 

2 2 2 
1 1 1 1 

0 0 0 0 0 . .  

< > 
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~6. Ordinals  

we immediately see tha t  every path is finite so the tree is wel l founded but  it 

obviously does not  possess  a maximal path. This shows tha t  natural  numbers  

will not  suff ice for the descr ipt ion o f  the depth  o f  infinitely branching trees.  

Therefore  we have to improve our concept  of  numbers.  

A natural  number n ha~s two di f ferent  aspects .  On the one side the quantity 
~spect which describes tha t  an object  of  magnitude n has just  n e lements  and 

on the o ther  hand an order aspect which describes tha t  the e lements  o f  a se t  

o f  n e lements  may be ordered as 0,1 ..... n-l .  The difference between bo th  

aspects  o f  a natural  number,  however,  is a bit  hazy since, modulo  permuta t ions ,  

there  is only one way to  order a finite s e t .  The s i tuat ion changes  in the  case 

o f  an infinite set.  As an example we regard  the se t  o f  all natural  numbers.  In 

their usual order they look like 0,1,2 .... but  we may order them as 1,2,3 ..... 0 or 

0,2,4,6 ..... 1,3,5,7,9 ..... where the order  relat ion is given by the convent ion tha t  

the e lements  on the [eft are smal ler  than those  on the  right. Since in all 

orderings we used the same set  the quant i ty  aspect  will not  change while the 

order aspect  did. 

If  we t ry to  extend count ing into the t ransf ini te  it is exact ly  the order  aspec t  

o f  a number  we are in teres ted in. We f irs t  want  to  coun t  all natural  numbers  

and, having comple ted  them, go on counting.  Such a count ing into the t ransf ini te  

is for  instance given by the order  1,2,3 ..... 0 where we may f irs t  comple te  the 

count ing  of  all natural  numbers  and then count  one more  element .  

Of  course  not  every ordering a l lows counting.  If, for  example,  we regard the 

ordering of  the non negative rational numbers ,  then we jus t  may coun t  0 and 

then do not  know how to  cont inue  since there  is no next  e lement  fol lowing 

the e lement  O. Only those  order ings  will a l low count ing  which have the  proper ty  

that ,  a f te r  taking away arbitrari ly many elements ,  the remaining se t  o f  e lements  

always has a least  e lement  provided it is not  empty.  Such orderings are called 

wellorderings and their formal definit ion runs as fol lows.  

A binary relat ion ~ is cal led an ordering of  a se t  A if it sat isf ies the  fol lowing 

condi t ions  

V x E A ( l x ~ x )  

VxeAVy~AVzeA(x.(y A y~z--+x'(z) 

VxeAVyeA(x'(y v y~x v x=y) 

We denote an ordering by (A,'() and call A the 

An ordering (A ,g ) is called a wellordering of A if 
condi t ion  

¥ X  c A ( X * B - *  3ye XVte  X ( y *  t - *  y ~ t ) .  

(irreflexivity) 
(transitivity) 

(JinearJty) 

field of  ~. 

it a lso sat isf ies the additional 

( wellfoundedness ) 
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§6. Ordinals 

Two orderings are equivalent if there  is an order preserving map f rom the field 

o f  the f i rs t  ordering onto  the field o f  the second. An ordertype is an equivalence 

class  of  an ordering. As we have seen we need the order types  of  wel lorder ings 

for extending count ing into the transfinite.  These order types  are called ordinals. 

Our hi ther to  described concept  o f  ordinal is based on a comple te ly  naive under-  

s tanding of  the universe of  sets .  i f  one tries to  make this precise within the 

f ramework of  an axiomatic se t  theory  one immediately runs into t roubles  

since the equivalence c lass  o f  an ordering will not  be a set.  But o f  course  we 

want  the ordinals to  be e lements  o f  the universe, i.e. to  be sets .  The problem 

may be solved by select ing a character is t ic  representat ive  for an ordinal. The 

ques t ion  then is which one to  take. In the language of  set  theory one usually 

has the symbol ~ as the only nonlogical  symbol.  So it seems to  be reasonable  

to  take as representat ives  those  se ts  which are wel lordered by the relat ion 

itself. That  this in fact  is a canonical choice becomes even clearer by pursuing 

the  naive theory o f  ordinals a bit  further.  

Suppose tha t  ( A , ~ )  is a wellordering. ( U , ~ )  is called a segment of  (A ,~)  if 

U c A  and a g b C U  already implies aCU. A segment  ( U , < )  is proper if U*A.  

It is obvious tha t  ( U , < )  is a proper  segment  if and only if there  is a bCA 

such tha t  U = { a ¢ A  : a<b}.  

On the wellorderings we define an orderre la t ion  < by 

(A,< A )<(B,< B) : ~¢, There is a proper  segment  o f  (B,< B ) which is equivalent 

to (A,~A).  

It  is not  very hard to  prove tha t  this relat ion in fact  is a wellordering. But 

since all these  considerat ions  only serve as heuristics we will omit  the proof.  

I f  we look at  a representat ive (A,<) o f  an ordinal [5 we notice tha t  the  order type  

o f  the se t  {(B,~ B ) : (B ,~B)<(A,~)}  is exact ly  the ordinal {3, i.e. [5={~:  ~<[5} 

and this  implies tha t  ~ < [5 holds  if and only if ~ [5. Therefore the se ts  wel l -  

ordered by the ~- re la t ion  are in fact  canonical representat ives  for  ordinals.  

We are now going to develop the theory  o f  ordinals on the basis o f  a set  

theory  which needs not  to  be specified here. The experienced reader may 

think of  ZFC. Since there usually is an axiom of  foundat ion in a set  theory  it 

suff ices  to  define ordinals as hereditarily transit ive sets. We denote  the c lass  

o f  ordinals by On. Facts  about  On which only can be proved on the basis o f  

the se t  theory  will be s ta ted  here as basic properties without  proof .  These 

basic proper t ies  may be taken as axioms for  On. But we want  to  emphasize 

tha t  it is not  our aim to  give a comple te  axiomatizat ion o f  the c lass  On. 
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§6 .  O r d l n a l ~  

6.1. BMlc p rope r t i e s  o f  the c lass  On 

(O1) On is a t rans i t ive  c lass  which is we l lo rde red  by ¢. As usual  we wri te  

< 6 instead of ~ 8. 

(02) On is unbounded, i.e. V~eOn3~eOn(~< 6). 

(03) If MoOn and if there is an ~eOn and an I-I mapping from M onto 

~, then M is bounded in On (i,e. ]~eOn V~eM(~6)). 

( 0 4 )  ~c~ (~ e On). 

6.2. Theorem (Transf in i te  induct ion)  

/ f ¥ ~ < ~  A ( ~ )  --+ A ( = )  h o l d s  f o r  a l l  ~ O n ,  t h e n  ¥~ ~ O n A ( ~ ) .  

Proof 

Assume  tha t  { ~  On:  3A(~)} ~ 9 and define ~ := min{~e On:  ~A(~)}. Then we have 

V~< ~ A ( ~ )  and by hypothes i s  we obta in  A(~). Contradic t ion .  

6.3. Theorem 

(i) There  i s  a l e a s t  ordinal  w h i c h  wi l l  be  d e n o t e d  b y  O. 

(ii) Por  e v e r y  ordinal  ~ t h e r e  i s  a l e a s t  ordinal  6 s u c h  t ha t  ~ < 6. 

W e  cal l  t h i s  ordinal  t h e  s u c c e s s o r  o f  ~ and  d e n o t e  i t  b y  ~ ' .  

Proof 

(i) is obvious  because  of  On*/~. 

(ii) is an immedia te  consequence  o f  (O1) and (02) .  

6.4. L e m n l a  

(J )  0 t < 0 t  t 

( i i )  ~t < ~ c ~  at' < 6' 

Proof 

(i) ho lds  by definit ion.  

(il) I f  ~<  6, then  ~ {[:ct< ~} which implies  ~ '  := min{~: ~< [ } ~ < 6 ' -  From this  

we obta in  by con t rapos i t i on  ~ '  ~ 6 ' ~  ~ a6. Since ~ = j3 en ta i l s  ~ ' =  6' we have 

t ha t  ~ ' <  [3' a l ready implies  ~ < 6. 

(iii) is obvious  by definit ion.  
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§6. Ordinals  

(iv) I f  ot < ~', then  by (iii) or' <{3' which implies ~ ~ .  

6.5. Definit ion 

An ordinal  )` which nei ther  is 0 nor  the  succes so r  of  ano the r  ordinal  is ca l led  

a l i m i t  ordinal .  The c lass  o f  l imit  ordinals  is deno ted  by Lira. 

6.6. Lemma 

)` ~ Lim and  a < )` i m p l y  ~' < )`. 

P r o o f  

a <  )` implies  a ' ~ ) ` .  Since ) `~Lim we have )`*a'  which en ta i l s  ct '< )`. 

As a consequence  of  l emma  6.6 we obtain  ¥ a ~ ) ` 3 ~ ) ` ( a <  ~) fo r  l imit  ord ina ls  

)`. This shows  tha t  l imit  ordinals  r e f l ec t  the  basic  p rope r ty  (02)  o f  the  c lass  

On o f  ordinals .  The ex i s tence  o f  l imit  ordinals  c anno t  be proved.  In an ax iomat ic  

se t  theory  we the re fo re  need an infinity axiom which requires  the ex i s tence  

o f  a t  l eas t  one l imit  ordinal.  In our  no ta t ion  this  axiom would jus t  be  3), ( )` ( L i m ) .  

We will, however ,  need a s t r o n g e r  fo rm of  the  axiom o f  infinity which in the  

f r a m e w o r k  o f  2~C fo l lows  f rom the  weaker  one. Since s e t  t heo ry  is not  the  

topic  o f  this  l ec ture  we may as well  t ake  the  s t r o n g e r  fo rm o f  the  axiom o f  

infinity as basic p roper ty .  

6.7. Defini t ion 

An ordinal  x is r e g u l a r  if  i t  sa t i s f i es  

(RI )  x ~ Lira 

(R2)  ]Every M ¢ x fo r  which there is an 1-I mapping f rom M on to  some ~< x 

is bounded  in x , i.e.. ]T}< x V ~  M ( ~  <~). 

A regu la r  ordinal r e f l ec t s  the  p rope r t y  (03)  o f  the  ordinal universe On. By R 

we deno te  the  c l a s s  o f  r egu la r  ordinals .  The axiom o f  infinity which we need 

here is the  fo l lowing basic p rope r t y  

(05) R is unbounded in On, i.e. ¥[~ O n 3 ~  R ( [ < ~ ) .  

6.8. Theorem 

I f  M c On is bounded in On,  then there is a least upper bound f o r  M. We 

denote this bound by sup M. 
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§6. O r d i n a l s  

Proof 

The class IVl ={~ e On : V~e M(q<~)} is not empty and we define supM :=minl~i. 

6.9. Lemma 

l f  x e R ,  M c x a n d  t h e r e  is  an 1-1 m a p p i n g  o f  M o n t o  s o m e  ct < x ,  t h e n  s u p M  < x. 

Proof 

By (R2) M is bounded in x. Hence supM < x. 

6.10. l.emma 

I f  ~<supM,  then there is an HeM such that ~<~. 

Proof  

Using the terminology of 6.8. we have ~ < sup M ~ {3 ~ ~i ~ 3~ E M ( {3 < ~ ). 

6.11. Theorem 

I f  M ¢ ~  1~ bounded in O~t then we ei ther have sup M e M or sup M e Lim. 

Proof 

If supM = 0 then MtB entails M = {0}, i.e. supM = maxM. If supM = ~' then 

by 6.10. there is an ~leM such that ~<TI <~'. Hence TI=~', i.e. ~'eM and 

sup M = max M. 

6.12. Deflxdtlon 

(i) N = (~{ M cOn : 0e M^ ¥~e M(~'~ M)} 

(li) to := sup~l 

6.13. Lemma 

(i) 0eN^ V~(~eN-* ~'e N). 

(ii) ~ ~ l~ and there is no limit ordinal in ~. 

(lii) N is a segment o f  On. 

(iv) ~ is  t h e  l e a s t  l i m i t  o r d i n a l  a n d  i t  i s  ~ = (~. 

Proof 

Define ~0~ = {M c On : 0~ M ^ V~ e M ( ~' e M)}. For any limit ordinal ~ we have ~e M 

by 6.6. So ~ is not empty and ~4 is bounded which implies that e is defined. 
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~6. O r d i n a l s  

(i) S ince  0 e  M for  a l l  M e ~  we o b t a i n  0 ~ ( - ) ~  =IN. I f  ~eiN s o  ~¢ M for  a l l  MealY/ 

w h i c h  e n t a i l s  ~ 'e  M fo r  a l l  M ~ ~ .  H e n c e  ~ 'e  ( ' ) ~  = IN. 

(ii) A s s u m e  t h a t  ~e IN .  But  t h e n  b y  (i) ~0'¢IN and  i t  is  ~ <  ~ '  in c o n t r a d i c t i o n  t o  

~ =  supIN. A s s u m e  t h a t  t h e r e  is  an  ~e  IN~Lim.  Then  w e  have  O e ~ A I N  and  by  

(i)  a n d  6.6. ~ ¢t r~ IN i m p l i e s  ~' e ccr~ ~l. H e n c e  c t~  IN ~ ~ a n d  t h e r e f o r e  ~i c ~ IN c IN. 

This ,  h o w e v e r ,  c o n t r a d i c t s  ~ e IN. 

(i i i)  In  a f i r s t  s t e p  w e  p r o v e  

(1) 6 '~  IN ~ ~ I N .  

A s s u m e  6 ~ I .  W e  have  0 e [ 3 ' r ~ I .  I f  ~e ~ ' ~ I  we o b t a i n  ~ l ~  and  f r o m  [3¢~I 

even  ~< 6. Then  ~ ' <  6' and  i t  f o l l o w s  ~ 'e  ~ ' ~ I .  H e n c e  ~ ' ~ I N e ~ l ~  a n d  t h e r e f o r e  

IN c [~' ~ ~q ¢ IN in c o n t r a d i c t i o n  t o  6' e IN. 

F r o m  (1) we o b t a i n  

(2) ~ <  ~ I N ~ I N  

by  i n d u c t i o n  on  {~. 

F o r  [~ = 0 (2) h o l d s  t r i v i a l l y .  F o r  [~*0 t h e r e  is  a 60 such  t h a t  13 = 60' by  (i i) .  

By (1) we  have  [30eiN. N o w  ~<[~  i m p l i e s  ~ 6 0 .  I f  ~ = [ ~ 0 '  t h e n  ~ a n d  f o r  

ct < [~0 we  o b t a i n  ~ ~l f r o m  t h e  i n d u c t i o n  h y p o t h e s i s .  

(iv) IN is a s e g m e n t  o f  On  wh ich  d o e s  n o t  c o n t a i n  a l i m i t  o r d i n a l .  By (05} ,  

h o w e v e r ,  t h e r e  a r e  r e g u l a r  o r d i n a l s  a n d  t h u s  a l s o  l i m i t  o r d i n a l s .  So  ~I is  

b o u n d e d  in O n  a n d  supIN e x i s t s .  By (ii)  a n d  6.11. we  have  s u p ~ l e L i m ,  i.e. 

we Lim. S ince  IN d o e s  n o t  c o n t a i n  l imi t  o r d i n a l s  ~ has  t o  b e  t h e  l e a s t  l i m i t  

o r d i n a l .  To s h o w  ~1 = ¢~ we  n o t i c e  t h a t  we  a l r e a d y  have  IN c ~.  F o r  ~ < ¢~ w e  o b t a i n  

by  6.10. an  ~ I N  s u c h  t h a t  ~ < q .  By (iii)  w e  have  ~ ¢ I N .  H e n c e  a l s o  ¢~¢IN. 

6.14. D e f i n i t i o n  

W e  d e f i n e  ~ l  := min  { x ~ ~ : ~ < x }. A s e t  M is c o u n t a b l e  i f  t h e r e  is  an  1-1 m a p p i n g  

f r o m  M o n t o  s o m e  ~ <  R r This  d e f i n i t i o n  o f  c o u n t a b i l i t y  c o i n c i d e s  w i t h  t h e  

n o t i o n  o f  c o u n t a b i l i t y  wh ich  w e  a l r e a d y  u s e d  i n t u i t i v e l y  in §4.  I n s t e a d  o f  R t 

w e  f r e q u e n t l y  w r i t e  01 o r  even  s h o r t e r  O. 

6.15 L e m m a  

(i)  I f  M is  a p r o p e r  s e g m e n t  o f  On, t hen  there  is a 6 e O n  s u c h  tha t  M = 6. 

(ii) I f  M Js a p r o p e r  s e g m e n t  o f  a r egu lar  ordinal  x, t hen  there  Js an ordinaJ 

6 < x s u c h  tha t  M = 6. 

(ii i)  J [ M  ~ i'} is a s e g m e n t ,  t hen  M is countab le .  
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~6. Ordlnala 

Proof  

(i) Define M = { ~ O n :  ~ eM} ¢~ and ~ := rain I~. Then l~cM. We show tha t  

¢ M entai ls  ~< ~. If  not  we had ~ M A ~ ~ which would imply 13~ M since M 

is a segment .  This, however, con t rad ic t s  ~ ~ ~l. 

(ii) Define lVl := {~< x : ~¢ M } and ~ := rain IVl < x. Then ~ possesses  all the required 

propert ies.  

(iii) is an immediate consequence of  (ii). 

6.16. Tranaflnlta Induction (second version) 

Suppose  we have 

(i) F(O),  

(ii) V~(F(~) --=) F(~'))  

and 

( i i i )  VX~ Lim(V)l < X F()I) --~ F(X)) .  

Then it Follows V~ ~ On F( ~ ). 

P roof  

Assume tha t  M = { ~ O n : ' l F ( ~ ) } ~ .  Put ~ : = m i n M .  Then we have c(~O by (i). 

I f  ~ = [3' we had ~ ¢ M .  But this means F(~)  which by (ii) entails  F(c~) in 

contradic t ion to  ~ ~M. If  c(~Lim we had Y~< c ( F ( ~ )  and by (iii) a lso F(c() 

producing the same contradict ion.  Hence M = ~0 and the theorem is proved. 

In the fol lowing we will be forced also to deal with partial funct ions  f rom the 

ordinals into the ordinals. As in recursion theory  partial funct ions  arise In 

regarding minima of  sets  which possibly  are empty. The reader who does not  

like partial funct ions  may imagine a se t  oo ~ On, define mini0 = oo and expand the 

< - r e l a t i on  by ~<co for all ~eOn .  

As in recursion theory  we define 

f ( 0 t ) ~ g ( ~ ) : ~  (~ e d o m ( f ) r ~ d o m ( g )  A f ( ~ ) = g ( c t ) )  V ( c t t d o m ( f )  ^ ~ ( d o r a ( g ) ) ,  

where d o r a ( f ) : = { c c e O n  : f ( ~ ) e O n } .  

6.17. I~flnlt . ion 

Suppose tha t  M c On. We recursively define a partial funct ion OD M : On -~ M 

by 

(i) OD M ( 0 )  : -minM 

(ii) ODM(Ot') ~ , m i n { ~ M : O D M ( O t ) < ~ }  

(lid ODM(X) ~- min{ ~( M :sup{ODM(~) : TI< k}~ ~} for X ~ Lim. 

35 



~6. Ordinals 

6.18. Lemma 

The function OD M is uniquely defined by (i), (ii) and (iii). d o m O D  M 

segment of On and OD M is order preserving. 

Proof 

Assume tha t  ft and f2 are partial  funct ions  f rom On to M which sa t i s fy  (i),(ii) 

and (iii). By induction on ¢~ we show 

(1) ~ d o m f t ~ c d o m f  z ^ f l (~)  = fz (~)  

and 

(2) (xedom fl ^ 13<¢c--* 15e d o m f l  A f t (15)<f t (0 t ) .  

For c~ = 0 (2) holds trivially. If  c~¢ domf t ,  then  M*~I and it fo l lows  ft(cc)~, minM 

~,f2(¢c) which implies u e d o m f  2 and f l ( c~)=  f2(~) .  

I f  ¢~=15o and c~¢domfl ,  then  f ! ( a )  = min{~¢M : fl (15o) <~}. This implies tha t  

{ ~ M : f t ( 1 5 o ) < ~ } * £ 1 .  Hence 13oCdom(ft). 13<0c entai ls  1~15o- If 15=15o, then 

15¢domf I and f1(15)< fl(¢c). If  15< 13o, then 13edomf t and fl(13)< fl(150)<ft(0c) 

by the induction hypothes is  for  (2). This proves (2). (1) now fo l lows  f rom the 

induction hypothes is  15o e d o m f  z and f rom fl(c~)~-min{~e M : ft(15o) < ~} Lh. 

m i n { ~ M  : fz (15o)<~}=- f2 (u ) .  

For ~ELim we have f t ( a )  = min{r l eM : s u p { f l ( ~ )  :~<cc}~r l} .  Since a e d o m f  l, 

sup{f t (~)  :~<¢c} has to  be defined. Hence c c c d o m f  I. If 13<a, then there  is a 

15o < ¢z such tha t  t5< 15o- By the induction hypothes is  we then obtain ft(15) < ft(15o) 

~ft(¢~). This proves (2). From the induction hypothes is  for  (1) we obtain 

0 ~ c d o m f 2 ( ~ )  and ft~¢c = fz~¢c Hence s u p { f t ( ~ )  : ~< ~} = sup{f2 (~)  : ~< a} and 

it immediate ly  fo l lows  c~ ~ dora f2 and f2 ( ~ ) = ft (c~). 

6.19. RJ~mark 

The definition of the function OD M is a special case of the principle of definition 

by transfinite recursion. This principle is a generalization of the principle of 

definition by primitive recursion which we already know from 1.2.(iv). Within a 

framework of axiomatic set theory such as ZFC the existence and the uniqueness 

of the function defined by transfinite recursion becomes provable. 

6.20. Definition 

For M c On the function OD M and therefore also domOD M are uniquely deter- 

mined. We call domOD M the ordertype of M and denote it by Otyp(M). 

According to 6.15. we either have Otyp(M) = On or the existence of an ordinal 

15 such that Otyp(M) = 15. We define ord M := ODM~Otyp(M) and call ord M the 
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enumerat ing  funct ion of  M. By 6.18. ord  M is uniquely de te rmined  by M. 

6.21. l ~ m m a  

ord  M is an order preserving funct ion f rom Otyp(M)  onto  M. 

Proof  

In 6.18. we have a l ready shown t h a t  ord  M is order preserving.  All t he re  remains  

to  show is t ha t  ord  M is onto .  The re fo re  we prove  

(1) ~ M - *  3 ~  O t y p ( M ) ( O r d M ( ~ )  = ~) 

by induction on ~. 

Put  [~ : = Otyp  ( M ~ q ). 

1. [~ = 0 .  Then ~ = m i n M  and t h e r e f o r e  ~ = o r d  M(0) .  

2. ~3=[3' 0. Then O r d M ( [ 3 ) = m i n { ~ M : O r d M ( ~ 0 ) < ~ } .  Since [3o<[3 we have 

OrdM([3o)< q and t h e r e f o r e  OrdM([3)~ ~. I f  we a s sume  OrdM([3)< q, t hen  we have 

OrdM([3) c M ~  and by the  induct ion hypothes i s  obta in  an ordinal  v<[3 such t h a t  

OrdM([3) =OrdM(V) in con t rad ic t ion  to  the  fac t  t h a t  ord  M is order  preserving.  

Hence ord  M ( [~ ) = ~. 

3. [3e Lim. Then OrdM([3) = m i n { ~  M : sup{ordM(C)  : C<[3} ~ }  and by 

sup{ord  M (~) : ~ < [3 }~ Tl we obtain  OrdM(~)~ ~. The a s s u m p t i o n  OrdM([3)< 1] then  

leads to  the  same  con t rad ic t ion  as above. 

6.22. Theo rem 

/ f  M c On is a s egmen t  o f  On and  f : M --) On is an order preserving function, 

then ~ ~ f(~) holds  for  all ~ M. 

P r o o f  

A s s u m e  t h a t  S := { ~ M  : f (~ )<  ~} is no t  e m p t y  and define ~ := minS.  Then 

f (~o)<~o  and since M is a s e g m e n t  a l so  f ( ~ o ) ~ M .  Hence  f ( f ( ~ o ) ) < f ( ~  o) 

in con t rad ic t ion  to  the  minimal i ty  o f  ~o. 

6.23. Theorem 

Suppose tha t  x is a regu la r  o r d i n a l  M c x is  bounded in x 

Otyp(M)<x. Mc On is bounded i f  and on ly  i f  Otyp(M)~ On. 

i f  and only  i f  

P r o o f  

Since ord M : Otyp(M)  -~ M is an 1-1 mapping  on to  M Otyp(M)  ( × or Otyp(M)  ( On 

respec t ive ly  imply t ha t  M is bounded  in × or On respect ively .  I f  on the  o ther  
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hand M is bounded or even bounded in x, then we obtain supM e On or sup M < x. 

But 6.22. then implies O t y p ( M ) ~  supM. 

6.24. Definit ion 

Let M o O n  and x be a regular  ordinal >t0. 

(i) M is c losed  Ix -c losed)  if s u p U e M  holds for every n o n  empty  set  

tI c M which is bounded  (in x). 

(ii) An order  preserving mapping f : M -*  On is cont inuous  ( x -con t inuous )  

if M is (x - ) c lo sed  and f ( supU)  = s u p { f ( ~ ) : ~  tl} holds for every non empty  set  

Hc M which is bounded (in x). 

The not ions  "c losed"  and "cont inuous" s tem from the fact  tha t  the ordinals 

toge the r  with the order topo logy  form a topological  space. 

6.25. Lenh"na 

The enumerat ing  funct ion o f  a se t  Mc On is ( x - ) con t i nuous  i f  and only  f f  M 

is (x - )c losed .  

Proof  

: Suppose tha t  ord M is (x-}cont inuous.  Then Otyp(M) is (x - )c losed .  Assume 

tha t  U,J0, U c M  and U is bounded (in x). Let B : = o r d ~ l ( H ) .  For ~ B  we 

have ~ ~OrdM(~)~ U. Hence B is also bounded (in x). So supB~ Otyp(M)  exists  

and we have OrdM(SUpB)~ M. By the cont inui ty  o f  ord M we obtain o rdM(su  p B) = 

sup{ordM(~)  : ~ B} = supU.  

~ :  Let M be (x- )c losed .  i f  M c x .  then also O t y p ( M ) c x .  Assume tha t  

U c Otyp(M) ,  U *fl and U is bounded (in x). But then OrdM (U)  is bounded (in x) 

too.  Hence s u p o r d M ( U ) e M  and there is an ~e Otyp(M)  such tha t  ordM(0~)= 

sup ordM(U).  For ~ U  we have OrdM(~)~OrdM(~) .  Hence sup U ~ .  If  we 

assume sup U < ~ we obtain o rdM(su  p U) < ord M (~) = sup(ordM(U)) .  Therefore  

there exists  a ~eU such tha t  ordM{su p U ) < O r d M ( ~ ) ,  i.e. sup U < ~  which 

con t rad ic t s  the definit ion of  sup U. 

6.26. Definit ion 

(i) A cont inuous  order  preserving funct ion f : On --~ On is called a normal -  

function. 

(ii) We call a mapping f:x-* x where x is a regular ordinal >~ a x- 

normal - func t ion  if f is order  preserving and cont inuous.  
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6.27. Theorem 

(/) ord M is a normal  funct ion i f  and only  i f  M is c losed  unbounded.  

(ii) ord M is a x - n o r m a l  funct ion i f  and only  i f  M is c losed  unbounded  in x. 

Proof  

(i)  ~ :  I f  M is unbounded we obtain d o m ( o r d  M) = On by 6.23. I f  M is also 

c losed  we obtain  the cont inui ty  o f  ord M by 6.25. Since ord M is order preserving 

by 6.21. it is a normal - func t ion .  

~ :  Suppose tha t  ord M is a normal function.  Then M is c losed  by 6.25. Since 

dom (ord M) = On it fo l lows by 6.23. tha t  M is unbounded..  

(ii) ~: Otyp(M) cannot be bounded in x because ord M maps Otyp(M) I-I onto 

M. Hence xcOtyp(M) ~supM ~x, i.e. Otyp(M)--x. Since M is x-closed we 

also obtain the x-continuity of f. So ord M is a x-normal-function. 

~: If ord M is a x-normal-function we obtain by 6.25. that M is x-closed. Since 

Otyp(M) = x M has to be unbounded in x . 

6.28.  E x e r c i s e  

1. The open intervals (~,[~) := {yc On:  ~< y< 13} form a basis o f  a t opo logy  on On. 

This t opo logy  is cal led the order topo logy  on On. This topo logy  also induces 

a t opo logy  on every regular  ordinal x. 

Prove the fol lowing claims: 

(i) A se t  M is c losed  (in x) in the sense o f  definition 6.24. if and only M 

is c losed in the order  t o p o l o g y  on On (on ×). 

(ii) Let M be c losed (in x). An order  preserving mapping f: M -o  On (f: M -*  x) 

is cont inuous in the sense of  definit ion 6.24. if and only if it is cont inuous  in 

the order  topo logy  on On (on x). 

(iii) Let M be closed.  Character ize those  funct ions  f: M --~ On which sat isfy  

f(sup U) = sup{f(~) : ~ U} for all nonvoid sets Uc M which are bounded in M. 

2. An ordinal x is a cardinal if x cannot be mapped by an I-I mapping onto an 

ordinal ~<x. Prove: 

(i) Every regular ordinal is a cardinal. 

(ii) There are cardinals which are not regular. 

(iii) The class of cardinals is closed unbounded. 

(iv} If x,), are cardinals such that x<k and there is no cardinal ~e(x,),), 

then ;k is regular. 
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7. Ordinal  a r i t hme t i c  

7.1. Def in i t ion  o f  the  ordinal  s u m  

{ X + 0  : =  0~ 

~ + B '  := ( ~ +  B)' 

c~ + ), : = sup  { ~ + ~ : ~ < ), } fo r  l imit  o rd ina l s  X. 

The  f u n c t i o n  X~.R+~ is de f ined  by t r a n s f i n i t e  r e c u r s i o n  on  ~ (cf.  6.19.). 

7,2 L e m m a  

~. ~ + ~ is t h e  e n u m e r a t i n g  f u n c t i o n  o f  t he  c lass  { ~] : ~ ~ l  }. S ince  th i s  c lass  is 

c l o s e d  u n b o u n d e d  (in e v e r y  r egu lar  ordinal  x )  we  have  tha t  X~.c~+~ is a (×- )  

n o r m a l  f u n c t i o n  ( for  all  regu lar  ordinals  ×). 

Proof 

Define M : = { ~ : cc ~ 71 }. We show OrdM(~) = ~ + ~ by induction on ~. It is OrdM(O) = 

minM = 0~ = ~+O and OrdM([3') = min{~e M : OrdM([3)<~} Lh'min{~e M : ~+[3< ~} 

= (c¢+13) ° = ~ + [ 3 ' .  I f  :keLim it  is OrdM(X)  = m i n { ~ e M  : sup{ordM(T1)  : rj< k}~;~} 

t_h. m i n { ~ c M  :sup{oc+~ : r l < k } ~ }  = m i n { ~ e M  :~x+k~:~}  =~x+k. 

By ( 0 2 )  the  c l a s s  M is u n b o u n d e d  and  t r iv ia l ly  it is c lo sed .  

7.3. L e m m a  ( E l e m e n t a r y  p r o p e r t i e s  o f  t he  ordinal  s u m )  

( i )  0+8 = 

(ii) (o l+[~)+y  = oc+([~+y) ( a s s o c i a t i v i t y )  

(iii) ~ < y ~ ~ + ~ < ~ + ~( ( s t r o n g  m o n o t o n i c i t y  in t he  r igh t  a r g u m e n t )  

( iv) c~ ~ =~ cc+y ~[~+y ( w e a k  m o n o t o n i c i t y  in the left argument) 

P r o o f  

(i) f o l l o w s  f r o m  the  f ac t  t h a t  k~.0+~ is the  e n u m e r a t i n g  f u n c t i o n  o f  t he  c l a s s  

On  which  o b v i o u s l y  is t he  iden t i ty  on  On, 

(ii) is eas i ly  p roved  by induc t ion  on Y. 

( i i i ) ) ~ . c c + ~  is o r d e r  p re se rv ing  s ince  it is an e n u m e r a t i n g  func t ion .  

(iv) I f  ~ [B, t hen  t he re  is an 71 such  t h a t  ~+TI = [3. Hence  0c+y~0c+(Tl+y)=  

7.4. Def in i t ion  

An ordinal  ¢ is an addi t ive  pr inc ipal  ordinal  or  br ie f ly  princ ipal  ordinal  if = ¢ 0  
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and ~ ,~<~ also imply ~+~<0t. By H (for  German Hauptzahl )  we deno te  the  

c lass  of  principal  ordinals .  

7.5. Lamnm 

l f  ~ ,  t h e n  t h e r e  are  ~,q<ct s u c h  t h a t  ~ =~+~. 

P r o o f  

c t ~  impl ies  the  ex i s tence  o f  ordinals  ~tlo<~ such tha t  ~ + 7 1 o .  By 7.2. there  

is an ~ such  t h a t  ~+~ = ~ + ~ o -  But  then  we have ~T lo<~ .  

7.6. L e m m a  

0de Lim~J{O'} 

P r o o f  

I f  ~ ¢ L l m w { 0 ' } ,  then  e i ther  ~ = 0 or the re  is an ordinal ~o such t h a t  ~ = ~'0 = 

(0e0+0)'  = ~ 0 + 0  '. Since ~ 0 '  we obtain  0 ' < ~  and ~ o < ~  in the  second case.  

So in bo th  cases  ct is no t  principal.  

As usual we will deno te  O' by the  symbol  L 1' by the  symbol  2 e tc .  

7.7. L e m m a  

{ l ,  to } ¢ H .  There  are  n o  f u r t h e r  p r inc ipa l  ord ina l s  b e t w e e n  | a n d  ~.  

Proo f  

I f  ~ < 1 = 0 ' ,  then  ~ = 0  and 0 + 0 = 0 < 1 .  Hence I~H.  By 6.13. there  are no l imit  

ordinals  be low ~. So by 7.6. the  only principal ordinal be low ~ is 1. 

I f  ~,~< ~, then  ~ ,~ l~l .  We show by induction on ~ t ha t  this  implies  ~ + ~ [ ,  

i.e. ~ + ~ < e .  We have ~+0 = ~ N .  For ~1 = ~ it is [+~l = ~+~1~ = ( [+~o) ' .  By the 

induct ion hypothes i s  we have ~ + ~ o ~ I  and by the  defini t ion o f  lq this  implies 

( [+~10) '~N,  i.e. ~+~l¢lN. 

7.8. T h e o r e m  

The class ~4 is closed unbounded in every regular ordinal x > (~. 

Proof 

Let ~<  x. Define ~t o := 0t', ~n+~ := ~tn+~n and M := {0tn:n< t~}. Then Me x by 7.2. 

and we have an | - |  mapping  f rom M on to  ~ <  ×. Hence M is bounded  in × and 
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we o b t a i n  a < %  ~ s u p M  = : B < x .  Fo r  ~,rl < B t h e r e  is an  n < o  s u c h  t h a t  

~'~ < ~n a n d  we  o b t a i n  ~+~ < a n +  ~ < a n + C X  n = an+l<[~.  H e n c e  ~ e ~ q ~  x and  ~q is 

u n b o u n d e d  in x. 

N o w  l e t  t l  ¢ ~  be  b o u n d e d  in x.  Then  s u p U < × .  F o r  ~ ,~<  s u p U  t h e r e  is a p e  U 

such that ~,q<p. Hence ~+~l<p~sup~ which entails supU~. This shows 

that ~d is closed in x. 

By 7.8. i t  f o l l o w s  t h a t  8-t is  c l o s e d  u n b o u n d e d  in On. H e n c e  t h e  e n u m e r a t i n g  

f u n c t i o n  o f  ~l is  a n o r m a l  f u n c t i o n .  I t s  r e s t r i c t i o n  t o  any  r e g u l a r  x > ~  a l w a y s  

i s  a x - n o r m a l  f u n c t i o n .  W e  d e f i n e  

~ := o r d ~ ( ~ ) .  

In t h e  e x e r c i s e s  we wil l  s h o w  t h a t  o ~ r e a l l y  h a s  t h e  p r o p e r t i e s  o f  an  e x p o n e n t i a l  

f u n c t i o n .  

7.9. L e m m a  ( E l e m e n t a r y  p r o p e r t i e s  o f  ~ )  

( l ) ) ~ . c 0  ~ is a normal  functl~m and X~< x .~  ~ is a x - n o r m a l  func t ion  fo r  

any regular  x > o. 

( i i )  0 < co ¢t 

(iii) o ° =  1 ,  to j = o 

(iv) a < ~ = ~ ¢ o ~ < ¢ o  ~ 

(v) I f  ~ < ¢o ~. then  ~ + ~  = ~¢~, i.e. ~e ~ and ~ < ~ imply  ~+~ = ~. 

P r o o f  

( i ) - ( i v )  a r e  obv ious .  

(v) F o r  ~< t0 ~" a n d  ~ = 0 w e  have  ~ = O. H e n c e  ~+¢0 ~ = ¢0 ~. I f  a * O  w e  have  e ~ e  Lira 

a n d  o b t a i n  ~+o¢~= s u ~ x ( ~ + q ) ~ t o ~  s i n c e  e ~ e ~ .  H e n c e  ~ ¢ ~ + o  ~ ~ t~ ~ , i.e. 

7 . |0 ,  T h e o r g m  (Addi t ive  normal  f o r m  fo r  o r d i n a l s )  

For every  ¢¢e O n  which is d i f f e ren t  f r o m  0 there  are uniquely  de t e rmined  or -  

dinals aq ...... anegq such that  a = a l +  .... +a n a n d  a j ~ . . ~ a  n. This is deno ted  by  

a = N F a l + . . . + ~ n  and we define 0q(a ) :=  {a I . . . . .  an}.  

P r o o f  

a) W e  p r o v e  t h e  e x i s t e n c y  o f  a I . . . . .  a n by  i n d u c t i o n  on  a .  

W e  a re  d o n e  i f  a ~ H .  O t h e r w i s e  t h e r e  a r e  [~j,[32< 0¢ such  t h a t  • = [31+[32. By t h e  

i n d u c t i o n  h y p o t h e s i s  we  have  [31 = o c H + . . . + a l n  and  [ 3 2 = a 2 1 + . . . + a 2 m  s u c h  t h a t  
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oc,, ~ . .~a  m and  0t2,~... ~ 2 m "  But  t h e n  a = {B,+{B~, = (0tl,+...+0~,n}+(0t2,+...+Ct2m) 

= 0 t l i + . . . + 0 t l k + 0 ~ 2 1 + . . . + C t 2 m  where  a , k  is t he  las t  e l e m e n t  in the  l is t  ~,1 ..... a m  

which  is l a rge r  o r  equal  t o  ~2," The l a t t e r  e q u a t i o n  ho lds  s ince  by 7.9. ~ j  < aa,  

a lways  impl ies  ~,}+a2, = ~2, s u c h  t h a t  all o rd ina l s  less  t h a n  a2~ are  s w a l l o w e d  

by a2L 

b) In a s e c o n d  s t e p  we p rove  the  un iqueness .  

A s s u m e  t h a t  a = ~ + " ' + a n  and ~ = N ~ + ' " + { ~ m "  We  p rove  n = m and  a~ = I~tby 

induc t ion  on n. Since otl,~ 1 e 8-{ t h e r e  are  o rd ina l s  ~1 and  ~2 such  t h a t  ~! = ~ '  and  

~ = ~o ~. Hence o~:~ ~<co ~ and t0~2~ ~< to ~ ' .  This entails ~ ~2 and ~2~ ~ and 

we have ~! = ~2 and therefore also a~ = {~I" If n = 1 we are done. Otherwise it 

follows a2+...+~n = {32+...+13 m which by the induction hypothesis implies n = m 

and al = ~i for i= 2 ..... n. 

7.11. C o r o l l a r y  (Cantor  normal f o rm t o  bas is  to) 

For every ordinal ~ * 0 there are uniquely de termined  ordinals a t ~.. a~n such that  
O~ = b}O~l+...+(d O~n. 

7.12. Def in i t i on  o f  t h e  natural s u m  o f  o rd ina l s  

I f  a = s F 0 t l + . . . + 0 t  n and  ~ = NF0tn+l+...+Ctn+m , we  def ine  a#{3 :=  0 t T t ( l ) + . . . + 0 ~ ( n + m )  

where  ~ ¢  Sn÷ m is a p e r m u t a t i o n  o f  t he  in t ege r s  I ..... n+m s u c h  t h a t  i<j  a lways  

implies  ~ (1) >'x=(j)" 

7.13. L e m m a  

(ii) ~<~ implies ~#~ < ~#~ and T # a  < 7u6.  

(iii) I f  y e l l ,  ~ < y  and 6<7, then o~#~< ~f. 

(iv) ~ # ( { 3 . 7 )  = ( ~ # ~ ) # 7 -  

7.14. Def in i t ion  

We  recur s ive ly  def ine  the  e x p o n e n t i a t i o n  t o  the  bas is  2 by 

( i )  2 0 = O' 

( i i )  2 ~'' = 2 a #  2 a 

(iii) 2 k = sup{2~ : ~<k}  if k ~ L i m .  

This  e x p o n e n t i a t i o n  has  t he  f o l l o w i n g  p r o p e r t i e s  
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7.15. L ~ m m a  

( i)  ¢ ~ 2  ~ 

(i t)  ~ < ~  i m p l i e s  2°~<2 t~ a n d  2 ~ + 2 ~ a 2  t~. 

(rid F o r  a l l  ¢~ ~ On w e  h a v e  2 ~ ~ to ~. 

All p r o o f s  are  easy exerc ises .  

7.16. E x e r c i ~ s  

1. Prove or d isprove the  fo l lowing c la ims 

(i)  ((x+{~)+y = oc+(~+~() 

(ii) Ot+~ = ~+¢Z 

(iii) I f  ~*0  and ~ + ~ = ~  for  all [3<~, then  c c ~ .  

2. Prove 7.13. 

We def ine  the  mul t ip l ica t ion  o f  ordinals  by the  fo l lowing recurs ion  

coO = 0  

~ . ~ '  = ~ - ~ + ~  

¢t.k = s u p { ~ ' ~ : ~ < k }  for  k~Lim.  

3. Prove or d isprove the fo l lowing c la ims 

(ii) ~Z~:~ =~" o¢'y~[B" T 

(iii) ot-(~+'y) = ~X-f3+~x- T 

(iv) ~ . ( ~ . ~ - )  -- (cc-~)-~, 

(v) (¢~+~).'~ = (x. '~+~.~ 

4. Define the  enumera t ing  funct ion o f  t hose  ordinals  which are no t  succes so r  

ordinals .  Prove your  claim. 

The general  exponen t i a t ion  of  ordinals  is def ined by 

exp(~,O) = 1 

exp(~,[3') = exp(~,f~)-ot 

exp(c t ,k)  = sup{exp(ct,  O I~<),} for  ), ~ Lim 

5. Prove the  fo l lowing c la ims 

(i) ~<yA ~ > l  ~ exp(ot,f3)<exp(¢t,y) 

(ii) ct<~ ~ exp (~ ,y )aexp( f3 ,y )  

(iii) exp(~,[3+y) = exp(~ , f~) -exp(~ ,y)  

(iv) exp(~,f3 .y)  = exp(exp(u,[~) ,y)  

44  



~8. A notatAon sys~enu For a segment of ~he ordinals 

(v) ¥¢¢ exp(ta,oc) e D-t 

(vi) Yoc exp(ta,¢c) = o ~ 

(vii) V), (Lim(X) ~ exp(2 ,X)  ~ ~ )  

(viii) ¥c¢ (2 ~ = exp(2,cc))  

(ix) ¥ ~  > 0  (¢o ~ = 2 ~'¢c) 

An ord ina l  co> 1 is a multiplicative principal ord ina l  i f  i t  is c l o s e d  unde r  o rd ina l  
m u l t i p l i c a t i o n  i.e. i f  ~,~<c~ imp ly  ~-~<c~. 

6. S h o w  t h e  f o l l o w i n g  p r o p e r t i e s .  

(l) I f  0c>2 Is m u l t l p l i c a t l v e  p r inc ipa l ,  t h e n  a is a l imi t  o rd ina l .  

(li) An ord ina l  ~> 1 is m u l t i p l l c a t i v e  pr inc ipa l  i f  and  on ly  if i t  is ~-c~ = ~ f o r  

all  l ~ < a .  

(iii) An ord ina l  cc>l is m u l t i p l i c a t i v e  p r inc ipa l  if  and  on ly  if ~ = 2 or  if  

t h e r e  is an ord ina l  ~ such  t h a t  a = ta(o~).  

§ 8. A notation sys tem for a segment o f  the ordinals 

8.1. D e f i n i t i o n  

(i) E o := min{~ : ta~ = ~} 

(ii) tao(f~) := 13, tan+t(13) := t a o n ( ~ )  tax(j3 ) := sup{ta~(l~) : ~< X } f o r  ), ¢ Lira. 

8.2. [ . e m m a  

t o = tao(O). 

P r o o f  

By induc t ion  on n we i m m e d i a t e l y  ob t a in  tan(O)< tan÷t(0) .  T h e r e f o r e  the  s e t  

{tan(0) : n <  ta} has  no  m a x i m u m .  By 6.]1. i t  f o l l o w s  t h a t  tata(O)¢Lim. H e n c e  

ta(aco(o) = s u p { i s  ~ : ~<tata(O) } = s u p { o  ~an(°) : n <  co} = s u P { O n + l ( O )  : n < o }  = tao(O)- 

This  s h o w s  t h a t  E0,t0(a(O). Eo< ta(o(O) is e x c l u d e d  b e c a u s e  o t h e r w i s e  we  had an 

n<(o s u c h  t h a t  tan(O)~;£O<tan+t(O). B u t  f r o m  th i s  we  w o u l d  o b t a i n  COn+l(O)~ta~o 

= ~0 < tan+t (O)  w h i c h  is  i m p o s s i b l e .  

8.3 Theorem 

Eo<G. 
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P r o o f  

W e  have  O n ( 0 ) <  f) fo r  a l l  n b e c a u s e  X~.~ ~ is an  f ) - n o r m a l  f u n c t i o n .  S ince  t h e r e  

is  a I-1 m a p p i n g  f r o m  {On(0) : n< t0}  o n t o  o<C~ t h i s  s e t  is b o u n d e d  in f ) .  H e n c e  

a 0 = sup{Con(O) : n<~o}< f). 

8.4.  I n d u c t i v e  d e f i n i t i o n  o f  t h e  o r d i n a l  s e t  E 

(i)  0 ¢ E  

(ii) I f  a , ~ ¢ E ,  t h e n  ~ + { ~ E  

(ill) I f  a C E ,  t h e n  ~m~E 

8.5. T h e o r e m  

The ordinal  s e t  E e x a c t l y  is t h e  s e g m e n t  o f  ordinals  b e l o w  Eo, i.e. E = E o. 

P r o o f  

W e  s h o w  

(1) a ~ E ~ a < E  o 

by  i n d u c t i o n  on  t h e  d e f i n i t i o n  o f  E. 

O<E o is o b v i o u s ,  cL[~<~ 0 imp ly  c~+[~<E o s i n c e  Eo~H. i f  a < E  o, t h e n  

6J a < tO 6 °  = E O. 

F o r  t h e  o p p o s i t e  i n c l u s i o n  we  p r o v e  

(2) a < E 0 ~ a ~ E  

by i n d u c t i o n  on  a.  

F o r  a = 0 t h i s  a g a i n  is  obv ious .  

I f  a ¢  H, t h e n  t h e r e  is  a ~ s u c h  t h a t  a = t0 ~. ~< E 0 i m p l i e s  ~< ~. By t h e  i n d u c t i o n  

h y p o t h e s i s  w e  t h e n  have  ~ ~ E w h i c h  by  8.4.(1ii) e n t a i l s  a = t 0 ~  E. 

I f  a ~ ~ ,  t h e n  t h e r e  a r e  o r d i n a l s  a l , a  2 < ~ s u c h  t h a t  a l + a  2 = a.  By t h e  i n d u c t i o n  

h y p o t h e s i s  we  o b t a i n  a l ~ E  f o r  i = 1,2, and  b y  8 .4 . ( i i )  i t  f o l l o w s  ~ = ~1+~2¢E.  

8.5. e n a b l e s  us  t o  d e n o t e  e v e r y  o r d i n a l  l e s s  t h a n  E 0 b y  an  e l e m e n t  in E. Th i s  

n o t a t i o n ,  h o w e v e r ,  is  n o t  un ique .  To  o b t a i n  u n i q u e n e s s  we  have  t o  r e f e r  t o  

n o r m a l  f o r m s .  

8.6. Theorem 

For every ordinal a ~ E different from 0 there are uniquely determined ordinals 

a i ..... a n ~ Erda such that a =NF 6~al+"'+oan" 
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Proof 

By the normal form theorem there are uniquely determined ordinals c~ I ..... a n 

such that c~ =NF c°gl +...+~j~n. c~e E implies c~<E 0 and we obtain ~I ..... c~ n <c~ c ~o = E. 

8.7. D e f i n i t i o n  (arithmetization o f  E) 

W e  d e f i n e  a m a p p i n g  r~ : E - ~  RN by:  

(i) r01 = 0 

(i i)  I f  ~ =NF (D°gl+---+G)CXn t h e n  ro~l := <l,  rai  ~ . . . . .  roan1> 

rE~ :=  {r~  : a e E }  

n ~ m  : ~ 3 a E E 3 B c E ( r a ~  = n Arf3~ = m A  ~<{3)  

n ~ m : ~ 3 a e  E 3~e E(Fa  ~ = n A rB1 = m A  O~ = {3) 

8.8. Theorem 

The set rE1 and the relations ~ and =- are primitive recursive. 

Proof 

We have 

ncrE I ~ n = 0v Seq(n)A (n) o = 1 A Vx<lh(n) (0<x =~ (n)xerE I) 

^ Vx<lh(n)-l(0<x~ (n)x+ ! ~ (n)x). 

and 

n14n2 ~ ni erEI^ n2erE1^ [(nl = 0A n 2 # 0) 

v (3x< min{ lh(n 1),lh(n 2) }((nl)x4 (nz) x) ̂  Vy< x (0 < y =¢~ (nl)y = (n2)y)) 

v (lh(nl)< lh(n2)A ¥x< lh(nl)((nl) x = (n2)x))]. 

Thus the set rE1 and the relation ,~ are definable by simultaneous course of 

value recursion. Hence both are primitive recursive. 

T h e  f o l l o w i n g  c o r o l l a r y  t h e n  is  a n  i m m e d i a t e  c o n s e q u e n c e  o f  8 .8.  

8.9.  C o r o l l a r y  

~O< OJl C K  . 
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§9. A norm funct ion for H~-sentences 

9.1. Inductive d e f l a t i o n  o f  ~ n 

(Ax) If ~o A holds according to  (Axl)  or (Ax2) ,  then  ~ A. 

( A )  If ~o i ~ ,A  l holds for  all i El and a = sup {~l+l : i ~ l  }, then  ~ A, IE/~x{A I. 

( V )  If  ~o ° A , A  l holds  for  some l~ l ,  then ~J  A, ~ A t .  

9.2. L e m m a  

Let  A,F be a f inite set  o f  SaD-formulas.  

{i) It  holds  ~o A i f  and only  i f  there is an a<fl  such that  ~o A. 

(ii) We have ~ l ~ F  i f  and only  i f  there is an ~t<D such t h a t ~  F. 

P r o o f  

(i) We prove ~o fl ~ a<D by induction on the  defini t ion o f  o~ A. In the  case o f  

(Ax)  this  is obvious. In the case o f  an inference ( V )  we have % < D  by the  
| 

induction hypothes is  which entai ls  uo< f) since f)~ Lim. In the  case o f  an in- 

ference ( A )  we have by the induction hypothes is  0tl< fl for  all i~ I. Since A is 

a se t  o f  San - f o r m u l a s  the index se t  I and the re fo re  also the se t  {~t: i~ I} has 

to  be countable .  Hence ~ = sup{~i: i~ l}<Ci. 

The oppos i te  direct ion is trivial since the  defini t ion o f  ~o A immediate ly  implies 

~o a. 
(ii) By the soundness  and the comple teness  theorem we have ~[ ~ F if and only 

if ~oF and the  claim fol lows f rom (i). 

9.3. Defini t ion 

For an SaD-formula  F we define 

iF l :=  { min{~ : ~ F }  if this is def ined 

! D otherwise  

We call  }F{ the  norm of  the  Sa te- formula  F. 

9.4. Defini t ion of  the t rans la t ion  * which maps Hl-sentences of  Sal 

of  Saoo 

(i) If  F is an atomic formula,  then F* :s F. 

(ii) (-IA)* :-= 1A* 

to  formulas  
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(iii) (A A B)* : - /k  {A*, B* } 

(iv) ( A v  B)* := V{A*,B*} 

(v) (¥xA)* := A { A x t n ) *  : n < o }  

(vl) ( 3 x A ) * : -  V { A x ( n ) * :  n<(0}. 

A formula  o f  .Too which is the * - t r ans l a t i on  o f  a H~-formula of  .T1 o f t en  is 

cal led a II~-sentence of  .Too. 

For a HI-sentence  F o f  .T we def ine IFl := IF*t. 

By an easy induction on the  defini t ion o f  the  ~ l - f o r m u l a  F we obtain 

9.5. Lemma 

For a H~-sentence F o f  .T we have N ~ F i f  and only i f  N ~ F*. 

9.6. The o r e m 

For an ~ o - f o r m u l a  F we have ~ F  i f  and only  i f  IFl<O. 

P roo f  

If N ~ F ,  then  by 9.2. there  is an ~ < ~  such tha t  ~ F. Hence ) F I ~ < D .  

~IJ~F implies ~o F by the  soundness  theorem.  But then  { ~ : ~ F }  = ~  by 9.2. 

Hence IFt = t). 

The fol lowing coro l la ry  is an immediate  consequence  of  9.5. and 9.6. 

9.7. Coro l la ry  

For a H| - sen tence  F in .T we have Rq ~ F i f  and only  i f  iF] < O. 

The claim of  9.7. may be sharpened to  

IN~F ~ IFl<ot cK.  

Here it is even possible  to  show tha t  

sup{ IF) : N ~ F }  = t01CK 

Both p roo f s  use me thods  of  recurs ion  theory  and are outs ide  the  scope o f  this 

lecture.  

9.8. F.cerdae 

Show tha t  IFl<o holds for  t rue  . T t - s e n t e n c e s .  
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10. T h e  Inflnitary system Zoo 

10. The infinitary s y s t em  Zoo 

After having introduced a norm for the I]~-sentences of the language of pure 

number theory it is a natural question to ask which norms are accessed by 

II|-sentences provable in Zp In order to answer this question we will introduce 

an infinitary system Zoo whose cut free derivations may be interpreted as ~o 

derivations and so obtain an upper bound for the norms of the derivable formulas. 

In a f i r s t  s t ep  we define the  rank o f  an £Poo-formula.  

10.1. Def ini t ion o f  the  rank rk(F) of  an ~ o o - f o r m u l a  F 

(i) I f  F is a tomic ,  then  rk(F} := 0. 

{ii) I f  F is a fo rmula  A{F~: i~l} or a f o rmu la  V { F i :  i~l}  

rk(F) := sup{rk(Fl)+l  : i~l}. 

we define 

As an immedia te  consequence  we obtain 

10.2. I.emma 

I f  F~-~  D , then rk(F) = r k ( a F ) < O .  

For the  fo l lowing defini t ion we p r e s u p p o s e  t ha t  M is a subc la s s  o f  the  ordinals  

and t h a t  A is a finite s e t  o f  APo0-formulas whose  ranks  all be long  to  M. 

10.3. Induct ive  deflnlUon of  Z M ~  A 

(Ax)  I f  ~o A holds  by (Axl)  or  {Ax2),  then  we have ZM~ A for  all a , o ~ M .  

( A )  I f  we have Z M ~ l  A, A iand  ctie~c~ M for  all  i ~ l ,  t hen  we a l so  have 

A, 

( V )  I f  Z M ~ °  A,A l and ao~ Mc~a holds  for  some  i~!  and c ~ M ,  t hen  we a l so  

have Z M ~  A,VIA___I_: l_e~ I}. 

(cut} I f  Z M ~  l A,A and Z M ~  2 A,aA and r k ( A ) e  M n p ,  t hen  we have Z M ~  A 

for  all  a e  M such t h a t  a l , a2<~.  We  call  rk{A) the  rank o f  the  cut. 

The under l ined fo rmu la s  in the  conc lus ion  o f  the  inferences  ( A )  and ( V )  are  

cha rac te r i s t i c  for  the  inference.  We call  it the  main formula of  the  inference.  

We of ten  in te rp re t  an axiom as an inference wi thou t  premises .  The ma in fo rmu la  

of  an ax iom according to  (Axl) (cf.5.2) is P t l . . . t  n. An axiom according to  

(Ax2) has two  main fo rmulas ,  t~ X and s~ X. 
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If M is a recursive set  of ordinals, then Z M is called a semi formal  sys tem.  

I0.6. Lamnm 

If M is a segment of the ordinals and ~ ~ M, a comparison of the definitions 

o f  ~o and ZM~ SHOWS that  there are the fo l lowing  connections.  

ZM ~o A ' ~  ate M^ 3~:  ct(~o A). 

This immediate ly  enta i l s  Z M ~  F =¢> IFl~:ot. 

Instead of Zon we usually write Z0o . First of all we will only regard such 

M c On which are segments of ~. For a segment M = {3< t~ we just write Z~ ~ A 

or shortly ~ A instead of ZM~ A whenever it is clear from the context which 

set M we are talking about. 

10.5 Lemma 

I f  ~p A, o~: f3 and p~o, then ~ A. 

The proof is an easy induction on g. 

10.6. Theorem (structural rule) 

I f  ~ A and Ac r.  then ~-_ r .  

Proof by induction on 

(Ax) If A is an axiom ~ Ao,__P t 1 ..... t n or ~ Ao, t eX ,  s , X ,  then F is an axiom 

of the same kind. Hence also ~ r. 

(A)  From the premises ~ i  A0,A i for all ie l  we have ~ l  F,Ai for all ieI by 

the induction hypothesis. Because of ( l /~lAt)eAcr  we obtain ~ r by an A -  

inference. 

(V)  From the premise ~ A ,A l for some i eI we first  obtain ~o r,Aj by the  

induction hypothesis. By an V- infe rence  it then follows ~ r. 

{cut} From ~ t  A,A and ~_2 A,1A it follows ~ '  F, A and ~z  U, 1A by the induction 

hypothesis. Using a cut we then obtain ~ F. 

I0.7. Theorem CA-Inversion rule) 

A, A { A I :  iel} entails  ~A,A i for  all ieI. 
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Proof 

|. If ~ A, l/~Ei A t is an axiom, then  l/~ iAt canno t  be  i ts  main formula .  But then  

A,A l for  all i~ ! is an axiom of  the  same  kind. 

2. If  i/XiAl is not  the main fo rmula  o f  the  las t  inference 

then  we have ~J Aj,A t for  all i¢ I by the  induction hypothes is .  By the  same  

inference (S) we thus  obta in  ~ A,A~ for  all i¢I .  

3. I f l A i A t i s  the  main f o r m u l a  o f  the  l as t  inference,  t hen  th is  inference is a A -  

inference whose  p remises  are ~ t A  0, A l for  all i¢I .  By the  s t ruc tu r a l  rule  we 

obta in  ~ t  A,At,iE/XIAI and by the  induct ion hypothes i s  ~ t A , A  t for  all i¢I .  This 

implies  ~ A,A l for  all i¢ I  by 10.5. 

10.8. V-importation and ~/-exportation 

(i) ~ A ,A t ..... A n implies ~+~ ~ ' ~  A,Atv . . . V  A n. 

(ii) F~ A,A, V ... V A n imp l i e s  ~ A, A t ..... A n. 

Proof 

(i) By i t e ra ted  appl ica t ion  o f  V - i n f e r e n c e s  we obta in  ~ A, AI,...,A n 

S o *  A3 ..... An, A,v...v An An 
(ii) The p r o o f  is by induction on cc 

1. I f  Atv  ...v A n is not  the  main f o r m u l a  o f  the  las t  inference,  then  e i ther  A is 

an ax iom and so  is A,A t ..... Art or we have the  p remises  ~J A j. A t v ...w A n. But 

then  we have #pJ A j, A 1 ..... A n by the  induct ion hypothes i s  and obta in  ~ A , A  1 ..... A n 

by the  same  inference.  

2. I f  A i r  . . . v A  n is the  main fo rm u l a  of  the  l a s t  inference,  then  it is an V -  

inference  whose  p remise  is G ° A, AI,Atv . . . vA  n. By the  induct ion hypothes i s  it 

fo l lows  F~A,At,...A n and by 10.5. ~ A,Av...A n. 

10.9. Tau to logy  l e m m a  

Suppose  that  F is an £Poo(xt ..... x n) formula, t=( t  t ..... t n) and  t t=(s  t ..... s n) a re  n -  

tuples o f  ~ o o - t e r m s  such that  s l and t |  a r e  equivalent  fo r  i = 1 ..... n. N o w  f f  

F t = Fx( t ) ,  F 2 - -Fx (a )  and  ~ = rk(F),  then we have ~o~A,F1,3F2 for all f inite 

formula s e t s  A. 

Proof by induct ion on rk(F t} 

1. I f  F t is an a tomic  fo rm u l a  Rt t . . . tn ,  then  we have F 2 =-R__st...s n. I f  R t l . . . t  n is 

valid , we obtain  by (Axl} ~o A,Ft , IF2-  Othe rwise  -IRsl.. .s n is valid and we 
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again by (Axl)obtain ~o A,FI,IF2. 

2. If F I ---ticX, then IF 2=-siCX. But then ~ A,FI,~F 2 holds by (Ax2). 

3. If F, -- A AI., then IF 2 - iYI IA~ and by the induction hypothesis we have 
2c~ L 1 i c [  i 

~-io A, AI,'IA ~ for all i~I. Using an V-inference we obtain ~--~-ZA ,A11,-IF 2 for 

all ieI. Since ~--sup{~i+l:iel} we have 2~i+I<2{~i+I)~ 2~ and it follows 

20~A,Ft,'IF2. by an A-Inference. 

10.10. lnducUve definit ion of  the se t  AT{F) o f  sentential subformulas of  a 

-~°oo-formula F. 

(i} I f  F is a formula  Pt  t ..... t n, t e X ,  tCX,  A { A l : i e l }  or V { A l : i e l }  

with infinite index se t  l, then  AT(F) = {F}. 

(ii) I f  F is a formula  A { A  l : i<n<to} or a formula  V{Ai : i<n<w},  then we 

define AT(F) = {F} w U {AT{AI): i< n}. 

As in §3 we call formulas F with AT(F) = {F} sentential atoms of L/~oo. By AE 

we denote the set of all sentential atoms. We define AE(F) :=AT(F) r~ AE. 

I0.II. Definition 

(i) Two sentential atoms A[t I ..... t n] and A[s I ..... s n] are equivalent, if we 
N for i = I ..... n. have t = s i 

It is completely obvious that this relation in fact is an equivalence relation. 

(ii) Two sentential atoms A l and A 2 are dual, if there is a sentential atom 

F such that A I is equivalent to F and A 2 equivalent to "IF. 

10.12. Definition 

{i) A sentential assignment is a mapping B:AH-~ {t,f}, which assigns 

different truth values to dual sentential atomic formulas and is compatible 

with the equivalence of sentential atomic formulas. 

{ii) Inductive definition of A e for AeAT(F). 

I. Ae AT(F)c~AE. Then A e = B (A). 

2. {V{AI : i<n<e})e =t~A~ ~t for some i<n<e. 

3. (A{A i : i<n<e}) e =t~A~ =t for all i<n<t~. 

(iii) A finite formula set {F l ..... F n) is sententially valid, if for every 

sentential assignment B there is an le{l ..... n} such that F? = t. 

{iv) If A is a finite formula set we denote by A a the set of formulas which 

comes up from A if we replace each occurence of a formula of the shape 
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V{FI  : i< n<t0} by {F o ..... Fn_ t } and iterate this process  until all finite disjuctions 

have disappeared. According to  10.12.(ii)2. A is sentent ial ly  valid if and only if 

A a is. 

(v) A finite formula  set  A is sententially reducible if A a contains  a 

formula  o f  the fo rm A {Al:  i< n<~0}. Otherwise A is sententially Irreducible. 

10.13. Lemma 

A sententially irreducible formula set A is sententially valid f f  and only f f  A a 

has the shape A o, FI,F 2 where Fj ,F 2 are dual sentential atoms. 

~ :  If  A a has the shape A0,Ft,F2, then we have F~ = t  or Fz ~ = t  for any 

sentential  ass ignment  B. Hence A a and consequent ly  also A are sentent ial ly 

valid. 

~ :  If  A a does not  have the shape A0,Fj,F 2, then we assign the t ru th  value f 

to  all sentential  a toms  in A a. This defines a cor rec t  sentential  ass ignment  B 

because by hypothesis  A a does no t  contain  dual sentential  a t o m s .  But A a only 

conta ins  sentent ial  a toms  since A is irreducible. So we have F a =  f for all 

F~A a. 

10.14. Lemnm 

A finite formula s e t  A,/~{F i : i < n < o }  i s  sententially valid i f  and only f f  A,F l 

is sententially valid for all i< n. 

P roo f  

=~: Let B a sentential  ass ignment  such tha t  F e = f for all F~A and FiB= f for 

some i<n. Then we have A { F i :  i<n} B = f  and therefore  F t ~ = f  for all 

F ~ A , A  {F i : i<n}. 

~ :  For a sentential  ass ignment  B we always have A { F t :  i < n } B = F ~  for 

some i0< n. Since A,F t is sentent ial ly valid for all i< n we obtain F e = t for all 

F~A, /k{F  l : i < n } .  

10.15 Inductive definit ion of  the degree GF o f  sentential reducibility of  an ~ a o -  

fo rmula  F 

(i) for  F~AE we define GF = O. 

(ii) G ( V { F t : i < n < t o } )  := max{GFl : i< n} 

(iii] G(A{Fj  : i<n<to}) := max{GF t : i < n } + l  
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For a finite formula set A we define G(A) := F~A= G(F). We obviously always 

have F(A)< o. 

10.16. Theorem (sentent ial  completeness)  

I r A  is a f i n i t e  f o r m u l a  s e t  which  is  s e n t e n t l a l l y  valid and  ~ := max{rk(F): FcAa}, 
t hen  there  is  an m < e  s u c h  tha t  }2°t+m A. 

o 

Proof by induction on G A a. 

I. If GA a = O, then A is irreducible. By 10.12. A a is of the shape Ao,FI~ 2 with 

dual sentential atoms F I and F 2. By the tautology lemma we therefore obtain 

[ 2rkF1 A a. It is rkFl~a and A may be obtained from A a by V-importation. 

Hence there is an re<t0 such that ~-a+rnA. 
O 

2. GAa>O. Then A a has the form A o, A{F i : i<n} for some n<o. By 10.13. the 

set A0,F L is sententially valid for all i<~ For i<n it is G(A0,FI)<G(A) and we 
1 2 c ¢ l + m i  obtain an mt<c0 such tha t  , o Ao,F l by the induction hypothesis.  I t  is gi = 

max{rkF : F¢ Ao,F l} ~max{rkF : F~A} = ~. For m :-- max{ml+l : i<n} we therefore  

obtain t z°r~m A a by an A - i n f e r e n c e .  Using V - i m p o r t a t i o n  we obtain the  claim. 
O 

10.17. I n d u ~ o n  lemma 

For n< o we have  ~o n IFx(O), -)k</~(1Fx(k)v Fx(k')),Fx(n_) with  ct n = 2(rkFx(O)+n). 

Proof  by induction on n 

For n = 0 we have __o~" 1Fx(O),lk/~<J1Fx(_k)v F(k--),Fx(O) by the tau to logy  lemma 

10.8. 

For the induction s tep we have the induction hypothesis  

(1) ~ 1F(O), 1 kAJIF(_k)V F(k ' ) ) ,F(n) .  

By a s t ruc tura l  inference (1) yields 

(2) ~_n 1F(O), ak/~< (1Ft_k)v Ftk--)) ,Ftn) ,Ftn ' ) .  

Using the tau to logy  lemma we obtain 

(3) ~o -~F(_O), 1 k</~J 1 F(k)v  F(k ' ) ) ,  "I F(n'),F(n_=~'). 

From (2) and (3) it fo l lows 

(4) lan+lo 1F(O), k V ( F ( k ) A  1F(k')),F(n)A__ _ 1F(n'),F(n').__ 

using an A- in f e r ence .  

By an V - i n f e r e n c e  we obtain from (4) 
Otn÷2 

(5) ~ 1F(O), kV {F(_k) A 1F{k--)),F(n--). 

But it is ~n+2 = 2(rk(F(O))+n)+2 = 2(rk F(O)+n')--Ctn+ t. This comple tes  the 

induction step. 
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10.18. Hxerci~s 

I. Suppose that A,F are finite sets of ~o-formulas such that ~ A,F holds. 

Show the following claim. 

There is an ~-formula A with rk(A)~c~ which is an interpolation formula for 

A and r. That means: every predicate constant different from = and every set 

variable which occurs in A occurs both in A and r and we have b~o A,A as 

well as ~ r, IA. 

2. Show that for all valid sentences we have ~ F {cf. exercise 9.8.}. 

I1. Embedding  o f  Z l into Z n  

The * - t r a n s l a t i o n  o f  the  &° 1- f o rm u l a s  into the  ,~°t~-formulas  has a l ready been  

defined In {}9. This t r ans la t ion  has the  fo l lowing proper ty .  

ll.1. Lemma 

I f  F i x  I ..... x n] is an .~o~l-formula which does  no t  contain f u r ther  f ree  n u m b e r  

variables, then for  every  n - t u p l e  k I ..... k n o f  natural  number s  F [ k  ! ..... k.n]* is an 

~ n - f o r m u l a  o f  f in i te  rank. This rank is independent  f r o m  the  choice o f  the  n -  

tuple.  

P r o o f  by induct ion on the  length of  the  fo rmula  F ix  I ..... Xn]. 

I. The c la im holds  tr ivially for  a tomic  fo rmulas .  

2. I f  Fix I ..... x n] is no sentent ia l  a tom,  then  we obtain  the  c la im immedia te ly  

f rom the induct ion hypothes is .  

3. Suppose  t ha t  F ix]  is a fo rmula  VyG[y,x] .  For any n + l - t u p l e  (l,k 1 ..... k n) the  

f o r m u l a  G[IJ~]* is an ~°oo-formula  o f  finite rank m, say, by the  induct ion 

hypothes is .  Then ¥y G[y~k]* is the  f o r m u l a  I<A G[ l ,k ]*  whose  rank obviously  

is m+l. 

The case  t h a t  F ix]  is a fo rmula  3 y G [ y , x ]  is t r ea t ed  ana logous ly .  

In fact the *-translations of the ,~l-formulas form a fragment of ~n in the 

sense as it will be introduced in chapter Ill. 
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11.2. Embedding  l e m m a  

I f  F ix  I ..... x n] is an . ~ l -  formula  which conta ins  on ly  the  indicated n u m b e r  variables 

such  that  Zl [ -  F ix  I ..... Xn], then there  is an ordinal co<to+to and an ordinal re<to 

such  that  ~mF[k  I ..... kn]* holds  for  every  n - t u p l e  (k l ..... k n) o f  natural  numbers .  

Proof 

The p r o o f  is by induction on the  length  of  the  der ivat ion Zl}--F[x t ..... Xn]. 

1. If FIx t ..... Xn] is a sen ten t ia l  axiom,  then  F[_k I .... .kn]* is a sen ten t la l ly  valid 

f o r m u l a  and  we obta in  ~ F [ k  I .... ~ n  ]* for  some  m<to by 10.16. and  ILl. [Here  

we have to  check t h a t  the  length  o f  the  der ivat ion in 10.16. does  no t  depend 

upon  the  choice  o f  the  t e r m s  k t .... ~k n. I f  we do not  wan t  t o  do tha t ,  t hen  we 

obta in  ~ F [ k  t .... ~kn ]~ which is a l so  suf f ic ien t  for  the  p r o o f  o f  the  lemma].  

2. Suppose  t ha t  F[x I ..... Xnl is a f o r m u l a  1¥x  A[x t ..... Xn]V Ax( t ) [x  t ..... Xnl. I f  we 

choose an n-tuple k = (__k I .... ~kn), then tx(k) is a closed term t o such that 

to ~ = : k say. By the tautology lemma we have 

~Ax(k)[k]~, Ax(t)~l;] ~ for ~ := 2rk(Ax(k)[k])~<to. 

By an V-inference this implies 

lk/~< ¢o Ax(k)  [k ]* ,Ax ( t ) [ k ] "  

which by V - i m p o r t a t i o n  enta i l s  

lk/~< Ax(k)  [ k ] ' v  Ax( t )  [k ] ' .  

But this  is the  fo rm u l a  F[k]  *. 

C o m p l e t e l y  ana logous ly  we obtain  ~ (Ax(t)  -~  3xA) *. 

3. Logical inferences  

(mp)  By the  induction hypothes i s  we obtain  ~1,~2 < t0+t0 and ml ,m z < to such t ha t  

~ A "  and ~ aA'v B*. By the s t ruc tu ra l  rule and V - e x p o r t a t i o n  it fo l lows  

~m2A',B" and ~-m2-tA*,B * for  m := max{ mi,m2,rk(B*) + l}. By a cu t  th is  implies  

~m B* for  ~ := max{~l ,~2}+l< t0+t0. 

(V) By the  induct ion hypothes i s  t he re  are ordinals  ~0<to+to and m<to such t ha t  

~m°{'tAVB)x[k,Jg] * ho lds  for  all kEto. By V - e x p o r t a t i o n  and the  var iable  

condi t ion x t FVI(A) this  en ta i l s  #m ° 1Aik] ~, Bx(k)[k]*  for  all k ~ to. Using an / k -  

inference we obtain  ~ 2 - ~ '  1A[~] " , k A o B x t k ) [ k ] "  and by V - i m p o r t a t i o n  finally 

~-~Av VxB)[~*. 
4. Equal i ty  ax ioms 

{i) According to  (Axl) we have ~ n  = n  for  all neto. By an / k -  inference  this  

implies  ~o Vx(x = x) *. 

(ii) ~o nn_=m__,m=_n holds  for  all  n ,meto  by (Axl) .  Using V - i m p o r t a t i o n  and 

two  A - i n f e r e n c e s  we obta in  ~ ¥ x V y ( x  = y - *  y = x) *. 
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(iii) The t ransi t ivi ty  axiom is proved similarly. 

(iv) ~o i n = m ,  tx(n)  = tx(m)  holds by (Axl)  because we e i ther  have ~ T ~ n * m  or 

~ l ~ t x ( n )  = tx(m) .  By V - i m p o r t a t i o n  and two  A - i n f e r e n c e s  we again obtain 

~ Y x Y y ( x =  --+t  = tx(Y))*. Y 

(v) We have ~ n * m ,  lFx(_n)',Fx(__m)" for  ~ = 2rkFx(n) '<¢0  since we e i ther  have 

nvm and the re fo re  an axiom according to  (Axl)  or it is n = m and we may 

derive the  fo rmula  using the  t au to logy  lemma. By V - i m p o r t a t i o n  and two  

A - i n f e r e n c e s  it fo l lows  ~oSVXVy(x= y - +  F - *  Px(y))*.  

5. Mathematical  axioms 

~o 0 * S n  holds  for  all n e e  according to  (Axl) .  By an A - i n f e r e n c e  this  entai ls  

~ V x (  10 = Sx)*. 
o 

~o _Sn*_Sm, n = m holds according to (Axl). Hence ~ Vx ¥y(_Sx =S_y--~ x = y)* 

as before. 

~oSn = S n is an axiom according to (Axl). 

We are going to treat the defining equations for primitive recursive functions 

just in examples. 

We have o~C~kr..kn =k since this is an axiom according to (Axl). Hence 

¥x,...Xn(CkX,...x n =k) by A-inferences. The case of the constants P~k is 

treated analogously. 

~Sub(g,h I ..... hm)Qk) = g(htk)...(hmJl;) is an axiom according to (Axl). By A- 

inferences we obtain the translation of the defining axiom for Sub. 

We have ~ok*_O, (Rgh)kk = gk and ~ok * _S!,(Rgh)kk = _hkl(P, gh k !)) according 

to (Axl}. Using V-importation and some A-inferences we obtain the trans- 

lation of the defining axiom for (Rgh). 

It holds ~o ~R~ , XI~ =1 and ~-xRk*l, R~ by (Axl). By V-importation and 

A-inferences this implies ~ ¥xv.. Xn(RXr..Xn *-. XRxv..x n = I)'. 

In a last step we have to show that (|ND) * is provable in Z~. 

By the induction lemma |0.17. we have 

~k -iAx(O)~ ( -iVy(Ax(Y ) _.~ Ax (_~y)), ' Ax(k )- 

for all k<~ and ~k = 2(rkFx{O)+n)" By an A-inference we obtain 

o ~ IAx(O)~,1 VY(Ax(Y} -~ Ax(SY}}',(VxA}" 

and by V-importation this yields ~+3 (IND)~ 
o 

This terminates the proof of the embedding lemma. As a last remark we want 

to emphasize that only the presence of the induction scheme (IND) forced us 

to regard infinite derivations in Z~. In absence of {IND) the embedding lemma 

would work with ~ instead of e+e and therefore yield finitary derivations. 
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11.3. Exercises 

I. Let the formal theory Z o be Z i without IND. Prove that for any £Pl-formula 

F[x~ ..... x n] such that ZoF-F[x I ..... x n] there are natural numbers i,j<to such 

that ~ F[~ .... ,k n] holds for every n-tuple (k i ..... k n) of natural numbers. 

2. For every n<e we define an infinitary system ~'n for ~co by the following 

rules: (Ax), (A) and (V) are the same as in Zoo. 

{cut) If we have ~'n ~o r,A; ~'n ~' A, IA and rk(A)< n+l+p, then we also have 
~n F~ [',a for all ~>c%,~ t. 

(IND n) If we have ~n F~ ° r,Fx(O), ~'n ~' r, IFx(k), Fx(Sk) for all keN, a>~o,~ i 

and rk(Fx{O))~n, then we also have ~n ~ r,Fx(k) for all k~q. 

Prove the following claims: 

(i) If F[x, ..... xj] is an £P-formula which contains only the indicated number 

variables such that Y-n°-IND F-F[x I ..... xj], then there are natural numbers k,m 

such that 2 n ~ F~I .... ~j]* holds for every j-tuple (i I ..... i I) of natural numbers. 

(ii) For every finite set A of £°oo-formulas ~'n ~ A implies Zoo ~ A. 

~12. Cut elimination for Z o 

W e  s t a r t  t h i s  s e c t i o n  by  the  r e m a r k  t h a t  we a l s o  have a s o u n d n e s s  t h e o r e m  

for  Z o . 

12.1. $ o u n d n e u  theorem for Z n 

IF A is a finite set o l i n - f o r m u l a s  such that ~ A, then RqJ=V{F : F e A }  

The proof is essentially the proof of 5.3. In the induction which here may be 

formulated as induction on ~ we only have to take into account the additional 

case of a cut. There we have the induction hypothesises ~I~V{F:FeA}vA 

and N~V{F : F~A}v IA. But this entails ~I~V{F : FcA}. 

From the soundness and the completeness theorem for ~o we can see that the 

cut rule in fact is superfluous in the system Z D . From ZD~ F we obtain 

~]~F and thereof ~F with [3 = IFI. By IO.4,however, ~o A entails ~o A. So we 

may infer from ~F that ~oF holds for some [~< O. This shows that the cut 

rule in Z D is in principle eliminable. So we do have a cut elimation theorem 

for Z D but we do not yet have much information about the size of the ordinal {3. 

Of course we know that the norm of the formula F suffices. But this is of 
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little help since it is the aim of  our considerat ion to obtain some informat ion 

about  this norm. Therefore we have to prove the cut  elimination theorem for 

Z¢~ in a di f ferent  way. This p roof  mus t  be done in such a way tha t  we may 

keep cont ro l  over the length of  the derivation trees during the elimination 

procedure. The embedding of Z I into Z n produced derivation trees of lengths 

below to+to and finite cut rank. We are going to show that the resulting cut 

free derivations will have lengths less than E o. 

12.2. Elimination lemma 

Proof  by induction on a u 1~ 

1. Assume tha t  either F or 1F is not  the mainformula  o f  the last  inference, where 

again we regard axioms as inferences wi thout  premises. Because o f  the symmet ry  

o f  the claim wi thout  loss of  general i ty we may assume this is the case for F. 

1.1. If  ~ A,F is an axiom so is ~ A  and we obtain by the s t ruc tura l  rule 

10.5. 

1.2. I f  ~ A,F is the conclus ion  of  an inference S whose  premises  are ~ t  A{, F, 

then we obtain ~ At,F by the induction hypothesis.  Because of  ~t#13<a#15 the , p  

same Inference S yields ~ A,F. 

2. Now we assume tha t  F as well as nF are the main formulas  o f  the las t  

inference. We then have to  dist inguish the fol lowing cases.  

2.1. rk(F) = O, i.e. F is an atomic formula.  Since axioms are the only inferences 

whose  main formulas  are atomic we have tha t  ~ A,F as well as ~ F,-IF are 

axioms with mainformula  F or nF respectively.  But then F or 1F m u s t  have the 

form (t~ X). Otherwise F were a formula  _Ptl...t n such tha t  l~l ~ __Ptl...t n whtch 

would con t rad ic t  the fact  tha t  nF, i.e. 3Pt l . . , t  n is the main formula  o f  an 

axiom too,  which means ~1 ~ - iPt r . . t  n. 

Because o f  the symmet ry  o f  the claim we again may assume F = te  X wi thout  

loss  o f  generali ty . But then  A has to  contain  a formula  s l c X  such tha t  

stN= t ~1 and F a formula  s 2e X such tha t  szN = t N. Then A,F too,  is an axiom 

according to  (Ax2) and it fo l lows ~ - ~  A,F. 

2.2. rk(F)>O. By symmetry  we again may assume tha t  F - l < A F l  for  some 

~ to. Then we have the fol lowing inferences 
0c i , , )  A,F,, ,AF, for a,, 

and 
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(If the formula i</~Fi does not occur in the premise we may add it by an 

application of the structural rule). 
c¢ x By the induction hypothesis we obtain ~-~ A,F,F i for all i<v and ~ I',A,~Fio. 

Because of rk(Fio)<rk(F)= p and ~#[~<~#[~ as well as ~#[~o<~#[~ we obtain 

~-~ r,A by a cut of rank rk(F~)<p. 

12.3. P l rs t  e l iminat ion t h e o r e m  

P roo f  by induction on 

1. In the  case tha t  the  las t  inference is not  a cu t  o f  rank p we e i ther  have an 

axiom ~÷jA or the  inference has the  premises  ~p+l ! A l ( l < v ~ e ) .  in the  case o f  

an axiom we have ~ A  by defini t ion and in the  o ther  case we obtain ~p~ A l 

for  all i<v by the induct ion hypothesis .  Since the inference in ques t ion  is not  

a cu t  of  rank p - if it  is a cu t  it mus t  have cu t  rank <p - we may apply the 

same inference to  the p r e m i s e s  ~p~ i~  i t o  obtain ~ A. 

2. I f  the las t  inference is a cu t  o f  rank p, then we have the  premises  ~ A,A 

and ~ A,1A and r k ( A ) =  p. By the  induct ion hypothes is  we obta in  ~p~lA,A 

and ~ 2  A,-IA. By an appl icat ion o f  the  el iminat ion lemma it fo l lows  ~7,~L~2ff_2 A. • p 

For ~o := max{~t,~2 }" we have %<  ~ and 2%#2~z~ 2%#2 ~° ffi2 °~ ~ 2 ~. Hence ~ A. 

12.4. Theorem (Ordinal analysis o f  Zl) 

l f  P is a f l~-sen tence  such  that  Z 1 ~ F ,  then  we  have ~oF* for  s o m e  [3<¢o. 

P roo f  

If  Z l [- F holds  for  a I I | - sen tence  F, t hen  there  is an ~<to.2 and an m < e  such 

tha t  ~m 1~ by the  embedding lemma, i f  we define 2o(~) := ~ and 2n+1(~) : = 22n(~), 

then  m-  fold applicat ion of  the el imination theorem yields 12m(~)F *. But we 
O 

have ¢d+~<coe =¢da(0) and this  implies 2m(00<~d3+m(0) for  all m < e .  Hence 

2m(00< COc~(O) = ~O" 

12.5. Coro l la ry  

I f  F is a l-l~-sentence such  that  ZIJ-F, then  IFI<~0. 

The p r o o f  is obvious by 12.4. and 10.4. 
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12.6. Definition 

a) SP0(Z 1) := { JFI: F is a II~-formula and ZI~-F}. 

b) IZll: = sup se0(zl). 

We call SP0{Z I) the (basic-)spectrum of Z I, [ZI[ is the proof theoretic ordinal 
of  Z I. 

As a consequence of 12.5. we obtain 

12.7. T h e o r e m  

We have SPo(7~) c Eo and IZ11~ Eo. 

The question which now canonically arises is if these bound are the exact ones. 

It will be answered in the following sections 

12.8. l~-xerclses 

I. Prove that JZo[~¢0. 

2. Show that the bound in the elimination lemma is the best possible one. 

3. Prove the elimination lemma and the first elimination theorem for ~n- 

4. Prove the following special case of the elimination lemma: 

A s s u m e  n<~,  k<~  and0~ io<  . . .  < ik<n and for  i<n le t  Pl be an a tomic  formula.  

I f  ~ A, A { P  l : i<n} and ~o r ,V{-Ie i  : i<n}, nP~ ..... "leik, then ~ A,r. 
5. Prove the following claims: 

(i) IZ°-INDI~ ~ = % ( 0 ) .  

(ii) For n~1 we have [lC-°-INDJ~:On+~(O}. 

13. Formalization o f  transfinite induction 

The following considerations hold for any language ,$0 which comprises the 

language of pure number theory. 

13.1. Deflnltlon 

(i) A relation ~ c lqxlq is .~-definable, if there is an .~°-formula A such 

that FV(A)= {x,y} and n~m ~N~Ax,y(n.rn). 
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(ii) The f i e ld  o f  a re la t ion  "~ is def ined by f ie ld(<)  := { x : 3 y ( x < y v  y ~x)}.  

(iii) T ran (~ )  is the  fo rm u l a  VxVyVz(x<y ^ y~ z -*  x< z).  

(iv) LO(~) is the  fo rmula  

V x ( l x ~  x) ^ T r a n ( 4 ) ^  VxVy(x e f i e l d ( ~ ) ^  y ~ f ie ld(<)  -*  x~ y v  y < x v  x = y). 

Obvious ly  we have 

~IPLO(~ )<=> ~ is a l inear order  re la t ion  on ~I. 

(v) Prog(~ ,X) is the  f o r m u l a  Vx(x ~ field(~ ) A Vy(y< x --* y e X) -*  x e X). 

We have ~ l P P r o g ( ~ , S )  if and only if the  c lass  S is p r o g r e s s i v e  with r e spec t  to  

the  re la t ion  4,  i.e., if  al l  ~ - p r e d e c e s s o r s  o f  x be long  S, then  a lso  x be longs  to  

S. 

(vi) By Fund(<,X) we deno te  the  f o r m u l a  

Tran(~)  ^ (Prog(~ ,X) -+  Vx(xe  f ield(~ ) - *  x~ X)).  

~4~ Fund (~,X) then  means  t h a t  the  re la t ion  ~ is t rans i t ive  and wel l founded.  

(vii) TI( ,( ,X) is the  f o r m u l a  LO(<)A Fund(~,X).  

(viii) WO(~) is the  f o r m u l a  VX T! (4,X).  

We have ~ IPTI (~ ,S )  if  and only if t ranf in i te  induction holds  for  S. 

13.2. Defini t ion 

For a we l l founded  t rans i t ive  re la t ion  we define the  < - n o r m  for  n e ~I by: 

f 
1) Inl~ := / { I t a ly :  m~n} if nEf ie ld (~)  

o the rwise  

2) ll~N := { I n l ~ : n e f t e l d ( ~ ) }  

13.3. l . amma 

l f  ~ is a weIJfounded transitive relation and ncfield('~), then Inl.~ and }l'~llare 
ordinals .  

P r o o f  

Since any t rans i t ive  s e t  of  ordinals  is i t s e l f  an ordinal,  it su f f i ces  to  show 

t h a t  tnl,{ is a t rans i t ive  se t  o f  ordinals .  This will be done by induct ion a long  4. 

I f  at ~ Inl~{, t h e n  ~ = lml~ for  s o m e  m~ n. Hence ~ e On by the  induct ion hypothes is .  

So in],( is a s e t  o f  ordinals .  I f  {~etml~ eInl~,  then{3 = tmo]~ for  s o m e  m o r m o n .  

Since ~ is t rans i t ive  we obta in  mo,{n and  this  implies  {3~ ]n[~. 
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~f3.  F o r m a l i z a t i o n  OF ~ran~Flni~e i n d u c t i o n  

We hitherto have shown that II~ II is a set of ordinals. It remains to show that 

ll~II is transitive. For ~e 13e II~II, however, there is an me field(~) such that 

13 = ImI~. Hence ~ = ]rnol for some mo~m which implies ~e II~ll. Thus II~ll is 

transitive. 

13.4. ].emma 

IF ~ is a wel l founded transit ive relat ion, then tl~ 11 = sup{ Inl< +I : n e field(~ ) }. 

Proof 

Define y := sup{Iml~ +l:me field(~ )}. Then II~ il~- For a<y there is an me field(,~ ) 

such that 0c~ ImI~ < II~ II which also shows y~ l['~ H. 

13.5. Definition 

(i) d~ -- {n:Inl~<~} 
(ii) ~ ~ = ~ n~, i.e. ~ ~ is the relation ~ restricted to elements of ~ -norms 

less than ~. 

13.6. Lernma 

l f  ~ is wel l founded and ~<ll '~ll, then i t  is l l ~ l l  =~.  

Proof 

Since nc~= implies Inl~<~ we obviously have I 1 ~ 1 1 ~ .  I f  13<~ then there is 

an me'~= such that 13 = Iml~. Hence also ~II~P~il. 

13.7. DeHaltlon 

An ..-C#oo-formula F which has no occurence of  X of  the form t ¢ X is an X-posi t ive 

formula. 

13.8. Monotonlclty lemma 

Suppose that F is an X-pos i t i ve  ~oo - fo rmu la  and S,Tc • are classes such that 

Sc T. Then N P F x [ S ]  entaiJs I q ~ F x [ T ] .  
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Proof by induction on rk(F) 

I. The claim is trivial if X does not occur in F. 

2. Suppose that F = te X. Then IN~Fx[S] ~ tiN• S ~ tNe T ~ N~Fx[T]. 

3. F-A{Ai:i¢I}. Then ]N~Fx[S] ~ ~Ai[S] for all ieli~ N~Ai[T ] for all 

i~ I ~ ~N~Fx[T].  

4. F -= V { A i : i e l } .  Then R N ~ F x [ S ] ~  N ~ A i [ S ]  for  some i e l l ~ ' ~ l ~ A i [ T ]  for 
some i e I ~ lN ~ F[T]. 

13.9. Boundedneas lemma 

Suppose that ,~ is a transitive wellfounded ~ l -de f inab le  relation on ~l and A 

is a finite set o f  X-posi t ive  ~Poo-formulas. I f  ~ " lProg(` ( ,X) , t i i  X,...,tn~ X,A, 

then it fol lows ~q~V{Fx[` (~] :Fe  A} where y = [3+2 a and ~ = max{[t~],( ..... I t~l~ }. 

Proof by induction on ot 

I. In the case of an axiom according to (Axl) the set A contains a true atomic 

formula. Hence N~VAx[`(,c]. In the case of an axiom (Ax2) A contains a 

formula seX such that s N=ti l~ holds for some ie{l ..... n}. If ~l--It~[d, then 

it is [3 t~<T and N~(tteX)[`(~ f] since ~i<'f. Hence N~VAx[~(v]. 

2. Assume that the mainformula of the last inference belongs to A. Then we 

have the premises ~o ~i uProg(`( ,X),t1~ X ..... tn¢ X, A i, where A i again only contains 

X-posltive formulas. By the induction hypothesis it follows ~I~VAi['(vl ] for 

Yi = ~+2~I" Using the monotonicity lemma we first obtain ~I~VAi[~ ~] and 

therefore also N~VA[`( v] since validity is preserved by all inferences. 

3. Suppose that the mainformula of the last inference is 

IProg(`(,X), i.e. 3x(x • field{,( ) A ¥y(y`( X -~ y e X) A X ~ X). 

Then we have the premise 

G ° 3Prog(`(,X),t e field(~) A Vy ('ly`(tv y ¢ X)^ t¢ X,t~¢ X ..... tnl X,A. 

Thence we obtain by A-inversion 

(I) ~ IProg(`( ,X),t e field(g )^ Vy( 7y`( tv ye X),t i ¢ X ..... tn/X,A 

and 

(2) V-0°o ~Prog(`(,X),t¢ X, tl¢ X ..... tn¢ X,A. 

Assume that ~VA[`(v]. Applying the induction hypothesis to(1) we obtain 

(3) R q ~ = V { F : F e A } v ( t e f i e l d ( ~ ) ^ V y ( y ~ t - - ~ y e X ) ) [ ` ( V o ]  for Yo =~+2~°" 

By the monotonicity lemma N~VA['~ v] entails N~VA[gvo] and by (3) we 

obtain Ye`(vo for all y`(tN,i.e. ItN[~ ~Yo" If we define 6 o := max{jt~[,~}, then we 

have ~o ~ ~'o" Applying the induction hypothesis {2) we obtain N~V A[di3o+2~o]. 
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But it is [3o~ [~+2 ~° and 2~°+2 ~° ~2 ~. Hence [~o+2~°~[3+2~°+2~°~ [~+2~ = 7 and 

it fo l lows  ~l ~ V A [4 ~ ] by the monotonic i ty  lemma. This shows tha t  our  assumpt ion  

was wrong. 

13.10. B o t m d e d ~ u  t h e o r e m  

I f  IFund{g,X)l~a ,  then it is 11~(llg2 ~. 

P roo f  

IFund(g,XlJ~g by 10.4. implies ~ aProg{~,X) v YxE f i e l d (g ) (x ~  X). Hence 

a P r o g i g , X ) , ¥ x ~ f i e l d ( g ) { x E X )  and this implies lq~VxCf ie ld{<}( lx l~2a i  by 

the boundedness  lemma. Hence IJ< 11~2% 

13.11. Corol lary  

/ f  Zlk-Fund(~,X),  then it is Jill[<%. That means  that  all primit ive recursive 

orderings whose  wel l foundedness  is provable  in Z 1 are o f  ordertype less  than E o. 

13.12. Remark 

By 13.11. it  even fo l lows  tha t  any .~ l -def inable  ordering ~ whose  wel l foundedness  

is provable  in Z t is o f  o rder type  less than  ~o" 

13.11. is the  bridge to  the  more  common  defini t ion o f  the p ro o f  theore t i c  ordinal 

o f  a formal  sys tem,  Usually one defines:  

The p r o o f  theoret ic  ordinal o f  a formal  s y s t e m  T is the s u p r e m u m  o f  the 

ordertypes  o f  all primit ive recursive definable order relations whose  we l l founded-  

hess  is provable  in T. 

3.11. shows tha t  vo is also an upper bound for  the p roo f  theore t i c  ordinal of  

Z 1 def ined in the classical  way. 

13.13. Exerciaes 

1. Prove tha t  s u p | [ F l : ~ F ^ F  is a I]~-sentence} = C K  

Hint: Show "~"  using the  boundedness  theorem and prove t h a t  lF[<t0 CK holds  

for  II~-sentences F which are valid in ~I by showing tha t  the  quas ideduc t ion t ree  

o f  F is recursive.  

2. Prove the  fol lowing claims. 

(i) Zol-Fund{~,X) implies [[~[l<~. 

( i i )  IZol = ~ .  
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3. Prove the  fo l lowing s t ronge r  vers ions  of  the  boundedness  l e m m a  and the  

boundedness  theorem:  

Let  ~ be  a ~ l - d e f i n a b l e  re la t ion  on ~l. 

(i) Suppose  that  £~ is a f in i te  s e t  o f  X - p o s i t i v e  ~ o o - f o r m u l a s .  I f  we  have 

nProg(~,X) ,  t I ¢ X . . . .  tn~ X , A, then • ~ V { F x [ ~ .  :] : F~ A} where 7 = ~ + 2 ~ 

and  ~ = max{I t~ l~  ..... It,~l< 1. 

(ii) / f ~  Fund(~,X),  then I[~lk2 ~. 

4. Show tha t  all pr imit ive recurs lve  order lngs  whose  we l l foundedness  Is p rovable  

in Z~-IND (ha 1) are o f  o rde r type  less  than  en+a(O). 

5. Prove t h a t  o ~  nProg(~,X) ,  t e X  where  ~ := I t~[~+ I ho lds  for  all  pr imit ive 

recurs ive  wel lorder ings  ~ and all t e r m s  t. 

6. Let ~ be  a primit ive recurs ive  wel lorder ing.  Let  U be a new predica te  cons t an t .  

The inf ini tary s y s t e m  Zoo + ProgR(~ ,U) is the  s y s t e m  Zoo with  the addi t ional  rule  

(ProgR(,~ ,U)) If~ s A, se U and ~s<~ for all s such that s ~4 "~ t ~, then ~ A, te U. 

Prove the following claims: 

{i) Zoo + ProgR(~(,U) ~o Prog(~(,U). 
ct [maxl l,p } A. (ii) I f  Zoo ~ -IProg(~,U),A then  Zoo + ProgR(4,U) 2-~ 

(iii) Prove the  e l iminat ion l emma  and t h e o r e m  for  Zoo + ProgR(4 ,U). 

(iv) I f  Zoo + ProgR(4,U) ~ t ~ U  then  [ t ~ [ ~ .  

14. On the  c o n s i s t e n c y  o f  formal  and s emi  formal  s y s t e m s  

Inspi red  by H i l b e r t ' s  p r o g r a m  and G e n t z e n ' s  cons i s tency  p r o o f  for  Z 1 one 

fo rmer ly  def ined the  p r o o f  t heo re t i c  ordinal  o f  a fo rmal  theory  T as the  

o rde r type  o f  the  leas t  wel lorder ing  which is needed for  the  cons i s t ency  p r o o f  

of  T. This definit ion,  however ,  is s o m e w h a t  p rob lema t i c  since it depends  on 

the  means  which are a l lowed bes ides  the  induct ion a long the  wel lorder ing.  

Never the less  we are going to  convince ourse lves  t h a t  E o a l so  in the  sense  o f  

t h a t  def in i ton  - p r o p e r l y  i n t e r p r e t e d -  is an upper  bound  for  the  p r o o f  theore t i c  

ordinal  o f  Z 1. In order  to  do t h a t  we will f i r s t  ske t ch  t h a t  our h i the r to  con -  

s idera t ions  a lso  c o m p r e h e n d  a cons i s t ency  p r o o f  for  Z l which bes ides  the  t r a n s -  

f inite induct ion a long the  ordering ~ def ined in 8.7. only uses  means  which are 

fo rmal izab le  in Z l i tself .  Since the  o rde r type  of  ~ is E o we obtain  t h a t  E o is an 

upper  bound  in the  above sense.  

14.1. Defini t ion 

A ( s e m i - ) f o r m a l  s y s t e m  T is s eman t i ca l l y  cons i s t en t ,  if  there  is no fo rmu la  A 
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such t h a t  T~-A ^ 1A. 

It  is ea sy  to  see t h a t  Z 1 is s e m a n t i c a l l y  c o n s i s t e n t .  We ju s t  have to  look a t  the  

s o u n d n e s s  t h e o r e m  3.13. in o rde r  to  conc lude  t h a t  the re  is no f o r m u l a  A such 

t ha t  T ~ - A ^ ~ A  because  o the rwi se  we a l so  had nq~ A ^  1A. 

An inspec t ion  o f  th is  p r o o f  wil l  show t h a t  the  only induct ion  we used  the re  

is c o m p l e t e  induct ion,  i.e. induct ion  a long  a we l lo rde r ing  (which a l so  may be 

def ined  pr imi tve  recurs ive ly)  o f  o r d e r t y p e  ~. Of  cour se  we canno t  ye t  conc lude  

t h a t  ~ is a cand ida te  for  t he  p r o o f  t h e o r e t i c  o rd ina l  o f  Z r The r ea son  for  

th is  s h o r t  induc t ion  l ies in t he  f ac t  t h a t  th i s  cons i s t ency  p r o o f  is in no way 

f in i t i s t ic .  We  will  no t  en t e r  a d i s cus s ion  a b o u t  f in i t i s t i c  means.  For  our  p u r p o s e s  

i t  wi l l  su f f i ce  t o  ca l l  a p r o o f  finltistic if  it  may be  f o r m a l i z e d  in Zj wi th  the  

scheme (IND) r e s t r i c t e d  to  E ~ - f o r m u l a s .  Now it is imposs ib l e  t o  fo rma l i ze  the  

not ion o f  val id i ty  in ~q even in Zj. To obta in  a more f in i t i s t ic  c o n s i s t e n c y  p r o o f  

it  is necessa ry  to  desc r ibe  the  cons i s t ency  o f  a fo rmal  theo ry  in a more  

syn tac t i ca l  way. 

14.2. Def in i t ion  

A ( s e m i - ) f o r m a l  s y s t e m  T is syntactically consistent, if  t he re  is a 

A such t h a t  T~-A. 

f o r m u l a  

We are now going to  show t h a t  for  ' r e a s o n a b l e '  f o r m a l -  and s emi fo rma l  s y s t e m s  

the  no t ion  o f  semant ica l  and syn tac t i ca l  c o n s i s t e n c y  coincide. 

14.3. DefiniUon 

(i) An inference  I - A  1 ..... ~-A n =~ ~-F is a sententia] inference, if the  fo rmula  

I A  i v . . .v ' IAnV F is s e n t e n t i a l l y  valid.  

(ii) An inference  ~-A I ..... ~-A n ~ ~ F  is a permitted inference of  a formal  

s y s t e m  T if  T ~- A I ..... T ~- A n en t a i l s  T ~- F. 

(iii) A ( s e m i - ) f o r m a l  s y s t e m  T is sententially closed, if every s en t en t i a l  

inference  is a p e r m i t t e d  inference  o f  T. 

14.4. Theorem 

A sententially closed system is semantically consistent if and only if it is 

syntactically consistent. 
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Proof  

In a semantically consistent formal system no formula A^ IA is derivable. This 

shows that it is syntactically consistent. 

Now suppose that T is a semantically inconsistent formal system. Then there is 

a formula A such that T ~- A^ -IA. For every formula F, however, the formula 

A ^  qA ---# P is s en t en t i a l l y  valid. Since T is s en t en t i a l l y  c l o s e d  we ob ta in  T }- P 

fo r  every  f o r m u l a  F which  s h o w s  t h a t  T a l so  is s y n t a c t i c a l l y  i ncons i s t en t .  

By Z~o we d e n o t e  t he  s e m i f o r m a l  s u b s y s t e m  o f  Z n which  c o n t a i n s  on ly  f o r m u l a s  

o f  rank  b e l o w  e and  de r iva t ions  o f  l eng th  b e l o w  e o and  c u t  rank  s t r i c t ly  less  

t h a n  e.  

14.5. Theorem 

The s emi fo rma l  s y s t e m  Z~o is syn tac t i ca l l y  cons is ten t .  

Proof 

We show that there is a formula F of rank< e o for which we have X-~ F for all 

a<E o and n<e. Let F be a closed atomic formula such that ~I ,e F. If we assume 

~n F for some a<~o and n<e, then we obtain Jen°tF and t~na is still less than eo- 
o 

But an easy induction on [3 shows that ~ F is impossible. F is neither an axiom 
o 

nor F may be inferred by an inference according to the A- or V-rule since 

it then had to contain a logical symbol. 

14.6. Lemma 

The s e m i f o r m a l  s y s t e m  Z~ o is s en ten t ia l l y  closed.  

P r o o f  

I f  3 A l v  . . .v 1 A n V F  is a s e n t e n t i a l l y  valid f o r m u l a  w h o s e  rank  is l ess  than  e o, 

t h e n  by 10.16. t he re  is an a < 2 - m a x { r k ( A  1) ..... r k (A2) , rk (P )}+ td<E  o such  t h a t  

~o A~ ..... "|An,F. I f  we a s s u m e  t h a t  t h e r e  are  o rd ina l s  cq , . . . , an<eoand  ~l ..... ~n <t~ 

such that ~: A, ..... ~n An we obtain by cuts ~F fo r  s o m e  [3< max{eft ..... Ctn,Ct}+e<e o 

and ~ :=max{~, ..... ~n, rk(A1)+l ..... r k ( A n ) + l  }< ~. 

F r o m  14.5 and 14.6 we ob ta in  

14.7. Lemma 

There is no formula  F such that  rk(F)<E o a n d  ~ F ^  I F  holds  for  s o m e  a < e  o 

a n d  n<to. That means  that  the  s y s t e m  Z~oiS semant ica l ly  cons i s ten t .  
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14.8. Theorem 

The f o rma l  s y s t e m  Z t is cons i s t en t .  

Proof  

if  ZI~-AA "lA, then we obtain by the embedding lemma ~ A * ^ I A *  with n<t0 

and ~<o-2<E o. Since rk(A*)<¢0 this cont rad ic t s  14.7. 

Now we have to  answer  the quest ion what  it is gained by this cons is tency  

p roo f  in compar ison  to  the cons is tency p roo f  via the soundness  theorem. 

We may answer the quest ion in so far tha t  our consis tency p r o o f  beside t r ans -  

finite induction up to  E o only used finitary means, i.e.means which are at  least  

formalizable  in Zt°-IND {= Zo+ Yt°-IND). Since our real concern  will be the  

impredicative sys tem of  chapter  IIl we did not  tailor the cu t  elimination theorem 

in such a way tha t  we are able to  obtain this resu l t  in an obvious way. But it 

is quite easy to  sketch how our cons is tency p roof  may be formal ized in the 

sys tem Z t augmented  by the scheme TI(<,X). This at  least  will show tha t  the 

only means of  the cons is tency p roof  which really exceeds tha t  o f  Z t is t ransf ini te  

recurs ion along a primitive recursive wellordering o f  order type  E o. Since the 

exac t  p r o o f  is a bit  cumbersome  and in fact  outs ide our real concern  we just  

will sketch its strategy. 

First one observes that the proof trees resulting from the embedding lemma 

are in fact recursive trees. Then one has to convince oneself that the cut 

elimination procedure preserves the recursiveness of the trees. Recursive trees, 

however, can be formalized in Z I. To assure the wellfoundedness of these 

formalized derivation trees one has to assign {codes for) ordinals to the nodes 

of the tree. As we have seen the ordinals below s o suffice for this purpose 

and we may represent these ordinals in ill by their codes developed in 8.7. So 

we obtain a recursive function [ such that 

(A) Zt+TI('~,X) }-- Proofzt{x,rF 1) ~ (~(x)~rF .1) 

for a number  variable x. Here P roofz t  is the  usual  p r o o f  predicate for  Z t and 

(x ~rF1) formalizes the sentence  

"x is the index of  a recursive tree whose nodes are labeled with codes  for -~q° n -  

formulas  and ordinals increasing f rom top to  b o t t o m  such tha t  the t ree  is 

locally cor rec t  with respec t  to  the inference rules o f  Z n and whose  b o t t o m  

node is labeled by the code for the formula  F I and the ordinal a" 

{cf. [Pohlers  1981]). 

We easily obtain 

(B) Z I + T I ( < , X )  [ - V x { 1 ( x  ~r_0 =I~)). 

and conc lude  f rom (A} 
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(C) Zt+ T I ( { , X )  }- ] x ( P r o o f z , ( x , r F ~ ) )  --* ] x ( x  ~ rF*7) .  

F r o m  (B) a n d  (C)  we  f i n a l l y  o b t a i n  

(D) Z 1 + T I ( {  ,X) F- 1 ] x  (Proofz , (x ,~O = _1~)) 

w h i c h  g ives  t h e  f o r m a l i z a t i o n  o f  t h e  s y n t a c t i c a l  c o n s i s t e n c y  o f  Zt.  

The  a b o v e  s k e t c h e d  f o r m a l i z a t i o n  h a s  s o m e  i n t e r e s t i n g  c o n s e q u e n c e s  e s p e c i a l l y  

fo r  s y s t e m s  s t r o n g e r  t h a n  Z~. W e  d o  n o t  have  t h e  t i m e  h e r e  t o  g o  i n t o  m o r e  

d e t a i l s .  In  t h e  e p i l o g u e ,  h o w e v e r ,  w e  t r y  t o  g ive  a s h o r t  r e v i e w  o f  t h e s e  

r e s u l t s .  A d i s c u s s i o n  a b o u t  h o w  t h i s  c o n s i s t e n c y  p r o o f  f i t s  i n t o  H i l b e r t ' s  

p r o g r a m  wi l l  b e  g iven  a t  t h e  e n d  o f  t h i s  c h a p t e r .  

15. The wel lorder ing p r o o f  in Z t 

In t h e  f o l l o w i n g  s e c t i o n  we  a re  g o i n g  t o  d e s c r i b e  o r d i n a l s  <E o by  t h e i r  a r i t h m e -  

t i z a t i o n s  as  d e f i n e d  in 8.7. S ince  e q u a l i t y  a n d  t h e  o r d e r  r e l a t i o n  b e t w e e n  o r d i n a l s  

a r e  p r i m i t i v e  r e c u r s i v e  r e l a t i o n s  we  may  s p e a k  a b o u t  t h o s e  o r d i n a l s  in t h e  l a n g u a g e  

~ t .  N e v e r t h e l e s s  we  a r e  g o i n g  t o  k e e p  ou r  f a m i l i a r  n o t a t i o n s ,  i.e. u , [ 3 , y  .... now 

d e n o t e  c o d e s  fo r  o d i n a l s  in E a n d  ~ = ~ a s  w e l l  u<[~ d e n o t e  t h e  p r i m i t i v e  

r e c u r s i v e  r e l a t i o n s  = a n d  £ r e s p e c t i v e l y  on  t h e  c o d e s  o f  t h e  o r d i n a l s  a s  d e f i n e d  

in 8.7. 

15.1. L a n m m  ( p r o v a b l e  in Z 1) 

For ~*0 and ~<~+~t~ there  is  a natural  number  n and an ordinal ~<~t such  

that  ~ < ~ + ~ .  n. 

Proof 

W e  i n f o r m a l l y  w o r k  in Z 1 (cf .  e x e r c i s e  15.10.1). I f  ct~ ~, t h e n  we a r e  d o n e  c h o o s i n g  

= 0 a n d  n = 1, So a s s u m e  [3<u. Then  t h e r e  is  an  Uo s u c h  t h a t  u = [3+Uo<~+t0t~. 
ot  c t  = 11 + k t.t W e  d e v e l o p  ~t o in C a n t o r  n o r m a l  f o r m  and  o b t a i n  ~o ~ +--. ~ < ~ • Then  we 

have  ~t< ~ a n d  ~o < ~=1. (k+ l ) .  H e n c e  ~ = 13 +~o < [3+~ ~1" ( k + l )  = ~+t~ ~-n fo r  ~ : = ~ t ,  

n : = k + l .  

15.2. L e m m a  

ZI~-F impl ies  Z I I - F x { G )  for  every  clz~ss t e rm  { x : G ( x ) }  which is g iven by  a 

~ t - f o r m u l a  G. 
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§15. T h e  w e l l o r d e r i n g  p r o o f  In Z 1 

Proof by induction on the definition of ZII-F 

If F is a logical or mathematical axiom of Z I, then obviously Fx(G) is an 

axiom of the same kind. 

If F is derived by an inference modus ponens or one of the quantifier inferences, 

then the claim easily follows from the induction hypothesis. In the case of an 

quantifier inference we have to ensure that the requirement for the eigenvariable 

of the inference is not violated. This may easily be obtained by renaming the 

variable. 

By Fund(c~ ,X)  we abbreviate the formula T r a n ( ~ ) A ( P r o g ( ~ , X ) - - ~  ¥~<~(~eX)). 

By TI(ct,X) we denote the formula LO(~)Al~und(0c,X). Essentially Fund(a,X) 

says that the relation ~ ~a is wellfounded and TI(a,X) that ~ ~a is a wellordering. 

The aim of the current section is to prove that transfinite induction along every 

proper initial segment of the wellordering ~ is provable in Z I. It is quite easy to 

see that Z t proves LO(~ } (Though easy, the proof in fact is a bit cumbersome. 

Since not much can be learned by this proof we omit it and take it for granted 

that 7. I proves LO(~)}. So it remains to show Fund(~,X) for all ~<~o. Since 

Fund(O,X) holds trivially we are done if we succeed in proving the following 

theorem. 

15.3. Theorem 

Zil--Fund(cc,X) implies Zll-Fund(co°~,X). 

As a consequence of 15.3. we then obtain 

15.4. T h e o r e m  

7.1 proves  the formula F u n d ( o c , X )  for  all ~x<E o . 

Proof 

If ~<E o, then there is an n<co such that ~<en(0). Since Zt~-Vx(~x~0) we have 

Zt~-Fund(O,X}. n-fold application of 15.3. leads to Zt~-Fund(on(O),X), i.e. 

Zt~-Prog(~ ,X) --~ Yx<ton(O) (xe X). Because of 7-.,i}- Vx(x<0c --~ x<~0n(O)) this 

implies Zl~-Prog(~,X)--~ Yx<0c(xeX), i.e. 7m}-Fund(0c,X). 

In order to prove 15.3. we define a jumpoperator Sp 

Sp(X) ={~:¥~(~cX-~+e~cX)} [~cX abbreviates ¥x(x<~-~xeX)], 

which enables us to jump from ~ to e ~. 
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~15. T h e  w e l l o r d e r l r ~ g  proof In Z I 

15.5. Lamina 

The following formula is provable in Zt: 

Fund ( ~ , S p ( X ) )  --* Fund (¢0~,X). 

P r o o f  

We have the suppositions 

(I) Prog(< ,Sp(X)) -+ ~c Sp(X) 

and 

(2) Prog(~ ,X) 

and have to  conclude  ¢0~c X. By (2) and l e m m a  15.6. be low it f o l l ows  

(3) Prog(~ , S p ( X ) ) .  

From (3) and (1) we a t  f i r s t  obta in  ccc SP(X) and this t o g e t h e r  wi th  (3) implies  

c~eSp(X).  I f  we choose  ~ = 0 in the  def ini t ion o f  SP(X) we obta in  o~¢  X. 

15.3. now is an immedia te  consequence  o f  15.5. For if  Z l [ - F u n d ( a , X ) ,  then  we 

obtain  by I5 .2 .Z l~ -Fund(~ ,Sp(X) ) .  This and 15.5. entai l  Z l } - F u n d ( ~ a , X ) .  

15.6. l~mma 

Z I }- Prog(~ ,X) --~ Prog(~ ,Sp(X)). 

P r o o f  

We have the  p resuppos i t ion  

(1) Prog(~ ,X) 

and want  to  show P r o g ( ~ , S p ( X ) ) ,  i.e. VI3(13cSp(X)--* 13eSp(X)). To do tha t  

we choose  an a rb i t r a ry  t3 and a s s u m e  

(2) ~c Sp(X).  

We then have to prove f~ Sp(X),  i.e. ¥~(~c X--+ ~+o~c X). 

Let ~ be a (code for an) ordinal such that  

(3) ~c X. 

The claim is ~+c01~c X. Therefore assume q<~+ol~ 

l+ ~ = O. Then we have q ~ .  I f  q<~, then we have qeX by (3). ~eX fo l lows 
f rom (1) and (3). 

2. 13>0. Then by 15.1. there is a ~o<13 and an n < o  such that  Tl<~+ol~O-n. We show 

(4) ~+0Jl~°-nc X 
I by induction on n. For n = 0 this is (3). For n = n o we have the induction 

hypothesis 
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~15. The we l lo rder tng  p r o o f  in Z t 

(5) ~+c0$O-no c X. 

Since [30 < [3 we ob ta in  by (2) [3 o ~ Sp (X) ,  i.e. ¥~(~c X --* ~+c0 ¢~° c X). This espec ia l ly  

impl ies  ~+c0 I~°. noC X --, ~+c0 $°. no+c01~Oc X. 

T o g e t h e r  wi th  (5) we  t h e r e f o r e  ob ta in  

(6) ~+~t~°-no~ X. 

This f in i shes  the  i n d u c t i o n s t e p  and  the  l e m m a  is proved.  

A t  th i s  p l ace  we s h o u l d  no t i ce  t h a t  t he  e s sen t i a l  m e a n s  fo r  t h e  p r o o f  o f  t h e o r e m  

15.3. is t h e  s c h e m e  o f  c o m p l e t e  induc t ion .  I f  T is any  fo rma l  t h e o r y  e x t e n d i n g  

Z l, t h e n  15.3 ho lds  fo r  every  w e l l o r d e r i n g  < w h o s e  def in ing  f o r m u l a  is a d m i t t e d  

in t he  s c h e m e  o f  c o m p l e t e  i nduc t i on  on  T and  fo r  wh ich  15.1. is p r o v a b l e  in T. 

As  a c o r o l l a r y  o f  t h e o r e m  15.4. we ob ta in  

15.7. T h e o r e m  

E o is the  leas t  upper bound o f  the  order types  o f  the  pr imi t ive  recurs ive ly  def inable  

order re la t ions  whose  we l l f oundednes s  is  provable  in Z 1. Moreover  we have 

¢o = sup{Jig [[: < is ~ c d e f i n a b l e  and Z t [ - F u n d  (g ,X) } = sup  {IN II: ~ is primit ive 

recurs ive  and  Z l I - F u n d  (g ,X)}. 

15.8. T h e o r e m  

For every  u<E o there  is a I I [ - s e n t e n c e  F such  that  Z l I - F  a n d  u< IFI. 

P r o o f  

I f  u<E o , t hen  it is 2u+l<Eo . By 15.4. we have Z j F - F u n d ( 2 ~ + I , X ) .  But  we have 

~< J F u n d  (2~+I ,X) I  s ince by 13.10. [Fund (2~+I ,X)[~  ~ impl ies  2~+1~ 2 ~. 

15.9. C o r o l l a r y  

SPo(Z 1) = IZll = % 

15.10. E x e ~ l s e s  

1. S u p p o s e  t h a t  ~,[~, li, ~ and  n are  o rd ina l s  as  in 15.1. such  t h a t  i 3 + ~ < E  o. 

Ske t ch  t h a t  r~l and  n are  pr imi t ive  r ecu r s ive ly  c o m p u t a b l e  f r o m  run,r131 and  rttl. 

2. Let  P r o o f z t ( n , v )  be  an  a r i thme t i ca l  p r o o f  p red ica t e  f o r  Z 1. Def ine  

u~ w : -= (u< w A YX< W a P r o o f z  (x,ro--1 ~ ) ) v (w< UA 3X < U prOOfz (X,rO = P) ) .  

and  a r e l a t i on  Rc •xg4 by: 
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~16. The use o f  O e n t : z e n ' a  cons is tency p r o o f  f o r  H l l be r t ' s  p rog ram 

P.(n,m) :'*~" N ~ n ' (  m. 

(i) Show t h a t  R is a wel lorder ing  on 

(ii) C o m p u t e  IIRJl 

(iii) Show Zt}-LO(~) 

(iv) Define F : -  Vz~: x l P r o o f z t ( z f O  = ll). Show Z 1 ~Prog( '~  ,F) 

(v) Show mr, It Fund( '~ ,X)  

16. The use o f  Gentzen's cons is tency  p r o o f  f o r  H i l b e r t ' s  p rogram.  

Our p r o o f  theore t i c  analysis  o f  the  fo rmal  s y s t e m  Z I is essen t ia l ly  the  same  

as G e n t z e n ' s  original analysis.  But con t r a ry  to  our  mot iva t ion  -o rd ina l  analysis  

o f  Z 1- Gentzen  originally was guided by the  idea to  give a cons i s t ency  p r o o f  

for  Z t in the  spir i t  o f  H i l b e r t ' s  p rogram.  He t h e r e f o r e  (in the  la ter  vers ion)  

avoided s emi fo rma l  s y s t e m s  bu t  showed  the  syn tac t ic  cons i s t ency  o f  a fo rma l  

s y s t e m  which is equivalent  to  Z 1 by a par t ia l  cu t  el imination.  In his p r o o f  it 

becomes  immedia te ly  plain t h a t  i ts  only non finit is t ic  means  is t r ans f in i t e  

induct ion a long a wel lorder ing  o f  o rde r type  E o. For this  r ea son  the  Hi lber t  School 

bel ieved t h a t  only a t iny ex tens ion  o f  the  f ini t is t ic  s t andpo in t  - here  accept ing  

the  intuit ively p laus ib le  f ac t  t h a t  the  order ing in ques t ion  real ly  is we l lo rde red  - 

would  suf f ice  to  car ry  t h rough  H i l b e r t ' s  p rogram.  

Now we wan t  to  examine  if th is  ex tens ion  real ly  is jus t  a tiny one. For th is  

pu rpose  imagine an opponen t  who doub t s  the  cons i s t ency  o f  pure  number  theory.  

Let  us a s sume  tha t  our  opponen t  is able to  unders tand  ma themat i ca l  reasoning  

and we are t rying to  convince him by G e n t z e n ' s  proof .  He real ly  accep t s  all 

s t eps  o f  the  p r o o f  but  in the  end  begs  for  an exp lana t ion  o f  t r ans f in i t e  

induction up to  E o since th is  is beyond  his f ini t is t ic  unders tanding.  We the re fo re  

t ry  to  s u b s t a n t i a t e  th is  induction as f ini t is t ic  as poss ible .  We  avoid the  not ion 

o f  an ordinal ,  only speak  abou t  order ings  on the  natural  numbers  and so  will  

necessar i ly  end up with  a p r o o f  which essen t ia l ly  is the  same  as t h a t  we gave 

in the  preceeding sect ion.  

Due to  his ma themat ica l  abil i t ies our  opponen t  very quickly will not ice  t ha t  the  

crucial poin t  o f  the p roo f  is l e m m a  15.5. I f  we define SPo(X) = X  and 

SPk+t(X)  = Sp(SPk(X)) ,  then we have to  s t a r t  with Fund(O,SPk(X))  and then  

by i t e ra ted  use o f  l e m m a  15.5. decrease  the  number  of  j u m p o p e r a t o r s  in order  

to  ge t  t o  Fund(C0k(O),X). But  this  a l so  means  t ha t  we need 15.6. in the  fo rm 

Prog ( , ( ,SPk_ , (X) ) - -~  P rog(~ ,Spk(X) ) .  In the  p r o o f  o f  15.6, however ,  we proved  
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§16.  T h e  u s e  o f  G e n t z e n ' s  c o n s i s t e n c y  p r o o f  f o r  H l l b e r t ' s  p r o g r a m  

the  f o r m u l a  

(4) ~+t01~°-n¢ Spk_, (X)  

by c o m p l e t e  induction. This shows  tha t  we need the  induct ion scheme  for  

fo rmu la s  of  the  complex i ty  of  SPk_,(X).  In our p r o o f  we did not  pay a t t en t i on  

t o  a pa r s imonious  defini t ion o f  the  )umpopera to r .  But  even under  the  m o s t  

ca re fu l  defini t ion the  j u m p o p e r a t o r  increases  the  number  o f  a l t e rna t ions  o f  

quant i f ie rs  a t  l eas t  by one. Tha t  means  t h a t  Sp(S) in the  a r i thmet ica l  hierachy 

a lways  is one level higher than S. In order  to  c l imb up to  e o the  c o n s t a n t  k 

has to  run th rough  all natural  numbers .  That  means,  however ,  t h a t  we canno t  

r e s t r i c t  the  complex i ty  o f  the  fo rm u l a s  in the  induction scheme.  At th is  p lace  

our  opponen t  will a rgue  t ha t  by t h a t  we ful ly use  the  means  o f  pure  number  

theory  and even exceed  it. But since he doub t s  the  cons i s t ency  o f  pure  

number  theory  he canno t  accept  our proof .  We canno t  advance a ma themat i ca l  

a r g u m e n t  aga ins t  his a rgumenta t ion .  

Being aware  of  GSde l ' s  second t h e o r e m  this  s i tua t ion  is not  too  as tonishing.  

I f  GSde l ' s  t h e o r e m  is more  than  a mere  fo rma l  tr ivial i ty bu t  has  a genuine 

meaning,  then  one canno t  expec t  t o  bypass  it by a t iny ex tens ion .  The re fo re  

we canno t  expec t  r e s u l t s  which incorpora te  a real  p rog re s s  in the  spir i t  o f  

H i l b e r t ' s  p rogram.  

We want  to  emphas ize ,  however ,  t ha t  this objec t ions  only mee t  the  sho r t ened  

version o f  H i l b e r t ' s  p rog ram  as we p re sen ted  it  in the  in t roduct ion.  Hi lbe r t  

or iginal ly a l so  spoke  o f  the  e l iminat ion o f  ideal e l e m e n t s  in ma themat i c s .  This 

sub t l e  pa r t  o f  his p r o g r a m  is in fac t  rea l isable  in many  direct ions.  Never the less  

we m u s t  be aware  t ha t  a ma themat i ca l  p r o o f  of  the  cons i s t ency  o f  m a t h e m a t i c s  

is imposs ible .  

Al though  G e n t z e n ' s  r e su l t  is o f  l i t t le  he lp  in the  spir i t  o f  H i l b e r t ' s  p r o g r a m  

it  has consequences  which c o r r e s p o n d  b e t t e r  t o  B r o u w e r ' s  intui t ionis t ic  po in t  

o f  view, a s t andpo in t  opposed  by Hilber t .  

By sharpening  the  cons idera t ions  in the  end of  sec t ion  14 G e n t z e n ' s  p r o o f  may 

be in te rp re ted  in the fol lowing way: 

The cons i s t ency  p rob lem of  pure  number  theory  with the  unres t r i c t ed  scheme 

o f  c o m p l e t e  induct ion can be reduced  to  the  quest ion,  if  a s y s t e m  wi thou t  

c o m p l e t e  induct ion wi thou t  the  law o f  the  exc luded  middle  bu t  wi th  t r ans f in i t e  

induct ion a long  all initial s e g m e n t s  of  eo for  fo rmu la s  of  very r e s t r i c t ed  c o m -  

p lex i ty  is cons i s t en t .  Since one has a very good  p ic ture  of  an order  re la t ion  o f  

o rde r type  ~o and the l a t t e r  s y s t e m  does  not  a l low indirect  inferences  it intui t ively 

is c o m p l e t e l y  plain t ha t  the  l a t t e r  s y s t e m  is c o n s i s t e n t  a l t hough  i ts  p r o o f  

t heo re t i c  ordinal  is the  same  as  t h a t  o f  pure  n u m b e r  theory.  This kind o f  redttctlve 
proof theory is in full coherence  with Gbde l ' s  second theorem.  
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CHAPTER II 

The autonomous ordinal o f  the lnfinltary system Zoo and the limits of  

predicattvity 

By the soundness  theorem 12.1. for the infinitary sys tem Z o and lemma 9.2. we 

have 

That means tha t  the ordinal () has the fol lowing c losure  p roper ty :  For ~,p~O 

and Zn ~ F we also have IFI ¢ ~ .  By f) we usually denote  the f irst  uncountable  

regular  ordinal. Later on we are going to  use f) as a formal  symbol,  whose  s tandard  

interpreta t ion is the f irst  regular  ordinal R r But we also will al ternat ively 

interpret  t) by other  ordinals (cf. chapter  Ill). By recursion theoret ic  methods  

(cf. exercise 13.13) it can be shown tha t  ~ keeps the above c losure  proper ty  

even in its recursive s tandard  interpreta t ion where f) is in terpreted as ~o~ K, the 

f i rs t  recursively regular  ordinal. It is now obvious to  ask if ~ c K  already is 

the smal les t  ordinal above co having this c losure  property.  By purely recursion 

theoret ic  methods  this quest ion hardly is to  answer.  By p roof  theoret ic  methods,  

however, we will es tabl ish  tha t  there  are in fact  smaller  such ordinals.  The 

smal les t  one will be to. But of  course  our real in teres t  is the quest ion if there 

are ordinals between ~ and t~ CK having this c losure  property.  If  there  exis t  such 

ordinals,  then we already know tha t  they have to  be larger than E o. This fo l lows 

f rom the p roo f  theoret ic  analysis o f  Z l where we noticed that  for every ordinal 

ct<E o there  is a II~-~entence o f  norm ct which is provable in Z 1 and therefore  

provable with a derivation of  length smaller  than ~-2 and finite cu t  rank. It  is 

also easy to  see that  there  a lso is a H~-sentence o f  norm % provable with a 

derivation o f  length smaller  than E o and cu t  rank ~. In order  t o  tackle  the 

problem we therefore  need nota t ions  for a segment  of  the ordinals which is 

larger than e 0. The fol lowing sect ion will provide us with such a segment .  
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17. Contlnuatlon of" the theory of ordinals 

17. Continuation o f  the theory o f  ordinals 

17.1. D e f i n i t i o n  

Le t  M o O n  and  f : M - - *  On. W e  de f ine  

(i) F i x ( f )  := {~:  f ( [ )  = ~} a n d  f '  = o r d F t x t f )  

(ii) M'  :=  F i x ( o r d M ) .  

17.2. L a m i n a  

Let x> to  be regular. I f  f is a ( x - )normal  function, then F i x ( f )  is c losed  un- 

bounded (in x). Hence f' again is a ( x - )normal  function. 

P r o o f  

By 6.27 we o n l y  have t o  s h o w  t h a t  F i x ( f )  is  c l o s e d  u n b o u n d e d  (in x) .  So l e t  

~ On (~< x ) .  Def ine  13 o : = ~,  f~n+t : = f(tSn) and  13 : = sup{ ~ ,  :n<  o }. F o r  a x - n o r m a l  

f u n c t i o n  f we i m m e d i a t e l y  o b t a i n  ~n < x by  i n d u c t i o n  on n. S ince  t h e r e  is a 1-1 

m a p p i n g  f r o m  t h e  s e t  {13 : n ~ o }  o n t o  o < x  we have ~<x .  l f  t 3 e { ~ n : n ~ o } ,  t h e n  

t h e r e  is  a k < o  such  t h a t  1~ = [3 k ~ f(15 k) ~ 13. O t h e r w i s e  we have  15~Lim by 6.11. 

By h y p o t h e s i s  f is  a n o r m a l  f u n c t i o n  and  t h e r e f o r e  a l s o  c o n t i n u o u s .  H e n c e  

f ( l S ) = s u p { f ( 1 3 n ) : X < O } = s u p { 1 5 n + j : n < o } = l L  H e n c e  ~ l S ~ F i x ( f )  a n d  F ix ( f )  is 

u n b o u n d e d  (in x) .  Now s u p p o s e  t h a t  Lie F i x ( f )  is b o u n d e d  (in x ) .  I f  s u p  H~ H we  

a re  done .  O t h e r w i s e  we have s u p L I e  Lim which  i m p l i e s  f ( s u p L l )  = s u p { f ( ~ )  :~e H} 

= s u p { ~ : ~ L l }  = supLI  . H e n c e  s u p L l ~ F i x ( f )  and  F ix ( f )  is c l o s e d .  

17.3. C o r o l l a r y  

I[  M c  O n  is c losed  unbounded {in x) ,  then M' is c losed  unbounded  (in x)  too. 

P r o o f  

I f  M is c l o s e d  u n b o u n d e d  (in x) ,  t h e n  o r d  M is a ( x - ) n o r m a l  f u n c t i o n .  By 17.2. 

we  t h e n  have  t h a t  M ' =  F i x ( o r d  M) is c l o s e d  u n b o u n d e d  (in x) .  

17.4. Lemrrm 

Let  x>co be regular. I f  iJ ~ I c O n  i s  bounded (in x )  and { C ~ : ~ e l }  is a fami ly  o f  

sets which are closed unbounded (in x), then C = N{C~:~ I } is closed unbounded 

(in x) too. 
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17. Continuation o £  the theory o £  ordinals 

Proo f  

Since all C~ are (x-)closed we immediately obtain that C is (x-)closed too. 

The real problem is to show that C is unbounded (in x). Therefore choose 

~eOn(<x). We define a family (fn)n<~oof sequences (fn~)~E! by 

fo,~ := min{~'e C~ : o~;y A (V~e~c~I)fo,~<3"} 

and 

fn+tJ:. : = mini  y e C~:(V~ ~ I) fn.~< Y ̂  (V tl ~ ~c~ l) fn+,. ~< Y }. 

Since all C~ are unbounded  (in x) we conc lude  by induct ion on ~ t ha t  fo,~ a lways  

is def ined (and <x).  By the  induct ion hypothes i s  we may a s sume  t h a t  fn,~ is 

def ined (and <x)  for  all n. Since I is bounded  (in x) we have sup{fn,~: ~e l}EOn  

(<x) .  By the  unboundedness  of  C~ we then  obtain  t ha t  fn+,,~ is def ined for  

all ~ I  and n~(0. The se t s  {fn .~:neto}  are bounded  (in x) and it fo l lows  ~ := 

sup{ fn ,  ~ : n<(o}~C~ for  all ~ 1 .  By cons t ruc t ion  we have {B~ = {~o for  all ~,~oel. 

Hence u~{$~o~C for  a rb i t ra ry  ~ .  

17.5. Def ini t ion 

We define the  c l a s se s  Cr (a )  by recurs ion  on a. 

(i) Cr(O) = ~t 

(ii) C r ( ~ ' )  = (C r (~ ) ) '  

(iii) Cr(k} = N{Cr(~)  : ~< ;~ } for  )~ ~ Lira. 

We cal l  Cr(¢)  the  c lass  o f  a - c r i t i c a l  ordinals .  By 9= we denote  the  enumera t ing  

funct ion  of  Cr (a ) .  We usual ly  wri te  9 ¢~ ins tead of  9=(i3). 

17.6. Lemrrm 

Cr(~)  is  c l o s e d  u n b o u n d e d  in a n y  r e g u l a r  x>max{~ ,~} .  H e n c e  9 ~ x  is  a x -  

n o r m a l  f u n c t i o n  f o r  al l  x>max{ot,to}. 

P r o o f  

By 7,8. we have t ha t  Cr(O) is c losed  unbounded in any x>~ .  Using 17.3. and 17.4. 

we easi ly  obta in  by induct ion on at t h a t  all Cr(~)  are c losed  unbounded  in any 

x>max{~,~}.  Then it is immedia te  by 6.27 t h a t  @=~x is a x - n o r m a l  funct ion.  

17.7. [ . emma 

(i)  9 0 ~  = to = 

(ii) 910 = % 

(iii) 6< y i m p l i e s  9ate< 90ty 
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17. C o n t i n u a t i o n  o £  t h e  t h e o r y  o £  o r d i n a l s  

( iv )  f~ ~ ~ a 6  

(v) qo~X = s u p { ~ o ~ : ~ < > , }  for  ) ,~Lim 

(vi) I f  a<~, then Cr( [5 )~Cr (~ ) ,  % o ~ ( ~ y ) =  %o[5y and %o~y~%0~y. 

P r o o f  

(i) ho lds  by  def in i t ion .  

(ii) W e  have E o = min{~:~oO~ = ~} = m i n C r ( l )  = ~10. 

( i i i ) - (v)  f o l l o w  f r o m  the  fac t  t h a t  ~ is a no rma l  f u n c t i o n  fo r  all ~. 

(vi) By induc t ion  on  ~ we f i r s t  ob ta in  C r ( ~ ) c C r ( ~ ) .  I f  ~<~ ,  t h e n  we have 

~ o ~ T e C r ( ~ ) c C r ( ~ + l )  = C r ( ~ ) ' .  Hence  ~ ( ~ o ~ ) - - ~ .  By ~ , ~ o ~  we  t h e r e f o r e  

ob ta in  ~ 0 ~ ( ~ o ~ ) = ~ 0 ~ ,  Since O ¢ C r ( O ) ~ C r ( ~ )  it f o l l o w s  0<~o~0 wh ich  

implies  ~ 0 < ~ o ~ ( ~ o ~ 0 )  = ~o~0, i.e. ~o~0 ¢ Cr (~)  and  t h e r e f o r e  Cr (~ )~Cr (~) .  

17.8. T h e o r e m  

Suppose that  ~ = ~ l B l  and [5 = %o~t2[~ 2. Then we have 

(I) ct = B i f  and only i f  one o f  the  fo l lowing  condit ions is satisfied: 

(i) ¢tl<ct 2 and ~t = q)ct2~2 

(ii) ~I = °t2 and ~I = ~2 

(iii) Or2< Ot I and ~oat1~ t = ~2, 

(2) ~<~ i f  and only i f  one o f  the fo l lowing condit ions is satisfied: 

(i) oti<ct 2 and ~l<~OOt2~ 2 

(ii) ct I = ct 2 and [~1<[~2 

(iii) 0~2<0~ I and 9 Gtl~l< ~2. 

P r o o f  

W e  s i m u l t a n e o u s l y  p rove  the  c l a ims  (1) and (2). 

(i) I f  ct~<~ 2, t hen  we have ~ctl(qoct2[32) = %o~2[~ 2. T h e r e f o r e  %octl[~ i = %octz[3 z ho lds  

if and on ly  if ~t = 15 and ~<~ ho lds  if and on ly  if 131<13. 

(ii) I f  ~j = ~2, then  (1) and (2) are  obv ious  s ince %o~ is o rde r  p rese rv ing .  

(iii) is a c o n s e q u e n c e  o f  (i) and  (ii). 

T h e o r e m  17.8. is bas i c  for  the  f o l l o w i n g  par t s .  T h e r e f o r e  we o f t e n  will  use  it 

w i t h o u t  m e n t i o n i n g  it expl ic i t ly .  

17.9. Lemma 

We have ~0<%o[50 i f  and only i f  ct<~. 
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17. Continuation of the theory of ordinals 

F r o m  17.9. we o b t a i n  by  6,22. m ~ o ~ O ~ o ~ B  fo r  a l l  ~ and  [3. T h e r e f o r e  we  have 

t h e  f o l l o w i n g  l e m m a .  

17.10. L a m i n a  

For all ~,[B~On it is ~ , ~ .  

17.11. T h e o r e m  

For every ordinal ~ ~ ~q there are uniquely de termined  ordinals ~ and y such that 

ct = ~ot~y a n d  T< ~t. 

P r o o f  

The  u n i q u e n e s s  o f  [B a n d  y is an  i m m e d i a t e  c o n s e q u e n c e  o f  17.8. To s h o w  t h e i r  

e x i s t e n c e  we  d e f i n e  i5 := m i n { ~ : c t < q o ~ } .  The  o r d i n a l  [B is d e f i n e d  b e c a u s e  o f  

~ o ~ 0 < ~ o ~ .  I f  [~ = 0 ,  t h e n  w e  have ~<~o0~.  Since  ~¢Uq t h e r e  is  an  ~ s u c h  

t h a t  ct = ~o0rt<~00~, i.e. rl<~. I f  ~>0 ,  t h e n  w e  have  ~ = ~orl~t fo r  a l l  rl<B. H e n c e  

~ C r ( ~ ) '  = C r ( r l ' )  f o r  a l l  rl<~. Th i s  m e a n s  ~ C ) { C r ( ~ ' )  : ~ < ~ } c  Cr (~ ) .  T h e r e f o r e  

t h e r e  is a y s u c h  t h a t  ~ = ~0[~y<~0iB~ w h i c h  i m p l i e s  y < ~ .  

17.12. Remark 

The o r d i n a l s  in Cr (~ )  have  t h e  f o l l o w i n g  c l o s u r e  p r o p e r t i e s .  F i r s t  t h e y  a r e  c l o s e d  

u n d e r  o r d i n a l  a d d i t i o n  and  T E C r ( ~ )  and  ~ < ~ , T l < y  i m p l y  ~o~rl<T. To p r o v e  t h e  

l a t t e r  c l o s u r e  p r o p e r t y  we o b s e r v e  t h a t  i f  T~ C r ( ~ ) ,  t h e n  t h e r e  is  a T1 s u c h  t h a t  

T = qactT 1 and  we o b t a i n  9~Tl<~o~y, = T- Th i s  m e a n s  t h a t  t h e  o r d i n a l s  in Cr (~ )  

a r e  i n a c c e s s i b l e  fo r  t h e  f u n c t i o n s  in 19~: ~<~] .  F o r  t h i s  r e a s o n  we  a re  g o i n g  t o  

ca l l  t h e m  or-critical o r d i n a l s .  O r d i n a l s  ~ w h i c h  t h e m s e l v e s  a r e  o r -c r i t i ca l  a r e  

even  i n a c c e s s i b l e  fo r  t h e  2 - p l a c e  f u n c t i o n  X~rl.9~% This  m o t i v a t e s  t h e  f o l l o w i n g  

d e f i n i t i o n .  

17.13. Definition 

W e  ca l l  an o r d i n a l  ~ s t rongly  critical i f  ~ Cr (~ ) .  By 

SC : = { 0t ~ On  : ~ ~ Cr(0~) } 

we  d e n o t e  t h e  c l a s s  o f  s t r o n g l y  c r i t i c a l  o r d i n a l s .  

W e  d e f i n e  F~ :=  o r d s c ( 0 t ) .  

17.14. L a m i n a  

(i) We have ~ SC i f  and only i f  it is ~ 0  = ~. 

(ii) I f  ~ e S C  and ~,7<ot, then it f o l lows  qo6y<ct. 

81 



17. Continuation o f  the theory o f  ordinals 

P r o o f  

(i) a e S C  impl i e s  oceCr (~) .There fo re  t he r e  is an q such  t h a t  ~ = ~o~r}. Now we 

have ~ o ~ 0 ~ o ~  = ~. Hence  ~ = O. I f  ~ = @~0,  t h e n  ~ e C r ( ~ )  and  we o b t a i n  

c~e SC by de f in i t i on .  

(ii) By (i) c~eSC impl i e s  ~ = ~oc~0. But  [3<~ a nd  y<~=~oc¢0 e n t a i l  ~[3T<~o~0 = ~  

by 17.8.(2} L 

17.15. T h e o r e m  

The c lass  SC is c losed  unbounded in every  regular  x > o .  Hence  F is a x - n o r m a l  

func t ion  For all regular  x> o. 

P r o o f  

Pick any  ~ < x .  Def ine  [3o: = cc+l and  [3k*,: = ~P[3k O" Then  we have [3o<X and  by 

i n d u c t i o n  on  k it  f o l l o w s  [3k<X for  all  k< to<x .  Hence  [3 := s u p { [ 3 k : k < e } < x .  

For  ~<[3 t he r e  is a k < o  such  t h a t  ~<[3k*[3m for  all  m ~ k .  Hence  ~ [ 3 r n + l  = 

~°~{q)[3mO} = ~°[3mO = [3rn+, for  all  m ~ k  and  we have [3~q)~[3 = sup{~o~[3rn+, : m a k  } = 

sup{[3rn+, : m~  k }<:[3. This  s h o w s  t h a t  [3e N { C r ( ~ ) '  :~< [3}c Cr{[3), i.e. [3e SC. Because  

o f  a<[3<x we have t h a t  SC is u n b o u n d e d  in x. To s h o w  t h a t  SC a l s o  is 

x - c l o s e d  we a s s u m e  t h a t  Lie SC is / b o u n d e d  in x. Def ine  [3 := s u p  Ll. I f  [3e H, 

t h e n  we are  done.  O t h e r w i s e  we have [3eLim and  for  ~,q<[3 t h e r e  is a y e l l  

such that ~, ~< T- Hence 9~i< y< [3 by 17.14. This proves [3~ ~o~[3 = sup{@[Tl : ~< [3}~ 13 

and we have [3eN{Cr{~)':~<[3}cCr{[3} which implies [3eSC. 

17.16. T h e o r e m  

For every  ore ~ \ S C  there are uniquely determined ordinals [3,y<~ such that 

P r o o f  

By 17.11. we have ~ = ~{3y for  [ 3 ~  a n d  y < ~  and  13 a nd  y are u n i q u e l y  d e t e r m i n e d .  

If  we a s s u m e  [3 = at, t h e n  we o b t a i n  c~eCr(~)  which  c o n t r a d i c t s  ~ ¢ S C .  H e nc e  

17.17. D e f i n i t i o n  

We  de f ine  c~ =NF ~BY : ~  ~ = cp[3yA [3<OCA T<OC 

17.18. Definition 

For  ~ O n  we define ar := min{yeSC:a<T}. 
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§ 17. Continuation of the theory of ordinals 

17.19. Induct ive  def ini t ion of  the se t  P C ( a )  (Predicat ive c losure  of  a).  

(i) cx' c PC (0t), 

(ii) I f  y , S ~ P C ( ~ ) ,  then  a lso  y + S e P C ( a ) ,  

(iii) I f  y,Se P C ( a ) ,  then  a lso  ~0ySePC(a) .  

17.20. T h e o r e m  

PC(~x) = a r 

P roo f  

We show P C ( a ) c  a V by induct ion on the  def ini t ion o f  P C ( a ) .  

(i) I f  q < a ' ,  then we have q < a < a  F. 

(ii) Here  we obta in  y , ~ < a  V by the  induction hypothes i s  . Since S C c H  this  

imp l i es  y + ~ < a  r .  

(iii) Again by the  induct ion hypothes i s  we have 7 ,~<a  r .  Since ~ r ~  SC it fo l lows  

~oy~< a r" by 17.14. (ii). 

To prove  the  oppos i t e  di rect ion we show ~ < ~ r  ~ ~e P C ( a )  by induction on ~. 

I f ~ a ,  then  we obtain ~ P C ( a )  by 17.19.(i). I f  ~ < ~ < ~ r  then we have ~¢5C. I f  

~4H,  then  there  are y,~<~ such tha t  ~ = y+~. By the induction hypothes i s  we 

have y , ~ P C ( a ) ,  and obtain  ~ = y + ~ e P C ( a )  by 17.19.(ii). I f  ~ H ,  then  by 17.16. 

there  are y,~<~ such tha t  ~ = ~0y~ and we obtain ~ e P C ( a )  by 17.19.(iii) and the  

induct ion hypothes is .  

17.21. Theorem 

l f  x>o~ is regular ,  then we have x ~ S C  and  c~r<x  f o r  a l l  a<x .  

Proof  

I f  ~,q< x ,  then  by 17.15. there  is a o ~ SCr~x such t h a t  ~,q< o. By 17.14 (ii) it fo l lows  

~ o ~ < o < x .  Hence  x<~0~x = s u p { ~ 0 ~ : ~ < x } g x  and we obtain  x e N { C r ( ~ ) ' :  ~<x}c 

Cr(x) .  Since by 17.15. (a ,×) r~  S C * ~  it fo l lows  a F < x .  

17.22. Theorem 

i f  we def ine Ao(a) = a' and An÷ t (a )  = ~OAn(a)O, then we have a r = sup {A  n (a) :  n< to }. 

P r o o f  

By induct ion on n it easi ly  fo l lows  An(a)<An+l(a)  for  all n<~ .  We prove  t ha t  for  

all n < ~  there  is a ~ePC(a )  such t h a t  An(a)< ~ again by induction on n. I f  a = 0 
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lY.  C o n t i n u a t i o n  o f  t h e  t h e o r y  o f  o r d i n a l s  

then a '~qo00¢ PC(a) by 17.19.(i), (iii). If  ~ * 0 then a ' ~ a + a ~  PC{a) by 17.19.(i),(ii). 

For the induction step we have a ~ePC(a)  such that  A n ( a ) ~ .  Hence An+,(~) 

= ~0An(a)0~ q0~0 ¢ PC(a) by 17.19.(iii). This proves sup{An(a) : n< to }~ ~F. 

To prove the opposi te  direction we show by induction on the definit ion of  [3 ~ PC(a )  

tha t  there  is an n < ~  such tha t  ~<An(~). In the case o f  {i) this holds  for n = 0. 

In the case o f  (ii) we obtain the claim f rom the induction hypothesis  and the 

fact  tha t  AnE H holds  for all n>0.  In the case o f  (iii) it is 13 = ~0T~ and by the 

induction hypothesis  we have nl,nz<to such tha t  "l'~Ant{0t]t,8~;An2{0t). We define 

n := max{n, ,nz},  and obtain ~5~OAn(a)An(a)<q0An+t(a)0 = An+z{a). 

The fol lowing lemma is a special case o f  17.20. 

17.23.  L e m n m  

F o = PC(0).  

The ordinals in PC(O) are accessible f rom from 0 only using the funct ions  + 

and @. Therefore  all ordinals in PC(0) are represented by te rms  built  up f rom 

{0,+,~o} according to  the rules given in 17.19. These terms are cal led ordinal 

terms .  For ordinal te rms  a in PC(0) we define the degree G a  as the number 

of  symbols  0,+ and 9 which occur  in a. So G_a is the length o f  the word a in 

the formal  language over the a lphabet  {0,÷,q0}. 

According to 17.23. every ordinal a < F  o is represented by an ordinal te rm in 

PC(0). This ordinal term, however, is in general not  uniquely determined.  In order 

to  obtain an unique representa t ion of  an ordinal by an ordinal te rm we define 

the set  PC NF(0) o f  t e rms  in normal  form.  PCNF(O) is defined inductively by 

the  c lauses  
(i) 0~ PCrcF(O) 

( i i )  I f  a = NF~t+...+an and {a I ..... Ctn}C PCNIF(0), then also a~PCNF(0)  

(ill) I f  a = NFqa~la2 and {al,a2}c PCNF(0), then also a~ PCNF(0). 

It is obvious tha t  PCNF(0)c PC(0) and using 7.9, 17.16. and 17.13. we also obtain 

PC(0)c  PCNF(0). Therefore every ordinal a < F  o is represented  by an ordinal 

te rm Z in PCNF(0) and it is easy to  see tha t  this ordinal t e rm is uniquely 

determined.  

As the degree Ga o f  an ordinal ~<F 0 we define the degree Ga  

The se t  PCNF (0) like the set  E in § 8  may now be arithmetized. E.g. by defining 

r01 := ~0), ra+13~ := ~lfct~,rts~> and rq~ct131 := ~2fal,rl3~>. It  is no t  to  hard to  see tha t  

the se t  rPC(0}I = {ral:ctCPCNF (0}} is again primitive recursive and using 17.8. 

it fo l lows tha t  the relat ions defined by 
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~18. An upper bound For the autonomous ordlnal o£ Zoo 

r@ _= r~l :¢~ oc = [3 and 

are primitive recursive too. As a corol la ry  to  this sketch we obtain the fol lowing 

theorem.  

17.24. Theorem 

Fo< ~l CK. 

17.25. Exercises  

I. Show that any cardinal x> e is strongly critical. 

2. Prove that for any ~ePC(0) such that ~ = ~ it holds G~£Gc~. {This shows 

that another possibility to define G{3 is G{3 := min{G~:c~EPC(O) and ~ = {~}). 

§I8. An upper bound for the autonomous ordinal o£ Zoo 

18.1. Definition 

The infinitary sys tem Zoo canonically induces the opera tor  

Z : ~ ( O n }  x ~{On) -*  ~(On)  

which is given by 

Y-(M,S) = { I F 1 : 3 ~  M 3 ~  S (F is H~-sentence such tha t  rk(F) e S A ~ F) }. 

The norm IFI o f  a I l l - sen tence  F, however,  depends a li t t le bit  on the  syntact ic  

definition of  the sys tem Zoo. An al tera t ion o f  the inference rules may alter  the 

norm by some finite ordinal, in order  to  obtain an opera tor  which is not  so 

sensitive for such a l tera t ions  we redefine the opera tor  ~ by 

Z(M,S) = { ] F I : 3 ~ M 3 ~ ¢ S  (F is II~-sentence such tha t  rk (F )eS  ^ ~ F ) } u  

{~+1 : ~ e M } .  

Since every ordinal already is a subse t  o f  On we may turn  the opera to r  E into 

an opera to r  A : On × On --* On by defining 

A{~,~) := U E(~,~).  

By diagonalization we obtain an opera tor  

r :  On) -*  On, 

defined by 

= 

We call an ordinal ~ c losed  under Zoo if r{{x)cc{. 

A shor t  review of  chapter  I is then given by the  s t a t emen t  

A{o-2,o) = E o. 
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~18. An upper bound For the autonomous ordinal of" Zoo 

In chapter  I we moreover  have shown 

A ( % , ~ )  = E o- 

In the remarks  preceeding chapter  II we already ment ioned tha t  the ordinals 

t~ x and co~ K are c losed under Zoo. In a next  s tep we will see tha t  also the ordinal 

t0 is c losed under Zoo. 

18.2. T h e o r e m  

(a is c l o s e d  under  Zoo. 

R o o f  

From n ,m< co and ~m F we obtain 2 o ~  F by the f i rs t  el imination theorem 12.3. 

Hence JFJ~ 2re(n) < ~. 

Since F is c losed under successors ,  It fo l lows by 18.2. tha t  ~ is the least  ordinal 

which is c losed under Zoo. So the least  fixed point  of  F is ra ther  uninterest ing 

(at least  if one is interested in clarifying the role o f  nonfinit ist ic means in 

mathemat ics) .  However,  18.2. may be interpreted as a mathematical  p roof  for  

the philosophical  s t a t emen t  tha t  is impossible to  create  an actual infinite domain 

ou t  o f  finiteness.  The creat ion o f  an infinite domain f rom finite objects  was 

one o f  the a t t emp t s  o f  logicism which tried to  establ ish mathemat ics  on the 

basis o f  pure logic. 18.2. shows tha t  this a t t emp t  mus t  fail. 

The infinitary sys tem Zoo provides a tool  to  create ordinals au tonomously .  

Start ing f rom a given ordinal ~ we successively build the se ts  

F(~), F(F(~)), IXa)(~), F(4)(~) . . . .  

and finally reach a set  

Aut(~t) = U{F(n ) (~ )  : n<~0}. 

Aut  (~t) may be in terpreted as the se t  o f  ordinals which are au tonomous ly  

accessible f rom g. To see. this we have to  notice tha t  Zoo ~ -  TI(ct,X) holds 

for some n<o .  Hence ITI(a,X)I<~* where a* denotes  the f irst  limit ordinal larger 

than a. From a~Aut(~)  we obtain a~cAut( t l ) ,  since Aut(ll) is c losed under 

successors .  Hence ITl(~.X)l~Aut(~t) and therefore  ITI(a,X)I~ Ftn)Qt) for some 

n<w. Therefore  we obtain an ordinal ct÷~F(n-l)(~) such tha t  a+ Tl(ct,X). So a 

is an ordinal whose wel l foundedness  is provable f rom ct÷. So we may say tha t  

ct is accessible f rom a+. For 13< ~ we define 6+ := [5- Then we obtain a sequence 

{ctk: k ¢ o }  by % := a and c(k. , := (ak)÷ which eventually becomes  s ta t ionary  at  

some am<~t. Since accessibil i ty is a t ransi t ive process  % is accessible f rom ct m. 

(This essent ial ly  is a sketch o f  the  cons t ruc t ion  which will be carr ied ou t  in 
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~18.  A n  u p p e r  b o u n d  f o r  t h e  a u t o n o m o u ~  o r d i n a l  o f  Zoo 

§ 19). So we have justified ~ by assuming c~ m as being given. If t~ = 0, then we 

call ~ autonomously justified. By 18.2, however, we have seen that it is impossible 
to justify infinite ordinals autonomously. If we want to step into the transfinite 

we already need the existence of an actual infinite set. For the moment it will 

suffice to require the existence of the ordinal to. This motivates the following 

definition. 

18.3. Defini t ion 

The transfinite autonomous ~egment of  the ordinals  is the ordinal Aut(t0+l). 

We usually omit  the  adjective ' t r ans f in i te '  and talk of  the au tonomous  segment  

of  the ordinals.  

For the computa t ion  o f  Aut (o+ | )  we have to  generalize the f i rs t  el imination 

theorem.  

18.4. Second el iminat ion t heo rem 

~+~f~ A implies b~-~A. 

Proo f  by main induction on 0 and side induction on 

If  the  las t  inference is not  a cut  o f  rank ~ 8, then  the claim immediately fo l lows  

f rom the induction hypothesis .  There fore  we may assume tha t  the las t  inference 

is a cut  o f  rank o such tha t  ~ga<~+~ ~ . For p = 0  we obtain ~ A, i.e. ~-~a A, 

by the f i rs t  el imination theorem.  If p *0, then by 15.1. there  is a po<p and an 

n < o  such tha t  ~a<~+oPO.n .  If  the premises  o f  the cu t  are ~ A , A  and 
0t 2 

~-~-~-~pA,1A, then  we obtain by the side induction hypothes is  ~ - ~ A , A  and 

~ z A , a A .  We have r k ( A ) =  o<~+eP°-n  and obtain by a cu t  J ~ e o  n A for  
13 

:= m a x { g p ~ , g p a z } + l .  Now define (9po)°8 = 8 and (~po)n+~8 = ~po((q~po)ns). By 

n - f o l d  applicat ion o f  the  main induct ion hypothes is  we obtain I (q~o°)n8 A and 

show by induct ion on n tha t  it  is (gpo)n~<~0p0~ For n = 0 we have {~0po)n8 = 8 = 

max{gpa~,~pa2}+l< ~p~ since ~ l<a  and ~ p ~ B q .  It  Is {q~po)n+~8 = 9po(~PoS)<  

9 p a ,  because  o f  po< p and (9po)8<  ~0pa which holds  by the  Induction hypothesis .  

So we have {gpo)ns<gpa  and obtain k~-~-~aA f r o m  I(~°°°)n815 A. 

18.5. Coro l la ry  

~p A Implies I'PP"A. 
o 
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Proof 

We have p~oP. So ~p A implies ~pA and by 18.4. it follows lq~Pao A. 

18.6. Theorem 

Aut(~+l) c r o. 

Proof 

Assume ~,p< F o and ~ F for a II~-sentence F. By 18.5. this implies I~P~'Fo which 

by 10.3. entails tFl~op~. Since Foe SC we have ~0p~<F o by 17.14. Hence r(Fo)c F o- 

Because of  r~+lc F o we obtain Aut(~+l)c F o. 

18.7. Exercises 

We are going to examinate two variants ~ and ~ of the infinitary system 

7,oo. In these variants we are going to derive finite sequences of formulas in 

which a double occurence of a formula is not automatically cancelled. We 

identify finite formula-sequences r and A whenever r is a permutation of A. 

We define the following calculi: 

(Ax) If A is an axiom, then 2oo ~A and ~ ~p A holds for all ~ and p. 

(A) If ~ ~i F,F, or ~oo b~ i r,Fi holds for all i<n~, then we have 

~ F, A{Fi: i<n} or Zoo ~ F, A{FI: i<n} respectively for all a~sup{a,+l :  i<nL 

(V) If Zoo~° r,F~ or Z ~  ° r,F~ holds for some i<nge ,  then ~ ~pr, V{FI: i<n} 

or ~oo~p r,  V{FI: i< n} respectively holds for all a>a  o 

(cut) If Z  °r,A and ~ o ~  -j r,-iA and rk(A)<p, then we have 2 m ~  F for all 

a>max{%,a  t} and if 7.oo}~ ° F, A and ~op~ A,aA and rk(A)<p, then we have 

~ F,A for all a>max|0Co, a t} 

1. Show the following facts: 

(i) The weakening rule is a permitted inference of Zoo, i.e., Zoo~F,A,A 

implies the existence of ordinals 13,~ such that 7.oo~ F,A. 

(iii) 7~o does not allow cut  elimination. 

2. (i) 

(it) 

(iii) 

(iv) 

(v) 

(vi) 

Formulate the elimination lemma for Zoo and sketch the proof. 

Prove the tautology lemma for Zoo. 
Formulate the first  elimination theorem for Zoo and sketch its proof. 

Formulate the second elimination theorem for Zoo and sketch the proof. 

Prove or disprove the sentence: 3~,p ~o~p A~ 3~.p Zoo~p{F:FeA}. 

Is ~-oo sententially complete? 

88 



§18.  A n  u p p e r  b o u n d  For t h e  a u t o n o m o u s  o r d i n a l  o f  Zoo 

Definitions: 

I. In the  sequel  we assume tha t  the ~ 2 - f o r m u l a s  are obta ined f rom atomic and 

negated  atomic formulas  by the connect ives  ^ and v and the  quant i f iers  V and ]. 

Negation for formulas  which are not  a tomic is then  defined via the deMorgan 

laws analogously  to  the defini t ion for  the language 5~oo. 

2. We define rk~(F) for  £/ '2-formulas F inductively by: 

(i) rk~(P) := rkl(-~P) := 0 for  a tomic  fo rmulas  P 

(ii) r k t ( A ^  B) := r k l ( A v  B) : = max{rk l (A) , rk l (B)  }+l 

(ill) rk~ (¥xA) : =rk~(¥ XA) : = rk I (3 xA) : = rk~(3 X A) : = rk~(A) +1 

3. rk2(F) for  £P2-formulas  F is def ined by: 

(i) I f  F is an £P, - formula ,  then rkz(F) = 0 

( i i )  I f  F =- A~/B is no t  an 5g' ~-formula, then rk 2(F) := max{rk 2(A),rk 2(B)}+I 

(iii) If  F = QxA for  Q~{¥ ,3}  is no t  an 5~l- formula ,  then  rk2(F) := rk2(A}+l 

(iv) If  F ~ QXA for  Qe{V,3},  then  rk2(F) := rk2(A)+l 

4. We ex t end  the in terpre ta t ion  s of  £P~-formulas wi thout  f ree  occurences  o f  

f ree  number  variables by adding the  fol lowing clauses  

(¥XF)  * :-= A{Fx({X:  A D s :  A is a £Poo ( x ) - f o r m u l a  and rk(A)<~} 

(3XF)  ~ :-= V{Fx({X:  A})* : A is a ~oo ( x ) - f o r m u l a  and rk(A)<~} 

5. Finally we define the  fol lowing abbreviat ions for finite se t s  o f  ~a z- or ~aco- 

fo rmulas  respectively:  

A s : = { F * : F ~ A } ,  A x ( { x : A } )  :={F x ({x :A}) :  FeA} 

6. Inductive defini t ion of  Ae.a~o ~k A for  finite se ts  A of  ~ z - f o r m u l a s  wi thout  

free number  variables: 

(Ax t) If  A s is an axiom (for  Zoo}, t hen  ACAoo ~A holds  for  all a and k. 

(Axu) ACAQo n~ A,C,-*C holds  for  all £a , - fo rmulas  C,  all f o r m u l a - s e t s  A and 

all c~ and n<t0. 

(A) If ACA ~ A,A and ACAco~k'A, B, then ACAoo~kA,A^B holds for all 

a> max{ ~o,0(z }. 

(V) If ACAco~°A,A, then ACA~o ~kA,Av B and ACA~o~k A,BvA hold for 

all 0(>c~ o. 
O£n (V,) If ACAoo ~k A,Fx(n) for all neN, then ACAoo~ k A,¥xF holds for all 

0£~ sup{ 0cn+l : n ¢ N }. 

(],) If ACAoO~k ° A,Fx(n)for some neN, then ACA~o~k A,]xF holds for all 

(Z>O£ o 

- I~o A F (V 2) If A~o ~ , and XcFV2(A), then we have ACAco~ k A,VXF for all 

( Z >  rY o .  
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(32) If ACAoo~k° A, Fx(A) for some ~1-formula A such that FVt(A)c {x}, then 

ACA~o ~A,3XF holds for all ~>ao" 

(cut) If ACA~o k ~° A,A, ACA~o ~k I A, IA and rk2(A) < k, then ACA~o ~k A holds for 

all ct> max{0to, Ct i }. 

7. By ACA we denote the theory with language ~'2 which is obtained from ACA o 

by adjoining the unrestricted scheme of complete induction. 

(i) Let F be an ~2-formula and A an -~°i-formula. Show that rk2(F)= 

rk2(Fx(A)). 

(ii) Prove that if ACA~-F and FVI(F)c {x I ..... Xk}, then there are r,s~<e such 

tha t  ACAco to÷r Fx I ..... xk(ni .... ~0-k) for all (nj ..... n k) e N k. 

(iii) Show tha t  ACAoo ~k A,A, ACAoo ~ F, ~A and rk2(A) = k a I imply ACAoo ~ k  A. 

(iv) Prove tha t  k>0 and ACA~o~k+ j A imply ACAoo~kc~A. 

(v) Show tha t  ACAoo ~k+~ A implies ACAoo F~J~j t~') A. 

(vi) Let A be a set  of  $~°oo-formulas and A an ..-q~oo(X)-formula. Show tha t  
Z0o~p A implies 712rktA)+ct Ax(A). ~oo Irk(A)+ p 

(vii) Let A be a set of ~° 2 -formulas and n := max{rk2(F) : FeA}. Prove that 

ACAoo~A implies Zoo ~t~+~)+~ A*. 

(viii) Show that for a I]~-sentence F such that ACA[-F it is IFl<~01e o. 

~19. Autonomous ordinals o f  leo 

Our next aim is to show that Fo in fact is the least ordinal which comprises to 

and is closed under Zoo. In order to do this we have to show that every ordinal 

less than r o is accessible from e by an autonomous process similar to that 

which we have described after 18.2. 

As sketched below 17.23. we have primitive recursive codes for all ordinals below 

r o such that the equality relation -: and order relation < between codes for 

ordinals become primitive recursive. Therefore we have no problems in handling 

ordinals below F o in ~°oo. In order to simplify notation we are going to identify 

ordinals and their codes. As in §15 we denote codes for ordinals by lower 

case greek letters. The atomic formula 0t< [3 is only true if ~erPC(0) l, ~rPC(0) I 

and ~<~. YctF(~) abbreviates the formula A{F(~): ~erPC(0) l} and ]~F(~) the 

formula V {F(oc): oc e rpc(0)~ }. 

It is also comfortable to use class terms S of the form {x: F} in the language 

~oo. Since we have no number variables in the language ~oo the convention of 

1.8. does not make sense. In order to obtain a reasonable definition we have 
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to  ex tend the language -~oo by additional number  variables x,y .... to  the language 

~°oo.¢ o. Terms of  £°oo,¢ o then are defined as the t e rms  of  ~ .  Start ing with 

these te rms  one defines the formulas  o f  .~°oo.~ in the same way as the formulas  

of  £0oo. In the definition, however, we have to pay a t ten t ion  to the fact  tha t  

there  always are only finitely many variables free in one formula.  The rank 

rk(S) o f  a class  t e rm S = { x : F }  then is the rank of  the formula  F. Now if F 

is an ~°oo.~-formula such tha t  FVI(F)=  {x} and S is the c lass  t e rm {x: F}, 

then for any ~Sfco-term t the fo rmula  t e s ( w h i c h  IS an abbrevlauon for  the  

formula  Fx(t))  again is a wel l fo rmed ~oo- formula .  

In detail we agree upon the fol lowing abbreviations and notat ions .  

19.1. Definit ion 

(i) For a c lass  te rm S we denote  by ~c S the formula  V~(7~<av~eS) .  

(ii) ~ c ~  denotes  the formula  V ~ ( l ~ < ~ v ~ < ~ ) .  

(iii) ~o  := {S: S is a c lass  term such tha t  rk(S)<o}. 

(iv) Fundo(~) Is the formula  A{Fund(a ,S )  : S~ ~t o } 

19.2. l .emma (Equality lemma) 

/£ ~ F x ( s )  f o r  2 - r k F g a  and  rkF<p ,  t h e n  we  obta in  , p ~  "ls=t, Fx(t) .  

P r o o f  

We have 
(1) 2 - rk  F o l s  = t , - IFx(s) ,Fx(t) ,  

because either it is s ~ * t ~ and we have an axiom according to  (Axl) or it is 

s ~ = t ~q and (1) fo l lows from the t au to logy  lemma by the  s t ruc tura l  rule. From 

(1) and the hypothes is  ~ F x ( s )  the claim fo l lows by a cut.  

19.3. Lemma (Conjunction lemma) 

I F F i s  a valid s e n t e n c e  such  tha t  r k F , ~  and  ~ A ~ ,  then .p~  A,AA F. 

Proof 
By exercise 10.18 we have ~ F. This implies ~ A,F by the structural rule. 
Together with the hypothesis ~A,A we obtain ,p~ A,A^F by an A-inference. 
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19.4. Lamina (Detachment  lemma) 

Suppose  that we have ~ "tF,A and that  F is a valid s en t ence  such that  rkF~ct  

and rkF<9.  Then ,~9 h. For rk(F) = 0  we even obtain ~ h. 

P r o o f  

By exercise  10.18. we have ~-~-VF and the claim fo l lows  by the s t ruc tura l  rule 

and a cut .  For r kF  = 0 we obtain ~ A by the el imination lemma. 

Hidden applicat ions of  the s t ruc tura l  rule  will no longer be mentioned.  We freely  

will apply the cut  rule and A -  rule in the form [- A,A and F- F,-tA ~ ~- A,F as 

well as ~ A,A and ~-F,B ~ i-A,F.AA B respect ively.  Since appl icat ions of  the 

s t ruc tura l  rule do not  increase the length of  the derivation this canno t  do any 

harm. 

For the r e s t  of  the sect ion X always will deno te  a limit ordinal.  By ),* we deno te  

the f i rs t  limit ordinal larger than ),. 

We define SP(S) := {rl: V~(~c S --¢ ~+rjc S)}. 

19.5. Lemma 

For all S c ~ x  there  are ~< ), and 9< ), such  that  ~ ~¢ SP(S),rac S holds  for  all ~. 

P r o o f  

By the t au to logy  lemma we have o~ ~¢SP(S),  ~ S P ( S )  for  ~o = 2 . rk(SP(S))<~.  

Hence 

(1) ~o ~ SP(S) ,~0c  S,~¢ S 

by A - i n v e r s i o n  and V - e x p o r t a t i o n .  On the other  side we have ~ < 0 , ~ ¢ S  

according to  (Axl). Using V - i m p o r t a t i o n  and an A - i n f e r e n c e  this  implies 

(2) o#0c S. 

From (1) and (2} we obtain the claim by a cut  of  cut  rank p = rkS+3<) , .  

19.6. Lernnm 

For S e ~ x  there  are ~ and p less  than X such  that  ~ "tProg(SP{S)),lrlc SP(S),~c S 

holds  For aH ~. 

P r o o f  

By the t au to logy  lemma we have 

(1) o~ 1Prog{SP(S)) ,Prog(SP(S))  for  ao = 2. rk(Prog(SP(S)))<) , .  
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Hence by A - i n v e r s i o n  and V - e x p o r t a t i o n  

(2) o~ ° aP rog (SP(S) ) , l~c  sP(S) ,~¢ sP(S). 

From (2) and l emma  19.5. we obta in  by a cu t  

(3) ~ aProg{SP(S)) ,anc  SP(S) ,nc  S 

for  some  p< k and at< ). (we may choose  p as the rank of  SP(S} a u g m e n t e d  by 

some  finite ordinal and a t as  the  succes so r  of  the  m a x i m u m  of  ~o and the  

ordinal f r o m  l emma  19.5.). 

19.7. L e m m a  

For ScSt  x t he re  is an a < k  such  tha t  o~l~CS," l~¢SP(S) ,~+rlcS hoJds  f o r  all  

and  ~. 

Proof 

The claim fo l lows  by A - i n v e r s i o n  and V - e x p o r t a t i o n  immedia te ly  f rom the 

t au to logy  lemma.  

19.8. L e m m a  

For S ¢ ~ ×  there are a,p<X such that ~ 1Prog(S) ,Prog(SP(S)) .  

P r o o f  

From the 

and 

t a u t o l o g y  l emma  we obtain  by A - i n v e r s i o n  and V - e x p o r t a t i o n  

1~c S,a~<~,~ ~. S for  a o = 2-rk(S)+4< k, 

1no SP(S), lno< n, no ~ SP(S) for  ~1 = 2-rk(SP(S))+4< ), 

(3) ~ lno~SP(S),l~c S,~+~oC S for ~z<),. 

By a cut i t  follows from (2) and (3) 

(4) ~o a a~c SP(S),I~¢ S,1~o<~,~+~oC S 

for at 3 = max{at,a2}+1<k and t~o~ [rk(SP(S))+I, ),). Again by the tautology lemma 

A - i n v e r s i o n  and V - e x p o r t a t i o n  we obta in  

(5) ~ nProg(S),n~+no¢ S,~+~o~ S 

for  a , < k .  By a cu t  it fo l lows  f rom (4) and (5) 

(6) ~ nProg(S),-Inc SP(S),I~c S,1Tlo<n,~+Tlo~ 5 for 0~S,Pl<),. 

Fur the rmore  we have 

(7) ~o nc,<~+n,~<~,3no(~=F,+noA no<n). 
This can be seen in the  fo l lowing  way. I f  ~< ~+n and ~ ~, then  there  is s o m e  no 

such tha t  ~ = ~+Tlo and no< n are t rue  sen tences .  Then we have ~ 1 ~ <  ~+TI,~< ~, ~=~+~o 
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and o~ n~<~+~,~<~,%<~ by (Ax1) and obtain (7) by an V - a n d  an /k- inference.  

From (6) and the equality lemma we obtain 

1Prog(S),~lc SP(S),n~c S,n ~=~+~o,~o< ~,~e S 

for all ~¢IN and therefore by V- impor t a t i on  and an /k- inference  

(8) ~t nPr°g(S) ' l~lcSP{S) ' l~cS '  n3~o(~=~+~oA~o<~),~cS. 

From (7) and (8) we obtain by a cut  

(9) ~ ~Prog(S) ,~ncSP(S). l~cS.  lC<~+n.C<~. C~S 
for some p<k. Using an /k- inference  (9) and (1) imply 

(I0) ~ ~Prog(Sl,~rlc SP(S),1~c S, "~<~+rl,~<~A "t~<~, ~ S. 

From (10) and the detachment lemma we obtain 

(11) ~ 3Prog(S),-I~c SP{S),-I~c S, 3~<~+~l,~ S for all ~, ~PC(O) .  

From (11) by V- impor ta t ion ,  an /k- inference,  again V- impor t a t i on  and an / k -  

inference it follows 

(12) ~ t t  nProg(S),3~]c SP(S),r)e SP(S). 

The claim follows from (12) by V- impor t a t i on  and an /k-inference.Since we 

have ), ~ Lira by hypothesis it is obvious that  we may choose ~ l  < ), and therefore 

also ~<X. Likewise we obtain p<X since p may be chosen as the rank of  S 

augmented by some finite ordinal. 

19.9. l~mma 

l f X  ~ o, t h e n  For e v e r y  S ~ St x t h e r e  is  an ~< k s u c h  t h a t  ~o 1Fundo(~),lProg(S),~c S. 

Proof 

By the tautology lemma and V - e x p o r t a t i o n  we obtain 

(1) ~ -ITran(~(l,-I(~Prog(Slv ~c S), 1Prog(S),~c S, 

for cq = 2-rk(1Prog(S)v ~c S)< X . Since ),~o we have ~ x c  S o. By V- impor t a t i on  

and an V- in fe r ence  we therefore  obtain 
(2) ~--V{~(Tran(~(}A (TProg(S)v~c S}): Se~o},TProg(S),~c S for some a<k  

which already is the claim. 

19.10. Corollary 

For  T<X~o we have  ~- ~Fundo(~) ,Fund~(~) .  

Proof 

This follows from lemma 19.9 by V- impor ta t ion ,  the conjunction lemma and 

an /k- inference.  
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19.11. Lamma 

We have ~ aFund>,(~),aFund> (~),Fund ×(~+~). 

Proof 

Assume S e t  x. Then we also have SP(S)~g x. By lemma 19.9. it follows 

(1) ~ 1Fundx([l,aProg(S),~c S 

and 

(2) ~ nFundx(~),lProg(SP(S)),~c SP(S) 

for ~l,uz<k. By the tautology lemma, A-inversion and V-expor ta t ion  we 

obtain o~ 1Prog(SP(S)),-I~c SP(S),TI~ SP(S) for some ~3<),. This together with 
(2) implies 

(3) p~oo aFundx(~),aPr°g(SP(S)),~c SP(S) 

for ~¢<X where we may choose Po := rk(~c SA ~¢ SP(S))+1<),. By a cut we obtain 

from (3) and 19.8. 

(4) ~ aFundx(~),3Prog(S),~SP(S) 

where p<X has to be sufficiently large. By (I) and (4) it follows by an A -  

inference 

(5) ~ -IFundx(~),aFundx(~l),aProg(S),~¢ SA ~ SP(S). 

By a cut we obtain from (S) and 19.7. 

(6) ~ aFundx(~),aFundx(~),aProg(S),~+~¢ S. 

Since Tran(<) is a valid sentence such that  r k ( T r a n ( g ) ) < ~ X  we obtain from 

(6) by V- impor ta t ion  and the conjunction lemma 

(7) ~ aFundx(~),aFundx(~), Tran(<)h (aProg(S)v~+~c S) for all S~N x. 

The ordinals ~a and p depend upon the choice of the S. However, they always 
are less than X. 

The claim follows from (7) by an A-inference.  

19.12. Lemma 

We have ~- aFundx(~),a~<~,Fundx([). 

Proof 

For S~ ~x  by lemma 19.9. there is an cq< k such that  

(1) ~t  aFundx(~),aProg(S),~c S. 

Hence by A-inversion 

(2) ~t aFundx(~),aProg(S),a~<~,~ S. 

Since ~ A  ~<~--~ ~<~ is a valid sentence we have 
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(3) ~ -1~<n,1~<~,~<n 
for  ~2<¢0. By (2) and (3) and the e l iminat ion l emma we obtain  

(4) ~ nFundx(~) , ' lProg(S) ,  n ~ < ~ , n ~ < ~ , ~ S  

where a3 := ~1#°c2 <k  for  all S e ~  x. By V - i m p o r t a t i o n ,  an A - i n f e r e n c e ,  

ano the r  V - i m p o r t a t i o n  and the conjunct ion  l emma  it fo l lows  

(5) ~ nFundx(~} , ' l~<~ ,Tran (<)A(nProg(S)v  ~cS)  for  all S ~ x .  

Here  ~4 depends  upon the  choice of  S bu t  it a lways may be chosen  to  be less 

than  k. Using an A - i n f e r e n c e  we obta in  the  claim. 

19.13. Defini t ion 

For ~ = Np~ql+...+~n we define h(~) := ~t 

19.14. Lemnm 

There are ~,p<) ,*  such that ~ nFundx(h(~) ) ,Fundx(~) .  

Proof 

Let rl = NF~h+...+~n. Then for  k = 1 ..... n the sen tence  ~]k~ h(~) is valid. By 19.12. 

and the  d e t a c h m e n t  l emma it fo l lows  

(1) o~nFund>(h(~)) ,Fundx(~k)  for  k = 1 ..... n. 

F rom (1) and l emma  19.11. we obtain 

{2) ~ nFundx(h(r  1)), Fundx(~t+~2) A Fundx(rl3), 

for  uj and p less  than  k*. By (2) and l emma  19.11. it fo l lows  

{3) ~ aFundx(h(~)) ,Fundx(~l+~2+~3),  

where  ~3 is ~l a u g m e n t e d  by some  finite ordinal.  By i tera t ion o f  th is  p rocedure  

we finally obta in  the  claim. 

19.15. Lemnm 

We have ~o Fundx(O). 

Proof 

By {Ax1) we have ~ - ~ P r o g ( S ) , l ~ < O , ~ S  for  all S ~  x. F rom this  we obtain 

o~ 7Prog(S) ,Oc S by V - I m p o r t a t i o n  and an A - i n f e r e n c e .  Using V - i m p o r t a t i o n  

and the  conjunct ion  l emma  we obtain ~ T r a n ( ~ ) ^  ( 1 P r o g ( S ) v O c  S). The c la im 

fo l lows  now immedia te ly  by an A - i n f e r e n c e .  
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To simplify the formulation of the next lemmata we agree upon the following 

abbreviations. 

Ax(o) is the formula V~(n~<0v Y~(TFundx(q)v Fundx(~o~))) 

B×(o,~) is the formula ¥~ (n~< ~v Fundx(9Oq)) 

Cx(i~,o,~) is the formula ¥go(IGPo<Ggv -lllo<~OoXV Fundx(go)). 

19.16. l .emma 

For every  ordinal  ~ and  l imi t  ordinal  X t h e r e  are ordinals  a<),  '~ and  p<X* s u c h  

tha t  we  have  

nAx (o), ' lBx (o,~),'~Cx (~t,o,'~ 1,1Fundx ('0, nt t< ~oo~,FundxlP). 

Proof 

If  ~ooxgt~, then  we have 

(A) o~ nAx(o), aBx(o,O,aCx(~,o,O,nFundx(O,a~< ~o~,Fund x(~). 

according to (Axl). We therefore assume p<~ooL If II = O, then we obtain by 

lemma 19.15 and the structural rule 

(B) ~-IA× (o),-IBx (o,O, qC× (p,o,T),IFund× (z), Fund×(g).. 

If p * O, then we distinguish the following cases. 

1. ~ = ~0~1~2 for  ~l<o and ~2<~0o~. 

From the  t au to logy  lemma we obtain by A - i n v e r s i o n s  and V - e x p o r t a t i o n s  

(1) ~ "lAx(o),'l~l < o, 'lFundxQt2), Fundx(~ttl~ 2) 

for  a t = 2 . rk(Ax(o))<X*.  By (I), the  equa l i ty -  and the  de t achmen t  lemma it 

fo l lows  

(2) ~ aAx(o) , lFundx(t~2) ,Fundx(tD 

where we may choose  p = rk(Fundx(p) )+ l<k* .  From the t au to logy  lemma we 

obtain by /k - inve r s ions  and V - e x p o r t a t i o n s  

(3) ~ 1Cx(~,o,~),IG~2<G~, l~2<~oo~,Fundx(Pz) 

for  ct 2 = 2.rk(Cx(g,o,x))<)~ *. Since Gp2<G p and p2<~oo~ are valid sen tences  we 

obtain by the  de tachment  lemma f rom (3) 

(4) ~ 3Cx(~,o.x),Fundx(g2).  

By (2l and (4) it fo l lows  by cut  

(C) ~ 1Ax(o) , lCx(g ,o ,x) ,Fundx(g)  

where again we may choose  % and p to  be less than ),*. 

2. Assume p = ~PI~2 such that Pl = ° and p2<L 

From the tautology lemma we obtain by A-inversions and V-exportations 

(1) o~ 7Bx(o,~),'lP2<z, Fund),(q°o~2) 
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where a 1 =2 . rk  Bx(o , t )<k* .  By the  d e t a c h m e n t -  and the  equal i ty  t e m m a  we 

obtain  f rom (1) 

(D) ~ t  nBx(o,x) ,Fundx(g ) 

for  p := rk (Fundx(g) )  +l< k*. 

3. g = g0gig2 and p<t .  

By l e m m a  19.12. we have 

{1) o~ "lFundx(~),nlz<t,Fund×(tl}- 

By the  d e t a c h m e n t  l e m m a  we obta in  f r o m  (1) 

(E) o~ nFundx( t ) ,Fundx(~)  • 

6. ~t = N F g l + . . . + [ ~ n  for  n > l .  

Then we have GBI<Gg, gt<~0oz and h(gl = gi- 

F rom the  t au to logy  l emma  we obtain  by / k - i n v e r s i o n s  and V - e x p o r t a t i o n s  

(1) ~t - iCx(~ ,o ,z ) , lGh(g)<Gg,  l h (g )<9ox ,  Fundx(h(g) )  

for  a I = 2 . rk (Cx(g ,o ,x ) )<k* .  Llsing the  d e t a c h m e n t  l e m m a  we ob ta in  f r o m  (I) 

(2) ~ nCx(g,o,~) ,Fundx(h(~)) .  

By (2) and l emma 19.14. we obta in  

(F) ~ 1Cx(g ,o , t ) ,Fundx(g) ,  

where  a and ~ may be  chosen  be low k*. 

From (A) - (F), however ,  we obtain  the  claim. 

19.17. I . emma 

For every  ~ there  is an au< k* and  a O< k* such  tha t  

~ a  nAx(o) ,nBx(o, t ) ,nFundx(~l ,n l l<  ,pot, Fundx(g) .  

P roo f  

We prove  the l emma by meta induc t ion  on G~. If  Gp = O, then  we have V = 0 

and the  c la im is a s t ruc tu ra l  consequence  of  l emma  1935. There fo re  we a s sume  

G~ * 0. Then we have 

(1) ~ o  1Ax(0),3Bx(o,~),nFundx(t) ,nG~o<G~,ngo<~00~ ' Fundx(go) 

for  some  %o,l~o<X*, since it e i ther  is G g < G g  o and we have (1) according to  

(Axl) or it is G go<Gg and (1) ho lds  according to  the  induct ion hypothes is .  From 

(1) we obta in  by V - i m p o r t a t i o n  and an / k - i n f e r e n c e  

(2) ~ J/1+4 1Ax(o) ,nBx(o , t ) ,nFundx( t ) ,  Cx(~,o,~) 

where  % t  := max{ago: Ggo<G~}" From (2) and l emma  19.16. by a cu t  we ge t  

(3) ~ "1Ax(o),-IBx(o,x),~Fundx(T),ni~<9o~,Fundx(g) 
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for % := max{~, %o+4}+1 and ~ := max{po,~ ~, rk(Fundx(~)}+l where a t and th 

are the ordinals from lemma 19.16. 

We define SPx(o) := {~: aFundx(~)v Fundx(,po~)}. Then we have SPx(o)~ g×,,. 

19.18. Lemma 

There are ordinals  ~ and  p l e s s  than  ~ such  tha t  

aFundx (.r),-rt c SPx(o),Y ~ ( a~< ~v Fundx(~Po~}). 

Proof  

From the tautology lemma we obtain by V-expor ta t ion  

(1) ~ l(nFundx(~l)v Fundx(~o~)),lFundx(~), Fundx(%0oTl), 

i.e. 

(2) ~ lrl~ SPx(o),'lFundx(~l),Fundx(q0o~l) 

for al := 2-rk (aFund×(~) v Fundx(~oo~)) <),*. By 19.12. furthermore we have 

(3) ~--lFundx(x),l~< ~, Fundx(~). 

From (2) and (3) we obtain by a cut 

(4) ~ a~e SPx(o), 1Fundx(x),aTl<x, Fundx(qoo~) 

for a2 and 0 less than )~*. Furthermore we have 

(5) o~ ~<~,aFund>(~),l~<z, Fund×(~oo~) 

according to (Axl). By (4) and (5) and an /k-inference we obtain 

(6) ~ . t  ~I<ZA 1~1~ SPx(o), aFundx(~),a~<x, Fundx(gq)  

which implies by an V-inference,  V-importa t ion and an A-inference  

(7) ~ lxc SPx(o),aFundx(x),V~l(a~<~v Fundx(qoo~)). 

19.19. Lemma 

W e  have b~ 3¥g (ltt< ov Fundxfiz)), Fundx(o). 

Proof 

By 19.9. for every S ~ x  there is an ut<k such that  

(1) ~ 1Fundx([t),-IProg(S),itc S. 

Since we have ~-~t<o, lB<o and ~_2 1Prog(S),nttc S,[t~S for some ~z<;( and we 

obtain from (1) by a cut and an A-inference  

(2) ~ t~<OA 1Fundx(~),TProg(S),l l t<o,~ S 

for u3 and O below L By an V-inference it follows 
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(3) ~ ~¥ts(l~<ov Fundx(t~)), 1Prog(S),ytl<o,t~ S. 
By an/k- inference ,  V- impor ta t ions  and the conjunction lemma it finally follows 

(4) ~s ~Vt~(lt~<ov Fundx(t~)), Tran(< )^ (1Prog(S)v oc S). 

Here ~s and p depend on the choice of S but always may be chosen below X. 

Using an A- infe rence  therefore we obtain 

(S) b~ 3¥t~(at~<ov Fundx(t~)), A{Tran(~)^  (nProg(S)voc  S): S ~  x} 

which is the claim. 

19.20. l~mrrm 

There are ordinals ~< X** and p< ),* such that ~ -lA×(o),'lFund×*(x),Fund×(,ox). 

Proof  

By 19.17. there are ~ and p below ),* such that 

lAx (o), lBx (o,x), 1Fundx (x), lt~ < ~°ox, Fundx(tD 

for all g. By V- impor ta t ion  and an /k - in fe rence  this implies 

(1) ~* 1Ax(o),lBx(o,x),lFundx(x),¥ts( lt~< ~ooxv Fundx(~)). 

By (1) and lemma 19.19. we obtain 

(2) p x ~  1Ax(o),lBx(o,x),lFundx(x),Fundx(~oox). 

By lemma 19.18. we have 

(3) ~ ~Fundx(x).~xcSPx(o),Bx(o.x), 

for aj<~,*. From (2) and (3) we obtain by cut  

(4) ~ nAx(o),qxc SPx(o), 1Fundx(x),Fundx(~Oox) 

where we tacitly assume that p< ),* is so large that it majorizes the rank of 

Bx(o,x) (and of all cut formulas coming}. By (4) we obtain by V- impor ta t ion  

p x ~  .IAx(o),lxc Spx(o),x ~ SpX(o)" (S) 

Again by V- impor ta t ion  and an /k- inference we obtain from (5) 

(6) p x ~  ~Ax(o),Prog(SPx(o))" 

By the tautology lemma we have 

(7) ~- 1Ax(o),nx¢ SPx(o},xc SPx(o) 

for 15 = 2.rk(xc SPx(o))<;~*. From (6) and (7) we obtain by an A- inference  

pxkpx'-~+8 1Ax(o),Prog(SPx(o))^ lxc  SPx(o),xc SPx(o), from which we obtain 

(8) [~u nAx(o),7(Tran(, ( )^ -iProg(SPx(o)) v xc SPx(o)),xc SPx(o) 

by the structural rule and V- impor ta t ion .  Because of SPx(o)~/i~x* we obtain 

from (8) by an V- inference  

(9) ~ ~Ax(0),lFundx*(x),xc SPx(o). 

From the tautology lemma we obtain by /k-inversion and V-expor t a t ion  
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(10) o~ 1Prog(SPx(°)) , lzc SPx(o),Te SPx(°) 

for ~1 := 2"rkPr°g(SPx(c)). From (6) and (10) it follows by cut 

(11) ~ 1Ax(o) , lzcSPx(o) ,~eSP×(o)  

and from (9) and (11) 

(12) ~ 1Ax(o),nFundx-(T),~e SPx(o). 

This implies by V-exportation 
(13) ~ ~A z (o), ~Fund×+(~), ~Fundx (t), Fundx (qoo~). 

From (13) and 19.10, it follows 

(14) ~ "lAx(o),~Fundx*(~),Fundx(~Oox) 

for ~< k** and p< X*. 

19.21. Lemma 

Suppose  that X is a limit ordinal such that the se t  {tla:a<~} is unbounded  in 

), and we have ~o A, Fundt~a(x) for  all o<Tl for  o%<~ and po~p. Then it fo l lows  

A, Fundx (~). 

Proof 

Since {go:o<Tl} is unbounded in X we have for every SeSt x a o<~1 such that 
S e ~ o .  By A-invers ion we obtain ~ A , T r a n ( g l A ( 1 P r o g ( S ) v z c S )  from the 

hypothesis. Since it is ~ <  ~ for all o< 71 we obtain the claim by an A-inference.  

19.22. Lemrtm 

/f*l~Lim, then we have ~ aFund~o.n(t),Fund~.~(90z). 

Proof 

Ax(0) is the formula ¥~(l~<0vYrl(nFundx(r~)vFundx(%0~))- Therefore we 

obtain from an axiom (Axl) by an V- inference  and an A- inference  

(1) ~Ax(O).  

For limit ordinals X we obtain from (1) and lemma 19.20. by a cut 

(2) ~_1 aFundx+(x),Fundx(q~Ox) ' 

for ~1<)~** and p<X*. By corollary 19.10. it follows 

(3) ~+. -IFund~.n(x),Fundx*(~) 
for all limit ordinals X+gta.q. By (2) and (3) for X = to.~ we obtain by a cut 

(4) ~ 3Fund~. n(x),Fundto.~(~oOx) 

for all ~<q such that ~<c0-(~+2)<c0-q. Because of  q~Lim the set  {<a-~: ~<q} is 
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unbounded in ~).q and by lemma 19.21. it follows 

(5) ~.n aFund~.n (x), Fund~. n (~oOz). 

19.23. L a m r ~  (Euclidian division for ordinals) 

For ordinals  o and  ~ * 0 there  are un ique ly  d e t e r m i n e d  ordinals  p< x and  q s u c h  

tha t  o = ~.q+p. 

P r o o f  

Since I.o~.o<~.o' we have {~: o<~'~} * ~. Define ~o := min{~: o<~-~}. Then it is 

~Io * 0 and we have by definition that ~o cannot be a limit ordinal. Hence there 

is an q such that qo = ~'- It follows z-~o<~-~' = v~+x. Because of x-~o there 

is a p such that o = ~-q +p. From z.q +p = o<z'q+~ it follows p<~. The uniqueness 

of ~/ and p is obvious. 

19.24. Lamina 

For o<tov+l-q there  is an ordinal  ~ such  tha t  o < t o " ~ ' < ~ t ' + l ) - q  and for  ~<v 

there  is an ordinal  ~ s u c h  tha t  t0"-~' = t~(~+l)-{. 

Proof 

By Euclidian division we obtain o = ~"-~+p for some p<~".  Hence o< t~"~+~  ~ : 

~ - [ ' .  By ~ ' ~ o < ~ { ' ÷ l } . q  it fo l lows ~<t~.q and therefore  also [ ' < ~ ' q .  Hence 

t~.~,< ~ t ,+ l ) .q  and we obtain o< ~ - ~ ' <  ~t .+l) .q .  Now if [~<~, then there  is a 

such tha t  v = g '+~ and it fo l lows o<~ ' -~ '  = ~t~+~+~}-~' = ~ tu+~} ' (~ ' [ ' ) .  The 

lemma is proved by defining ~ := t08-~ '. 

19.25. Lemma 

For all  ordinals  v and  r l :t 0 w e  have 
t~(l+v+l).q 
~tl+~+l~. n 3Fund ~ (1+~+1) .n (x), Fund ~tl+~+ll.n (~°~x)- 

P roof  by induction on 

For v = 0 this fo l lows f rom lemma 19.22. Therefore let v * O. By lemma 19.24. 

we obtain for o<~1+v+l).~, a ~ * 0 such that  o<c01+~.~< ~1+.+1).~ and for ~<v 

a ~ such tha t  ~1÷..~ = col+~+l.~. Using the induction hypothesis  we have 

(1) ~ ";Fund ~s+. .~(v) ,Fund ~ l+~.~(~v) -  

for all g<~. By V - i m p o r t a t i o n  and an A - i n f e r e n c e  this implies 

(2) ,¢~l+~J-~~ Yv ('IFund,~l+,.~(u)v Fundc~l+,.~ (~0gu)). 

Therefore we have 
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~1+~.~+4 
(3) ~+~.~ ~i1<vvVv(IFundtol+~.~(v)v Fundo~1+~.~(~0~v)) 

for all t~ because we either have g< ~ and (3) follows from (2) by an V-inference 

or we have ~g<~ and (31 follows by an V-inference from an axiom according 

to (Axl). The formula Aco1+,.~(~), however, is of the form 

V~( ~tt< ~v Vv (~Fund~l+~.~(v) v Fund~o1+~. ~ (~0~tv))) 

Therefore we obtain from (3) by an A-inference 
(4) t~!+~'~+5 

By lemma 19.20. there is an ~<e1+~-{+~'2 and a p<et+~-~+e such tha t  

(5) p~ 1A~+~.~(~), 1Fund~+~.~+~(x), Funde,+~.~(q~x). 

From (4) and (5) we obtain by a cut  

(6) }~÷~.~+e -IFundc~+~.{+e(~),Fundo,+~.~(~0vx) 
for some ~ <  ¢~+~-{+e.2. Since cot+~-{+¢~o°÷~+~)'~ it fol lows from (6) and 

lemma 19.10. by cut  
otl+l (7) ~+~.~+~ aFundo(l+~+l) .n(~) ,Fundj+~.~(gw).  

Because of  o<e~+~-~ we obtain from (7) and 19.10. 

(8) at+~to~+v.~+~ aFund~o+v+l).n(x),Fundo{gvx).  

Now, we have 0Cl<ol+ '~-~+td '2<td( l+v+l) -?  l, a s  i t  is (~ l+v '~<ol+v+l-?}  a n d  ~-2<£d 2 

[cf. lemma 24.7.] and therefore  also ~t+2< ~(~÷~÷~)-~. By lemma 19.21. we 

finally obtain 
}¢~(l+x~+l)-r 1 

(9) ¢ot1+~+1). n "lFund H+~+l~n(x),Fund~(l÷v+l).r~(qow), 

19.26. Definition 

We define ~o = ~010 and ~n÷l = ~°~n0" 

19.27. Lemma 

We have sup{~n: n<t~} = r o. 

Proof 

This is an immediate consequence of  17.22. 

In a next step we are going to convince ourselves that all ordinals {n are auto- 

nomously accessible in Zoo- In order to do that we prove the following lemmata. 

19.28. l .emma 

We have Fund~a(~) .  
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Proof 

By lemma 19.25. we have 
~8 

(I) ~31Fundtoa(O), Fund~a(~010). 

By lemma 19.15. and a cut this implies 

(2) ~ Fundoa(~). ~o3÷|  

19.29. Lemma 

For edl n<to it is ~ Fundcn o ( ~ n + l ) -  , ~n . e÷ l  

Proof 

We have t01+~n = ~n for all n<o. By lemma 19.25. it holds 

(I) ~ - I F u n d ~ n . t o l 0 ) ,  Fund~n.~l~o~n0). 

From (1) and lemma 19.15. we obtain the claim by a cut. 

19.30. Lemma 

We have °l~L-~ 1Fund~o21~n), Fund~2l~n-tO + 1). 

Proof  

By lemma 19.14. it is 

(1) ~ 1Fundo2{~n), Fundo2 ( ~n + 1) 

for a, p<o2+t0. By lemma 19.22. we have 

(2) ~ 1Fundo2(~n+l),Fundoz(~0(~n+l)). 

It is  qo0(~n+l) = o ( { n  +1) = ~n'tO. Hence from (1) and (2) by cut 

(3) ~ "1Fund~z(~n), Fundto2 (~n'O) 
for cq and p less than co2+o. Because of h(~n'O+l) = ~n'CO we obtain by 19.14. 

(4) ~2 ~Fund~2(~n.e),Fund~o2(~n.co+l ) 

for (x 2 and p below ~2+o. From (3) and (4) and a cut we obtain the claim. 

19.31. Lemma 

For S~No we have ~ - I P r o g l < , S ) ,  ¥~l~<e---~ ~ S ) .  '0 

Proof 

The proof is by induction on ~. From the induction hypothesis we have 

(I) 5"(°k~-~L~ ~Prog(<,S), V~(~<I3 --* ~eS) for all 13<ct. 
"O 

By the tautology lemma it holds 
2"0 (2) ~ ~s, ~s. 
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From (1) and (2) we obtain by an / k - i n f e r e n c e  

(3) I s ' ( °+~)+l  1Prog(<,S) ,  ¥~(~<~--+ ~ S ) ^ ~ ¢ S ,  ~ S  

for  all ~<c~. This implies 
(4) 5-(o+[3)+2 1Prog(<,S) ,  ~ S 

o 

for  all {3<~ by an V - i n f e r e n c e .  F rom (4) we obta in  

(5) ~- IProg(<,S),  "1{3<~, ~¢S 

for  al l  ~ where g = 5-(0+6)+2 for ~<~ and g = 0 for  ~<{3. By V - i m p o r t a t i o n  and 

an /k - in fe rence i t  f ina l ly  fo l lows 

(6) ~ 1Prog(<,S) ,  V~](~<~--+ ~ S ) .  
'O 

19.32. Coro l la ry  

IFund(~,X)l < ~*. 

Proof 

From l e m m a  19.31. it fo l lows  

Io s '~  1Prog(< ,X) ,  V~(~<~ --* ~ X ) .  (1) 

Hence 

(2) o ~ Fund(~,X) 

for  some  ordinal  m < ~ .  Since 5 .~+m<~ ~ this  implies  the  claim. 

19.33. Lemma 

ct~ IFund(co%X)I. 

Proof 
We have 2a~ o a ~  2 IFundtc°at,x)l by the  boundedness  theorem.  Hence a a  [Fund(c0~,X)l. 

19.34. Lemma 

~o c Aut (o+l ) .  

Proof 
c o ÷ m  

By t h e o r e m  15.7 we have Z }- Fund(~,X) for all  ~< E o. Hence ~ Fund(~,X) for  

all  ~<E o by the  embedding  l e m m a  11.2. Since ¢~ Aut(o+l)  and Aut(~+l)  is c losed  

under  succes so r s  we obta in  by 19.32. t h a t  ~*c Aut(o+l) .  

19.35. Lertmm 

Aut(¢o+l) is c lo sed  under k~. ~o~. 
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Proof 

We show 

e Aut(o+l) ~ co ~ e Aut(t0+l). 

For ~<E o this follows immediately from 19.34. Therefore assume eoaa. By 19.31. 

we have i o 3Prog(<,S), ¥~(~<c¢--~ ~eS) for all Segcoz. Since Eog~ it is 
S-(~2+a) =c t+  n for some n<6~. Therefore we obtain ~Fund(o2(c() for  some 

y 

~<~*. Hence BE Aut(o+l ) .  By 19.22. we have ~ 3Fund~2(~), Fund~2(o ~) as we[]  

as --~- 3Fund(ca ~), Fund(c0~°a). By two cuts it follows ~ Fund~2(to ~°~) w h i c h  

by /k-inversion yields ~ Fund{~°~,X). Since [~+2<a and O~3<~oga we have 

[3+2 e Aut(0~+l) as well as ~ e Aut(o+l). Hence [Fund(oc°~,X)l e Aut(o+l) which by 

19.33. also implies oa~ Aut(o+l). 

19.36. Lemma 

~n e Aut(oJ+l) implies ~n'o+l e Aut(o+l). 

Proof 

By 19.31. it holds ° ~ -IProE(<,SI, V~(~<~n--*~¢S) for all S ~ o ~  2. Therefore 

there is an c~<~n ~ such that  o ~ Fundoj2(~n). This together with 19.30. implies 

~-+¢o Fundo~z(~n'¢°+l)" By 19.22. we have ~ 3Fund~o2(~n-¢0+l), Fund~2(ot~n'°J+l)). 

By cut and A-inversion it follows ~Z-~-~Fund(o(~n'w+l),x). Since Aut(0J+l) is 
1¢.O2 4- ¢~ 

closed under successors ~neAut(~0+l) implies a+2<~n~cAut(~+l) and by 19.33. 

we obtain ~n'~+le Aut(o+l). 

19.37.Lemma 

~o e Aut(~+l) 

Proof 
By lemma 19.28. we have 

(1) ~ Fundcoa(~). 1(~3+| 

By /k-inversion this implies 

(2) ~ Fund(~o,X). 'co3+| 

Since ~o = C~ we obtain ~eAut(o+1) by 19.33. and 19.34. 

19.38. Lemma 

Cn ~ Aut(~+l) implies ~n+l ¢ Aut(o+1). 
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Proof  

~nCAUt(to+l) implies ~n'tO+l~Aut(to+l) by lemma 19.36. By lemma 19.29 we have 

~ ]  Fund~n.tO(~n+l). By /k - invers ion  this implies ~ Fund(~n+l,X). Since 

¢°~n+l = ~n+l we obtain ~n+l E Aut(to+l) by lemma 19.33. 

19.39. Corollary 
For  all  n< ~o we have  ~n E Aut(~o+l). 

Proof 
This fo l lows immediately from 19.37. and 19.38. by induction on n. 

19.40. Theorem (K.SchUtte, S. Feferman) 

I t  is Aut(to+l) = F o. 

Theorem 19.33. is the reason why F o is known as t he  boundary ordinal of  predi-  

cativity. We are going to explain this in some more detail. We call a concept ion 

P impredica tJve  or c i rcular  if the definition o f  P refers  to  a to ta l i ty  to which 

P i tself  be longs  to. An example for an impredicative concept  is the Russell se t  

M= { x : x ¢  x} which we already ment ioned in the introduction.  There we defined 

M referring to a set  universe V. More exact ly  the definition of  M should be 

M := { x ~ V : x c x } .  Since we wanted M to  be a set  i tself  we have M e V  and 

immediately obtain the contradic t ion from the fact  tha t  M e M ~ M ~ V^ M ¢ M 

and M ~ V. 

That  impredicative definit ions need not  necessari ly lead to immediate con t rad ic -  

t ions becomes  clear by another  example for an impredicative concept .  Here we 

look at a mono tone  opera tor  F: PIN --* PIN. Monotonici ty  for F here means tha t  

Sic S 2 also implies F(SI)c  F(S2). We obtain the least  fixed point  I r of  F by the 

definition I r : = N { S :  F(S)cS} .  However,  it is easy to see that  we also have 

F ( I r ) c l  r ,  i.e. we defined I r by referr ing to  the set  ~ [ R = { S c N : F ( S ) c S }  of  F-  

c losed se ts  to  which I F i tse l f  belongs.  Opera tors  o f  this kind are known as 

{monotone)  inductive definitions. Inductive definit ions are ubiquitous in mathe-  

matics in general and in mathematical  logic especially and will therefore  be 

the research object of  the fol lowing chapter.  Alarmed by the Russellian ant inomy 

some mathemat ic ians  heavily doubted  in impredicative definit ions (and therefore  

also in inductive definitions).  Thencefor th  there have been and still are sug-  

ges t ions  to cons t ruc t  mathemat ics  by predicative means solely. 
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~19. Autonomous ordinals o[ Zoo 

The mos t  general approach to obtain a predicatively guaranteed segment  of  the 

ordinals is given by an au tonomous  creat ion process  as we described it in the 

definition of  Aut(¢0+l). There we s ta r ted  by a semiformal  sys tem Z ~ ,  1 and 

therefore  have all (codes for) ordinals which are provable in Z~÷ t. This guaran-  

tees the segment  F(~+I) of  ordinals. But then we may argue in the sys tem 

Z r t ~ ÷ n  and therefore  will obtain the segment  1~(~0+1). Now we argue in ZI~(~÷I ), 

obtain Fa(~+l) and so on. This kind of  just i f icat ion becomes even more str iking 

if one regards  infinitary sys tems  for se t  theory  as we will do it in a cont inuat ion  

of  this lecture. There S~ denotes  the subsys tem which only al lows formulas  

o f  ranks ~ and derivations of  length ~ .  An ordinal ~ is acceptable  to  S~ if 

(a code for) {~ and the p roo f  o f  the fac t  tha t  it is (a code for) an ordinal bo th  

belong to  S~. One may then prove tha t  the au tonomous  c losure  o f  S~ again 

exact ly is the ordinal F0). 

By theorem 18.2. we see tha t  we in fact  have to s ta r t  with an infinite ordinal 

in order  to  obtain more than jus t  finite ordinals.  From theorem 18.6. it then 

fo l lows tha t  this au tonomous  creat ion process  s tar t ing with an ordinal below 

F 0 never will access  the ordinal F 0. On the other  hand lemma 19.27. toge ther  

with theorem 19.31. show that  every ordinal below F 0 is accessible f rom the 

s imples t  infinite ordinal ~. In this sense F 0 is the least  ordinal which is no t  

predicatively definable. 

Any formal sys tem T whose p roo f  theoret ic  ordinal is less or equal than F 0 

may be embedded into the sys tem Zro in tha t  sense tha t  the [ l~-sentences 

provable in T are a lso provable in Zro. It  therefore  a l lows a predicative inter-  

pre ta t ion even if it looks impredicative at  f i rs t  glance. Therefore one usually 

calls  a formal sys tem predicative whenever its p roof  theoret ic  ordinal is less or 

equal than F 0. 

A simple example for a predicative sys tem s t ronger  than Z t is the sys tem ACA 

in the exercises.  There are a lot  o f  formal sys tems  between pure number  theory  

an impredicative sys tems.  The reader interested in predicativity should  consu l t  

Fe fe rman ' s  various papers on predicativity (cf. the bibliography).  The concern  

o f  this lecture,  however, is to demons t ra t e  on the example o f  one of  the s implest  

impredicative sys tems  by which means the boundary of  predicativity may be 

overcome. This will be done in the fol lowing chapter.  
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CHAPTER II1 

Ordina l  ana lys i s  o f  t h e  f o r m a l  t h e o r y  for noniterated inductive def in i t i ons  

§20. A s u m m a r y  o f  the  theory  o f  m o n o t o n e  induct ive de f in t ions  over  the  

natural  numbers  

We a l ready  f r equen t ly  used  induct ive  de f in i t ions  dur ing th i s  lec ture .  We used  

it t o  def ine t e rms ,  fo rmulas ,  de r iva t ions  in formal  and inf in i tary  s y s t e m s  and 

a l so  o the r  concep t s .  Induct ive  def in i t ions ,  however ,  are not  only used  in 

ma thema t i ca l  logic bu t  are ub iqu i tous  in ma themat i c s .  Whenever  we def ine a 

se t  as the  l eas t  se t  which c o m p r e h e n d s  a given s e t  and is c l o s e d  under  

cer ta in  ope ra t ions ,  we use an induct ive  def in i t ion  . One o f  the  s i m p l e s t  e x a m p l e s  

is the  s u b s p a c e  <A> o f  a vec tor  space  V g e n e r a t e d  by a s e t  Ac V. <A> is 

de f ined  as  the  s m a l l e s t  s e t  which c o m p r e h e n d s  A and i t s e l f  is a vec to r  space,  

i.e. is c l o s e d  under  addi t ion  and sca la r  mul t ip l i ca t ion .  This does  not  look l ike 

an induct ive  def in i t ion  as we are  u sed  to .  But we a l so  may p u t  i t  in to  the  

more  fami l ia r  fo rm of  a def in i t ion  by c lauses :  

(t.i) a~ A =~ aE <A> 

(1.ii) a I ..... ane <A>A a t ..... an  e K ~ c c t a t + . . . + a n a n  e <A> 

where  K deno t e s  the  g round  field.  

A more complex  example  for  an induct ive  def in i t ion  is the  o - a l g e b r a  M a induced 

by a given se t  M over a domain  D. The induct ive def in i t ion  o f  M o by c l auses  is: 

(2. i) M c M o a n d  {~,[~}cM o. 

(2.iii} a~ M o ~ ~ Mo, where ~ d e n o t e s  the  c o m p l e m e n t  of  a in D. 

But a l so  here M o may be def ined  as the  s m a l l e s t  s e t  which c o m p r e h e n d s  M and 

is c l o s e d  under  c o m p l e m e n t s ,  c o u n t a b l e  unions and c o u n t a b l e  i n t e r sec t ions .  In 

genera l  any s e t  induct ively  de f ined  by c l ause s  may be r e g a r d e d  as  the  l ea s t  

f ixed  po in t  o f  a ce r t a in  o p e r a t o r  F. In the  case  o f  the  induct ive  def in i t ion  o f  

<A> the  o p e r a t o r  F wou ld  be given by 

F(S)  := Aw{E0c|aL:0Cie K A a i ~  S}. 

In the  case  of  the  o - a l g e b r a  the  def in i t ion  of  F would  look like 

109 



~ 20. A summary of the theory of monotone inductive deflntions over the 
natural numbers 

F(S) := {@fl}uMw{a:3f((f is a function and domf= to) 

A Vn<t~(f(n) ~ SA (a = U{f(n) :n<o} v a = ~{f(n) :ne [0}))) v 3b¢ S(a = ]5)}. 

In both cases the operators are monotone, i.e. whenever we have Sc T it follows 

F(S) e F(T). The least fixed point of a monotone operator F is the intersection 

of all sets which are F-closed. In §19 we already mentioned that fixed points 

of monotone operators are in general impredicatively defined. 

The present section is supposed to provide a condensed (and therefore very 

rough) introduction to the theory of monotone inductive definitions on the 

natural numbers. The reader who is interested in more details is adviced to 

consu l t  [Moschovakis  1974] and [Barwise 1975]. 

As a general izat ion o f  the above examples  we obtain the fol lowing definition. 

20.1. Definition 

An induct ive  def ini t ion over the natural numbers  is a monotone  

F: PIN -+ PIN. 

A set  AcIN is F - c l o s e d  if F{A)cA.  We define 

I r := N { A : F ( A )  c A}. 

and call I r the f i xed  point  of the inductive definition F. 

opera tor  

It  is easy to  see tha t  I r is the least  fixed point  of  F. For a F -c losed  set  A 

we always have I r c A  and by the monotonic i ty  of  F also F ( I F ) c F ( A } c A .  This 

shows F { I r } c N { A : F ( A ) c A } = I  r which means tha t  I r i t se l f  is F-closed.  By 

monotonic i ty  this implies F ( F ( I r ) ) c F ( I  r)  which proves tha t  F{I r} is F-c losed 

too. Hence I r c  F(I r} and we have F(I r} = I r .  So I F is a fixed point  of  F which 

by definit ion mus t  be minimal. 

So we have proven the fol lowing theorem: 

20.2. Theorem 

We have r ( I  r )  = I r and F(S)c S impl ies  I r e  S. 

We already did emphazise tha t  the fixed point  of  a monotone  opera tor  is im- 

predicatively defined. In the case o f  an inductive definition, however,  this im- 

predicativity is not  as fatal  as it was in the case o f  the Russellian antinomy. 

By describing the least  fixed point  o f  an inductive definition F as the intersect ion 

o f  all F - c lo sed  se ts  we did not yet  pay a t t en t ion  to  the fac t  tha t  an inductive 

definit ion is intended to  build up its fixed point by successive application o f  

the induction clauses.  Interpret ing an inductive definition as a monotone  opera tor  
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~ 20. A summary o[ the theory o[ monotone inductive deFintlons over the 
naturaJ numbers 

th is  means  t h a t  we c o n s t r u c t  i ts  f ixed  po in t  in s t ages .  We  s t a r t  wi th  F(£[), 

t h e n  bui ld  F(F(£J)), F3(£J), F4(£~) .... e tc .  H i t h e r t o  we  m o s t l y  r e g a r d e d  o p e r a t o r s  

w h o s e  f ixed  po in t  a l ready  is c o m p l e t e d  a f t e r  (0- fo ld  app l i ca t ion  o f  F which  m e a n s  

t h a t  we o b t a i n e d  every  e l e m e n t  o f  the  f ixed po in t  by  f in i te ly  many  app l i ca t ions  

o f  F. E x a m p l e s  fo r  s u c h  induct ive  de f in i t ions  are  the  de f in i t ion  o f  t e r m s  and  

£ # - f o r m u l a s .  But  t he re  are  a l so  induct ive  de f in i t ions  w h o s e  f ixed p o i n t s  are  

m o r e  compl i ca t ed .  E x a m p l e s  for  s u c h  induct ive  de f in i t ions  are  the  0 - a l g e b r a  Ms, 

t he  de f in i t ion  o f  t he  £Pco- fo rmulas ,  t he  de f in i t ion  o f  t he  r e l a t i on  ~o A etc .  In 

gene ra l  we will  have t o  apply  t he  o p e r a t o r  F a t r an s f i n i t e  n u m b e r  o f  t imes  in 

o rde r  t o  c o n s t r u c t  t he  f ixed p o i n t  o f  F f r o m  be low.  T h a t  means  t h a t  we  will  

need  o rd ina l s  in t he  c o n s t r u c t i o n  o f  t he  f ixed  poin t .  

W e  def ine  

<° U l l ~ -  ~<o}. a = F(II  ~a)  w i t h  t he  abb rev ia t i on  I r := I r 

F r o m  this  def in i t ion  we ob ta in  

o 1 n ~ = r ( U { F n ( £ 1 ) : n < ~ } )  etc .  I r = F ( ~ ) ,  I r = F(F~) ) ,  I r = Fn(~) ,  l F 
(3 We call  I r t he  c - t h  s t a g e  in the  induct ive  def in i t ion  r .  For  0<~ we have 

by def in i t ion  lr~ a c I r which  impl ies  I r c 1 r by the  m o n o t o n i c i t y  o f  r .  We  def ined  

I fo r  all ~ O r ~  But  t he re  is a a < f l  such  t h a t  I r = I  F s ince  o t h e r w i s e  we 
a < o  obta in  fo r  every  v < f l  an n<¢0 such  t h a t  n E I ~ \ l  r which  gives  us a 1-1 mapp ing  

f r o m  f} o n t o  ~) in c o n t r a d i c t i o n  t o  the  r e g u l a r i t y  o f  0 .  T h e r e f o r e  t h e r e  is a l eas t  

ordinal  ° r  which  has  th i s  p rope r ty .  I t  is ca l l ed  t he  closure ordinal o f  F. By 

induc t ion  on ~ we  ob ta in  I~F c I r .  By t he  induc t ion  h y p o t h e s i s  we have l ~ c  I r 

which  impl ies  I~r= F ( I I ~ ) c F ( I  v) = I r by  t he  m o n o t o n i c i t y  o f  F. Hence  I r ¢ I  v 

and  we a l so  have I r c  l ~ r  b e c a u s e  i ~  r is F - c l o s e d  by def in i t ion .  So we have 

I r = I ~  r which  s h o w s  t h a t  I r can  be  o b t a i n e d  in s t a g e s  f r o m  be low.  

I f  we a s s u m e  t h a t  the  o p e r a t o r  F is de f inab le  by an ~ - f o r m u l a  A ,  i.e. F{S) = 
a = { n ~ N : ~  < o  { n E ~t : ~[ ~ A x , x [ S , n ]  } fo r  S c Kq, t h e n  we ob ta in  I r ~ A x , x [ l r ,  n ]  }. This 

o < 0  s h o w s  t h a t  t he  de f in i t ion  o f  o f  l F is p red ica t ive  re la t ive  t o  l F . The def in i t ion  
o 

o f  I r on ly  r e f e r s  t o  the  p rev ious ly  c o n s t r u c t e d  s e t s  l~ F fo r  ~<o. T h e r e f o r e  t he  

def in i t ion  o f  the  f ixed po in t  I F is a t  l eas t  loca l ly  predica t ive .  O f  c o u r s e  it 

will  on ly  a l so  be g loba l ly  pred ica t ive  if t he  c l o s u r e  ord ina l  o f  F is an ordinal  

b e l o w  F 0 {which in genera l  is no t  t he  case) .  La ter  we will  see  t h a t  it is e x a c -  

t ly  t he  local  p red ica t iv i ty  o f  the  def in i t ion  o f  I F which  makes  t he  p r o o f  

t h e o r e t i c a l  ana lys i s  o f  the  t h e o r y  fo r  n o n i t e r a t e d  induct ive  de f in i t ions  feas ible .  

But  b e f o r e  we may t ack l e  the  p r o o f  t h e o r e t i c a l  ana lys i s  o f  th i s  t h e o r y  we  

have t o  w o r k  o u t  a su i t ab le  f o r m a l  s y s t e m  fo r  it. 

111 



~ 20. A summary of the theory of monotone inductive deflntions over £he 
natural numbers 

20.3. Definit ion 

An opera tor  F: PIN--* PIN is called 5El-definable, if there is an £° l - fo rmu la  A 

such tha t  F V ( A ) = { X , x }  and F ( S ) = { n ¢ I N : I N ~ A x , x [ S , n ] } .  In this case we 

synonymous ly  call F arithmetical  or ari thmetical ly  definable. 

Of course we may not expect that every arithmetical operator already is monotone. 

To ensure that we will only obtain monotone operators we are going to restrict 

ourselves to positive arithmetical operators. An operator is a positive arithmetical 

operator if it is definable by an X-positive £°cformula and an £°cformula 

A is an X-pos i t ive  formula if its LEoo t rans la t ion  A* is an X-pos i t ive  formula  

in the sense of  definition 13.7. 

20.4. Lemma 

I f  F is a posi t ive  ari thmetical  operator, then F is monotone.  

Proof  

Let A be the defining formula  of  F and assume Sc T. Then we obtain r ( s )  = 

{ne N : N ~  A [S,n]}= {neiN : N ~ A * [ S , n ] } c  {n elN :N ~A*[T,  n]}={n e N :N ~ A[T,n]}  

= F(T} by lemma 9.5. and the monotonic i ty  lemma 13.8. 

20.5. Remark 

By the positive ari thmetical  inductive definit ions we, in fact,  grasped the essential  

par t  o f  all mono tone  ari thmetical  inductive definitions. They comprehend  all those  

mono tone  inductive definit ions whose monotonic i ty  is logically provable,  i.e. is 

provable wi thout  using mathematical  axioms. This is a consequence  o f  the inter-  

polat ion theorem by Lyndon and Craig. 

Let A be the defining formula  o f  r and assume tha t  Xc Y^ A --* Ax(Y) is provable 

in f i rs t  order  predicate logic. Then by the Lyndon - Craig interpolat ion theorem 

we obtain an interpolat ion formula  B such tha t  Xc Y ^ A - ~  B and B--~ Ax(Y}. 

Since Y occurs  posit ively in X c Y A A  we know tha t  Y has to  occur  posit ively 

in B t oo  and for the  special case Y = X we obtain A *-- B. Hence A is logically 

equivalent to  an X-posi t ive  formula  which shows tha t  F is a posit ive operator .  

I t  in fact  is not  easy to  find canonical examples  for  monotone  opera tors  which 

are not positive. We just  marginally mention tha t  the addition o f  monotone  

opera tors  instead o f  just  positive opera tors  would  not  increase the p roo f  theo-  

retical s t reng th  o f  the formal  system. The formula t ion  and there fore  also the 

analysis o f  the system, however, would  become somewhat  more complicated.  
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~ 20. A summary o f  the theory oF monotone inductive deEJntions over the 
natural numbers 

We are going to  fix the fol lowing definit ions.  

20.6. Defini t ions 

Let  F be a posit ive ar i thmetical  opera tor .  We define: 

(i) Ir:=f~{ScN : F(S)cS} 

o <o :=U{lr~: ~<~} (ii) I r := r ( l ~  °)  , I  r 
a < a  

(111) [F[: = m l n { o < O : l  r = I r } 

(iv' ' n ' r  := { ~ i n { o : n ~ l ~ - } ,  if this  e x i s t s ,  o therwise  

20.7. Lemnm 

IFl = sup{Inlr+l:ne It}. 

Proof  

Define o := sup{[n[r+l : n ~ lr}. For ~< o then there  is an n e l r such tha t  ~< [n[r+l. 

By defini t ion we have l r in j r~ l l rn l tc .  Because of  ~:[n[ F we obtain I I ~ I F  ~. 

Hence [<lFI which entai ls  o~lr l .  On the o ther  hand if ~< [F], then we have 

I i~n~I~  and there  is an n¢I~-\I~- n which means I n l r = ~ .  Hence ~<o and we 

also have IFI~ o. 

20.8. Remark 

Without  proving it we shall ment ion tha t  for  ar i thmet ical ly  definable mono tone  

inductive def int ions  F it always holds  JF[~0 CK. On the o ther  hand there  are 

posit ive ar i thmetical  inductive def ini t ions whose c losure  ordinal exac t ly  is ~CK 

The p roo f  of  these  s t a t emen t s  needs methods  of  generalized recurs ion theory  

[e.g. of. Moschovakis 1974, Barwise 1975, Hinman 1978]. 

20.9. Exercises  

1. Let  A be an arbi t rary  set ,  Mc P(A) and F: P(A) --* P(A) the  mono tone  opera tor  

which inductively def ines  the o - a l g e b r a  induced by M. Show 1FI~R 1. 

2. Closure  proper t ies  o f  inductively def ined sets .  

W e c a l l  a se t  M c P ~l inductively def ined if there  is a posit ive ar i thmet ical  opera to r  

and a tup le  c~ ~qm such tha t  x e M ¢~ (x ,c )  ~ I r.  
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~21. The Formal system ID  t for nonlterated inductive definitions 

(i) Simultaneous inductive definitions 

Suppose  t h a t  F and G are X , Y - p o s i t i v e  f o r m u l a s .  W e  def ine  A~: and A~ by: 

A= <oc A<= n]}, A <= F : = { n ~ ] N  : I N ~ F x , y . x [ A F  , G '  F := f~l~Ja ASF 

and 

A S := {nelN : I N ~ G x , v , x [ a ~ c c , a ~ C ~ , n ] } ,  A ~  c¢ := 1~(4.~ A% 
a a Prove  t h a t  A F := ~ C ~ n a  ~ as wel l  as  A G := ~ O n  G are induct ive ly  def ined.  

(H) Transitivity theorem 

Let  F be  an X ,Y-pos i t i ve  an G an X - p o s i t i v e  fo rmula .  The o p e r a t o r  F : P~4 --~ PIN 

is de f ined  by F(S) := { n e l N l l N ~ F x , Y , x [ I G , S , n ] } .  

Show t h a t  I r is induct ively  def ined.  

(iii) Stage comparison theorem 

Let  F and G be X - p o s i t i v e  f o r m u l a s .  Define 

n g F , G m  : ' ~  nE l  F ^ [nIFg ]m[ G 

n<~, G m :¢~ IniF< {m} c 

Prove  t h a t  t h e r e  are  pos i t ive  a r i thme t i ca l  o p e r a t o r s  w h o s e  l eas t  f ixed p o i n t s  are  

~: EG* and  <F,G* repec t ive ly .  

3. Prove the  fo l l owing  c la ims.  

(i) I f  F is a pos i t ive  a r i t hme t i ca l  o p e r a t o r  t h e n  for  all  a c On  F ~ is induc t i -  

vely def ined.  

(ii) I f  F is a pos i t ive  a r i t hme t i ca l  o p e r a t o r  and  a<  t~ CK, t h e n  Rq - F ~ i s  an  induc-  

t ively  de f ined  se t .  (Use  t~tCK= sup{IFt : F is a pos i t ive  a r i t hme t i ca l  opera to r} . )  

(iii) The s e t s  de f inab le  by a I I ~ - f o r m u l a  a re  exac t l y  t he  induct ive ly  de f inab le  

se t s .  

21. The formal system ID I for noniterated inductive definitions 

In a n e x t  s t e p  we i n t r o d u c e  a fo rmal  t h e o r y  which f o r m a l i z e s  t he  e x i s t e n c e  o f  

induc t ive ly  de f inab le  se t s .  Ou r  in t en t ion  is t o  en l a rge  the  fo rma l  s y s t e m  Z l such  

t h a t  we  may  n o t  on ly  t a lk  a b o u t  a r i t h m e t i c a l l y  de f inab le  c l a s s e s  (as  we did in Z 1) 

b u t  a l so  a b o u t  c l a s s e s  which are  f ixed po in t s  o f  pos i t ive  a r i t hme t i ca l  o p e r a t o r s .  

Since t h e r e  is no  canonica l  way  t o  ta lk  a b o u t  o rd ina l s  in Z l we are  go ing  t o  

i n t r o d u c e  f ixed po in t s  o f  a r i t hm e t i c a l l y  de f inab le  o p e r a t o r s  F a c c o r d i n g  t o  20.6. 

as  the  i n t e r s ec t i on  o f  all s e t s  which  are  F - c l o s e d .  
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~21. The f o r m a l  system ID, f o r  nonlterated inductive definitions 

21.1. Basic symbo l s  of  the  language £:I  (cf. 1.5.) 

(i) The logical symbo l s  of  ~"q~I a r e  those  of  the language £#. 

(ii) All nonlogical  symbol s  of  the language ~ are a lso  nonlogical  symbol s  

of  ZPI" 

{ill) I f  A is an X-pos i t i ve  &Pl-formula such t ha t  FV(A) = {x,X}, then  1 A is a 

s e t  cons t an t .  

21.2. Defini t ion of  the t e r m s  and f o rmulas  of  ~ I  

We define the  terms ~PI c o m p l e t e l y  ana logous ly  to  the ~ l - t e r m s  (cf. 1.6.). 

The inductive def ini t ion o f  the  , ~ l - f o r m u l a s  is the  same as the  inductive def in i ton  

of  the  ~ t - f o r m u l a s  but  the  c lause  (ii) in the defini t ion 1.7. is ex tended  by 

(iLl) I f  ! A is a se t  cons t an t  and t is a t e rm,  then  t t l  A is a f o r m u l a  such 

t ha t  B V ( t e ! A ) = F V a ( t e !  A) =l~l and F V ( t e l  A) =FVL(t).  t ~ ! A  is an a tomic  

formula .  

21.3. Semant ics  for  ~ I  

We obtain the  semant i c s  for  the  language £Pi f r o m  the semant i c s  for  5f I by 

in te rpre t ing  the  se t  c o n s t a n t  l A by the  f ixed point  1A o f  the  ope ra to r  F A 

given by FA(S)=  { n ~ h l N ~ A x , x [ S , n ] } .  

21.4. Tim fo rma l  s y s t e m  ID 1 

We are going to  fo rmu la t e  the  fo rma l  s y s t e m  ID 1 in the  language ~ ' I "  IDI ex tends  

the  s y s t e m  Z t which means t ha t  all  ax ioms  and inference rules  o f  Z l (cf. §3)  

are a lso  ax ioms  and ru les  of  ID 1. One should  notice,  however ,  t ha t  the  ex tens ion  

of  the language a lso  means  a s t r eng then ing  of  all schemes .  So for  ins tance  

a rb i t ra ry  ~Vl- formulas  are a l lowed in the scheme (IND). 

The g roup  of  ma themat i ca l  ax ioms  of  Z t (cf. 3.10.) is ex tended  by: 

(iv) the fixed point  ax ioms 

cons i s t ing  of  the schemes  

(ID A ) Yx(Ax(1A, X ) --~ x~ l  A) 

( I D a )  Y x ( A x ( S , x )  --* x e S )  --+ Y x ( x ~ I A - - ~  x e S ) ,  

where S deno tes  an a rb i t ra ry  c lass  t e r m  of  the  language £Pr We formal ize  by 

the  scheme  ID '  tha t  IA iS c losed  under  the  ope ra to r  F A. By ID A it is fo rmal ized  

t ha t  ! A  is conta ined  in every F A - c l o s e d  c lass .  

The defini t ion of  the re la t ion  I D , [ - F  is c o m p l e t e l y  ana logous ly  to  3.11. 
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22. Inductive de1~Initlons In "~c~ 

21.5. Soundness  t h e o r e m  for  ID~ 

/ f  IDI ~- F, then IN ~ F. 

The p r o o f  of  the soundness  t h e o r e m  for  ID i is exac t ly  the  same  as the  p roo f  

of  the  soundness  t h e o r e m  for  Z 1. We use induct ion on the  defini t ion o f  IDa}-F. 

The only addit ional  work  is to  check the ax ioms  ID~  and ID A. The validity of  

these  axioms,  however ,  is obvious  by 20.2. 

Now once again we are in the  s i tua t ion  to  have a fo rmal  s y s t e m  which p roduces  

t h e o r e m s  o f  IN. Similar as in the  case  o f  pure  number  theory  we wan t  to  obta in  

an e s t i m a t e  for  the  norm of  the  provable  I I : - s en t ences  o f  ID t. The re fo re  in a 

next  s t ep  we will have to  examine  how inductive def ini t ions  may be r ep re sen t ed  

in the language  £aoo. 

21.6. Exerc lae  

Let  A be an X-pos i t ive  £P l - fo rmu la  such t ha t  FV(A)c  {X,x}. 

We define CIA(Y) : - - -¥x (Ax(Y) - -~  x~Y) .  Show the fo l lowing s t a t e m e n t s :  

(i) n E I A O  IN~C1A(X) - -*n~ X 

(ii) } - ¥ x ( x e  X --* x~ Y) - *  Yx(A - *  A x ( Y ) )  

(iii) I D t l - t  ~I  A --~ CIA(X) -~  t~ X 

(iv) IDt~-t~_I A ,-. Ax.x(_IA,t) 

(v) I D l ~ - t ¢ I  A ¢~ ID 1 ~-CIA(X)  --~ t~ X 

(vl) I f  ~ is an .Yt -def inab le  order  re la t ion  and A(X,x)  is the  X-pos i t i ve  fo rmu la  

V y ( y ~ x - ~  y~ X), then  we have IDl}-Fund  (4 ,X) ¢~ IDtk-Vx(x~ Feld(g ) -*  X~IA). 

21.7. Note 

The f i r s t  one (as far  as we know) who in t roduced  a fo rmal  s y s t e m  for  genera l ized 

inductive def ini t ions  was G.KreJsel in [Kreisel  1963a]. Comprehens ive  s tudies  on 

fo rmal  s y s t e m s  for  (a lso  i tera ted)  inductive def ini t ions  can be found in [Fefe rman  

1970a] and in the  ar t ic les  by Feferman and Feferman and SJeg in [BFPS]. 

22. Inductive definitions in *~oo 

Inf ini tary languages  owe their  power  to  the  poss ibi l i ty  o f  re f l ec t ing  the  p rope r -  

t ies  o f  the  ordinals  o f  the  real  wor ld  by t rans f in i te ly  long formulas .  Here  we 

are going to  use th is  fac t  t o  exp re s s  the  s t age s  and the  fixed poin t  o f  an 

inductive defini t ion in the  infini tary language &/'co- The language ~oo is t oo  
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complex  for  an immedia te  p roo f  theore t ica l  analysis.  For the in te rpre ta t ion  o f  

ID 1, however ,  we will only need a f r agm en t  £ p I  of  £0oo. 

22.1. Defini t ion 

An APco-formula is ca l led  a r i t h m e t i c a l  if it is the  * - t r a n s l a t i o n  o f  an , ~ j - f o r m u l a .  

A I]~-sentence of  £0oo Is the * - t r a n s l a t i o n  of  a gI l - sentence  o f  £0 r In the  

sequel  we are going to  ident ify ~ - f o r m u l a s  and their  * - t r an s l a t i ons .  So we 

regard  ~1 as a sub language  of  ~°0o. Albei t  there  are no number  var iables  in 

~oo we will speak o f  a r i thmet ica l  APoo-formulas A such t h a t  FVt(A) = {xt ..... x n }. 

In th is  c o n t e x t  we mean the  ~ l - f o r m u l a  A. O f  cour se  A will not  b e c o m e  a 

w e l l f o r m e d  A°oo-formula unless  all number  var iables  are replaced  by c losed  t e rms .  

22.2. Recurslve def ini t ion the fo rm u l a  ( t~!~ ,  a) 

Suppose  t h a t  ~gf~ and let  A be an X-pos i t i ve  a r i thmet ica l  f o r m u l a  such t ha t  

FV(A) = { X, x }. Then we define: 

(i) ( t e !~ ,  °) is the fo rmula  (0 =1) 

(Since t E l ~  ° is the  fa l se  f o rm u l a  _IA ° will r e p r e s e n t  the  e m p t y  set . )  

(ii) ( t e ! A  ~) is the  fo rmula  V { A × . x ( ! A ~ , t ) : ~ < ~ } .  

By t e ! ~  we denote  the fo rmula  A x , x ( ! ~ , t ) .  This no ta t ion  coincides with the  

intended in te rpre ta t ion  (cf.20.6.ii) 

Ins t ead  o f  -I( te  I_~, ~) we usual ly  wri te  ( t ~ ! ~  ~). However ,  we wan t  to  s t r e s s  t h a t  

( t~ !~ ,  ~) is n o t  an a tomic  fo rm u l a  bu t  the  fo rmula  A { a A  x,x(l~¢, t) :~<¢~}._ We 
0¢ <0¢  t also  use the  no ta t ion  t ~ ! A  ins tead of  a A x . x ( !  A , ). 

22.3. I ~ f l n l t l o n  of  the  fo rmu la s  of  AP~ 

The fo rmu la s  o f  A ~  are all o f  the  shape  F x ,  . . . . .  Xn(Sl . . . . .  S n) where  F is a 

l I | - s e n t e n c e  and for  k = 1 . . . . .  n S k is a se t  t e r m  {x: x e l ~  a} for  some  X-pos i t i ve  

a r i thmet ica l  f o r m u l a  A and some  ordinal  a. 

The conven t ions  how to  rep lace  a se t  variable X by a c lass  t e r m  S had been 

def ined in 1.8. In the  sequel  we will wr i te  I~, ~ ins tead o f  {x: xc !~ ,  ~} and l ! ~  ~ 

ins tead  of  {x: x~!~,~}. 

22.4. I ~ f l n l t i o n  

For  an ~ o o - f o r m u l a  F we define the  X - r a n k  r k x ( F )  inductively by: 

(i) r k × ( F ) =  0 if F is a tomic  

(ii) r k x ( A { F t :  te I}) = r k x ( V  {F t : te I}) = s u p ( r k x ( F  t) +1 : t~ IA X c FV(Ft)]. 

We obviously have r k x ( F ) g r k ( F ) .  For a I I~- formula  F it even holds  t h a t  rk(F) = 
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22. I n d u c t i v e  d e f i n i t i o n , s  in "~co 

r k x ( F ) + n  fo r  s o m e  fini te  ordinal  n. 

22.5. L e m m a  

For ot~to we have rk(te_IX ~) = (rk xA+I).~ 

P r o o f  

Before  s h o w i n g  the  i e m m a  we no t i ce  t h a t  in genera l  it is r k ( F x ( S ) ) ~  rk (F)+rk(S) .  

Wi th  the  addi t iona l  h y p o t h e s i s  X e FV(F) and rk(S)  ~ rk(F) ,  however ,  we even ob ta in  

r k ( F x ( S ) )  = r k ( S ) + r k x ( F )  by induc t ion  on  rk(F) .  For  a t o m i c  F th is  is obvious .  

For  F - A{F~: t~ I} or  F -= V{F~:  t~ I} we have r k ( F x ( S ) )  = s u p { r k ( F t x ( S ) ) + l  : tE I} = 

s u p { r k { F t x ( S ) ) + l :  t e l A X e F V ( F t ) } ,  s ince  fo r  X c F V ( F  t) and  X e F V ( F × )  we have 

r k ( F t x ( S ) )  = r k ( F t ) < r k ( F ) ~ r k ( S ) ~ r k ( F × x ( S ) ) .  By t he  induc t ion  h y p o t h e s i s  it 

f o l l o w s  r k ( F x ( S ) )  = s u p { r k ( S ) + r k x ( F  t) : te I ^  Xe  FV(Ft) } = r k ( S ) + s u p { r k x ( F  t) : te IA 

X ~ FV(Ft)} = r k ( S ) + r k x ( F ) .  

W e  s h o w  the  l e m m a  by induc t ion  on  cc 

For  ¢t = t0 we have r k ( t e l ~  =) = s u p { r k ( t e ! A ) + l : n < t 0 }  =t~ s ince  all f o r m u l a s  

( t e l  A) have a f ini te  rank which at  l eas t  is n. Let  us a s s u m e  t h a t  ~ > ~ .  Then we 

have rk ( t  e ! ~  a)  ~ ¢~> rk(A)  and may  t h e r e f o r e  use  the  i n t r o d u c t o r y  r emark .  Hence  

r k ( t e ! A  ~) = s u p { r k ( t ~ l ~ A ) + l : ~ < ~ } = s u p { r k ( t ~ I ~ ) + r k x ( A ) + l : ~ < ~  } L=h. 

s u p { ( r k x ( A ) + l ) . ~ + r k x ( A ) + l : ~ < = }  = s u p { ( r k x ( A ) + l ) . ( ~ + l )  : {<~}  = 

s u p { r k x ( A ) + l ) . ~ : ~ }  = ( r k x ( A ) + l ) - ~ .  

22.6. Corollary 

We have rk(t e_I~ ~) < u+c0 and rk(t e !~) < a+¢o. 

P r o o f  

The c la im is obv ious  fo r  ~ < ~ .  For  ~ we have r k ( t ~ ! A  =} = ( r k x ( A ) + l ) . ~ .  

Since r k x ( A ) < ~  we ob ta in  r k x ( A ) + l  = n < ~ .  Let  ~ = NF ~ , + . . . + ~ k  For  ~i*O 

it is n-t0 ~i =¢0 ~|. Hence  n-0¢< a+td. F u r t h e r m o r e  we ob ta in  rk ( t  e_l~ ) = r k ( t e l A ~ ) +  

rkx(A)<~+c~,  s ince r k ( t e  <~ ! A } = ~ + n  I fo r  s o m e  nl<(o and r k x ( A ) < ~ .  

22.7. L e m m a  

I A = { h e n  : l N ~ n e l ~  c~ 1. 

P r o o f  by induc t ion  on  
, c o c  

For  ~ = 0 we  have I A --1~ and  {n~N:N~n~!~ =} =/n~IN:N~_O =1} =O- 

For  ~ . 0  we  have n e l  A if and  only  if t h e r e  is a ~<~ s u c h  t h a t  n e l ~  A ,  i.e. 
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<~ 
~I~A[ I  A ,_n]. By induction hypothesis  this is equivalent to ~ l ~ A ( ! h ¢ , n )  which 

implies ~ q ~ V { A ( l ~ , n ) : ~ < a } ,  i.e. N ~ n e ! ~  ~. On the other  hand, if we have 

IN~n eIA a, then there is a ~<a such that  IN~_n qI~A . By the induction hypothesis  

this implies n~ IA~ which entails n~ IA ~. 

22.8. Corollary 

IrA = {ncN:NF_n~IA 1. 

Proof 

I t .  = IRA<°° for some Oo<D. But t h e n  IrA ffi IFA<D We have 

f rom 22.7. 

, and the claim fol lows 

22.9. Definit ion 

If  we augment  the definition 9.4. by the additional clause 

(vii) (t~_]A)* := t¢_l~,  f~, 

then we obtain a t rans la t ion F* for every £Pi- formula  F. 

22.10 Lemrna 
I 

(i) If P is an .~f l-formula, then F* is an ~oo-formula such that rk(F*)~fi+n 
for  some  n< ~. 

(ii) We have N ~ F i f  and only i f  N ~ F*. 

Proof 

(i) An ~ i - f o r m u l a  F has the fo rm F -= AXI...Xh(!B1 ..... _IBn) where A is a I l l - sentence  

Then we obtain F* - A*rl < ~ l < f~ • " "-'B~' ..... - 'B~" which obviously is an s o l - f o r m u l a .  If  

none o f  the se t -var iab les  X k (k = 1 ..... n) occurs  in A we have rk(F*)< c0<tq+n. 

Otherwise  it fo l lows f rom 22.6 tha t  there is an n < o  such tha t  rk(F*) = O+n. 

(ii) fo l lows f rom definition 22.9. by 22.8. 

We already mentioned that  "~/'I is a f ragment  of  ~oo wi thout  defining the f ragments  

of  ~oo- This will remedied by the fol lowing definition. 

22.11. Definition 

(i) A col lect ion ~ o f  £Poo-formulas  is closed  under f irst  order operations 

if ~ is c losed under the sentential  conjunctives -I,v and ^ and if F ( n ) ~  for 

some nc~I  implies A { F ( n ) : n < o } ~  as well as V { F ( n } : n < c 0 } ~ .  ~ is closed 
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under substitutions if F(s)e  ~ for  some  t e r m  s implies F( t )e  ~ for  all t e r m s  t. 

(ii) The se t  SF(F) of  s u b f o r m u l a s  of  an ~voo-formula  F is inductively def ined 

by 

(a) I f  F is a tomic,  then  SF(F) := {F} 

(b) I f  F is a f o r m u l a  A { A k :  k¢ l}  or a f o r m u l a  V { A k :  ke l} ,  then  we define 

SF(F) := {F}•U{SF(A k) : k~ I}. 

(iii) A co l lec t ion  ~ o f  ~ o o - f o r m u l a s  is dosed  under subformulas If  F e ~  

implies  SF(F) c ~. 

(iv) A co l lec t ion  ~ o f  ~ o o -  f o rm u l a s  is cal led a fragment of  ~oo if  i t  sa t i s f i es  

the  fo l lowing condit ions:  

(a) ~ I  c g 

(b) ~ is c losed  under f i r s t  order  opera t ions  and subs t i t u t i ons  

(c) ~ is c losed  under subfo rmulas .  

The fo l lowing l emma  is an easy  exercise .  

22.12. L e m m a  

The language ~ is a fragment o f  ~oo. 

In fact we could define ~I as the fragment of £°co which is induced by the 

U-translation defined in 22.9. 

For a fragment ~ of ~co and a finite set A of ~-formulas we define the relation 

~o A in ana logy  to  5.2. 

22.13. Induct ive  def in i t ion  o f  ~ ~o A 

(Ax l )  I f  Xp(tl  • ..... tn  N} = 1 and (P_ptt...tnl ~4 c 5 ,  then  ~ ~ A  

(Ax2) We have ~o A, t~X, s~X if A, t~X, s~X c ~ and s~=t ~ 

(A) If ~ ~o 4, A i for all iel and A{A i : i¢I}e~, then ~ ~o 4, A{Ai: i¢I} 

(V) If ~ ~ 4, Ai for some iel and V{A i : iel}e~, then ~ ~A, V{Ai : iel} 

We will not  have to  redef ine  ~ ~o A. I t s  def ini t ion is as in 9.1. The re la t ion  ~ ~o A 

informal ly  says t ha t  the re  is an S - d e d u c t i o n  t r ee  o f  4 whose  leng th  is exa tc ly  m. 

I f  ~ is a f r a g m e n t  o f  ~oo and A is a finite se t  o f  f o rmu la s  in ~ for  which we 

have Zoo o ~ A, then  an easy induct ion on m shows  tha t  all f o r m u l a s  o f  the  

der ivat ion t ree  be long  to  5 ,  This is e s sen t i a l ly  due to  the  f ac t s  t h a t  f r a g m e n t s  

are c losed  under  s u b f o r m u l a s  and subs t i t u t i ons  and cut  f ree  der iva t ions  do have 
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the s u b f o r m u l a  p r o p e r t y ,  i.e. all f o rm u l a s  in the p remise  of  an inference are 

s u b f o r m u l a s  of  some  f o r m u l a  in the  conclusion.  In analogy to  10.4. we the re fo re  

obtain  

22.14. l .~mma 

Let  ~ be a f ragment  o f  ~oo,  A a f in i te  s e t  o f  f o rmu las  in ~ and M a s e g m e n t  

o f  the  ordinals. Then we have 

Z M ~ 8  ¢~ ~xe M^ 3~x 1~ ~o 8). 

This entai ls  

z , ,  

No we are going to  show tha t  for  coun tab le  f r a g m e n t s  of  ~oo we have a 

c o m p l e t e n e s s  t h e o r e m  similar  to  5.4. 

22.15. Soundr~aa and completeness theorem for ~ ~o " 

I f  ~ is a countable  f ragment  and A is a f ini te  s e t  o f  ~ - f o r m u l a s ,  

have ~ ~ V { F :  F~A} i f  and only  i f  we  have ~ ~o A. 

then  we  

The soundnes s  of  ~ ~o fo l lows  as in 5.3. by induct ion on the  def ini t ion o f  ~ ~o 5. 

In order  to  show the oppos i t e  d i rec t ion we are going to  copy the p r o o f  in 5.4. 

All we have to  do is to  convince ourse lves  t ha t  the  label funct ion $ in defini t ion 

5.6. only can take  finite se t s  o f  a - f o r m u l a s  as values.  But this fo l lows  f r o m  

the  fac t  tha t  ~ is c losed  under  sub fo rmulas .  

The c o m p l e t e n e s s  theo rem,  however ,  which we real ly  are looking for  is more  

compl ica ted .  We desire the  fo l lowing theorem.  

22.16. Soundness and completeness theorem for  ~ ~o 

For any ~ l - f o r m u l a  F we  have IN~F i f  and only  i f  ~zoo ~o F*. 

R o o f  

By 22.10. we have tN ~ P ¢~ IN ~ 1~. The re fo re  all we need is a t h e o r e m  o f  the  

fo rm IN ~ l ~ ¢~ 5P~ ~o F*. This t heo rem,  however ,  is no t  jus t  a special  case  o f  

22.15., since £P~ - as we def ined it y e t -  is not  a coun tab le  f r a g m e n t  o f  -~oo. 

The soundness  of  the  infinitary ca lcu lus  z £~oo ~o fo l lows  easi ly by induct ion on 

the  defini t ion o f  £P~ ~o F. The p r o b l e m  is t o  show comple t enes s .  We will do 

this  in two  d i f fe ren t  ways which, however ,  will yield two  d i f fe ren t  t heo rems .  
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The f i rs t  way uses  remark  20.8. in which - w i thou t  p r o o f -  we s t a t ed  tha t  the  

s t ages  of  an inductive defini t ion a l ready become  s t a t iona ry  at  tocK the f i r s t  

recurs ively  regular  ordinal above to. Ins tead  of  in te rpre t ing  ~) by ~t - t h e  f i r s t  

uncountab le  regular  ordinal - we may the re fo re  as well  in te rp re t  ~l by tocK 

wi thou t  spoil ing the  soundness  of  the  s y s t e m  `wIoo ~o" (From §25 it will fo l low 

tha t  this  a l te rna t ive  in te rpre ta t ion  is a l so  a sound in te rp re ta t ion  for  the  ordinal 

no ta t ions  developed in §§ 23 and 24.) Since tot CK is a coun tab le  ordinal we obtain 

`WI as a coun tab le  f r agm en t  of.Woo and t h e o r e m  22.16. is a special  case  o f  22.15. 
0 3  

In the  second  approach  we leave the  in te rp re ta t ion  o f  fl as the  f i r s t  uncoun tab le  

regular  ordinal  but  ex t end  the  ca lculus  `wIco ~o to  a ca lculus  `wloo-~o by adding 

a new rule 

(CIn)  `W~° ~o A, A( !~ '~ ,n )  ~ `W~" ~o A, n ~ I ~  n. 

Because o f  1N ~ A(!~n~n) ~ IN ~ _n¢!~ n the  addit ion o f  this  rule  will not  spoil  

the  soundness  o f  the  ca lculus  `wlco* ~o • To show its c o m p l e t e n e s s  we, in analogy 
1- to  5.6., define quas ideduct ion  t r ees  for  the  ex tended  ca lculus  `woo ~o • 

We adop t  the  c lauses  (i)-(i i i)  in the defini t ion 5.6. Clause  (iv), however ,  only 

makes  sense  if the d is t inguished redex is a coun tab le  disjunction,  i.e. if it is 

not  o f  the  fo rm _nd~, n . Otherwise  it could  happen  tha t  the  quas ideduc t ion  pa th  

o f  _n~!~ n will not  becom e  finite a l though  we have N ~ _ n d ~  ft. There fo re  we 

only adop t  c lause  (iv) for  t hose  cases  in which the  d is t inguished redex is a 

dis junct ion of  coun tab le  length,  i.e. is not  o f  the fo rm n ~ l ~  ~. For this  case  

we in t roduce an addit ional  c lause  

(v) I f  O~BA and ~(o) reducible  with d is t inguished redex n ¢ l ~  t~, then  

0 " ( 0 )  ~ B a and ~ ( o * ( 0 ) )  := ~(o) r, A(!~n,_n).  

We call  the  resu l t ing  t ree  BA the  ex tended  quasideduction tree of  A. Now we 

have to  check tha t  the syntact ica l  and the  semant ica l  main l emma  a lso  holds  

for  ex tended  quas ideduct ion t rees .  

22.17. Ex tended  s y n ~  main lerarr~ for  `wlco* ~o " 

Suppose  that  every path  in the ex t ended  quasideduction tree o f  a f ini te  se t  A 

o f  `wlco_formulas contains an axiom. Then `wlco. ~o A. 

The p r o o f  fo l lows  the  p roo f  of  5.7. We have only to  cons ider  one addit ional  

case: 

I f  the  d is t inguished redex is o f  the  fo rm n ~ l ~  c~, then we have 0 t < 0 >  ~ B A 

and $ (a*<O>)=  Mo) r, A ( ! ~ t ) , n ) .  By the induction hypothes i s  we obtain  

`WI- ~o g(°)r '  A ( I A  n,  n )  
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which by the C l o - r u l e  implies 

22.18. Extended semantical main lemma for Seloo* ~o 

L e t  A c ~ 1  be  a f i n i t e  s e t  o f  f o r m u l a s  s u c h  t h a t  t h e r e  is  a p a t h  in t h e  q u a s i -  

d e d u c t i o n  t r e e  o f  A w h i c h  d o e s  n o t  c o n t a i n  an ax iom.  Then  t h e r e  is  an a s s i g n -  

m e n t  • s u c h  t h a t  N ~ F ¢' h o l d s  f o r  a l l  F e A. 

The p roo f  is mainly the  same as t ha t  o f  5.8. Again we choose  a path  f in BA 

which does not  contain an axiom. The proper t ies  (1)-(4) o f  5.8. for  f are 

conserved with the res t r ic t ion,  tha t  5.8.(4) only holds  for  countab le  disjunctions,  

i.e. for  dis junct ions which do not  have the form n ~ ! ~  n. As an additional p roper ty  

for  f we obtain 

(4 ' )  If  o ~ f  and n ~ l ~ ° e ~ ( o ) ,  then  there  is a z ~ f  such tha t  A ( l ~ n ,  n)~MT).  

The p roo f  of  (4 ' )  fo l lows  f rom 5.8.(1) and the definit ion clause (v). 

Now we are going to  define an ass ignment  • by: 

~ ( X )  :={ne~] : t  N =  nA ( 3 o ~ f ) ( ( t c X ) e ~ ( o ) ) }  

For an ordinal ~<O we deno te  by F ~ the S°loo-formula obta ined f rom the fo rmula  

F by replacing all posi t ive occurences  o f  n ~ ] ~  ° by n~_l~ ~, 

Then we obtain 

(S') b l ~ F  ~'~ for  all ~<f), o ~ f  and F ~ ( o ) .  

by induction on rk(F~). The c a s e s  in which F is not o f  the fo rm n ~ l ~  ° are 

t r ea t ed  as in 5.8.(5) 1.-4. 

If F---_ne!~ n,  then F ~ is the fo rmula  n ~ ! X  ~ and by (4 ')  there  is a z e f  such 

tha t  A( l~ n , _n )~  8(,), i.e. n ~ l ~  ~ ~(,)- We have r k ( n ~ l ~ ) < r k ( n ~ ! ~  ~) for  all ~<~ 

and the re fo re  obtain ~q~ n~I n for  all ~<~ by the induction hypothesis .  This, 

however,  implies ~l ~ n_~!~ ~. 

Since IN J~ F ~ for  all ~< O already implies ~1 ~e F the ex tended  semantical  main 

lemma is an immediate  consequence  of  (5'). 

22.19. Souadaass  and comple t enes s  t heo rem for  S¢~" ~o- 

For  a n y  ~ l - f o r m u l a  F we  have  ~ F i f  and  o n l y  i f  ~Ioo* ~o " 

22.16. and 22.19. are o f  course  d i f fe ren t  t heo rems  because  in 22.16. we have a 

coun tab le  f r agment  whereas  in 22.19. we are talking about  an uncountab le  f ragment .  

A re inspect ion o f  the  p roo f  o f  22.19., however,  shows tha t  we used the  in ter -  

p re ta t ion  o f  O as the f i rs t  uncountab le  regular  ordinal only to  assure  the  sound-  
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hess  of  the  C l~ - ru l e .  Therefore  22.19. will hold for any in te rp re ta t ion  of  ~2 

sa t is fying the  C l n - r u l e  (especial ly  for c0CK). So, in the ca lculus  &P~* ~o the 

symbol  t~ may be (and should  be) viewed as a yet  indetermined ordinal c o n s t a n t  

whose  defining axiom is the C l n - r u l e .  22.19. then  es t ab l i shes  the soundness  and 

c o r r e c t n e s s  of  th is  calculus .  By in te rpre t ing  ~) as ol CK in &o~ ~o we obta in  f r o m  

22.16. and 22.19. 

22.20. Corollary 
For  any  ~g~'l-formula F we have  ~S#lm * D o F i f  and  only i f  ~c-c#loo DO F. 

The nex t  s t ep  in the  ordinal analysis  o f  the  formal  s y s t e m  ID 1 is the  in t roduct ion  

o f  a s emi fo rma l  s y s t e m  for  the  f r a g m e n t  &#~ of  ~(t°oo. I t  will be necessa ry  to  

in t roduce  the  Clc~-rule into a s emi fo rma l  s y s t e m  for  &pl as it  was  necessary  

to  in t roduce the cu t  into Zn .  (More a r g u m e n t s  for  the  necess i ty  o f  the  C t n -  

rule  in a semi  formal  s y s t e m  for  &P~ will be given a t  the  beginning o f  §26}. 

22.20 is a semant ica l  p roo f  for  the  fac t  tha t  the addit ional  rule  C l o - r u l e  in 

&~* ~o is el iminable.  This r e s e m b l e s  the beginning of  {}12 where  we showed 

the  el iminabi l i ty  of  the cu t  rule in the ca lculus  Z~ by a s imilar  a rgument .  But, 

as in the  s i tua t ion  of  Z~,  the semant ica l  p roo f  will no t  be suf f ic ien t  for  an 

ordinal analysis  o f  ID I. In {}26 we will t he re fo re  give a syntac t ica l  p r o o f  of  the  

el iminabil i ty  of  the  C l n - r u l e  in a semi  fo rmal  sys tem.  

Before  in t roducing a semiformal  s y s t e m  for  ~ l  we have to  a s su re  t h a t  the re  

is a su f f i cen t ly  s t r ong  ordinal nota t ion  sys tem.  I t  is quite easy  to  see t h a t  

the wel lorder ing  of  the  order re la t ion  of  o rder type  F o in t roduced  in §17 may be 

proved in the  formal  s y s t e m  ID 1. We will no t  give the  p r o o f  now since it will 

fo l low as a coro l l a ry  of  a l a te r  t h e o r e m  (29.8}. The predicat ive  s e g m e n t  of  

the  ordinals  t he re fo re  canno t  be suff ic ient  for  the ordinal analysis  of  ID 1. In 

order  to  obta in  a semi fo rmal  s y s t e m  in which the provable  f l~-sentences  of  

ID l may be in te rp re ted  we need a larger  recurs ive  s egmen t  of  the  ordinals .  The 

deve lopmen t  of  such a s e g m e n t  will be the  aim of  the fo l lowing sec t ions .  

22.21. Exerc lae  

Let  A[X ,x ]  be an X-pos i t i ve  £ ~ , - f o r m u l a  which only con ta ins  the  indicated f ree  

var iables  and let  A be a finite se t  o f  ~ I - f o r m u l a s  with only pos i t ive  occurences  

o f  Y. Prove the  fo l lowing s t a t e m e n t s :  

(iii) ,5°1oo ~ n ~ / ~  n ==> lnlA<O~ 
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§23. More about ordinals 

In § 17. we in t roduced  the  enumera t ing  func t ion  F of  the  s t r o n g l y  cr i t ica l  o rd ina ls  

and showed  t h a t  F indeed is a normal  funct ion.  Now it would  be an obvious 

idea to  in t roduce  F as a new bas ic  func t ion  for  a no ta t ion  sys tem.  This idea 

(which as far  as I know was p e r f o r m e d  by Veblen} in fac t  l eads  to  a no ta t ion  

s y s t e m  which ex t ends  Fo b u t  by no means  is large  enough for  an ord ina l  ana-  

lysis  of  ID r Any no ta t ion  s y s t e m  which is su f f i c i en t  for  the  ord ina l  ana lys i s  

o f  ID 1 mus t  have some  e s sen t i a l  impredica t ive  fea ture .  Of  cou r se  it is imposs ib l e  

to  give a p rec i se  def in i t ion  of  wha t  we mean by an e s sen t i a l  impredica t ive  fea ture .  

Roughly speaking  one cou ld  say t h a t  an ordinal  no ta t ion  s y s t e m  has  an impre -  

dicat ive  f ea tu re  if  it  canno t  be de f ined  a u t o n o m o u s l y  bu t  i ts  def in i t ion  needs 

ex t e rna l  po in ts .  The ex t e rna l  po in t  of  the  s y s t e m  p r e s e n t e d  be low wil l  be the  

ordinal  fl. The h i s to ry  of  the  d e v e l o p m e n t  of  th is  no ta t ion  s y s t e m  is qui te  

involved and we are not  going into  the  de ta i l s  of  th is  h is tory .  The only fac t s  

we want  to  ment ion  are t ha t  the  f i r s t  s y s t e m  of  a c o m p a r a b l e  s t r e n g t h  has 

been in t roduced  by H.Bachmann in 1950. The s y s t e m  p r e s e n t e d  here  is an 

initial  s e g m e n t  of  a much s t r o n g e r  s y s t e m  which has been deve loped  by 

W.Buchholz. This s y s t e m  on i ts  p a r t  is a s impl i f i ca t ion  of  the  e - s y s t e m s  

which go back to  ideas of  S.Feferman and have been worked  ou t  by P.Aczel, 

J.Bridge (Kister) and W.Buchholz. 

23.1. Induct ive  de f i n i t i on  of  the  s e t s  B(~) and the  func t ion  

(B1) {0,O}cB(o¢).  

(B2) If  ~,TleB(~),  then  a l so  ~+~leB(~)  and ~0~]~B(~).  

(B3} If  ~ B ( ~ ) c ~ ,  then  ¢ ~ e B ( ~ ) .  

(O~l} kb~ := min{~:~B(0¢}} .  

The s e t s  B(~) and t h e r e f o r e  a l so  the  func t ion  ¢ are def ined  by recurs ion  on 

~. For  f ixed ~ the  se t  B(~) is def ined  induct ively.  I t  is easy  to  see t h a t  in th is  

induct ive def in i t ion  every ~ B(~) has a f ini te  norm. This shows  t h a t  the re  is a 

l-1 mapping  f rom B(~) on to  ~. 

The reader  shou ld  not ice  t h a t  the  def in i t ion  of  the  se t s  B(~) is very s imple .  In 

the  f i r s t  s tep ,  i.e. in the  def in i t ion  of  B(O}, we jus t  form a kind of  Skolem hull 

of  the  o rd ina l s  0 and ~ (as points} and the func t ions  + and q0. Then we deno te  

the  f i r s t  ordinal  which does  not  be long  to  the s e g m e n t  con ta ined  in th is  Skolem 

hull by 40 and fo rm the  Skolem hull of  0 ,~ ,¢0  and + and ~0. I t e r a t i ng  th is  

p r o c e s s  a t imes  leads  to  the  s e t  B(~). There fore  we are going to  cal l  B(~) 

the  ~- th  iterated Skolem hull of  the  o rd ina l s  0 and 0 as poin ts .  
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23.2. Lamina 

~p~t is  d e f i n e d  f o r  a l l  ct ~ On a n d  w e  a l w a y s  h a v e  ~/ct ~ (O , t3 ) .  

Proof  

By (BI)  and {~1) we have O<q~ and t)*~ba. Since there is a 1-1 mapping f rom 

B(~) on to  to and fl is a regular  ordinal we obtain tha t  the set  {~<fl : ~¢B(~)} 
is bounded  in D. Therefore there  is a ~<[1 such tha t  ~¢B(~). Hence ~a<Fl. 

23.3. I~mB~ 

(i) If e~B, then B(c~)¢B(B) and kbe~B. 

(ii) a~B(~)r~B implies d;~<d~. 

(iiD If ot~ ~ and Fc(,[B) r~ B(c~) = ~, then B(~t) = B(B). 

( iv)  F o r  X~Lim w e  h a v e  B(~.) = U(B(~):  ~<X}. 

P roo f  

(i) By induction on the definition of  ~¢ B{a) we easily obtain tha t  ~g ~ and ~ B(~) 

i m p l y ~ B ( ~ ) .  Hence B{~) ¢ B(~) and 02~ = min{~ : ~¢B(a)}gmin{~ : ~ B ( ~ ) }  = ~bg. 

(ii) By (i) we already have ~ g ~ b ~ .  Because of  a~B([5)~f5 we have ~ a ~ B ( g )  by 

(B3). Hence ~*~b13. 

(iii) B ( a ) c  B(~) is obvious by (i). To prove the opposi te  direction we show 

~ B ( $ )  ~ ~ B ( ~ )  by induction on the definition of  ~ B ( ~ ) .  The cases  (BI)  

and {B2) again are either trivial or immediate consequences  o f  the induction 

hypothesis .  In the case of  (B3) there is a ~o~B(~)n~  such tha t  ~ = ~ o "  By 

the induction hypothesis  we have ~o¢ B{~). Because o f  [a , l~)~  B ( a ) - - ~  it is 

~o<a and by (B3) we obtain ~= ~ o c B ( a ) .  

{iv) Define C :=U(B(~) :  ~<X}. Then we have CcB{X} by (i). For the opposi te  

direction we again show ~ B(~} ~ ~ C by induction on the definition of  ~ B{),). 

The cases  {B1) and (B2) are either trivial or immediate consequences  of  

the induction hypothesis .  In the case of  (B3) there is a ~o~B(X)~X such tha t  

= ~o .  By the induction hypothesis  it is ~ ~ C. Therefore there  is a ~o < X such 

that  ~o~B(~o). Defining p := max{~,po} we obtain ~o~B(~)r~ and t~<X. By (B3} 

it fo l lows ~¢ B(p)c C. 

It  fo l lows from 23.2. and 23.3. tha t  ~b is a monotone  funct ion f rom On into ft. 

By a cardinali ty a rgument  ~ cannot  be s t r ic t ly  monotone .  We are going to  examine 

the segments  on which ~ is s t r ic t ly  monotone .  
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23.4~ l ~ m m a  

~<¢(x i m p l i e s  ~r¢  B(~).  

Proof 

A s s u m e  t h a t  there  is a [<13 r such t ha t  ~¢B(~)  and let  ~ be minimal with this  

p roper ty .  Since 15<tpa we then  have ~<~<15 F. Hence ~¢SC.  But then  there  are 

~,, ~, < ~ such  t ha t  ~ = ~ + ~2 or ~ = ~ .  By the  minimali ty  o f  ~ we have ~ , , ~  e B(~) 

and obta in  ~e B(a )  by (B2).  A cont radic t ion .  

23.5. Theorem 

For  a l l  ot~ On w e  h a v e  ¢~ E S C. 

Proof 

Assume tha t  ~u¢  SC for  some ~e On. Then the re  is a [3e SC such tha t  [3<~<[3 r.  

By 23.4, however ,  [3<d~ implies ~r¢ B(~) ,  i.e. [3l'~kb~. A contradic t ion .  

23.6. Theorem 

F o r  a l l  ¢~  On it: i s  B(~)c~O = ¢c~. 

Proof 

~bac B(~)c~O fo l lows f rom (~bl) and 23.2. 

For the  oppos i t e  direct ion we show ~ B ( a ) c ~ O ~  ~<d/a by induction on the  

defini t ion of  ~E B(u).  In the case  of  (BI) this  fo l lows  f rom 23.2. In the case  of  

(B2) we obtain  the c la im f rom the induct ion hypothes is  by 23.5. and S C c ~ .  

In the case  of  (B3) we obtain ~<d/~ by 23.3.(ii). 

Since d/~ is not  s t r ic t ly  increasing it c anno t  be  a normal  func t ion .  We shall  

see,  however ,  t h a t  it is at  leas t  cont inuous .  

23.7. Theorem 

F o r  X ~ Ltm w e  h a v e  CX = sup{¢~ : ~< X }. 

Proof 

Define p := s u p { ~ : ~ < k } .  Since ~b is m ono tone  we obtain  p~bX.  By 23.3.(iv) 

we have B()~) = U { B ( O  : ~<)~}. For rl<~bX we have ~ B(k)c~O by 23.6. There fore  

there  is a ~<), such t ha t  ~¢B(~)c~fl which implies ~ < ~ p  by 23.6. Hence 
¢ ),~:p. 
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23.8. L e m m a  

¢(~+1)~ ~(~) r 

Proof 

I t  is ¢ (u+l )  = B(~+l)(~f)  and we show ~ e B ( ~ + l ) ~ f )  ~ ~<~b(~) r by induct ion on 

the def ini t ion of  ~ B(~+I).  

In the  case  o f  (BI)  we have ~ = 0 and the  c la im is obvious.  

I f  ~ B(¢~+I) holds  according to  (B2) we have ~ = ~ + ~  or ~ = ~o~t~ u and ~le. B(~+t) 

for  i = 1,2. But then  ~ ,  and ~ t e B ( ~ + l ) ~ f l  and we obta in  f r o m  the  induct ion 

hypothes i s  ~l<(~p~)l'. Since (~b~)re SC this  a l so  implies ~<(d2~) r .  

I f  ~eB(~+l)  holds  by (B3) then there  is a ~oeB(~+l)(~(~+l)  such t h a t  ~ = ~b~. 

By 23.3.(0,  however ,  it fo l lows  ~ o ~ k b ~ < ( ~ )  F. 

23.9. Lamina  

(i) ~eB(~+ l )  impl ies  ~(~+1) = ( ~ ) r .  

(ii) ct¢ B(~) impl ies  B(~+I) = B(~) and t h e r e f o r e  a l so  kb(~+l) = ~ .  

Proof 

(i) ~ B ( ~ + I )  by 23.3. implies  qba<d)(~+l). According to  23.5. i t  is qb(a+l)~SC 

which en ta i l s  (d j~)F~b(~+l) .  Toge the r  with 23.8. this  implies  ( ~ ) r  = t~(a+l). 

(ii) is an immedia te  consequence  of  23.3.(iii). 

23.10. Theorem 

Def ine  o := min{~ : F~ = ~}. Then we  have  

and  

Proof 

We show (i) by induction on ~ o. I f  ~ = O, then  a compar i son  of  the  def ini t ions  

17.19. and 23.1. shows  tha t  40 = B(O)r~f) = PC(O) = F o. 

For ~ = ~o+1 we obtain  by the  induct ion hypothes i s  ~o<F~  = ~ o "  Hence  ~o ~ B(~ o) 

c B(~) and we obta in  kb(~) = ( ~ o )  r = F~ by 23.9. 

For ~ L i m  we have kb~ = sup{~brl : rl<~} l'--h'sup{F~ : rl<~} = r~ since according to  

17.15. F is a normal  funct ion.  

To prove  (ii) we show ~ to,f)]  ~ B(~) = B(o) by induction on ~. The c la im is 
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trivial for  ~ = o. For a l imit  ordinal ~ we obtain  B(O = C){B(~) : ~<~} = B(o) by 

the  induct ion hypothes is .  For O<~o+l<f~ we have B(~o)= B(o) by the  induction 

hypothes is .  According to  23.9. (ii) it suf f ices  to  show ~o ~ B(~o)" From the induction 

hypothes i s  and (i) it fo l lows  hb~o = B(~olC~fl = B(o)c~f~ = ~2o = F o = o. Hence 

~b~ o = O ~ o < t 3 ,  i.e. ~oCB(~o) by 23.6. 

Theorem 23.10. shows  the  role  o f  the  ordinal f) in the  defini t ion of  the  s e t s  

B(ct). As a l ready men t ioned  in the  in t roduc t ion  ~) is our  ex te rna l  point .  Wi thou t  

the  ordinal ~ in the  def ini t ion c lause  (B1) the  funct ion %b would  become  s t a t i ona ry  

a t  o.' Then the  e f f e c t  o f  defini t ion c lause  (B3) would be equivalent  t o  augment ing  

the ordinal no ta t ion  s y s t e m  of  §17 by the  funct ion F. But because  o f  fie B(G+1) 

we now have o = ~f~eB( t )+ l )  and t he re fo re  a lso  o r =  ¢(f)+l) .  This shows  tha t  

the  s e g m e n t  of  the  ordinals  con ta ined  in B(~) is larger  than  j u s t  o. We are 

going to  examine  the  size of  th is  s egmen t .  

23.11. Lamina 

For u e O n  we have B ( ~ ) c f )  r. 

Proof 

~ B ( u )  ~ ~<D F fo l lows  by induction on the  def in i t ion yon ~ B ( ~ ) .  The c la im 

is obvious  in the  case  o f  (BI) .  In the  case  o f  (B2) it fo l lows  f r o m  induction 

hypothes i s  since f~FESC and in the  case  of  (B3) the  c la im holds  tr ivially 

because  o f  d? ~o < f~" 

23.12. T h e o r e m  

For ~ e O n  we have B ( a ) c B ( f )  r )  and @~@( f ) r ) .  

Proo f  

We show ~ B ( ~ ) ~  ~ B ( f )  r )  by induct ion on the  def ini t ion of  ~eB(a ) .  The 

cases  (B1) and (B2) do not  cause  any p rob lem.  In the  case  o f  (B3) we have 

= hb~o for  some  ~o ~ B (~ )~ u .  By the  induct ion hypothes i s  and 23.11. it fo l lows  

~ o ~ B ( f ) F ) ( ~  F which implies  ~ = hb~oe B([~ F) by (B3). 

F rom t h e o r e m s  23.12. and 23.6. it fo l lows  t h a t  kb(f~ F) is the  l a rges t  s e g m e n t  o f  

the  ordinals  access ib le  by defini t ion 23.1. All ordinals  in B(f~ F) are r ep re sen t ed  

by t e r m s  bui l t  up f rom the c o n s t a n t s  0, t~ by the  func t ions  +, ~0 and ~. In 

order  to  see t ha t  this  real ly  induces a recurs ive  or even primit ive recurs ive  
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n o t a t i o n  s y s t e m  we, however ,  have to  work  a b i t  harder .  

Up to  n o w  we have the  f o l l o w i n g  n o r m a l  f o r m s  for  o rd ina l s :  

1. The C a n t o r  n o r m a l  f o r m  

a =NF % +'" + ~n  :~=> ~ = a ,  +... +mn ^ { % ' " " a n  } c [B ^ ~ > % ~ ... ~ ~n  for  a ¢ [H. 

2. The n o r m a l  fo rm for  pr inc ipa l  o r d i n a l s  which  are n o t  s t r o n g l y  cr i t ica l .  

a =~l='P % ~x= ~ ~x = q~ % ~x~ ̂  a > % ,% for  a ~ H \  S C. 

This  was  c o m p l e t e l y  s u f f i c i e n t  for  the  o r d i n a l s  b e l o w  F o s ince  t h e r e  are no 

s t r o n g l y  c r i t i ca l  o rd ina l s .  In  B(Dr} ,  however ,  t he r e  are s t r o n g l y  c r i t i ca l  o r d i n a l s  

o f  the  f o r m  ~ .  For  t h o s e  o r d i n a l s  we de f ine  a n o r m a l  fo rm in the  f o l l o w i n g  

way. 

23.13. D e f i n i t i o n  

a = N F ~ {  :¢*" o~ = qa{^ ~ B(~) 

23.14. L e m m a  

S u p p o s e  tha t  ct = ~ b a  o 

~< ~ *~ %< 6 o. 

and  ~ = N F ~ o .  Then we have ot = ~ ~ ct o = ~o and  

P r o o f  

From 0~o<~ o and  ao~ B(ao)c  B(13 o) we o b t a i n  ~bao<d~ o by 23.3. On  t he  o t he r  hand  

~o~:a o and  [3o ~ B(~o)C B(a o) a l s o  imp ly  ~ o ~  a o. 

23.15. L a m i n a  

For every  ordinal  ~<t )  r there  is a un ique ly  d e t e r m i n e d  ordinal  % ¢ B ( % ) ~ t )  r 

s u c h  tha t  d~ct =NF ~ o "  W e  have s o = min{~ : cx~E B(u)}.  

P r o o f  

By 23.14. the  u n i q u e n e s s  of  a o is obv ious .  So we j u s t  have to  prove  the  ex i s t ence .  

In a f i r s t  s t e p  we c o n v i n c e  o u r s e l v e s  t h a t  t he  s e t  { ~ :  a ~ B ( a ) }  is n o t  emp ty .  

I f  we de f ine  A o = 0+1 and  An+ ' = ~0An0, t h e n  we have 

(1) sup{A n : n<to} = D r 

and  

(2) An~B(ct) for  all  n<t0 and  a ~ O n .  

(1) f o l l o w s  f r o m  17.22. and  (2) f r o m  the  de f in i t i on  of  B(a).  

By (1) and  (2) we o b t a i n  the  e x i s t e n c e  of  ~o := min{~ : ~ B ( ~ ) } .  For  ~o we 

have ~ a  o and  [a ,~o) r~B(a)  = ~0. Hence  B(~) = B(~o), and  we o b t a i n  kb~ = qba o as 
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wel l  as  ~o ~ B(~o). 

23.16. Theorem 

For every  ~ S C ~ k b ( ~  F) there  is a un ique ly  d e t e r m i n e d  ordinal  C(oeB(~F) such  

tha t  ~ = NFLb~ o. 

P r o o f  

e S C ~  ~ ( ~ r )  i m p l i e s  ~ e S C A B ( f i  r )  ~ ~ .  The  on ly  p o s s i b i l i t y  fo r  a s t r o n g l y  c r i t i c a l  

o r d i n a l  ~ t o  g e t  i n to  t h e  s e t  B ( D r ) ~ O  is c l a u s e  {B3). T h e r e f o r e  t h e r e  is  an  

~ e  B{[) r )  such  t h a t  ~ = ~ and  by  23.15. t h e r e  e x i s t s  an o r d i n a l  ~o such  t h a t  

0~ = NF~0~ o. 

Fo r  t e c h n i c a l  r e a s o n s  we wil l  d e f i n e  c e r t a i n  s u b t e r m  s e t s  P(~) and  N(~) fo r  

o r d i n a l s  ~e  B([}r}. T h e r e  a r e  f ive d i f f e r e n t  t y p e s  o f  o r d i n a l s  in t h e  s e t  B(C~r) : 

I. The ordinal  O. W e  d e f i n e  H(0)  = P(0)  = N(0)  = 

2. Add i t i ve l y  d e c o m p o s a b l e  ordinals  ~ = N F ~ + . . . + ~ n  s u c h  t h a t  n> 1. W e  d e f i n e  

H(u)  = { u l  ..... a n} and  P{~) = N { u )  =J0 

3. Predicat ive ly  d e c o m p o s a b l e  pr incipal  ordinals  ~ = N F ~ 0 ~ 2 .  H e r e  w e  d e f i n e  

P(~) = {~1,~2}, H(oO = {~} and  N(oO =£1 

4. S t r o n g l y  cri t ical  ordinals  ~<Cl o f  t h e  f o r m  ~ = NFkb~o. H e r e  w e  d e f i n e  

N(~)  = {~o } a n d  H(0¢) = P(~) = I~}. 

5. The regular  ordinal  f~. For  fl we  d e f i n e  N(fD = P ( ~ )  = H ( a )  = {fl}. 

W e  a l r e a d y  m e n t i o n e d  t h a t  t h e  o r d i n a l s  in B(O F) may  b e  r e p r e s e n t e d  by t e r m s  

b u i l t  up  f r o m  0 a n d  f] by  t h e  f u n c t i o n s  +,~0 a n d  kb. O f  c o u r s e  t h e r e  a r e  

d i f f e r e n t  t e r m s  w h i c h  r e p r e s e n t  t h e  s a m e  o rd ina l .  The  t e r m s  ~ ( ~ f ] )  a n d  ~f~ 

fo r  i n s t a n c e  a re  b o t h  r e p r e s e n t a t i o n s  fo r  t h e  o r d i n a l  a .  To o b t a i n  a un ique  

r e p r e s e n t a t i o n  we have  t o  r e s t r i c t  o u r s e l v e s  t o  o r d i n a l  t e r m s  in n o r m a l  f o r m .  

The  s e t  T o f  t e r m s  in n o r m a l  f o r m  is i n d u c t i v e l y  d e f i n e d  by  t h e  f o l l o w i n g  

d e f i n i t i o n .  

23.17. I n d u c t i v e  d e f i n i t i o n  o f  t h e  s e t  T o f  o r d i n a l  t e r m s  in n o r m a l  f o r m .  

(T1) {O,f~}c T. 

(T2) If ~1 ..... ~ n ~ T  and  ~ = N F a l + . . . + ~ n ,  t h e n  ~ T .  

(T3) I f  ~ t , ~ 2 ( T  a n d  ~ = NF~0tZI0t2, t h e n  ~ e T .  

(T4)  I f  ~ o e T  and  ~ = N F k b ~  o, t h e n  ~ ( T .  
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The next  lemma fol lows by an easy induction on the definition of  T. 

23.18. Lamina 

Tc B(g) r)  

The opposi te  direction, however, is much harder to prove. The idea is to  show 

(*) ~B(i~ r) ~ ~T 

by induction on the definition of ~e B(flr}. 

This induction, however, by no means is s t ra ight forward.  If, for instance, we 

have ~e B{CI r} according to  clause {B2), then we have ~ = ~J+~2 and obtain ~te T 

by the induction hypothesis .  But we are not  al lowed to  apply clause {T2) since 

we do not  know if we also have ~ = NF~t+~2. To overcome this diff icul ty we 

prove (~) by induction on the inductive norm of  ~. Since the c losure  ordinal of  

the inductive definition o f  B(~} obviously is t,) we only have to  deal with finite 

norms. If  we denote  by Bn(~} the n - th  s tage in the inductive definition of  B{~), 

then we have to  show tha t  ~ = NF~l+...+~meBn(Ct) already implies ~kcBn--l(Qt) 

for k = l ...... m. Then we can use the induction hypothesis  and apply (T2). The 

remaining cases may be t rea ted  in the same way. The original inductive definition 

of  the se ts  B(~), however, is not  well suited for this rather  technical s t rategy.  

Therefore we are going to redefine the sets  B(~) in a more technical way. 

23.19. Definition 

The set B'(~)and the function ~b' are inductively defined by the clauses 

(B'I) {0,1,f)}c B'(~) 

(B'2) If  H(~) # {~} and H(~}c B'(~), then ~e B°(~), 

(B'3) If  P(~) v {~} and P(~)c B'(ct), then ~eB' (~) ,  

(B'4) If  ~eB'(ct)r~c,, then ~ ' ~ B ' ( c t ) .  

(~b'i) kb'c( := min{~:~qB'(ct)}.  

By B'n(~) we denote  the n - t h  s tage in the inductive definition of  B'(~). 

We need some more propert ies  of  the s tages  o f  B'(~). 

23.20. Lamina 

If ~eB'n([~) then H(~)wP(~)c B'(~). 

Proof  by induction on n. 

For n : 0 we have H(~)wP(~) c {O,IXI}c B'(~). 
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I f  ¢~eB'n(B) holds  according to  (B'2),  then  we have H ( a ) c B ' n - ~ ( ~ ) c B ' ( ~ )  and 

P((x) = ,O. 

If  ~ B ' n ( ~ )  holds  according to (B'3),  then we have H ( ~ ) = { ~ } ~ B ' ( ~ )  and 

P(~) c B 'n-~ (Or) c B'(00. 

I f  c~B'n(i~) holds  according to  (B'3) then  we have H ( ~ ) =  P ( ~ ) =  {~} and the  

c la im is trivial.  

23.21. L e m m a  

For  aH o r d i n a l s  c~ w e  h a v e  B(~) = B' (~)  as well as kba = @'ct. 

P r o o f  

The p r o o f  is by induction on ct. 

F i rs t  we show ~E B(~) ~ ~ B'(cd by side induct ion on the  def ini t ion of  ~¢ B(~). 

In the case  o f  a c lause  (131) we obta in  ~ B' (u)  by a c lause  (B'1}. 

I f  ~¢ B(a) according to  (B2) then we have ~ = ~1+~2 or ~ = qo~l~ 2 and {~t,~2}c B(~). 

By the  induction hypothes is  it fo l lows  |~t,~2}c B ' (a ) .  i f  ~ = ~ i~2  this a l ready 

implies  ~e B ' (u)  by (B'3). I f  ~ = ~1+~2, then we have H(~)c H(~I)uH(~z) .  By 23.20. 

it fo l lows  H(~1)~H(~a)c B'(~)  and this  implies  ~¢B ' (~)  e i ther  t r ivial ly or  by a 

c lause  (B'2).  

I f  ~¢B(~) according to  (B2) then  we have ~=~b~ o and ~ ¢ B ( 0 t ) ~ .  We have 

~ c B ' ( a ) ~ a  by the  side induction hypothes i s  and kb~o = ~b'~o by the  main 

induction hypothes is .  Hence ~¢ B'(ct) by a c lause  (B'3).  

For the oppos i t e  di rect ion we show ~¢ B 'n(a )  ~ ~ B(~) by side induction on n. 

For n = 0  we have ~{O,f~} and are done by (B1) or ~ = 1  =~o00. But 1~B(~) 

fo l lows  f rom (BI) by an appl ica t ion of  (B2). 

I f  ~¢B'n(c~) by (B'2) then  we have H(~ )c  B(~) by the  induct ion hypothes i s  and 

obtain  ~ B(ct) by i t e ra ted  appl ica t ion o f  (B2). 

I f  ~¢B'n(0t) by (B'3) then  we have P(u)c  B(~) by the  induction hypothes i s  and 

obtain ~ B(~) by i te ra ted  appl ica t ion of  (B2). 

I f  ~ B ' n ( a )  by (B'4)  then  ~ = ~b'~ o and ~o~B'n-*(a)r~ct. By the side induct ion 

hypothes i s  it  fo l lows  ~oe B(~)¢~  and by the  main induct ion hypothes i s  ~'~,o = kb~o° 

Hence ~ B(u) by a c lause  (B3). 

Now, since we have proven B ( ~ ) =  B' (u) ,  it a lso  fo l lows  ~b~--~b'u. 

Due to  l e m m a  23.21. we may identify B'(c~) and B(a) as wel l  as # and kb'. We  

will t h e r e f o r e  omi t  the  supe r sc r ip t  ' .  F rom now on we deno te  by Bn(~) the  

n - t h  s t age  in the  defini t ion o f  B ' (a ) .  

We may sharpen  l emma  23.20 in the fo l lowing way. 
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23.22. Lernma 

I f  0teBn(~) and ot = N F O t t + . . . + a  m f o r  m >l  or  l<c~ = Nl~,az, 

aie Bn-~([~) for ie {I ..... m} or ie {1,2} respectively. 
t h e n  we  have  

Proof 

Since a> l  and a , S C  the only possibil i ty for aCBn(~3) is by a clause (B2').  

Then we have H ( a ) w P ( a ) c B n - t ( $ ) .  For a = ~ a t + . . . + ~ m  or a=~,ne~oata2 we 

have H ( a ) w P ( a ) =  {a t ..... a m} or H ( a ) w P ( a ) =  {at,a 2} respect ively which entails  

the claim. 

The p roo f  of  the fact  tha t  a = N F ~ b a o ~ B n ( ~ )  implies 0 to~Bn- t (~3)  i s  essent ial ly  

harder a l though it is easy to  see that  a = NF~bao¢Bn((3) implies ao~B(f~). We 

know tha t  ~ao<f),  which toge ther  with ~bao¢ B($) implies ~ o < ~ .  Hence uo<~ 

and we obtain ao~B(gl since ~ = N ~ q a o  implies ~oCB(~o ). But we do not  yet  

know tha t  a o already entered B(13) before  a. On the o ther  hand we know that  

there is an a t e B~-I(~) such tha t  ~ = ~at since this is the only way by which a 

can ge t  into Bn(~). Then by 23.15. we have a o = min{~ : a~¢B(c t )} .  

23.23. Lemma 

For g~On d e f i n e  g(ot) := min{~ : a ~ B ( D } .  Then ot~Bn([3) i m p l i e s  g(~t) ~ Bn([5). 

P roof  

The p roo f  is by induction on n. As a preliminary remark we prove tha t  a E 0d 

implies g ( a ) e ~  as well as a e SC implies ~(ct) e SC. If  we assume c te~ and 

~(a)~lH then there is an ~ [ ~ £ ( a ) ) ~ H ( ~ ( a ) ) .  Then by 23.22. it fo l lows ~eB(~) 

in contradic t ion to  the minimality o f  ~(a). The p roof  for  SC runs comple te ly  

analogously.  Trivially at<ct 2 always implies 8(ctt)~8(a2). 

I f  aeB(8) ,  then it is 8 ( a ) =  a and the claim is obvious. If  acB(8)  and a<f) ,  

then we have by 23.6. B(8)c~f)c~ which implies g(a) = D~Bn(13) for  all n. So it 

remains the case f ) < ~  B(8). We dist inguish the fol lowing subcases:  

1.0t = N F a l + . . . + 0 t m  for some m>l .  Then we have ~1¢ Bn-t(~} by 23.22. and obtain 

by the induction hypothesis  ~(ai)eBn-l(f3)c~B(g). Since a i c H  and a l > . . . 2 a  m 

imply g(ai)~Ud and ~(~t) 2...>8(arn), it is a~8(ct t )+. . .+8(am)and because o f  

8(a 1) + ...+ 8(a m) e B ( 8 ) e v e n  a<8(~ l) +...+8(am). Therefore there is an i<m such 

that  ~" :=al+.. .+ai=~(a|}+.. .+~(Ctl } a n d  al÷l<~{al+l}. This implies a<y+~(al+t) .  

Hence ~ ( a ) ~ + ~ ( a i + , ) .  We claim ~(a) = ~'+~(al+,). If  we assume ~(a)<) '+Mal+,) ,  

then we obtain an ~ ¢ B(8) such that  a< s< T+~(Ctl+t}. But then ~'+al~ ~ a< ~< "(+$(al+ t) 

and we obtain an ~t such that  e = ~+~t a n d  ai+t<El<~{ai+l). Since seB($),  23.20. 
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and (B'2) imply s~e B(5) and this  con t r ad i c t s  the  defini t ion of  3(~1+~). 

2. ~ = N F ~ O ~ .  By 23.22. we have 0~icBn-~(~) and obtain  by the  induct ion 

hypothes i s  5(~l )¢Bn- t (~) .  There are the  fo l lowing cases:  

2.1. ul = 3(ul)" Then we obviously  have ~(~) = ~ 1 3 ( ~ z )  and it fo l lows  ~(~)e Bn([3). 

2.2. 0cl<3(c~t). I f  c ~ ( ~ 2 ) ,  then  $ ( ~ ) ~ ( ~ 2 )  which t oge the r  wi th  ~(c~2)~(~) implies  

~i(cd = 5(a2) and we are done because  o f  5 ( ~ ) e  Bn-~([~)c Bn([3). 

There fo re  we a s sum e  5 ( ~ ) < ~ .  We define ~a := min(~ : ~ o 8 ( ~ , ) ~ }  and c la im 

(*) c~ae Bn-~([5)~B(~) 

From (*) it follows ~(~)~ ~$(~)~a. If we assume ~ou~2< $(u)< ~05(~)~, then there 

are ordinals ~t and ~2 such that ~(u) --NF ~2- But then we have ~t<$(~t), since 

~t= $(~) implies u<$(¢¢) = ~0~(~ t) ~2 and ~2<~, and ~t>$(~) implies $(~)<~a and 

q)5(c~i)$(c~) = ~(cd>cc Both consequences contradict the definition of c~a. From 

~<$(cq) and ~B($), however, we obtain ~t<~which implies ~<~2eB($) in 

contradiction to the definition of ~(~). Hence $(~)= ~p$(c~i)~3 which implies 

~(oc) e Bn([~) by (B3'). 

It remains to show (*). If we assume ~ae Lira, then we obtain ~o~z = ~ = q)$(~I)~3 

because @~(czl) is continuous. Since cq<$(c~s) this implies c~2 = ~pS(c~i)~a in contra- 

diction to c(2~5(c~2)<c~. So ~a cannot be a limit ordinal. If ~a = 0, then we are 

done. Therefore assume uz = ~l'. Then we have ~2<~(~)<~ = ~0~2~' and 

@$(u~)~< @~,~p(~(~)~'. Because of ~,<5(~) it follows ~5(~)q< ~ <~0~, 

i.e. @5(u~)~l<~2~5(u2)<@~2~p$(c~)~'. Since ~(~2) e B($)~Bn-~([~) we have 

Bn-~([~)~ (~05(o¢~)~1,~$(0c~)(~}+I))~ as well as B($)~ (~o~(~)~I,~05(~)(~I+I))*£I. Now 

we prove the following auxiliary lemma. 

23.24. L~mma 

If" Bn([5)~ ((p(xrl,9o~rl') *~, t h e n  w e  h a v e  q+l e Bn(~). 

Proof by induction on n. 

Define M n := Bn([~)(~ (~o0c~],~o0cT]') and a s sume  o e M n. Since ( ~ o ~ , ~ ( ~ + 1 ) ) ~  SC = g 

o~ SC the  only poss ibi l i ty  for  o to  come  into Bn([~) t he re fo re  is c lause  (B2 ' )  or 

(B'3). 

I f  o = Nl:Ot+...+o m such tha t  ote Bn-~([3), then  we have ot~[~ou~l,~ou~') because  

o the rwise  we had ot+...+Om<~O~Tt. I f  9 ~ 1 < o  t, then  we obtain ~1+1~ Bn-l([3)c Bn([3) 

by the  induct ion hypothes i s .  I f  ~uTt = o I, then  we have Tl~ Bn-l([3). Since I¢ Bm(~) 

for  all m<t~ we obtain ~l'eBn(~) by (B '2) .  

I f  we a s s u m e  o =NF ~°O~az and oteBn-l([3), t hen  we have ~o~<~oo~o2<~o~q'. But  

then  it is o t<~  since ~ = o~ implies  ~l<O=<~' and ~<a~ already ~ < o < q ' .  Hence 
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~0~< oz< ~' ~ ~ *  and we obtain by the induction hypothesis  rl' e Bn-l(~) c Bn([3). 

By the p roof  of  lemma 23.24. the p roof  of  lemma 23.23. is comple ted  too. 

23.25. I,emma 

Ifct = NF~tXocBn(~), then we have n>O and ctoeBn-t(~)c~. 

Proof  

In the remark foregoing 23.23. we already mentioned tha t  if u = Nl~qb~oeBn(~), 

then it is ~o<[3 and there is an ~ Bn-l(~) such that  ~ = ~ 1 .  Then we have 

s o = min{~ : ~ e  B(~)}  and it fo l lows ~o e Bn-l(~) by 23.23. 

23.26. Theorem 

T = B(f) F) 

P roof  

TcB(f )  F) holds by 23.18. For the opposi te  direction we show B n ( f ) r ) c T  by 

induction on m B°(f) F) only contains  the ordinals 0,1, fl.{O,f)}c T holds by (T1) 

l e T  fol lows f rom (T1) by (T3). If  U=Nl=~t+...+0cm~Bn+t(flr) or ~ = N F ~ t ~  2 

e Bn+t(flr) ,  then by 23.22. we obtain ~teBn(fflr) for all ie{1 ..... m} or i = 1,2, 

respectively.  
By the induction hypothesis  we have ctie T for all i and obtain ere T by (T2} or 

(T3). If  ~ = NVd/uo, then we have ¢toeBn-t([3) by 23,25. and obtain ~ e T  by the 

induction hypothesis  and (T4).  

I t  is of  course  easy to  define codes for the e lements  of  T. Therefore  we may 

regard T as a se t  o f  natural numbers.  Our aim is to  obtain T as primitive 

recursive set.  This, however, in no t  an immediate consequence  o f  definition 

23.17. The s tumbl ingblocks  are the normal form requirements  in the premisses  

of  c lauses (T2)-(T4).  This is not  so harmful in the case of  the c lauses  (T2) 

and (T3) since the normal form condi t ions  there only need checking the 

< - r e l a t i on  between former ly  defined terms and we may define T and the < -  

relat ion in the approved manner by s imul taneous  course  o f  value recursion.  

More irr i tat ing is the case o f  a c lause (T4) since there ct = N F ~ o  means tha t  

¢t = ~¢t o ̂  ~o ~ B(~o)" We could  manage this case in the same way if we succeeded 

in defining a primitive recursive funct ion K, say, such tha t  uoeB(Uo) holds if 

and only if K~o<~ o. Then again we could define T and < ( and possibly also 

K) by s imul taneous  course  of  values recursion. We will not  be able to define 
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Knt 0 as a f u n c t i o n  t h a t  t ake s  a s i ng l e  o rd ina l  t e r m  as va lue  b u t  as a f in i t e  s e t  

o f  s u b t e r m s  of  s 0 which  wil l  be  p r imi t ive  r ecu r s ive ly  c o m p u t a b l e  f r o m  T. The 

d e g r e e  G nt of  an  o rd ina l  t e r m  nt e T is the  n o r m  o f  nt in the  induc t ive  d e f i n i t i o n  

of  T. In  o rde r  to  de f ine  Knt we r e c a p i t u l a t e  the  c o n d i t i o n s  which are n e c e s s a r y  

and  s u f f i c i e n t  for  nte B(~). 

23.27. ]..emma 

nt ( B(~ ) h o l d s  i f  and  o n l y  i f  one  o f  t h e  f o l l o w i n g  c o n d i t i o n s  i s  s a t i s f i e d :  

(1) n t ~ 1 0 , f l }  

(2) nt = NFnt,+...+Ctr, a n d  {0:1 ..... nt }c  B(B) ,  

(3) nt = NF'~%% and { % , % }  ~ B((~), 

(4,) c( = ~nto, nto<~ and nto(.= B(15). 

Accord ing  to  23.27. we de f ine  the  f in i te  se t  K s  of  s u b t e r m s  of  an o rd ina l  t e r m  

nt by: 

23.28. Inductive definition of K s  

(Kl )  K0 = K G =  

(K2)  K s  = K s l w . . . ~ K n t  n ,  if  s = NFSl+...+ntn 

(K3)  K~ = K n t i u K s  2 , i f  nt = NF~OCtlnt2 

(K4)  K s  = { S o } t . J K s  o , if  s = Oct o 

We  cal l  Knt the  s e t  o f  c o m p o n e n t s  of  s and  wr i t e  K s < ~  i n s t e a d  of  ¥ ~  Ks(~<i3).  

23.29. I ~ m m a  

I t  is  nt~B(~) i f  and  o n l y  i f  K s < $  . 

P r o o f  

This  f o l l o w s  i m m e d i a t e l y  f r o m  23.27. by i n d u c t i o n  on  Gs .  

23.30. I ~ m m a  

For  s ,  ~ ~ T we  have  ct< ~ i f  and  o n l y  i f  one  o f  t h e  f o l l o w i n g  c o n d i t i o n s  is  sa t i s f i e d :  

(1) nt = 0 and  6*0,  

(2)  nt = NF%+...+nt , ~ = NF~ + . . . + ~ ,  n,  m> 1 a n d  3i~: n Yj~ i(ntj = ~j A %+,< ~,+, 1, 

w h e r e  w e  d e f i n e  Sn+ , = 0 a n d  [Sm+ t . . . . .  ~n+l = 0 if  m < n .  

(3) nt = NF~,+. . .+Sn,  ~ ¢ ~  and ~ ,<~ ,  
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(4) C(E ~'-i, ~ = NF~t+.. .+~n, n>1 a n d  <x~t, 
(5) ~ = NF@.~,~2, ~ = N F @ ~ 2  and ~<~ according to 17.8.(2), 

(6) (x = NFcPO~,C(2, ~ESC and o~,o~2<~, 

(7) ~z~SC, [~ = NF~0~2  and c z ~  t or ~ 2 '  

(8 )  o( = NFO0(o, F~ = NFkb~o and  O(o< (3 o, 

(9) ¢t = NFkbO~o and ~ = ~. 

I t  is obvious tha t  ~ E {H or ~ ~ S C, respectively,  are primitive recursively decidable 

since this can be read o f f  the syntactical  form of  u. All te rms in [H are of  the 

shape ~0~u2, while all te rms in SC have the form ~ o  or O. 

Now we are going to  replace the clause (T4) in 23.17. by 

(T¢ ' )  ~ o e T A K ~ o < ~  o ~ kb~oeT, 

and define s imul taneously  the set  T, the  ' func t ion '  K~ according to  23.28. and 

for c~,[3~ T the relation ~<[~ according to  23.30. by course  of  values recursion.  

Then we obtain: 

23.31. T h e o r e m  

The set T is primitive recursive and < 

0/'2 To 

is a primitive recursive order relation 

23.32. C o r o l l a r y  
¢(f}r)< o,CK 

23.33. Exercises  

1. V~,(~(~e B(~) ~ C}-I3~B(~)) 

2. Define o := min{p : p>kb(Q.~)^ Fp = p}. Prove that  under the assumpt ions  

CI.~eB((~.~) and ~{(}-~)= F~(n.~} we have: 

(i) W~o ~( (~ .~+8) :  F~(n.~)+s 
(i i) V8(o~8~{~ ~ ~b(~-~+8) = o) 

3. Show the fol lowing s ta tements :  

(i) Y~<F"O (IP'~ = kb(fl-(l+~)) ^ { ' l .~eB(gl-~)) 

(ii) @{'12 = F"O 

(iii) kb(fl2+l) = r " 0  r 

4. Prove that  for ~EB((~ r} we have: 

(i) o~< Fo':~ (x< ~ A K0( = ~ 

(ii) c(<@~ ¢~ K(xu{cc}<fl 
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~ 24. Collapsing functions 

Our  goal  is t o  use the  ordinal  t e r m s  o f  T for  the  i n t r o d u c t i o n  o f  a s e m i f o r m a l  

s y s t e m  for  the  l anguage  £#~. 

The der iva t ion  t r e e s  o f  £P~ are in genera l  O - b r a n c h i n g  t rees .  T h e r e f o r e  we will 

have t o  m e a s u r e  t he  l eng th  o f  the  der iva t ion  t r e e s  o f  a s e m i f o r m a l  s y s t e m  fo r  

£PA by o rd ina l s  above  FL In o r d e r  t o  ob ta in  b o u n d s  fo r  the  n o r m s  o f  H~-formulas .  

which  as  we k n o w  are o rd ina l s  b e l o w  fl, we  need  a c o l l a p s i n g  func t ion ,  which  

a l l ows  us  t o  c o l l a p s e  t he  o rd ina l s  in T which  are  l a rger  t h a n  t3 in to  t he  o rd ina l s  

o f  T b e l o w  fZ The d e v e l o p m e n t  o f  th i s  co l l aps ing  func t ion  is t he  t op i c  o f  t he  

c u r r e n t  sec t ion .  Since by 23.2. it is kb~<f~ we in pr inc ip le  a l ready  have a 

co l l aps ing  func t ion .  The se t  T o f  ordinal  t e r m s  in no rma l  fo rm,  however ,  is no t  

c l o s e d  under  t he  f u n c t i o n  kb. In o rde r  t o  ob ta in  kb0te T we need  ~¢ B(~) which 

is w r o n g  in genera l .  T h e r e f o r e  we  will  ca re fu l ly  en la rge  ~ t o  an ord ina l  t e r m  

h a  such  t h a t  h~e  B(h~} is a lways  t r u e  and,  vague ly  speaking ,  ha  e s sen t i a l l y  

car r ies  the  same  i n fo rm a t i on  as ~. Af te r  having s u c c e e d e d  in doing  th is  we 

may c o l l a p s e  the  o rd ina l s  t e r m s  g r e a t e r  or  equal  than  f~ by t he  co l l aps ing  

function De* := ~b(h~). 

W e  s t a r t  wi th  a r a t h e r  t echnica l  lemma.  

24.1. l, e m m a  

(i) oteK~ implies K~¢ K[3, 

(ii) I f  treKS, then it is G~<G[3, 

(iii) ore Kot. 

Proof 

The s t a t e m e n t s  in (i) and (ii) a re  p roved  by induc t ion  on G[3. I f  [3 = 0 or  13 = f), 

then  we have K[3 = ~ and b o t h  c la ims  are trivial.  

I f  [3=N1=[31+...+[3 n and ¢t~K[3, t hen  it is aeK[3 i fo r  s o m e  i¢{l  ..... n}. By the  

induc t ion  h y p o t h e s i s  fo r  (i) we ob ta in  K~c  K[3ic K[3 which p roves  (i). By the  

induc t ion  h y p o t h e s i s  fo r  (ii} it f o l l o w s  G~<Gt3i<G[3 which a l s o  p roves  (ii). 

I f  [3 = NF@[3,[32 and ~ K [ 3 ,  so  t h e n  we ob ta in  ~eK[3 i fo r  s o m e  ie{1,2} and we 

have the  s a m e  p r o o f  as  above.  

I f  13 = Nl=~b[3 o and  ct¢ K[3, t hen  we have ct = 13 o o r  ~ K[3 o. In t he  f i r s t  c a s e  it f o l l o w s  

K~ = K[3oc K[3 and  Get = G[3o<G ~ and  in t he  s e c o n d  case  wi th  the  c o r r e s p o n d i n g  

induc t ion  h y p o t h e s i s  Kctc K[3oC K[3 or  G~<Gt3o<G[3. 

(iii) is an immedia t e  c o n s e q u e n c e  o f  (li). 
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24.2. D e f i n i t i o n  

k a  := max K a w { 0 }  

24.3. L e m m a  

K k a < k a  

P r o o f  

We e i the r  have Ka =~1, and  t h e r e f o r e  K k ~ =  K0  =B,  or k a c K a .  In  the  l a t t e r  

case  we o b t a i n  K k a c K a ,  i.e. K k a ~ k a  by 24.1.(i). Since we have k a c K k a  by  

24.1.(iii) i t  f o l l o w s  K k a < k a .  

In the  f o r m a t i o n  of  k~, however ,  we loose  t oo  much  i n f o r m a t i o n  a b o u t  a. So 

we c a n n o t  de f ine  h a  to  be j u s t  k~. To keep all the  i n f o r m a t i o n  a b o u t  a we 

def ine:  

24.4. Def l rd t lon  

h a  := ks+ t0  ~ 

24.5. L e m m a  

Ka = K h a <  h a  

Proof  

I t  is K h a  = K k a ~  Ka = K ~  k s <  k~+¢o ~ = ha .  

24.6. D e f i n i t i o n  

If  a = NFa  +. . .+an,  t h e n  we def ine  r (~)  := ~n" We call  r ( a )  the  (additive) remainder 

of  a. 

24.7. I ~ m m a  

I f  a<y  and [3<r(y), then it f o l l ows  a+13<y. 

Proof  

If  a = Nl=a~+...+an and  T = NFY,+---+Y m, t h e n  the re  is an  i~ n such  t h a t  a j  = yj  

fo r  all  j ~ i  and  ai+~<yt+l .  If  t3<r(y}~yt+l ,  t h e n  we o b t a i n  a t + l + . . . + a n < y l + l  which 

impl i e s  a+13 = az+...+an+13< al+...+an+~+~(i+t+...+ym= al+...+ai+~fi+lt+...+~rm= y. 
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24.8. L e m m a  

s< ~ and Ks< h~ imply hot< h~. 

Proof 

u<B implies ¢0~<~ ~. K~<h~ implies ks<h~ = k[3+(oi~. Hence w~<r(h{3). By 24.7. 

this entails ku+~)~< k~+co i~. 

24.9. Induct ive  def l .~t lon o f  the  se t  SC(u) o f  the  strongly critical subterms of  

an ordinal  t e r m  s.  

(i) SC(O) := ~ and SC(fl) := {{)} 

(ii) I f  u ~ q ,  then  we define S C (u ) : =  U{SC(T):  7 e H ( ~ ) }  

(iii} I f  ~qSC,  then  we define SC(~) :=  (3{SC(y): ycP (~ )}  

(iv) I f  s ~ S C ,  then  SC(~) := {u} 

By SCn(~)  we denote  the  se t  SC(~)r~O. 

As an immedia te  consequence  we obtain by induction on Gs: 

24.10. Lemma 

We have s~ B(~) ¢:~ SC(s) c B(~). Since SC(oO c SCc~(s)w{~)} and 

have {)eB(s) this may be sharpened to se B([3)¢~ SCc~(c~)c B(~) 

we always 

24.11. L e m m a  

We have Ks< h~ i f  and only i f  S C o ( s ) <  ~h~. 

P roo f  

By 23.29. we have Ks< hi3 if and only if s e  B(h~).  By 24.t0. this  is equivalent  to  

SCn(¢O c B(hi3)r~f) = 0hi3. 

24.12. Defini t ion 

( i )  D s  = ! s" if  ~<{) 

l 0hs  if f)~ s ,  

(ii) s<<~ : ~  S<~AD0c<DIL 

We call  the  func t ion  D: B({)r) , , {) the  collapsing function for  B(i)r) .  

We read the  re la t ion  s<< 13 as '~ is essentially less than 6'. 
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24.13. Lerama 

(i) For ot ~ T i~ is Dot~T and  Dot<f). 

(ii) For  ~e Tc~f) we  have ot<<15 i f  and  on ly  i f  ot<~. 

(ili) 0t<< ~ imp l i e s  D0¢<< D15. 

24.14. L e m m a  

(i)  SCc,(~t) ~ Da. 

(i1) ct~SC or  f)~ ot i m p l y  SCc~(Ot)<Dcc 

Proof 

I f  ~t<t), then  we have SCt~(ct)~ct = Dot. I f  ot~ SC, then  we even obtain  SCt~(ct)<~ 

=D~.  There fore  a s s um e  f)<ot. Because of  ks<hot we a lways have ~ B ( h ~ ) .  By 

24.10. this  implies SCn(ot)c B(h~}r~f)= Ch~, i.e. SCc~(ct)<D(~). 

24.15. T h e o r e m  (Charac te r iza t ion  o f  the  <<-rela t ion)  

It ho lds  ot<<15 1 l a n d  on ly  i f  we  have ot<~ and  SCc~(ot)<D{3. 

P r o o f  

We s t a r t  with the direct ion f rom le f t  to  r ight.  Assume  ot<<lk This implies 

ot<~. I f  13<f), then we immedia te ly  obtain  SC~(ot}<ot<~ = D[3. I f  D<~ and ot<f), 

then  it fo l lows  S C c ~ ( ~ ) ~  = D~<D~. I f  finally D<~<~,  then  ~bhot = D~<Di3 = ~bht3 

a l ready implies  h~<h~. Because o f  K~<h~<hl3 it fo l lows  by 24.11. SCo(~}<~hi3 

= D~. 

For the  oppos i t e  direct ion we a s s um e  ot<[3 and SC~(ot)<D~. I f  ~<t), then ot<<~ 

a l ready f o l l o w s  f rom ~<15. So a s s u m e  f)~13. Then we have D~ = ~bh15e SC. I f  ~<D,  

then  SCc~(~)< D~e SC immedia te ly  implies  ~< D[~. There fo re  a s s u m e  f)~ ot< 6- Since 

SCn(ot)<¢hl3 we have SCn(~)¢  B(h[~) which by 24.10. and 23.29. implies  K~<h~. 

By 24.8. we then obta in  hot< h[~. Hence  Dot = kbhot< ~h~ = D15. 

24.16. L e m m a  

(i) otc< 15<< y i m p l y  a<< Y- 

(ii) 

(1it) 

(iv) 

(v)  

(vi)  

(vii) 

It  is ~ f l  + ~ and  15.0 impl ies  o~<< ~ n 6. 

I f  ¢q<9~l~z,  t h e n  w e  have  txl<<~ooqct 2 f o r  i = !,2. 

I f  ~<<~, then  Ot#T<<13uy and  tq+ot<<f)+lS. 

I f  or<< 15 and  p ¢ SC, then  %opct<< %o015. 

ctl<< ~2 and  151<< ~0ot2152 i m p l y  9ot1~<< P~2~2" 

I f  a t ,0t2<< 13 and  ~ ~ Oq, t hen  ot, # ot2 << 6. 
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(viii) D~<< ~#fl. 

P roo f  

(i) is obvious. 

(ii) 0tgf)+~ is again obvious. By 24.14. it is SCfl(0t) = S C n ( f l + ~ ) ~ D ( f l + ~ ) .  Hence 

[3 * 0  implies u < ~ # f k  If u = 0,  then we obtain the claim because SCo(O} =1~. 
Otherwise  we have ~#~¢SC and obtain SCc~(c¢)c SC~(ccu~)<D(~#[3) by 24.14. 

Hence u<<au[3 by 24.15. 

(iii) It  suff ices  to  show SCo(~l)<D~o~l~ 2. If ~0alcc2~SC, then we obtain 

SCD(0~ i) ¢ SCD(,~0cl0~ 2} < D@~t~ 2. If ,p0q~x 2 e SC, then it fo l lows  SC(u t) ~ at< {,patu 2 } = 

S C D (  q)~Xl~ 2 ) $: D~o0~l(x 2. 

(iv} c~#y<[3#y fo l lows  f rom c~<[k We have SCo(~#y}  = SCn(cchJSCo(y}.  c¢<<~ 

implies SCo(cO<Di3<D(~# Y) by {ii) and, since [3 * 0, also SCn(y}~D~'<D(~#y}.  

Hence SC£~(c~#~')<D([~#T) and it fo l lows  c~#T<<~#~(. This proves  the f i r s t  par t  

of  (iv). For the second par t  we have ~+~<~ +[~  since c~<[~ and obtain by (i.i) 

SCo(~+~}= SC~(~)<D[~D( f l+~) .  Hence fl+~<<g}+[~. 

(v} From ce<[~ we obtain ~opc~<~op[~. It  is SCo(~opc~} = SCo(p)~JSCo(cO. Since c~<<~ 

we have SCo(cO<D[~D(~op[~} and p~ SC implies SCf~(p)< Dp~D(~op[~}. 

{vi) ~00~1~ 1 < ~O0~2~ 2 fo l lows  f rom 17.8. It is SC~{~0~[~) = SCo(~0wSC~([~ 0.  By ~<< ~.2 

we have S C o ( ~ }  < D~2~ D(~o~2132} and by [3t<< ~o~2[~ 2 it fo l lows  SC~(~I}< D(~o~2[~2}. 

Pulling these  resu l t s  t oge the r  we obtain SCo(~o~[30<D(~o~2132)and it fo l lows  

~ 0 ~ < <  ~o~z~ z. 

It  should  be noted  t ha t  for  the  p roo f  o f  (vi} it would  suff ice  t o  have the  

assumpt ion  c¢!<c¢ 2 and SC~{ch}< D(~o~x2[~ 2) instead of  ch<<c¢ 2. 

(vii) ~1 # c¢2< [~ fo l lows  f rom ¢q,c~2< [3 e ~. Since SCo(~ ! # ~2 } = SC~(¢~1)~ SCo{~ 2} < I)[~ 

we also obtain a~ # ~2<< [~. 

(viii} is obvious since Dc¢<c~#~l and SC~(~}¢ SC~(cc#ffl}. 

The <<-relat ion will be crucial for  the defini t ion of  the semiformal  sys tem IDa). 

As already ment ioned the derivation t rees  of  IDoo will in general  be f l -branching  

t rees  whose  nodes are labeled by ordinals  in T. The derivat ion o f  a I l l - formula ,  

however,  will just  be a Zoo-derivation, i.e. an o -b ranch ing  t ree .  To obtain an 

ordinal analysis o f  ID t we the re fo re  will have to  co l lapse  the  O-branching  

derivation t rees  for  I l l - sen tences  in IDoo into o -b ranch ing  derivation t rees  of  Zo). 

The e f f e c t  of  the col lapsing procedure  on the derivation t rees  and the  assigned 

ordinals will be con t ro l l ed  by the col lapsing funct ion D on the ordinals  of  1". 
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So in order to obtain an ordinal ass ignment  to the nodes of  the derivations in 

IDoo which still is a cor rec t  ass ignment  af ter  the collapsing procedure  (i.e. an 

ass ignment  which is increasing in the direct ion from the top nodes to  the b o t t o m  

node) it will not  suffice just  to  assign ordinals which are increasing but  we 

will have to  assign ordinals which are essential ly increasing i.e. increasing in 

the sense o f  <<. This of  course  causes problems in the case o f  an inference 

with f l -many premises since for no ordinal ~ T there  are f ] -many different  

ordinals ~<< ~, To meet this difficulty we imagine a partial funct ion f: On -~ On 

which enumerates  the ordinals of  an inference with infinitely many premises.  

The domain of  f then cor responds  to  the ' number '  o f  the premises  of  the 

inference. For such funct ions  f and an ordinal a we are going to  define a 

relat ion f<<~ which will be suff icient  for the col lapsing property° 

24.17. Definit ion 

Let f: On --~ On be a partial funct ion such that  d o m f  is a segment  of  On and 

be an ordinal. We say that  f is e s s e n t i a l l y  l e s s  than co, in symbols  f<<u, if 

the fol lowing condit ions are satisfied: 

(1) V ~  dom f (f~< ~) 

(2) YiSY~¢ dom f ( u~  i3^ ~<< 13 ~ f~<< 6) 

24.18. Lemma 

(i) f<< ~ and  ~ ~ i m p l y  f<< 13. 

(ii) I f  f~<<a f o r  all  ~¢dom f ,  t hen  we have  f<<0t. 

Proof  

(i) We have f ~ < c t ~  for all ~ d o m f .  If  ~ y  and ~<<y, then by ~ i 3  we also 

have a<<'f and obtain f~(<~ by 24.17.(2). 

(ii) f~<(ct immediately implies f~< ~ for all ~ dom f. Now if a ~  6, then we obtain 

f~<<a~:~ which shows tha t  24.17.(2) is satisfied. 

It  fo l lows f rom 24.18.(ii) tha t  the relation f<<a in fact  is a general izat ion of  

the relat ion f(~)<<~ for all ~edomf .  It will therefore  suffice to  secure a~<<a 

for the premises  of  an infinitary inference in order to  obtain a cor rec t  ordinal 

assignment .  The details of  the definition will be given in §26. 

24.19. Lemma 

S u p p o s e  f<< ~. Then we  have 
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(i) ~ .  ~+ f~<< f~+ u, 

and 

Proof 

(i) It is d o m ~ . ~ + ~ = d o m f .  For ~ d o m f  it is C~+f~<~+0c. If  ~+~<<~ arid 

~ d o m f  such that  ~<<6, then we obtain 0c~6 by 24.16.(ii). By 24.17.(2) it fo l lows 

f~<< [3 and we obtain SCo(f}+ i~) = SCQ(f~)< D6. Hence f~+ f~<< 6. 

We prove (ii) and (iii) s imultaneously.  To do so we define g := k~.(f~#y} or 

g := X~.~o-{(~} and ug := ~ # y  or c~g := ,pyc( respectively. Then in any case we 

have d o m g  = d o m f ,  ~<<ag and y<<~go For ~ e d o m g  we obviously always have 

g~<~g. Now if a g ~  and ~<<~ for  some ~ e d o m g ,  then it fo l lows ~ which 

first  proves f~<<6. We have SCo(g~)=  SC~( f~ )uSCo(y )~nd  obtain SC~(f~)<D6 

from f~<<6. Because of  Y<<ug<<6 we also obtain SCo(y)<D6.  Al toge ther  we 

have g~<< [3. Hence g<< [3- 

24.20. Remark 

The reasons  we gave for the definition of  the relation f<< u were purely technical. 

Of  course  it were the technical necessi t ies of  the p roo f  of  the cu t  elimination 

theorem which led us to  the above definition. There is, however, another  aspect  

under which this relat ion seems to be interesting.  The ordinal fi relativized to  

the nota t ion sys tem T (i.e. the term interpreta t ion of  fl as we will call it in tile 

fol lowing section) looses its regularity.  We have Tc~f)= ~b(fl F) = sup{~bAn: n<(o} 

which shows tha t  fi relativized to  T has cofinali ty ¢0. But f)(~T should  in some 

relativized sense re f lec t  the regular i ty of  f). We shall see in what  sense. It is 

easy to  see tha t  a regular  ordinal may be character ized in the fol lowing way: 

x is regular  ~ ¥f(Fun(f}  ~ ¥rl<x (sup{f~: ~<rt}<x)) 

I t  is now obvious tha t  firsT canno t  be a model of  the sentence "F~ is regular '  

if f still ranges over all functions.  But perhaps it should be possible to  res t r ic t  

the range of  the quantifier  ¥f .  I f  for instance we res t r ic t  the quantifier r.o 

funct ions which are x-recursive, then we obtain the notion of  a recursively regular 

ordinal. The quest ion is if there also is a class 5 r of  funct ions  such tha t  tSr.T 

becomes regular  relative to  tha t  c lass  o f  funct ions,  i.e. such tha t  

(T,< ~ T T )  ~ 't3 is regular ' .  

To obtain such a c lass  we call a funct ion f an admissible Function For T if 

r g f c  fl and there  is some u cT such tha t  f<<~. We then have the fol lowing 
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24.  C o l l a p s i n g  [ ' u n c t i o n s  

24.21. L e m m a  

Let M be a subse t  o f  T which, relative to T, is bounded in fl and f is a 

funct ion which is admissible for T, then sup{f~ : ~ M}~Tr~gl. 

P r o o f  

There  is an ~ Tmf2 such tha t  ~<~ holds  for  all ~ M. On the  o the r  hand the re  

is a ~ T  such t h a t  f<<~. Now ~<~<f)  implies  ~<<~<<¢OqS~T. Since a l so  ~<~#[3 

we obtain  f rom f<<[3 a l ready f~<<ua~. Hence f~<D{ct#[3) for  all ~eM and the  

p r o o f  of  the l emma  is comple ted .  

As a consequence  of  l emma  24.21. we obtain  tha t  (T,< ~ T Y )  ~ '~1 is r egu la r '  

holds  if  5 r is the  c lass  o f  func t ions  which are admiss ib le  for  the  no ta t ion  s y s t e m  

T. One easi ly  checks  t ha t  Idc~ << CI. Hence  Idc~ is a funct ion which is admiss ibe  

for  T. Toge the r  with 24.19. this provides  us with a wide c lass  of  func t ions  

which are admiss ible  for  T. I t  is exac t ly  this  c lass  which will be re levan t  for  

the  cu t  e l iminat ion p rocedure  in §27. 

24.21 E x e r c i ~ a  

1. Prove the  fo l lowing s t a t e m e n t s :  

(i) ~ e S C ( a ) ^ ~ t ) ~ = O  

(ii) S C ~ ( a ) c B ( f i )  ~ ~eB(~)  

(rid ¢t<t) =~ SCt~(0~}~ct 

2. Compute :  

(i)  Dr) 

{ii) D(Ec~+ i) 

(iii) D(f )+E  o) 

(iv) D (f'l + ~bfl) 

3. C o m p u t e  the  fo l lowing sets :  

( i)  {~ : ¢c<<0} 

(ii) {o~ : ¢t<<O-t~} 

4. Let  f , g  : O n - *  On be func t ions  such t h a t  d o m f  = d o m g  ~ On. Show: 

(i) id~l<<~l for  all ~ T  

(ii) f<< ~, g<< ct ^ ~ ~ nd ~ f + g  << 0t 

146 



~25. Alternatlve interpretations for f) 

~25. Alternative interpretations for 

Hither to  we always assumed tha t  fl denotes  the f irst  regular  ordinal above ~. 

But we already indicated tha t  there might  be al ternative in terpreta t ions  for gl. 

In the f i rs t  version of  the p roof  of  22.16.,the comple teness  theorem for  £o~,  

we already did interpret  fl by tot cK,  the f i rs t  recursive regular  ordinal above co. 

For the t r ea tmen t  o f  the theory of  ar i thmetical ly definable inductive definit ions 

this in terpreta t ion is in fact  the natural  one. In the present  sect ion we will 

show tha t  this and fur ther  in terpreta t ions  of  f~ are cons i s ten t  with the develop-  

ment  o f  the ordinal notat ion sys tem in §§ 23 and 24. 

In a f i rs t  remark we notice tha t  in the definition o f  ordinal addition and of  

the q~-function the ordinal f~ is o f  no importance.  We therefore  may presume 

tha t  + and ~0 with all their proper t ies  developed in §§ 7 and 17 are independent 

f rom the interpretat ion of  fL 

In the case of  the ~b-function the s i tuat ion is comple te ly  different .  Since we 

defined the funct ion ¢ and the sets  B(~) s imul taneous ly  the ordinal fl enters  

via clause (B1). Theorem 23.10. shows the importance of  the ordinal f} in the 

development  of  the ordinal nota t ion system. It is now an obvious quest ion to 

ask to what  extend the notat ion sys tem will be changed, when in clause (B1) 

we replace the f irst  uncountable  regular,  which from now on will be denoted 

by ~1, by some other  ordinal. 

To tackle this quest ion we are going to take f} as a symbol or variable for an 

ordinal wi thout  fur ther  information.  When we try to develop the theory  o f  §§ 23 

and 24 with a free variable FI, then already the p roof  o f  lemma 23.2. becomes  

impossible. The regulari ty of  ~ played a crucial role for the proof.  A fur ther  

inspection of  §§ 23 and 24, however, shows that  this in fact  was the only place 

where we used the regulari ty o f  fl. In later applications we always used lemma 

23.2. Therefore  it is an obvious idea to  use lemma 23.2. as a defining axiom for 

gl. We introduce the axiom 

(Axca) V~ (~0¢< fD.- 

By assuming (Axe} we may develop the theory  of  §§ 23 and 24 for ordinal te rms  

built  up f rom the funct ions  +,~0,~b and the variable f) wi thout  serious problems.  

Some places,  however, need some caution. So for instance lemma 23.22., where 

we need ~ * gi. These and more silly difficult ies are easily avoided by the 

additional requirement  13~ SC. This requirement,  however, is not  essential  but  

jus t  for convenience (cf. exercise}. We leave it to  the reader to  convince 

himself  tha t  (Axc~) and fl~ SC are in fact  suff icient  to  obtain §§ 23 and 24. In 

order  to  dist inguish ordinals f rom ord ina l - t e rms  we will, for the moment ,  
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denote o rd ina l - t e rms  by lower case latin letters.  After  the identification of  

ordinal te rms  and their s tandard in terpreta t ions  we will be able to drop again 

this distinction, 

An ass ignment  V(O)e SC for the variable fl will be called an interpretation V 

for  O. I f  V is an interpreta t ion for  f}, then we define se ts  BV{ct) and a funct ion 

kb v in the  fol lowing way: 

25.1. Inductive definition of the sets BV(~) and the function ~b v 

(BVI) 

(BV2) 

(BV3) 

(BY4) 

(Ovl) 

{0,Vf)}c BV(c¢). 

If [ = NF[t+..+~n and {~t ..... ~n}¢ Bv(~), then also ~eBV{~), 

If  ~ = NFqa~I~2 and {~t,~2}c Bv(~),  then also ~eBV(~), 

If  ~¢BV(~)~ and ~¢ Bv(~), then d)V~eB(~). 

~Vcx := mln{~:~(~ BV(oc)}. 

If  we define T1 = NFOV~ . ~  ~l = ~bV~A ~e Bv(~} then clause (BV4) takes the form 

(BV4 '} I f  ri = NF~V~^ ~ Bv{~)c~,  then ~le BV(~). 

The only essential  difference to definition 23.1. or ra ther  to  the variation of  

23.1. given in 23.19. is the fact  tha t  in clause (BV3) we have built  in the normal 

form condi t ion for ~v{. 

Since according to theorem 23.26. all o rd ina l - t e rms  in the set  B(C) r)  are uniquely 

represented  by te rms  of  the set  T, we may extend the interpreta t ion V to the 

t e rms  in B(O r)  as in definition 25.2. below. The value of  an o rd ina l - t e rm a in 

the extended interpretat ion V will be denoted by a v .  

25.2. Definition of a v for ae B{D r) 

(i) 0 v := O, D v := V(fi). 

(ii) If a = NFaj+...+an, then a V := aV+...+a V. 

(iii) If a = N~Pala 2, then aV:= ~0aVa V. 

(iv) If a = NFCao, then a v := ~bvao v. 

The degree Ga o f  an ordinal t e rm a is defined analogously  to  the  degree o f  an 

ordinal a e T, i.e. Ga is the s tage  o f  the te rm a in the  inductive definit ion o f  

the set  T o f  ordinal terms.  

We call the in terpreta t ion St(fD := ~t the standard interpretation for f~. In §§ 

23 and 24 we developed the theory  o f  the s tandard  interpreta t ion for  f). I t  fo l lows 
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f rom lemma 23.25. tha t  the sets  B(~) and BSt(~) and therefore  also the funct ions  

~b and ~b s t  coincide. Theorem 23.26. may be interpreted as the s t a t emen t  tha t  

e v e r y  ordinal  ~ ~ B(~ F) is  t h e  s t a n d a r d  i n t e r p r e t a t i o n  o f  an u n i q u e l y  d e t e r m i n e d  

ordinal  t e r m  a~e B(flr).  Now let V be an in terpreta t ion for f). By defining 
V ~v :-- a~ we obtain by 25.2. a mapping V:B(R~F) -*  On. For Mc B(~ r )  we denote  

by M v the image of  M under v.  The mapping s t  then obviously is the identity 

on B(~tr). Therefore we are going to drop again the distinction between 

ordinals and ordinal terms and identify ordinal terms and their standard 

interpretations. 

25.3 Definit ion 

An interpreta t ion V for ~1 is g o o d  r e l a t i v e  t o  an ordinal  ~ if ~vc tv<v ( f l )  holds 

for all ~e B([3)~([3+1). An interpreta t ion which is good relative to  RI r is a g o o d  

i n t e r p r e t a t i o n .  

The resul t  of  lemma 23.2. may now be re formula ted  as: 

25.4 Theorem 

The s t a n d a r d  i n t e r p r e t a t i o n  f o r  ~ is  a g o o d  i n t e r p r e t a t i o n .  

25.5. Lamnm 

Le t  V be  an i n t e r p r e t a t i o n .  Then w e  have  f o r  a l l  ~ e B(Rl r)  

(li) ~ SC ~ ~ve SC. 

Proof 

I f  ~ = t~j, then  we have uv = V [ I  and obtain V[ le  SC¢ Uq since V is an interpretat ion.  

I f  c~ = NF~1~2,  then we have ~v = ~0~v~v which implies ~ve aq. 

If  ~ = NF~0t o, then it is ~v = ~v~ov and by  23.5. (whose p roo f  does not  need (Axe) )  

we obtain ¢xv¢ SC. 

It  is F ' (O)=  rain{{: F~ = {}. By theorem 23.10. it fo l lows tha t  the funct ion 

res t r ic ted  to F'(O} coincides with the funct ion ~ . F ~ .  Since the definit ion of  the 

funct ion X~.F~ does not  depend upon the value of  V ~  we have tha t  ~xr and ~b 

coincide below F'(O) for  every in terpreta t ion for  which we have F ' (O)~Vt) .  

(Otherwise  ~ v  could be shif ted a litte bit  a t  the place where Vf) comes  into 
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Bv(~)).  But we have to  be careful .  In order  to use the above a rgument  we have 

to  know tha t  theorem 23.10 holds for  all in terpre ta t ions ,  i.e. we have to  convince 

ourselves  tha t  we do not  need (Ax n) in the p roof  o f  23.10. The facts  we need 

in the p r oo f  of  23.10. are the following: 

(1) B v ( o ) f ~ V f l  = P(O). 

(2) 4<T1 =~ BV(Oc Bv(~).  Hence ~<71 ~ ~ v ~ v r l .  

(3) If  ~<F'(O), then 4¢ Bv(~+I)/\ F~= Cv 4 ~ kbv(4+l)= (~pv4)r. 

(4) d~v~ F'(O} is cont inuous .  

Since Fo<F' (O)~Vf)  (1) again fo l lows  f rom a compar ison o f  the def ini t ions o f  

P(O) and BV(O). (2) holds trivially. What  we really need to  prove is (3) and (4). 

(3) is lemma 23.9. (i) and (4) is lemma 23.7. and in both  proofs  we used (Axt3). 

We the re fo re  have to  reprove (3) and (4) wi thout  using (Axo).  To prove (3) 

we observe tha t  ~e Bv(~+I) implies ~v~<ffv{4+l)e SC. So it remains to  show 

(5) ~v(~+l)~ (d2vo r .  

Assume tha t  (~bvoF< d2v(~+l). Then (~bvOF~BV(~+l). Since (~VOF~SC and 

Bv(~+I)f~SC only contains  ordinals  of  the form qbvrl~bv~ or Vfl  we obtain 

( ~ v ~ ) F =  VCI. But then we have VC~ = (kbvOF=F~+l .  4<F'(O), however,  also 

implies F~+I< F'(O) ~ VCI. A contradic t ion.  

To show (4) we s imul taneous ly  prove sup{~bvrl: rl<~} = ~bv~ for  ~e F ' (O)nLim and 

(6) 4(F ' (O)  ~ ~v~ = F~ 

by induct ion on 4. 

Define p := sup{~bVTl: ~<~}. Then p~ ~2v~ by (2). Assume p< ~bv~. Then pc Bv(O.  We 

obviously have p¢ SC. All s t rong ly  critical ordinals  in B v ( o  d i f fe ren t  f rom VC~ 

are o f  the  fo rm ~bv~ for  some ~<~. Hence p = V ~  and using the induction hypo-  

thes is  for  (6) we obtain Vf~ = p = sup{Fn: rl<~} = F~<F'(O)aVCI. Contradict ion.  

This proves (4). For the p roof  of  (6) we dist inguish the fol lowing cases: 

4 = O. Then ~bv0 = F o by (1). 

~=~o+1. Then ~ o < F ~ o = k b v ~ c B v ( ~ ) c B V ( ~ o + l )  and by (3) and the  induction 

hypothes is  it fo l lows  Cv~= (~v~o) r=  (F~o)r =Fs.  

If ~ e Lim we immediately obtain the claim f rom (4) and the induction hypothesis .  

25.6. Lemma 

Let V be an interpretation such that  F'(O)~V(tS). Then we have ~ v [  = F~ and 

4 v =  4 for  aH ~< F'(O). 

P r o o f  

We already have shown kbv~ = F~ for  all ~<F'(O). We prove ~v = ~ by induction 
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on G~. If  ~ is not  of  the form dpv~ we obtain the  claim immediately f rom the  

induction hypothesis .  If F'(O)>~ =NF ~ then we have ~<F'(O) and, using the 

induction hypothesis ,  obtain ~v = d/v~v l__.h-~bv ~ = Fn = ~ = ~. 

Another  p roper ty  which is provable wi thout  using (Axc~) is the following: 

(7) ~ B v ( o ~  ~ ~v~<~v~. 

To prove (7) we assume ~ B V ( ~ ) c ~  and observe tha t  by (2) we then  have 
~ Bv(~I) and t p v ~  @vTI. By (BY4) it fo l lows  @v~ BV(rl) which implies ~ v ~ ,  hbv~l. 

In order  to  have lemma 25.6. we f rom now on taci t ly assume tha t  for  all in ter-  

p re ta t ions  we have F ' (0)~Vt3.  

Now let  O be an ordinal and suppose  tha t  V is an in te rpre ta t ion  which is 

good relat ive to  O. 

25.7. Lamina 

(i) For  al l  ord ina ls  ct,~ in B(O+I) we have  ~<6 i f  and  o n l y  i f  ctv<6 V, 

(ii) For a l l  ord inals  f~ in B(O)r~(O+l) w e  have  t ha t  ~ B(6) i m p l i e s  ave BV(6v). 

(iii) For  a l l  o rd ina l s  ¢t,f~ in B(O+I) s u c h  t h a t  ct ~ Cr(lh) we a l s o  have  ¢tv¢ Cr(~V). 

Proof 

We prove claims (i) and (ii) s imul taneous ly  by induction on 2 G ~ + 2  G~. 

(i) In the  p roo f  of  claim (i) we fo l low the dis t inct ion by cases  o f  23.30. It  

suf f ices  to  show c(<[3 ~ ~v<[~v. The opposi te  direct ion then is an immediate  

consequence .  

I f  ~ = 0 and 13 * 0, t hen  we have also ~v= 0 and [3v* 0 which imply ~v< 13 v .  

If  u = NF0CI+...+~n, then it is 2 C~i +2 G~i+l ~2G~<2G~+2 G~ for  i = 1 ..... n- l .  By 

23.22. we have {~1 ..... ~n}C B(O+I) and obtain by the induction hypothes is  f i rs t  

and by  25.5. a l s o  a .  H e n c e  _ S = 

we analogously  obtain [5 v v v = [~t +'"+[3m" Now if ~)=[3j for  all j~i  and ui+l<13i+l, 

then we obtain by the induction hypothes is  ¢t iv=~7 for  all j~ i  and ¢tl+l<v 131+l.v 

By 23.30.(2) (which does  not  depend upon (Axe)  bu t  only on the r e su l t s  o f  §7) 
it then  fo l lows  ~ v < ~ v .  

If  [3~ 0d and ~j < 13, then  we also have [3re N and obtain u v  < [3v by the  induction 

hypothesis .  Hence uv< [3v by 23.30.(3). 

If  ~e nd, [3 = NFi31+...+[3n and u~i3j, then as before  we obtain [ 5v= NFulaV+---+aVvn 

and a v £ i 3 v  by the induction hypothes is  . By 23.30.{4) it fo l lows  ¢tv<13 V. 
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If ~ = Nl=~l(X2 and ~ = Nl=~0~t~2, then we have {~t,a2,~l,~2}c B(O+I) by 23.22. and 

obtain ~v<{~v by 17.8.(2} and the induction hypothesis,  

If ~ = NF~CqC¢ 2 and ~eSC such tha t  a1,~2<~, then we obtain a v =  ~0~v~ V and 

a v , a v < ~  v by 23.22. and the induction hypothesis.  By 25.5. it fo l lows ~ V e s c  

and by 17.14. we obtain aV< ~v. 

If  cceSC and ~= Nl=~ot3tf32, then we have a<t3 t or a = 1~, and ~2 * 0 or a<~  2. By 

23.22. and the induction hypothesis  it fo l lows ~v<13v, ~v = 13v and I~ V * 0 or 

a v <  13v By 25.5. we also have a v e  SC and obtain ~v  = ~aVo< ~13Vo~13vl3v = t~v 

in the f i rs t  case. In the second case it fo l lows a v  = ~0aVo = ~l~vO<@lsvl~v = i~v 

and in the third  case a v < ~ v ~ 0 ~ v ~  V = 1~ v. 

Now if c~ = NF~bao and ~ = ~ b ~  o, then we have 2 G ~ ° + 2 C ~ ° ~ 2 G ~ < 2 G ~ + 2 G S a n d  

ana logous ly  2GS°+2G~<2G%2 Gs. We have 0beB(~ 0) and by 23.25. ~o~O. Hence 

c~0e B(O). Similarly we also obtain ~o e B(~0}~B(O}. Therefore  we may apply the 

induction hypothesis  for claim (ii) to  c% and 6o and obtain aveBV(~oV) and 

[~VeBV([3oV). This implies aV=NF~Va V and ~V=NF~bVI3V. By the  induction 

hypothesis  for claim (i) we have aoV<[~ V and obtain av<[~ v by (7). 

if  finally ~ = Nl=d/a o and ~ = N~, then we obtain as above ~0 e B(O)~O+l. Since V 

is a good  interpreta t ion relative to O it fo l lows a v = ~bVao-V<VO = ~v. 

(ii) I f  ~ = 0 or ~ = t~l, then we have ~VeBV([3 v )  according to  (BI). 

I f  ~ = N~l+ . . .+~n  or ~ = N F ~ ) 0 ~ | 0 ~ 2 ,  then we either obtain c~ v = NF0flV+...+an V or 

~V = NF@~ V~2V by the induction hypothesis  for (i) and 25.5. By the induction 

hypothesis  for (ii) and (BV2) or (BV3) respectively we obtain a v e  Bv(~ v }. 

If  ~ = N~d/~ o, then by 23.25. we have aoe B ( ~ ) ~ c  B(O)r~(O+l). By the induction 

hypothesis  for claim (ii) and (i) we obtain ~ v  e BV(czoV)~BV(~v)~[~v. By a clause 

(BV4), however,  this implies a v = ~vaov e BV(~V}. 

We prove (iii). If  ~ Cr(~}, then we either have ~e SC and ~ a  or a =NI= ~o~a2 

for  some c q ~ .  In the f i rs t  case we obtain a V e s c  and ~ v s a v  by (i). Hence 

~ve  Cr(~V). In the second case it fo l lows tha t  a v =  q~aVa V. By (i) it is ccv>~ v 

which implies ~ v e  Cr(~V). 

25.8. Lemma 

If f~e B(O)c~O+l, then for every ae Bv'n(~ V) there is an tie B(B) such that a = ~v. 

It is 7} e H whenever a e H. 

Proof 

We prove the claim by main induction on ~ with side induction on n. 

i f  ~ = 0  or ~ = V f l ,  then we define r t :=O or ~ :=Rl.  In bo th  cases  we have 

~E B(~). 
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I f  ct = Nl=O~l+...+0~ n or ct = N l ~ q O C t l 0 ~ 2 ,  t h e n  by i n d u c t i o n  h y p o t h e s i s  t he r e  are 

o r d i n a l s  ql ..... ~n or qi,q2, r e spec t ive ly ,  which  are in B{t~)c~B(O) such  t h a t  ct k = r ~  r 

ho lds  for  k = 1 ..... n or k = 1,2 respec t ive ly .  Now we def ine  q := ql+.. .+~n or  q := 

q0qlrl 2 respec t ive ly .  Then  it is rl~B(~}. In the  f i r s t  case  we have ~kelH and  

o b t a i n  q k e ~  by the  i n d u c t i o n  h y p o t h e s i s ,  q v a . . . ~ q v  impl i e s  q t~ . . . aTln  by 25.7. 

In the  s e c o n d  case  we have r~t,qz~ q. qt = q impl i e s  qte SC and  rlz = 0. Hence  

~t = rt V ~ S C  by 25.5 and  ~z = 0. This .  however ,  c o n t r a d i c t s  ct =r~t= ~ctt~2- I f  

rtz = rl, t h e n  qz¢Cr f~ t+ l ) .  By 25.7. th i s  impl i e s  q2V¢Cr(rhV+l} which  e n t a i l s  

qoal~2 = ~0qv)~v = q v  = ~ in c o n t r a d i c t i o n  to  ~ =N1F q°alCt2- Hence  rti,q2< r I a nd  we 

have rl = NFrll+...+)]n as wel l  as rl = NF~O)]I)]2 and  in b o t h  c a se s  i t  f o l l o w s  qv  = ~. 

In the  s e c o n d  case  we obv ious ly  a l so  have q e ~q. 

If  a = NFd/V%, then  by the  s ide i n d u c t i o n  h y p o t h e s i s  t he re  is an qo (B(~}c  B(O) 

such  t h a t  )1o V = %.  F r o m  the  n o r m a l  f o r m  c o n d i t i o n  we o b t a i n  q v  ~ BV(rloV}. Since 

qo V = % <  13v we o b t a i n  ~o < 13 by 25.7. Hence  qo ~ B(O}c~(O+l) which  imp l i e s  )to ~ B(qo) 

by t he  ma in  i n d u c t i o n  h y p o t h e s i s  and  25.7. I f  we de f ine  q := d/rto, t h e n  we have 

= NF~rlo. Hence  qe SCc~B(13) and  ~v = ~bvqv = a. 

25.9. Corollary 

A s s u m e  13~ B(O). Then w e  have  B(I~) v = BV(13v). 

Proof 

c~eB(13) impl ies  ~V~BV(13v) by 25.7.(ii). If  c o n v e r s e l y  ~¢BV([3v) ,  t h e n  by 25.8. 

t he r e  is an q~B(13) such  t h a t  ~ = qv.  Hence  ~ B ( [ 5 )  v .  

As an i m m e d i a t e  c o n s e q u e n c e  of  25.9. we a l so  t rbtain 

25.10. C o r o l l a r y  

For e v e r y  g o o d  i n t e r p r e t a t i o n  V we  have  B(RjF) v = BV((vf} )F) .  

Proof 

Define  the  s e q u e n c e  A n as  in the  p r o o f  of  23.14. Then  we have A n ~ B(A n) for  al l  

n<t0 and  B(i~l F) = U { B ( A n ) :  n<to}, V is good  r e l a t ive  t o  all  An. Hence  B(~IF) v = 

U{B(An)V:  n<t0} = U{BV(AnV) : n<~0} = BV(Vtq r )  s ince  sup{AnY: n<~0} = Vtq r .  

25.11 T h e o r e m  

(i) I f  V is  g o o d  r e l a t i v e  t o  (9 and  ~ ~ B(9) ,  t h e n  v i s  an i s o m o r p h i s m  

From B(13) o n t o  B(13I v .  

153 



~25. Alternatlve interpretations For C) 

(ii) A s s u m e  tha t  V is a g o o d  in terpre ta t ion .  Then v is an i s o m o r p h i s m  

from B(I~I F) onto Bv((v~)) F) 

Proof 

(i) f o l l o w s  f r o m  25.7. a n d  25.9. whi le  (ii) f o l l o w s  f r o m  25.7. a nd  25.10. 

The main  c o n c e r n  o f  the  p r e s e n t  s ec t i on  is t o  show t h a t  t he  s e g m e n t  o f  the  

n o t a t i o n  s y s t e m  does  no t  d e p e n d  u p o n  the  i n t e r p r e t a t i o n  o f  fi. For  t h i s  p u r p o s e  

we are go ing  to  s h o w  t h a t  the  m a p p i n g  v is the  i d e n t i t y  on  the  o rd ina l  s e g m e n t  

in B(O). This  is a c o n s e q u e n c e  o f  the  f o l l o w i n g  l emma.  

25.12. Lem_m~ 
l f V  is g o o d  re la t ive  to  O, t h e n  we  have B v ( ~ v ) ~ v  C) = ~ v ~ v  f o r  al l  ~ ~ B(O)~  (O+I). 

Proof 
Since V is g o o d  re la t ive  t o  O we have ~ v a V < v D  for  a l l  a e B ( O ) ~ ( O + l )  a n d  

prove  B v ( ~ V ) ~ V O  = kbv~ v as  in 23.6. 

25.13. T h e o r e m  

I f  V is a g o o d  in t e rpre ta t i on  re la t ive  to  O, then  we have 

(i} BV(aV)r~Vf) = B ( a } ~  t f o r  all  ae  B(O)c~(O+l) 

and 

(ii) cx v = ~ f o r  all ~<~b(O). 

Proof 

I f  V is a g o o d  i n t e r p r e t a t i o n  r e l a t i ve  t o  O, t h e n  for  a l l  ~ B ( O ) ~ ( O + I )  v is an  

o rder  i s o m o r p h i s m  f r o m  B(~) o n t o  B v ( ~  v )  m a p p i n g  ~t  t o  VC). Acco rd ing  t o  

25.12 B ( ~ ) ~ t  I and  B v ( ~ v ) A V f }  are s e g m e n t s .  Thus  v has to  be  t he  i den t i t y  

map  on  B(~)f~l~ r 

We prove  the  s e c o n d  p a r t  o f  the  t h e o r e m  by i n d u c t i o n  on  G~. For  ~ = 0 it  is 

0tV = 0. 

I f  ~ = NF~i+. . .+~n or ~ = NF~00t|0t 2, t h e n  we have ~ v  = ~k for  k = 1 ..... n or k = 1,2 

r e s p e c t i v e l y  by t he  i n d u c t i o n  hypo the s i s .  Henc e  ~ v =  ~v+...+~nV = ~1+...+~ n = 

or ot v = ~ otV~t v = ~o~jot 2 = o~ r e spec t ive ly .  

I f  ~ = N F ~ o ,  t h e n  we have ~ o ~ B ( O ) ~ O  and  o b t a i n  B V ( ~ o V } ~ v D  = B ( ~ o ) ~  t by 

t h e  f i r s t  pa r t .  Hence  ~ v =  ~v0tov = kbao = ~. 
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25.14. Corollary 
For a g o o d  in t e rpre ta t i on  V we have c¢v = c~ f o r  all ~ B ( l c F ) ~ ¢ I .  

P roof  

Let {An: n<o}  be as above. For every ~ c B ( ~ ) ~ R !  there is an n<w such tha t  

~ ¢ B ( A n ) f ~  1. Since V is good relative to  A n we obtain ~ v =  ~ by 25.13. 

Corol lary 25.14. shows tha t  the segment  o f  the notat ion sys tem below }¢j is 

invariant under re in terpre ta t ions  o f  fi, provided they are good in terpre ta-  

tions. This o f  course  becomes  wrong for the ordinals above ~1. These ordinals 

will be moved by a re in terpre ta t ion o f  D. The moving of  these  ordinals is 

character ized by the funct ion ~ ~-~ ~v. As we saw in 25.7. this funct ion is order 

preserving. 

25.15. Theorem 

Assume e ~ B(®). I f  V is a good interpretation relative to 0, then we have 

¢0<  VD. 

Proof 

Assume tha t  V is a good interpreta t ion relative to  e such tha t  VD~¢O.  By 25.13. 

it fo l lows tha t  V D ~ O  = kbVe v in contradic t ion to the hypothesis  tha t  V is 

good relative to  e .  

25.16. Corollary 
For any g o o d  in t e rpre ta t i on  V we  have  ~(~¢Ir)~vD. 

P roof  

Again we denote  by {An: n<t~} the  fundamenta l  sequence for  ~tl F (cf. 25.10 and 

23.14.). Then V is good  relative to  all An. Since An~B(A n) holds for all n < o  

we obtain by 25.15. ~(An)<VD for all n<t0. Hence ~ (R~)~VD.  

Our h i ther to  only example o f  a good  interpreta t ion for D is the s tandard  inter-  

pretat ion.  We are now going to  show tha t  there  are much more good  interpre-  

ations. We will even be able to  give a precise character iza t ion o f  the good  inter-  

preta t ions .  
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25.17. Lemma 

L e t  V be  an i n t e r p r e t a t i o n  a n d ®  an ordinal  s u c h  t ha t  ~b( O ) ~ V f)~ ~¢ ~. Then we have: 

(i) ~ v ~  h o l d s  f o r  al l  ~¢B(O) 

(B) V is a g o o d  i n t e r p r e t a t i o n  r e la t i ve  to  al l  6< ®. 

Proof  

We prove (i) and (ii} s imul taneous ly  by main induction on G[3 and side induction 
on [3. We f irs t  show (i). 

I f  [3 = O, then 6 v = [3 and if [3 = ~tj, then ~v = V f l ~ j  = 6. 

If  6 = NF~I+--.+6n o r  6 = N F q ~ 1 6 2 ,  then we obtain the claim immediately f rom 

the main induction hypothesis ,  

Let ~ = NF~b~0. Then we have ~o e B(O)c~® and V is good relative to  ~o according 

to  the main induction hypothesis  for  (ii). But we also have ~0eB(~0)rH30+l by 

the normal form condit ion and obtain [3 V = ~v~0v = ~b[3 o = ~ by 25.13. 

To prove (ii} w e  have to show tha t  ~B([~)c~6+I implies ~bv~v<vfl.  So assume 

~e B([3)r~+l. Then we have ~qb[~.  

For ~ = 0 i t  i s  ~ = O. Hence qbv~ v = F o = ~O~bO< V~) by 25.6. 

If  t~e Lim we dist inguish the fol lowing cases.  

1. ~ = ~. Then we have ~ B ( ~ )  which implies tha t  qb~ is in normal form. If  ~ 

we have ~ = ~<~b~b/)  = F '(0)  which by 25.6. implies ~v~v = kb~ = F~<F'(O)~Vf).  

Now assume qb6<~. We have ~ e B ( O ) ~ O  since ~eB(O)c~O. We may now apply 

the side induction hypothesis  for  (i) and obtain ~bv~v = (~[~)v~b[~<~O<Vt). 

2. ~<~. Since B([~) = U{B(~):  ~<~} there  is an ~l<[~ such  tha t  ~e B(~)r~+| .  By side 

induction hypothesis  for (ii) we have tha t  V is good relative to ~ which entails  

~v~v< V el. 

We finally assume [3 = S0+l, I f  6~b6, then we again obtain ~<~bl3~kbf)= F~(O). 

Hence ~bv~v = F~<F ' IO)~Vfl  by 25.6. Now assume ~<[~.  There i s  an 0teB(Rl F) 

such tha t  q)~ = NF~e and in the te rminology o f  lemma 23.23. it is ~ = ~1~1 ~ ~. I f  

= [3, then ~ = ~ as ~ B { ~ )  and therefore  ~(~)= 1~(~)= min{~: 1 ~  B(~)} = ~ and 

we obtain q~ ¢ B(O)r~ ~ from ~ e B(OlraO and ~1~< 6- By the side induction hypothesis  

for (i) it then fol low ~bv~ V = ~ v 1 3 v ~ 6  <~O~Vfl .  I f  ~<1~, then ~b~ = NF~b~t~B(~) 

which by 23.25. implk ~ B(~)~IScB(OI. By the  side induction hypothesis  for 

(ii) we know tha t  V is food relative to  G0. So ~ by 25.7. implies ~ v ~ v  and 

as d~ < dA3< {3 we finally ootain ~bv~v~ ¢?V~V~ kbct< ~b[~< d?O ~ V f} by the side induction 

hypothesis for (i). 

25.18. Lemma 

S u p p o s e  t h a t  0 is  a l im i t  ordinal  s u c h  t h a t  ~bO<Vf), Then  w e  have  ~bv~ v = ( ~ ) v  = 

~ < ~ O  f o r  a l l  ~e B(O)~O. 
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Proof 

I f  ~ I ~ V O ,  then  we prove as in 23.2. t ha t  V is a good in te rpre ta t ion .  

I f  VO<~ 1 and ~EB(O)c~O, then  we have ~ B ( q ) ~ + l  for  some  q<O. By the  

hypothes i s  ~bO~VCl and 25.17. it fo l lows  tha t  V is a good  re la t ive  to  q. Hence  

~ v ~ v  = ( ~ ) v  = kb~ by 25.t3. 

25.19. Theorem 
An interpretation V is good i f  and only i f  , ( R F ) < V D .  

P r o o f  

I f  V is good,  then  ~(tcj r)  ~VD.  by 25.16. For the  oppos i te  direct ion a s sume  kb(~lr)~ 

VD and ~E B(~tr ) r~(~ir+l)  = B ( ~ r ) ~ t  r .  Then we obtain  ~bv~v = ,~<~b(Ri r )~VD 

by 25.18. So V is a good  in te rpre ta t ion .  

25.20. Theorem 

The following interpretations are good interpretations: 

(i) VD := R v This is the  standard interpretation denoted  by St 

(ii) VD := G) CK. We call  this  in te rp re ta t ion  the  recursive standard 

interpretation and deno te  it  by Rec. 

(iii) VD := ~(l¢lr). We call  this  in te rpre ta t ion  the  term interpretation 

o f  D. 

Proof 

(i) and (iiil are a l ready proved.  (ti) fo l lows  f rom 25.19. and coro l l a ry  23.32. 

In a l a s t  r emark  we re tu rn  to  (AXD). 

25.21. I ~ f l n i U o n  

We call  an in te rp re ta t ion  V a global model o f  (Ax D) if we have ¥~ (d~v~< VD). 

We call  i t  a local model o f  (Ax D) if i t  holds  ¥~e B((VfD r} (qbv~< VO). 

I f  V is a global  model  o f  (AXD), then  the  theory  o f  §§23 and 24 holds  for  the  

se t s  Bv(~)  and the funct ion qb v in the  same  way as it did for  the  s e t s  B(0c) and 

the  func t ions  ~. This shows  tha t  we may replace  ~t I by any ordinal O which 

sa t i s f i es  (Ax D) wi thou t  changing the  theory .  There fo re  it  is wor thwhi le  to  obta in  

a charac te r iza t ion  o f  the  in t e rp re t a t ions  which are global  mode l s  o f  (AXD). 
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25.22. Theorem 

The fo l lowing  s t a t e m e n t s  are equivalent: 

(i) V is a global mode l  for  {Axe,) 
(ii) V is a good interpretation such that ~(~F)<Vf} 

( i l l )  V is a JocaJ model  f o r  (Axe) and i t  is ~v(v~r)< Vk~ 

Proof 

From (i) we trivially obtain that V is a good interpretation. But then we also have 

t~(btl r) = sup{~b(An()¢l)): n<~} = sup{t~V(An(Nl))V: n<¢~} = d}V(sup{An(Rl)V: n<t0}) 

= kbV(sup{An(Vi)) : n<e}) = ~v(vl)r)<Vi) by 25.13. and the continuity of ~v (cf. 

17.22 and 23.7.). 

Assume (ii) and choose any ~eBV((Vt)) r) then by 25.10. there is an ~eB(~tl r) 

such that ~ = ~v. Hence qbv~ = ~v~v< Vt). So V is a local model for (Axn). We 

recursively define a sequence A_ V by A_oV := VD+I and _Av+I := ~0(_AnV)O and 

obtain sup{AV: n<e} = (V~) r as well as Ave Bv(~)~(Vt)) r for all n<e and all 

ordinals ~. It is obvious that _AnV= (An(RI)) V (cf. 17.22.) and we will also obtain 

(*) djv(vt)) r = sup{kbvAv: n<to}. 

From (*), 25.14. and 23.7. we obtain ~V(Vi~l)r = sup{~An(t¢l): n<e} = t~(l~r)<vfl. 

We prove (*). 0 := sup{d~vA_v: n<~}~ d2v(Vgi) r is obvious. By 25.13. it follows 

o = sup{~An(bt0: n<cd} = d2(Rlr}<VCl. If we assume o<~bv(Vt~) r, then we obtain 

an m e o such that 0 e BV(AmV)~Vgl. Hence ~(t¢l r) = o< kbVAm V = ~Am(t¢ 0' a contra- 

diction. 

Now assume (iii). We first observe that ~[3 and [~,[3)r~BV(~) = ~ imply BV(~) 

= Bv{~) and therefore also Cv~ = kbv~. This is the relativized form of 23.3.(iii) 

whose proof does not use (Axis). We easily obtain Bv, n([3)c BV(Vt~r}~(Vt)) r 

for all n<~ and all ordinals ~ by induction on n. HenceBV(~)c BV(Vt)r)n(Vfl) r. 

Now let ~ be an arbitrary ordinal. If ~< (Vgl) r then A(~) := min{~: ~< ~le Bv(~)} is 

defined because there is an n<~ such that ~<AVe Bv(~). But then Cv~ = d2v(A{~)) 

<Vt~ since V locally satisfies (Axis). If (V~))r~, then we obtain ~v~ = kbv(vt))r 

<VfL So V is a global model of (Axe). 

25.23. Corollary 

I f  ~(Rr)<v~3,  then V is a global  mode l  o f  (Axt~). 

Proof 

This follows from 25.19. and 25.22. 
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As an immediate  consequence  of  25.23. we obtain 

2S,24.Theorem 

The recursive s tandard interpretat ion is a global model  o f  (Axc~). 

25.25. Remark 

The t e rm in terpre ta t ion ,  however,  is no t  a global model o f  (Axn) .  I t  is easy 

to  visualize why. I f  we in te rpre t  D by ¢(Rir), then ¢(R r )  comes  into the se t  

Bv(VD r)  which enlarges  the  segment  belonging to  Bv(vDF) .  Hence VD = ¢(~1 r )  

< d~v{vD r )  = Otyp(B(R~r}}. 

25.26. Exerclaes  

1. Prove the  fol lowing s ta tement .  

If  V D ~ F ' ( 0 ) \ S C ,  then we have F~ = ~bvc¢. 

2. Describe the behaviour of  ~b v for  VDe SCAF'(OI. 

3. In this exercise  we are going to  drop the assumpt ion  VD~ SC in the defini t ion 

o f  an in terpre ta t ion.  Such a general ized in te rpre ta t ion  V for  D is cal led good 

relat ive to  ~, if kbv~v< sup{keSC:  k~VD} holds  for  all ~B(~)~ ( t3+ l ) .  

(i) Show tha t  the  theo rems  25.19. and 25.22. sti l l  hold  for  this  definition. 

[Hint: Define H v  := tH~{VD}, SC v := SCu{VD} and modify the  normal  fo rm 

condi t ions  by replacing IH by H v and SC by SC v respectively.  Then check all 

lemmas and theorems  o f  the preceeding sect ion.]  

(ii) Show tha t  lemma 25.7.(i) does not  hold if we weaken the defini t ion o f  

an in te rpre ta t ion  being good relat ive to  ~ as fol lows:  V is good relat ive to  ~, 

if @ v a v < v ~  holds  for  all a¢B(~)c~(~+l). 

4. Assume VD =NF ~ba, then we have ~ba<~va v.  

S. Assume again VD~ SC. Prove the equivalence of  the fol lowing s ta tements .  

(i) V is a global model for  (Axo) .  

(ii) It  holds ~V((vD)  F) = ~(RI r )  and ~ v ~ v =  d2 ~ for  all ~e B(t~lr). 

(iii) It holds  dY((VO) F)  = d~(R F )  and ( ~ ) v  = ~ for all ~ B ( ~ F ) .  

(iv) ~V((VO)r )  = BV((VfD r )  c~ VD. 

(v) ~V((VDjr)<vo. 
(vi) @v is cont inuous  and we have ~v(~+l )=  (~V~)F. 
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6. Let 

(i) 

( i i )  

(iii) 

(iv) 

(v} 

(vi) 

(vii) 

(viii) 

again be Vi le  SC. Show tha t  the fol lowing s t a t emen t s  are equivalent.  

V is a good in terpre ta t ion.  

For all ~ B(~ t t  r} we have ~bv~v = d~. 

For all 

For all 

For  all 

For all 

For all 

For all 

~eB(~1 r) we have (d/~)v = ~b~. 

ordinals ~ it is BV(~)c (VC~) r. 

ordinals ~ it holds ~bv~ (VD) r. 

~e B(~t r) it is Bv(~v) c (Vfi) r. 

~e B(t~t r) it holds ~bv~v~ (Vfl) r. 

~eB(Rt r) it holds (dy~)V~(Vf~) r. 

7. Show that the following statements are false 

( i )  If 0 v is continuous, then V is a global model for (Axn). 

(ii) If dpv(~+l)~{~bv~) r holds for all ordinals ~, then V is a global model for 

(Axn).  

8. Let V be the term interpretation. Show dpV((vt3) r) = Otyp(B(tmt r) ) = (¢(~Ir)) r. 

§26. The semiformal system IDoo 

In chapter  I we obta ined an infinitary sys tem g ~  by adding the cut  rule to  the  

validity re la t ion ~ for  ~° n.  The ordinal analysis for  the  sys tem Zj of  pure number 

theory  then  had been obta ined by embedding Z l into a semiformal  subsys tem of  

Z n. In a similar manner  we will now cons t ru c t  an infinitary sys tem IDoo f rom 

the validity re la t ion .~o~ ~o for  . c ~ .  It  should be clear  that ,  in analogy to  the 

s i tua t ion in the case of  Z~, we will need the  cu t  rule.  But this a lone will no t  

suffice.  Also the  ( C l n ) - r u l e  will be necessary.  Since the  cu t  ru le  as well  as 

the  ( C l n ) - r u l e  preserve  validity the  addit ion o f  bo th  rules  to  the  validity 

re la t ion AP~ ~ will no t  d is turb  the soundness  o f  the  resul t ing  infinitary 

sys tem IDoo. The necess i ty  of  the ( C l n ) - r u l e  can be mot ivated  in the fol lowing 
ways. 

Our aim is an ordinal analysis of  IDt. To obtain an ordinal analysis it will not  

suff ice  jus t  to  embed ID 1 into the infinitary sys tem ID~o. What  we real ly need 

is a semiformal  subsys tem of  IDoo. A semiformal  sys tem is obta ined f rom an 

infinitary sys tem by res t r ic t ing  the ordinals  to  a recursive ordinal no ta t ion  

sys tem.  Now assume tha t  the infinitary sys tem IDco is obta ined f rom the 

validity re la t ion ~o~ ~o jus t  by adding the  cu t  rule and t ry  to  obtain a semiformal  
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s u b s y s t e m  by res t r ic t ing  the  ordinals  in IDco to  any recurs ive  ordinal no ta t ion  

sys tem.  In order  to  in te rpre t  the fixed points  I A of  the  language £fx we need 

c lass  t e r m s  of  the fo rm {x: x e I ~ } .  So the no ta t ion  s y s t e m  has to  conta in  a 

symbol  (1. In order  to  obta in  a sound in te rp re ta t ion  of  the  der ivat ions  o f  IDoo 

we in genera l  will have to  in te rp re t  O by the  ordinal o CK. But there  is no 

recurs ive  no ta t ion  s y s t e m  which con ta ins  a s e g m e n t  o f  length  ~CK. The ordinal  

fl viewed f r o m  the  no ta t ion  sys t em,  however ,  mere ly  r e p r e s e n t s  the  o rde r type  

of  the  ordinals  be low O o f  the  no ta t ion  s y s t e m  and this  m u s t  be  an ordinal 

less  than  ~1CK. This has  the  consequence  t h a t  it will no t  longer  be  poss ib le  

to  impor t  the  p rope r ty  I ~ ° =  I O f r o m  the  real  wor ld  into the  semi fo rma l  

s y s t e m  as we did it in the  c o m p l e t e n e s s  p r o o f  for  ~ I  ~ {where we in t e rp re t ed  

fl by ~CK). In order  to  prove I ~ ° =  I ° we the re fo re  need the  C l o - r u l e  in the  

semi fo rmal  sytem.  Another  consequence  is t ha t  a semi fo rmal  s u b s y s t e m  o f  IDoo 

necessar i ly  has to  be unsound  (cf. t h e o r e m  26.16). 

There is a l so  a more  p r o o f  theore t ica l  reason  for  the necess i ty  of  someth ing  

like the  C l o - r u l e .  I f  we ant ic ipate  the  r e su l t  o f  §29 tha t  the  wel lorder ing  of  

the  ordinal F o is provable  in the  fo rmal  theory  ID 1 and take  into accoun t  the  

r e su l t s  o f  chap te r  II the necess i ty  o f  a new ' inf ini ty  ax iom'  for  any s emi fo rma l  

s y s t e m  which a l lows  an ordinal  analysis  for  ID ! is not  surpr is ing.  Due to  

chap te r  |I  the  a u t o n o m o u s  ordinal  o f  any s emi fo rma l  s y s t e m  whose  only 

infinity axiom is the  ex i s tence  of  ~ is F 3 ) .  Since ID l p roves  the  wel lorder ing  

o f  F o the re  canno t  be an ordinal analysis  o f  ID in a s emi fo rma l  s y s t e m  wi thou t  

an addit ional  infinity axiom. In the  case  o f  IDoo the  new infinity ax iom will be  

given by the  C l o - r u l e  which may be t aken  as a defining rule  for  the  ordinal  

symbol  fl. 

Already in the  case  of  the  infinitary s y s t e m  Zf~ and i ts  s emi fo rma l  s u b s y s t e m s  

there  are i m p o r t a n t  d i f ferences .  We have proved  tha t  the  inf ini tary s y s t e m  is 

comple te .  Since all valid r l~-sentences  have norms  be low ~1CK the  s y s t e m  Z o 

remains  c o m p l e t e  even when we in te rp re t  f~ by o~K.  A semi fo rma l  sys tem,  

however ,  will a lways  be incomple te .  The reason  for  this i ncomple t enes s  is the  

fac t  tha t  the  s e g m e n t  covered  by any recurs ive  no ta t ion  s y s t e m  for  the  ordinals  

will a lways  be  an ordinal  ~<wCK while on the  o the r  side the re  is a [ l~-sentence 

F whose  norm is an ordinal  be tween  {3 and  ~CK .This implies  t h a t  F c a n n o t  be  

p rovab le  in the  semi fo rma l  s y s t e m  ZB since the re  are no t  enough ordinals  in 

3 )  S i n c e  e v e r y  i n f i n i t e  r e c u r s t v e  o r d i n a l  n o t a t i o n  s y s t e m  c o n t a i n s  t h e  o r d i n a l  to 
a s  a s e g m e n t  w e  c a n  i m p o r t  a l l  p r o p e r t i e s  o f  ~ f r o m  t h e  r e a l  w o r l d  i n t o  e v e r y  
s e m i f o r m a l  s u b s y s t e m  o f  Zf}.  T h e r e f o r e  w e  d o  n o t  n e e d  a n  e x p l i c i t  l n f i n i t i y  
a x i o m  f o r  to i n  Z O .  
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the nota t ion system. The di f ference be tween  the comple te  infinitary sys tem 

and its semiformal  sys tem in the case of  IDco will become even more drastic.  

We already ment ioned tha t  a semiformal  sys tem containing an infinity axiom 

for  D necessari ly  is unsound. The reason for this unsoundness  again is the 

d i f fe ren t  meaning of  the  ordinal D in the real wor ld  and in the  nota t ion sys tem 

(cf. 26.17). 

26.1. I~ f l~ l t lon  

Recall t ha t  be ! ~  ~ we always deno te  the class  t e rm ix: x~_I~ ~ } and by -II~ u 

the  class  t e rm ix:  x ¢ I ~ } .  We in t roduce the  convent ion tha t  A(I~ ~) always 

deno tes  a posit ive occurence  o f  I ~  ~ in one o f  the formulas  of  A while always 

negative occurences  are denoted  by by A ( ' I I ~ ) .  

According to  definit ion 23.3. every ~ loo- formula  F has the form 

F ~ A × j  ..... × n '  "/1 ..... Ym(l~l * .... ,I_~n ,nI~ ,  ' ..... "l!l~mm). 
where A is a 1if-formula whose only  free variables are X, ..... Xn,Y i ..... Ym" So 

there  are only finitely many occurences  o f  class  t e rms  nl~} I~ in F. For a 

formula  F we define 

(i) s t g A F  = {[3: (0<[~ and -~l~ l~ occurs  in F}. 

By s t g A F  we measure the length of  all essent ia l ly  infinite conjunct ions  occuring 

in F. We call s t g A F  the se t  of  / k - s t a g e s  of  F. 

(ii) For a finite formula  se t  A we define s tgAA := LJ{stgAF: F~A}. 

(iii) We shor t ly  wri te  a<<~ instead o f  ¥ ~ ( ~ s t g A A  ~ ~<<~). 

26.2. Inductive defini t ion of  IDco ~ A for  a finite set  A of  ~ - f o r m u l a s .  

(Ax) If  we have ~. A according to  (Axl) or (Ax2), then  it holds  IDoo ~ A for  

all ~ ,p~B(Dr) ,  such tha t  A<<~. 

( A )  If F,A{A~: ~<k}cA and IDoo ~ F,A~ for  all ~< k = d o m f ~ D ,  then it  fo l lows  

IDoo ~ A  for  all ~ B ( D  r )  such tha t  f<<u and A~u.  

( V )  If  F,V|A~: ~<k IcA  and IDoo ~o F,A~ ° for  some ~ < k ,  then  we also have 

IDoo ~ A  for  all ~eB(D r )  such tha t  ~o<<~ and A ~ .  

(Cln)  I f  F , t e ~ D c A  and I D o o ~ O F . t ~ l ~ ,  t hen  it fo l lows  IDoo~A for  all 

~ B ( D  r )  such tha t  ~o<<~ and A~;~. 

(cut)  If  FcA and we have IDoo~ 1 F,A as well as IDoo~ 2 F , ]A for  rk(A)<0,  

then  it fo l lows  IDoo ~ A  for all ~ B ( D  r )  such tha t  ul,~z<<u and A ~ .  

In the  defini t ion o f  the re la t ion IDoo ~ we res t r i c ted  the  ordinals  to  ordinals  

in the  se t  B(Or).  Since B(D r )  is a primitive recursive se t  o f  ordinals  we have 

in t roduced a semiformal  sys tem.  
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The following lemmata are immediate consequences of  the definit ion of  IDoo ~ A. 

26.3. Lamina 

I f  IDco ~ A, then we have A~ ct. 

26.4. Lemma 

I f  IDoo ~ A , cx~ 13 and p~ o, thon IDoo ~o A. 

The proof  of  26.4., which is by induction on ~, uses 24.16.(i) and 24.19.(ii). 

26.5. l ~ m m a  (s t ructura l  rule) 

(i) I f  IDoo ~ A and Ac F ~ .  then it f o l l ows  IDco ~ F. 

(//) IDoo ~ A and F.~ ~ imply IDco ~ A,F. 

Proof  

(ii) is a consequence of  (i) because IDoo ~ A by 24.16.(ii) and 26.4. implies 

IDoo ~ 4. Since F~< f~ we have A , F ~ s $  and obtain the claim by (i). 

We prove (i) by induction on a. 

I f  we have IDoo ~ A according to  (Ax), then, by the hypothesis  F~g~, we also 

have IDo0 ~ A,F according to (Ax). 

In the case of  an A - i n f e r e n c e  we have the premises IDoo ~ Ao, A ~ for all ~< ), 

together  with Ao,~/~<xA~c AcF and Ac<~ . But since F ~  we obtain the claim 

by an /k- inference .  

In the case o f  an ~ / -  or (Cln) - inference  we have the premise IDoo ~o Ao,~ for 

some ~s:) ,  and Ao,~V<xA~c Ac F as well  as A ~ a .  Because of r ~ ,  ao,~VxA~c Ac r 
and ao<< ~ we obtain IDoo ~ F by an inference according to the k / - o r  (Clc~)-rule. 

In the case of  a cut  we have the premises IDoo ~ t  AI,A and IDoo ~2 Aj,aA where 

A 1 c A c F. Since we have ai << ~ for i = 1,2 and F~  ~ we obtain IDoo ~- A by a cut.  

26.6. Definit ion 

Let F be a cp~_ formula.  We define 

SF:= 10 '  if stgAF<CJ 

/ O, if Ogs tgAF,  

and call SF the level of  the formula F. For a finite set  A of  formulas  we define 

SA := max{ SF: F ~ A }. 
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Formulas  o f  level 0 do not  conta in  D-branching  conjunct ions.  S ° I - f o r m u l a s  of  

level 0 play the role of  H~-sentences {cf. the remark fol lowing lemma 26.15.}. 

26.7. Lamina (collapsing lemma) 

If SA = 0 and IDoo ~ A for s o m e  p~D, t h e n  w e  already have IDoo ~pD~ A. 

Proo f  by induct ion on ct 

In t roduc to ry  remark: The claim is obvious for  a<D.  We the re fo re  may assume 

D~a .  From A ~  we obtain ~<<a and the re fo re  also D~<Da for  all ~¢s tgAA.  

If moreover  SA = 0, then  we have ~<D for all ~es tgAA and obtain ~ = D~<<Da. 

Hence A ~ Du. 

An immediate  consequence  of  the in t roduc to ry  remark is t ha t  for  an axiom 

IDco ~ A with SA = 0 we also have IDco ~pD~A as an axiom. 

Now suppose that the last inference in the derivation of A is an inference 

(S) IDoo ~n An ~ iDoo ~ A. 

If (S) is an V- or CID-inference, then we have stgAA ncstgAA , A~ ct and 

~n<<~. But then we also obtain SA n = O, A<< D~ and D~n<<D~. By the induction 

hypothesis it then follows IDoo ~ A n from which we obtain IDco p~- A by an 

inference (S). 

If (S) is an A-inference, then we have stgAhncstgAA, A<~ct and ~.ct <<~. 

From SA = 0 it follows )~ :=dom~.~n<D since we either have k~ or ke stgAA. 

In both cases we have ~k~ct. Together with {<X<D it follows {<<),<~. Since 

X~.~<<ct this implies ct~<<~. Hence D~<<D~ for all ~<)~, i.e. k~.Dct~<<Dct by 

24.19. By the induction hypothesis we have IDoo ~D~nATl for all ~l < k, and obtain 

IDco ~ A by an ~X- in f e rence .  

If  {S) is a cut ,  then we have the premises  IDoo ~ F , F  and IDoo ~ F ,  nF such tha t  

rk(F) = rk(nF)< 0~t)  and Fc A. Since 0~D F nei ther  conta ins  a t e rm of  the form 

IA ~ nor 3!A D. Hence S{F) = S(nF) = 0. Now we may apply the  induct ion hypothes is  

and obtain IDoo ~-~% r,F and IDco ~P-6-~c% F, 3F. Since D~,<<D~ for  i =  1,2 we obtain 

IDoo by a cut.  

26.8. Lemma (persistency lemma) 

If IDco ~ AX{!A x) and X~:I~<D, t h e n  IDoo ~ A×(!AU).  

Proof by induct ion on 

We f i r s t  observe tha t  we always have s t g A A ( ! ~  x ) = s t g A A ( ! A  ~ I If  we have 

IDoo ~ A(_I• x ) according to (Ax) we therefore also have IDoo ~A(_IXb as an 
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axiom. If the main formula of the last inference is different from t e ! ~  )', then 

we obtain the claim immediately from the induction hypothesis. Let t e_l~ x be 

the main formula of the last inference. Since we may assume that  ),<fl, this 
CXo < X inference must be an V-inference with premise IDoo ~ Ao(I A ), t elA~ for some 

~<),~. By the induction hypothesis we obtain IDoo~°Ao(IA~),telA ~ and it 
follows IDoo ~ Ao(_l~ u) ,te_I~ ~ by an V-inference. 

26.9. Lemma (boundedness lemma) 

I f  IDoo ~ Ax(i~ x) and ~ g ~  , then  we have IDoo ~ A x ( I ~ ) .  

Proof 

We already mentioned that  we always have stg/N{A(~A)'))= stg/x{A(!A~)). If 
<k 

r e !  A is not the main formula of the last inference, then the claim follows 

immediately from the induction hypothesis and the persistency lemma. If 

t~!A x is the main formula of the last inference, then it is an V -  or Clf)- 
cxo < X  inference. Then we have the premise IDoo ~ A0(l A ),t~I A for some ~ k. Recall 

<~ 
that tel~A is an abbreviation forA(!A ,t). By the induction hypothesis we 

therefore obtain IDoo p~o 4o (!A), A (_l ~%, t), i.e. IDco ~p°A o (I ~,%}, t¢ l~ ° , for some 

~o<~. By persistency and an V-inference it follows IDoo ~ A{I~),tel~ ~. 

As Corollary we then obtain 

26.10. Lemma 

If IDoo ~ A holds for some ~<0, then we may eliminate all Clo-inferences in 

th i s  derivation.  

Proof by induction on cz. 

If the last inference is not an inference according to the Cln-rule,  then the 

claim is immediate from the induction hypothesis. Therefore suppose that it is 

an Clo-inference 

iDoo ~o Ao, te!~  and Ao,tE!~nc F =~ lDoo ~ F. 

By the boundedness lemma we obtain IDoo ~ ° a o , t e ! ~ °  for %<e<O.  By an V -  

inference it then follows ID~ ~F.  

If h is a set of the form A[!<A? ..... ! ~ ? ]  without further occurences of class 

terms of the form I <~, then we denote by A ~ the set 8 [ ! ~ :  ..... !~n] .  
-A 
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26.11. Theorem 

(i) I f  ID® ~ A for  p~ f~ and SA = O, then it  f o l l ows  Z n ~ A Da. 

(ii) From Z n ~ A for  ~ and p in B(~F), we obtain also IDoo ~ A. 

Proof 

(i): first we obtain IDoo~DpuA by the collapsing lemma and then ~p~ A Da by 
the boundedness lemma. Because of S A = 0 the set A does not contain class 

terms of the shape iI~ t~ which implies that all formulas in A D~ are ~n-formulas. 

By 26.10. we may eliminate all Clc}-inferences in this derivation. Since pgfl an 

easy induction on D a now shows that this derivation only contains formulas 

of ~° n. 
(ii): This claim is trivial since Z D is a subsystem of IDoo. 

26.12. Corollary (Soundness for ID n) 

I f  we deno te  by  ID n the  s u b s y s t e m  o f  IDoo which on ly  contains  derivat ions 

o f  the  f o r m  IDco ~ A where  a ,pg f~  and SA = O, then  IDn p~F impl ies  ~q~F. 

Proof 

The proof is immediate from 26.11. and 12.1. 

26.13. Corollary (Boundedness theorem) 

I f  ISoo ~ n c ] ~  fl, then we have InlA<DCc 

Proof 
It is S(nel~ n) = O. By 26.11. and 26.12. it therefore follows IN ~ nel~ D~. By 

22.7. this implies neI~ D=, i.e. InIA<D~. 

26.14. Larama 

I f  F is an . 5 f ~ - s e n t e n c e  F such  that  rk(F)<¢(f/r)  and lq~F, 
IDoo ~o ktF) F. 

then we have 

Proof 

The proof is by induction on rk(F). 

If F is atomic, then F is of the shape Ptj...t n since F is an .~,I-sentence. 

From ~l~F we then obtain IDoo ~F by (Axl). 

If F has the shape ~<xA~ and we have ~q ~ F, then we obtain ~I ~ A~ for all ~< X. 
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By the induction hypothesis this implies IDco ~ktA~) A~ for all ~< X. Because of 

rk(A~)<rk(F)<~(t3r) it follows rk(A~)<<rk(F) for all ~<)~ which implies 

),~.rk(A~)<<rk(F). By an A-inference it follows IDoo ~ktF) F. 

If F is a sentence ~<)A~ with Bq ~ F, then there is a ~<), such that N ~ A~. 

By the induction hypothesis it follows IDco ~o k(A~) A~. Since rk(ARl<<rk(F) this 

implies IDoo ~k(F) F by an V-inference. 

An inspect ion  o f  the  p r o o f  o f  26.14. shows  t h a t  the  p r o o f  does  no t  depend upon 

the  fac t  t h a t  the  ordinals  in the der ivat ion be long  to  a recurs ive  no ta t ion  sys tem.  

I t  makes  the  p r o o f  even c lumsier .  We easi ly  may s impl i fy  it  in order  to  obta in  

the  r e su l t  t h a t  for  t rue  Z P I - s e n t e n c e s  F we have iP I ~k(F)  F. So we obtain  

as a coro l l a ry  the  fo l lowing theo rem.  

26.15. Theorem 

For any true ~Ioo - s e n t e n c e  F o f  level  0 we have IFI ~ rk(F). 

Theorem 26.15. has an in teres t ing  consequence .  As shown in exerc ise  26.18.2 for  

any I l l - s en t ence  F the re  is an ~ - s e n t e n c e  Foo o f  level 0 such t ha t  ~I ~ F *~ Foo. 

The p r o b l e m  to  find the  s h o r t e s t  s en tence  Foo which has  th is  p rope r ty  is by 

26.15. c lose ly  connec ted  to  the  p r o b l e m  o f  ordinal  analysis.  For I l l - s e n t e n c e s  F 

whose  validi ty is p rovab le  in ID t it can  be shown t h a t  the  co respond ing  ~ a ~ _  

f o r m u l a  Fco a lways  has  a rank be low T(Eo+ 1) (cf.  exerc ises) .  

As a fu r the r  consequence  o f  26.15. we obtain  the  unsoundness  o f  the  s y s t e m  

lDoo. 

26.16. Theorem 

The semi formal s y s t e m  IDco is unsound. 

P r o o f  

The p r o o f  needs  a r e s u l t  o f  recurs ion  theory .  There  one may  prove  the  ex i s tence  

o f  an ar i thmet ica l ly  def inable  inductive def ini t ion F such t h a t  Irl = o CK. Since t 
~(Dr)<t~ cK there Is an n~l r such that lnl = ~(Dr), i.e. n¢Ir~(Or). By lemma 

26.14. we have ID~o~o~ n~l~r for all ~ B(nr}~o, where we defined ¢t~ := rk(n~ I~) 
~ (m+l}-~+m and m := rktr)<e. Since k~. (m+l).~+m<< f~ we obtain IDoo~o°n¢ I_<r t~. 

On the other hand, however, it holds ~l~n~I~ t~. 
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26.17. Remark  

The p r o o f  of  l e m m a  26.16. shows  tha t  the  r eason  for  the  unsoundness  o f  IDco 

is the  fac t  t h a t  the  s e g m e n t  of  the  no ta t ion  s y s t e m  is bounded  be low t0~ K. 

But then  the  unsoundness  o f  IDoo only can be remedied by a l lowing the  whole  

s e g m e n t  of  ordinals  up to  ¢0 CK. Since this  is imposs ib le  for  any recurs ive  

nota t ion  s y s t e m  all s emi fo rma l  s y s t e m s  which are s t rong  enough  to  a l low the  

embedding  o f  the  fo rmal  s y s t e m  ID~ necessar i ly  have to  be  unsound.  

2 6 . 1 8 .  E x e r c l m e s  

1. Assume  tha t  F[X~ ...... X n] is a i ] | - f o r m u l a  w i thou t  fu r the r  occurences  o f  se t  

var iables .  Show t h a t  Xl ..... X n occur  posi t ively in FIX t ...... X n] if  and only if  

Fx~ ..... ×n[~A .... ,!I A ] is a f o r m u l a  o f  level O. 

2. Show tha t  for  every H~-sentence  F in the  language £0 there  is a sen tence  

Foo (not  containing se t  parameters} of  level 0 in the  language ~ such t ha t  

IN ~ F ~ Foo and vice versa.  [Hint:  Use exerc ises  20.9.]. 

2Y. Cut elimination for  ID o ÷ o 
~F 

27.1. L e m m a  

I f  ID~o ~ ~ and SA = O, then it f o l l ows  ID~o ~+~ 

P roo f  by induct ion on 

I f  the  l a s t  inference is not  a cut ,  then  we obtain  the c la im immedia te ly  f rom 

the l e m m a t a  24.16. (iv) and 24.19(i) and the induct ion hypothes is .  We the re fo re  

a s s u m e  tha t  the  l as t  inference is a cu t  

r ,A  and A 

where  Fc A and c(t,~2<<~. By the  induct ion hypothes i s  we obta in  IDoo ~+~1 F,A 

and IDoo ~ - ~  F, aA. Because o f  rk(A)<F~ we a lso  have S(A) = S(1A) = O. By 26.11. 

and the  pe r s i s t ency  l e m m a  it fo l lows  Z n iD{n+~l) ) o F {~,A and Z n ~ F ~,-)A, 
o 

for  some  ~<[~ such tha t  D([l+gi)g ~ holds  for  i =  1,2. 

For o := rk(A} we obtain Z n  o D ( O + c e | ) a D { L ~ I * c ( Z )  F¢ by the  e l iminat ion l emma  and 

then  Zn  o~°a(D(O+°ct)#D(f~+ceg)} F~ by 18.5., the  coro l la ry  to  the  second e l iminat ion  
t theorem.  By 26.11. and the  s t ruc tu ra l  rule  it fo l lows  IDoo a (D(n÷~ )#D(~+~z)) 

Now it is SC~(~0o(D(f~+c¢l)#D([l+~2))) = S C ~ ( o ) u  { D(FI+~I),D(~+~2)}. Since ~i<< cc 

we have D(~+~t)<D([I+~)  for  i = 1,2. F rom stg/NA~c(l<<~ and stg/N~A~c(2<<c¢ 
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t3F 

and o = k+n for  some ), ¢ stg A (A) ~) stg A (3A) ~ {0} we obtain SC~(o)< D(gl+a). 

Hence ~oo(D(fl+~t)uD(t3+~2))<<t3+a and it fo l lows IDoo ¢~+= ~ by the pers is tency 

lemma. 

We learn f rom lemma 27.1. tha t  our next  aim must  be to  decrease  the  cut  rank 

o f  IDco-derivat ions to  fl. The f i rs t  s tep  is the  fol lowing lemma. 

27.2.I~mma (Predicative el imination lemma for  IDco ) 

moo A,A, moo  r, A and rkCA  = V * then follows IVoo a,r. 

Using the  lemmata  24.16. and 24.19. we may p roo f  27.2. l i teral ly a s  12.2. 

Crucial for  the p roo f  is the  hypothes is  rk(A)*f~ since this assures  tha t  A 

cannot  be the main fo rmula  o f  a (C l~) - in fe rence .  

As a consequence  o f  27.2. we obtain 

27.3. Lemma 

I f  IDoo .v,,~zT~" h holds  for  s o m e  p*D, then  it f o l l o w s  IDoo p~-~A. 

Using 27.2. and 24.16. the p roof  of  27.3. is l i teral ly the p roo f  o f  12.3. 

By 27.3. we already may decrease  the cut  rank of  I D ~ -  derivat ions to  f~+l. The 

las t  and crucial s tep  is the el imination of  a cu t  of  rank fl. This s tep  will be 

achieved by the fol lowing impredicative el imination lemma. To prepare  this  lemma 

we f i rs t  need an inversion lemma of  the  fol lowing kind. 

27.4. Lemma (Inversion lemma) 

From ID¢o ~ A,~</~ A~ it f o l l ow s  IDoo ~ A,A~ for  all ~< X and IDoo ~ A,A¢ 

all 4<< k. 

fo r  

P r o o f  

We show bo th  claims by induction on ct. If ~<xA~ is not  the main formula  of  

the las t  inference,  then  the claim ei ther  - in the case o f  an axiom - is trivial 

or an immediate  consequence  of  the induction hypothesis .  We the re fo re  assume 

tha t  ~ x , A ~  is the main formula  o f  the las t  inference.  Then we have the 

premises~'^IDoo ~ F , A ~  for  all ~<X with f<<~ such tha t  F , j ~ x A  ~ cA and obtain 

IDoo @ F, A~ or IDo0 ~ F, A~ respect ive ly  f rom the induction hypothes is .  Since 

~*0 we have ~<<ct #~ for  all ~< ), and obtain SC n (f~)<D(ocu~). Hence SCn(f~#~)  = 
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o r  

SCo(fOwSCo(O<D(~#O. Since also f~#~<ct#~ this implies f~#~<<ot#~. Hence 

IDoo ~ A,A~ by 26.4. and the structural rule. For the second claim we assume 

~<<k. Either we have kestg/k(A,~xA~)~;~ or kac0. In the first case we obtain 

~<<~ and since f<<~ also f~<<~. In the second case we either have ~<c0 or again 

~<<ct. In both cases it follows f~<<cc From the induction hypothesis IDoo 5~F,A~ 

we therefore obtain IDoo ~ A, A~ by 26.4. and the structural rule. 

27.5. Lemma (Impredicative elimination lemma) 

Le t  h be  a f in i t e  s e t  o f  f o r m u l a s  o f  l eve l  O. Then IDoo ~o A, t ,¢ I <A? ..... t n  ~ I_ <A2" te I_<A 0 

We introduce the following abbreviations. For l ~ k ~ n  let  A k be the se t  
h. t , ' ! ~ ?  ..... t k , l <  0 "-" Ak" If  ~ = (~1 ..... ~k) is any k- tuple ,  then we denote  by hk~the 

se t  h , t  I ~l~,~ 1 ..... t k ~ l~kk .  E~ iS a shor thand for ~1#...#~k. 

Now let ~ be an arbitrary n - tup le  of  ordinals <0 .  From the hypothesis  

(1) [Doo ~ A n , t e l ~  0 

we obtain by the inversion lemma 

(2) lOoo ~ A~n,tel~t~. ' O 

Since S(A~n,te l~ °) = 0 we obtain by (2), the collapsing and the boundedness 

lemma 

(3) IDoo JD(a~ZO A~. t ~ ! ~  D(~ 'z~) .  

From the hypothesis  

(4) IDoo ~hn,t¢!~ n 

we obtain by the inversion lemma 

(5) ID~o , S - ~ - ~  q ,1 ' O A n ' t ¢ I A  
for all ~l<D(~#Yl~}. Since ~q.~#Y.~# q < < ~ a Z ~ # D ( ~ # E ~ )  we obtain by (5) and 

an A - i n f e r e n c e  

(6) IDoo ~I~-~:t~-D(c~#ZO h~ t ¢ I  <D(~XEl~) 
O n' -A " 

Now we have D(~aE~)rr~#E~#D(~#X~)~< oc#~#O#El~ and obtain 

from (3) and (6) by a cut. 

If we define ~i := (~I ..... ~n-i), then we have ~. ct#i3afl-iaZ~i~<<0~#~# O-(i+|)#E~ i. 

From (7) we therefore obtain 

(8) IDoo ~p " 1 ~ # 0 " 2 . ~ '  hn~-~.tn ~!An<O 

by an A- in f e r ence .  By iteration we then have 
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f~r  

(9) IDoo } c~#~#t~'(i÷l)#'~' A~- I, <(l <n tn-i+l ~ -]An_i+l, ,tn ¢IAn 
for all ie{l  . . . . .  n}. For i=  n this  is 

(I0) IDco I ~''~'n'tn+1)n A, <n .. <n t 1 ¢ ! . ~  t ,- , t n ~ ! ~ n -  

27.6. Theorem (Impredicative elimination theorem) 

IDoo ~ l  A, tl¢-I~? . . . . .  tn¢_I~n~ impl ies  IDco 'nl-~t~+~ A'tl ¢!Al<f) . . . .  
f in i te  se t~  A o f  0 ~ I  - fo rmula~  o f  leve l  O. 

, t n ¢ IA n f o r  a l l  

Proof by induction on ~. 

If the last inference is not a cut of rank t~, then the claim follows immediately 

from the induction hypothesis, 24.16. and 24.19. Now assume that  the last  infe- 

rence is a cut 

IDoo ~i F, t e_I~ f~ and IDco }~+I F, t ~ I~, n ~ IDoo ~l An 

of rank f}, where A n iS the abbreviation defined in the proof of 27.5. By the 

induction hypothesis it follows 

(I) IDoo ~ r, teI~ n and IDoo ~ r,t~!~ n . 

From (I) we obtain by the impredicative elimination lemma 

(2) lDoo t~tdfi+Oq uot~+ce2 =f~:(n+l)  r .  

Since ~o+~,#¢0t~+a2#i~-(n+l)<<~0 o+~ and Ant F we obtain from(2) by 26.4. and 

the structural rule 

27.7. Lemma 
= i r t  I f  SA 0 and IDoo ~ A, then i t  f o l l o w s  .-oo,o A. 

Proof 

From IDco ~ A and SA = 0 we obtain IDoo ~ A by the impredicative elimi- 
it~t~÷ot 

nation theorem. By lemma 27.1. this implies IDoo ~ A. 

By ID~ we will denote the semiformal system whose language only contains 

formulas of ranks <<~ and in which only derivations of lengths <<~ and cut 

ranks <13 are allowed. ID~ }-A means that  there are ordinals ~<<~ and 0<6 such 

that  IDoo ~ A 

, r~  t ~ ÷ ~  ) 27.8. Theorem (Cut elimination for , u n r  

I f  SA 0 and = IDoo~-÷nA, then we already have IDcoly(~ntt~+ct))A 
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O F  

Proof  by induct ion on n. 

For n = 0 th is  is obvious f rom 27.1. by the col laps ing  lemma.  Now we a s sume  

n = no'. I f  n o = 0, then  we obtain  fom IDoo ~ a by 27.7. IDoo ~ QZ-~ A and by 27.1. 

and the col laps ing  l e m m a  IDoo ~o D(~n÷~)  A. If  n o * 0, then  IDoo ~ +~-~no+l A implies 

IDoo ~ A by 27.3. By the  induction hypothes i s  it t hen  fo l lows  

(*) IDoo ,o Dt~L~aotn+~)) A. 

Since cono(~)+c0~)~ to~(~+~) we obtain  D(~o(f)+to~))<<D(co~(f)+~)) which t oge the r  

with (*) implies  the  claim. 

° ~ . r ) ÷  CO . 
27.9. Coro l l a ry  (Elimination t heo rem  for  1Degl+ 1 J 

I f  ID ~÷~  ~- F holds for a formula F o f  level O, then there is s o m e  ~<¢en+  1 ~ 0 ÷ I  

such that ID~ ~o F. 

Proof 

ID2  ÷~ ~ - F  implies the  ex i s tence  o f  some  ordinal t 3 ~ o +  1 and n<ea such  tha t  
t ) + l  . . . .  I D ( t ~ n ( ~ + ~ )  ) F 

lDoo ~%-+n F- By the  cut  e l iminat ion t h e o r e m  27.8. it. then  fo l lows  IDoo ,o 

~<< eC~+l implies  tan(fl+[~)<<e~+ ! and this  en ta i l s  D(~n(fl+lS))<D(eo+ 1) = ~beO+ 1. 

27.10. Exercise 
Show the  fo l lowing soundness  theorem.  

S(F) = 0 and lDoo ~ * n  F imply ~q ~ F. 

928. Embedding o f  ID 1 into It} c~+~ 
" - - ~ f } + l  

28.1 Lamina  ( V - i m p o r t a t i o n  and V - e x p o r t a t i o n  for  I D a )  

(i) IDoo ~ A, A, . . . . .  A n implies ID a ~ + a A, A 1 v . . .  v A n. 

(ill ID~ ~ A,A t v . . .  v A n implies ID~  ~ A,AI . . . . .  A n. 

Proof. 

The p r o o f s  are l i teral ly  the  same  as those  of  |0.8.  

28°2. Lamina 

/ f  IDoo ~ Ax(S) and  t is a term which is equivalent to s, then we also have 

[Doo ~ Ax(t). 

Proof 

The p roo f  is s t r a i g h t f o r w a r d  by induct ion on ~. 
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28.3.Definition 

For a finite se t  M := {~l ..... ~n} of  ordinals we define Z = M  := ~t#...# ~n' 

(i) For an.~°~ - f o r m u l a  F it is no(F) := 1 +Z~{~: ~e s t g A F w  s tg /N ' lF}a2rkF .  

(ii) For a finite set  5 of  formulas  we put  no(A) := ~-~{no(F): FeA}. 

28.4. Lemma (Monotonic i ty  lemma for  ID~ ) 

Suppose  that tDco ~ 5 , 1 F x ( n ) , G x ( n )  holds  for  all ne~q. Then we  also obtain 

IDoo I~ # n°(A) A, " IA×(F) ,Bx(G)  for  all  equivalent  X - p o s i t i v e  formulas  A and B. 

If A is an a tomic fo rmula  

and Bx(G)  =- B. It  holds  ~o 

o f  IDco ~ h,aF~(n) ,  Gx(n_ ) 

IDco ~ A, aA, B by (Ax). 

P roo f  

The p roo f  is by induction on rkA. First  we recall  tha t  two formulas  A and B 

are equivalent  if there  are a formula  F and t e rms  s t . . . . .  Sn, t t  . . . . .  t a  such tha t  

s k and t k are equivalent  for  k~ l ]  . . . . .  n} and it is A ~Fx~ . . . .  x n [ S l  . . . . .  S n] as 

well as B-= Fx, .... ~n[t t  . . . . .  t j  . 

wi thout  occur rences  o f  X, then  we have aAx(F)  -= aA 

A, aA, B e i ther  according to  (AxI) or to  (Ax2). Because 

we have A ~ u  and the re fo re  a lso A, aA, B ~ u .  Hence 

If  A is the a tomic fo rmula  t ~ X, then we have A×(F)  = Fx(t)  and Bx(G)  ~ Gx(s) 

where t and s are equivalent.  From the hypothes is  IDco ~ A,3F×(n),G×(n) we 

obtain by lemma 28.2. IDco ~ A, 1Fx(t ) ,Gx(s) ,  i.e. IDoo ~ A, - IAx(F) ,Bx(G) .  

If A is no t  atomic,  then wi thout  loss  of  general i ty  we may assume tha t  A is 

o f  the shape EVxA U The o ther  case  is symmetr ic .  But then each o f  the  

formulas  1A~ again is X-posi t ive .  By the induction hypothes is  it now fo l lows  

---co ,p A,'iA~(F),B~(G) for  all ~<), and by an V - i n f e r e n c e  we obtain 

IDoo ~ ~ ) + 1  f ,  nA(F),B~(G) for  all ~< X. We now claim tha t  X~.~ano(A~)+1 

<< a=no(A} and infer IDoo ~=n°(A)A,  nA(F),B(G) by an A - i n f e r e n c e .  

It  remains to  show tha t  X~. a= no(A~) + | << ~= no(A). Since A is an :T~  - f o r m u l a  

we only have to  consider  the fol lowing two  cases.  

First  assume tha t  A -= t ~ l ~  x for c0g ;~. Then we have s t g A A  = ~ and s t g A n A  = {k} 

and for ~<k it is s t g /xA  ~ = 8  and s t g / x n A E - { ~ } .  Hence ¢ =n o (A ~)+ l=  

=~==2rk(A~)+l  ~ ~#~=  2.(rk(F)+t)-~+ r k (F )+ l  < ~=  k# 2.(rk(F)+l) .(~+l)  g 

ccak= 2(rk(F)+l ) .k  = ~#no(A).  We have SCc~(¢=no(AE))= SCc~(cO~SCc~(O and 

SCc~(~=no(A)) = SC~(~)wSCo(X).  Now if ~=no(A)<<t5 and ~<<15, then  we obtain 

SCo(=)<DI5 f rom the  f i rs t  and SCca(O<DI~ f rom the  second hypothesis .  Hence 

SCo(~)uSCo(O<DI5  and it fo l lows  X~.~=no(A~)+] << Cano(A)  
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I f  A is not  o f  the shape t e l ~  a for  some  a 2 o ,  then  it is A --- ~/<xA~ for  some 

k ~ o .  For ~< k and o¢ s tg /NA~wstg /k  3A~ we then  e i ther  have 0 e s t g / x A u s t g  A 3A 

or o< o. But this implies no(A~)+l << no(A) for  all ~< k. According to  24.16. and 

24.18. i t  then  fo l lows  ) ,~ .~#no{A~)+l  << ~#no(A) .  

28.5. l ~ m m a  {Tautology lemma)  

I f  F, and  F~ are equ iva len t  f o r m u l a s  and  A is  a f in i t e  s e t  o f  SP~ - f o rm u l as .  

then  we  have  IDco ~ ' )  A, nFt, F 2. 

Proof 

Assume  t h a t  X is a se t  variable which does  not  occur  in F t (and t h e r e f o r e  a l so  

no t  in F z i. Wi tho u t  loss  o f  genera l i ty  we may a s s u m e  tha t  ne i ther  nF t nor  F z 

are e l e m e n t s  of  A. According to  {Ax2) we have IDoo , n o ( a ) -  ore'--" a , n ¢  X,n~ X. By the 

mono ton ic i ty  l emma this  implies IDoo n ° ( A } a n ° ( F t ) A , ' i F  1 F 2 and because  of  p 

{ nFl, Fz}c~A = l} we have no{A} # no(F 1 ) = no(A, F 1 ). 

28.6. L e m m a  

I f  A is  a s e n t e n t i a l l y  valid f in i t e  s e t  o f  f o rmu las ,  t hen  there  is an m < o  such  

tha t  IDoo ~o(a)+m h. , p  

Proof 

The l e m m a  fo l lows  f r o m  the t a u t o l o g y  l e m m a  by induct ion on the  degree  of  

sen ten t ia l  reducibl i ty  o f  the s e t  A. I t  is l i te ra l ly  the  same  p r o o f  as  fo r  10.16. 

28.7. Lemma 

Assume tha t  a f i n i t e  set A o f  f o rmu las  conta ins  a quan t i f i e r  axiom. Then there 

is an m<6o such  tha t  IDoo ,o~°(&)+m A. 

Proof 

This l e m m a  too  is an immedia te  consequence  o f  the  t a u t o l o g y  lemma.  I t s  p r o o f  

runs  as case  2 in the p r o o f  o f  the  embedding  l emma 11.2. 

For an X-pos i t i ve  ar i thmet ica l  fo rmula  A we denote  by CIA(F) the  fo rmu la  

m A ( A x , x ( F , m )  -~  Fx(_m)). Then we have s t g A C I A ( F )  ¢ s t g A F U  s tg  A 1F which 

implies  s t g A C I A ( F ) ~  no(F).  Obvious ly  the  f o r m u l a  CIA(F) e x p r e s s e s  t h a t  the  

c l a s s  {x: F} is c losed  under  the  m o n o t o n e  o pe ra to r  induced by A. 
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28.8. ] .emma (Closure lemma) 
IDoo n-2o +2- rktA) + 6 CiA(l~f~). 

Proof 
I t  is no(I~)  = fl-2+2-rk x A. Since r k x A ~ r k A  we have by the tau to logy  lemma 

IG'2 + 2- rk  A rl ~ ! ~ , n E ! ~ "  (1) IDoo ,o 
From (1) we obtain by an Cln-inference 

i f ) '2  + 2 " r k A  + 1 f) <f~ (2) ~oo ,o n¢ I_A,_n(I A . 

By V - i m p o r t a t i o n  and an A - i n f e r e n c e  this  implies 

(3) IDoo ,olCi'2*2"rkA+4 CIA(]~ n)- 

28.9. Lemnm (Generalized induction lemma) 

Let A be an X - p o s i t i v e  ar i thmet ical  formula.  Then we have 

IDoo ~)no tF )n~+1  7CIAiF ) ,_k¢!~,Fx(k)" 

Proof by t ransf ini te  inducution on 

For ~ = 0 it holds 

(0) IDoo [o ~n°(F)+l nCIA(F),k¢l~°,Fx(k_~ by (Axl). 

For ~ * 0 we obtain from the induction hypothesis  
~ n o ( F )  u TI+I 

{1) IDoo o aCIA(F) .k~I~ ,Fx(k)  for all ~<~. 

By an A - i n f e r e n c e  this  implies 
o n o ( F )  8 ~ +  1 

(2) IDoo o nCIA(F),kcl~,~,Fx(k) .  

From (0) or (2) respectively, the monotonic i ty  lemma and the s t ructura l  rule we 

obtain 

(3) IDoo I ~ v n ° ( F } w ~ ' 2 " r k ( A ) + l  1CIA(F),k~IA~,Ax x(F,_k),Fx(k), 

since for  ari thmetical  A we have no (A)=  l+2rk(A)<o.  

From the  tau to logy  lemma it fo l lows 

{4) IDco ~notF),,~ 1CIA(F),_k¢!A~ "aFxtkJ,Fx(k)" 

From (3) and (4) we obtain 

(S) IDoo Io ~n°{F) "~ u 2 rktA) + 2 1CIA {F), A x.×(F, k) ^ aFx(k) ,k  ¢ 1~ ,  Fx(_k) 

by an A- in f e r ence .  Using an V - i n f e r e n c e  we there f rom infer 

(6) IDoo ~ n o ( F )  (e ~+I ICIA(F l ,k  ¢ I_~,Fx(_k). 

This, however, is the claim. 
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The t rans la t ion  of  the axiom IDa. is an immediate  consequence  o f  the  lemma. 

Never the less  we fo rmula te  this  as a theorem.  

28.10. Theorem (Generalized induction theorem)  

For any X - p o s i t i v e  ar i thmet ical  Formula A we have 

I~ n ° t F ) ' c ~ + s  (CIA(F) - *  V X ( X ~ ! A  ~ F))* 

P roo f  

By the general ized induction lemma we have 

IDoo ~notF) ~,~+1 1CIA(F),Ic¢IA~ ,Fxtk)  

for  all ~<f}. By an A - i n f e r e n c e  this implies 

iDco lonO(F) = D .ICIA(F),_ k ¢ i~C~,Fx(_k)" 

By V - I m p o r t a t i o n  an / ~ -  inference and again V - i m p o r t a t i o n  it  f inally fo l lows  

IDoo 1o n°(F)  =cJ +s  (CIA(F) --~ Vx ( XelA--*F))* 

As a side remark we will just ify the  name general ized induction lemma for  lemma 

28.9. by showing tha t  t ransf in i te  induction along a wel lorder ing in fac t  is a 

consequence  o f  the lemma. 

We s t a r t  with an ar i thmet ical ly  definable order  re la t ion ~ and regard  the  

formula  x e field('( ) ̂  ¥y (y ~ x -*  y e X). Let us abbreviate this  fo rmula  by A~. 

A~ then  obviously is an X-pos i t ive  ar i thmet ical  formula.  We denote  its f ixed-  

point  I A ~ by Acc(~(). Acc(~) represen t s  the accessible par t  of  the  re la t ion  ~. 

If  we t r ea t  a f ixed re la t ion ~ we }ust wri te  Acc instead o f  Acc(~ }. The fo rmula  

CIA< (F) then  coincides with the formula  Prog(~,F) defined in §13. For k e field(~ ) 

we obtain k eAcc Ikl by induction on [kl, the  order  type o f  k in the  ordering 

as def ined in 13.2. Namely for  m~(k we have lint< [k] and obtain me Acctmlc Acc< Ikl 

from the induction hypothesis. Hence A~(~,cc < [kl.k} which means k~Acclkl. 

We define n := rk(A~ )+I. Then it is n< co and rk(k¢ field(< )v_ke Acc(~ )~)~ n-(~+l)+l. 

By 26.14. we now obtain the following lemma. 

28.11. [ ,emma 

Let  Ikl be the  order type  o f  k in the  wel lordering ~ o f  order type  <@Ctr. Then 

we  have IDoo I n'tlkl+l)+l k¢  field( '() , lce Acc('< )lkl. 

28.12. Lemma (Transf ini te  induction) 
itono(F} a ~ +1 

I f  []'< ]] = ~<dg(t)r), then we have IDoo 'n-~ 
all k ~ ~,I. 

iProg(~ ,F),_k ~ field(,(), Fx(k) for 
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Proof 

Using the  cut  rule we obtain f r o m  28.11. and the general ized induction l e m m a  

IDoo ~n°(F)**tkI+l**n'(tkl÷l)+ln.i}kl+l) " lPr°g(g ,F) ,k~f ie ld(~) ,Fx(k) -  for  all kEIN. Since 

lkt<<~ this  immedia te ly  implies the  claim. 

The ( t rans la t ion  of) the  fo rmula  which e x p r e s s e s  t ransf in i te  induct ion a long the 

wel lorder ing  £ is now easi ly ob ta ined  f r o m  the  t r ans f in i t e  induct ion l e m m a  by 

V - i m p o r t a t i o n ,  a n / k - i n f e r e n c e  and r epea t ed  V - i m p o r t a t i o n .  But o f  cou r se  one 

can do b e t t e r  than  28.12. There  is o f  course  an canonical  cu t  f ree  der ivat ion o f  

t rans f in i te  induction. The canonical  infinite p roo f  for  t rans f in i te  induct ion is a 

genera l iza t ion  of  the  p r o o f  given in 10.17. for  comple t e  induction.  By t r ans la t ing  

the  p r o o f  of  10.17. into the  s y s t e m  IDoo we also  obtain the  fo l lowing theorem.  

28.13. T h e o r e m  (Comple t e  induction) 

IDoo o (¥x(Vy(y< x - ~  Fx(Y)) -~ F) -~ VxF)* 

28.14. T h e o r e m  (Embedding of  ID l) 

Suppose  that  F is an ~ l - f o r m u l a  such that FVI (F )=  {x~ . . . . .  X n} and ID 1 ~-F. 

Then there are ordinals ~<<t) a- ~ o  and  m < ~  such that IDco ~ Fx(k)  ~ holds  

for  any n - t u p l e  k = (kj . . . . .  kn). 

Proof 

The p r o o f  runs  s imilar  as the  p r o o f  o f  the  embedding  t heo rem ]1.2. for  the  

formal  s y s t e m  Z 1. I t  is by induction on the length of  the derivat ion in ID I. The 

embedding  of  the logical ax ioms is obta ined f rom l emmata  28.6. and 28.7. The 

derivabil i ty of  the equal i ty  ax ioms and those  mathemat ica l  ax ioms  which a lso  

are ma themat i ca l  ax ioms  of  Z 1 fo l lows  as in the p r o o f  of  11.2. The provabi l i ty  

o f  the  scheme  of  c o m p l e t e  induct ion in the  semi fo rmal  s y s t e m  fo l lows  f rom 

28.13., t h a t  o f  ID~ fo l lows  f r o m  28.8. and t ha t  o f  IDA 2 f r o m  28.10. There fore  

all ax ioms  o f  IDj are provable  in the  semi fo rma l  sys tem.  The induct ion s tep  is 

then  p roved  as in 11.2. 

28.15. T h e o r e m  (Ordinal analysis  o f  ID 1) 

For any formula F o f  level 0 which is provable in ID 1 and does not contain 

free numbervariables we have IFI< ~En+ 1. 
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Proof 

From ID t [--F and S F* = O we obtain by the embedding theorem ID c~+~ [--F*. "--Et~ +1 
Using the elimination theorem for ID t~+~ it follows IDoo ~ F ~ for some 

~ f ) + l  
ct<~bEt~+r By 26.11., however, this implies Zc~ ~ F* which means [F[~<d:Ec2+I. 

The ordinal analysis of IDI immediately gives us the following corollaries. 

28.16. Corollary 

(i) SPo(IDtlc ~E~÷ 1. 

(iJ) [ID11~d:Ea+ I. 

28.17. Corollary 

I f ' (  is  an order  re la t ion  for  which  w e  have  ID 1 ~- Fund(~ ,X), t hen  it is I1~ II< ~E n+l .  

As a further corollary we obtain 

28.18. Theorem 

l f  lDl I-- n ~ I A ,  t h e n  it  i s  [nlA < qb~O+ 1. 

Proof 

From ID l ~-n~IA we obtain by the embedding theorem 28.14. and the cut elimi- 

nation theorem 27.9. ID~ ~ n ~ ! ~  L~ for some ~< ~ f ~ l -  By the boundedness 

theorem 26.13. it then follows lnl A s; ~x< ~b~f)+l. 

22.19. Exerciae 

1. Assume that  A is a finite set of H'loo- formulas possibly containing the set 

variable X. Show that  IDoo ~ A implies IDco o #n A x ~ C i ] .  

2.Assume that  FIX] is an X-positive Ill-formula of ~'loo without further occuren- 

ces of  set  variables. Prove the following claims. 

(i) IDoo ~ + n  FX(1A f~) implies IDoo n~+~ "2a~ CIA(X)-'* F for some k<fl. 

(il) IDoo o~ C I A ( X )  ~ F implies IDoo ' a ÷ k ~  FX(IA c ~ ) -  for some k<f). 
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29. Tbe wellordering proof/n ID, 

We showed in §23. that the ordinals in B{t~ r) may be represented by a primitive 

recursive wellordering on the natural numbers. Therefore we may talk about 

the ordinals in B(t~ r) - via codes- in IDp Again we will identify ordinals and 

their codes. In this section we will denote by < the order relation on (the 

codes of} the ordinals. The goal of the section is the proof that the wellordering 

of every proper segment of the segment contained in B(Eo+j) is provable in ID I. 

Before we start the proof we will sketch its strategy. 

We are going to define two order relations <• and <o on the ordinals of 

B(e~+l)-<o is the usual order relation restricted to ordinals below t~ whereas 

< f~ is a order relation which no longer is arithmetically definable but only by a 

formula of level O (i.e. by a I]~-formula). The definition of <o is done in 

such a way that TI{<o~,X} holds trivially. Since we have the full scheme of 

complete induction available in ID I we may now copy the wellordering proof 

of {}16 and obtain Tl(<f2~en(~+l),X) for all n<e. Then we will show that in 

ID I every transfinite induction along < ~ up to an ordinal ~ > f~ may be condensed 

into a transfinite induction along <o up to ~bc~, Since the segment contained in 

B(et)+l) is ~b~t~+ l = sup{t~(tOn(D+l)): n e e }  we obtain the  t ransf in i te  induction 

along all i ts p roper  segments  as a t heo rem of  ID 1. 

29.1. Deflnitlona 

(i) ~<o~ :~ ~<~<O- 

{ii) ~c o X denotes the formula 0ce field(< o) ̂ ¥~(Tl<o~ --~ He XL 

~c ° X then is an X-positive arithmetical formula. We denote its fixed point by 

Acc. Acc then represents the accessible part of <o" 

(ill) ~ := {0~: SCo(cc)¢ Acc}. 

(iv) Ct<C~ ~ :~ ~¢~A0C<~. 

If A(X,x) is an X-pos i t ive  ar i thmetical  fo rmula  and F A the  opera to r  induced by 

A, then  the  axiom IDk says 

(1) r^(!^) 
an the axiom ID2A may be read as 

(2) FA({X:F}) c i x :F}  --* 1A¢ ix:F}.  

The monoton ic i ty  o f  a posit ive ope ra to r  is already provable  in pure logic and 

t he r e fo r e  a lso in ID I. So 

(3) FA(FA(!A))C FA(I A) 
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is by (1) a theorem of  ID 1. By (3) and (2) we obtain 

(~) IAC FA(! A) 
and by (1) and (4) finally 

(5) ID, ~- FA(! A) = ! A, 

For the special case tha t  ! A = A c c  we the re fo re  have: 

29.2. Lemma 

V~(~eAcc ~ ~ < f / ^  V~<=(~eAcc))  is a t h e o r e m  o f  ID t. 

By Progl(F) we are going to  abbreviate the formula  

V ~  field( < i) ((V,7< i~ F(~)) --* F ( 0 )  

for  iE {0,fl}. 

Tl i (a ,F)  then denotes  the formula  

ctE f ie ld(< j) ^ Progj(F) ---* V~(~<i(x ~ F(O). 
Using these  abbreviat ions the axioms for Acc can be fo rmula ted  in the fol lowing 

way: 

(ID~c c) Progo(ACc) 

and 

( ID~c c) Progo(F) --~ Accc {x:F} 

29.3. Lamina 

Acc c f) is a t h e o r e m  o f  ID t. 

Proof 

We have Field (<o) = {0t:~<D}. Since Progo(Field(<o))  holds trivially we obtain 

Acc c Field(< o) by (ID~cc). 

29.4. Lemnm 

Prog(< ,F) - -*  V ~ A c c  F(O is a t h e o r e m  o f  lD 1. 

Proof 

For ~<f)  we have ~<a *-* ~<o0~. Therefore  V~<oCC(F(~)) also implies V ~ < a F ( 0 .  

Toge ther  with Prog(< ,F)  this yields F(a).  Hence Progo(F), and we obtain the  

claim by ID~c c. 
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29.5. L e m m a  (p rovab le  in ID a) 

The class  Acc is c losed  under ordinal addition. 

Proof 

Define Acc+ := {ct:Vpe Acc(p+c~e Acc)}. We claim 

(I} Progo(ACc+). 

To prove this we may assume the hypothesis a<fl and Vn<a(zle Acc+) and have 

to show ~e Acc+, i.e. Vpe Acc(p+cze Acc). By 29.2. it suffices to show ~eAcc for 

all ~<p+cz. For ~gp we obtain ~eAcc from peAcc and 29.2. If p<~<p+~, then 

there is an ~<a such that ~ = p+~. By hypothesis we then have ~¢Acc+ which 

implies p+~eAcc. This proves (I). By (I) and ID2Ac c we obtain AcccAcc+ 

which means that for g,~eAcc we also have ~eAcc+ and therefore c~+~eAcc. 

29.6. Lemma 

The formula  Progc~(F) -+  Prog  o (F) is provable  in ID t. 

Proof 

We have the hypothesis 

(I) Progc~ (F) 

(2) ~< t~ 

and 

(3) V~l<o~ F(q) 
and have to show F(~).  

From ~<f~ ~ we obtain by (2) ~<oc~ and by(3) F(~). Hence F(g) by (I). 

29.7. Lemma (provable in ID 1) 
The class Acc is closed under the 9-functJon. 

P r o o f  

W e  def ine  Acc~o := {0c:¥~ ~ Acc  (~o~  E Acc)  v a ~ ~ v t~g ~ ) 

and  s h o w  

(1) Progf~lAcc o). 

F r o m  

(2) V~<c~a (TI~ Acc~) 

we have to conclude cceAcc@. This is trivial for ~¢~ or fl~. We therefore 

may assume cce~R ̂  cz< t'). Then it remains to prove 
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(3) ¥ ~ Acc(~0~e  Acc). 

We show (3) according to  29.4. by induction on ~. I f  we choose  any ~eAcc we 

then  have the  induct ion hypothes i s  

(4) Vrj<~(~pocrj¢ Acc). 

In order to obtain ~eAcc it by 29.2. suffices to prove 

(5) p<~a~--~ peAcc. 

This will be done by side induction on Gp. If p~ H, then we have H(p)c Acc by 

the side induction hypothesis . By 29.5. this implies p e Acc. 

If pe SC, then we have p<~ or p~. If p~ we obtain peAcc immediately from 

~eAcc. If p£~, then there is a veSCn(~) such that p~v. Because of ~c~ we 

have v e Acc and it again follows p e Acc. 

Now assume De H\SC. Then there are Pl,P2 such that p = ~@PIO2- We now have 

to distinguish the following cases: 

I. Pl = ~ and p2<~. Then we obtain ~oplp2e Acc from (4). 

2. ~<Pl and p~. Then peAcc follows from ~eAcc by 29.2. 

3. p1<c( and p2<q)~. Then for every ~eSCf~(pt) there is a ~eSCf~(~)cAcc such 

that vg~. Hence SCt~(pl)c Acc which implies 01<f~. By (2) it therefore follows 

p~ e Acc@. By the side induction hypothesis we have p2e Acc. Since Pl e ~{~O this 

implies ~p~p~eAcc. This finishes the proof of (l). 

We now have to show that ~,~eAcc also imply ~eAcc. ~,[~eAcc imply 

~,~<O since AcccO. Since SC~(c~)~c(, we have SCt~(cOcAcc, i.e. c(e~. From 

(I) we obtain Progo(Acc @) by 29.6. Using II~Ac c this implies Acc¢ Acc@ Hence 

e Acc@f~ ~f}. Together with ~ e Acc this implies ~0~ e Acc. 

29.8. Theorem 

IDt I- Tl(ro,X). 

P r o o f  

I f  we define A o = ~00  and An+ t = ~AnO. then  by 17.21. we have r o = sup{An: n< o}. 

From OeAcc  and 29.7 we obta in  by induct ion on n IDt}-Vn (AneACc).  For  every 

~ < r  o there  is an n < e  such t ha t  IDt[ -~<A n. Hence IDt[- I 'ocAcc.  Toge the r  with 

29.4. th is  impl ies  I D t [ - P r o g ( < , X ) - *  V~<ro(~e X), i.e. IDt[-TI(Fo,X).  

Already in {}22. we re fe r red  to  t heo rem  29.8. I t  shows  t h a t  ID 1 Is no t  pred ica t i -  

vely in te rpre tab le .  We soon  will see,  however ,  t h a t  the  wel lorder ing  proved  in 

29.8 by no means  exhaus t s  the  power  o f  ID t. 
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29.9. Ddln lUon 

Acc n := {~x:~x¢ ~[~ v ~ K ~ v  q0te Acc} 

29.10. Lemma (provable in IDa) 

Progc~( Acc n ) 

Proof 
Assume ~EFie ld(<n)  and V~<n=(~eAccn) .  We have to  show =~Acc o.  If  =¢~R 

or ~ K ~ ,  then  we are done. We therefore  assume ~ e ~  and K~<~ and have to  

show qb~eAcc. In order to  do tha t  it  suff ices to  prove 

(1) p< qb~ -* p e Acc. 

We show (1) by induction on Gp. If ia~ SC, then we obtain the claim from 29.5. 

or 29.7. and the induction hypothesis. We therefore assume ~ae SC. Then there 

Is an po<~ such that t~ = Npt~po. Hence Kpo<Po<~. If ~SCc~{p0), then there is 

an ~I such that ~ =NF ~a- Thus We K~ ¢ Kpo<~ which implies ~ = ~b~)<~. Hence 

$Cn(p0)<~. Since we always have G~Gpo<G p for ~eSCo(p o) we obtain 

SCn(~o)cAcc by the induction hypothesis. This implies l)o<n~ and therefore 

also laoeAccn. But this implies peAcc. 

29.11. Lernma (Condensat ion lemma) 

From IDj~-TIt~(a,X) ^ a e ~  A K~<a Jt f o l l ows  ID l ~- ~ A c c  and there fore  a]so 

IDI~- TI (~ba, X). 

Proof 

From IDIt -TIn(~,X)  we especially obtain 

(1) IDtl- TI n (~ ,Accn) .  

By 29.10. we have 

(2) IDl~- Progt~(Accn). 

From (!) and (2) it fo l lows 

( 3 )  IDIF-V~(~<c~ -~ ~ A c c n )  

and f rom (2) and (3) 

(4) IDil--- ot ~ Acct. 

Because of  ~c~R and K~<~ we obtain f rom (4) 

(5) IDIt- ~ ~ Acc. 

From (5) we obtain by 29.2. and 29.4. 
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(6) IDI}- Prog(<  ,X) --* ¥~<qb~(~  X) 

and this  means  IDt}- TI (q~ ,X) .  

29.12. L e m m a  

IDiF- TI c~(f~+l) A CI+I e ~[RA K(O+I) < f~+l 

P r o o f  

Because o f  SCt~(f}+l) = ~ and K(f}+l) = ~ we tr ivial ly have f}+l~lRAK(f}+l)<f l+l .  

Now we a s s u m e  Progc~(X) and have to  show V ~ : ~ ( ~  X). From ~<c~fL however ,  

we obta in  ~< Ct and SCc~(~) c Acc. Since Acc is c losed  under  + and ~o th is  a l ready 

implies  ~ A c c .  By 29.6. Progc~(X) a l so  implies  Progo(X) and we obta in  ~ X  by 

IlYAc c. Hence  V~<t~g)(~eX). This t o g e t h e r  with the  hypothes i s  Progc~(X) a l so  

implies ~) ~ X. 

29.13. Lemnm 

IDj I-- 0< E OFt A K(~) < AA TIc~(~, X) also implies IDll-- to °< ~ ~fft A K(oc) < ~A Tlo(to°c,X). 

P roof  

.Because o f  SCf~(~ ~) = SCt~(0c) and K(t0 ~) = K(~) we obtain  tO~E~I~A K(0c)<0c im-  

media te ly  f rom ~ .  Since Z 1 is a s u b s y s t e m  of  IDj the  second  pa r t  o f  the  

c la im fo l lows  as in 15.3. 

We now define a sequence  by 

~o = t~÷l , ~ ,+ ,  -- e ¢ n  . 

Then we have 

(1) Vn (~n ~ B(O)c B(~n)), i.e. Vn (K~n< ~n ) 

by an ea sy  induct ion on n and 

(2) ~En+ , = s u p ( ~ n ) .  

To prove  (2) we obse rve  t h a t  ~n<En÷1 holds  for  all n<co. By (1) th is  implies  

kb~n<~Ec~+j for  all n<~ .  On the  o the r  hand if  Tl<kbet~÷j, then  we show by in-  

duc t ion  on GT1, t h a t  t he re  is an n<to such t ha t  Tl<kb~ n. For  71tSC this  is i m m e -  

diate  f r o m  the  induct ion hypothes i s .  I f  ~ SC, then  the re  is an Tlo such  that  

= NFt~lo <~Et~+~<O. But then  71o<Eo÷ ~ and we obta in  an n<~0 such t h a t  

~o<~n. Hence  ~<kb~a. 

29.14. T h e o r e m  

For all ~<~Et~+l we have IDsb-TI(~,X) .  
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Proof 

For ~<~Et~+l there  is an n<c0 auch tha t  ~ < ~ n "  By 29.12. and 29.13. we obta in  

IDi}-~n~{RAK~n<~nATlt~(~n,X) for all n<to. By the condensation lemma this 

implies IDI~-TI(d~n,X). Hence also IDI~-TI({,X). 

29.15. Theorem 

For every u<~Et~+t there is a II]-sentenc~ F such that  u~lFI and  ID1}-F. 

Proof 

Literal ly as the  p r o o f  o f  15.8. 

29.16. Theorem 

SPo(ID l) = [IDil = qbet~+ , 

Proof 

This is obvious  f rom 29.15. and 28.16. 

In a l as t  s t ep  we are going to  convince ourse lves  t ha t  the bound given in 28.18. 

is in fac t  an exac t  one. That  means  t ha t  we have to  show tha t  for  every 

~<~Ef l+ l  the re  are an X-pos i t i ve  fo rm u l a  A and an n e e  such t ha t  IDl}-ne_I A 

and ~ Inl A hold. 

To show this  we choose  an a r i thmet ica l ly  def inable  wel lorder ing  ~ and regard  

the  f ixed point  o f  the  ope ra to r  r< which is given by 

r<(S):={n:Vm(m,{n-* m~S)}. 

By [n[ r we now denote the norm of the element n in the inductive definition F 

and by In[< the norm of n in the wellordering ~ as defined in 13.2. Then we 

obtain: 

29.17. Lamnm 

For sdl n~ Field(,() it is [n[ r = Inl~. 

P r o o f  

We first show n e Acclnl< by ~-induction. By the induction hypothesis we have 

m e Acclmt< for all m ~ n. Since [m[< < }n[< this implies Vm~ n ( m e Acc< Inl< ). Hence 

n¢ Acclnl< which proves Inlr~ Inl<. For the other direction we show[n[< ~ [n[ r by 

induction on In[<. If [<[n[< ={[ml<: m'(n}, then there is an m'{n such that 

~= [ml< i=vlmlr. But since meAcc <Inlr it follows [m]r<In{ r. Hence [n[<~ln[ r. 
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29.18. T h e o r e m  

For every  ~ < ¢ E n +  l there  is an X - p o s i t i v e  ar i thmet ical  fo rmula  A and an 

n e o  such that  ~aln lA and  I D l [ - n ~ I  A. 

P r o o f  

For every ¢~<hb~c~÷i there  is an n<¢o such t h a t  ~<¢An. In the  p r o o f  o f  29.14 we 

have shown  tha t  ID 1 ~-TIt~(An,X) holds  for  all n<t0. By the  condensa t ion  

l e m m a  this  implies  ID l ~- CAnEAcc for  all n<t0. By l emma  29.17., however ,  it is 

Iq~anlAcc = ~an.  
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The main goal o f  this  l ec ture  was to  in t roduce  to  the  techniques  of  impredicat ive  

ordinal  analysis .  The ax iom s y s t e m  for  non i t e ra ted  inductive def ini t ions  served 

as an s imple  example  fo r  an impredicat ive  theory .  O f  course ,  this  is ju s t  a f i r s t  

s t e p  into the  wor ld  o f  impredicat ivi ty .  The m o s t  s t r a i g h t f o r w a r d  way to  obta in  

more  compl i ca t ed  axiom s y s t e m s  is to  cons ider  i te ra ted  inductive defini t ions.  

These  theor ies  are t r e a t e d  in [BFPS]. There it is a l so  shown  how these  theor ies  

are connec ted  to  s u b s y s t e m s  o f  c lass ical  analysis ,  i.e. second order  number  

theory  with  comprehens ion .  The real fasc ina t ion  of  impredicat ive sys t ems ,  however ,  

becomes  not  visible till one cons iders  s u b s y s t e m s  of  se t  theory.  Pitlly there  are 

no t e x t  books  in this  area. The bes t  r e fe rences  here are the  papers  [1979] and 

[1986] of  G.Jiiger. An impress ing  var ie ty  of  s u b s y s t e m s  of  se t  theory  is p r e sen t end  

by M.Rathjen [1989]. This paper  is a good example  for  the  in terplay be tween  

recurs ion  theore t ica l ,  se t  theore t ica l ,  model  theore t i ca l  and p roo f  theore t ica l  

m e t h o d s  in the  ordinal analysis  o f  s u b s y s t e m s  o f  se t  theory.  A survey o f  these  

m e t h o d s  is given in Pohlers  [1990]. A t e x t  book  wi th  the  t i t le  "Admissible  Proof  

Theory"  is in p repa ra t ion  and will appear  in the  Springer  ser ies  "Ergebnisse  der  

Ma themat ik  und ihrer Grenzgebie te" .  

We will c lose  this book  by giving some  c o m m e n t s  on the ' c o n s t r u c t i v e '  

meaning o f  ordinal analysis .  In §14 we al ready indicated t ha t  it is suf f ic ien t  for  

an ordinal  analysis  to  regard  only recurs ive  p r o o f  t r ees  of  the  s emi fo rma l  sys tem.  

This can be used to  show 

(1) T ~- F ¢~ Z 1 + TI(< ]T], X) ~- F 

for  all H~-sentences  F. Here  TI(< ]TI,X) means  t ha t  we a l low induct ion a long 

all initial s egmen t s  of  the  primit ive recurs ive  wel lorder ing  ~T of  o rde r type  iT[ 

which has been obta ined  f rom the  no ta t ion  s y s t e m  used  in the  ordinal analysis  

o f  T. A deta i led  p roo f  is in Pohlers  [BFPS]. The ax iom s y s t e m  PRA for  'p r imi t ive  

recurs ive  analys is '  is e s sen t i a l ly  the  s y s t e m  Z~ - INDR of  exerc ise  3.15.6. 

( o f t en  cons idered  as second  order  theory  bu t  wi thou t  s t rong  c o m p r e h e n -  

s ions) .  By the  (formal} re f l ec t ion  principle (REF(T)) for  an ax iom s y s t e m  T one 

deno te s  the  principle 

(REF(T)) BeWT(rF 7) --~ F 

where  Bew T is a provabi l i ty  pred ica te  for  T. (H ° - REF(T)) is the scheme  (REF(T)) 

wi th  F r e s t r i c t ed  to  II ° - sen tences ,  i.e. s en tences  of  the  f o r m  ¥~ 3y G(~,y)  wi th  

G quant i f ie r  free.  For a pr imit ive recurs ive  order  re la t ion  ~ on the  natura l  
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numbers we denote by PRWO(g ) that there are no primitive recursive infinitely 

g-descending sequences. Then we have 

(2) PRA k- PRWO(g ) ~ (II o - REF(ZI+TI(g,X)) .  

This is cons idered  to  be a fo lk lo re  r e su l t  o f  p r o o f  theory.  I ts  p r o o f  needs a 

principle  known as ' con t inuous  cu t  e l iminat ion '  original ly deve loped  by G.E.Mints.  

The m o s t  beaut i fu l  p r o o f  has been  given by W.Buchholz  in [1988a]. F rom (1) 

and (2) it a l ready fo l lows  tha t  PRA + PRWO(g T) p roves  the  cons i s t ency  of  T. 

Moreover the theory PRA has a beautiful computational aspect. It has primitive 
0 recurslve 112 -Skolem functions, i.e. if PRA k-¥~ 3y G(~, y) for a quantifier 

free formula G(~,y), then there is a primitive recursive function f such that 

RN ~ G(~,f(~)). This result can be extended to FRA + PRWO(g ) in so far that 

this theory has Skolem functions which can be obtained from the basic functions 

C~, P~ and S by substitution, primitive recursion (cf. 1.1.) and the "(-descending 

g-operator which for a given n+1-ary function f searches for the value 

( g< f) (~) := min{ y: ( 1 f(~, y+l)g f(~,y) ) } 

i.e. gg f (~ )  c o m p u t e s  the  length  of  a q - d e s c e n d e n t  sequence f(~, 0 )~  f(~,l))-  

f (g ,  2)~ . . . .  The c lass  o f  these  funct ions ,  the  g - d e s c e n d e n t  funct ions ,  can a lso  

be  ob ta ined  by g - r e c u r s i o n ,  i. e. using the  scheme  
f 

f(g,  Y) = ~h(~,f(g,g(~,  
y)))  if g(3~,y)gy 

| 

|k(~,y) otherwise 

in addition to substitution and primitive recursion. The functions can also be 

the Hardy hierarchy of computable functions which is characterized using 

given by 

Ho(x) = x 

Ha+ 1 ix) = H~(x+I)  

H>(x)  = Hx[x](X) for  l imit  ordinals  X 

where  {X[n] : n<~o} is a fundamenta l  sequence  for  )~, i.e. sup{)~[n] : n<~} = ), 

and ) , [n]<) , [n+l]  for  all  n<c0. I t  can be shown  tha t  the  g - d e s c e n d i n g  funct ions ,  

where  g is an initial s e g m e n t  of  g T' are all major lzable  by the func t ion  HIT I. 

F rom (1) and (21 we obta in  a charac te r iza t ion  o f  the  1I ° - Skolem funct ions  of  

the  theory  T. I f  T [- ¥5~ 3y G(~,y), then  we obta in  Z 1 + T I ( g , x )  ~- ¥5~ ]y  G(~,y) 

for  an initial s e g m e n t  g of  g w by (1). This enta i l s  

P R ~  ~- Hew ( Z  1 + T I ( , ( , X ) ) (  r v ~ ] y  G(~,y) 7) 

which by (2) implies  PRA + PRWO(-~ ) k- ¥5~ By G(~,y). Hence T has II ° - S k o l e m  

func t ions  which are g - d e s c e n d e n t  for  initial s e g m e n t s  o f  g T. A recurs ive  
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function f with index e is provably recursive in T, if T ~- V~ 3y T(e,~, y), where 

T denotes the Kleene predicate), i.e. if T proves f to be total. The provably 

recursive functions of T are thus II ° - Skolem functions and therefore maJorizable 

by HIT I. 
Since (1) is a side result of the method of local predicativlty (cf. [BFPS]) we 

obtain as as a corollary of the (proof of the) ordinal analysis for T a characteri- 

zation of the II ° -Skolem functions, and thus also of the provable recursive 

functions of T. This characterization may be considered as a very constructive 

one since the wellorderings "~T obtained from the ordinal analysis are so simple 

that it causes no problems to implement them on a computer. (For the system 

obtained in chapter Ill this has been done by K.Stroetmann in MUnster). Therefore 

there is a program, implementable on a real computer, computing the provably 

recursive functions of T. As a matter of fact, however, these functions increase 

so incredibly fast that they only are computable for very small arguments. 

The above stated facts are scattered in the literature. The best reference here is 

Takeuti's book [1987 CH.2 §12] where he proves similar results for the case of 

pure number theory. 

A textbook treating this material systematically is still a challenge. 
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Z 2 22 

ACAo 29_ 

Z °n-IND 22 

E°n-INDR 22 

~-°-INDR" 22 

XPoo 22 

~ ' n  23 

• ~OO (Xl ..... X n ) 

~ F  ~ 24 

A 24 

B a 25 

25 

On 31 

32 

N 33 

33 

~ql 34 

fll, El 34 

Otyp(M) 36 

OrdM 36 

td~ 42 

# 43 

23 

% 45 

E 46 

r 7 47 

~o 48 

IFI 48 

A* 48 

Zoo 50 

rk 50 

ZM~-~ 50 

AT(F) 53 

AE 53 

7.o 59 

~n 59 

SP o 62 

ITI 62 

Field, Tran, LO, 63 

Prog(~ ,X) 63 

Fund(,< ,X), 63 

TI('< ,X) 63 

tnl{ 63 

IN II 63 

,(~, , ~ a  64 

ProgR('(,Ii) 67 

Z t° 69 
Eo 

Fund(c~,X), TI(c~,X) 72 

Sp(X) 72 

Fix(f) 78 

M' 78 

Cr(0d 79 

79 

SC 81 

Fct 81 

~r 82 

~=NF ~[57 82 

PC(~) 83 

G~ 84 

PCNF (0) 84 

E,A, F 85 

Aut(~) 86 

Zoo,Z oo 88 

ACP~o 89 

&:oo,co 91 

ccc S 91 

~o 92 

Fundo(~) 92 

SP(S) 92 

h(r~) 96 

Ax(o), Bx(o : ) ,  97 

Cx(tl,o,x) 97 

SPx(o) 99 

I F 110 

I~ ,,3 
I~ c 113 

IF1 113 

Int F ]13 

*~I 115 

ID t 115 
(IDa), (IO~) 115 

CIA(Y) 115 

t c I ~  a 117 

rk X 117 
~ 117 

8 ~ a 12o 
.~I* 122 

(CI o)  122 
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B(<x) 125 

~ 125 

OC=NF ~ 130 

F 131 

B'(oO, ~'o~ 132 

~(oc) 134 

K~ 137 

ko~ 140 

h~ 140 

r(c0 140 

SC(~) 141 

SCc~(~) 141 

Do¢ 141 

~<< ~ 141 

f<< ~ 144 

Bv(~), ~v~ 148 

(Axe )  148 

s tg  A (F) 162 

A ~ ~ 162 

IDco A 162 

SF 164 

ID~ 172 

no(F) 173 

<o ~ 179 

179 

oe <t~ 13 179 

PrOgo(F) 179 

Progc~(F) 179 

Acc 179 

Acc+ 181 

Acc~o 182 

Accc~ 183 
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