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Abstract  

 This paper argues that advanced mathematical thinking, usually conceived as thinking in 

advanced mathematics, might profitably be viewed as advanced thinking in mathematics 

(advanced mathematical-thinking).  Hence, advanced mathematical-thinking can properly be 

viewed as potentially starting in elementary school.  The definition of mathematical thinking 

entails considering the epistemological and didactical obstacles to a particular way of thinking.  

The interplay between ways of thinking and ways of understanding gives a contrast between the 

two, to make clearer the broader view of mathematical thinking and to suggest implications for 

instructional practices.  The latter are summarized with a description of the DNR system 

(Duality, Necessity, and Repeated Reasoning).  Certain common assumptions about instruction 

are criticized (in an effort to be provocative) by suggesting that they can interfere with growth in 

mathematical thinking. 
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Advanced Mathematical-Thinking: Its Nature and Its Development 

 

The reader may have noticed the unusual location of the hyphen in the title of this paper.  

We relocated the hyphen in “advanced-mathematical thinking” (i.e., thinking in advanced 

mathematics) so that the phrase reads, “advanced mathematical-thinking” (i.e., mathematical 

thinking of an advanced nature).  This change in emphasis is to argue that a student’s growth in 

mathematical thinking is an evolving process, and that the nature of mathematical thinking 

should be studied so as to lead to coherent instruction aimed toward advanced mathematical-

thinking.  These arguments are embodied in our responses to four questions:  

1. What is meant by “mathematical thinking”ii?   

2. What are the characteristics of advanced mathematical-thinking?  

3. What are concrete reasoning practices by which advanced mathematical-thinking can 

be enhanced?  

4. What are concrete reasoning practices by which advanced mathematical-thinking can 

be hindered?  

These questions will be addressed, in turn, in four sections comprising this paper. 

Our earlier research necessitated these questions in the context of mathematical proof 

(see, for example, Harel & Sowder, 1998, Harel, 2001).  In this paper, however, we will not 

restrict our discussion to the process of proving.  Rather, we will demonstrate our claims in a 

range of mathematical contexts across the grade-level spectrum, in order to demonstrate that 

advanced mathematical-thinking is not bound by advanced-mathematical thinking. 
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What is meant by “mathematical thinking”?  

Underlying the analysis presented in this paper is the fundamental premise that humans’ 

mental actions, observable or inferred, are induced and governed by their general views of the 

world, and, conversely, humans’ general views of the world are formed by these actions.  Our 

probe into the above four questions through the lenses of this duality led to a distinction between 

two categories of knowledge: ways of thinking and ways of understanding.   

The particular meaning students give to a term, sentence, or text , the solution they 

provide to a problem, or the justification they use to validate or refute an assertion—are ways of 

understanding, whereas the student’s general theories–implicit or explicit–underlying their such 

actions are ways of thinking.  This distinction, to be elaborated upon shortly, has been both 

essential and valuable for our research and for its instructional implications.  We observed that 

teachers often do form, at least implicitly, cognitive objectives in terms of ways of thinking, but 

their efforts to teach ways of thinking is often counterproductive because these efforts do not 

build on ways of understanding.  Conversely, teachers often focus on ways of understanding but 

overlook the goal of helping students construct effective ways thinking from these ways of 

understanding.  This observation is the basis for the Duality Principle, one of the fundamental 

principles that underlie the instructional treatment employed in our teaching experiments (see 

Harel 1998, 2001).  We will return to the Duality Principle in the third section of this paper.      

Ways of thinking versus ways of understanding. The distinction between ways of thinking 

and ways of understanding will be described in the context in which it was initially arose.  

Consider the following three central, often interrelated, mathematical activities: 
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1. Comprehension of mathematical content, as when reading texts or listening to 

others.  

2. Carrying out an investigation, as when solving a problem. 

3. Establishing truth, as when justifying or refuting.  

Although it is pedagogically useful to distinguish among the three activities, cognitively they can 

easily be subsumed under item (2), problem solving, for comprehension and communication, as 

well as justifying or proving, are all problem-solving processes.    

Corresponding to the three types of mathematical activities, the phrase, ways of 

understanding, refers to  

1. The particular meaning/interpretation a person gives to a concept, relationship 

between concepts, assertion, or problem.  

2. The particular solution a person provides to a problem.  

3. The particular evidence a person offers to establish or refute a mathematical 

assertion.   

Examples of ways of understanding for (1) include the following:  A student may read or 

say the words, “derivative of a function,” understanding the phrase as meaning the slope of a line 

tangent to the graph of a function, as the best linear approximation to a function near a point, as a 

rate of change, etc.  On the other hand, a student may understand this concept superficially (e.g., 

“the derivative is 1nnx −  for nx ) or incorrectly (e.g., “the derivative is the quotient 

( ( ) ( )) /f x h f x h+ − ”).  Similarly, a student may understand the concept of a fraction in different 

ways.  For example, the student may understand the symbol /a b   in terms of unit fraction ( /a b  
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is  a  1/ b  units); in terms of part-whole ( /a b  is a  units out of b units); in terms of partitive 

division ( /a b  is the quantity that results from a   units being divided equally into b  parts); in 

terms of quotitive division ( /a b  is the measure of a  in terms of  b -units). All of these would be 

ways of understanding derivatives or ways of understanding fractions.     

Examples of ways of understanding for (2)–particular methods of solving a problem–can 

be seen in the following.  A ninth-grade class was assigned the problem  

Problem 1:  A pool is connected to two pipes.  One pipe can fill the pool in 20 hours, and the 

other in 30 hours.  Assuming the water is flowing at a constant rate, how long will it take the two 

pipes together to fill the pool?”  Among the different solutions provided by the students in the 

class, there were the following four—each represents a different way of understanding.   

Solution 1.1:  In 12 hours the first pipe would fill 3 / 5  of the pool and the second pipe the 

remaining 2 / 5 .  (The student who provided this solution accompanied it with a sketch similar to 

Figure 1.  We will return to this solution later in this paper). 

 
Solution 1.2:  It will take the two pipes 50 hours to fill the pool. 

Solution 1.3:  It will take the two pipes 10 hours to fill the pool. 

Solution 1.4:  It would take x  hours.  In one hour, the first pipe will fill 1/ 20  of the pool whereas 

the second will fill1/ 30 .  In x  hours the first pipe would fill / 20x  and the second, / 30x .  Thus, 

/ 20 / 30 1x x+ = .  (The student then solved this equation to obtain 12x = .) 

-------------------------------------------- 
Insert Figure 1 About Here 

-------------------------------------------- 
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Examples of ways of understanding for (3)—justifying or refuting —include the 

following justifications by prospective secondary teachers to the problem: 

Problem 2:  Prove that 1 2 1 2log( ) log log logn na a a a a a⋅ ⋅ ⋅ = + + +  for all positive 
integers n . 
  
Solution 2.1:   

log(4 3 7) log84 1.924⋅ ⋅ = =  
log 4 log3 log 7 1.924+ + =    
log(4 3 6) log 72 1.857⋅ ⋅ = =     
log 4 log3 log 6 1.857+ + =  
Since these work, then 1 2 1 2log( ) log log logn na a a a a a⋅ ⋅ ⋅ = + + + .  
 
Solution 2.2: 

i. 1 2 1 2log( ) log loga a a a= +  by definition  

1 2 3 1 2 3log( ) log loga a a a a a= + .  Similar to log( )ax  as in step (i), where this time 

2 3x a a= . 
Then 

ii. 1 2 3 1 2 3log( ) log log loga a a a a a= + +    
We can see from step (ii) any 1 2 3log( )na a a a  can be repeatedly broken down to  

1 2log log log na a a+ + + . 
 

In our usage, then, the phrase, way of understanding, conveys the reasoning one applies in 

a local, particular mathematical situation.  The phrase, way of thinking, on the other hand, refers 

to what governs one’s ways of understanding, and thus expresses reasoning that is not specific to 

one particular situation but to a multitude of situations.  A person’s ways of thinking involve at 

least three interrelated categories: beliefs, problem-solving approaches, and proof schemes.   

Beliefs—views of mathematics. “Formal mathematics has little or nothing to do with real 

thinking or problem solving,” and “The solution of a problem should not take more than five 



 
Advanced Mathematical-Thinking at Any Age         page 8 

 
 

 

minutes” are detrimental common beliefs among students (Schoenfeld, 1985, p. 43).  On the 

other hand, in our work with undergraduate mathematics, students we found enabling beliefs 

such as “A concept can have multiple interpretations” and “It is advantageous to possess multiple 

interpretations of a concept,” although essential in courses such as linear algebra, are often 

absent from the students’ repertoires of reasoning.  The development of these ways of thinking 

should not wait until students take advanced-mathematics courses, such as linear algebra.  

Elementary school mathematics and secondary school mathematics are rich with opportunities 

for the students to develop these ways of thinking.  For example, the different ways of 

understanding fractions presented above should provide such an opportunity to develop the 

above ways of thinking for all elementary-grade students; likewise the (correct) different ways of 

understanding derivatives should provide such an opportunity for secondary-school students who 

take calculus.   

Problem-solving approachesiii. “Look for a simpler problem,” “Consider alternative 

possibilities while attempting to solve a problem,” “Look for a key word in the problem 

statement” are example of problem-solving approaches.  The latter way of thinking might have 

governed the way of understanding expressed in Solution 1.2.  Which ways of thinking might 

have governed the other three solutions to Problem 1?  Of particular interest is Solution 1.1.  

Only one student, G, provided this solution, and she was briefly interviewed.  G indicated that 

she drew a diagram—a rectangle to represent the pool (Figure 1)—and divided it into 5  equal 

parts.  Then she noticed that 3(20 / 5)  is the same as 2(30 / 5) .  G was unwilling (or unable) to 

answer the question of how she thought to divide the rectangle into 5  equal parts, and so we can 
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only conjecture that a juxtaposition of ways of thinking had driven G’s solution.  These may 

have included “Draw a diagram,” “Guess and check,” and “Look for relevant relationships 

among the given quantities.”  It was shocking to learn that G’s score on this problem, as well as 

on three other problems she solved in a similar manner (i.e., without any “algebraic 

representation”) was zero.  Her teacher’s justification for this score was something to the effect 

that G did not solve the problems algebraically, with unknown and equations, as she was 

expected to do.    

Proof schemes. Proving is defined in Harel and Sowder (1998) as the process employed 

by a person to remove or create doubts about the truth of an observation, and a distinction is 

made there between ascertaining for oneself and persuading others.  A person’s proof scheme 

consists of what constitutes ascertaining and persuading for that person.  Thus, proof schemes 

include one’s methods of justification.  In this sense, “proving” and “justification” are used 

interchangeably in this paper.  One of the most ubiquitous proof schemes held by students is the 

inductive proof scheme, where students ascertain for themselves and persuade others about the 

truth of a conjecture by direct measurements of quantities, numerical computations, substitutions 

of specific numbers in algebraic expressions, etc. (Harel & Sowder, 1998).  We found that this 

way of thinking governed the way of understanding expressed in Solution 2.1 (Harel, 2001).  The 

way of understanding expressed in Solution 2.2, on the other hand, was found to be a 

manifestation of a different way of thinking, called transformational proof scheme.  In Harel 

(2001) it is shown why Solution 2.1 contains the three essential elements that characterize the 

transformational proof scheme: (a) consideration of the generality aspects of the conjecture, (b) 
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application of mental operations that are goal oriented and anticipatory—an attempt to predict 

outcomes on the basis of general principles—and (c) transformations of images that govern the 

deduction in the evidencing process.iv   

What Are the Characteristics of Advanced Mathematical-Thinking?   

It is clear that some of ways of thinking are flawed (e.g., relying solely on empirical 

observations to justify mathematical arguments, as we have seen in Solution 2.1; over-

generalizing mathematical ideas, as in the common inference students make: “since 

2( ) 2 2a b a b+ = +  is valid, the 2 2 2( )a b a b+ = +  must also be valid" (Matz, 1980)), while others 

are sound (e.g., looking for elegant solutions to problems; generalizing mathematical ideas).  But 

in what sense is “mathematical thinking” advanced?  Does “advanced” imply “effective,” 

“efficient,” “elegant?”  Is non-advanced mathematical thinking necessarily lacking or faulty?  

“Advanced” implies there is also an “elementary.”  If so, in what sense is a “mathematical 

thinking” elementary?  It is extremely difficult to characterize these properties, even if we share 

an intuitive understanding of their meaning, and it is even more difficult to build a taxonomy that 

differentiates among properties of mathematical thinking.  Yet it is of paramount importance to 

characterize qualities of mathematical thinking in order to “translate them into essential cognitive 

objectives—objectives that would position elementary mathematics content for the successful 

subsequent learning of advanced mathematical content.  But what is the complete set of such 

ways of thinking? Is the set a mere list, or does it have an underlying structure and is it guided by 

a small number of principles? Advanced mathematical-thinking research can and should take the 
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lead in answering these critical questions” (Heid, Harel, Ferrini-Mundy, & Graham, 2000).  One 

goal of this paper is to contribute to our understanding of these issues. 

The term “advanced” implies that a developmental process is involved.  “Advanced” is, 

therefore, not an absolute but a relative term, both in relation to a single way of thinking and in 

relation to different ways of thinking.  The attainment of a certain way of thinking is not all or 

nothing but gradual, and, likewise, one might demonstrate a high level of mastery of one way of 

thinking and little or none of another.   

In addition to this relativistic view of the property, “advanced,” we consider the kind of 

obstacles one encounters in developing a way of thinking.  We adopt Brousseau’s distinction 

between didactical obstacles and epistemological obstacles.  The former are the result of narrow 

or faulty instruction, whereas the latter are unavoidable due to the nature of the development of 

human knowledge (Brousseau, 1997).  But what are the criteria for determining whether the 

development of a particular type of mathematical thinking necessarily involves epistemological 

obstacles?  Although this question itself requires serious research—cognitive, historical, and 

epistemological—there already exist some criteria with which to begin a debate on this question.  

Duroux (1982, cited in Brousseau, 1997) lists necessary conditions for a piece of knowledge to 

be considered an epistemological obstacle.  The first of Duroux’s conditions is that 

epistemological obstacles have traces in the history of mathematics.  The second condition is that 

an epistemological obstacle is not a missing conception, or a lack of knowledge; rather, it is a 

piece of knowledge or a conception that produces responses that are valid within a particular 

context, and it generates invalid responses outside this context.  To overcome the 
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epistemological obstacle, one must construct a notably different point of view.  The third and last 

condition is that an epistemological obstacle “withstands both occasional contradictions and the 

establishment of a better piece of knowledge.  Possession of a better piece of knowledge is not 

sufficient for the preceding one to disappear” (Brousseau, 1997, pp. 99-100).   

These considerations—the relativistic view of the property, “advanced,” and the 

obstacles involved in the developmental process—led us to the following definition, which 

suggests a research agenda for determining ways of thinking that are advanced, as well as the 

level of their development:   

Mathematical thinking is advanced, if its development involves at least one of the above 

three conditions for an obstacle to be epistemological.  The level of acquisition of a way 

of thinking by an individual is determined by the extent to which the individual has 

overcome these obstacles.   

It should be noted that the first condition—that an epistemological obstacle must have 

traces in the history of mathematics—is particularly problematic.  It is difficult, and in many 

cases it may not be possible, to establish whether an obstacle has manifested itself in the history 

of mathematics.  Many obstacles have likely occurred in the historical development of 

mathematics but have never been observed by historians.         

A ready example of an obstacle that satisfies one of Duroux’s conditions is the transition 

from solely additive reasoning to proportional reasoning, a commonly observed difficulty (see 

discussion below).  Also, the notion of epistemological obstacles applies to the construction of 

both ways of understanding and ways of thinking.  For example, the understanding of negative 
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integers and imaginary numbers meets some, if not all three, criteria.  The mathematical 

community of the time (17th Century) had to reconstruct—even revolutionize—its ways of 

thinking about the concepts of number and quantity in order to accept these new constructs 

(Klein, 1968; see also Kline, 1972, p. 252).  

We will conclude this section with two episodes to illustrate the above considerations—

not the definition per se.     

The relativistic view of the property “advanced.”  This consideration is discussed in the 

context of Problems 3-5 below, about a student who can do proportional reasoning but is not yet 

able to reason in terms of functional representation, and hence does not work in a mathematically 

efficient fashion.  

In a secondary mathematics lesson on exponential decay, the homework included the problem: 

Problem 3:  The annual rate of inflation in a certain year is 8%.  How much will the dollar 
lose of its purchasing power during this year? 
 
Student H’s solution was the following 

Solution 3: 

H:   What costs $1 at the beginning of the year will cost $1.08 at the end of the year.  
If a product costs $1 at the beginning of the year, that product would cost $1.08 
at the end of the year.  We want to know how much of the product we can buy 
for $1 at the end of the year.  We are not going to be able to buy the whole 
product for one dollar, only a portion of it.  Let’s say we can buy x  of it for $1.  
Then [reasoning proportionally] 1/1.08 /1x= .  

1/1.08 1/(1 8 /100) 100 /108x = = + = .  We can buy only 100 /108 92.6%≈  of 
the product.  The dollar lost about 7.4%  of its purchasing power.  

 
Following H’s presentation of her solution, the teacher introduced the following 

generalization (without labeling it so): 
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Problem 4: The annual rate of inflation in a certain year is %a .  How much will the dollar 
lose of its purchasing power during this year?   
 
The teacher went on to present the following solution: 

Solution 4:   
Teacher: As H said, a product that costs $1 at the beginning of the year 
would cost $(1 /100)a+  at the end of the year.  Our goal is to find out how 
much of the product we can buy for $1 at the end of the year.  If x  is the 
fraction of the product we can buy for $1, then, as H did, x  can be obtained 
from the equation:  1/(1 /100) /1a x+ = .  Solving for x , we get: 

1/(1 /100) 100 /(100 )x a a= + = + , or 100(100 /(100 ))%a+  .  Thus, if the annual 
inflation rate is %a , then the dollar loses (100 10000 /(100 ))%a− +  of its 
purchasing power. 
 

Following this work, the teacher discussed with the students the graph of the function 

( ) 100 10000 /(100 )f a a= − + , and its physical (economic) meaning.  Specifically, he discussed 

these questions: What are the roots of the function?  Where is it defined?  What is the behavior 

of the graph of the function, and what is the economic meaning of these behaviors (e.g., the 

economic meaning of 100a = − , or an annual rate of 100%  deflation)?   

The next set of homework included the following problem.     

Problem 5:  During one year, the dollar lost 12.7%  of its value.  What was the annual rate 
of inflation during that year?  
  
H applied a similar reasoning to that which she used to solve Problem 3:  

Solution 5:  At the end of the year, with $1 I can buy only (100 12.7)% 87.3/100− =  of 
the product.  The whole product would cost $y .  /1 1/(87.3/100)y = .  

100 / 87.3 1.145y = ≈ .  The annual rate of inflation is about 14.5% . 
 
H’s solution involves an application of proportional reasoning—a sophisticated way of 

thinking that warrants the label “advanced,” by our definition:  First, additive reasoning—an 
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antecedent to proportional reasoning—produces responses that are valid within a particular 

context but generates invalid responses outside this context.  Indeed, the transition from additive 

reasoning to proportional reasoning requires one to construct a different way of understanding 

relationships between quantities.  Further, research has shown that additive reasoning withstands 

“occasional contradictions,” in that students continue to reason additively after they are shown its 

inapplicability in certain situations.  Further, the “establishment of a better piece of knowledge,” 

that of proportional reasoning, does not completely remove its application in multiplicative 

situations—students continue to use it after they have been exposed to the concept of 

proportionality.      

Going back to Solution 5, note that H did not realize that she could obtain the solution by 

substituting 12.7  for ( )f a  and solve the equation, 12.7 100 10000 /(100 )a= − +  to obtain the 

annual rate of inflation a .  When she was shown this approach, she had difficulty 

comprehending it.  The latter approach exemplifies a way of mathematical thinking that 

manifests, among other things, economy of thought.  “Economy of thought,” in this case, has to 

do with one’s ability to reify Solution 4 into a “solution method.”  It has been shown that 

reification is one of the most complex processes in the conceptual development of 

mathematics—with the individual (e.g., Dubinsky, 1991; Harel and Kaput, 1991; Greeno, 1983) 

and in the history of mathematics (Sfard, 1992). 

It is critical to emphasize that one cannot and would not appreciate the efficiency of the 

latter solution if he or she has not gone, in various problematic situations, through an elaborated 

solution, such as that offered by H.  Hence, although we desire to label the functional solution as 
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more advanced than the elaborated solution, it may be unlikely that the former could be 

constructed without the latter.  Of course, the student’s background plays a critical role.  For 

example, if a student understood functions before studying inflation, the function solution would 

likely be easier for her.  This raises a question that is important to curriculum development and 

instruction: What possible instructional treatments can help H construct this and other ways of 

advanced mathematical-thinking? 

“Proportional reasoning” and “reification of a solution into a solution method”—the two 

ways of mathematical thinking that emerged in the analysis of this last problem—are examples 

of what we, as mathematics educators, feel should be labeled “advanced.”  This is so because we 

recognize that these develop during a long period of intellectual effort and have proved essential 

and effective in doing and creating mathematics.  Proportional reasoning, for example, is 

indispensable in many areas of mathematics, and it demands a reconceptualization of 

mathematical reality—from a world that is organized solely according to additive principles to a 

world that is organized according to a differentiation of additive phenomena from multiplicative 

ones.  Noelting  (1980a,b) found that even among students who had had the usual instruction 

dealing with proportions, it was quite common for the students to use instead a unit-rate thinking 

in working his proportion problems, a practice observed also among practicing teachers in the 

intermediate grades (Harel & Behr, 1995).  Lamon (1995) has identified several steps in a 

possible development of proportional thinking, and Cai and Sun (2002) have described the 

carefully planned development of proportion in a Chinese curriculum. Arriving at a level of 
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thinking that might be called genuine proportional thinking is not just a matter of telling students 

about cross-multiplication. 

Obstacles involved in the developmental process.  This consideration is discussed in the 

context of Problem 6 below.  It shows a major obstacle—to our knowledge little discussed in the 

literature—that students encounter in building the way of thinking of representing words 

problems algebraically.  The obstacle is not in forming a propositional representation of the 

problem; rather, its roots seem to lie in the subtle distinction between “variable” and 

“unknown”—a difficulty that might be appreciated through historical considerations.   

Problem 6.  Find a point on the number line whose distance from 1 is half its distance 
from 4− . 
 
Solution 6.  L, a prospective elementary school teacher, drew a number line and marked 

on it the points, 1 and –4.  After a long pause, L indicated that he did not know what to do 

next.  His teacher proceeded by asking him to describe the problem.  In the process of 

doing so, L indicated—erroneously—that the unknown point couldn’t be to the left of 1.  

It was clear from his description that he understood the problem.  L’s argument about the 

location of the unknown point—despite being erroneous—supports this claim. 

 
Teacher: Very good.  What is the distance between x  and 4− ? 
L:  x  plus 4  
 
Teacher:   Write that down, please. 

 
L writes x + 4 .  
 

Teacher:   And what is the distance between x  and 1? 
L:  Half of 4x +   
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L writes ( 4) / 2x + . 
 

Teacher:   How else can you express the distance between x  and 1? 
 
L reads the problem again. 
 

L:    It says it is half the distance from 4− . 
 
At this point L was unable to express the distance between x  and 1  in a different way 

from ( 4) / 2x + .  

In our experience, the difficulty of forming equations, as in this case, is common among 

students.  A possible conceptual basis for this difficulty is the following.  For an expert, a value 

x  representing an unknown in a word problem would involve two ways of understanding.  One 

is expressed in the condition of the problem; the other in the variability of the quantities 

involved.  In our case the condition is “The distance of the unknown point x  from 1 is half its 

distance from 4− ,” and the variability is that of the functional expressions 4x +  and 1x − .  

These two ways of understanding are independent of each other.  In the former x  is an unknown 

whereas in the latter it is a variable.  There might be different explanations for L’s difficulty.  L 

may not have constructed these two ways of understanding, may have had difficulty coordinating 

them, or once he constructed one way of understanding had difficulty attending to the other.   

The distinction between “variable” and “unknown” is likely to be more epistemological 

than didactical—a claim that can be supported by the historical development of the notion of 

“variable” in the 17th century.  As we have discussed earlier, for an obstacle to be 

epistemological it is necessary that it has occurred in the historical development of mathematics.     
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What Are Reasoning Practices By Which Advanced Mathematical-Thinking Can Be 

Enhanced?  

Our answer to this question is an instructional treatment guided by a system of learning-

teaching principles, called the DNR system.  The three chief principles of the system are Duality, 

Necessity, and Repeated Reasoning.  In this section we will only briefly describe the first and 

last; the middle will be mentioned in the next section.  For the complete description of the 

system, see Harel (1998, 2001) 

The Duality Principle.  This principle asserts that 

Students’ ways of thinking impact their ways of understanding mathematical concepts.  

Conversely, how students come to understand mathematical content influences their ways 

of thinking. (Harel, 1998, in press) 

 
Clearly, one's ways of thinking, both good and bad, influence one's further ways of 

understanding.  A student whose way of thinking involves believing that a mathematics story 

problem should be solved quickly by looking for a key word and then waiting for a teacher's 

reaction to the answer will certainly derive a different way of understanding for story problems 

(i.e., will solve them differently) than a student willing to spend several minutes making a 

drawing, looking for relationships, and then striving for some sort of self-verification.  The 

Duality Principle asserts that the converse is also true, and so teachers and curriculum developers 

in all grade levels should structure their instruction in a way that provides students with 

opportunities to construct advanced mathematical-thinking from ways of understanding.   
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There are powerful examples of the relationship of advanced mathematical-thinking in 

school mathematics to advanced-mathematical thinking.  Consider again the “multiple ways of 

understanding” we mentioned earlier. 

Most students’ repertoires of reasoning do not include the way of thinking that “A 

concept can be understood in different ways,” and that “It is often advantageous to change ways 

of understanding of a concept when attempting to solve a problem.”  The learning of linear 

algebra, an advanced-mathematical thinking topic, requires multiple ways of understanding, for 

one must realize, for example, that problems about systems of linear equations are equivalent to 

problems about matrices, which, in turn, are equivalent to problems about linear transformations. 

Students who are not equipped with these ways of thinking are doomed to encounter difficulties.  

At the precollege level, there are various opportunities to help students think in these ways. The 

list of ways of understanding fractions mentioned earlier provides one such opportunity. Students 

should learn, for example, that the fraction 3/4 can be understood in different ways: 3 individual 

objects, each of quantity 1/4; the result when 3 objects of the same size are shared among 4 

individuals; the portion of the quantity 4 that equals the quantity 3; and 3/4 as a mathematical 

object, a conceptual entity, a number. Similarly, students should become comfortable with the 

different ways in which many functions can be represented—table, graph, equation, for 

example—and translations among these representations.  Students should also learn that 

depending on the nature of the problem, some interpretations or representations are more 

advantageous than others.  We believe that it is from these kinds of ways of understanding that 

students construct the aforementioned ways of thinking.  
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The Repeated Reasoning Principle.  Research has shown that repeated experience, or 

practice, is a critical factor in enhancing, organizing, and abstracting knowledge (Cooper, 1991). 

The question is not whether students need to remember facts and master procedures but how 

they should come to know facts and procedures and how they should practice them.  This is the 

basis for the Repeated Reasoning Principle:   

Students must practice reasoning in order to internalize and interiorize specific ways of 

thinking and ways of understanding. (Harel, 2001) 

 
Consider again two important ways of thinking we mentioned earlier: “mathematical 

efficiency” and “transformational proof scheme.”    

Two elementary school children, S and T, were taught division of fractions. S was taught 

in a typical method, where he was presented with the rule ( / ) ( / ) ( / ) ( / )a b c d a b d c÷ = ⋅ , and the 

rule was introduced to him in a meaningful context and with a mathematically correct 

justification that he understood but he was asked to repeat. T, on the other hand, was presented 

with no rule but consistent with the duality principle and the repeated reasoning principle she 

was always encouraged to justify her mathematical actions. Each time she encountered a division 

of fractions problem, she explained its meaning using her understanding of division of whole 

numbers as the rationale for her solution. S and T were assigned homework problems to compute 

divisions of fractions. S solved all the problems correctly, and gained, as a result, a good mastery 

of the division rule. It took T a much longer time to do her homework. Here is what T—a real 

third-grader—said when she worked on (4 / 5) (2 / 3)÷ : 
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How many 2 / 3 s in 4 / 5? I need to find what goes into both [meaning: a unit-fraction that 

divides 4 / 5  and 2 / 3  with no remainders]. 1/15  goes into both. It goes 3  times into 1/ 5  and 5  

times into 1/ 3 , so it would go 12  times into 4 / 5  and 10  times into 2 / 3  (She writes: 

4 / 5 12 /15= ; 2 / 3 10 /15= ; (4 / 5) (2 / 3) (12 /15) (10 /15)÷ = ÷ . How many times does 10 /15  go 

into 12 /15 ? How many times do 10  things go into 12  things? One time and 2 /10  of a time, 

which is 1 and 1/ 5 . 

T had opportunities for reasoning of which S was deprived.  T practiced reasoning and 

computation, S practiced only computation. Further, T eventually discovered the division rule 

and learned an important lesson about mathematical efficiency—a way of thinking S had little 

chance to acquire.     

In Harel and Sowder (1998) we argued that a key to the concept of mathematical proof is 

the transformational proof scheme–a scheme characterized by consideration of the generality 

aspects of the conjecture, application of mental operations that are goal oriented and anticipatory, 

and transformations of images as part of a deduction process. The education of students toward 

transformational reasoning must not start in college. Otherwise, years of instruction that focus on 

the results in mathematics, rather than the reasons behind those results, can leave the impression 

that only the results are important in mathematics, an opinion sometimes voiced even by 

university mathematics majors. We argued that instructional activities that educate students to 

reason transformationally about situations are crucial to students’ mathematical development, 

and that these activities must begin at an early age.  
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The building of environments in which students regard the giving of reasons as a natural 

part of mathematics is one of the more exciting aspects of some studies with children in the 

primary grades (Carpenter, Franke, Jacobs, Fennema, & Empson, 1998; Fuson, et al., 2000; 

Maher & Martino, 1996, Yackel, Cobb, Wood, Wheatley, & Merkel, 1990).  Having discussions 

about which of 2.12 and 2.113 is larger can reveal something important about the children’s 

ways of understanding, and hence, have implications for their ways of thinking.  Some may rely 

erroneously on the number of digits, a way of understanding that naturally develops with whole 

number work.  Or, in comparing 4.21 and 4.238, it may come out that some students focus on the 

right-most place value and decide that 4.21 is larger because hundredths are larger than 

thousandths (Resnick, et al., 1989).  Such discussions would seem to be more valuable in the 

long run than practicing a teacher-given rule about annexing zeros until each number has the 

same number of decimal places, especially if the discussions led naturally to the rule. 

Similarly, ready-made theorems, formulas, and algorithms, even when motivated and 

completely proved, are often hastily introduced in undergraduate mathematics courses. An 

interesting phenomenon was observed in our teaching experiments (Harel & Sowder, 1998, 

Harel, 2001). It illustrates the importance of practicing mathematical reasoning. Until a 

mathematical relationship was declared a theorem, the students continued—either voluntarily 

when they needed to use the relationship or upon request—to justify it. Once the relationship was 

stated as a theorem, there seemed to be a reduced effort, willingness, and even the ability of 

some of the students to justify it. This phenomenon was explained in terms of the students' 

authoritarian view of mathematics (another example of an undesirable, yet common, way of 
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thinking): For them the label "theorem" renders the relationship into something to obey rather 

than to reason about. Or, possibly, in the teaching experiment context these students had not 

practiced enough the reasoning behind the theorem. 

What Are Reasoning Practices By Which Advanced Mathematical-Thinking Can Be Hindered? 

 Epistemological obstacles are perhaps more fascinating as objects of scholarly study than 

didactical obstacles, but we must attend to the latter, for if narrow or faulty instruction leads to 

problems in thinking or understanding, it should be easier to correct such instruction than it may 

be to overcome an epistemological obstacle. 

Certain teaching practices are still in existence and even widely used despite the 

consensus among mathematics education researchers that they lead to didactical obstacles that 

are difficult to eradicate.  The emphasis on "key" words in instructing students on how to decide 

what operation to do in solving story problems is an example.  Students learn that the phrase "all 

together" in a problem statement should signal addition; "left" should signal subtraction; "per" 

should summon multiplication or division, etc.  Such instruction, although well intentioned, will 

give at best short-lived success, and will fail completely if the problems are not always written to 

follow such guides (as in "Thirty rows, with 42 seats in each row, will seat how many, all 

together?").  More important, these ways of understanding would reinforce faulty ways of 

thinking—that in doing mathematics what counts is the result, not the reasoning process. 

It is fair to say that most instructional planning is a mix of art and science, with art playing the 

major role.  In an effort to be provocative, we will challenge some of the usual principles—in our 

view they are myths—that might guide one’s instruction.  Like the “key words” approach above, 
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these principles may be helpful in the short run, but may prove to be unhelpful or even counter-

productive in the long run.  Each of them certainly merits research attention. 

 Myth 1:  In sequencing instruction, start with what is easy. 

 For example, it is common to introduce methods of solving equations with examples like 

2 7x + =  and 3 15x = .  Since these can be solved virtually by inspection, the students may see 

no need for the usual canons for solving equations, and thus the Necessity Principle (Harel, 

1998)—students are more likely to learn when they see a genuine need (intellectual, not 

necessarily social or economic)—is violated.  Much better first examples might be 

75.6 211.3x + =  and 1.7 27.2x =  or even 2.4 9.6 17.28x + = , examples not likely to be easily 

solved by inspection or guessing.  In the same vein, perhaps a treatment of congruent figures 

should start with complicated figures rather than the usual congruence of segments, angles, and 

triangles.  Dienes and Golding long ago suggested that such a “deep-end” approach might be 

appropriate in many cases. 

At first it is not always wise or useful to present a new mathematical concept in its 

simplest form…It has been found that, at least in some cases, it is far better to introduce 

the new structure at a more difficult level, relying upon the child to discover the less 

complex sections within the whole structure. (1971, p. 57) 

 
Hence, a building-blocks metaphor in designing curriculum may not be the most useful 

one, especially if the learner has no idea of the building that will eventually be finished.  A more 
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apt metaphor for designing curriculum might be based on some sort of deep-end metaphor, 

perhaps starting with a picture of the building, with a question “How would you build this?” 

 Myth 2.  The best mental model is a simple one, preferably one quite familiar to the 

students.  

 For example, instruction in linear algebra often uses coordinate 2-D and 3-D geometry as 

the first examples of a vector space.  Harel (1999) argued that these examples constrain students’ 

understanding, so that they think vector space ideas are just ideas about geometry:  Linear 

algebra “=” geometry.  Consequently they have difficulty dealing with non-geometric vector 

spaces. He suggests that using systems of linear equations as a first way of understanding about 

vectors at least keeps the students’ thinking in an algebraic domain.   

 Here is another instance in which starting with the simplest situations may create a 

didactical obstacle. Multiplication is always introduced as repeated addition; this natural but 

confining approach seems to lead almost inexorably to the erroneous “multiplication makes 

bigger” idea (e.g., Fischbein, Deri, Nello, & Marino, 1985; Greer, 1987). Perhaps introducing 

multiplication as meaning “copies of” would serve the students better (Thompson & Saldanha, 

2003):  2 x 4 tells you how many are in 2 copies of 4, and 2/3 x 6 tells you how many are in 2/3 

of a copy of 6—thus enveloping repeated-addition and fractional-part-of-an-amount 

interpretations into one way of thinking about multiplication.  We do recognize that other ways 

of understanding multiplication should also, and usually do, come up in the mathematics 

curriculum.  Such an instructional approach is needed to advance the ways of thinking “a concept 
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can have multiple interpretations” and “it is advantageous to have multiple ways of 

understanding.”  

In general, instruction that uses examples limited in some irrelevant or confining way runs 

the risk of over-generalization, with the irrelevant characteristic perhaps becoming a part of the 

concept—everyone knows what to draw when asked to draw an "upside-down" trapezoid (cf. 

Sowder, 1980). The first choices of examples may be crucial, as Marshall’s work with schemas 

for story problems suggests (1995). 

 Myth 3. In advanced undergraduate mathematics, begin with the axioms. 

 Starting with the basic rules of the game might seem sensible, but we feel that the typical 

undergraduate student is not yet ready to play the game that way.  Our argument builds on our 

notion of  “proof scheme” mentioned earlier–a proof scheme guides what one does to convince 

oneself and to convince others (Harel & Sowder, 1998). Our studies of the proof schemes of 

undergraduate mathematics majors suggest that extensive earlier work entailing deductions by 

the student, putting two or more results together to get a new result (deductive proof schemes) 

must precede any meaningful work with axiomatic developments (axiomatic proof schemes).  

Otherwise the student may just go through the motions, often rotely, without any genuine 

appreciation of the development from axioms. 

 Myth  4. In school practice, use mathematical proofs to convince the students that a 

mathematical result is certain.    

 We know that an argument of “but how can you be sure, without a proof” is often used, 

and that of course mathematicians do look for arguments to assure themselves (and their 
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referees) that the result is indeed established.  But mathematicians often look for more than 

certainty in their proofs—What is the key to the result? Or, does a slight modification in the 

proof suggest another result?  Rav even claims that mathematical knowledge is embedded in the 

proofs, with the theorem only a “headline” (1999, p. 20). But, to repeat an earlier point, we have 

noticed that a proof for many students is either something to ignore in favor of studying the 

result, or something only to be dutifully memorized for purposes of repetition on an examination.  

Indeed, labeling a result with “theorem”—and that labeling alone—often means that the result is 

certain and requires nothing more, as we noted earlier. 

 We hypothesize that it is better to emphasize the reasoning, perhaps in several examples, 

that a proof generalizes.  The earlier example in which the child continually utilized a meaning-

based argument for calculating divisions by fractions illustrates what we mean.  Brownell (1956) 

emphasized that the quality of practice, rather than just practice itself, was most important.  

Carefully planned practice could guide the student’s thinking to a higher level.  For example, the 

exercises in Figure 2 could precede, indeed could generate, the result about the relation between 

the measures of vertical angles, at the same time they are providing practice with the angle sum 

for a linear pair. 

Please insert Figure 2 about here 

Here is another example of practice paving the way to a result.  Suppose the target is one 

version of the fundamental theorem of calculus:  Under certain conditions on f , with F  an 

antiderivative of f , ( ) ( ) ( ).
b

a
f x dx F b F a= −∫  A common starting point for this version is 
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another version of the fundamental theorem: ( ) ( )
x

a

d f t dt f x
dx

=∫ , again with conditions on f .  

Paraphrasing the latter gives that the integral is an antiderivative of ( )f x . Hence, for example, 

2
(cos )

x
t dt∫  is the antiderivative of cos x , or sin x C+ . (Then the practice begins.)  Therefore, 

3

2
(cos ) sin 3t dt C= +∫ , but 

2

2
(cos ) sin 2 0t dt C= + =∫ , so sin 2C = − , and 

3

2
(cos ) sin 3 sin 3 sin 2t dt C= + = −∫  .  Repetitions of the argument with other integrals sets the 

stage for the general argument (= proof) that ( ) ( ) ( )
b

a
f x dx F b F a= −∫ , with ( )F x  an 

antiderivative of ( )f x .    

Opportunity to learn. The most serious didactical obstacle is a lack of opportunity to 

learn.  In particular, we have in mind the (good) ways of thinking and understanding mentioned 

earlier, and the "habits of mind" of Cuoco, Goldenber, and Marks (1996).  Instruction (or a 

curriculum) that ignores sense-making, for example, can scarcely be expected to produce sense-

making students.  Computational shortcuts like "move the decimal point" or "cross-multiply" or 

"invert and multiply" given as rules without any attention as to why these work turns elementary 

school mathematics into what is deservedly called a bag of tricks.  Also, students who never have 

a chance to make conjectures cannot become more skilled at conjecturing—and it may be 

hypothesized that students who have never conjectured do not see any need for mathematical 

proof.  And so on.  
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Not an exclusive or.  Whether a particular obstacle to learning is didactical or 

epistemological, in an exclusive-or sense, is, we believe, too limiting.  Harel (in press) offers the 

view that an obstacle may be partly didactical and partly epistemological.  Consider, for 

example, "multiplication makes bigger" (MMB), the well-documented misconception mentioned 

earlier that is an obstacle for many students (through college) in choosing an operation for 

solving a story problem (Greer, 1987).  MMB clearly meets Duroux's partially-valid and 

obstinacy criteria, and one might argue that it also has historical roots, with multiplication 

probably first formalized with whole numbers. Yet, MMB could perhaps have its influence 

allayed, if not nullified, by some instructional modification like some more-inclusive view, say 

the “copies of” interpretation mentioned earlier, or perhaps by exploring "what it would be" via a 

calculator calculation of something like 0.2 15×  or (1/ 2) 24x  at an age before extensive 

experience with whole numbers leads to MMB.  Hence, MMB might be positioned on a 

didactical versus epistemological set of axes as in Fig. 3. 

Please insert Figure 3 about here 

 In a similar way, one can conjecture difficulties with proportional reasoning, with 

understanding (−1)(−1) = +1, with linear independence, or with some notational conventions like 

1sin x− , as being both didactical and epistemological in natures, as we have speculated in Fig. 4. 

---------------------------------------------------------------------- 
Insert Figure 4 about here 

----------------------------------------------------------------------- 
 

Summary 
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Our view is that the roots of mathematical thinking for advanced mathematics must be 

fostered during the study of elementary mathematics.  General ways of thinking, built on rich 

ways of understanding in elementary mathematics, can then symbiotically support further ways 

of understanding and of thinking in advanced mathematics.  Obstacles to ways of thinking and 

ways of understanding may be epistemological and/or didactical, with didactical obstacles more 

easily identified and perhaps more easily overcome than epistemological obstacles.   We propose 

that a way of mathematical thinking be called "advanced" if its development necessarily involves 

at least one of the epistemological obstacles identified by Duroux.  An important next step will 

be to identify ways of thinking which meet this criterion.   

We endorse the DNR-based instruction for furthering ways of thinking and ways of 

understanding:  (Duality Principle) Make the dually supportive roles of ways of thinking and 

ways of understanding a conscious, carefully planned part of the cognitive objectives for 

coursework in mathematics; (Necessity Principle) build instruction via problems that contain 

intellectual appeal to the students; and (Repeated Reasoning Principle) involve repeated 

reasoning to give a firm foundation for ways of thinking and ways of understanding.  Finally, by 

labeling them "myths," we offer a critique of some teaching "axioms" that have face validity but 

might actually hinder the development of fruitful ways of thinking and ways of understanding. 
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Figure Captions 

 

Figure 1.  Student’s sketch for Solution 1.1. 

 

Figure 2.  Practice leading to a general result. 

 

Figure 3. Multiplication makes bigger (MMB) as a mix of obstacles. 

 
 

Figure 4.  Hypothesized mixes of types of obstacles.
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i Some of the ideas presented in this paper are the result of National Science Foundation Project 9355861; opinions 
expressed here, of course, are those of the authors and are not necessarily those of the Foundation.  We also 
acknowledge with gratitude the clarifying conversations with Alfred Manaster, and the suggestions from the 
Advanced Mathematical Thinking Group of PME-NA, particularly those at the Tucson meeting:  Stacy Brown, 
Walter Houston, Kathy Ivey, Barbara Loud, Denise Mewborn, and Sharon Walen. 
ii We use the terms, mathematical thinking, a way of mathematical thinking, or just a way of thinking, 
interchangeably. although we are always referring to a mathematical context. 
iii We chose not to use the term “heuristics” here because while every heuristic is a general approach to solving 
problems the converse is not true.  Heuristics are defined as “rules of thumb for effective problem solving” 
(Schoenfeld, 1985,  p. 23); students’ approaches to solving mathematical problems—needless to say—are not 
always heuristics in this sense. 
iv For the full taxonomy of proof schemes, see Harel & Sowder (1998) and Harel (in press). 


