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% INTRODUCTION *

Turning on the Light

A FEW YEARS AGO the PBS program Nova featured an inter-
view with Andrew Wiles. Wiles is the Princeton mathematician
who gave the final resolution to what was perhaps the most fa-
mous mathematical problem of all time—the Fermat conjecture.
The solution to Fermat was Wiles’s life ambition. “When he re-
vealed a proof in that summer of 1993, it came at the end of
seven years of dedicated work on the problem, a degree of focus
and determination that is hard to imagine.”" He said of this pe-
riod in his life, “I carried this thought in my head basically the
whole time. I would wake up with it first thing in the morning,
I would be thinking about it all day, and I would be thinking
about it when I went to sleep. Without distraction I would have
the same thing going round and round in my mind.”? In the
Nova interview, Wiles reflects on the process of doing mathemat-
ical research:

Perhaps I can best describe my experience of doing mathe-
matics in terms of a journey through a dark unexplored
mansion. You enter the first room of the mansion and it’s
completely dark. You stumble around bumping into the fur-
niture, but gradually you learn where each piece of furni-
ture is. Finally after six months or so, you find the light
switch, you turn it on, and suddenly it’s all illuminated. You
can see exactly where you were. Then you move into the
next room and spend another six months in the dark. So
each of these breakthroughs, while sometimes they’re mo-
mentary, sometimes over a period of a day or two, they are
the culmination of—and couldn’t exist without—the many
months of stumbling around in the dark that precede them.

This is the way it is! This is what it means to do mathematics
at the highest level, yet when people talk about mathematics,
the elements that make up Wiles’s description are missing. What
is missing is the creativity of mathematics—the essential dimen-
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INTRODUCTION

sion without which there is no mathematics. Ask people about
mathematics and they will talk about arithmetic, geometry, or
statistics, about mathematical techniques or theorems they have
learned. They may talk about the logical structure of mathemat-
ics, the nature of mathematical arguments. They may be im-
pressed with the precision of mathematics, the way in which
things in mathematics are either right or wrong. They may even
feel that mathematics captures “the truth,” a truth that goes be-
yond individual bias or superstition, that is the same for all peo-
ple at all times. Rarely, however, do most people mention the
“doing” of mathematics when they talk about mathematics.

Unfortunately, many people talk about and use mathematics
despite the fact that the light switch has never been turned on
for them. They are in a position of knowing where the furniture
is, to use Wiles’s metaphor, but they are still in the dark. Most
books about mathematics are written with the aim of showing
the reader where the furniture is located. They are written from
the point of view of someone for whom the light switch has been
turned on, but they rarely acknowledge that without turning on
the switch the reader will forever remain in the dark. It is indeed
possible to know where the furniture is located without the light
switch having ever been turned on. “Locating the furniture” is a
relatively straightforward, mechanical task, but “turning on the
light” is of another order entirely. One can prepare for it, can set
the stage, so to speak, but one can neither predict nor program
the magical moment when things “click into place.” This book
is written in the conviction that we need to talk about mathemat-
ics in a way that has a place for the darkness as well as the light
and, especially, a place for the mysterious process whereby the
light switch gets turned on.

Almost everyone uses mathematics of some kind almost every
day, and yet, for most people, their experience of mathematics
is the experience of driving a car—you know that if you press
on the gas the car will go forward, but you don’t have any idea
why. Thus, most people are in the dark with respect to the math-
ematics that they use. This group includes untold numbers of
students in mathematics classrooms in elementary schools, high
schools, and universities around the world. It even includes in-
telligent people who use fairly sophisticated mathematics in
their personal or professional lives. Their position, with respect
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TURNING ON THE LIGHT

to the mathematics they use every day, is like that of the person
in the dark room. They may know where certain pieces of furni-
ture are located, but the light switch has not been turned on.
They may not even know about the existence of light switches.
Turning on the light switch, the “aha!” experience, is not some-
thing that is restricted to the creative research mathematician.
Every act of understanding involves the turning on of a light
switch. Conversely, if the light has not gone on, then one can be
pretty certain that there is no understanding.

If we wish to talk about mathematics in a way that includes
acts of creativity and understanding, then we must be prepared
to adopt a different point of view from the one in most books
about mathematics and science. This new point of view will ex-
amine the processes through which new mathematics is created
and old mathematics is understood. When mathematics is iden-
tified with its content, it appears to be timeless. The new view-
point will emphasize the dynamic character of mathematics—
how it is created and how it evolves over time. In order to arrive
at this viewpoint, it will be necessary to reexamine the role of
logic and rigor in mathematics. This is because it is the formal
dimension of mathematics that gives it its timeless quality. The
other dimension—the developmental—will emerge from an ex-
amination of situations that have spawned the great creative ad-
vances in mathematics. What are the mechanisms that underlie
these advances? Do they arise out of the formal structure or is
there some other factor at work?

This new point of view will turn our attention away from the
content of the great mathematical theories and toward questions
that are unresolved, that are in flux and problematic. The prob-
lematic is the context within which mathematical creativity is
born. People are so motivated to find answers that they some-
times neglect the boundaries of the known, where matters have
not settled down, where questions are more meaningful than
answers. This book turns matters around; that is, the problem-
atic is regarded as the essence of what is going on. The conse-
quence is that much of the traditional way of looking at mathe-
matics is radically changed. Actual mathematical content does
not change, but the point of view that is developed with respect
to that content changes a great deal. And the implications of this
change of viewpoint will be enormous for mathematics, for sci-
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INTRODUCTION

ence, and for all the cultural projects that get their worldview,
directly or indirectly, from mathematics.

Now, not everyone thinks that such a change in viewpoint is
necessary or even desirable. There are eminent spokespeople for
an opposing point of view, one that maintains that “The ultimate
goal of mathematics is to eliminate all need for intelligent
thought.”® This viewpoint, one that is very influential in the arti-
ficial intelligence community, is that progress is achieved by
turning creative thought into algorithms that make further cre-
ativity unnecessary. What is an algorithm? Webster’s New Colle-
giate Dictionary defines it to be “a procedure for solving a math-
ematical problem in a finite number of steps that frequently
involves the repetition of an operation.” So an algorithm breaks
down some complex mathematical task into a sequence of more
elementary tasks, some of which may be repeated many times,
and applies these more elementary operations in a step-by-step
manner. We are all familiar with the simple mathematical algo-
rithms for addition or multiplication that we learned in elemen-
tary school. But algorithms are basic to all of computer program-
ming, from Google’s search procedures to Amazon’s customer
recommendations.

Today the creation of algorithms to solve problems is ex-
tremely popular in fields as diverse as finance, communications,
and molecular biology. Thus the people I quoted in the above
paragraph believe that the essence of what is going on in mathe-
matics is the creation of algorithms that make it unnecessary to
turn on the light switch. There is no question that some of the
greatest advances in our culture involve the creation of algo-
rithms that make calculations into mechanical acts. Because the
notion of an algorithm underlies all of computer programming,
algorithms are given a physical presence in computers and other
computational devices. The evident successes of the computer
revolution have moved most people’s attention from the cre-
ative breakthroughs of the computer scientists and others who
create the algorithms to the results of these breakthroughs. We
lose track of the “how” and the “why” of information technol-
ogy because we are so entranced with what these new technol-
ogies can do for us. We lose track of the human dimension of
these accomplishments and imagine that they have a life inde-
pendent of human creativity and understanding.
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The point of view taken in what follows is that the experience
Wiles describes is the essence of mathematics. It is of the utmost
importance for mathematics, for science, and beyond that for
our understanding of human beings, to develop a way of talking
about mathematics that contains the entire mathematical experi-
ence, not just some formalized version of the results of that expe-
rience. It is not possible to do justice to mathematics, or to ex-
plain its importance in human culture, by separating the content
of mathematical theory from the process through which that the-
ory is developed and understood.

D1rreReENT WAYs oF USING THE MIND

Mathematics has something to teach us, all of us, whether or not
we like mathematics or use it very much. This lesson has to do
with thinking, the way we use our minds to draw conclusions
about the world around us. When most people think about
mathematics they think about the logic of mathematics. They
think that mathematics is characterized by a certain mode of
using the mind, a mode I shall henceforth refer to as “algorith-
mic.” By this I mean a step-by-step, rule-based procedure for
going from old truths to new ones through a process of logical
reasoning. But is this really the only way that we think in mathe-
matics? Is this the way that new mathematical truths are brought
into being? Most people are not aware that there are, in fact,
other ways of using the mind that are at play in mathematics.
After all, where do the new ideas come from? Do they come
from logic or from algorithmic processes? In mathematical re-
search, logic is used in a most complex way, as a constraint on
what is possible, as a goad to creativity, or as a kind of verifica-
tion device, a way of checking whether some conjecture is valid.
Nevertheless, the creativity of mathematics—the turning on of
the light switch—cannot be reduced to its logical structure.
Where does mathematical creativity come from? This book will
point toward a certain kind of situation that produces creative
insights. This situation, which I call “ambiguity,” also provides
a mechanism for acts of creativity. The “ambiguous” could be
contrasted to the “deductive,” yet the two are not mutually ex-
clusive. Strictly speaking, the “logical” should be contrasted to
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INTRODUCTION

the “intuitive.” The ambiguous situation may contain elements
of the logical and the intuitive, but it is not restricted to such
elements. An ambiguous situation may even involve the contra-
dictory, but it would be wrong to say that the ambiguous is nec-
essarily illogical.

Of course, it is not my intention to produce some sort of recipe
for creativity. On the contrary, my argument is precisely that
such a recipe cannot exist. This book directs our attention to-
ward the problematic and the ambiguous because these situa-
tions so often form the contexts that produce creative insights.

Normally, the development of mathematics is reconstructed as
a rational flow from assumptions to conclusions. In this recon-
struction, the problematic is avoided, deleted, or at best mini-
mized. What is radical about the approach in this book is the
assertion that creativity and understanding arise out of the prob-
lematic, out of situations I am calling “ambiguous.” Logic abhors
the ambiguous, the paradoxical, and especially the contradictory,
but the creative mathematician welcomes such problematic situa-
tions because they raise the question, “What is going on here?”
Thus the problematic signals a situation that is worth investigat-
ing. The problematic is a potential source of new mathematics.
How a person responds to the problematic tells you a great deal
about them. Does the problematic pose a challenge or is it a
threat to be avoided? It is the answer to this question, not raw
intelligence, that determines who will become the successful re-
searcher or, for that matter, the successful student.

THE IMPORTANCE OF TALKING ABOUT MATHEMATICS

In preparing to write this introduction, I went back to reread
the introductory remarks in that wonderful and influential
book, The Mathematical Experience. I was struck by the following
paragraph:

I started to talk to other mathematicians about proof,
knowledge, and reality in mathematics and I found that my
situation of confused uncertainty was typical. But I also
found a remarkable thirst for conversation and discussion
about our private experiences and inner beliefs.
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I've had the same experience. People want to talk about math-
ematics but they don’t. They don’t know how. Perhaps they
don’t have the language, perhaps there are other reasons. Many
mathematicians usually don’t talk about mathematics because
talking is not their thing—their thing is the “doing” of mathe-
matics. Educators talk about teaching mathematics but rarely
about mathematics itself. Some educators, like scientists, engi-
neers, and many other professionals who use mathematics,
don’t talk about mathematics because they feel that they don’t
possess the expertise that would be required to speak intelli-
gently about mathematics. Thus, there is very little discussion
about mathematics going on. Yet, as I shall argue below, there is
a great need to think about the nature of mathematics.

What is the audience for a book that unifies the content with
the “doing” of mathematics? Is it restricted to a few interested
mathematicians and philosophers of science? This book is writ-
ten in the conviction that what is going on in mathematics is
important to a much larger group of people, in fact to everyone
who is touched one way or another by the “mathematization”
of modern culture. Mathematics is one of the primary ways in
which modern technologically based culture understands itself
and the world around it. One need only point to the digital revo-
lution and the advent of the computer. Not only are these new
technologies reshaping the world, but they are also reshaping
the way in which we understand the world. And all these new
technologies stand on a mathematical foundation.

Of course the “mathematization” of culture has been going on
for thousands of years, at least from the times of the ancient
Greeks. Mathematization involves more than just the practical
uses of arithmetic, geometry, statistics, and so on. It involves
what can only be called a culture, a way of looking at the world.
Mathematics has had a major influence on what is meant by
“truth,” for example, or on the question, “What is thought?”
Mathematics provides a good part of the cultural context for
the worlds of science and technology. Much of that context
lies not only in the explicit mathematics that is used, but also in
the assumptions and worldview that mathematics brings along
with it.

The importance of finding a way of talking about mathematics
that is not obscured by the technical difficulty of the subject is
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INTRODUCTION

perhaps best explained by an analogy with a similar discussion
for physics and biology. Why should nonphysicists know some-
thing about quantum mechanics? The obvious reason is that this
theory stands behind so much modern technology. However,
there is another reason: quantum mechanics contains an implicit
view of reality that is so strange, so at variance with the classical
notions that have molded our intuition, that it forces us to reex-
amine our preconceptions. It forces us to look at the world with
new eyes, so to speak, and that is always important. As we shall
see, the way in which quantum mechanics makes us look at the
world—a phenomenon called “complementarity”—has a great
deal in common with the view of mathematics that is being pro-
posed in these pages.

Similarly, it behooves the educated person to attempt to un-
derstand a little of modern genetics not only because it provides
the basis for the biotechnology that is transforming the world,
but also because it is based on a certain way of looking at human
nature. This could be summarized by the phrase, “You are your
DNA” or, more explicitly, “DNA is nothing less than a blue-
print—or, more accurately, an algorithm or instruction manual—
for building a living, breathing, thinking human being.”* Molec-
ular biology carries with it huge implications for our under-
standing of human nature. To what extent are human beings
biological machines that carry their own genetic blueprints?
It is vital that thoughtful people, scientists and nonscientists
alike, find a way to address the metascientific questions that
are implicit in these new scientific and technological ad-
vances. Otherwise society risks being carried mindlessly along
on the accelerating tide of technological innovations. The ques-
tion about whether a human being is mechanically determined
by their blueprint of DNA has much in common with the
question raised by our approach to mathematics, namely, “Is
mathematical thought algorithmic?” or “Can a computer do
mathematics?”

The same argument that can be made for the necessity to
closely examine the assumptions of physics and molecular biol-
ogy can be made for mathematics. Mathematics has given us the
notion of “proof” and “algorithm.” These abstract ideas have, in
our age, been given a concrete technological embodiment in the

8
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form of the computer and the wave of information technology
that is inundating our society today. These technological devices
are having a significant impact on society at all levels. As in the
case of quantum mechanics or molecular biology, it is not just
the direct impact of information technology that is at issue, but
also the impact of this technological revolution on our concep-
tion of human nature. How are we to think about consciousness,
about creativity, about thought? Are we all biological computers
with the brain as hardware and the “mind” defined to be soft-
ware? Reflecting on the nature of mathematics will have a great
deal to contribute to this crucial discussion.

The three areas of modern science that have been referred to
above all raise questions that are interrelated. These questions
involve, in one way or another, the intellectual models—meta-
phors if you will—that are implicit in the culture of modern sci-
ence. These metaphors are at work today molding human be-
ings’ conceptions of certain fundamental human attributes. It is
important to bring to conscious awareness the metascientific as-
sumptions that are built into these models, so that people can
make a reasonable assessment of these assumptions. Is a ma-
chine, even a sophisticated machine like a computer, a reason-
able model for thinking about human beings? Most intelligent
people hesitate even to consider these questions because they
feel that the barrier of scientific expertise is too high. Thus, the
argument is left to the “experts,” but the fact is that the “experts”
do not often stop to consider such questions for two reasons:
first, they are too busy keeping up with the accelerating rate of
scientific development in their field to consider “philosophical”
questions; second, they are “insiders” to their fields and so have
little inclination to look at their fields from the outside. In order
to have a reasonable discussion about the worldview implicit in
certain scientific disciplines, it would therefore be necessary to
carry a dual perspective; to be inside and outside simultane-
ously. In the case of mathematics, this would involve assuming
a perspective that arises from mathematical practice—from the
actual “doing” of mathematics—as well as looking at mathemat-
ics as a whole as opposed to discussing some specific mathemat-
ical theory.



INTRODUCTION

THE “L1GHT OF REASON” OR THE
“L1GHT OF AMBIGUITY”?

What is it that makes mathematics mathematics? What are the
precise characteristics that make mathematics into a discipline
that is so central to every advanced civilization, especially our
own? Many explanations have been attempted. One of these
sees mathematics as the ultimate in rational expression; in fact,
the expression “the light of reason” could be used to refer to
mathematics. From this point of view, the distinguishing aspect
of mathematics would be the precision of its ideas and its sys-
tematic use of the most stringent logical criteria. In this view,
mathematics offers a vision of a purely logical world. One way
of expressing this view is by saying that the natural world obeys
the rules of logic and, since mathematics is the most perfectly
logical of disciplines, it is not surprising that mathematics pro-
vides such a faithful description of reality. This view, that the
deepest truth of mathematics is encoded in its formal, deductive
structure, is definitely not the point of view that this book as-
sumes. On the contrary, the book takes the position that the logi-
cal structure, while important, is insufficient even to begin to
account for what is really going on in mathematical practice,
much less to account for the enormously successful applications
of mathematics to almost all fields of human thought.

This book offers another vision of mathematics, a vision in
which the logical is merely one dimension of a larger picture.
This larger picture has room for a number of factors that have
traditionally been omitted from a description of mathematics
and are translogical—that is, beyond logic—though not illogical.
Thus, there is a discussion of things like ambiguity, contradic-
tion, and paradox that, surprisingly, also have an essential role
to play in mathematical practice. This flies in the face of conven-
tional wisdom that would see the role of mathematics as elimi-
nating such things as ambiguity from a legitimate description
of the worlds of thought and nature. As opposed to the formal
structure, what is proposed is to focus on the central ideas of
mathematics, to take ideas—instead of axioms, definitions, and
proofs—as the basic building blocks of the subject and see what
mathematics looks like when viewed from that perspective.

10
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The phenomenon of ambiguity is central to the description of
mathematics that is developed in this book. In his description of
his own personal development, Alan Lightman says, “Mathe-
matics contrasted strongly with the ambiguities and contradic-
tions in people. The world of people had no certainty or logic.”
For him, mathematics is the domain of certainty and logic. On
the other hand, he is also a novelist who “realized that the ambi-
guities and complexities of the human mind are what give fic-
tion and perhaps all art its power.” This is the usual way that
people divide up the arts from the sciences: ambiguity in one,
certainty in the other. I suggest that mathematics is also a
human, creative activity. As such, ambiguity plays a role in
mathematics that is analogous to the role it plays in art—it im-
bues mathematics with depth and power.

Ambiguity is intrinsically connected to creativity. In order to
make this point, I propose a definition of ambiguity that is de-
rived from a study of creativity.® The description of mathematics
that is to be sketched in this book will be a description that is
grounded in mathematical practice—what mathematicians actu-
ally do—and, therefore, must include an account of the great
creativity of mathematics. We shall see that many creative in-
sights of mathematics arise out of ambiguity, that in a sense the
deepest and most revolutionary ideas come out of the most
profound ambiguities. Mathematical ideas may even arise out
of contradiction and paradox. Thus, eliminating the ambiguous
from mathematics by focusing exclusively on its logical struc-
ture has the unwanted effect of making it impossible to describe
the creative side of mathematics. When the creative, open-ended
dimension is lost sight of, and, therefore, mathematics becomes
identified with its logical structure, there develops a view of
mathematics as rigid, inflexible, and unchanging. The truth of
mathematics is mistakenly seen to come exclusively from a rigid,
deductive structure. This rigidity is then transferred to the
domains to which mathematics is applied and to the way
mathematics is taught, with unfortunate consequences for all
concerned.

Thus, there are two visions of mathematics that seem to be
diametrically opposed to one another. These could be character-
ized by emphasizing the “light of reason,” the primacy of the
logical structure, on the one hand, and the light that Wiles spoke
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INTRODUCTION

of, a creative light that I maintain often emerges out of ambigu-
ity, on the other (this is itself an ambiguity!). My job is to demon-
strate how mathematics transcends these two opposing views:
to develop a picture of mathematics that includes the logical and
the ambiguous, that situates itself equally in the development of
vast deductive systems of the most intricate order and in the
birth of the extraordinary leaps of creativity that have changed
the world and our understanding of the world.

This is a book about mathematics, yet it is not your average
mathematics book. Even though the book contains a great deal
of mathematics, it does not systematically develop any particu-
lar mathematical subject. The subject is mathematics as a
whole—its methodology and conclusions, but also its culture.
The book puts forward a new vision of what mathematics is all
about. It concerns itself not only with the culture of mathematics
in its own right, but also with the place of mathematics in the
larger scientific and general culture.

The perspective that is being developed here depends on
finding the right way to think about mathematical rigor, that is,
logical, deductive thought. Why is this way of thinking so attrac-
tive? In our response to reason, we are the true descendents of
the Greek mathematicians and philosophers. For us, as for them,
rational thought stands in contrast to a world that is all too often
beset with chaos, confusion, and superstition. The “dream of
reason” is the dream of order and predictability and, therefore,
of the power to control the natural world. The means through
which we attempt to implement that dream are mathematics,
science, and technology. The desired end is the emergence of
clarity and reason as organizational principles of the entire cos-
mos, a cosmos that of course includes the human mind. People
who subscribe to this view of the world might think that it is the
role of mathematics to eliminate ambiguity, contradiction, and
paradox as impediments to the success of rationality. Such a
view might well equate mathematics with its formal, deductive
structure. This viewpoint is incomplete and simplistic. When ap-
plied to the world in general, it is mistaken and even dangerous.
It is dangerous because it ignores one of the most basic aspects
of human nature—in mathematics or elsewhere—our aesthetic
dimension, our originality and ability to innovate. In this regard
let us take note of what the famous musician, Leonard Bernstein,
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had to say: “ambiguity ... is one of art’s most potent aesthetic
functions. The more ambiguous, the more expressive.”” His
words apply not only to music and art, but surprisingly also to
science and mathematics. In mathematics, we could amend his
remarks by saying, “the more ambiguous, the more potentially
original and creative.”

If one wishes to understand mathematics and plumb its
depths, one must reevaluate one’s position toward the ambigu-
ous (as I shall define it in Chapter 1) and even the paradoxical.
Understanding ambiguity and its role in mathematics will hint
at a new kind of organizational principle for mathematics and
science, a principle that includes classical logic but goes beyond
it. This new principle will be generative—it will allow for the dy-
namic development of mathematics. As opposed to the static na-
ture of logic with its absolute dichotomies, a generative principle
will allow for the existence of mathematical creativity, be it in
research or in individual acts of understanding. Thus “ambigu-
ity” will force a reevaluation of the essence of mathematics.

Why is it important to reconsider mathematics? The reasons
vary from those that are internal to the discipline itself to those
that are external and affect the applications of mathematics to
other fields. The internal reasons include developing a descrip-
tion of mathematics, a philosophy of mathematics if you will,
that is consistent with mathematical practice and is not merely
a set of a priori beliefs. Mathematics is a human activity; this is
a triumph, not a constraint. As such, it is potentially accessible
to just about everyone. Just as most people have the capacity to
enjoy music, everyone has some capacity for mathematics ap-
preciation. Yet most people are fearful and intimidated by math-
ematics. Why is that? Is it the mathematics itself that is so fright-
ening? Or is it rather the way in which mathematics is viewed
that is the problem?

Beyond the valid “internal” reasons to reconsider the nature
of mathematics, even more compelling are the external rea-
sons—the impact that mathematics has, one way or another, on
just about every aspect of the modern world. Since mathematics
is such a central discipline for our entire culture, reevaluating
what mathematics is all about will have many implications for
science and beyond, for example, for our conception of the na-
ture of the human mind itself. Mathematics provided humanity
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INTRODUCTION

with the ideal of reason and, therefore, a certain model of what
thinking is or should be, even what a human being should be.
Thus, we shall see that a close investigation of the history and
practice of mathematics can tell us a great deal about issues that
arise in philosophy, in education, in cognitive science, and in the
sciences in general. Though I shall endeavor to remain within
the boundaries of mathematics, the larger implications of what
is being said will not be ignored.

Mathematics is one of the most profound creations of the
human mind. For thousands of years, the content of mathemati-
cal theories seemed to tell us something profound about the na-
ture of the natural world—something that could not be ex-
pressed in any way other than the mathematical. How many of
the greatest minds in history, from Pythagoras to Galileo to
Gauss to Einstein, have held that “God is a mathematician.” This
attitude reveals a reverence for mathematics that is occasioned
by the sense that nature has a secret code that reveals her hidden
order. The immediate evidence from the natural world may
seem to be chaotic and without any inner regularity, but mathe-
matics reveals that under the surface the world of nature has
an unexpected simplicity—an extraordinary beauty and order.
There is a mystery here that many of the great scientists have
appreciated. How does mathematics, a product of the human
intellect, manage to correspond so precisely to the intricacies of
the natural world? What accounts for the “extraordinary effec-
tiveness of mathematics”?

Beyond the content of mathematics, there is the fact of mathe-
matics. What is mathematics? More than anything else, mathe-
matics is a way of approaching the world that is absolutely
unique. It cannot be reduced to some other subject that is more
elementary in the way that it is claimed that chemistry can be
reduced to physics. Mathematics is irreducible. Other subjects
may use mathematics, may even be expressed in a totally mathe-
matical form, but mathematics has no other subject that stands
in relation to it in the way that it stands in relation to other sub-
jects. Mathematics is a way of knowing—a unique way of know-
ing. When I wrote these words I intended to say “a unique
human way of knowing.” However, it now appears that human
beings share a certain propensity for number with various ani-
mals.® One could make an argument that a tendency to see the

14



TURNING ON THE LIGHT

world in a mathematical way is built into our developmental
structure, hard-wired into our brains, perhaps implicit in ele-
ments of the DNA structure of our genes. Thus mathematics is
one of the most basic elements of the natural world.

From its roots in our biology, human beings have developed
mathematics as a vast cultural project that spans the ages and
all civilizations. The nature of mathematics gives us a great deal
of information, both direct and indirect, on what it means to be
human. Considering mathematics in this way means looking not
merely at the content of individual mathematical theories, but at
mathematics as a whole. What does the nature of mathematics,
viewed globally, tell us about human beings, the way they think,
and the nature of the cultures they create? Of course, the latter,
global point of view can only be seen clearly by virtue of the
former. You can only speak about mathematics with reference to
actual mathematical topics. Thus, this book contains a fair
amount of actual mathematical content, some very elementary
and some less so. The reader who finds some topic obscure is
advised to skip it and continue reading. Every effort has been
made to make this account self-contained, yet this is not a math-
ematics textbook—there is no systematic development of any
large area of mathematics. The mathematics that is discussed is
there for two reasons: first, because it is intrinsically interesting,
and second, because it contributes to the discussion of the nature
of mathematics in general. Thus, a subject may be introduced in
one chapter and returned to in subsequent chapters.

It is not always appreciated that the story of mathematics is
also a story about what it means to be human—the story of be-
ings blessed (some might say cursed) with self-consciousness
and, therefore, with the need to understand the natural world
and themselves. Many people feel that such a human perspec-
tive on mathematics would demean it in some way, diminish its
claim to be revealing absolute, objective truth. To anticipate the
discussion in Chapter 8, I shall claim that mathematical truth
exists, but is not to be found in the content of any particular the-
orem or set of theorems. The intuition that mathematics accesses
the truth is correct, but not in the manner that it is usually under-
stood. The truth is to be found more in the fact than in the con-
tent of mathematics. Thus it is consistent, in my view, to talk
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simultaneously about the truth of mathematics and about its
contingency.

The truth of mathematics is to be found in its human dimen-
sion, not by avoiding this dimension. This human story involves
people who find a way to transcend their limitations, about peo-
ple who dare to do what appears to be impossible and is impos-
sible by any reasonable standard. The impossible is rendered
possible through acts of genius—this is the very definition of an
act of genius, and mathematics boasts genius in abundance. In
the aftermath of these acts of genius, what was once considered
impossible is now so simple and obvious that we teach it to chil-
dren in school. In this manner, and in many others, mathematics
is a window on the human condition. As such, it is not reserved
for the initiated, but is accessible to all those who have a fascina-
tion with exploring the common human potential.

We do not have to look very far to see the importance of math-
ematics in practically every aspect of contemporary life. To
begin with, mathematics is the language of much of science. This
statement has a double meaning. The normal meaning is that
the natural world contains patterns or regularities that we call
scientific laws and mathematics is a convenient language in
which to express these laws. This would give mathematics a de-
scriptive and predictive role. And yet, to many, there seems to
be something deeper going on with respect to what has been
called “the unreasonable effectiveness of mathematics in the nat-
ural sciences.”’ Certain of the basic constructs of science cannot,
in principle, be separated from their mathematical formulation.
An electron is its mathematical description via the Schrodinger
equation. In this sense, we cannot see any deeper than the math-
ematics. This latter view is close to the one that holds that there
exists a mathematical, Platonic substratum to the real world. We
cannot get closer to reality than mathematics because the mathe-
matical level is the deepest level of the real. It is this deeper level
that has been alluded to by the brilliant thinkers that were men-
tioned above. This deeper level was also what I meant by calling
mathematics irreducible.

Our contemporary civilization has been built upon a mathe-
matical foundation. Computers, the Internet, CDs, and DVDs
are all aspects of a digital revolution that is reshaping the world.
All these technologies involve representing the things we see
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and hear, our knowledge, and the contents of our communica-
tions in digital form, that is, reducing these aspects of our lives
to a common numerical basis. Medicine, politics, and social pol-
icy are all increasingly expressed in the language of the mathe-
matical and statistical sciences. No area of modern life can es-
cape from this mathematization of the world.

If the modern world stands on a mathematical foundation, it
behooves every thoughtful, educated person to attempt to gain
some familiarity with the world of mathematics. Not only with
some particular subject, but with the culture of mathematics,
with the manner in which mathematicians think and the manner
in which they see this world of their own creation.

Wny AM I WriTiNG THIS Book?

What is my purpose in writing this book? Where do the ideas
come from? Obviously, I think that the ideas are important be-
cause the point of view from which they are written is unusual.
But putting aside the content of the book for a moment, there
is also an important personal reason for me. This book weaves
together two of the most important strands in my life. One
strand is mathematics: I have spent a good part of the last forty
years doing the various things that a university mathematician
does—teaching, research, and administration. When I look back
at my motivation for going into mathematics, what appealed to
me was the clarity and precision of the kind of thinking that
doing mathematics called for. However, clarity was not a suffi-
cient condition for doing research. Research required something
else—a need to understand. This need to understand often took
me into realms of the obscure and the problematic. How, I asked
myself, can one find one description of mathematics that unifies
the logical clarity of formal mathematics with the sense of obscu-
rity and flux that figures so prominently in the doing and learn-
ing of mathematics?

The second strand in my life was and is a strenuous practice
of Zen Buddhism. Zen helped me confront aspects of my life
that went beyond the logical and the mathematical. Zen has the
reputation for being antilogical, but that is not my experience.
My experience is that Zen is not confined to logic; it does not
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see logic as having the final word. Zen demonstrates that there
is a way to work with situations of conflict, situations that are
problematic from a normal, rational point of view. The rational,
for Zen, is just another point of view. Paradox, in Zen, is used
constructively as a way to direct the mind to subverbal levels
out of which acts of creativity arise.

I don’t think that Zen has anything to say about mathematics
per se, but Zen contains a viewpoint that is interesting when
applied to mathematics. It is a viewpoint that resonates with
many interesting things that are happening in our culture. They
all involve moving away from an “absolutist” position, whether
this means distrust of all ideologies or in rejection of “absolute,
objective, and timeless truth.” For me, this means that ambigu-
ity, contradiction, and paradox are an essential part of mathe-
matics—they are the things that keep it changing and devel-
oping. They are the motor of its endless creativity.

In the end, I found that these two strands in my life—mathe-
matics and Zen—fit together very well indeed. I expect that you,
the reader, will find this voyage beyond the boundaries of the
rational to be challenging because it requires a change in per-
spective; but for that very reason I hope that you will find it
exciting. Ambiguity opens up a world that is never boring be-
cause it is a world of continual change and creativity.

THE STRUCTURE OF THE BOOK

The book is divided into three sections. The first, “The Light of
Ambiguity,” begins by introducing the central notion of ambigu-
ity. Actually one could look at the entire book as an exploration
of the role of ambiguity in mathematics, as an attempt to come
to grips with the elusive notion of ambiguity. In order to high-
light my contention that the ambiguous always has a component
of the problematic about it, I spend a couple of chapters talking
about contradiction and paradox in mathematics. These chap-
ters also enable me to build up a certain body of mathematical
results so as to enable even readers who are a little out of touch
with mathematics to get up to speed, so to say.

The second section is called “The Light as Idea.” It discusses
the nature of ideas in mathematics—especially those ideas that

18



TURNING ON THE LIGHT

arise out of situations of ambiguity. Of course the creative pro-
cess is intimately tied to the birth and the processing of mathe-
matical ideas. Thus thinking about ideas as the fundamental
building blocks of mathematics (as opposed to the logical struc-
ture, for example) pushes us toward a reevaluation of just what
mathematics is all about. This section demonstrates that even
something as problematic as a paradox can be the source of a
productive idea. Furthermore, I go on to claim that some of the
most profound ideas in mathematics arise out of situations that
are characterized not by logical harmony but by a form of ex-
treme conflict. I call the ideas that emerge out of these extreme
situations “great ideas,” and a good deal of the book involves a
discussion of such seminal ideas.

The third section, “The Light and the Eye of the Beholder,”
considers the implications of the point of view that has been
built up in the first two sections. One chapter is devoted to a
discussion of the nature of mathematical truth. Is mathematics
absolutely true in some objective sense? For that matter, what
do we mean by “objectivity” in mathematics? Thinkers of every
age have attested to the mystery that lies at the heart of the rela-
tionship between mathematics and truth. My “ambiguous” ap-
proach leads me to look at this mystery from a perspective that
is a little unusual. Finally, I spend a concluding chapter dis-
cussing the fascinating and essential question of whether the
computer is a reasonable model for the kind of mathematical
activity that I have discussed in the book. Is mathematical
thought algorithmic in nature? Is the mind of the mathematician
a kind of software that is implemented on the hardware that we
call the brain? Or is mathematical activity built on a fundamen-
tal and irreducible human creativity—a creativity that comes
from a deep need that we human beings have to understand—
to create meaning out of our lives and our environment? This
drive for meaning is inevitably accompanied by conflict and
struggle, the very ingredients that we shall find in situations of
ambiguity.
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WHAT IS THINKING? If we imagine thinking to be an ordered,
linear, and logical progression, then the rigorous thinking that
one finds in a mathematical proof or a computer program is the
highest form of thinking. Is this the only way to think? More to
the point, is this the way mathematicians think? In this section
I investigate situations that seem to be at the opposite extreme
from logical thought—I look for ambiguities in mathematics.
Strangely enough, I find ambiguity everywhere, and not only
ambiguity but also its close cousins contradiction and paradox.
How strange it is that mathematics, the subject that appears to
be the very paradigm of reason, and for this reason the model
that other disciplines attempt to emulate, contains as an irreduc-
ible factor, the very things that reason ostensibly exists to elimi-
nate from human discourse!

Ambiguity is not only present in mathematics, it is essential.
Ambiguity, which implies the existence of multiple, conflicting
frames of reference, is the environment that gives rise to new
mathematical ideas. The creativity of mathematics does not
come out of algorithmic thought; algorithms are born out of acts
of creativity, and at the heart of a creative insight there is often a
conflict—something problematic that doesn’t follow from one’s
previous understanding. Now one might think that mathemat-
ics is characterized by the clarity and precision of its ideas and,
therefore, that there is only one correct way to understand a
given mathematical situation or concept. On the contrary, I
maintain that what characterizes important ideas is precisely
that they can be understood in multiple ways; this is the way to
measure the richness of the idea.

Ambiguity is the central theme of this book. From beginning
to end it is the single thread that unites the disparate subjects
that are discussed. We each probably feel that we understand
and are familiar with ambiguity. However, in our exploration
of ambiguity in mathematics we may find that there is more to
ambiguity than meets the eye. Ambiguity is very rich, and so
each new aspect of ambiguity we encounter will teach us some-
thing not only about mathematics but also about the nature of
ambiguity itself—at least about the way in which ambiguity is
being used in this book. Since the whole book is, in a sense, a
development of the meaning of “ambiguity in mathematics,” I
ask the reader not to prematurely close accounts with ambiguity.
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Of course, start with whatever intuition you have, but hold it in
your mind in an open manner, ready to consider new aspects
and connotations of ambiguity. An ambiguity is similar to a met-
aphor, and we shall discover that many facets of mathematics,
even the seemingly simplest and most elementary, contain this
metaphoric aspect.

Take, for example the number zero. What could be more ele-
mentary? Most of us consider zero to be a closed book—we un-
derstand it completely. What more is there to say? Yet in recent
years there have been a number of books that have been written
about the number zero (Barrow 2000; Kaplan; Seife) All these
books stress the ambiguous nature of the number zero—"the
nothing that is” as one author put it—as well as its importance
in mathematical and scientific thought. Normally, ambiguity in
science and mathematics is seen as something to overcome,
something that is due to an error in understanding and is re-
moved by correcting that error. The ambiguity is rarely seen as
having value in its own right, and yet the existence of ambiguity
was often the very thing that spurred a particular development
of mathematics and science. What, therefore, is the relationship
between the ambiguous and the rational, between the ambigu-
ous and mathematics? Is the role of science and mathematics to
exorcise the ambiguous or is it an essential part of mathematics?
The problematic aspects of “zero” did not stop mathematics
from making it into an essential idea. In my view the importance
of “zero” is directly proportional to its problematic nature, and
not in spite of that nature.

What is true for “zero” is true for many mathematical ideas.
The power of ideas resides in their ambiguity. Thus any project
that would eliminate ambiguity from mathematics would de-
stroy mathematics. It is true that mathematicians are motivated
to understand, that is, to move toward clarity, but if they wish
to be creative then they must continually go back to the ambigu-
ous, to the unclear, to the problematic, for that is where new
mathematics comes from. Thus ambiguity, contradiction, and
paradox and their consequences—conflict, crises, and the prob-
lematic—cannot be excised from mathematics. They are its liv-
ing heart.
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% CHAPTER 1 *
Ambiguity in Mathematics

I think people get it upside down when they say
the unambiguous is the reality and the ambiguous
merely uncertainty about what is really unambigu-
ous. Let’s turn it around the other way: the ambig-
uous is the reality and the unambiguous is merely

a special case of it, where we finally manage to
pin down some very special aspect.
—David Bohm

INTRODUCTION

This chapter begins the process of developing a new way of de-
scribing what mathematics is and what mathematicians do. One
might think that this is an easy task—just ask a mathematician
what it is that he or she does. Unfortunately this will not work,
for the business of mathematicians is the doing of mathematics
and not reflecting on the subject of what it is that they do. Davis
and Hersh note that there is a “discrepancy between the actual
work and activity of the mathematician and his own perception
of his work and activity.”! The only thing I can do is to look
closely at a variety of mathematical concepts and practices, and
base my description of mathematics on what I actually see is
going on.

The most pervasive myth about mathematics is that the logi-
cal structure of mathematics is definitive—that logic captures
the essence of the subject. This is the fallback position of many
mathematicians when they are asked to justify what it is that
they do: “I just prove theorems.” That is, when pressed, many
mathematicians retreat back to a formalist position. However,
most practicing mathematicians are not formalists: “what they
really want is usually not some collection of “answers”—what
they want is understanding.”* The statistician David Blackwell is
quoted as saying, “Basically, 'm not interested in doing research
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and I never have been. I'm interested in understanding, which is
quite a different thing.”* Now, understanding is a difficult thing
to talk about. For one thing, it contains a subjective element,
whereas drawing logical inferences appears to be an objective
task that even sophisticated machines might be capable of mak-
ing. Nevertheless, if one wants to come close to plumbing the
depths of mathematical practice, it will be necessary to begin by
seeing beyond the formalist approach of equating mathematics
with the trinity of definition-theorem-proof.

Logic is indispensable to mathematics. For one thing, logic
stabilizes the world of mathematical results so that it presents
itself to our minds in the conventional manner—as a body of
permanent and absolute truths. However, logic is not the es-
sence of mathematics nor can mathematics be reduced to logic.
Mathematics transcends logic. Mathematics is one of the most
profound areas of human creativity. Yet the statement that math-
ematics goes beyond logic needs to be supported. To do this, a
number of characteristics of mathematics will be introduced that
are clearly not derived from logic. These include a certain form
of mathematical ambiguity as well as the related notions of con-
tradiction and paradox.

“Ambiguity” is a central notion, so I shall spend a fair amount
of time in explaining what I mean by ambiguity in mathematics.
By ranging over a whole host of examples from mathematics
and a few from other fields, I hope to show that ambiguity, as I
use the term, is a phenomenon which is central to mathematical
theory and practice. Ambiguity will give us a way to approach
such questions as “What is the relationship between logic and
mathematics?” “What is the nature of creativity in mathemat-
ics?” “What is meant by understanding in mathematics and
what is its relationship to creativity?” Even the old chestnuts, “Is
mathematics invented or discovered?” or “What accounts for
the "unreasonable effectiveness’ of mathematics in the physical
sciences?” Ambiguity will transform the mathematical land-
scape from the static to one that is dynamic and characterized
by the play of ideas.

What I am attempting to develop is nothing less than a para-
digm shift in our understanding of the nature of the mathemati-
cal enterprise. Once we begin to look at matters in this new “am-
biguous” manner, many things suddenly appear in a new light.
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These certainly include mathematical practice and the teaching
and learning of mathematics. But this manner of looking at
things has implications for how we view the scientific enterprise
as a whole. These implications extend to the most fundamental
of questions, such as “What is (mathematical) truth?” and “What
is knowledge?”

With these heady reflections in the back of our minds, I
now proceed to take up the basic notion of the meaning of ambi-
guity (for this book) and proceed to demonstrate its role in
mathematics.

Wuat Do I MEAN BY AMBIGUITY?

In this book, ambiguity is a key idea whose implications will
take some time and effort to flesh out. For me the most elemen-
tary mathematical object, like the equation “1 + 1 = 2,” for exam-
ple, is ambiguous. What do I mean by this? I certainly do not
mean that the statement “1 + 1 = 2” is unclear or incorrect. Peo-
ple often take ambiguity to be synonymous with vagueness or
with incomprehensibility. Though this is a possible meaning, it
is not the sense in which I shall use the term. What I am trying to
accomplish by using the word ambiguous is to point to a certain
metaphoric quality that is inherent in even quite simple mathe-
matical situations. When we encounter “1 + 1 = 2,” our first reac-
tion is that the statement is clear and precise. We feel that we
understand it completely and that there is nothing further to be
said. But is that really true? The numbers “one” and “two” are
in fact extremely deep and important ideas, as will be discussed
in Chapter 5. They are basic to science and religion, to percep-
tion and cognition. “One” represents unity; “two” represents
duality. What could be more fundamental? The equation also
contains an equal sign. Again, in Chapter 5, I discuss various
ways in which “equality” can be understood in mathematics.
Equality is another very basic idea whose meaning only grows
the more you think about it. Then we have the equation itself,
which states that the fundamental concepts of unity and duality
have a relationship with one another that we represent by
“equality”—that there is unity in duality and duality in unity.
This deeper structure that is implicit in the equation is typical
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of a situation of ambiguity. Thus even the most elementary
mathematical expressions have a profundity that may not be ap-
parent on the surface level. This profundity is directly related to
what I am calling ambiguity.

The word “ambiguity” is actually being used for two main
reasons. The first is that the ambiguous is commonly looked at
as something to be contrasted with the logical. The second
comes from one of the Oxford English Dictionary definitions of
“ambiguity”—"admitting more than one interpretation or ex-
planation: having a double meaning or reference.” This notion
of “double meaning” comes from the prefix “ambi,” as can be
seen in such words as “ambidextrous” or “ambivalent.” How-
ever, the definition that I now put forward comes from a defini-
tion of creativity that was proposed by the writer Arthur Koest-
ler.* He said that creativity arises in a situation where “a single
situation or idea is perceived in two self-consistent but mutually
incompatible frames of reference.” I shall take the above to be
the definition of ambiguity. To repeat:

Ambiguity involves a single situation or idea that is perceived in
two self-consistent but mutually incompatible frames of reference.

I hasten to add that putting such a precise definition at the
beginning of Chapter 1 involves the risk that the reader will as-
sume that ambiguity is now pinned down once and for all. On
the contrary, ambiguity is one of those concepts, like “one,”
“two,” and “equality,” of which there is always more to say and
learn. I am even tempted to say that “ambiguity” is not really a
concept at all; it is more like a condition or context that produces
concepts. If it is not a normal concept, how then do I go about
describing it? My strategy is to start with the description above
and give it substance by presenting a series of examples each of
which will explore some dimension of ambiguity.

This book is an exploration of ambiguity in mathematics. Un-
fortunately mathematics is usually presented in a linear manner
with the simple preceding the complex and assumptions before
conclusions. I prefer to think both of mathematics and of this
book as explorations. What is the nature of an exploration in
mathematics? In the introduction to his textbook, Transform Lin-
ear Algebra, Frank Uhlig states:
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Linear Algebra is a circular subject. Studying Linear Alge-
bra feels like exploring a city or a country for the first time.
An overwhelming number of concepts, all intertwined and
connected, are present in any first encounter with linear al-
gebra. As with a new city, one has to start discovering
slowly and deliberately. Of great help is that linear algebra
is akin to geometry, and like geometry, many of its insights
have been permanently there within us. We must only ex-
plore, look around, and awake our intuition with the reality
of this mathematical place.

What a poetic evocation of the spirit of learning and doing math-
ematics! I'm inviting the reader to enter into an exploration of
mathematics in just this spirit. I shall look at mathematics
through the lens of ambiguity. In so doing we shall be simultane-
ously investigating the nature of ambiguity itself. As Uhlig says,
many of the basic insights are already there within us, but to
discern them we shall have to put aside our habitual point of
view and be open to considering a new viewpoint.

SELF-CONSISTENCY, INCOMPATIBILITY, AND CREATIVITY

The definition of ambiguity that I gave above involves a dual-
ity—there must be two frames of reference. Now, duality is a
familiar idea in mathematics. For example, in projective geome-
try it is possible to interchange “points” and “lines” so that
every statement about lines and points has a dual statement
about points and lines. The statement, “Two lines define (meet
at) a point” would have the dual statement, “Two points define
(determine) a line.” This kind of structural duality carries some,
but not all of the meaning that I attribute to ambiguity.
Ambiguity, as the term is being used here, is not mere duality.
The two frames of reference must be mutually incompatible, even
though they are individually self-consistent. Yet, in spite of this
incompatibility, there exists an over-riding unitary situation or
idea. On the one hand, there is the harmony of consistency—
things are in peaceful equilibrium. On the other, there is the dis-
order of incompatibility. Incompatibility is unacceptable in
mathematics! It must be resolved! It is this need to resolve in-
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compatibility that makes the situation of ambiguity so dynamic,
so potentially creative. There are two perfectly harmonious ways
of looking at the situation, yet they are in opposition to one an-
other. So there is a need to resolve this unacceptable situation in
order to restore equilibrium. The restoration of equilibrium can
only come at a level that is, in a manner of speaking, higher than
either of the original frames of reference. The equilibrium condi-
tion may not yet exist. It may only come into existence as a result
of the need to reconcile the incompatibility of the original situa-
tion. Thus, a situation of ambiguity is a situation with creative
possibilities.

Ambiguity may seem to be complicated, but its essence can
be conveyed very simply. Here is an example of ambiguity. It’s
a joke—not very funny but with a mathematical connection—
and it makes the point about the nature of ambiguity.

A mathematician is flying non-stop from Edmonton to
Frankfurt with Air Transat. The scheduled flying time is
nine hours. Some time after taking off, the pilot announces
that one engine had to be turned off due to mechanical fail-
ure: “Don’t worry—we’re safe. The only noticeable effect
this will have for us is that our total flying time will be ten
hours instead of nine.” A few hours into the flight, the pilot
informs the passengers that another engine had to be
turned off due to mechanical failure: “But don’t worry—
we're still safe. Only our flying time will go up to twelve
hours.” Some time later, a third engine fails and has to be
turned off. But the pilot reassures the passengers: “Don’t
worry—even with one engine, we're still perfectly safe. It
just means that it will take sixteen hours total for this plane
to arrive in Frankfurt.” The mathematician remarks to his
fellow passengers: “If the last engine breaks down, too, then
we’ll be in the air for twenty-four hours altogether!”

Here you have it—two conflicting frames of reference (one of
them implicit) resulting in tension, and then a creative release,
laughter. Of course in mathematics the release comes with the
birth of a new idea or a new way of looking at the situation but
the dynamics of a humorous situation is very similar. A joke is
an example of ambiguity and creativity—you have to get a joke.
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There are two different ways in which an ambiguous situation
may manifest itself. On the one hand, there are the two inconsis-
tent points of view that may be reconciled by the creative act of
producing the “single situation or idea.” On the other, there is
the single or unified viewpoint that may be looked at in two
different ways. Thus, there is an element of the self-referential
when we speak of ambiguity. That is, the definition of ambiguity
is itself ambiguous.

THURSTON AND MULTIPLICATION

The mathematician William Thurston tells the following story:
“I remember as a child, in the fifth grade, coming to the amazing
(to me) realization that the answer to 134 divided by 29 is 134/
29 (and so forth). What a tremendous labor-saving device! To
me, ‘134 divided by 29" meant a certain tedious chore, while
134/29 was an object with no implicit work. I went excitedly to
my father to explain my major discovery. He told me that of
course this is so, a/b and a divided by b are just synonyms. To
him it was just a small variation in notation.”®

Wow! 134/29 is a number! Even if you don’t do the division,
it is a number that you can use in subsequent computations. In
fancier words, you could say that the process of division had
been reified, that is, the process has been made into an object.
The point is that division has these two perspectives: it is a pro-
cess and it is a number. The mathematician and mathematics ed-
ucator David Tall, along with his collaborator Eddie Gray in
Warwick, has given this situation a name; he calls it a procept (for
process/concept). In our terms, division is ambiguous. For Thur-
ston, the realization of this ambiguity was a major step in his
intellectual development.

E = mC

A few years ago, David Bodanis had the brilliant idea of writing
an entire book about an equation. The famous equation was
E = mc?, which has literally changed our world. In addition to
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radically altering the way we think of the world, it had the very
practical consequences of establishing the theoretical founda-
tions for the nuclear industry, not to speak of nuclear weapons.
Bodanis’ begins by explaining what an equation is. He does this
in a way that is interesting and original. The crux of his ap-
proach to the subject of the book, is contained in his unconven-
tional take on the significance of an equation:

A good equation is not simply a formula for computation.
Nor is it a balance scale confirming that two items you sus-
pected were nearly equal really are the same. Instead, scien-
tists started using the = symbol as something of a telescope
for new ideas—a device for directing attention to fresh, un-
suspected realms. Equations simply happen to be written in
symbols instead of words.

This is how Einstein used the in his 1905 equation as
well. The Victorians had thought that they’d found all pos-
sible sources of energy there were: chemical energy, heat en-
ergy, magnetic energy, and the rest. But by 1905 Einstein
could say, No, there is another place where you can look
where you'll find more. His equation was like a telescope
to lead there, ... He found this vast energy source in the
one place where no one had thought of looking. It was hid-
den away in solid matter itself.

“u__n

Recall the above definition of ambiguity and its “two self-con-
sistent but mutually incompatible frames of reference.” What
could be a more self-consistent frame of reference than matter
or energy? What could be more incompatible than matter and
energy? The terms are practically the opposites of one another.
They are conceptually almost antagonistic. According to the
OED, matter “has mass and occupies space.” It refers to “physi-
cal substance in general as opposed to spirit, mind etc.” (you could
add energy to this list). Energy, on the other hand, refers to
“force or vigor,” that is, activity or the potential for activity. The
scientific definition of energy is similar; it refers to “the ability
of matter to do work.” The distinction here is so basic that it is
embedded in the basic structure of language itself. Matter refers
to things or objects. Language uses nouns to refer to things. To
refer to activity or even the potential of activity, that is, energy,
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language uses verbs. Thus the dichotomy between matter and
energy is built into language itself.®

How is the gap between these two to be bridged? The first
and most obvious way would be to regard matter and energy
as complementary. Thus one could regard matter and energy as
indispensable aspects of the natural world and maintain that a
complete description of nature would involve describing both
domains and the laws that govern them. We would go on to de-
scribe the relationship between matter and energy. Thus a mov-
ing body possesses kinetic energy that is proportional to its mass
and the square of its velocity. To look at things in this way would
be to miss the radical insight behind Einstein’s equation. E = mc’
says that matter is energy. It says that these two mutually exclu-
sive ways of describing reality are in fact one—that there is one
reality that can be seen as energy when we look at it in one con-
text and as matter when we look at it in another.

Thus, the equation is something that could be called a scien-
tific metaphor. A literary metaphor like Shakespeare’s “all the
world’s a stage, and all the men and women merely players” is
a comparison between two different domains—it is really a kind
of mapping from one of these domains, here ordinary life, to the
other, here the stage. However, a metaphor requires more than
a mere correspondence between different domains. “Getting” a
metaphor requires an insight: it requires looking at the world in
a new way. The power of this particular insight is extraordinary.
Its consequence, the atomic bomb, is itself a metaphor for the
power of the idea. This equation brings out the full implication
of “ambiguity” as the term is being used here. There exist two
frames of reference whose incompatibility generates enormous
power. This power is then harnessed by the single idea that is
represented by the equation E = mc”.

AMBIGUOUS SITUATIONS IN MATHEMATICS

Now let us move on to a more systematic exploration of ambigu-
ity in mathematics. There will be a place for some fairly sophisti-
cated mathematics, but I will begin with a number of elementary
examples, very elementary indeed. The reason for including
these examples is that they are accessible to everyone. Also,
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they are here to make the point that no mathematics is com-
pletely “trivial.” Even elementary arithmetic, algebra, and ge-
ometry, when looked at from a fresh perspective, can manage to
surprise you.

THE EQUATIONS OF ARITHMETIC

Let’s return to the most basic of equations from arithmetic,
something like “2 + 3 = 5.” Where is the ambiguity here? I re-
member the way equations were explained in grade school
through the metaphor of the balance. If you put a two- and a
three-pound weight on one side of a scale and a five-pound
weight on the other, then the two sides will balance. Equality,
we were told, means balance. Now “balance” is a good way to
think of equality, but is it the only way? From the balance meta-
phor we derive the idea that “2 + 3” and “5” are just two differ-
ent ways to describe the same thing—that “2 + 3” and “5” are
essentially identical and that the equality sign represents this
identity. However “=" does not mean identical, as Bodanis
pointed out in the paragraphs I quoted above. Thinking of equa-
tions as merely linking two otherwise identical quantities would
not explain the power of equations to open up unsuspected rela-
tionships between things that were not necessarily connected
a priori.

Where is the creative element in “2 + 3 = 5”? Where is the
insight, the possibility for an aha! experience? In order to ap-
preciate what is going on, we may have to listen to intelligent
people who are less sophisticated than we are—children, for ex-
ample. Various researchers in mathematics education (e.g.,
Kieren 1981) have pointed out children’s propensity to under-
stand the equality sign in operational terms; that is, “2 + 3 = 5”
is understood as an action “2 added to 3 makes 5.” The sum
“2+3” is a process, a verb. Children learn what addition is about
through the process of counting. Yet the right-hand side is an
object, the number 5. What the equation “2 + 3 = 5” is doing is
identifying a process with an object. This is similar to the moral
of the Thurston story above, where the process of division was
seen as a numerical object. To see that a process can be an object
or, looking at it the other way around, that the object can be
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thought of as a process, entails a discontinuous leap—an act of
understanding that is in essence a creative act. We all made this
creative leap so long ago that we don’t remember having done
so. But it was an essential step in our development. And what
was the essence of this act of understanding? It is that process
and object are one ambiguous idea. Thus the ambiguity here is
seeing that the two contexts of process and object are unified by
this one idea that is captured symbolically by the equation “2 +
3 = 5.7 All the elements of ambiguity are present here: the two
contexts that are in conflict until the conflict is resolved by an
act of understanding. Subsequent to the act of understanding,
what used to be a conflict becomes a flexible viewpoint where
one is free to freely move between the contexts of number as
object and number as process. I will return to this same ambigu-
ity in a less elementary situation when I come to discuss infinite
decimals.

THE SQUARE Root oF Two

To our contemporary way of understanding things the square
root of 2 is no mystery. It is a perfectly well-defined number. In
what way, then, can |2 be called ambiguous? By our definition,
ambiguity required “a single situation or idea”—precisely the
fact that |2 is well defined. But it also required that (2 can be
perceived in two self-consistent contexts which are somehow in
conflict with one another.

This latter requirement can best be understood historically.
In fact |2 has an interesting history. It appears, in Euclidean ge-
ometry, as a consequence of the Theorem of Pythagoras, as the
length of the hypotenuse of a right-angled triangle with sides of
unit length.

Thus, ,2 existed for the Greeks as a concrete geometric object.
On the other hand, they were able to prove that this (geometric
number) was not rational, that is, it could not be expressed as
the ratio of two integers, like 2/3 or 127/369. Such nonfractions
came to be called irrational numbers, and the name “irrational”
indicates the kind of emotional reaction that the demonstration
of the existence of nonrational numbers produced.
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Figure 1.1. |2 as a geometric object

There is no question that the demonstration that |2 was not
rational precipitated a crisis.’ I shall return to this crisis in a later
chapter, but for now let’s just say that a whole way of looking
at the world, the philosophy of the secret Pythagorean society,
was brought into question. Today we would say that |2 is an
irrational number, but “an irrational number is no number at all
.. .itis totally man-made,” as Leopold Kronecker said, “and thus
is of dubious significance philosophically.”*® So is 2 a number
or not? We can all agree that it is a very different kind of number
from the integers and the fractions, the numbers of arithmetic.

William Dunham makes a comment that is relevant here when
he says that the irrationality of 2 is one instance of “a continu-
ous feature of the history of mathematics . . . the prevailing ten-
sion between the geometric and the arithmetic.”" There are two
primordial sources of mathematics: counting, which leads to
arithmetic and algebra, and measuring, which leads to geome-
try. Two self-consistent contexts, if you will. Initially these two
domains were considered to be identical, but the v‘@ proof
brought an inherent conflict between them out into the open.
Rational numbers have a consistent meaning in both contexts,
but in |2 we have a mathematical object that has a clear meaning
in a geometric context but is problematic when considered as an
arithmetic object, in this case a rational number. A number is a
number is a numbet, to paraphrase Gertrude Stein, but is a geo-
metric number really a number? At the very least there is a ten-
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sion, an incompatibility, between the geometric and the arithme-
tic. It is this incompatibility that made 2 ambiguous for the
Pythagoreans. This does not mean that it was viewed as vague
or imprecise. The term ambiguity highlights the problematic as-
pects of |2 for the Greeks.

There are two possible reactions to this sort of ambiguous situ-
ation. One can abandon one of the seemingly inconsistent con-
texts or one can build a new context that is general enough to
reconcile the conflict. Both reactions are interesting and can lead
to new mathematics.” The Greeks chose the former and essen-
tially abandoned algebra for geometry. Even so, the irrationality
of /2 was a great blow to those, like the Pythagoreans, whose
entire worldview was based on the rationality (in the sense of
rational numbers or fractions) of the natural world (see Chapter
7). In fact, large portions of Euclidian geometry (the books on
ratio and proportion) had been developed on the assumption
that any two lengths are commensurable. That means that for
any two line segments there is a (smaller) segment that divides
into both segments evenly. This amounts to saying that the ratio
of the lengths of the two segments is rational. Thus all these
proofs (and also, it has been conjectured, the proof of the Pytha-
gorean Theorem itself) that depended on this assumption had to
be redone in a different way. This task was, in fact, accomplished
successfully. In this activity one can see the need to resolve the
incompatibility raised by the ambiguity and therefore the role of
the ambiguity as a generator of mathematical activity.

It might be interesting to take a moment and discuss the the-
ory of ratio and proportion. A ratio is the quotient of two num-
bers. Let’s call them x and y. Today we would say that the ratio
is the quotient, the number x/y. However the Greeks did not
do this—in fact human beings did not do this for the next two
millennia. The problem is in a way the same problem Thurston
had with 134/29—is the process of division the same as the num-
ber that results from that process? In the case of commensurable
numbers, x = nz and y = mz for some integers m and n, then x/
y can be identified with n/m, but what does the quotient mean
when x and y are incommensurable, like 1 and |2, for example?
How can you call this kind of ratio a number? This was the
major problem that necessitated a complete reworking of the
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theory of ratio and proportion. It is fascinating to see what kind
of solution the Greeks came up with.

The problem is to give meaning to the ratio x/y. Euclid does
this in Book V of the Elements by defining what it means for two
ratios, x/y and z/w, to be equal; that is, he defines the expression
“x is to y as z is to w.” Essentially Euclid said that “x/y = z/w”
means that mx > ny if and only if mz > nw for all integers n and
m. That is the ratios are the same if we get the same result when
we compare them to every possible rational number—x/y is
greater than (or less than) n/m for exactly those fractions for
which z/w is also greater than (or less than) n/m. Thus, if we
imagine x/y and z/w to be a points on the real line, then Euclid
is claiming that even if these points are not rational they are pre-
cisely located by their relationship with the rational numbers.
This fact that the rational numbers “determine” the real num-
bers is very close to our modern idea of the relationship between
rationals and irrationals. The same idea is behind the “Dedekind
cut” approach to rigorously developing the real numbers from
the rational numbers. It is fascinating that this idea is present in
Greek mathematics and that it was produced by the need to deal
with the fallout from the crisis of the irrationality of the square
root of two.

In a sense the Greeks never completely resolved the ambiguity
of 2. It was not until the real number system was rigorously
developed in the nineteenth century that we could say that the
problems were resolved in a satisfactory way. The real numbers
provided a context within which the geometric and arithmetic
properties of |2 could be reconciled and understood. On the real
line |2 is just another number/point that is on an equal footing
with any rational number such as -5 or 2/3. In the Cartesian
plane, that is, from the point of view of Cartesian geometry, the
geometric and the algebraic are two frames of reference that are
both valid and consistent. Thus, for example, the straight line
joining the points (0,0) and (3,3) is the equation y = x. This is a
classic “resolution” of an ambiguity—the creation of a new con-
text that contains both of the original frames of reference and
yet is a “higher” frame of reference in its own right.

In a larger sense the ambiguity between the algebraic and the
geometric is a theme that mathematics never tires of. A variation
on this theme is the ambiguity between the discrete and the con-
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tinuous. Is the discrete an approximation to the continuous or,
on the contrary, is the continuous a kind of idealization of what
is essentially a discrete world? This remains an important ques-
tion. To give but one example, the mathematician Alexandre
Grothendieck claims that his work seeks a unification of two
worlds, “the arithmetic world, in which there live the (so-called)
spaces having no notion of continuity, and the world of continu-
ous size, where live the 'spaces’ in the proper sense of the term,
accessible to the methods of the analyst.”"

The story of |2 is relevant to our discussion in many ways. It
shows that situations of ambiguity exist in mathematics. Viewed
historically, the problematic aspects of a situation of ambiguity
are resolved by a new context within which one can move from
one context to the other with a new freedom. But it would be
wrong to think that 2 was ambiguous in the past but not in the
present. Ambiguous situations always have these two points of
view—Dbefore and after. Before you “get it” the situation is prob-
lematic because the two frames of reference are seen to be in
conflict; afterward there is a flexibility that comes from being
able to move freely from one point of view to the other in the
realization that you are still in the same situation. The whole
situation is what I am talking about when I refer to the ambigu-
ity of 2. The problematic aspects of the past reappear in the
present as the learning difficulties of students of mathematics.
J2 was and is ambiguous. This ambiguity was a spur to the de-
velopment of mathematics just as it is a potential spur to the
mathematical development of students.

DeciMAL NUMBERS

Our next example comes from the world of real numbers. Con-
sider decimal notation for real numbers. For example, we are all
taught in school that the fraction 1/3 when written as a decimal
number is .333. . ., where the dots indicate that the sequence of
3s has no end. Thus

1 3333....
3

Multiplying both sides by 3 we get
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1=.999....

Now what is the meaning of these equations? What is the pre-
cise meaning of the “=" sign? It surely does not mean that the
number 1 is identical to that which is meant by the notation
.999. ... There is a problem here, and the evidence is that, in my
experience, most undergraduate math majors do not believe this
statement. I remember putting this question, “does 1 = .999. . .2”
to the students in a class on real analysis. Something about this
expression made them nervous. They were not prepared to say
that .999. .. is equal to 1, but they all agreed that it was “very
close” to 1. How close? Some even said “infinitely close,” but
they were not absolutely sure what they meant by this. These
students may be quite advanced in certain ways, but this state-
ment is still an obstacle' for them. What is the obstacle? In my
opinion it is the ambiguity contained in equating an infinite dec-
imal to an integer.

The notation .999. . . stands for an infinite sum. Thus

Now an infinite sum is a little more complicated than a finite
sum, and this complexity is revealed by the fact that the notation
is deliberately ambiguous. Thus this notation stands both for the
process of adding this particular infinite sequence of fractions
and for the object, the number that is the result of that process.
As was the case of the equations of arithmetic, the two contexts
(in the above definition of ambiguity) are again those of process
and object. Now the number 1 is clearly a mathematical object,
a number. Thus the equation 1 = .999. . . is confusing because it
seems to say that a process is equal (identical?) to an object. This
appears to be a category error. How can a process, a verb, be
equal to an object, a noun. Verbs and nouns are “incompatible
contexts” and thus the equation is ambiguous. Similarly, all in-
finite decimals are ambiguous. Students have a problem because
they think of .999. . . only as a process. They imagine themselves
actually adding up the series term by term and they “see” that
this process never ends. So at any finite stage the sum is “very
close” but not equal to 1. They don’t see that this infinite process
can be understood as a single number.
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You can even go through a “proof” with them, something like:

Let x =.999....
Then 10x = 9.999. . . (shifting the decimal point).
Thus 9x = 10x — x =9.999...-999...=09.
Sox=1.

The reaction is interesting. For the most part, the students will
now agree that 1 is indeed equal to .999. ... That is, they now
accept it but, in my opinion, something of the old perplexity still
remains. They have not resolved the ambiguity. They still do not
“understand” the representation for infinite decimals. Under-
standing requires more than accepting the validity of a certain
argument. It requires a creative act, which is what I mean when
I refer to the resolution of an ambiguity.

I hasten to add that this ambiguity is a strength, not a weak-
ness, of our way of writing decimals. To understand infinite dec-
imals means to be able to move freely from one of these points
of view to the other. That is, understanding involves the realiza-
tion that there is “one single idea” that can be expressed as 1 or
as .999. . ., that can be understood as the process of summing an
infinite series or an endless process of successive approximation
as well as a concrete object, a number. This kind of creative leap
is required before one can say that one understands a real num-
ber as an infinite decimal.

VARIABLES

One of the most basic aspects of mathematics involves the re-
duction of the infinite to the finite. Mathematics has been called
the science of the infinite, yet mathematicians are human beings
and therefore intrinsically restricted to the finite. Thus one of the
great mysteries of mathematics is the manner in which the pro-
cess of making the infinite finite occurs. This question will be
examined in great detail in the discussion of infinity. For the mo-
ment, consider the notion of “variable.” Most people are intro-
duced to the idea of variable in high school algebra, where they
learn to manipulate expressions such as “3x + 2.” They are told
that the “x” is not a number but can represent any number. In
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fact x is usually restricted to some particular set of numbers: nat-
ural numbers, integers, rational numbers, real or complex num-
bers. It may even be a subset of one of these sets of numbers.
The domain of the variable may not even be specified explicitly
but only inferred by the context. In this sense the notion of a
variable is a little ambiguous.

However there is another and more serious way in which the
idea of a variable is ambiguous. Let us suppose that we are talk-
ing about the positive integers. Then the expression 3x + 2 actu-
ally stands for the whole set of numbers: 3 (1) +2=5,3 (2) +2 =
8,3(8)+2=11,14,17,20, ....So 3x + 2 is a short-hand for the
whole set of numbers {5, 8, 11, ...}. However when we work
with the expression 3x + 2 we do not carry around the whole set
of potential values in our head. We think of 3x + 2 as some spe-
cific but unspecified element of that set. So we imagine x to have
been chosen. It is some (one) specific number that can be written
as 3x + 2, but we know nothing about the value of x except that
it is an integer. Thus we simultaneously think of x as general
and specific. It is precisely this general/specific ambiguity that
gives the notion of variable its importance in mathematics. An
infinite set of possible values has been replaced by a finite set of
values (here one value). It is true this one value is unspecified,
but nevertheless something has been gained.

For example, consider the equation

3x+2=8
and its solution
x = 2.

Does the “x” in “3x + 2 = 8” refer to any number or does it refer
to the number 2? The answer is both and neither. At the begin-
ning x could be anything. At the end x can only be 2. Of course
at the beginning x (implicitly) can only be 2. Yet at the end we
are saying that every number x # 2 is not a solution, so the equa-
tion is also about all numbers. Thus at every stage the x stands
for all numbers but also for the specific number 2. We are re-
quired to carry along this ambiguity throughout the entire pro-
cedure of solving the equation. It begins with something that
could be anything and ends with a specific number that could
not be anything else. What an exercise in subtle mental gymnas-
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tics this is! How could this way of thinking be called merely me-
chanical? No wonder children have difficulty with algebra. The
difficulty is the ambiguity. The resolution of the ambiguity, solv-
ing the equation, does not involve eliminating the double con-
text but rather being able to keep the two contexts simultane-
ously in mind and working within that double context, jumping
from one point of view to the other as the situation warrants.

A variable is general and specific at the same time. It is all
values or it is a unspecified “typical” value. In that ambiguity
lies its power. By not resolving the ambiguity until the end of
the piece of mathematics one is able to use that ambiguity con-
structively. Thus when considering the function f (x) = 3x* + 2,
we think of x as a typical real number. But we also think of the
whole function as being identified with its parabolic graph.
Then we can say that its derivative, for example, is the function
6x. Again, we think of this in two ways: first, as a formula that
is valid for all values of “x” (the derivative at x = 2 is 6 times 2
or 12); and second, as a specific (single) point on the graph
where the slope of the tangent line is the specific number 6x.

Without this double or ambiguous point of view, modern
mathematics would never have been invented. Remember that
Greek mathematics was geometric and not algebraic. Algebraic
thought requires the use of the idea of variable. This was not as
explicit in Greek thought as it would later become. Again, we
can only speculate that it was the Greeks’ reverence for clarity
and harmony and their distrust and repugnance for ambiguity
that prevented them from developing their mathematics in
this direction.

The algebraic equation 3x + 2 = 8 is ambiguous in yet another
way. In solving this equation I am really making the following
assertion: “Assuming that there exists a number x such that
3x + 2 =8, it follows that this number must be 2.” Thus in setting
out to solve an equation we have taken for granted that the solu-
tion exists. That is, the solution is both unknown and (implicitly)
known at the same time. This ambiguity between being known
and unknown is similar to the ambiguity of a variable that I
mentioned earlier and is essential to equations.

I said above (with respect to the equation 3x + 2 = 8) that we
start by assuming that the solution exists and only then deter-
mine what it is. What if the solution does not exist? What hap-

43



CHAPTER 1

Figure 1.2. Graph of “f (x) = 3x* + 2"

pens to the ambiguity? Consider the equation x + 1 = 0, and as-
sume that there are only the nonnegative integers (0, 1,2, 3, .. .)
at our disposal. Then the solution x = -1 is not available, so there
is no solution within the system we are working in. What hap-
pens? Remember that I said that ambiguous situations were dy-
namic; the two incompatible contexts may generate their own
creative resolution. Here the incompatibility resides in the fact
that the equation is a form that implicitly assumes a solution
exists (all the terms in the equation belong to the known system
of nonnegative integers), yet no solutions exist (within the sys-
tem of nonnegative integers). The creative resolution of this di-
lemma generates the required solutions. You could say that the
equation x + 1 = 0 brings the negative numbers into existence!
Thus in order to give meaning to the equation x + 1 = 0 (and
more generally x + n = 0) in a situation where only the non-
negative integers are available, we are forced to invent a new
class of numbers. How exciting! Similarly the equation x* + 1 =
0 produces the complex numbers."

There is power in this ambiguity even if the existence of the
solution is not guaranteed. In fact, in this case we can see the
generative power of ambiguity to creatively produce new ideas.

44



AMBIGUITY IN MATHEMATICS

Equations can be seen as metaphors, and this way of looking at
them explains the generative power of mathematics to produce
new structures in response to new situations. Of course there are
other ways to introduce larger number systems. Nevertheless,
let us not underestimate the power of equations to evoke novel
situations. The equation x* + 1 = 0 makes perfect sense even if
we only have integers around, but the latent ambiguity of x* +
1 = 0 as an equation cries out for a solution even it requires in-
venting a whole new number system to produce it.

FuncTionNs

The notion of a function is ambiguous. There are many equiva-
lent definitions, but let me focus on two. There is the ordered
pair, graphical definition of a function. This is a static definition:
the function is a set (of ordered pairs) or a picture (the graph)
or a table (figure 1.3a). However there is also the mapping defi-
nition, which is related to the black box, input-output definition
(figure 1.3b). This latter is a dynamic definition. Here the x is
transformed into the y. This definition is the one that is used in
thinking of a function as an iterative process or a dynamical sys-
tem or a machine.

Mathematicians go back and forth from one of these represen-
tations to the other. “Most of the functions introduced in the sev-
enteenth century were first studied as curves, before the func-
tion concept was fully recognized.”’® A curve in the plane is a
representation of an implicit relationship between variables, but
the dependence of one of these variables on the other is not nec-
essarily clear from the geometric picture.”” Nevertheless, think-
ing about a function as a curve makes the whole of the function
into one geometric object. The unity of the function as object is
maintained in later developments, when the function is seen (by
James Gregory, for example) “as a quantity obtained from other
quantities by a succession of algebraic operations.”" This kind
of definition leads to thinking of a function as a formula. Here
we already have a kind of duality with the function as geometric
object (graph) and analytic object (formula). Further develop-
ments involved allowing the “formula” to extend to an infinite
number of operations (power or Fourier series) for which the
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(-2,4) (2,4)
f(x)= x2
(-1,1) (1,1)
(0,0)

Figure 1.3a. Graphical model of f (x) = x* (ordered pairs)

- 2
170’3)X; f(X)= X2 1,0,9,X E
IN ouT

Figure 1.3b. Input-output model

geometric representation was not readily available. Finally with
the development of set theory, functions came to be seen as ab-
stract sets of ordered pairs (x, y) where the graph might not even
be a geometric object at all."” This abstract definition of function
is the “single idea” that includes both the geometric and analytic
approaches.

In the twentieth century even the set theoretical unification of
the idea of function came to be looked at in a new way. New
developments in mathematics often entail reworking a concept.
The input-output model was crucial to looking at functions as
the generators of processes. This new point of view came into
its own with the introduction of computers and calculators. A
simple mathematical calculator has a series of “function but-
tons” with names like sin x, cos x, exp x. When we punch a num-
ber (the input, x) into the calculator and push one of these but-
tons, the number is transformed into another (the output, ). The
exp button on a calculator is a simple input-output device.

Thinking about a function in this way, we can see that any
function can be seen as generating what is called a difference
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< ® >

-1
Figure 1.4. “f(x) = 2x + 1” generates a dynamical system

equation or dynamical system. Suppose the “generating func-
tion” is f (x) = 2x + 1. If the process has the value x, = 1 at time
0, then its value at time 1 would be x; = f(x)) =2 (1) + 1 = 3, its
value at time 2 would be x, = f(x;) = 7, and so on. Thus the
function could be considered as a “law” that governs how the
process it represents evolves over time. The graph of the func-
tion is of little help to us when we think of a function in this
way. What we want to know is, if we start with a certain value
at time zero, what will happen “in the long run.” From this point
of view a completely different geometric picture is required. For
the generating function f (x) = 2x + 1 it would look as shown
in figure 1.4.

The picture contains the following information: the “dot” at
—1 means that if the system starts at value x = -1, then it remains
at this value at all future times; the right arrow means that if the
initial value is greater than —1 then the future values of the pro-
cess increase without bound; the left arrow that they decrease
without bound if the initial value is less than —1.

So we now have a new way of thinking about the concept of
function—a dynamic concept as compared with the versions of
functions that were discussed earlier. We now need to reconcile
these two definitions by integrating them into a new and more
general concept.

At this stage we are thinking about a function as some sort
of rule that applies to a whole set of numbers. However, there
inevitably comes a time when we want to operate not just on
individual numbers but on the rule itself. Thus, if f(x) = x* and
g(x) = 3x + 1, we may wish to add f(x) and g(x) and thereby
create a new function /(x) = f(x) + g(x) = x* + 3x + 1. Or we may
wish to multiply them and create k(x) = x*(3x + 1) = 3x* + x% Or
again we may wish to consider the result of applying the first
rule followed by the second rule h(x) = g(f(x)) = 3x* + 1. This
last operation is called the “composition of functions f and g”
and written i = g o f. It can also be done in the reverse order to
obtain f(g(x)) = (3x + 1)>. When we operate on functions in this
way we are thinking of the function as one whole, unified object.
We have made a function that began as something akin to a pro-
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cess, a process for operating on numbers, into an object that itself
could be operated upon. At one level, one can add or multiply
numbers; now, at a higher level, one can add, multiply, or com-
pose functions. This is the process of abstraction at work. Ab-
straction consists essentially in the creation and utilization of
ambiguity. The initial barrier to understanding, that a function
can be considered simultaneously as process and object—as a
rule that operates on numbers and as an object that is itself oper-
ated on by other processes—turns into the insight. That is, it is
precisely the ambiguous way in which a function is viewed
which is the insight.

At a higher level of abstraction one puts whole families of
functions together to form function spaces, for example, all
continuous functions defined on the interval of numbers be-
tween 0 and 1. Once a function is seen as a point in a larger
space, we can talk about the distance between functions, the con-
vergence of functions, functions of functions, and so on. This
sort of dual representation is present in a great many mathemati-
cal situations.

FuNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus is one of the great theo-
rems of mathematics. A consideration of this theorem will ex-
tend our discussion of ambiguity from the domain of concepts
like variables and functions to include the domain of actual
mathematical results. How, one might ask, can a mathematical
theorem be ambiguous? The essence of this theorem is ambiguity;
it is asserting that calculus is ambiguous!

Now “differential calculus” and “integral calculus” can be
(and historically were) developed independently of one another.
They appear, at first glance, to have nothing to do with one an-
other. Integration is a generalization of the idea of area. A typical
problem might be to calculate the area between the graph of the
curve iy = x> and the x-axis, between 0 and 1 (figure 1.5a). Differ-
ential calculus as developed by Newton and Leibniz was con-
cerned with calculating the slope of tangent lines to curves or
the related problem of instantaneous change in one variable
with respect to another, velocity, for example, as shown in figure
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1.5b. The Fundamental Theorem says that these processes are
inverses of one another (when the functions involved are “rea-
sonable” as in figure 1.6).

Now it may be possible to start with integration and then de-
velop differentiation or vice versa, but the theorem says that, for
functions of one variable, neither process is the more fundamen-
tal. Actually, the theorem says that there is in fact one process in
calculus that is integration when it is looked at it in one way and
differentiation when it is looked at in another. Another way of
putting this is that without the Fundamental Theorem there
would be two subjects: differential calculus and integral calcu-
lus. With it there is just the calculus, albeit with a multiple per-
spective. This multiple perspective is essential to an understand-
ing of calculus.

How is this multiple perspective used? Well, since differenti-
ating is easier than integrating, we can integrate by taking the
inverse of the derivative, that is, by calculating the antideriva-
tive. For example, since the derivative of the function f(x) = x* is
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the function g(x) = 2x, it follows that the integral of 2x is x°.
Whole lists of such antiderivatives may be established and then
used to integrate elementary functions.

FErRMAT’s LAST THEOREM

Perhaps the most famous mathematical problem in the last three
hundred years involves the equation,

le+le=ZYl

for n > 2. For n = 2 this equation represents the relationship be-
tween the lengths of the sides of a right-angled triangle ac-
cording to the theorem of Pythagoras. Thus there exist many sets
of solutions, including x =3,y =4,z=50rx =5,y =12,z =13.
The mathematician Pierre de Fermat (1601-1665) claimed that
there were no integer solutions to this equation for n > 2 and
moreover that that he had a “marvelous proof of this.” Unfortu-
nately the proof he was thinking of was never found. Building
on the work of many talented mathematicians before him, the
correct argument was finally obtained by Andrew Wiles in
1993.% It was a triumph of human ingenuity and creativity, and
the entire story of the work on this conjecture makes fascinating
reading for anyone who is interested in mathematics.

The proof hinges on the validity of a conjecture called the
Taniyama-Shimura conjecture. This conjecture unifies the seem-
ingly disparate worlds of elliptic curves and modular forms. To
understand the power of ambiguity to revolutionize mathemat-
ics, one has but to read the comments on this conjecture by the
Harvard mathematician Barry Mazur. He compared the conjec-
ture to the Rosetta stone that contained Egyptian demotic, an-
cient Greek, and hieroglyphics. Because demotic and Greek were
already understood, archaeologists could decipher hieroglyph-
ics for the first time.

Mazur said,

It is as if you know one language and this Rosetta stone is
going to give you an intense understanding of the other lan-
guage. But the Taniyama-Shimura conjecture is a Rosetta
stone with a certain magical power. The conjecture has the
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very pleasant property that simple intuitions in the modu-
lar world translate into very deep truth in the elliptic world,
and conversely. What’s more, very profound problems in
the elliptic world can be solved sometimes by translating
them into the modular world, and discovering that we have
insights and tools in the modular world to treat the trans-
lated problem. Back in the elliptical world we would have
been at a loss.”

This is precisely a restatement of what we have come to expect
in a situation of ambiguity.

HiLBERT'S TENTH PROBLEM

Fermat'’s last theorem is not the only famous problem concern-
ing Diophantine equations that has been solved in recent years.
A Diophantine equation is an equation in a finite number of un-
knowns, like x* + 2x%y + xy* — 2xy — 4y* = 0, where we seek to
find integer values of x and y that solve the equation. Of course
Fermat’s equation for n > 2 is Diophantine but has no integral
solutions. David Hilbert’s Tenth Problem is another example.
Here is the problem in Hilbert’s words:

Given a Diophantine equation with any number of un-
known quantities and with rational integral numerical coef-
ticients: To devise a process according to which it can be deter-
mined by a finite number of operations whether the equation is
solvable by rational integers.”

Thus he asked whether an algorithm can be devised that
would be able to determine in a finite number of steps whether
a given Diophantine equation had an integral root. This problem
is interesting because of what it tells us about the nature of algo-
rithmic intelligence, a question that will be returned to later
on. In 1970 Yuri Matiyasevich showed that Hilbert’s Tenth Prob-
lem is unsolvable. From our point of view, what is interesting is
not only the result but also the manner in which the result was
obtained.

In his forward to Matiyasevich’s book, Martin Davis, one of
the senior researchers in the field, had this to say,
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This showed not only that Hilbert’s Tenth Problem is un-
solvable, but also that two fundamental concepts arising in
different areas of mathematics are equivalent. The notion of
recursively enumerable or semidecidable set of natural numbers
from computability theory turns out to be equivalent to the
purely number-theoretic notion of Diophantine set. Dr. Mati-
yasevich has taken full advantage of the rich interplay be-
tween the methods of elementary number theory and com-
putability theory and this equivalence makes it possible to
produce an amazing and appealing book.”

Here again we have the appearance of the same phenomenon
that was observed in the proof of Fermat—a key conceptual
step is the recognition that two hitherto unrelated conceptual
ideas are in fact equivalent. This reinforces the notion that we
are looking here at something that is basic to creative insights in
mathematics.

UNSOLVED PROBLEMS AND THE MATHEMATICAL QUEST

Our discussion of ambiguity in mathematics can be consolidated
and put into its correct perspective through a consideration of
the activity of mathematical research, in particular, research into
unsolved problems. It seems appropriate to follow up a discus-
sion of Fermat’s Last Theorem and Hilbert’s Tenth Problem,
two of mathematics” most noticeable success stories in recent
years, with a discussion of problems that have not been solved.
Nothing reveals the huge gap between the general public’s per-
ception of mathematics and the view from within the mathemat-
ical community more than their respective reactions to open or
unsolved questions. Many people are surprised to hear that
there “still” remain problems in mathematics that are unre-
solved—much less that such problems can sometimes be stated
quite simply and succinctly. They have the feeling that “surely
everything in mathematics is known or, at least, will be known
in the near future.” For the researcher, mathematics is a vast un-
known terrain, a dense forest, in which there are occasional
clearings corresponding to developed and well-understood
areas of mathematics.
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Number theory is an area of mathematics containing many
unsolved problems which can sometimes be stated in language
that is accessible even to nonspecialists. The only technical word
we shall need is the notion of a prime number. Primes are posi-
tive integers greater than one that have no factors other than
themselves and 1. For example the list of primes would begin
with 2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31, and so on. The Greeks
developed an argument (which is given in Chapter 5) to show
that this list has no largest element, that is, that the number of
primes is infinite. All primes with the exception of 2 are odd
and, of course, the sum of two odd primes is an even number.
But can all even numbers be generated in this way? Goldbach’s
Conjecture says that they can. It is an unsolved problem in num-
ber theory and one of the oldest unsolved problems in all of
mathematics. No one has yet come up with a proof. In fact, in
the year 2000 the British publisher Tony Faber put up a million-
dollar prize for anyone who could come up with a solution be-
fore the year 2002. The prize was a way to generate publicity
for the novel Uncle Petros and Goldbach’s Conjecture by Apostolos
Doxiadis. The prize was never awarded.

Goldbach’s conjecture can be stated simply:

Every even number greater than two can be written as the
sum of two prime numbers. For example,

4=2+2,6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=
3+11=7+7,....

In his fascinating book on number theory, Daniel Shanks di-
vides unsolved problems into two categories: conjectures and
open questions. A conjecture is a “proposition that has not been
proven, but is favored by some serious evidence.” For an “open
question,” on the other hand, the “evidence is not very convinc-
ing one way or another.”* There is a great deal of evidence in
favor of the validity of Goldbach and most mathematicians be-
lieve it to be true. For small values of n (small for a number theo-
rist), n < 6 x 10", the conjecture has been verified by computer.”
In addition there is a heuristic argument (but not a proof) for
the validity of the conjecture based on the formula for the statis-
tical distribution of primes. Even at the level of rigorous proof
there have been a number of results that go in the direction of
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the main conjecture. For example, in 1939 L. G. Schnirelmann
proved that every number 7 > 4 can be written as the sum of at
most 300,000 primes. This showed that the conjecture was true
for a large but finite number of primes (instead of two). This
result has been improved over time so that it is now known
that every even number n > 4 can be written as the sum of at
most six primes.” Another result, due to Chen Jingrun (1966),
is that every sufficiently large even number n (n = N, for some
N) can be written as the sum of two numbers, the first of which
is a prime and the second is the product of two primes. There
are many more results that go in the direction of Goldbach’s
Conjecture.

What is the relevance of unsolved problems to our discussion
of ambiguity in mathematics? A well-formulated but unsolved
problem has an intrinsic ambiguity both in the problem itself
and also in the way one thinks about it or works on it. It may
be true or false. It is even conceivable that it cannot be resolved
one way or another.” While we are working on it we don’t know
the answer, so we must allow both of these possibilities to live
in our minds at the same time. Of course we couldn’t work on
such a problem without having some intuition, based on some
substantial evidence, about the validity of the statement. If, fol-
lowing Shanks, we call it a conjecture, then we are guessing that
it is true. If we call the problem “open,” then we allow for both
possibilities. But whether we call it conjecture or open problem,
there are always two possibilities—true or false. If we guess
false, we must ask ourselves where we might look for a counter-
example. If we guess true, we must ask why is it true, and where
we would we look for a proof. Whatever we guess, there is al-
ways the possibility that we have guessed wrong. If we feel that
the statement of the problem is true, then we are faced with an-
other ambiguity. Is the proof accessible? Many conjectures are
felt to be true, and yet one senses that a proof would require
new ideas, major new developments in the subject that may not
happen for many years. Who would risk wasting their careers
and a good portion of their lives working on a problem that is
not ripe for solution given the current state of development of
the subject? So mathematical research is characterized by an in-
stinct for the right problems: those that are significant yet acces-
sible. These are another pair of conflicting or ambiguous charac-
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teristics. Too accessible implies the problem is most likely
unimportant; too significant and it may be inaccessible.

The ambiguity of an unsolved problem is mitigated somewhat
by the Platonic attitude of the working mathematician. That is,
she feels that it is objectively either true or false and that the job
of the mathematician is “merely” to discover which of these a
priori conditions applies. Psychologically, this Platonic point of
view brings the ambiguity of the situation into enough control
so that researchers have confidence the correct solution exists
independent of their efforts. It moves the problem from the
domain of “ambiguity as vagueness” in which anything could
happen to the sort of incompatibility that has been discussed
in this chapter where there are two conflicting frameworks, true
or false.

While the unsolved problem is unresolved, the ambiguity of
the situation is there for all to see. Let’s spend a few words com-
paring this situation to one in which the ambiguity of the mathe-
matical situation is hidden from view. In the classroom, for ex-
ample, the teacher and the student often stand on opposite sides
of the ambiguity. In the teacher’s perception of the situation,
there is no ambiguity—the concept being discussed is clear and
precise. For the student the concept is ambiguous in both senses
of the word: it both is unclear and may contain various “mean-
ings” that actually conflict with one another. However, and this
is what is usually not appreciated, even for the teacher the con-
cept retains its ambiguity. For in addition to its clarity, there is
also (if the teacher actually has a deeper understanding of the
concept) an openness and flexibility that allows the concept to
be applied in a variety of circumstances.

Every situation of ambiguity admits a dual viewpoint that we
could characterize as known versus unknown or as teacher ver-
sus student. In the case of the unsolved problem the “known”
side is missing, so there is no disguising the ambiguity. In the
teaching situation the teacher may well deny that the concept is
ambiguous, but no one can do this for a problem that is unre-
solved. We really don’t know the true state of affairs.

In fact, famous unsolved problems are often of great impor-
tance to the development of mathematics even if they remain
unresolved. This is because the effort that is spent unraveling
them often results in important developments in the subject. The
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main conjectures may remain unsolved, but other significant
questions that arise in the course of the investigations often are
solved. As in the case of the Goldbach Conjecture, different,
weaker aspects of the main conjecture may be proved, and this
leads to increased evidence for or against the main conjecture.
The whole situation requires a state of mind that remains at once
rigorous and flexible. It requires the ability on the part of the
researcher to develop and sustain a state of ambiguity.

I cannot leave the topic of unsolved problems without com-
menting on what it tells us about the nature of mathematical
research and about the art form that is called mathematics. What
kind of person attacks such problems? Working on one of the
great unsolved problems of mathematics is like embarking on a
quest. The anthropologist Joseph Campbell® has written about
the mythological Hero’s Quest. In it the hero braves great perils
in order to make some discovery that he brings back for the ben-
efit of humankind. Working on a great mathematical conjecture
is a kind of hero quest. What motivates people to spend their
lives on such a quest? Why did Wiles spend seven years in his
attic working on Fermat? The true motivation for such activity
goes beyond fame and fortune—it must be found in the nature
of the activity itself. This is another way by which examining
mathematics has something to tell us about the nature of the
human condition. It seems to me that the notion of the spiritual
quest is the closest one will find to such an explanation. A spiri-
tual quest is something that one is driven to do, driven from the
deepest level of one’s being. A spiritual quest has no rational
explanation, or rather, the rational explanation, the adding up
of the pluses and the minuses, always misses the mark. One is
just so taken with the question, with the beauty and the excite-
ment of the activity, that the effort and the sacrifice seem a small
price to pay. A spiritual quest also has something about it that
is self-validating and holds the promise of personal transforma-
tion. Its goals are both external and internal—a voyage of both
discovery and self-discovery.

Any great quest demands courage. It is a voyage into the un-
known with no guaranteed results. What is the nature of this
courage? It is the courage to open oneself up to the ambiguity
of the specific situation. The whole thing may end up as a vast
waste of time; that is, the possibility of failure is inevitably pres-
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ent. To work so hard, in the face of possible failure, is what I
mean by working with ambiguity. If we stop to think about it,
this quality of ambiguity that one finds in the research environ-
ment is no different in kind from the ambiguity that is found in
our personal lives. Our lives also have this quality of a quest,
the attempt to resolve some fundamental but ill-posed question.
In working on a mathematical conjecture, life’s ambiguities so-
lidify into a concrete problem. That is, the situation of doing re-
search is isomorphic to some extent with the situation we face
in our personal lives. This is one reason that working on mathe-
matics is so satisfying. In resolving the mathematical problem
we, for a while at least, resolve that larger, existential problem
that is consciously or unconsciously always with us.

The above discussion should be borne in mind when we think
about the learning of mathematics as students, teachers, or just
people who are interested in mathematics. Learning something
new entails entering into a situation of ambiguity. Situations of
ambiguity are difficult by their very nature. Learners need sup-
port when they are encouraged to enter into new unexplored
ambiguities. A new learning experience requires the learner to
face the unknown, to face failure. Sticking with a true learning
situation requires courage and teachers must respect the courage
that students exhibit in facing these situations. Teachers should
understand and sympathize with students’ reluctance to enter
into these murky waters. After all, the teacher’s role as authority
figure is often pleasing insofar as it enables the teacher to escape
temporarily from their own ambiguities and vulnerability. Thus
the value of learning potentially goes beyond the specific con-
tent or technique but in the largest sense is a lesson in life itself.

AMBIGUITY IN PHYSICS

Since physics is the science that is closest to mathematics, one
might expect to find that the phenomenon of ambiguity is pres-
ent in this domain as well. Physics involves an explicit duality,
namely, the two dimensions of experiment and theory. One of
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these dimensions is associated with the natural world. It is objec-
tive, that is, we feel that it resides “out there,” independent of
our minds. Theoretical physics, on the other hand, clearly is a
subjective human creation, consisting as it does of ideas, con-
cepts, and, of course, mathematics. In mathematics these dimen-
sions of objectivity and subjectivity are not so well delineated.
Thus the appearance of ambiguity in physics raises additional
questions to those that it raises in mathematics. Does the ambi-
guity reside in the mathematical formalism or does it reside in
the natural world itself?

Earlier the ambiguous nature of the equation E = mc* was dis-
cussed. This brings out a point about the difference between
mathematics and physics. The concepts of mass and energy are
linked through this equation, and therefore this equation, like
other equations, is ambiguous. Nevertheless here we are not
only talking about a piece of mathematics—we are talking about
the atomic bomb! The stakes are much higher here. Ambiguity
seems to tell us something about the nature of reality itself, or
at least the manner in which the human mind interacts with the
natural world.

ELECTRICITY AND MAGNETISM

Originally electricity and magnetism were studied as separate
and distinct phenomena. Then, with the experimental work of
Michael Faraday and the theoretical work of James Clerk Max-
well, scientists realized that the two phenomena were intimately
related. So intimate is this relationship that one could say, “elec-
tricity and magnetism turned out to be not two separate subjects
but were different aspects of a single electromagnetic field.”*
This realization had all sorts of practical and theoretical conse-
quences from the invention of electric motors to the realization
that light itself is an electromagnetic phenomenon. This break-
through in understanding has been called the highlight of nine-
teenth-century scientific thought. This breakthrough is captured
in Maxwell’s equations but the essential nature of the insight is
that electricity and magnetism form a single ambiguous field.
Thus we could say that the deeper nature of light itself is that it
is one single phenomenon of an intrinsically ambiguous nature.”
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COMPLEMENTARITY IN QUANTUM MECHANICS

Quantum mechanics, the physics of the subatomic realm, is one
of the most novel and successful theories of the last century. It
has succeeded in all the ways that a scientific theory can suc-
ceed. It predicts the outcome of experiments that can be verified
quantitatively to a very high degree of accuracy. It also antici-
pates the existence of novel phenomena that are then shown to
exist through experiment.

Quantum mechanics is a paradigm-breaking scientific theory.
It posits a radically new way of viewing the phenomena of the
natural world. The aspect of the subatomic world that is most
surprising (and not yet completely understood) is called “com-
plementarity.” When philosophers and physicists discuss the
“meaning” of quantum mechanics, what they are discussing, in
the first instance, is complementarity. It is complementarity that
makes quantum mechanics not only a “new” scientific theory
but also a new kind of theory.

We are introducing complementarity into our discussion at
this point because the parallels between complementarity and
what I have been calling ambiguity are striking. I shall attempt
to work out the relationship between the two ideas. In fact I
claim that the essence of complementarity—what makes it
original and important is precisely what I have been calling
ambiguity.

Complementarity is a concept that originates with Niels Bohr
in an attempt to explain the seemingly paradoxical world of sub-
atomic particles. Is an electron, for example, a particle or a
wave? In certain experimental situations the electron behaves
like a localized individual object—it makes sense to say that
there is one electron or two or three. In other situations the elec-
tron is not localized. It behaves like a wave, with wave-like
properties such as diffraction and interference. Both of these, the
particle and the wave, are “self-consistent frames of reference,”
yet, to the normal way of thinking, there appears to be a certain
incompatibility between the two descriptions. Many people
have regarded the existence of complementary properties like
wave/particle duality as paradoxical. Of course this is precisely
what one would expect from a situation of ambiguity, but it is
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not what one usually expects to find in physics. After all, one
might ask, what is it really, a wave or a particle? We feel that it
cannot be both. Yet there is one thing of which we can be sure—
there is one electron. When we look at it in one way (in one
frame of reference) we observe particle-like properties. When we
look in another way we get wave-like properties. The electron
is precisely the singular entity that emerges out of this funda-
mental ambiguity.

If complementarity and ambiguity refer to the same phenome-
non, then why not call ambiguity complementarity? I maintain
that even though these two ideas are referring to a similar phe-
nomenon there are important differences. Complementarity re-
fers to a situation where there is a duality—two contexts the
“sum” of whose complementary aspects “adds up” to the entire
actual situation. Ambiguity also involves dual concepts, but
each context stands on its own, each context describes the entire
situation, so to speak. Thus there would be the “particle” de-
scription of nature in which subatomic particles are classical
objects with definite attributes. On the other hand there would
be the “wave” description in which everything is a cloud of
probabilities—what Werner Heisenberg called “tendencies for
being,” “potentia.”

Moreover, an ambiguous situation not only boasts dual con-
texts but also emphasizes the incompatibility between these con-
texts. It is this “incompatibility” that most sharply differentiates
“ambiguity” from “complementarity.” It is this incompatibility
that is at work when we read the anguished words of physicists
who are trying to make sense of subatomic phenomena. They
seem not to make sense! One senses that there exists an obstacle
that must be overcome if one is to makes sense of this realm of
reality. Using the idea of “ambiguity” brings to the fore the need
for this “epistemological obstacle” to be overcome—the need for
a new vision, the need for a creative leap.

This “incompatibility” gives the entire situation a dynamic as-
pect. It is like a force that pushes the situation toward a creative
reconciliation of the incompatibility. Thus I prefer to think about
the electron as an ambiguous object—not in any vague or mysti-
cal sense—but in the sense that the electron is both a particle
and a wave and yet it cannot be both at the same time. When it
is a particle, it is not a wave, and when it is a wave, it is not a
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particle. In fact the particle/wave ambiguity is so profound that
its implications remain a subject of study and speculation.

Ambiguity may then refer to a phenomenon that is present in
the external world of physical phenomena as well as in the inte-
rior, cognitive world. Which is primary? Does ambiguity (or
complementarity) refer to a property of the natural world, and
so it finds its way into the biology of our brains and from there
into the world of mathematics? Or is ambiguity a feature of our
thinking process, and so the conceptual structures that we create
inevitably carry this feature? This is in itself a version of the
mind/body problem. What is primary, mind or body?

The dominant view in modern cognitive science is that
“mind” is a consequence of “brain.” There have also been think-
ers and traditions that say that “brain” is a consequence of
“mind.” The dominant Western tradition going back to Des-
cartes is that there is a mind/body duality. I suggest that there
is another possibility—an “ambiguous” possibility. I suggest
that the mind /brain and subjective/objective situations are not
merely dualities or complementarities but ambiguities. Calling
them ambiguities makes all the difference because, whereas a
duality may be seen to be a fixed and unchangeable aspect of
reality, an ambiguity always allows for a higher-level unifica-
tion. Thus one could say that there is one unified reality that
looks subjective when we approach it in one way and objective
when we approach it another (see Chapter 8). If reality itself has
this ambiguous nature, then it is not so surprising to see the
same ambiguous characteristics arising in both the “subjective”
domains of mathematical and physical theory as well as in the
“objective” domain of subatomic physics.

It is interesting for our discussion of mathematics that quan-
tum mechanics is a completely mathematical theory. Actually it
has two different mathematical formalisms, one discrete and the
other continuous. That is, the theory of quantum mechanics is
itself ambiguous. Now the two descriptions are mathematically
isomorphic or equivalent. This does not mean, however, that
there is nothing to be gained by having two different ways to
look at the situation. On the contrary, given our previous discus-
sion, one would expect that the subtlety of the phenomenon
that we are trying to comprehend would require an ambiguous
description.
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Finally mathematics has something to learn from the world of
quantum mechanics. This involves the normal, “formalist” view
that mathematics starts off with “self-evident” ideas and builds
up to very complex ones, that there is a movement from simplic-
ity to complexity. In the world of quantum mechanics the ele-
mentary objects such as the electron and other subatomic parti-
cles are extremely subtle and complex entities. That is, it is
conceivable that reality is complex all the way down. There may
be a lesson here about mathematical objects. Are they not also
complex all the way down? Is there any mathematical object that
is “trivial” or “obvious” when viewed from every possible math-
ematical point of view? But more of this later on.

STRING THEORY

String theory (and its generalization M-theory) is an exciting,
relatively recent attempt to unify the two most fundamental
physical theories of our time, general relativity and quantum
mechanics. These “two theories underlying the tremendous
progress of physics in the last hundred years ... are mutually
incompatible.”*" Thus the need for string theory arises out of
the kind of ambiguous situation that I have been describing
in this chapter. Both general relativity and quantum me-
chanics have been spectacularly successful in their respective
domains. Their predictions have been experimentally verified to
a very high degree of accuracy. Yet they are incompatible in
situations in which both theories apply, for example, black holes
and the “big bang.” It is this context that created the need for a
new theory that would unify the gravitational force with the
other physical forces. String theory is the prime candidate for
such a unifying theory. It is interesting at this stage of the discus-
sion not only because of the ambiguous context in which it arises
but because the theory itself incorporates ambiguity in a pro-
found manner.

String theorists have a word for what I have been calling am-
biguity—they call it duality. “Physicists use the term duality to
describe theoretical models that appear to be different but never-
theless can be shown to describe exactly the same physics.”
There are “trivial” dualities and “nontrivial” dualities. The for-
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mer give you nothing new; they are exact correspondences from
one language to another. “Nontrivial examples of duality are
those in which distinct descriptions of the same physical situa-
tion do yield different and complementary physical insights and
mathematical methods of analysis.” Nontrivial dualities are at
the heart of recent developments in string theory. Just as in the
discussion of the proof of the Fermat theorem, nontrivial duali-
ties may enable an analysis or calculation that is extremely in-
tractable in one context to be translated to another context in
which the calculation is much easier to accomplish.

In the decades before 1995 five distinct versions of string the-
ory were developed. This was a bit of an embarrassment, since
one would hope that one characteristic of a unifying physical
theory would be its uniqueness. Then Edward Witten “discov-
ered a hidden unity that tied all five string theories together.
Witten showed that rather than being distinct the five theories
are just five ways of mathematically analyzing a single theory
... a single master theory [which] links all five string formula-
tions.” This proposed master theory is called M-theory and is
the subject of much current work. Thus, although I have empha-
sized that ambiguous situations usually come with two frames
of reference, here we have five frames of reference that are recon-
ciled by a master theory that encompasses them all.

Thus the ambiguous appears throughout string theory, and it
appears in many different guises. One way that interests me is
in the interaction between mathematics and physics. Mathemat-
ics and physics have distinct points of view. Thus it is conceiv-
able that a certain problem can be looked at from both the purely
mathematical and the physical point of view. Such an “ambigu-
ous” point of view is an advantage for it has opened up new
ways to attack and solve certain purely mathematical problems.
This is another duality or ambiguity, which

highlights the role that physics has begun to play in modern
mathematics. For quite some time, physicists have “mined”
mathematical archives in search of tools for constructing
and analyzing models of the physical world. Now, through
the discovery of string theory, physics is beginning to repay
the debt and to provide mathematicians with powerful new
approaches to their unsolved problems.
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The mechanism at play here is ambiguity harnessed in both di-
rections for the insight and the power that it provides.

SOME PERSPECTIVES FROM MATHEMATICS EDUCATION

Mathematics educators investigate mathematics as it is learned
and taught. Therefore they are forced to consider not only the
formal, objective aspects of mathematics but also the human
dimension of the subject. They are forced to confront such
questions as “What is meaning?” “What is understanding?” The
result has been that various mathematics educators have devel-
oped a rather sophisticated approach to the nature of mathemat-
ics. These approaches have in common with my own a desire
to free mathematics from an entirely “objectivist” point of view,
“objectivist” in the sense that the meaning of mathematics is
“out there” in a mind-independent reality. In this section, I shall
mention a number of ideas put forward by researchers in mathe-
matics education that have something in common with the no-
tion of ambiguity.

GRrAY AND TALL

Eddie Gray and David Tall wrote an excellent paper in 1994 with
the suggestive title, “Duality, Ambiguity, and Flexibility: A "Pro-
ceptual” View of Simple Arithmetic.” In this paper they discuss
“process-product” ambiguities in mathematical notation. In an-
swer to a question about how anything can be a process and an
object at the same time, which had been posed by the mathemat-
ics educator Anna Sfard,” they point to the way that profes-
sional mathematicians “employ the simple device of using the
same notation to represent both a process and the object of that
process.” Thus they introduce the word “procept” to represent
“the amalgam of three components: a process that produces a
mathematical object, and a symbol that represents either the pro-
cess or the object.”®

They give a list of examples of ambiguous symbolism which
is significant because it includes a great deal of elementary
mathematics. These include the notation for addition, multipli-
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cation, and division, where, for example, 2/3 stands for division
and for the concept of a fraction and —7 can stand for the process
of subtracting 7 or the negative number. They also include exam-
ples that I have also enumerated: functions, infinite decimals,
limits of functions, sequences, and series.

Gray and Tall are well aware that what they are talking about
involves the taboo subject of ambiguity when they say, “mathe-
maticians abhor ambiguity and so they rarely speak of it, yet
ambiguity is widely used throughout mathematics. We believe
that the ambiguity in interpreting symbolism in this flexible way
is at the root of successful mathematical thinking.” It is true that
in a certain way mathematicians abhor ambiguity. Mathemati-
cians in general are masters of the most subtle and elaborate log-
ical arguments. Logic is a form of thinking that conveys power
and control that mathematicians use to considerable effect in the
classroom, in conversations with one another, and even in their
personal lives. Thus there is the feeling that the desirable state
of affairs is the rigorous and therefore that ambiguity is a tempo-
rary condition that should and ultimately will be replaced by a
state of logical certainty. Nevertheless you cannot remain in a
state of logical certainty if you wish to do research. Thus the atti-
tude of the mathematician is ambiguous; it consists of two atti-
tudes that are inconsistent with one another. This is connected
to the comment I made at the beginning of the chapter, and
which has been noted by many authors, to the effect that what
mathematicians do is not the same as what they say they do.
What they say they do lies in the formal, logical domain. What
they actually do lies in what I am calling the domain of ambigu-
ity, and, for the most part, when this is pointed out to them they
readily acknowledge it. The problem lies not in the mathemati-
cal activity but in the way that activity is described and therefore
misinterpreted by people who teach mathematics, who use
mathematics in their work, or who find it comforting to hold to
a vision of the world that is logically coherent and devoid of
ambiguity. Mathematics is mistakenly used as a justification for
such a simplistic point of view. The resulting damage to stu-
dents, to teachers and to society at large, is considerable.

Gray and Tall go on, “We conjecture that the dual use of nota-
tion as process and concept enables the more able to ‘tame the
processes of mathematics into a state of subjection’; instead of
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having to cope consciously with the duality for product and pro-
cess, the good mathematician thinks ambiguously about the
symbolism for product and process.” In a process that reflects
what I said above about the use of variables in mathematics,
they continue, “We contend that the mathematician simplifies
matters by replacing the cognitive complexity of process-con-
cept duality by the notational convenience of process-product
ambiguity.”*

Of course, from my point of view, the key statement is “ambi-
guity . . . is at the root of successful mathematical thinking.” The
ambiguity of productive mathematical symbolism is one im-
portant instance of the use of ambiguity in mathematics, but cer-
tainly not the only way that ambiguity appears in mathematics.
Nevertheless Gray and Tall touch upon something of very deep
significance for all of mathematics. Their title includes the key
ideas “duality, ambiguity, and flexibility.” I take ambiguity to be
the key idea and, in fact, in the way I have used the term, ambi-
guity must contain both duality and flexibility. Thus Gray and
Tall are quite correct in pointing to ambiguity as a (perhaps the)
key element of mathematical notation. How can it be claimed
that the object of mathematics is to eliminate ambiguity when
ambiguity is the key ingredient in much mathematical notation?

SFARD AND REIFICATION

Sfard in a series of significant articles has highlighted the role
of reification, that is, creating objects out of processes, plays in
mathematics. She claims that “from the developmental point of
view, operational conceptions precede structural; that is famil-
iarity with a process is a basis for reification.”* She goes on to
say that this order of things is not universal. “Mathematicians,”
she claims, “do not necessarily follow this process-object path.”
From our point of view the order is not the crucial thing. What
is crucial is that in mathematics we are dealing with notions that
are ambiguous and that these reifications result in entities that
have both a process and an object dimension. It is not as though
once we have achieved the notion of 3/4 as a fraction that we
can forget 3/4 as division. Rather, the accomplished attitude to-
ward 3/4 is ambiguous in nature.
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It is true that when one considers the questions of temporal
order, whether process precedes object, one is highlighting the
dynamical nature of ambiguity. Sfard makes the important point
that “reification, whether it precedes or follows the construction
of an operational schema, is often achieved only after strenuous
effort, if at all.” Whether one is talking about understanding or
creativity, one is talking about a dynamic process that requires
work. Thus when one uses the term “ambiguity” to refer to a
property of some mathematical situation one is not describing a
static, objectively fixed situation but rather a situation that has
the capacity for change. It is important to stress that ambiguity
is not merely a fixed characteristic of a mathematical object or
situation; it also refers to the capacity of that situation to give
birth to acts of learning or creativity.  have mentioned that situa-
tions of ambiguity come with two points of view that can be
called “before” and “after” that insight which is the definitive
element of the creative act. Thus ambiguous situations are, po-
tentially at least, dynamic—they contain the possibility of
changing in time. In a self-referential way, understanding ambi-
guity, like all acts of creativity, is itself an event not an object.
Thus the concept of ambiguity contains within itself this same
process/object ambiguity as do the various ambiguous concepts
that have already been mentioned.

Farther on Sfard points out how strange the idea of reification
is to our normal way of thinking about things. “In fact, the very
idea of reification contradicts our bodily experience: we are talk-
ing here about creation of something out of nothing. Or about
treating a process as its own product. There is nothing like that
in the world of tangible entities, where an object is an "added
value’ of an action, where processes and objects are separate, on-
tologically different entities which cannot be substituted for one
another.”** Our mathematical universe is populated by these
mysterious, ambiguous entities that cannot be called objects and
that appear “out of nothing,” like the number zero (which will
be discussed in detail in the next chapter). Mathematics unites
the dynamic (processes) and the static (objects); it unites the ob-
jective (processes and objects) and the subjective (reification).
Mathematics is indeed a complex and mysterious domain of
human activity.
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CONSTRUCTIVISM

There seems to be a general consensus in mathematics education
that meaning and understanding are constructed. The papers
that we have quoted above on “procepts” and “reification” are
attempts to elucidate the mechanisms by which the construction
of meaning occurs. This process has also been called “encapsula-
tion” by the mathematics educator Ed Dubinsky.” What is this
“elusive something that makes us feel that we have grasped the
essence of a concept, a relation, or a proof”?*® Whatever this
something is, it belongs not only to the teaching and learning of
mathematics but also to a description of mathematics itself. It is
constructed both by the individual in acts of understanding or
mathematical creation and also by the mathematical culture
within which mathematicians are embedded. But to say that
mathematics is “merely” constructed is to ignore the sense one
has that mathematical truth is universal and “unreasonably ef-
fective”—that mathematics opens a window on something that
is stable and permanent, in a word, Platonic. Ambiguity seems
at first glance to have more in common with constructivism than
it does with Platonism, yet this is perhaps just another ambigu-
ity. I shall return to this discussion in Chapter 8.

MATHEMATICS AS METAPHOR

In recent years there has been an ambitious attempt to look at
mathematics from the point of view of cognitive science. The
central notion in this work is the notion of metaphor.” A meta-
phor is a mapping from one cognitive domain to another. In this
view metaphors come in two varieties. “Grounding metaphors
yield basic, directly grounded ideas. Examples include addition
as in the addition of objects to a collection, for example. Linking
metaphors yield sophisticated ideas, sometimes called abstract
ideas.”® For example, the real line, a line on which every real
number has a specific location, is a metaphor. But metaphor is
to be understood in a more general way than it is usually
viewed, in literature, as a way of comparing two explicit do-
mains. Metaphor, in this view, is literally what “brings abstract

69



CHAPTER 1

concepts into being.”* To put this in another way, abstract con-
cepts are metaphors. This is crucial.

Metaphors are ambiguous. Like the example I gave earlier,
“all the world’s a stage,” they are examples of ambiguity. In fact,
they have the following characteristics: (a) duality—there is al-
ways a comparison involved; (b) incompatibility—a metaphor
is of the form A equals B (or A is B) when it is obvious that A
does not equal B; and (c) creative dynamism—a metaphor must
be grasped, it requires an insight. When that insight is attained
the metaphor, which previously had been flat and uninteresting
acquires a certain profundity.

When we become sensitive to the metaphoric dimension of
mathematics, the entire subject undergoes a metamorphosis be-
fore our eyes. The “real line” is a metaphor that is especially rich
in its implications. Numbers become points on the line. Thus we
“see” the system of real numbers as being one-dimensional; we
“see” that the relationship of “less” between numbers is equiva-
lent to the relation of “to the left of” on the line; we “see” that
every infinite decimal has its own unique place on the line. We
even say that the absence of a certain number, like the square
root of two, would leave a “hole” in the line that is itself a geo-
metric metaphor. Through the metaphor of the real line the reals
are conceived of as a new object. This new metaphoric object is
now invested with its own reality, for example, that of being a
continuum. Even though we could equally imagine a “rational
line,” the real line carries with it the essential property that a
line in the plane that goes from the positive to the negative side
of the x-axis must actually cross the real line at a definite point.
The geometry is now wedded to the analytic in a productive
manner.

When mathematics is seen as a metaphor, it brings to the fore
the central role of understanding on the part of both the learner
and the expert. Metaphors are not purely “logical” entities.
Speaking or reading a metaphor doesn’t make that metaphor
come alive for you. Grasping a metaphor requires a discontinu-
ous leap. In a later chapter there will be a more complete discus-
sion about the nature of such creative discontinuities. At this
point in the discussion it is enough to insist that these creative
discontinuous insights be considered as part of the subject of
mathematics. A metaphoric description of mathematics will in-
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evitably include a discussion of “doing” mathematics. Sfard* in-
cludes the following fascinating quote from a mathematician:
“To understand a new concept I must create an appropriate met-
aphor. A personification. Or a spatial metaphor. A metaphor of
structure. Only then can I answer questions, solve problems. I
may even be able to perform some manipulations on the con-
cept. Only when I have the metaphor. Without the metaphor I
just can’t do it.”

REeLATED IDEAS IN OTHER FIELDS

The phenomenon of ambiguity is, of course, not restricted to
mathematics. It is not my intention to discuss in any detail the
role of ambiguity in other fields. However, it is worthwhile to
spend a little time indicating the manner in which various au-
thors have applied the notion of ambiguity in fields unrelated
to mathematics. It may be that what is going on here is a deeper
characteristic of human thought, so that what is being discussed
is how the general phenomenon of ambiguity plays itself out
in mathematics. Even if it turns out that ambiguity is some-
thing that is present in many different situations, nevertheless
ambiguity will emerge in a unique way in a mathematical situa-
tion and thus what is being discussed above is “ambiguity in
mathematics.”

ARTHUR KOESTLER AND CREATIVITY

The definition of ambiguity I gave earlier in the chapter is really
Koestler’s definition of creativity. What is crucial to the creative
act for Koestler is the existence of two self-consistent but habitu-
ally incompatible frames of reference. He says, “I have coined
the term ’bisociation” in order to make a distinction between the
routine skills of thinking on a single "plane” as it were and the
creative act, which, as I shall try to show, always operates on
more than one plane.”* He goes on to identify instances of bi-
sociation in diverse situations. He sees this phenomenon, for ex-
ample, as the essence of humor.
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Koestler makes a number of important points that are relevant
here. The first is, of course, that ambiguity is linked to creativity.
This is crucial to the argument that is being made here, which
involves going beyond the formal structure of mathematics and
considering how the subject comes into being, how it changes,
and how it is learned and understood. All of these are connected
to creative acts.

The next point that is derived from Koestler is that there is an
“incompatibility” at the base of any creative situation. There is
a conflict, something that does not work, that is contradictory or
paradoxical. Creativity arises from working with this incompati-
bility not by denying its existence. This is an especially im-
portant point in trying to understand mathematics since the for-
mal aspect of mathematics is set up for the express purpose of
establishing consistency, that is, of eliminating incompatibility.

A1LBERT LOow AND ZEN BUDDHISM

I was introduced to the idea of ambiguity through the writings
of Albert Low. Low is a writer and a teacher of Zen based in
Montreal. He describes ambiguity (in the sense that I have used
it above) as fundamental to the view of the world that emerges
from Zen Buddhism. The Zen koan, those obscure and seem-
ingly paradoxical stories that lie at the heart of Zen training, are
seemingly founded on ambiguity. Low goes as far as to propose
that the normal Aristotelian logic of science and mathematics is
not sufficient to describe the world as envisioned both by Zen
and by quantum mechanics, and that this logic should be re-
placed by what he calls a “logic of ambiguity.”

Low’s central metaphor for the notion of ambiguity is the fa-
mous Gestalt picture of the young woman/old lady (figure 1.7).
This picture has two perfectly consistent interpretations, the
young woman and the old lady. These are the two self-consistent
frames of reference in the definition of Koestler. A certain num-
ber of observations should be made about this ambiguous pic-
ture. In the first place, the entire picture is really a field of black
and white dots; it is this neutral field that is then interpreted as
young woman/old lady. Second, each interpretation is an ade-
quate description of the entire field of black and white dots. It
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Figure 1.7. Old woman or young lady?

is not as though some of the black and white dots are interpreted
as the young woman and some as the old lady. The entire field
is subject to the given interpretation. Finally, the two interpreta-
tions are incompatible with one another. When you see the pic-
ture as the young woman you do not see it as the old lady. Thus
both interpretations are “true” and explain everything but they
are incompatible with one another. Merely saying that the pic-
ture is both the old and the young woman misses the incompati-
bility of the two interpretations but of course saying that it is
neither is also missing something.
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To Low I also owe a number of fundamental ideas. He says,
“Conlflict is inherent in any situation, and cannot be resolved in
the way a resolution is normally sought; by the elimination of
one side over the other, the triumph of one side, or the merging
of two into one harmonious ... whole.”* Thus conflict is nor-
mal; it is not exceptional. Now what has conflict to do with
mathematics? Well the conflicts of mathematics include the con-
tradictions, paradoxes, and unresolved ambiguities that have
been described above and will be described in the chapters to
follow. These also include the multiple ways that we have of
looking at related mathematical situations. There may be no
“right way” of seeing a given mathematical situation. At any
rate the so-called incompatibilities have value! Far from being
ignored or suppressed, they need to be seen as opportunities to
deepen our understanding. Thus the first lesson here is that we
must learn to value the conflicts that arise in mathematics. The
other conclusion to be drawn from “conflict is inherent” is that
the final victory of reason will never come, nor is it desirable.
There is no end to mathematics nor is there even anything we
could call a definitive mathematics, that is, a finished and com-
plete formalized mathematics. A perfect mathematical theory
that is consistent and complete, with all the bugs worked out
and all the problems solved, would be a dead mathematics, an
uninteresting object of study. What I am interested in describing
is a subject that is vital and alive.

LEONARD BERNSTEIN AND MUSsIC

In 1973, the late conductor and composer Leonard Bernstein was
invited to give the Charles Eliot Norton lectures at Harvard Uni-
versity.® These lectures, which are now available in written,
audio, and video formats, were a brilliant and fascinating dis-
cussion of the inner structure of music. In particular, Bernstein
suggests that one of the basic mechanisms in music is precisely
ambiguity in the same sense that the term has been used in this
chapter. A discussion of ambiguity permeates all of his lec-
tures—the fourth of which is even entitled “The Delights and
Dangers of Ambiguity.”
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For Bernstein ambiguity is defined as “capable of being un-
derstood in two possible senses.”* For example, he discusses the
ambiguity of diatonicism versus chromaticism. Diatonicism re-
fers to the normal seven-note musical scale, the white notes on
a piano, and their natural relationships such as “thirds” and
“fifths” that are based on mathematically determined overtones
or harmonics of the base tone that determines the key. In other
words, the diatonic relationships are the foundations of a piece
of music. Chromaticism refers to the process of going beyond
the basic seven notes of the diatonic scale to the full twelve notes
of the chromatic scale (white and black keys on the piano) and
even going farther to notes that are not available on the piano.
These extra notes were considered to be dissonant to some be-
cause they were not “supposed” to be in a particular key; never-
theless they were often added to a piece of music to give the
music more emotional range.

Bernstein says that the growth of chromaticism in musical his-
tory was “based on the accretion of more and more remote over-
tones of the harmonic series. ... With that growing chromati-
cism we found a corresponding growth of ambiguity, and a
resulting need to contain that chromaticism, to control it through
the basic powers of diatonicism, the tonic-dominant structure of
tonal music.” He maintains that the “containment of chromati-
cism-within-diatonicism reached a perfect equilibrium in the
music of Bach.” “But,” he goes on, “we also realized that this
perfectly controlled containment is in itself an ambiguity, in that
it presents two simultaneous ways in which to hear music, via
the contained chromaticism and via the containing diatonicism.”
In mathematics, the element that supplies a control on the seem-
ingly inexhaustible capacity of the human mind to perceive pat-
terns is, of course, rigorous, logical argument. Also, if ambiguity
“presents two simultaneous ways in which to hear music,” in
mathematics “hearing” should be replaced by “understanding”
or “conceptualizing.”

Bernstein makes many observations about music that seem-
ingly beg to be translated into corresponding observations about
mathematics. For example he claims that the genius of Johann
Sebastian Bach “was to balance so delicately, and so justly, the
two forces of chromaticism and diatonicism, forces that were
equally powerful and presumably contradictory in nature” (italics
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added). Bernstein claims that the ensuing equilibrium remained
stable for almost a century, “a century which become a Golden
Age.” He goes on to say,

It's a curious thing, and a crucial one, that even through this
perfect combination of opposites, chromaticism and diaton-
icism, there is distilled the essence of ambiguity. Now this
word “ambiguity” may seem the most unlikely word to use
in speaking of a Golden age composer like Mozart, a master
of clarity and precision. But ambiguity has always inhabited
musical art (indeed all of the arts), because it is one of art’s
most potent aesthetic functions. The more ambiguous, the more
expressive. (italics added)”

Of course Bernstein cautions that it is possible to reach a sate of
“such increased ambiguity that problems of musical clarity are
bound to arise.” He goes on to discuss many other musical am-
biguities of which the chromaticism/diatonicism cited above is
merely the first.

Now parallels between music and mathematics have been
made since the time of the Pythagoreans. Here we find a parallel
of a different kind, a parallel in the inner workings of music and
mathematics. The key point that I take from Bernstein is that
ambiguity has a positive function. He says, “these ambiguities
are beautiful. They are germane to all artistic creation. They en-
rich our aesthetic response, whether in music, poetry, painting
or whatever by providing more than one way of perceiving the
aesthetic surface.”® Mathematics can and should be added to
this list. Ambiguity in mathematics contributes to the profundity
and scope of the idea. In music insisting only on clarity at the
expense of ambiguity would remove precisely that quality that
makes a piece of music great. So in mathematics insisting on log-
ical clarity at the expense of ambiguity leaves us with superfici-
ality and triviality.

CoNcLUSION
In this chapter, I have attempted to establish the ubiquity in
mathematics of the phenomenon of ambiguity. The ambiguity
that I am talking about is not mere vagueness; it is, as Bernstein
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emphasizes, a “controlled ambiguity.” The control in mathemat-
ics is provided by the logical structure, and the power and pro-
fundity of mathematics is a consequence of having deep ambi-
guity under the strictest logical control. We have discovered that
not only are fundamental mathematical concepts ambiguous but
so are key elements in a number of deep mathematical results.
Thus the occurrence of ambiguity is a crucial mechanism in
mathematics. Moreover, bringing ambiguity to the fore will
force a complete reevaluation of the nature of mathematics.

Many familiar mathematical concepts have an ambiguous,
multidimensional nature. For example the Thurston paper lists
eight different ways of “thinking about or conceiving of the de-
rivative.” He insists that these are not different logical defini-
tions. They are, however, different insights into the concept of
derivative. Importantly, Thurston warns us that “unless great ef-
forts are made to maintain the tone and flavor of the original
human insights, the differences start to evaporate as soon as the
mental concepts are translated into precise, formal and explicit
definitions.” I have stressed repeatedly the dangers of identi-
fying mathematics with its formal dimension. The notion of “de-
rivative” is vast and complex and encompasses many different
insights, each of which says something new about what a deriv-
ative is. These different insights may reduce to the same formal
definition in a specific case, like the definition of the derivative
of a real-valued function of one variable. Nevertheless the differ-
ent points of view retain their value. For example, when
applying the concept in a more abstract or general setting one
often finds that one way of looking at the concept can be gener-
alized and another cannot. That is, while the precision of formal,
logically precise mathematics is valuable; it is at the center of a
more loosely defined set of associated ideas that are also mathe-
matically valuable.

This ambiguity is neither accidental nor deliberate but an es-
sential characteristic of the conceptual development of the sub-
ject as well as of the person attempting to master the subject.
The ambiguity is not resolved by designating one meaning or
one point of view as correct and then suppressing the others.
The ambiguity is “resolved” by the creation of a larger meaning
that contains the original meanings and reduces to them in spe-
cial cases. This process requires a creative act of understanding
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or insight. Thus ambiguity can be the doorway to understand-
ing, the doorway to creativity.

It is interesting to point out that the whole of the above discus-
sion is self-referential: not only is ambiguity part of mathematics
but mathematics itself is ambiguous. Its nature is also multidi-
mensional. There are the logical surface structure and the deeper
dimensions of understanding, insight and creativity. It is not
possible to imagine mathematics without its computational and
formal aspects, but to focus exclusively on them destroys the
subject. Ambiguity, even paradox, pushes us out of our airtight
logical mental compartments and opens the door to new ideas,
new insights, deeper understanding.

The different aspects of mathematics that have been described
are in continual interaction, continual evolution. An idea like de-
rivative is formalized. Thus in a sense the multiple possibilities
contained in the informal idea are reduced to one. Then the for-
mal idea can be understood in various ways, some of these re-
trieving some of the viewpoints that were inherent in the origi-
nal pre-formal situation, others arising out of interpretations of
the formal definition of derivative. These new ideas can them-
selves be formalized and so the whole chain is set in motion
again.

Logic moves in one direction, the direction of clarity, coher-
ence, and structure. Ambiguity moves in the other direction, that
of fluidity, openness, and release. Mathematics moves back and
forth between these two poles. Mathematics is not a fixed, static
entity that can be structured definitively. It is dynamic, alive: its
dynamism a function of the relationship between the two poles
that have been described above. It is the interactions between
these different aspects that give mathematics its power.

Mathematics might be viewed as a cultural project, in short,
as a culture in itself. A powerful raison d’étre of that culture is
precisely to stand as a bulwark against the obscure, the contin-
gent, the ambiguous, and especially against paradox and contra-
diction. The story that mathematics tells about itself is that it has
no room for the ambiguous, for example. One can see that from
the way that one would use the expression, “it's ambiguous.”
This would be tantamount to saying that it is wrong or stupid.
Yet, as we have seen, ambiguity plays a central yet unrecognized
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role in mathematics—a role that has in a sense been repressed
or, at least, remains unacknowledged. By bringing out this role
it will be possible to study its implications for our view of math-
ematics, of science, of modern culture and its view of the nature
of reality.
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% CHAPTER 2 %
The Contradictory in Mathematics

... we would know more about life’s complexities
if we applied ourselves to the close study of its
contradictions instead of wasting so much time
on similarities and connections, which should,

anyway, be self-explanatory.
—]José Saramago, The Cave

... how completely inadequate it is to limit the
history of mathematics to the history of what has
been formalized and made rigorous. The un-
rigorous and the contradictory play important
parts in this history.

—Davis and Hersh, The Mathematical Experience

THIS CHAPTER is about the role of the contradictory in mathe-
matics. One of the themes of this book is that mathematics does
not inhabit a world that is disjoint from the world of human ex-
perience but is in continual interaction with that larger world.
The contradictory is an irreducible element of human life as we
all experience it. It is not only that we often disagree with others;
it is also that we human beings seem capable of simultaneously
sustaining two contradictory points of view. The obscure Bud-
dhist dictum “Life is suffering” is best understood as the claim
that there exists an inner contradiction that resides at the deepest
level of human life. This inner contradiction has been expressed
in many ways, but essentially it involves our dual nature as a
mind that sees itself as powerful and central versus a body that
is subject to death and decay and is powerless in the face of the
vicissitudes of life. When I stop to think about it, I must admit
that, while I have infinite value to myself, I may have marginal
interest to others. Thus while I see myself as having infinite
worth, the person that I see reflected in the eyes of others often
appears to be without value. That is, I am simultaneously central
(to myself) and peripheral (to others). In this way and others
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we are all walking contradictions. We cannot escape from the
contradictory and the conflicts that arise in its wake. The contra-
dictory is central to the conscious life, and therefore dealing with
the contradictory is, consciously or unconsciously, present in all
human activity.

How does mathematics deal with this irreducible factor in
human experience? The above quotes highlight the value and
importance of the contradictory. No description of mathematics
would be complete without a discussion of its subtle relation-
ship to the contradictory. Not only does mathematics deal with
the contradictory in a unique way, but also the need to escape
from the conflicts that the contradictory brings in its wake may
be a powerful reason why we find mathematics so attractive.
Discussing the role of the contradictory in mathematics will tell
us something about the nature of mathematics, but it will also
reveal something about the nature of all systematic thought.

In the previous chapter I talked at length about ambiguity and
its role in mathematics. You will recall that the definition that
was used involved “a single situation or idea that is perceived
in two self-consistent but mutually incompatible frames of refer-
ence.” What if the “two self-consistent frames of reference” were
not mediated by the “single situation or idea”? We would then
be in a situation of contradiction. Viewed in this way contradic-
tion is related to ambiguity. In fact in a way a contradiction high-
lights one aspect of ambiguity. A true ambiguity always has the
quality of incompatibility. It is this incompatibility that charac-
terizes contradiction. Thus the discussion of the contradictory
in this chapter constitutes a deeper exploration of the theme of
ambiguity.

The difference between ambiguity and contradiction is, in a
sense, a matter of emphasis. It is a question of whether the in-
compatibility is absolute or not. In the discussion of ambiguity,
the incompatibility had (potentially, at least) a resolution in the
“single idea or situation.” However, when we speak of contra-
diction we usually imply that there is an absolute quality to the
incompatibility—a gap that cannot be bridged. Now absolute in-
compatibility is situated in the domain of logic, and from this
point of view a contradiction is a dead end. Mathematical prac-
tice, on the other hand, contains a varied and complex response
to contradiction. The emergence of a contradiction may indeed
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be a negative indication of a mistake or a cul-de-sac. However,
it may also have a positive aspect; it may represent a challenge,
for example. Far from indicating that the game is over, it may
indicate that the game has just begun—that there is something
here to be understood. This chapter will go into the many ways
in which contradiction enters mathematical practice. To begin
with, let me stress again the interrelatedness of contradiction
and what I earlier called ambiguity. If a contradiction is a form
of ambiguity, then it is equally true that contradiction is present
in every situation of ambiguity.

At first glance contradiction is something to be avoided like
the plague, especially in mathematics. Formal mathematics, in-
cluding mathematical proofs, mathematical theories, and logical
reasoning, are all within the domain of rationality. Logic and ra-
tionality imply consistency, and consistency means the avoid-
ance of contradiction. Thus we would expect mathematics to
steer clear of contradiction. A mathematical description of the
world means a description that is free of contradiction, does it
not? In the normal scientific view it is assumed that the natural
world, reality itself, is free of contradiction and so is amenable
to a mathematical description that is also contradiction-free. In
this view such contradictions as may occur in the description of
the world arise because of faulty thinking and not because of the
nature of the natural world. Thus in the normal view of things
contradiction is a negative characteristic of things, whether these
things are in the mind or in external reality.

Any deep investigation into the nature of mathematics will
eventually have to deal with the question of consistency. One of
the fundamental pillars on which mathematics—not to say all of
science—is built is the logical notion of noncontradiction. In
such a system of thought it should not be possible to assert that
a proposition P is true while simultaneously asserting the truth
of its negation, not P. Thus mathematics from the time of Euclid
has involved creating domains of noncontradiction.

One of the most basic questions one can ask is whether or not
consistency is a fundamental aspect of reality. For many, includ-
ing almost all scientists, there is a deep belief in the principle of
noncontradiction. We choose to believe in consistency because
the alternative appears to be incomprehensibility, a world of
chaos. Thus the belief in consistency is a foundation block with-
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out which any meaningful discourse or thinking is held to be
impossible.

Nevertheless, it is possible to take another point of view, one
in which noncontradiction is not absolute. In this view consis-
tency would be a local not a global phenomenon. Thus a particu-
lar theory would describe a certain range of natural phenomena.
It would be a good fit at the centre of its range but might lose
coherence as one went toward the periphery of its natural range.
At the overlapping periphery of two local theories there might
well be contradictions between the two theories. This point of
view would fit in well with the way many people regard science.
Bohm, for example, says, “all theories are insights which are nei-
ther true nor false but, rather, clear in certain domains and un-
clear when extended beyond these domains.”" This is not the
usual way of looking at mathematics, but it is consistent with
the view that sees mathematics as the “science of pattern.” How
one reacts to the idea of contradictions in mathematics depends
very much on what one takes mathematics to be. If one is a strict
formalist then, of course, contradictions do not exist in mathe-
matics since the existence of a contradiction, by definition makes
something into non-mathematics.

However it is the thesis of this book that it is time to reevalu-
ate the nature of mathematical activity in general and, in partic-
ular, the role that is assigned to logic and consistency within
mathematical activity. It is not that I am suggesting that logic be
removed from mathematics—that would be unimaginable and
ridiculous. However, I am suggesting that, before closing the
book on the question of logical consistency, it might be worth-
while to take a closer look at what actually happens in mathe-
matics, at mathematical practice itself.

Mathematics is mathematical practice. Mathematics is not
identical to what people, even mathematicians, will tell you that
mathematics is. Many mathematicians will claim to be formal-
ists when pressed by non-mathematicians to define what it is
they do. “Oh,” they will say, “I just start with assumptions and
prove theorems. I don’t care what they mean or what they are
used for.” However what is going on when people actually do
mathematics is vastly different from what mathematicians or
others may say is going on. There is a poverty of description that
speaks to a need for a philosophy of mathematics that is com-
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mensurate with the subject.” Perhaps this lack of an adequate
description of mathematics and “mathematizing” is due to the
reduction of the philosophy of mathematics to a mere discussion
of its logical foundations. It is conceivable that there could be a
view of mathematics that would hold that there are no (absolute)
foundations of mathematics. There is mathematical practice and
there are mathematical theories, but there are no foundations of
the entire subject in the usual sense of the term. The unifying
characteristics of mathematics will have to be found elsewhere.

Such a revision in the way mathematics is described will entail
no change at all in the content of mathematics. What will change
will be the manner in which we think about mathematics. In par-
ticular, it will be necessary to have another look at ambiguity
and contradiction.

It would appear that the attitude of mathematics to the notion
of contradiction is simple—avoid it at all costs! Yet this is not
the case at all. On the contrary, this chapter will discuss the
many uses of contradiction in mathematical theory and practice.
Like ambiguity, the use of contradiction is so systematic in math-
ematics that it will force us to reexamine the nature the subject.

Not only do we find contradiction on the boundaries of math-
ematical theory, where we might expect it, and in informal, pre-
conceptualized mathematics, but we also find contradiction in
use as a positive generating principle within formal mathemat-
ics. Thus mathematics goes beyond logic. And yet logic is the
very language of mathematics. How can this be? It seems to be
a contradiction in its own right. Our study of contradiction will
take us deeper into this seeming paradox.

FEucLipD AND THE DREAM OF REASON

So much of the spirit of modern mathematics has its origins in
Euclid’s Elements. So Euclid is a good place to start thinking
about the use of contradiction in mathematics. Of course Euclid
was the person who collected all the results of Greek geometry
into one unified and consistent deductive development. Starting
from axioms and postulates that are considered to be self-
evident, and proceeding through logical reasoning, Euclid’s Ele-
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Figure 2.1. Intersecting arcs?

ments were for millennia a model of what systematic thought
should be like.

Studying the Elements had a profound effect on impression-
able young minds. Bertrand Russell, in his autobiography,
said, “At the age of eleven, I began Euclid with my brother as
tutor. This was one of the great events of my life, as dazzling as
first love.”

Generations of mathematicians, scientists and philosophers
could attest to the intellectual awakening occasioned by their en-
counter with the Elements. What was it that Russell and count-
less others were awakened to by the geometry of Euclid?

Well they were certainly not awakened to logical perfection,
for the Elements are not without error. In many places the reason-
ing is incomplete. For a treatise on geometry, it is ironic that so
many of the geometric constructions are problematic. It is
claimed that the logical arguments are independent of these geo-
metric pictures, yet this is clearly not the case (as has been
pointed out by many mathematicians, most notably David Hil-
bert). There are many places in Euclid where inferences are
drawn from an illustration that are not justified by the explicit
assumptions. For example, in one of the earliest arguments two
arcs of circles are drawn and it is assumed that they intersect in
a point (as opposed to just passing through each other without
touching) (figure 2.1). There is nothing in the axioms that en-
sures this intersection. This is just one of many such lacunae.

So if it is not in the perfection of the reasoning, where did Rus-
sell’s intellectual awakening come from? Perhaps it is the combi-
nation of geometrical intuition and logical rigor that one finds
in the Elements which is irresistible to those with a sensitivity for
such things. Euclid awakened in generations of people what we
might call the “dream of reason.” In his geometry subtle aspects
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of reality are demonstrated definitively. The geometric world is
organized before our eyes and our minds. Why should the inte-
rior angles of every triangle add up to two right angles? A priori,
there is no reason in the world except that miraculously they do,
and Euclid shows us why with a simple argument that is utterly
convincing. Now we know that it is so! What an extraordinary
feeling it is—to know and know that you know.

This feeling is as close as the rationalist will ever come to reli-
gion. In fact it is similar to what Einstein called “cosmic religious
feeling.”” Einstein felt that “such feeling was the strongest and
noblest motive for scientific research.” Throughout his writing
you sense the fundamental mystery of his life—that the rational
mind (his rational mind) was able to see so deeply into the work-
ings of the natural world. This correspondence between the
mind and external reality, that is, the power of the mind, is ini-
tially sensed by many people in their contact with Euclidean
geometry.

It was as though Euclid and his fellow Greek mathematicians
had discovered a new way of using the human mind. With this
deeply creative insight, a new idea had emerged of what it
meant to be human. A window was opened that appeared to
look out at Truth and Certainty. Here was a way to emancipate
human beings from the chaos and contingency of everyday life
by demonstrating the existence of another, deeper realm where
everything appeared to be ordered, clear, and definite. Thus Eu-
clid provided a method that went beyond the particular mathe-
matical results he proved. Those results made up a body of
knowledge that was impressive enough in its scope to give birth
to the “dream of reason.” The dream was that all of our knowl-
edge about the natural world and thus the natural world itself
might be organized into a vast deductive system of thought
based on a small number of intuitively obvious axioms. It is a
dream that one gets echoes of to this day in, for example, the so-
called “theories of everything” that one hears about in physics.

Euclid’s Elements comprise a vast body of results including all
of the geometric results that were known at the time. The axiom-
atic development was important for a number of reasons. In the
tirst place, it represented an amazing simplification of thought
because in the place of a very large number of independent re-
sults, each with their own justifications, we had a unified system
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all of whose results depended on a small number of initial as-
sumptions. Moreover, the entire deductive system had the fol-
lowing properties:

1. All conclusions were true; it was not possible to de-
duce false statements (assuming that the axioms were true
and the reasoning was correct).

2. The system was consistent; it was not possible for a
statement and its negation to be simultaneously true.

Although this was not guaranteed, it appeared possible that the
system was complete, that is, every true geometrical proposition
could be developed within the system, based on the axioms and
propositions that had already been proved to be true, using as
a tool simple logical reasoning. Thus the “dream of reason”
amounted to the hope that there was a deductive system that
satisfied all of these properties, in particular, it was both consis-
tent and complete. Though, as we shall see, this dream has been
shown to be unrealistic, nevertheless it continues to provide a
great deal of the motivation for even contemporary science.

This “dream of reason” is the first example of what will be
one of the themes of this book—the attempts of human beings
to construct grand, all-encompassing theories. If the nature of
reality is the ultimate mystery, then the history of humankind is
the attempt to penetrate and clarify this mystery, to grasp and
understand it. It is the attempt, one might say, of mind to control
matter. Dostoevsky railed against this attempt in his parable of
the crystal palace.* He felt that the success of the scientific en-
deavor would remove mystery from the world and he held mys-
tery to be the highest of truths. Dostoevsky and the myriad
thinkers who have shared his concerns may not have appreci-
ated the audacity of the scientific enterprise sufficiently. Perhaps
it was naive to believe that deductive thought could ever defini-
tively capture substantial aspects of reality. Nevertheless, one
must approach the attempt to do so with respect and maybe
even a little awe. This is the quintessentially human act—the
attempt to understand. Grasping after what may be incompre-
hensible. And in that valiant attempt to do the impossible we
shall uncover a truth that transcends any particular conceptual
development.
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THE EUCLIDEAN SYSTEM

This section will briefly review Euclid’s starting point—the
foundation of his system of thought. These included definitions,
common notions, and postulates.

The terms that are defined begin with point, line, and straight
line. A point, for example, is “that which has no part.” Such a
definition, while it may have conveyed some intuitive feeling
to Euclid’s Greek audience, conveys little to us today. Modern
mathematics understands that any deductive system must in-
clude a certain (minimal) number of undefined terms. In Euclid-
ean geometry these would include point and straight line.

Euclid then goes on to define right angles, perpendiculars,
planes, circles, triangles, equilateral and isosceles triangles, quadrilat-
erals, and so on. A triangle, for example, would be a plane figure
that is bounded by three straight lines. He concludes with the
definition of parallel lines that is discussed on page 92.

After the definitions, Euclid enunciated a series of common no-
tions. These were meant to be self-evident truths that were of a
very general nature. They included

1. Two things that are equal to a third thing are equal to
each other.

2. If equals are added to equals, the sums are equal.

3. If equals are subtracted from equals the differences are
equal.

4. Things which coincide with one another are equal to
one another.

5. The whole is greater than the part.

All of these except possibly for the fourth are pretty self-evident
to most people. What was meant is that if a geometric figure
could be moved rigidly and placed on top of a second figure in
such a way that the two coincided perfectly, two triangles, for
example, then the sides, angles, and area of the first were equal
to the sides, angles, and area of the second. The fifth common
notion seems perfectly obvious but was put into question in
Georg Cantor’s theory of “infinite numbers,” as we shall see in
Chapter 4.

Finally the Elements contained a series of purely geometric
postulates which we shall state in modern terms:
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1. Given any two points, it is possible to draw a line
segment with these two points as end points.

2. Any line segment can be extended indefinitely in
either direction.

3. Given any point and any length, one can draw a circle
with that point as centre and the length as radius.

4. All right angles are equal.

5. The parallel postulate (see page 94).

The first three postulates are self-explanatory, although the sec-
ond is quite subtle, as we shall see later on. The fourth essen-
tially established a standard measuring stick for angles. The fifth
was, of course, extremely controversial, and we shall discuss it
separately.

With these axioms in place, Euclid was in a position to deduce
conclusions. Some of the early theorems involved the construc-
tion of an equilateral triangle (all sides of equal length) on a
given base (Proposition 1.1) and the establishment of certain
congruence schemes such as:

Proposition: Given two triangles ABC and DEF for which
AB = DE, AC = DF, and £ CAB = Z FDE, then the triangles
are congruent (coincide in the sense of common notion 4). See
figure 2.2.

B E

A D
C F

Figure 2.2. Side-angle-side

These initial propositions are proved through a process of
straightforward logical reasoning—one starts with the hypothe-
ses and reasons one’s way to the conclusions. As a theorem is
proved, it is added to the list of known results and may now be
used in the proof of subsequent results. Thus a body of proved
results is built up systematically. However, at a certain stage this
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procedure is not sufficient to accomplish what Euclid desires to
accomplish. He must add a new technique of proof, namely,
proof by contradiction.

ProoF By CONTRADICTION

Is logic merely an organizing principle, or is it the means of ar-
riving at the truth? In the course of this book we shall find our-
selves repeatedly coming back to the role of the logic that has
been traditionally used in science and philosophy. To begin with,
one must understand that mathematics is concerned with the
truth, not of individual propositions P, but of implications be-
tween mathematical propositions, implications of the form “if P
then Q” or “P implies Q" (also written as P = Q). Normally one
assumes that P is the case and works one’s way to Q. However,
the reasoning does not always work in the forward direction.
This is because in Aristotelian logic the implication P = Q is
equivalent (that is, has the same truth value as) =Q = —P, where
—P stands for the negation of the proposition P. For example,
suppose we had to establish the truth of the following proposi-
tion “If 4% is an odd integer, then so is a.” Then we could just as
well establish the related proposition “If a is not odd, then 4
is not odd,” that is, “If a is even, then 4? is even.” This latter
formulation (which is much easier to prove) is called the contra-
positive. Every mathematical proposition has a contrapositive
formulation.

In just the same way, the proposition “all prime numbers are
odd” is as true or as false as the contrapositive proposition “all
even integers are composite.” (Prime numbers were defined in
Chapter 1. Composite numbers are the nonprimes, for example,
4,6,8,9,...,and therefore can be written as the product of two
factors neither of which is 1.)

An argument that is made in the contrapositive mode is an
example of a “proof by contradiction.” What is a proof by con-
tradiction? We wish to establish the truth of the proposition
P = Q. So we assume that P is true and try to reason our way
to the truth of Q. Instead of working directly toward Q we ask
the natural question, “What happens if Q is false?” That is, we
assume P and —Q. If the argument is to be successful, we must
arrive at a contradiction. What is this contradiction? It may ei-
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ther be local or global, that is, it may either contradict an as-
sumption within the body of the argument or contradict a previ-
ous result that is known to be true. We might look at a
contrapositive argument in the following way: assume P and
—Q and conclude —P. Thus we have P and —P, a contradiction.
We conclude that the assumption —Q is not so, that is, that Q is
true, and so P = Q. Thus the contrapositive can be considered
as a kind of localized proof by contradiction. Examples of local
and global contradictions are given below.

Is a proof by contradiction a minor variation on the conven-
tional direct proof that goes directly from assumption to conclu-
sion, or is it an entirely new form of reasoning? For every result
that is proved by contradiction, does there exist a direct proof
that will also do the trick? As we shall see repeatedly in what
follows, there are many significant results in mathematics, like
the result that the square root of two is not rational, that are only
accessible to reasoning by contradiction. In fact, allowing “proof
by contradiction” into our logical arsenal is extremely significant
and powerful and determines, to a certain extent, the kind of
mathematics we end up with.

A proof by contradiction is a subtle affair. This is seen by con-
sidering the difficulties students encounter when attempting to
reason in this way. When you understand a proof by contradic-
tion, it may seem like merely another form of argumentation.
But from the student’s point of view it is not at all obvious that
this is a legitimate way to argue. Think about it for a moment.
We are trying to argue that P = Q. We assume P, and ordinarily
we would try to derive Q. But here we assume —Q. This seems
strange since the whole point of the exercise seems to be to prove
Q. How can you prove something is true by assuming it is false?
The whole affair seems a trifle bizarre. It is my experience that
this kind of indirect reasoning is difficult to understand and, I
believe, legitimately so.

Why is this kind of reasoning so difficult to learn? Why was
it (as we shall see) so controversial in the development of mathe-
matics? Remember that in Chapter 1, during the discussion of
the use of “variables” in simple algebraic equations, I said that
the variable simultaneously represented all possible numbers
and a single specific number (the solution of the equation). I
maintained that working with variables, that is, algebra, necessi-
tates a way of thinking that I called “ambiguous.” Here we are
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demanding another kind of ambiguous thinking. Is Q true or
not? In order to show that it is true we assume that it is false. So
for a while it is both true and false—at least we must hold both
possibilities simultaneously in our mind. Furthermore, in such
a proof, the contradiction is deliberately evoked—in fact the cre-
ative idea here is to find a way to produce the contradiction—
only to be denied. It is said that contradictions are disallowed
within mathematics, but, in fact, it is only the results of mathe-
matics that must be consistent. Contradiction is, as we have
seen, allowed within the process of mathematical thought. De-
ductive mathematical systems are founded on the principle of
noncontradiction—a seemingly negative prohibition. Ironically,
this “negative” principle is used to prove many positive results
such as that “most” real numbers are irrational. Thus the use of
“proof by contradiction” is fraught with ambiguity in a manner
that a direct proof is not. Situations that contain ambiguity are
always difficult to master, yet the rewards, as in this case, are
often great. The full power and implications of this type of argu-
mentation are first revealed in the work of Euclid.

PARALLEL LINES

We now return to Euclid’s development of the notion of parallel-
ism. For various reasons the notion of parallel lines was the most
controversial aspect of Euclidean geometry. Here is Euclid’s
definition of parallel lines:

Definition:> Parallel straight lines are straight lines which,
being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.

(forever) (forever)

Figure 2.3. Parallel lines

This definition uses the second geometric postulate, which
allows you to extend lines indefinitely. It is this indefinite exten-
sion that makes the definition of parallel lines difficult to apply.
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Figure 2.4. “Equal alternate angles” implies lines parallel

It is easy to check two finite line segments to see that they never
meet, but how could one ever prove that two complete lines
never meet. Thus the first thing that Euclid does is to provide a
more practical criterion that will ensure parallelism.

Proposition: If a straight line falling on two straight lines make
the alternate angles equal to one another, then the straight lines
will be parallel.

Notice that, since this proposition deals with infinite objects,
namely, the infinitely extendible lines, it cannot be proved di-
rectly and therefore Euclid must argue by contradiction.

Proof: We proceed in accordance with Figure 2.4, where
angle (o) = angle (). We have to establish that the lines AB
and CD are parallel, that is, that they never meet. Assume
that the lines are not parallel and do meet at the point G.
Then we have a triangle EFG in which the exterior angle 3
is equal to the interior and opposite angle a. This contra-
dicts a previous result (that the exterior angle is always
strictly greater than either of the interior and opposite
angles) and allows Euclid to conclude that AB and CD are
indeed parallel.

Note that what is contradicted in this argument is a previously
obtained result. Thus this is an example of what we called a
global contradiction. The contradiction works, not inside this
particular proof looked at in isolation, but only when the argu-
ment is considered to be a part of a larger deductive system. In
fact, the reasoning that is used in the proof of this theorem (and
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in any proof by contradiction) goes something like this: “Since
this assumption leads to a contradiction and contradictions are
not allowed within a consistent system, therefore the assump-
tion is false. Since the assumption was the negation of what we
assert to be the case, our assertion is true.” All proofs by contra-
diction depend on a logical axiom of consistency: “No contradic-
tions allowed here!” Euclidean geometry and all deductive sys-
tems are based on this principle.

It is only when proving the converse of the above result that
Euclid is forced to use the famous Parallel Postulate:

Postulate 5 (Parallel Postulate)®: If a straight line falling on
two straight lines make the interior angles on the same side
less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on the side on which the angles are
less than two right angles. (In other words, if a line crosses
AB and CD, making angles o and B, so that o + P is less
than two right angles, then AB and CD will cross on the
same side as o and B.)

A

B B
c \ D

o + < 2 right angles

Figure 2.5. Parallel postulate

It is interesting that the parallel postulate is framed in the nega-
tive. That is, it does not provide a condition for two lines to be
parallel; it provides one for two lines to intersect. The reason for
choosing to frame the postulate in this peculiar way is clearly to
set the stage for the kind of argumentation Euclid had in mind—
namely, proof by contradiction. The first use of the postulate is
to show that the criterion of having equal alternate angles is both
necessary and sufficient for parallelism.
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Figure 2.6. Lines parallel imply equal alternate angles

Proposition: A straight line falling on parallel straight lines
makes the alternate angles equal to one another.

Proof: Here Euclid must convince us that in Figure 2.6 angle
o is equal to angle B. Suppose, on the contrary, that angle o
is not equal to angle B, for example, angle o is smaller than
angle B. Then by adding angle y we end up with

angle o + angle y < angle B + angle y = two right angles.

Thus the “interior angles on the same side” are less than
two right angles. The parallel postulate tells us that in this
situation the lines must meet, contradicting the assumption
that they are parallel. m

This is typical of the argumentation one finds in Euclid and
which subsequently found its way into all of mathematics.
Parallel lines by definition never meet. But lines in Euclidean
geometry are infinitely extendible. How then can one hope to
prove that two lines will never meet no matter how far they are
extended? Lines are infinite geometric objects. There is a certain
intrinsic incompleteness about such objects, and yet mathemat-
ics wishes to make definitive statements about them. To prove
that lines are parallel requires, at first glance, showing that no
matter how far one extends the lines they will never meet. This
is a kind of infinite argument in the same sense that showing
that the sum of an odd number and an even number is always
an odd number is also an infinite argument (it applies to an in-

95



CHAPTER 2

finite number of cases). Mathematics characteristically deals
with such “infinite” situations. In doing so it must replace an
indefinite or infinite property with one that is essentially finite.
In the proof, the finite property is the equality of the alternate
angles. In the parallel postulate the “infinite” condition of paral-
lelism is replaced by the “finite” condition for nonparallelism.
The use of an argument by contradiction is a way of making this
essential reduction.
We go on to one more famous result of Greek mathematics.

Theorem: The square root of two is not a rational number.

Proof: Suppose that the square root of two is equal to some
rational number. Now recall that a rational number is noth-
ing but a fraction, and every fraction is the quotient of two
integers. That is,

=
J2 =

2|3

Now the crucial point in this argument is that the integers
m and n can always be chosen so that they have no factors
in common. Thus the fraction 12/42 can be rewritten as
2/7, where the 2 and the 7 have no common factors. We
assume that we have done so in the case of the rational
representation of the square root of 2. By squaring the result
we get
2
2=% or m* =2n* (*)

Thus m? is even. It follows that m is also even. (Interestingly
this is also an argument by contradiction. For suppose m is
odd; then m? must also be odd. This is not true, so m is
even.) Since m is even it can be written as m = 2k. Thus (*)
becomes

41> = 2n? or n* = 2k>.
Applying the argument above to the latter equation
shows that n also must be even. However, this would mean

that both m and n are even and so they have the common
factor 2, which is contrary to our initial choice of a fraction
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where the numerator and denominator had no common fac-
tors. This contradiction establishes that if \E is a number
then it is certainly not a rational one. =

This argument uses only certain elementary properties of num-
bers in order to arrive at its conclusion. Thus it is local, contained
within the body of the proof. The result is negative; it states that
the geometrical number 2 cannot be written in a certain form.
It does not say that |2 exists, yet it points in that direction, so
perhaps it is not entirely negative. ,2 has been discussed at some
length in Chapter 1. The fact that the result is proved using an
argument by contradiction highlights the fact that there is in-
deed something problematic about this result. If |2 is an ordi-
nary geometric number, then this contradictory argument tells
us that it is a more complicated mathematical object than are
the positive integers. There is a depth here, a challenge. There is
something that remains to be understood. Then again if we look
at \,5 as a decimal, it is an “infinite,” indefinite object. If we look
at it as a geometric object, it is “finite” and seemingly definite.
This is the nub of the ambiguity of 2. The proof by contradiction
highlights the complexity of 2. It highlights the fact that 2 is
an interesting mathematical object.

PrROOF AND COUNTEREXAMPLE

The vision of mathematics as formal deductive theory tends to
overlook the role played by counterexamples. A counterexample
is a kind of contradiction in the following sense. A mathematical
theorem expresses a pattern or regularity, which is discerned in
a certain body of mathematical data. The counterexample sets
limits on the range of examples for which the pattern holds. It
contradicts the conclusion of the theorem in a particular in-
stance. Now the example might tell you that the conclusion of
the theorem is never true, but that would be uninteresting. More
interesting is the case where the conclusion is true for a certain
range of phenomena but is not always true. Then the question
is to determine just exactly when it is true. Mathematics is a bal-
ance between theory and counterexamples. Both are equally es-
sential in building up a mathematical theory.
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Imre Lakatos’” developed a major thesis around the manner in
which real mathematics—as opposed to formal or computerized
mathematics—developed historically. For one thing, he points
out that mathematics does not develop from axioms to theorems
in the manner that one might believe if one only got one’s math-
ematical experience out of Euclid. Lakatos’s work will be dis-
cussed in more detail in Chapter 5; for the moment let us just say
that he captures something very important about mathematics,
namely, that more often than not hypotheses, definitions, and
conclusions are simultaneously in a state of flux. If one is fortu-
nate, stability finally appears in the guise of a “best” result that
simultaneously determines what the appropriate hypotheses
(including definitions of terms) and conclusions should be. The
center of the “best” result is usually a key mathematical idea. In
practice the idea comes first and the hypotheses and conclusions
are adjusted so as to produce the “best” result that can be
squeezed out of this idea.

I can recall the situation in the Mathematics Department of
the University of California at Berkeley in the late 1960s. Stephen
Smale had just been awarded the Fields Medal and there was a
group of researchers collaborating with him in the investigation
of dynamical systems. Every so often, Smale would propose
some conjecture concerning the generic behavior of such sys-
tems.! Some months later, he or someone else in the group
would produce a counterexample. This example would then be
incorporated into a new, more general conjecture. The investiga-
tion would then proceed. This situation was iterated many times
in the course of those years. The logical end—the counterexam-
ple—was not an end at all but an intrinsic and valuable part of
the process that we know as mathematical research.

The point here is that the “contradiction” is not a termination
point but a means of refining the ideas and the theory. The logi-
cal development is an essential part of the subject, but it does
not define the subject. In the above examples the mathematical
activity involves attempting to understand some body of mathe-
matical data. Understanding is the key word. Both the positive
mathematical results (theorems, propositions) and the negative
ones (counterexamples) help advance our understanding and
therefore may be equally valuable. Constructing a good counter-
example may require as much ingenuity as proving an im-
portant theorem.
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THE CONTRADICTORY WITHIN MATHEMATICAL
Concerts: THE CASE OF ZERO

When one thinks about mathematics, one sees it as a domain
characterized by the absence of the contradictory. But is this
really the case? It is true that formal mathematics has no contra-
dictions; that is, from the same set of hypotheses it is not possi-
ble simultaneously to deduce the truth of a statement and its
negation. However, there are other, subtler ways in which
contradictions appear in mathematics. In the following we con-
sider a completely different way in which contradiction finds its
way into mathematics. We shall see how a contradiction, or
more precisely, what appears to be a contradiction at a certain
moment in time, may be transformed into a powerful mathe-
matical concept. Thus in the manner that a process can be made
into an object (cf. Chapter 1) a contradiction can be reified—it
can be embedded within a mathematical concept. Thus, even
though the rules of logic ban the contradictory from formal
mathematics, the contradictory finds its way into the concepts
of mathematics.

The mathematical concept “zero” is related to the more basic
idea of “nothing.” “Nothing” is simultaneously the most ele-
mentary and yet the subtlest of concepts. On the one hand,
“nothing” is the negation of “something,” so it could be said
that if you have the idea of “something” then you must im-
plicitly have the idea of “nothing.” On the other hand, con-
ceptualizing “nothing” as “something” is an act of quite subtle
mental gymnastics. Does “nothing” exist, and if not how can we
talk of it?

“Nothing” has been seen as perplexing and mysterious to
thinkers throughout the ages. “Nothingness” is the central pre-
occupation of “existential” authors like Sartre, Camus, Kafka,
Bellow, and Nietzsche. It was even the basis for the hit television
comedy Seinfeld. Death is the ultimate “nothing,” and the fear of
death may well be the fear of “nothingness.” “Nothing” is
feared, it is the “unknown country from whose bourne no trav-
eler returns,” but, as Shakespeare asks in this famous soliloquy
of Hamlet’s, why is it feared if the content of that fear is un-
known? The rational mind comes up blank when confronted
with “nothingness.” It is a kind of ultimate contradiction. This
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contradictory nature of “nothing” carries over to the symbol that
humankind has developed to represent it—zero.

The Difference between “Two” and “Zero”

What is the nature of mathematical objects? What kind of thing
is the number “two”? Normally most people assume that there
is a one-to-one correspondence between words and the objects
they correspond to. “Apple” stands for the fruit; “tree” stands
for the object in the back yard with a trunk, branches, and leaves.
Elementary mathematical objects retain this correspondence—
only it is abstracted a little. Thus “two” stands for that property
that is common to all pairs of objects. “Two” is an abstract
idea, yet it retains much of the concreteness of the nouns “tree”
and “apple.”

Every known human culture has a word for the number two.
It is an extraordinary fact that human infants from a very early
age can recognize, immediately and without counting, a collec-
tion of two objects. Some precursor to the concept “two” appears
to be hard-wired into our brains. And not only human brains:
many animals also have the ability to recognize “twoness.”

Now what about the number “zero”? At first glance it is a
number not unlike the number “two.” For the mathematician
it is just another integer, albeit one with unique properties. For
example, it is a neutral element under addition, that is, n + 0 =
n for any integer n. Under multiplication it reduces any integer
to zero: n X 0 = 0. This is all at the formal level.

In fact the number zero differs from the number two in ways
that have much to teach us about the nature of Greek mathemat-
ics and culture, but also about modern mathematics and aspects
of contemporary culture that are our legacy from Greek civiliza-
tion. Parmenides, the Greek philosopher, held that “you can
only speak about what is: what is not cannot be thought of and
what cannot be thought of cannot be.” Thus in his view the natu-
ral world is composed of distinct objects, and the proper and
harmonious use of language consists in providing a one-to-one
correspondence between words, the objects of thought, and the
objects of the natural world. This assumption would today be
called “naive realism,” and it is the “natural” point of view of
most scientists and, indeed, of most ordinary people. It is the
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way we establish our relation to the natural world—another leg-
acy from the Greeks. This hypothetical correspondence has the
consequence of transferring the property of consistency in theo-
retical constructs into a property of the natural world itself.
Thus, for example, the consistency of Euclidean geometry or of
parts of Euclidean geometry would imply the consistency of the
corresponding part of the world of physical objects.

Is it reasonable to approach modern mathematics from the
point of view of naive realism? We have already seen the prob-
lem that the irrationality of the square root of two posed for the
Greeks. It was a challenge that was met only incompletely. The
case of zero is a yet more compelling example of the conse-
quences of naive realism and the principle of noncontradiction.
To Parmenides and his followers the idea of “nothing” could not
properly be entertained, much less used in mathematics. Now it
is true that “zero” is a fundamentally contradictory notion—it is
a word or a symbol that stands for numerical nothing. It is a
presence that implies an absence. Anyone who held strongly to
the principles of noncontradiction and the correspondence be-
tween concepts and objects might be expected to reject such a
notion as inherently problematic. For is it not the function of
human thought to pursue and evoke clarity? How can this goal
be advanced by introducing concepts that are intrinsically
“flawed” by an intrinsic self-contradiction and that break the as-
sumption of clear correspondence between concepts and natural
objects? Thus it is not surprising that the Greeks, with (or be-
cause of) all their mathematical sophistication, never managed
to isolate the number zero as a mathematical concept.’

The concept of zero is so familiar that it takes a great deal of
effort to recapture how mysterious, subtle, and contradictory
the idea really is. Again, zero is a name for something that
does not exist. Think of a concrete instance of zero—0 apples,
for example. Suppose you have a bowl of fruit that contains 5
apples and 5 oranges and then you remove all the apples. There
is still something left, but it is not an apple. It would not be
correct to say there is nothing there, but you could say, “There
are no apples in the bowl.” More completely, what you mean
is, “Speaking of apples, there are none or there are zero.” Thus,
the expression “zero apples” evokes the idea of apples only to
deny that there are any. This is a little strange. When you say
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“zero apples,” the apples are both present and absent. This same
point may be made by asking the question, “Is ‘0 oranges’ the
same as ‘0 apples’?” The abstract numerical zero is more subtle
still, since it refers to something that all concrete instances of
zero (zero apples, zero oranges, zero pears, and so on) have in
common.

Since our culture inherits the metaphysical assumptions of the
ancient Greeks, we can appreciate, to a certain extent at least,
the resistance the Greeks would have had to the isolation of a
concept of zero. The Indians of the fifth century, on the other
hand, had no such problems and did manage to develop the
concept of zero. Why did one culture succeed and the other
did not?

The earliest recorded use of 0 in human culture was in India
in the year 458 c.E. The Indians used a place-value system as
early as the year 594. In a place-value system like an abacus you
can have empty columns, so you need notation to mark an
empty column. “0” may have started out as a simple marker, but
it soon assumed the status of a numeral like 1, 2, or 3. That is,
by 628 the astronomer Brahmagupta had even spelled out the
rules for the arithmetic of 0. These are, for example,

When sunya [zero] is added to a number or subtracted from
a number, the number remains unchanged; and a number
multiplied by sunya becomes sunya.

He also defines infinity as the number that results from dividing
another number by 0. This makes some sense, since 1/1 =1,
1/1/2 =2,1/(1/3) = 3 (dividing 1 into thirds requires 3 thirds).
So, as you divide 1 into smaller and smaller parts, it requires
more and more of them.

Why did the Indians succeed in isolating the concept of 0?
John Barrow in The Book of Nothing says that “The Indian intro-
duction of the zero symbol owes much to their ready accommo-
dation of a variety of concepts of nothingness and emptiness. . . .
The Indian mind saw it [zero] as part of a wider philosophical
spectrum of meanings for nothingness and the void.” The
Indians had a very rich array of meaning for nothingness, as
can be seen in the vast array of Sanskrit words in which differ-
ent aspects of absence were seen to be something requiring ver-
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bal isolation. These include words for atmosphere, the immen-
sity of space, a point, a sea voyage, space, complete, hole, void,
and sky. Barrow, talking about the Indian concept of zero as
sunya, says,

It possesses a nexus of complexity from which unpredict-
able associations could emerge without having to be sub-
jected to a searching logical analysis to ascertain their coher-
ence within a formal logical structure. In this sense the
Indian development looks almost modern in its liberal free
associations. At its heart is a specific numerical and nota-
tional function that it performs without seeking to constrain
the other ways in which the idea can be used and extended.
This is what we expect to find in modern art and literature.

Barrow goes on to say, “The hierarchy of Indian concepts of
‘Nothing’ forms a coherent whole.” “At the top level are words
including those which are associated with the sky and the great
beyond. They are joined by bindu (literally ‘a point” but more
generally the "Nothing from which everything could flow’) re-
flecting its representation of the latent Universe.” These are
meanings with positive connotations. At lower levels “we en-
counter a host of different terms for the absence of all sorts of
properties: non-being, not created, not formed, etc.” These are
meanings with negative connotations.

“These two separate threads of meaning merged in the ab-
stract concept of 0 so that the concept of 'nothing” began to re-
flect all the facets of the early Indian nexus of Nothings, from
the prosaic empty vessel to the mystics” states of non-being.”

A number of comments on the Indian conception of zero are
relevant to our discussion. In the first place, the Indian “noth-
ing” is both something and nothing, both presence and absence,
positive and negative, even though for us these ideas are mutu-
ally contradictory. We might define absence as nonpresence and
vice versa, so that by definition the ideas are mutually exclusive.
On the other hand, the Indian notion is ambiguous. Sunya is one
idea that has two self-consistent but mutually incompatible
meanings. For other civilizations (such as the ancient Greek), the
idea of “nothing” has only the negative connotation of absence.
It is a triumph of Indian civilization that it manages to look at
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nothing as this self-contradictory concept, give it a coherent
meaning and even symbolic representation.

Zero is indeed a contradictory notion. Does that mean that we
cannot or should not talk about it? Of course we can and we do.
And having this idea has literally changed the world and our
idea of the world. It is one of the “Great Ideas” of humankind.
The power and importance of a concept such as “zero” may be
proportional, not to its properties of harmony and consistency;,
but to the inner contradiction to which it gives form and by so
doing resolves in some way. Thus the important thing about
“zero” is precisely its inner contradiction. This is what makes it
so powerful. It was this power that was harnessed and used by
science. The conjecture that the power of an idea is related to the
contradictory tendencies that it embraces will force us to revise
our thinking about mathematics radically. The essence of the
subject would not be merely the avoidance of contradiction.
Mathematics is rich enough and complex enough to “contain”
contradictions and use them in a productive way. The problem
then will be to unravel that complexity that consists of a mixture
of logical necessity together with the contingent elements of am-
biguity and contradiction.

How is the notion of “zero” basic to mathematics? The most
obvious use of zero is in place-value notation. Place-value nota-
tion is the way in which we write integers. For example, in the
notation for the number “123,” the one stands for “1 hundred,”
the two for “2 tens,” and the three for “3 units.” This is a very
economical notation, and it allows for the usual algorithms for
addition and multiplication that we learn at school. Compare,
for example, how cumbersome it is to add with Roman numer-
als, where multiplication is just about impossible. In fact it is
possible to develop a perfectly good notational system for arith-
metic using only “1” and “0.” This is of course the basis of com-
puters” machine language. Thus commerce, science, technology,
information, and computers all use the language of place-value
notation for the integers. It is no exaggeration to say that the
world of science and technology would never have developed
had it not been for the invention of zero. All of this from a con-
tradictory concept that from the point of view of strict logic
should never have been allowed to see the light of day.
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Zero and the Calculus

The introduction of the calculus by Newton and Leibniz was
followed by attempts by many mathematicians to explain the
concepts and justify the procedures.” It was evident that the
calculus worked—it provided the right answers to important
questions—but why did it work? “Almost every mathematician
of the eighteenth century made some effort or at least a pro-
nouncement on the logic of the calculus, and though one or two
were on the right track, all the efforts were abortive.” Ultimately
to move the calculus from an empirical subject to one with se-
cure foundations required a revolution in mathematics. This
amounted to the invention of analysis as we know it today, what
is sometimes called the arithmetization of analysis.

The situation with respect to the validity of the calculus was
not so different from the situation physicists found themselves
in with respect to the foundations of quantum mechanics. I
remember a lecture at McGill University when Nobel-prize
winner Richard Feynman was asked why quantum mechanics
worked as well as it did. Feynman replied that his job, as he
saw it, was to make accurate predictions, and in this regard
quantum mechanics was an extremely successful theory. As for
the “why,” this was beyond the domain of science as he saw it.
The mathematicians of the eighteenth century felt the need to
answer the “why” of calculus by supplying a convincing foun-
dational theory.

There were many reasons for the confusion among mathema-
ticians, but we do not have the space to go into all of them. Suf-
fice it to say that it was clear that something profound was going
on in the calculus, but what it was exactly was far from obvious.
“The French mathematician Michel Rolle at one point taught
that the calculus was a collection of ingenious fallacies.” Many
other “justifications” by mathematicians were clearly fallacious.

This situation led to attacks on the calculus by people who
were essentially opposed to the entire scientific revolution that
was occurring at the time. The language of that revolution was
mathematics, and its main tool was the calculus. Perhaps the
most eloquent of the attacks on the calculus was penned by
Bishop George Berkeley (1685-1753). He felt that he was de-
fending religion against the threat posed by the new science. In
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1734 he published The Analyst, or A Discourse Addressed to an In-
fidel Mathematician. Wherein it is examined whether the Object, Prin-
ciples, and Inferences of the modern Analysis are more distinctly con-
ceived, or more evidently deduced, than Religious Mysteries and
Points of Faith. Berkeley pointed out that mathematicians were
proceeding inductively rather than deductively and, in particu-
lar, really had no logical reasons for their procedures. To Berke-
ley the calculus involved as large a leap of faith as did his own
religious beliefs. There is no question but that the advent of the
calculus precipitated a crisis in mathematics that lasted the bet-
ter part of a century.

The main conceptual hurdle was the conception of limit, and
in particular the ambiguity we have encountered before—the
identification of the process of a limit with the object or number
that is the result of this process. All this revolves around the
proper use of “0,” that is, it revolves around the meaning of
“0/0.” Now if n # 0 then the expression m/n = k is equivalent
to m = nk. Thus “6/3 = 2” and “6 = 3 x 2.” If we look at this
expression for n = 0, then, since 0 = n x 0, then, as Euler said,
n = 0/0 for any value of n. Thus 0/0 is an ambiguous animal
that schoolchildren are warned to stay away from because, they
are told, it is meaningless or undefined. However, it is impossi-
ble to stay away from 0/0 in the calculus. In fact, looked at in a
certain way, the whole of differential calculus depends on giving
a precise meaning to the expression 0/0.

The situation can be described by asking, “What is (instanta-
neous) speed?” Suppose that a car is accelerating from rest ac-
cording to the formula d = #*, where d stands for distance and ¢
for time. Thus the car starts off at position 0 at time 0; it is at
position 1 at time t = 1, at position 4 at time t = 2, at position 9
at time t = 3, and so on.

What is the car’s instantaneous speed at time ¢ = 1? We calcu-
late the average speed from over various intervals of time
around t = 1 and see what happens:

t=1/2tot =1 average speed = distance/time = 3/2,
t=3/4tot=1average speed =7/4,
t=7/8tot=1average speed = 15/8.

In general the average speed from timet =1-1/ntot =1 will
be 2 — 1/n. Also the average speed fromt =1+ 1/ntot =1
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will be 2 + 1/n. As n gets larger and larger, 1/n gets closer and

closer to zero, so the shorter the time interval around t = 1 the

closer the average speed gets to 2. Thus we say that the speed

at time 1 (what you would see on your speedometer) is 2.
What we have been doing is the following:

distance _ (position at time t) — 1

average speed fime 1
As the interval gets smaller and ¢ gets closer to 1, the numerator
of the fraction gets close to 0 and so does the denominator. So
in a sense as the result should be 0/0, yet actually the fraction
gets closer and closer to 2. Thus what we want to look at in the
differential calculus is the limit of a quotient which, in this case,
is not equal to the quotient of the limits (which is equal to 0/0).

The value of the derivative of a function (a mathematical gen-
eralization of the idea of “instantaneous speed” that we have
just been considering) is therefore obtained by considering the
results of an infinite sequence of approximations. In the next
chapter we shall see that the identification of an infinite se-
quence with a single finite number requires a major leap in our
understanding of the real number system. Whether we conceive
of the calculus as involving such an infinite limiting process, or
we think of it as involving infinitesimal quantities that are non-
zero but smaller than every positive real number; in either case
the very subtle concept of infinity must inevitably arise. Thus
the concepts of “zero” and “infinity” are closely tied together.
For example, one might say that 1/0 = oo and 1/ = 0. To make
sense of this relationship, one could invoke the idea of limiting
values just as we did for the idea of the derivative above. Thus
the latter equation could be given the meaning of “the value of
the expression of 1/x tends to the value 0 as x gets very large."

Today, of course, it is well known that the calculus is amenable
to an axiomatic development in the spirit of Euclid’s develop-
ment of geometry. However, this should not blind us to certain
elements in the calculus that were legitimately problematic.
From the point of view that is being taken here, these prob-
lems—the ambiguities inherent in the calculus—were extremely
important. The resolution of these ambiguities required a cen-
tury of work by many talented mathematicians and this work
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brought about the birth of modern analysis. Many of the basic
elements of modern mathematics, including the concepts of real
number, function, and continuity, as well as the derivative and
the integral, were ultimately stabilized in the wake of the discov-
ery of the calculus. Thus when we use the word “resolution” we
do not mean merely developing a logically rigorous theory, for
it is conceivable that the calculus could be developed starting
from a different mathematical foundation. For example, what is
meant by the term “infinitesimal” can be made precise within a
mathematical structure such as the one I describe in Chapter 4.
This is a different “resolution” of the calculus. In general, when
I talk of a “resolution,” I am referring to a stable structure that
contains the original problematic situation, but I am also refer-
ring to the burst of creativity that emerges from that situation.

CoNcLUDING COMMENTARY ON “ZERO”

There are various ways of characterizing our discussion of zero.
One way is to say that our culture has tamed the concept of zero
by removing its contradictory aspects and incorporating it into
a logically coherent mathematical system. The other is that a
concept that is inherently contradictory has been made ambigu-
ous by creating out of zero “a single idea.” The power of the
concept is related to the way the “single idea” retains some of
the incompatibility of the initial contradiction between some-
thing and nothing. In this view, then, far from excising the con-
tradiction from our thought, we have learned to use it in a con-
structive and creative manner. Modern mathematics, not to
speak of the world of science and technology, is a consequence
of this use of the concept of zero.

For future reference, this discussion throws some light on the
question that was posed earlier as to whether logic and consis-
tency were built into the universe in some fundamental way. A
concept, like zero, is ambiguous: it is a “single idea” which has
two incompatible frames of reference. Focusing on the single
idea or on the individual frames of reference places us in the
realm of coherence and consistency. Focusing on the incompati-
bility of the frames of reference places us in the realm of contra-
diction. This is another ambiguity. Both coherence and contra-
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diction are fundamental components of ambiguity—neither can
be omitted. The conclusion that this pushes us toward is that it
is ambiguity and not logical coherence that is fundamental. We
cannot successfully create a perfect world of noncontradiction.
Such a world would be static and devoid of depth and creativity.
Logic is part of the world, but only a part. Reality in general and
mathematics in particular are greater than logical consistency.

The idea of zero is a case history, a generic idea. Such a mathe-
matical concept arises out of a vast area of human experience.
One might say that the precise mathematical meaning of zero is
the center of a much larger cloud of perceptions and cognitions.
This larger, ill-defined cloud is usually taken to represent the
connoted meaning as opposed to the precise, denoted meaning.
The connoted meanings are not logical; only the denoted mean-
ing can fit into a precise, logical scheme. Thus the connotations
may include things that are ambiguous or contradictory. In the
case of zero we have seen that a number of contradictory ele-
ments form part of the cloud of connotations associated with the
concept.
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Paradoxes and Mathematics: Infinity
and the Real Numbers

PARADOX

Live at the empty heart of paradox; I'll dance there
with you, cheek to cheek.
—Rumi

As with all apparent paradoxes arising from
special relativity, under close examination these logical
dilemmas resolve to reveal new insights into the
working of the universe.

—DBrian Greene, The Elegant Universe

In this chapter we pursue our investigation of ambiguity in
mathematics by beginning a discussion of the paradoxes of in-
finity. What is a paradox? According to the Encarta World English
Dictionary a paradox “is a situation or proposition that seems to
be absurd or contradictory but is or may be true.” It is interesting
that the word “paradox” has the contrary meaning to “ortho-
dox.” Orthodox means “following established or traditional
rules.” Orthodoxy operates within acceptable limits. Paradox,
on the other hand, breaks the limits of the orthodox. It appears
“absurd or contradictory” from the perspective of the orthodox,
but it “may be true” in another, larger, context. In fact there ap-
pears to be no consensus about the meaning of “paradox,” so I
shall explain the sense in which I shall use the word. Just as the
earlier discussion of the contradictory was meant to highlight a
certain aspect of ambiguity, namely, the aspect of incompatibility
that exists in every situation of ambiguity, so the present discus-
sion of paradox is also intended to illuminate and extend our
understanding of ambiguity. I stressed in Chapter 1 the close re-
lationship between ambiguity and creativity—every ambiguous
situation contains a creative potential, namely, the possible reso-
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lution of the “incompatibility” through the emergence of a new
idea or point of view. Our discussion of paradox is meant to em-
phasize the potential emergence of such a novel paradigm. Thus
I shall only discuss paradoxes that have such a positive poten-
tial—every paradox that is discussed will have something to
teach us about the nature and the development of some mathe-
matical concept.

Like an ambiguity, a paradox has positive and negative as-
pects. The negative is, of course, the “absurd or the contradic-
tory”; the positive is that “it may be true” from some new and
different point of view. Creative situations also have a positive
and a negative side. In order for something new to emerge,
something old must often be broken down. As long as one is
trapped within habitual patterns of thought, it is difficult for a
truly original idea to break through. Thus in my discussion of
ambiguity I highlighted the incompatibility that must exist be-
tween the two frames of reference. In a paradox this incompati-
bility is raised to the level of the “absurd or contradictory.” A
paradox is a heightened ambiguity. At least this is true for the
paradoxical situations I shall discuss in this chapter. Of course
we are interested, not so much in paradoxes for their own sake,
but in the paradoxical as a driving force in the development of
mathematics.

It is true that the difference between ambiguity, contradiction,
and paradox is one of nuance, since in essence they are describ-
ing one or more aspects of a situation or event that can be
viewed from multiple perspectives. There may even be times
where the terms seem to be used interchangeably. In essence I
shall always be discussing situations of ambiguity. Such situa-
tions may contain elements of contradiction, or they may in-
volve the paradoxical, but the same elements will always be
found—incompatibility, multiple perspectives, and a point of
view that changes in time or has the potential to do so.

Now a paradox is an absurdity; a paradox is something whose
very existence is unacceptable. A pure, logical contradiction is a
closed case—it is wrong; it cannot be. In the situation of paradox
the contradiction exists but we cannot accept the closure of the
case. The situation has two aspects that are irreconcilable but we
cannot leave it at that—things must be reconciled. Thus a para-
dox is a contradiction that is open, not closed.
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This is a familiar situation to anyone who has grappled with
a personal or artistic dilemma. If one takes such a situation seri-
ously one frequently reaches an impasse—a moment when there
seems to be no way in which to resolve the dilemma. At this
stage it is very tempting to give up and quit. The situation seems
to be impossible. To face this impossibility and yet continue re-
quires great strength and great courage. Yet it is an ordinary
kind of courage, manifested every day by people confronting se-
rious illness or other personal problems. It is the precise nature
of the existential dilemma faced by every one of us: Life in the
full realization of death is, in a sense, impossible;' yet we live,
we persevere, we do our work, we are kind and considerate to
those around us. Paradox is not something alien to life; it is the
basic fabric out of which life is composed.

It is the human ability to persevere in the face of the intracta-
bility of such situations that leads us to propose an unusual ap-
proach to “paradox,” one that has the potential to radically
change the way in which we look at life in general and mathe-
matics in particular. In a few words it is that paradox cannot be
eliminated from life because it is part of the basic fabric of
things. Moreover, paradox has great value. Thus paradox should
be seen as a generating force within the domain of mathematical
practice. There has been much discussion among mathemati-
cians and scientists about the “unreasonable effectiveness of
mathematics in the physical sciences.”* Mathematics has power!
Moreover, mathematics is not a static body of knowledge. On
the contrary, it is dynamic, ever changing. Where do that power
and dynamism come from? Well, they come from ambiguity,
contradiction, and paradox. These things are therefore of great
value. They need to be unraveled, explored, developed, and
not excised.

So in what sense can a paradox be true? If a paradox is true
in any sense, then the contradiction it embodies cannot be abso-
lute. It is neither absolutely false nor absolutely incomprehensi-
ble. What makes something into a paradox? Is it the logical
structure that it carries within itself or within which it is embed-
ded? If so, then that logical structure may be changed and what
seemed an insurmountable barrier may become the gateway to
deeper understanding. But it might not be the logical structure
itself; it might be that the impossibility is connected to the larger
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cultural context in which the paradox is embedded. When I dis-
cussed “zero” in the previous chapter I emphasized that it con-
tained a contradictory aspect, “the nothing that is.” In fact, the
story of “zero” does not end there; that is just the negative part.
The positive part of the story is that “zero” is a seminal concept
in all the ways that were discussed. Thus, if I were creating a
classification scheme (which I am not doing; I am merely dig-
ging into the ramifications of ambiguity in mathematics), I
would say that “zero” is paradoxical—it contains a contradic-
tory aspect and yet is a fundamental mathematical concept.

Thus the two parts of the definition of paradox should be
taken seriously. There is a contradiction, but there may also be
a truth. This is illustrated beautifully in a discussion of the para-
doxes associated with infinity. Many of the paradoxes that I shall
discuss carry a deep mathematical idea. The object is to use the
paradox as an entry into that idea. In so doing I shall be making
the larger point that we have to learn to think about paradox in
a different way.

INFINITY

Mathematics is the science of the infinite, its goal
the symbolic comprehension of the infinite with
human, that is, finite means.
—Hermann Weyl

To pursue the point that mathematics is not built on logically
pristine concepts but includes the ambiguous and the paradoxi-
cal, I shall now turn my attention to the case history of the infi-
nite. The infinite is an extraordinarily subtle topic. “Zero” was
discussed in the last chapter, and, in a way, “zero” and “infinity”
are the opposite sides of the same coin—less than anything, on
the one hand, and more than anything, on the other. However,
there is a major difference in the degree to which these two con-
cepts have been assimilated into our culture. We take the con-
cept of zero completely for granted. It appears to us to be an
obvious or trivial idea. We have no doubt at all about what it
means and how to calculate with it in an algorithmic, mechani-
cal way. Though the last chapter pointed out some of the mys-
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tery that attends to the idea of “nothing,” nevertheless, for the
most part “zero” has lost the quality of open-endedness and has
become a prosaic, well-defined, and precise mathematical object.
Infinity, on the other hand, has not yet been totally assimilated.
More than almost any other concept, “infinity” retains its poetic
qualities—its mystery and wonder.

In The Mathematical Experience, Philip Davis and Reuben
Hersh speculate about the origins of the idea of the infinite.

The perception of great stretches of time? The perception of
great distances, such as the vast deserts of Mesopotamia or
the straight line to the stars? Or could it be the striving of
the soul toward realization and perception, or the striving
toward ultimate but unrealizable explanations?

The infinite is that which is without end. It is the eternal,
the immortal, the self-renewable, the apeiron of the Greeks,
the ein-sof of the Kabbalah, the cosmic eye of the mystics
which observes us and energizes us from the Godhead.?

When most people think about infinity, they think about the
very large. I can recall an occasion when my wife and I were
taking a walk and chanced to overhear an argument between
two boys who must have been eight or nine years old. There
seemed to be a competition going on to produce the “biggest”
number. The contest went on for a while in a conventional man-
ner: “A million, a billion,” and so on. Then one of the boys
played his trump card and said, “Infinity!” Not to be outdone
the other boy replied in what I thought was a very interesting
comment, “Infinity, infinity!” There the competition ended. We
were left with a number of intriguing questions. What did the
tirst boy mean by “infinity”? More interestingly still, what was
behind the second boy’s response? Did we have here a budding
Cantor or was he just repeating what he had heard elsewhere?
I'm afraid these questions will never be answered, but it was
clear to us that “infinity” for these boys had something to do
with the very large. And so it is for most people: the origins of
infinity seem to be tied up with the idea of very large quantities
or distances.

There is another possible source for the idea of infinity, and
that is bound up with the notions of self-reference and iteration.
For example, suppose we have a picture that contains a smaller
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Figure 3.1. Self-reference

but otherwise identical copy of itself (figure 3.1). Then the
smaller picture will have a copy of the original that is smaller
yet, which will have another copy, and so on. Thus we have an
infinite cascade of images, each a faithful duplicate of the origi-
nal. Escher is famous for such paintings. Of course, this is an
elementary version of “self-similarity” such as one finds in
“fractals.” The subjects of fractals and cellular automata may be
popular because they capture something basic in the human ex-
perience. Remember the myth of Narcissus, who drowned after
becoming entranced with his image in a pool of water. Self-
image and self-reference strike a deep chord in us all. How en-
trancing it is to stand between two mirrors and observe a set of
images that appears or recede into infinity.

Every (discrete) dynamical system is generated by a rule (a
function) that can be iterated, a function that starts with a num-
ber between 0 and 1, for example, as input and produces another
number, also between 0 and 1, as output. The output can then
become a new input, and so on (see figure 1.3b). We are inter-
ested in the “and so on”—the asymptotic behavior of the func-
tion with a given input—and this “and so on” might be de-
scribed as the behavior of the function “at infinity.” Any process
that can be repeated in this way, that can be “iterated,” evokes
the notion of infinity. With the advent of the computer this sort
of thing has become very familiar. One of the basic elements of
a computer program is a “loop” whereby a single computation
or a sequence of computations is iterated over and over again.
Thus in mathematics, in computer science, and in science in gen-
eral, the infinite is explicitly or implicitly invoked.
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DoEgs INFINITY EXIST?

In a sense infinity is similar to every other concept in that it is
an insight into some aspect of reality. Some people might object
that there is no aspect of reality that is captured by the idea of
infinity. They might claim that the infinite does not exist in the
natural world. It may, in fact, be true that there are only a finite
number of atoms in the universe, or that space is a finite four-
dimensional manifold. Even if these things were true, would
that imply that the infinite is not a valid human concept? What
aspect of reality is the conception of infinity pointing to?

Like all other concepts, the infinite is not identical to the as-
pect of reality that it illuminates; that is, “the map is not the terri-
tory.” It evokes the territory, yet it is not the territory that is
evoked. There is something mysterious about the human use of
language, and especially so in the case of “infinity.” Infinity
evokes something real—behind the notion of infinity there is
real human experience, real human intuition. In the use of the
concept of infinity we are trying to pin down this intuition, to
give it some concrete form. Maybe it is impossible to definitively
pin down an intuition like “infinity” in the same way that one
cannot pin down what precisely one means by the “beautiful,”
but the very attempt reveals something admirable about the
human spirit.

Infinity is a concept like other concepts, only more so. Other
concepts are content to point to confined aspects of reality—in-
finity goes after something enormous. Thus “infinity” is an ex-
treme example of the general process of conceptualization. After
all, the infinite is held to be a defining characteristic of divinity.
Perhaps because it is so extreme, a certain rawness still remains
associated with the concept, at least for many people. We can all
sympathize to some extent with Carl Friedrich Gauss’s opinion
that “the actual infinite” is not a legitimate object of thought.
Maybe certain things are better not put into words; maybe some
things cannot be pinned down in an analytic manner. But if this
is true one could object to all words, to all ideas. However, if it is
true that all words somehow fall short of the reality they would
describe, then this is especially true of infinity.

Infinity reaches explicitly for that aspect of reality that is be-
yond words. It attempts to articulate that which is beyond artic-
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ulation. It seems to be attempting to go beyond itself in the same
way that a great work of art—a Beethoven symphony, let us
say—does. It astounds us because it expresses something that
we thought could not be expressed. We are deeply moved but
we cannot say why.

Because “infinity” is a topic that is so obviously reaching be-
yond itself, its essential incompleteness never disappears from
view, leaving a tension that never completely dissipates. Perhaps
there was a time in the evolution of humanity when all words
had this sense of open-ended incompleteness. However, today,
most words have lost their magic for us by dint of endless repeti-
tion and commercial exploitation. Perhaps once “beauty” was an
idea that had the power to stir the soul, but today everything
and everyone is “beautiful.” So “beauty” has been debased and
its magic has been lost. “Infinity” has not yet suffered that fate.

INFINITY Is AMBIGUOUS

For my purposes in this book, infinity is an excellent topic be-
cause a discussion of the infinite inevitably brings out questions
that are always present but are difficult to bring to conscious
awareness. It is easy to see, for example, that the concept of in-
finity is inherently ambiguous. In discussing most concepts it is
appropriate to begin with a definition. However, in the case of
infinity, one of the basic questions is whether a definition is even
possible. Many people have held that infinity cannot be defined.
For, they reasoned, if we had such a definition then this very
definition would transform infinity into something limited,
which, of course, would make it finite and not infinite.

According to philosopher A. W. Moore, historically there have
been two clusters of concepts that dominate the discussion of
the infinite:

Within the first cluster we find: boundlessness; endlessness;
unlimitedness; immeasurability; eternity; that which is such
that, given any determinate part of it, there is always more
to come; that which is greater than any assignable quantity.
Within the second cluster we find: completeness; whole-
ness; unity; universality; absoluteness; perfection; self-
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sufficiency; autonomy. The concepts in the first cluster are
more negative and convey a sense of potentiality. ... The
concepts in the second cluster are more positive and convey
a sense of actuality.*

The first cluster of meanings is negative. It says that the infinite
is non-finite, has no bound, no end, and so on. The second cluster
is positive. It says that the infinite is all. This, if you think about
it, is a problem in itself. If it is all, how do you talk about it, for
talking about it implies standing outside of it and if you can
stand outside of it then it is not all. Nevertheless, we can at least
say that there is an obvious tension between these two ways of
looking at infinity. To say that something is not finite is not the
same as to say that it is whole and complete.

Here then is the ambiguity of infinity. It is something that is
incomplete, even something that cannot be completed in princi-
ple. Yet it is complete, since we talk about it. We even aspire
toward it as the highest of goals, the highest of values. In aes-
thetics, it is the beautiful, in ethics it is the good. It is the defining
characteristic of divinity. From one perspective it is beyond all
words and concepts. From the other it is precisely that—a word
and a concept. Here then is the ultimate contradiction!

In The Mathematical Experience the authors attempt to capture
this very dichotomy in the mathematical example that I used
when discussing ambiguity.

Observe the equation

1
2

1 1 1
+—-—+—+—+---=1

4 8 16
On the left-hand side we seem to have incompleteness, in-
finite striving. On the right-hand side we have finitude,
completion. There is a tension between the two sides which
is a source of power and paradox. There is an overwhelm-
ing mathematical desire to bridge the gap between the finite
and the infinite. We want to complete the incomplete, to
catch it, to cage it, to tame it.>

This equation is a paradox, yet we resolve it by the equation
itself, through the use of the equal sign. This equation for the
summation of an infinite series is an ordinary mathematical ex-
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pression no more complicated than the infinite decimals that
were discussed in Chapter 1. We tend to take the mathematics
that stands behind such expressions for granted. We forget what
an extraordinary leap is required in order to “get it.” Yet this
insight is being called upon whenever we write down a real
number as an infinite decimal.

Think, for example, of the decimal representation of «,

T =3.14159 . ..

Again, here is 7 as a finite, named object versus & as an incredi-
bly complex infinite decimal. In the former sense we know it
well—the ratio between the circumference and the diameter of
any circle. In the latter sense it remains mysterious to this day.
We cannot answer even “simple” questions about it. One such
question is, “Is ® normal?”® Normal means that its digits are
truly random, at least in the sense of being uniformly distrib-
uted. That is, for a number to be normal (in normal base 10 nota-
tion) each digit from 0 to 9 would appear 1/10 of the time; each
sequence of two digits from 00 to 99 would appear 1/100 of the
time; and so on. The answer to the question of whether & is nor-
mal seems beyond our grasp at the present time. The best we
can do is to investigate the question experimentally. This has
been done and, for example, for the first 6 billion decimal places,
there are no anomalies, that is, each digit occurs approximately
600 million times as we might expect were the conjecture of the
normality of & to be correct.

In the quotation at the beginning of this chapter, Weyl says
that “mathematics is the science of the infinite”; that is, the de-
fining characteristic of mathematics is, in some sense, the way
in which it deals with the infinite. Moore gave us two general
dimensions in which the infinite is conceptualized. The first
comes from the word infinite itself, that is, in- or non-finite.
From this point of view no finite system of thought is complete.
Gauss and Aristotle, as we shall see, took this point of view
when they asserted that there was something intrinsically unac-
ceptable in the notion of actual, as opposed to, potential, infinity.

At the present time our culture is dominated by the comple-
mentary philosophies of “scientific realism” and “postmodern-
ism.” Both of these would dispense with the entire history of
human thought that is represented by the clusters of “positive”
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concepts about infinity. Be that as it may, the infinite appears to
be a valid and quite common human intuition. To take a contem-
porary example, consider the following quotation by the philos-
opher Abraham Heschel:

What characterizes man is not only his ability to develop
words and symbols, but also his being compelled to draw
a distinction between what is utterable and the unutterable,
to be stunned by what is but what cannot be put into
words.’

“What is but cannot be put into words” could well be a descrip-
tion of the infinite. Thus it is, in a way, the ultimate ambiguity.
Paradoxically, what is commonly done with “what cannot be
put into words” is precisely to attempt to express “it.” This may
be done in words or in other ways—through music, the fine arts,
or mathematics. There exists that which cannot be expressed yet we
must express it. This is an expression of the ultimate ambiguity
that characterizes the human condition itself. I shall refer to this
kind of ultimate activity, in the paradoxical manner in which
such an activity can only be described, as putting the ineffable
into words, describing the indescribable, or expressing the inex-
pressible. One of the most far-reaching but least-noticed activi-
ties of this kind consists of the use of the infinite in mathematics.

If the description of mathematics as the science of the infinite
rings true, it is because of the noble and audacious attempt by
mathematicians to capture the infinite with finite means. Weyl
continues, “It is the great achievement of the Greeks to have
made the contrast between the finite and the infinite fruitful for
the cognition of reality. . . . This tension between the finite and
the infinite and its conciliation now become the driving motive
of Greek investigation.”® Thus the tension between the finite and
the infinite lies at the heart of mathematics.

If the concept of the infinite in mathematics is really an at-
tempt to grasp the ineffable, to conceptualize that which cannot
in principle be conceptualized, then such an attempt must in-
evitably lead to some sort of breakdown. The breakdown occurs
in the logical structure of mathematics, and what marks this
type of breakdown is the appearance of paradox. Since the at-
tempt to mathematize the infinite is a matter of pushing the
rational mind just about as far as it can be pushed, then we
should expect that the occurrence of any particular aspect of the
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infinite in mathematics is associated with the appearance of one
or more types of paradox. Thus in studying various aspects of
the infinite, the paradoxes they give rise to, and the way mathe-
matics uses and resolves these paradoxes, I shall be exploring
some of mankind’s most profound attempts to penetrate the
mystery of mysteries—the relationship between reality and the
human mind.

MATHEMATICS AND THE INFINITE

In mathematics, infinity is not one concept among many. In
some ways it is central to mathematics. One might say that it is
precisely the way that mathematics deals with the infinite that
characterizes mathematics and separates mathematical thought
from that of every other discipline.

It is the use of infinity that marks the emergence of mathemat-
ics from the domain of the empirical to the domain of the theo-
retical. The use of infinity in any specific manner requires con-
siderable mental flexibility. It requires a new way of using the
intellect, a certain subtlety of thought, an ease with complex,
contradictory notions. In the use of the concept of infinity there
is always the danger that things will get out of control and slip
into the realm of the purely subjective. That is, there is the dan-
ger that we will not be doing mathematics anymore.

On the other hand, the rewards are great. Davis and Hersh in
the above quotation pointed to the “tension . . . which is a source
of power and paradox.” The infinite is itself a source of power
and paradox. The usual response to such situations is to want
the power but not the paradox. Thus we normally attempt to
attain the power in mathematics and science through the elimi-
nation of the paradoxical. This is not my point of view. In my
view the power and the paradox are inextricably linked. If we
wish to gain the power, we must confront the paradox. More
than almost any other mathematician, Cantor pursued the
power and paid the price in both his professional and personal
life.’ He left mathematics a different subject, and mathematics is
the richer for his gifts. As David Hilbert (1862-1943), one of the
greatest mathematicians of his time, said, “No one shall drive us
from the paradise Cantor created for us.”
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THE FINITE AND THE INFINITE

The tension between the finite and the infinite is the great theme
that resounds throughout mathematics. Human beings are finite
creatures yet they aspire to the infinite. According to existential-
ist philosophers like Seren Kierkegaard, for example, the funda-
mental human dilemma resides in human beings’ dual nature,
on the one hand the finite body and on the other the infinite
mind and spirit. Our inquiry is into how this fundamental ten-
sion plays itself out in the realm of mathematics. Mathematics
has discovered its own ways to reconcile the gap between the
finite and the infinite.

In modern mathematics this question of finite and infinite is
still present. In a recent interview the well-known mathemati-
cian Paul Halmos was asked about his statement, “I am inclined
to believe that at the root of all deep mathematics there is a com-
binatorial [read “finite”] insight.” He went on to explain his
statement as follows:

I asserted that the deep problems of operator theory could
all be solved if we knew the answer to every finite-dimen-
sional matrix question. I still have this religion that if you
knew the answer to every matrix question, somehow you
could answer every operator question. But the “somehow”
would require genius. The problem is not, given an operator
question, to ask the same question in finite dimensions—
that’s silly. The problem is—the genius is—given an infinite
question to think of the right finite questions to ask. Once
you thought of the right answer, then you would know the
right answer to the infinite question.

Combinatorics, the finite case, is where the genuine, deep
insight is. Generalizing, and making it infinite, is sometimes
intricate and sometimes difficult, and I might even be will-
ing to say that it’s sometimes deep, but it is nowhere as fun-
damental as seeing the finite structure.'

This comment seems to me to state very well the situation as it
is lived by the mathematician. In a sense, everything in mathe-
matics is a dialogue between the finite and the infinite. The most
trivial observation, such as “The sum of two odd integers always
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gives an even integer,” applies to an infinite number of cases.
We cannot check the veracity of this statement by checking every
case, so we need a stratagem for dealing with every case at once.
This stratagem is contained in the observation that an integer is
odd if and only if it can be written as 2k + 1 for some (other)
integer k. This observation enables us to reduce the argument
from an infinite number of concrete cases to one abstract case.
What we have done is to abstract the situation by the introduc-
tion of a variable. The variable is the means of reducing the in-
finite to the finite. However, as I pointed out in the discussion
of ambiguity, the notion of variable is ambiguous. Thus the re-
duction from the infinite to the finite is accomplished through
the introduction of the ambiguous.

MATHEMATICAL INDUCTION

The subtle use of variables and their use in making the infinite
concrete is illustrated by the form of mathematical argument
called “mathematical induction.” Induction in science and phi-
losophy refers to a situation in which one discerns a pattern or
regularity in nature and infers that the regularity will continue
for all time. Thus the sun rises every morning and so we infer
inductively that the sun will rise tomorrow. This form of induc-
tion is never certain, for after all the sun may not rise tomorrow.
Thus induction is never absolutely certain in comparison with
deduction, which is usually taken to be absolutely certain. Math-
ematical induction however is a form of reasoning that is deduc-
tively certain even though it retains some of the form of scientific
induction.

A typical situation of mathematical induction is the following:

1=1=1x1,
1+3=4=2x2,
1+3+5=9=3x3,
1+3+5+7=16=4x4.

There seems to be a pattern here. This pattern could be ex-
pressed by saying that the sum of the first n odd integers is equal
to n times n. Is this pattern true for all values of n? That is, is it
possible that for some very large value of n the pattern ceases
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to be true? How can we assert that this formula is always true
even though the number of cases is infinite? The Principle of
Mathematical Induction allows us to do this. It asserts that, if
there is a family of formulas P(1), P(2), P(3), and so on as above,
then every occurrence of the formula is assured to be valid if the
following two conditions hold:

C1: P(1) is valid.
C2: For every positive integer k, if P (k) is valid then so is
Pk +1).

In our example P(1) says that 1 = 1 x 1, which is certainly
valid. The verification of condition C2 is slightly more involved.
In the first place, it requires writing our conjecture in a more
“mathematical” form. That is, we must introduce a variable and
write out the formula that we are trying to verify. Thus without
writing out the infinite number of cases: P(1), P(2), and so on as
one general case P (1) we cannot proceed. In this case the general
formula could be written out as

P(n):1+3+5+ --- +(2n—-1) =n

Now we are in shape to work on condition C2. We assume that
P(k) is valid for some k, thatis, 1 + 3 +5+ --- + 2k — 1) = k.
Now we work on the validity of P(k + 1):

1+3+5+ - +2k-1)+2k+1)-1
=14+3+5+ - +2k-1)+2k+1)
=k?> + (2k + 1) (since we know that P(k) is valid)
= (k + 1)~

Thus P(k + 1) is valid (if P(k) is) and by the principle of mathe-
matical induction the formula P(n) is valid foralln =1, 2, 3, ...

Notice that the only calculation involved is a simple one. One
has the nagging feeling that one is getting off with too little ef-
fort. All these infinitely many formulas are now established as
true, when the only formula that has been verified directly is
P(1). All the rest of the work is accomplished by the condition
C2. Thus mathematical induction also involves the reduction of
the infinite to the finite. It demonstrates the great power that
resides in the ambiguous notion of variable and in algebraic
manipulation.
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Why is the principle of mathematical induction valid? Can
one prove that it is true using the arithmetical properties of the
integers, say? The answer is that, just as the parallel postulate of
Euclidean geometry cannot be derived from Euclid’s other
axioms and postulates, the principle of induction cannot be de-
rived from the field or arithmetic axioms. It must be taken as an
additional assumption. It can be shown to be equivalent to other
principles such as the well-ordering principle, which states that
every subset of the positive integers has a first (least) element.
However this doesn’t put us any farther ahead. The fact is that
the principle of mathematical induction is an assumption that
we make about the number system. We make it because it seems
reasonable to do so and because it is an invaluable tool. It en-
ables us to prove a vast array of interesting mathematical state-
ments that we feel must be true.

It is interesting that the last sentence implicitly differentiates
between what is true and what can be proved. Of course this is
the content of the famous incompleteness theorem of Godel. Is
the truth of a mathematical statement dependent on our being
able to prove it? Could something be true even if we could not
in principle prove that it is true. In the case of our above example
we could prove the formula directly. Suppose

S=1+3+5+---+(2n-1)
Then
S=2n-1)+ --- +5+3+1.

Adding up the columns, we see that 1 + 2n — 1) = 2n, 3 +
(2n — 3) = 2n, etc. Thus the sum 2S5 = n x 2n = 2n% and so S = n?
as required.

However, suppose that we had no direct way to obtain this
result and the use of induction was the only way to prove it. Are
there such formulas, and is it reasonable to claim that they are
valid? In one sense we know that they are true. In another the
proof of their validity depends on an assumption about infinity,
on an axiom that enables us to work with infinite sets in a sys-
tematic manner. Thus a wedge has been inserted between proof
and truth. I shall return to this discussion later on.
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PARADOXES OF INFINITY

The notion of infinity is inherently paradoxical. Thus the use of
infinity in mathematical or philosophical arguments naturally
gave rise to many of the famous paradoxes of the past. I shall
investigate a number of these paradoxes in some detail. Each
case history will certainly teach us something both about the
idea of infinity and about the process whereby human thought
continually reaches beyond the constraints inherent in any par-
ticular cultural epoch. The notion of infinity can be considered
to be a diamond with many different facets. Different paradoxes
will illuminate different facets of the diamond.

Parapox #1: INFINITY Is NoT AN OBJECT

Every “it” is bounded by others. “It” exists only by
being bounded by others; But when “Thou” is spoken,
there is no thing. “Thou” has no bounds.
—Martin Buber

I protest above all against the use of an infinite quantity
as a completed one, which in mathematics is never
allowed. The Infinite is only a manner of speaking.

—Carl Friedrich Gauss™

As soon as you mention the word infinity, you run into the prob-
lem of whether it is a unique idea or a concept like other con-
cepts. This is related to the fundamental paradox of infinity. Can
infinity be conceptualized? This is a true paradox. On the one
hand, it is impossible. To conceptualize infinity is to make it a
concept commes les autres, to remove precisely the quality that
makes infinity infinite. On the other hand, it must be conceptual-
ized. If ever there was something that was worth talking about,
it is infinity. This is a situation that goes beyond mathematics. It
is restatement of a basic human dilemma: the imperative to go
beyond our finite limits, to reach for the impossible, to transcend
death itself. It will be interesting to look at how the Greeks man-
aged the dilemma of infinity. In the end they managed to come
up with a very rational compromise: potential infinity, yes; ac-
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tual infinity, no. In other words infinite processes were accept-
able, infinity as an object was unacceptable.

In my earlier discussion of the number zero I mentioned
Greek culture’s failure to come up with the abstract notion of
zero. | attributed that failure to the Greek idea that concepts
should correspond to existent objects and to their worship of
harmony and logical consistency. If “zero” was not deemed to
be a suitable object of thought, then “infinity” should have been
even more problematic. Yet the story of infinity in Greek mathe-
matics is a complex one. On the one hand, Aristotle rejects the
notion of dealing with infinity as a completed object of thought.
On the other hand, there is a wide-ranging and ingenious use of
infinite processes by Greek mathematicians, the use of “potential
infinity.”

Potential infinity arises in association with the “Method of Ex-
haustion.” This method was introduced into Greek mathematics
by Eudoxus of Cnidos. The method of exhaustion is used by Eu-
clid in the Elements, but it is used most systematically and bril-
liantly by Archimedes to arrive at his amazing results about the
areas and volumes of geometric figures. In essence the method
involves creating an infinite sequence of approximations to a
geometric figure in which you are interested. For example, sup-
pose we wished to calculate the area of a circle C, A(C). We
would inscribe a series of polygons inside the circle. Let us say
that P(1) was a square, P(2) a polygon of 8 sides, P(3) a polygon
of 16 sides, and so on. Notice that each of these figures has an
area that approximates the area of the circle more and more
closely. Outside the circle we would circumscribe another series
of polygons, which we could call Q (1), Q (2), Q (3), and so on.
Given that the areas of these polygons were well known, we
could now pin down the area of the circle by noting that

AP(1) < AP@) < A(P@B)) < --- < A(circle) < -+ <
AQEB))<AQP))<AQ®D)).

Of course for the argument to work we had to be sure that the
area of the circle was approximated arbitrarily closely by the areas
of the inscribed and circumscribed polygons. That is given any
(small) number € > 0, there was an integer n such that
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-- Circle

Figure 3.2: Approximating the circle by polygons

A (circle) —A (P (n)) <e
and
A (Q (n)) — A (circle) < €.

Euclid uses this method in Book XII, when he proves:

Proposition: The area, A, of a circle with circumference C and
radius r is equal to the area, T, of the triangle with base C and
height r, that is, rC/2.

(This is essentially the usual formula for the area of the circle
A =7r? = (r)(nr) = (r)(C/2).

Proof: The proof involves assuming that A > T and arriving
at a contradiction, then assuming A < T and arriving at an-
other. This was called the method of “double reductio ad
absurdum.” (It is interesting that once again infinity—here
in the guise of a sequence of approximations—is associated
with a sophisticated proof by contradiction.)

Let us just go over the first part of the proof. Assume that
A > T. Using the method of exhaustion there must be some
interior polygon, P (n), whose area is so close to the area of
the circle that A (P (n) ) > T. Now Euclid had already estab-
lished a formula for the areas of regular polygons, it was
A (P (n) ) =sD /2, where s was the length of a perpendicular
drawn from the center to the middle of the opposite side
and D was the length of the circumference of P (1). Thus
1/2sD >T =rC/2. However, it is clear from figure 3.3 that
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— Circle
— P(n)

Figure 3.3: A>A(P (n))>T

s <rand D < C. This is a contradiction and establishes that
A < T. In the second part of the argument we assume that
A < T, use a circumscribed polygon and get a similar contra-
diction. Thus we are able to conclude that A = T as required. =

The method of exhaustion as it is used above is really a
method of successive approximation. Archimedes used this
method to arrive at the pinnacle of Greek mathematical thought.
For example, he used this method to find numerical approxima-
tions to that enigmatic and elusive quantity n. It also brought
Archimedes very close to the invention of the calculus, since in-
tegration is in a sense a systematic application of this method.

In all of this work one was skirting on the edge of paradox and
contradiction. This was noted by many Greek thinkers (notably
Aristotle), who went to great lengths to keep themselves on
what they would consider the rational side of the infinite. Let us
look again at the sort of approximation that was used in the
method of exhaustion.

The method of exhaustion consisted in constructing an ap-
proximation, K, to an unknown quantity, U, that one wished to
investigate. Now a physical approximation is a finite thing,
that is, given a margin of error, € > 0 (which could be 1/10 or 1/
1000) we would construct the known quantity U so that it would
satisfy the inequality

|[K-U|<e.

However, our argument involved constructing a mathematical
approximation. A mathematical approximation is really a se-
quence of approximations that get better and better: K;, K,, K3,
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K4, ... This means that for any positive number € you can find
an approximation K, such that

|U-K, |<e.

You might say that the value of the unknown quantity, U, is
completely determined by the sequence of approximations.
Thus, for example, the value of 1/3 is completely determined by
the series of approximations

3 33 333
10" 100" 1000 * -

The Greeks believed that their reasoning was on solid ground
as long as they did not consider the sequence of approximations
as constituting one completed mathematical object. You will no-
tice that in my description of a mathematical approximation
above it was not necessary to use the word infinity or infinite.
The quantities that were dealt with were all finite, and in any
situation one would only need to go through a finite number of
steps in order to arrive at the needed approximate value. The
fear of the paradoxical nature of infinity was so great that mathe-
maticians for another two thousand years would maintain that
infinity was merely a way of speaking and therefore not an in-
trinsic part of the mathematics being discussed (just read the
statement of Gauss with which this section was introduced).

It is perhaps due in part to the residual hesitation of dealing
with the notion of infinity that accounts for the eventual victory
of the modern definition of limit. Suppose for example we wish
to say that the limit of the sequence of numbers; 1, 1/2, 1/3,
1/4,...is 0. That is we wish to say that this sequence of num-
bers “tends to zero as n tends to infinity.” What we have italicized
is the way we talk about this limit to this day. We talk about
infinity and we use infinity in our notation:

lim i=0
n—oew N

However, when we rigorously define what we mean it is in the
following way:

For every number € > 0 there is some integer N such that
1/n < e whenever n > N.
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Notice that the formal definition has excised all reference to in-
finity. This is what Gauss meant when he said that, “The Infinite
is only a manner of speaking,” Thus the Greek ambivalence
about infinity has left a considerable mark on mathematics.

It is also interesting to point out again how deep and signifi-
cant results in mathematics occur, not by keeping as far away
as possible from the contradictory and paradoxical, but, on the
contrary, by seeming to work right up to its edge. This is a phe-
nomenon that we shall observe over and over again.

Remember that at this stage we are still very far from being
able to write (and think of) 1/3 = .3333. . . . This seemingly small
step from a series of approximations to the notion of the infinite
series would have to wait for a conceptual breakthrough that
involves seeing through the profound taboo that had grown up
around the paradox of infinity. Before we get to that break-
through, I will discuss a related Greek paradox.

ParapOX #2: CAN AN INFINITE PROCESS GIVE A FINITE
REsurt? ZENO’Ss PARADOX AND INFINITE SERIES
OF PosITIvE TERMS

Zeno of Elea proposed some of the most influential paradoxes
of antiquity. Bertrand Russell claimed that “Zeno’s arguments,
in some form, have afforded grounds for almost all the theories
of space and time and infinity which have been constructed
from his day to our own.”"? We actually know little of Zeno ex-
cept what we read in Plato’s Parmenides. Evidently Zeno pro-
posed a series of paradoxes in order to support the philosoph-
ical positions of Parmenides. “Parmenides rejected pluralism
and the reality of any kind of change: for him all was one indi-
visible unchanging reality, and any appearances to the contrary
were illusions, to be dispelled by reason and revelation.”” Zeno
attempted to defend Parmenides’ counter-intuitive thesis
against his critics by showing that the denial of his views led to
absurdities. In the case of Achilles and the Tortoise, which I shall
discuss below, he attempted to demonstrate that if motion was
infinitely divisible then it followed that nothing moved. Thus
Zeno appears to be attacking commonsense notions of plurality
and motion.
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In light of our discussions about contradiction and paradox,
it is interesting that Zeno’s arguments have the form of reductio
ad absurdum, an argument that is very close in spirit to the math-
ematical “proof by contradiction.” Even though we shall give a
“resolution” of the paradox in terms of modern mathematics, it
would be wrong to underestimate the importance of these para-
doxes of Zeno. In the first place he is credited with being the
inventor of this kind of argument in philosophy, in which one
argued against a point of view by showing that its logical conse-
quences were unacceptable. Of course this is an example of how
reasoning processes that were used in mathematics later carried
over to other subjects. It also shows how the notion of paradox
is central to Greek thought. Of course the Greek position was
that paradoxes must be avoided at all costs, but underlying that
position is the historical fact that these paradoxes had an enor-
mous effect on Greek and subsequent thought. Zeno was point-
ing to a real problem, one that is very close to problems in math-
ematics that took a great deal of time and effort to resolve. Again
the paradox has the enormous value of highlighting a fertile area
of thought.

ACHILLES AND THE TORTOISE

Achilles runs faster than the tortoise, so the tortoise starts the
hundred-yard dash fifty yards ahead of Achilles. When Achilles
has gotten to the tortoise’s initial position, T1, the tortoise will
have moved ahead to its second position T2. When Achilles gets
to T2, the tortoise will have moved to T3. This will continue for-
ever, so Achilles will never actually catch up to the Tortoise. On
the other hand, we can calculate exactly how much time it takes
each to run the race and it is clear that Achilles gets to the finish
line first.

“Resolution”

Suppose Achilles (A) and the Tortoise (T) are running a 100-yard
race. A starts at the beginning and T starts at the 50-yard line. A
runs at a speed of 10 yards/second, T at 1 yard/second. Here is
a table of their positions at various times:
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Distance
1004+ 100 Achilles
. 60 Tortoise
55 r
50 ¢
— = > Time
0 55+ 10

Figure 3.4. Achilles and the tortoise

Time A’s Position T’s Position
1 10 51

5 50 55

5.5 55 55.5

5.55 55.5 55.55

5.555 55.55 55.555. ..
5.555. .. 55.555. . . 55.555. . .

Thus Achilles will catch up to the Tortoise after 5.555. . . seconds,
at which time they will both be at a distance of 55.555. . . yards
from the start. After that time Achilles will be ahead. Now what
precise time is represented by that infinite decimal? A little cal-
culation will show us that if x = .555 then 10x = 5.555. .. Sub-
tracting gives 9x = 5 and x = 5/9. Thus Achilles and the Tortoise
meet at time 5 5/9 seconds at position 55 5/9 yards.

With this resolution it is difficult to see what all the fuss was
about. It does not involve the calculation of the time when they
meet, for that is in general a simple algebraic calculation (in this
case 50/(10 — 1)). What it may involve is the assumption that
time and space are both infinitely divisible. If so, then there is a
problem here that is worth thinking about. What are we divid-
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ing? Is it some physical substance? Is it a mathematical substra-
tum? Either of these creates a problem, the first with the quan-
tum nature of the physical world, the second with the nature of
the number system. Perhaps the problem lies in the relationship
between the physical and the mathematical. That, too, is a deep
question that is not resolved to this day.

At the very least there is the problem of an infinite process
that purports to end up with a finite result. Achilles” race with
the Tortoise can be broken down, as we have seen, into an infi-
nite number of sub-races. Yet the end result is a definite time and
position. We have seen that the Greeks accepted implicit infinite
processes in the method of exhaustion, but resisted accepting
these infinite processes as completed objects. Zeno’s paradox
demonstrates that it is not so easy to keep these categories dis-
tinct. When we write

22.555...
9

we are mixing up an infinite process with the finite result of this
process.

The ambiguity of finite objects with infinite representations is
already a problem for rational numbers. This problem is com-
pounded when we consider irrational numbers. In the case of
1/3 we may look at the infinite decimal as a series of approxima-
tions to the relatively concrete object 1/3. But in the case of irra-
tional numbers what is it that we are approximating? The root
of two exists as a length, a geometric number, by virtue of Py-
thagoras’s Theorem. w exists in a slightly less concrete way as
the ratio of the circumference of a circle to its diameter. In both
cases we may imagine that our decimal representation is ap-
proximating something. However, most irrational numbers as we
understand them today, something like .10100100010000. . .,
have no name or symbolic representation that is distinct from
their decimal representation. They are their representation. Thus
the infinite decimal now is both the approximation and that
which is approximated. There is a discontinuity here in our un-
derstanding; what is required is a creative insight.

Thus Zeno’s paradox leads to a systematic consideration of
infinite series which, in a special case, includes the theory of in-
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finite decimals and therefore of the real number system. Thus
there can be no modern mathematics and science without a reso-
lution of this paradox. Of course, by resolution I don’t mean “the
solution” to the paradox. Rather, I mean discovering a way of
working with the situation that is brought to the fore by Zeno’s
paradox. This requires opening up the paradox to discover its
vast mathematical implications.

What are these implications? I shall begin examining the trea-
sure chest of the real numbers by discussing the problem of sum-
ming infinite collections of positive numbers. Take, for example,
the series mentioned earlier,

1 1 1

—+—+—+ - =1

2 4 8
What is the problem here? Well, we know how to add a finite
collection of numbers. We know how to add two numbers, so
we can add three by the stratagem of adding the first two and
then adding the result to the third:

x+y+z=(x+y)+z

Continuing in this way we can add any finite collection of num-
bers. So if we have a finite collection of numbers contained in a
collection, B, we know what we mean by the sum of the ele-
ments in B, which we could write as > B. The question becomes
what meaning can be given to the sum of an infinite collection,
I, X, I? Does it make sense to talk of the sum of an infinite collec-
tion as a finite number? It is a strange idea when you come to
think of it. It is possible to think of summing a finite collection
in a finite time (if there are 10 numbers and it takes one second
to do a sum, then it should take 9 seconds to sum all 10 num-
bers). For an infinite collection, if each sum took the same finite
time. then of course you would never get to the end of the calcu-
lation. Thus in a sense an infinite sum can never be accom-
plished in practice. The sum must be inferred. For example, let

Then
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s 1 1
- =+ 4 ...
2 4 8
Subtracting gives
sS_1
2 2

So S =1

Of course one might object that this reasoning begs the ques-
tion, since in the first line it implicitly assumes that the series
does add up to a finite number, namely S, and only then finds
the value of S. If we wish to develop a more self-contained argu-
ment, then we would actually have to start adding:

First term = 1/2

Sum of two terms = 3/4
Sum of three terms = 7/8
Etc.

We would then note that these (partial) sums are getting closer
and closer to 1. Thus they form a sequence of approximations to
1 (and to no other number). In situations like this we say that
the series converges. We are irresistibly led to the conclusion that
if the sum exists then the only reasonable value for it to assume
is the value 1. Nevertheless, the proof of this fact requires one
to assume a property of the real number system, which can be
expressed as follows:

Every increasing sequence of (real) numbers that is
bounded above must approximate (converge to) a (unique)
real number.

That is to say, every increasing sequence of positive terms (and
in particular the partial sums of an infinite series of positive
numbers) either gets unboundedly large (gets larger than any
number you can mention) or converges to (approximates) some
finite positive number. This is really an elementary axiom of the
real number system and cannot be derived from the arithmetic
or algebraic properties of numbers with which the Greeks were
no doubt familiar (the so-called field properties).
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Thus the paradox of the infinite series of positive terms points
to an actual mathematical difficulty, one that the Greeks could
not have solved for a number of reasons. They had no concept
of the real number system as a whole; in fact, the real number
system is vastly larger than the number systems with which they
worked. The other problem was of course the potential/actual
infinity paradox that was discussed above.

In fact, by identifying this question as problematic the Greeks
were displaying a legitimate mathematical intuition. There was
a problem here. The solution to the problem was not mathemati-
cal so much as conceptual. The problem is not so much solved as
defined away by assuming a new axiom, something like “every
convergent sequence of rational numbers defines a real number.”
In other words, the problem is not solved in the conventional
way; rather, somehow a new mathematics is built on top of the
old by taking the process/object paradox as the new definition
of number, so that now a number is entirely defined by an ap-
proximating sequence." The side effect of this definition is
that you open the door for a vastly enriched concept of number.
This makes possible the calculus, analysis, and, in a way, the
modern world.

Thus in retrospect one can see that the problem the Greeks
faced was not merely whether individual geometric numbers
were legitimate numbers. It was to construct a new number sys-
tem in which these new irrational numbers would be on a par
with the old rational numbers. As we shall see later on, the con-
struction of the required number system entailed the acceptance
of a vast collection of these new irrational numbers. As I said
above, the great majority of these numbers had no obvious geo-
metric or analytic meaning. What we know of these numbers is
that they are given by infinite decimals. Luckily one of the
strengths of the decimal system is that it provides a way to dis-
tinguish between rational and irrational numbers. A number is
rational if and only if its decimal representation is terminating
or eventually repeating; for example .25=1/4 or .1333...=2/15.
Thus we have a way to write down the decimal representation of
irrational numbers—the decimal merely has to be nonrepeating,
like .01001000100001. . . , for example.
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DoEs THE HARMONIC SERIES CONVERGE?

Infinite series are very subtle. Even if all the terms are positive
it is sometimes difficult to tell whether the series converges or
diverges.” A case in point is the harmonic series

1 1 1

1+ —+—+—+---

2 3 3
All the calculations in the world will not serve to determine
whether this series converges or diverges. In fact it diverges, but
it does so very slowly, that is, it takes a very large number of
terms for this series to add up to a large number. Nevertheless
it is possible to understand the series with a simple conceptual
argument that is due to the French scholar Nicole Oresme (1323-
1382). We only need to write the series in the following way:

(e () (et ) (L )

2 3 4 5 6 7 8 9 16

Thus after the first bracket the sum is 1.5. The second bracket is
larger than 1/4 + 1/4 = 1/2, thus the sum at this point is larger
than 2. The third bracket is larger than 1/8 + 1/8 + 1/8 + 1/8 =
1/2, thus the sum is now larger than 2.5. We continue in this
way, with each bracket contributing at least 1/2 to the eventual
sum. Thus, if we want the sum to add up to at least 10, we must
add about 18 brackets. Of course this is an enormous number of
terms. Since each bracket ends with the number 1 divided by
some power of 2, we would need approximately 2 to the power
18 or 262,144 terms. And things get much worse very quickly.
This makes the series almost impossible to calculate directly, yet
the argument that it diverges is simple and convincing.

The harmonic series is itself paradoxical, but not in as dra-
matic a way as other paradoxes we have been considering. Here
the message is that even for series of positive terms the idea of
convergence is a subtle one. Series can appear to converge and
yet diverge. In fact the harmonic series is on the boundary be-
tween convergence and divergence. This can be made precise.
Look at the family of series of the form
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where x can take on different values (this is called a power se-
ries). Then the harmonic series is obtained by setting x = 1. It
turns out that the series converges when x is between —1 and 1
and diverges when x is greater than 1 or less than —1. Thus the
harmonic series is close to converging but just misses.

The message here is that the behavior of the harmonic series
may appear to be paradoxical as long as it is not fully under-
stood. Bernoulli proposed a proof® for the divergence of the har-
monic series which amounted to assuming that the sum is A and
then showing that A =1 + A. If A were finite this would lead to
1 =0. Thus, by contradiction, A is infinite. This proof by contra-
diction is valid if we assume that series of positive terms either
converges or, as we say, diverges to infinity. In a sense Bernoulli
is working with infinity as a number. This is legitimate and
problems are avoided as long as all the terms are positive. If the
latter assumption is not satisfied then there are further complica-
tions, as we shall see below.

COMPLETION

Our discussion of infinite series of positive terms leads us to the
question of what it means for a number system to be complete.
What does completeness mean? It is a word that refers not to
individual mathematical objects but to a system, a number sys-
tem, for example. It is related to the notion of “closure.” A sys-
tem is said to be “closed” under a certain operation if that opera-
tion does not take you out of the system. For example, the
counting numbers, 1,2, 3, . . . are closed with respect to addition
but not to subtraction. The complex numbers are algebraically
closed. That is, if you write down a polynomial with complex
coefficients then its roots will be complex. Completion is a kind
of closure with respect to convergence. This means that every
infinite sequence of numbers that looks as though it should con-
verge, actually does converge.

To be precise, a sequence ry, 15, 3, 14, ... that looks like it
should converge is called a Cauchy sequence. This means that the
distance between the terms get closer and closer to 0 as you go
farther out in the series.”” Does the sequence actually have a
limit? Well, that depends. If you are working in the rational
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number system, then the decimal representation for any irratio-
nal number will give you a Cauchy sequence of rational num-
bers that does not have a rational limit. For example the irratio-
nal number .01001000100001. . . is really the infinite sequence of
rational numbers 0/10, 1/100, 10/1000, 100/10000, 1001/
100000, etc. All of these numbers are within 1/10 of each other,
all except the first are within 1/100, all terms past the first two
are within 1/1000, and so on. Thus they form a Cauchy se-
quence, but the rational number system does not contain the
limit, namely, the irrational number that is referred to by the en-
tire infinite decimal.

Thus one can pose the question: starting with the rational
numbers can one create a system that contains all the numbers
that correspond to the limits of Cauchy sequences? This is called
“completing the rational numbers.” This is indeed possible, and
what you end up with is the real number system. It is interesting
that you cannot go through this procedure a second time and
get anything new. If you take Cauchy sequences of real numbers,
then the limits exist and are all real numbers. In this sense the
real number system is complete but the rational number system
is not. The subject that we call mathematical analysis is best
done in the context of a complete system.

Thus the Greeks” problems with infinity would not be re-
solved until the rational number system was successfully com-
pleted. This entailed creating a new system of numbers and con-
sidering it as one set or object. This of course would have
brought them up against the notion of “actual infinity.” This
again involved working with the paradoxes of infinity. As long
as one is considering the nature of individual irrational numbers
like the various roots, the golden mean, and =, the notion of
completion does not really come up. The construction of the real
number system required facing up to a number of different para-
doxes related to numbers and infinity.

PARADOX #3: SERIES WITH DIFFERENT SUMS

As infinite series go, the simplest to understand are series all of
whose sums are positive. After the initial epistemological obsta-
cle is overcome, namely, that an infinite series could converge
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at all, then the only problem with series of positive sums that
distinguishes them from ordinary sums is the fact that the sum
of such a series, one like 1 + 1 + 1 + ..., could get infinitely
large. In such a case we shall say that the series diverges. But
even then things work out the way you imagine they should.
For example, if you add a convergent series to a divergent series
then the resulting series diverges, as it should if we imagine that
the rules of extended arithmetic should work: N + oo = o,

What happens if we mix up positive and negative terms in
our series? Suppose A=1-1+1-1+1-1+--- Then, grouping
the terms two by two, wehave A=(1-1)+(1-1)+---=0+0
+ 0+ --- = 0. On the other hand grouping them in a slightly
different way givesus A=1+(-1+1)+(-1+1)+---=1+0
+0+---=1.50 have we shown that 1 = 0? How is this possible?

The problem here is that the infinite series 1 -1+1-1+ ...
cannot be said to have a sum. So writing the sum of the series
as the letter A is misleading. Using the letter A assumes that the
series has some fixed value, that you can assign a precise mean-
ing to the sum of the series. This is in line with the ambiguous
nature of the notation for infinite series, where the same symbol
stands both for the formal series and for the sum of that series.
However, the ambiguity is only fruitful when the sum exists.
Thus there is another implicit ambiguity in the notation: the no-
tation for the series stands for the sum only when the sum is mean-
ingful. When is the sum meaningful? Well, that is what we usu-
ally mean by the series converging. However, there may still be
meaning in the series even when it diverges. Thus the question
of when the notation is clear is a subtle one involving no less
than the entire theory of infinite series. Saying this in other
words, the entire theory of infinite series has as its aim the inves-
tigation of the ambiguity contained in the notation A = > a,.

Now certain series of alternating positive and negative terms
do indeed add up to something concrete. For example,

1- 1 + 1.1 + 1 + -+ = In 2 (the natural logarithm of 2). (¥)
2 3 4 5
Nevertheless, the situation is tricky. The above series is actually
made of two series: 1 +1/3+1/5+1/7+---and 1/2 + 1/4 +
1/6 + ---. Both of these series are very close to the harmonic
series and for that reason both diverge to infinity. The question
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is, “Can we make sense out of the difference of these two se-
ries?” Well if we subtract them in the way that we have above
by alternating the terms of the two series then the sum is In 2.

However, it turns out that what is vital is the order in which
the terms are taken. If we multiply both sides of the equation (*)
by 1/2 we get

i_l+l_l+...:l]n2‘(**)
2 4 6 8 2
Let’s add (*) and (**) term by term. We get
(11)1(11)1(11)1 3
1+|-—+=|+=—+|-————|+—+|-——+—|+—=+---=—1In2
2 2 3 4 4 5 6 6 7 2

Notice that the terms with denominators 2, 6, 10. .. cancel out,
whereas the terms with denominators 4, 8, 12. . . double to give
terms —-1/2,-1/4,-1/6, . ... Thus the new series is

1+l—l+i+l—l+---:ilnz.
3 2 5 7 4 2

The terms of this new series are identical to the terms of the
original series (*) but in a different order. Now mathematicians
of the eighteenth century were used to ignoring the order of
terms and only considering their value. This is indeed valid for
series of positive numbers, but here it leads to trouble! For if the
series were identical to its rearrangement it would follow that
their sums would be equal, thatis, In2=3/2In2or 3/2 =1!
Richard Courant®® says, “it is easy to imagine the effect that the
discovery of this apparent paradox must have had on the mathe-
maticians of the eighteenth century, who were accustomed to
operate with infinite series without regard to their conver-
gence.” This is indeed a paradox and, as Courant says, the para-
dox points to the need to better understand infinite series with
positive and negative terms.

In fact, matters are even worse than this. Not only can you
rearrange the series to add up to two different sums, but this
series (and others like it) can be rearranged to add up to any
number at all! The argument is easy to understand when you
see that these series are made up of two series that each diverge
to infinity. Suppose you wish to make the rearranged series add
up to 10. Start by adding on enough of the first series that the
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Figure35.1-1/2+1/3-1/4+1/5—-...adds up to 10

sum gets to be larger than 10 (you can do this because the sums
of the first series are unbounded). Then subtract enough of the
second series that the combined sum is less than 10. Then add
new terms of the first until it gets larger than 10 again. Continue
in this way, alternating between the first and the second series
so that the sums alternate between being larger and smaller than
10. If the terms of both series get closer and closer to 0 as you
add more and more terms, this implies that the sum is indeed
getting closer and closer to 10. So 10 must be the sum.

But then we could have picked any other number instead of
10, say 20. The same argument would show that some re-
arrangement of the initial series would add up to 20. Thus we
could make the series add up to whatever number we choose.
Thus we have proved:

Theorem: An alternating series that is composed of two diver-
gent series whose terms tend to zero can be rearranged so that its
sum is any given number.

Thus the paradox is explained. The problem was in imagining
that XB always represents a definite number. In the discussion
about series of positive terms we got into trouble by ignoring the
fact that X.B could be infinite, but this was a small mathematical
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problem because in some ways an infinite sum of positive terms
can be treated the same way as a finite sum. For example, series
of positive terms (finite or infinite) have the pleasant property
that any rearrangement will add up to the same number, that is,
2.B has only one value. For series of positive and negative terms
this isn’t true any more. When we write down an infinite series
2.B we must specify both the value of the terms and their order.

CONCLUSION

The development of the modern concept of the real number is
accompanied at every stage by the paradoxes of infinity. A real
number is a convergent infinite series of rational numbers and,
as such, is an extremely subtle and complex idea. To begin with,
every infinite series is both process and number, and this ambi-
guity creates both danger and possibility. As soon as the infinite
is introduced the threat of incoherence arises. Then why, one
might ask, is the infinite introduced at all? The answer is that
the infinite is forced on the mathematical mind as it grapples with
its attempts to describe the world. The power of theoretical ex-
planation is somehow tied up with the concept of infinity. How-
ever, this power is accompanied by a threat, a threat that is con-
trolled by erecting barriers of the type “infinity is not an object,”
whose objective is to harness the power inherent in the concept
of infinity without being destroyed by the threat of chaos im-
plicit in the situation. Yet whenever one set of barriers is erected
some genius eventually figures out a way to circumvent the re-
strictions and get closer to the black hole of infinity without hav-
ing their mathematics destroyed. Thus the threat of the irratio-
nality of the square root of two is eventually transcended by the
invention of the decimal representation for real numbers, where
the process/object ambiguity of the notation becomes the mo-
dality through which the power of infinity is harnessed and put
to constructive use.

A concept like infinity is never completely domesticated.
Rather, different aspects of infinity are conceptualized, as we
have seen in the case of the real numbers. This might lead us to
conclude that the story is over, that we have arrived at the ulti-
mate theory in the form of the real numbers as a complete or-
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dered field. Within that theoretical framework we may convince
ourselves that we understand infinity in some sort of definitive
way. That would be a mistake. There are many ways to think
about infinity that have not been discussed in this chapter. For
example, it is possible to create a number system that is larger
than the real numbers—that contains so-called “infinitesimals”
or infinitely small quantities as well as infinitely large quantities.
This justifies an intuition of Leibniz, for example, and his way
of looking at the calculus, that was overlooked in the now con-
ventional development of the real numbers that I have been de-
scribing. Infinity always retains its mystery—the question
“What is infinity?” will always be with us in one way or another.
The mystery of infinity resides in the impossibility of ever com-
pletely reducing it to a well-defined concept that fits into a rigor-
ous theory. As long as it maintains this mystery it will be capable
of producing further conceptual riches, further revolutions of
thought—new paradoxes giving rise to increasingly sophisti-
cated resolutions.
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More Paradoxes of Infinity: Geometry,
Cardinality, and Beyond

IN THE LAST CHAPTER | discussed the manner in which the
Greeks achieved a stable notion of infinity, how that equilibrium
broke down as a result of developments in mathematics such as
the invention of the calculus, and the way a new equilibrium
was forged. This new way of thinking —the system of real num-
bers—remains definitive for most mathematicians to this day.
Nevertheless, as we shall see, there are other legitimate intu-
itions about infinity that can provide the basis for further mathe-
matical development.

This chapter continues the discussion of infinity by consider-
ing a series of paradoxes that are associated with more revolu-
tions in the history of Western intellectual thought. The first area
to be considered is geometry, and includes the nineteenth-cen-
tury assault on that holy of holies, Euclidean geometry. Most
people are not aware of how problems that arose within mathe-
matics forged not only our contemporary understanding of the
world but, more important, our intuitive sense of the nature of
reality itself. The contemporary movement from modernism to
postmodernism is paralleled by the movement from a stable Eu-
clidean world to a “relativistic” non-Euclidean world. In the for-
mer, the space of Euclidean geometry is identified with the natu-
ral world; while in the latter, space is something distinct from
geometry, which now only “models” the natural world. This is
a revolutionary shift in perception.

The second area we shall examine is set theory and more
particularly the revolution that arose through the work of the
mathematician Georg Cantor. Cantor’s work arises directly
from a new understanding of the actual infinite. Like many radi-
cal changes in the world of ideas, Cantor’s work engendered vir-
ulent opposition in its time, yet its conclusions are today ac-
cepted without question in the world of mathematics. They

146



MORE PARADOXES OF INFINITY

involve the very nature of mathematical truth and its relation-
ship with reality.

Finally we shall briefly discuss an alternate model for the
foundations of analysis—a system that contains not only the
usual real numbers but also quantities that are infinitely large
and infinitely small. Within this system many of the considera-
tions of the previous chapter are seen in a new light, notably, the
ideas of “limits” and therefore of “derivative.” In considering
this “nonstandard” theory we shall see how the infinite is al-
ways capable of supplying new mathematical ideas. In many
cases the development of these seminal ideas was accompanied
or preceded by the emergence of the paradoxical. Each of these
paradoxes flowered into a new way of understanding mathe-
matics and the world.

ParADOX #4: INFINITY Is A POINT

Recall the postulates with which Euclid began his axiomatic
development of geometry. The second was

A line segment can be extended indefinitely in either
direction.

The fifth was the notorious “parallel postulate” discussed in
Chapter 2, pp. 94-96.

Most authors point to the clear difference between the first
four postulates, on the one hand, and the fifth, on the other. The
statement of the “parallel postulate” is more complex than the
statements of the others. However these earlier postulates are
not themselves without their problematic aspects. In particular,
consider the second postulate.

What does it mean that a segment can be “extended indefi-
nitely”? Does it mean that given any line segment we can extend
it a little further? As we extend it, can it repeat the same territory
over and over again like a circle, or does the extension have to
be into new territory, so to speak? Or are we thinking of an “in-
finite” line as a whole? Now the open interval (0,1) consisting
of all points between 0 and 1 has the first property of extendibil-
ity: if we take a subinterval (a,b) of (0,1) then we can always
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extend it to the larger interval (a/2, (1 + b)/2). But this kind of
extendibility will not do for some of Euclid’s constructions.

In a sense the problem here is the old problem of “potential”
versus “actual” infinity. Is the straight line a completed (infinite)
object like the decimal .333. . ., or is it a potentially infinite ob-
ject, one for which it is possible to add a few more decimal
points, so to speak? There are a number of problems with the
seemingly obvious notion of the straight line—problems that re-
ally come to the fore with the advent of the Riemannian model
for non-Euclidean geometry. But before discussing non-Euclid-
ean geometries consider first of all an earlier development: par-
allel lines and projective geometry.

In Euclidean geometry parallel lines were defined to be
straight lines that did not meet if they were extended indefi-
nitely in either direction. Our everyday experience tells us that
we can have very long pairs of lines that remain equidistant
from one another (railroad tracks, for example). The Euclidean
definition of parallelism captures the feeling that the essential
quality here is “never meeting.” The problem is, of course, with
the “never” in “never meeting.” It opens the door to conceptual-
izing the straight line as an infinite object that in turn gives rise
to various stratagems for managing the problematic aspects of
introducing an infinite object into a geometry that ostensibly
deals with finite objects and processes.

For centuries the Euclidean definition was the one way to
think about parallel lines. Yet there are no (infinite) parallel lines
in the natural world, and our visual experience contradicts this
definition. We “see” that equidistant lines, like railroad tracks,
get closer to one another in the distance. In fact, they seem to
converge toward, but never quite hit, some distant point on the
horizon. In other words, the Euclidean definition refers to an in-
tellectual reconstruction of what appears to be “really” going on
and not to the primary visual experience itself.

A new way of looking at parallel lines and infinity arose in
the fifteenth century, not from mathematics but from art. Artists
desired to draw a more faithful representation of nature than
their predecessors in the Middle Ages. The problem is, of course,
how to produce the illusion of space and distance on a flat two-
dimensional painting. The art of linear perspective was devel-
oped by the artist and architect Filippo Brunelleschi and per-
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Figure 4.1. Piero della Francesca: architectural view of a city.
Kaiser Friedrich Museum, Berlin.

fected by such notable artists as Albrecht Diirer and Leonardo
da Vinci. Paintings using linear perspective contain the follow-
ing elements:

1. A horizon line that crosses the canvas at the viewer’s
eye level. Of course it represents where the sky appears to
meet the ground.

2. A vanishing point that is located near the center of the
horizon line. This point is where all the parallel lines (called
“orthogonals”) that run toward the horizon appear to meet
like train tracks in the distance.

3. Orthogonal lines are parallel lines that help the viewer’s
eye to connect points on the edges of the canvas to the van-
ishing point. The artist uses them to align the edges of walls
and other elements of the painting.

Of course when we say that the “orthogonal lines” are parallel
we mean that they are parallel in the real scene that the painter
is working from, but that in the painting these parallel lines are
represented by a family of lines that are not parallel but meet at
the vanishing point.
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Naturally we are interested in the “orthogonal lines” and
the “vanishing point.” What the painter has done, using the arti-
fice of this one-point perspective, is to represent a family of par-
allel lines by a family of lines that meet at a “point at infinity,”
the vanishing point. In so doing infinity has now become a tan-
gible object; that is, the concept of infinity has been reified. It is
no longer “potential infinity,” a process that never terminates
but merely “points to” infinity. It is now “actual infinity,” an
actual point.

Now one could claim that there is no “actual infinity” in the
situation at all, merely a finite representation of actual infinity.
In supporting the position of “no actual infinity” one would
carefully distinguish between the “actual” scene where the point
at infinity does not exist and the “represented scene” with its
vanishing point. The “represented scene” involves portraying
how the scene looks to the observer, be it the artist or the viewer
of the painting. To paint using linear perspective is implicitly
to include the subjectivity of the observer in the painting. The
painting is not merely the objectively rendered scene but the
scene painted from a certain viewpoint—the painted scene now
includes the eye of the observer. Thus the price of creating an
accurate rendition of the “scene as seen” requires one to include
the observing eye, and it is to this eye that the “vanishing point”
and the “orthogonal lines” make reference.

Even if one could still claim that “actual infinity does not
exist,” one has made an enormous stride toward working with
geometrical infinity as something concrete. It is not so surpris-
ing, therefore, that mathematics quickly came up with a geome-
try that describes this new situation. This new geometry is called
Projective geometry, because it studies the properties of geometric
tigures that remain unchanged under projection. “Projection” re-
fers to those hypothetical rays of light that would join a point in
the actual scene that is being painted to the corresponding point
on the two-dimensional canvas. It follows from what was said
above that parallel lines are not preserved under projection. But
what about that line that we called the “horizon” where parallel
lines seemed to converge?

Projective geometry takes the step of considering the horizon
as an ordinary line, a “line at infinity.” Every family of parallel
lines now meet in a point, a “point at infinity” on this line.
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Whereas in Euclidean geometry nonparallel lines meet in one
point but parallel lines do not meet, in projective geometry every
pair of lines meet at one point.! Thus all pairs of lines are now
on an equal footing, so to speak. And not only do all pairs of
lines determine one unique point but there is a unique line
that joins any two points. As far as projective geometry is con-
cerned, points and lines are dual to one another: in any theorem
the words “point” and “line” can be interchanged to give you
another valid theorem. This principle of duality was used to give
rather simple proofs of theorems that were previously quite
difficult.?
As Eli Maor points out,

The notion that a line is made up of points is so deeply
rooted in our geometric intuition that no one seemed to
have ever questioned it. Projective geometry, through the
principle of duality, dispelled this notion: it put point and
line on an equal footing, so that either could be regarded
as the fundamental building block from which the rest of
geometry is built.’ Thus by breaking with tradition, projec-
tive geometry. . .[opened] the door for a flux of new discov-
eries which greatly enriched mathematics and affected its
subsequent development. But all of this could not have hap-
pened had we not introduced, right from the beginning, the
points and line at infinity.*

Projective geometry is not the only place where points at in-
finity enter into mathematics. The real number system can be
extended to include either one or two points at infinity. The “two
infinity” situation includes what we might call +e and —e and
makes the real line into a closed interval that is equivalent in
some sense to [0,1]. In the “one infinity” situation the same infi-
nite point is obtained by going either right or left along the real
line. It amounts to adding one point to the real line, which
makes it into a circle (imagine taking a line and identifying the
two ends, as in figure 4.2). Within the extended system with one
infinite value, the statement that the function f (x) = x* tends to-
ward infinity as x tends toward infinity is no more mysterious
than saying that the function approaches the value 4 as x gets
close to 2.
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Figure 4.2. One point of infinity

The complex numbers have a geometric interpretation as
points on the two-dimensional plane, where the complex num-
ber 2 + 3i is identified with the point in 2-space with coordinates
(2, 3). It is conventional to add one complex point at infinity to
this system. In this manner we create what is topologically a
sphere—the so-called Riemann sphere (Figure 4.3). The way this
works is that one places an ordinary unit sphere on the plane in
such a way that the equator lies along the unit circle, the north-
ern hemisphere is above the plane, and the southern hemisphere
is below. One then draws lines from the North Pole to points on
the sphere. Each such line hits the plane in exactly one point,
and each point on the sphere is identified with the point in the
complex plane that is on the same ray emanating from the North
Pole. Notice that under this mapping, which is called “stereo-
graphic projection,” points in the southern hemisphere will pro-
ject to points on the complex plane inside the unit circle, whereas
points in the northern hemisphere will project to points outside
the unit circle. If we follow a ray in the complex plane starting
from the origin, we can see that the corresponding curve on the
sphere will approach the North Pole. Looking at things on the
sphere, the phrase “going to infinity” now has the concrete inter-
pretation of “going toward the North Pole.” In this way “infin-
ity” becomes just another complex number and can be handled
pretty much in the same way as any other complex number.
Therefore, a complex function can be “continuous or differenti-
able at infinity.” It can have a “singularity at infinity” or a “pole
at infinity” and so on.

The process of adding “ideal points” representing infinity is
well established in mathematics. There are usually various ways
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N

Figure 4.3. Stereographic projection

of constructing these “compactifications” of spaces. As we saw
above, the real line can be compactified by adding either one or
two infinite points. The complex plane has one infinite point—
the so-called one-point compactification but the plane itself
can be compactified in other ways—by adding a “circle at in-
finity,” for example. Different compactifications are useful in
different theories, but all involve the geometric reification of
infinity, making that vague and mystical idea of infinity into
one or many concrete points in a geometric, analytic, or topolog-
ical space.

PARADOX #5: Is GEOMETRY REAL?

For thousands of years Euclidean geometry was the definitive
mathematical theory—the theory of space. The expression “the
geometry of space” contains the reasonable assumption that
there is something real out there called “space” and that Euclid-
ean geometry is a way of discovering and codifying the preex-
isting properties of that space. However, there is another posi-
tion that one might take: that the Greek geometers created space,
that they created what we now call Euclidean space. Recall the
Greeks’ reluctance to accept concepts like zero or infinity that
did not correspond to objects that they considered real. So it is
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reasonable to imagine that the Greeks did not think of their ge-
ometry as creating space, nor was their geometry a theory of
space; for them Euclidean geometry was space. This identifica-
tion between space and Euclidean geometry was broken with
the advent of non-Euclidean geometries. This break was one of
the most significant intellectual revolutions of all time. In many
ways it marks the beginning of the modern era.

It is worthwhile to go back and spend some brief time looking
at some of the problematic aspects of Euclidean geometry. These
involved the seemingly straightforward idea of “straight line”
and, of course, “parallel lines.” These ideas contain unsuspected
subtleties that gave rise to paradoxes and inconsistencies that
ultimately led to the creative leap to new geometries, new ways
of looking at the relationship between geometry and the natural
world, and ultimately new ways of thinking about the nature of
mathematics itself.

I said earlier that Euclidean geometry was responsible for our
notion of space. It was not so much that this geometry described
space, as it was that the nature of space itself is inseparable from
Euclidean geometry. For millennia after the Greeks no distinc-
tion was made between Euclidean geometry and the real world
ostensibly described by that geometry. The theorems of Euclid-
ean geometry described the very nature of physical reality. You
could say Euclidean geometry was the geometric structure of the
natural world. Today we might say that the “was” in the previ-
ous sentence refers to the metaphoric nature of this relationship.
There are those who would say that the world is not an objective
entity that comes into a relationship with a subjective entity,
namely our minds, but rather our metaphoric constructions de-
termine the structure of the world that we experience.’ If this is
the case, then we can understand the power of the Euclidean
model. Newton, for example, believed that the world existed
within an absolute three-dimensional Euclidean space and all
the events of the universe happened within that container.® Even
today we “feel” that we live in a Euclidean three-dimensional
space even though the theory of relativity places us in a curved
four-dimensional space-time continuum.

This belief in the identity between Euclidean geometry and
the structure of the physical world seems strange to us today,
especially considering what has been said about straight lines
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and the parallel postulate. Indeed it was in the context of the
parallel postulate of Euclid that the absolute nature of this struc-
ture came tumbling down. The reader will recall that there had
been a long history of doubting the status of the parallel postu-
late. There was a general feeling that it was of a different nature
from the other postulates. It seemed more like a theorem than
an axiom, and the feeling was that it should be possible to derive
it from the other Euclidean axioms. An incredible amount of
mathematical ingenuity was devoted to this attempt. Mathema-
ticians succeeded in showing that there were many equivalent
formulations of the parallel postulate. One, which goes under
the name Playfair’s Postulate, stated that, “Given a straight line,
L, and a point, P, that is not on L, it is possible to draw a unique
line through P that is parallel to L.” This not only seems reason-
able, but given a piece of paper and a pencil any student in high
school can actually draw the required line.

What, then, was the problem? Remember that Euclid claimed
that all of his results followed from the axioms and the applica-
tion of standard logical reasoning; the results should not depend
on the particular pictures that were drawn. The theorems of Eu-
clid should be true for any system, for example, any geometric
system that contained classes of objects that satisfied the axioms.
In particular, straight lines did not have to be “straight” but
could be any collection of curves that satisfied the axioms.
Looked at in this abstract light Gauss, Nikolai Lobachevsky, and
Janos Bolyai produced geometries that satisfied all the Euclidean
axioms except one—the parallel postulate. These were the fa-
mous hyperbolic and elliptic non-Euclidean geometries. For ex-
ample, in the elliptical example due to Riemann, which takes
place on the surface of a sphere, “straight lines” are replaced by
great circles. Great circles are the routes taken by airplanes on
long voyages. They are formed by cutting the sphere by a plane
that goes through the center of the sphere. They are geodesics,
that is, routes that minimize distance. Any two such circles must
meet in two points, and so such a geometry has no parallel lines.

It is difficult to go back in time and appreciate the consterna-
tion that was evoked by the realization that Euclidean geometry
was merely one geometry in a whole family of possible geome-
tries. Today we have no difficulty accepting the “relativity” of
knowledge in the sense that scientific theories are models of real-
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ity that are valid for a certain range of phenomena but may al-
ways be changed for better and more exact models. We are in
the post-Euclidean world that arose precisely out of the crisis of
non-Euclidean geometry. However, before this revolution, Eu-
clidean geometry was the natural world. The philosopher Im-
manuel Kant even claimed that we are born with an a priori
knowledge of the Euclidean world—it is hard-wired in, so to
speak. There could be lacunae in Euclidean geometry, but these
did not matter very much because Euclidean geometry was
backed up by the nature of physical reality itself. They were the
same thing.” However, with the advent of non-Euclidean geome-
tries, a huge and unsettling question naturally arises. If these
geometries are models of the reality of physical space, how can
we come to know this reality? Is it only available to us through
the filter of some geometric model and so essentially unknow-
able in itself? Or, more radically, is there no reality at all and
we merely create the idea of space and thus our experience of it
through our adherence to some particular model?

In the light of non-Euclidean geometry the world became
much more complicated. Doubt had entered the mathematical
universe. This was the beginning of the loss of the certainty that
mathematical theories had seemed to provide to human beings’
investigation of the world.® There were now mathematical theo-
ries that applied to certain situations and not to others. The
axiom systems had to be tight enough to ensure validity on
strictly logical grounds and not through reference to a particular
model.

In an attempt to get mathematics back on firm ground, there
arose a new philosophy of mathematics. This was formalism, the
belief that mathematics consisted of deriving logically necessary
results from sets of consistent axioms. From the point of view of
the strict formalist, mathematics was a kind of game with no
meaning. The crucial thing was to feel secure that no errors were
being introduced into the reasoning process. Perhaps it would
one day be possible to program computers to reason in this way
and thus to produce mathematical theorems. Perhaps mathe-
matics was algorithmic. This was a powerful dream and it domi-
nated the thinking about mathematics for many years.

It is now believed that the great mathematician Gauss was the
tirst person to realize that non-Euclidean geometries were possi-

156



MORE PARADOXES OF INFINITY

ble. However, he refused to publish his results, perhaps realizing
what a furor this would cause. From the current state of mathe-
matical knowledge it is difficult to understand why anyone
would be bothered by yet another mathematical theory. To un-
derstand what the fuss was about, we must see the paradox in-
herent in non-Euclidean geometries—not in the results but in the
very existence of these geometries. It was as though a whole cul-
ture was built around the idea that Euclidean geometry was the
way things were and there could be no other way of looking at
the natural world. Then, all of a sudden, there was another way
of seeing. Faced with this paradox, with this impossibility, some-
thing fundamental has to give way. What dies is a particular
worldview and what is born in a rush of creativity is a whole
new world, a new and richer understanding of mathematics and
its relationship to the natural world.

CANTOR’S REVOLUTION: “COUNTING” INFINITY

Now I shall move on to consider a completely different way in
which infinity came to be used in mathematics. I stated in Chap-
ter 3 that there is an inevitable incompleteness about the concept
of the infinite—"infinity” is open-ended. The infinite has been
incorporated into mathematics in various ways; each such at-
tempt is important and has something to teach us but none of
them are definitive.

Recall that by the nineteenth century a consensus had been
attained with respect to the “correct” way to understand and use
infinity in mathematics. This equilibrium position was initiated
by the Greeks and lasted for more than two millennia. The con-
sensus, you will recall, involved distinguishing between process
and product. Infinity as process, the so-called potential infinity,
was acceptable to the Greeks, but infinity as object, “actual in-
finity,” was anathema. The notion of actual infinity, as I pointed
out in the last chapter, is implicit in the foundations of analysis,
in particular in the decimal representation of real numbers. This
really comes to the fore with the question of the nature of irratio-
nal numbers, especially those that have no familiar representa-
tion other than as decimal numbers. If you don’t believe in ac-
tual infinity it is hard to believe in the reality of irrational
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numbers.’ These questions came to a head in the work of Georg
Cantor, born in St. Petersburg, Russia in 1845. Cantor gave the
world a new way in which to work with the notion of actual
infinity based on the theory of sets. In his theory “infinity as ob-
ject,” that is, infinite numbers became as legitimate parts of the
mathematical firmament as the fractions, for example.

Cantor’s work is permeated with a mathematical richness
that, in most cases, is associated with counterintuitive, not to say
paradoxical elements. The underlying tension that generates
many of these paradoxes is that Cantor’s approach arises from
the experience of “counting,” and therefore his definitions are
often incompatible with other intuitions about infinity that arise
from different areas of experience—measuring, for example.
However, the many paradoxes that arise out of Cantor’s ap-
proach will give us a point of entry into the mathematical theory.

Parapox #6: CAN THE PART EQUuAL THE WHOLE?

The story begins not with Cantor but many centuries earlier
with one of the mathematical insights of Galileo. Galileo be-
lieved that it was given to man to understand the secret work-
ings and regularities of nature. However, he believed that these
secrets were not visible for all to see. They were encoded, so to
speak, and the code with which nature guarded her secrets was
mathematics. He said, “Philosophy [science] is written in that
great book which lies before our eyes; but we cannot understand
it if we do not learn the language and characters in which it is
written. This language is mathematics, and the characters are tri-
angles, circles, and other geometric figures.”! Thus it is interest-
ing that Galileo should be the author of the following paradox.
What he made of the fact that mathematics, the language of na-
ture, was capable of producing such anomalies we cannot be cer-
tain. However, he certainly managed to put his finger on a prob-
lem that would not be fully resolved for hundreds of years.
Galileo’s paradox involves the sequence of square numbers:

1,4=2x%x2,9=3x%x3,16=4x%x4,25=5x%x5,36 =6 x6, and so on.

Of course the collection of such numbers is infinite. Now com-
pare the collection of square numbers to the collection of count-
ing numbers as shown in figure 4.4a, b.
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12, 3]4,]5,6,7,8/9,]10, 11,12, 13, 14, 15, [16] 17, ...

Figure 4.4a. Less

1 2 3 4 5 6 7 8 9 10 ...
1 4 9 16 25 36 49 64 81 100..
Figure 4.4b. Equal

On the one hand, the collection of squares is “smaller” than
the collection of counting numbers since there are many num-
bers that are integers but are not squares. In fact the collection
of squares is clearly a “part” (or subset) of the collection of all
of the natural numbers. On the other hand, every square can be
matched up with the number of which it is the square; 1 with 1,
4 with 2, 9 with 3, 16 with 4, 25 with 5, 36 with 6, and so on. In
this matching all the square numbers as well as all the natural
numbers are accounted for, and each is counted exactly once. We
are led to the conclusion that there are exactly as many squares
as there are natural numbers. This is the paradox. Which is it to
be? Is the number of squares “equal” to the number of counting
numbers, or is the number of squares “smaller” than the number
of counting numbers?

The problem here lies with the idea of “equal” and the related
ideas of “larger” and “smaller.” The paradox is rooted in the am-
biguity of the notion of “equality.” There are two contexts at
play. The first is set theoretical: two sets are equal if and only if
they have identical elements. Thus the set of square numbers is
not equal to the set of counting numbers. The second context
involves “matching”: two sets are “equal” from this point of
view if their elements can be perfectly matched up in what we
call a one-to-one correspondence (figure 4.4b).

The paradox can be stated as “the whole (the counting num-
bers) is equal to the part (the square numbers).” Now remember
that the fifth “common notion” of Euclid was precisely that “the
whole is greater than the part.” This statement seems so obvious
that it appears to require no explanation; it seems to be true be-
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cause of the very definitions of the words. “Part” means smaller
than “whole” if they are referring to the same object, does it not?
Galileo’s paradox puts this self-evident notion into question.

Of course there is a nonscientific, mystical tradition that ap-
pears to say something else about parts and whole, and what it
says is related to the idea of the infinite. Recall the famous lines
of William Blake:

To see the world in a grain of sand,
And heaven in a wild flower,

Hold infinity in the palm of your hand
And eternity in an hour."

This seems to say that the part is equal to the whole in some
way. The modern sophisticated person might scoff at the ancient
notion that the whole of reality is somehow enfolded in every
segment of reality, no matter how small. However, this idea has
emerged in many ways in modern science, from the holograph
to the mathematical theory of fractals. In the latter, for example,
the notion of self-similarity is introduced. This means that the
pattern of the fractal is replicated exactly by arbitrarily small
pieces of the fractal. The whole here is indeed identical to the
part, albeit on a smaller scale. To use a more mathematical term
one might say that the part is isomorphic to the whole, where, for
now, isomorphism is to be understood in the sense that some
crucial structural features of the situation that we are interested
is common to both situations. This notion of isomorphism is
very powerful and basic and I shall return to it in Chapter 5.
Galileo’s paradox is ultimately resolved by a breakthrough—
the invention of a new way to think about infinity. This new idea
is interesting because it involves going backward, so to speak,
in the direction of more elementary ideas in a manner that is
reminiscent of Halmos’s comment that the questions of the infi-
nite are resolved by solving “finite” problems. In this case it in-
volved thinking carefully about a very basic idea—the idea of
“counting.” What is counting? It involves “matching” the ob-
jects you are counting and the “counting numbers,” namely, 1,
2, 3, 4, etc. The last number in the sequence is the number of
objects in the collection that you are counting. Counting there-
fore involves matching the collection that you intend to count
against a standard reference collection, the natural numbers.
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e

Figure 4.5. Counting as a one-to-one correspondence

Counting is the informal term for certain kinds of one-to-one
correspondences. (A “one-to-one correspondence” is the techni-
cal name that we give to the normal idea of “matching.”)

Now what is more elementary “matching” or “counting”? We
have seen that counting involves matching, but is it possible to
match without counting? The answer is, yes, of course it is possi-
ble. Suppose that two children both have large collections of
marbles but cannot count past three, say. Can they decide
whether they have the same number of marbles? Certainly they
can. They just need to match the marbles in one collection with
the marbles in the other. If all the marbles in both collections get
matched up with none left over, that is, if there exists a one-to-
one correspondence between the two collections, then the chil-
dren have the same number of marbles.

It follows that it is possible to determine the “cardinality” of
sets using only the notion of matching. Two sets of objects have
the same cardinality if their elements can be matched with one
another in such a way that nothing in either collection is left out.
The stroke of genius was to apply this idea—one that is self-
evident for finite sets—to infinite collections. Cantor’s genius
also involved sticking to his intuition that this was the correct
way of thinking about the size of sets in the face of the seemingly
bizarre results that followed from it. And one of the bizarre re-
sults was that the whole could now be “equal” to the part. Of
course “equal” now took on the precise meaning of “can be
matched up with” or “has the same cardinality.”

The same idea of the equivalence between the whole and the
part forms the basis for the paradoxical tale that is due to David
Hilbert (1862-1943). It is the story of an “infinite motel” (actually
Hilbert talked about a hotel, not a motel). This story is con-
structed in such a way as to bring out strongly the manner in
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which an infinite set can be said to have the same size as a
proper subset of itself. It goes as follows.

There is a motel that has an infinite number of rooms that are
numbered in order: room 1, room 2, room 3, and so on. Suppose
that each of the rooms has somebody in it; that is, there are no
vacancies. Now suppose that a new customer arrives at the desk
and asks for a room. “No problem,” says the ingenious clerk.
“We can move the person in room 1 to room 2, the person in
room 2 to room 3, and so on. Every person will move to the next
room and this will leave room 1 vacant and the new person can
move into this room.” So the question is, was the motel origi-
nally full or not? If it was originally less than full, then just
where were the empty rooms? If it was full, then how was there
room for another person? These are the considerations that
make the story of the infinite motel paradoxical. (Of course if we
can make one room vacant in this way then we can make two
rooms vacant by repeating the process twice. In fact we could
make a million rooms vacant, and even better we could empty
out an infinite number of rooms—all the odd numbered rooms,
for example. Do you see how?)

The paradox of the infinite motel is also a paradox of whole
and part. Somehow the same configuration of motel rooms
will accommodate both the initial group of people and a larger
group. Thus a smaller group would seem to be “equal” to
a larger group that contains it, that is, the whole is equal to
the part.

In the paradox of the infinite motel what is going on is that
we are matching up the set of rooms, which we designate by the
counting numbers: R1 (for Room 1), R2, R3, ... with the set of
guests which we designate by G1, G2, G3, . . . Initially the rooms
and the guests match up in the obvious way: R1 < G1, R2 <
G2, R3 <> G3, etc. Then there is the problem of the additional
guest, let us call her G0. We create a new matching in the follow-
ing way: R1 < GO, R2 < G1, R3 < G2, etc. In this way every
room is matched with a person with no rooms or people left out.
Since both collections {G1, G2, G3, ...} and {GO, G1, G2, G3, .. .}
are matched with the set {R1, R2, R3, ...} they have the same
cardinality. In a sense this is saying that as far as cardinality is
concerned infinity is equal to infinity plus one.
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Set equality is not the same as cardinality equality. Two un-
equal sets can indeed be matched. It turns out that every infinite
set has the property that it can be matched perfectly with some
(proper) subset. In fact this property could be taken to be the
defining property of infinite (as opposed to finite) sets. A set is
infinite if and only if it has the same cardinality as one of its
subsets. What has happened here is that our paradox, “the
whole equals the part” has now become the defining property
of the infinite.

COUNTABLE INFINITY: INFINITE SETS
TaaT CAN BE LISTED

Countable infinity is the cardinality of the counting numbers. It
is usually represented by the symbol X, aleph null. It is the in-
finity with which we are most familiar. In fact, a set is countably
infinite if its elements can be arranged in an infinite list. The de-
fining characteristic of a list is that it has an order; there is a first
element, a second, a third, and so on. For example, the set of
even integers is countable because they can be listed: 2, 4, 6, 8,
... So is the set of odd numbers. The set of all integers is count-
able because it can be written in the following way: 0, 1, -1, 2,
-2,3,-3, ... Now this isn’t the usual way of writing the integers.
The usual way is ..., -3,-2,-1,0,1, 2, 3,... However, the fact
that the integers can be written in a list makes them countable.

Notice that from the usual point of view everything we are
saying is problematic, not to say paradoxical. Since the positive
integers and the negative integers have cardinality X, the state-
ment that all of the integers are countable could be written as
Ry + Xy = X (*). That is, if you put together two countably infi-
nite sets (take their union), the resulting set is also countably
infinite. So the arithmetic of infinite cardinal numbers does not
follow the same rules as ordinary arithmetic. In fact, Cantor was
able to prove that the union of a countably infinite collection of
infinite sets is also countably infinite. In symbols we would
write Ry + Xy + Xy +... = Xy (**). When you stop to think about
it, both of the seemingly paradoxical equations (*) and (**) are
statements of “the whole is equal to the part.”
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THE RATIONAL NUMBERS ARE COUNTABLE

Now a naive approach to the question of the cardinality of the
set of all fractions would lead a reasonable person to conclude
that there are vastly more fractions than there are natural num-
bers. A fraction is determined by a pair of integers and, in a
sense, pairs are two-dimensional whereas single numbers are
one-dimensional. I shall return to the question of dimensionality
later on, but for now let’s just say that it seems reasonable to
think that a higher-dimensional set is “larger” and paradoxical
to assert that it is not. In the case of rational numbers there are
certainly many proper subsets that are copies of the natural
numbers, for example, the set {(1/1), (2/1), (3/1), (4/1), ...} but
also {1/2,2/2,3/2,4/2, ...} and so on.

When one sets out to answer the question about the cardinal-
ity of the rational numbers, one begins by attempting to create
a possible list. Try it for a moment. What you are doing is creat-
ing an order for the rationals with a first, a second, a third, and
so on. The problem is that the rationals come equipped with a
perfectly good order and that order is size, that the rational
number 7 is less than s if s — ¥ > 0. In practice we know that
10/11 < 123/131 because 1310 (10 times 131) is less than 1353
(11 times 123). Most people would proceed to try to list the ratio-
nals using the regular order according to size. This, of course,
does not work (what fraction would be first?) and might lead to
the erroneous conclusion that the rationals cannot be listed, or
that there are more rationals than integers.

The genius of Cantor is that he ignores the normal order and
constructs a completely new way of ordering the rationals.
Again we encounter the phenomenon that the insight involves
focusing on the new definition of cardinality as matching and
ignoring the additional structure that happens to be present.

Once discovered, the argument is very simple. There is really
nothing more to it than drawing the correct picture. Consider
the following array:

/1 1/2  1/3 1/4.....
2/1  2/2  2/3 2/4.....
3/1 3/2 3/3 3/4.....
4/1  4/2  4/3 4/4.....
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Order it in the following way:
(1/1),(1/2,2/1),(1/3,2/2,3/1),(1/4,2/3,3/2,4/1),....

Notice that in the first bracket numerator and denominator add
up to 2, in the second they add to 3, in the third to 4, and so on.
Notice also that every (positive) fraction appears in the list. Thus
we have listed all the positive rationals. We can similarly list all
the negative rationals and combine the two lists to get one mas-
ter list with all of the rational numbers.

Simple but brilliant!

THE SET OF ALL “KNOWABLE” NUMBERS Is COUNTABLE"

The method of argument that was used to show that the set of
rational numbers is countable can be used to show that the
union of countably many countable sets is countable. That is, if
Aiis a countable set fork=1,2,3, ..., then Uy, = {a:a € A, for
some k} is also countable. If even putting together an infinite col-
lection of infinitely countable sets only results in another count-
able set, one might be tempted to say that there are no other
kinds of sets, that all sets are countable. This is a powerful intu-
ition; that is, the notion of countable infinity captures something
quite fundamental about the nature and limits of what human
beings can know.

Suppose that we are given a finite set of symbols such as the
English alphabet augmented by punctuation marks, spaces, and
such additional symbols that may be needed to write down a
phrase or sentence in English. Call a number “knowable” if it
can be described or named by some phrase or sentence. For ex-
ample, “twenty-two” is knowable, and so is every integer and
fraction. The number © is knowable, since it can be described as
“the ratio of the circumference to the diameter of a circle.” The
square root of two is knowable, since it is described by “the posi-
tive number that is a solution to the equation x squared minus
two equals zero.” Similarly the solution to any polynomial equa-
tion whose coefficients are integers (the so-called algebraic num-
bers) is knowable. Thus every number we could describe now
or in the future is knowable.

So how many knowable numbers are there? Well one could
consider all possible sentences in the letters and symbols of our
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language. Let B, be the set of all expressions that can be written
using one letter or symbol from our language. Let B, be the set
of expressions that can be written with two. and, in general, let
B, be the set of expressions that can be written with n letters and
symbols. Now each one of these sets is countable, in fact finite,
and we could put it into a list by first ordering the original set
B, of letters and symbols and then ordering the elements of B,
in the way they would be ordered in a dictionary—first by the
tirst symbol and for those with the same first symbol by the sec-
ond symbol, and so on until we have ordered all of the sets B,.
Then the set B of all possible expressions is equal to the union
of all these finite lists. This set, by the above reasoning for the
rational numbers, must also be a countable set. Now the set of
“knowable” numbers arises from a subcollection of B and so
must also be countable.

PArRADOX #7: MULTIPLE INFINITIES

In the light of the previous discussion it would be entirely rea-
sonable to doubt that there could possibly be infinite collections
of numbers whose cardinality is not countable. Yet there are in-
deed other infinite cardinal numbers that arise in mathematics.
They are right under our nose, so to speak, but to identify them
and demonstrate the existence of other infinities requires a bit
of genius.

If infinity is a problematic notion, how much more so is the
idea of multiple infinities. After all, infinity is a defining charac-
teristic of divinity, is it not, and the mathematics we are talking
about was developed in a monotheistic religious context. There
is something vaguely pantheistic, not to say “primitive,” about
the notion of two infinites. Isn’t infinity something absolute, like
beauty or excellence? There seems to be something wrong about
the phrase “more excellent.” Something is either excellent or not
excellent. Maybe this is one of the problems that Aristotle and
all those who came after him were trying to save us from by
banning the use of “actual infinities.” It is bad enough to deal
with infinity as a well-defined mathematical concept. It is worse
to have a situation of multiple infinities of various sizes. Isn’t
infinity by definition absolute and incomparable? Having multi-
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ple infinities seems to contradict those very properties that we
would like the infinite to possess.

Nevertheless Cantor, who was now armed with a precise
definition of cardinality, could legitimately investigate the cardi-
nality of other infinite sets. Since all the sets he had so far en-
countered were countable, he could ask whether in fact all sets
were countable. In fact he was able to show that:

Theorem: The cardinality of the real numbers is not countable.

“" 7

(This new cardinal number is usually denoted by “c” for contin-
uum. So the theorem proves that ¢ # X,.)

Proof: Notice that what is required here is to demonstrate
that it is impossible to put all the real numbers into one infi-
nite list. As usual the only possible approach is to argue by
contradiction. Assume that the real numbers are countable
and therefore that it is possible to list all real numbers. Let
us write down this list:

Vi, Vo, V3, Ty oo v

Now each r, is a real number, so it can be written as an infi-
nite decimal (if the decimal is finite, then just add a tail of
0s). Now our list looks like

rn=mnyNphahy...,
Ty = Mo My N3 Moy - . -,
T3 = N3 Nz N33 N3y . - .,
Ty = Ny Ny Ny3 Nyy - . .,

Remember that by assumption this list contains all real
numbers. Of course it doesn’t really—that is only our as-
sumption. What we really want is to produce a contradic-
tion. This contradiction will be that in fact the list cannot
contain all real numbers. Why not? Because we shall now
find a number that cannot possibly be on this list. Call this
new number r and we can give a formula for determining
its decimal representation. Write r as an infinite decimal
using the notation

r=mnmnnyhy...,
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so we need to give a rule for determining the digits n,, n,,
1, . ... It's easy; all we have to do is change all the diagonal
terms (the terms in bold) in the infinite array above:

ny # Ny,
N3 # Na3,

and so on. We could do this in many ways, but to be
definite,

Letnl:5ifn11¢5andn1:7ifn1]:5.
Letn2=5ifn22¢5andn2=7ifn22=5.
Letns;=5if nyz #5 and n; = 7 if nz3 = 5.

And so on. Then the number r cannot equal r; since its deci-
mal representation differs from it in the first place. It cannot
equal r, since its decimal representation differs from it in
the second place. And, in general, it cannot be equal to any
of the members of the list. Thus r is a new number that is
not on the list. This contradicts the assumption that you
could put all real numbers on the list. It follows that no list
is possible, and so the real numbers are uncountable. m

Now this is a seminal result in the recent history of mathematics,
and it is equally important for the analysis of mathematics that
I am putting together. Let us start with the argument. As usual,
it is an argument by contradiction. The contradiction is internal,
one that depends only on the terms and ideas contained within
the argument itself. In fact the argument depends on only two
ideas: countability and the decimal representation of real num-
bers. Consider the latter. Even though Cantor is given credit for
being the first person to deal with infinity as an object, in fact
the proof depends on the fact that real numbers are objects with
a representation as infinite decimals. This representation, as we
have seen, amounts to reifying an infinite process. By the time
of Cantor, it was acceptable to think of an infinite series as a
number. In a sense, the argument for the uncountability of the
real numbers builds on that accomplishment.

Why was there such resistance to Cantor’s ideas and meth-
ods? I have already mentioned the long-standing prohibition
against treating infinity as an object. But in addition there was
the feeling that somehow Cantor was cheating. He was achiev-
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ing too much, too easily. To see this, we must take a moment to
look at a consequence of noncountability of the reals. Recall that
the reals are made up of two kinds of numbers: the fractions or
rational numbers, and the others, the so-called irrational num-
bers. That is, an irrational number is merely one that cannot be
written as a fraction; think of the square root of two, for exam-
ple. Suppose that the set of all irrational numbers were count-
able. Since we have shown that the rational numbers are count-
able and we know that the union of two countable sets is
countable it would follow that the set of all real numbers was
countable. However, Cantor has shown us that this is not true.
This small argument by contradiction shows us that:

Corollary 1: The set of all irrational numbers is uncountable.

This is a result that bothered many people. You may recall from
an earlier chapter that it took a considerable argument to prove
that one number, the square root of two, is irrational. In the same
way one can show that other roots are irrational. There are also
a few other numbers that one can show to be irrational, but alto-
gether all the numbers that one can directly show to be irrational
form a countable set. Here was Cantor with one relatively sim-
ple argument proving that there were a vast number of irrational
numbers, that there were, in fact, many more irrationals than
rationals. This is very strange. There are all these irrationals but
we do not know most of them in the sense that we know the
rationals, the roots, or even the numbers that the Greeks could
obtain through geometry, the so-called constructible numbers.
Things are even worse than this. An algebraic number is one
that is the solution to a polynomial equation with integer coeffi-
cients. All the rationals are algebraic numbers since m/#n is the
solution to the equation nx — m = 0. The square root of two is
the solution to x* — 2 = 0. Similarly all the square roots, cube
roots, and other roots are algebraic. Now the set of all algebraic
numbers is countable. The reason for this is that there are a
countable number of equations of order n forn =1, 2,3, ...,
Since the countable union of countable sets is countable, this im-
plies that there are a countable number of such equations. Each
equation has only a finite number of roots, and so there are a
countable number of roots, that is, of algebraic numbers. The
numbers that are left over are called the transcendental numbers.
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How many transcendental numbers are there? That is, what
is the cardinality of the set of transcendental numbers? It follows
from the same reasoning we used above for the irrationals that

Corollary 2: The set of all transcendental numbers
is uncountable.

Now this is an even stranger result. Euler was the first to specu-
late that transcendental numbers even existed, and Joseph Liou-
ville in 1844 was the first to produce an example of a specific
transcendental number. The most familiar transcendental num-
ber is the number &, but the proof that & was transcendental did
not come until after Cantor had constructed his theory. Thus we
have the paradoxical situation that most real numbers are tran-
scendental but we are familiar with almost none of them. In fact
things are even “worse” than this. Remember that we showed
that the set of all “knowable” numbers was countable. Using the
same reasoning, it follows that

Corollary 3: The set of all “unknowable” numbers
is uncountable.

This is indeed a strange and paradoxical result. The set of indi-
vidual numbers that can be “known” (in the sense of being de-
scribed or constructed in some finite language) is countable. It
must follow that the remaining numbers are “not knowable,”
yet we can and do “know” them as a set by proving that they
collectively have properties such as those described in Corollar-
ies 1, 2, and 3. We know these remaining numbers in one sense
but do not know them in another. This is the paradoxical situa-
tion that was forced on mathematics from the time of the intro-
duction of irrational numbers but was made more explicit
through Cantor’s investigations.

We have seen how the real number system—this vast expan-
sion of the concept of number—imposes itself on mathematics.
Our vaunted real number system, the basis for calculus, differ-
ential equations, and almost all of physics, is composed of a rela-
tively small set of numbers with which we are familiar together
with a much larger set of numbers with which we have no expe-
rience and of which we know little or nothing. And as Corollary
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3 says, in some sense we can know nothing about “most” real
numbers. Thus the price of constructing the real number system,
and in this way resolving some of the ambiguities of Greek
mathematics, was the introduction of a vast collection of “new”
numbers that must inevitably retain a certain mystery and
“unknowability.”

Not all mathematicians were willing to make that particular
bargain. They concluded that any way of thinking that could
produce such bizarre results must be fundamentally flawed. But
where was the mistake? There were two possible areas to attack.
Perhaps the entire theory of Cantor was intrinsically illegitimate.
This would be the critique of “actual infinity” as mathematical
object, which we have already discussed. The second was to
look at the argument itself and note that the key arguments are
arguments by contradiction. Maybe there was something wrong
with the kind of argument that could demonstrate the existence
of an infinity of numbers of a certain type (irrational, transcen-
dental, or “unknowable”) without being able to produce a single
instance of such a number. Talk about a paradox!

This paradox exists by virtue of proof by contradiction. After
all, how do you say something directly about a number about
which you know very little? All you know about irrational and
transcendental numbers is negative. An irrational number is not
rational, a transcendental number is not algebraic, and, of course
an “unknowable” number is not “knowable.” The only way to
reason about them is negatively, that is, by contradiction. If one
were to disallow such reasoning, one could avoid the seemingly
paradoxical results that followed.

In retrospect, although one can sympathize with this reaction,
mathematics followed the path of development. As was the case
with the parallel axiom of geometry, mathematics grew to in-
clude the new theories and ways of thinking. It absorbed the
aspects of the new developments that were contradictory or par-
adoxical at the time of their introduction. However, the infinite
cardinal and ordinal numbers of Cantor are just mathematical
concepts, no different in kind from other mathematical concepts.
Each deep concept—I am thinking of zero, for example—
changed the mathematical and therefore the human landscape.
Many appeared paradoxical, or, rather, did indeed have a para-
doxical aspect to them. When they became part of normal math-

171



CHAPTER 4

ematics, mathematicians learned to take them for granted. Math-
ematics then moved on to the next frontier and forgot about the
paradoxical elements of past mathematical development. It is
only when mathematics is taught and teachers see the difficul-
ties that students experience in grasping these concepts, that one
becomes aware that these difficulties are real. The paradoxes of
the past have become the “epistemological obstacles”™ that stu-
dents face in the present.

(0, 1) has the same cardinality as (0, 2)

Cardinal numbers give one way of measuring the “size” of a set.
Using this measure, the set of all rational numbers is “smaller”
than the irrationals, the transcendentals, or the reals. Of course
there are other measures of size. One that was mentioned above
was set inclusion—a set is “larger” than any of its proper sub-
sets. As we have seen, one of the difficulties of working with
infinite collections is that a concept like “size,” which has a clear
meaning in the context of finite sets, can take on multiple mean-
ings in the context of infinite sets.

When it comes to measuring the size of line segments, the
most intuitive measure is the length of the segment; the set of
real numbers between 0 and 1, (0, 1), has length one whereas
(0, 2) has length two. (0, 1) is thus “smaller” than (0, 2) but, sur-
prisingly, it has the same cardinality! This is really another varia-
tion on the story of the whole and the part and could be consid-
ered as a paradox in its own right, one that is often attributed
to Bernhard Bolzano (1781-1848). Bolzano was a priest, philoso-
pher, and mathematician who did fundamental work in the
foundations of analysis. He was inspired to extend Galileo’s
thinking concerning the one-to-one correspondence between in-
finite sets to the situation of intervals of numbers. Consider the
function y = 2x. To every number x between 0 and 1 there corre-
sponds precisely one number y = 2x between 0 and 2. Looking
at this correspondence from the other direction, that is, starting
with y, every number y between 0 and 2 corresponds to the num-
ber x = y/2 between 0 and 1 (figure 4.6). Therefore, the set (0, 1)
matches up perfectly with the set (0,2), that is, they have the
same cardinality.
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Figure 4.6. Matching (0,1) and (0,2)

The argument may seem to be very simple, but remember that
Bolzano is creating a correspondence between sets both of which
have an uncountable infinity of elements. Not only does 1/3
match up with 2/3 but V@ /2 matches up with V@, /4 with /2,
and so on. We are making a definitive statement about a vast
collection of mathematical objects most of which are transcen-
dental numbers and thus poorly understood.

In fact there is nothing special about these two particular in-
tervals; any two intervals of real numbers have the same cardi-
nality. For example, if we wish to match up (0,1) with (0,10) we
need only multiply by 10 instead of 2. In general, we have:

Proposition: All finite intervals regardless of length have the
same cardinality.

In fact the situation is even more counterintuitive. Cardinality,
which was introduced to measure the “size” of infinite sets,
does not distinguish between the length of finite and infinite
intervals!
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A Finite Interval has the Same “Size” as an Infinite Interval

In particular the unit interval (0,1) has the same cardinality as
the set of all real numbers. To establish this fact, all that is neces-
sary is to produce a matching between these two sets. This is
easily established by the function

foo=-2=1

x(x-1)
The graph of this function clearly indicates that this function
matches the set {x: 0 < x < 1} on the x-axis with all the real num-
bers on the y-axis (figure 4.7).

In the same way, it is not difficult to show that all intervals,
finite or infinite, have the same cardinality, that is, the same
number of points. The last result is interesting because it juxta-
poses two different ways of thinking of infinity. The first consid-
ers infinity to be a cardinal number, the second a length. One’s
“feeling” or intuition of infinity in one situation doesn’t carry
over to the other. It is this inconsistency which when placed
against the idea that infinity is unique accounts for the feeling
of paradox.

TaeE CANTOR SET

One of Cantor’s most ingenious ideas was the construction of
the set that now bears his name. The Cantor set is one of the
most beautiful mathematical objects. Its properties are subtle
and appear paradoxical in various ways, one of which again in-
volves the equating of a part to a whole. The unraveling of these
paradoxes gives us a deeper insight into the nature of the real
number system and sets the stage for many far-reaching devel-
opments in mathematics.

The previous example showed that our intuition of size in
terms of length does not correspond to size as measured by
cardinality. But the situation is even more complex. It is possible
to assign a “length” to sets of numbers that are not intervals.
The simplest such set would be the union of two intervals,
say {x: either 0 < x <1 or 2 < x < 4}, thatis, (0, 1) U (2, 4). It
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2x-1
x(x-1)

Figure 4.7. Matching (0,1) and the real numbers

would seem reasonable to give this set the length 1 + 2 = 3. On
the other hand, if a closed (including its end-points) interval
[a, b] has length b — a, it would be consistent to assign a point
the length 0 since it could be considered the length of the trivial
interval [a, a].

Now lengths are additive, so any countable set would also
have length zero (0 + 0 + 0 + 0 + ... = 0). Thus the rationals
would have length 0 and the set of irrational numbers between
0 and 1 would have length equal to the length of [0, 1] minus
the length of the rationals in [0, 1], that is 1. This accords with the
cardinality measure of size that would also have the irrationals
“larger” than the rational. However, Cantor has a surprise in
store for us—the construction of a set which has “length” 0 but
cardinality equal to that of all of the real numbers, that is, a set
that is small in one measure but large in the other. This beautiful
example is really another paradox of infinity.
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Figure 4.8. Construction of the Cantor set

CONSTRUCTION OF THE CANTOR SET

The Cantor set is constructed in stages:

Stage 0: Start with the interval, C, = [0,1].

Stage 1: Remove the middle third interval (1/3, 2/3),
leaving C; = [0, 1/3] U [2/3, 1].

Stage 2: Remove the middle third of all intervals in C;,
leaving C, = [0, 1/9] v [2/9,1/3] v [2/3,7/9] L [8/9, 1].

Stage n: Remove the middle third of all intervals in C,_;,
leaving C, = 2, intervals, each of length 1/3,.

The Cantor set, C, consists of all the points, if any, that are left
after this infinite process is completed, that is the points of C
would be members of C, for all values of n. Are there any such
points? Well certainly there are, since 0, 1, 1/3, 2/3, 1/9, 2/9,
7/9,8/9, ... and all the endpoints of the intervals will never be
removed. However, there will be no intervals in C since we have
removed the middle-third of all intervals. So what kind of a set
is C, and how big is it?

C has length zero

Consider the length of the intervals that are removed form [0,1]
to form the Cantor set:
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3 9 27

This is a geometric series and its sum is known to be a/(1 — ),
where a = 1/3 is the first term and r = 2/3 is the common ratio.
Thus the series adds up to 1. Since what is removed has length
1, the set that remains can only have length equal to the length
of [0,1] minus the length of the removed set, thatis, 1 -1 = 0.
We have shown that C has length 0.

C has the cardinality of the real numbers

If we write the numbers between 0 and 1 as decimals to base 3
instead of using the usual base 10 notation, it is easy to pick out
the points that remain in the Cantor set. Recall that the notation
for decimals to base 3 is identical to decimals to base 10 except
that all powers of 10 are replaced by powers of 3. Thus .12
(base 3) stands for 1/3 + 2/9 instead of the usual 1/10 +2/100 =
12/100. There are infinite decimals in base 3 notation such as
J111. . . (base 3), which stands for
1yt a’ 1
3 ¥ 3 1-(1/3) 2

Now base 3 notation has a simple geometric interpretation. It
involves breaking the interval [0, 1] into three equal intervals (of
length one-third), subdividing these into three (now of length
one-ninth), and continuing in this way forever, each time subdi-
viding every interval into three of length one-third of the origi-
nal. The base 3 notation is an address that tells you the location
of the point with respect to these various intervals. If it begins
with .1. .. (base 3), the point will belong to the middle-third in-
terval. If it begins with .12. .. (base 3), it will belong to the mid-
dle-third interval and to the right-hand or largest interval when
that middle interval is divided into three. The first two digits
after the decimal point allow us to locate the point up to an accu-
racy of one-ninth. The point x = .12. . .(base 3) must lie between
5/9 and 6/9. Thus the decimal representation describes the posi-
tion of a number with respect to precisely those intervals that
we used to construct the Cantor set.

177



CHAPTER 4

All the points that are removed at Stage 1 above have a 1 as
their first digit after the decimal point. Recall that 1 in the first
digit (base 3) stands for 1/3. The points that remain after stage
1 can be represented (to base 3) as either .0. ... or .2... Stage 2
will remove the points with a 1 in the second place (base 3), leav-
ing points that look like .00. . . or .02. .. or .20. .. or .22. ... Con-
tinuing in this way we can see that the set C consists of exactly
those numbers that can be written to base 3 without any 1’s. For
example, .2 or .022 or .020202. . . are all points of this type. How
many such points are there?

Now there are the same number of decimals with 0’s and 2’s
as there are of decimals with 0’s and 1’s since, for example,
.020202. . . would be uniquely associated with .010101. ... But
every number between 0 and 1 can be written as a decimal with
0’s and 1’s, since this is the base 2 representation of a number.
(The base 2 representation of a number follows exactly the same
principles as the base 3 representation except that the only digits
allowed are 0’s and 1’s and all powers are powers of 2 instead
of 3.) Therefore, there is a one-to-one correspondence between
C and [0,1]. For example, the real number 1/4 has base 2 repre-
sentation .01 (= 0/2 + 1/4) so it would match up to the number
with base 3 representation .02, which is in C and is equal to 2/
9. Thus C has the cardinality of the real numbers, c.

In summary, we have proved the counterintuitive proposition
that a set can be simultaneously large (cardinality ¢) and small
(length 0).

The Cantor set is really an extraordinary mathematical object
with many properties that have not been mentioned yet. One of
these properties is self-similarity. For example, if you look at the
portion of the Cantor set that lies between 0 and 1/3 it is identi-
cal to the whole Cantor set except for size. That is, if you blow
up the first third of the Cantor set by a factor of 3 you will get
the whole thing. This is true for any part of the Cantor set that
lies in one of the intervals that we used to construct C. Equipped
with our base 3 notation we can easily see why this is so. Since
the Cantor set consists of all points whose decimal base 3 con-
sists only of 0’s and 2’s, the first third consists of all such points
that begin with a 0. These points match up perfectly with all of
C by simply matching every point .0abcd. . . in this interval with
the point .abcd. . . in the whole of C.
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In other words, the Cantor set has the property of being self-
similar—any segment, no matter how small, is essentially identi-
cal to the whole set. In this way “the whole is equal to the part”
or “the part contains the whole.” The Cantor set is in a sense the
most elementary fractal and is thus the beginning of that fasci-
nating story in the recent history of mathematics.

The square has the same “size” as the line

The paradox of the whole being equal to the part is brought out
even more dramatically by the paradoxical result that the square
has the same cardinality as the line. Not only does cardinality
not respect length, but it does not even respect dimensionality.
This is again counterintuitive, another paradox. Dimension is
one of the most elementary characteristics of the natural world.
Lines and circles are one-dimensional (it requires one number to
locate a point on these figures); surfaces are two-dimensional;
solids are three-dimensional.

In a sense dimension is another possible way of determining
size. Intuitively speaking, a two-dimensional set is “larger”
than a one-dimensional one, that is, there are more points in
two dimensions than in one. Surely the plane is “bigger” than a
line. For one thing, two-dimensional figures have positive area
whereas one-dimensional figures have area zero.

Cantor himself initially believed that a higher-dimensional
figure would have a larger cardinality than a lower-dimensional
one. Even after he had found the argument that demonstrated
that cardinality did not respect dimensions: that one-, two-,
three-, even n-dimensional sets all had the same cardinality, he
said, “I see it, but I don’t believe it.”"® He was aware of how
upsetting this result would be to other mathematicians, many of
whom would see this as indicating that there was some problem
with the definition of cardinality. What good was this definition
if it could not even distinguish between dimensions?

Nevertheless what is one to make of the following argument
which purports to match the points of the unit interval I = {x: 0
< x < 1} with those of the unit square

S={x,y:0<xy<1}.

Cantor’s argument is again simple but ingenious. In the manner
of Descartes, every point in the square is determined by its two
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coordinates x and y, both of which are real numbers and can
therefore be written as infinite decimals:

X=X1XpX3X4...,
y:.y1y2y3y4....

We make these two real numbers correspond to the single num-
ber whose decimal representation is given by

Z=.x1y1x2yZX3y3....

For example, the point in the square with coordinates (1/2,
1/3) or (.5000, .333. ..) would correspond to the single number
.53030303. . ., which turns out to be 1/66. Conversely, the num-
ber 12/99 = .121212... would correspond to the point in the
square with coordinates (.111. . .,.222...) =(1/9, 2/9). This is not
just any correspondence: it is a one-to-one correspondence since
every pair of numbers gives rise to precisely one number and
conversely every single decimal number can be “decoded” to
give a pair of infinite decimal numbers. Thus the square and the
interval have the same cardinality. As a generalization it can be
shown that the cube in three dimensions, the hypercube in four
dimensions, and even the higher-dimensional analogues of the
cube in n-dimensional space for any positive integer n all have
the same cardinality. Notice how this uses the fact that real num-
bers have a representation as infinite decimals.

It follows from our discussion that there are (at least) three
different ways of determining the size of infinite sets: the count-
ing size or cardinality and two geometric measures, the length
of intervals and the dimension. Cantor’s paradoxes involved the
juxtaposition of these notions. As usual, the paradoxes indicate
that the “size” of a set is a complicated mathematical notion that
can be considered from various perspectives. The notion of
length leads in the direction of measure and probability theory.
The notion of dimension itself can be formulated in various
ways and further investigated in topology and in the study of
fractals, those generalizations of the Cantor set that were spoken
of above. Even the difference in dimension between the interval
and the square is a subtle matter. It is not a matter of the cardi-
nality of the underlying sets. However, there is an interesting
difference: if you remove a point from the interval you have di-
vided it into two connected pieces, but if you remove a point
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from the square it remains connected. This is a topological dis-
tinction between these two geometric figures—what is called a
“topological invariant.” A topological invariant is not preserved
under ordinary one-to-one correspondences but is preserved
under one-to-one correspondences that are continuous and
whose inverses are continuous, so-called “homeomorphisms.”

INFINITESIMALS'

In this chapter, I have discussed various ways in which the no-
tion of “infinity” is used in mathematics. We saw how many
problems about “infinity” were resolved by the adoption of
what has become the standard approach to the real number sys-
tem. This standard manner of looking at the foundations of anal-
ysis is to a large extent due to the work of two men—XKarl Weier-
strass (1815-1897) and Cantor. In my attempt to demonstrate
how the paradoxes and problems of mathematics are often re-
solved by moving to a “higher” or more general point of view,
I may have inadvertently given the impression that this “stan-
dard” viewpoint is definitive—that the theory of the real num-
bers that we have created is the last word, the Truth, the only
way to look at analysis. This is not my position; indeed it would
not be consistent with my claim that “infinity” can never be
completely pinned down—there will always be new ways to
think about infinity, new ways to mine its riches to the benefit
of mathematics and science. The infinite cardinal numbers arise,
as we have seen, from generalizing the mundane activities of
counting and matching. However there are other legitimate in-
tuitions about infinity that can be turned into fruitful mathemat-
ical concepts—measuring numbers, for example.”

To make this point I will now turn to another tradition, one
that goes back to Archimedes and was used by many mathema-
ticians including both Newton and Leibniz in their development
of the calculus. This tradition uses the notion of an “infinitesi-
mal” number. An infinitesimal is a number that is infinitely
small yet greater than zero. The discussion of infinitesimals
highlights many of the themes I have been discussing—here is
another intuition about infinity that is paradoxical from a certain
point of view yet leads to a resolution that is mathematically
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significant. Today, the subject of infinitesimals is often associated
with nonstandard analysis as described by the eminent logician
Abraham Robinson® in the context of mathematical logic. How-
ever, I shall discuss a much more elementary approach that only
uses the idea of an “ordered field,” a mathematical system of
“numbers” within which one can do arithmetic and which has
an “order” in the sense I shall describe below.

PArRADOX #6: DO INFINITESIMALS EXx1ST?

Do there exist numbers x such that x > 0 but x < € for every real
number € > 0? In the real number system as I have developed
it, such numbers cannot exist, that is, their existence would be
paradoxical. Yet many brilliant mathematicians, especially those
of the eighteenth century, used infinitesimal methods freely—
seemingly content to ignore the logical difficulties that arose—
because of the intrinsic interest of the mathematics that could be
obtained in this way. It was these logical difficulties that were
the basis for the devastating criticism of Bishop Berkeley that
was discussed in Chapter 2. Eventually these logical difficulties
were resolved and a rigorous theory developed at the cost of
excising these infinitesimal quantities from mathematics. In
doing so, something was gained and something lost. What was
gained was a theory that secured the foundations of mathemati-
cal analysis. What was lost (and felt to be mistaken) was the in-
tuition that there was mathematical substance in the notion of
infinitesimals.

Remember how we thought of the real numbers as a “comple-
tion” of the rational number system. Developing the system of
real numbers from the system of rationals involved creating a
vastly larger system of numbers. It was an extension of the ratio-
nals in the sense that it contained them as a subsystem—that is,
every rational number is also a real number. Well, it turns out
that it is possible to construct number systems that contain the
reals as a subsystem. Now such a system cannot have all the
properties of the real numbers—in particular it is not complete,
that is, it does not have the property that every bounded increas-
ing sequence defines a unique number. The reason for this is that
completeness is a property that characterizes the real numbers.
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R(x) > 0
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\

Figure 4.9.

Nevertheless, you can still do arithmetic in the larger system
that is, you can add, subtract, multiply, and divide. Moreover,
the notion of “order” can be defined. We do this below in the
manner of Tall (2001).

Consider the set of all rational functions of the form

R () = Ay +ax + ...+ a,x"
by + bix + ...+ b,x"’

where x is a variable and the coefficients are all real numbers
with b,, # 0. These are the usual functions of high school algebra.
They form an extension of the real numbers since every real
number a can be thought of as a rational function R(x), where
ap=a,by=1,and a;=b;= 0 for i and j > 0. If R(x) is not identically
zero then its graph is either strictly positive or strictly negative
in some interval of the form 0 < x < k (figure 4.9).

We shall say that such a rational function R(x), is positive if
R(x) > 0 for such an interval. For example, the function f (x) = x
is positive. Also, for any real number a > 0 the corresponding con-
stant function f (x) = a is positive by our new definition of what it
means for a function to be positive. Thus the idea of “positivity”
carries over from the reals to this new situation of rational func-
tions. Now any reasonable notion of what it means to be positive
such as the one that we have given for rational functions leads
directly to a corresponding notion of order in the following way.
We define R(x) to be greater than T(x) if and only if R(x) — T(x)
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Figure 4.10.

is positive. The entire collection of rational functions can be or-
dered in this way. For example, if € > 0 is some positive real num-
ber, then the function f (x) = € — x is positive (figure 4.10). There-
fore (as functions), 0 < x < € for every positive real number € >
0 and so the function f (x) = x is an infinitesimal. We have thus
created a legitimate mathematical number system that contains
the reals and elements that play the roles of infinitesimals. It also
has corresponding “infinite” elements such as R(x) = 1/x.

Do such systems have mathematical value? Are they artificial
and arbitrary constructs, or do they correspond to a valid mathe-
matical intuition? Another way of putting this is to ask whether
the real number system as we understand it today is more
“real,” more anchored in reality, than a system such as the above
that is larger and includes infinitesimal quantities. There have
been many mathematicians who have taken the position that
only the positive integers are “given by God,” that is, are real,
and that all other systems including the rationals, the reals, and
the system we are now discussing are human creations. If this
is so, then their value is to be determined by what they have to
contribute to mathematics.

Let us take a moment to look at a simple mathematical exam-
ple from the “infinitesimal” point of view. We have seen how
the real numbers can be considered as functions in this larger
number system. “Infinitesimals,” as we have seen, are rational
functions, R, that are positive and are less than any positive real
number. Now it can be shown that any finite function is of the
form R = a + €, where a is a real number and € is an infinitesimal.
(Infinite elements are of the form 1/¢ for an infinitesimal €, as
we might expect.) The number a is called the standard part of R.
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Now consider the calculus problem I discussed in Chapter 2,
where the distance traveled by a moving body, s, was a function
of time, s = >. We were interested in determining the speed of
the body at time t = 1. In Chapter 2, we thought of the instanta-
neous speed as being the limit of an infinite sequence of average
speeds. However, we could think of this calculation in another
way."” Let dt (one symbol) stand for an infinitesimal increment
in time and ds for the corresponding increment in distance. We
want to calculate the ratio ds/dt and we wish this to be a finite
number. Now s =1 when f =1. When s =1 + dt, ds = (1 + dt)* —
1 = 2dt + (dt)%. Thus ds/dt = 2 + dt. The standard part of this
number is 2; that is, the derivative is the standard part of the
extended number ds/dt. Notice that we have calculated this de-
rivative without recourse to any limiting process. This is a con-
ceptual and pedagogical advantage. The disadvantage of this
way of looking at things is that it depends on introducing a new
and larger number system. This balancing of advantages and
disadvantages is reminiscent of considerations that arose in the
construction of the real number system itself.

There are those who claim that human beings have some sort
of special intuition for the real “number line,” and therefore that
systems that contain infinitesimals are unintuitive. Others (like
Tall 1980, 2001) claim that they arise from an equally valid but
different intuition. Cantor’s definition of (infinite) cardinality
arose, as we saw, from thinking about the nature of counting and
asking what it would mean to “count” an infinite set. Tall (1980)
discusses extrapolating the measuring properties of numbers in-
stead of the counting properties. He says, “By posing an alterna-
tive schema of infinite measuring numbers, we may at least see
that our interpretation of infinity is relative to our schema of in-
terpretation rather than an absolute form of truth.” This conclu-
sion applies not only to “infinity” but to a whole host of seminal
mathematical concepts.

CONCLUSION

After spending two chapters discussing the infinite, it may be
appropriate to spend a few more paragraphs reflecting on this
marvelous journey we have taken. Let us assume that human
beings have always had a sense of the infinite, but that it origi-

185



CHAPTER 4

nally was an aspect of the numinous. It was, as I said earlier,
ineffable. It belonged to another realm, a realm of awe and mys-
tery, a realm of the divinely inspired, so to speak, certainly not
the domain of the rational and the empirical. Nevertheless there
exists an intuition of something that we call the infinite and
therefore an irresistible desire to capture its essence, to define it
and understand it.

It is clear from the discussion that to define the infinite is a
contradiction in terms. By definition the infinite cannot be de-
fined. Even to say that there is something that stands outside
the infinite will not accord with many people’s intuition of the
infinite. Yet how are we to see a good part of intellectual history
except as an attempt to get at the idea of the infinite, to separate
out the aspects of the infinite that could be discussed from those
that could not be? As time went on, the infinite was first of all
conceptualized, and then that conceptualization was increas-
ingly refined. Thus the infinite is implicit in the definition of the
straight line or in the “method of exhaustion.” Then it is there
explicitly in the “point at infinity” or in infinite decimals. Finally
it is further refined through the notion of an infinite cardinal
number, and this leads to the existence of multiple infinities. At
every stage in this process we are moving away from the infinite
as the singular and the incomparable toward the infinite as a
well-defined but multifaceted mathematical concept.

Every step on this journey is accompanied by the paradoxical.
This is fair enough since we now understand why the idea of
the infinite must induce the paradoxical. New stages of mathe-
matical development arise out of a “resolution” of a set of para-
doxes. However, like the development of the real number sys-
tem, there is a price to pay. We “resolve” the paradox of
irrational numbers through the development of the real number
system, but at the price of the introduction of an uncountable
set of new numbers, numbers that can never be “known” in the
way that the rationals are known. In other words each step to-
ward simplicity in one sense is accompanied by a complexifica-
tion in another.

Finally, this discussion of infinity is not something that is
taking place on the boundaries of mathematics; it is central to
mathematics, and because mathematics is central to science and
technology, it is central to contemporary culture as a whole.
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Mathematics is the science of the infinite—the infinite more than
anything else is what characterizes mathematics and defines its
essence. If the infinite is impossible in the sense that it is inevita-
bly accompanied by the paradoxical, then the same holds for
mathematics. This does not detract from the importance of
mathematics. On the contrary, it is what makes mathematics
great! To grapple with infinity is one of the bravest and extraor-
dinary endeavors that human beings have ever undertaken.
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THE LIGHT AS IDEA
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AMBIGUITY IN MATHEMATICS, the theme of the book, was in-
troduced as a way to discuss the creative aspects of mathemat-
ics, what was metaphorically called the “light,” as opposed to
the logical surface structure. The creative in mathematics is ex-
pressed through the birth of new ideas. These ideas may consist
of a new way of thinking about a familiar concept or they may
involve the development of an entirely novel concept. An idea
is usually at the heart of a mathematical argument but an idea
may even entail a new way of looking at a whole area of mathe-
matics. Creativity in mathematics is inseparable from ideas, but
what is the nature of these mathematical ideas and where do
they come from? Mathematical ideas form the most exciting and
yet the most mysterious aspect of mathematics. Thus this section
begins with a discussion of ideas in mathematics.

The connection between “ideas” and “ambiguity” arises from
a consideration of the origins of ideas. I am especially interested
in ideas that arise out of situations of ambiguity. It is not situa-
tions of the greatest logical coherence that give rise to profound
ideas. Counter-intuitively, great ideas often arise out of the kind
of problematic situations we have been discussing—great ides
come out of situations of great ambiguity. Some people imagine
that creativity in mathematics arises out of a novel re-
arrangement of facts that are already well understood. Ideas that
are the result of such superficial activity are rarely profound.
Deeper ideas often arise out of situations that are murkier than
this—situations that are experienced as in flux, situations that
contain elements that do not seem to fit well together, where
there is conflict, in short, the kind of ambiguous situations I have
been discussing.

What is there about situations of ambiguity that is propitious
to the birth of new ideas? An idea emerges in response to the
tension that results from the conflict inherent in ambiguity. We
generally avoid situations of ambiguity because we find this ten-
sion disagreeable. With the sudden appearance of the idea the
conflict is reconciled and the tension disappears. Think about
the following metaphor. Suppose a bar magnet is introduced
into a field of iron filings that are aligned in a random order. As
we all know, the filings will realign themselves into a regular
order because of the magnetic field that is generated by the mag-
net. Now an ambiguous situation should also be seen as a field
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of force, a force that is generated by the two conflicting frames
of reference that characterize the ambiguity. This is analogous to
the poles of a magnet and may, in certain situations, precipitate
the birth of an idea that will give the mathematical situation a
coherent organization in the way that the iron filings are “orga-
nized” by the magnet. Thus we are led to think of a mathemati-
cal idea as a principle that organizes a given mathematical do-
main. This section begins with an introduction to ideas in
mathematics and then goes on to discuss the relationship be-
tween ideas and ambiguity.
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The Idea as an Organizing Principle

Something’s happening here, what it is
ain’t exactly clear. . .
—"“For What It's Worth,” written by Stephen Stills
(1966), performed by Buffalo Springfield

Inside and outside mathematics, Thom’s interest
was turned to forms and ideas. His passion was
to understand geometrically the nature of things,
and for this he used mathematical proofs. But he
was not a formalist, and, for him, proofs
remained secondary to the conceptual
landscape they revealed.
—David Ruelle on René Thom'

INTRODUCTION: WHAT Is GOING ON HERE?

What is the core ingredient of mathematics? Is it logic or preci-
sion? Is it “number” or “function”? Is it “structure,” or “pat-
tern,” or the subtlety of mathematical concepts? Perhaps it is ab-
straction? In our search for the inner nature of mathematics we
might do well to listen to the words of mathematicians. Not just
the words they use when we ask them to explain the nature of
their subject. The language they use in such an artificial situation
is alien to the language that they use when they are discussing
mathematics among themselves.

When discussing a particular piece of mathematics, the math-
ematician may ask, “Now, what is really going on here?” That
is, what is the core mathematical idea? A piece of mathema-
tics, a proof for example, may go on for pages and pages and
may include detailed calculations and subtle logical arguments.
However, there is often a surprisingly concise mathematical idea
that forms the basis for all the detailed work. Strangely enough,
when a research article is published in a professional journal this
underlying idea may not even be mentioned. The reader may go
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through the many pages of detail and end up none the wiser for
the effort unless he or she manages to grasp the core idea. For
the author of the paper the construction of such a complex argu-
ment would have been impossible were there not some explicit
idea around which the proof was organized. Thus skillful expos-
itors of mathematics are those who manage to lay bare the essen-
tial mathematical ideas that underlie a particular piece of mathe-
matics. Skillful teachers are those who let their students in on
the secret of “what is really going on.”

Mathematical ideas are the building blocks of mathematical
thought. What is an idea? An idea is a principle that organizes
experience, in this case mathematical experience. Every mathe-
matical concept is an idea; every proof is built around an idea.
Without ideas to organize experience, the world would be cha-
otic and unmanageable. Everything that we deal with in mathe-
matics is an idea. “One” is not a number, it is an idea. “Zero” is
an idea, and, as I discussed earlier, it is a subtle and powerful
idea. Axioms are ideas that imply other ideas. There is no logical
hierarchy of ideas—logic itself is an idea. This chapter and sec-
tion consider the implications of the statement that ideas are at
the center of mathematics.

Ideas are extremely difficult things to get a handle on. The
idea is formulated, made explicit. Therefore the idea itself stands
behind any explicit formulation. It is extraordinary how much
mathematics can be obtained from a fruitful idea. It follows that
an idea is not something that is completely objective—it has both
objective and subjective characteristics. Furthermore, the idea is
not, strictly speaking, logical. The logic comes later—logic helps
to formulate and organize ideas. Nevertheless, ideas are where
the action is—they are an essential aspect of mathematics.

Ideas can seemingly come out of anywhere. Mistakes, contra-
dictions, even paradoxes have been used to generate important
mathematical ideas. Mathematics has been called “the science
of pattern,” but what are patterns if not ideas? Even “ran-
domness,” which could be defined as the absence of pattern, is
an important mathematical idea. It is even a fairly common phil-
osophical position today that mathematical knowledge is “con-
structed” by each and every practitioner. From this point of
view, ideas are all there is and all there can be. The world we
live in—mathematical and natural—is a world of ideas.
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This is not to say that every piece of mathematical work con-
tains a mathematical idea; certainly it may not contain a pro-
found idea. “Trivial mathematics” is mathematics devoid of an
idea. A “trivial” argument is one that follows in an automatic,
algorithmic way from a given set of definitions and a few purely
logical manipulations.

For the mathematician, the idea is everything. Profound ideas
are hard to come by, and when they surface they are milked for
every possible consequence that one can squeeze out of them.
Those who describe mathematics as an exercise in pure logic are
blind to the living core of mathematics—the mathematical
idea—that one could call the fundamental principle of mathe-
matics. Everything else, logical structure included, is secondary.

The mathematical idea is an answer to the question, “What is
going on here?” Now the mathematician can sense the presence
of an idea even when the idea has not yet emerged. This hap-
pens mainly in a research situation, but it can also happen in a
learning environment. It occurs when you are looking at a cer-
tain mathematical situation and it occurs to you that “something
is going on here.” The data that you are observing are not ran-
dom, there is some coherence, some pattern, and some reason
for the pattern. Something systematic is going on, but at the time
you are not aware of what it might be. This is a tangible feeling.
We might call it the “something is going on here but I don’t
know what it is” feeling. Whereas “something is going on” is
the mathematical idea, what we are talking about here is the po-
tential, unformulated idea. Perhaps we could think of it as the
germ of a possible idea. One is still not conscious of the idea,
and one has to work very hard in order to bring this potential
idea to consciousness.

The feeling that “something is going on here” can even be
brought on by a single fact, a single number. A case in point
happened in 1978, when my colleague John McKay noticed that
196884 = 196883 + 1. What, one might ask, is so important about
the fact that some specific integer is one larger than its predeces-
sor? The answer is that these are not just any two numbers. They
are significant mathematical constants that are found in two dif-
ferent areas of mathematics. The first arises in the context of the
mathematical theory of modular forms. The second arises in the
context of the irreducible representations of a finite simple group
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called the Monster. McKay intuitively realized that the relation-
ship between these two constants could not be a coincidence,
and his observation started a line of mathematical inquiry that
led to a series of conjectures that go by the name “monstrous
moonshine.” The main conjecture in this theory was finally
proved by Fields Medal winner Richard E. Borcherds. Thus the
initial observation plus the recognition that such an unusual co-
incidence must have some deep mathematical significance led
to the development of a whole area of significant mathematical
research.

It is interesting that at a seminar called “Monstrous Moon-
shine and Mirror Symmetry” given by Helena Verrill at Queen’s
University in 1997 she made the statement, “These results have
been proved by Richard Borcherds, using vertex algebras, but
it’s still not really understood what is happening. So, our prob-
lem is to understand what's going on.”? This is precisely my
point. McKay noticed that there was something going on. This
led to mathematical activity leading to theorems and proofs. But
still it is possible to say “we do not really understand what is
going on.” Understanding what is going on is an ongoing pro-
cess—the very heart of mathematics.

Some might claim that the germ of an idea is nothing and that
all that counts are those ideas that actually work out. This would
be a mistake, for the germ of the idea is an essential prerequisite
for the creative act. One can feel when “something is going on,”
and good mathematicians are very sensitive to that feeling. Of
course this feeling is not unique to mathematicians. The poet
Denise Levertov is alluding to this same potential idea when she
says, “You can smell the poem before you can see it.”*> The poet
T. S. Eliot said, “first an inert embryo or creative germ is con-
ceived and then comes the language, the resources at the poet’s
command.”* As in poetry so in mathematics everything begins
with this “creative germ” to which the mathematician brings life
by changing the feeling of “There must be something going on
here!” to “Aha! Now I see what is going on here.”

The mathematician’s work can be broken down into various
stages. The first involves spade work: collecting data and obser-
vations, performing calculations, or otherwise familiarizing one-
self with a certain body of mathematical phenomena. Then there
are the first inklings that there exists in this situation a pattern
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or regularity—something that is going on. This is followed by
the hard work of bringing the embryo into fruition. Then, finally,
when the idea has appeared, there is the stage of verification or
proof. Is the idea in fact correct? However, this verification stage
is really part of a larger and more elaborate process that involves
the exploration of the full range of applicability of the idea. The
latter stage may involve the abstraction or generalization of the
initial idea. In practice, “writing things up” often sets the stage
for the modification of the idea or, in fact, for the emergence of
anew idea. So it is not a question of having the ideas on one side
and the logic or proof on the other. The practice of mathematics
involves the interaction between ideas and logical rigor. Unfor-
tunately, since the formal structure is more obvious and there-
fore so much easier to get hold of, the importance of mathemati-
cal ideas is often neglected. Nevertheless, ideas are the principal
actors on the stage of mathematical activity.

In addition to the interactive relationship between ideas and
proofs, there is another way in which the description of mathe-
matical activity that is sketched out in the first part of the above
paragraph is incomplete. In fact, it neglects an essential ingredi-
ent, one that is reminiscent of what I called “reification” in Chap-
ter 1. Remember that reification arises when a process “be-
comes” an object, such as when we write a number as an infinite
decimal, for example, 1/3 = .333.. ., and think of this situation
as one ambiguous process/object. It is now possible to work
with this new entity and to embed it into a more general system
or process. In this way a complex, potentially infinite situation
has been transformed into something that can be conceptualized
and worked with as a single mathematical unit.

Now, the mechanism of reification that has been described
above also applies to mathematical ideas in general. What I
mean by this is that a certain mathematical situation is captured
by a mathematical idea that is then thought of as a single mathe-
matical object and often represented by one symbol. The idea
becomes a new unit of thought, what has been called a “think-
able entity,” and can then be embedded into a higher order pro-
cess or system. This explains how ideas, as mathematical objects,
can be organized by new ideas (and so on) in situations of in-
creasing complexity and abstraction. The successful mathemati-
cal thinker does not carry around in his head all possible detail,
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but only works with the ideas at an “appropriate” level. The un-
successful thinker is unable to recognize what level is appro-
priate to the given situation and so often gets bogged down in
irrelevant detail. For example, to be successful in arithmetic, a
child must learn to deal with multiplication as something in its
own right and not only as repeated addition.

In other words, what is happening here is that the “idea as
organizing principle” becomes the “idea as thinkable entity.”
Without such a mechanism for the compression of knowledge,
it would not be possible to work with the extremely complex
structures that make up advanced mathematics.

THE IDEA AS AN ORGANIZING AND GENERATING
PRINCIPLE: A SIMPLE EXAMPLE

The mathematical idea is an organizing principle. It organizes a
body of mathematical phenomena. It is the heart of mathemat-
ics, but it is not itself (finished) mathematics. Rather than stable,
unchanging, finished mathematics, the generating idea is dy-
namic. It creates mathematics. In recognition of the importance
of fundamental ideas, Harvard, for example, has, in recent years
organized a seminar called, the “Basic Notions Seminar.” In the
words of the mathematician Barry Mazur, “The aim of that semi-
nar is to survey each week some central theme of mathematics—
some idea that has different manifestations as it crops up in dif-
ferent fields of mathematics—an idea, in short, that deserves to
be contemplated by students not only in the context of its use-
fulness for this or that particular result but also because of its
service as a unifying thread.””

As a first very elementary example, consider this “proof” for
the sum of a geometric series:

LetS=a+a®>+a*+---+a"+---.
ThenaS=a>+a*+---+a"+---.
Subtracting gives S —aS =a
orS=a/(1-a).

Now this is not a valid argument. When a =1 you get S = 1/0,
which can be a problem; when a = -1 you get S = -1/2, but as
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we saw in the section on the paradoxes of infinity, one might
equally say S =1 or S = 1. The “problems” with this idea re-
volve around the first equation. Does the infinite sum a + a* +
a* + - - - always converge, does it necessarily give you a specific
number, that is, does S always exist? However, there is an idea
here. You could formulate the idea in the following way: if you
have a sum of powers of a single number, a, and then you multi-
ply the sum by a, and subtract, everything cancels out except
the first and possibly the last term. It is what is called a telescop-
ing sum. So this mathematical idea may generate many ques-
tions: What do we mean by an infinite sum? What is conver-
gence? For what values of a is the final formula valid and for
what values is it invalid? In its application to the decimal repre-
sentation of real numbers this idea can be used to show that
every eventually repeating infinite decimal represents a fraction.
It also raises the question about the converse of that statement:
whether the decimal representation of every rational number is
eventually repeating. This in turn can lead us to consider irratio-
nal numbers, the real number system as a whole, and a host of
other questions.

Simple though it is, this example also raises the question of the
relationship between ideas and proof that I mentioned briefly in
the previous section. Even though I maintain that ideas, strictly
speaking, are not logical, nevertheless attempting to write down
a proof is a very important step. Attempting to make the idea
precise leads us to penetrate the situation more fully; it allows
us to become aware of new questions and perhaps sets the stage
for the emergence of new ideas. Even though the idea has been
expressed in a mathematical format it may not yet be mathemat-
ics. At this preliminary stage it is neither valid nor is it invalid.
Thus the idea is really more basic than any proof or result that
may flow from it. The organizing principle is more elementary
than what we normally call mathematics.

IDEA ASs PATTERN

Recall the following situation from the section on mathematical
induction (pp. 123-125):
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1=1%

1+3=4=2%
1+3+5=9=23%
1+3+5+7=16 =4~

Clearly there is a pattern. We grasp the pattern. so we could say
that we intuit that “something systematic is going on here.” In
discerning the pattern we are already engaging in a certain kind
of mathematical activity. Yet we are still at a preliminary stage.
We could go further by expressing that pattern explicitly. In
words we might say “the sum of the first n odd integers equals
n squared.” We have now given some precision to our intuition.
The pattern is now explicit but this is not enough. We might ask
whether this pattern is valid for all values of 7, even values that
are so large that an actual computation is impractical if not im-
possible. The validity (or not) of the pattern requires an answer
to the question, “Why?” Why does that pattern hold? The ques-
tion demands the probing of the pattern at a deeper level.
Though the pattern is itself an idea, verifying the validity of the
pattern demands another idea, an idea that will convince us that
we know why the pattern is valid. In this case there are many
ways to validate the pattern. One that we described earlier was
by mathematical induction. A more immediate and satisfying
geometric idea is contained in the picture in figure 5.1.

Now the notion of pattern is so central to mathematics that
mathematics has even been defined as the science of patterns.
According to Keith Devlin,

What the mathematician does is examine abstract “pat-
terns”—numerical patterns, patterns of shape, patterns of
motion, patterns of behavior, voting patterns in a popula-
tion, patterns of repeating chance events, and so on. Those
patterns can be either real or imagined, visual or mental,
static or dynamic, qualitative or quantitative, purely utili-
tarian or of little more than recreational interest. They can
arise from the world around us, from the depths of space
and time or from the workings of the human mind. Differ-
ent kinds of patterns give rise to different branches of
mathematics.®
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1 3 &6 7

Figure 5.1.

What, then, is the essence of pattern? As we stop to consider
this most elementary notion, we shall discover that the essence
of pattern is elusive; “pattern” is a mysterious and subtle notion.
From the dictionary definition, the everyday use of the word
“pattern” is as a template. A blueprint, for example, is a pattern
for a building. When one knits a sweater, one uses a “pattern.”
In this sense, a pattern is a model or a representation of an object.
In this situation the pattern is something distinct from that
which it patterns. However, when looking at the finished prod-
uct one might work backward and say that it has a pattern. The
“pattern” in the sense of the blueprint is implicit in the finished
product.

However, there is another sense in which one uses the word
“pattern.” It arises when one sees something systematic in a
body of data—when one sees that “something is going on here.”
Given a string of numbers: 2, 5, 8, 11, 14, . . . we might say that
there is a pattern; each number is 3 more than the preceding
number. Here we start from the other end, in this case the list of
numbers, and make a jump to the principle that was used to
generate the list.

Thus the notion of a generating idea is very close to the idea
of a pattern. Where, we might ask, is the pattern located? Is it
implicit in the data? Is it there objectively in the sense that any
observer would agree on the existence of the same pattern? Or
is the pattern subjective, dependent on an idea that is imposed
on it through some act of intelligence? This is like asking
whether a pattern is discovered or invented and leads to the
question about whether mathematics is itself discovered or in-
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vented. This is an important question that is implicit in much of
what has been discussed. I shall return to it in Chapter 8.

For the time being, let us just say that whether it is pattern
recognition or pattern formation, producing or recognizing pat-
terns seems to be a basic function of intelligence. Clearly the
ability to recognize the regularities of seasonal variations, for ex-
ample, would be an evolutionary plus. It is conceivable that nat-
ural selection favored species or individuals who developed this
ability. If this “patterning” is related to what we mean by intelli-
gence, then we can see one of the advantages of intelligence in
the battle for survival. If mathematics is, as we believe, one of
the areas of human activity where “patterning” of the most sub-
tle and complex kind is the essential activity then we see why
mathematics might be regarded as “intelligence in action.” It is
not surprising then that mathematics is so successful in all areas
of human activity. If mathematics is indeed the expression of in-
telligence in action then it is necessary to understand mathemat-
ics if we wish to understand ourselves and the world in which
we live.

“IDEAS ARE AMBIGUOUS” OR THE AMBIGUITY “Is” THE IDEA

It is interesting that when we talked about idea and pattern our
description inevitably contained a certain ambiguity. A pattern
is both a kind of blueprint and the sense that there is a blueprint
to be found. It is both explicit and implicit, both discovered and
invented, objective and subjective. An idea is the feeling that
“something is going on” but it is also the feeling “now I under-
stand what is going on.” It arises from the genius of the great
mathematicians, but once it has been made explicit, it has the
feeling of inevitability, the feeling that it has always been out
there waiting for us in some sort of Platonic heaven.

If “the idea” in general is ambiguous, so it is also with particu-
lar mathematical ideas. The examples of ambiguity enumerated
in Chapter 1 were really a list of deep mathematical ideas. The
“idea” of the Fundamental Theorem of Calculus is that integra-
tion is the inverse of differentiation. I said at the time that calcu-
lus consists of one process that looks like integration if you look
at it in one way and differentiation if you look at it in another.
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However, to grasp this idea you have to look at things in a cer-
tain way; or, rather, grasping the idea means looking at things in
a certain way. Thus if you make an integral into a function by
letting the upper end point vary:

X

F()=]fa,
then the derivative of F(x) is the function f (x). If one does not
look at things in the right way, then the “idea” of the Fundamen-
tal Theorem is not so obvious.

It is clear from our discussion so far that there is a connection
between “ambiguity” and “idea” in mathematics. An ambiguity
can be a barrier, as the square root of two was a barrier to the
Greek understanding of number. When this barrier is overcome,
it is overcome by a mathematical idea that dissolves the barrier.
In this case what is required is an expanded idea of “number”
that results from reifying a limiting process, that is, identifying
an infinite sequence of rational numbers with a single real num-
ber. Nevertheless, the ambiguity persists in the resolution. Yes,
J2 is a constructible number, but it is also an irrational number—
it is as legitimate a number as a rational number or integer but
it is also different in the sense, for example, that its decimal rep-
resentation is nonrepeating. On the other side of the barrier, so
to speak, there remain (at least) two frames of reference. The dif-
ference is that, armed now with a more general idea of “num-
ber,” one is free to think of a number as either rational or irratio-
nal, as a length or as an infinite decimal. In this sense ideas are
often ambiguous. The ambiguity does not limit the idea —the
ambiguity is the very thing that flowers into the idea. One could
go so far as to say (in an ambiguous, metaphorical sense), “The
ambiguity is the idea.”

ExaMPLES OF MATHEMATICAL IDEAS

Mathematics contains data fields of enormous complexity
that are organized by mathematical ideas. However, the data
are themselves made up of other mathematical ideas. For exam-
ple, in the case of Euclidean geometry, the basic geometric
forms: points, lines, circles, and triangles; the postulates, say, for
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example, that “any two points can be joined by a line”; the
elementary notions (p.88) like “the whole is greater than the
part”; the propositions and theorems; all these are expressions
of mathematical ideas. Mathematics is a vast self-organizing
body of ideas.

In an axiomatic system like Euclidean geometry, it is not a
matter of merely going from obvious truths to more complex
truths via acceptable modes of reasoning. For example, the par-
allel postulate has a relationship to the theorem that says that
the sum of the angles of any triangle is equal to two right angles.
Both statements harbor complex mathematical ideas. Their rela-
tionship is complex. In one situation we might be interested in
how the sum of the angles in a triangle depends on the parallel
postulate. In another we might be interested in the converse rela-
tionship: how the sum of the angles of a triangle being more,
less, or equal to two right angles affects the idea of parallelism.
Moreover the relationship between the two is a matter of logical
reasoning involving other mathematical ideas. Even the logical
reasoning itself is an organizing principle that is part and parcel
of the overall flux of ideas that we are calling mathematics.

For a subject that revels in the abstract, mathematical ideas
are often very concrete. Think of the discussion of “variables” in
Chapter 1. The domain of a variable may include an infinite
range of values, but when a variable is used we think of it as
having a definite and particular value. This enables us to think
concretely. This mental technique is used very generally in
mathematics. We want to understand some mathematical phe-
nomenon that arises in a wide variety of circumstances. How is
one to think about such a general phenomenon? Often one
thinks in depth about some particular but generic example—
some computation or picture. Of course the genius is in picking
the right example or examples. One looks for some specific ex-
ample that captures all the subtleties of the general situation.
Thus “what is going on” is often revealed within the specificity
of a particular example. The task of extending and abstracting
that understanding is often secondary. The role of specific coun-
terexamples in establishing the boundaries of some mathemati-
cal theory is balanced by the role of specific generic examples
for which one can say that they illustrate the “general case.”
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Despite the contention that mathematical ideas do not fit into
an inevitable hierarchy, it is still possible to pick out certain ele-
mentary mathematical ideas. By elementary I mean that these
ideas are embedded in almost every mathematical situation. The
most obvious candidate for an elementary idea is logic itself.
And, indeed, it was the project of Russell and Whitehead and
before them of Gottlob Frege to show that logic was the elemen-
tary idea in mathematics. Their feeling was that mathematics
was inherently and definitively hierarchical—that there were
ideas (axioms) that were intrinsically the most elementary and
that mathematics was in fact all that and only that which fol-
lowed logically from these axioms. Reality, as Godel showed,
turns out to be considerably more complex.

Nevertheless, I shall continue the discussion of mathematical
ideas by considering certain key ideas that arise in a variety
of areas of mathematics. Do you remember the discussion of
“1 + 1 =2” in Chapter 1? To make the point that even the most
elementary mathematical objects contain profound mathemati-
cal ideas, I shall begin by considering the three ideas that arise
in this most elementary mathematical statement, namely, “one,”
“two,” and “equality.”

ELEMENTARY IDEAS

“One” is the fundamental organizing principle—an idea so basic
that without it there would be neither natural nor conceptual
worlds. “One” is so basic that we take it completely for granted
and therefore it is difficult to bring its importance into the open.
Davis and Hersh” might well be talking about “one” when they
say, “We who are heirs to three recent centuries of scientific de-
velopment can hardly imagine a state of mind in which many
mathematical objects were regarded as symbols of spiritual
truths or episodes in sacred history. Yet, unless we make this
effort of imagination, a fraction of the history of mathematics is
incomprehensible.” Not only would the history of mathematics
be incomprehensible without the idea of “one,” but in fact there
could be no mathematics whatsoever.

“One” is an idea that goes beyond mathematics. As was the
case with “zero” and “nothing,” the mathematical “one” is an
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idea that grows out of the human condition itself. It points to
such a fundamental aspect of reality that it is impossible to grasp
all of its ramifications and yet there is an overpowering need to
do just that—understand it, use it, and control it. For the neo-
Platonist Plotinus,® “The One is the absolutely first principle of
all. It is both ‘self-caused” and the cause of being for everything
else in the universe.” One might say that “One” represents the
ultimate in simplicity. Yet Plotinus’s idea of The One is (he
claims) indescribable directly. It is another name for the ineffa-
ble. As such, it is basic to religious thought and can be found in
the theology of all the great religions: Judaism, Christianity,
Islam, Hinduism, Buddhism. Low,’ in his books on Zen Bud-
dhism, speaks of oneness as a force, an imperative that could be
expressed as, “Let there be One!”

Before we go farther, notice that “one” and the connected idea
of “oneness” are ambiguous, that is, they are used in two differ-
ent and conflicting senses. In the first sense, “one” represents
something that is a unit and distinct from all others—a unique
individual in a world of other individuals. The second sense
comes from the word “oneness” or “to be one with,” which
means connected or part of a larger whole. It gives the sense of a
number of distinct parts merged in a larger unity. The first sense
emphasizes the uniqueness and separateness of that which is
designated as the “one,” the second the harmonious integration
of parts. Thus every human being is “one” in both senses—as
an utterly unique individual and as an integrated part of the
human race, equal in rights and dignity to everyone else and
sharing in the common human legacy.

What is the nature of the insight that the idea of “one” is at-
tempting to capture? It is the fact that the world presents itself
to us not as an undifferentiated chaotic soup but as broken up
into units or “unities.”” This is as true for our conceptual world
as it is for the natural world. This was something that was no-
ticed and emphasized by Gestalt psychology. Imagine that the
world as we know it does indeed emerge out of chaos, that is,
out of a kind of universal flux. If this flux is primary then how
do we come to see the world as composed of objects? There must
be a mechanism that converts processes into objects—a mecha-
nism of reification.
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In a fascinating chapter in one of his books, the neurologist
Oliver Sacks" tells the story of a man who, blind from birth, had
his sight restored to him as an adult. When the bandages were
removed from his eyes some weeks after the operation, what did
he see? The fact is that he saw nothing except a flux of confusing
and irritating sensory impulses with no stability or coherence.
The man had to learn to see. He had to learn to convert the sen-
sory data into stable forms that could be named and so be made
more or less permanent. The idea “one” is connected to this
naming of the world, at least to the way in which the world pre-
sents itself to our senses and our minds as whole objects. When
I look around my study I do not see parts of objects; I see one
desk, one computer, one book, one pad, one pen, and so on.

To prove that there is something substantial going on in our
ability to “unitize” the world, consider the following difficult
problem in the field of artificial intelligence. Suppose you wish
to construct a robot that can “see.” The robot has visual sensors
and so can receive sense impressions from the surface of my
desk, say. How is the robot to perceive that there is a book on
the desk? The sensor receives visual data from all over the desk.
How is it to identify part of that data as coming from one object,
the book? Another way of saying this is: How is the robot to
identify the boundaries of the book? The boundary of the book
will separate the book from the non-book, so to speak. Evidently
this is a really difficult problem in the field of artificial intelli-
gence.”” The difference between a field of raw visual data and
the field that a human being perceives involves breaking reality
down into “wholes,” into a set of clearly differentiated objects.
Whatever process is involved in making that enormous leap, it
is part of the significance of the idea of “one.”

An idea as basic as “one” must find its way into mathematics
in many ways. We have already encountered this phenomenon
in various places in our discussion. In Euclidean geometry and
subsequently in almost every well-defined mathematical subject
we encountered the drive to bring together all the known truths
in one grand axiomatic system. Mathematics itself is an im-
mensely complicated whole—mathematics is “one.” On the
other hand, mathematics strives ceaselessly to isolate the most
primitive ingredients in any situation. In fact mathematics is the
result of the isolation of some of the most basic elements of

207



CHAPTER 5

human experience—number, function, chance, geometric figure,
and so on.

Consider the number one—the primordial mathematical ob-
ject. One is the generator of all number systems—you iterate one
to produce the positive integers; invert it to produce the nega-
tives; take quotients to produce the rational numbers; take se-
quences to produce the real numbers; and take pairs of real
numbers to produce the complex numbers. In that sequence
“one” is the irreducibly simplest starting point. Part of the mean-
ing of “one” is connected to simplicity. You get that feeling in
the axioms of Euclidean geometry—in the definition of “point”
as “that which has no part,” for example. In fact the whole idea
of axioms is to isolate the irreducible elements of a mathematical
situation. Isolating the elementary building blocks and putting
them together in structures that are complex and yet harmoni-
ously connected—in this way we could say that mathematics is
a manifestation of Plotinus’s drive toward the “one.”

The world of our perception and cognition is made up of
“wholes” or “unities”; yet these unities possess an internal struc-
ture. The body is made up of organ systems, the organs of sub-
systems and so on down to cells, molecules, and atoms. The
most elementary structure that a “whole” may possess is repre-
sented by the number two. I shall briefly take up the idea of
“two” and its relation to “one.” If I have two pens on my desk
lying close to one another I might see them as “a pair of pens.”
In so doing I am grouping the pens together into one set or unit.
A couple is itself a unit; it is one pair. Metaphorically one could
say, two (the couple) is one (unit). Thus the idea of “two” is am-
biguous; from one perspective, the couple has an inner struc-
ture—the two is composed of multiple units; from another, it is
a unified whole.

Another way of seeing this is to think of “one” geometri-
cally—as a line, say the interval [-1, 1] of all real numbers be-
tween —1 and 1. Then “two” could be thought of as the line with
symmetry, where every number x is associated with —x. As map-
pings, “one” could be represented by the identity map on the
interval 7 (x) = x. “Two” would be represented by the map ¢ (x) =
—x , where ¢t (t (x)) = x = i (x), that is, this symmetry has order 2.
In other words, “two” is a unity with a deeper structure. Indeed
we could look at all the (small) positive integers as unities with
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additional structure. Another way of saying this is that as ideas
the small positive integers are insights into the more subtle as-
pects or properties of the idea “one.” This is perhaps what
psychologist Carl G. Jung and his followers mean when they
refer to the small positive integers as archetypes: ideas that
structure both the outer natural world and our interior mental
world.” Whatever opinion one has of Jung’s thought, the im-
portant point is that the small positive integers are among the
most basic ideas.

The ability that enables human beings to recognize a couple
of objects without counting the elements and to differentiate them
from a single object is called “subitizing.” Subitizing is the
ability to recognize instantaneously the cardinality of small col-
lections of objects. This ability appears in human infants at a
young age, in fact, before they have learned to speak." This
“numerosity” or propensity for number may be hard-wired, so
to speak, in human babies (and many animals) and not learned.
Thus the ambiguity, and therefore the flexibility, of the idea of
(counting) number would develop out of this, more basic, bio-
logical substratum.

The next elementary idea that I intend to take up is the notion
of equality. The idea of equality, along with the various symbols
by which equality of one sort or another is represented, is to be
found everywhere in mathematics, yet any teacher who has
looked at the way the “equal” sign is misused by students is
forced to conclude that there is something in the concept of
equality that is subtle and difficult to understand. Why is this?
Doesn’t “equal” mean “the same” or even “identical”? Can’t we
always use the metaphor of a balance where equal quantities
balance and unequal ones do not?

The first thing to notice about the use of equality in mathemat-
ics is that there is an ambiguity present. Again, the ambiguity is
not an imprecision. Rather, in the same way that a metaphor
says, “A is B” when it is obvious that “A isnot B, " so “1 + 1 =
2” says that “1 + 1”7 is 2 when it is clear that “1 + 1” is not identi-
cal to “2”; after all, “1 + 1”7 is “1 + 1,” that is all. You could say
that “1 + 1”7 is “2” with additional structure. For example, “5 =
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3 +2” but it also equals “4 + 1.” So “3 + 2” actually carries more
information than does “5” alone. This consideration alone dis-
penses with the idea that “equality” is so obvious that there is
nothing to say about it.

In fact, one of the most basic intellectual tasks involves the
classification of objects. Any classification depends on the notion
of “sameness,” which is in many ways a synonym for “equality.”
A noun, like “tree,” is a classification; every object is either a
“tree” or a “non-tree.” The act of naming implies that there is a
criterion for determining when we will call an object a “tree”;
that is, naming determines a set of trees which is defined by cri-
teria that allow us to determine which objects are members of
that set and which objects are not. All trees are the “same” in
their “treeness,” that is, insofar as they belong to the set of trees.
Thus naming involves abstracting some particular property of
objects and using this criterion to establish the relationship of
“sameness” between them. Of course, any two objects are the
same with respect to certain criteria but different with respect
to others. The process of establishing criteria for “sameness” is
fundamental to language and no less to mathematics. The classi-
fication of objects is usually considered to be obvious and a mere
matter of common sense, but, as Steven Pinker® points out,
“there is nothing common about common sense.” Classifying
objects is a subtle affair, as is seen when we attempt to program
computers to identify the “sameness” that human beings usu-
ally determine so effortlessly.

In mathematics we have a series of notions that are related to
this idea of “sameness.” Of course at its extreme to be the same
means to be identical. Some authors now use the symbol “:=" to
mean “defined to be,” as when we change variables by writing
x :=t + 3 or defining a set A as A := Z. This usage was forced
upon us by the need that computer languages have for extreme
clarity. However most uses of “=" are not so simple nor so clear.
Above and also in Chapter 1 I discussed some of the complexity
associated with the use of the equality sign in equations like
“2+3=5"0r"2+3=4+1"1said “=" was understood in an
operational sense. University students often preface every line
of a calculation with this ubiquitous “=" sign, whether it is ap-
propriate mathematically or not. We saw earlier that even an ele-
mentary algebraic equation such as “x + 2 = 5” is more of an
event than an object. It evokes a certain class of objects, namely,
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the set of solutions to the equation, where, again, the solution
set designates not only those numbers that are solutions but also
those numbers that are not solutions to the equation. Again, the
equation is usually defined relative to a definite mathematical
context. However if that context is absent or inadequate the
equation evokes a context. One could say that an equation is a
mathematical idea that carries with it one or more optimal con-
texts that give it meaning.

Then there are uses of the equality sign that look like equa-
tions but are actually identities. Like x> = 1 = (x + 1)(x — 1), they
are valid for all values of the variable x within the understood
context. Such identities may have a geometrical interpretation,
as in the case of (x + y)* = x> + ¥* + 2xy, and, in fact, the Greeks
regarded them as a kind of geometric algebra. Trigonometry
contains a series of famous identities such as sin?(x) + cos*(x) =
1. They tell us something about the relationship between the var-
ious trigonometric functions. However identities represent quite
different mathematical ideas than do equations.

Equality is normally thought of in terms of equations, but
there is a logical notion of equality that is basic to the formal
dimension of mathematics. Two propositions are formally “the
same” if they are logically equivalent. If P and Q denote the two
propositions, then logical equivalence means P is a consequence
of Q and vice versa. In words we say P if and only if Q or P is a
necessary and sufficient condition for Q and write P < Q. I will
refer to this situation as a tautology. Most people take logical
equivalence to mean that there is no difference between the
propositions P and Q. Yet this is not the case at all.

Let us look back at a couple of examples that make this point.
When we talked about infinite sets we discussed the proposi-
tion, “A set is infinite if and only if it has the same cardinality
as a proper subset of itself.” For example, the natural numbers
{1, 2, 3,...} have the same cardinality as the even numbers
{2,4,6,...}. The existence of a subset of equal cardinality is ini-
tially a surprising fact, the surprising fact about infinite sets, and
yet saying that such a subset exists turns out to be equivalent to
the nonfiniteness of the set. In other words, the proposition gives
us a new way to think about infinite sets. Recall that the fact that
a set could be “equal” to a subset was initially considered to be
paradoxical because it broke Euclid’s rule that “the whole is
greater than the part.” The proposition in question, therefore,
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reveals a new way of thinking about infinite sets. How can one
say that it is “merely” tautological?

The second example comes from the domain of the real num-
bers. Recall that rational numbers can be thought of as ratios of
whole numbers, but they may also be thought of as decimals. In
this latter context we have the proposition, “A real number is
rational if and only if its decimal representation is finite or even-
tually repeating.” Thus .25 = 1/4 and .313131... =31/99. Itis a
surprising fact that the rationals have a representation as deci-
mals that differentiates them so neatly from the irrationals. Of
course this criterion not only tells us something about rational
numbers but also allows us to easily pick out the irrationals for
they will have nonrepeating decimal representations. It makes
the irrationals accessible in a way that they were not before.
Thus the dual representation gives us new information. There is
no way one can say that looking at a fraction as the quotient of
integers is identical to looking at it as a repeating decimal.

Not unexpectedly, I maintain that tautologies in the form of
logical equivalences are ambiguous. They are ambiguous be-
cause what they do is to compare two frames of reference and
show that they are really both referring to the same situation. Of
course some tautologies are trivial and some reveal important
new mathematical insights. Both of the above propositions are
important because they reveal a deeper structure to the situa-
tions that are being investigated. Nevertheless, one has to differ-
entiate between the “formal” point of view in which a tautologi-
cal statement is merely restating the same fact in different
language and the “ambiguous” point of view in which these
equivalences may say very important things indeed. A question
that has often been asked about mathematics is the following,
“If mathematics is merely tautological, how do we ever do any-
thing that is new? Why is mathematics so successful in so many
ways?” The answer to this question is frankly obscure from a
formalist perspective. From my perspective, on the other hand,
certain tautologies are valuable precisely because they are am-
biguous and so contain a multiple perspective that expands our
understanding of the mathematical situation in question.

In this regard consider the normal situation in mathematics
that is summed up by the statement (due, I believe to the mathe-
matician John Kelley), “A fundamental theorem becomes a
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definition.”’® The theorems one has in mind here are precisely
the “if and only if” propositions I am discussing above. With the
proposition about infinite sets we can now define an infinite set
to be one with the same cardinality as a proper subset. In this
case it is not clear what is gained by doing so. However, there
are many cases where one of the equivalent conditions can be
extended more easily than the other to a more general situation.
For example, there are many equivalent ways to define the conti-
nuity of a function of one variable, y = f(x). One of these in-
volves the way the function treats converging sequences and
generalizes quite naturally to metric spaces, situations in which
distance is defined. Another involves the way the function treats
certain kinds of sets that are called “open” and generalizes to
what are called “topological spaces.” Thus each of the original
definitions gives us another way of thinking about what conti-
nuity means. It adds new flexibility to our understanding of the
concept.

Yet another form in which “equality” arises in mathematics is
the notion of equivalence. What does equivalence mean? Think,
first of all, about fractions. Two fractions are equivalent if they
represent the same number: 1/2,2/4,3/6, ... are all equivalent
fractions. All equivalent fractions have the same value, so when
we refer to a fraction we may be referring either to their common
value or to one specific numerical example such 3/6. Thus there
is an ambiguity here.

Another example comes from Euclidean geometry, where two
triangles are equivalent (the actual word that is used is “congru-
ent”) if one fits exactly over the other. A further example comes
from modular arithmetic, let us say, for instance, clock arithme-
tic, where two numbers are equivalent if they differ by twelve:
1, for example, is equivalent to 13 or to 25.

Now each of these notions of equivalence is a form of “same-
ness.” 1/2 is the same as 4/8. Two right-angled triangles with
sides 3, 4, 5 are the same no matter where they are located in the
plane. If 12 hours have passed then the arms of a clock are in
exactly the same position as they were before. These examples
of equivalence can be abstracted into a general definition of an
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equivalence relation R on a set X. This is a relationship between
elements of the set; we shall use the notation xRy to mean that
x and y are in the given relationship “R.” This relationship is
subject to three very natural rules: (i) xRx, that is, every element
has the relationship R with itself;"” (ii) xRy implies yRx, that is,
the relationship is symmetric; and (iii) if xRy and yRz then xRz,
that is, the relationship is transitive. Such a relationship parti-
tions the set into mutually disjoint subsets where the elements of
any subset are in the given relation to one another. For example,
suppose the set is the real numbers and the relationship is “dif-
fering by an integer,” that is, xRy means that x — y = n for some
integer n."® For example, the number .5 is in the relationship R
with the numbers -.5, £1.5, £2.5, and so on. R divides the real
numbers into classes that typically look like {x, x £1, x£2, ..},
where x is any given real number.

A very basic mathematical operation involves constructing
the “quotient space” obtained by “dividing out by the relation.”
What is meant by this? A new space is formed and designated
by X/R whose elements consist of the equivalence classes. No-
tice that what is going on here is that a deliberate ambiguity is
introduced—the relationship or rather a whole class of equiva-
lent objects in X is now considered to be an object or point in
X/R. Denote the class that contains the element x by [x]. In the
above example each class would have a unique representative
between 0 and 1, so we could think of the quotient space as the
interval [0, 1] with 0 and 1 identified (since they differ by an
integer). Topologically this would give us a circle. This gives us
a new (ambiguous) way to think about a circle—a circle consists
of the real numbers “divided” by the above relationship, X/R,
or it is the unit circle, S', around the origin in 2-space, {(cos 2mx,
sin 2mx)}, where 2mx is the angle that the line joining the point
to the origin makes with the positive x-axis. The connection be-
tween these two representations is given by the angle 2rx; more
specifically, the element [x] of the quotient space representation
will correspond to the point with angle 2rx. There is a natural
mapping from the reals to the quotient space, X/R, given by
p (x) = [x] for any real number x (“p” stands for “projection”).
Geometrically the map p (x) consists of spiraling the real line
around the circle over and over again (see figure 5.2). In words
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Figure 5.2. The real line “covers” the circle

we say that the real line covers the circle or the line is a “covering
space” for the circle.

The fact that the real line is a covering space for the circle im-
plies that there is a deep geometric and analytic relationship be-
tween the line and the circle. For example, there is a relationship
between continuous functions from the circle to itself and func-
tions on the line that is described by figure 5.3. This means, for
example, that a function from the circle to itself, for example the
function f (cos ©, sin ©)) = (cos 20, sin 20) which wraps the cir-
cle around itself twice can be “lifted” to a map, F(x), of the line
into itself. In this case the function F(x) = 2x. In general, this
allows us to measure how many times a given continuous map
“winds” the circle around itself (here two times). The index of
rotation and of a map of the circle is given by F(1) — F(0), which
must be an integer. (In our example the index F(1) — F(0) = 2.) It
is an important concept in the theory of complex functions of
one variable.

On the other hand, a function F(x) defined on the real num-
bers would give rise to a function on the circle if F(x) preserved
the equivalence classes, that is, if the value of the function was
independent of the choice of which representative of the class
you chose. Thus F(x) = 2x gives a good function on the quotient
space since
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y = x + n for some integer n = F(y) = 2y = 2x + 2n = F(x) + 2n.

On the other hand F(x) = x* would not give a function on the
circle since, for example, 4/3 and 1/3 differ by an integer but
F(4/3)=16/9 and F(1/3) =1/9 do not.

What is the point of these kinds of constructions? In the first
place, we have a formalization of the notion of “sameness,” here
called equivalence. As usual, such a notion divides up the uni-
verse (here the set) into larger objects—it is a classification or
naming scheme. Then mathematics makes up a new universe
of discourse whose units are not the original elements but the
classifications. Often the new universe inherits a structure from
the old. The essence of what is going on involves multiple repre-
sentations of mathematical objects—a process (equivalence) that
becomes an object (equivalence class).

When the notion of equivalence is applied to whole categories
of mathematical objects, groups, rings, topological spaces, and
so on, we have the variety of sameness that is called isomorphism.
Isomorphism is fundamental to any mathematical subject—in
a sense it defines the subject. Each category of mathematical
objects carries with it the appropriate notion of isomorphism,
which is a formal way of saying that two objects are identical
from the point of view of that particular subject. For example,
two sets are isomorphic from the point of view of Cantor’s
theory if they have the same cardinality. If you are studying
metric spaces, where the abstract notion of distance is defined,
then the isomorphism will be called an isometry, a distance pre-
serving mapping. If the study is topology, then the relevant
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isomorphism is called a homeomorphism. In fact, the general
notion of “isomorphism” does not only refer to a relationship
between two different mathematical objects—as we saw in
Chapter 4, a mathematical object can be isomorphic to itself or
to a part of itself in a complex way. Thus an infinite set has the
same cardinality as a proper subset or a fractal is self-similar to
a part of itself.

After you say what you mean by two mathematical objects
being the same (or “isomorphic”) in a certain context, you are
faced with the problem of actually determining whether two
specific objects are or are not isomorphic. This is the problem of
classification and it is, in a way, the ultimate question in any area
of mathematics. For example, one of the great successes of finite
group theory involved the classification of all possible simple
groups. The key question in topology might be “When are two
topological spaces homeomorphic?”? that is, the classification of
all topological spaces up to homeomorphism.

If the classification of objects up to isomorphism is the ulti-
mate aim of a mathematical theory, in practice we usually settle
for something less—determining when two objects are not iso-
morphic. This is done by means of invariants. An invariant is
some number or other mathematical object that is the same for
all elements of an isomorphism class. For example, two triangles
that are congruent in Euclidean geometry have the same area.
Thus area is an invariant of congruence.

The study of topology might proceed by producing invariants
associated with the relationship of homeomorphism. The most
elementary of these might be the number of connected compo-
nents of the space, that is, the number of connected pieces that
the space naturally is divided up into. Thus one circle is not ho-
meomorphic to two circles, and the Roman numeral I is not ho-
meomorphic to III. However this invariant can be used in a more
subtle way. Consider a line segment, like the set of real numbers
between 0 and 1, [0, 1]. If we take out any number except 0 and
1 the interval breaks down into two subintervals. Compare this
to the circle: if we remove any point of the circle we still have
only one piece. It follows that the circle is not homeomorphic to
the interval. Similarly the figure X is not homeomorphic to the
figure Y, nor is a figure eight homeomorphic to a circle.
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Now the invariants associated with a given mathematical sub-
ject like a topological space may even be another mathematical
object in its own right. While algebraic structures like groups,
rings, and fields also have their own notion of isomorphism and
thus classes of invariant objects associated with them, an entire
algebraic structure may be considered as an invariant of a given
topological space. This is the idea behind the field of algebraic
topology, where the algebraic structure is seen as a measurement
of some topological feature of the space such as the number of
“holes” it possesses.

Geometry and physics are very much taken up with the ques-
tion of determining the invariants, the things that do not change,
under different groups of transformations. Transformations are
functions that move the elements of the space around. Of course
there is a dual relationship between invariants and transforma-
tions. A certain invariant determines the set of transformations
that preserve that invariant. For example, area is preserved by
translations and rotations of the plane. On the other hand a
group of transformations implicitly determines a set of invari-
ants associated with that group; for example translations and ro-
tations of the plane preserve quantities like area, length, and the
magnitude of angles. Each set of invariants determines a classi-
fication of objects; two objects are the same if the invariants have
the same value for both objects.

The notion of sameness in its various guises of equality, iden-
tity, tautology, equivalence, and isomorphism is absolutely fun-
damental to mathematical thought. However, what is happen-
ing here is not merely the classification of preexisting data but
that the various classification ideas themselves generate new
mathematics. All of this is based on a fundamental metaphoric
ambiguity—"“A is B,” which stands for “A is the same as B yet
A is different from B.”

FucLIDEAN IDEAS

I return now to Eulcid’s Elements and consider some of his more
famous results in terms of the ideas they are built around. Proofs
are not mere logical algorithms. Each proposition of Euclid con-
tains an idea that could not have been predicted a priori from
the statement of the result. The idea emerges in a discontinuous
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way—you either get it or you don’t. The moment of insight ar-
rives suddenly and is accompanied by a feeling of certainty—
you know that the result is true and you know why it is true. In
fact, the idea arrives as a result of the mathematician’s need for
understanding—her need to understand why things are the way
they are. The ideas behind the truth of some of the famous re-
sults of Euclidean geometry are particularly easy to isolate be-
cause the nub of the idea is usually contained in a geometric con-
struction. A number of famous example follow.

What do these examples have to do with my theme of ambi-
guity? Clearly the whole Euclidean enterprise is built upon two
obvious frames of reference, namely, geometry and proof. A pri-
ori these two domains are disjoint—geometry is related to prop-
erties of the natural or geometric world whereas proof is a logi-
cal product of human thought. The miracle of Euclid, as indeed
it is of much subsequent mathematics, is that these two domains
interact in the most fruitful way—that human thought processes
can say something intelligible about the world of experience. We
usually forget how surprising this is. Geometric facts give us the
impression of being right or wrong—either the sum of the angles
of a triangle is equal to two right angles or it is not. What proof
does is to embed this geometric fact in a larger context and relate
it to other geometric and logical “facts” that we deem for the
moment to be more elementary. There is no reason why these
two worlds should come together, and yet the implicit conflict
between the two is resolved in that synthesis of mind and expe-
rience that we call Euclidean geometry. But the two do not come
together passively. The attempt to prove geometric results and
fit them together into a deductive structure produces new re-
sults. It is not only that we understand geometry better by creat-
ing this axiomatic system but that what we know as geometry
comes into being as a result of this process.

The angles of any triangle sum to two right angles
The Idea: Draw a line CE parallel to the line AB.

Referring to figure 5.4, ZA = ZDCE and £B = ZECB (because of
the parallelism of the lines). Thus the sum of the three interior
angles of the triangle is identical to the sum of the three angles
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Figure 5.4.

that go to make up the angle at C, a straight line, that is, two
right angles. Notice that what we are doing is creating an ambi-
guity—a second “frame of reference” for the sum of the interior
angles, namely, the sum of the angles at the vertex C. The idea
behind the result is clear, but it is only revealed through the idea
of drawing the parallel line that reveals the idea. That is the in-
spiration. Make the proper construction, and the rest is the mere
filling in of details. Of course these details depend on Euclid’s
painstaking construction of a deductive system. Why can we
draw the parallel line with only straight edge and compass?
Why is the angle at A equal to the angle DCE? These “facts”
have been shown to be true in earlier propositions.

The Pythagorean theorem

This is another famous theorem whose proof depends on an in-
genious construction. The Pythagorean theorem states that in
the triangle ABC, if the angle at B is a right angle then we must
have AB* + BC* = AC%.

The Idea: Draw a line BFG parallel to AE.

Now observe first that the triangles ADC and ABE in figure 5.5
are identical (congruent) and so have equal area, but that the
area of ADC is half the area of the square on the side AB and
the area of ABE is half the area of the rectangle AFGE. Thus the
construction has divided the square on AC into two rectangles,
one of which is equal in area to the square on AB, the other to
the square on BC. Again. the proof hinges on looking at the
square on the line AC in two ways, the second of which is as the
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Figure 5.5. Proof of Pythagorean theorem

sum of two rectangles whose areas equals that of the two other
squares; also a form of ambiguity.

Now there are many proofs of the Pythagorean theorem. I
shall include a second one here to make the point that the ques-
tion “Why is it true?” can have many answers. Here, again, there
is a right-angled triangle with sides of length a, b, and c. We are
trying to explain why a* + b* = ¢*. Draw two squares with sides
equal to a + b (figure 5.6). The area of the first square is a* + b* +
2ab. The area of the second is ¢* + 2ab. The conclusion follows.
The “idea” here is that the same square can be divided up in
these two ways—that there is this ambiguous way of looking at
the square on the line a + b. It is true that this second proof is
more algebraic than geometric in tone and so not really in the
spirit of Euclidean geometry.

THE F1vE PLATONIC SOLIDS

Euclid ended his compendium of all the known geometric re-
sults of his time with one of the most beautiful and remarkable
results in geometry—that there exist precisely five regular con-
vex polyhedra. A regular polyhedron is a three-dimensional
tigure each of whose faces is the same regular polygon (an equi-
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Figure 5.6. Alternate proof of Phythagorean theorem

Figure 5.7. The tetrahedron and the cube

lateral triangle, a square, a pentagon, hexagon, and so on). A
polyhedron is convex if the line connecting any two points in-
side the polyhedron is itself entirely interior to the polyhedron.
For example, a tetrahedron has four faces all of which are equi-
lateral triangles. A cube has six faces each of which is a square
(tigure 5.7).

Since there are an infinite number of regular two-dimensional
polygons, one might imagine that there are also an infinite num-
ber of regular polyhedra. But that is not the case—there are only
tive! The idea is as follows.

Suppose that you have such a regular solid figure. Focus on one
of the vertices and the polygons around that vertex. Then flatten
out that portion of the solid onto a plane and note that by so doing
you have created a new, two-dimensional frame of reference for
the polyhedron. You will (possibly) increase the angles. The maxi-
mum angle would be 360 degrees. Thus we have:
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The Idea: The sum of the plane angles making up a solid angle
is less than 360 degrees.

The proof consists of enumerating all possible cases.

L. The faces are equilateral triangles. Since each angle is
60 degrees, you could have 3, 4, or 5 triangles at each vertex.
(6 triangles would give a total angle of 360 degrees, which
is not possible.)

I (a). 3 equilateral triangles at each vertex yield a
tetrahedron.

I (b). 4 equilateral triangles at each vertex yield an
octahedron (figure 5.8).

I (c). 5 equilateral triangles at each vertex yield an
icosahedron (figure 5.9).

II. The faces are squares. The only possibility is three
squares at each vertex, for four squares would give a total
angle of 360 degrees.

III. The faces are pentagons. Again the only possibility
is that there are three at each vertex (each interior angle of
the pentagon is 108 degrees). This yields a dodecahedron.
(figure 5.10)

These are the only possibilities and are the only regular con-
vex polyhedrons. Now there is one question left. How do we
know that there is only one example for each of the above five
cases? For example, how do we know that the cube is the only
polyhedron for which three squares meet at each vertex? The
reason is connected to the Euler characteristic for a polyhedron
that I shall talk about in connection to the work of Lakatos is the
next chapter.

FEucLip’s PROOF THAT THERE ARE AN INFINITE
NUMBER OF PRIMES

This is a surprising and wonderful result. If you had no experi-
ence with prime numbers and you were asked to guess whether
there was a largest prime, then it might be difficult to know what
to answer. As numbers get larger and larger, there are more and
more numbers that might divide into them, so it is conceivable
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Figure 5.8. The octahedron

Figure 5.9. The icosahedron

that every sufficiently large number is divisible by some smaller
number. You might guess that there are only a finite number of
primes. Then, of course, you would have guessed wrong, as
Euclid’s argument will show.

The Idea: Suppose we have a finite collection of prime numbers
and we create a new number, N, by multiplying all the original
numbers together and adding 1. Then either (i) N is prime or
(i1) N is divisible by a prime number that is not in the original
collection.
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Figure 5.10. The dodecahedron

Suppose we have the primes: p;, p,, . . ., pr (all primes are larger
than 1) and N = p; X p, X - - - p, + 1. Since N is larger than any of
the initial primes, if it is prime then we have found a new prime.
If it is not prime, then it is divisible by some smaller prime, call
it p. If p is equal to one of the original primes, p; say, then p
divides evenly into N and N =1 = p; X p, X - - - X pr. Now the
only positive integer that divides evenly into two successive in-
tegers is 1, so p and p; must be equal to 1. But we began by as-
suming that each of the initial primes was greater than 1. There-
fore p could not have been one of the original primes, p;, p,, . . .,
Px. Again we have produced a new prime. Using this procedure
over and over, we can keep producing new primes. For example
if we start with p = 2 the procedure will produce 3; starting with
2 and 3 will give us 7; 2, 3, and 7 will give us 43; 2, 3, 7, and 43
will give us 1807, which is not prime but is divisible by 13, a
new prime; and so on. Thus we have shown that there are a in-
finite number of primes.”

THE AMBIGUOUS IDEA OF EXPONENTIATION

Ambiguity involves the existence of multiple contexts, but as we
have seen these contexts may not arise at the same time histori-
cally or in the learning process. Sometimes an idea involves the
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emergence of a second, more general context. We saw this in the
case of the equation x* + 1 = 0, which seemingly evoked the com-
plex numbers. In the fascinating case history that I shall now
discuss, ambiguity of various sorts is the essence of what is
going on.

The most elementary way of thinking about the exponential
function, ¢, involves a number raised to a power—a generaliza-
tion of more elementary power relationships, like 2* = 16. Of
course here ¢ is the transcendental number 2.7182818. .. On the
other hand ¢ can be represented as a power series:

This latter formulation is extremely fruitful. Differentiating
term by term we see that this function is its own derivative.
Since ¢’ = 1, ' is the unique functional solution to the simplest
possible differential equation, dy/dx = y; y (0) = 1. Thus we have
two contexts— e* as a power function and e* as a power series.
The first context does not explain what is so special about the
number e or the function e* as opposed to other power functions
like 2%, for example. The second singles out e* as special in a cer-
tain way, but it does not immediately explain what the exponen-
tial function has to do with taking powers. The two ways of
looking at exponentiation describe the same situation from two
different perspectives. Both perspectives are valuable.

The power series representation is indeed very powerful. This
can be seen by comparing the power series representation of the
exponential function to that of the trigonometric functions sin(x)
and cos(x). At first glance the trigonometric functions and the
exponential function have nothing whatever to do with one an-
other. The graphs of sin(x) and cos(x) are periodic and bounded
between the values of —1 and +1, whereas the graph of exp(x) is
nonperiodic and unbounded. The exponential function involves
the mysterious transcendental number e. In the definition of sine
and cosine e is nowhere to be found.

Yet there is a deep connection between these functions. So
basic is this connection that it would make sense to say that the
exponential function and the two trigonometric functions above
are really the “same” function. By now this is the way we have
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learned to look at an ambiguous situation: exponential and trig-
onometric functions are different—the exponential function is
the exponential function and the trig functions are just that—but
at a deeper level they are the same.

A hint of the deeper connection emerges when all of these
functions are written out as power series:

x¥oox
sin(x) = x——+4+ —+---,

3t 5l

2
cos (x) = 1—x—+£

20 4l

X

eXp(X) = 1+x+j+§+

Here the expansion for sin(x) has the odd powers of x, the
expansion for cos(x) has the even powers, and the expansion of
the exponential has all the powers. This is a hint that there is
indeed a connection to be made between these functions. Yet the
connection is not obvious because of the alternating positive and
negative terms in the first two series as opposed to the uniformly
positive terms of the latter one. Indeed, the connection does not
appear if x is restricted to “real” values. However, suppose we
expand our vision to include complex numbers and, in particu-
lar, introduce the imaginary number i, where i* = —1. The for-
mula for the exponential function then becomes

exp(ix) = x+ix—————+

2 x4 x6 . xS . xS .X7
+ - +--~)+i(x—+—+-~-).
! ! ! 3! 5! 7!
That is, exp(ix) = cos (x) + i sin(x) the famous Euler equation.
It follows that the exponential function (for imaginary values)
is totally determined by the sine and the cosine. Conversely we

can solve for sin(x) and cos(x) if we know the values of the imag-
inary exponential. That is,
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There exist in this situation many of the elements of the kind
of ambiguity that has been described: an incompatibility at one
level that is replaced by a unity at a higher level. The new point
of view reveals things that would not even be suspected in the
original framework. For example putting x = 7 in the Euler equa-
tion gives us

exp (im) = cos (w) + i sin (n) = -1,
that is,
e™+1=0.

This one equation reveals a completely unexpected relationship
between five of the most important constants in mathematics.

This leads us to consider the complex exponential function
e*=e**W=e" e¥=e"(cosy + isin y). Now every complex num-
ber z = x + iy can be considered to be a point in the plane with
coordinates x and y. It is interesting for our discussion that
points in the plane naturally have a dual representation. They
can be represented by their x- and y-coordinates and also by
their distance from the origin, r = | x* + i*, together with the
angle O that the line from 0 to z makes with the positive x-axis.
The way we have written e* above shows us that the angle in
this case is y and the distance 7 = e*. In particular, the Euler equa-
tion gives us a representation for the y in e” as an angle in the
complex plane.

Now it is interesting that this unification of the trigonometric
and exponential functions is not achieved at the level of the real
numbers. As real-valued functions, the exponential and trigono-
metric functions are indeed “incompatible.” However, this in-
compatibility is reconciled at the level of “complex” functions*
and this higher level unity is made explicit by the Euler formula.

Since exponential functions have the nice property that ()" =
¢™, the Euler equation gives rise to the De Moivre formula:
(cos 6 + i sin 8)" = cos 1O + i sin nB. This formula helps us to
resolve an anomaly of the real number systems that concerns the
roots of numbers—for example, positive numbers like 4 have
two square roots, namely +2, but negative numbers have no
square roots at all. As for cube roots, in the system of real num-
bers all numbers have exactly one cube root, also one fifth root,
and so on. The whole situation is irregular and vaguely dis-
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Figure 5.11. The eighth roots of unity

satisfying. The De Moivre formula tells us that if we are looking
for the square roots of -1, for example, any such roots would
have to satisfy

cos (20) + isin (20) = —1.

Now, —1 has the angle & (or 180 degrees with the positive x-axis).
The question becomes which angles, when doubled, give an
angle of 180 degrees, giving us the two angles of 90 and 270 de-
grees. This gives rise to the two square roots of -1, the imaginary
numbers + i. This method is completely general; for example the
8th roots of 1 are obtained by dividing the unit circle by the eight
angles m/4 (45 degrees), n/2, 3n/4, ©, 5n/4, 3n/2, 7n/4, 2n (or
0). These are the complex numbers +1, +i, 1/,2 (11, i) (figure
5.11). Every nonzero complex number has n distinct nth roots
that are arrayed in a beautiful geometric pattern—evenly spaced
around a circle of the appropriate radius. Our various multiple
representations of complex numbers and exponential functions
have given us a way of consolidating our understanding of
questions that, although they can be formulated in the domain
of real numbers, cannot really be resolved until we are pushed
out of the reals into the complex realm. There they seem to be
resolved in a natural way.

Analogy is a simple form of ambiguity, but it often produces
important mathematical ideas—indeed, reasoning by analogy
seems to be a very basic way of thinking. In his books on heuris-
tics in mathematics, George P6lya” places a great deal of stress
on thinking by analogy. An analogy is similar to a metaphor in
that it involves a comparison between two situations. Like a
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metaphor, a fruitful mathematical analogy involves a leap—the
realization that a certain kind of generalization may be fruitful.

In the power series representation for the exponential function
one is tempted to ask (by analogy) what it would mean if the
real variable, x, is replaced by a complex variable z. Making this
substitution makes mathematical sense since the power series
involves the ideas of addition, multiplication, and convergence,
all of which makes sense for complex numbers as well as for
real ones. If you use the power series to define a new complex

function
Zn ZZ ZS
e’ = E =l+z+—+——+---,
n! 2! 3!

n=0

it turns out that you now have another way to represent the
complex exponential function that we earlier defined by e =
e**¥ = e* (cos y + 1 siny). Almost all the interesting properties of
the real exponential function carry over to the complex case.
These include the various exponential laws like e ¢ = ¢**%. The
complex exponential function also has the vital property that its
derivative is equal to the original function, that is, it is a solution
to the differential equation dw/dz = w; w(0) = 1.

In fact there is only one natural way to extend the real valued
function exp (x) to the complex function exp (z) = exp (x + iy) =
exp (x)[cos(y) + isin(y)]. Thus one could say that the complex
functions are implicit in the real functions and therefore that
the Euler unification is also implicit even in the real number
formulation.

Now a power series makes sense in many situations and so
the analogy can be pushed further. For example, if we are given
a square matrix, A, we might define the exponential of a matrix
by setting

2 3

er=T+A+—+ A +

2! 3!
As usual when one writes down an infinite series, one must ask
whether the series converges. In this case one can show that the
exponential of a matrix is indeed another matrix of the same di-
mensions as the one we began with. When we begin to investi-
gate possible properties of the exponential of a matrix we start
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with the properties of the ordinary exponential function and at-
tempt to prove analogous properties for the matrix exponential.

The real, complex, and matrix exponential functions are just
the beginning of the story of the idea of the “exponential.” This
idea has applications in a disparate variety of mathematical situ-
ations from differential equations to differential geometry and
Lie groups.

THE IDEA OF “CoNTINUITY”

In the discussion of Euclidean geometry, I mentioned that there
are hidden assumptions in Euclid that are never made explicit.
One of these, I said, was the assumption that two arcs that ap-
peared to intersect one another actually did intersect.” It is not
surprising that this detail is missing in Euclid because it turns
out to depend on the notion of “continuity.” Continuity is one of
the deepest and most interesting ideas in mathematics. Indeed,
continuity is half of one of the most basic dualities in all of sci-
ence—the discrete versus the continuous. Are space and time
discrete or continuous? This was an important question for the
Greeks, the basis for the paradoxes of Zeno.

Thinking about continuity has gone on for thousands of years
and in mathematics has only reached a certain state of stability
in the relatively recent past. A good place to begin is with a geo-
metric picture.

The Idea: A curve is continuous if it can be drawn without
lifting the pen from the paper.

As we shall see, there is a surprising amount of mathematics
hidden in this geometric idea. Now, lifting the pen from the
paper would leave a “gap,” so the idea here is that continuity
means “no gaps”’—a continuous curve being one with no gaps.
But what does it mean to say that a line has “no gaps”? How
can we give this idea mathematical substance? It turns out that
“no gaps” is quite a subtle idea that depends very heavily on
the mathematical context in which it is considered. In the Greek
world of rational numbers, all curves have “gaps” in the sense
that curves that seem to intersect can, in fact, pass right through
one another without touching. For example, the line given by
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the equation y = 0 (the x-axis) has no rational point in common
with the parabola y = x> — 2, since the normal points of intersec-
tion have coordinates (£ 2, 0). These two curves pass through
each other without meeting in the world of rational numbers. In
other words, there is a hole or gap in these curves corresponding
to every point with at least one irrational coordinate.

These kinds of gaps can be filled in by expanding our mathe-
matical context from that of the rational numbers to that of the
real numbers. Now, physically there is no difference between a
“rational line” (a line that contains only points with rational co-
ordinates) and a “real line” (a line with points with real numbers
as coordinates). The difference between the two must therefore
be a matter of deciding which is the more useful context for cap-
turing the essential mathematical intuition of “continuity.” The
reals are “complete” whereas the rationals are not. Complete-
ness is therefore a way of formalizing the idea of “no gaps.” It
was discussed on page 139 and means nothing more or less than
that every sequence of numbers that should converge actually
does converge to some specific number.

Does the completeness of the real numbers actually guarantee
that the real line has “no gaps”? Most mathematicians would
say that it does. Yet on closer examination we can see that it all
depends on the context, that is, on what you mean by a gap. For
example, in our discussion of infinitesimals (pp. 181-185), we
say that this system allows “numbers” of the form x + /i, where
x is a real number and / is an infinitesimal to be placed between
any real number x and any other real number. Thus, in this sys-
tem, even the real numbers have “gaps”!

The idea that the graph of a continuous function must not con-
tain a “gap,” can be directly reformulated into the following:

Proposition 1: Suppose a function f (x) is continuous on the in-
terval [a, b] and has f (a) < 0 and f(b) > 0. Then f (c) = 0 for some
¢ between a and b. w

In geometric language, if the graph starts below the x-axis and
ends above it, it must cross the axis. To miss zero you would
have to raise your pen from the paper. It turns out that the exis-
tence of such an intermediate value, c, is guaranteed by the con-
tinuity of the function f (x). Viewed in this way the proposition
is really nothing but a restatement of the idea of continuity. Nev-
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f(a) < 0
f(b) > 0
f(c)=0

Figure 5.12.

ertheless for students in a modern course in mathematical analy-
sis it is a fairly technical and difficult result.
This proposition could be restated in a more general form:

Intermediate value theorem: If a continuous function defined
on the interval [a, b] has f (a) < k and f (b) > k, then f (c) = k for
some intermediate value c between a and b.

Again, this is just a restatement of the idea of continuity. Or else
we could derive it from the first proposition through the idea of
setting the function F(x) = f (x) — k.

The intermediate value theorem may seem obvious, but it has
interesting consequences. It is an example of an existence theo-
rem. It tells you that a certain number exists (the solution to the
equation f (x) = k) but not what it is. This is yet another example
of the type of ambiguity that was discussed in Chapter 1, where
one knows the number in one sense but not in another. Yet even
if one does not know the solution explicitly just knowing that a
number or a solution exists is important.

For one thing, the intermediate value theorem gives you a
method to compute the number in question. Knowing f (a) < k
and f (b) > k tells you that the solution lies between a and b. Then
look at the midpoint between a and b. Call it a;. If f (a;) < k, then
the solution, c lies between a; and b. If f (a;) > k, then the solution
lies between a and a;. We can continue in this way, obtaining a
sequence of approximations to c. This is a way (but not the most
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efficient way) of obtaining numerical approximations to the so-
lutions of equations.

We can use this reasoning to show that |2 is a real number. In
fact, what we look for is a real number such that 4> = 2 (that is,
a = 2). We do this by observing that f (x) = x? is continuous, 12
< 2, and 22 >2, so the intermediate value theorem tells us that
there must be a solution to a* = 2 lying between 1 and 2.

Now why restrict the proposition discussed above to the situ-
ation in which the graph of a function crosses a straight line (the
x-axis)? What if we have two functions, f and g, where f (2) <

g (@) and £ () > g (b)?

Proposition 2: If two functions, f (x) and g (x), are continuous
on the interval [a, b], with f(a) < g (a) and f(b) > g (b), then
f(c) = g (c) for some c between a and b. m

The idea is merely to look at the function f — g, which is negative
at 2 and positive at b, and apply the first of our propositions.

This idea gives us the most elementary example of some-
thing that is very important in mathematics, namely, fixed-point
theorems.

Proposition 3: If f (x) is a continuous function that maps the
interval [0, 1] into itself, then f has a fixed point, that is, f (x*) =
x* for some x* between 0 and 1. m

The argument is immediate from figure 5.13. If f(0) =0 or f (1) =
1, then we have a fixed point. If not, we apply Proposition 2 to
the functions f(x) and g (x) = x. Since f(0) > 0 and f(1) < 1,
we must have a point where the two graphs intersect, that is,

fx) =x.

FuNDAMENTAL THEOREM OF CALCULUS

This important theorem was discussed in Chapter 1 as an exam-
ple of ambiguity. Recall that it states that differentiation and in-
tegration are inverse processes. The argument contains the sim-
ple geometric idea that we have been discussing. The argument
is interesting in itself, but it also allows us to distinguish be-
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y A

y = f(x)

>
X

f(x*) = x*

Figure 5.13. Fixed point theorem

tween the result itself and the idea behind the proof, that is, to
distinguish between what it says and why it is true.

In order to discuss why the theorem is true, we must first for-
mulate the theorem in a way that allows the idea to be seen
clearly. We shall look at integration followed by differentiation.
Thus let

X

F)=]f@dt

a

The theorem states that the derivative of F(x) equals f (x), F’ (x) =
f (x). Recall that the derivative of F(x) is defined to be the unique
number that is approximated by the difference quotient

F(x +h)-F(x)
. .

With reference to figure 5.14, this difference is equal to the area
under the curve f (x) between x and x + h.

The Idea: The area under the curve is equal to hf (), where §
lies between x and x + h.
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Basically the idea is another variation on the theme of continu-
ous variation. The area of the region in question (F(x + k) — F(x))
lies between mh and Mh, where m is the minimum and M is the
maximum of the function on this interval. Thus it is equal to
f (&) h, where & is some value between x and x + h. The quotient

R e 5)

and since & lies between x and x + h, as I tends to zero & is forced
toward x and so the difference quotient tends to f (x).

Pancake Theorems

There are innumerable applications of this idea that a continu-
ous variable must go through all possible values within its
range. One is called the “pancake theorem.” Suppose an irregu-
larly shaped pancake lies on a platter. Can one cut it in half with
one slice of a knife? Consider positioning the cut initially under-
neath the pancake and gradually moving it up so that finally it
lies completely above the pancake. Since the movement is con-
tinuous, there must be some intermediate position where the
pancake is cut exactly in half.

Now what if there were two pancakes? Can they both be cut
in half with just one cut of the knife? In mathematical language,
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VoS

Figure 5.15. The graph of a generic quartic polynomial

Theorem: If A and B are two bounded regions in the same plane,
then there is a line in the plane which divides each region in half
by area.

For details of the proof, check the very nice little Mathematical
Association of America book by Chinn and Steenrod. The main
idea is precisely the intermediate value theorem.

THE FORMALIZATION OF CONTINUITY

Continuity begins as a simple geometric observation—certain
curves can be drawn without lifting the pencil from the paper—
and it can be carried quite far without heavy formalization. We
can draw the graphs of the simple functions: linear, quadratic,
in fact the graphs of all polynomials are easily seen to be contin-
uous (figure 5.15).

However, the geometric definition of continuity runs into dif-
ficulties when one begins to consider functions that are defined
implicitly, by power series or Fourier series. We have seen that
the trigonometric and exponential functions have power series
representations. But it is possible to show that for an arbitrary
power series, that is, a series of the form
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there is a constant 7, 0 < r < o0, such that the series sums to a finite
value whenever | x | < 7. Thus the series actually defines a function
f (x) whose value at x is the sum of the series. What does the graph
of this function look like? We don’t know. If we cannot draw the
graph, then we certainly cannot use a geometric criterion to show
that it is continuous. Another, more analytic definition of continu-
ity is required. Whatever the correct idea turns out to be, it must
satisfy a few criteria. First, the functions we “know” to be contin-
uous by geometric means should continue to be continuous in
this new definition. Second, the new definition should not distort
our feeling that continuous functions do not have “jumps.”

After a very long time, many attempts, and much discussion
a consensus definition was arrived at. This turns out to be that
f (x) can be forced to approximate f(a) by making x approximate
a. Or, f (x) is continuous at a if

For every number € > 0 there exists 6 > 0 such that
|f(x) —f(a)| < € whenever |x —a| < d.

This definition satisfies the two criteria stated above. It is a
way of formalizing our “feel” for what a continuous function
should be. However, when mathematics has (more or less)
agreed on what the definition of a continuous function should
be, a whole host of other questions are raised. Precisely which
functions are continuous according to this definition? On the
other hand, can we specify what discontinuities (points at which
the function is not continuous) are possible? It turns out that
writing down a formal definition of function and of continuity
vastly enlarged the category of continuous function. Beyond the
polynomials and the power series, all of which are relatively
“nice,” “most” continuous functions are much more compli-
cated. This situation is similar to the situation that was discussed
earlier of extending the rational number system to the real num-
bers. The advantage is that every possible decimal now gives
you a real number. The disadvantage is that you now have all
these new numbers (remember the transcendentals) that you
don’t really have any feeling for. Similarly the abstract definition
of continuity gives rise to a huge family of continuous functions
“most” of which are extremely complex and hard to describe.

The “idea” embodied in the above formal definition of continu-
ity itself seemingly begs to be generalized—and it has been ab-
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stracted in many ways. To state just one possible generalization,
the definition is based on the idea of distance: f (x) gets “close” to
f(a) when x gets “close” to a. Hence we should be able to talk
about continuous functions whenever we are in a situation where
we can measure distance. It turns out that distance is a very gen-
eral idea and can be defined in many situations. The most obvious
is in higher-dimensional Euclidean spaces—dimension 2, 3, n—
these all have various ways in which distance can be understood.
Then there are curved spaces, so-called differentiable manifolds,
like circles, spheres, toruses (doughnuts), and the like. These
spaces are also metric spaces (distances can be defined). Thus, in
all of these cases, it is possible to talk about continuous functions.
Finally even function spaces, like the space of all continuous func-
tions defined on the interval [0,1], can be given a distance. This
enables us to talk about functions of functions and what it would
mean for such functions to be continuous.*

This discussion only gives a hint of the complexity and ramifi-
cations of one deep mathematical idea, continuity. We began with
a rather elementary, geometric picture of continuity. We then
asked the question, “What is continuity, really? What is really
going on?” Then the notion of continuity was formalized. After
the notion was formalized there began a whole process of consol-
idating and generalizing the idea. In this case the formal defini-
tion was so complex that the question, “What is continuity? What
does the definition really mean?” can now be asked again, this
time with reference to the formal definition. This may lead to a
new or deeper idea of what is going on, and these new ideas may
themselves be formalized and the process will continue until such
a time as it is felt that the ramifications of the idea have been suf-
ticiently explored. Yet this is not the only possible way to formal-
ize the idea of continuity—other definitions are possible. Thus the
idea is not a single, well-defined object of thought but a whole
process of successively deeper and deeper insights.

IDEA CARRIED BY PICTURES

Ivar Ekeland in his book Mathematics and the Unexpected dis-
cusses mathematical ideas that are carried by certain pictures.
He says, “the power of certain pictures, of certain visual repre-
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sentations, in the historical development of science, will be the
recurrent theme of this book. It is a power, in the early stages,
to initiate progress, when the ideas it conveys are still creative
and successful, and it becomes, later on, power to obstruct,
when the momentum is gone and repetition of the old theories
prevents the emergence of new ideas.” Ekeland discusses, for
example, the idea of uniform circular motion—a point moving
along a circle with constant speed. This picture lies at the heart
of the Ptolemaic system that Ekeland calls one of the major intel-
lectual achievements of antiquity. Yet this fixed idea became an
impediment to future progress since it made it difficult for as-
tronomers up to the time of Johannes Kepler to see that the mo-
tion of the planets could be seen more simply as ellipses than as
combinations of circles.

This is another reason why ideas need to be looked at from
different points of view, that is, in an ambiguous way. This ex-
ample makes the point that the “idea” is not rigid or absolute.
It is valuable in a certain context but when it is forced onto a
situation in an artificial way, when it is considered as true a pri-
ori, then it can just as well obstruct the development of the sub-
ject. Of course, in the latter case it is not a real idea any more.
The true idea only comes alive in a certain situation. It has a
dynamic aspect and appears on the scene in a sudden, unex-
pected way. When the idea is formalized, memorized, and ap-
plied by rote it loses its creative power and blocks the emergence
of other ideas. Thus mathematics is a subject that is always alive
and progressing with new ideas arising in response to changed
interests and the ever-changing development of mathematics.

METAPHOR

Many important mathematical ideas are metaphoric in nature. I
discussed metaphor in Chapter 1. Here I just wish to emphasize
the close relationship between metaphors and ideas. A meta-
phor, like an idea, arises out of an act of creativity. You have to
“get” a metaphor just as you have to “get” an idea. For example,
I might be considering an entire class of functions, say all the
continuous functions, f (x), defined for 0 < x <1. I might then met-
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aphorically call each such function a “point” in the “space” of
all such continuous functions. We have now metaphorically
identified the analytic domain of a collection of functions with
the geometric domain of “points” and “spaces.” This is a power-
ful thing to have done. To give but one example, the integral can
now be considered as a continuous function from the space of
functions to the real numbers.

THE IDEA OF LINEARITY

Linearity is one of the most widespread and important ideas in
mathematics. It begins, of course, with the straight line. Linear
has the same linguistic root as line. So saying that certain data
is linear would mean that the data points lie in a straight line.
Now if you ask what functions have linear graphs, you obtain
functions of the form f(x) = mx + b, where m and b are arbitrary
constants. Setting b = 0 and so only considering functions whose
graphs pass through the origin gives linear functions that satisfy
the two properties

@) flx+y)=f@) +fv),
(ii) f(ax) = af (x).

By analogy with the one-dimensional situation, any function that
satisfies properties (i) and (ii) is called a linear function. Thus a
matrix can be thought of as a linear function (or transformation).
For example the function that maps the pair of numbers (x, v)
into the new pair (x + 2y, 3x + 4y) through the process of matrix
multiplication is linear because it satisfies (i) and (ii) above:

(1 2>(x>_(x+2y )
3 4/)\y 3x + 4y

Notice that we now have two mathematical contexts in which
to think of the idea of linearity. The first is the geometrical where
lines are linear objects. So linear can have the meaning “non-
curved,” which allows us to think of a plane in 3-space as linear
and this can be generalized to higher-dimensional linear spaces.

The second context is linear functions that satisfy conditions (i)
and (ii). The connection between the two is via the graph of the
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function—if the function is linear then the graph is linear; if the
graph is linear and passes through the origin then the function
is linear.

Because linear functions are the simplest mathematical func-
tions, our knowledge about them is more extensive than it is for
other (nonlinear) functions. A great deal of mathematics is in-
volved in analyzing linear situations and problems.

However, many mathematical situations and applications are
nonlinear. If we think about the power series representation for
the exponential function that we discussed on page 226, then the
first term, 1, is a constant; the second term, x, is the linear term;
and all the subsequent terms, x% x° and so on are nonlinear.
Nonlinear situations are much more complicated than linear
ones. An important question is, therefore, whether nonlinear sit-
uations that we may not understand, can be approximated by
linear ones that we do.

CALCULUS AS LINEAR APPROXIMATION

Now the calculus may be understood as a process of linear ap-
proximation. For example, the derivative of a function at a par-
ticular point may be understood as the tangent line to the graph
of the function. Thus the derivative to the function f (x) = x° at
x = 1 is equal to 3.” This amounts to saying that the tangent
line to the graph of f (x) through the point (1,1) has slope 3. The
derivative has a geometric interpretation as a straight line. It is
the straight line that is the best approximation to the curve y =
x? at the point (1,1). Another way of saying this is that the linear
function L(x) = 3x is the linear function that best approximates
f (x) around the point x = 1 (actually the graph of the tangent
line is y = 3x — 2, as we see in figure 5.16).

Calculus was not always understood in this way. It was when
calculus came to be generalized from its one-dimensional roots
to more complex situations such as higher-dimensional Euclid-
ean spaces or differentiable manifolds that the idea of the deriv-
ative as linear approximation came to the fore. Consider again
the function f (x) = x* at the point x = 1 whose linear approxima-
tion is the function L(x) = 3x. All the information about L(x) is
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y=3x-2

Figure 5.16. Linear approximation

contained in the one number 3. In higher dimensions, functions
from 2-space to 2-space, for example, we would need four num-
bers to specify the appropriate linear function. If the nonlinear
function was given as

F(x, y) = (x* + 1%, xy).

Then the linear approximation at the point x = 1, y = 1 would
be given by

L(x,y) = (2x + 2y, x + y).

We can “linearize” a nonlinear problem by taking its deriva-
tive. We then have a linear problem which is much simpler and
which we may well be able to solve. The question is, “What does
the solution to the linear problem tell us about the original, non-
linear problem?” It turns out that, just as the tangent line tells
us something about the graph but only when we are close to the
point in question, so too the linear problem often gives us local
information about the nonlinear problem. Thus, for example, to
study the behavior of a system of differential equations in the
vicinity of what is called an equilibrium point in the plane, one
“linearizes” the system and obtains a linear system of differen-
tial equations for which the solutions are well known. We then
infer (most of the time) that the solutions to the nonlinear system
behave similarly to the associated solutions to the linear system
as long as we stay close enough to the equilibrium point.

243



CHAPTER 5

SoME CONCLUDING REMARKS ON IDEAS IN MATHEMATICS

The mathematical idea acts as a dynamic organizing principle
on a certain body of mathematics. It is used as much to generate
questions and further ideas as it is to answer questions, that is,
to generate theorems. The activity that is generated by the idea is
open-ended in the sense that future research is always possible.
However, the potential of the idea may be optimized in certain
mathematical results like the ones we quoted above. A strong
idea may have numerous optimal results associated with it.
Moreover, this idea may be joined with other ideas to produce
even stronger results. The whole matter is a dynamic flux of
mathematical activity with occasional points of relative stability
that we call theorems.

The usual sequence of definition, axiom, theorem, proof does
not apply to the mathematical idea. The idea may not even pre-
cede the result. It is conceivable that the result comes first. In
trying to understand the result (as in the case of Verrill’s com-
ments on “moonshine”) we may become aware of what we have
called the “idea.” When we have isolated “what is really going
on” we would then proceed to apply that principle as widely
as our imaginations and knowledge will allow. I conclude that
mathematics is not merely a body of facts arranged and justified
by a stringent logical structure. The logical structure of mathe-
matics gives theorems their stability, but when we remove logic
as the focal point of mathematics and replace it by the “idea”
we see that the seeming stability of mathematics is not absolute.
The data can be structured in many different ways correspond-
ing to what we are interested in and to the mathematical ideas
that arise to do the structuring. These ideas arise in response to
the question, “What is going on here?” That is, from the attempt
to make sense of the phenomena in question.

This situation is alluded to in Thurston’s fascinating article*
in which he makes the following comments about the nature of
mathematics:

1. Mathematics is that which mathematicians study.
2. Mathematicians are those humans who advance
human understanding of mathematics.
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He says, “What we (mathematicians) are doing is finding ways
for people to think about mathematics.” This perspective high-
lights the role of the mathematical idea. Thurston says, “When
the idea is clear, the formal setup is usually unnecessary and
redundant.” He continues, “We mathematicians need to put far
greater effort into communicating mathematical ideas.” It is in-
teresting that there is a circularity in these remarks, but that is
inevitable when one steps out of a formal system. Our initial
point was that mathematics is nontrivial and again, to talk about
the nontrivial one cannot avoid things like circularities. But the
main thing that I take from his comments are that the most basic
phenomena in mathematics are the mathematical ideas. It is the
mathematical idea that we must focus on if we wish to under-
stand what is going on in mathematics.

245



CHAPTER 5

APPENDIX: THE ORIGINS OF CHAOS

One of the revolutionary developments in science has been the
discovery of the phenomenon of chaos. Two of the surprising
things about chaotic phenomena are how complicated determin-
istic systems can be and how “normal” complexity is. These two
properties can be illustrated by a simple theorem associated
with the dynamics of one-dimensional maps. We are concerned
here with the iteration of one-dimensional maps such as f (x) =
2x (1 - x). We begin with an initial point x, and consider its orbit:

x1=f(x0), X2 =f(x1) =f(f(x0), x5 = f (x,), and so on.

We obtain an orbit that consists of an infinite number of points
unless there is a loop. For example if f (x) = x we say that x is a
fixed point. If f* (x) = x we say that x is a periodic point of period
2, if f3 (x) = x the x is a point of period 3, and so on. Dynamical
systems measure the way physical, biological, or mathematical
systems change with time. They are concerned with the orbit
structure associated with the generating function f (x). Now the
simplest orbits are the periodic orbits that we have defined
above. To understand a dynamical system means in particular
to have an understanding of its periodic orbits. The result that
we shall describe below describes the periodic orbit structure
for continuous functions defined on an interval of real numbers
such as [0, 1].

I am interested both in the result and in the idea behind the
result. I am interested in the result because it is surprising and
fascinating and tells us a great deal about the behavior of these
kinds of dynamical systems. I am interested in the “idea” be-
cause of what it tells us about how this piece of mathematics
came to be and in general about how an idea can serve as an
organizing principle for an area of mathematics.?”

This discussion involves continuous functions f(x) of one
variable that map the points in some interval, [a, b], of real num-
bers into themselves. For example the function might be f (x) =
x%. The interval in question might be the numbers x, 0 < x <1,
since for such a number we also have 0 < f (x) < 1. It is not too
difficult to see that for this generating function 0 and 1 are fixed
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/\/Ff(x)

/U
I - J

Diagram 1

points, and that there are no other fixed points and no periodic
points at all of any other period.

There is such a vast number of continuous functions that it
might seem unrealistic to hope to say anything at all about the
structure of their periodic points. Thus the following is quite un-
expected.

Proposition 1: If a continuous function has a point of period 3
it must have points of all periods 1,2,3,4,5,....n

Now the function f(x) = 1 — x has a fixed point (x = 1/2) and
points of period 2 (x # 1/2) but points of no other periods. Thus
we might naturally wonder what is so special about 3? Why is
a function with a point of period 3 so complex but a function
with a point of period 2 less complex?

Unraveling the story of the periodic points depends on the
following facts about continuous functions:

Lemma 1: If f (x) is a continuous function and I and | are closed
intervals with I C [ and f (I) D ], then f has a fixed point in I.

This follows from the intermediate value theorem just like Prop-
osition 3 on page 234.

We use the notation I — ] in the situation where f (I) D ], that
is, the image of I contains J.
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Thus in the situation of Lemma 1, we have

Lemma 2: If there exists a loop of subintervals [,, J,, J5,..., ]
such that f(J1) D L, f(J,) D - f(Juz) D Lo, f(J1) D 1,
(ie, ]y >, — ... > ], > J1), then there must exist a point x

in J, such that f(x) € J,, f*(x) € J5,...,and f" (x) = x.

The truth of this lemma follows from the observation that if f (J;)
D ], then there is a subinterval K; C ], such that f (K;) = J,. Thus
f*(K;y) D J3, and so there is a subinterval K, C K; such that f (K;) =
J5. Applying this reasoning repeatedly we get a subinterval K of
J1 whose points pass through all the intermediate subintervals
and such that f* (K) = J;. This interval contains the required peri-
odic point.
At this point, we have isolated the key idea.

Key Idea: The existence of periodic points can be inferred from
such loops in an ordered graph of subintervals.

With this idea concrete results come easily.

Proposition: If a continuous map of an interval into itself con-
tains a point of period 3, then it contains periodic points of all
periods.

Proof: Suppose the orbit of period 3 consists of the three
points x; < x, < x3, where f (x;) = x5, f(x2) = x3, and f (x;3) =
x1. Then, letting I denote the interval between x; and x, and
J the interval between x, and x;, we have the graph

./N. Q

Diagram 2

This diagram obviously has loops of all possible lengths,
namely, I followed by (n - 2), ] followed by an I (the fixed
point comes from the loop ] = ]). =
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Now the implication of this “idea” obviously extends beyond
the case of period 3. It must say something about points of other
periods. Thus the idea is already at work organizing this particu-
lar mathematical landscape. To begin with, consider a point of
period 4 arranged in the following manner:

X; < Xy < X3 < Xy,
X1 Xo X3 Xy
X3 Xy X X

This gives rise to the graph

[
S

\/r

Diagram 3

This graph guarantees only points of period 1 and 2. Thus a map
with a point of period 4 may have only periods of 1, 2, and 4
and no others. Maps with points of period 4 may be “simple” in
the sense of having few points of different periods, whereas
maps with points of period 3 are “complex.” Which maps we
may ask are complex? Which are simple?

With a little work our organizing principle will provide the
answer. But before giving the complete answer let us consider
another example. This one is a map with a point of period 5 ar-
ranged according to the following permutation:

(xl X X3 X4 xs)
X3 Xs X4 Xp Xy )
This produces the following graph:

249



CHAPTER 5

N~

Diagram 4
This graph guarantees us points of period 1, 2,4, 5, 6, . . ., in fact,

points of all periods except 3. We can easily draw the graph of
such a function:

5-.
4__

34

Diagram 5

We have shown that a function with a point of period 3 must
have a point of period 5, but that a function with a point of pe-
riod 5 need not have one with period 3. Thus we might say at
this stage “something (systematic) is going on.” What is in
fact “going on” is described in a beautiful result due to A. N.
Sarkovskii:

Theorem: All the natural numbers can be ordered in the follow-
ing way:
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3,5,7,....,2%x3,2x5,...,4%x3,4x5,...,2"x 3,
2"x5,...,2"...,8,4,2,1.

If a continuous function that generates a dynamical system on an
interval contains a point with period n, then it must contain other
points of periods for every integer to the right of n on the above
list. Furthermore, for every integer n there is an example of a
function with points of period n (and therefore all numbers to the
right of n) but no periods to the left of n on the list.

So here we have an example of a mathematical idea operating
as an organizing principle within a certain area of mathematical
activity. The area is the dynamical systems generated by func-
tions defined on one-dimensional intervals and, in particular,
the kinds of periodic orbits that such maps can exhibit. The basic
idea shows us that periodic points should not be viewed in isola-
tion, but that the existence of one periodic point may force the
function to have additional periodic behavior. The theorem that
emerged above is not the definitive theorem, but it is a good
theorem—it is surprising and it is elegant. However, it is con-
ceivable that more information can be squeezed out of the basic
idea. In this sense the above theorem points to further questions
that could be posed about the structure of the periodic orbits of
dynamical systems.

It is interesting that the unusual order that appears in the the-
orem appears in other situations involving the dynamics of one-
dimensional maps. For example if one looks at the one-parame-
ter family of maps

F, (x) = ox (1 — x), where o varies from 1 to 4,

one discovers that for small values of o the function has only
fixed points that act as “attractors”® for all other orbits. As o
increases one sees the appearance of points of period 2 and then
4, 8, and larger powers of 2. At the limit of all these powers of
2 is a precise value of o that marks the beginning of the “chaotic”
regime. After this, with increasing values of o we traverse the
theorem’s list of integers from right to left, so to speak, culminat-
ing with functions that have points of period 3. This family of
maps has lots of interesting mathematics going on beyond the
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structure of its periodic points, but it is interesting that the be-
havior we isolated in the theorem can be found in one specific
family of maps. In fact, any family of maps that begins with sim-
ple maps with only fixed points and ends with maps with points
of period 3 must pass through the ordering mentioned in the
theorem.

To conclude, this mathematical idea or organizing principle
can be seen as acting dynamically upon a certain body of mathe-
matics. It is used to generate questions and further ideas as well
as to answer questions, that is, to generate theorems. The activity
that is generated by the idea is open-ended in the sense that fu-
ture research is always possible.

Furthermore, the idea may not even precede the result. It is
conceivable that the result comes first. In trying to understand
the result we may become aware of what we have called the
“idea.” When we have isolated “what is really going on” we
then proceed to apply that principle as widely as our imagina-
tions and knowledge will allow. Thus mathematics is not a body
of facts arranged and justified by a stringent logical structure.
To give a dynamic metaphor that stems from the related field of
fluid flow, it is like a turbulent river. The flow of the water is
extremely complex, but every now and again you see the ap-
pearance of stable structures, eddies and whirlpools. These sta-
ble structures correspond to the propositions and theorems of
mathematics. It is the logical structure of mathematics that gives
these theorems their stability, but when we look at things in this
way we see that the stability is not absolute. The data can be
structured in many different ways corresponding to what we are
interested in and in the mathematical ideas that arise to do the
structuring. These ideas arise in response to the question, “What
is going on here?”—that is, from the attempt to make sense of
the phenomena in question.
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Ideas, Logic, and Paradox

INTRODUCTION

The previous chapter initiated a discussion of mathematical
ideas. I considered a number of fairly straightforward examples
of mathematical ideas from the areas of mathematics that I
had developed in previous chapters. In this chapter I wish to
extend this discussion in directions that are unexpected and per-
haps even a bit shocking. This will demonstrate what differenti-
ates the perspective I am taking from the usual one. Ideas arise
from a context that may include ambiguity, contradiction, and
paradox.

The proper domain of mathematics is this expanded region.
This domain from which ideas may arise fits nicely with the ex-
panded domain that I have been attributing to mathematics as
a whole. In particular, the discussion of the role of the idea sup-
ports my repeated claims that mathematics is non-algorithmic.

To repeat, mathematical ideas are the heart and soul of mathe-
matics. Mathematics comes into being through the medium of
the mathematical idea, which organizes what would otherwise
be an inchoate field of data into structures of extraordinary de-
tail and subtlety. Building a discussion of mathematics on the
foundation of mathematical ideas is a radical departure from the
usual ways of looking at the subject. Formalism, for example,
looks at mathematics as a static, finished product. Ideas are dy-
namic, not static. The field of ideas resembles a biological sys-
tem. Ideas are continually being born, evolving, competing with
one another, and disappearing when their period of usefulness
is over.

Ideas are primordial. Without ideas the mathematical world
would present itself to us as nothing but chaos. To paraphrase
the Bible, we might say, “In the beginning was the idea.” Of
course the expression “in the beginning” is not to be understood
temporally—what it means is that the idea is absolutely funda-
mental. It is through the medium of ideas that mathematics
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comes to be. So what I am doing here is starting with ideas and
investigating what the subject of mathematics looks like when
viewed from that perspective.

In trying to build up a view of mathematics around the cen-
trality of mathematical ideas, I am moving in a direction oppo-
site to the one of ordinary thought. Our normal thinking pro-
cesses, especially in mathematics, move from assumptions to
conclusions, from the simple to the complex. If we use the meta-
phor of the “stream of consciousness,” then our normal move-
ment is to go with the current, to go downstream. What I pro-
pose is to reverse this direction—to look upstream. That is, I ask
where something comes from rather than where it is going. In
considering the mathematical idea as the most basic object from
which mathematics is born and around which it grows and de-
velops, we are turning our attention upstream.

The centrality of ideas in mathematics is brought out by con-
sidering the difference between a page of actual mathematical
text (a proof in a research paper, let us say) and a text in a formal
language (the logically complete proof that might be generated
by a computer program). Davis and Hersh say, “The steps that
are included in such a [actual mathematical] text are those that
are not purely mechanical—that involve some constructive idea,
the introduction of some new element into the calculation. To
read a mathematical text with understanding one must supply
the new idea which justifies the steps that are written down.”
In comparison to the machine, for which “nothing must be left
unstated. . . for the human reader, nothing should be included
which is so obvious, so ‘mechanical’ that it would distract from
the ideas being communicated.”! Thus a research paper or a text-
book should include the level of detail that is consistent with
revealing the underlying ideas because it is the ideas that are
important.

What then are the implications of moving the notion of the
idea into the center of our discussion of mathematics? Taking
ideas as primary allows us to focus on understanding, for exam-
ple. Understanding is what we strive for when we learn mathe-
matics, that is, when we attempt to master other people’s ideas,
but it is also what we are about when we are doing mathematics,
when we try to understand some mathematical phenomenon.
Recall David Blackwell’s statement, “Basically, I'm not inter-
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ested in doing research and I never have been. I'm interested
in understanding, which is quite a different thing.”? Or William
Thurston, when he said “what we (mathematicians) are doing is
finding ways for people to understand and think about mathe-
matics.”® This “thinking and understanding” is intimately con-
nected with grasping the underlying ideas involved in a piece
of mathematics.

Focusing on the idea as the entry point, so to speak, to mathe-
matics forces one to regard mathematics as a creative activity
for, as Weyl said, “mathematizing may well be a creative activity
of man, like language or music, of primary originality, whose
historical decisions defy complete objective rationalization.”* It
is only in this context that our discussion of mathematics can be
based on mathematical practice, on what is really going on in
mathematics, not on some a priori theory of what is going on.
Working from the perspective of ideas will enable me to develop
a novel approach to questions involving the relationship of logic
to mathematics and the related questions of Platonism versus
formalism and discovery versus invention.

Ideas are more fundamental than logic in the structure and
practice of mathematics. Formal mathematical reasoning is blind
to the dimension of the mathematical idea because the formal-
ism of mathematics is downstream from the idea. Mathematical
practice involves almost taking the formalism for granted. Thur-
ston, for example, says, “When the idea is clear, the formal setup
is usually unnecessary and redundant. I often feel that I could
write it out myself more easily than figuring out what the au-
thors actually wrote.” When we think about the origins and na-
ture of mathematical thought we must move upstream, past the
formal proofs, past the axioms, into the realm of the mathemati-
cal idea. When we enter this realm we encounter a mathematics
that looks very different from the mathematics we learned about
in school. For one thing, it has lost the quality of absolute neces-
sity though not the quality of truth.®

The term “mathematics” should most properly refer to what
has sometimes been called “informal mathematics” as opposed
to “formal mathematics.” The latter would then be seen as
merely one aspect of mathematics. Then it is not so surprising
that mathematics, understood in this way, contains a large
element of the contingent. A given body of mathematical data
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is capable of being organized in more than one way. Therefore
theorems are not determined a priori by the given situation
but emerge as a result of the ideas with which we organize the
situation.

Ideas are organizing principles, but what are being organized
are other ideas. Mathematics involves ideas organizing ideas in
an iterative process that can attain incredible complexity. The
ideas that are organized may be processes reified as mathemati-
cal objects. In fact if one goes back to the Pythagoreans, for ex-
ample, one sees how complex and multidimensional were their
ideas about what to us are the simplest mathematical objects—
the integers one to ten.

Thus focusing on the idea rather than the formal structure will
change our thinking about mathematics so that the subject we
are describing is more in line with the mathematics that the
mathematician experiences. Just as particular ideas organize
areas of mathematics. so “the idea” (i.e., the idea of the idea) will
organize our discussion of the nature of mathematics.

IDEAS ARE NEITHER TRUE NOR FALSE: CAN THERE
BE A “GooDp” MISTAKE?

Mathematics is so commonly identified with its formal structure
that it seems peculiar to assert that an idea is neither true nor
false. What I mean by this is similar to what David Bohm means
when he says, “theories are insights which are neither true nor
false, but, rather, clear in certain domains, and unclear when ex-
tended beyond those domains.”® Classifying ideas as true or
false is just not the best way of thinking about them. Ideas may
be fecund; they may be deep; they may be subtle; they may be
trivial. These are the kinds of attributes we should ascribe to
ideas. Prematurely characterizing an idea as true or false rigidi-
ties the mathematical environment. Even a “false” idea can be
valuable. For example, I earlier described the Shimura-Taniyama
conjecture as the heart of the successful resolution of Fermat’s
Last Theorem. Goro Shimura once said of his late colleague Yu-
taka Taniyama, “He was gifted with the special capability of
making many mistakes, mostly in the right direction. I envied
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him for this and tried in vain to imitate him, but found it quite
difficult to make good mistakes.”” A mistake is “good” precisely
because it carries within it a legitimate mathematical idea.

Ironically, “formalism” itself is a mistake. The formalist con-
ception of mathematics came about as a result of the efforts of
mathematicians like David Hilbert to escape from the paradoxes
that had arisen in the foundations of mathematics. He attempted
to formalize all of mathematics, completing in this way what the
Greeks like Euclid had begun. It turned out that this was not
possible, as we shall see later on in this chapter. But the idea that
this could be done was still a great idea!

Some of the greatest ideas are glorious “failures” in this way.
In fact, in the next chapter I shall spend some time looking at
these kinds of ideas in mathematics. The fact that so many of the
key ideas of mathematics are of this type is not an accident but
intimately connected with the nature of mathematics. In general,
most sweeping conjectures turn out to be “wrong” in the sense
that they need to be modified during the period in which they
are being worked on. Nevertheless they may well be very valu-
able. The whole of mathematical research often proceeds in this
way—the way of inspired mistakes.

Mathematical ideas are not right or wrong; they are organizers
of mathematical situations. Ideas are not logical. In fact the in-
clusion should go the other way around—Ilogic is not the abso-
lute standard against which all ideas must be measured. In fact
logic itself is an idea. In mathematics and in science in general,
logic is the organizational principle par excellance. This is so
true that the thought of putting logic in some sort of subsidiary
role may evoke in certain people a sense of unease, even panic.
This reaction may come from the fear of being thrown back into
some sort of primeval chaos, a state that reason and logic appear
to have delivered us from. Mathematics, when we learn it in
school, has the attractive property of seeming to be black or
white, right or wrong. This clarity, this precision, is very attrac-
tive to people who go on to become mathematicians and scien-
tists. But to others this same precision may also be intimidating.
It is the logical, black or white dimension of mathematics that
gives rise to the “mathematical anxiety” that one observes in
many, often highly intelligent, people.
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THE UseE AND ABUSE OF LOGIC

The above comments set the stage for a short discussion of the
role of logic in mathematics. What does logical reasoning do for
us? What can it not hope to do? When does it help and can the
use of logic ever be harmful? These are important questions, and
they can be clarified by thinking about logic as a particular kind
of organizing principle.

Logic is essential to mathematics, and no one is proposing
eliminating logic from mathematics. It is just that logic is not the
defining property of mathematics. What does logic contribute to
mathematics? Logic does a number of things that are essential
for mathematics. In the first place, logic stabilizes mathematical
ideas. Without logic mathematics would be in a continual state
of flux, so it would be impossible to build up the intricate mathe-
matical structures and arguments that characterize the subject.
In the second place, logic organizes huge areas of mathematics.
Without logical structures it is impossible to imagine the devel-
opment of theoretical mathematics. Logic helps us to communi-
cate mathematics by creating a common language in which
mathematical ideas may be expressed. Finally, and perhaps most
important, recall what was said in Chapter 1 about “controlled
ambiguity.” Logic provides the control without which theoreti-
cal mathematics would not exist. Thus in great mathematics one
would expect to find a deep ambiguity balanced against a most
intricate and subtle logical analysis.

Notwithstanding the essential role of logic in mathematics,
the logical structure is not what is primary. This is why at-
tempting to teach mathematics from a formal perspective creates
such problems. Many of us can remember the pedagogical disas-
ter of the so-called “New Math” that Morris Kline attacked so
unmercifully.® He made a great deal of teachers telling students
that “3 + 12” was equal to “12 + 3,” let us say, because of the
“commutative law.” The “new math” was an attempt to start
with the formal structure and deduce the properties of the oper-
ations of arithmetic from that formal, logical structure. In prac-
tice what happens is the reverse. The commutative law for addi-
tion (the fact that the order of addition is irrelevant) is an idea
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that structures a whole body of experience that children have
with addition. They begin to “understand” this idea when they
realize that you can add 12 to 3, by reversing the order, starting
with the twelve and counting three more: 13, 14, 15. Usually one
proceeds from the idea to the logical structure, not from the logi-
cal structure to the idea.

Logic itself, as I said above, is an idea, an extremely powerful
organizing principle. It is connected to the notions of rationality
and reason. In fact logic is the form in which reason appears in
our scientific civilization. Thus logic is a prime example of the
creativity of a profound idea and the ability of such an idea to
literally change the world. However, we must distinguish be-
tween logic as an idea and the use of logical argument to generate
ideas. Logical arguments do not generate ideas. As I said above,
logic organizes, stabilizes and communicates ideas but the idea
exists prior to the logical formulation.

Hannah Arendt had a great deal to say about the connection
between ideas and logic. Arendt felt that logic replaced the “nec-
essary insecurity” of thinking with the “negative coercion of de-
duction.” She wrote that, “As soon as logic as a movement of
thought—and not as a necessary control of thinking—is applied
to an idea, this idea is transformed into a premise. . . . The purely
negative coercion of logic, the prohibition of contradictions, be-
came "productive’ so that a whole line of thought could be initi-
ated, and forced upon the mind, by drawing conclusions in the
manner of mere argumentation.”” Here Arendt is engaged in her
famous analysis of totalitarianism. Her point is that totalitarian
regimes were so dangerous not because they were irrational but,
on the contrary, because they were too rational, in a sense. They
were ideological and ideology is the “logic of an idea.” She said,
“The danger in exchanging the necessary insecurity of philo-
sophical thought for the total explanation of an ideology and its
Weltanschauung, is not even so much the risk of falling for some
usually vulgar, always uncritical assumption as of exchanging
the freedom inherent in man’s capacity to think for the straight-
jacket of logic by which man can force himself almost as vio-
lently as he is forced by some outside power.”

The point here is certainly not to rail against logic, nor is it to
glorify the irrational. Arendt’s strong rhetorical tone is justified
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by the enormity of the disaster that she attempted to compre-
hend. What is relevant for our discussion of mathematics is the
distinction between logic and ideas. Mathematical thought inev-
itably involves what Arendt calls “necessary insecurity,” and
this insecurity is a prerequisite to acts of understanding and
mathematical creativity. Logic eliminates that insecurity. There-
fore, introducing logic prematurely, much less making it the gen-
erative property of mathematical thought, is destructive.
Mathematicians recognize the poverty of logical thought
without ideas by labeling such arguments or conclusions as
“trivial” or “obvious.” However, it must be said that not all
mathematicians agree with this distinction between logic and
ideas. As I mentioned in the introduction, there are those who
dream of an algorithmic process that is so powerful that the im-
portance of the human mathematician is reduced or eliminated.
This dream of a machine-based intelligence is akin to the dream
of a “final theory” that one finds in certain areas of physics. The
dream is that we will find algorithmic ideas that are so powerful
that they will be capable of generating all future mathematics
without the intervention of subsequent original ideas. It should be
clear by now that I consider this dream to be an illusion. In my
view the existence of such an ultimate algorithm would mean
the end of mathematics. However mathematics, from the per-
spective that I am taking, has no end. The goal of mathematics
is not to “eliminate the need for intelligent thought.” On the con-
trary mathematics is intelligence in action—without intelligence,
and this means mathematical ideas, there is no mathematics.
Now one may read a proof and “get the idea” behind the
proof. On the other hand, it seems that some mathematical writ-
ing seems to have the perverse purpose of hiding the ideas in-
volved. Good mathematical writing brings out the ideas and
suppresses the purely mechanical material that would obscure
those ideas. Nevertheless, the question arises as to how to com-
municate mathematical ideas so that the reader “gets it.” Cer-
tainly a perfect logical presentation does not ensure that the
reader “gets it.” In fact no presentation of an idea will ensure
that the reader “gets it.” “Getting the idea,” which is akin to
“seeing what is going on,” is something that cannot be pro-
grammed. It is never certain. The very impossibility of commu-
nicating understanding perfectly, of communicating the idea,
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proves that the idea is more basic than logic, more basic, even,
than any conscious formulation of that same idea. In exploring
the idea we are plumbing the very depths of mathematical
thought.

AMBIGUITY AND THE BIRTH OF THE IDEA

The point that “the idea” is more elementary than logic is borne
out by the evidence of the chapters on ambiguity, contradiction,
and paradox. Ambiguities, seeming contradictions, and even
paradoxes can be the bases for powerful mathematical ideas. We
saw this in the development of mathematical concepts like zero
and infinity, and we shall describe below a number of instances
where famous paradoxes have found their way into legitimate
mathematical proofs. One such instance is the proof that the car-
dinality of the set of subsets of a given set is always larger than
the cardinality of the set itself. But more generally mathematics
is often generated out of a situation where two frameworks with
a certain incompatibility rub up against each other. These situa-
tions of incompatibility, which in the extreme are contradictions,
call out for reconciliation. This reconciliation, if it is possible, will
arise out of a new mathematical idea. Thus ideas arise out of
situations that we have called ambiguous. They do not arise out
of logical deduction. The logical phase comes after the idea has
been formulated and now must be verified, stabilized, refined,
and communicated to others.

TaE IDEA Is ArtwAays WRONG!

The given mathematical situation is never a perfect fit for the
idea. A colleague of mine was describing this phenomenon
when he said, “You are [the idea is] always wrong.” Even after
the idea emerges into consciousness a great deal of hard work
remains to be done, one might say that it is at this stage that
the real work begins! The idea now begins to work on all of the
elements of the given mathematical situation. The idea may de-
termine the appropriate definitions of terms, the appropriate
hypotheses, and, of course, the conclusions of theorems. Every-
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thing in a piece of mathematics is in a state of flux; everything
depends on everything else. Concepts can be defined or rede-
fined with the object of bringing out the idea. Conclusions can
be modified. Even the idea can be modified in the course of
working on it. And this work can take days or centuries. It may
involve one person or hundreds of mathematicians who are in-
terested in the same problematic situation. Thus the notion that
“the idea is always wrong” is consistent with the notion that the
idea is an organizing principle but not with the notion that an
idea is a well-defined, logically precise entity. This manner of
looking at mathematics was developed in great historical detail
in the following.

LAkATOS'S ACCOUNT OF THE DEVELOPMENT
OoF THE EULER ForRMULA

Imre Lakatos was the author of a remarkable attempt to describe
mathematics as it is actually experienced by mathematicians. In-
stead of a formal mathematical system built up from first princi-
ples, he presents us with human beings making arguments and
being presented with counterarguments. “Instead of mathemat-
ics skeletalized and fossilized, he presents mathematics growing
from a problem and a conjecture, with a theory taking shape be-
fore our eyes, in the heat of debate and disagreement, doubt giv-
ing way to certainty and then to renewed doubt.”"

The context of Lakatos’s work is a historical reconstruction of
Euler’s formula for polyhedra, three-dimensional figures, like
the cube, each of whose faces is a polygon. This formula is

V-E+F=2,

where V is the number of vertices, E the number of edges, and
F the number of faces. For example, if the polyhedron is a tetra-
hedron then V=4, E =6, and F = 4, for a cube V =8, E = 12,
and F = 6 (see p. 222)

Is Euler’s formula valid? Let us give just a taste of the begin-
ning of Lakatos’s brilliant historical reconstruction. The entire
thesis consists of a hypothetical classroom discussion between a
teacher and a number of students. The “teacher” begins by for-
mulating a “proof-idea” that originated with Cauchy:
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Teacher: In fact I have one [an argument for the valid-
ity of the formula]. It consists of the following thought-
experiment.

Step 1: Let us imagine the polyhedron to be hollow, with
a surface made of thin rubber. If we cut one of the faces,
we can stretch the remaining surface flat on the blackboard,
without tearing it. The faces and the edges will become de-
formed, the edges may become curved, but V and E will not
alter, so that if and only if V — E + F = 2 for the original
polyhedron, V — E + F =1 for this flat network—remember
we have removed one face. [Figure 6.1a shows the flat net-
work for the case of the cube.]

Step 2: Now we triangulate our map—it does indeed look
like a geographical map. We draw (possibly curvilinear) di-
agonals in those (possibly curvilinear) polygons which are
not already (possibly curvilinear) triangles. By drawing
each diagonal we increase both E and F by one, so that the
total V — E + F will not be altered. [Figure 6.1b]

Step 3: From the triangulated network we now remove
the triangles one by one. To remove a triangle we either re-
move an edge—upon which one face and one edge disap-
pear [Figure 6.1c], or we remove two edges and a vertex—
upon which one face, two edges and one vertex disappear
(Figure 6.1d). Thus if V — E + F = 1 before a triangle is re-
moved, it remains so after the triangle is removed. At the
end of this procedure we get a single triangle, For this V —
E + F =1 holds true. Thus we have proved our conjecture."

Some of the “students” are convinced by the argument, some
raise objections of various sorts. These objections range from
questioning some particular step of the argument to questioning
whether the “theorem” is true at all. In particular there is a dis-
cussion of “local counterexamples” versus “global counterexam-
ples.” A local counterexample is an example that refutes a
lemma (a subsidiary result) without necessarily refuting the
main conjecture. A global counterexample refutes the main con-
jecture itself. In particular, there ensues a discussion of global
counterexamples such as (a) two pyramids that share a common
vertex (figure 6.2) or a solid bounded by a pair of nested cubes,
that is, a pair of cubes, one of which is inside but does not touch
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Figure 6.1. The Cauchy “Idea”

the other.”? The former example, it turns out, is a true counterex-
ample for V — E + F = 4. What does one do in the face of this
example? Does one abandon the conjecture as false? Certainly
not! The counterexample leads to a discussion of what the cor-
rect definition of a polyhedron should be. Lakatos calls this part
of the discussion “monster barring.” We have an idea, but what
range of phenomena does the idea apply to? At one extreme we
could define a polyhedron to be a geometrical object for which
the formula V — E + F = 2 is true. This would make any idea
unnecessary, and it would reveal nothing about the geometric
structure of the objects we refer to as polyhedra. In fact the
“monsters” bring to the fore the questions of what a good defi-
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el

V=7 E=12 F=8

Figure 6.2. Double pyramid monster

nition of a polyhedron should be. Thus the exploration of the
“idea” forces upon us a deeper examination of the mathematical
objects that we are studying.

At this stage one cannot say that the idea is either logical or
illogical. It is certainly not illogical, but neither can we say that
it is a formal argument. Nor would it be correct to say that the
idea has no mathematical content. The idea has a great deal of
implicit mathematical content. After the idea has been brought
into existence there remains an immense amount of mathemati-
cal work to be done in teasing out and making explicit the math-
ematics that is contained in the idea. In this case the quantity
V — E + F generalizes to a number that is an invariant of the
topological structure of a manifold, say. Thus another direction
that our discussion may take us into is to allow a certain class
of geometric figures to be distinguished by the invariant V — E
+ F. If a polyhedron has V — E + F = 2, how could we describe
the geometric objects that have V — E + F = 4, say or 0?

IDEAS ON THE “EDGE OF PARADOX”

I promised earlier to look into the paradoxical as a source of
ideas. In order to do this I shall look in some detail at a number
of historically important results. In each of them a paradox is the
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idea or at least forms a major component of the idea. I am bring-
ing these examples up to refute the notion that the world is di-
vided into two disjoint domains, the domain of logically demon-
strable mathematical truth and the domain that contains
ambiguity, contradiction, and paradox. In the conventional view,
mathematics is entirely contained in the first domain. Yet mathe-
matical ideas do not fit easily into such a worldview. That point
is made more compelling by looking at some examples of how
mathematics uses paradox. It would appear that, far from
avoiding paradox and contradiction, powerful mathematics
goes right up to the edge. In complexity theory there is a saying
that interesting biological processes happen “at the edge of
chaos.”” Now paradox is a form of chaos so it should not come
as too great a surprise to find that there is great mathematics on
the “edge of paradox.”

THE CARDINALITY OF THE POWER SET

Once Cantor had made infinity into a well-defined mathematical
object, then, as we saw in Chapter 4, there was no reason why
there could not be more than one order of infinity. Cantor had
armed himself with a precise way of looking at cardinality, the
size of infinite sets, and it is to his credit that he made every
attempt to ferret out all he implications of his new way of look-
ing at things. One of the extraordinary results he developed is
our next subject. It is of interest both for the result and for the
nature of the argument that is required. If the existence of two
orders of infinity is paradoxical, then how much more so is the
existence of infinitely many different infinities.

The key mathematical idea here is one that is very simple and
familiar. If we look at a set with three elements, say {4, b, c}, then
there are eight possible subsets, namely, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, ¢}, and the empty set. Of course, 8 = 2°. This is ex-
plained by noting that any subset, S, is formed by either includ-
ing or not including any particular element, that is, given any
element, 4, there are two possibilities: 4 is either an element of S
or not. The possibilities multiply and, since there are three possi-
ble elements, the total number of choices is 2°. This reasoning
works for any finite set. In particular the number of subsets is
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larger than the number of elements. It turns out that this latter
result still holds true for infinite sets.

The proof is a beautiful example of the way contradiction and
paradox are used to produce positive mathematical results. The
paradox here has many formulations. Consider the following:

There is a town with a single barber who cuts the hair of
everyone who does not cut her own hair. Does the barber
cut her own hair or not?

Of course if the barber cuts her hair then she does not. And if
she does not then she does. A similar paradox arose in the foun-
dations of mathematics at the beginning of the twentieth cen-
tury. It is called Russell’s paradox, and it involves the founda-
tions of set theory, in particular, the question of what is a set.
Normally we imagine that a set is specified by the rule that tells
whether a possible element is or is not a member of the set. For
example, the set of all even integers = {2, 4, 6, 8, . . .} and the set
of all prime numbers = {2, 3, 5,7, 11, . . .}. Now it is conceivable
that a set has itself as an element, for example, the set of all sets.
Call a set “normal” if it is not an element of itself. Now consider
the set of all normal sets, N. Is it a normal set or not? Well, if it
is normal then it is not an element of itself. But N is the collection
of all normal sets, so N is not normal. Similarly if N is not nor-
mal, then N cannot be an element of itself. But then it is normal.
Wow! There seems to be a major problem here. Somehow we get
into trouble with the idea that anything can be a set. Maybe we
should think some more about just what a set is or can be.

What is interesting for our purposes is the use Cantor makes
of this paradox.

Theorem: Given any set A, then the cardinality of A (intuitively
the size of A or the number of points in A) is strictly less
than the cardinality of the set consisting of all possible subsets
of A, 24

It is pretty clear that the cardinality of A is less than or equal to
that of 2 (you can match up every element a of A with the subset
{a}). Thus the result will be true if we can show that the cardinal-
ity of A is not equal to that of 2. Now the cardinalities are equal
(by definition) if we can match up all the elements of A with all
the subsets of 2%. We must argue that this is impossible, and the
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Figure 6.3

way to do so is to argue by contradiction, that is, by assuming
that there is such a matching and showing that a problem arises.
We shall go through the argument in some detail because it’s a
fascinating argument and we want to examine the contradiction
closely.

Suppose we have managed to obtain some way of matching
the elements of A with the subsets of A. Let’s indicate the match-
ing in the following way.

a < s(a),
b < s(b),

and so on, where you can think of s(a) as the subset that is
matched up with the element a. Remember that every element
of A is matched up with some subset (every a has a s(a)) and
every subset, B, is matched up with some element of A (B =s(b)
for some b).

Now since s(a) is a subset there are only two possibilities ei-
ther a is an element of s(a) or a is not an element of s(a) (figure
6.3). Collect all the elements which are not elements of their
matched subsets and name the collection Q. (Thatis Q ={a:a ¢
s(a)}.) Now Q is a subset and so, since we are assuming that we
have a perfect matching, it must be matched with some element.
Let’s call this element g. That is, Q = s(g) or g <> Q.

Now is g an element of Q? We are now back in the situation
of the barber who does or does not cut his own hair. If g is not
an element of Q, which is, you remember, s(g), then by the
definition of Q, g is an element of Q. On the other hand if g is

268



IDEAS, LOGIC, AND PARADOX

not an element of Q then g is an element of Q. Thus we have a
contradiction.

What is the conclusion? The conclusion is that there could be
no such perfect matching. The cardinalities are not equal. We
conclude that the cardinality of the set of subsets, 24, is larger
than the cardinality of A.

Case where A = N

In the case where the set in question is the natural numbers we
have already proved this result using Cantor’s diagonal argu-
ment. We shall compare that argument to this one. Let us begin
by making the observation that every subset of the natural num-
bers can be considered as a sequence of 0’s and 1’s, where a 1 in
the nth place signifies that n is a member of the subset and a 0
that n is not. Thus the subset {1, 2} would be represented by the
sequence 1,1, 0, 0, 0, O, ... and the even numbers by the se-
quence 0,1,0,1,0,1,.... The sequence 0,0,1,0,0,1,0,0, 1, ...
would stand for the subset {3, 6, 9,. . .}.

Now the argument would begin by assuming that all subsets
of the natural numbers could be put onto a list. Thus we would
have a list

ayp ap dg. ..,
Oy A Axz. . .y
Qs as Asz. . .,

7

where each element is either a 0 or a 1. The set Q would be
formed by considering those elements n for which a,, = 0. That
isne Q&< a, =0 ne S, By assumption this set Q would
correspond to some line above, suppose the kth line. Thus k €
Qe aw=0e ke S. However Q = S;. And this completes the
contradiction.

CoMMENT ON THE CANTOR RESULT

This argument purports to produce an infinite sequence of dis-
tinct infinite cardinal numbers. The argument is by contradiction
and contains as its central idea the Russell paradox. In a way it
is saying that if we wish to avoid this paradox we must admit the
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result, the infinite hierarchy of infinities. The paradox is not so
much avoided as deliberately provoked and, at the last moment,
turned aside. We are left in awe at this masterstroke much as we
might feel when a brilliant matador had allowed the bull’s horn
to graze his thigh before turning him and escaping unscathed.

GODEL AND THE CONTINUUM HYPOTHESIS

We have just generated a whole hierarchy of orders of infinity.
It begins with the counting numbers, N, and proceeds by consid-
ering all the subsets of N, then all the subsets of the subsets of
N, and so on. Expressed in this way the real numbers correspond
to the set 2" consisting of all the subsets of the natural numbers
N. Remember that in the previous section I showed how any
subset of N could be considered as an infinite sequence of 0’s
and 1’s. This sequence of 0’s and 1’s in turn can be thought of
as a unique real number by considering the sequence as the base
2 representation of the number. For example, the set of even

numbers corresponds to the sequence 010101. . .. this sequence
is converted into a real number in the following way:
.010101...(base2)=E+l+£+i+i+i+---=l
2 4 8 16 32 64 3

The subset {1, 2, 3} would correspond to the sequence 111000. . .,
which gives us the number

1 1 1 0 0 7

e e et e

2 4 8 16 32 8
In this way every sequence of 0's and 1’s gives rise to a unique
real number. Conversely every real number has a representation
as a base 2 infinite decimal which is a sequence of 0’s and 1’s
and therefore can be considered to be a subset of the natural
numbers. Thus the cardinality of the set of subsets of N is exactly
that of the real numbers, R.

The question that arises is whether there are any infinite sets
of real numbers that have cardinality strictly greater than that of
N and strictly less than that of R. The continuum hypothesis as-
serts that there are none, and Cantor spent a great deal of time
trying to prove or disprove this hypothesis (in fact he believed
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that it was true). It was one of the major intellectual defeats of
his life that he was unable to resolve this question one way or
the other.

Kurt Godel" proved that the continuum hypothesis cannot be
disproved using the standard Zermelo-Fraenkel axioms for set
theory (including the axiom of choice). Twenty-three years later
Paul Cohen® showed that the continuum hypotheses cannot be
proved from these same axioms either. Thus the hypothesis is
independent of these axioms—there could be a version of mathe-
matics that assumes the continuum hypothesis is true (where
there are no sets of real numbers that have cardinality between
that of the rational numbers and that of the real numbers) and
another for which the continuum hypothesis is false (for which
sets of such intermediate cardinality actually exist).

Now the mathematical universe in which the continuum hy-
pothesis is false is richer than the one in which it is true, since
it would contain a more diverse variety of subsets of the real
numbers. Perhaps for this reason Godel himself believed the
continuum hypothesis to be false. Since he was a Platonist he
had no trouble asserting the (absolute) truth or falsity of a math-
ematical statement independent of its provability. It is interest-
ing that we see here an important instance of a division between
“truth” and “provability.” In a sense the continuum hypothesis
is an example of one of the paradoxes of infinity that we have
been considering. Is it true or not? One has the feeling that one
should be able to answer this question. It shouldn’t just be a mat-
ter of opinion. We mathematicians feel a great sense of familiar-
ity with the real number system, and the continuum hypothesis
appears to be a very concrete property which that system does
or does not possess. Does there or does there not exist a set of
real numbers with the required intermediate cardinality? In
speculating about this question one has the feeling that one is
repeating another example of questioning the axiomatic status
of a mathematical statement—the great crisis in the history of
mathematics that was evoked by status of another questionable
axiom—the parallel postulate of Euclid.

In fact, the paradox that is evoked by the continuum hypothe-
sis really concerns the nature of mathematics itself. We have
the sense that the properties of the real number system exist
“out there” independent of axiom systems and human interven-
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tion. The “independence” proof of Godel and Cohen might
seem to imply that the truth of the continuum hypothesis is
arbitrary—we can take it or leave it at our own discretion. But
this is vaguely dissatisfying, as is the entire formalist approach
to mathematics. Thus the continuum hypothesis brings us face-
to-face with contemporary problems in the philosophy of
mathematics. From a contemporary (or should we say post-
modern) point of view it is perhaps not surprising that there
should be certain statements that can neither be proved nor dis-
proved within a given axiom system. But then what has hap-
pened to “Truth”?

GODEL AND INCOMPLETENESS

Godel’s incompleteness theorem is one of the great intellectual
accomplishments of the twentieth century. Its implications are
so far reaching that is difficult to overestimate them. Godel’s re-
sult puts intrinsic limitations on the reach of deductive systems;
that is, it shows that given any (sufficiently complex) deductive
system, there are results that are beyond the reach of the sys-
tem—results that are true but cannot be proved or disproved on
the basis of the initial set of axioms. This new result might be
proved by adding new axioms to the system (for example, the
result itself) but the new strengthened system will itself have
unprovable results. Godel’s argument demonstrates the exis-
tence of such results that “transcend” the limits of any deductive
system, but, in the manner of other existence theorems, it does
not make explicit their mathematical content. Subsequent work
has shown specific mathematical results that fall into this cate-
gory and one particular result is developed below.

Anyone who has studied the history of Western intellectual
thought in general and mathematics in particular cannot fail to
be shocked by this result. It appears to be a definitive end to
that wonderful “dream of reason” that began with Euclid and
continued down the centuries, in the work of Frege, Hilbert, and
Russell and Whitehead. Yet even though Godel’s theorem is
philosophically devastating it has had little or no effect on the
work of the average mathematician. Nevertheless it has major
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implications for anyone concerned with the epistemology of
mathematics.

Now Godel’s theorem may seem to be merely negative.
However, what may be the end from one point of view can
also be seen as the beginning from another. The collapse of the
hope for a kind of ultimate formal theory can be seen as a
kind of liberation. It is liberation from a purely formal or algo-
rithmic view of mathematics and opens up the possibility of a
view of mathematics that is more open and filled with creative
possibilities.

One way of judging the value of any intellectual accomplish-
ment is through the originality of the subsequent work it in-
spires. Here I must mention Douglas Hoftadter’s Pulitzer Prize
winning book, Godel, Escher, Bach: An Eternal Golden Braid, writ-
ten in 1979. Hofstadter sees the vast implications of Godel and
the relevance of his thought today. Godel’s theorem is a tour de
force that operates on many levels. In the first place it is a techni-
cally brilliant theorem in mathematical logic. At a more univer-
sal level it has deep implications for the philosophy of science
and mathematics and beyond that for the nature of human
thought in general.

In a sense Godel’s result brilliantly illustrates and reinforces
many of the themes of this book. The philosophical statements
that I have been making about mathematics belong to the world
of metamathematics. One of the extraordinary aspects of the
Godel result is that he manages to embed metamathematical
statements within mathematics itself in a brilliant piece of self-
reference. I broached the notion of self-reference and its relation-
ship to the infinite in the introduction to Chapter 3. Thus not
only does the result of Godel’s theorem overtly tell us a great
deal about the nature of mathematics, but also the method of the
argument tells us more. The result is pertinent at both levels.

THE “IDEA” Is A PARADOX

The first important point to be made about the Godel theorem
is that the argument is built around a paradox. Let us consider
what Gregory Chaitin, a brilliant successor of Godel, has to say
about Godel’s proof.
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Godel’s incompleteness proof is very clever. It’s very para-
doxical. It almost looks crazy. Godel starts in effect with the
paradox of the liar: the statement “I'm false!” which is nei-
ther true nor false. Actually what Godel does is to construct
a statement that says of itself, “I'm unprovable!” Now if you
can construct such a statement. . . in arithmetic. . . you're in
trouble. Why? Because if that statement is provable, it is by
necessity false, and you're proving false results. If it’s un-
provable, as it says of itself, then its true, and mathematics
is incomplete.’

We have seen how the existence of certain paradoxical elements
in mathematics led to the attempt to formalize mathematics as
a way of doing away in principle with the possibility of paradox.
A formal system would produce only true statements and, if it
were complete, all possible true statements of mathematics.
Around the turn of the twentieth century Frege’s attempts to put
arithmetic on a sound foundation was stymied by the discovery
of Russell’s paradox. We mentioned Russell’s paradox above
and noted that it is connected to the “barber paradox.” As Chai-
tin points out, these paradoxes are related to the Epimenides
paradox of the ancient Greeks, the paradox of the liar. The es-
sence of this paradox is a statement that says of itself, “This
statement is false.” Is the statement indeed false? Well if it’s false
then it must be true. But if it’s true then it’s false. In other words,
the statement is neither true nor false.

Godel’s brilliance is in part due to the way he managed to
place this paradoxical idea at the heart of his argument. In this
his work is reminiscent of the proof by Cantor described earlier
in this chapter. But Godel goes farther down this road than prac-
tically anyone would have believed possible. In the discussion
of infinity I mentioned the possibility that the idea of infinity
might be evoked by situations of self-reference. Gédel’s proof is
deeply self-referential. He manages to mirror statements about
mathematics within mathematics itself. Thus Godel uses the re-
lated notions of paradox and self-reference. The astonishing
thing is that this use of paradox and self-reference is contained
and controlled within an intricate and precise logical argument.
The result is a result about the intrinsic limitations of formal,
logical thought. It is all really quite extraordinary!
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ForMAL SYSTEMS

The manner in which Godel proceeds owes a great deal to
previous attempts to formalize mathematics, attempts that one
associates with the names of Hilbert, on one hand, and Russell
and Whitehead, on the other. The defining characteristic of a
formal system is that everything, absolutely everything, is
pinned down. You specify what symbols (mathematical and
logical) are acceptable (for example, “=,” “0,” or “="), how
these symbols may be combined to make statements, the precise
rules under which certain statements may be said to follow from
other statements, and so on. It turns out that all the symbols,
statements, axioms, theorems, even arguments can be given a
unique number. The simplest way to do this is to find a way to
order all possible statements and lists of statements. Thus there
is a first statement (which may be an individual symbol), a
second, a third, and so on. It is possible to create such an order-
ing in many ways, some relatively straightforward and others
more complex.

Nevertheless there is something strange about being able to
list all mathematical expressions. This strangeness forms the
subject of a paradox that was first enunciated by the French
mathematician Jules Richard in 1905. Since each definition is as-
sociated with a unique integer, it may turn out in certain cases
that an integer may possess the very property designated by the
definition with which the integer is correlated. Suppose, for ex-
ample, the defining expression “not divisible by any integer
other than 1 and itself” is associated with the number 17; obvi-
ously 17 itself has the property correlated with that expression.
On the other hand, suppose the defining expression “being the
product of some integer with itself” were correlated with the
number 15; 15 clearly does not have the property designated by
the expression. We shall describe the state of affairs in the second
property by saying that the number 15 has the property of being
Richardian; and in the first example that 17 does not have the
property of being Richardian.”

Now consider the property of being Richardian. It seems to
designate a property of integers, so it must appear somewhere
on our list. Suppose it appears at position n. Then we ask the
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question: Is n Richardian? Well we get the paradox that by now
is familiar: n is Richardian if and only if 7 is not Richardian.
Now this particular contradiction can be gotten around. “We
can outflank the Richard Paradox by distinguishing carefully be-
tween statements within arithmetic and statements about some
system of notation in which arithmetic is codified.”'® Neverthe-
less the paradox leads to Godel’s idea that “it may be possible
to ‘'map’ or ‘mirror’ meta-mathematical statements about a suf-
ficiently comprehensive formal system in the system itself.”
Godel invented a brilliant way of coding the elements of the
formal system into numbers and arithmetical operations. How,
one might ask, could all the intricate information contained in
a mathematical argument be compressed into a single integer?
Wouldn’t we be losing a lot of information? Without going into
the details, the key to the coding lies in the fact that even a single
integer contains a lot of information if you look at the integer in
terms of its decomposition into prime numbers. For example,

N = 2,337,185,664,000 = 21 x 3% x 5° x 11? x 23.

The one integer N is built on five different prime numbers
each of which is raised to a different power. Each of the primes
and each of the powers may be thought of as different bits of
information contained in the original integer N. This deeper
structure of the integers is the key to coding (formal) mathemati-
cal statements and arguments into one (very large) integer. Con-
versely each such integer can be decoded back into the original
piece of formal mathematics.

Not only did Godel find a way of coding mathematical argu-
ments into single integers with no loss of information. but he
was then able to transform metamathematical statements, prop-
ositions about the relationship between different mathematical
arguments into arithmetic. For example, “the meta-mathemati-
cal statement: "The sequence of formulas with Godel number x
is a proof of the formula with Gédel number z.” This statement is
represented (mirrored) by a definite formula in the arithmetical
calculus which expresses a purely arithmetical relation between
x and z.”%

Godel had created a situation of self-reference, or, in other
words, a situation of controlled ambiguity, where there are two
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consistent contexts: on the one hand, the arithmetical consisting
of integers and relations between integers, and, on the other, the
formal and metamathematical consisting of propositions and
proofs and statements about these proofs.

Let us assume that this numbering system has been created
and let us follow Roger Penrose’s® description of the central
idea in the proof of Godel’s theorem. Consider propositional
functions that depend on one variable that we denote by k.?' All
of these have a number, so let us denote the nth formula by

P, (k).

Now each proof or potential proof of a mathematical proposi-
tion is a sequence of statements that can also be labeled by natu-
ral numbers. Let the nth proof be designated by

IL.

Now consider the following proposition:
—3n[II, proves P (k)],

or in words, there is no proof for the proposition Py (k). Now
because of the coding of all statements in arithmetical terms, this
statement must itself be somewhere on the list of statements.
Suppose it is in the mth position, that is,

— 3 n [II, proves Ps (k)] = P,, (k).

We now look at what this says for m = k (this is reminiscent of
Cantor’s diagonal argument):

— 3 n [II, proves P (k)] = Py (k).

Notice that this statement says of itself that it has no proof
(within the system). Penrose discusses this self-referential, am-
biguous formula as follows:

The specific proposition Py (k) is a perfectly well-defined ar-
ithmetical statement. Does it have a proof within our formal
system? . .. The answer to [this question] must be “no.” We
can see this by examining the meaning underlying the Godel
procedure. Although Py (k) is just an arithmetical proposi-
tion, we have constructed it so that it asserts that what has
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been written on the left-hand side: “there is no proof, within
the system, of the proposition Py (k).” If we have been care-
ful in laying down our axioms and rules of procedure, and
assuming that we have done our numbering right, then
there cannot be any proof of this P (k) within the system.
For if there were such a proof, then the “meaning” of the
statement that Py (k) actually asserts, namely that there is no
proof, would be false, so P; (k) would have to be false as an
arithmetical proposition. Our formal system should not be
so badly constructed that it actually allows false proposi-
tions to be proved! Thus, it must be the case that there is in
fact no proof of Py (k). But this is precisely what Py (k) is try-
ing to tell us. What Py (k) asserts must therefore be a true
statement, so P, (k) must be true as an arithmetical proposi-
tion. We have found a true proposition which has no proof
within the system!*

Now the negation of Py (k) cannot be proved either, since it is
false and we are not supposed to be able to prove false proposi-
tions within a formal system. Thus neither P, (k) nor its negation
can be proved within our formal system. This is what it means
for a system to be incomplete.

Godel showed that any formal system that is complicated
enough to deal with arithmetic, that is, contains the counting
numbers 0,1, 2, 3, 4, . . . and their properties under addition and
multiplication must either be inconsistent or incomplete. Thus
Hilbert was wrong. There is no formal system for mathematics
that produces all true results and only true results.

GOODSTEIN’S THEOREM: AN ExAMPLE OF AN UNPROVABLE
STATEMENT THAT Is TRUE

Godel’s result tells us that any formal system has a valid result
that is unprovable from the axioms of the system, but it does not
give us the actual mathematical statement of a theorem that falls
into that category. Nevertheless it is now possible to state such
a theorem. First, following Penrose,” let us describe Goodstein’s
theorem.
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The description of the theorem begins with the observation
that it is always possible to write any given integer in terms of
1’s and 2’s alone (we shall call this its base 2 representation. For
example,

45 =32 +8+4+1=242542241=022+1402+1 42241

We could also represent this number to base 3, writing it with
1’s,2’s, and 3’s:

45=27+2x9=3%+2x3%
or to base 4 (with 1’s, 2’s, 3’s, and 4’s):
45=2x16 +3x4+1=2x4*+3x4 + 1.

Now take any number and write it in its base 2 representation
as above. Then

(a) Increase the base by 1.
(b) Subtract 1 from the number.

Alternate steps (a) and (b). What happens (in the first few steps)
is illustrated below (in the case of 45, which could be called
the “seed”):

45 =27 +1 4 D2+1 4 02 4 q

Step 1: 31431 434 ]

Step 2: 3" *1 4341 4 3

Step 3: 401 4 gher 4 g

Step 4: 44 *1 4441 4 41— 1 =411 4 4141 4 354 +3x 42 +3x4+3
Step 5: 5° 1 + 51 + 3 x5 + 3 x5 +3x5+3

Step 6: 5° 1+ 51 + 3 x5 + 3 x5 + 3 x5+ 2

Step 7: 651+ 65 +3X6°+3X62+3X6+2

The question is what happens in the long run. It appears that
the numbers are getting bigger and bigger, and it would be natu-
ral to speculate that the numbers grow without bound. Yet sur-
prisingly Goodstein’s theorem* proves that, no matter what
“seed” number one begins with, this process eventually (and it
is a very long eventually) ends at 0.

This is an extraordinary and initially counterintuitive result.
The steps of type (b) (decreasing by 1) eventually balance off and
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overcome the increase in the base. However, if one does some
calculations one can get a feeling for why it might be true. We
can see it already beginning to happen in step 4 above, where
the fourth power becomes a third power and will eventually be
eroded still further.

What is interesting about this result is that it is a concrete
Godel theorem for arithmetic plus induction. Mathematical in-
duction was discussed in Chapter 3. Suppose we are working in
a system that includes the ordinary operations of arithmetic and
logic as well as the principle of induction. Then it has been dem-
onstrated that the Godel theorem for this system can be reex-
pressed in the form of Goodstein’s theorem.” Thus it cannot be
proved within the system, that is, using the principle of induc-
tion, yet it is true and can be proved using a more powerful as-
sumption than ordinary induction. This example allows Pen-
rose” to insist on the difference between our ability to access the
truth of a mathematical result and what can be proved based on
an a priori set of rules.

Tae CoLLATZ 3711 + 1 PROBLEM

There are many other problems that involve the kind of iterative
procedure that one finds in Goodstein’s theorem. One such
problem was first posed by Lothar Collatz in 1937 and often goes
under his name. I shall state it in the following way. Starting
with an integer a,, for n = 1,2, 3, . . . define

3a,.1+1if a,_; is odd,
a, = . .
a,_,/ 2 if a,_, is even.
Thus the “seed” a, gives rise to a sequence of values a;, ay, as, . . .

For the smallest positive integer values of a, we get the
following;:

H0:1a1:4a2:2a3:1
ﬂ0=2ﬂ1:1
a,=3a,=10a,=5a;=16a,=8as=4a,=2a,=1

The list continues, where the first number in the list is the value
of the seed:
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4,2,1

516,8,4,2,1

6,3,10,5,16,8,4,2,1

7,22,11, 34,17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, and so on.

The conjecture is that the sequence returns to 1 for any initial
seed ay, and it has been verified for very large values of the seed.
Thus the conjecture “seems” true, but the question is how to
prove it. It is the general consensus that the required proof will
not be forthcoming any time soon. Paul Erdés is reported to
have commented that “Mathematics is not yet ready for such
problems.” Jeffrey Lagarias concludes his survey paper with
the following statement that highlights an ambiguity that, in
the author’s opinion, lies at the heart of attempts to resolve this
question:

Is the 3x + 1 problem intractably hard? The difficulty of set-
tling the 3x + 1 problem seems connected to the fact that it
is a deterministic process that simulates “random” behav-
ior.” We face this dilemma: on the one hand, to the extent
that the problem has structure, we can analyze it—yet it is
this structure that seems to prevent us from proving that it
behaves “randomly.” On the other hand, to the extent that
the problem is structureless and “random,” we have noth-
ing to analyze and consequently cannot rigorously prove
anything.®

Is the Collatz conjecture even provable? We don’t know. It
has been shown that a generalization of this problem is formally
undecidable. Now there is a big difference between a conjecture
that is not accessible to present techniques and a conjecture
that is actually inaccessible in principle. Is this kind of problem
the kind of inaccessible result that Godel’s theorem shows
must exist? It might very well be. Could it even be that many
mathematical results are of this type—well defined but unprov-
able? The answer to this question has tremendous implications
for our conception of mathematics. Could it be that the results
that can actually be rigorously demonstrated are in some sense
exceptional and that “most” mathematical results are of the
Godel variety?
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COMMENTARY ON GODEL's THEOREM

In summary I shall just collect and reiterate a few of the things
that we can learn from Godel’s theorem. In the first place, the
result is a meta-result, that is, it says something about the possi-
bilities of a certain kind of knowledge; yet it is expressed within
that body of knowledge itself. This is the mystery of Godel’s the-
orem—that within the context of logical thought one can deduce
limitations on that very thought. Thus the theorem delves
deeply into the dangerous but essential subject of self-reference.

Second, the result is built around a particular logical paradox
but it is not itself paradoxical. In my view this use of paradox is
not accidental but an essential characteristic of this kind of deep
knowledge.

Again ambiguity is a crucial factor in the proof. The argument
hinges on the identification of a surprising ambiguity. Integers
are given a dual interpretation, first as arithmetical objects and
second as mathematical propositions and arguments. As in so
many of the examples in Chapter 1, Godel creates a method of
passing back and forth from one of these contexts to the other.
Just as the equation E = mc* can be seen to mean that there is
one “thing” that is matter when looked at in one context and
energy when looked at in another, so statements in a formal sys-
tem are ordinary arithmetical propositions when looked at in
one context but metamathematical assertions when looked at in
the other.

What has gotten so many people excited about this theorem
are the implications they draw from it for science and for episte-
mological questions in general. It says something very specific
about how formal, deductive systems fit into the ecology of
human knowledge. One way of putting this would be to say that
formal systems are local, not global. They may describe certain
situations very well, but they are intrinsically limited. Thus the
knowledge obtained from such systems is contingent, not abso-
lute. We set up certain systems because we are interested in
studying certain problems or investigating certain mathematical
situations. The systems we set up may be vast, but they have
limits and we inevitably rub up against these limiting situations
as we pursue our investigations. The limiting situations are
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often characterized by paradoxes and other breakdowns and are
precisely where we would expect “interesting” mathematical
phenomenon to occur.

CONCLUSION

This chapter developed some of the implications of organizing
a description of mathematics around the notion of the mathe-
matical idea. In particular, it leads to a new relationship between
mathematics and logic, for logic can be seen as another idea or
organizing principle. Ideas that are “wrong” can still be valu-
able. Even paradoxes—those areas of extreme logical break-
down—are valid sources of mathematics. Brilliant mathematical
ideas may arise from these very situations and be incorporated
into the body of systematic thought.

Thus the relationship between mathematics and logic has
been decisively altered. We are beginning to see paradox, not as
something to be avoided and eliminated, but as a potentially
rich source of ideas. Even the determination of what is correct
versus what is incorrect, what is true versus what is false, turns
out to be a matter of much subtlety.

In the next chapter I shall begin to consolidate a certain line
of argument. Many of the ideas mentioned in previous chapters
have a core that is ambiguous and sometimes contradictory or
paradoxical. Looking back, I seem to have spent a good deal of
time talking about certain ideas in which the “incompatibility”
of the elements of the ambiguity was extreme. These are ideas
that I sometimes said were “impossible” yet they exist. I shall
give such ideas a name—"“great ideas.” In the next chapter, I
have something more to say about “great ideas” in general and,
more specifically, about the fascinating topic of randomness.
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Great Ideas

All true good carries with it conditions which are
contradictory and as a consequence impossible. He
who keeps his attention really fixed on this impos-
sibility and acts will do what is good. In the same
way all truth contains a contradiction.
—Simone Weil'

INTRODUCTION

Here we come to a key element in the view of mathematics that
is being built up in this book—a point of view that will be made
more explicit through a discussion of a certain variety of mathe-
matical idea that will be called a “great idea.” The discussion of
“great ideas” was anticipated in the introduction and, in pass-
ing, in Chapters 1 and 5. How could anyone have the effrontery
to attempt to define what is great in mathematics? This is clearly
an impossible task from the point of view of the content of the
mathematical idea. What will be done in what follows is to
sketch out a generalized set of circumstances that accompany or
set the stage for the emergence of certain fundamental mathe-
matical ideas. These circumstances are so strange from our usual
perspective that to take them seriously requires a radical shift of
perspective—a great idea of our own.

In a sense the notion of a “great idea” emerges from a close
consideration of the Simone Weil statement that opened this
chapter, except that “great idea” replaces what she calls the
“good.” Thus the statement is shifted from the moral to the intel-
lectual domain. The statement now reads, “a great idea carries
with it conditions which are contradictory and as a consequence
impossible.” The meaning of this statement depends on what
is made of the word “impossible.” On the surface to say that
something is “impossible” is to say that it cannot happen. It
might then seem more accurate to replace “impossible” by
“seems impossible.” A great idea seems impossible when looked
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at from a certain point of view. In fact, a kind of impossibility is
a necessary condition for the emergence of a great idea.

Why is it impossible? A “great idea” is “impossible” because
embedded inside it we find a contradiction. It is impossible and
yet it exists. What could this phrase possibly mean? And yet we
have already observed this phenomenon on a number of occa-
sions. Take the example of “zero” that was developed in Chapter
2. For the Greeks “zero” was impossible. The contradiction it
contains is, of course, the existence of something that stands for
nothing. “Zero” contains this contradiction yet for us today,
there it is, a mathematical object we use every day without giv-
ing it a second thought. The fact that we now use “zero” so
freely blinds us to the quality of “impossibility” that impeded
its initial development.

“Impossibility” is the context out of which the “great idea”
arises. The word “impossible” focuses attention on a property
that one finds in certain situations of great originality. It is not
to be taken on the level of pure logic, since, on that level, if it is
impossible it does not happen—period. Perhaps instead of “im-
possible” one could say that the situations that are being de-
scribed are “beyond what is possible” at least at a certain mo-
ment in time. They are impossible in the way that a new idea is
impossible; it just hits you out of the blue—it comes as a sur-
prise. “Oh, that’s what it means, I get it. I never thought of it in
that way before.” It is perhaps inappropriate to use the word
“miracle” in a book about mathematics, but a great idea is a mir-
acle in the sense that it radically changes the intellectual land-
scape. There is something miraculous and therefore “impossi-
ble” about a great idea.

Recall the statement of Davis and Hersh in reference to infin-
ity (pp. 118 and 121) “There is a tension. . .which is a source of
power and paradox.” Paradox refers to the quality I am calling
“impossibility.” On the other hand, “impossibility” cannot be
separated from the power or creativity of the idea. In the discus-
sion of the “great idea,” impossibility and power are two sides
of the same coin. From one perspective, the idea is impossible—
it just cannot exist. From the other, there is the brilliantly original
idea that transforms our understanding. This whole situation is
reminiscent of a phenomenon that has been observed in various
situations of ambiguity—what looks like an insurmountable
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block from one perspective becomes a situation of the openness
and flexibility of multiple perspectives from another.

The juxtaposition of “impossibility” with creativity is essential
to the “great idea,” as it is to the entire point of view that is being
developed in this book. A creative situation has negative and
positive components. You could say that the old must be over-
come in order to make room for the new. Every mathematical
situation comes with a context, a frame of reference. The context
that is adequate to express a problem, for example, may not be
the frame of reference that is needed for its solution. The aspect
of the situation that is being called “impossible” expresses how
the situation looks from the initial frame of reference. It is this
very “impossibility” that forces one to address the inadequacy
of this frame of reference. Taking the “impossibility” seriously
and yet not stopping there—continuing working on the situa-
tion in the face of the “impossible”—pushes the creative mathe-
matician out of what you could call the “classical” point of view.
It breaks down the initial frame of reference, and that is a neces-
sary precursor to the emergence of the creative insight.

Remember our discussion of “infinity” and Gauss’s protest
against “the use of infinity as a completed [object]. . . The Infinite
is only a manner of speaking.” “Actual infinity” was as impossi-
ble for Gauss as it was for Aristotle. It remained impossible until
the moment of Cantor’s great success. In our earlier discussion
of infinity there was an emphasis on how very strange this con-
cept is, how difficult, how controversial it was at first. Cantor
had such a hard time getting the mathematical world to take
his ideas seriously! How could so many brilliant intellects have
contemplated these ideas and backed away? Why did the great
French mathematician Henri Poincaré call Cantorism a disease
from which mathematics would have to recover?* Most mathe-
maticians of the time, we must conclude, considered the idea
of “actual infinity” to be impossible! In this way, it satisfies our
criterion for being a great idea.

The ideas discussed in the book so far have been characterized
by the property of ambiguity. Ambiguous ideas come with mul-
tiple contexts that are, or appear to be, in conflict. Great ideas
take this conflict to an extreme. There is an irreconcilable conflict
embedded in a great idea. This is why one wants to say that a
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great idea is impossible. And yet there they are! In discussing
great ideas we get to the nub of the unorthodox approach to
mathematics that I am proposing. Because great ideas have the
dimension of impossibility, their acceptance by the mainstream
is invariably slow and fraught with controversy. I mentioned in
Chapter 1 how the normal reaction to a situation of ambiguity
is to suppress one of the conflicting aspects and, in this way, re-
store the harmony that was threatened by the appearance of con-
flict. In the “great idea” the conflict is heightened, so the re-
sulting tendency to ban one of the conflicting views is even more
extreme. In these cases the idea is not only impossible and ridic-
ulous but also threatening—threatening to people’s mental
health and perhaps even to the public order. The introduction of
a great idea may even bring about a cultural crisis.

In the case of the ideas of “zero” and “infinity,” the gap be-
tween the two contexts is vast. One of the contexts is actually
denying the existence of the other. Not only denying, for exam-
ple, that “zero” exists but also denying the very possibility that
such an idea could exist. The gap between “zero the number”
and “the zero that cannot be articulated” is really so huge that
we can only gasp in awe at the human genius that managed this
feat—that managed to convert this contradictory situation into
an idea that could be articulated and worked with. It is difficult
from the perspective of today, when such ideas have been so
domesticated, to conceive of the threat they contained and there-
fore the courage and creativity it took to conceive of them. On
the one hand, “actual infinity does not exist”; on the other, we
have countable sets, uncountable sets, even a whole hierarchy
of infinite cardinal numbers. How extraordinary!

In Chapter 1, I discussed the crisis that surrounded the proof
of the irrationality of the square root of two. What was at the
heart of that crisis? The problem may have been that the Greeks
confounded the two senses of the word “rational.” The Greeks
were rational thinkers and rational thinking, by definition, is
clear and sensible, unclouded by emotion or prejudice. Rational
thought was not only the means through which one attained to
true knowledge of the external world, but it reflected, for the
Greeks, the hidden structure of that world—the world for them
was rational. This rationality of the world was reflected in the
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assumption that the structure of the natural world could be cap-
tured by mathematics, by “number,” and, as we saw earlier, by
rational numbers. Mathematical “rationality” is quite a reason-
able hypothesis, and the argument seemed to be clinched by the
discovery that the musical harmonic series can be completely
described using rational numbers.

The statement “all numbers are rational” was not so much a
mathematical result as a statement of an entire worldview. This
is the context in which we must consider the proof that the
square root of two was not rational. We could say that a rational
argument had shown that the world was not rational. How is
that for a dilemma? From one point of view it was impossible
for the root of two to be irrational. But, of course, there it was:
the root of two existed as a geometric object via Pythagoras’s
theorem and there existed an airtight argument that “proved”
that it was not a rational number. These are precisely the ingredi-
ents we expect to find when we talk about “great ideas.” They
are also the ingredients for a cultural crisis.

As another example, consider the crisis that was associated
with the introduction of the calculus by Newton and Leibniz.
On the one hand, there was the introduction of obscure ideas,
infinitesimals and fluxions, which seemed to contravene all rea-
son. Bishop Berkeley was right to take issue with these “results”
(see Chapter 3). They were, he was saying, impossible. They
made no sense. And yet they worked! This is all to say that the
calculus is built around a “great idea.” Now the calculus was
obviously too valuable—the results were too good—to be over-
thrown by some narrow logical attack. Logic would just have to
expand to account for this new mathematics. It took awhile, a
century in fact, but that is exactly what happened. Again we
have a “great idea” that is associated with a crisis that ultimately
changes the world!

Those who feel that mathematics is merely rational and rea-
sonable have difficulty accounting for great ideas and the cul-
tural crises with which they are associated. Mathematics for
them is an activity that could be performed by calculating ma-
chines or by human beings in a machine-like mode of using the
mind. As was promised in the introduction, this book offers an
alternative vision: a vision of ambiguity and paradox and there-
fore of creativity and great ideas. In my view you cannot have
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the one, the great creativity of mathematics, without the other,
the ambiguity, the impossibility and therefore the crises. It is in
this place, the place of crisis, close to the impossible and the contradic-
tory, that we will find the living heart of the mathematical enterprise.

FormALISM AS A GREAT IDEA

Great ideas are born of paradox and often engender a crisis. Re-
turn for a moment to that great crisis in mathematics that accom-
panied the discovery of non-Euclidean geometries. In Chapter 4
there was a discussion of what was at stake in this crisis, namely,
the very nature of physical reality: was space Euclidean or was
Euclidean geometry a mere model of space?

From today’s point of view it may be hard to understand
what the fuss was all about. Today we look at hyperbolic geome-
try, for example, as just another mathematical theory with its
definitions, axioms, and theorems. Yet, at the time, Gauss was
reluctant to publish his results for fear of the probable negative
reaction from the scientific community. For most mathemati-
cians at the time non-Euclidean geometry was “impossible.” We
find it difficult to appreciate this “impossibility” because we
look at mathematics today from a point of view that came into
being as a result of the subsequent crisis. It is always difficult
to appreciate a cultural crisis in retrospect. One of the defining
characteristics of such a crisis is that it retrospectively vanishes
from view. This is the true measure of the “paradigm shift” that
has occurred.

The original problem probably had something to do with the
relationship between mathematics and truth. Is mathematics,
Euclidean geometry in particular, giving us true information?
Do the results of mathematics reflect what is real? Now one
property of “truth” is that it has a claim to uniqueness. How can
there be more than one truth? This is like asking how there can
be more than one reality. For thousands of years Euclidean ge-
ometry “revealed” the detailed structure of physical space. From
the point of view of “naive realism,” space is out there and ge-
ometry describes what is out there—there is no separation be-
tween the two. Therefore there was an enormous shock associ-
ated with the idea that there could be multiple geometries—each
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of them with an equal claim to validity. What seemed to be at
stake went beyond the nature of physical space. It put into ques-
tion the relationship between mathematics and truth. In fact,
“Truth” itself had been put into question, and this created an
intolerable situation. Cultures exist, one might say, in order to
give society a cohesive foundation, a common experience of re-
ality. Schools exist in order to pass on these cultural assumptions
to the young. Without such a common notion of reality the
demons of instability and chaos threaten the fabric of social
order. When fundamental cultural assumptions are questioned,
as in this case, it is absolutely essential to reestablish a stable
notion of truth.

The existence of non-Euclidean geometries had, for a brief pe-
riod of time, revealed the underlying epistemological assump-
tions of mathematics and therefore opened them up to scrutiny.
This is what a crisis accomplishes; it reveals a contingency that
was always present but formerly went unrecognized. Thus, a
crisis is interesting and valuable because of what it reveals about
assumptions that were hitherto taken for granted. The response
to the crisis is equally revealing. In the case in question, mathe-
maticians were not slow to enter the breach and attempt to heal
what had been ripped asunder. The problem was how to put
mathematics on a completely secure footing—how to restore
the “truth.”

It was clear by the nineteenth century that not even Euclidean
geometry was completely logically airtight—there were axioms
that were missing, things that were assumed as “obvious” but
never made explicit. One of these was discussed in Chapter 2—
how can we be sure that two arcs of circles that appear to cross
each other actually do have a point in common? Asserting the
existence of such a point of intersection required, you will recall,
an axiom of continuity. There are a number of other lacunae that
need to be made explicit. David Hilbert accomplished that task.
In his expanded version of Euclidean geometry everything had
been made explicit—the set of axioms was complete and all re-
sults followed from a rigorous process of logical inference. The
proofs were now really independent of the geometric diagrams
and constructions that always are present in Euclid. These dia-
grams might remain as a guide to the intuition and to make the
argument more transparent, but the logic of the argument did
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not rely upon them. Ironically, geometry had, in this way, been
“liberated” from its geometric origins. It had been converted
into a formal, deductive system of thought. Non-Euclidean ge-
ometry was merely another deductive system with an axiom sys-
tem that was a minor modification of that of Euclidean geome-
try—the parallel postulate was different. In fact, any consistent
set of axioms could in principle generate its own mathematical
system. Thus formalism was born and, in the process, the whole
notion of truth was radically transformed.

Formalism has all the characteristics of a “great idea.” It was
born out of the “impossibility” of non-Euclidean geometry.
Then, because a “great idea” involves a profound creative in-
sight, the domain of this great idea expanded beyond geometry
into new territory. In fact Hilbert had the idea that what he had
done for Euclidean geometry could be done for mathematics as
a whole. This would involve finding a finite but complete set
of axioms for all of mathematics. Were this to be successfully
accomplished mathematicians would be certain that all of the
theorems that were logically deduced from these axioms would
be valid (at least as valid as the axioms themselves). It seemed
reasonable at the time to expect that this formal system would
be capable of deriving all of the valid theorems of mathematics.

Thus was born what we could call the “formalist dream” for
mathematics—a deductive system that could produce all possi-
ble valid conclusions. What a powerful dream this was! In a
way it is the old dream of Aristotle and Euclid, the Greek dream
of reason moved forward by a couple of millennia. As I men-
tioned earlier, this dream is a kind of foundation myth for our
culture. As a mathematician I was brought up on this myth,
but all of us have this point of view so deeply ingrained in our
consciousness that we have difficulty with the idea that it is “im-
possible.” The dream is so compelling that even when someone
like Godel proves that it is impossible we refuse to give up the
dream. Rather than relinquishing the dream we would rather
put the impossibility on the side and continue as though nothing
had changed.

Formalism would radically change the mathematical land-
scape. As a philosophy it would determine how each mathemat-
ical subject—from group theory to complex analysis to algebraic
topology—was structured. It would determine how mathemat-
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ics was presented to beginners and to the nonmathematical
world but, more important, it determined how mathematicians
described mathematics to themselves. For many people, formal-
ism came to be seen as identical with mathematics; that is, the
distinction between mathematics and the formalized version of
mathematics was all but lost. Formalism is the aspect of contem-
porary mathematics that resides in conscious awareness. It pro-
vides an easy answer to questions about the nature of mathe-
matics (deduce theorems from axioms) or what mathematicians
do (prove theorems). However, like all easy answers it misses a
great deal.

With every great idea it is important to bear in mind that
something is lost, but, on the other hand, a great deal is gained.
What is lost will be discussed later on, but for the most part it
involves the tendency on the part of great ideas to over-extend
themselves—to claim a kind of universality. The gains in the
case of formalism include acquiring a freedom that mathematics
never had before. The mathematician gained the freedom to cre-
ate mathematical subjects that are derived from internal situa-
tions within mathematics itself, or are only loosely modeled on
her experiences of the world, or are simply a product of her
imagination. Mathematics could now be studied in its own right,
for its intrinsic interest and beauty and not necessarily because
it said something directly about some other science or the natu-
ral world. One might say that formalism gave birth to “pure
mathematics.”

Of course the tendency to produce arbitrary, abstract systems
can go too far. It may come to be seen merely as a game and, as
a result, fall into obscurity and irrelevance. Perhaps as a result
of formalism, mathematics, which had been intimately con-
nected to physics for centuries, went its own way for a time.
Generations of mathematicians did not learn physics, for exam-
ple, and physicists developed the mathematics that they needed
in their own way and independent of the developments that
were going on in mathematics. This was a problem, one that has
been corrected in recent years when mathematics and physics
have reunited with a vengeance.

Nevertheless the freedom that mathematics gained through
formalism was valuable. It is one of the great mysteries of sci-
ence that mathematics, developed for its own sake, for reasons
internal to mathematics itself, turns out to have great value in
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other domains. One great example is Einstein’s use of differen-
tial geometry to provide the mathematical foundations of the
General Theory of Relativity. The mathematics was not pro-
duced for this purpose, the mathematics was already there,
ready to be applied. This phenomenon is Wigner’s “unreason-
able effectiveness of mathematics in the natural sciences” that
was referred to earlier and its presence is ubiquitous.

The whole progression from non-Euclidean geometry to for-
malism has many of the characteristics of a great idea. Chaitin
summarized the situation as follows:

Hilbert’s proposal seemed fairly straightforward. .. .he
wanted to go all the way and formalize all of mathematics.
The big surprise is that it turned out that it could not be
done. Hilbert was wrong—but wrong in a tremendously fruit-
ful way, because he had asked a very good question. In fact
by asking this question he created an entirely new discipline
called metamathematics, an introspective field of math in
which you study what mathematics can and cannot achieve.
(italics added)?

Here we have a number of important characteristics associ-
ated with great ideas that will be commented on in the next sec-
tion. In the first place there is the play between impossibility and
actuality that has already been discussed. Then there is the ten-
dency to “want to go all the way”—to go too far, in fact, because,
finally there is the sense in which the great idea is “wrong.” Fi-
nally there is the sense that the idea is wrong in a “fruitful,” that
is to say, creative manner. All these characteristics are present to
varying degrees in the examples of “great ideas” that have been
discussed: zero, infinity, irrational numbers, the derivative, and
finally formalism itself. Certainly there is no claim here that
these cases are identical. Nevertheless there are enough com-
monalities to justify the claim that there is something going on
here that is worth paying attention to.

CHARACTERISTICS OF “GREAT IDEAS”

As was emphasized earlier a “great idea” begins with a gap—a
gap that seems unbridgeable. In Chapter 3, I discussed the irre-
ducible ambiguity that characterizes the concept of infinity by
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considering the concept of the “ineffable.” By definition the “in-
effable” is “that which cannot be put into words.” Unfortunately
(or is it fortunately?) “ineffable” is a word. Thus when we use
the word “ineffable” we are articulating that which cannot, by
definition, be articulated. The idea of the “ineffable” has this
twist; it contains a gap that cannot be bridged. In mathematics
the discussion of “zero” and “infinity” demonstrated the same
gap. The gap exists in the idea and thus in people’s response to
the idea.

One way of thinking about this seemingly contradictory situa-
tion would be to say that “great ideas” can be approached from
two sides. One side, which could be called the side of the “Abso-
lute,” says that the (absolute) infinite exists but cannot be articu-
lated. This was the side that Aristotle and Gauss were coming
from. It was the side that fueled Kronecker’s bitter rejection of
Cantor’s ideas. The other side could be called the “relative side,”
the side of the explicit definition, and from this point of view
there is no problem; moreover, it is difficult to see what the fuss
is all about. From this point of view infinite cardinal numbers
are just ordinary mathematical objects that reason manipulates
like other mathematical objects, the integers for example.

The reader will not be surprised that I call this situation “am-
biguous” and furthermore claim that both sides—the absolute
and the relative—have their own legitimate claim to validity. For
contemporary mathematicians, philosophers, and other intellec-
tuals, the “absolute” is the more problematic dimension. The
reason for this is that you cannot discern the absolute from
within the formal aspects of mathematics and thus it is invisible
to people for whom the formal is the only aspect of the mathe-
matical situation that is real. I realize that the “absolute” may
have an almost theological connotation for some, so they would
exclude it from serious consideration. It is true that discussing
an aspect of reality that can never be completely grasped in
words or in conceptual terms is, in a sense, the ultimate ambigu-
ity. It places a conundrum at the heart of the human drive to
comprehend the world. Nevertheless it creates a context in
which we can begin to understand certain developments in the
history of mathematics.

However, there may be ways of thinking about the “absolute”
point of view that will be helpful. From the absolute point of
view certain ideas have a kind of unlimited depth. Thurston*
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lists ten different definitions of the derivative. Each of these adds
something to our understanding of derivative, and yet the sum
of these definitions does not necessarily complete our under-
standing. It is always possible that, in the future, someone may
come up with a new way of thinking of the derivative and use
it to do interesting mathematics. Many fundamental ideas in
mathematics have this kind of depth, for example, real number
and continuity, to name just two ideas that have been discussed
earlier.

This situation of potential depth of ideas is a familiar one from
a certain reading of quantum mechanics. The physicist Heisen-
berg’ talks about the “in potentia” existence of the wave descrip-
tion of a particle before its collapse due to observation. The
“wave” or probabilistic description would correspond to the
deepest point of view, the observed particle to a specific formu-
lation of that viewpoint. To give a more mundane example, there
are certain aspects of our lives that cannot be put into words.
This doesn’t mean that one cannot try to put them into words—
in fact, putting an experience into words may have the effect of
enriching the experience just as one’s success in coming up with
a “good” definition of infinity has the effect of enriching mathe-
matics. Nevertheless, the very attempt to articulate certain feel-
ings, for example, changes them, makes explicit and precise that
which does not live on that level. In just this way one can “ex-
plain” one’s response to a favorite piece of music yet the expla-
nation and the emotional response to the music lie on com-
pletely different planes.

The absolute cannot be realized definitively; it cannot be com-
pletely captured in a particular closed form. Cantor, for one,
“deeply believed that infinity was God-given”; that is, he be-
lieved in something one could call “Absolute Infinity.” Perhaps
we should take our cue from the neo-Platonists and think of the
absolute not as an object or a concept but as a process or a ten-
dency that gives birth to concepts. In the discussion of the ineffa-
ble I said that not only could it not be expressed but also that
there was an irresistible drive to express it. The infinite refers
back to this inexpressible Absolute. In reading about Cantor’s
life one can see this overwhelming drive to give expression to
his idea of infinity. Yet one can equally see that “infinity” is not
any infinite cardinal or ordinal number nor is it contained in the
definition of cardinality, for example.
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For some the existence of the nonconceptual is a problem—a
limitation on what can be “captured” by the human intellect.
This could be summed up by saying (of the “Absolute” dimen-
sion of things), “Whatever you say it is, it is not.” From this point
of view, like Sisyphus, we are doomed to keep trying and keep
failing. No matter how brilliant and subtle we are, the “Abso-
lute” will never be reduced to a finite, symbolic form. However
looking at the matter in only this way is a serious mistake. For
one thing, it underestimates the accomplishments of Cantor and
many others.

To understand the error I must anticipate the material of the
following chapter and distinguish between a process and the re-
sults of the process. This is similar to the discussion of reifica-
tion, whereby a process is transmuted into an object. Whereas
the attempt to make a definitive object out of a “deep” concept
cannot succeed, the drive to do so is itself an expression of the
Absolute. Mathematics, we could say, is driven by the need to
express the “Infinite” in finite terms, and this very drive is the
“Infinite” in action. Great ideas, in particular, are situations in
which we can most clearly see this phenomenon in operation.
In a great idea there is a reaching out toward the unknown, to-
ward what cannot be known but what our deepest nature needs
to make known. As was said earlier about the “oneness” of Ploti-
nus, the drive toward understanding the natural world and our-
selves is an imperative, not a luxury. The fact that it can have no
definitive resolution is not necessarily a problem. It implies that
there is no end to creativity, no end, for example, to mathemat-
ics. Every great idea is a case of a huge creative leap. It is a mo-
ment when the world is definitively changed. It is a moment
when the Absolute briefly makes its appearance in the human
domain.

The whole discussion about the Absolute could be summed
up by a couple of lines from a song by the poet and songwriter
Leonard Cohen:

There is a crack in everything.
That’s how the light gets in.”

The first line could be seen to refer to the fact that nothing is
perfect, no theory or ideology can be identified with reality, that
is, the Absolute cannot be captured definitively. The “light,” of
course, refers to the Absolute itself that, Cohen says, does not
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appear in the formal theory itself but in the places where the
theory breaks down, the places we have been calling ambigu-
ous. It is precisely because great ideas have a sort of unlimited
depth that there is always room for the Absolute to make its ap-
pearance out of the “cracks” in the theory. This appearance of
the absolute occurs in the act of creative insight.

It is important to reiterate that “Great Ideas” appear out of
extreme ambiguity. They appear in the face of the impossible.
Thus they require great courage on the part of their proponents.
These people face the contempt of their peers; they face ostra-
cism; they may even face violence, as in the case of the poor
Pythagorean who was reputedly drowned for the crime of prov-
ing that the square root of two was not rational. Great ideas are
the products of genius, but what is the essential quality of genius
in these cases? It is the tenacity to face up to the impossible, to
live for long periods of time with the tension of the ambiguous.
It is, in short, a kind of frustration tolerance, the precise thing
that we seek to eliminate by reducing human thought to the
algorithmic.

As a result of an act of extraordinary creativity, the great idea
is born. What it appears to have accomplished goes against the
intuition of the culture out of which it arises. This accounts for
the resistance that the idea initially encounters. Overcoming this
resistance requires a conviction and strength of character, a feel-
ing that “this is the way things are and they cannot be other-
wise.” On the part of the author of the breakthrough and his
immediate followers, there may arise a sense of having discov-
ered some absolute truth. Thus one of the characteristics of a
great idea is the claims that that are made on its behalf. Take
formalism, for example. First there is the notion of setting Eu-
clidean geometry on a completely secure foundation. Then there
is the idea that all of mathematics can be treated in a similar fash-
ion. Finally there is the claim that formalism is mathematics.
There is also the idea that all of science can be developed in this
way. Also that the thinking process itself is in essence formalis-
tic, that computers can think, and so on.

In this way, the introduction of a great idea is often followed
by a period of inflation, a series of increasingly grandiose claims
for the unlimited applicability of the idea. Of course, this phe-
nomenon is not restricted to mathematics. Just think of the
claims made on behalf of the theories of Karl Marx or Sigmund
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Freud. This period of inflation is a natural and almost unavoid-
able part of the process that we are calling a “great idea.” Be-
cause great ideas come out of an overwhelming need to grasp
the absolute, to give truth a concrete form, so to say, the claim
to have done so would appear to be inevitable.

It follows that the third stage in the life of a “great idea” will
be the recognition that the idea does have limitations—that the
claims made for it in the inflationary period were overstated. At
this stage it may be asserted that the idea is false. However, it is
not the idea so much as the universality of the idea that is false.
Formalism is not wrong, but the claim that formalism could en-
compass all of mathematics was certainly wrong. Interestingly,
in mathematics the “error” if we wish to call it that can be dem-
onstrated in a completely rigorous manner. Of course, this was
done in the work of Godel that was discussed earlier.

Thus even in its limitations a great idea is ambiguous. To re-
peat Chaitin’s remark about Hilbert and formalism, “Hilbert
was wrong—but in a tremendously fruitful way because he had
asked a good question.” This is reminiscent of Shimura’s com-
ment about Taniyama’s capacity to make “good mistakes.”
Great ideas are wrong but they are wrong in a brilliant and in-
spired way. Many of the seminal advances in mathematics and
science are “wrong” in this sense.

A DooR orR A WINDOW?

Great ideas are metaphorically closed doors that turn into open
windows. The “closed door” phase refers to what we have called
above the “impossibility” of a great idea. Then somehow the
closed door is transformed into an open window that looks out
on a novel and unexpected terrain. Mathematics is full of prob-
lems or questions that cannot be resolved within the domain
within which they are initially formulated. The correct resolu-
tion arises from an expansion of the initial mathematical context
to a new context that, in retrospect, was implicit in the initial
problem.

Take, for example, the equation x* + 1 = 0. It makes perfect
sense in the context of the real numbers, the rational numbers,
or even the integers, but it has no solution within those domains.
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The equation seemingly forces us to invent a solution, “x = i,”
but that single solution is not secure until the real numbers have
been extended to the full set of complex numbers, that is, all
numbers of the form a + bi, where a and b are real numbers. Un-
expectedly it turns out that this new domain is algebraically
closed, which means that if we now write down any algebraic
equation, the “right number” of complex solutions exist. Thus
for the equation x* — ix® + (2 — i) x* + 3x + 2 = 0, where the coeffi-
cients are all complex numbers, there are four solutions (count-
ing multiple roots), all of which are also complex numbers. What
is impossible in one context opens a window to a larger context,
the complex numbers, which not only contains the solution to
the original equation but is also a vast and wonderful new math-
ematical domain in itself.

Remaining with the real and complex numbers for a moment,
take the function f (x) =1+ 1/(1 + x?),* where x is a real number.
This function can be written as an infinite series

! =1+¥=2—x2+x4—x"+x8+---.

1+ x? 1-(=x?

Now this series converges for certain values of x and not for oth-
ers; in fact it converges for all values of x (strictly) between -1
and +1. We say that its radius of convergence is 1 since it converges
for all x such that | x| < 1. The radius of convergence is a very
important property of the function f(x). The mystery is how that
number is to be discerned from properties of the original (real)
function. Looking at the graph of the function, for example,
where do we find the number 1?

However, when we consider the function as a function in the
domain of complex numbers the secret is immediately revealed.
When x is a real number, the denominator 1 + x* is greater than
1 and thus never 0. However if we allow complex numbers then
the denominator 1 + z* = 0 for z = +i.° Therefore, the largest ra-
dius for which the complex function f (z) = 1 + z* is nonzero is

1+

lz| <1

The radius of convergence of the power series representation of
a real-valued function, f (x), can only be seen by considering the
associated complex function, f (z).
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0
Figure 7.1. Graphof f(x) =1+ 1/(1 + ¥

This example reiterates the point that was made earlier about
the relationship of the exponential function to the trigonometric
sine and cosine functions. The “real” functions seem to be com-
pletely unrelated yet the associated complex functions are re-
lated by the Euler equation

e™ = cos x + isin x.

Here again a feature of the “real” function f(x) =1 + 1/(1 + x?)
is only explained by considering the associated “complex”
function.

This phenomenon of a problem in mathematics that is stated
in one domain yet requires a larger domain in order to be re-
vealed properly is really quite general. For example, the most
accessible proofs of the fundamental theorem of algebra' in-
volve ideas from analysis or topology. Domains in mathematics
like algebra and analysis cannot really be thought of as sub-
jects that are independent of one another. Great progress in
mathematics often comes at the interface between two mathe-
matical subdomains. This, of course, is part of the phenomenon
of ambiguity.

These kinds of situations also reveal the inadequacy of “for-
malism” as a description of mathematics. A development of a
subject in terms of axioms and definitions, theorems and proofs
leaves one with the feeling that the formal system “is” the sub-
ject and that the formal development somehow contains all the
possibilities for the subject. It can never account for the realiza-
tion that an idea from another part of mathematics entirely is
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just what is needed to resolve a question posed within the origi-
nal system.

Of course, Godel’s theorem also makes the same point. Re-
sults may be “true” but not derivable from a given formal sys-
tem. There was such an example given in Chapter 6. Mathemat-
ics is continually forcing mathematicians outside their initial
frames of reference. It is the problematic aspects of mathematics
that demand a creative resolution—one that is often completely
unexpected and yet, in retrospect, can be seen to be inevitable.

These jumps to a higher viewpoint are not predictable. They
cannot be programmed. Mathematicians cannot just sit around
and speculate on where the next expansion is going to appear.
The new viewpoint must be forced upon us by the situation, by
a specific problem. The expansion from the real numbers to the
complex numbers is a major breakthrough; it solves many prob-
lems, helps us to understand things that were formerly obscure,
and suggests many new questions. The next expansion of that
type from the complex numbers to the “quaternions”" is inter-
esting but not as dramatic as the jump from the real to the com-
plex numbers.

RANDOMNESS

In this section the previous discussion is illustrated by delving
into one of the most fascinating ideas in modern scientific
thought—the idea of randomness. To give a complete discussion
of randomness would require a book in itself, maybe even a se-
ries of books. Thus the discussion here can have no claim to
completeness. The aim is to give another, very nontrivial exam-
ple of a great idea and its influence on scientific culture. Ran-
domness is a topic that has great contemporary relevance. It has
not been “resolved” in the sense that there is no clear consensus
about the “correct” way to think about randomness like the con-
sensus on the questions of analysis that were discussed earlier
(even if it would be premature to say that the foundations of
analysis have been resolved definitively and for all time). Ran-
domness as a concept retains a certain rawness and, for that
reason, it will be interesting to investigate it as a great idea.
Remember that “great ideas” are characterized by a certain “im-
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possibility” but simultaneously by an open flexibility. Our dis-
cussion will begin with the “impossibility” of randomness and
move on to various applications of the idea to modern scientific
thought.

What is randomness? At the level of our everyday life experi-
ence we call it “chance,” something with which that we all feel
familiar. It refers to something unexpected, something caused by
luck or fortune, that is, without any apparent cause. Ran-
domness is, in a sense, the opposite of determinism. It reflects
the ordinary sense that some things are too complicated to admit
of a simple explanation or even any explanation at all. Why do
certain people with the healthiest of lifestyles die young, while
others, who never take care of themselves, live to a ripe old age?
Who has not been struck by the thought that such questions
have no logical answer—life and death cannot be predicted, they
involve an element of chance that seemingly cannot be avoided.
A contingency seems to be built into our lives and our experi-
ence of the world. One might claim that human culture and reli-
gion have arisen as an attempt to control and mitigate somewhat
this random factor in existence. In a way naming the contingent,
calling it randomness, and developing mathematical and scien-
tific theories based on this idea is among the most ambitious
human cultural projects. If the contingent is the stuff of our
nightmares, then conceptualizing the random is an attempt to
strike directly at the heart of the beast.

The phenomenon of “randomness” is one of the primordial
sources of mathematics. Ian Stewart, for example, lists “five dis-
tinct sources of mathematical ideas. They are number, shape, ar-
rangement, movement, and chance.”’? He says that “chance” or
“randomness” is the most recent of these sources. “Only for a
couple of centuries has it been realized that chance has its own
type of pattern and regularity; only in the last fifty years has it
been possible to make this statement precise.”” This is the nor-
mal way in which mathematical (and scientific) progress is un-
derstood—the “pattern” that is implicit in “chance” is made pre-
cise. This implies that chance always had a definite meaning,
even though at a certain moment in time this meaning was not
grasped explicitly. Then its essence was captured by an explicit
mathematical structure.
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In fact things are not so simple. The fact is that “randomness”
has been made precise in a number of different ways, none of
which are definitive. There can be no definitive definition of ran-
domness. Each definition evokes another aspect of “ran-
domness” and embeds it in a mathematical or scientific theory.
Each of these tells us something about that aspect of reality
evoked by the use of the term “randomness.” The fact that ran-
domness was conceptualized later than other sources of mathe-
matics (like number, for example) is testament to some complex-
ity that is associated with the random. In fact, as we shall see in
what follows, there could be legitimate skepticism (as in the case
of “infinity,”) about whether chance is a legitimate object of
mathematical inquiry.

Randomness has always been an important element of human
culture. In the past it had the connotation of being “divinely in-
spired.”™ In many cultures (Greek, Hebrew, and Chinese, for ex-
ample) there is a tradition of casting lots, coins, or yarrow sticks
as a means of accessing a “higher” wisdom. “The purpose of
randomizers such as lots or dice was to eliminate the possibility
of human manipulation and to give the gods a clear channel
through which to express their divine will.”" It is interesting to
speculate on the nature of “higher wisdom.” What is the modern
person to make of it? Perhaps the word “higher” is misleading
and should be replaced with “more basic,” in the sense that it
was claimed that ambiguity and ideas are more basic than logic.
What is randomness more basic than? It may well be that many
cultures felt that “chance” evoked an aspect of reality that is not
accessible to consciousness—much less to rational thought. To
put this in another way, every human being is clearly locked into
a bubble—their own private universe—consisting of their
thoughts and sense perceptions. How can people discern the ex-
istence of a world outside themselves? One of the ways seems
to be through “chance.” No matter how complete our picture of
the world may seem to be, reality always manages to surprise
us. Something unsuspected always seems to turn up, something
happenstance, something random. Thus the random is an es-
cape from a solipsistic existence. These earlier cultures engaged
in systematic random behavior—they put aside for a time their
rational selves—and hoped that the divine would find a way of
expressing itself to them or through them. The random was seen
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as a doorway to some “higher” or transcendent aspect of reality.
Right away you can see the problem of conceptualizing ran-
domness. How can we make a scientific concept out of some-
thing that, by definition, lies beyond the conceptual? Thus ran-
domness, like infinity, is intrinsically problematic.

Let me try to further isolate the aspect of “randomness” that
makes it problematic. My dictionary has a number of definitions
of the word random but the first of these is “done, chosen, or
occurring without a specific pattern, plan, or connection.” Thus
randomness refers to the condition of being devoid of pattern or
regularity. Earlier in this book we discussed “pattern” and saw
that in meaning it was very close to “idea.” It was mentioned at
that time that mathematics is sometimes defined as the study of
pattern. But randomness refers to the absence of pattern. In other
words, it would seem to be a subject that is outside the domain
of mathematics. Yet randomness is not outside mathematics. As
was mentioned above it is one of the key ideas in mathematics
(and many scientific theories).

To repeat the conundrum: Mathematics is about “pattern.” Ran-
domness is the absence of pattern. Mathematics studies randomness.
This same inner contradiction can also be thought of in the fol-
lowing way. Chapter 5 discussed how the mathematical idea re-
vealed an order that was implicit in a mathematical situation.
Now the definition of a situation of randomness is that there is
no order. Yet randomness is an idea, so it must be organizing
something, it must be revealing some order or regularity. What
is it revealing?

Mathematics, far from being stymied by this situation, finds
enormous value in it. The fecundity of “randomness” is
astounding; it is an inexhaustible source of scientific riches.
Could “randomness” be such a rich notion because of the inner
contradiction that it contains, not despite it? The depth we sense
in “randomness” comes from something that lies behind any
specific mathematical definition. How extraordinary it is that
mathematicians have discovered a pattern in situations charac-
terized by the lack of pattern! What a subtle use of the intelli-
gence is at play here! At first glance saying that randomness is
the “pattern that is the absence of pattern” seems to be playing
with words and does not seem to advance the discussion. Yet it
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does advance human understanding in a most important man-
ner. It is indeed possible to give meaning to randomness in a
number of distinct but profound ways. The fact that it is possible
to do so should not blind us to the profound ambiguity that
must be successfully navigated in order to conceptualize “ran-
domness” in such a way that it can be used in mathematics and
science. In the same way that “zero cannot exist” and “infinity
cannot be conceptualized,” so randomness contains an inner
contradiction. It is “impossible” in this way. It is impossible and
absolutely fundamental. These two dimensions make it into a
great idea.

The quintessential random event involves flipping a coin. Say-
ing that flipping a coin is a random event means that the two
possible outcomes, heads (H) and tails (T), are equally likely
but that the outcome of any single flip is not predictable. So
even though we say that the outcome of a single flip is a random
event, the only way to verify this randomness would be to
perform the experiment of flipping the coin a great many
times, thereby generating a sequence that might look like
HTTHHHTHTTTTTHHTT. . .. If the sequence is truly random
we should expect to see (at least) two things. The first is that
there are no (finite) patterns that go on forever. Thus a sequence
like HTHTHTHT. . . is not random. Second, in the long run there
will be the same number of heads as tails. That is, if H(n) is the
number of heads in the first n flips and T(n) is the number of
tails, then the ration H(t)/T(n) will be approximately 1 as n gets
large. What is unpredictable on one level (the individual flip of
the coin) is completely predictable at another (in the long run the
ratio H(n)/T(n) is 1).

There are a couple of comments to make about the above two
criteria. The first criterion is phrased negatively. It says that ran-
domness is the absence of order. In this sense randomness is like
a whole series of concepts we have encountered: irrational num-
ber (not rational), transcendental number (not algebraic), uncount-
able set (not countable), infinite (not finite). The second criterion
is phrased positively; it says that the 0’s and 1’s are uniformly
distributed, and makes that precise in a definition that can be
verified. Thus even in this simple example we are confronted
with the ambiguity of randomness. Furthermore, this example
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shows that randomness of this sort involves that difficult con-
cept, “infinity.” Neither of these criteria can be inferred by
studying very long but finite segments of the sequence of heads
and tails, since a sequence of one million heads, for example,
might still be the beginning of a random sequence.
Randomness is elusive because, though it corresponds to
something real in ordinary experience, it seems to disappear on
closer examination. Does randomness really exist? Does it corre-
spond to something real? For example, are the tosses of a coin
really random? If we really had complete data on the total situa-
tion of the coin flipping experiment, wouldn’t it be possible to
predict precisely the results of any flip using the laws of physics?
In other words, is randomness an illusion, merely an indication
of insufficient data? It is interesting in this regard that “young
children do not accept the notion of randomness.” Bennett notes
that Piaget and Inhelder found that young children conceive of
random results as displaying regulated but hidden rules.” In
this they are in the same situation as any gambler who believes
that she discerns some hidden pattern in a seemingly random
event. The question “Does randomness exist?” is an important
one that I return to later on. It has no easy answer but it is vital!

PARADOXES AND RANDOMNESS

If the concept of randomness is inherently problematic, then it
is not surprising that there are many paradoxes associated with
randomness. Paradoxes are things that we have come to associ-
ate with great ideas. They capture the “impossibility” of the
great idea. In her fascinating little book entitled simply Ran-
domness, Deborah Bennett devotes her last chapter to “Paradoxes
in Probability.” She goes through a whole series of paradoxes.
For example, consider the following:

In a study at a prominent medical school, physicians, resi-
dents, and fourth-year medical students were asked the fol-
lowing question:

If a test to detect a disease whose prevalence is one in a thou-
sand has a false positive rate of 5 percent, what is the chance that
a person found to have a positive result actually has the disease?
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Almost half of the respondents answered 95 percent.
Only 18 percent of the group got the correct answer: about
2 percent.”

What is going on here is that one person in a thousand actually
gets the disease but 50 in a thousand test positive for the disease.
Thus even if a person tests positive the chances that he actually
has the disease are still only one in fifty.

Why do intelligent people have so much difficulty with this
problem? Bennett claims that “the key here seems to be the dif-
ficulty of understanding randomness. Probability is based on the
concept of a random event, and statistical inference on the distri-
bution of random samples. Often we assume that the concept of
randomness is obvious, but in fact, even today, the experts hold
distinctly different views of it.”"

However, it follows from our discussion that there is a good
reason for people’s problems with probability and randomness.
In terms of difficulty, probability and randomness should prop-
erly be compared to the ideas of “infinity” and irrational num-
bers, both of which are similarly difficult to get an intuitive feel-
ing for. The problem here is not a question of bad teaching in
the schools. It is that randomness is intrinsically paradoxical. It
is open-ended—it cannot be understood definitively and then
put away. Behind Bennett’'s comments lies the feeling that there
exists some definitive way to understand randomness but it is
precisely this that is being questioned.

THE RELATIONSHIP BETWEEN RANDOMNESS AND ORDER

The importance of the concept of randomness is illustrated by
the fact that it now appears as a basic feature of a number of
the most important scientific theories: quantum mechanics, the
theory of evolution, and the theory of chaotic systems. Much
earlier, randomness had found its way into mathematics
through attempts to describe games of chance. These attempts
led to the development of the modern theories of probability
and statistics, the uses of which are ubiquitous. Each of these
theories conceptualized “randomness” in a slightly different
manner. In a way each can be seen as an investigation into ran-
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domness. It is bizarre that randomness, the absence of order, is
used to create or discover the ordering of the natural world by
means of these fundamental scientific theories. In a strange and
paradoxical manner, randomness is inseparable from order.
There is no more basic ambiguity than the duality that could be
referred to as “randomness/order.”

At first glance “randomness” and “order” would seem to refer
to two complementary and opposite ideas. “Randomness” is
nonorder and “order” refers to the nonrandom. Now do both of
these notions refer to a phenomenon that is real or is one real
and the other illusory? One could argue, for example, that the
natural world has a built-in order, an order that science accesses
and reflects in its theories. This is the conventional view in sci-
ence. From this point of view, any perceived lack of order would
merely reflect our ignorance, our inability, at a given time, to
comprehend the basic order that is nonetheless present. This
would be like the coin-flipping experiment—given complete
knowledge of the situation the result of any individual flip
should be predictable. From this point of view randomness does
not exist and would be regarded as merely a strategy for dealing
with complex situations. This point of view is close to what I
have called the “dream of reason.” Looking at matters in this
way, it appears that the natural world has an implicit but objec-
tive order and that it is the job of science to make that order
explicit.

There is another point of view. One could stand with the Old
Testament and claim that God created an orderly world out of
primeval chaos. That is, the most basic situation is that there is
no order; the world is chaotic, a word which is, of course, a
synonym for random. This is a common way of looking at
things in most cultures other than our own. How, in this view,
does the order that we perceive all around us arise? Well, one
could take the position of certain psychologists and claim that
the mind and the senses, that is, perception and cognition, create
order. Thus, for example, if a person is shown a random array
of black and white dots, then after a while patterns will seem to
appear. In this way people see the constellations as pictures or
see forms in the arrangements of clouds. The patterns here do
have a physical basis, but the order that one perceives involves
an interaction of the mind with the physical data. From this
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Figure 7.2

point of view, “ordering,” the creation of order, reflects a natural
tendency of the mind. It is a primary function of intelligence. If
mathematics is indeed “the science of pattern,”” then one can
see why mathematics is so important—it is one of the most im-
portant ways in which human intelligence interacts with, and
orders, the natural world.

We have sketched two diametrically opposed points of view—
one of which denies the existence of randomness, the other, of
order. Perhaps the truth is more complex than either view, but
it would seem that randomness and order are both inevitable
parts of any description of reality. When we try to understand
some particular phenomenon we are, in effect, banishing disor-
der. Before a piece of mathematics is understood it stands as a
random collection of data. After it is understood, it is ordered,
manageable.

A good geometric metaphor for the relationship between ran-
domness and order is a “fractal,” like the Mandelbrot set, for
example (figure 7.2). Many people have a strong aesthetic re-
sponse to the geometry of fractals—many books have been de-
voted to their mathematical and geometric properties. One such
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book is even called The Beauty of Fractals.** What makes fractals
so compelling? Fractals contain an extraordinary level of de-
tail—so great as to be seemingly beyond the human ability to
comprehend. Yet the detail is clearly ordered—a subtle order, it
is true, one that requires the full mathematical description to
fully appreciate. Yet the order and complexity are both present
in the geometry. It is perhaps this ordered complexity that peo-
ple find so attractive. So many facets of the natural world share
this feature of structured complexity. Take the leaves of a tree,
for example. They form a visual field that is extraordinarily com-
plex, and yet a powerful order is present—not one leaf seems to
be in the wrong place, the leaves all fit together in a manner that
seems completely natural, perfect, in fact. This is how the world
presents itself to our senses and to our minds—as a field of or-
dered randomness. Both properties—the randomness and the
order—are present simultaneously. This is what should be called
complexity. Complexity is ordered randomness.

What is extraordinary about fractals is that this extraordinary
complexity is generated by relatively simple rules. In this respect
a fractal is a wonderful metaphor for the world of science and
for mathematics itself. Mathematics is a world of ordered com-
plexity, in other words, of complex patterns. Of course these pat-
terns are in the intellectual and not (necessarily) the visual do-
main. Nevertheless our aesthetic reaction is the same. Every
mathematical result puts an order into an infinite collection of
data. Our minds have discerned order within randomness and
our reaction is one of wonder. We stand in awe of the ability that
mathematics has—the ability that we all have—of appreciating
the order within complexity.

A MATHEMATICAL CONNECTION BETWEEN
ORDER AND RANDOMNESS

More evidence of the intimate connection between order and
randomness comes form an example due to the statistician
M. S. Bartlett that is developed and commented on by Edward
Beltrami in his book, What Is Random?* Bartlett introduces a
simple procedure for generating a random sequence in the fol-
lowing way:
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It begins with a “seed” number u, between zero and one
and then generates a sequence of numbers u,, forn =1, 2,
..., by the rule that u, is half the sum of the previous value
u,_; plus a random binary digit b,. (The random digit b, is
either 0 or 1.)

If the random digits are 0,1,1,1,0, . .. and the “seed” is .5, then
the random sequence would be .5, .25, .625, .8125, .90625,
453125, and so on.

Now I have been writing numbers in ordinary decimal nota-
tion (that is, in base 10). In base 2, that is, only using the digits
0 and 1, our seed would be .1 and our terms would be .1, .01,
.101, .1101, .11101, .011101, and so on. (Notice that the two se-
quences are identical: for example .1101 (base 2) = 1/2 + 1/4 +
1/16 = 13/16 = .8125 (base 10).)

Converting from base 10 to base 2 is like moving from one
language to another. Nothing mathematical is lost in the transla-
tion. What is gained is that the nature of the transformation is
more transparent in the “base 2” language. If the seed number
has binary (base 2) representation,

Ug= M Nnynsz...,
where each number #; is either a 0 or a 1, then

u, = .b1n1n2n3. ey
U, = .b2b1n1n2n3. ey
Us = .b3b2b17’117’127’l3 ey

Thus at each stage we merely insert the random digit as the first
decimal place and move all of the remaining digits one place to
the right.

Now, let us consider what happens when we reverse this pro-
cedure. To go backward, say from u; to u,, all that happens is
that the digit b; is eliminated and therefore the new first digit
(b, for u,) is the old second digit (b, for u;). In general, to move
backward we eliminate the first digit after the decimal point and
therefore move all the subsequent digits one place to the left.
Thus .01110010. .. would become .1110010... which, in turn
would become .110010. . .

Since we were writing our decimals in base 2 notation the re-
verse transformation could be defined by
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That is, T(x) = 2x if x is less than 1/2 and = 2x — 1 if x is greater
than 1/2. We usually write T(x) = 2x (mod 1). (Remember that
multiplying a decimal written in base 2 by 2 is accomplished by
simply moving the decimal point one place to the right, just as
multiplying an ordinary (base 10) decimal by 10 is accomplished
by moving the decimal place to the right.) Thus T(1/3) = 2/3
and T(2/3) =2(2/3)-1=1/3.

Now T(x) is a well-defined procedure. If you know x, then
T(x) can be calculated. The procedure T(x) is deterministic—
there is no randomness involved as there is in the definition of
the original procedure. Strangely enough, the inverse of a ran-
dom process is a deterministic process. Beltrami comments:

In effect, the future unfolds through Bartlett by waiting for
each new zero or one event to happen at random, while the
inverse forgets the present and retraces its steps. The uncer-
tain future and a clear knowledge of the past are two faces
of the same coin. This is why I call the Bartlett iterates a
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Janus sequence, named after the Roman divinity who was de-
picted with two heads looking in opposite directions, at
once peering into the future and scanning the past.”

The characteristic that is being referred to by using the name
“Janus” is precisely the double nature that was characteristic of
ambiguous situations. In fact Koestler also invokes the name
“Janus” to refer to ambiguity. In this example, randomness
and determinism are tied together—from one point of view, that
of the original transformation, the process is random; from the
other, it is deterministic. This seems counterintuitive. Yet the
situation gets even more complex as we investigate things
more closely.

We saw that the transformation, T, has a simple description
when we write numbers in base 2 notation. If the “seed” is
V=.0,0,0304 . ..then T(v) = 0,050, ..., T* (v) = T(T(V)) = .V304.. . .
and so on. In practice we can only determine our “seed” to a
certain degree of accuracy and that accuracy is determined by
the number of decimal places we include. Thus 1 decimal place
will determine v to within 1/2, 2 decimal places to within 1/4,
and n decimal places to within 1/2". Suppose that we can accu-
rately determine v to within n decimal places. This means that
the digits after the nth place, v,,1, v,,» ..., are essentially ran-
dom. Now

T" (U) = 0p+10p42 ...

After n applications of the transformation T all information
about the initial value is lost. In this way a “deterministic” trans-
formation generates data that are indistinguishable from the
random.

There is another way to look at this situation. Suppose that
two “seeds, ” v and w, are initially very close together. That is,
their decimal representations agree up to n decimal places (so
the distance between them is at most 1/2"). Then T"(v) and T" (w)
may be close together or far apart—it is impossible to determine
the distance precisely. Thus a small error in determining v may
result in a large error in the position of T"(v). This phenomenon
is called “sensitive dependence on initial conditions,” and it is
one of the defining properties of a chaotic system.
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CHAOS AND DETERMINISM

“Chaos” is the term that is now used to indicate that simple
functions when iterated (as above with T), produce complex,
even random behavior. I remember the furor in the scientific
community when it was demonstrated that the family of simple
quadratic functions, f (x) = 4o (1 — x), produced what we now
call “chaotic” dynamics for a whole range of values of the pa-
rameter o. The scientific community at the time felt that it un-
derstood these types of functions perfectly and yet when they
were iterated, that is, used to generate dynamical systems, they
exhibited behavior that was surprisingly intricate.

The surprise was due in part to the introduction of a random
or statistical element into what had previously been considered
a classical deterministic domain. Compare this to the Newtonian
metaphor of the natural world as a machine governed by sys-
tems of differential equations. Differential equations have the
property that the present completely determines the future and
the past. Thus, given any initial conditions for the system at time
t = 0, the configuration of the system is then determined for all
times, t, positive and negative. In contrast to this picture, chaos
theory implies that each system has an “event horizon,” a time
beyond which it is impossible to predict the state of the system,
in just the same way that our system T(x) gave no information
after the nth iteration. Chaos theory has reintroduced the ran-
dom (or the statistical) as an unavoidable feature of macro-
scopic, that is, everyday, physical systems. This reverses the clas-
sical view that the statistical techniques of randomness are
useful approximations to a complicated but deterministic reality.
Here, on the other hand, one could claim that it is classical deter-
minism that is an approximation to a reality in which ran-
domness is an intrinsic feature.

ON THE BOUNDARIES OF CHAOS

It is interesting that the theories that go under the name of
“chaos” and “complexity” have developed their own unique ap-
proach to the duality between randomness and order. Classical
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systems are deterministic. If they are governed by systems of
differential equations, then their long-term behavior is governed
by a number of “attractors.” An “attractor” is, as the name sug-
gests, a set, A, with the property that every solution of the differ-
ential equation that starts in a certain vicinity of A gets closer
and closer to A in positive time.* For classical systems of differ-
ential equations, these “attractors” were either individual “equi-
librium points,” where the solutions do not change with time,
or “closed curves” that represent periodic solutions. Thus the
long-term or “asymptotic” behavior of such classical systems
consists of a finite set of states.

At the other extreme one has classically random behavior like
the outcome of an ideal coin-flipping experiment. Here the long-
term behavior is completely predictable: heads and tails are
equally distributed—their ratio tends to 1. Ironically, ran-
domness in the outcome of a single toss leads to predictability
in the outcome of a long series of tosses. Thus both the classical
and the random cases are relatively easy to understand. In one
sense they stand in opposition to one another—the first is deter-
ministic, the second is random—but in another they both reflect
systems that are predictable albeit in different senses of the term.

In between these two extremes are the complex systems stud-
ied in the theory of chaos. These are often a blend of the deter-
ministic and the random. Such systems may exhibit attractors
that are vastly more complex than the ones that have been men-
tioned above, the so-called “strange attractors.” For example,
there is a mapping of the form f (x) = o (1 — x) that gives rise
to an attractor that is essentially the Cantor set that was men-
tioned in Chapter 4. The behavior of the system restricted to the
“strange attractor” would often be random enough to be best
described by some probability distribution. On the other hand,
such a system might be “deterministic” in the sense that it has
a finite number of “attractors” and that a solution starting from
an arbitrary initial position would be attracted to one of these
attractors.

Thus there developed the idea that “interesting” behavior for
physical and biological systems was to be found “on the bound-
ary of chaos,” a region that was neither completely deterministic
nor random.” This is the place where one might expect stable
but complex structures to develop. In theories of complexity as
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applied, let us say, to simulations of biological systems, the
“boundary of chaos” is the domain in which one might see the
“emergence” of regularities that were not obviously predictable
from a knowledge of the underlying transformation rules.

In the idea that interesting scientific phenomena emerge on
the boundaries of chaos we see yet another example of the meta-
phorical power of mathematics. In particular, there is the un-
canny ability of mathematics to be self-referential—to model it-
self, so to speak. In an earlier chapter there was a discussion of
how significant mathematics also emerges on the “boundary”
of the problematic, and the “chaotic” is certainly problematic.
Without the existence of the phenomenon we are calling ran-
domness, life would be boring; there would be no evolution, no
innovation, no creativity. On the other hand, a world that con-
sisted only of the random would be terrifying, unpredictable,
chaotic with no regularities and therefore no life. Thus the
“boundary of chaos” is where we live and where we need to
stay if we are to be creative. Mathematics, too, lives on the
boundary of chaos.

ALGORITHMIC RANDOMNESS®

The normal mathematical way of approaching randomness is
based on classical probability theory. Probability theory is the
basis of statistics and has many applications throughout the sci-
ences and engineering. However in recent years there has been
another approach that is associated with the names of the great
Russian mathematician A. N. Kolmogorov and Gregory Chaitin,
who has been referred to earlier. According to their definition, a
series of numbers is random if the smallest algorithm capable of speci-
fying it to a computer has about the same number of bits of information
as the series itself. For example, the series 0101010101010101 is not
random, since it can be specified by saying “print 01 eight
times”—if the sequence was longer then one would only have
to alter the formulation by saying, for example, “print 01 a thou-
sand or a million times.” Thus one could say that the informa-
tion in the sequence 0101. . .01 (a million times) is compressible.
What if the information in the sequence is incompressible? What
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if the most efficient way to specify the digits in the sequence is
to actually list them? Then we say that the sequence is random.

The “incompressibility” approach to randomness is really a
very natural one. Chaitin refers to Ray Solomonoff’s model of
scientific induction, in which a scientific theory is seen as a com-
pression of the data obtained through a scientist’s observations.
The “best” scientific theory would be the minimal program that
could generate the data. A “random” theory in this sense would
be no improvement on the actual raw data.

Using the algorithmic approach to randomness has led to the
development of a tool for measuring randomness. This involves
the concept of complexity. The complexity of a series of digits is
the number of bits that must be put into a computer in order to
obtain the original series as output, that is, it is the size (in bits)
of the minimal program for the series. Thus a random series of
digits is one whose complexity is approximately equal to its size.

Every approach to randomness teaches us something new
about that essential but ungraspable condition of (primal) ran-
domness. The algorithmic approach is fascinating and has a
number of very deep implications. The first is that whereas one
can show that most numbers are random we can never prove
whether an individual number is or is not random. This last re-
sult is in the spirit of Godel’s incompleteness theorem, discussed
in Chapter 6. The argument is also, like Godel’s, based on a para-
dox, in this case a paradox that goes by the name of the Berry
paradox. Also, like Godel’s theorem, Chaitin’s work has implica-
tions for the philosophy of mathematics. In particular, it puts
restrictions on the information that can be derived from a for-
mal, axiomatic system.

Algorithmic randomness, like so much of the mathematics I
have discussed, tells us something about the nature of mathe-
matics itself. “Godel’s work, Turing’s work and my work are
negative in a way, they’re incompleteness results, but on the
other hand they’re positive, because in each case you introduce a
new concept: incompleteness, uncomputability and algorithmic
randomness. So in a sense they’re examples that mathematics
goes forward by introducing new concepts.”” Chaitin’s work
brilliantly illustrates many of the themes that have been dis-
cussed in these pages. Ideas (concepts) are fundamental to math-
ematics, and thus mathematics is endlessly creative. There are
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no theories of everything—all ideas (formal systems) have limi-
tations. Mathematics does not avoid paradoxes but discovers
them, plays with them, tames them, and uses them to produce
new mathematics.

RANDOMNESS IN QUANTUM MECHANICS

Randomness is an unavoidable feature of the description of the
world given in quantum mechanics. This is another example of
how “randomness” captures some of modern science’s deepest
insights into the nature of reality. Yet, again, wherever the idea
of randomness appears, it is accompanied by questions of mean-
ing. Here these questions involve the nature of quantum reality.
How can we understand the nature of the reality that is so suc-
cessfully described by the mathematical formulations of quan-
tum mechanics?

At the turn of the twentieth century there was a famous de-
bate between Einstein and Bohr in which Einstein made the fa-
mous comment that “God does not play dice.” At issue here
were our by now familiar positions on the nature of the random:
does it refer to some intrinsic, irreducible aspect of reality, or is
it merely a measure of our present ignorance which will inevita-
bly be dispelled when a more complete theoretical construct is
developed?

Take, for example, the nature of a subatomic particle, some-
times called a quon, an electron, say. Is the electron a single
particle or is it intrinsically a wave—a probability distribution.
Does it have particular properties like position and momentum
with precise values? To make the analogy with flipping a coin,
is the electron analogous to a single flip or should it be identified
with a whole series of flips? The nature of the electron is funda-
mentally ambiguous and appears to depend on the act of
measurement.

It looks like a particle whenever we look. In between it acts
like a wave. Because measured electron is radically different
from unmeasured electron, it appears that we cannot de-
scribe this quon (or any other) as it is without referring to
the act of observation.
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If we ignore observations for the moment, we might be
tempted to say that an electron is all wave, since this is how
it behaves when it’s not looked at. However this description
ignores the massive fact that every observation shows noth-
ing but little particles—only their patterns are wavelike. If
we say, on the other hand that between measurements the
electron is really a particle, we can’t explain the quantum
facts. How does each electron on its own know how to find
its place in the (wavelike) Airy pattern? What does a single
electron “interfere with” to produce Airy’s dark rings?®

If we say that “the electron is all wave,” then we are saying
that the probabilistic description is the more basic—in other
words, that randomness is intrinsic. If we hold to the particle de-
scription then we have the hope that some further description,
some “hidden variable,” will reveal the true nature of things.
Then the probabilistic description reveals our present ignorance.
However, there exists in quantum mechanics a fundamental
principle called the “Heisenberg uncertainty principle,” which
puts intrinsic limitations on experimentalists’ ability to obtain
precise information about the complete set of observable quanti-
ties associated with a given quon. This is all to repeat what was
said in Chapter 1—the nature of the natural world as revealed by
quantum mechanics is ambiguous. The heart of this ambiguity
is directly connected to the ambiguous nature of randomness—
further evidence that randomness is indeed a great idea.

RANDOMNESS IN THE THEORY OF EVOLUTION

The idea of randomness plays a crucial role in another of the
great scientific theories—the theory of evolution. Evolutionary
theory has provided a framework for approaching the most fun-
damental and perplexing questions one can ask about the nature
of human beings—why are we the way we are and how did we
come to be like this? It is interesting to note the manner in which
randomness is a central feature of this theory. A simplistic de-
scription of the theory of evolution is that genetic mutations
occur in a random fashion. “Survival of the fittest” refers to the
mechanism whereby the mutations that survive are those that
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augment the species’ chances for survival. Thus the equation
seems to be randomness plus competition equals evolution. Of
course things are not at all that simple, but randomness remains
the motor that drives evolution.

Now the theory of evolution is a scientific theory, and there-
fore it follows that its basic terms should be clearly defined.
However, though most people have a common sense feeling for
what “chance” refers to, on closer examination it appears that
randomness is not so clearly defined. What definition of ran-
domness do we have in mind when we say that a mutation is
random? Is it random in the sense that flipping a coin is ran-
dom? If this were so, then any of the “letters” of the DNA alpha-
bet would be equally likely to mutate into any other, and in the
long run, all possible mutations would occur with equal fre-
quency. Or are some mutations more likely to occur than others?
It also appears that complex organisms have some process that
stabilizes the DNA by eliminating “errors.”” Why then do some
mutations survive and others disappear?

In fact one could ask the same questions with respect to “ran-
dom mutations” as about the randomness that arises in other
situations. When we speak of a random mutation, are we talking
about our ignorance or about some intrinsic limitation on our
ability to know? Is the biological situation deterministic? Could
we predict the results of a mutation given complete knowledge
of the situation? In fact could we predict which mutations would
occur in that hypothetical situation of total information? Or is
the factor of randomness that enters into evolutionary theory an
intrinsic limitation on our ability to predict?

Though most educated people take the theory of evolution as
established scientific fact, there remains a rear-guard movement
that argues in favor of an older point of view that is sometimes
called “intelligent design.” This doctrine holds that there is some
intelligence (divine or natural) that drives the evolutionary pro-
cess. This is still an active debate in certain quarters, a debate
that in my opinion revolves around the right way to think about
randomness. On the one side is the notion that randomness is
the most basic level; on the other is the notion that the ran-
domness of evolution only masks our ignorance, that on a
deeper level (which may or may not be accessible to human in-
telligence) what is going on is not random but subject to this
“intelligent design.”
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To put it another way, in the traditional theory of evolution,
mutations are random and the consequences follow in an almost
mechanical way—the fit survive and the less fit disappear. In
the alternate viewpoint the process involves a kind of creative
intelligence. Now it is true that this intelligence sometimes in-
volves an omnipotent “God,” but of course it is conceivable that
this feature of intelligence could arise from within the natural
world itself, without recourse to any supernatural force from
outside the natural world. Is it reasonable to say that natural
processes are intelligent? This would require seeing the evolu-
tionary event as analogous to an act of creativity. The resolution
of a problem that arises in research can sometimes be brought
about by some chance occurrence, but this random event will
have no effect if the scientist has not been totally immersed in
the problem for some considerable time. Thus the random event
has no effect unless it occurs within a mental field of consider-
able tension.

In the same way an evolutionary event may be the successful
resolution of some tension or problem that is brought on by a
seemingly random event that enters into the preexisting tension.
The resolution of this problem would itself be an act of intelli-
gence. Of course this is not the usual way of thinking about in-
telligence. To be consistent with the approach that I have advo-
cated throughout this book, intelligence would be defined to be
the sudden emergence of a new order within the field of oppos-
ing forces that is characteristic of a situation of ambiguity. In
mathematics we have seen that this new order arises through
the emergence of an idea. In evolution the creative act is the evo-
lutionary adaptation. Thus the two points of view—classical
evolutionary theory and evolution through intelligence—are not
necessarily in opposition; in fact they complement and complete
each other. A great deal depends on one’s take on randomness.

CONCLUSION

This chapter has covered a good many complicated ideas, so it
may be worthwhile to make a few last, summarizing comments.
Order, disorder, and creativity are the basic constituents of the
mathematical universe. Order arises out of acts of creativity.
Though this order may be algorithmic in nature, the manner in
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which it comes into being is not algorithmic. It arises out of am-
biguity, one dimension of which is the problematic or, at its most
extreme, what we called the “impossible.” Intelligence itself
could be defined as a tendency toward order. Mathematics, at
its most basic, involves such acts of intelligence—the discern-
ment of pattern.

The order that mathematics discusses is a very subtle affair. It
does not reside in the natural world in its finished form waiting
around to be discovered. Mathematics is capable of making
order out of the very lack of order. Beyond the question of
whether the natural world is basically ordered or chaotic there
is the indisputable fact that science has made randomness into
a most fruitful scientific concept. One could argue that it has
done this, not in one single way, but in a whole host of different
ways, all of which have a certain commonality. And at the heart
of these diverse approaches to randomness lies a black hole of
power and paradox. This is the way it is with great and auda-
cious ideas.

An interesting aspect of this discussion is the extent to which
it is self-referential. Thus the great scientific theories that incor-
porate randomness as an essential feature—evolution, quantum
physics, chaos—incorporate in the theory the very processes out
of which they arise. Mathematics contains an ordered investiga-
tion of disorder. Chaos theory contains within itself implications
for the creation of a theory of chaos. It is not surprising, there-
fore, that all the above theories have been used as metaphors for
situations that go well beyond their natural scientific domains.
In particular, the complementary pair “randomness/order” has
something to tell us about the nature of mathematics—what it
is and the manner in which it comes into being. Mathematics is
intertwined with metamathematics. The content of mathematics
cannot be definitively separated from how mathematics is cre-
ated and understood.
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IN THIS SECTION I start to draw out some of the implications of
what has been developed in the earlier chapters. The “light” that
is associated with creativity in mathematics is not to be found
in any formal rendition of mathematics. It is to be found in the
human creativity of the mathematician. If mathematics is a
human activity, then mathematics is not objective in the normal
sense of the word. And yet mathematics is surely not merely
subjective. This points me toward an unusual take on mathemat-
ical truth—one that includes the mathematical mind. René
Thom once said that something in mathematics is true if the best
five mathematicians in the world say it is true. What could he
possibly have meant by that comment?

This will lead me to take another look at some of the tradi-
tional philosophies of mathematics—formalism, Platonism, con-
structivism (new and old). Each of them points to some im-
portant aspect of mathematics. Of course each of them also
omits something important as well. There is an ambiguity at the
core of mathematics. For me the role of the philosophy of mathe-
matics is to look into this ambiguity as it is manifested in all
sorts of mathematical activity.

Then I turn my attention back to a comparison of the algorith-
mic and the creative—the trivial and the deep. The algorithmic
needs no light, but the creative is always connected with “turn-
ing on the light” to some extent or other. This has clear implica-
tions for differentiating the activities of mathematicians from
those of the computer, the human mind from the machine mind.
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% CHAPTER 8 *

The Truth of Mathematics

THE LiGHT OF “IMMEDIATE CERTAINTY”

Mathematics is about truth: discovering the truth, knowing the
truth, and communicating the truth to others. It would be a great
mistake to discuss mathematics without talking about its rela-
tion to the truth, for truth is the essence of mathematics. In its
search for the purity of truth, mathematics has developed its
own language and methodologies—its own way of paring down
reality to an inner essence and capturing that essence in subtle
patterns of thought. Mathematics is a way of using the mind
with the goal of knowing the truth, that is, of obtaining certainty.

Unfortunately the very notion of truth has become problem-
atic today. We hear that “truth is relative” or that “truth is con-
structed.” Even in mathematics some have put forth the “hereti-
cal” idea that “mathematics is fallible” because it is a human
activity. There is a good deal to be said for this point of view. It
is certainly consistent with much that has been said in this book,
especially in the discussion of mathematical ideas. Nevertheless
to completely discard the notion of truth is to abandon the vital
source of mathematics. Thus the question that will be faced in
this chapter is how to have a meaningful discussion of the role
and nature of truth in mathematics in the light of current mathe-
matical practice.

The discussion of truth in mathematics is a story of the rela-
tionship between the natural world and the mind that seeks to
understand that world. This is one of the oldest and greatest of
mysteries. Mathematics is a window on that mystery. One of the
oldest puzzles about mathematical truth is whether it is discov-
ered or invented. Where does the truth of mathematics reside?
Is it in the external world (or some other domain that is outside
the human mind) and so must be discovered, or does it lie in
the mind and is therefore invented? In other words is the truth
of mathematics objective or subjective? What is truth anyhow?
This is a profound and wonderful question. Thinking about
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mathematics will give an unusual perspective on the nature of
truth and its relation to human intelligence.

In Chapter 2, Bertrand Russell was quoted as saying, “At the
age of eleven, I began Euclid. ... This was one of the great
events of my life, as dazzling as first love.” Euclidean geometry
has had an extraordinary effect on generations of thinkers. What
is there about this subject that led so many intelligent people to
a kind of intellectual awakening? More generally, what is it that
draws people to the study of mathematics? Russell says else-
where, “I wanted certainty in the kind of way in which people
want religious faith. I thought that certainty is more likely to
be found in mathematics than elsewhere.”" This is it! This is an
important part of what draws people to mathematics—the sense
that the results of mathematical activities are definitive; that it is
possible to arrive at certainty in mathematics. The certainty of
mathematics is different from the certainty one finds in other
fields; it is somehow purer and therefore more powerful. To be
certain is to know. What an extraordinary feeling it is to know
and to know that you know! What strength there is in that posi-
tion! What confidence one has when one sees into the truth of
some mathematical theorem! The angles of a triangle add up to
two right angles. It is not a matter of “probably,” “almost al-
ways,” “in our experience,” or “as far as we know.” None of
the usual caveats apply—there is no quibbling. If you are not
completely certain, if you have the slightest doubt, then you just
don’t get it. Mathematical truth has this certainty, this quality of
inexorability. This is its essence.

Take the following famous quote from the great French
mathematician Henri Poincaré. Poincaré had been working on
proving the existence of a class of functions that he later named
Fuchsian:

Just at this time I left Caen, where I was then living, to go
on a geologic excursion under the auspices of the school of
mines. The changes of travel made me forget my mathemat-
ical work. Having reached Coutances, we entered an omni-
bus to go to some place or other. At the moment when I put
my foot on the step the idea came to me, without anything
in my former thoughts seeming to have paved the way for
it, that the transformations that I had used to define the
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Fuchsian functions were identical with those of non-Euclid-
ean geometry. I did not verify the idea; I should not have
had time, as, upon taking my seat in the omnibus, I went on
with a conversation already commenced, but I felt a perfect
certainty. On my return to Caen, for conscience’s sake I veri-
fied the result at my leisure.

Poincaré goes on to say:

Then I turned my attention to the study of some arithmeti-
cal questions apparently without much success and without
a suspicion of any connection with my preceding re-
searches. Disgusted with my failure, I went to spend a few
days at the seaside, and thought of something else. One
morning, walking on the bluff, the idea came to me, with
just the same characteristics of brevity, suddenness, and im-
mediate certainty, that the arithmetic transformations of inde-
terminate ternary quadratic forms were identical with those
of non-Euclidean geometry.?

Poincaré’s “immediate certainty” is an essential but often ne-
glected component of mathematical truth. Truth in mathematics
and the certainty that arises when that truth is made manifest
are not two separate phenomena; they are inseparable from one
another—different aspects of the same underlying phenomenon.
Now the certainty that is being discussed here is not the cer-
tainty that results from a correct calculation or chain of reason-
ing although both of these may be involved in preliminary or
subsequent work. “Immediate certainty” is part of what is often
called the “aha” or “eureka” experience—the high point of the
creative process in mathematics and elsewhere. Often, when this
phenomenon is discussed, people emphasize the suddenness
with which the solution reveals itself. Immediacy is certainly
present—insight often reveals itself in a flash—but so is cer-
tainty. One is absolutely certain that the solution that has just
sprung into one’s mind is the correct one. The problematic situa-
tion that one has been working on for a long time is suddenly
resolved. It is as though all the disconnected data that one has
been looking at have now finally jelled into one coherent picture.
For all these reasons, Wiles, in the statement quoted in the intro-
duction, uses the metaphor of “turning on the light.” This meta-
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phorical light is identical to “immediate certainty.” Using the
metaphor of “light” emphasizes that some underlying structure
is revealed. It all suddenly makes sense. The certainty, the light,
and the coherent picture are not different phenomena; they all
refer to the same situation—a situation that is revealed in both
the objective, formal domain as well as in the cognitive, subjec-
tive one.

When the word “certainty” is used in this chapter, it will usu-
ally refer to the phenomenon of “immediate certainty” that
Poincaré refers to—a phenomenon that could also be called “cre-
ative certainty.” Usually in descriptions of creative insights, the
focus is on the object of the insight, the solution that is discov-
ered, the problem that is solved, or the theorem that is estab-
lished or enunciated. Of course, in mathematics when we are
certain, we are certain about something; when we “know,” we
know something. In other words, “knowing” is usually consid-
ered in its transitive sense. What is proposed here is to consider
its intransitive dimension. Focusing on “immediate certainty,”
as something that is worth paying attention to in its own right,
will enable us to look at mathematics in a new way and resolve
various questions about the nature of mathematics that are oth-
erwise opaque.

CERTAINTY AND TRUTH

Truth is normally seen as knowledge that is certain, stable, and
therefore reliable. To be “true” is, by dictionary definition, to be
in conformity with reality or fact. In this definition “reality or
fact” is the independent variable and “that which is in confor-
mity” depends on the “reality or fact” for its existence. Thus
when “truth” is used in the conventional manner it postulates a
duality. In science, “that which is (or is not) in conformity”
might be a law or theory such as, for example, Newton’s law of
gravity. This would then be shown experimentally to agree or
disagree with empirical evidence. In mathematics, where the
subject matter consists of concepts such as numbers and func-
tions and the structures that contain them, the question of what
is in correspondence with what is more difficult. Nevertheless it
is interesting that there remains a duality of sorts, not so much
in the mathematics itself as in the attitude of mathematicians to-
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ward the mathematics they do. Most mathematicians will
readily admit that they feel as though the truth or falsity of a
mathematical proposition exists outside their own minds, in
some objective realm. This belief in an objective, Platonic, realm
that contains the truths of mathematics shall be discussed later
on in this chapter.

Truth, understood as certain knowledge, has always been a
principal human objective. All disciplines in their own way pur-
sue the elusive phenomenon of certainty. When most people talk
about mathematical truth, the truth they are referring to is an
objective truth. It is the same truth for all people. Many even
have the sense that mathematical truth is universal—that any
being, human or extraterrestrial, endowed with a sufficiently de-
veloped intelligence would recognize the truth of certain mathe-
matical theorems. It would seem at first glance that the essence
of truth lies in its objectivity.

These days it is quite normal to claim that absolute, objective
knowledge is unattainable. In this view absolute truth may
never be grasped but can only be approximated. Therefore
science is seen to create models of reality. Even though these
two points of view, objective truth and approximate truth, are
very different, they both tend to agree that there is an objective
domain—in science it is the natural world—wherein the truth
resides.’ As I said above, mathematicians proceed as though
the situation in mathematics was analogous to that of the sci-
ences, that is, that mathematical truth resides in some objective
domain.

Now compare the inner “immediate certainty” that Poincaré
speaks of to the “absolute, objective knowledge” that is the goal
of science and mathematics. What is the connection between
these two? At first glance they are almost opposites: one refers
to something that goes on “in here,” that is, in the subjective
domain of the mind, whereas the other is “out there” in the ob-
jective world—although in mathematics it is not exactly clear
where that objective world is located. Yet the two domains are
connected—the inner certainty must reflect something that goes
beyond the merely personal. In anecdotal accounts, like that of
Poincaré, the drama is precisely the fact that the two domains
can be linked so intimately. In a typical aphorism Einstein re-
marked paradoxically, “The most incomprehensible thing about
the universe is that it is comprehensible.”* This astounding con-
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nection between mind and matter—the “knowability” of the
natural world—is precisely the content of Einstein’s religiosity.’
Why does mathematics describe the natural world as well as it
does? In the famous question of the physicist Eugene Wigner,
what accounts for “the unreasonable effectiveness of mathemat-
ics in the natural sciences”? There appears to be a profound con-
nection between the structures of the natural world and the
mathematical intelligence that investigates these structures and
brings them to our conscious awareness. It is this connection
that is the subject of our investigation.

Consider the question, “What comes first, ‘immediate cer-
tainty” or truth?” The conventional point of view is that the truth
comes first and that certainty arises from coming into contact
with this truth. I shall stand this relationship on its head for a
moment and investigate the consequences of claiming that the
sense of certainty comes first and gives birth to what we call the
truth. The most obvious objection to this formulation is that that
the certainty that one feels, or thinks one feels, may turn out to
be imperfect, even incorrect. Of course saying that it is incorrect
already presupposes the existence of some objective truth
against which correctness or incorrectness can be judged. The
existence of this domain of “absolute truth” is precisely what is
in question. When “good mistakes” were discussed in Chapter
5 or in Chaitin’s comment (Chapter 7) that Hilbert was “wrong
in a tremendously fruitful way,” there is implicitly another way
to look at the phenomenon of insight and creative certainty. Is
Euler’s formula, V — E + F =2, for polyhedra correct or incorrect?
It all depends—on what you call a polyhedron, for example. Re-
call the argument that a theorem was a kind of optimization of
a mathematical idea. Thus it is at least arguable that what we
are doing in mathematics is creating truth, and therefore that
truth does in some way follow from certainty. This does not
imply that truth is arbitrary, but it leads one to question the
naive belief in the existence of an “objective truth.”

“But,” some will argue, “isn’t this inner certainty that you are
talking about a merely subjective phenomenon whereas the
truth is surely objective?” On one level this is definitely the case.
Certainty arises in the mind, and one definition of “subjective”
is “existing only in the mind and not independent of it.” Subjec-
tivity is normally held to be something that is based on some-
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one’s feelings or opinions and not on facts or evidence. Cer-
tainty, a state of the mind, is subjective in this sense.

However, the “immediate certainty” Poincaré refers to is also
objective. It does not change from situation to situation. Poin-
caré, in the above excerpt, talks about two different instances of
this sensation, and it is clear that it is the same certainty that he
feels on both occasions. It may well be that “immediate cer-
tainty” that one experiences in such situations is the same for all
people at all times. Certainly when one discusses such experi-
ences with one’s colleagues and friends it seems that everyone
has had such an experience, and that these experiences have a
commonality that is independent of the particular situation in
which they arise, the particular problem that is being studied,
the personality of the researcher, and so on. It would then ap-
pear that “certainty” refers to something that is real.

Even animals may experience such certainty. Take, for exam-
ple, the experiment with a talented chimpanzee named Sultan
by the psychologist Wolfgang Kohler.

Beyond the bars, out of arm’s reach, lies an objective [a ba-
nana]; on this side, in the background of the experiment
room, is placed a sawn off castor-oil bush, whose branches
can be easily broken off. It is impossible to squeeze the tree
through the railings, on account of its awkward shape; be-
sides, only one of the bigger apes could drag it as far as the
bars. Sultan is let in, does not immediately see the objective,
and, looking about him indifferently, sucks one of the
branches of the tree. But, his attention having been drawn
to the objective, he approaches the bars, glances outside, the
next moment turns around, goes straight to the tree, seizes
a thin slender branch, breaks it off with a sharp jerk, runs
back to the bars, and attains the objective. From the turning
round upon the tree up to the grasping of the fruit with the
broken-off branch, is one single quick chain of action, with-
out the least “hiatus,” and without the slightest movement
that does not, objectively considered, fit into the solution
described.®

Sultan not only used a stick as a tool, he created the tool by
breaking off the branch. His actions, after he had arrived at what
can only be called an insight, were characterized by an economy
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of action and a sense of purpose that are reminiscent of what I
have been calling “immediate certainty.” Problem solving, cre-
ativity, and certainty are most likely attributes of all life forms.
Thus the “immediate certainty” that accompanies flashes of
mathematical insight is something that is at a more primitive
level than the particular form of the insight. The conclusion
must be that this kind of “creative certainty” is an objective phe-
nomenon that arises in the mind. The objection that “creative
certainty” is subjective does not necessarily disqualify it as an
object of study.

The certainty that arises in mathematical activity is the subjec-
tive correlate of truth. It is the sense that the mathematical truth
one has seen into is beyond all doubt. It is that glorious feeling
that comes with any successful mathematical activity—that we
have entered a timeless world. Certainty is the central irreduc-
ible aspect of mathematics. People who merely use mathematics
may find it helpful—even indispensable—to their work. They
may even be amazed at the “unreasonable effectiveness” of
mathematics. However, the utility of mathematics is a secondary
quality that somehow follows from what is more elementary—
truth and certainty. These factors are inextricably joined to-
gether: the cognitive with its properties of “certainty” and
“knowing,” on the one hand, and truth, on the other. Truth is
found in mathematics with a purity and clarity that is unique to
the subject. Mathematics exposes the Truth, but the Truth that
mathematics reveals is a mysterious, subtle affair.

WHAT DoEs A PROOF PROVE?

One of the main ways in which certainty arises in mathematics
is through proof. Is mathematical truth contained in the proof
itself or does the truth exist independently of the proof?
Normally one would claim that the proof of a mathematical
proposition establishes its truth. However, because there may be
a number of independent proofs for the same mathematical
proposition the proof cannot be thought of as identical to the
truth of that proposition.

In fact, does the existence of a proof for a mathematical propo-
sition make it true in any absolute sense? Take the proposition
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that the sum of the angles of a plane triangle is two right angles.
Is this an absolute or is it relative truth? The modern answer to
this question is that it is a relative truth. It is stated within the
context of Euclidean geometry and, as we saw earlier, this prop-
osition does not hold for non-Euclidean geometries. In other
words, the truth of this theorem depends on the system of
thought within which it is embedded—in this case Euclidean ge-
ometry. This is the formalist position: there is no truth; there are
only logical inferences.

On the other hand, there is solidity to mathematics; this is
why we love it; it stands against the contingency of the world
of experience. In his autobiography the neurologist Oliver Sacks
tells about his childhood when he was sent away from home
during the Second World War to a Dickensian boarding school
where he was beaten, starved, and otherwise tormented. He
needed a way to escape from the pain of his life. “For me, the
refuge at first was in numbers. . . . I liked numbers because they
were solid, invariant; they stood unmoved in a chaotic world.
There was in numbers and their relation something absolute,
certain, not to be questioned beyond doubt.” This certainty is
what many have sought and found in mathematics.

The Greeks had the idea that this theorem, that the sum of the
angles of a triangle is equal to two right angles, is true, period.
They felt that it is an absolute, objective truth—a property of the
natural world. This is not just an old-fashioned idea. It is related
to “Platonism,” which will be discussed later in this chapter.
Mathematicians have this sense they are not merely playing
logical games but that what they are dealing with is real. “Real”
is just another way of saying “true.” The interior angles of a pla-
nar triangle do add up to two right angles. There is truth in
mathematical results. To a mathematician it is not so surprising
that the applications of mathematics work as well as they do.
Some have claimed this is because the world is basically mathe-
matical. But you don’t have to go that far to accept that there is
something real that is going on in mathematics. Mathematics is
not arbitrary!

When one “gets” the idea of a proof—in the case of the theo-
rem about the sum of the angles, when one draws the proper
parallel line construction (see Chapter 5)—one “sees” with an
immediate certainty that the proposition must hold. The actual
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proof is an afterthought. This is what Poincaré means by the
comment, “for consciences sake I verified the result at my lei-
sure.” It is interesting that the word “verified” is used in this
context. Verification is mechanical and does not require under-
standing. Thus though most proofs are built around some math-
ematical idea, unfortunately this idea may not be explicit in the
proof. In fact certain proofs manage to conceal the idea on which
they are based. Such a proof might begin with the words “sup-
pose f (x) is defined by...” and go on to verify that “f (x)” has
just the properties that are needed to establish the result in ques-
tion. How the author came up with that particular choice of
“f (x)” is often a mystery to the person reading the proof. One is
forced to accept the validity of the argument and therefore that
the theorem is true, while nevertheless remaining in the dark as
to why it is true. Verifying a proof is one thing and understand-
ing it is quite another. Verification does not require any moment
of “immediate certainty” but “understanding” does. Thus the
proof is one thing and the idea another. One can accept a proof
and yet never experience “immediate certainty.”

For most mathematicians, the idea is the deepest level. It is
“what is really going on.” In Chapter 5 mathematical ideas were
discussed in their role as “organizing principles.” They organize
mathematical situations by revealing relationships that would
otherwise be hidden. A mathematical idea is an insight into a
relationship between mathematical objects and procedures, a
pattern within a mathematical domain.” The certainty that we
feel when we become conscious of a mathematical idea arises at
the same time as the idea. The formal proof then becomes a way
of objectifying and communicating this certainty. Perhaps the
“truth” of the mathematical situation is accessed by means of
the mathematical idea.

It is therefore conceivable that inner certainty arises out of the
birth of an idea that structures the domain in question. Then the
“truth” would be a consequence of the existence of some mathe-
matical idea. Certainty would accompany the emergence of the
idea into full consciousness. In previous chapters there was a
discussion of various stages in the development of the idea.
Some of these stages are unconscious or at best semi-conscious.
However when the idea bursts forth into full consciousness in
that glorious moment described by Wiles as “turning on the
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light,” it is accompanied by the characteristics described by
Poincaré—suddenness and immediate certainty.

Nevertheless it is necessary to add a qualifier to the previous
paragraphs insofar as they may appear to posit an absolute di-
chotomy with “proof ” on one side and “ideas” on the other. In
some places I may even seem to be saying that proofs are bad
but ideas are good. That is not my intention. I stressed the limita-
tions of proofs because logical argument has the ability to freeze
up the natural dynamic tendency of thought in the manner that
Arendt warned about. When people first come into contact with
the power of systematic thought, they may well be transformed
by its possibilities. The world, for them, will never be the same
again. Later on this very revelation can become a subtle prison,
as, for example, when one tries to get an understanding of an
unfamiliar mathematical situation by merely rearranging the el-
ements that one previously grasped into logically acceptable
patterns. You will never go from understanding addition to un-
derstanding multiplication in this safe way—multiplication
must eventually be understood in its own terms. It involves tak-
ing a cognitive leap. Eventually one has to let go of the old way
of thinking and take such a leap. To the extent that logic may
impede our ability to take that leap, my first task is to decon-
struct, if you will, our tendency to be transfixed by logic.

However, as I have repeatedly stressed, it is not my intention
to denigrate proof but to put proof in a more realistic perspec-
tive. Thus not all proofs are created equal. The best proofs, in-
cluding many of the ones I have referred to in this book, are built
around a key mathematical idea. This is why a good proof is so
satisfying. If mathematics is completely objective and formal
then there is no important difference between one proof and an-
other—what matters is whether or not a proof exists, period.
However, in practice most mathematicians recognize the differ-
ence in quality between different proofs. A “good” proof, one
that brings out clearly the reason why the result is valid, can
often lead to a whole chain of subsequent mathematical explora-
tion and generalization.

In practice there is a subtle and dynamic relationship between
proofs and ideas. One couldn’t get started on a proof if one had
no idea if or why the theorem in question is true. Nevertheless,
as Joseph Auslander pointed out to me, mathematical ideas fre-
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quently arise when one is in the process of trying to write up
some mathematical result. One begins with an idea and then at-
tempts to give that idea a logical structure, that is, to prove a
result. Often this attempt leads to a problem, an ambiguity or
contradiction, and one is forced to grapple with this problem.
Grappling with the ambiguity leads, if one is lucky, to a new
idea which one then attempts to write up and the whole process
is iterated. Hopefully this series of events converges in a finite
number of steps to a solution of the original problem.

When one approaches a mathematical conjecture or unsolved
problem not only does one ask oneself, “Is it true?” but also,
“How would I go about proving it?” As I have discussed earlier,
the truth of a proposition is not always equivalent to its accessi-
bility. In fact, according to Godel, a statement may be true but
completely inaccessible to proof. Nevertheless, the very attempt
to write down a proof often seems to evoke one or a series of
mathematical ideas. Thus it is in practice impossible to draw a
line and say that ideas are on one side and proofs are on the
other. In fact, proofs structure ideas and ideas contain and are
evoked by proofs. The whole process is an interactive one.
“Doing” mathematics is a process characterized by the comple-
mentary poles of proof and idea, of ambiguity and logic.

OBJECTIVE OR SUBJECTIVE?

Introducing ideas and bursts of certainty into a discussion of
truth moves the discussion beyond the realm of the completely
objective. Strangely enough, in order to understand mathemat-
ics and the subtle nature of mathematical truth it may be neces-
sary to give up our attachment to the idea of “absolute objectiv-
ity.” The existence of such an objective domain is an assumption
that we all unthinkingly make, especially in science. But a mo-
ment of thought will reveal that it can only be an article of
faith—it can never be proved. The only contact human beings
have with reality is through the impressions that are received by
the senses and the mind. The “objective” world is not, as far as
human beings will ever be able to tell, completely objective. We
know it through acts of perception and cognition. Postulating
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an absolutely objective realm is just that—an assumption—not
something that can possibly be empirically validated.

Giving up on “absolute objectivity” will seem to many people
to be a radical and perhaps dangerous thing to do. We are all at
home in the paradigm of this Cartesian duality of subjective ver-
sus objective, so much so that even trying to imagine another
possibility is difficult and sometimes irritating. Yet this tension
that we all feel when we contemplate such an idea is the familiar
one that precedes a shift in paradigms, that precedes a great
idea. Nevertheless, such a shift is the whole trajectory of thought
from the time of the non-Euclidean revolution until today. One
finds echoes of such a shift in certain cognitive scientists, for ex-
ample. In their book Metaphors We Live By, George Lakoff and
Mark Johnson propose an alternative to what they call “the
myths of objectivism and subjectivism.”® They propose an alter-
native view that they call, the “experientialist alternative,” based
on their investigation of metaphor. They deny that there is an
absolute truth, but they claim that the existence of such absolute
truth is not necessary to deal with “the concern with knowledge
that allows us to function successfully and the concern with fair-
ness and impartiality.” There is clearly a deep connection be-
tween their “metaphoric” approach to truth and my discussion
of ambiguity, for metaphors are clearly ambiguous in the sense
of the term that I am using in this book.

The existence of a realm of “absolute objectivity” is something
that physics has had to confront in trying to access the deeper
meaning of quantum mechanics and general relativity. In quan-
tum mechanics it is the problem of the collapse of the wave func-
tion. In relativity it is the dependence of certain concepts like
“simultaneity” on the state of motion of the observer. Both of
these seemingly force a reassessment of the notion that there is
a preferred point of view that is absolute and objective. Perhaps
it is the time for mathematics to face up to the same situation
and give up on the natural desire for absolute objectivity and
absolute truth.

There is a danger here, and the danger is that we may throw
out the baby of truth with the bathwater of absolute objectivity.
This forces us to contemplate a “truth” that exists but is not com-
pletely objective. The existence of this primordial truth must be
inferred and cannot be objectively demonstrated. It can be in-
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ferred through the shadows that it casts into the domains that
we normally call “objective” and “subjective” and think of as
“external” and “internal” (to ourselves). The internal shadow is
what we have been calling certainty; the external shadow in-
cludes systematic thought and, in particular, proof. The exis-
tence of such a primordial truth should be taken as a hypothesis
in the same way that the absolute objectivity of scientific realism
is a hypothesis. What must be done is to add up the pluses and
minuses of these two perspectives. Every conceptual framework
inevitably filters out some aspects of things and highlights oth-
ers. What kind of framework does this view of mathematical
truth provide for past, present, and future mathematics?

Remember that giving up on absolute objectivity is not equiv-
alent to giving up on objectivity itself, since, as was discussed
above, ideas and sudden certainty are objective phenomena.
However, in order to develop a way of looking at mathematics
that includes the usual objective definitions, theorems and
proofs as well as other form of mathematical activity such as
computational mathematics not to speak of the creative insights
of the mathematician it has been necessary to look more closely
at what is meant by “objectivity” and “subjectivity.” The sup-
posed “objectivity” of mathematics includes elements that most
people would call subjective but are necessary to a complete pic-
ture of what is going on. “Sudden or creative certainty” resides
in a domain of “objective subjectivity,” and mathematical truth
includes both traditional objectivity as well as this “objective
subjectivity.”

The switch to including the element of “sudden certainty” in
a description of truth was signaled when I used the expression
“knowing” as almost synonymous with the term “certainty.”
However, these two terms have different connotations. For one
thing, “certainty” may give an impression of something that is
static, whereas “knowing” is dynamic. We expect certainty to be
tixed, even timeless. This is a quality associated with the object
of our certainty, “what we know” as opposed to “that we know.”
But the phenomenon that is being indicated by using the word
“knowing” is not static. I can remember going back to read an
old paper of mine, and not being able to make heads or tails of
it. At the time of writing the paper I was totally immersed in the
subject, so every statement in the paper evoked a whole host of
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associations. Later, going back, I had lost many of these associa-
tions. In order to really understand what I had written earlier, I
would have had to go back and rebuild my understanding of
the subject. The point is that mathematical statements make
sense within a given context. What is clear to you at some point
in time is not at all clear at another. Thus “knowing” or “imme-
diate certainty” is not a static phenomenon. It comes and goes.
It is knowledge, the content of the knowing, that gives the im-
pression of being absolute and unchanging.

“Knowing,” as certainty, does not have to be justified in terms
of something more basic; it is self-validating. Knowledge needs
to be validated, but the process through which that knowledge
is acquired is sufficient unto itself. Why do mathematicians
work so hard to produce original mathematical results? Is it
merely for fame and fortune? No, people do mathematics be-
cause they love it; they love the agony and the ecstasy. The ec-
stasy comes from accessing this realm of knowing, of certainty.
Once you taste it, you can’t help but want more. Why? Because
the creative experience is the most intense, most real experience
that human beings are capable of.

Why, one might ask, were the Greeks so taken with geometry?
Why did Plato’s academy state, “Let no one ignorant of geome-
try enter here?” It probably was not because of the practical ap-
plications of geometry. Euclid’s Elements is an exercise in pure
mathematics—enjoyed for its own sake. Every time one success-
fully sees into a theorem or deduction of Euclidean geometry
one momentarily enters into this magical realm of “knowing.”
Very few of the results in Euclid are purely algorithmic—most
require a construction or other idea.

Now it is true that the quality of mathematics that I am at-
tempting to bring out is not popular with everyone precisely be-
cause it puts the emphasis on the creative as opposed to the al-
gorithmic dimension of mathematics. It was mentioned earlier
how some people emphasize the benefits that accrue to human-
ity by the introduction of powerful algorithms into human
thought. It is interesting that Descartes was such a person.

Throughout his life, Descartes was very critical of the works
of the Greeks in general, but their geometry especially irked
him. It could get awkward and appear needlessly difficult.
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He seemed to resent the fact that, the way Greek geometry
was formulated; he had to work harder than necessary. In
his analysis of a problem posed by the ancient Greek Pap-
pus, Descartes wrote that, “it already wearies me to write
so much about it.” He criticized their system of proofs be-
cause each new proof seemed to provide a unique chal-
lenge, which could be overcome, as Descartes wrote, “only
on the condition of greatly fatiguing the imagination.’

Here you have the tension between the creative and the algo-
rithmic approach. You could say that Descartes won this particu-
lar battle (he succeeded in arithmetizing geometry) but lost the
war in the sense that, though specific parts of mathematics can
be “algorithmetized,” all of mathematics certainly cannot be.
What Descartes misses is that this use of what he calls the imagi-
nation and I call the creative intelligence is a value in itself. Yes
it is fatiguing. Yes it is hard. But it is rewarding in a way that
mechanically solving a problem will never be. But saying that
creative mathematics is rewarding is not putting things strongly
enough. The emergence of the truth is inevitably accompanied
by the subjective aspect that I am calling knowing or certainty.
This is as true for a small child learning some new bit of mathe-
matics as it is for Poincaré. The truth that appears with the char-
acteristics Poincaré describes is a totally different phenomenon
from the truth of some algorithmic process of verification. The
truth I am talking about—"“creative truth”—is at a higher level
than what could be called “algorithmic truth.” The two are usu-
ally identified, and this leads to confusion. This confusion arises
from considering the truth as lying entirely in the objective do-
main without realizing that truth has both objective and subjec-
tive dimensions.

So there are a number of reasons to consider the phenomenon
of “creative certainty” as something that is worth looking at in
its own right and not merely because it reflects the light of some
definitive truth. It may have seemed that in this discussion the
“subjective” component was given priority over the “objective.”
This is because this element of “objective subjectivity” is not
generally acknowledged as being a valid factor in a discussion
of mathematics. However, the actual situation is a little more
complex. Remember the expression “to know the truth.” This
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expression captures the dichotomy that was mentioned above:
the subjective “knowing” and the objective “truth.” Yet this du-
ality is merely a feature of language not of the reality that lan-
guage is attempting to describe. “Knowing the truth” is a single
unity—both an object and an event, objective and subjective.
Knowing and truth are not two; they are different perspectives
on the same reality. There is no truth without knowing and no
knowing without truth. In other words, the truth is not the truth
unless it is known. Nevertheless “truth” and “knowing” are not
identical. They form an ambiguous pair that could be written as
“knowing/truth”—one reality with two frames of reference.

THE RAINBOW THEORY OF MATHEMATICAL TRUTH

Recall Simone Weil’s statement, “all truth contains a contradic-
tion,” with which the previous chapter began. In that chapter it
was pointed out that a “great idea,” far from avoiding contradic-
tion, might actually “contain” a contradiction in one way or an-
other. In this chapter Weil’s statement will be considered again,
this time applied to “mathematical truth.” The idea that “mathe-
matical truth” might not be the antithesis of contradiction is an
unusual one. In order to get away from one’s instinctive rejec-
tion of any such connection the word “ambiguity” has often
been used in place of Weil’s “contradiction.” Nevertheless dis-
cussing “truth” in close proximity to “contradiction” forces a re-
evaluation of what is meant by truth. It makes absolutely no
sense if the truth is thought of as absolute, objective, and time-
less. But if the truth, like a mathematical idea, comes into being,
if it can evolve, then it is possible for truth to have an intimate
connection with contradiction.

Discussions of the nature of mathematics are often character-
ized by the desire to produce a description of mathematics that
is completely objective—objective in the sense of being indepen-
dent of human beings, independent of thought, independent of
mind, independent, certainly, of creativity. But how can mathe-
matics, much of which is clearly a construct, be totally indepen-
dent of thought? It is this attempt to “square the circle,” so to
speak, that has made the attempts to produce a viable philoso-
phy of mathematics so difficult to accomplish.
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Instead of an “objective and absolute mathematical truth,”
what is being proposed is an “ambiguous” theory of mathemat-
ics. Now ambiguity is not just an objective element of a mathe-
matical situation; as should be clear by this stage of the book
that ambiguity is a way of using the mind. As such it is not static
but dynamic. As usual an ambiguous situation comes with two
“frames of reference,” here designated as “objectivity” and “ob-
jective subjectivity.” Relegating traditional objectivity to the role
of merely one point of view is, I realize, difficult to understand
and even more difficult to accept. It seems to put into question
the view that sees mathematics as the essence of absolute, objec-
tive truth. Yet it is a way of looking at things that finds echoes
in other fields. I shall quote from a discussion of the nature of
physical reality as described by Nick Herbert for the Copenha-
gen interpretation of quantum mechanics.

An obvious feature of the ordinary world is that it seems
to be made of objects. An object is an entity that produces
different images from different points of view... but all
these images can be thought of as being produced by one
central cause. ... Its division into objects is a most im-
portant aspect of the everyday world. But the situation is
different in the quantum world. . . .

The separate worlds that we form of the quantum world
(wave, particle, for example) from different experimental
viewpoints do not combine into one comprehensive whole.
There is no single image that corresponds to an electron.
The quantum world is not made up of objects. As Heisen-
berg put it, “Atoms are not things.”

This does not mean that the quantum world is subjective.
The quantum world is as objective as our own: different
people taking the same viewpoint see the same thing, but
the quantum world is not made of objects (different view-
points do not add up). The quantum world is objective but
objectless.

An example of a phenomenon which is objective but not
an object is the rainbow. A rainbow has no end because the
rainbow is not a “thing.” A rainbow appears in a different
place for each observer—in fact each of your eyes sees a
slightly different rainbow. Yet the rainbow is an objective
phenomenon; it can be photographed.’
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Like the rainbow and the situations described by quantum
mechanics, mathematical truths are objective. Yet, in Herbert’s
terms, they are not objects. This means that there is no absolute
and immutable point of view. To use a geometrical metaphor,
there is no absolute Euclidean context within which all mathe-
matics can be definitively located. Thus when one encounters
some mathematical entity it is never devoid of a point of view.
This point of view needs to be taken into account when we talk
about mathematics. When we talk about continuity, let us say,
the sense that we are talking about something real and objective
is not an illusion. “Continuity” corresponds to an objective prop-
erty of the real world. However, when we attempt to pin it
down, to define it, to prove theorems about it and place it in
some larger system of deductive thought, then we must inevita-
bly assume a specific point of view toward “continuity.” Other
mathematicians may assume a different point of view that is also
valid and productive of new insights into the nature and conse-
quences of “continuity.”

This “rainbow” or ambiguous perspective already arose in the
discussion of the nature of “pattern” in Chapter 5. There I asked
where a given mathematical pattern was located—was it in the
mind or was it in some objective domain? It would seem that to
come down on either side—the objective or the subjective—
would be incomplete, would not describe the situation as math-
ematicians experience it. Yes there is an element of “mind” in a
pattern. One “sees” a pattern in the same sudden way that one
“sees” an idea. However, the patterns that mathematics studies
clearly have an objective dimension. Thus patterns live in that
“rainbow world” that is neither completely objective nor com-
pletely subjective yet contains both objective and subjective
perspectives.

Again, I realize that normally any hint of “subjectivity” is in-
compatible with the idea of (objective) truth. But, of course, this
is the way it is with ambiguous situations, especially “great
ideas”—from one point of view the incompatibility that is a nec-
essary component of the ambiguous situation appears to be a
barrier. Here the barrier is precisely the idea that the defining
characteristic of truth is its absolute objectivity. The second per-
spective is the “immediate certainty” that has been discussed, a
form of “objective subjectivity” that emerges as a basic feature
of mathematics. Taking this position does not force us to give
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up the objectivity of formal mathematics by imposing an idio-
syncratic mathematics where everybody chooses his or her own
truth. What it does is to render traditional views of mathematics
incomplete. Mathematics is more than what is contained in any
formal theory, as Roger Penrose asserts so passionately when he
says, “it seems to me that it is a clear consequence of the Godel
argument that the concept of mathematical truth cannot be en-
capsulated in any formalistic scheme. Mathematical truth is
something that goes beyond mere formalism.”" Penrose never
manages to locate this “something” that goes beyond formalism
because he is still committed to a traditional view of “objective
truth.” The formulation proposed above does indeed locate this
additional factor, but in so doing it turns many traditional ideas
upside down. The advantage of doing so is that it then becomes
natural to consider learning, understanding, and creating as a
legitimate part of mathematics.

Looking at mathematics in this way forces a reevaluation of
what is meant by “truth.” Truth is ambiguous in the same way
that mathematics is ambiguous. To be consistent with what has
been said in the previous paragraph, it will be necessary to deny
the existence of some absolute and objective truth. The trick is
to give up on absolute truth without giving up on truth, without
descending into a realm of pure arbitrariness. Thus there is a
truth and human beings are capable of accessing it, although it
resists being completely captured by any formalism. The truth
cannot be completely objectified; it is not completely “out there.”
Again the notion of “objective subjectivity” or maybe “subjec-
tive objectivity” comes in here. A postmodernist might say that
truth does not exist, but this is not what is being said here—it is
only one part of what is being said, the part that says the truth
cannot be “captured.” The other part is that the truth is accessi-
ble in moments of “creative certainty.” Or, to put it negatively,
without the flash of insight there is no truth just as there is no
understanding, which is, after all, just another word for this
quality of certainty that we are discussing. These moments of
clarity herald the birth of the mathematical idea that is the entry
into the truth. And yet, what is going on here is very subtle, for
the content that is accessed is not the (complete) truth.

What is unorthodox in my approach is the claim that the truth
contains this irreducible element of subjectivity that I have been
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calling “immediate certainty.” Of course, this subjective element
is not the whole story—there is also an objective element. This
is the reason that ideas need to be verified—to see whether they
are consistent with the larger context of which they form a part.
Nevertheless, the creative moment must be part of any story that
we tell about truth. It is a necessary component that is not sub-
sidiary to the normal objective component. In fact, the creative
person knows this at a gut level and that is why she spares no
pains to return to this state of inner truth. It is not a means to
an end—it is an end in itself.

Is mathematical truth permanent or does it come and go? This
is just a reformulation of the question about objectivity and sub-
jectivity. A totally objective mathematics is permanent. Mathe-
matics characterized by “objective subjectivity” does not claim
continuity. There is an aspect of it that is discrete. For example,
understanding mathematics arises in a discontinuous manner—
as a series of small or large breakthroughs, or insights. This hap-
pens in the same way as the creative breakthroughs of research
activity. Now there can be research without insights—the so-
called “turning of the crank” research. This kind of activity may
well be continuous, but the other kind, truly creative activity, is
discontinuous. Self-referentially, the duality of the discrete and
the continuous is one of the great ambiguities of mathematics.
It arises as the algebraic versus the geometric or the analytic. It
is interesting that these two points of view arise not only within
the content of mathematics but also in the context of a discussion
about mathematics itself.

REVISITING SOME TRADITIONAL PHILOSOPHIES
OF MATHEMATICS

Mathematics is one single thing. The Platonist, formalist
and constructivist views of it are believed because each
corresponds to a certain view of it, a view from a certain
angle, or an examination with a particular instrument of
observation."”

In the above quote Davis and Hersh have it exactly right!
Mathematics is one unified subject, but the philosophies of
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mathematics are like the proverbial blind men examining the el-
ephant—they each describe only one part of the beast. In the
language I have been using, mathematics is ambiguous. Each of
the traditional approaches to the philosophy of mathematics is
a self-consistent framework or point of view. It is true that these
approaches conflict with one another, but we have learned that
this is an inevitable stage in the development of a more unified
view. Each of the three philosophies that will be considered in
what follows—Platonism, formalism, and constructivism—rep-
resents a legitimate insight into the nature of mathematics. Each
one is revealing something important and valid. Yet each one is
incomplete on its own. So what follows is a brief review of the
strengths and weaknesses of each of these approaches with an
eye to unraveling the central truth that each one reveals. In a
sense Platonism, formalism, and constructivism each constitute
a way of organizing and therefore understanding mathematics.

The nature of mathematics is a fundamental question on a par
with the other mathematical questions I have considered. It is
considered here because I propose to approach it in the same
way as the previous mathematical questions were approached.
For example, the concept of “zero” arose out of a struggle with
certain ambiguous situations. It arose out of the need to articu-
late a certain fundamental human experience. Yet that experi-
ence was not logically consistent and clear. The ground out of
which the concept “zero” arose was messy and complex, con-
taining many contradictory elements. The case I have been mak-
ing all along is that the concept “zero” does not arise merely
from clarifying a situation that is latently present all the time.
That approach would liken the intellectual task to pruning an
unruly garden: you just cut back the weeds and then the plants
that you are interested in stand out. The “zero” concept was not
there to begin with—it arose out of the struggle with the incom-
patibilities of the human experience that could be called the ex-
perience of “nothingness” or “emptiness.” Yet in retrospect it
seems not at all arbitrary—it seems inevitable. What would an
“inevitable” philosophy of mathematics look like?

A new, unified view of mathematics will arise out of a struggle
with the appropriate ambiguous situation. Mathematics as a
whole results from a need to articulate basic features of the land-
scape of that primal world of human experience—a world that
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is neither completely objective nor completely subjective. The
features of the world that mathematics concerns itself with have
been enumerated elsewhere and include quantity, pattern, and
chance. These fundamental concepts of mathematics are each
basic components of the human experience. Mathematics is itself
an articulation of these basic themes. However, together with the
development of mathematics there arose incompatibilities and
crises at both the mathematical and the meta-mathematical
level. One of the most basic of these concerns the questions of
truth and meaning.

Take the question of whether mathematics is discovered or in-
vented, a question I will take up later on in this chapter. It re-
volves around the most fundamental of mysteries faced by any
thinker: does the human mind give us accurate information
about reality? In other words what is the connection between
our subjectivity and the objective world. How do we bridge the
fundamental duality of human consciousness? If there were ever
a fundamental ambiguity;, it is this. It is easy to discern the poles
of this ambiguity. They can be expressed as “discovered/in-
vented,” “objective/subjective,” or in many other ways. The res-
olution of this ambiguity—the “higher viewpoint” that would
unify these two seemingly irreconcilable points of view—is the
true goal of the philosophy of mathematics. Each traditional
“philosophy of mathematics” can be read as an approach to this
ambiguous situation. The incompatibility between these various
approaches stems most of all from their attempt to resolve the
ambiguity by suppressing one of its poles.

Every philosophy of mathematics arises out of the sense that
mathematics touches something that is profound yet difficult to
make explicit. For example, you could say that mathematics is
about “quantity” or about “pattern.” But what is “quantity” or
“pattern”? There is a mystery here,” and anyone who loves
mathematics has felt a certain sense of awe in the presence of
this mystery. As the Pythagoreans understood, even the simplest
mathematical concepts—one, two, three, four, straight lines, cir-
cles—are nontrivial; in fact, they are deep and mysterious. A
philosophy of mathematics is an attempt to plumb these depths,
to penetrate the mystery of mathematics. We know that mathe-
matics is one of the pillars of our civilization, but what is it and
why does it work? Each legitimate approach to the philosophy
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of mathematics provides an answer that must be approached as
we would approach an important idea; that is, each contains a
valid insight into the nature of mathematics. Thus each of the
approaches to mathematics that I now enumerate can be thought
of as emphasizing one aspect of a larger “ambiguous” or “rain-
bow” perspective and therefore denying other, conflicting, as-
pects of mathematics.

PLATONISM

Platonism holds that the objects of mathematics are real, that
they exist in some objective realm independent of our knowl-
edge of them. The truths of mathematics all exist in this Platonic
realm whether or not the mathematician is aware of them. In
this view, the job of the mathematician is to discover these preex-
isting truths. In this sense a mathematician is like a scientist. In
fact there is an analogy between Platonism in mathematics and
naive realism in science. Just as most working scientists are real-
ists—they believe that the entities that they work with, atoms,
electrons, mass, energy, for example, are real, so working mathe-
maticians are Platonists in their approach to their working lives.
They believe in the reality of the objects they work with—contin-
uous, nondifferentiable functions, infinite sets, space-filling
curves, and so on.

Most mathematicians do not go public with their Platonism—
it seems too fantastic to claim that extraordinarily complex
mathematical objects exist in the same way that sticks and stones
exist. Yet there have been notable exceptions: One was Kurt
Godel, who said,

the objects of transfinite set theory. . .clearly do not belong
to the physical world and even their indirect connection
with physical experience is very loose. . . . But, despite their
remoteness from sense experience, we do have a perception
also of the objects of set theory, as is seen from the fact that
the axioms force themselves upon us as being true. I don’t
see any reason why we should have less confidence in this
kind of perception, i.e., in mathematical intuition, than in
sense perception, which induces us to build up physical the-
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ories and to expect that future sense perceptions will agree
with them. ... They too may represent an aspect of objec-
tive reality."

With reference to geometric and not set theoretic objects, the
great French mathematician René Thom said,

Mathematicians should have the courage of their most pro-
found convictions and thus affirm that mathematical forms
indeed have an existence that is independent of the mind
considering them."

Finally there is the position of another eminent mathematician
and mathematical physicist, Roger Penrose:

I shall have something to say about another world, the Pla-
tonic world of absolutes, in its particular role as the world
of mathematical truth. ... Some people find it hard to con-
ceive of this world as existing on its own. They may prefer
to think of mathematical concepts merely as idealizations
of our physical world. ... Now this is not how I think of
mathematics, nor, I believe, is it how most mathematicians
or mathematical physicists think about the world. They
think about it in a rather different way, as a structure pre-
cisely governed according to timeless mathematical laws.
Thus, they prefer to think of the physical world, more ap-
propriately, as emerging out of the (“timeless”) world of
mathematics.'®

Penrose succinctly reveals the point of view of many mathe-
maticians. The Platonic world is the world of mathematical
truth and the physical (objective) world emerges out of the
Platonic world, not the other way around. What are thinking
people to make of such a seemingly counterintuitive point of
view? For example, what is the nature of Penrose’s Platonic
world of mathematical truth? Why does he, together with so
many of his colleagues, have the deepest conviction that this Pla-
tonic world is real, when to the skeptic the Platonic world is
clearly an illusion—a construct and therefore unreal? Platonism
in mathematics is the conviction, based on the experience of
doing mathematics, that mathematical objects are real and that
mathematical truth has a certain stability, in short, that the truths
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of mathematics reside in an objective domain. Notice that I say
“conviction, based on experience.” The mathematician has a
subjective feeling that mathematics is objectively so. In my opin-
ion the Platonism of the mathematician is a testament to the fact
that the truth of mathematics exists but that it is not objective in
a classical way.

The mathematician has great faith in her intuition, and for
good reason. This faith in the Platonic reality of mathematics is
what sustains her efforts, her voyages into the unknown realms
of mathematical research. It would be wrong to disregard this
“inner certainty” that mathematics is real, for it is telling us
something important about the nature of mathematics. Platon-
ism seems to be trivially false when we take the position that
the objects of mathematics are constructs and therefore not as
real as the objects in the physical world. There are two rejoinders
to this. The first is that the objects of physics, let us say, are also
constructs. The second is that Platonism is not affirming the exis-
tence of some abstract heavenly world. It is telling us something
about the very world that we live in. It is saying that the nature
of this world is that of an “objective subjectivity” with its dimen-
sions of “certainty” and objectivity. As pure and absolute objec-
tivity, the Platonic world is a vague and mystical intuition. As a
world with cognitive as well as objective dimensions, it is the
concrete world of mathematical activity. Thus the view of math-
ematical truth that I am advocating is supported by this revised
view of Platonism. Conversely it allows one to retain Platonism
as a valid view of the nature of mathematics.

Platonism in mathematics can be viewed as a response to the
ambiguity of subject and object. To escape from the “subjectiv-
ity” of mathematical truth, an objective, ideal domain is postu-
lated. This ideal domain is, of course, a world of ideas, ideas that
are real. Since ideas are, naively speaking, subjective; this ideal
realm must be a domain of “objective subjectivity” whose objec-
tive elements are projected onto some external, ideal but objec-
tive domain. Ironically, Platonism denies the subjective and pre-
tends to be objective yet it is clearly grounded in an aspect of the
subjective. Referring back to my earlier discussion of different
aspects of subjectivity, Platonism is correctly denying that “sub-
jective subjectivity” is relevant to mathematical truth. However,
Platonism can be construed to be affirming the existence of this
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“objective subjectivity.” To repeat, Platonism, in my opinion, has
the intuition that the truth of mathematics exists. What it does
not see is that this truth has both objective and subjective dimen-
sions. In this way it manages to avoid dealing with the full ambi-
guity of the activity that we call mathematics.

FormMmALISM

Formalism makes “proof” into the defining characteristic of
mathematics. Formalism has been mentioned at various places
in the book, in particular in Chapter 7, where its strengths and
weaknesses were discussed. The strengths involved the acquisi-
tion of a new freedom that mathematics had not possessed be-
fore, a freedom that ultimately led to a view of mathematics as
the science of abstract patterns. Ironically enough, this view
leads directly to a mathematics whose nature goes beyond for-
malism, since formalism is merely the science of logical pattern.
However, for my purposes here it is more important to stress
that formalism arose out of a crisis and succeeded in reestablish-
ing a stable notion of mathematical truth. More accurately, it
transformed the notion of truth into the notion of valid logical
inference. Thus logical considerations came to be seen as the es-
sence of mathematics—the content of mathematics, mathemati-
cal ideas and creativity, became (formally) irrelevant.

In formalism truth is logical rigor. A kind of certainty re-
mains—the certainty of an idealized machine. Indeed, comput-
ers can in principle verify rigorous proofs, for the ideal formal
argument contains no gaps or omissions. Such proofs are com-
plete, but that completeness is purchased at the price of mean-
ing, for a rigorous proof is strictly speaking not about any-
thing—it is just a succession of valid inferences.

Formalism is an ambitious attempt to remove “subjectivity”
from mathematics because, of course, subjectivity is held to be
the antithesis of truth. The dimension of “immediate certainty”
is seen as a psychological phenomenon that is completely dis-
tinct from “real,” that is, formal mathematics. Certainty does not
disappear, but what I have called “creative certainty” is replaced
by the logical certainty that is to be found in a proof. This kind
of certainty seems to provide a secure underpinning not only for

353



CHAPTER 8

mathematics but also, in conjunction with logical positivism, for
scientific theory in general. Thus from the standpoint of my ear-
lier discussion of mathematical truth, formalism is an important
advance and a crucial influence. It is an attempt to arrive at an
ideal state of “objective knowledge” through an emphasis on
logical criteria above all others. No wonder people like Frege or
Russell and Whitehead attempted to demonstrate that mathe-
matics could be totally derived from logic; the feeling that this
was possible for all of mathematics is consistent with the
worldview of formalism.

The world of mathematics is not so simple; it is infinitely
richer and more interesting than the picture that arises out of
formalism. The attempt to access objective truth and certainty
by means of logic is fundamentally flawed, and not only because
of the implications of Godel-like theorems. Logic does not pro-
vide an escape from subjectivity. After all, what is logic, in what
domain does it reside? Surely logic represents a certain way of
using the human mind. Logic is not embedded in the natural
world; it is essentially a subjective phenomenon. Logic is an
idea—an organizing principle, the organizing principle if you
are looking for an algorithmic account of thought. Logic intro-
duces an order into mathematics, but not even formalism can
make mathematics secure in the sense of totally banishing all
aspects of the subjective. It does more or less succeed in ban-
ishing what we might call “subjective subjectivity,” namely, indi-
vidual arbitrary opinions, but it does not and cannot banish
what I called “objective subjectivity” since one could only do
this at the price of destroying the essence of mathematics itself.

In fact a moment of thought demonstrates that formalism
misses most of mathematics. Where do the axioms come from
that form the foundations of a formal system? Can there be
“good” axiomatic schemes versus “bad” or “trivial” sets of
axioms? What about mathematical definitions? How do they
arise? What makes one definition better than another? Within a
formal system there can be no such differentiation. Why has so
much effort been expended in mathematics over the proper
definition of “continuity,” for example, or what it means for a
function to be differentiable? Where, as I have said repeatedly,
do the ideas of mathematics come from? Sure, it is not difficult
to verify that a proof is correct, but where does the idea for the
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proof come from? Certainly none of these things—axioms, defi-
nitions, and proofs—come from the formal dimension of mathe-
matics. It is like doing Euclidean geometry without the geomet-
ric pictures. It can be done, but when you omit the diagrams
you lose the essence of the subject—you are not doing Euclidean
geometry any more but some other (dry and uninteresting) sub-
ject. So it is with mathematics in general. You can take out the
ideas, but what you are left with is not mathematics but some
other subject entirely.

Formalism is based on the assumption that there exist some
areas of mathematics that are objectively certain. It then pro-
poses to build up these areas through logical deduction to ulti-
mately arrive at a situation where all of mathematics is certain.
Unfortunately, it is questionable whether any mathematics, even
the most finite and elementary, is objectively certain. The sim-
plest of concepts would be the small integers—0, 1, 2, 3—and I
have stated repeatedly that these are not so simple. Formalism
is committed to the proposition that knowledge is only secure if
it can be built up from first principles. It is interesting that in
practice mathematical research begins with certain results that
are accepted by the community of experts and works from there.
Though, in principle, one could go back to the axioms, in prac-
tice one never does. One works in some intermediate domain.
Perhaps all of mathematics occurs in such an intermediate do-
main. There are no “atomic” truths in mathematics, no axioms
that are “most” elementary in any absolute sense. All nontrivial
mathematical objects contain some inner structure and thus can
be said to be complex. For the purposes of some specific discus-
sion one may “assume” that some concept or result is elemen-
tary and use it to build up more complex structures. The axioms
and definitions in mathematics come about as a result of a
wealth of mathematical experience. They contain all of that his-
tory, all of the situations out of which they have been abstracted.
It is always conceivable that all of this mathematical experience
could be thought of from a new and different point of view.
Then we would have new axioms and new definitions.

There have been so many attacks on formalism as the philoso-
phy of mathematics in recent years, and it is so obviously incom-
plete, that I cannot help but end this section with a statement
about its value and importance. Formalism, from my point of
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view, springs from the conviction that certainty and truth are at
the center of mathematics. Davis and Hersh refer to Hilbert’s
“conviction that mathematics can and must provide truth and
certainty or ‘where else are we to find it?””" In point of fact,
Hilbert’s point of view was much more nuanced than that taken
by more extreme formalists, sometimes called “logicists,” who,
as the name suggests, believe in proof without meaning. Hilbert
did not deny the role in mathematics of intuition that is derived
from the natural world. He said that “while the creative power
of pure reason is at work, the outer world again comes into play,
forcing upon us new questions from actual experience.” Al-
though he insists on “rigor in proof as a requirement for a per-
fect solution to a problem,” he follows this with “to new con-
cepts correspond, necessarily, new signs. These we choose in
such a way that they remind us of the phenomena which were
the occasion for the formation of new concepts.” Hilbert is really
making an argument for the power and value of the axiomatic
method; he is not suggesting that the axiomatic system is all
there is to mathematics. In Hilbert’s own mathematical work,
one sees clearly the drive for truth and certainty that forms the
core impetus for mathematical activity. Formalism highlights
this fundamental drive. In a sense, it pushes matters to an ex-
treme—cutting away all (seemingly) extraneous matters in its
search for an objective and, therefore, stable truth.

The ultimate lesson of formalism lies in its implications for the
future. Formalism arose from a need to establish a new, stable
notion of truth in the face of the challenge of various crises to
the previous idea of truth. It seems to me that mathematics is
again facing just such a challenge. This challenge comes from
various directions, beginning with the implications of the work
of Godel. An explicit challenge to formalism was laid down by
the work of Lakatos and his stress on the similarity between in-
formal mathematics and science, in particular what has been
called the “dubitability” of mathematics. But formalism also has
to contend with the rise of new, experimental mathematics that
does not necessarily prove results but uses the computer to ob-
tain conclusions inductively in the way of science rather than
deductively. All these factors have destabilized the formalist vi-
sion of mathematics and have led to various demands for a new
way of describing mathematics that is more in line with how
mathematics is experienced by the contemporary practitioner.
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At this moment in time we are faced with a new crisis in mathe-
matics, and this once again calls for a new and more stable idea
of mathematical truth.

CONSTRUCTIVISM

Constructivism traditionally referred to a point of view that
originated with the Dutch mathematician L. E. ]J. Brouwer, who
felt that all mathematics should be based constructively on the
natural numbers. Constructivists opposed those “proofs by con-
tradiction” that were used to establish the existence of infinite
sets of irrational and transcendental numbers. They were even
able to show that the elementary and intuitively “obvious” “law
of trichotomy,” according to which every real number is either
positive, negative, or zero, does not hold from a constructivist
point of view. This reveals that the real numbers are actually
quite complex, after all the decimal representation of any real
number carries an infinite amount of information. Since the reals
are so complex, it seems strange, not to say paradoxical, to be
able to show that “most” real numbers are transcendental (using
a proof by contradicition) without being able to give more than
a few concrete examples of actual transcendental numbers. Thus
the constructivists were certainly on to something. Their point
of view is significant in a number of ways. First they pointed
out the vast implications for mathematics of these “proofs by
contradiction,” that is, of using the negative principle of banning
contradiction as a positive principle guaranteeing the existence
of complex mathematical objects. Next they forced a reevalua-
tion of the work of Cantor, work that had demonstrated that real
numbers were very complex objects in themselves and that in-
finite sets of real numbers were even more complex and, from
many points of view, counterintuitive.

Nevertheless, the constructivists eventually lost the battle to
the formalists. Just as one cannot imagine mathematics giving
up on the number zero, so mathematicians refused to give up
on the properties of the real numbers that Cantor had demon-
strated. What one is comfortable with, namely, the natural num-
bers, seems simple and reasonable. What is new often seems
complex and unintuitive. As I said above, maybe even the natu-
ral numbers are complex mathematical objects. At any rate we
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owe a certain gratitude to these early constructivists for bringing
up the question of what it means to say that a mathematical ob-
ject exists. Do they all exist in the same way, or are some mathe-
matical objects more “real” than others? Finally the constructiv-
ist position is of interest because of the advent of the computer,
which is a kind of constructivist machine. One can input natural
numbers (but not all natural numbers) or finite decimals, but not
irrational numbers or infinite decimals. It may well be that the
constructivists were talking about another, equally valid type of
mathematics.

RapicaL CONSTRUCTIVISM

There is a more modern movement that also goes by the name
of constructivism. I shall discuss the part of this movement that
is called “radical constructivism,” but only insofar as it has
something to say about the nature of mathematics. This move-
ment takes as its point of departure the simple but controversial
observation that “an observer has no operational basis to make
any statements or claim about objects, entities or relations as if
they existed independently of what he or she does.”*® I earlier
paraphrased this statement by saying that every human being
lives in a bubble. This bubble contains all their perceptions and
cognitions. What exists outside the bubble is not knowable. Rad-
ical constructivists “do not make claims about what exists "in
itself,’ that is, without an observer or experiencer.”” This is a
point that I also made earlier when I claimed that there exists
no mathematical knowledge that is completely objective. Mathe-
matical knowledge and truth must be considered as a package
with both objective and subjective aspects. The belief in “objec-
tive mathematical knowledge,” that is, knowledge that is inde-
pendent of the beings who know it, is itself a belief and therefore
nonobjective. There is no knowledge that is independent of
knowing. There is no absolute, objective truth.

If it is not possible to prove the existence of any objective real-
ity that is independent of the observer, then it follows that peo-
ple construct their own realities—their own understandings,
knowledge, and meaning. In particular, radical constructivism
has implications for the teaching and learning of mathematics.
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Is teaching merely the transfer of information and techniques
from one who knows to one who does not? Do students” mis-
takes have any significance, or is everything in mathematics ei-
ther right or wrong? What is going on in a student’s head when
he is struggling to learn some new piece of mathematics? What
is the best way to teach a student the nature of some mathemati-
cal concept? One’s response to these questions and to the whole
enterprise of learning and teaching mathematics changes if one
takes the position that a student constructs meaning, constructs
his own understanding.

Now the word “construct” has a mechanical ring to it. I want
to emphasize that the construction of meaning in mathematics
is not mechanical. It arrives in discontinuous leaps of what can
only be called creativity.

From this point of view we each have our own understanding
of mathematics. Great mathematicians may well have a way of
thinking about some part of mathematics that is substantially
different from that of their peers.”” But before we go too far
down this road it is important to stress that understandings may
differ but they are not arbitrary. If one stresses the construction
of knowledge, there is always the danger of straying into a form
of relativism where you have your truth and I have mine. It is
to save us from that possibility, which is inherent in much of the
postmodern point of view, that I have stressed that the subjectiv-
ity I am referring to is an “objective subjectivity”—a way of
thinking about mathematics as containing both subjective and
objective elements.

The importance of radical constructivism to this discussion is
that it brings to the fore the cognitive aspect, the “knowing” that
was discussed earlier. This is why it is so controversial: it is a
critique of absolute objectivity. This is also the reason that it ap-
peals so much to educators who are forced to confront the
human dimension of learning.

Is MATHEMATICS DISCOVERED OR INVENTED?

I promised earlier that I would come back to the fascinating but
difficult question of whether mathematics is discovered or in-
vented. I shall approach this question from the “ambiguous”
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point of view that I have been developing. In particular, the
question of discovery or invention is connected to my discussion
of “mathematical truth.” Now the question of whether mathe-
matics is discovered or invented should not be reduced to a
simple choice, “mathematics is either discovered or invented.”
This is the usual approach—if mathematics is discovered it is
not invented and vice versa. It also should not be reduced to
a complementarity. This would imply that mathematics has
two distinct domains—the “discovery” domain and the “inven-
tion” domain—and that mathematics is somehow the sum or
union of these two domains. Both approaches would miss the
conflict that is inherent in “discovered versus invented” and, as
a result, would forego the possibility of a creative resolution to
that conflict.

I propose to think of “discovery” and “invention” as evoking
two different perspectives on the nature of mathematics. “Dis-
covery” is one way to look at mathematics—the Platonic way.
“Discovery” reflects the sense that something is going on in
mathematics that is “out there,” independent of individual per-
sonalities and idiosyncrasies. As I have discussed earlier, it re-
flects the sense that mathematics is not arbitrary but “universal,”
that it is connected to the truth. “Invention” is another frame of
reference. It also reflects something real about mathematics,
something that is suggested by formalism, that mathematics is
a construct embedded in human culture. These two frames of
reference are inconsistent. They are reminiscent of the “two cul-
tures” division that permeates our entire civilization. On the one
hand there is the “naive realism” of science that is analogous to
the “discovery” take on mathematics; on the other hand the post-
modernism of the humanities that is similar to “invention.” In
this sense mathematics contains within itself a reflection of this
larger cultural battle. “Discovery” and “invention” evoke equally
valid, consistent frames of reference that are clearly in conflict
with one another. That is, the question “Is mathematics discov-
ered or invented?” is ambiguous in precisely the sense that we
have been using the term “ambiguous” throughout the book.

The either/or approach represents the easiest and most com-
mon approach to any ambiguity. It is the side of things from
which the conflict that is present in the ambiguity appears to be
a barrier that can only be crossed by means of a choice. But mak-
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ing that choice means giving up on one valid way of looking at
mathematics. The alternative is to look for a creative resolution.
Where is this resolution, this unified perspective, to be found?
What is the higher viewpoint that will unify these seemingly op-
posing tendencies? This is the key question and a major goal of
this book. In individual mathematical events, we saw how a
higher point of view arises through an act of creativity. Now we
are seeking to apply this paradigm to mathematics as a whole.
Since the question we are dealing with is so basic and has such
an affinity with other questions in the philosophy of science, it is
possible that such a resolution would have implications beyond
mathematics.

Now I maintain that for someone who has been reading this
book attentively and therefore grappling with the subtle and
seemingly intractable notion of ambiguity, the resolution is
staring us in the face. The resolution involves refusing the choice
of “either discovered or invented” but not slipping into strict
complementarity. Mathematics is that one unified activity that
looks like discovery when you think of it from one point of
view and appears to be invention when regarded from another.
We are back again to the “rainbow” approach to the nature of
mathematics.

How are we to think about this unified conception of mathe-
matics? Mathematics is a field of creative activity, one that is not
static but continually coming into being. This complex field of
activity can be broken down along many different axes: proof
and idea, process and object, subjective and objective, to name
just a few that have been considered in these pages. Each of
these dualities tells us something about the nature of mathemat-
ics. Here we are considering the axis of discovery/invention.
What is revealed about mathematics by looking at it through this
particular lens?

“Invention” represents the freedom that exists in mathemati-
cal activity, the freedom to go beyond any previous point of
view, any earlier theory. There is a sense of free invention in
mathematics, a sense of the unconstrained play of the mind. It
is like a beautiful, intricate, all-absorbing game. It is unpredict-
able. Developments are often totally unexpected; there is no
saying where the next breakthrough will come from. “Inven-
tion” stresses that mathematics is created; it comes into being;
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it evolves; it is dynamic. It evokes the process dimension of
mathematics.

Yet, on the other hand, once the breakthrough has occurred,
when we understand the new definition, theorem, or point of
view, it seems perfectly natural, obvious, and inevitable. There
is the sense that it was there all the time, waiting for us. Mathe-
matics, as I said earlier, has a certainty and solidity; it has a truth
that we would be making a big mistake to ignore. Thus mathe-
matics is also discovered. “Discovery” evokes a sense that there
is a static, unchanging aspect of mathematics. It emphasizes the
objective dimension of mathematics.

Do you remember the Gestalt picture of the young/old
woman in Chapter 1? I said then that both of these, the young
woman and the old woman, were characterizations of the entire
situation. So it is with our double perspective of discovery and
invention. Mathematics in its entirety can be consistently charac-
terized under the rubric of “invention” but also under the rubric
of “discovery.” This is why we feel that we must make a choice.
However, in a situation of ambiguity we resist making this
choice. Thus “discovery/invention” is a true ambiguity. Mathe-
matics is (metaphorically speaking) “discovery/invention.”

The ambiguity “discovery/invention” opens out onto a per-
spective of a more complete and unified conception of mathe-
matics. As we have seen, each of the traditional philosophies of
mathematics highlights one perspective on the question of
discovery and invention. Yet it would be wrong to think that
these different perspectives are completely disjoint from one an-
other. For example, at first glance “invention” looks subjective
whereas discovery looks objective. However, as we have seen in
the earlier discussion, invention or creation involves elements
that are certainly objective whereas discovery, involving as it
does the agent who makes the discovery, involves an inevitable
subjectivity. Each point of view gives a description of the whole
of mathematics, yet each is incomplete without the other and
each contains within it elements of the other perspective. To-
gether they describe mathematics as a vast dynamic field of cre-
ative activity that is intimately related to “truth,” that is ever
changing and ungraspable in any fixed and absolute network.
Mathematics is always reinventing itself. It is the oldest and the
newest of disciplines.
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OBSTACLES TO LEARNING MATHEMATICS

The inadequacies of traditional philosophies of mathematics
come to the fore when we are confronted with the problems of
teaching and learning mathematics. The essential factor involves
the question that this chapter has been grappling with—is math-
ematics completely “out there,” completely objective? Many of
us were brought up mathematically in an atmosphere domi-
nated by formalism. The consequences of this point of view for
the classroom can be caricatured by the following fictional situa-
tion, elements of which are unfortunately all too common in
university classrooms. The professor goes through some intri-
cate proof of a mathematical theorem. The class is silent. If the
professor were to turn around and look at the students, their
blank faces would demonstrate that, in the vast majority of
cases, they do not understand what he has been saying. The stu-
dents say nothing, probably because they are afraid to reveal
their lack of understanding but possibly because they have
learned that it can be dangerous to ask questions. Finally some
brave soul picks on some particular aspect of the argument and
asks the professor to explain it. The professor is amazed that
anyone could not understand something that is so obvious to
him. Being a good sport he proceeds to “explain” by going over
the section in question. But what does he do? He merely repeats
the same words, the same argument, maybe talking more slowly
and possibly even filling in a detail that he had omitted. “There,”
he says, “you can see that it’s trivial!” The student remains in
the same state of ignorance she was in before she asked the ques-
tion and will think twice about asking another such question in
the future.

This whole fiasco arises because teaching theoretical mathe-
matics is often identified with communicating its formal struc-
ture. Understanding lies behind the formal structure but is not
captured by that structure. The formal structure is blind to the
ideas in mathematics and, as a result, the teacher may feel that
it is not his job to communicate the ideas. In truth the above
anecdote is overdrawn because it does not include the problems
or exercises the student is asked to work on for homework or
exam preparation. What actually happens is that the teacher de-
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velops the formal, theoretical structure in her lectures and the
student is expected to develop an understanding of the “ideas”
through working on problems. Nevertheless, “understanding
what is going on” is rarely a conscious educational objective for
teachers of mathematics. This leads to the huge problems one
finds today in teaching and learning mathematics at all levels
but especially the university level. These problems stem directly
from the implicit philosophy of mathematics that is held by most
mathematics teachers.

In Chapter 1, I made the point that ambiguities and paradoxes
are not “resolved” in the normal sense in which that term is
used. I meant that in two ways. In the first place, “resolving”
an ambiguity usually is taken to mean eliminating it, often by
embedding it in some formal, logical system. But from the point
of view of learning and understanding, this is not what happens
at all. What happens is that “ambiguity as barrier” gets replaced
through understanding by “ambiguity as flexibility and open-
ness.” Thus the goal of teaching cannot be to eliminate ambigu-
ity. The goal is to master the ambiguity, and this is not at all the
same thing. To master the ambiguity is to be comfortable with
it and learn to use it in a constructive way.

In Chapter 1, I also made a comment that the paradoxes from
the history of mathematics, such as those that have been dis-
cussed throughout the book, become the “epistemological obsta-
cles” of the present. What is an epistemological obstacle? Here
is what Anna Sierpinska had to say:

This is where Bachelard’s* concept of epistemological ob-
stacle turned out to be very useful. Students’ thinking ap-
peared to suffer from certain “epistemological obstacles”
that had to be overcome if a new concept was to be devel-
oped. These “epistemological obstacles”—ways of under-
standing based on some unconscious, culturally acquired
schemes of thought and unquestioned beliefs about the na-
ture of mathematics and fundamental categories such as
number, space, cause, chance, infinity, . . . inadequate with
respect to the present day theory—marked the develop-
ment of the concept in history, and remained somehow “im-
plicated,” to use Bohm’s term, in its meaning.
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It is then on these obstacles that research concentrated: a
“hunt” for epistemological obstacles started at the same
time as an effort of precisation, of a better explication of the
term was undertaken. The question was posed: on what
grounds do we claim that a student’s thinking suffers an
epistemological obstacle? Is an epistemological obstacle an
error, a misunderstanding, or just a certain way of knowing
that works in some restricted domain but proves inade-
quate when the domain is transcended? Or is it an attitude
of mind that allows to take opinions for facts, a few cases
for evidence of general laws, . . .?%

This entire book has, in a sense, been about such obstacles.
The words I have used to describe certain situations—words
like ambiguity, contradiction, and paradox—and people’s reac-
tion to these situations testify to the fact that the situations have
been experienced as obstacles. In general, mathematics is full
of words—like irrational, imaginary, negative—that indicate
that the concepts behind them were obstacles at a given point
in time. Thus the notion of an epistemological obstacle applies
not only to the learning of mathematics, but to the culture of
mathematics in general. There is always resistance to the intro-
duction of new concepts and ideas. For example, the introduc-
tion of cardinal numbers had to break down the obstacle of “the
whole is greater that the part.” The general idea of irrational
number had to break down the obstacle that an infinite decimal
could be thought of as a single number. The history of mathe-
matics can be approached as the encounter with epistemological
obstacles of various kinds. However, this sort of encounter is not
restricted to the past. It is going on today and it is the life-blood
of mathematics.

Sierpinska asked whether such an obstacle is just an error or
misunderstanding. If an obstacle were merely an error, this
would imply the existence of a “correct” way to understand the
concept, that is, that there is some definitive, objective view of
the concept against which a person’s understanding can be mea-
sured. But does such a definitive view exist? This leads us to a
question that is related to the above discussion of mathematical
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truth: “Are the obstacles that arise in learning as well as in math-
ematical research objective or subjective?”

To be consistent with what I have said earlier in this chapter,
I must and do claim that the obstacles to understanding and
doing mathematics have both objective and subjective character-
istics. When the word “epistemological obstacle” is used, it is
usually the objective side of the obstacle that is being stressed.
When students have difficulty with the concept of a real num-
ber or with the definition of a continuous function, does this
imply that they are lacking in the ability to do mathematics? Or
is it true that these concepts are intrinsically difficult as evi-
denced by the fact that historically even the best mathematical
minds struggled with them. The obstacles are objectively there
in the substance of the subject. To learn these concepts it is neces-
sary to go through the obstacle; there is no easy way to master
a concept except by struggling with it. The student must authen-
tically deal with the difficulties, the same difficulties that arose
as the mathematical community tried to unravel these ideas
historically.

Therefore history teaches us something about the difficulties
inherent in mathematics. This explains the semihistorical ap-
proach I have taken in this book. But clearly if we look at the
process as completely historical we get lost in the morass of the
historical development, it is only in retrospect, in the creative
reconstruction of history in the manner of Lakatos, that the great
themes and ideas shine forth.

Of course obstacles to the learning of mathematics also
have an obvious subjective dimension. Different students bring
different talents and abilities to the table. Nevertheless, the idea
that the obstacles to the learning of mathematics are purely
subjective and only related to something called “mathematical
ability” is simplistic. Again, mathematical obstacles have both
objective and subjective dimensions. The elements that have
hitherto been seen as purely individual and subjective have an
element in them of what was called “objective subjectivity.” If
this were not true, there could be no discipline called “mathe-
matics education.”
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THE TRUTH OF MATHEMATICS

CONCLUSION

In summary, the notion of mathematical truth and, in particular,
the extent to which it is objective—even what is meant by the
word objective—lie at the heart of mathematics and any possible
philosophy of mathematics. The essence that differentiates the
various points of view that have been discussed lies in their dif-
fering approaches to mathematical truth. I am claiming here that
without a reconsideration of what is meant by objectivity there
can be no progress in the philosophy of mathematics. The my-
thology of “absolute objectivity” is what stands in the way of
progress. The challenge is to modify the notion of “absolute ob-
jectivity” without eliminating objectivity. Though meaning and
understanding may be constructed, this does not imply that
there is nothing objective and systematic that is going on.

Finally, it must be emphasized again that these considerations
are important for mathematics and for mathematics education
but their importance is not restricted to the mathematical com-
munity. As I will discuss in the next chapter, society’s philoso-
phy of mathematics—our sense of what mathematics is and of
mathematical truth—has a profound effect well beyond the
boundaries of mathematics, per se. Mathematics is the model for
how the natural world works, it is the model for how human
beings work, for how we think, for our notion of truth. Our view
about the nature of mathematics has a profound effect on our
view of ourselves and therefore on the kind of people we shall
become in the future.
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Conclusion: Is Mathematics

Algorithmic or Creative?

THE OBJECTIVE OF this concluding chapter is to summarize and
draw out the implications of the view of mathematics I have
been developing in the preceding chapters. I have been describ-
ing mathematics as an activity that is dynamic and creative, pul-
sating with the life of the mind. It is a “way of knowing” that is
quite unique.

But mathematics is not off in some obscure corner of human
activity; it is central to human experience and human culture.
Thus it is not surprising that many of the great questions of the
day have a certain reflection within mathematics. The question
that I have chosen to explore in this chapter is the relationship
between computing and mathematics, between mathematical
thought and computer simulations of thought processes. This
discussion will allow me to summarize much of what has been
discussed in the book so far and demonstrate why its importance
extends beyond mathematics itself. It will highlight the differ-
ence between the point of view I have been taking and the views
one finds among many consumers of mathematics in the scien-
tific and technological community as well as the public at large.

Normally using mathematics to investigate some subject
means creating a mathematical model, using mathematical tech-
niques to draw out the mathematical consequences of that
model, and, finally, translating the conclusions back to the origi-
nal situation. This is not the way I shall be using mathematics.
The inferences I shall discuss come not from the content of some
mathematical model or theory; they will come from the nature
of mathematics itself.

CaAN CoMPUTERS Do MATHEMATICS?

The question that will be a springboard into my discussion will
be the naive question of whether computers are capable of doing
mathematics—today or conceivably in the future.
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What do I mean by the question, “Can a computer do mathe-
matics?” I am not asking whether computers can be helpful,
even indispensable assistants to a human mathematician as, for
example, in the case of the proof of the four-color theorem (the
theorem that states that any map can be colored with four differ-
ent colors in such a way that no two adjacent regions have the
same color) when the computer checked the validity of the con-
jecture in a large but finite number of cases. After all, it was
mathematicians who had shown that the problem could be re-
duced to the verification of these cases.

Nor am I asking whether a computer can be used to generate
data or graphics that can give the human investigator a “feel”
for some mathematical situation. Again, I am not asking if the
computer can be used to attempt to ascertain the likelihood (for-
mally or informally) that a certain conjecture is or is not the case.

I am asking whether it is conceivable that at some time in the
future computers could completely take over the show, whether
a machine could be programmed to “do” mathematics from start
to finish. This would involve (among other activities) examining
mathematical situations or situations that potentially could be
mathematized, producing data about these situations, generat-
ing conjectures, and demonstrating the validity or invalidity of
these conjectures. Put in this way, the answer to the question of
whether a computer could ever do mathematics is clearly “No!”
(The discussion about whether a computer can do mathematics
is usually restricted to the last of these activities, namely, demon-
strating the validity of certain mathematical statements.)

William Thurston said, “In practice, mathematicians prove
theorems in a social context. It [mathematics] is a socially condi-
tioned body of knowledge and techniques.”! An increasing
number of mathematicians would agree with the statement that
mathematics is what (human) mathematicians do. If we take this
view, then it is tautological that only mathematicians can do
mathematics. Ironically, it is the very success of computers in
profoundly infiltrating the day-to-day activities of many work-
ing mathematicians that has raised the question of the role of
proof in mathematics.? If mathematics is not defined merely as
a proof-generating activity, then it is difficult to see it being de-
veloped by autonomous machine intelligence (if there ever is
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such a thing.) Thus the more extreme version of the question of
computers and mathematics is not very profound.

A more interesting question is the following: What aspects of
mathematical activity can computers duplicate and, on the other
hand, what aspects of mathematics (if any) cannot be duplicated
by machines? Success in isolating some of these characteristics
would be important. It would have implications for other re-
lated questions like “Is intelligence algorithmic? What is creativ-
ity and what is its relationship to deductive thinking? And even
what is the nature of Mind?”

There is today a powerful point of view that the mind is a
computer and that thinking and problem solving can now, or
will in the future, be done by “thinking machines.” This point
of view is not restricted to the artificial intelligence community
but is common in the entire field of cognitive science. More im-
portant, the idea that thinking is the kind of thing that comput-
ers do or simulate is a pervasive influence throughout our entire
culture. Many people have the idea that computers have a kind
of infinite potential—if there is some task that they cannot ac-
complish today, it seems inevitable that they will be able to do
it tomorrow or the day after. This is almost an article of faith for
many people.

What this book has emphasized is how our current expecta-
tions for computers and algorithmic thought arise out of such
elements as formalism and the older “dream of reason.” This is
such a basic element of the cultural heritage handed down to us
from the Greeks that it is understandable that as a society we are
unwilling to relinquish this dream even in the face of all kinds of
evidence to the contrary. Relinquishing this dream means also
relinquishing the hope that all of our problems will be elimi-
nated by computer technology. In a way the dream expressed
by formalism has morphed into today’s dreams of artificial intel-
ligence. These dreams have in common the faith that it is possi-
ble to banish ambiguity and, therefore, a certain form of com-
plexity from human life.

Roger Penrose has taken strong issue with the belief in the
unlimited potential of algorithmic thought in a series of books
that have become very popular.® For Penrose there is something
other than complicated calculation involved in mathematical ac-
tivity—there is an aspect of mathematical truth that goes beyond
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anything that can be accessed by algorithmic thinking. This
book has, in a sense, been a search for this noncomputational
factor in mathematical thought and therefore, by extension, in
all thought.

The idea that “the mind is a computer” is a dangerous one,
and it is important that it be refuted. However, any refutation
will not come easily precisely because we have all become part
of the culture of information technology, and in that culture the
notion that just about everything is programmable is a seductive
and powerful dream—a modern myth. Why do I say that mod-
eling thought on computer-generated activity is dangerous? It is
because such ideas can easily become self-fulfilling prophesies.
We may soon come to define thought as computer-like activity.
Steven Pinker, for example, is a well-known cognitive scientist
and author of the immensely popular book, How the Mind Works.
In this book he gives two criteria for intelligence.* The first is “to
make decisions rationally by means of some set of rules” and
the second is “the ability to attain goals in the face of obstacles
based on rational truth-obeying rules.” What is interesting is
Pinker’s repeated use of the terms “rational” and “rules.” He is
defining intelligence as a kind of algorithmic rationality such as
may be found in a mathematical proof or a computer algorithm.
If we accept this kind of definition then the question of whether
a computer is intelligent is a circular one. In this way computer-
thought may well have become a metaphor for human thought.

An all-pervasive metaphor becomes its own reality. In the
sense that the metaphor “time is money” conditions the way in
which we experience time,” so “the brain is a computer” is con-
ditioning the way we look at the human mind, even the manner
in which we look at what it means to be human. The danger is
that our infatuation with the computer as a model for ourselves
will result in our forgetting about other ways of using the mind.
The danger is that we shall lose touch with the deeper aspects
of what it means to be human. This is the larger context of this
discussion.

Computers do what they do according to the algorithms that
are programmed into them. Questions about the theoretical
capabilities of artificial intelligence are really questions about the
nature and limits, if any, of algorithmic thought. Now mathe-
matics has a great deal to say about algorithmic thought. In fact,
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for my purposes the question “Can a computer think?” which
is equivalent to the question “Is thought algorithmic?” could be
replaced by “Can a computer do mathematics?” or “Is mathe-
matics algorithmic?” Mathematics is the part of our culture that
has investigated algorithmic thought in the most profound and
systematic way. The results of that investigation should be avail-
able to inform the contemporary discussion of the nature of
human thought. Unfortunately, many people who address such
questions know little of the culture of mathematics. On the other
hand, mathematicians, as a rule, are not inclined to stand back
from their subject—from the day-to-day problems of their re-
search—and consider the larger metaquestions that are raised,
at least implicitly, by the nature of their work. For this reason,
there is scarcely any input from mathematics or mathematicians
on these questions, even though mathematics provides much of
the cultural context within which such questions arise.

Most claims that computers can do mathematics are really
claims that computers can generate correct proofs. Thus it may
be worthwhile to spend another moment discussing the rela-
tionship between proof and mathematics. What is the value of
a proof? The irony is that, as was mentioned above, it is precisely
the computational and graphical abilities of computers that have
thrown into doubt the centrality of proof in the mathematical
tirmament. Nevertheless we would certainly not want to argue
that the computer is incapable of spinning out lines of code that
could be interpreted as formal proofs. Indeed, if one is a formal-
ist, that is, if one believes that there is no deeper content to math-
ematics other than the formal set of axioms, definitions and
proofs, then a computer can do mathematics. However Chapter
8 contained a discussion of the severe limitations of that way of
looking at mathematics.

The difference between a computer and a human mathemati-
cian can be demonstrated by asking the question, “What stands
behind the formal mathematical proof?” For the computer the
formal proof is mathematics. For the mathematician there is a
whole universe of intuition and understanding that lies behind
the formal proof. Proofs, or more precisely the ideas on which
the proofs are based, come out of this domain of informal mathe-
matics. But for the computer this domain does not exist.
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Mathematics is about understanding! Proofs are important to
the extent that they help develop an understanding of some
mathematical situation. What a computer can simulate is the
proof-generating aspect of mathematics but not the understand-
ing. What computers mimic is a secondary mathematical activ-
ity, not the primary activity.

Suppose that a computer succeeded in generating a set of
mathematically valid results. What criteria would enable the
computer to decide which were important, what directions of
inquiry were worth pursuing, and so forth? Mathematics is not
a game like bridge or chess. It has no obvious beginning and no
well-defined ending. Mathematics is an open-ended explora-
tion. Unlike physics, no one will ever proclaim the “end of math-
ematics.” Mathematics is a human activity® intimately connected
with the human need to discern patterns in their environment.
As such it is related to properties of the human mind and our
need to draw conceptual maps that facilitate our understanding
of the natural world and ourselves.

Is MATHEMATICAL THOUGHT ALGORITHMIC?

Is mathematical thought algorithmic? In keeping with the theme
of basing my discussion of mathematics on what mathemati-
cians actually do, I shall approach this question through a dis-
cussion of two terms that have great currency in the informal
discussions of mathematicians—the terms “trivial” and “deep.”
The highest compliment a mathematician can give to a piece of
mathematics is to say that it is “deep.” Although most people
would be hard pressed to make precise what is meant by
“depth” in mathematics (or in anything else), nevertheless most
good mathematicians would have no hesitation in classifying a
particular result as “deep” as opposed to superficial or “trivial.”
In fact, an instinct for which problems and results are deep is
often taken as a criterion of how good a mathematician a partic-
ular individual is. An excellent mathematician works on “deep”
problems and produces “deep” results.

In fact this entire book has given us various hints, not of what
to take as a definition of depth, but of conditions that may ac-
company depth or even produce it. Consider the definition of
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ambiguity and its essential ingredient, namely, a double per-
spective. This dualism may be seen to produce depth by analogy
with the way visual depth is produced in binocular vision. Two
visual perspectives each of which is consistent but which are not
identical combine to produce a single, unified perspective that
is richer than either of the originals. This is analogous to what
happens when you go from a surface appreciation of a particular
mathematical phenomenon to a deeper understanding. Under-
standing seems to carry with it a sense of depth, a multidimen-
sionality or sense of multiple perspectives. Thus the entire dis-
cussion of ambiguity is connected to the notion of depth.

Furthermore, the depth of a particular idea seems to some-
times be related to that other aspect of ambiguity—the degree
of incompatibility between the original frameworks. Concepts
that are difficult in this way—zero, irrational numbers, infin-
ity—turn out to be important, turn out to have a great deal of
mathematical content. The resolution of paradoxical situations
depends on the development of significant mathematical ideas.
This leads to the conclusion that has been mentioned a number
of times now: depth resides in ambiguity but only when the situ-
ation is resolved by an act of creativity. One might say that the
depth of a mathematical situation is a measure of the creativity
that accompanies its birth.

“Trivial” results, on the other hand, are results that follow in
a mechanical way from the premises; that are superficial, formal,
and require no “idea”’ or act of understanding. I am suggesting
that algorithmic thinking is trivial. Though users of mathematics
are required to master a certain number of algorithms, the ad-
vantage of this mode of thinking is precisely that it can be ap-
plied mechanically.

The difference between the “deep” and the “trivial” is crucial
to our conception of mathematics. The great French mathemati-
cian Henri Poincaré was well aware of what was at stake here.
He said:

the very possibility of mathematical science seems an insol-
uble contradiction. If this science is only deductive in ap-
pearance, from whence is derived that perfect rigour which
is challenged by none? If, on the contrary, all the proposi-
tions which it enunciates may be derived in order by the
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rules of formal logic, how is it that mathematics is not re-
duced to a gigantic tautology? The syllogism can teach us
nothing essentially new, and if everything should be capa-
ble of being reduced to the principle of identity, then every-
thing should be capable of being reduced to that principle.
Are we then to admit that the enunciations of all the theo-
rems with which so many volumes are filled, are only indi-
rect ways of saying that A is A?

Poincaré rejects the vision that mathematics is no more than
mere tautology. He goes on to say, “it must be granted that math-
ematical reasoning has of itself a kind of creative virtue, and is
therefore to be distinguished from the syllogism. The difference
must be profound.” Poincaré compares the creative to the syllogis-
tic, whereas I use the term algorithmic, but the point is the
same—there is a creative depth to mathematics. This is the mys-
tery of mathematics which cannot be understood through a kind
of logical reductionism.

“TrriviaL” MaTHEMATICS: “I ForLow IT BUT I DON’T
UNDERSTAND IT!”

Mathematics is usually approached in one of two ways. The first
approaches it instrumentally as a body of useful results, tech-
niques, formulas, equations, and so on. that are assumed to be
valid and can be applied to solve various kinds of problems.
This is how engineers use mathematics, for example, or psychol-
ogists use statistics. One doesn’t delve too deeply into the deri-
vation of the techniques or the question of why they work. One
accepts that they work and one moves on.

The second approach to mathematics ostensibly addresses the
question of why mathematics works. The question of “why” is
generally answered in theoretical mathematics, the approach
you will find in books written by mathematicians and in courses
taught by them. The question of why mathematics is valid is
answered by embedding that bit of mathematics into a deduc-
tive system.

The development of an area within pure mathematics is char-
acterized by a certain approach—the deductive, axiomatic ap-
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proach. As in Euclidean geometry, this involves starting with
axioms and definitions and building toward results that follow
rigorously from these assumptions. One begins with an abstract
characterization of the system to be considered. Consider the fol-
lowing example.

Example 1: Groups

A (mathematical) group consists of a collection of elements, that
is, a set G, and an operation, *, that satisfy the following rules:

(i) If g, h are any elements of G, then g * I is also an
element of G.

(ii) If g, h, k are any elements of G, then g * (h * k) =
(g*h)*k.

(iii) There is a neutral element of G (usually denoted
by e) satisfying ¢ * e = e * ¢ = ¢ for any element g in G.

(iv) For every g in G, there is another element, denoted
by ¢! (the inverse of g) such thatg* ¢ '=¢"'*g¢g=e.

An example of such a situation is given by taking G to be the
integers, {0, £1, +2, 3, . . .} and * to be the usual addition. In this
case ¢ = 0 and the inverse of the integer n is —n.

A second example would consist of all nonzero fractions with
* = multiplication. Then e = 1 and the inverse of m/n is n/m.

Now a subcollection H of G is called a subgroup if it is a group
in its own right (using the same operation * as G). For example,
the group of integers under addition has subgroups consisting
of all multiples of 2, all multiples of 3, and so on. The set of even
numbers (multiples of 2) is a subgroup, for example, because (i)
the sum or difference of two even numbers is even; (ii) 0 is even;
(0 is equal to two times 0); and (iii) the inverse of an even num-
ber is also even.

Now if we go back to the completely general situation of any
group we are in a position to prove a valid and perfectly general
mathematical result:

Proposition: The collection of all the elements common to two
subgroups itself forms a subgroup.
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The argument is very simple. The set of elements that is
common to the subgroups H and K is usually written as H
M K. We must demonstrate that the set H n K satisfies condi-
tions (i)—(iv) above. Let  and k be any two elements of H N
K. Since h and k are elements of H, h*k is an element of H.
Again, since 1 and k are elements of K, h*g is an element of
K. Thus h*k belongs to H N K. Thus condition (i) is true for
H n K. (ii) is true for H N K because it is true for all of G.
(iii) is true because the element e belongs to H and K and
therefore H N K. Finally if g is any element of H N K, it is
an element of H and K, so its inverse is also. Thus (iv) holds
for H N K. This shows that H N K is a subgroup of G. =

That is the end of the argument. If this argument frustrates you,
if your reaction is that the argument is much ado about nothing
or if the argument is too abstract for you, you have a point. In
fact I am taking a chance in using this example because I may
just succeed in “turning off” my reader just as so many students
are turned off in theoretical courses in pure mathematics.

It is difficult to understand what is going on in this proof pre-
cisely because this kind of argument is all at the formal, logical
level. The point of the example is that one can follow the logic
of the definitions and argument without knowing anything
about the subject, with no experience with anything connected
to the subject, and therefore certainly no intuition or “feel” for
the subject. In response to this argument one of my students
made the observation, “I follow it but I don’t understand it.”
This is precisely the point that I am making! With a little care
and effort one can verify that the argument is logically correct,
but, because one has no feeling for the context or ideas that are
involved, one feels that one does not understand what is going
on. Verification is one thing, understanding quite another. Veri-
fication is superficial, restricted to the surface of things. This is
what I mean by “trivial.”

Whereas an argument that is structured around some mathe-
matical idea (see Chapter 5) can be understood by grasping that
idea, a formal argument like the one above cannot really be un-
derstood because there is, in a sense, nothing to understand. All
that can be done with an argument like this is to verify it, and
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a computer could do this verification. This is what it means for
an argument to be “trivial”!

Almost all of the mathematics that I have discussed in the ear-
lier chapters has been nontrivial to a certain extent at least. How-
ever [ will now repeat a very simple result just to contrast it with
the previous one.

Example 2: Adding integers

Consider the formula for the sum of the first n integers,

nn+1)
L,

1+42+---4+n=

Here is a simple argument for this result: Let
S=1+2+---(n-1)+n;
reversing the order of addition gives
S=n+n-1)+---+2+1.

Adding we see that 25 is given by adding up the n columns each
of which sums to n + 1. That is,

25=n(n+1).

Thus S = n(n + 1)/2 as required.

This is a very simple argument, but it is not completely trivial
because it contains an idea, namely reversing the sum and add-
ing by columns. This idea shows us not only that the formula is
valid but also why it is true. We understand this result in a way
that we do not understand the previous formal argument.

One of the main goals of this work has been to differentiate
between the algorithmic and the profound in mathematics.
How, that is, can we distinguish between “trivial” thought and
“complex” thought? In the above examples a distinction was
tentatively drawn between the “trivial” and the “simple”—the
first argument was called “trivial,” the second is simple. Mathe-
matical thought can be simple and it can also be complex but
mostly it is nontrivial. Computer thought, on the other hand,
even though it may be very lengthy and complicated, is essen-
tially trivial.
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Is the distinction between the “trivial” and the “deep” of any
value? Is mathematics trivial or nontrivial? Is science? Is human
thought in general nontrivial? Does the algorithmic subsume all
other thought, that is, is all thought trivial? In the case of mathe-
matics, the famous attempt of Russell and Whitehead (1925) to
show that mathematics could be reduced to logic was therefore
an attempt to prove that mathematics was trivial. Godel showed
that arithmetic was nontrivial and therefore the attempt of Rus-
sell and Whitehead was a failure. This is why Penrose evokes
the work of Godel to support his claim. He knows in his gut that
mathematics is nontrivial."’

Mathematics is a wonderful vantage point from which to take
up the question of “triviality” versus profundity. Return for a
moment to the origins of systematic mathematical thought. In
Chapter 2 I discussed the “dream of reason” that emerged in
the civilization of ancient Greece, the discovery of a new way of
thinking that seemed to have the potential of allowing human
beings access to a permanent and objective truth. This vision is
still a powerful cultural force in our society. In the terminology
of Chapter 7, it is a “great idea.” In that chapter I discussed
formalism as an example of a great idea, but really formalism
is just a particular development of a much older idea—the
idea of reason itself. This is a core idea for our civilization which
has been at work changing human beings and their cultures,
their sense of themselves and of the natural world for thousands
of years.

Today, with the dawning of the age of information technology
we stand at a new and crucial stage in the development of this
core idea. What has changed is our technology. The computer is
the tool through which this great idea is being implemented. All
technology takes a human characteristic, makes it autonomous,
and extends it. Behind every technological advance there is an
idea—the machine is really this idea given a physical form. The
telescope extends the act of seeing; the telephone the act of
speaking. The computer extends a certain way of using the
mind—it extends rationality, logic, and, in particular, what I
have called algorithmic thinking. Now the idea of the computer
has all the characteristics of a great idea. It is an extraordinary
development and we are all, to a certain extent at least, caught
up in the rush of enthusiasm that accompanies the birth of this
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great idea. However, remember that a great idea is always
wrong in that it always overreaches itself when it claims univer-
sality. A technology can only objectify a certain aspect of the
human potential. It inevitably approaches human beings from
a certain perspective and inevitably ignores other perspectives.
Human beings are not only logical animals; we are also creative
animals. Thus the dream of the human being as computer, of
human thought as computer thought, is false even if the com-
puters in question are supercomputers whose computational
powers dwarf those of present day machines. Nevertheless, the
“dream of reason” in its most modern incarnation is refashion-
ing modern culture in its own image. Yet, in a way, this modern
version of the “dream of reason” is the dream that thought is
“trivial” or can be made “trivial.”

I claim that there is something that is going on in mathemati-
cal thought that is nontrivial. What is this other factor? Mathe-
matics is deep; mathematics is basically a creative activity; math-
ematics is one of the most profound ways of using the mind.
Much of this book has been an attempt to get a handle on what
it means for a piece of mathematics to be “deep.” In a sense the
entire book is a discussion of the distinction between the “triv-
ial” and the “nontrivial” within mathematical thought. The
question of distinguishing between “depth” and “triviality” is
vital! Is profundity a matter of quality or quantity? The propo-
nents of artificial intelligence might argue that it is one of quan-
tity and that the advent of bigger and faster machines will make
all of human thought accessible to machine replication. I main-
tain that the difference is qualitative.

One of the great mysteries of mathematics is contained in this
question about the nature of “depth.” It is similar to the question
of what makes a work of art great. The best practitioners agree
that “depth” refers to something that is real, but what is it ex-
actly? This has become an important question ever since the ad-
vent of formalism in mathematics and even more so with the
advent of computers. Could a computer be programmed to dis-
tinguish between the trivial and the deep? Or is depth merely
subjective, completely in the mind of the beholder, and thus not
really there at all? This is a very important question, a deep
question, I am tempted to say. The introduction of the idea of
“ambiguity” was an attempt to get a handle on this question.
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In his introduction to Davis and Hersh, Gian-Carlo Rota says,
“The mystery of mathematics is that . . . conclusions originating
in the play of the mind do find striking physical applications.” It
is indeed this surprising correspondence that pushes us to take a
more careful look at what is going on in mathematics. In his fa-
mous paper I referred to earlier on the “Unreasonable Effective-
ness of Mathematics in the Natural Sciences,” Wigner claims
that the power of mathematics lies in the ingenious definitions
that mathematicians have developed. These definitions, he feels,
capture some very deep aspects of reality and are therefore the
secret of why mathematics works as well as it does. This is fine
as far as it goes, but it cries out for additional clarification. For
one thing, what is the nature of these ingenious definitions?
What is it, exactly, about mathematical concepts that make them
so fruitful?

In my attempt to get a handle on “depth,” I found it necessary
to reconsider the very things that mathematical reasoning seems
to be delivering us from, to reconsider the myth of reason itself.
I did this by introducing the notion of “ambiguity” in all of its
many guises as another aspect of mathematics that complements
the logical structure. Ambiguity and paradox are aspects of
mathematical thought that differentiate the “trivial” from the
“deep.” The “trivial” arises from the elimination of the ambigu-
ous. The “deep” involves a complex multidimensionality such
as those evoked by the successful resolution of situations of am-
biguity and paradox. Even the word “resolution” is misleading
in this context because it usually implies the reduction of the
ambiguous to the logical and linear. What really happens is that
the ambiguity gives birth to a larger context, a unified frame-
work that contains the various potentialities that were inherent
in the original situation.

Mathematics, as I have been describing it, is an art form. The
words ambiguity and metaphor are much more acceptable in the
arts than they are in the sciences. But ambiguity and metaphor
are the mechanisms through which that ultimate ambiguity, the
one that divides the objective from the subjective, the natural
world from the mind, is bridged. It is the same mechanism that
operates at all levels—from a simple mathematical concept like
“variable” to the mathematics of “string theory.” The same mech-
anism even applies to a discussion of mathematics as a whole.
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MATHEMATICS AS COMPLEXITY!

One of the truly remarkable things about mathematics is the
manner in which it has provided human beings with models
and metaphors that have been used to make sense of the world.
Euclidean geometry is important, not just as geometry but as the
model of reason it provided for other areas of mathematics and
for human thought in general. It operates in a double way—as
scientific theory and as metaphor. Differential equations pro-
vided the model of the machine universe in which the past and
the future are absolutely determined from knowledge of the
present state of affairs. The list goes on and on.

In Chapter 7, I briefly discussed the modern theories of chaos
and complexity. These theories have created a great stir in recent
years—not because they have succeeded in making original and
verifiable predictions—but because they provide a new meta-
phor, a new framework for thinking about the world, including
the world of science. Viewed in this way, “chaos and complexity
theory” can be thought of as self-referential—it describes aspects
of the natural world and it provides a way of thinking about
mathematics of which it forms a part. In a sense this book is a
part of this new way of thinking. It is an attempt to develop a
new way of thinking about mathematics—an attempt to think
out what it would mean to apply the metaphor of complexity to
mathematics itself.

What would a description of “mathematics as complexity” be
like? The following paragraphs are a brief indication of some of
the characteristics that such a description might include.

First of all, one must draw a distinction between the terms
“complex” and “complicated.” As the terms are used in this
book, “complicated” refers to the quantitative, “complex” to the
qualitative. As I have noted, it is possible for logical mathemati-
cal reasoning to be complicated without being “deep”—without
containing very interesting mathematical ideas. “Complexity”
refers primarily to the world of mathematical insights. It refers
to mathematics both as a body of knowledge and as a practice—
the extraordinary mixture of subtle reasoning and profound in-
tuition that characterizes both mathematics and the manner in
which the mind is used in mathematics. Mathematics is both
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complicated and complex, but one’s choice of which property
to emphasize as essential will reveal one’s orientation toward
mathematics. Is it toward the algorithmic or the creative?

The theory of chaos arises from the study of nonlinearity.
Complexity is fundamentally nonlinear. If mathematics is non-
linear, then its essence cannot be captured by algorithmic proce-
dures or by the linear strings of reasoning that characterize
both mathematical proofs and deductive systems. Mathematics
is a world of dynamic change—an extraordinarily complex
world with to its own ecological structure. In this world new
concepts are continually coming into being while others are
sinking into irrelevance. Knowledge is continually being reorga-
nized and reevaluated in the light of new interests and new
ways of thinking. One metaphor for nonlinear mathematics
comes from the theory of turbulence, like that describing the
flow of water in a river. In a situation of turbulence there are
features, such as whirlpools, that are stable but can disappear
if the rate of flow of the water changes. A turbulent system is
constantly reorganizing itself depending on the rate of flow of
the fluid involved. In the same way, mathematics can be thought
of, not as permanent and absolute, but as in a continual state of
dynamic rearrangement. There are whole areas of mathematics
that were once of great interest but that today are not pursued
and sometimes not even remembered.

Another aspect of complex systems is that they are open. For
example, a biological system is in continuous interaction with
other systems including the ambient environment. Thus a bio-
logical organism, like a human being, for example, can only be
considered in isolation as a temporary expedient, not as an abso-
lute reality. Even though it may sound strange, mathematical
theories also cannot be considered in isolation from other parts
of mathematics, from the sciences and computer science, and
from human culture in general. Mathematics is a human en-
deavor with roots in the natural world and human biology. In
particular, mathematics changes and evolves. However it is
often described as though it were absolute and timeless.

Complex systems inevitably involve an element of contingency,
an element of uncertainty. “Randomness” is discussed in Chap-
ter 7 as basic to two of the most far-reaching scientific theories
of our time—quantum mechanics and evolution. Human life as
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we experience it involves a healthy dose of the accidental and
the unpredictable. Where is the uncertain in our description of
mathematics? Conventionally mathematics is thought of as the
antithesis of the uncertain. It is the epitome of the certain and
the absolute. In my approach, the uncertain exists as a key ele-
ment of mathematics yet in a manner that is unique and quite
characteristic of the unique way in which mathematics ap-
proaches the world. The French philosopher Edgar Morin says,
“Logical positivism could not avoid taking the role of an episte-
mological policeman forbidding us to look precisely where we
must look today, toward the uncertain, the ambiguous, the con-
tradictory.” In mathematics the role of logical positivism is taken
by formalism, which renders invisible the properties of un-
certainty and ambiguity that form an indispensable aspect of
mathematics.

If mathematics cannot be accurately represented as isolated
from its environment, it follows that an adequate description of
mathematics will have to include the related processes of creat-
ing and understanding mathematics. The normal view is that
there is an objective body of mathematical theory on the one side
and, on the other, the mathematician who creates the theory or
the consumer who uses it. The idea that there could be a point
of view that contains both elements, that is, the introduction of
this human element, changes everything. Mathematics is no
longer a strictly “objective” theory. “Objectivity” is merely a de-
scription of one dimension of mathematics; that is, objectivity is
merely an approximation to what is going on. It is one point of
view—a useful one—but not the definitive one.

If mathematics includes the mathematician, then it is reason-
able to see intelligence as an essential ingredient of mathematics.
Mathematics is a form of intelligence in action; that is, it is not
only the objective result of an act of intelligence but rather a
demonstration of the nature of intelligence itself. It is a major
way in which intelligence functions. When we study mathemat-
ics we are not so much absorbing some predetermined set of
facts as we are studying the manner in which the mind works—
the manner in which it produces mathematics. (In saying this I
am aware that I am using “mathematics” in an ambiguous way,
both as content and as process.)
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One of the essential properties of intelligence is flexibility.
What does it mean to be an expert at something? What makes
someone an expert is her ability to respond to a completely
novel situation—to solve original problems, for example. Exper-
tise does not only involve having command of a huge amount
of factual knowledge—it does not mean being a human data
bank. It involves the capacity for flexible response. It is a form
of creativity. This description applies equally to the notion of
“understanding.” Understanding is a kind of expertise. A true
measure of intelligence is this capacity for flexible and original
response. How does this flexibility arise in mathematics? As was
mentioned above, the essence of algorithmic thought is the elim-
ination of flexibility by providing predetermined responses to
any given eventuality. Biological systems that are successful in
an evolutionary sense have, many believe, the flexibility to
adapt to a changing environment. Complex thought in mathe-
matics also contains a kind of flexibility that is part of any rea-
sonable definition of intelligence.

There is a profound relationship between complexity and sim-
plicity. For example, the well-known mathematician and popu-
larizer of “catastrophe theory” E. C. Zeeman said that “Technical
skill is the mastery of complexity, while creativity is mastery of
simplicity.” What then is simplicity? What is it that makes a
piece of mathematics simple? It is a commonly observed phe-
nomenon that a piece of mathematics is simple if you under-
stand it and difficult if you do not. This is not a joke or a defini-
tion of the word “simple,” but it reflects the way the word is
often used. This usage of the word implies that the mathematical
situation is simplified, if you will, by an act of intelligence, that
is, of understanding. Thus a picture of mathematics emerges, a
picture that was discussed in the chapters on “mathematical
ideas,” of mathematics as a hierarchy of the simple. Data look
complicated and “hard” until the emergence of a mathematical
idea structures the data and even makes them “simple.” The
ideas that make things simple are not objective in any absolute
sense. It makes more sense to call them optimizations of the po-
tential contained in the original situation. These ideas often so-
lidify into new mathematical objects that form the data that may
be organized by new, higher order ideas. This is the way in
which “complex” situations develop. Both the process of mathe-
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matical thought and its product are now unified in a complex
system that on one hand is an intricate structure and on the
other is flexible and capable of dynamic change. In one dimen-
sion there is the order and permanence of the formal, deductive
system. The other dimension is open to ambiguity and contra-
diction, open to insight and creativity, open to change.

ARE HumaN BErINGs TriviAL?

The question for the proponents of “algorithmic intelligence” is
the following. Do the creative uses of the mind that I have dis-
cussed throughout this book arise from subtle algorithmic pro-
cesses, or is the reverse the case, namely, that algorithmic
processes arise from another and more basic way of using the
mind? This book has been an argument for the existence of other
intelligent ways of thinking, ways of thinking that do not reduce
to Pinker’s “rational truth-obeying rules.” What happens in a
situation of ambiguity? You may have one set of rational rules,
one context, that pushes you in one direction and a second that
pushes you in a different direction. It is precisely at the level of
rational rules that things break down. How does one operate
in a situation of conflict and incompatibility? Is intelligence in-
operative in such situations? Of course not. A situation of con-
flict is precisely where we most need the intervention of creative
intelligence.

Thus the larger question concerning the centrality of algorith-
mic thought comes down to whether or not you believe that at
the most basic level things are ordered, rational, and algorith-
mic—what I think of as a kind of Platonic vision of the human
mind. Now there is much to be said for this vision of the power
and importance of the algorithmic—it is, in fact, a great idea. We
are in the inevitable period of inflation that comes with any great
idea—the time when it is claimed that this particular insight will
explain everything. Thus this book is merely saying, “No, this
is not the only way of using the mind. There is another way.”
In this other way, from this different perspective, disorder and
conflict are never definitively eliminated. In fact the very at-
tempt to describe human activity in an algorithmic, rule-based
way leads to the problematic situations that I have called ambig-
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uous, contradictory, and paradoxical. Working with these situa-
tions, attempting to understand them in the face of their prob-
lematic aspects, gives rise to acts of intelligence and creativity
that produce the order that we observe.

The implications of this discussion are considerable. What is
at stake is nothing less than our conception of what it means to
be a human being. To claim that thought is “trivial” is to claim
that human beings are “trivial.” In my opinion to hold that
human beings are trivial is to miss something vital, something
that all previous human cultures would have seen as self-evi-
dent. Human beings are not machines! Human beings are not trivial!
What could be more important than this question? It is perhaps
ironic that mathematics, the area out of which computer science
developed, and the discipline with which it has the greatest af-
finity, should be the domain in which the distinction between
algorithmic and non-algorithmic should be the most accessible.

In other cultures this kind of question about the nature of the
human mind would have religious implications. It would be an-
swered with reference to “God” or “spirit” or the “soul.” In our
secular culture these questions are addressed by computer scien-
tists, cognitive psychologists, and philosophers of science. Nev-
ertheless the stakes remain high and involve everyone for what
is at issue is human self-definition—the nature of the beings we
tell ourselves that we are.

MATHEMATICS IN THE LIGHT OF AMBIGUITY—
A GREAT IDEA

Maybe this is a good place to come back to the beginning and
summarize the point of view that is developed in the preceding
pages. I have attempted to lay the foundations for a great idea,
an idea of human nature as fundamentally creative. This creative
process that we call mathematics, for example, has no end, no
ultimate objective, and therefore will never be completed. It fol-
lows that the problematic situations such as ambiguity and con-
tradiction, are never completely eliminated. In fact the creative
process thrives on such situations. Now in order for such a point
of view to be considered seriously it has been necessary to put
limitations upon a competing great idea—the idea of the human
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mind as a logical machine. Mathematics in its largest sense is
the arena in which this particular battle has been fought, but its
implications apply to the worlds of science and technology and
to the culture that these have spawned.

In a sense the questions that are raised in this book involve
matters of life and death. Not life and death in a literal sense but
in the metaphorical sense of living systems versus mechanical
ones. In one sense biology is about living systems, whereas phys-
ics is about nonliving ones. However in another sense, physics,
biology, and mathematics can be alive or dead. At the research
level these subjects are all alive, all growing and changing. The
practice of a scientific discipline has many of the characteristics
of a living organism. On the other hand, a discipline may stop
developing, may become moribund because it is thought of as
a completed, theoretical “truth” to which nothing will ever be
added or taken away. This attitude signals the end of mathemat-
ics and science. If a description of mathematics is to have any
value it must describe a discipline that is living and growing,
not a subject that is frozen.

One of the aspects of a living system is that it is creative. Life
is continually being confronted with problems and the necessity
to resolve these problems. Problems, in life, in art, and in science,
are inevitable. Not only can they not be avoided but they are
the very things that spur development, that spur evolution. The
solutions that these problematic situations bring forth are unpre-
dictable, a priori. The solution to such problems often involves
an element that is entirely unexpected—the creative element. A
creative solution is not mechanical—it does not involve juggling
a number of predetermined elements according to predeter-
mined rules. It involves the emergence of a novel way of looking
at the original situation. This new way of seeing is often gener-
ated by very incompatible tendencies within the original situa-
tion that made it problematic in the first place. This is the es-
sence of a living system as it is the essence of mathematics. This
living essence is intimately connected to what I have been call-
ing “the light of ambiguity.” The essence of mathematics is that
it is nontrivial, creative, and alive.
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22. Writing numbers in base 2 and base 3 is discussed on pages 177
and 178.

23. Beltrami, p. 71.

24. Thus if the solution through the point x is given by f; (x), we have
fi (x) > A as t — o for all x in some neighborhood of A.

25. For example, Roger Lewin’s book (1992) is called Complexity: Life
at the Edge of Chaos. Also consider Stuart Kauffman (1995), At Home in
the Universe: The Search for the Laws of Self-Organization and Complexity.

26. This section is based on Chaitin (1975), reprinted in Gregerson
(2003).

27. Chaitin (2002a).

28. Herbert (1885), pp. 66—67.

29. See the discussion in Cohen and Stewart (1994).
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CHAPTER 8: MATHEMATICAL TRUTH

1. Russell, Portraits from Memory, quoted in Davis and Hersh (1981),
p. 333.
2. Quotes are from Koestler (1964), pp. 115-16; italics added.
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3. The postmodernist might claim that there is no objective reality—
that reality is constructed. The position developed here has some ele-
ments in common with this point of view, but, it is hoped, it is precisely
“creative certainty” that will save us from the excesses of complete
relativism.

4. Banesh Hoffman with Helen Dukas (1972), p. 18.

5. Einstein (1954).

6. Koestler (1964), p. 103.

7. Bohm (1980), p. 4 says much the same thing when he insists that
“a theory is primarily a form of insight, i.e., a way of looking at the
world.”

8. Lakoff and Johnson (1980), chaps. 25-30.

9. Mlodinow (2001), p. 81.

10. Herbert (1985), pp. 161-62.

11. Penrose (1989), p.111.

12. Davis and Hersh (1981), p. 358.

13. Possibly the sense of mystery arises from the dual objective/sub-
jective nature of mathematics. The sense of mystery is not very differ-
ent from the sense of “depth” that will be discussed in Chapter 9. The
sense of depth is latent in even the most objective accounts of mathe-
matics—it is the sense that there is more here than meets the eye. Mys-
tery and a sense of depth are our “subjective” response to the profun-
dity of mathematics.

14. Godel (1964).

15. Thom (1971).

16. Penrose (1997), pp. 1-2.

17. Davis and Hersh (1981), p. 337.

18. Maturana (1988), p. 30.

19. von Glasersfeld (1991), p. 18.

20. Thurston (1994).

21. Bachelard (1938).

22. Sierpinska (1994), p. xi.

CHAPTER 9: CONCLUSION: Is MATHEMATICS
ALGORITHMIC OR CREATIVE?

1. Thurston (1994).

2. Consider the article with the provocative title, “The Death of
Proof” by John Horgan (1993).

3. Penrose (1989, 1994, 1997).

4. Pinker (1997), pp. 61-62.

5. Lakoff and Johnson (1980).

6. See the articles by Thurston and Hersh in the Bibliography.
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7. Chapters 5 and 6 contain a discussion of mathematical ideas.

8. Poincaré (1952).

9. For our purposes a set is any collection whatsoever of objects, usu-
ally numbers or geometric points.

10. Penrose (1989, 1994, 1997).

11. Edgar Morin, emeritus research director of the French INRS, has
written extensively on the subject of complexity. Morin emphasizes
that there is an urgent need for “a reorganization of what we under-
stand under the concept of science.”
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