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I 
INTR ODUCTI ON 

The playing of games has long been a natural human leisure activity. 
References in art and literature go back for several thousand years, 
and archaeologists have uncovered many ancient objects which are 
most readily interpreted as gaming boards and pieces. The earliest 
games of all were probably races and other casual trials of strength, 
but games involving chance also appear to have a very long history .  
Figure 1 . 1  may well show such a game. I ts  rules have not  survived, 
but other evidence supports the playing of dice games at this period. 

Figure 1.1 A wall-painting from an Egyptian tomb, c.2000 BC. The rules of 
the game have not survived, but the right hands of the players are clearly 
moving men on a board, while the left hands appear to have just rolled dice.  
From H .  J. R. Murray, A history of board games other than chess (Oxford, 
1952) 

And if the playing of games is a natural instinct of all humans, the 
analysis of games is  just as natural an instinct of mathematicians. 
Who should win? What is  the best move? What are the odds of a 

certain chance event? How long is a game likely to take? When we 
are presented with a puzzle, are there standard techniques that will 

help us to find a solution? Does a particular puzzle have a solution 
at all? These are natural questions of mathematical interest, and we 
shall direct our attention to all of them. 

To bring some order into our discussions, it is convenient to divide 

games into four classes: 
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(a) games of pure chance; 

(b) games of mixed chance and skill ;  

(c) games of pure skil l ;  

(d) automatic games. 

There is a little overlap between these classes (for example, the 
children's game 'beggar your neighbour', which we shall treat as an 
automatic game, can also be regarded as a game of pure chance), but 
they provide a natural division of the mathematical ideas. 

Our coverage of games of pure chance is in fact fairly brief, because 
the essentials will already be familiar to readers who have made even 
the most elementary study of the theory of probability. Nevertheless, 
the games ci ted in textbooks are often artificially simple, and there is 
room for an examination of real games as well. Chapters 2 and 3 
therefore look at card and dice games respectively, and demonstrate 
some results which may be surprising. If, when designing a board for 
snakes and ladders, you want to place a snake so as to minimize a 
player's chance of climbing a particular ladder, where do you put it? 
Make a guess now, and then read Chapter 3; you will be in a very 
small minority if your guess proves to be right. These chapters also 

examine the effectiveness of various methods of randomization: 
shuffling cards, tossing coins, throwing dice, and generating allegedly 
'random' numbers by computer. 

Chapter 4 starts the discussion of games which depend both on 
chance and on skil l .  It  considers the spread of results at ball games: 
golf (Figure 1 . 2), association football, and cricket. In  theory, these 
are games of pure skill ;  in practice, they appear to contain a significant 
element of chance. The success of the player's stroke in Figure 1.2 
will depend not only on how accurately he hits the ball but on how 
it negotiates any irregularities in the terrain.  Some apparent chance 
influences on each of these games are examined, and it is seen to what 
extent they account for the observed spread of results . 

Chapter 5 looks at ways of estimating the skill of a player. It 
considers both games such as golf, where each player returns an 
independent score, and chess, where a result merely indicates which 
of two players is the stronger. As an aside, it demonstrates situations 
in which the cyclic results 'A beats B, B beats C, and C beats A' may 
actually represent the normal expectation.  

Chapter 6 looks at the determination of a player's optimal strategy 
in a game where one player knows something that the other does not. 
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Figure 1.2 Golf: a drawing by C. A. Doyle entitled Golf in Scotland (from 
London Society, 1863). Play in a modern championship is more formalized, and 
urchins are no longer employed as caddies; but the underlying mathematical 
influences have not changed. Mary Evans Picture Library 

This is the simplest case of the 'theory of games' of von Neumann. 
The value of bluffing in games such as poker i s  demonstrated, though 
no guarantee is  given that the reader will become a millionaire as a 

result. The chapter also suggests some practical ways in which the 
players' chances in unbalanced games may be equalized. 

Games of pure skill are considered in Chapters 7- 1 0. Chapter 7 
looks at puzzles, and demonstrates techniques both for solving them 
and for diagnosing those which are insoluble. Among the many puzzles 
considered are the 'fifteen' sliding block puzzle, the 'N queens' puzzle 
both on a flat board and on a cylinder, Rubik's cube, peg solitaire, 
and the 'twelve coins' problem. 

Chapter 8 examines 'impartial' games, in which the same moves are 
available to each player. It starts with the well-known game of nim, 
and shows how to diagnose and exploit a winning position. It then 
looks at some games which can be shown on examination to be clearly 
equivalent to nim, and it  develops the remarkable theorem of Sprague 
and Grundy, according to which every impartial game whose rules 
guarantee termination is equivalent to nim. 
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Chapter 9 considers the relation between games and numbers. Much 
of the chapter is devoted to a version of nim in which each counter 
is owned by one player or the other; i t  shows how every pile of 
counters in such a game can be identified with a number, and how 
every number can be identified with a pile. This is the simplest case 
of the theory of 'numbers and games' which has recently been 
developed by Conway. 

Chapter I 0 completes the section on games of skill. It  examines the 
concept of a 'hard' game; it looks at games in which it  can be proved 
that a particular player can always force a win even though there may 

Figure 1 .3 Chess: a drawing by J. P. Hasenclever (1810-53) entitled The 
checkmate. Perhaps White has been paying too much attention to his wine 
glass; at any rate, he has made an elementary blunder, and well deserves the 
guffaws of the spectators. Mary E1•ans Picture Lihrary 

be no realistic way of discovering how; and it discusses the paradox 
that a game of pure skil l  is playable only between players who are 
reasonably incompetent (Figure 1 . 3) .  

Finally, Chapter I I  looks at automatic games. These may seem 
mathematically trivial, but in fact they touch the deepest ground of 
all. It is  shown that there is no general procedure for deciding whether 
an automatic game terminates, since a paradox would result if there 
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were; and it is shown how this paradox throws light on the 
celebrated demonstration, by Kurt Godel, that there are mathematical 
propositions which can be neither proved nor disproved. 

Most of these topics are independent of each other, and readers 
with particular interests may freely select and skip. To avoid repetition, 
Chapters 4 and 5 refer to material in Chapters 2 and 3, but Chapter 6 
stands on its own, and those whose primary interests are in games of 
pure skill can start anywhere from Chapter 7 onwards. Nevertheless, 
the analysis of games frequently brings pleasure in unexpected areas, 
and I hope that even those who have taken up the book with specific 
sections in mind will enjoy browsing through the remainder. 

As regards the level of our mathematical treatment, li ttle need be 
said. This is a book of results. Where a proof can easily be given in 
the normal course of exposition, it  has been; where a proof is difficult 
or tedious, it has usually been omitted. However, there are proofs 

whose elegance, once comprehended, more than compensates for any 
initial difficulty; striking examples occur in Euler's analysis of the 
queens on a cylinder, Conway's of the solitaire army, and Hutchings's 
of the game now known as 'sylver coinage' .  These analyses have been 
included in full, even though they are a little above the general level 
of the book.  If you are looking only for light reading, you can skip 

them, but I hope that you will not; they are among my favourite 
pieces of mathematics, and I shall be surprised if they do not become 
among yours as wel l .  



2 
THE LUCK O F  THE D E A L  

This chapter looks a t  some o f  the probabili ties governing play with 
cards, and examines the effectiveness of practical shuffling. 

Counting made easy 
Most probabilities relating to card games can be determined by 
counting. We count the total number of possible hands, and the 
number having some desired property. The ratio of these two numbers 
gives the probability that a hand chosen at random does indeed have 
the desired property. 

The counting can often be simplified by making use of a well-known 
formula: if we have n things, we can select a subset of r of them in 
n!/{ r!(n - r) ! }  different ways, where n! stands for the repeated product 
n x (n - 1 )  x . . .  x I .  This is easily proved. We can arranger things in 
r! different ways, since we can choose any of them to be first, any of 
the remaining (r - 1 ) to be second, any of the (r - 2) still remaining 
to be third, and so on.  Similarly, we can arranger things out of n in 
n x (n - I) x . . . x (n - r + I )  different ways, since we can choose any 
of them to be first, any of the remaining (n - I )  to be second, any of 
the (n - 2) still remaining to be third, and so on down to the 
(n - r + I )th; and this product is clearly n!f(n - r)!. But this gives us 
every possible arrangement of r things out of n, and we must divide 
by r! to get the number of selections of r things that are actually 
different. 

The formula n!/{ r!(n - r)! }  is usually denoted by (",) . The derivation 
above applies only if I :::;r:::;(n - 1 ), but the formula can be extended 

to cover the whole range 0::;; r::;; n by defining 0! to be I .  Its values 
form the well-known 'Pascal's Triangle ' .  For n:;;; 1 0, they are shown 
in Table 2 . 1 .  
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Table 2.1 The first ten rows of Pascal's triangle 

r 

n 0 2 3 4 5 6 7 8 9 1 0  

0 
I I 
2 2 I 
3 3 3 I 
4 4 6 4 I 
5 5 1 0  1 0  5 I 
6 6 1 5  20 1 5  6 I 
7 7 2 1  35  35  2 1  7 I 
8 8 28 56 70 56 28 8 I 
9 9 36 84 1 26 1 26 84 36 9 I 

1 0  1 0  45 1 20 2 1 0  252 2 1 0  1 20 45 1 0  

The function tabulated i s  (",) = n!/{r!(n - r)!}. 

To see how this formula works, let us look at some distributional 
problems at bridge and whist. In these games, the pack consists of 
four 1 3-card suits (spades, hearts, diamonds, and clubs), each player 
receives thirteen cards in the deal, and opposite players play as 
partners . For example, if we have a hand containing four spades, 
what is the probability that our partner has at least four spades also? 

First, let us count the total number of different hands that partner 
may hold. We hold 1 3  cards ourselves, so partner's hand must be 
taken from the remaining 39; but it must contain 1 3  cards, and we 
have just seen that the number of different selections of 1 3  cards that 
can be made from 39 is C91 3) .  So this is the number of different hands 
that partner may hold. It does not appear in Table 2 . 1 ,  but i t  can be 
calculated as (39 x 38 x . . .  x 27)/( 1 3  x 12 x . . .  x 1 ), and i t  amounts 
to 8 1 22 425 444 . Such numbers are usually rounded off to a sensible 
number of decimals (8. 1 2  x 1 09, for example), but it is convenient to 
work out this first example in full .  

Now let us count the number of hands in which partner holds 
precisely four spades. Nine spades are available to him, so he has 
(94) = 1 26 possible spade holdings. Similarly, 30 non-spades are available 
to him, and his hand must contain nine non-spades, so he has 
(l09)

= 14 307 !50 possible non-spade holdings. Each spade holding 
can be married with each of the non-spade holdings, which gives 
I 802 700 900 possible hands containing precisely four spades . 
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So, if partner's hand has been dealt at random from the 39 cards 
available to him, the probability that he has exactly four spades is 
given by dividing the number of hands containing exactly four spades 
( I  802 700 900) by the total number of possible hands (8 1 22 425 444). 
This gives 0 .222 to three decimal places . 

A similar calculation can be performed for each number of spades 
that partner can hold , and summation of the results gives the figures 
shown in the first column of Table 2 .2 .  In particular, we see that if 
we hold four spades ourselves, the probability that partner holds at 
least four more is approximately 0. 34, or only a li ttle better than one 
third. The remainder of Table 2 .2  has been calculated in the same 
way, and shows the probability that partner holds at least a certain 
number of spades, given that we ourselves hold five or more . !  

Table 2.2 Bridge: the probabilities of partner's suit holdings 

Partner's Player's own holding 

holding 4 5 6 7 8 9 10 I I  1 2  

I + 0.99 0.97 0.96 0.93 0.89 0.82 0.72 0.56 0.33 
2+ 0.89 0.84 0.76 0.67 0.55 0.41 0.25 0. 1 1  
3+ 0.65 0.54 0.43 0.31 0.20 0.10 0.03 
4+ 0.34 0.24 0.15 0.08 O.Q3 0.01 
5+ 0.11 0.06 O.Q3 0.01 0.00 
6+ 0.02 0.01 0.00 0.00 
7+ 0.00 0.00 0.00 

1 It is not the purpose of this book to give advice on specific games, but I cannot 
resist pointing out an implication that is sometimes overlooked. Suppose that your 
partner at bridge has opened the bidding with ·one no trump', indicating a balanced 
hand of some agreed strength, and that you yourself hold a four-card major suit and 
enough all-round strength to bid game: the sort of hand on which you want to be in 
four  of the major if partner also holds four, and otherwise to be in 3NT. It is quite a 
common situation, and several artificial bidding conventions have been invented to 
deal with i t .  But Table 2.2 suggests that only about one-third <!f the time will partner 
actually have the four-card fit that you seek; and while the calculation of this table took 
into account unbalanced hands on which partner would not have opened I NT. a 
revised calculation omitting such hands produces much the same answer. The remaining 
two-thirds of the time, you will end up in 3NT anyway, and all the bidding convention 
will have done is to pinpoint a probable weakness in declarer's hand; against competent 
opponents, you would actually have given your side a better practical chance by bidding 
an immediate 'three no nonsense' and leaving the defenders to guess. Of course, this 
simple calculation cannot say whether the gains when partner docs have a fit are likely 
to outweigh the losses when he does not, but it is instructive that the latter case occurs 
twice as often as the former. 
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Table 2 .3  shows the other side of the coin .  It assumes that our side 
holds a certain number of cards in a suit, and shows how the remaining 
cards are likely to be distributed between our opponents. Note that 
the most even distribution is not necessari ly the most probable. For 
example, if we hold seven cards of a suit ourselves, the remaining six 
are more l ikely to be distributed 4-2 than 3-3, because '4-2' actually 
covers the two cases 4-2 and 2-4. 

Table 2.3 Bridge: the probabil i ties of opponents' suit holdings 

5 

4-4 0.33 
5-3 0.47 
6-2 0. 1 7  
7-1 0.03 
8-0 0.00 

Number of cards held by the partnership 

6 

4-3 0.62 
5-2 0.31 
6-1 O.o7 
7-0 0.01 

7 8 9 1 0  

3-3 0.36 3-2 0.68 2-2 0.41 2- 1 0.78 
4-2 0.48 4-1 0.28 3- 1 0.50 3-0 0.22 
5- l 0.15 5 0 0.04 4-0 0. 1 0  
6-0 0.01 

I I  

1- 1 0.52 
2-0 0.48 

Tables 2 .2  and 2 .3  do not constitute a complete recipe for success 
at bridge, because the bidding and play may well give reason to 
suspect abnormal distributions, but they provide a good foundation. 

4-3-3-3 and all that 
A similar technique can be used to determine the probabi l ities of the 
possible suit distributions in a hand. 

For example, let us work out the probability of the distribution 
4-3-3-3 (four cards in one suit and three in each of the others) . Suppose 
for a moment that the four-card suit is spades. There are now (1\) 
possible spade holdings and ('33) possible holdings in each of the other 
three suits, and any combination of these can be joined together to 
give a 4-3 -3-3 hand with four spades. Additionally, the four-card suit 
may be chosen in four ways, so the total number of 4-3-3-3 hands 
is 4 x (1\) x (133) x (1\) x (133). But the total number of 1 3-card hands 

that can be dealt from a 52-card pack is C2
13), so the probability of a 

4-3-3-3  hand is 4 x (134) x (1\) x ('\) x (133)/e2
13). This works out to 

0. 1 05 to three decimal places. 
Equivalent calculations can be performed for other distributions. 

In the case of a distribution which has only two equal suits, such as 
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4-4-3-2, there are twelve ways in which the distribution can be achieved 
(4S-4H-3D-2C, 4S-4H-2D-3C, 4S-3H-4D-2C, 4S-3H-2D-4C, and 
so on), while in the case of a distribution with no equal suits, such 
as 5-4-3- 1 ,  there are 24 ways. The multiplying factor 4 must therefore 
be replaced by 1 2  or 24 as appropriate. This leads to the same effect 
that we saw in Table 2 . 3 :  the most even distribution (4-3-3-3) is by 
no means the most probable. Indeed, it is only the fifth most probable, 
coming behind 4-4-3-2,  5-3-3-2 ,  5-4-3- 1 ,  and 5-4-2-2. 

The probabili ties of all the possible distributions are shown in Table 
2 .4 .  This table allows some interesting conclusions to be drawn. For 
example, over 20 per cent of all hands contain a suit of at least six 
cards, and 4 per cent contain a suit of at least seven; over 35 per cent 
contain a very short suit (singleton or void), and 5 per cent contain 
an actual void. These probabilities are perhaps rather higher than 

might have been guessed before the calculation was performed. Note 
also, as a curiosity, that the probabilities of 7-5- 1 -0 and 8-3-2-0 
are exactly equal. This may be verified by writing out their 
factorial expressions in full and comparing them. 

Table 2.4 Bridge: the probabilities of suit distributions 

Distribution Probabi lity Distribution Probability 

4-4-3-2 0.2)6 (2.2 X w-1> 8-2-2- 1 0.002 ( 1 .9 X w-3> 
5-3-3-2 0.)55 ( 1 .6 X w-1> 8 -3- 1 - 1 0.00) ( 1 .2 X w-3> 
5-4-3- 1 0. 1 29 ( 1 .3 X w-1> 7- 5 - 1 -0 0.00 1 ( J . J  X w-3> 
5 -4-2-2 0.)06 ( J . J  X w-1> 8-3-2-0 0.00 1 ( 1 . 1  X w-3> 
4-3-3-3 0.)05 ( 1 . 1  X w-1> 6-6- 1 -0 o.oo 1 (7.2 x w-4) 

6-3-2-2 0.056 (5 .6 X w-2> 8 -4- 1 -0 o.ooo (4.5  x w-4) 
6-4-2- 1 0.047 (4.7 X w-2> 9-2- 1 - 1 o.ooo ( 1 . 8 x w-4) 
6-3-3- 1 0.034 (3.4 X w-2> 9-3- 1 -0 o.ooo < 1 .0 x w-4) 
5-5-2- 1 0.032 (3.2 X w-2> 9-2-2-0 0.000 (8.2 X J0-5) 
4-4-4- 1 0.030 (3.0 X w-2> 7-6-0-0 0.000 (5 .6 X J 0-5) 

7-3-2- 1 0.0)9 ( 1 .9 X w-2> 8-5-0-0 0.000 (3.) X J 0-5) 
6-4-3-0 0.0)3 ( 1 .3 X w-2> 1 0-2- 1 -0 0.000 ( 1 . 1  X J 0-5) 
5 -4-4-0 0.0)2 ( 1 .2 X 1 0-2> 9-4-0-0 o.ooo (9.7 x 1 0-6) 
5 - 5 -3-0 0.009 (9.0 X 1 0-3> 1 0- 1 - 1 - 1 o.ooo (4.o x w-6) 
6-5- 1 - 1 0.007 (7.) X w-3> 1 0-3-0-0 o.ooo ( 1 . 5  x 1 0-6) 

6-5 -2-0 0.007 (6.5 X 1 0-3> 1 1 - l - l -0 o.ooo (2. 5 x 1 0-7) 
7-2-2-2 0.005 (5.) X 10-3> 1 1 -2-0-0 o.ooo ( I .  I x 1 0-7) 
7-4 1 -1 0.004 (3.9 X 10-3> 1 2- 1 -0-0 o.ooo (3.2 x 1 0-9) 
7-4-2-0 0.004 (3.6 X 1 0-3> 13-0-0-0 o.ooo (6.3 x 1 0-12) 
7-3-3-0 0.003 (2.7 X 1 0-3> 
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Table 2.4 shows that the probability of a 13-0-0-0 distribution is 
approximately 6 .3 X I0-12• The probability that a l l  four hands have 
this distribution can be calculated similarly, and proves to be 
approximately 4 .5  x 10 - 28• Now if an event has a very smal l  probability 

p, it is necessary to perform approximately 0.7/p trials in order to 
obtain an even chance of its occurrence. 2  A typical evening's bridge 
comprises perhaps twenty deals, so a once-a-week player must play 
for over one hundred million years to have an even chance of receiving 
a thirteen-card suit. If  ten mill ion players are active once a week, a 
hand containing a thirteen-card suit may be expected about once every 
fifteen years, but it is sti l l  extremely unlikely that a genuine deal wi l l  
produce four such hands. 

Shuffie the pack and deal again 
So far, we have assumed the cards to have been dealt at random, 
each of the possible distributions being equally l ikely irrespective 

of the previous history of the pack .  The way in  which previous history 
is destroyed in practice is by shuffling, so it is appropriate to have a 
brief look at this process. 

Let us restrict the pack to six cards for a moment, and let us 
consider the shuffle shown in Figure 2 . 1 .  The card which was in 
position I has moved to position 4, that which was in position 4 has 
moved to posi tion 6, and that which was in position 6 has moved to 
position I. So the cards in positions I, 4, and 6 have cycled among 
themselves . We call this movement a three-cycle, and we denote it by 
( 1 ,4,6) . Similarly, the cards in positions 2 and 5 have interchanged 
places, which can be represented by the two-cycle (2,5),  and the card 

in position 3 has stayed put, which can be represented by the one-cycle 
(3). So the complete shuffle is represented by these three cycles. We 
call this representation hy disjoint cycles, the word 'disjoint' signifying 
that no two cycles involve a common card . A similar representation 
can be obtained for any shuffle of a pack of any size. If  the pack 
contains n cards, a particular shuffle may be represented by anything 
from a single n-cycle to n separate one-cycles. 

Now let us suppose for a moment that our shuffle can be represented 
by the single k-cycle (A ,B.C. . . . ,K), and let us consider the card at 
position A. If we perform the shuffle once, we move this card to 

2 This is a consequence of the Poisson dist ribution, which we shall meet in Chap
ter 4. 
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2 3 4 5 

Figure 2. 1 A shuffle of six cards 

6 

position B; if we perform the same shuffle again, we move it on to C; 
and if we perform the shuffle a further (k - 2) times, we move it the 
rest of the way round the cycle and back to A .  The same is plainly 
true of the other cards in the cycle, so the performance of a k-cycle 
k times moves every card back to its original position. More generally, 
if the representation of a shuffle by disjoint cycles consists of cycles 
of lengths a,b, . . .  ,m, and if p is the lowest common multiple (LCM) 
of a,b, . . .  ,m, then the performance of the shuffle p times moves every 
card back to its starting position. We call this value p the period of 
the shuffle. 

So if  a pack contains n cards, the longest period that a shuffle can 
have may be found by considering all the possible partitions of n and 
choosing that with the greatest LCM . For packs of reasonable size, 
this is not difficult, and the longest periods of shuffles of all packs not 
exceeding 52 cards are shown in Table 2 .5 .  In particular, the longest 
period of a shuffle of 52 cards is 1 80 I 80, this being the period of a 
shuffle containing cycles of lengths 4, 5, 7, 9, I I , and 1 3 .  These six 
cycles involve only 49 cards, but no longer cycle can be obtained by 
involving the three remaining cards as well; for example, replacing 

the 1 3-cycle by a 1 6-cycle would actually reduce the period (by a 
factor 1 3/4). So all that we can do with the odd three cards is to 
permute them among themselves by a three-cycle, a two-cycle and a 
one-cycle, or three one-cycles, and none of these affects the period of 
the shuffle. According to Martin Gardner, this calculation seems first 
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Table 2.5 The shuffles of  longest period 

Pack 
size 

2 
3 
4 
5-6 
7 
8 
9 

10-11 
12-13 
14 
15 
1 6  
17-18 
1 9-22 
23-24 
25-26 
27 
28 
29 
30-31 
32-33 
34-35 
36-37 
38 39 
40 
41 
42 
43-46 
47-48 
49 52 

Longest 
period 

2 
3 
4 
6 

12 
1 5  
20 
30 
60 
84 

105 
140 
210 
420 
840 

1260 
1540 
2310 
2520 
4620 
5460 
9240 

13860 
16380 
27720 
30030 
32760 
60060 

120120 
180180 

Component 
cycles 

2 
3 
4 
2, 3 
3, 4 
3, 5 
4, 5 
2, 3, 5 
3, 4, 5 
3, 4, 7 
3, 5, 7 
4, 5, 7 
2, 3, 5, 7 
3, 4, 5, 7 
3, 5, 7, 8 
4, 5, 7, 9 
4, 5, 7, II 
2, 3, 5, 7, II 
5, 7, 8, 9 
3, 4, 5, 7, II 
3, 4, 5 , 7,13 
3, 5, 7, 8, II 
4, 5, 7, 9, II 
4, 5, 7, 9, 1 3  
5 ,  7, 8 ,  9, II 
2, 3, 5, 7, II, 1 3  
5 , 7, 8 , 9, 13 
3, 4, 5, 7, II, 1 3  
3, 5 ,  7 ,  8 ,  II, 1 3  
4 ,  5 ,  7 ,  9 ,  II, 1 3  

t o  have been performed b y  W.  H .  H .  Hudson in 1 865 (Educational 
Times Reprints 2 1 05).  

But 1 80 1 80 is merely the longest period that a shuffle of a 52-card 
pack can possess, and it does not follow that performing a particular 
shuffle 1 80 1 80 times brings the pack back to its original order. For 
example, one of the riffle shuffles which we shall consider later in the 
chapter has period 8. The number 8 is not a factor of 1 80 1 80, so 
performing this shuffle 1 80 1 80 times does not restore the pack to its 
original order. To guarantee that a 52-card pack is restored by 
repetiton of a shuffle, we must perform it P times, where P is a 
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common multiple of all the numbers from I to 52 inclusive. The 
lowest such multiple is 

25 X 33 X 52 X 72x I I  X 13 X 17 X 1 9x 23 X 29 X 31 X 37 x41 x43 x47, 

Nhich works out to 3 099 044 504 245 996 706 400. 
This is all very well, and not without interest, but the last thing 

that we want from a practical shuffle is a guarantee that we shall get 
back where we started. Fortunately, it is so difficult to repeat a shuffle 
exactly that such a guarantee would be almost worthless even if we 
were able to shuffle for long enough to bring it into effect. Nevertheless, 
what can we expect in practice? 

If we do not shuffle at all , the new deal exactly reflects the play 
resulting from the previous deal .  In a game such as bridge or whist, 
for example, the play consists of 'tricks'; one player leads a card, and 
each of the other players adds a card which must be of the same suit 
as the leader's if possible. The resulting set of four cards is collected 
and turned over before further play. A pack obtained by stacking 
such tricks therefore has a large amount of order, in that sets of four 
adjacent cards are much more likely to be from the same suit than 
would be the case if the pack were arranged at random. If we deal 
such a pack without shuffling, the distribution of the suits around the 
hands will be much more even than would be expected from a random 
deal .  

A simple cut (Figure 2 .2) merely cycles the hands among the players; 
it does not otherwise affect the distribution. 

�1 ::>-<::::�--I ---; 
Figure 2.2 A cut 

Overhand shuffles (Figure 2 .3 )  move the cards in blocks. They 
therefore break up the ordering to some extent, but only a few 
adjacencies are changed, and the resulting deals are still somewhat 
more likely to produce even distributions than a random deal. 
Overhand shuffles also provide the justification for the bridge player's 
rule that if  no better guide is to hand then a declarer should play for 
a hidden queen to lie over the jack; if the queen covered the jack in 
the play of the previous hand, overhand shuffling may well have failed 
to separate them. 
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[I . 

Figure 2.3 Overhand shuffles 

Riffle shuffles (Figure 2 .4) behave quite differently. If performed 
perfectly, the pack being divided into two exact halves which are then 

interleaved, they change all the adjacencies but produce a pack in 
which two cards separated by precisely one other have the properties 
originally possessed by adjacent cards. If the same riffle is performed 
again, cards separated by precisely three others have these properties. 
If we stack thirteen spades on top of the pack, perform one perfect 

riffle shuffle, and deal ,  two partners get all the spades between them. 
If we do the same thing with two riffles, one player gets them all to 
himself. If we do it with three riffles, the spades are again divided 
between two players, but this time the players are opponents. What 

happens with four or more riffles depends on whether they are 'out' 
riffles (Figure 2.4 left, the pack being reordered I ,27 ,2 ,28,  . . .  ,26,52) 
or 'in' riffles (Figure 2 .4 right, the reordering of the pack now being 
27, 1 ,28,2, . . .  , 52,26). The 'out' riffle has period 8 ,  and produces 

27 I 27 
2 28 2 28 
3 29 3 29 
4 30 4 30 

25 51 25 51 
26 52 26 52 

Figure 2.4 Riffle shuffles 
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4-3-3-3 distributions of the spades if between four and eight riffles are 
used. The ' in'  riffle has period 52 and produces somewhat more uneven 
distributions after the fifth riffle, but 26 such riffles completely reverse 
the order of the pack. 

Fortunately, it is quite difficult to perform a perfect riffle shuffle. 
Expert card manipulators can do it, but such people are not usually 
found in friendly games; perhaps i t  is as well .  It is nevertheless clear 
that small numbers of riffles may produce markedly abnormal 
distributions. In sufficiently expert hands, they may even provide a 
practicable way of obtaining a 'perfect deal' which delivers a complete 
suit to each player. New packs from certain manufacturers are usually 
arranged in suits, and if a card magician suspects such an arrangement, 
he can unobtrusively apply two perfect riffles to a pack which has just 
been innocently bought by someone else and present it for cutting and 
dealing. If the pack proves not to have been arranged in suits, or if 
somebody spoils the trick by shuffling the pack separately, the magician 
keeps quiet, and nobody need be any the wiser; but if the deal 
materializes as intended, everyone is at least temporarily amazed.  

From the point of view of practical play, however, the unsatisfactory 
behaviour of the overhand and riffle shuffles suggests that every shuffle 
should include a thorough face-down mixing of cards on the table. If 
local custom frowns on this, so be it ,  but shuffles performed in the 
hand are unlikely to be fully effective. 
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THE LUCK O F  THE D I E  

Other than cards, the most common media for controlling games of 
chance are dice. We look at some of their properties in this chapter. 

Counting again made easy 
Although most modern dice are cubic, many other forms of dice exist. 
Prismatic dice have long been used (see for example R. C. Bell, Board 
and table games from many civilisations, Oxford, 1 960, or consider the 
rolling of hexagonal pencils by schoolboys); so have teetotums 
(spinning polygonal tops) and sectioned wheels; so have dodecahedra 
and other regular solids; and so have computer-generated pseudo
random numbers. Examples of all except the last are shown in Figure 
3 . 1 .  The simplest dice of all are two-sided, and can be obtained from 
banks and other gambling supply houses. We start by considering 
such a die, and we assume initially that each outcome has a probability 
of exactly one half. 

We now examine the fundamental problem: If we toss a coin n 
times, what is the probability that we obtain exactly r heads? 

If we toss once, there are only two possible outcomes, as shown in 

Figure 3.2 (upper left). Each of these outcomes has probability 1 /2. 
If we toss twice, there are four possible outcomes, as shown in 

Figure 3 .2  (lower left). Each of these outcomes has probability 1 /4. 
The numbers of outcomes containing 0, I ,  and 2 heads are I ,  2, and 
I respectively, so the probabili ties of obtaining these numbers of heads 
are 1 /4, 1 /2, and 1 /4 respectively. 

If we toss three times, there are eight possible outcomes, as shown 
in Figure 3.2 (right). Each of these outcomes has probability 1 /8 .  The 
numbers of outcomes containing 0, I ,  2 ,  and 3 heads are I ,  3 ,  3,  and 
I respectively, so the probabilities of obtaining these numbers of heads 
are 1 /8,  3/8, 3/8, and 1 /8 respectively. 
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Figure 3.1 Some typical dice 

These results exemplify a general pattern. If we toss n times, there 
are 2" possible outcomes. These range from TT . . .  T to HH . . .  H, 
and each has probability 1 /2". However, the number of outcomes 
which contain exactly r heads is equal to the number of ways of 
selecting r things from a set of n, and we saw in the last chapter that 
this is  (",). So the probability of obtaining exactly r heads is (",)/2" . 

Now let us briefly consider a two-sided die in which the probabilities 
of the outcomes are unequal . Such dice are not unknown in practical 
play; Bell cites the use of cowrie shells, and the first innings in casual 
games of cricket during my boyhood was usually determined by the 
spinning of a bat. The probabi lity of a 'head' (or of a cowrie shell 
fal l ing with mouth upwards, or a bat falling on its face) is now some 
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One coin Heads Three coins Heads 

0 0 000 0 

0 000 
Two coins Heads 000 

00 0 000 2 

00 000 
00 000 2 

00 2 000 2 

000 3 

Figure 3.2 Tossing a coin 

number p rather than I /2, and the probability of a 'tail' is accordingly 
( 1 -p).  Now suppose that a particular sequence HTHT . . . of n tosses 
contains r heads.  The probability of each head is p and that of each 
tail is ( I - p), so the probability that we obtain precisely this sequence 
is p'( l -p)"- '. But there are (",) sequences of n tosses which contain r 
heads, so the probability that we obtain exactly r heads from n tosses 
is (",)p'( l -p)" - '. 

This important distribution is known as the binomial distribution . 
We shall meet it again in Chapter 4.  

The true law of averages 
Mathematicians know that there is no such thing as the popular 'law 
of averages'. Events determined by chance do not remember previous 
results so as to even themselves out. For example, if we toss a coin a 
hundred times, we cannot expect always to get exactly fifty heads and 
fifty tails .  What can we expect instead? 
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It is  proved in textbooks on statistics that for large even n, the 
probability of getting exactly n/2 heads from n tosses is approximately 
v(2/n7T) . This approximation always overestimates the true probabi lity, 
but the relative error is only about one part in 4n. This is good enough 
for most purposes. 

But of greater interest than the number of exactly even results is 
the spread around this point. This is conveniently measured by the 
standard deviation} To calculate it from the definition becomes 
tedious as n becomes large, but there are two convenient short cuts. 
The first is to appeal to a theorem relating to the binomial distribution, 
which states that the standard deviation of such a distribution is 
v { np( I - p) } .  In the present case, p = I /2, so the standard deviation is 
y'(n/4) . The second is  to appeal to an important general theorem known 
as the Central Limit Theorem, which tells us rather more about the 
distribution than just its standard deviation. 

The Central Limit Theorem states that if  we take a repeated sample 
from any population with mean m and standard deviation s, the sum 
of the sample approaches a distribution known as the 'normal' 
distribution with mean mn and standard deviation sy'n. The normal 
distribution N(x) with mean 0 and standard deviation I is  shown in 
Table 3 . 1 ,  and if we have a number from a normal distribution with 
mean mn and standard deviation sy'n, the probability that it is less than 
a particular value y can be obtained by setting x to (y - mn)fsy'n and 
looking up N(x) in the table. 

Table 3 . 1 is very useful as an estimator of coin tosses; provided 
that we toss at least eight times, it tel ls  us the probabil ity of obtaining 
a number of heads within any given range with an error not exceeding 
0.0 1 .  Suppose that we want to find the approximate probabi l ity that 
tossing a coin a hundred times produces at least forty heads .  The act 
of tossing a coin is equivalent to taking a sample from a population 
comprising the numbers 0 (tail) and I (head) in  equal proportions. 
The mean of such a population is clearly 1 /2,  and the deviation of 
every member from this mean is ± 1 /2,  so the standard deviation is 1 /2 .  
Tossing a hundred coins and counting the heads is equivalent to 
taking a sample of a hundred numbers and computing the sum, so if 
we want at least 40 heads (which means at least 39 .5, since heads 

1 The standard deviation of a set is the root mean square deviation about the mean. 
If a set of n numbers x1 • • •  x. has mean m, its standard devia tion s is given by the 
formula s=v({(x1 - m)' + . . .  +(x.-m)')Jn). The standard deviation does not tell us 
everything about the distribution of a set of numbers; in particular, it does not tell us 
whether there are more values on one side of the mean than on the other. Nevertheless, 
it is a useful measure of the general spread of a set. 
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Table 3. l The standard normal distribution 

X N(x) X N(x) X N(x) X N(x) 

-3.0 0.00 1 - 1 .5 0.067 0.0 0. 500 1 .5 0.933 
-2.9 0.002 - 1 .4 0.081 0. 1 0. 540 1 .6 0.945 
-2.8 0.003 -1.3 0.097 0.2 0. 579 1 .7 0.955 
-2.7 0.003 - 1 .2 0. 1 1 5  0.3 0.6 1 8  1 . 8 0.964 
-2.6 0.005 -1. 1 0. 1 36 0.4 0.655 1 .9 0.97 1 

-2. 5  0.006 - 1 .0 0. 1 59 0 .5 0.69 1 2.0 0.977 
-2.4 0.008 -0.9 0. 1 84 0.6 0.726 2. 1 0.982 
-2.3 0.0 1 1 -0.8  0.2 1 2  0.7 0.758 2.2 0.986 
-2.2 0.0 1 4  -0.7 0.242 0.8 0.788 2.3 0.989 
-2. 1 0.0 1 8  -0.6 0.274 0.9 0.8 1 6  2.4 0.992 

-2.0 0.023 -0.5 0.309 1 .0 0.84 1 2 .5  0.994 
-1 .9 0.029 -0.4 0.345 1 . 1  0.864 2.6 0.995 
- 1 . 8  0.036 -0.3 0.382 1 .2 0.885 2 .7 0.997 
- 1 .7 0.045 -0.2 0.42 1 1 .3 0.903 2.8 0.997 
- 1 .6 0.055 -0. 1 0.460 1 .4 0.9 1 9  2.9 0.998 

- 1 . 5  0.067 0.0 0.500 1 . 5 0.933 3.0 0.999 

For lxl;;:: 3 .3, N(x) may be taken as 0 or I as appropriate. More accurate 
tables can be found in standard compilations such as Statistical tables for 
biological, agricultural and medical research by R. A. Fisher and F. Yates 
(Longman, sixth edition reprinted 1982), but the values above are sufficient 
for present purposes. 

come in whole numbers) , we want the sum of the sample to be at 
least 39 .5 .  But the distribution of this sum is approximately a normal 
distribution with mean n/2 =50 and standard deviation v n/2 = 5, so we 
can obtain an approximate answer by looking up Table 3 . 1  with 
x=(39 .5 - 50)/5 .  This gives x= - 2. 1 ,  whence N(x) �O.O l 8 . Similarly, 

the probability that we get at most 60 heads (which means at 
most 60. 5) is obtained by setting x=(60. 5 - 50)/5 = + 2. 1 ,  whence 
N(x) �0 . 982. So the probability that we get between forty and sixty 
heads inclusive is approximately (0.982 - 0.0 1 8), which rounds off to 
0.96. We may not get fifty heads exactly, but we are unlikely to be 
very far away. 

We can take this line of argument a l ittle further. If we calculate 

the probability of obtaining between 47 and 53 heads inclusive, we 
find that it is approximately 0 .52 ,  so even this small target is more 
likely to be achieved than not. More generally, it is clear from Table 
3 . 1 that N(x) takes the values 0 .25 and 0 .  75  at approximately x = ± 0.67; 
in other words, the probability that a sample from a normal distribution 
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lies within ± 0.67 standard deviations from the mean is about 0 .5 .  The 
standard deviation of n tosses is vn/2, so we can expect to be within 
vn/3 heads of an exactly even result about half the time.2 

How random is a toss? 
In the previous chapter, we questioned the randomness of practical 
card shuffling. Is the tossing of a coin l ikely to be any better? 

The final state of a tossed coin depends on two things: its flight 
through the air, and its movement after landing. Let us look first at 
the flight. Consciously to bias the result of a toss by controlling the 
flight amounts to trying to predetermine the precise number of 
revolutions that the coin makes in the air, and this appears to be very 
difficult. I know of no experimental work on the subject, but a good 
toss should produce at least fifty revolutions of the coin, and it seems 
very unlikely that a perceptible bias can be introduced in such a toss. 
If the number of revolutions can be regarded as a sample from a 
normal distribution, even a bias as small as one part in ten thousand 
cannot be introduced unless the standard deviation is less than three 
quarters of a revolution. The true distribution is l ikely to differ slightly 
from normality and the bias may therefore be somewhat larger, but 
I still doubt if a bias exceeding one part in a thousand can be 
introduced in a spin of fifty revolutions. 

The movement after landing is a much more likely cause of bias. 

Either an asymmetric mass or a bevelled edge may be expected to 
affect the result. The bias of a coin is unlikely to be large, but cowrie 
shells and cricket bats may well show a preference for a particular 
side. 

But any bias that does exist can be greatly reduced by repetition. 
Suppose that the actual probability of a head is (I + £)/2 instead of 
1 /2 .  If we toss twice, the probability of an even number of heads is 
now (I + £2)/2; if we toss four times, it is (I + £4)/2; and so on. 
Doubling the number of tosses and looking for an even number of 
heads squares the bias term £. 

This is highly satisfactory. Let the probability of a head be 0 .55 ,  
which is greater than anyone would assert of a normal coin; then the 
probabi lity of an even number of heads from four tosses is only 

2 No, 0.67 doesn't represent two thirds; a more accurate calculation would revise it 
to 0.67449. But 'half a normal distribution lies within two thirds of a standard deviation 
from the mean' is a sufficient rule of thumb for many purposes. 
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0.50005. Even if the probabi lity of a head is an utterly preposterous 
0.9, we need only 42 tosses to bring the probabi lity of an even number 
of heads below 0. 50005.  

We conclude that a well-tossed coin should be a very effective 
randomizer indeed. 

Cubic and other dice 
We now turn to the other dice mentioned at the start of the chapter, 
and we start by considering the standard cubic die. If such a die is 
unbiased, each face has a probabil ity of 1 /6 .  

In itself, a cubic die is a less satisfactory randomizer than a coin. 
It certainly produces a greater range of results from a single throw, 
but the probabilities of these results are more l ikely to be unequal. 
Because i t  has more faces, the difficulties of accurate manufacture are 
greater; a classic stati stical analysis by Weldon ( 1 904) showed that his 
dice appeared to be biased, and a brief theoretical analysis by Roberts 
('A theory of biased dice', Eureka 18 8- 1 1 , 1 955) showed that about 
a third of the bias observed in his own dice could be explained by the 
effect of asymmetric mass on the final fall. Roberts did not consider 
the effect of asymmetric mass on previous bouncing, and a complete 
analysis would undoubtedly be very difficult. Furthermore, the throw 
may easily introduce a bias. Any reasonably strong spin of an unbiased 
coin gives the two outcomes an acceptably even chance, but if a die 
is spun so that one face remains uppermost, or rolled so that two 
faces remain vertical, the outcomes are by no means of equal 
probability. Dice cheats have been known to take advantage of this. 

In the last section, we saw that the bias of a coin can be reduced 
by tossing the same coin several times and looking for an even number 
of heads. A similar technique can be applied to a cubic die; we can 
throw the same die m times, add the results, divide by six, and take 
the remainder. If the individual outcomes have probabilities bounded 
by ( I ± E)/6 and the throw can be neglected as source of bias, it can be 
shown that the remainders have probabilities bounded by ( I  ± E"')/6. But 
this procedure is not proof against malicious throwing, since a cheat 

with an interest in a particular remainder can bias his final throw 
accordingly. 

Similar analyses can be applied to general polyhedral dice, to 
prismatic dice, and to teetotums and sectioned wheels. Dodecahedral 
and other polyhedral dice are even more difficult to manufacture 
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accurately than cubic dice, and the problem of biased throwing 
remains. Prismatic dice are also difficult to manufacture accurately, 
and teetotums and sectioned wheels are more difficult still, because it 
is necessary not only to build an accurate polygon or wheel but to 
locate the axis of spin exactly at its centre; but prismatic dice, 
teetotums, and sectioned wheels al l  avoid the problem of biased 
throwing, since a reasonably strong roll or spin is as difficult to bias 
as a toss of a coin.  Allegations of cheating at roulette always relate 

to the construction of the wheel or to deliberate interference as it 
slows down, not to the initial strength of the spin.  

All this being said, the performance of any n-sided die can be 
improved by throwing it m times, dividing the total by n, and taking 
the remainder. If the original outcomes have probabilities bounded 

by (I ± £)/n and the throw can be neglected as source of bias, the 
remainders have probabilities bounded by (I ± "m)jn. 

The arithmetic of dice games 
In principle, the analysis of a dice game is just a matter of counting 
probabi l i ties; the ari thmetic may be tedious, but it is rarely difficult. 
We content ourselves with a few instructive cases . An unbiased cubic 
die is assumed throughout. 

(a) The winner of a race game 

We start with a fundamental question.  If the player due to throw next 
in a single-die race game is y squares from the goal and his opponent 
is z squares from it, what are his chances of winning? 

When we considered a large number of tosses of a coin ,  we found 
that the Central Limit Theorem gave quick and accurate answers. It 
does so here as well .  The relevant factors are as follows. 

(i) The average distance moved by a throw is 7/2 squares, and the 
point midway between the players is now (y+ z)/2 squares from the 
goal .  So after a total of 2(y + z)/7 throws, half by each player, we can 
expect this midpoint to be approximately at the goal .  The probability 
that a player is ahead after this number of throws is therefore l ikely 
to be a reasonable approximation to the probability that he wins. 

( i i) The standard deviation of a single throw is v(35/ 1 2), so the 
spread of results after n throws can be estimated by considering a 
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normal distribution with standard deviation v(3 5n/ 1 2) .  If n = 2(y + z)/7, 
this standard deviation becomes v { 5(y + z)/6 } . 

(i i i) The advantage of the throw is worth half the average distance 
moved, so the true advantage of the player due to throw next is 
(z - y + 7/4) . 

So we want to find the probabi lity that the player's opponent fails 
to gain (z - y + 7/4) squares in 2(y + z)/7 moves, and this can be 
estimated by setting x to (z - y + 7 /4)/ v { 5(y + z)/6} and looking up 
N(x) in Table 3 . 1 .  Detai led calculation shows that this formula yields 
an answer with an error of less than 0.0 1 provided that each player 
is at least ten squares from the goal. 

And just as when tossing coins, we can draw conclusions which are 
perhaps surprising. If, being a hundred squares from the goal, you 
are a mere four squares behind and it  is your opponent's throw, would 
you rate your chances as worse than two to one against? You should. 
Even the advantage of the throw itself is appreciable. If x is small, 
N(x) can be shown to be approximately 0.5 + xf v (27T), so if  two players 
are the same distance y from the goal, the probability that the player 
who is due to throw next will win is approximately 0.5 + v( 1 47/ 1 607Ty). 
Set y = 25, and this is greater than 0.6; set y = I 00, and it is still greater 
than 0.55 .  

(b) The probability of climbing a ladder 

In practice, race games are usually 
'
spiced in some way: by forced 

detours, short cuts, bonuses, and penalties. The best known game of 
this type is 'snakes and ladders' ,  in which a player who lands on the 
head of a snake slides down to its tai l ,  and a player who lands at the 
foot of a ladder climbs up it .  A simple question is now: given that 
there is a ladder I squares ahead, what is the probability that we shall 
climb it? Our concern is only with the immediate future, and we ignore 
the possibility that the ground may be traversed again later in the 
game. 

Table 3 .2  gives the answer, both where there is no intervening snake 
(left-hand column) and where there is a single snake s squares in front 
of the ladder.  This table shows several interesting features . Even the 
peak at I= 6 in the first column may seem surprising at first sight, 
though a little reflection soon explains it :  if we are six squares away 
and miss with our first throw, we must get another try. No other 
square guarantees two tries in this way. 
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Table 3.2 Snakes and ladders: the probabi lity of climbing a ladder 

Square s occupied by snake 

2 3 4 5 6 7 8 9 10 

I 0. 1 7  0. 1 7 0.17 0. 1 7  0.17 0.17 0.17 0.17 0. 1 7  0. 1 7  
2 0. 1 9  0.17 0.19 0.19 0.19 0. 1 9  0. 1 9  0. 1 9  0.19 0. 1 9  
3 0.23 0. 1 9  0. 1 9  0.23 0.23 0.23 0.23 0.23 0.23 0.23 
4 0.26 0.23 0.23 0.23 0.26 0.26 0.26 0.26 0.26 0.26 
5 0.3 1 0.26 0.26 0.26 0.26 0.31 0.31 0.31 0.3 1 0.3 1 

6 0.36 0.3 1 0.31 0.31 0.31 0.31 0.36 0.36 0.36 0.36 
7 0.25 0.19 0.19 0.19 0. 1 9  0.19 0.19 0.25 0.25 0.25 
8 0.27 0.23 0.20 0.20 0.20 0.20 0.20 0.23 0.27 0.27 
9 0.28 0.24 0.23 0.20 0.20 0.20 0.20 0.23 0.24 0.28 

10 0.29 0.24 0.24 0.23 0. 1 9  0.19 0.19 0.23 0.24 0.24 

1 2  0.29 0.24 0.23 0.23 0.22 0.21 0.16 0.2 1 0.22 0.23 0.23 
14 0.28 0.24 0.23 0.22 0.21 0.20 0. 1 9  0.22 0.19 0.20 0.21 
16 0.29 0.24 0.23 0.22 0.21 0.20 0.18 0.22 0.22 0.22 0. 1 8  
18 0.29 0.24 0.23 0.22 0.21 0.20 0.18 0.21 0.21 0.21 0.2 1 
20 0.29 0.24 0.23 0.22 0.21 0.20 0.18 0.21 0.21 0.20 0.20 

CX) 0.29 0.24 0.23 0.22 0.21 0.20 0.18 0.21 0.2 1 0.20 0.20 

But it is the effect of the snakes that provides the greatest interest. 
It might seem that a snake immediately in front of the ladder (s = I )  
would provide the greatest obstacle, yet i n  fact i t  provides the least; 
a snake six squares in front is much more difficult to circumvent 
without missing the ladder as well .  Even a very distant snake is a 
better guard than a snake within four squares of the ladder. Because 
the average distance moved by a throw is 7/2, the chance that we 
land on a particular square having come from a distance is ap
proximately 2/7. So if we start at a sufficient distance beyond such a 
snake, the probability that we survive it is approximately 5/7, and 
the approximate probability that we hit the ladder in spite of it is 
therefore I 0/49 . This rounds to 0 .20 .  

Indeed, if we come from a great distance, a single snake at s = 6 is 
actually a better guard than a pair of snakes together at s= I and 
s = 2 .  In the absence of the snakes, our chance of hitting the ladder 

would be 2/7. In the presence of snakes at s =  I and s = 2 (Figure 3 . 3), 
we can hit the ladder only by throwing a three or above, which reduces 
our chances by a third .  This gives 4/2 1 ,  which rounds to 0. 1 9 . A 
single snake at s = 6  instead (Figure 3 .4) reduces the probability of 

success to 0. 1 8 . 
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Figure 3.3 Snakes and ladders: an apparently good guard 

� I  

Figure 3.4 Snakes and ladders: an even better guard 

It is also curious that if we are within seven squares of the ladder 
and there is a single intervening snake, the probability of hitting the 
ladder is independent of the position of the snake. Yet a simple 
investigation shows why. The case I= 4 is typical .  In the absence of 
an intervening snake, the successful throws and combinations are 4, 
3- 1 ,  2-2,  1 - 3 ,  2- 1 - 1 ,  1 -2- 1 ,  1 - 1 -2,  and 1 - 1 - 1 - 1 .  Every combination 
containing the same number of throws is equally likely; for example, 
each of the combinations 3- 1 ,  2-2, and 1 -3 has probability 1 /36 .  
A single snake, whatever i ts  position, knocks out  one two-throw 
combination, two three-throw combinations, and the four-throw 
combination; so each possible snake reduces the probability of success 
by the same amount. 

(c) Throwing an exact amount 

Many games require a player to throw an exact amount. For example, 
a classic gambling swindle requires the punter to bet on the chance 
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of obtaining a double six within a certain number of throws. The 
probability of obtaining a double six on a particular throw is 1 /36, 
so it  might seem that 1 8  throws would provide an even chance. 
Anybody who bets on this basis loses heavi ly. The probabi lity of not 
getting a double six in 1 8  throws is (35/36) 1 8 , which is greater than 
0.6 .  Even with 24 throws, the odds are slightly against the thrower; 
25 throws are needed before his chances exceed evens. 

Even with only one die, a particular number may take a long time 
to materialize. Suppose that we need to throw a six, as the rules of 
family games frequently demand. More often than not, we succeed 
within four throws, but longer waits do happen. On one occasion in 
five, we must expect not to have succeeded within eight throws; on 
one occasion in ten, not within 1 2  throws; and on one occasion in a 
hundred, not even within 25 throws. This is an excellent recipe for 
childish tears, and parents may be well advised to modify the rules 
of games which make this demand. 

Simulation by computer 
There is one form of die that we have not yet considered : the use of 
a sequence of computer-generated ' random' numbers. This is a 
specialized subject, but a brief mention is appropriate. Such a sequence 
can also be used to shuffle a card pack , and it is convenient to consider 
both topics together. 

Computers behave very differently from humans. The success of 
conventional dice rests on the fact that humans cannot repeat 

complicated operations exactly. Computers can, and do. In fact the 
correct term for most computer-generated 'random' numbers is 
'pseudo-random', since each number is obtained from its predecessors 
according to a fixed rule. The numbers are therefore not truly random, 
and the most for which we can hope is that their non-randomness be 
imperceptible in practice. 

A typical computer generator is based on a formula which produces 
a sequence of integers each lying between 0 and M - I inclusive, where 
M is a large positive integer called the modulus of the generator. Each 
integer is then divided by M to give a fraction lying between 0 and 
0.999 . . .  , and this fraction is presented to the user as an allegedly 
random number. What happens next depends on the application. If 
we want to simulate an n-sided die, we multiply the fraction by n, 
take the integer part of the result, and add I. This gives an integer 
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between I and n inclusive. If we want to shuffle a card pack, we lay 
out the pack in  order, obtain a first number from the basic sequence, 
convert i t  to an integer i52 between I and 52 i nclusive, and interchange 
card i52 with card 52; then we obtain a second number, convert it to 
an integer i51 between I and 5 1  inclusive, and interchange card i51 with 

card 5 1 ;  and so on all the way down to i2• 
The effectiveness of the generator is therefore completely determined 

by the basic sequence of integers . In the simplest generators, this 
sequence is produced by what is known as the ' l inear congruential' 
method: to obtain the next member, we multiply the current member 
by a large number A, add a second large number C, divide the result 
by M, and take the remainder. Provided that A, C, and M are suitably 
chosen, i t  is possible to guarantee that every number from 0 to M- I 
occurs in the long run with equal frequency, and this ensures that the 
resulting fractions are evenly distributed between 0 and 0.999 . . .  (give 
or take the inevitable rounding errors) . 

However, straightforward linear congruential generators are just a 
little too simple to be used with confidence. There are always likely 
to be values of k such that sets of k successive numbers (or sets of 
numbers a distance k apart) are undesirably correlated, and analysis 
for one value of k throws very li ttle light on the behaviour of the 
generator for other values. It is therefore better to use a generator in 
which two or more l inear congruential sequences are combined . The 
simplest such generators are additive; the fractions from several 
generators are added, and the integral part of the result discarded. 
The constituent sequences should have different moduli , and no two 
moduli should share a common factor. 

An even better technique, though it  involves extra work, is to shuffle 
the numbers, using an algorithm due to MacLaren and Marsaglia. 
This algorithm involves two sequences: the sequence x whose values 
are actually presented to the user (and which may itself be an additive 
combination of separate sequences), and a second sequence s which 
is used only to reorder the first. Such a generator requires a buffer 
with space for b numbers from the x sequence, and the first b numbers 
must be placed in it before use. The action of obtaining a number 
now involves four steps: obtaining the next number from the s 

sequence, converting it into an integer between I and b inclusive, 
presenting to the user the number currently occupying this position 
in the buffer, and refilling this position with the next number from 
the x sequence. If possible, the buffer should hold several times as 
many numbers as are likely to be required at a time; when using the 
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numbers to shuffle a card pack, for example, a buffer size of at least 
256 is desirable. This algorithm is perhaps as good as can reasonably 
be expected; provided that the constituent sequences are sensibly 
chosen (in particular, that no two moduli share a common factor), it 
is very unlikely that the numbers will prove unsatisfactory. 

Whatever its type, a generator usually requires the user to supply 
an initial 'seed' value. If only one sequence is required, the value of 
the seed is unlikely to matter, but if  several sequences are required, 
each seed should be an independent random number (obtained, for 
example, by tossing a coin). If simply related numbers such as I ,  2, 3 
are used as seeds, the resulting sequences may be undesirably 
correlated . 

The generation of acceptably 'random' numbers by computer is a 
difficult task,  far more difficult than the bland description in a typical 
home computer manual might suggest. This discussion has been 
inevitably brief, and readers who desire further information should 
consult Seminumerical algorithms by D. E. Knuth (Addison-Wesley, 
1 980) or Chapter 1 9  of my own Practical computing for experimental 
scientists (Oxford, 1 988) .  



4 
TO E R R  I S  HUM A N  

I n  the two previous chapters, w e  considered games whose play was 
governed entirely by chance. We now look at some games which 
would be free from chance effects if they were played perfectly. In 
practice, however, play is not perfect, and our purpose in this chapter 
is to see to what extent imperfections of play can be regarded as 
chance phenomena. We shall look only at golf, association football, 
and cricket, but similar analyses can be applied to many other games. 

Finding a hole in the ground 
We start with golf, which is one of the simplest of all ball games. It  
is essentially a single-player game; a player has a ball  and some clubs 
with which to strike it, and his object is to get the ball into a target 
hole using as few strokes as possible. Competitive play is achieved by 
comparing separate single-player scores. 

Championship golf is usually played on a course with 1 8  holes. 
Each hole is surrounded by an area of very short grass (the 'green');  
between the green and the starting point is a narrow area of fairly 

short grass (the 'fairway') ;  and on each side of the fairway is an area 
of long grass (the ' rough') .  Also present may be sand traps ('bunkers'), 
bushes, trees, streams, lakes, spectators, and other obstacles . Four 
rounds over such a course make up a typical championship. 

Now let us look at the effects of human error and uncertainty. It 
is convenient to start by considering play on the green . A modern 
championship green may be very much smoother than that portrayed 
in Figure 1 . 2 ,  but the imperfection of the player's own action still 
introduces an element of uncertainty; from a typical distance, a few 
shots go straight in ,  most miss but finish so near to the hole that the 

next shot is virtually certain to succeed, and a few miss by so much 
that the next shot is li kely to fail  as well (Figure 4. 1  ) . A detailed 
analysis of muscle control might permit a distribution to be estimated, 
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Figure 4. 1 Golf: play near the hole 

but we shall not proceed to that level . Our point is that a player who 
has just arrived on the green can expect sometimes to take one more 
stroke, usually to take two, and occasionally to take three or even 
more. 

The play to the green is subject to a similar but greater scatter. If 
the green is within range, the player's objective is  to finish on it .  There 
is a definite probability that he does so, and a smaller probability that 
he even finishes sufficiently near to the hole to need only one stroke 
on the green instead of the two that are more usually required . There 

is even a very small probability that he goes straight into the hole 
from off the green. On the other hand, he may fai l  to finish on the 
green, in which case several things may happen: he may finish on the 
fairway, probably still within range of the green and perhaps sufficiently 
near to the hole to have a good chance of getting down in only two 
more strokes; he may finish in the rough or behind an obstacle, 
perhaps in a position from which he wil l  do well even to reach the 
green with his next shot (for the lie of a ball in the rough or among 
obstacles is very much a matter of luck even on a championship 
course); or he may finish in an unplayable position, perhaps in a lake 
or outside the boundaries of the course, in which case the rules compel 
him to accept a penalty and drop a new ball back at the position 
from which he has just played. This is an ignominy which occurs 
occasionally even in championship golf, and rather more frequently 
in the works of P. G.  Wodehouse. 

It would be very difficult to analyse the cumulative effect of these 
chance factors directly, so the most promising approach is to obtain 
some actual scores and calculate their standard deviation. But to 

obtain a suitable set of scores is not quite as easy as it might seem. 
The spread of a player's scores depends on his expertise, being greater 
for a novice than for a champion, and the rules of competitions are 
designed to select a winner and not to shed light on mathematical 
theories. So the best that can be done is to examine the scores of the 
leading players in a typical major championship, and to regard their 
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spread as a measure of the minimum spread that can be expected in 

practice. 
The 1 985 British Open Championship provides a suitable example. l 

This championship consisted of four rounds, and was contested by 
1 50 players. All played the first two rounds, those who scored 1 49 or 
better over two rounds continued into the third round, and those who 
scored 22 1 or better over three rounds played out the last round. This 
produced a total of 60 four-round scores, which are reproduced in 
Table 4. 1 .  

It may now seem that we can estimate the effect of chance factors 
on a player's score simply by averaging the standard deviation of each 
set of four scores, but there are several complications. The first, which 
is easily accommodated, is that the most appropriate average is not 
the mean but the root mean square. The second is that conditions 
during the four rounds were not the same; in particular, the weather 
on the second day was abnormally bad, and the average score in the 
second round was appreciably higher than those in other rounds. Any 
such differences will have introduced additional variation, and the 
easiest way of allowing for them is to subtract the average score for 
the round from each individual score before calculating each player's 
standard deviation. The conditions under which such a simple 
correction is valid are discussed in statistical textbooks; suffice i t  to 
say that the errors introduced by its use here appear to be negligible. 

The third complication is that the standard deviation of a sample 
of n units does not correctly estimate the standard deviation of the 
set from which it  is drawn; it underestimates it by a factor v { (n - I )/n } .  

A proof is outside the scope o f  this book ,  but a simple example i s  
instructive. Suppose that w e  have a set o f  numbers consisting o f  ones 
and zeros in equal probabi lity: heads and tails, i f  you like. We saw 
in the previous chapter that the standard deviation of such a set is 
1 /2 .  Now suppose that we estimate this standard deviation by drawing 
a sample of two units. Half the time, the sample contains a one and 
a zero, and its standard deviation is indeed I /2; but the rest of the 
time, the sample contains two equal numbers, and its standard 
deviation is 0. If we perform this operation repeatedly and form the 
root mean square of the resulting standard deviations, we obtain I /2 v2,  
which is an underestimate by a factor of v ( l /2) as predicted by the 
formula. Now what we have in Table 4. 1 is a sample of four scores 

1 There is no particular significance in this choice, nor in that of any other example 
in this chapter. I simply used the data that were most conveniently to hand. 
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Table 4.1 Golf: analysis of scores in the British Open Championship, 
1 985 

Rounds 
I 2 3 4 Total s60 SJx 

68 71 73 70 
70 75 70 68 
74 72 70 68 
64 76 72 72 
70 72 70 72 

282 1.9 2.3 
283 2.6 2.0 
284 3.1 2.6 
284 4.2 4.4 
284 0.5 0.9 

72 69 68 75 
68 71 70 75 
70 76 69 70 
69 71 74 71 
73 73 67 72 

284 3.3 3.7 
284 2.4 3.0 
285 2.6 2.1 
285 2.1 2.5 
285 2.8 2 .5  

76 68 74 68 286 
75 72 70 69 286 
72 75 70 69 286 
69 76 70 7 1  286 
71 74 68 73 286 

71 75 72 69 287 
74 74 69 70 287 
71 72 71 73 287 
70 71 71 75 287 
71 73 74 70 288 

72 72 73 7 1  288 
73 76 68 71 288 
71 78 66 73 288 
71 75 69 73 288 
68 76 77 68 289 

70 76 73 70 289 
72 76 71 70 289 
70 74 73 72 289 
73 72 72 72 289 
72 74 71 72 289 

5.0 4.9 
3.2 2.8 
2 .5 1 .8 
2.4 2.0 
2. 1 2.0 

2.3 1.7 
2.8 2.2 
0.7 1.3 
2.0 2.6 
2.0 1.9 

1.4 1.5 
3.1 2.5 
4.4 4.0 
2.0 1 .7 
4.7 4.6 

2.4 2. 1 
2.3 1.7 
1. 1 1.3 
1 .3 1 .4 
0.9 0.4 

Rounds 
I 2 3 4 Total s60 SJs 

71 73 72 73 
68 73 74 74 
71 78 70 7 1  
7 1  70  77  72 
75 74 71 7 1  

289 0.3 1 .0 
289 2.3 2.9 

290 3. 1 2.6 
290 3.5 3.9 
291 2.4 1 .9 

73 75 70 73 
72 72 73 74 
75 73 68 75 
68 72 80 72 
71 73 76 72 

29 1 1 .7 1 .3 
291 1.2 1 .8 
29 1 3.4 3.3 
292 5 .0 
292 2.2 

75 74 70 73 292 
73 74 72 73 292 
70 74 72 76 292 
74 73 71 75 293 
71 70 80 72 293 

74 72 71 76 293 
72 74 75 73 294 
72 75 74 73 294 
69 74 77 74 294 
73 76 7 1  74 294 

73 75 71 75 294 
70 71 76 77 294 
72 73 72 77 294 
73 73 75 74 295 
7 1  70 77 77 295 

70 75 75 77 297 
70 79 70 78 297 
69 74 75 80 298 
74 71 74 8 1  300 
76 72 73 80 301 

2.3 
0.7 
1 .9 
1 .8 
4.9 

2.4 
1 .3 
0.8  
3 .0 
1 .6 

1 . 5 
3.5 
2. 1 
1 .4 
3.9 

2.4 
4.1 
4.0 
4.3 
3.8 

Average standard deviation (root mean square) 2.8 2.6 

Columns s6o and s38 measure the standard deviation of each player's score, 
adjusted to take account of column means calculated from the first 60 and 
38 scores respectively. For detai ls  of the calculation, see the text .  
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from each player, so we must multiply each player's standard deviation 
by y'(4/3) to obtain a true estimate. 

If we perform this calculation for each of the scores in Table 4. 1 ,  
subtracting the average score for the round from each individual 
score, calculating the standard deviation of each player's adjusted 
scores, and multiplying by v (4/3), we obtain the values in column s60 
of Table 4. 1 .  The value at the foot of this column is the root mean 
square of the individual values. 

We now come to the fourth and most difficult complication. The 
imposition of cuts at 1 49 after two rounds and 22 1 after three means 
that high scores in the early rounds have been eliminated from the 
data, whereas high scores in the last round remain. This means that 
the last-round mean is disproportionately high . There is no fully 
satisfactory way of dealing with this complication, but examination 
shows that there appears to be a threshold between 29 1 and 292; all 

but two of the players whose totals exceeded 29 1 might have been 
eliminated before the last round had they made their scores in a 
different order, whereas only four of the players whose totals did not 

exceed 29 1 might have been. Since our objective is to estimate a 
minimum spread by examining the scores of the leading players, i t  
therefore seems best to restrict our analysi s to the 38  players whose 
scores add up to no more than 29 1 .  This is done in column s38 of 
Table 4. 1 .  Our conclusion is that the effect of chance factors on this 
particular course causes a champion golfer's score over 1 8  holes to 
show a standard deviation of at least 2 .6; and since the standard 
deviation of a score increases with the square root of the number of 
holes played, his scores over 72 holes can be expected to show twice 
this variation. 

Another way of looking at this figure is instructive. Each hole on 
a golf course has a 'par' score which a first-class player should 
normally achieve. Over 72 holes, a standard deviation of 5.2 is  
equivalent to scoring exact par on two holes out of every three, and 
being within one stroke of par on all but one of the rest. Such a 
performance is indeed typical of first-class golfers. 

Now let us suppose for a moment that the distribution of a player's 
72-hole scores is approximately normal.  (In truth, i t  is  almost certain 
to be slightly skewed, since it is  easier for bad luck to waste strokes 
than for good luck to gain them, but any appreciable deviation from 
normality is l ikely to increase sti l l further the variability that we are 
about to see.)  Half a normal distribution is more than 0.67 standard 
deviations away from the mean, and over a tenth of it is more than 
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1 .6 standard deviations away. So over half the time, a leading golfer 
can expect his score for 72 holes to be more than three strokes 
away from his theoretical expectation, even if his intrinsic performance 
remains constant; and over a tenth of the time, he can expect it to be 
more than eight strokes away. For what it is worth, the 1 984 champion 
scored 292 in 1 985 ,  and finished well down the list. 

Finding a hole in the defence 
We now turn to association football .  This is a ball game played 
between teams, each of which defends a goal and attempts to send 
the ball through the opponent's goal .  Play is for a fixed period, and 
the team scoring the larger number of goals during this time is the 

winner. If the scores are equal, the game is drawn. 
The role played by chance in this game is easily seen. In a typical 

situation near goal, an attacking player has only a moment to control 
a moving ball and play it so that it evades the final defender (the 
'goalkeeper') and enters the goal. In stories for boys, the hero succeeds 
every time; in real l ife, he may play the ball within reach of the 
goalkeeper, or he may beat the goalkeeper only to miss the goal as 
wel l .  Figure 4.2 shows the various possibilities in diagrammatic form. 
If each such attempt has a probability p of success, the effect is the 
same as we obtain by tossing a biased coin; we have a binomial 
distribution. In particular, if a team makes twenty attempts to score 
and each has a probability 0. 1 of success, the probability that it scores 

precisely r goals is shown in the first column of Table 4 .2 .  It will be 
noted that the resulting variability is quite high; for example, there is 
a probabil ity of slightly greater than one in eight that it scores four 

GOAL 

• 

Figure 4.2 Association football :  play near the goal 
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Table 4.2 A comparison of binomial and Poisson distributions 

r B2o p r B2o p 

0 0. 1 22 0.135 5 0.032 0.036 
I 0.270 0.27 1 6 0.009 0.0 1 2  
2 0.285 0.27 1 7 0.002 0.003 
3 0.190 0.180 8 0.000 0.001 
4 0.090 0.090 9 0.000 0.000 

Column 820 shows the probability of r successes, assuming 20 attempts each 
with probabil ity 0.1; column P shows the same probability assuming a Poisson 
distribution with mean 2. 

goals or more, and almost as high a probability that it does not score 
at all . So the effect of chance factors near the goal appears to provide 
at least a partial explanation for the observed variability of football 
scores. 

To go further, we must examine some data. Sets of actual results 
are readily avai lable, and in some respects they are very sui table for 
analysis; in particular, the all-play-all fixture list of a typical league 
produces a reasonably balanced set of results, even though changes 
in personnel mean that teams are not quite of constant strength 
throughout a season .  But there are two difficulties: publi shed results 
merely record the numbers of goals scored and not the numbers of 
scoring attempts, and not all attempts have an equal chance of success .  
It is therefore not  clear how many separate binomial distributions 
should be assumed, nor what the associated probabilities should be. 

However, goals are relatively rare events; a typical first-class team 
scores fewer than two per game. Random rare events obey the Poisson 
distribution, which states that if an event occurs on average m times 
in a time interval, then the probability that i t  occurs precisely r times 
in a particular interval is e - mm'jr! where e = 2. 7 1 8  . . . .  We may 
therefore be able to replace an unknown combination of binomial 
distributions by a single Poisson distribution without committing too 
large an error. The Poisson distribution, with m = 2, is  shown in the 
second column of Table 4.2 ,  and it can be seen that its agreement 
with the first column is quite close . 2  

2 I t  is the Poisson distribution which just ifies the  remark, made in Chapter 2, that 
if an event has a very low probabi lity p then it is necessary to perform approximately 
0. 7 fp trials to obtain an even chance of its occurrence. Let n be the number of trials 
required; then the average number of occurrences within this number of trials is  np. 
The probability that there will be no occurrence in a particular set of n trials is therefore 
e � •P, and this reaches 1 /2 when n reaches 0.7/p approximately. 
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The next task is to estimate a suitable expected score m. The earliest 
investigations of football scores (for example, that by Moroney in 
Facts from figures, Penguin, 1 956) assumed the same expected score 
for all teams in all matches. The very limited computing power then 
available made this a necessary simplification, but it is plainly 
unrealistic and modern computers permit a more detai led approach. 
In fact, three major factors determine a team's expectation in a 
particular game: its own strength, the strength of its opponents, and 
the ground on which the game is being played (because a team playing 
on its own ground has a distinct advantage). In a typical league, every 
team plays every other team twice, once on each ground, and this 
permits these factors to be estimated with reasonable accuracy; for 
example, the total number of goals scored by a team is a reasonable 
measure of its strength in attack . So in a game between teams i and 
j, played on i's ground, we might as a first approximation take i's 
expected score to be F,A,H/N 2, where F, is the total number of goals 

scored by team i against all other teams, A1 is the total number of 
goals conceded by team j against all other teams, H is the total number 
of goals scored by teams playing on their own ground, and N the 
total number scored by all teams .  Similarly, we might take the 
expectation of team j in the same match to be �A;(N - H)fN 2• These 

formulae do not represent any deep mathematical insight; they are 
merely the simplest formulae which allow for the advantage of the 

home team and ensure that if every team were to score exactly to 
expectation in every match then the total numbers of goals scored 
and conceded by every team would be as actually happened. 

Table 4.3 shows an analysis on this basis of the 1 983-4 results 
from the four divisions of the English Football League (known at 
that time as the Canon League, in consequence of sponsorship). Using 
our assumptions, it is a simple matter to calculate the expected score 
of each team in each of these games and then to calculate the 
probability of every possible score. Each set of three values in the 
table shows the predicted number of occurrences of a score, the actual 
number of occurrences, and the difference. 

Table 4.3 shows that our predictions are at least moderately sensible; 
we do not predict 50 occurrences of a result when the actual number 
is 25 or I 00. In view of the crudity of our assumptions, this is really 
rather gratifying. A close examination nevertheless shows some 
weaknesses . We have overestimated the number of teams failing to 
score, both at home and away, and we have underestimated scores of 
two or three goals by home teams and one goal by away teams. We 
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Table 4.3 Association football: analysis of results in the Canon League, 
1 983-4 

Away Home score 
score 0 2 3 4 5 6 +  

0 1 53 2 1 4  1 60 1 03 45 28 1 0  
1 60.9 235 .0 1 87 .6  1 08 .4 50 .6 20. 3 1 0 .6  

- 7 .9 - 2 1 .0 - 27 .6  - 5 .4 - 5 .6 7 .7  - 0.6  

1 49 244 203 98 4 1  1 6  8 
1 57 .9 22 1 . 5 1 70 .2 94. 8 42 . 7  1 6.6  8 .2  

- 8 .9 22 . 5  32 .8  3 . 2  - 1 .7  - 0.6  - 0.2 

2 6 1  98 1 04 62 1 7  1 2  3 
84.6 1 1 4.0 84.4 45.4 1 9 . 8  7 .4 3 . 5  

- 23 .6  - 1 6.0 1 9.6  1 6.6  - 2 .8  4 .6  - 0. 5  

3 32 34 43 24 5 4 2 
32 .8 42.4 30. 3 1 5 . 8  6 .7  2 .4 1 . 1  

- 0.8  - 8.4  1 2. 7  8 .2  - 1 . 7  1 . 6 0.9 

4 +  1 0  1 9  1 4  1 0  2 0 0 
1 3 .9 1 7 . 1  1 1 .6 5 . 8  2 . 3  0 .7  0.4 

- 3 .9 1 .9 2 .4 4. 2 - 0. 3  - 0.7  - 0.4 

Each pair of values shows the actual number A of occurrences of the result 
and the number P predicted by Poisson distributions as described in the text. 
The subtraction shows the discrepancy A - P. 

have also overestimated the number of away wins and underestimated 
the number of draws. That these are not just chance effects is shown 
by Table 4.4, which shows the differences between actual and predicted 
occurrences for each of the four divisions individually, classified by 
home score, away score, and margin of result . Another revealing 
comparison appears in Table 4 .5 ,  which shows the difference between 
the actual and predicted numbers of points scored by each team over 
the season (the rather curious scoring system being 3 for a win, I for 
a draw, and 0 for a loss). The predictions for the first division 
are remarkably good, but the others show a general tendency to 
underestimate strong teams and overestimate weak ones. 

So we have some systematic discrepancies, and it  is easy to suggest 
possible causes. 

(a) Our crude formula for a team's expected score against a 
particular opponent is unlikely to be completely accurate. 
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Table 4.4 Association football :  further analysis of results in the Canon 
League, 1 983-4 

Score or margin 

Home score 

Away score 

0 
I 
2 
3 
4 
5 
6 +  

0 
I 
2 
3 
4 +  

Home win by 5 + 
4 

Draw 

Away win by 

3 
2 
I 

I 
2 
3 
4 +  

Div. I Div. 2 Div. 3 Div. 4 Total 
A A - P  A A - P  A A - P  A A - P  A A - P  
1 07 - 5. 1  1 02 
1 35 - 1 0.8 1 36 
1 1 2 5.2 1 1 4 
70 1 2.3 70 
22 - 3 . 5  1 8  
1 0  0.3 1 8  
6 1 .4 4 

1 60 - 1 2.3 1 67 
1 78 1 7.7 1 70 
71 - 1 2.7  86 
34 1 .9 27 
1 9  5 .5  1 2  

1 0  2.5 1 3  
1 3  - 1 .4 1 5  
37 3.7 3 1  
56 - 9.5 6 1  

1 1 0 7.9 1 1 4 

- 7.9 
- 8.6 

7.5 
1 1 .7  

- 8 .4 
7.5 

- 1 .7 

98 - 9.3  98 
1 54 - 1 2.6 1 84 
1 55 1 7.2  1 43 
8 1  0.3 76 
4 1  3 . 5  29 
1 6  1 .2 16  
7 - 0.3  6 

- 1 7. 1 1 92 
1 0. 1  1 96 
7.9 1 1 3 

- 1 .4 4 1  

- 1 2.8  
- 0.5 

1 2. 5  
4.6 

- 3.7 

1 94 
2 1 5  

87 
42 
1 4  0. 5 1 0  

3.3 
- 1 .2 
- 4.7 
- 7.0 

1 0.8  

I I  - 0.3 1 2  
20 - 1 .0 1 6  
4 3  - 4.0 47 
96 8 . 3  66 

1 1 6 - 1 1 .0 1 44 

- 22.8  
I I .  I 
9.9 
2.5 

- 3.8  
3 .4  

- 0.2 

- 1 8.2 
1 9.9 

- 9.8 
7.4 
0.8 

1 .4 
- 3.2 

3.4 
- 1 7.7  

1 8.3  

405 - 45 . 1 
609 - 2 1 .0 
524 39.8 
297 26.8 
1 1 0 - 1 2.3 
60 1 2.4 
23 - 0.8 

7 1 3  
759 
357 
1 44 
55 

46 
64 

1 58 
279 
484 

-60.5 
47. 1 

- 2.2 
1 2.5 
3.0 

6.9 
-6.7 
- 1 .7 

- 25.9 
26.0 

1 1 8 5.0 1 1 7 5.9 1 42 1 3. 5  1 50 1 8.0 527 42.4 

68 - 6. 1  
29 - 5 .4 
1 3  0.4 
8 2.9 

66 - 4.5 
34 2.3 
1 0  - 1 .4 

I - 3.7 

9 1  1 1 . 5  
22 - 1 2.4 

8 - 3.5  
3 - 1 . 1  

73 - 1 0.0 
23 - 1 3 .6 
1 7  4.4 
4 - 0.8 

298 - 9. 1  
1 08 - 29. 1 
48 - 0. 1  
1 6  - 2.8 

Each pair of values shows the actual number A of occurrences, and the 
difference A - P between this number and the number P predicted by Poisson 
distributions. 

(b) No allowance has been made for changes in the pattern of play 
after a goal has been scored . 

(c) The membership of teams is not constant; players may miss 
games through injury, or be transferred from one team to another 
during the season.  

(d) The probability of a particular score has been estimated by a 
single Poisson distribution instead of by the set of binomial dis
tributions which we believe really to exist. 

The last of these possibilities is the easiest to examine. A Poisson 
distribution provides quite a good approximation to a binomial 
distribution, as we saw in Table 4.2, but it underestimates the 
frequencies of scores near to the expected mean and overestimates the 
frequencies of very low scores, and this is precisely the effect that we 
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Table 4.5 Association footbal l :  analysis of points scored in the Canon 

League, 1 983-4 

Team Div. I Div. 2 Div. 3 Div. 4 
A A - P  A A - P  A A - P  A A - P  

I 80 - 4.6  88 1 .0 95 7 . 1 1 0 1  3 . 6  
2 77 0 .8  88 5 .7  87 1 1 .4 85  4 .5  
3 74 - 3 . 1  80 3 . 5  83 - 2. 3  8 2  1 . 7 
4 74 - 3 . 1 70 0.8 83 - 0.4 82 1 .8 

5 73 - 4.6 70 3 . 8  79 6 .7 75 7 . 1 
6 63 - 3.5 67 2 . 1 75 7 . 1 72 - 2 .7  
7 62 3.8 64 1 .9 7 1  2.4 68 - 1 0.6 
8 6 1  3 . 5  6 1  6.0 70 3 . 1  67 - 6. 5  

9 60 - 0.9 60 - 3 . 7  67 - 0.4 67 6.9 
10 60 3.4 60 2 .7  64 3 .4 66 3 . 3  
I I  57 3.6 57 - 5 .4 63 4.4 63 - 0.4 
1 2  5 3  - 3 .4 57 - 5. 3  62 - 1 0 .8 62 1 .2 

1 3  52 2.6 57 5 .6  62 8 . 5  60 - 1 .9 
1 4  5 1  - 5 . 5  5 2  - 8 .4 6 1  - 0.4 59 - 2.7  
1 5  5 1  - 5.4 5 1  0.6 6 1  5 . 3  59 - 2. 5  
1 6  5 1  1 .2 49 - 1 4.7 56 - 7.7  59 2 .6 

17  5 1  2.4 49 - 3 .8  55  - 2.8  58 - 6. 3  
1 8  50 4.9 47 - 3 . 5  54 - 4.9 53 4.5 
19 50 3 .4 47 4. 1 5 1  - 8 .4 52 - 9. 3  
20 48 - 0.9 42 6.3 49 - 9.4 48 - 6.6 

2 1  4 1  - 3 .6 29 - 1 .4 46 - 5 .8  48 3 .4 
22 29 4.0 24 - 3 .8  44 - 7.0 46 - 0.8  
23 43 - 1 . 8 40 - 1 . 1  
24 3 3  - 1 0 .7  34 - 7 . 1  

Each pair of values shows the actual number A of points, and the difference 
A - P between this number and the number P predicted by Poisson 
distributions. 

see in Tables 4.3 and 4.4. This suggests that we should replace the 
Poisson distribution with a set of n binomial distributions with 
probabilities p 1 ,  • • •  ,pn where p1 + . . .  + Pn = m. But published results 
give no data from which suitable values of n and p � ,  . . .  ,pn can be 
estimated. Reep and Benjamin, in an extensive analysis of games 

played between 1 953 and 1 967 ('Skill and chance in association 
football' , Journal of the Royal Statistical Society A 131 ( 1 968), 58 1 -5) 
found an almost constant ratio I 0 between shots and goals, so n might 
be taken as I Om, but even this does not tell us what values should be 
assumed for p�, . . . • Pn· It is hardly realistic that they should be 
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assumed equal, yet if one or two are relatively high, and the rest very 
low, the standard deviation of the distribution is sharply reduced. It 
is certainly possible to choose a set of binomial distributions that 
would give a better fit to the actual results than our Poisson 
distribution, but there is l ittle point in doing this as long as the other 
problems remain unresolved. 

All this being said, however, the agreement of our simple model 
with reality is distinctly encouraging, and it demonstrates that the 
chance effects inherent in goal-scoring appear to go a very long way 

towards explaining the observed variation of football results.3 

A game of glorious uncertainty 
For our last example, we consider the archetypally English game of 
cricket. 

Cricket is a team game, but at its heart is an individual contest 
between a batsman and a bowler. The bowler sends a ball at a target 
(the 'wicket') which is defended by the batsman. If the ball hits the 
wicket, the batsman is 'out', and another batsman takes his place; 
and even if the batsman prevents the ball from hitting the wicket, he 
may sti l l  be out in other ways (most usually, by hitting the ball in the 
air so that a 'fielder' catches it before it bounces). If the batsman 
avoids all these fates, he may score 'runs' in various ways, and the 
team whose batsmen score the greater number of runs is the winner. 

From a mathematical point of view, the dominant factor is the 
probability that an error by the batsman causes him to be out. 

Superficially, this is akin to the probability that a scoring attempt 
succeeds at football; for example, if the bowler is trying to beat the 
batsman by making the ball swerve, he may fail to make it swerve 
sufficiently, or he may beat the batsman only to miss the wicket as 

a Readers familiar with the standard i test of practical statistics may wonder why 
we have not applied it. If this test is applied to Table 4.3 ,  it shows the discrepancies 
to be about half as large again as would have been expected had they been due solely 
to chance, and even as modest an excess as this is highly significant; a table based on 
as many results as Table 4.3 can be expected to show such an excess only once every 
thousand trials. But this merely tells us that our simple model is almost certainly not 
quite good enough (which doesn't surprise us in the slightest, since we know that our 
assumptions are crude), whereas the patterns displayed in Tables 4.4 and 4.5 throw 
light on what its deficiencies are l ikely to be. The assessment of differences between 
theoretical predictions and actual data depends both on their magnitude and on their 
pallern; and while computers may be better at calculating magnitude, it  is pattern that 
is usually the more revealing. 
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well . 4  However, there is a fundamental difference, in that a game of 
football stops after a certain time, whereas a batsman's innings at 
cricket usual ly continues until he is out. This causes the mathematical 
nature of the game to be quite different. 

To investigate it ,  let us assume that every time a ball is bowled 

there is a probabi l ity p that the batsman is out. In this case, there is 
a probability p that he is out on his first bal l ,  a probability p( l -p) 
that he survives his first ball only to be out on his second, and a 
probability p( l -p)" - 1 that he is out on his nth. It can now be shown 

that the average number of bal ls  that he survives before being out is 
( 1 -p)fp. Furthermore, if he scores an average of r runs from each 
ball that he survives, his average score is r( l -p)fp. In first-class play, 
typical values for a good batsman are r = 0.4 and p = O.O l ;  in other 
words, he expects to score at a rate of around two runs every five 
balls, and to survive about a hundred balls before being out. 

Now let us consider the way in which a batsman's scores may be 
expected to be distributed around his average score. Suppose that this 
average score is m. In order to score km runs, he must survive 

kmfr balls, and the probability that he does so is ( 1 - p)kmfr. But 

m = r( l -p)jp, so this probability reduces to ( I -p)k< J - p>IP; and for all 
realistically small values of p, this can be shown to be approximately 
equal to e- k , where e = 2. 7 1 8  . . .  as usuaJ . 5  It  follows that a first-class 
batsman whose average score is m may be expected to score fewer 
than mf ! O  on about one occasion in ten, fewer than m/2 on about 
two occasions in five, and fewer than m on about nineteen occasions 
in thirty; yet he may be expected to score more than 2m on about 
four occasions in thirty, and more than 3m on about one occasion in 
twenty. This indicates the range of performance that may be expected 

from a particular batsman even if the underlying probabilities are 
constant from one occasion to the next. 

Another instructive way of looking at this distribution is to consider 
its standard deviation. This can be shown to be approximately equal 

4 Although the attack on the wicket is fundamental to cricket, a first-class batsman 
is most frequently out in practice because he hits the ball in the air and a fielder catches 
it, and the bowler often tries not so much to hit the wicket as to deceive the batsman 
into a mishit from which a catch can be made. This makes the role of chance even 
clearer. Sometimes the bowler fails to deceive the batsman at all; sometimes he deceives 
him so much that he misses the ball altogether; sometimes the batsman does indeed 
mishit, but not within reach of a fielder; and sometimes the fielder drops the bal l .  

; A standard theorem of algebra states that the product ( 1 - k/n)• tends to e -• as n 
increases, so ( 1 -p'/1" tends to e - • as p tends to 0. The effect of the factor ( 1 -p) in 
the exponent is negligible. 
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to the mean m, in contrast to the Poisson and binomial distributions, 
where the standard deviation is approximately equal to the square 
root ofthe mean (exactly ym in the case ofthe Poisson, and v {( 1 -p)m} 
in the case of the binomial), and to the observed distribution of golf 
scores, where it  is only a small fraction of the square root of the 
mean. It  follows that golf scores cluster relatively closely, football 
scores vary substantially, and cricket scores vary enormously. 

A consequence is that we need a large amount of data to estimate 
a batsman's average score with precision. The Central Limit Theorem, 
which we used in Chapter 3 to estimate the behaviour of sums, also 
applies to means, and indeed i t  is usually stated in textbooks in this 
form; it asserts that if we repeatedly sample a population with mean 
m and standard deviation s, the mean of the sample approaches a 

normal distribution with the same mean m but with standard deviation 
sf vn where n is the number of items in the sample. So if we have a 
typical first-class batsman whose true average is 40 and we compute 
his actual average over 25 innings, this computed average has a 
standard deviation of 8 even if conditions are constant from one game 
to the next. Yet batting averages are regularly published to two decimal 

places, and they are lapped up by readers as if  this precision were 
meaningful. 

It is  time to look at some real data. This proves to be unexpectedly 
difficult .  Vast amounts of numerical data exist, but the conditions 
under which they have been gathered are so variable that it is difficult 
to draw other than the crudest of conclusions. The standard of 
nominally 'first-class' teams varies from weak university sides to 
international touring teams full of fearsomely fast bowlers. The most 
extensive English first-class competition, the County Championship, 
does not always provide balanced results, since some teams may play 
each other twice whereas others meet only once; and in any case, the 
players comprising a team may differ widely from one match to 
another (much more widely than at football, because international 
matches are played in parallel with county matches and teams may 
be depleted by international commitments). A team normally uses 
several bowlers during an innings . Weather and ground conditions 
may affect the batsman and the bowler unequally, and the tactical 
state of the game may compel either the batsman or the bowler to 
play abnormally. All these things affect a batsman's expectation in 
any particular game. There is also a purely technical complication, 
which we have ignored until now, in that a batsman may not be out 
at all .  This does not affect his average expectation, if we redefine it 
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as the ratio between the number of runs he scores over a period and 
the number of times that he is out, but it certainly affects the number 
of runs that he is likely to score on any particular occasion. 

All this being said, however, the County Championship provides 
as good a set of data as can reasonably be obtained, and the batsmen's 
scores for 1 980 (when sponsorship caused i t  to be known as the 
Schweppes County Championship) are summarized in Table 4.6. The 
contents of this table allow for the various complications inherent in 

Table 4.6 Cricket: analysis of batsmen's scores in the Schweppes 
County Championship, 1 980 

Notional expected score 
1 5  25 35  45  55 65 

k N p N p N p N p N p N p 

0.2 6 1 6  0.24 960 0.23 1 028 0.24 387 0.24 1 66 0.22 1 1 6 0. 1 8  
0.4 5 1 4  0. 1 5  795 0. 1 6  845 0. 1 6  322 0. 1 5  1 32 0. 1 5  85 0 .25 
0.6 4 1 0  0. 1 7  653 0. 1 6  658 0.20 25 1 0.20 99 0.23 68 0. 1 8  
0.8 327 0. 1 7  532 0. 1 7  547 0. 1 6  203 0. 1 8  77 0.2 1 52 0.20 
1 .0 276 0. 1 3  426 0. 1 7  446 0. 1 7  1 7 1  0. 1 3  62 0. 1 4  44 0 . 1 4  

1 .2 23 1 0. 1 5  341 0. 1 6  360 0. 1 6  1 40 0. 1 5  50 0. 1 5  36 0. 1 8  
1 .4 1 90 0. 1 4  267 0. 1 7  292 0. 1 6  1 06 0.20 42 0. 1 4  3 2  0.06 
1 .6 ! 56 0. 1 5  222 0. 1 3  23 1 0. 1 7  82 0.20 32 0.20 1 8  0.42 
1 .8 1 3 5  0. 1 2  1 84 0. 1 3  1 82 0. 1 8  67 0. 1 3  27 0. 1 6  1 4  0. 1 8  
2.0 1 09 0. 1 3  1 50 0. 1 6  1 54 0. 1 2  54 0 . 1 6  20 0.09 1 2  0. 1 4  

2.4 8 1  0.22 1 00 0.29 96 0 .3 1 25 0.49 I I  0 .3 1 1 0  0.09 
2.8 56 0.28 67 0.28 60 0 .33  1 7  0.23 3 0 .6 8 0. 1 
3 .2 40 0.22 47 0.24 38 0 .30 9 0. 1 8  I 0 .5  5 0.0 
3 .6  32 0. 1 8  26 0.4 1 20 0 .35 3 0 .5  0 1 .0 I 0 .5  
4.0 20 0 .33  19  0.2 1 I I  0 .3 1 I 0 .5  0 0 1 .0 

4.4 1 5  0. 1 7  7 0.46 9 0. 1 8  I 0.0 0 0 
4.8 1 0  0.23 I 0 .8 7 0. 1 0 0 0 
5.2 3 0.6 I 0.0 2 0.6 0 0 0 
5.6 I 0 .5  I 0.0 I 0 .5  0 0 0 
6.0 I 0.0 0 1 .0 0 1 .0 0 0 {' 

The batsmen have been classified into decades according to their average 
scores over the season, and the midpoint of each decade has been taken as 
a notional expected score for all batsmen within it .  Each row represents a 
fraction k of this expected score, and each pair of values shows (i) the number 
of times N a batsman reached this fraction of his expected score, and (ii) the 
proportion p of batsmen who reached the previous fraction but were then 
out having failed to reach this fraction. Batsmen who were left not out 
between two fractions have been ignored when calculating the corresponding 
proportion. 
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cricket, in particular for the fact that a batsman's innings may finish 
other than by his being out. It  excludes batsmen who were out fewer 
than ten times or whose average score was less than 1 0, and groups 
the rest by average into the six ranges 1 0- 1 9 .99 . . .  , 20-29.99 . . . , 
and so on. The midpoint of each range is then taken as a mean 
expectation for the column, and the values in the left-hand column 
indicate fractions of this expectation. The tabular values show (i) the 
number of times that a batsman reached this fraction, and (ii) the 
proportion of batsmen who reached the previous fraction but were 
then out before reaching this fraction, batsmen who were left not 
out between the two fractions being ignored when calculating this 
proportion. If the probabilities underlying a batsman's expectation 
are indeed constant, these proportions should be approximately 
constant also (except that the doubled vertical scale from row 2.4 
onwards means that the proportions in these rows are comparable 
with approximately twice the proportions in the earlier rows.) In fact 
the agreement across the rows is generally good, particularly if we 
discount proportions which are based on only a few scores, but a 
systematic decrease is observable down the columns, which is what 
we would expect if  a batsman's expectation does change from occasion 
to occasion. Furthermore, the high proportions in row 0.2 bear out 
the widely held belief that a batsman is most vulnerable early in his 
innings. 

Because of the widely differing conditions under which cricket is 
played, Table 4.6 is much the least satisfactory of the tables in this 
chapter. Nevertheless, it is clear that a large proportion of the observed 
variability of cricket scores can be explained by the effect of chance 
on the dismissal of a batsman. It is customary for the more hysterical 
of sporting journalists to praise a batsman to the skies when he scores 
two consecutive hundreds, and to condemn him utterly when he suffers 
two consecutive failures. Praise for hundreds is fair  enough, since skill 
as well as luck is needed, but exaggerated condemnation of failures 
merely betrays an ignorance of the laws of mathematics . 



5 
IF A B E A T S  B ,  A N D  B B E A T S  C 

In the previous chapter, we looked at some of the pseudo-random 
effects which appear to affect the results of games. We now attempt 
to measure the actual skill of performers. There is no difficulty in 
finding apparently suitable mathematical formulae; textbooks are ful l  
of them. Our primary aim here is to examine the circumstances in 
which a particular formula may be val id, and to note any difficulties 
which may attend its use. 

The assessment of a single player in 
isolation 
We start by considering games such as golf, in which each player 
records an independent score. In practice, of course, few competitive 
games are completely free from interactions between the players; a 
golfer bel ieving himself to be two strokes behind the tournament 
leader may take risks that he would not take if he believed himself to 
be two strokes ahead of the field. But for present purposes, we assume 
that any such interactions can be ignored. We also ignore any effects 
that external circumstances may have on our data. In Chapter 4, we 
were able to adjust our scores to allow for the general conditions 
pertaining to each round, because the pooling of the scores of all the 
players al lowed the effect of these conditions to be assessed with 
reasonable confidence. A sequence of scores from one player alone 
does not allow such assessments to be made, and we have l i ttle 
alternative but to accept the scores at face value. 

To fix our ideas, let us suppose that a player has returned four 
separate scores, say 73, 7 1 ,  70, and 68 (Figure 5 . 1 ) . If these scores 
were recorded at approximately the same time, we might conclude 
that a reasonable estimate of his ski l l  is given by the unweighted mean 
70. 5  ( U in Figure 5 . 1 ) .  This is effectively the basis on which tournament 
results are calculated . On the other hand, if the scores were returned 
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73 .----.-----r---, 

7 1  

70 

68 

-u (70.5 ) 
�---+----�--� -w (69 .7)  

Figure 5.1  Weighted and unweighted means 

over a long period, we might prefer to give greater weight to the more 
recent of them. For example, if we assign weights I : 2 : 3 :4 in order, we 
obtain a weighted mean of 69 .7  ( W in Figure 5 . 1 ) . More sophisticated 

weighting, taking account of the actual dates of the scores, is also 
possible. 

So we see, right from the start, that our primary need is not a 

knowledge of abstruse formulae, but a commonsense understanding 
of the circumstances in which the data have been generated. 

Now let us assume that we already have an estimate, and that the 
player returns an additional score. Specifically, let us suppose that 
our estimate has been based on n scores s � >  . . .  ,s., and that the player 
has now returned an additional score sn + 1 •  If we are using an 
unweighted mean based on the n most recent scores, we must now 
replace our previous estimate 

(s1 + . . .  + s.)/n 

by a new estimate 

(s2 + . . .  + sn + J )/n; 

the contribution from s1 vanishes, the contributions from s2, • • •  ,s. 
remain unchanged, and a new contribution appears from Sn + l ·  In 
other words, the contribution of a particular score to an unweighted 
mean remains constant until n more scores have been recorded, and 
then suddenly vanishes. On the other hand, if we use a weighted mean 
with weights I : 2 :  . . .  :n, the effect of a new score sn + 1 is to replace the 
previous estimate 

by a new estimate 
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not only does the contribution from s1 vanish, but the contributions 
from s2, • • •  ,sn are all decreased . This seems rather more satisfactory. 

Nevertheless, anomalies may still arise. Let us go back to the scores 
in Figure 5 . 1 ,  which yielded a mean of 69.7 using weights I : 2 : 3 :4, and 
let us suppose that an additional score of 70 is recorded. If we form 
a new estimate by discarding the earliest score and applying the same 
weights I : 2 : 3 :4  to the remainder, we obtain 69. 5 ,  which is less than 
either the previous estimate or the additional score. So we check our 
arithmetic, suspecting a mistake, but we find the value indeed to be 
correct. Such an anomaly is always possible when the mean of the 
previous scores differs from the mean of the contributions discarded. 
It is rarely large, but it may be disconcerting to the inexperienced. 

If we are to avoid anomalies of this kind, we must ensure that the 
updated estimate always lies between the previous estimate and the 
additional score. This is easily done; if En is the estimate after n scores 
s � ,  . . .  ,sn, all we need is to ensure that 

where Wn is some number satisfying 0 < w" < I .  But there is a cost. If 
we calculate successive estimates £, ,£2, . . .  , we find 

£2 = w,s , + (I - w, )s2, 

£3 = w1 w2s 1 + w2( l - w1)s2 + ( I - w2)s3, 

and so on; the contribution of each score gradually decreases, but it 
never vanishes altogether. 

So we have a fundamental dilemma. If we want to ensure that an 
updated estimate always lies between the most recent score and the 
previous estimate, we must accept that even the most ancient of scores 
will continue to contribute its mite to our estimate. Conversely, if we 
exclude scores of greater than a certain antiquity, we must be prepared 
for occasions on which an updated estimate does not lie between the 
previous estimate and the most recent score. 

The estimation of trends 
The estimates that we have discussed so far have assessed skill as it 
has been displayed in the past.  If a player's skill has changed 
appreciably during the period under assessment, the estimate may not 
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fully reflect the change. It is therefore natural to try to find estimates 
which do reflect such changes. 

Such estimates can indeed be made. Figure 5 . 2(a) repeats the last 
two data values of Figure 5 . 1 ,  and the dotted line shows the estimate 
E obtained by assuming that the change from 70 to 68 represents a 
genuine trend that may be expected to continue. More sophisticated 
estimates, taking account of more data values, can be found in 
textbooks on statistics and economics. 

7 1  

70 

� 
68 \ 68 

66 

65 
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\ 
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Figure 5.2 The behaviour of a forward estimate 

But there are two problems.  The first, which is largely a matter of 
common sense, is that the assumption of a trend is not to be made 
blindly. Golf enthusiasts may have recognized 73-7 1 -70-68 as the 
sequence returned by Ben Hogan when winning the British Open in 
1 953 ,  and it is doubtful i f  even Hogan, given a fifth round, would 
have gone round a course as difficult as Carnoustie in 66. On the 
other hand, there are circumstances in which the same figures might 
much more plausibly indicate a trend: if  they represent the successive 
times of a twenty-kilometre runner as he gets into training, for 
example. 

The second difficulty is a matter of mathematics. The extrapolation 
from 70 through 68 to 66 is an example of a l inear extrapolation from 
s 1 through s2 , the estimate being given by 2s2 - s 1 • In other words, we 
form a weighted mean of s 1 and s2, but one of the weights is negative. 
A change in that score therefore has an inverse effect on the estimate. 
This is shown in Figure 5 . 2(b), where the score 70 has been changed 
to 7 1  and it is seen that the estimate has changed from 66 to 65. In 
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particular, if a negatively weighted score was abnormally poor (for 
example, because the player was not fully fit on that occasion), the 
future estimate will be improved as a result. 

This contravenes common sense, and suggests that we should confine 
our attention to estimates which respond conformably to all constituent 
scores: a decrease in any score should decrease the estimate, and an 
increase in any score should increase it .  But it turns out that such an 
estimate cannot lie outside the bounds of the constituent scores, and 
this greatly reduces the scope for estimation of trends. The proof is 
simple and elegant. Let S be the largest of the constituent scores. If 
each score actually equals S, the estimate must equal S also. If  any 
score s does not equal S and the estimating procedure is conformable, 
the replacement of S by s must cause a reduction in the estimate. So 
a conformable estimate cannot exceed the largest of the constituent 
scores; and similarly, it cannot be less than the smallest of them . I  

In  practice, therefore, we have li ttle choice. Given that common 
sense demands conformable behaviour, we cannot use an estimating 
procedure which predicts a future score outside the bounds of previous 
scores; we can merely give the greatest weight to the most recent of 
them. If  this is unwelcome news to improving youngsters, it is l ikely 
to gratify old stagers who do not like being reminded too forcibly of 
their declining prowess. In fact, the case which most commonly causes 
difficulty is that of a player who has recently entered top-class 
competition and whose first season's performance is appreciably below 
the standard which he subsequently establishes; and the best way to 
handle this case is not to use a clever formula to estimate the 
improvement, but to ignore the first year's results when calculating 
subsequent estimates . 

Interactive games 
We now turn to games in which the result is recorded only as a win 
for a particular player, or perhaps as a draw. These games present a 
much more difficult problem. The procedure usually adopted is to 
assume that the performance of a player can be represented by a 
single number, called his grade or rating, and to calculate this grade 
so as to reflect his actual results. For anything other than a trivial 

1 I t  follows that economic estimates which attempt to project current trends are in 
general not conformable; and while this is unlikely to be the whole reason for their 
apparent unrel iability, it is not an encouraging thought. 



52 If A beats B, and B beats C . . .  

game, the assumption is  a gross over-simplification, so anomalies are 
almost inevitable and controversy must be expected . In the case of 
chess, which is the game for which grading has been most widely 
adopted, a certain amount of controversy has indeed arisen; some 
players and commentators appear to regard grades with excessive 
reverence, most assume them to be tolerable approximations to the 
truth , a few question the detai led basis of calculation, and a few 
regard them as a complete waste of ink. The resolution of such 
controversy is beyond the scope of this book, but at least we can 
illuminate the issues. 

The basic computational procedure is to assume that the mean 
expected result of a game between two players is given by an 
'expectation function' which depends only on their grades a and b, 
and then to calculate these grades so as to reflect the actual results. 
It  might seem that the accuracy of the expectation function is crucial, 
but we shall see in due course that it is actually among the least of 
our worries; provided that the function is reasonably sensible, the 
errors introduced by its inaccuracy are likely to be small compared 
with those resulting from other sources. In particular, if the game 
offers no advantage to either player, it may well be sufficient to 
calculate the grading difference d= a - b  and to use a simple smooth 
function f(d) such as that shown in Figure 5 . 3 .  For a game such as 
chess, the function should be offset to allow for the first player's 
advantage, but this is a detail easi ly accommodated .2  

f(d) 
- - - - - - - - - - - - - J !.0 

I 
I I 

: _ _j _ _; _ _j _  

-1 00 -50 0 50 

....J 
I 

I 
....J 

1 00 

Figure 5.3 A typical expectation function 

2 Figure 5.3 adopts the chess player's scaling of results: l for a win, 0 for a loss, 
and 0.5 for a draw. The scaling of the d-axis is arbitrary. 



Interactive games 53 

Once the function f(d) has been chosen, the calculation of grades 
is straightforward. Suppose for a moment that two players already 
have grades which differ by d, and that they now play another game, 
the player with the higher grade winning. Before the game, we assessed 
his expectation as f(d); after the game, we might reasonably assess it 
as a weighted mean of the previous expectation and the new result. 
Since a win has value I ,  this suggests that his new expectation should 
be given by a formula such as 

w + ( l - w}f{d) 

where w is a weighting factor, and this is equivalent to 

fld) + w{ I -fld)} .  

More generally, i f  the stronger player achieves a result o f  value r ,  the 
same argument suggests that his new expectation should be given by 
the formula 

fld) + w{r -fld)} .  

Now i f  the expectation function i s  scaled a s  i n  Figure 5 . 3  and the 
grading difference d is smal l ,  we see that a change of o in d produces 
a change of approximately o/ 1 00 in f(d). It follows that approximately 
the required change in expectation can be obtained by increasing the 
grading difference by I OOw{ r-f( d)} .  As the grading difference becomes 
larger, the curve flattens, and a given change in the grading difference 
produces a smaller change in the expectation. In principle, this can 
be accommodated by increasing the scaling factor 1 00, but i t  is 
probably better to keep this factor constant, since always to make the 
same change in the expectation may demand excessive changes in the 
grades. The worst case occurs when a player unexpectedly fails to 
beat a much weaker opponent; the change in grading difference needed 
to reduce an expectation of 0.99 to 0 .985 may be great indeed. To 
look at the matter another way, keeping the scaling factor constant 
amounts to giving reduced weight to games between opponents of 
widely differing ability, which is plainly reasonable since the ease with 
which a player beats a much weaker opponent does not necessari ly 
say a great deal about his ability against his approximate peers . 

A simple modification of this procedure can be used to assign a 
grade to a previously ungraded player. Once he has played a reasonable 
number of games, he can be assigned that grade which would be left 
unchanged if adjusted according to his actual results. The same 
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technique can also be used if i t  is desired to ignore ancient history 
and grade a player only on the basis of recent games. 

Grades calculated on this basis can be expected to provide at least 
a rough overall measure of each regular player's performance. 
However, certain practical matters must be decided by the grading 
administrator, and these may have a perceptible effect on the figures . 
Examples are the interval at which grades are updated, the value of 
the weighting parameter w, the relative division of an update between 
the grades of the players (in particular, when one player is well 
established whereas the other is a relative newcomer) , the criteria by 
which less than fully competitive games are excluded, and the 
circumstances in which a player's grade is recalculated to take account 
only of his most recent games . Grades are therefore not quite the 
objective measures that their more uncritical admirers like to maintain .  

Grades as measures of ability 
Although grading practitioners usually stress that their grades are 
merely measures of performance, players are interested in them 
primarily as measures of ability. A grading system defines an ex
pectation between every pair of graded players, and the grades are of 
interest only in so far as these expectations correspond to reality. 

A li ttle thought suggests that this correspondence is unlikely to be 
exact. If two players A and B have the same grade, their expectations 
against any third player C are asserted to be exactly equal. Altern
atively, suppose that A ,  B, Y, and Z have grades such that A 's 
expectation against B is asserted to equal Y 's against Z, and that 
expectations are calculated using a function which depends only on 
the grading difference. If these grades are a, b, y, and z, then they 
must satisfy a - b = y - z, from which it follows that a - y = b - z, and 
hence A ' s  expectation against Y is  asserted to equal B's against Z. 
Assertions as precise as this are unlikely to be true for other than 
very simple games, and it follows that grades cannot be expected to 
yield exact expectations; the most for which we can hope is that they 
form a reasonable average measure whose deficiencies are small 
compared with the effects of chance fluctuation .  

These chance effects can easily be estimated . If  A 's expectation 
against B is p and there is a probabi lity h that they draw, the standard 
deviation s of a single result is v ( {p( I -p) - h/4 } ) .  If they now play a 

sufficiently long series of n games, the distribution of the discrepancy 
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between mean result and expectation can be taken as a normal 

distribution with standard deviation sf v n, and a simple rule of thumb 
gives the approximate probabi lity that any particular discrepancy 
would have arisen by chance: a discrepancy exceeding the standard 
deviation can be expected on about one trial in three, and a discrepancy 
exceeding twice the standard deviation on about one trial in twenty. 
What constitutes a sufficiently large value of n depends on the 
expectation p. If  p lies between 0.4 and 0.6, n should be at least 1 0; 
if p is smaller than 0.4 or greater than 0.6, n should be at least 4/p 
or 4/( 1 -p) respectively. More detai led calculations, taking into 
account the incidence of each specific combination of results, are 
obviously possible: but they are unlikely to be worthwhile. 

A practicable testing procedure now suggests itself. Every time a 
new set of grades is calculated, the results used to calculate the new 
grades can be used also to test the old ones. If two particular opponents 
play each other sufficiently often, their results provide a particularly 
convenient test; otherwise, results must be grouped, though this must 
be done with care since the grouping of inhomogeneous results may 
lead to wrong conclusions. The mean of the new results can be 
compared with the expectation predicted by the previous grades, and 
large discrepancies can be highl ighted : one star if the discrepancy 
exceeds the standard deviation, and two if it exceeds twice the standard 
deviation. The rule of thumb above gives the approximate frequency 
with which stars are to be expected if chance fluctuations are the sole 
source of error. 

In practice, of course, chance fluctuations are not the only source 
of error. Players improve when they are young, they decline as they 
approach old age, and they sometimes suffer temporary loss of form 
due to i llness or domestic disturbance. The interpretation of stars 
therefore demands common sense. Nevertheless, if the proportions of 
stars and double stars greatly exceed those attributable to chance 
fluctuation, the usefulness of the grades is clearly limited. 

If  grades do indeed constitute acceptable measures of ability, regular 
testing such as this should satisfy all but the most extreme and 
blinkered of critics. However, grading administrator and critic alike 
must always remember that around one discrepancy in three should be 
starred, and around one in twenty doubly starred, on account of chance 
fluctuations, even if there is no other source of error. If a grading 
administrator performs a hundred tests without finding any doubly 
starred discrepancies, he should not congratulate himself on the success 
of his grading system; he should check the correctness of his testing. 
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The self-fulfilling nature of grading 
systems 
We now come to one of the most interesting mathematical aspects of 
grading systems :  their self-fulfilling nature. It might seem that a 
satisfactory expectation function must closely reflect the true nature 
of the game, but in fact this is not so. Regarded as measures of ability, 
grades are subject to errors from two sources: (i) discrepancies between 
ability and actual performance, and (ii) errors in the calculated 
expectations due to the use of an incorrect expectation function. In 
practice, the latter are likely to be much smaller than the former. 

Table 5 . 1 i l lustrates this .  It relates to a very simple game in which 
each player throws a single object at a target, scoring a win if he hits 
and his opponent misses, and the game being drawn if both hit or if 
both miss. If the probability that player j hits is p1, the expectation of 
player j against player k can be shown to be ( I  +p, - pk)/2, so we can 
calculate expectations exactly by setting the grade of player j to 50pj 
and using the expectation function fid) = 0.5 + dj l 00. Now let us 
suppose that we have nine players whose probabilities p" . . .  ,p9 range 
linearly from 0. 1 to 0.9,  that they play each other with equal frequency, 
and that we deliberately use the incorrect expectation function 
./{d) = N(dv(2TT)/ I OO) where N(x) is the normal distribution function. 

The first column of Table 5 . 1 shows the grades that are produced if 
the results of the games agree strictly with expectation, and the entries 

for each pair of players show (i) the discrepancy between the true and 
the calculated expectations, and (ii) the standard deviation of a single 
result between the players . The latter is always large compared with 
the former, which means that a large number of games are needed 
before the discrepancy can be detected against the background of 
chance fluctuations. The standard deviation of a mean result decreases 
only with the inverse square root of the number of games played, so 
we can expect to require well over a hundred sets of all-play-all results 
before even the worst discrepancy (player I against player 9) can be 
diagnosed with confidence. 

Experiment bears this out. Table 5.2 records a computer simulation 
of a hundred sets of all-play-all results, the four rows for each player 
showing (i) his true expectation against each opponent, (ii) the mean 
of his actual results against each opponent, (iii) his grade as calculated 
from these results using the correct expectation function 0 .5 + df l 00, 
together with his expectation against each opponent as calculated 
from their respective grades, and (iv) the same as calculated using the 
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Table 5. 1 Throwing one object: the effect of an incorrect expectation 

function 
Opponent 

�- -�-�- -

Player Grade 4 6 9 

5 . 5  - 0.009 - 0.0 1 3  - 0 .0 1 4  - 0.0 1 1 - 0.005 0.004 0.0 1 7  0.032 

0.250 0.274 0.287 0.292 0.287 0.274 0 .250 0 .2 1 2  

1 7 . 3  0.009 - 0.006 - 0.009 - 0.009 - 0.007 - 0.002 0.006 0.0 1 7  

0 .250 0 .304 0 .3 1 6  0 . 320 0 .3 1 6  0 .304 0.283 0.250 

28.5 0.0 1 3  0.006 - 0.004 - 0.006 - 0.007 - 0.005 - 0.002 0.004 

0 .274 0. 304 0 .335  0 .339 0 .335  0 .324 0. 304 0.274 

4 39.3 0.0 1 4  0.009 0.004 - 0.003 - 0.006 - 0.007 - 0.007 - 0.005 

0.287 0 .3 1 6  0 .335 0 350 0.346 0 .335  0 .3 1 6  0 .287 

50.0 0.0 1 1 0.009 0.006 0.003 - 0.003 - 0.006 - 0.009 - O.Q I I 
0.292 0.320 0 .339 0 .350 0 .350 0 .339 0.320 0.292 

6 60. 7  0.005 0.007 0.007 0.006 0.003 - 0.004 - 0.009 - 0.0 1 4  

0.287 0 .3 1 6  0 .335  0. 346 0.350 0.335 0.3 1 6  0.287 

7 1 . 5 - 0.004 0.002 0.005 0.007 0.006 0.004 - 0.006 - 0.0 1 3  

0. 274 0.304 0.324 0.335 0.339 0.335 0. 304 0 .274 

82 .7  - 0.0 1 7  - 0.006 0.002 0.007 0.009 0.009 0.006 - 0.009 

0.250 0.283 0 .304 0 .3 1 6  0 .320 0 .3 1 6  0 .304 0 .250 

94.5  - 0.032 - 0.0 1 7  - 0.004 0.005 0.0 1 1 0.0 1 4  0.0 1 3  0.009 

0.2 1 2  0.250 0 .274 0.287 0.292 0 .287 0 .274 0 .250 

The grades are calculated using an incorrect expectation function as described 
in the text. The tabular values show (i) the discrepancy between the calculated 
and true expectations, and (i i )  the standard deviation of a single result .  

incorrect expectation function N(dy (27T)/ I OO). The differences between 
rows (i) and (ii i) are caused by the differences between the theoretical 
expectations and the actual results, and the differences between rows 
(iii) and (iv) are caused by the difference between the expectation 
functions. In  over half the cases, the former difference is greater than 
the latter, so on this occasion even a hundred sets of all-play-all results 
have not sufficed to betray the incorrect expectation function with 
reasonable certainty. Nor are the differences between actual results 
and theoretical expectations in Table 5.2 in any way abnormal.  If the 
experiment were to be performed again ,  it is slightly more likely than 
not that the results in row (i i) would differ from expectation more 
widely than those which appear here .3  

s In  practice, of course, we  do not  know the  true expectation function, so rows ( i )  
and ( i i i )  are hidden from us, and all we can do is to assess whether the discrepancies 
between rows ( i i )  and (iv) might reasonably be attributable to chance. Such a test is 
far from sensitive; for example, the discrepancies in Table 5.2 are so close to the median 
value which can be expected from chance fluctuations alone that nothing untoward 
can be discerned in them . We omit a proof of this, because the analysis is not 
straightforward; the simple rules of thumb which we used in the previous section cannot 
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Table 5.2 Throwing one object: grading systems compared 

Opponent 

Player Grade 4 

0.450 0.400 0.350 0.300 0 .250 0.200 0. 1 50 0. 1 00 

0.455 0.435 0.350 0 .335  0 .230 0 . 200 0. 1 50 0. 1 25 

1 1 .8 0.47 1 0.400 0 .355 0 .3 1 4  0.250 0. 1 97 0. 1 82 0. 1 1 0 

7 .8  0.466 0.388 0. 342 0.304 0. 247 0 . 203 0. 1 9 1  0. 1 39 

0. 550 0.450 0.400 0.350 0 .300 0.250 0.200 0. 1 50 

0 .545 0.395 0 .395 0.330 0.290 0.245 0.2 1 0  0. 1 30 

1 7 .6 0 .529 0.429 0 .384 0. 344 0.280 0.226 0. 2 1 1 0. 1 39 

1 4.6 0. 534 0.422 0 .374 0.334 0.275 0.228 0 . 2 1 5  0. 1 59 

0.600 0 . 5 50 0.450 0.400 0.350 0.300 0 .250 0.200 

0. 565 0.605 0.450 0. 390 0.380 0.3 1 5  0 .285 0. 1 8 5  

3 1 . 7 0.600 0.570 0.455 0.4 1 4  0.350 0 .297 0 .28 1 0.209 

30.4 0. 6 1 2  0 .578 0.45 1 0.409 0. 344 0 .292 0.277 0 .2 1 2  

4 0.650 0.600 0 .550 0.450 0.400 0.350 0.300 0.250 

0.650 0.605 0.550 0.435 0.430 0 .365 0.3 1 0  0.240 

40.8 0.645 0.6 1 6  0. 546 0.459 0.395 0 .343 0.327 0 .254 

40.2 0.658 0.626 0. 549 0.457 0.390 0.336 0.320 0.249 

0.700 0.650 0.600 0.550 0.450 0.400 0 .350 0. 300 

0.665 0.670 0.6 1 0  0.565 0.370 0.395 0.370 0.305 

48.9 0.685 0.657 0.586 0. 540 0.436 0.383 0. 368 0.295 

48.8 0.696 0.666 0.59 1 0. 543 0.432 0.376 0.360 0.284 

6 0.750 0. 700 0.650 0.600 0 .550 0.450 0.400 0.350 

0.770 0 .7 1 0  0.620 0. 570 0.630 0.395 0.435 0.395 

6 1 .7 0.750 0 .72 1 0.650 0.604 0. 564 0.447 0.432 0 .359 

62.4 0.753 0.725 0.656 0.6 1 0  0.568 0.442 0.425 0.345 

0.800 0.750 0. 700 0.650 0.600 0 .550 0.450 0.400 

0. 800 0. 755 0 .685 0 .635 0.605 0.605 0 .520 0.400 

72 .3  0.803 0.773 0.703 0.685 0.6 1 7  0 .553  0.484 0.4 1 2  

74.0 0 .797 0.772 0.708 0.664 0.624 0 .558 0.483 0.400 

0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.450 

0.850 0.790 0.7 1 5  0.690 0.630 0.565 0.480 0.425 

75.4 0 .8 1 8  0.789 0 .7 1 8  0.673 0.633 0. 569 0 .5 1 6  0.427 

77 .5  0.809 0 .785 0 .723 0.680 0.640 0 .575  0. 5 1 7  0.4 1 7  

0.900 0.850 0. 800 0.750 0 . 700 0.650 0.600 0. 550 

0.875 0.870 0.8 1 5  0.760 0.695 0.605 0.600 0 .575 

89.9 0.89 1 0.86 1 0.79 1 0. 745 0.705 0.64 1  0.588 0.573 

94.3 0.86 1 0.84 1 0 .788 0.7 5 1  0 .7 1 6  0.655 0.600 0 .583 

For each player, the four rows show (i) the true expectation against each 
opponent; (ii) the average result of a hundred games against each opponent, 
simulated by computer; (iii ) the grade calculated from the simulated games, 
using the correct expectation function, and the resulting expectations against 
each opponent; and (iv) the same using an incorrect expectation function as 
described in  the text. 

be applied, because we are now looking at the spread of results around expectations 
to whose calculation they themselves have contributed (whereas the rules apply to the 
spread of results about independently calculated expectations) and we must take the 
dependence into account. Techniques exist for doing this, but the details are beyond 
the scope of this book. 
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This is excellent news for grading secretaries, since it suggests that 
any reasonable expectation function can be used; the spacing of the 
grades may differ from that which a correct expectation function 
would have generated, but the expectations will be adjusted in 
approximate compensation, and any residual errors will be small 
compared with the effect of chance fluctuation on the actual results. 
But there is an obvious corollary: the apparently successful calculation 
of expectations by a grading system throws no rea/ light on the underlying 
nature of the game. Chess grades are currently calculated using a 
system, due to A .  E. Elo, in which expectations are calculated by the 
normal distribution function, and the general acceptance of this system 
by chess players has fostered the belief that the normal distribution 
provides the most appropriate expectation function for chess . In fact 

it is by no means obvious that this is so. The normal distribution 
function is not a magic formula of universal applicabi li ty; its validity 
as an estimator of unknown chance effects depends on the Central 

Limit Theorem, which states that the sum of a large number of 
independent samples from the same distribution can be regarded as a 
sample from a normal distribution, and it can reasonably be adopted 
as a model for the behaviour of a game only if the chance factors 
affecting a result are equivalent to a large number of independent 
events which combine additively. Chess may well not satisfy this 
condition, since many a game appears to be decided not by an 
accumulation of small blunders but by a few large ones. But while 
the question is of some theoretical interest, it hardly matters from the 
viewpoint of practical grading. Chess gradings are of greatest interest 
at master level, and the great majority of games at this level are played 
within an expectation range of 0. 3 to 0. 7. Over this range, the normal 
distribution function is almost l inear, but so is any simple alternative 
candidate, and so in all probability is the unknown 'true' function 
which most closely approximates to the actual behaviour of the game. 
In such circumstances, the errors resulting from an incorrect choice 
of expectation function are likely to be even smaller than those which 
appear in Table 5 . 1 .  

The limitations of grading 
Grades help tournament organizers to group players of approximately 
equal strength, and they provide the appropriate authorities with a 
convenient basis for the awarding of honorific titles such as 'master' 
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and 'grandmaster' . However, it is very easy to become drunk with 
figures, and i t  is appropriate that this discussion should end with some 
cautionary remarks. 

(a) Grades calculated from only a few results are unlikely to be 
reliable. 

(b) The assumption underlying all grading is that a player's 
performance against one opponent casts light on his expectation 
against another. If this assumption is unjustified, no amount of 
mathematical sophistication will provide a remedy. In particular, a 
grade calculated only from results against much weaker opponents is 
unlikely to place a player accurately among his peers . 

(c) There are circumstances in which grades are virtually meaningless. 
For an artificial but instructive example, suppose that we have a set 
of players in London and another set in Moscow. If we try to calculate 
grades embracing both sets, the placing of players within each set may 
be well determined, but the placing of the sets as a whole will depend 
on the results of the few games between players in different cities. 
Furthermore, these games are l ikely to have been between the leading 
players in each city, and li ttle can be inferred from them about the 
relative abilities of more modest performers. Grading administrators 
are well aware of these problems and refrain from publishing composite 
lists in such circumstances, but players sometimes try to make 
inferences by combining lists which administrators have been careful 
to keep separate. 

(d) A grade is merely a general measure of a player's performance 
relative to that of certain other players over a particular period. It is 
not an absolute measure of anything at all. The average ability of a pool 
of players is always changing, through study, practice, and ageing, 
but grading provides no mechanism by which the average grade can 
be made to reflect these changes; indeed, if the pool of players remains 
constant and every game causes equal and opposite changes to the 
grades of the affected players, the average grade never changes at all . 
What does change the average grade of a pool is the arrival and 
departure of players, and if a player has a different grade when he 
leaves than he received when he arrived then his sojourn will have 
disturbed the average grade of the other players; but this change is 
merely an artificial consequence of the grading calculations, and it 
does not represent any genuine change in average ability. It is of 
course open to a grading administrator to adjust the average grade 
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of his pool t o  conform to any overall change i n  ability which he 
believes to have occurred, but the absence of an external standard of 
comparison means that any such adjustment is conjectural .  

It is this last limitation that is most frequently overlooked. Students 
of all games like to imagine how players of different periods would 
have compared with each other, and long-term grading has been 
hailed as providing an answer. This is wishful thinking. Grades may 
appear to be pure numbers, but they are actually measures relative 
to i ll-defined and changing reference levels, and they cannot answer 
questions about the relative abili ties of players when the reference 
levels are not the same. The absolute level represented by a particular 
grade may not change greatly over a short period, but it is doubtful 
whether a player's grade ten years before his peak can properly be 
compared with that ten years after, and quite certain that his peak 
cannot be compared with somebody else's peak in a different era 
altogether. Morphy in 1 857-8 and Fischer in 1 970-2 were outstanding 
among their chess contemporaries, and it is natural to speculate how 
they would have fared against each other; but such speculations are 
not answered by calculating grades through chains of intermediaries 
spanning over a hundred years. 4 

Cyclic expectations 
Although cyclic results of the form 'A beats B, B beats C, and C beats 
A' are not uncommon in practice, they are usually attributable to 
chance fluctuations. Occasionally, however, such results may actually 

4 Chess enthusiasts may be surprised that the name of Elo has not figured more 
prominently in this discussion, since the Elo rating system has been in use internationally 
since 1 970. However, Elo's work as described in his book The rating of chessplayers, 
past and present ( Batsford, 1 978) is open to serious criticism. His  statistical testing is  
unsatisfactory to the point of being meaningless; he calculates standard deviations 
without allowing for draws, he does not always appear to allow for the extent to which 
his test results have contributed to the ratings which they purport to be testing, and 
he fails to make the important distinction between proving a proposition true and 
merely failing to prove it  false. In particular, an analysis of 4795 games from Milwaukee 
Open tournaments, which he represents as demonstrating the normal distribution 
function to be the appropriate expectation function for chess, is  actually no more than 
an incorrect analysis of the variation within his data. He also appears not to realize 
that changes in the overall strength of a pool cannot be detected, and that his 
'deflation control', which claims to stabilize the implied reference level, is a delusion.  
Administrators of other sports (for  example tennis) currently publish only rankings. 
The limitations of these are obvious, but at least they do not encourage i l lusory 
comparisons between today's champions and those of the past . 
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represent the normal expectation. As light relief after the rigours of 
the last few sections, let us look at a few examples. 

The rivers at Oxford and Cambridge are too narrow to permit 
boats to race abreast, so competi tive rowing takes the form of 'bump' 
races. The boats start in a long line, and a boat which catches the 

one in front records a bump and takes its place next day. Now suppose 
that the leading boat A consists of stayers, and the next boat B of 
sprinters . It is now quite feasible that B will catch A early on the first 
day, but that A will wear B down and return the compliment late on 
the second. Provided that the third boat does not intervene, A and B 
now change places on alternate days. Such results do indeed oc
casionally happen . 

This is not a true cycle, of course; the first boat has an inherent 
disadvantage in such a situation, and neither boat has shown itself 
strong enough to overcome this disadvantage. But now let us consider 
individual pursuit races around a small circular track,  the runners 
starting at opposite sides and attempting to overtake each other 
(Figure 5 .4). If we have three runners, A being a long distance runner, 
B a middle distance runner, and C a sprinter, and they race against 
each other in pairs, then it is quite feasible that A will escape B's early 
rush and win in the long run, that B will do the same to C, but that 
C will be fast enough to catch A early on. 

0 � 

Figure 5.4 Catch as catch can 

If this seems a li ttle artificial, let us consider cross-country races 
between teams. The customary scoring system for such races gives 
one point to the first runner, two to the next, and so on, victory going 
to the team scoring the fewest points. Now suppose that we have nine 
runners A ,B, . . .  ,[ who are expected to finish in this order, and that 
A, F, and H form team X, that B, D, and I form team Y, and that 
C, E, and G form team Z. If each runner performs exactly to 
expectation, the finishing orders in  races between two teams are as 
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Table 5.3 Cross-country running: the results of races between certain 
teams 

X against Y Y against Z Z against X 
Runner Place Points Place Points Place Points 

X y y z z X 

A I 
B 2 2 I 
c 2 2 2 2 

D 3 3 3 3 
E 4 4 3 3 
F 4 4 4 4 

G 5 5 5 5 
H 5 5 6 6 
I 6 6 6 6 

Total 1 0  I I  1 0  I I  1 0  I I  

Team X comprises runners A ,  F, and H; team Y, runners B, D, and /; team 
Z, runners C, E, and G. The runners are assumed always to finish in order 
A . . .  I. 

shown in Table 5 . 3 ,  and we see that X wins against Y, Y wins against 
Z, and Z wins against X. 

Such precise performances are unlikely in practice, but it is 

interesting that there are circumstances in which the apparently 
paradoxical results 'A beats B, B beats C, and C beats A' actually 
represent the normal expectation. 



6 
B LUF F A N D  D OUB LE B LUF F 

In this chapter, we consider games in which each player has a choice, 
and his object is to maximize a payoff which depends both on his 
own choice and on his opponent's. This is the simplest aspect of the 
' theory of games' originally developed by John von Neumann. 

In  some games, such as chess, a player always knows everything 
that his opponent knows. In such a game, a player always has a single 
optimal choice (or, perhaps, a set of equivalent choices). Nobody may 
yet have discovered what this optimal choice actually is, but it can be 
proved to exist. We confine our attention to games in which one 
player knows something that the other does not: for example, the 
identity of a card which he has drawn from a pack. In such a game, 
there may not be a single optimal choice, but there is always an 
optimal strategy in some sense. 

I've got a picture 
We start with a very simple card game. The first player draws a card 
at random from a pack , and bets either one or five units that it is a 
picture card (king, queen, or jack) .  The second player then either 
concedes this bet or doubles it. If  he concedes, he pays the first player 
the amount of the bet, and the card is returned to the pack without 
being examined. If  he doubles, the amount of the bet is doubled, the 
card is examined, and the doubled bet is paid accordingly. 

At first sight, this is a bad game for the first player. The probability 
that he draws a picture card is only 3/ 1 3 . Suppose that indeed he 
does so (Figure 6. 1 ) . He presumably bets five, his opponent presumably 
concedes, and he wins five. Alternatively, suppose that he fails to 
draw a picture. He now presumably bets one, his opponent presumably 
doubles, and he loses two. So he has a probabi lity 3/ 1 3  of winning 
five and a probability 1 0/ 1 3  of losing two, leading to an average loss 
of 5/ 1 3 . 
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Bet 5 

Gain 5 

Bet I 

Lose 2 

Figure 6. 1 ' I 've got a picture ' :  the obvious strategy for the first player 

Bet 5 
If conceded, gain 5 
If doubled, gain 1 0  

Bet 5 
If conceded, gain 5 
If doubled, lose 1 0  

Bet 1 

Lose 2 

Figure 6.2 ' I 've got a picture' :  a better strategy 

But now suppose that the first player bets five whenever he draws 
either a picture card or an ace (Figure 6 .2) .  His probability of drawing 
one of these cards is 4/ 1 3 , and if his opponent continues to concede 
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all bets of five then he notches up a gain of five every time. Against 
this must be set the loss of two whenever he draws a card other than 
a picture or an ace, which happens with probability 9j l 3 ; but he still 
makes an average gain of 2/ 1 3 . 

After suffering this for a while, the second player is likely to realize 
that he is being taken for a fool and that at least some bets of five 
should be doubled. In practice, he is likely to study the first player's 
face in search of a clue, but let us assume that the first player is a 
skilled bluffer and that no clue is visible. In this case, the second 
player must rely on the laws of chance, and these state only that the 
probability that a bet of five represents a bluff on an ace is 1 /4. 
Doubling gains ten in this case, but it loses ten whenever the card 
turns out to be a picture after all, and the latter happens with 
probability 3/4. So the average loss is still five. 

So we see that the strategy of betting five on a picture card or an 

ace gives the first player an average expectation of 2/ 1 3  whatever his 
opponent may do. If all bets of five are conceded, fine. If some or all 
are doubled, the losses on the aces are balanced by the extra gains 
on the picture cards, and the overall expectation remains the same. 

An optimal strategy for each player 
The strategy of betting five on a picture card or an ace is equivalent 
to the following: 

( I a) on drawing a picture, always bet five; 

( I  b) on drawing any other card, bet five at random with probability 
1 / 1 0, otherwise bet one. 

The selection of the aces is no more than a convenient way of making 
a random choice with probability 1 / 1 0 . 

It can be shown that this represents the best possible strategy for 
the first player, in the sense that it generates the largest average 
expectation which can be guaranteed irrespective of the strategy 
subsequently adopted by the opponent. If he bluffs with probability 
less than I I I 0, his opponent can reduce this average expectation by 
conceding all bets of five; if he bluffs with probability greater than 
1 / 1 0, his opponent can reduce it by doubling all bets of five; and if 
he bluffs other than at random, his opponent may be able to work 
out what is coming and act accordingly. It is certainly true that other 
strategies may generate a larger expectation if the opponent plays 
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badly; for example, betting five all the time shows a massive profit if  
the opponent never doubles at all .  But i t  is  prudent to allow for the 
best that the opponent can do, and bluffing at random with probability 
1 / 1 0  leaves the opponent without effective resource. 

Now let us look at matters from the other side. Consider the 
following strategy for the second player: 

(2a) on hearing a bet of one, always double; 

(2b) on hearing a bet of five, double at random with probability 

7 I 1 5 , otherwise concede. 

Calculation shows that this strategy gives an average gain of two 
every time the first player draws a losing card, irrespective of whether 
the actual bet is one or five, but yields an average loss of 22/3 
whenever the first player draws a picture. The probabili ties of these 
cards are 1 0/ 1 3  and 3/ 1 3  respectively, so the overall average loss is 
2/ 1 3 .  We have already seen that the first player can guarantee an 
average gain of 2/ 1 3  by following strategy ( l a)/( l b), so the second 
player cannot hope to do better than this. Conversely, the fact that 
strategy (2a)/(2b) restricts the second player's average loss to 2/ 1 3  
proves that the first player cannot achieve a greater average gain by 
varying from strategy ( I a)/( I b). 

But just as the second player can take advantage of any departure 
by the first from strategy ( l a)/( l b), so the first player can take 
advantage of any departure by the second from strategy (2a)/(2b). If 
the second player doubles bets of five with probability less than 7/ 1 5, 
the first player can increase his expectation by bluffing on every card; 
if the second player doubles with probability greater than 7/ 1 5, the 
first player can increase his expectation by never bluffing at all .  

Let us summarize this analysis .  We have examined the best strategy 
for each player, we have seen how the opponent can take advantage 
of any departure from this strategy, and we have shown how the first 
player can ensure an average gain of 2/ 1 3  and how the second player 
can restrict his average loss to 2/ 1 3 . This number 2/ 1 3  can therefore 
reasonably be called the 'value' of the game to the first player. l 

1 We have restricted the first player's choice to one or five units in order to simplify 
the discussion, but a more natural way to play this game is to allow him to bet any 
number of units from one to five inclusive. In the event, however, this extra freedom 
turns out to give no advantage. The second player's best st rategy, on hearing a bet of 
n units, is to double with probability (n + 2)/3n. This gives the first player an average 
loss of two whenever he draws a losing card, while restricting his average gain to 
(4n + 2)/3 whenever he draws a picture. So the fi rst player should bet five on every 
picture card in order to maximize this gain, and his bluffs must conform. 
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Scissors, paper, stone 
The analysis of ' I 've got a picture' is complicated by the fact that 
each player must prepare strategies for two eventualities: the first 
player because he may draw a winning or a losing card, and the 
second because he may hear a high or a low bet. Some aspects of the 
von Neumann theory are more easily demonstrated by a game in 
which a player need only consider one set of circumstances. 

There is a well-known game for chi ldren in which each of two 
players holds a hand behind his back, chants a ritual phrase in unison, 
and brings his hand forward in one of three configurations: with two 
fingers in a V to represent scissors, with the whole hand spread out 
and slightly curved to represent paper, or with the fist clenched to 
represent a stone. The winner is determined by the rule that scissors 
cut paper, paper wraps stone, and stone blunts scissors . If both players 
display the same configuration,  the game is drawn. 

In this elementary form, the game is of no mathematical interest, 
but it  can be given such interest by the introduction of differential 
scoring. Let us therefore suppose that scissors score I against paper, 
that paper scores 2 against stone, and that stone scores 3 against 
scissors. What is now the best strategy? Do we form a stone and hope 
to score 3, or do we expect our opponent to have formed a stone and 
try to beat him by forming paper, or what? 

Plainly, if we always make the same choice then our opponent can 
make the appropriate reply and win, so we must mix two or more 
choices in a random manner. Let us therefore form scissors, paper, 
and stone at random with probabilities x, y, and z respectively. This 
gives an average gain of (3z - y) whenever our opponent forms scissors, 
(x - 2z) whenever he forms paper, and (2y - 3x) whenever he forms a 
stone. We cannot make all these gains positive, since this would 
require 3z > y, x > 2z, and 2y > 3x, from which it would follow that 
6z > 2y > 3x > 6z, which is impossible. So the best for which we can 
hope is that none of them is actually negative, and this can be achieved 
only by setting x to 1 /3 ,  y to 1 /2 ,  and z to 1 /6 .  It is perhaps unlikely 
that we would have guessed these probabilities without a detailed 
analysis .  

Two points about this solution should be noted . If  we vary from 
it in any way, our opponent can take advantage. For example, if we 
increase the frequency with which we form scissors relative to that 
with which we form paper, he can profit by always forming a stone. 
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Only by keeping strictly to the probabili ties 1 /3 ,  1 /2,  and 1 /6 can we 
ensure that he can make no profit. On the other hand, if we do keep 
strictly to these probabil ities, it does not matter what our opponent does; 
he can play his best strategy (which is the same as ours, since the 
game is the same for both players), or he can play any bad strategy 

that he likes (perhaps always forming scissors, or always paper, or 
always a stone), and our average expectation is zero in every case. In 
other words, we can ensure our optimal expectation only by forgoing 
any chance of profiting from our opponent's mistakes. 

Similar effects occur in ' I 've got a picture' .  If the first player follows 
his best strategy, betting five on all winning cards and on one loser 
in ten chosen at random, he makes an average gain of 2/ 1 3  whether 

his opponent plays his own best strategy in reply to bets of five, or 
concedes them all, or doubles them all .  He forgoes any chance of 
profiting should his opponent fai l  to double bets of five at the correct 
frequency. He does profit if his opponent fails to double a bet of one, 
however; such a choice is definitely inferior, and is to be avoided . In 
this respect, the game differs from 'scissors, paper, stone', which has 
no choice that should always be avoided. Similarly, if the second 
player doubles all bets of one and doubles bets of five at random with 
probability 7/ 1 5 , he makes an average loss of 2/ 1 3  whether the first 
player bets five on losing cards at the correct frequency, or always, 
or never. He forgoes any chance of profiting should the first player 
fail to bet five on losing cards at the correct frequency, though he 
does profit if the first player bets less than five on a winning card . 

You cut, I'll choose 
The equalization of an opponent's options is a strategy of wide 
applicabi lity. The standard example is that of a parent who wishes to 
divide a cake between two children with the minimum of quarrelling, 

and tells one child to divide the cake into equal portions and then to 
give the other first choice. In practice, this 'game' is very slightly in 
favour of the second child, who can take advantage of any inequality 
in the cutting, but i t  is the first child's task to minimize this inequality 

and the second player's advantage i s  usually smal l .  
A similar technique can be applied to any asymmetric task.  Suppose 

that two labourers on a demolition site wish to settle an argument 
about their prowess in a gentlemanly way, but that only one edifice 
remains for destruction . It may not be practicable for them to demolish 



70 Bluff and double bluff 

half each and see who finishes first, but it is always possible for one 
to challenge the other to demolish it within a certain time, and for 

the other either to attempt this task or to invite the challenger to do 
it himself. If the challenger believes the abili ties of the candidates to 
be equal, his best strategy is to stipulate a target which he believes 
that he has only an even chance of achieving; any other stipulation 
allows his opponent to make an advantageous choice. If he believes 
the abilities to be unequal, he should stipulate a target at which he 
estimates that his own chance of success equals his opponent's chance 
of failure. Note that this rule applies whether or not he regards himself 
as the stronger. If he is indeed the stronger, it guarantees a certain 
chance of success (assuming that his estimate is  indeed correct); if he 
is the weaker, i t  minimizes the amount that his opponent can gain .  

In practice, of course, i t  is unusual for a task to be unrepeatable, 
and the usual procedure in an asymmetric game is for each player to 
take each role at least once. In a game of cricket, for example, each 
side bats in turn, the first innings being decided by the toss of a coin. 

But batting first may confer a distinct advantage (or disadvantage, 
depending on the circumstances), and there are occasions when 
winning the toss is almost tantamount to winning the game. This can 
be avoided by allowing the loser of the toss to state the side which 
he believes to have the advantage and to specify a bonus to be given 
to the other side, and for the winner then to decide whether to accept 

the bonus and concede the advantage or vice versa. This does not 
quite remove the advantage of winning the toss, because the loser 

may misjudge the bonus that should be given, but it  greatly reduces 
i t .  A similar procedure can be applied to any game in which bonuses 
or handicaps can be assigned on a suitably fine scale. The bonus or 
handicap need not even be related to the score; for example, in a 
game such as chess, one player may be allowed longer for his moves 
than the other. 

One final il lustration may be of interest .  In the climactic scene of 
an archetypal Western film, the hero and the villain appear at opposite 

ends of a deserted street, walk slowly towards each other, and fire 
simultaneously; and the villain drops dead . The death of the villain 

merely reflects the moral uprightness of motion picture makers, but 
the simultaneity is a matter of mathematics . Let the probability that 
hero and villain hit at distance x be h(x) and v(x) respectively, and 
let us assume that a gun takes so long to reload that if either misses 
then his opponent can close in and finish him off with certainty. The 

best strategy for the hero is now to hold his fire until h(x) = I - v(x) . 
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I f  h e  delays longer, h e  increases the risk that h e  may b e  shot directly; 
if he fires earlier, he increases the risk that he may miss and be finished 
off at leisure. But by the same argument, the best strategy for the 
villain is to hold his fire until v(x) = I - h(x), and this clearly 

yields the same value of x. I owe this delightful example to Peter 
Swinnerton-Dyer, who used to cite it  in his lectures on the subject. 

The nature of bluffing 
An inexperienced player thinks of a bluff as a manoeuvre whose 
objective is to persuade his opponent to play wrongly on a particular 
occasion. There are indeed many occasions on which such bluffs are 
successful, but their success depends upon the opponent's lack of 
sophistication. The bluffs which we have studied in this chapter are 
of a more subtle kind; their objective is not to persuade the opponent 
to take a wrong course of action on any particular occasion but to 
make his actual course of action irrelevant in the long term. These 
bluffs are effective however sophisticated he may be. They also avoid 
the need for 'bluff or double bluff' analyses such as 'I hold A and 
want him to do X, so perhaps I should pretend to hold B, which will 
work if he swallows the bluff, or perhaps I should pretend to pretend 
to hold A, which will work if he thinks I'm bluffing, or perhaps . . .  ' .  

Look back a t  'I 've got a picture' .  The best strategy for the first player, 
to bluff on every ace, makes it irrelevant in the long term whether the 
bluff is called or not. 

Our bluffs in ' I 've got a picture' are 'high' bluffs; we make the same 

high bet on a losing card as we make on winning cards.  The 
inexperienced player is perhaps more likely to think in terms of 'low' 
bluffs (betting low on a winning card in order to lure the opponent 

into a trap) , because such bluffs apparently cost less if they fai l .  
Whether bluffing low is in fact the best strategy can be determined 
only by a detai led analysis of the pay-offs for the game in question, 
but very often it is not. In ' I 've got a picture' ,  for example, it is 
obvious that bluffing low on a winning card is disadvantageous; a low 
bet gains only two even if doubled, whereas a high bet gains five even 
if not doubled. But suppose that we change the rules and make the 

first player bet either four or five; does it  not now pay the first player 
to bet low on a winning card, hoping to be doubled and score eight? 
No; the fact may be surprising, but it does not. It can be shown that 
the best strategy for the second player is now to double all bets of 
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four, and to double bets of five with probability 1 3/ 1 5 . This gains an 
average of eight whenever the first player holds a losing card, while 
conceding an average of either eight or 28/3 on a winning card 
according to whether the first player bets four or five. The latter is 

plainly the better for the first player, and in fact his best strategy is 
as before: to bet high on all winning cards, and on losing cards with 
probability 1 / 1 0 . 

On the other hand, there are occasions on which low bluffing is 
certainly correct. For example, if  an opponent at bridge has embarked 
on a course of action which we can see to be misguided, we may 
pretend to weakness in order not to alert him while he still has time 
to change to something better. Many of the spectacular deceptions 
that are featured in books on bridge come into this category. There 
are even games in which the correct strategy is sometimes to lie 
completely doggo, making a fixed bet and giving no indication at all 
of the hand held; just as the best strategy for an animal or bird, 
caught in the open, may be to freeze and hope to be overlooked. 

Even so, examples where low bluffs are profitable appear to be 
atypical, and to arise mainly in  situations where we are bound to be 
in trouble if our opponent makes his best move. In most games that 
I have analysed, it is more profitable to bet high on all good hands 
and occasionally to bluff high than to bet low on all bad hands and 
occasionally to bluff low. 

Analysing a game 
The actual obtaining of solutions (as opposed to demonstrating that 
a particular solution is in fact optimal) has been passed over rather 
lightly so far, but the time has come to say a li ttle about it. A complete 
description is impracticable in a book of this kind, but the essence of 
the matter is quite simple: we expect a solution to contain a 
combination of our own options that equalizes the effects of our 
opponent's options, and the appropriate combination can be found 
by solving linear equations. 

As an i l lustration, let us consider the game of Even Steven and the 
Odd Bod. This is played in a similar manner to 'scissors, paper, stone', 
but each player merely holds out one or two fingers, Steven winning 
if  the total number of fingers on display is even and the Odd Bod if 
it is odd. The total i tself determines the amount won, so if both 
players display two fingers then Steven wins four. 
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We start by choosing a player, and drawing up a table showing 
each of his options, each of his opponent's, and the amount that he 
wins in each case. Table 6 . 1 shows the amounts won by Steven. A 
complementary table can be constructed for the Odd Bod, but it is  
unnecessary because the whole analysis can be performed using 
Steven's. 

Table 6. 1 The game of Even Steven and the Odd Bod: Steven's score 

The Odd Bod's 
choice 

I 
2 

Steven's choice 
I 2 

2 
- 3  

- 3  
4 

We now make the provisional assumption that Steven's optimal 
strategy involves choosing one finger with probabil ity x and two 
fingers with probabil ity y, and that this strategy yields an average 
gain of p whatever the Odd Bod does. If the Odd Bod displays one 
finger, the first row of Table 6 . 1 states that Steven's average gain is 
2x - 3y, so we have 

2x - 3y =p . . . .  ( I )  

If the Odd Bod displays two fingers, the second row o f  the table states 

that Steven's average gain is - 3x + 4y, so we have 

- 3x + 4y = p  . . . .  (2)  

Finally, x and y between them must cover all possibilities, so we have 

x +  y =  1 . . . .  (3 )  

This gives us three l inear equations for three unknowns, and if we 
solve them in the usual way we find that x = 7 I 1 2 , y = 5/ 1 2 , and 

p= - 1 / 1 2 . Neither x nor y is negative, so we can realize this solution 
in actual play . It is not a good game for Steven. 

It is now prudent to perform the same exercise for the Odd Bod, 
if only to confirm that his best strategy produces an average gain 
equal to Steven's loss. We wrote down Steven's equations by copying 



74 Bluff and double bluff 

the rows of Table 6. 1 ,  and we can write down the Odd Bod's by 
copying the columns and negating the signs. This gives 

- 2x + 3y =p . . .  (4) 

and 

3x - 4y =p, . . .  (5) 

and again we must have 

x +  y = l .  . . . (6) 

These equations have the solution x = 7/ 1 2, y = 5f l 2, and p = l / 1 2 . 
Again, neither x nor y is negative, so we can realize this solution in 
actual play, and the Odd Bod's average gain does indeed equal Steven's 

average loss. 
So we have a complete analysis. Each player should choose one 

finger with probability 7/ 1 2  and two fingers with probability 5/ 1 2, 
and the average gain to the Odd Bod is 1 / 1 2 . 

If all games were as easy as this, there would be li ttle to wri te 
about. In practice, however, there may be several problems. 

(a) When the table of winnings is constructed, it  may be found that 

some of the amounts are not simple numbers, but depend on unknown 
factors which must be averaged according to the laws of probability. 
This does not make any difference of principle, but i t  complicates the 
arithmetic. 

(b) The number of options may be impracticably large. In poker, 
for example, a player has the option of conceding, or matching the 
current bet, or raising but conceding if raised again, or raising and 
matching if raised again, or raising twice and then conceding, or 

raising twice and then matching, and so on, and each of these options 

must be considered for every hand that he may hold . 2  

2 I examined several simplified versions of poker while writing this chapter, but 
found none suitable for detailed exposition. Consider the following rules: (i) the pack 
is reduced to three cards, ranked king (high), queen, jack; (ii) each player bets one 
unit, draws one card, and examines it; (iii) the first player either bets a further unit or 
concedes; (iv) i f  the first player bets, the second player must either concede, or match 
the bet, or bet one more; (v) if  the second player bets one more, the first player must 
either match the new bet or concede; (vi) if nobody has conceded, the higher card 
wins. A game could hardly be simpler and sti l l  preserve the essentials of poker, but a 
ful l  analysis of even this simple game is too lengthy to give here. For the curious, the 
optimal strategies are as follows. For the first player: holding the king, always bet, and 
always match a raise; holding the queen, always bet, but match a raise only with 
probability 1 /5 ;  holding the jack, bet only with probability 1 /3 ,  and always concede 
a raise. For the second: holding the king, always raise; holding the queen, match with 
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(c) Although the equations may be soluble in theory, their solution 
may involve computational difficulties . Exact computation may gen
erate fractions with unacceptably large denominators, while the 
replacement of exact fractions such as I /3 by approximations such as 
0.3333 may significantly change the solution. 

(d) Even in theory, the equations may not have a solution at all , 
or their solution may require a particular choice to be made with 
negative probability. 

From the point of view of abstract mathematics, as opposed to 
practical computation, the last of these problems is the most important, 
and it is to this that the theory of von Neumann addresses i tself. The 
crucial theorem is as follows: it is always possible for each player to 
select a subset of the options available to him, and to make a 
combination of choices within this subset which gives (i) the same 
result if the opponent chooses an option within his own subset, and 
(ii) at least as good a result if his opponent chooses any other option. 
For simple games such as ' I 've got a picture', these subsets can be 
determined in an ad hoc manner. More complicated games demand 
systematic refinement of trial subsets; we select a subset for each 
player, solve the resulting equations, look at the remaining options, 
see if either player can obtain a better result by choosing such an 
option, modify his subset if he can, and continue until a solution is 
found. Detailed algorithms can be found in textbooks on computation. 
For games with moderate numbers of options, the task is in fact 
within the capabilities of a modern home computer, but the writing 
of a suitable program is not a job for an amateur. 

In any case, little is really gained by solving games of this kind on 
a computer. Yes, i t  tells us the numerical answers, but it does so only 
for rather artificial games. Real-life versions of poker are far too 
complicated to be analysed on contemporary computers . Perhaps you 
have visions of discovering a game with an obscure strategy and an 
unexpected average gain, on which you can found a career as a 
gambler. If you do have such ambitions, you will find that your 
primary need is not for a computer or a book on mathematical games; 
your need is for Big Louie to safeguard the take, Slinky Lulu to 
attract the punters, and other estimable henchpersons. 

Which brings us to the final point. Do not think that a reading of 

probability 1 /3 ,  otherwise concede; holding the jack,  raise with probabi l ity 1 /5 ,  
otherwise concede. The second player's strategy guarantees an average gain of 1 3/90, 
and the first player's holds him to this. 
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this chapter has equipped you to take the pants off your local poker 
school. Three assumptions have been made: that you can bluff without 
giving any indication, that nobody is cheating, and that the winner 
actually gets paid. You will not necessari ly be well advised to make 

these assumptions in practice. 



7 
THE ANALY S I S  O F  PUZ Z LE S  

We now proceed to games of pure ski l l ,  and we start by looking at 
some of the mathematical techniques which can be used when solving 
puzzles. There is no general way of solving puzzles, of course; if there 
were, they would cease to be puzzling. But there are a number of 
techniques which frequently help either to solve a puzzle or to prove 
that no solution exists. 

Black and white squares 
By far the most useful of these techniques is the exploitation of parity. 
It usually occurs when a puzzle involves moving things around, and 
the possible configurations can somehow be divided into 'odd' and 
'even' classes. If  there is no way of moving from one class into the 
other, the analysis of parity is purely a negative technique, and is used 
to prove insolubility; but it  may also be useful when a small number 
of ways of moving from one class to the other do exist, since it  may 
point the need for a solution to incorporate one of them . 

Perhaps the most familiar examples of parity occur on the chess
board. Every beginner knows that the bishop, which can only move 
diagonally, is permanently restricted to squares of the colour on which 
it starts (Figure 7 . 1 ,  left) . More subtle is the case of the knight, which 
moves from a white square to a black (Figure 7 . 1 ,  right) or vice versa. 
If two squares are of the same colour, a knight can move from one 
to the other in an even number of moves, but never in an odd number. 

Most chess problems involve specialized and recondite tactics which 
are outside the scope of this book,  but Figure 7.2 shows a simple 
puzzle in which parity plays a decisive role. The position shown in 
this figure differs from the init ial  array only in  that one White pawn 
has advanced by one square, and the problem is to discover in how 
few moves this position could have been reached in play. If it  is  now 
Black's move, there is no difficulty; White could simply have moved 
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Figure 7. 1 Bishop and knight 

Figure 7.2 Chess: how quickly can we reach this position? 
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his pawn. But suppose we are told that it is White's move? However 
he has played, Black must have made an even number of moves; his 
knights are now on squares of opposite colours, as they were at the 
start of the game, so they have made an even number of moves 
between them (irrespective of whether they are back on their original 
squares or have changed places), and his rooks, if  they have moved 
at all, can only have moved one square to the side and then back 
again. By the same argument, White's knights and rooks have made 
an even number of moves between them; but his pawn has made an 
odd number of moves, and he must have made the same overall 
number of moves as Black, so some other man must have made an 
odd number also. The only candidates are the king and the queen, 
and the shortest possibility consists of seven moves by the king. So 
to reach Figure 7.2 with White to play must have involved at least 
eight moves by each side. 

But if the typical chess problem is too specialized for inclusion here, 

the black-and-white colouring of the chessboard can be put to good 
use in other contexts. We give three examples. 

(a) The domino problem. This is a classic swindle. The victim is 
given a board shaped as in Figure 7.3, and is told to cover it with 3 1  
dominoes. He is l ikely to struggle until it occurs to him to colour 
alternate squares black and white, upon which he discovers that he 
has 32 black squares but only 30 white ones. Since a domino must 
always cover one square of each colour, the problem is insoluble. 

(b) Polyominoes. These are generalizations of dominoes, and 
comprise squares joined together in various ways. There are two 

Figure 7.3 The domino problem 
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different 'trominoes' with three squares each, and five ' tetrominoes' 
with four squares (Figure 7 .4). The five tetrominoes between them 
occupy 20 squares, and it is natural to ask if they can be arranged so 
as to fill a 4 x 5 rectangle. It turns out that they cannot, and the 
method of parity provides an elegant proof. Let alternate squares of 
the rectangle be coloured black and white. We now see that the 'T' 
tetromino always covers three black squares and one white (or vice 
versa), whereas the other four tetrominoes always cover two squares 
of each colour. So the five tetrominoes between them must cover an 
odd number of squares of each colour, whereas we need to cover ten 
of each. On the other hand, if we add the two trominoes and a 
domino, we can cover a 4 x 7 rectangle; the trominoes each cover two 
squares of one colour and one of the other, and can be placed so as 
to balance the 'T' tetromino . l  

Figure 7.4 One domino, two trominoes, five tetrominoes 

(c) The 'fifteen' puzzle. This puzzle, due to Sam Loyd, is another 
classic. The victim is given a tray which contains fifteen numbered 

blocks and one blank space, and is told to reverse the order of the 
blocks by shuffling (Figure 7 . 5) .  The crucial property of this problem 
results from the fact, proved in textbooks on group theory, that a 
permutation is either 'odd' or 'even' depending on the number of 
interchanges needed to achieve it; an odd permutation can never be 
achieved by an even number of interchanges, nor vice versa. The 

1 Polyominoes are discussed a t  length in Polyominoes by Solomon W. Golomb (Allen 
and Unwin, 1 966). There are 12 pentominoes, which can be arranged in a rectangle; 
and 35 hexominoes, which cannot. 
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Figure 7.5 The 'fifteen' puzzle 

middle pos1t10n in Figure 7 . 5  can be obtained from the starting 

position by interchanging I and the blank, 2 and 1 5, 3 and 1 4, 4 and 

1 3, 5 and 1 2, 6 and I I , 7 and 1 0, and 8 and 9, so it is  an even 

permutation of the starting posi tion. On the other hand, the right-hand 

position can be obtained from the starting position by interchanging 

I and 1 5, 2 and 1 4, 3 and 1 3 , 4 and 1 2, 5 and I C 6 and 1 0, and 7 

and 9, so it is an odd permutation. But the basic move in the puzzle 

interchanges the blank space with one of the blocks next to it, and if 

we colour the spaces as on a chessboard, we see that each such 

interchange moves the blank to a space of the opposite colour; to 

restore it to a space of the original colour takes an even number of 

moves. The blank spaces in the target positions of Figure 7.5 are on 

squares of the same colour as that in the starting position, so these 

positions can be reached only in even numbers of moves . It  follows 

that the right-hand position cannot be reached, though the middle 

one can .2  

The placing of trominoes so as to balance the 'T'  tetromino within 
a 4 x 7 rectangle provides an example of the use of parity to point 
the way to a solution, but the problem in question is so simple that 
a solver may be expected to succeed without this aid. A better example 

is provided by the 'fifteen' puzzle. Suppose that the numbers are 
replaced by letters, two of which are the same. Any required pattern 

can now be achieved, since an apparently odd permutation can be 
made into an even one by interchanging the identical letters. My 
favourite version is DEAD PIGS WON'T FLY (Figure 7 .6, left). The 

2 This is  one of the puzzles discussed in Sliding piece puzzles by Edward Hordern, 
which is another volume in the present series. Other puzzles discussed in the series are 
Rubik's cube (in Rubik's cubic compendium by Erno Rubik and others) and solitaire 
(in my own The ins and outs of peg solitaire) .  These are all classic puzzles and it would 
be wrong for this book to ignore them entirely, but our brief t reatment reflects the 
fact that fuller information is readily available elsewhere. 
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W 0 N T 

F L Y 

Figure 7.6 A problem in porcine levitation 

procedure is to show this legend to the victim and then to invite him 
to produce DEAD PIGS FLY TOWN (Figure 7.6, right). If he does 
not know the trick, he will not think of disturbing what is apparently 
already correct and will get no further than DEAD PIGS FLY 
TONW. The effect is enhanced if blocks of a different colour are used 
for each word; a purist may deplore such colouring as an irrelevant 
garnish, but it makes the victim even more reluctant to disturb the 
part of the layout that is apparently correct. 

Divisibility by three 
Having seen the power of arguments involving parity, it is natural to 
ask if divisibility by other numbers provides a similarly powerful 
weapon . 

Occasionally, it does, though such effects are not as common as 
those involving parity. An example is given by the problem of placing 
n non-interfering queens on a cylindrical chessboard . A queen can 
move along any straight line, horizontally, vertically, or diagonally, 
and the classic 'eight queens' problem requires the placing of eight 
such queens on an ordinary chessboard such that none impedes the 
move of any other. This is easily generalized to the case of n queens 
on an n x n board, and we shall consider it later in the chapter. For 
the present, however, we consider an elegant variation in which the 
board is bent into a cylinder ( Figure 7 .7) .  Such a board has only n 

diagonals in each direction, since a diagonal which apparently reaches 

the side of the board simply reappears on the other side and continues. 
Figure 7.7 shows the two sets of diagonals, A BC . . .  in one direction 
and abc . . . in the other. The problem therefore reduces to the 
following: Place n queens on an n x n cylindrical board so that there 
is one and only one in each row, column, A BC diagonal, and abc 
diagonal.  
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Figure 7.7 Diagonals on a cylinder 

Experiment soon shows the problem to be insoluble on a 2 x 2, 
3 x 3,  or 4 x 4 board, but to be soluble on a 5 x 5 board by a line of 
knight's moves (Figure 7.8, left). The 6 x 6 board again proves to be 
insoluble, but the 7 x 7 yields to another line of knight's moves (Figure 
7 .8 ,  right). A pattern now begins to emerge. A line of knight's moves 
automatically ensures that we have one queen in each row and in 
each A BC diagonal . If n is odd, it also ensures that we get one queen 

in each column; but if n is even, half the columns receive two queens 
and the rest receive none (Figure 7 .9 ,  left). Similarly, if n is  not 
divisible by 3, we get one queen in each of the abc diagonals, but if 
n is  divisible by 3 ,  a third of them receive three queens and the rest 
receive none (Figure 7 .9,  right). So a line of knight's moves solves the 
problem if and only if n is divisible by neither 2 nor 3. The same can 
be shown to be true of other arrangements in straight l ines; they work 
if n is divisible by neither 2 nor 3 ,  but fai l  otherwise. 

But we are not restricted to arrangements in straight lines. Are 
there no arrangements that work when straight lines fail? 

It turns out that there are not; and the proof, al though a li ttle 
harder than most of the material in this book, is sufficiently elegant 
to be worth giving in full .  Let us start with the case of even n, which 
is the easier. We number everything from 0 to n - 1 in an obvious 

0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 

Figure 7.8 Successful arrangements of queens on a cylinder 
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Figure 7.9 Unsuccessful arangements of queens on a cylinder 

way, rows from top to bottom, columns from left to right, and 
diagonals from A or a as appropriate; and we use the result, proved 
in textbooks on algebra, that 0 +  I +  . . .  + (n - l ) = n(n - 1 )/2. Now 
suppose that the queen in row i is in column q;. The numbers 

q0,q � .  . . .  ,q. _ 1 must be a permutation of the numbers 0, 1 ,  . . .  ,n - I ,  
since no two queens lie i n  the same column, so 

qo + q1 + . . . + q. - 1 = 0 + I +  . . . + (n - 1 )  

= n(n - l )/2. 

Now let us consider the A BC diagonals. Suppose that the queen in 
row i is in d iagonal r,;  then either 

r, = q, - i  

or 

r, = q, - i + n  

according a s  q, � i  o r  q, < i. Suppose that the longer equation 
r, = q, - i + n applies to k of the diagonals; then 

ro + r1 + . . .  + rn - J = (qo + qJ + . . . + q., _ J ) - { 0 + 1 +  . . .  + (n - l ) } + kn. 

But qo + qJ + . . .  + q. 1 and 0 +  I +  . . .  + (n - 1 )  both equal n(n - 1 )/2, 
so we are left with 

However, the numbers ro,r J , . . .  · '• - I must be another permutation of 
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0, 1 ,  . . .  ,n - 1 , so the sum ro + r1 + . . .  + rn - 1 must be n(n - 1 )/2, whence 
k must equal (n - 1 )/2; and if n is even, (n - 1 )/2 is not an integer, 
which is a contradiction. So the problem is insoluble if n is even . 

The case where n is divisible by 3 can be analysed similarly. We 
now consider the squares of the relevant numbers, making use of the 
fact that 02 + 1 2 + . . .  + (n - 1 )2 = n(n - 1 )(2n - l )j6; and we need to 
take account of the abc diagonals, which involves the use of numbers 
s, defined by 

s, = q, + i  

or 

s, = q, + i - n  

as appropriate. A li ttle manipulation now shows that 

r? + s? = 2q? + 2P - k,n, 

where k; is an integer which depends on the precise equations satisfied 
by r; and s;; and if we add up these equations for i = O, l ,  . . .  ,n - 1 , 
we get 

(ro2 + r1 2 + . . .  + rn - 1 2) + (so2 + sl 2 + . . .  + sn- 1 2) 

= 2(qo2 + ql2 + . . .  + q. _ , 2) + 2(02 + I l + . . .  + (n - ) )2 } - kn 

for some new integer k.  However, the numbers q0,q1 ,  . . .  ,q. - 1 ,  
r0,r t ,  . . .  ,r. - 1 ,  and s0,s1 , . . .  ,sn - 1  are all permutations of O, l ,  . . .  ,n - 1 , 
so all the sums of squares are equal to n(n - 1 )(2n - 1 )/6, and it follows 
that k must equal (n - 1 )(2n - l )/3 ;  but (n - 1 )(2n - l )/3 is not an 
integer if n is a multiple of 3 ,  so again we have a contradiction. Hence 

the problem is insoluble under this condition also. 
So it  is possible to arrange n non-interfering queens on an n x n 

cylindrical board only if n is divisible by neither 2 nor 3; which is a 
simple and elegant result. I am told that it dates back to Euler. 

Positions with limited potential 
Many problems in applied mathematics can be resolved by considering 
potentials. For example, when a pendulum is at the top of its swing, 
it has a certain potential energy, and i t  will attain a certain speed by 
the time that it  reaches the bottom. Unless it  receives extra energy 
from somewhere, it cannot attain more than this speed, nor can it  
swing through to a point higher than its starting point. 
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Similar arguments can sometimes be put to good use in the solution 
of puzzles. For example, the permitted move in a puzzle such as peg 
solitaire is to jump one peg over another and remove the peg jumped 
over, so if P, Q, R are three holes in line, a move from P over Q into 
R removes pegs from P and Q and puts a peg into R. If we now 
assign values p, q, r to the holes and add up the values of the holes 
which are occupied, the effect of the move is to replace p + q by r; 
and if p + q � r, this change is not an increase. So if we can assign 
values to the holes such that p + q � r for every set of three adjacent 
holes in line, we have a measure of the 'potential' of a position; no 
move can increase such a potential, so a problem is insoluble if the 
target position has a higher potential than the starting position. 

This simple fact allows an elegant resolution of certain problems, 
a striking example being given by Conway's problem of the solitaire 
army. Suppose we have an indefinitely large board with a line across 

it (Figure 7 . 1 0) .  If we place pegs only below this line and try to jump 
a man forward, how far forward can we go? It is not difficult to see 
that we can go forward up to four rows; the various sections of Figure 
7 . I  0 show possible starting configurations, and the actual moves are 
easy. But to reach the next row proves not to be so straightforward. 

)( 
)( 

)( 
)( 
• • • • • • • • • • • • • • • • 

• • • • • • • • • 

• • • • • • 

• • • 

Figure 7. 10 Solitaire detachments 

The reason is given by the values shown in Figure 7 . 1 1 . Our target 
is the hole with value I ,  and </> = h / 5 - 1 )/2. This value </> has the 

property that <f>2 + </> = I ,  so the relation p + q � r is satisfied for every 
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Figure 7. 1 1  The resolution of the solitaire army 

set of adjacent holes P, Q, R in line, and so no move can increase 
the sum of the occupied holes. Now suppose that all our pegs are 

initially below the thick line, and that the most distant hole actually 
occupied has value cf>".  If we look at the first row below the thick line, 
and consider i ts centre hole and the holes to the left thereof, we see 

that the sum of the occupied holes cannot exceed c/>5 + ql + cf/  + . . .  + 4>"· 
This is a geometric series of posi tive terms with constant ratio less 
than I ,  and a standard theorem of algebra states that the sum of such 
a series is always less than aj( I - r), where a is the first term and r 
the constant ratio; so the sum of this particular series is less than 
cf>5j( I - cf>).  But 1 - cf> = c/>2, so this means that the sum is less than cf>3 • 
By a similar argument, the sum of the occupied holes to the right of 
the central hole is less than 4>4; and cf>3 + cf>4 = c/>2, so the total sum of 
the occupied holes in the row is less than cf>2• Similarly, the sum of 
the occupied holes in the next row is less than cf>3, and so on down to 
the lowest row that is occupied. A similar argument can now be 
applied to the numbers cf>2, cf>3, • • •  , that bound the row sums, thus 
proving that the sum of these bounds is less than I .  So however many 
holes we occupy, the sum of their values is less than I ;  and it follows 

that we can never play a man into the target hole. 
Solitaire offers many lovely problems, as those who read The ins 

and outs of peg solitaire will discover, but this is one of the loveliest. 
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Systematic progress within a puzzle 
Our final technique is that of systematic progress. It can take two 
forms: progress within a single puzzle, and progress from one puzzle 
to another. 

An excellent example of progress within a single puzzle is provided 
by Rubik's cube. This puzzle is now well known, but a brief discussion 
is in order since similar techniques can be applied elsewhere.  

The fundamental problem with Rubik's cube is that a single physical 
operation (rotating one face) does something logically complicated 
(moving several constituent cubelets) .  What we would prefer to have 
is a set of operations that may be physically complicated but are 
logically simple; for example, interchanging a single pair of cubelets 
while leaving everything else unchanged. In practice, we cannot quite 
achieve this; we cannot interchange one pair of cubelets in isolation, 
nor rotate a single corner or edge cubelet without rotating at least 
one other cubelet of the same type. But we can interchange two corner 
cubelets without disturbing other corners, since the necessary balancing 
interchange can be performed on edge cubelets. For proofs of all these 
statements, see Rubik's cubic compendium. 

In fact, a suitable set of elementary operations is that shown in 
Figures 7 . 1 2  and 7 . 1 3 . That this set does indeed suffice is shown by 
the following argument. 

(a) Starting with a scrambled cube, and taking the face centres as 
reference points, we can use Figure 7 . 1 2(a) to get all the corners into 
position. We ignore their orientations at this stage. 

(a) (b)  

Figure 7. 12  Rubik's  cube: elementary corner operations (possibly disturbing 
edges) 



(a) 
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(b) (c )  

Figure 7.13 Rubik 's  cube: elementary edge operations (preserving corners) 

(b) Having positioned the corners, we can use Figure 7 . 1 2(b) to 
orient at least seven of them correctly. The correct orientation of the 

eighth corner should now be automatic; if i t  isn't, the cube has been 
badly assembled and must be taken apart and corrected . This is not 
usually a problem in practice, because manufacturers build uncoloured 
cubes and then colour the faces. Gentlemen do not take other people's 
cubes apart and reassemble them wrongly; it isn't real ly funny, and 
the risk of damage is appreciable. 

(c) We can now choose any face, and use Figures 7 . 1 3(a) and 7 . 1 3(b) 
to put its edges in position.  Figure 7 . 1 3(a) is sufficient to get all the 
edges on to the face, and to position at least one opposite pair 
correctly; and if the second pair is not positioned correctly in the 
process, Figure 7 . 1 3(b) can be used to interchange them . 

(d) Similarly, we can position the edges correctly on a second face 
adjacent to the first, and then on a third face opposite to either of 
the first two. Figure 7 . 1 3(b) disturbs a face other than that being 
worked on, but it is always possible to ensure that this is not a face 
which has already been arranged . This deals with ten of the twelve 
edges, and if the remaining two do not automatical ly move to their 
correct positions in  the process then the cube has again been wrongly 
assembled. 

(e) Finally, we can use Figure 7 . 1 3(c) to orient at least eleven of 
the edges correctly; and if  the twelfth does not become correctly 
oriented in the process, the cube has once more been wrongly 
assembled . 

This procedure is by no means optimal in terms of the number of 
operations needed to restore a cube from a typical state of disarray, 
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but at least it gets the thing out, and it provides a sound basis for 

further exploration. Solutions to Figures 7 . 1 2  and 7 . 1 3  are postponed 
until later in the chapter, in case you have previously been bewildered 
by the cube but now feel like trying again .  Figure 7 . 1 3(b) is not strictly 
necessary as a member of the basic set, since the same effect can be 
achieved by six suitably chosen performances of Figure 7 . 1 3(a), but 
it  is convenient to regard it as an independent operation. 

Systematic progress between puzzles 
The value of systematic progress from one puzzle to another is not 
always so obvious. If a set of puzzles is presented as a series, i t  is 

indeed natural to look for ways of deriving each solution from the 
previous one; but a puzzle is often presented in isolation, and the 
opportunity for a systematic approach may be overlooked. 

A simple example is provided by the problem of placing eight 
non-interfering queens on a chessboard. This problem can be solved 
in isolation, but the generalization to an n x n board is instructive. 

We considered this problem earlier on a cylinder, and found that 
there are solutions if and only if n is divisible by neither 2 nor 3 .  
These solutions (Figure 7 .8 ,  for example) are clearly valid for a flat 
board as well. This deals with all values of n of the form 6k ± I .  
Furthermore, if a solution on a flat n x n board has a queen i n  the 
top left-hand corner, we can obtain a solution for an (n - 1 ) x (n - 1 ) 
board by omitting the first row and column. The solutions in Figure 
7 .8  do have such a queen, and the corresponding reduced solutions 
are shown in Figure 7 . 1 4 .  This deals with all values of n of the form 
6k - 2  or 6k. 

0 
0 0 

0 0 
0 0 

0 0 
0 

Figure 7. 14 Four and six queens 
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0 
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0 
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Figure 7. 1 5  Eight queens 

There remain values of the form 6k + 2 and 6k + 3. Now if we take 

n = 8 as an example and lay out parallel l ines of knight's moves from 
opposite corners ( Figure 7 . 1 5 , left), we find that there is only one 
clash; the top left-hand and bottom right-hand queens are on the 
same diagonal. This can be cured by interchanging columns as shown, 
producing the position shown on the right-hand side of Figure 7 . 1 5 . 
Furthermore, this technique can be general ized; if n = 6k + 2, we can 
always obtain a solution by laying out two parallel lines of knight's 
moves, taking the first and the penultimate queen in each line, and 
interchanging their columns. Figure 7 . 1 6  shows this process applied 
to a 14 x 14 board . 

This leaves only values of the form 6k + 3, and for these we can 
apply the reverse of the procedure which we used for values of the 
forms 6k - 2 and 6k. Our solutions for n = 6k + 2 never place a queen 
on the leading diagonal, so we can always add an extra row at the 
top and an extra column on the left, and place a queen in the new 
top left-hand corner. 

So, by considering six separate classes, we have proved the problem 
soluble on all boards from 4 x 4 upwards. 

The most formal of al l  systematic procedures is that of successive 
induction. This is often used as a method of proof; if a proposition 
is true for an initial integer no, and if its truth for n implies i ts truth 

for n + I ,  then it must be true for al l  integers from no upwards . This 
is a very powerful method of proof, and it  can be just as powerful as 
a method of solution. 

For an example, consider the classic 'twelve coin '  problem . We are 
given twelve coins, one of which is counterfeit and does not weigh 
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Figure 7. 16 Fourteen queens 
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0 
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the same as a true coin, and we have three weighings in which to 

identify the defaulter and to determine whether it  is heavy or light. 
This is usually presented as an isolated puzzle, but it  yields instructively 
to induction. 

Let us suppose that we can identify a single counterfeit among c 
coins in n weighings in such a way that no coin occupies the same 
pan in every weighing. If we follow the procedure below, we can now 
identify a single counterfeit among 3c + 3 coins in  n + I weighings, 
again with no coin occupying the same pan in every weighing. 

(a) We take coins I to c, distribute them among the first n weighings 
as in the known solution, and omit them from the final weighing. 

(b) We take coins c +  I to 2c, distribute them similarly among the 
first n weighings, and put them in the left-hand pan in the final 
weighing. 

(c) We take coins 2c + I to 3c, do the same for the first n weighings, 
and put them in the right-hand pan in the final weighing. 
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(d) We place coin 3c + I in the left-hand pan in  the first n weighings, 
and omit it from the final weighing. 

(e) We place coin 3c + 2 in the right-hand pan in the first n weighings 
and in the left-hand pan in the final weighing. 

(f) We omit coin 3c + 3  from the first n weighings, and place it in 
the right-hand pan in the final weighing. 

It is now easily seen that we have a solution to the extended 
problem. Suppose that the results of the first n weighings, if  applied 
to the first c coins only, would show coin j to be heavy. They now 
show that either coin}, c + j, or 2c + j must be heavy, and the behaviour 
of the final weighing tells us which in fact is the case. Similarly, if the 
left-hand pan tips down in each of the first n weighings, either coin 
3c + I must be heavy or coin 3c + 2 must be light, and the final 
weighing tells us which is which; and if the first n weighings all balance, 

Figure 7. 17 Three coins, two weighings 

Table 7. 1 Analysis of the weighings shown in Figure 7 . 1 7  

Low pan Low pan Low pan 
I 2 Diagnosis I 2 Diagnosis I 2 Diagnosis 

L L impossible L 3 l ight R L 2 heavy 
L I heavy impossible R I light 
L R 2 light R 3 heavy R R impossible 
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Figure 7. 18  Twelve coins, three weighings 

Table 7.2 Analysis of the weighings shown in Figure 7 . 1 8  

Low pan Low pan Low pan 
I 2 3 Diagnosis I 2 3 Diagnosis I 2 3 

L L L impossible L L 9 light R L L 
L L 1 0  heavy L 3 light R L 
L L R I I  light L R 6 light R L R 

L L 4 heavy L 1 2  light R L 
L I heavy impossible R 
L R 7 heavy R 1 2  heavy R R 

L R L 8 light R L 6 heavy R R L 
L R 2 light R 3 heavy R R 
L R R 5 light R R 9 heavy R R R 

Diagnosis 

5 heavy 
2 heavy 
8 heavy 

7 light 
I light 
4 1ight 

I I  heavy 
10 light 
impossible 
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Figure 7.1 9 Thirty-nine coins, four weighings 

coin 3c + 3 must be the counterfeit, and the final weighing tells us 
whether it is light or heavy. 

It remains only to find a solution for some initial value of n, and 
this is easily done. If  we have three coins, the arrangement shown in 

Figure 7. 1 7  identifies the defaulter in two weighings; Table 7 . 1 supplies 
the analysis .  (The pattern of Figure 7 . 1 7  fol lows that of steps (d) to 
(f) of the systematic procedure, and can be regarded as the result of 
applying this procedure to the even simpler 'solution' in which the 
defaulter among no coins is identified in one weighing by placing no 
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coins on each side: an amusing sophistry, though hardly of practical 
importance.)  We can now apply the procedure to solve twelve coins 
in three weighings, giving the pattern which is  shown in Figure 7 . 1 8  
and analysed i n  Table 7 .2 .  The next step i s  to solve 3 9  coins i n  four 
weighings, which can be done as shown in Figure 7 . 1 9, and we can 
continue this as long as we wish; given n weighings, we can identify 
a single counterfeit from among (3" - 3)/2 coins. a 

To complete our study of puzzles, we give the promised solution 
to Rubik's cube. We assume the cube to be held so that one face is 
immediately opposite the eye, and we denote the faces by Front and 
Back, Left and Right, and Top and Bottom.  We use the following 
operations: (i) rotations of the front face, denoted by Fe (quarter turn 
clockwise), FH (half turn), and FA (quarter turn anticlockwise); (ii) 
rotations of the top face, denoted by TL (quarter turn left), TH (half 
turn) and TR (quarter turn right); (i i i) quarter turns left of the bottom 
face and of the whole cube, denoted by BL and WL respectively; and 
(iv) quarter turns of the middle slice between the left and right faces, 
denoted by Mu (up) and Mo (down). In all these rotations, the 
direction 'left', ' right' , 'up', or 'down' refers to the movement of the 

front edge. The slice and whole cube movements disturb the face 
centres, but they are always used in cancelling pairs or in complete 
sets of four, so the original centres are restored when the sequence 
finishes. 

Figure 7 . 1 2(a). Hold the cube so that the corners to be interchanged 
are at the top of the front face, and perform the operations FA . WL 
four times, then TR once (nine rotations in all , including four whole 
cube rotations). If the final operation TR is omitted, the corners of 
the top face are cycled (front right to back left to back right). This 
simple sequence gives a one-third twist to each of the corners that are 
not interchanged . If you disl ike these twists, you can get rid of them 
by performing the sequence three times, but there is no real need to 
do so since we are not yet attempting to produce correct orientations. 

Figure 7 . 1 2(b). Hold the cube similarly, and perform the operations 
TL.FA three times, then TR.Fc three times (twelve rotations in all). The 
former top faces of the affected corners come on to the front face. 

Figure 7 . 1 3(a). Hold the cube so that the edges to be cycled are on 

a It is  possible to renumber the coins so that the dispositions of coin j can be written 
down immediately from the representation of j in ternary ari thmetic. Some readers 
may wish to work out the details; others will find them in an excel lent paper by F. J .  
Dyson in Math. Gazelle 30 ( 1 946), 23 1 -4. 
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the front face, left to top to right; then perform the operations 
Mu.Fe.Mo.FH.Mu.Fe.Mo (seven rotations in all , including four slice 
rotations). The up-down-up-down pattern of the slice moves contrasts 
with the unidirectional rotation of the front face. This sequence 
reorients two of the cycled edges; a more complicated version exists 
which avoids this, but again there seems li ttle point in using i t  since 
we are not yet attempting to produce correct orientations. If the two 
operations Fe are replaced by FA, the direction of the cycle is reversed. 

Figure 7 . 1 3(b). Hold the cube so that the edges to be interchanged 
are on the top and front faces, left to right in each case; then perform 

the operation TH.FH three times (six rotations in all) . 
Figure 7 . 1 3(c) . Hold the cube so that the edges to be reoriented are 

on the front face, top and left; then perform the operation Fe, then 
Mo.BL four times, then FA, then Mo.BL four times more (eighteen 
rotations in all). The logic behind this sequence is that the performance 
of Mo.BL four times reorients the top front edge, which we want, and 
three edges elsewhere, which we don't; so we bring two front edges 
in turn to the top, reorient both, and let the unwanted reorientations 
elsewhere cancel themselves out. If we replace each of the operations 

Fe and FA by F H, we reorient the top and bottom edges instead of 
the top and left. 

Of all the sequences which have been discovered, these seem to me 
to be the easiest to learn and remember. Nevertheless, they are far 

Vis ible faces Hidden faces 

� . .  · 

Figure 7.20 Rubik's cube: an impossible configuration 



98 The analysis of puzzles 

from solving the cube with the smallest possible number of rotations, 
and experts deploy a battery of more sophisticated sequences. For 
details, see Rubik's cubic compendium. 

Having got your cube into order, you may wish to create systematic 
decorative patterns on i ts faces . No new principle is involved, but you 
may encounter the same restriction that affects the fifteen puzzle: only 
even permutations are possible. For example, the attractive pattern 
shown in Figure 7 .20 is unfortunately unattainable; five of the six 
faces can be set up as required, but the sixth cannot. The reason is 
that the permutation which forms Figure 7 .20 from a correctly 
arranged cube consists of two three-cycles on corners and two 
three-cycles and a six-cycle on edges. A cycle of even length is an odd 
permutation, and a cycle of odd length is an even permutation, so the 
overall permutation is odd and the problem is insoluble. 

This brings us back to the observation with which we started this 
chapter, that parity is the most important single weapon in the analysis 
of puzzles. So let us return to the chess board (Figure 7 .2 1 )  and give 
the last word to the poet. 

Said the actress to the bishop, with a smile 
That was certainly intended to beguile, 
'There are many things to do 
Which are much more fun for two; 
Won't you come on to my black square for a while?' 

Figure 7.21 The actress and the bishop 



8 
S AUCE F O R  THE G A N D E R  

We now consider 'impartial' games of strategy: games in which the 
same moves are available to each player. The best known game in 
this class is nim, in which each player in turn removes objects from 
one of several piles. Indeed, it turns out that nim is not only one of 
the most widely played games of this type; it is in a sense the 
most fundamental, since all impartial games whose rules guarantee 
termination are equivalent to it .  

A winning strategy at nim 
The rules of nim are very simple. The players divide a number of 
counters or other objects into piles, and each player in his turn may 
remove any number of counters from any one pile. The objective of 
play varies . In 'common' nim, which is the version usually played, a 
player's objective is to force his opponent to take the last counter. In 
'straight' nim, his objective is to take i t  himself. 

Of the two forms, straight nim is slightly the easier to analyse. It 
has a simple winning strategy. We imagine each pile divided into 
subpiles each of which contains an exact power of two: one, two, 
four, eight, and so on. This is always possible, and the division is 
always unique. Figure 8 . 1  shows piles of ten, nine, and six divided in 
this way. We now call a position balanced if i t  has an even number 
of subpiles of every size, and unbalanced if  i t  contains an odd number 
of subpiles of any size. The position in Figure 8 . 1 i s  therefore 
unbalanced, since i t  has an odd number of subpiles containing one or 
four counters . If the pile of six is reduced to three, i t  becomes balanced 
(Figure 8 .2) .  

Now if a position is unbalanced, i t  can always be balanced by 
reducing a single pi le .  The procedure is to locate the pi le containing 
the largest unbalanced subpile (if there are several such piles, any of 
them may be chosen), temporarily to ignore this pile, to note any 
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Figure 8.1 Nim: an unbalanced position 
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Figure 8.2 Nim: a balanced position 

unbalanced subpiles that now occur in  the rest of the position, and 
to reduce the chosen pile to whatever is necessary to balance them. 
Thus in Figure 8 . 1 ,  we observe that the size of the largest unbalanced 
subpile is four, and that this subpile occurs in pile 3; so we temporarily 
ignore this pile, note that the rest of the position now contains 
unbalanced subpiles of two and one, and reduce pile 3 to three 
counters in order to balance them. Another case is shown in Figure 
8 . 3 .  Here, the size of the largest unbalanced subpile is eight, and it 
appears in pile I ;  so we temporarily ignore this pile, note that the rest 
of the position now contains no unbalanced subpiles at al l ,  and so 
remove pile I al together. 

On the other hand, if  a position is already balanced, any reduction 
of a single pile unbalances it. We can see this by looking back at 
Figure 8 . 2 .  Let us consider a hypothetical reduction of pile I .  If we 
look at the rest of the position,  we find that it  contains odd numbers 
of subpiles of sizes eight and two. In order to balance these, pile I 
must consist of precisely these subpiles; no more, no less. But pile I 
already does consist of precisely these subpiles, since the position is 
already balanced, so any reduction must leave at least one subpile 
unbalanced . The same is true of a reduction of any other pile. 
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Figure 8.3 Nim: another unbalanced position 

A winning strategy now becomes clear. Suppose that our opponent 
has left us an unbalanced position. We promptly balance it, which we 
can always do, and thus we force him to give us another unbalanced 
position. This continues until there are no counters left to be removed. 
The last position of all (no counters in any pile) is balanced, so we 
win. Alternatively, suppose that he leaves us a balanced position. In 
theory, we have now lost; our best hope is to remove one man at a 
time, hoping that he will make a mistake, but we have no chance if 
he knows the game. 

Having analysed straight nim, we can deal quickly with common 
nim. It might seem that common nim should be the reverse of straight 
nim; a winning position at straight nim should be a losing position 
at common nim, and vice versa . If every pile contains one counter 
only, this is indeed so. But if any pile contains more than one counter, 
the opposite is true; such a position is a winning position at common 
nim if and only if i t  is a winning position at straight nim. The winning 
strategy for common nim is in fact as follows. 

(a) Play as at straight nim until your opponent presents you with 
a position in which only one pile contains more than one counter. 

(b) At this point, play to leave an odd number of single-counter 
piles. (At straight nim, you would leave an even number of such piles. ) 

The theory of nim was first published by C. L. Bouton in 1 90 1 .  It  
is one of the best of mathematical games: bewildering when you do 
not know how to play, simple and elegant when you do. 

Nim in disguise 
Many games, when examined, prove to be simply disguised versions 
of nim. The disguise is usually of straight nim, in which a player's 
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objective is to take the last counter himself and leave his opponent 
without a move. So, from now onwards, the unqualified word 'nim' 
means straight nim. 

(a) Northcott's game 

This game is played on a chessboard or other similar board (Figure 
8 .4). Each player has a man on every file (vertical column), and he is 
allowed to move it any number of squares up or down the file. He 
may not jump over his opponent's man, nor move a man to another 
file, nor move two men at once. The winner is the player who makes 
the last move. 

• 
• 0 • 

• 0 • • 

• 0 0 • 
0 

0 0 0 

Figure 8.4 Northcott's game 

A li ttle thought shows that the numbers of squares between the 
men behave like piles of counters at nim, except that both increases 
and decreases are allowed . But the increases prove to make no 
difference . The winner need never make one, because he can win 
without; and if the loser makes one, the winner can immediately move 
so as to restore the previous gap. It would be a different matter if the 
loser were allowed to make increasing moves indefinitely, but the edge 
of the board stops him. So Northcott's game is really a very simple 
disguise for nim. The winning move in Figure 8.4 is to reduce the gap 

in  column 3 to one square. 

(b) The concertina game 

This game is played on a continuous circuit which has been bent into 
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Initial 
screen 

a concertina (Figure 8 . 5) .  The board is placed so that half the U-bends 
are in front of each player, one player getting four small bends and 
the other three small bends and the large one. Each player then places 
two men on each of the bends in his half of the board, and play 
proceeds as in Northcott's game. The winning move in Figure 8 . 5  is 
to close the gap of two squares in the rightmost column but one. 

To set up the initial position, the players place a screen across the 
middle of the board so that neither can see what the other is doing. 
This brings the game within the ambit of Chapter 6,  and the task of 
determining an optimal initialization strategy for each player is drawn 
to the attention of any reader with a sufficiently large computer and 
nothing better to do. Once each player has chosen his position, the 
screen is removed. The rule determining first move depends on the 
precise size of the board.  If the board is of the size shown in Figure 
8 .5 ,  the player with the large bend must play second, since he can 
ensure an unbalanced position (and hence a win, if he is allowed to 
start) by placing his men as in Figure 8 .6 .  The two men at one end 
of the large bend ensure that one gap consists of at least eight squares, 
and the remaining men ensure that the other gaps are smaller. 

(c) The silver dollar game 

This game is played with a set of coins and a semi-infinite row of 
squares (Figure 8 . 7) .  Some of the squares are empty, some contain 
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Figure 8.6 Why the lower player must be allowed to start 

lo l  

Figure 8.7 The silver dollar game 

worthless coins, and one contains a silver dollar.  A player, on his 
turn, may move any one coin any number of unoccupied squares to 
the left, or pocket the leftmost coin .  The winner is he who pockets 

the dol lar .  Conway credits the game to N. G. de Bruijn;  he quotes 
it in a slightly more complicated form, but the differences are 
unimportant. 

The key coin turns out to be not the dollar itself but the coin 
immediately to its left .  We don' t want to pocket this coin,  because 
this wi l l  al low our opponent to pocket the dollar. So this coin may 
be regarded as a hot potato, and it is denoted by ' ! '  in subsequent 
figures. 

There are now two phases to the play: when there is at least one 
coin to the left of the hot potato, and when there is none. I t  is 
convenient to deal with the latter case first, although i t  is the later 
phase in  actual play. Since nobody wants to pocket the hot potato, 
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this phase effectively finishes when all the coins are jammed up against 
the extreme left-hand end of the row. 

To see the relation of this phase to nim, we start at the rightmost 
coin and mark off the coins in  pairs, noting the number of empty 
squares between the members of each pair. If the number of coins is 

odd, we also note the number of empty squares to the left of the last 
coin (which we call the 'widow' ,  and which at this stage is the hot 
potato). Figure 8.8 shows the two cases, Figure 8 .8(a) showing a 
position with a widow and Figure 8 . 8(b) a position without . It is now 
easily seen that the numbers of squares behave like the gaps in 
Northcott 's game, and hence l ike nim piles. The good move is arrowed 
in each case. The position in Figure 8 . 8(b) can also be won by 
increasing the rightmost gap from 0 to 2,  but the winner never needs 
to increase a gap in this way and the analysis is simplified if we ignore 
the possibility. 

,------.._. 'I  l i ' 

(a) I I lCD  I® I lo l  lo l  lo l  
� 

' i l l � '----y----J 
4 2 3 

' \ ( I ,.. y------. 

(b) lCD I loo lo l  I lo l  lo lo l  
,.. I I \ ' 

'----y----J '-<--' 
1 3 0 

Figure 8.8 The silver dollar game: the second phase 

The analysis of the first phase is similar, except that if we have a 

widow, we now add one to the number of empty squares to its left 
(because we are now wil l ing to pocket this coin, so the pocket itself 
behaves like an empty square) . Figure 8 .9  shows the two cases, with 
and without a widow, and the good moves are again arrowed. Note 

that there are three equally good winning moves in Figure 8 .9(a). 
The transition from one phase to the other appears to require 

special treatment, but on closer inspection this proves not really to 
be the case. The winner never needs to pocket the left-hand member 
of a pair, and he can always move the new widow to an appropriate 
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Figure 8.9 The silver dollar game: the first phase 

position if the loser does so. The winner pockets a widow only in 
order to leave a balanced position in the reduced game, as in Figure 
8 .9(a); and if the loser pockets a widow, he leaves an unbalanced 
position in the reduced game, and the winner can balance it as usual. 

So the silver dollar game is yet another disguise for nim. 1  

All cui-de-sacs lead to nim 
The essential properties of nim are these: (i) every pile has a measure; 
(i i) if this measure is non-zero, it is possible to move to a pile with 
any given smaller measure; (iii) it is not possible to move to another 
pile with the same measure. We shall now show how similar measures 
can be assigned to the positions of any impartial game whose rules 
guarantee termination. This fundamental property, first discovered by 
R. P. Sprague and independently rediscovered by P. M .  Grundy, 
proves that any such game is equivalent to nim. 

The question of guaranteed termination deserves a brief examination. 
Nim and the si lver dollar game are guaranteed to terminate however 
well or badly they are played, nim because every move decreases the 
number of counters remaining, the silver dollar game because every 
move takes 1a coin towards a dead end. We may call such games 
'cui-de-sacs' . Northcott's game and the concertina game are not 
cui-de-sacs; there is nothing in their rules to stop the players from 

1 Readers who teach computing science in schools might l ike to consider the silver 
dollar game as an exhibition project. Its simple rules and linear board are ideally suited 
to play by an elementary computer-controlled robot. 
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moving back and forth indefinitely. It is true that the winner can 
ensure termination even though the rules do not, and a generalized 
version of the theory can be shown to apply to these games; but the 
exposi tion is more complicated, and we shall not pursue it .  

Now if a game is a cul-de-sac, its positions can be divided into sets 
according to the greatest number of moves that the game may still 
take. Thus we can define set { Po} to comprise the positions in which 
play has already terminated, set {P i } to comprise the positions in 
which play is guaranteed to terminate after one more move, and so 
on. Thus a position in set {P.} has an immediate successor in set 
{P. - d .  and may have others scattered among sets {Po} to { P.- d 
inclusive. 

We can now take the sets in order, and assign a value to every 
position. The detailed procedure is as follows. 

(a) To each position in set {P0} ,  we assign the value 0.  

(b) To each position in set {P i } ,  we assign the value I .  

(c) Set {P2} is more complicated. Some of its positions may have 
immediate successors only in {Pi } ,  others may have them in both {P i } 
and {P0} . The rule is now simple: we assign to each position the lowest 
value not assigned to any of its immediate successors. If a position has 
immediate successors in both { Pi }  and { Po} , we assign it the value 2. 
If it has immediate successors only in { Pi } ,  it has no immediate 
successor with value 0, so we assign it  this value. 

And so it goes on. At each stage, we assign to every position the 
lowest value not assigned to any of its immediate successors . We call 
the value so assigned the Grundy value of a position. (It should perhaps 
be called the 'Sprague value' on the grounds of priority, but Sprague's 
work was unknown in this country for many years and 'Grundy value' 
has long been accepted usage in English; and Grundy, apparently 
unlike Sprague, published follow-up work . )  

The crucial properties of Grundy values follow immediately from 
the way in which they are assigned . No immediate successor of a 
position has the same Grundy value as the position itself; so, in 
particular, the effect of any move from a position with Grundy value 
0 (if a move is possible at all) is  to produce a position whose Grundy 
value is not 0. Conversely, if a position has a non-zero Grundy value 
g, and h is any number lower than g, it is possible to move to a 
position with Grundy value h.  

It is now clear that such a game, if played on i ts  own, behaves like 
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nim. A player who is presented with a pos1t10n with a non-zero 
Grundy value can always move to a position with Grundy value 0; 
his opponent, if he can move at al l ,  must then move to another 
position with a non-zero Grundy value; and the process repeats. What 
is more important, however, is that a composite of such games also 
behaves like nim. Suppose that we have such a composite, and that 
the Grundy values of the constituents are a, b, . . .  , m. If we have 
nim pi les of sizes a, b, . . .  , m, and the composite position is 
unbalanced, there is always a reduction of one pile that will balance 
it .  So it is here; there is always a Grundy value which can be reduced 
so as to balance the composite position, and there is always a move 
in the consti tuent game that will yield the required new value. 
Conversely, if the composite position is already balanced, any move 
in a consti tuent game changes one of the constituent Grundy values, 
and so unbalances the composite. 

Grundy analysis in practice 
To put some flesh on this theory, let us assign Grundy values to some 
simple games. 

(a) Take one, two, or three 

In the days of my youth, we had a playground game in which each 
player removed either one, two, or three matches from a pile. The 
objective was to make the opponent remove the last match, but for 
the moment let us analyse the corresponding game in which a player 
seeks to remove the last match himself. 

Let us denote a pile of n matches by M •. The assignment now 
proceeds as follows. 

(i) No play is possible from the notional pile containing no matches, 
Mo, so its Grundy value is 0 .  

( i i )  From M1,  play is possible only to M0• This has Grundy value 
0, so the Grundy value of M1 is I .  

(iii) From M2, play is possible to Mo or M1 . These have Grundy 
values 0 and I respectively, so the Grundy value of M2 is 2 .  

(iv) From M3, play is possible only to Mo, M1,  or M2. These have 
Grundy values 0, I ,  and 2, so the Grundy value of M3 is 3 .  

(v) At M4, we have a change. Play is now possible to  M1, M2, or 
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M3, but not to Mo. The attainable positions have Grundy values I ,  
2, and 3 ,  and the lowest number not included i n  this l ist i s  0 .  So the 
Grundy value of M4 is 0. 

(vi) Simi larly, from M5, play is possible only to M2, M3, or M4. 
These positions have Grundy values 2, 3 ,  and 0, so the Grundy value 
of M5 is  I .  

We can pursue this calculation a little further, but i t  i s  becoming clear 
that we have a repetitive pattern: if the division of n by 4 leaves 
remainder }, the Grundy value of M. is }. It  is not uncommon for a 
Grundy sequence to become periodic, either from the start (as here) 
or at some later stage. In practical terms, the winning strategy in this 
particular game is always to leave a multiple of four. This could have 
been worked out easily enough without the aid of the general theory, 
but harder games are about to follow. 

(b) Kayles (Rip van Winkle's game) 

This game, which dates back to Sam Loyd, has various guises. Perhaps 
the simplest uses a miniature cannon and a row of hinged targets 
(Figure 8 . 1 0). The cannon is assumed to fire a ball of fixed size, and 
the targets to be spaced so that a shot can knock down either a single 
target or two adjacent ones. The cannon is assumed to be reliable and 

the players to be perfect shots, and shooting to miss is forbidden. 
Each player takes one shot in turn, and the object is to be the player 
who knocks down the last target. 

If the row has no gaps, the first player has an easy win. If the 
number of targets in the row is odd, he knocks down the middle one; 
if it is even, he knocks down the middle pair. This presents his 
opponent with two separate rows of equal size, and whatever his 
opponent now does in one row, he can echo in the other. 

If the row has gaps, however, the game is by no means trivial .  A 
row with gaps can be regarded as a composite game, each constituent 
comprising a row without gaps, so let us denote a row of n adjacent 
targets by K., and let us use ' + '  to denote composition (in other 
words, 'Km + Kn' will denote the composite game whose consti tuents 
are Km and K.). The Grundy value of K0 is 0, because we cannot move 
at all; that of K1 is I ,  because we can move only to Ko; that of K2 is 
2,  because we can move either to Ko or to K1 • This brings us to KJ, 
from which we have three moves: to K1 , to K2, or to K1 + K1 .  

W e  can deal with K1 + K1 in  two ways. We can analyse i t  from first 
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principles: from K, + K, ,  we can move only to K1 ; the Grundy value 
of K, is I ;  therefore that of K 1 + K 1 is 0 .  Alternatively, we can invoke 
the Sprague-Grundy theorem, and use the fact that the Grundy value 
of a composite game is the number which balances the Grundy values 
of the constituents. The number which balances I and I is 0, so the 
Grundy value of K1 + K 1 is 0 .  This is much the more powerful 

technique, since it means that we need to perform a full analysis only 
on complete rows; everything else can be done by calculating balances . 

Either way, we find that the Grundy value of K3 is 3, since this is 
the lowest number not contained in the set I (K1 ) ,  2 (K2), and 0 
(K, + K, ) .  

Subsequent values can be calculated similarly; for example, the 
Grundy value of K4 is I ,  since this is the lowest number not contained 
in the set 2 (K2), 3 (K1), 0 (K, + K,) ,  and 3 again (K, + K,).  The sequence 
up to Kzo is shown in the first row of Table 8 . 1 ,  and the complete 
sequence, which proves to have period 1 2  from K7 1 onwards, appears 
both in On numbers and games by J. H. Conway (Academic Press, 
1 976) and in Winning ways for your mathematical plays by E.  R.  
Berlekamp, Conway, and R.  K.  Guy,  hereinafter ' BCG' (Academic 
Press, 1 982). The periodicity was first proved by Richard Guy in 1 949, 
the sequence necessari ly being calculated by hand. Nowadays, such a 
calculation provides a simple exercise on a home computer, and some 
readers may be tempted to repeat it. 

The remaining rows of Table 8 . 1 show the Grundy values of the 
games which we can reach from Kn. If we knock down one man, we 
obtain one of the values in the column immediately underneath; if we 

Table 8. 1 Kayles: the first twenty Grundy values 

n 0 2 4 5 6 7 8 9 1 0  I I  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 

K. 0 2 4 2 4 2 6 4 2 7 I 4 3 2 

Kn - l  0 2 3 I 4 3 2 I 4 2 6 4 I 2 7 I 4 3 2 
Kn - z + Kt 0 3 2 0 5 2 3 0 5 3 7 5 0 3 6 0 5 2 
Kn - J + Kz 0 I 3 6 I 0 3 6 0 4 6 3 0 5 3 6 
K, _ . + K, 0 2 7 0 I 2 7 I 5 7 2 I 4 2 
Kn - s + K4 0 5 2 3 0 5 3 7 5 0 3 6 

K, _ , + Ks 0 7 6 5 0 6 2 0 5 6 
K, _ , + K, 0 I 2 7 I 5 7 2 
K, _ 8 + K, 0 3 6 0 4 6 
K. _ , + Ks 0 5 3 7 
Kn - t o + K, 0 6 
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knock down two men, we obtain one of the values in the column 
immediately to its left. These values allow the winning move in any 
position to be found quickly and easi ly. For example, Figure 8 . 1 0  
shows rows o f  one, five, and six men, and the Grundy values o f  K� , 
Ks, and K6 are I ,  4, and 3 respectively. Now if we had nim piles of 

sizes I ,  4, and 3, the winning move would be to reduce the pile of 
size 4 to 2, so the requirement in Figure 8 . 1 0  is to replace K5 by 
something whose Grundy value is 2. The relevant columns of Table 
8 . 1  show that the only candidate is K3 + K1 , so the winning move is 
to knock down a single man one from the end of the row of five. 

(c) Dots and loops 

There is an interesting class of games in which the permitted move is 
to draw a line through one or more dots, no line being allowed to 

cross an existing line. Many of these games are equivalent to games 
with counters; for example, if we have n dots and we draw a loop 
through m of them, enclosing i dots and leaving j outside, it is as if 
we had removed m counters from the middle of a row of n, leaving 
separate rows of lengths i and j. So if we allow m to be I or 2 then 
we get a game equivalent to kayles, and if we allow m to be any 
positive number then we get yet another simple disguise for nim. But 
it is  easier to draw dots on paper than to set up rows of counters, 
and BCG comment that many people appear to find the games more 
attractive in this form . 

The most obvious rule is to draw a loop through a single dot, but 
the resulting game proves to be trivial .  Whatever the previous play, 
a loop can always be drawn through any dot still untouched, so the 
first or second player has an automatic win according as the number 
of dots is odd or even. But if we require the loop to pass through 
precisely two dots (Figure 8 . 1 1 ) , we obtain a game which may 

appropriately be called 'Dawson's loops' in honour of T. R. Dawson,2 

2 This name is  rooted in history. Dawson is remembered primarily as an outstanding 
composer of generalized chess problems, but he also took a strong interest in other 
mathematical mailers, and many of his six thousand 'chess' problems had a pronounced 
mathematical flavour. One was a simple but elegant pawn problem which stimulated 
the interest of Guy. This problem can be shown to be mathematically equivalent to 
the drawing of loops through two dots and to various other games, and it has become 
customary, following Guy, to allach Dawson's name to all these games. There is  an 
element of homage in this, since only the pawn problem was apparently considered by 
Dawson himself and the ultimate analysis even of this problem appears to owe as much 
to Guy as to Dawson; but it  is  homage in which I am happy to join. 
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Figure 8. 1 1  Dawson's loops 

and this game has quite a different behaviour. If the number of dots 
n is even, the first player has an easy win, since he can draw his loop 
so as to divide the remaining dots evenly and then echo his opponent's 
moves; but if n is odd, the result is not obvious, and a full Grundy 
analysis is necessary to determine the winner. In fact the second player 

wins if n is of the form 34k + I  where I= 5 ,  9,  2 1 ,  25, or 29, and also 
if n = I ,  1 5 , or 35; otherwise, the first player wins. The first twenty 
values of the Grundy sequence are shown in the first row of Table 
8 .2 ,  and the complete sequence, which Guy proved in 1 949 to have 
period 34 from D53 onwards, appears in Winning ways for your 
mathematical plays. Again, the calculation can easily be repeated using 
a home computer. 

The remainder of Table 8 .2  shows the Grundy values of the games 
which we can reach from D., and it  is even simpler to use than Table 
8 . 1 because we need look only at the column immediately below the 
game of interest. For example, Figure 8 . 1 1  shows regions containing 
fourteen, fifteen, sixteen, and seventeen dots, and the Grundy values 
of D14, D 1 s, D 1 6, and D11  are 4, 0, 5,  and 2 respectively. So the 
requirement is to replace D17 by something whose Grundy value is I ,  
and Table 8 .2  shows that the only candidate i s  D 1 1  + D4. Hence the 
winning move is to draw a loop within the region of seventeen dots, 
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Table 8.2 Dawson's loops: the first twenty Grundy values 

n 0 2 3 4 5 6 7 8 9 1 0  I I  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 

D. 0 0 2 0 3 0 3 3 2 2 4 0 5 2 2 3 3 

D. _ ,  0 0 I 2 0 3 I I 0 3 3 2 2 4 0 5 2 2 
D. _ 3 + D 1 0 I 2 0 3 I I 0 3 3 2 2 4 0 5 2 
D. _ 4 + D2 0 0 3 I 2 0 0 I 2 2 3 3 5 I 4 
Dn - s + DJ 0 3 I 2 0 0 I 2 2 3 3 5 I 
Dn - o + D• 0 2 I 3 3 2 I I 0 0 6 
D. _ , + Ds 0 3 I I 0 3 3 2 2 
Dn - s + Do 0 2 2 3 0 0 I 
D. _ 9 + D1 0 0 I 2 2 
Dn - i o + Ds 0 I 2 
D. _ 1 1 + D9 0 

leaving eleven dots inside and four outside (or vice versa) .  It is an 
instructive exercise to verify that any other move allows the opponent 
to win. 

Some more balancing acts 
The technique of balanced subdivision (in other words, of dividing a 
game into two parts such that a player can now echo in one part 

whatever his opponent may do in the other) provides a powerful 
weapon in the play of strategic games. As a brief digression from the 
main theme of this chapter, let us look at a few more examples. 

(a) Division into three 

The move in this game is to divide a pile of at least three counters 
into three smal ler piles. A single-pile game is not quite trivial ,  but 
balanced subdivision shows it to be a straightforward win for the first 
player. He makes one pile of one or two counters, depending on 
whether the initial pile is odd or even, and divides the rest into two 
piles of equal size. The pile of one or two is now immovable, and he 
can echo any move that his opponent makes in the equal piles. 

A similar technique can be applied to any game requiring a pile to 
be divided into more than two parts. Requiring a division into n parts, 
the first player divides the initial pile into (n - 3) piles each containing 
one counter, one pile containing one or two counters, and two equal 
piles. 
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A game popular among small children3 is to  raid newly baked cakes 
as soon as the cook's back is turned. We can formalize this game by 
arranging the cakes in rectangles, and allowing each player in turn to 
remove a complete line (row or column) from a single rectangle. If 
the line is taken from the middle of a rectangle, the two new rectangles 
are subsequently treated as separate. The traditional objective is  to 
scoff as many cakes as possible, but for present purposes let us assume 
that our objective is to take the last cake and leave our opponent 
without a move. 

Let us start by supposing that we have a single rectangle of size 
m x n .  If either m or n i s  odd (Figure 8 . 1 2, left), the first player has 
an easy win; he removes the middle line and leaves a balanced pair 
(unless the rectangle is only one line deep, in which case he removes 
the whole of i t  and wins immediately) . But if m and n are both even 
(Figure 8 . 1 2, right), i t  is  the second player who wins, since he can 
mirror his opponent's move. Anything left outside the two lines which 
have been removed now forms a balanced pair, and anything left 
between them forms a smaller rectangle which again has even sides. 

t t t 
(a) (b) 

Figure 8.12 Having a cake and eating it 

A position containing more than one rectangle can be analysed by 
classifying its constituents as 'even-even',  'odd-odd', and 'odd-even' 
according to the parities of their sides. The even-even rectangles are 
second-player wins, and can be ignored (because the winner needed 
never play in such a rectangle on his own initiative, and can make 
the appropriate winning reply if his opponent does so). This leaves 

a And husbands. S.B. 
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odd-odd and odd-even rectangles, and we now observe that a pair 
of odd-odd rectangles can be treated as a balanced pair even if the 
actual sides are unequal ,  and that a pair of odd-even rectangles can 
be treated similarly. For example, the moves that may be possible in 
an odd-odd rectangle fall into four classes (Figure 8 . 1 3) :  (i) reduction 
to a single odd-even rectangle; (ii) division into two odd-even 
rectangles; ( i i i) division into two odd-odd rectangles; and (iv) removal 
of the entire rectangle. A move in class (i) can be answered by a 
further reduction to another odd -odd rectangle, restoring the previous 

balance; and the effect of a move in any of classes (ii) to (iv) is to 

replace a single rectangle by a balanced pair (or to remove it 
altogether), and the overall balance can be restored by making another 
such move in another odd-odd rectangle. The analysis of an odd

even pair is similar. 

( i ) -

- (iv)  

t 
t ( i i i )  

( i i ) 

Figure 8.13 The four classes of operation on an odd-odd rectangle 

So if a position contains an even number of odd-odd rectangles, 
and another even number of odd-even rectangles, it is a second-player 
win. The sizes of the odd-odd and odd-even rectangles are i rrelevant; 
all that matters is that there be an even number of each . On the other 
hand, if there is an odd number of rectangles in either category, the 
first player can win, since a move is always available to him which 
leaves even numbers of rectangles in  each category. The same 
conclusion can be reached by a normal Grundy analysis, since such 
an analysis can be shown to assign 0 to every even-even rectangle, I 
to every odd -odd, and 2 to every odd -even; but the analysis in terms 
of balanced pairs is more instructive. 

(c) Rich man's table, poor man's table 

This game shows how balanced subdivision can be used even when 
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the playing space is continuous and the number of alternative moves 
is infinite. The story starts when a rich man visits a poor man and 
inveigles him into a gamble in which the players alternately place 
coins on a table, the first person to be unable to place a coin losing. 
The poor man, as the host, courteously offers his opponent the first 
move; but he has a plain rectangular table, and the rich man starts 
by placing a coin exactly at its centre. He can now match the poor 
man's every coin, and place his own in a diametrically opposite 
position. So the poor man runs out of moves first, and loses all his 
money. 

There is a sequel . The poor man scrimps and saves, and works long 
hours at the pitiful wages that the rich man is  prepared to pay; and 
eventually he accumulates enough to challenge the rich man to a 
return match . He calculates, correctly, that the rich man will offer 
hospitality this time and will concede the first move to his guest; but 
when they actually start to play, he discovers that the rich man's table 
has an ornate silver candlestick (symmetrical ,  of course) in the centre. 
So the poor man is fleeced once more. 

Certain generalizations of this game can be analysed in the same 
way. For example, the table need not be rectangular, nor need the 
central obstacle be circular; diametral symmetry is sufficient in each 
case. But an obstacle must not only be symmetrical about the centre, 
it must actually cover it. Suppose that we have coins of diameter d, 
that the table is in the shape of a diamond formed from two equilateral 
triangles of side d, and that the obstacle consists of two protruding 
nails a distance dv3/2 apart. No general statement can now be made, 
since the winner depends on the orientation of the obstacle. If it  is 
along the long axis (Figure 8 . 1 4, left), the first player wins; he places 
his coin as shown, and the second player has nowhere to go. On the 
other hand, if the obstacle is along the short axis (Figure 8 . 1 4, right), 

I 

' ' 
/ ' 

Figure 8. 14 First player's table, second player's table 

' 
' 

' 
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the second player wins; each player has room for just one coin in his 
own half, and neither can encroach sufficiently far across the centre 
to inconvenience the other. 

Pia ying to lose 
At the start of this chapter, it was observed that nim is usually played 
with the rule that the last player to move loses, and the same is true 
of 'take one, two, or three' in the form in which I encountered it at 
school.  Such play is known as 'misere' play. The general theory of 
misere play is markedly less satisfactory than that of normal play, but 
we must have a brief look at it. We continue to assume that the game 
is a cul-de-sac. 

In an earlier section, we found a procedure for assigning a Grundy 
value to every position in  a game. It is possible to assign a 'misere 
Grundy value' similarly. The procedure is to assign I to all positions 
in  the set { Po} and 0 to all positions in the set { P1 } ,  and then to 
continue as before. Thus if  we analyse the misere form of 'take one, 
two, or three' ,  we find ourselves assigning I to M0, 0 to M" 2 to M2, 
3 to M3, and the values now repeat: I to M4, 0 to Ms, and so on. 
The winning strategy is to leave a position with value 0, which here 
means playing to leave one more than a multiple of four. 

This really seems rather simple; why the gloom? The trouble is that 
the misere Grundy value merely tells us who wins if the game is played 
on its own; it does not tell us what happens if the game is played as part 
of a composite. There is no general analogue of the Sprague-Grundy 
theorem for misere play; the strategy which we used for common nim, 
of playing normally until just before the end, works for some games, 
but it does not work for al l .  In consequence, the work required to 
calculate a misere Grundy sequence may be overwhelming. When we 
calculate a normal Grundy sequence, we can deal with occurrences of 
composite games by calculating balancing values. No such sim
plification is available for general misere play. 

For example, in  normal kayles, the calculation of the Grundy value 
of K. involves consideration of the 2n - 5 composite games which are 
immediate successors of K., but each of these composi tes requires the 
calculation only of a single balancing value and so the amount of 
work required increases only l inearly with n. The calculation of the 
misere Grundy value requires consideration of the same 2n - 5 
composite games, but some of them must now be analysed in depth, 
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and the amount of work required appears to increase rather more 
than exponentially with n.  

Even some of the most  basic properties of normal games (for 
example, that a balanced pair is a win for the second player and that 
the addition of a balanced pair does not change the result of a game) 
are not always true of misere play. In misere kayles, the game 14 is 
easily seen to be a second-player win; if  the first player knocks down 
one man, the second knocks down two, and vice versa. Similarly, the 
balanced pair K2 + K2 is a second-player win. Yet the composite games 
14 + 14 and 14 + K2 + K2 (Figure 8 . 1 5) are first-player wins, since the 
first player can knock out the two middle men from K4 and leave 
K. + K. + /4 or K1 + K1 + K2 + K2 with his opponent to play. So a 
balanced pair may be a first-player win even though its constituents 
are second-player wins, and the addition of a balanced pair may 
change the result of a game even though the balanced pair is a 
second-player win when played on its own. 

4 4 

(a) 

4 2 2 

(b) 

Figure 8. 15 Misere kayles: two surprising composites 

Misere play is among the topics discussed by Conway in On numbers 
and games and by BCG in Winning ways for your mathematical plays, 
and you should consult those books if you want to know more. But 
the subject is incomplete, and much of the theory that exists is difficult .  
The fact that games such as nim and ' take one, two, or three' are 
usually played in misere form reflects no more than an instinctive 
feeling that it is more elegant for a player to compel his opponent to 
do something than to do it himself; but the absence of a satisfactory 
general theory of misere play provides an interesting comment on this 

instinct. 
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THE M E A SUR E O F  A GAME 

W e  now come t o  one o f  the most interesting o f  modern developments: 
the assessment of the inherent measure of a game. This is the simplest 
case of the theory of 'numbers and games' which is due to Conway. 
Many games appear to have measures, of course, in that their scoring 
systems allot points for wins of various k inds, but these measures are 
essentially arbitrary. Our measures here are natural, and owe nothing 
to superimposed scoring systems.  

Nim with personal counters 
To begin our investigation, let us consider a version of nim in which 
each of the counters is owned by one player or the other. The object 
of play remains as in ordinary straight nim, to leave the opponent 
without a move, but a player may remove a set of counters from a 
pile only if the lowest counter that he removes is one of his own. 
Anticipating some of our conclusions, we call the players Plus and 
Minus, and we label the counters accordingly. Thus in Figure 9 . 1 (a), 
Plus can remove either the top counter or the top three, Minus either 
the top two or the whole pile; while in  Figure 9 . l (b), Plus can remove 
any or all of the counters, whereas Minus cannot remove any at al l . l  

(a) (b)  

Figure 9. 1 Personalized nim piles 

1 I do not know who first conceived nim with personal counters, but as a game it 
is surely ancient .  The recognition of its numerical properties appears to be due to 
Berlekamp. 
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I n  the simplest games o f  this kind, every counter i n  a pile belongs 
to the same player. Such games are almost trivial, but they provide a 
convenient demonstration of the basic rules. In particular, each pile 
has a measure which is simply the number of counters in it, and the 
result of a game can be found by adding the measures of the piles; 
Plus wins if  the sum is positive, and Minus if  i t  is negative. And if it 
is zero, as in Figure 9 .2? Provided that both players play sensibly, the 
result depends on the move; each player removes only a single counter 
at a time, so whoever has to move first runs out of counters first, and 
the game is a win for his opponent. This last rule, that a game of zero 
measure is a win for the second player, is fundamental to the theory. 

Figure 9.2 A zero game 

Some further basic rules are conveniently stated here. Corresponding 
to every game X is  a complementary game in which the ownership of 
every counter is reversed. Let us call this complementary game ' - X ' . 
The complementary game provides a way of comparing the magnitudes 
of two games X and Y, because we can set up the composite game 
X+ ( - Y) and see who wins. We say that 

X> Y 

if the composite game X+ ( - Y) is a win for Plus irrespective of who 
starts, 

X < Y 

if it is a win for Minus irrespective of who starts, and 

X= Y 

if it is a win for the second player. Figure 9 .3(a) shows the case where 

X y X -Y 

Figure 9.3 The comparison of games 
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X contains four positive counters and Y only three. Common sense 
suggests that X> Y, and Figure 9 .3(b) demonstrates that our rules do 
indeed lead to this conclusion; the composi te game X+ ( - Y), shown 
in the figure, is easily seen to be a win for Plus irrespective of the 
start. 

Common sense also suggests, trivially, that X= X, and the in
terpretation of this in accordance with our rules is that the composite 
game X+ ( - X)  should be a win for the second player. Figure 9.4(a) 
shows the case where X is a pile of four positive counters, and we 

observe that the second player does indeed win. But the rule does not 
apply only to homogeneous piles. In Figure 9.4(b), the piles X and 
- X  contain counters belonging to each player, but the composi te 
game X+ ( - X)  is still a win for the second player; whatever the first 
player does in one component, his opponent can copy in the other. 
This is indeed a very general rule which does not apply only to 
personalized nim: provided that the rules of the game ensure termination 
sooner or later, a composite game of the form X+ ( - X)  is always a 
win for the second player. 

X -X 

� �  
'-----v----' 

(a) 

Figure 9.4 Two balanced pairs 

Games of fractional measure 
Although piles of homogeneous counters serve to illustrate the basic 
rules, they are not really very interesting. We now assume that at least 
one pile contains counters owned by both players . 

The simplest such pile is that shown in Figure 9 . 5(a). Let us call 
this game G. Played on its own, i t  is clearly a positive game. Plus, to 
play, can remove the whole pile, leaving Minus without a move; 
Minus, to play, can remove only the upper counter, and Plus can still 
remove the lower. On the other hand, G is outweighed by the game 
P�o shown in Figure 9. 5(b), which comprises just one positive counter. 
The complement of P1 i s  the game which comprises one negative 
counter, and the composite game G + ( - P1) ,  shown in Figure 9.5(c), 
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Figure 9.5 A pile of fractional measure 

is easily seen to be a win for Minus. Plus, to play, can only remove 
the whole of G, leaving Minus to remove - P1; Minus, to play, can 
remove just the top counter of G, leaving a balanced pair. So Minus 
wins the composite game G + ( - P1) irrespective of who starts, and it 
follows that G < P, .  

So i f  the game G has a measure which follows the normal rules of 
arithmetic, this measure must lie somewhere between 0 and I .  Perhaps 
guesswork suggests I /2,  but we need not resort to guesswork; we can 
test our hypotheses in a proper manner. If the measure of G is indeed 
I /2, it follows that the measure of G + G  must be I ,  and hence that 
the composite game G + G + ( - P1) must be a win for the second 
player. This game is shown in Figure 9.6,  and the second player is 
indeed seen to have a win. The arrows in Figure 9 .6(a) show best play 
with Plus starting; he can only start by removing one pile G, but 
Minus can reply by removing the top counter from the other pile G, 
and this creates a balanced pair which leaves Plus helpless. Similarly, 
Figure 9.6(b) shows best play with Minus starting; he can do no better 
than to remove the top counter from one of the piles G, but Plus can 

remove the other pile G in reply, and again we have a balanced pair. 
So G + G + ( - P,) is indeed a win for the second player, and i t  is 
reasonable to declare the measure of G to be I /2 .  

G G -PI G G -P, 

, _83 83-2 c:::=:=J 83-' 83 2 - c:::=:=J 

(a) (b) 

Figure 9.6 Fractional measure quantified 

The next game to consider, perhaps, is the game H shown in Figure 
9.7(a) . This is clearly positive though not as strongly positive as G, 
and we might perhaps conjecture that its measure is 1 /4. The natural 
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Figure 9.7 A pi le  worth a quarter of a counter 

way to test this conjecture is to play the game H + H + ( - G), which 
is shown in Figure 9 . 7(b). If Plus starts, his best move is to take a 
pile H, but Minus can reply by removing the top counter from the 
other pile H, and this leaves a balanced pair. Similarly, if Minus 

starts, his best move is to remove the top counter from one of the 
piles H, but Plus can reply by taking the other pile H. So H + H + ( - G) 
is a second player win, and it is reasonable to assign the measure 1 /4 
to H. 

But does it follow, say, that H + H + H + H is equal in measure to 
P1? Yes, it does, as may be verified by setting up the composite game 
H + H + H + H + ( - P1 ) and playing it  out; but it also follows from a 
general rule of substitution .  I n  ordinary arithmetic, if we have a true 
statement involving some quantity A and we also know that A =  B, 
we can substitute B for A and obtain another true statement. A similar 
substitution rule can be proved to apply to games, and it follows that 
we can substi tute H + H for G in the statement G + G = P1 and so 
derive the statement H + H + H + H = P1 • 

It is now becoming clear that we can expect to find a game with 
any measure which is an exact binary fraction (a fraction whose 
denominator is a power of 2). We can obtain any required negative 
power of 2 (say 2 � ") by placing n negative counters on top of one 
positive counter, and we can obtain any other exact binary fraction 
by addition of piles. But can we find a single pile whose measure is 
any given binary fraction? 

Yes, we can. From the ground up, each counter has an effective 
value of I until there is a change in ownership, after which the value 
of a counter is half of that immediately below it. A pile whose measure 
is any required finite binary fraction can now be obtained by the 
following simple procedure: if the measure of the pile so far is less 
than the target, we add a positive counter; if it is greater, we add a 
negative counter. Figure 9 .8  shows this process applied to various 
numbers . 

The assignment of values to individual counters allows us quickly 
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Figure 9.8 Some measures embodied 

to find the best move in games of this type. We glossed over this 
matter earlier in order not to clutter the discussion, but in fact the 
proof that a composite game such as H + H + ( - G) in Figure 9.  7 is  
a win for the second player does require the second player to move 
sensibly. For example, if Minus starts and removes the top counter 
from the left-hand pile, Plus's only good reply is to remove the middle 
pile. To prove this from first principles is  slightly tedious, but the 
values of the counters make i t  obvious. Figure 9.9 shows the position 
after Minus's first move. The sum of the counters in Figure 9.9 is 

1 /4, and if Plus removes the middle pile, the sum of the remaining 
counters will be 0, and the resulting game will be a zero game (and 
hence a win for Plus, since it will now be Minus's turn to play); but 
if Plus plays other than by removing the middle pile, the sum of the 
remaining counters will be - 1 /4, and the resulting game will be a 
win for Minus. 

There remain only those numbers which are not finite binary 
fractions: 1 /3 ,  for example. No finite pile can have a measure which 
is such a number. However, it is possible that an infinite pile may 
have such a measure, and we shall return to this point later in the 
chapter. 

�-112 c:::::±::=:J I 

- 1 /4 - 1 /2 
I 

Figure 9.9 How to find the only good move 

General piles 
We now reintroduce neutral counters, and allow a player to remove 
one or more counters from a pile provided that the lowest counter 
removed is either one of his own counters or a neutral . 

The simplest piles of this type are ordinary nim piles, which contain 
neutral co11nters alone. We shall henceforth call such piles 'neutral' 
piles. A single neutral pile is a win for the first player, and such a 
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game is called 'fuzzy' .  Note that a fuzzy game is NOT a zero game, 
since a zero game is a win for the second player. The whole of Chapter 
8 was built on this distinction. So we now have four types of game: 
positive (won by Plus irrespective of who is to start), negative (won 
by Minus similarly), fuzzy (won by whoever is to play first), and zero 
(won by whoever is to play second) . A game using only neutral 
counters is either fuzzy or zero; a game using only personal counters 
is either positive, negative, or zero; a game using both personal and 
neutral counters may be of any type. 

It is convenient to start our study of games which use both personal 
and neutral counters by considering the pile shown in Figure 9. 1 0(a), 
in which a single positive counter is perched on top of a single neutral 
counter. This simple pile proves to be both interesting and important. 
Although it  appears to favour Plus, it clearly makes a fuzzy game 
when played on its own; whoever is to play first can simply remove 
it. But if we add a single-counter neutral pile, as shown in Figure 
9. 1 0(b), we obtain a composite game which does indeed favour Plus, 
to the extent of being strictly positive; if Plus starts, he can remove 
his own counter from the left-hand pile and leave a balanced pair, 
whereas if  Minus starts, he can only remove a complete pile, and Plus 
can remove the other. Yet if we add a second single-counter neutral 
pile, as shown in Figure 9 . 1 0(c), the composite game reverts to 
fuzziness, since whoever is to play first can remove the left-hand pile 
and leave a balanced pair. 

We shall meet the game of Figure 9 . 1 0(b) again, so let us denote it 
by U. Although positive, i t  is very weakly positive, since the addition 
of a suitable neutral pile is sufficient to make it merely fuzzy. On the 
other hand, a composite of two such games is rather more strongly 
positive. Figure 9 . 1 1  shows such a composite, together with a neutral 
pile of arbitrary size, and it is easily seen that Plus can win irrespective 
of the move and irrespective of the size of the neutral pile. So if Plus's 
advantage in a game is comparable with U + U then he wins, but if 
it is merely comparable with U then the result may depend on the 
move or on the size of an accompanying neutral pile. 

(a) (c ) 

Figure 9. 1 0  Neutral interactions 
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Figure 9. 1 1  A small but decisive advantage 

The game U has another interesting property: although it is positive, 
it is smaller than any positive number. If x is any positive number, 
then we can obtain a number 2 - k which is less than x by making k 
sufficiently large, and we can construct a pile P of measure 2 - k by 
placing k negative counters on top of one positive. Figure 9 . 1 2(a) 
shows such a pile P, and Figure 9 . 1 2(b) shows the composite game 
U + ( - P); and it is easily seen that this composite game is a win for 

Minus, because Minus can refrain from removing the bottom counter 
of - P until nothing remains of U. In other words, U < P. It  does not 
matter how many positive counters are contained in the upper reaches 
of - P; it  is the solitary negative counter at its foot that decides 
matters. So the measure of U, although positive, is smaller than any 
positive number, and so it must be a quanti ty of quite a different 
type. Indeed, not only is U smaller than any positive number, but so 

is U + U, and so is any multiple of U; for the composite game 
U + U + . . .  + U + ( - P) is still a win for Minus, because Minus can 

refrain from removing the bottom counter of - P until nothing 
remains of any U. 

We have now established everything about personalized nim that 
we shall need in the remainder of the chapter, but let us briefly digress 
and survey its remaining properties. 

p -P 

EEl EEl 

(a) (b) 

Figure 9. 12  A very small positive game 
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A general nim pile can be divided into two parts: that below the 
lowest neutral counter, and that above and including it. We call these 
the 'lower' and 'upper' parts. The lower parts can be measured in the 
usual way, and if the sum of these measures is positive then Plus wins; 

he removes neutral counters as long as there are any left, and 
eventually comes down to a game which lacks neutral counters and 
has positive measure. However, if the sum of these measures is zero, 
the first person to remove a counter from the lower part of any pile 
loses, because he disturbs its measure in his opponent's favour. It 
follows that in this case we can ignore all the lower parts, and consider 
only moves within the upper parts; if  a player cannot win by playing 
within the upper parts, he certainly cannot win by playing below 
them. 

So let us suppose that the measures of the lower parts do indeed 
add up to zero . I f  only one pile has an upper part, the first player 
can now win by removing it. If two piles have upper parts, the result 
depends, in general, on the ownership of the lowest personal counter 
in each. If the same player owns the lowest counter in each, he wins; 
otherwise, the rules are as follows. 

(a) If one upper part contains only neutral counters, the result 

depends on the move, the number of neutral counters, and the 
ownership of the lowest personal counter in the other upper part. The 
owner of this counter wins if he has the move, or if the number of 

neutral counters in the other part is at least as large as the number 
below his own lowest counter; otherwise his opponent wins. Figure 
9. 1 3  shows the exceptional case. Although the only personal counter 

in sight is positive, Minus, to move, can win by playing at the arrow; 
but the addition of even a single extra neutral counter on the right 
would give Plus an unconditional win.  

Figure 9. 13 A win for the first  player 

(b) If each player owns the lowest personal counter in one upper 
part, the winner is he whose counter has the smaller number of neutral 
counters below it .  

(c) If each player owns the lowest personal counter in one upper 
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part and there are the same number of neutral counters below each, 
the winner is the first player whose opponent cannot move higher up 

in either pile. Only in this case do the counters above the lowest 
matter. 

It follows that the players in a game of many piles should rush 
around like mad axemen and chop down each other's upper parts, 
priority being given to those with the smallest number of neutral 
counters at the bottom. Only when each of an opponent's remaining 
upper parts has the same number of neutral counters at the bottom 
need consideration be given to other than the lowest counter above. 

The nature of a numeric game 
We have seen that a pile consisting entirely of positive and negative 
counters has a numeric measure, and that the winner of a game 

comprising two or more such piles can be ascertained by adding these 
measures according to the ordinary rules of arithmetic. On the other 
hand, a pile containing even one neutral counter does not. It is 
instructive to see why. 

It is possible, following Conway, to define games by induction, 
using a procedure similar to that which we used when assigning 

Grundy values to positions in impartial games. 

(a) We start by defining the game in which neither player can move 
at all, and we denote this game by 0. 

(b) Next, we define the set {G J } of games in which a player can 
move only to 0, or not at all. There are four such games (Plus can 
move but Minus cannot, Minus can move but Plus cannot, both can 
move, or neither can move), but the last of these is 0 i tself, so there 
are only three new ones. We have already met them, in the guise of 
piles containing one positive, negative, or neutral counter. 

(c) We next define the set { G2} ,  which is the set of games from 
which each player can move only to games in {G J } ,  or to 0, or not 
at all; and this process can be continued as far as we like. 

This inductive construction generates all games which can be guar
anteed to terminate in a finite number of moves. 

But this is not all .  It  is also possible, again following Conway, to 
define numbers themselves in a very similar way; we follow the 

previous definition, except that we forbid Plus and Minus to move 
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respectively to games P and M such that P � M. Thus 0 is defined as 
before, as the game in which neither Plus nor Minus can move at all. 
The set { GJ } now contains only two games, those in which either Plus 
or M inus can move to 0, and we can denote these games by + I  and 
- I  respectively. The apparent third element of { GJ } ,  in which both 
Plus and Minus can move to 0, is banned by our restriction, since 0 
would consti tute both a P and an M and these would trivially be such 
that P � M. The next set { G2} includes the game in which Plus can 
move only to 0 and Minus to + I , and we can denote this game by 
+ 1 /2;  and so on. This systematic definition yields all the finite integers 
and the finite binary fractions, and limiting processes then yield 1 /3,  
y'2,  7T, and all the other numbers. The usual operations of arithmetic 
can be defined on these numbers, and they can be shown to give the 
answers that everyday life demands. In other words, those ordinary 
and rather mundane objects which we call 'numbers' are really a 
subset of the very much more interesting objects which we call 
'games' . 2  

It follows that the condition for a game to have a numeric measure 
is very simple: it must not be possible for Plus and Minus to move 
to games P and M such that P �  M. A pile consisting only of positive 
and negative counters satisfies this condition; whatever moves by Plus 
and Minus we choose, if  we set up and play out the resulting composite 
game P + (  - M) , we find that Minus wins, and i t  follows that P < M. 
On the other hand, if a pile contains a neutral counter, either player 
can remove this counter and everything above it, so whatever is below 
it constitutes both a P and an M which trivially satisfy P � M. 

If Plus and Minus do have moves such that the resulting games P 
and M satisfy P � M  then the game cannot be represented by a single 

number. Some games in this class are indeed 'hard' in the sense which 
we shall meet in Chapter 1 0  (roughly speaking, it may not be possible 
to determine the winner without doing rather a lot of work). 
Nevertheless, even a game such as this may possesses measures of a 
sort; for example, it may be possible to quantify the advantage of 
making the next move. Such information is valuable when the game 
is played as part of a composite. 

This brings us back to the heart of the matter. The ultimate object 
of the exercise is to identify the winner. If a game is played on its 
own, all that concerns us is whether it is positive, negative, fuzzy, or 
zero; the more precise measure which we have sought in this chapter 

2 The reader who seeks a full treatment of this fascinating subject should consult 
either On numbers and games or Winning ways for your mathematical plays. 
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is important only when the game forms part of a composite. Some 
games, such as nim, start out as composites, and others, such as 
kayles, usually develop into composites in  the normal course of play. 
But there are many games, chess and draughts (checkers) being 
obvious examples, which usually remain as single coherent entities 
throughout play. It is  true that there are endgame situations in chess 
and draughts which have the character of composites, but these occur 
only infrequently and are in no sense typical of the game as a whole. 
The theory of numerical measure has li ttle relevance to such games. 

The measure of a feeble threat 
We have seen that a numeric game can have as small a measure as 
we like; and we have seen that there are games, such as U in Figure 
9. 1 0(b), which are posi tive but smaller than all positive numeric games. 
Yet there are games which are smaller still . 

A habit sometimes adopted by children who are faced with inevitable 
loss at chess is to prolong the game by 'spite checks' :  sacrificial attacks 
on the winner's king, which merely waste time and have no effect on 
the ultimate result of the game. (Children usually grow out of this 
habit; computers, in my experience, do not.) Such a check is a special 
case of a feeble threat, feeble because it can easily be countered, and 
equivalents occur in many games. Yet for all their apparently trivial 
nature, they have some interesting mathematical properties. 

The nature of feeble threats can most easily be examined by 
inventing a 'pi leworm' ,  which may be regarded as the larval stage of 
a pile. If Plus possesses a pi leworm, he is allowed only to convert it 
into a pupa; then, on a subsequent move, he may convert this pupa 

into a pile of his own counters (one for each segment of the original 
worm, not counting the head), which he can then remove in the 
normal way. Minus can remove the embryonic pile while i t  is still a 
worm or while it is a pupa, but he cannot touch it once it has become 
a pile. A pi leworm therefore constitutes a very feeble threat indeed. 
As long as it remains a worm, there is no immediate danger; and to 
convert it into a pupa takes a move, which the opponent can use to 
remove it .  

Yet for all that, it has an existence. On its own, a Plus pileworm is 
a negative game.a Minus, to play, can remove it as a worm; Plus, to 

a Readers who find difficulty in  comprehending the negative nature of a Plus 
pileworm may care to consider the analogy of  a child in everyday life. While i t  is very 
young, a child is a liability to its family, since it consumes resources without giving 
anything in return. I t  only becomes an asset as i t  grows older. 
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play, can merely pupate it , and Minus can then remove it as a pupa. 
But it is not a very large game. It is very much smaller than our game 
U in Figure 9 . 1 0(b) . We saw earlier that U was positive; Figure 9. 1 4  
shows a composite game consisting o f  U and a number o f  Plus 
pileworms, and it  i s  easy to show that this composi te is still positive. 
Plus, to play, pupates a worm, and Minus must get rid of i t  before it 
hatches. Plus then pupates another, and so on. Minus, to play, would 
merely accelerate matters by removing a worm, so he plays in U; but 
Plus can still pupate all his worms, and force Minus to waste time 
removing the pupae, before making his winning reply in U. The point 
is that a pupa, if allowed to hatch, would dominate everything else, so 
hatching cannot be allowed. It does not matter how many segments 
the worm contains; even a 'fractional' worm that would ultimately 
yield a pile of measure 2 - •  cannot be allowed to hatch . 

Figure 9. 14 Even smaller games 

We can say more. Let X. be a positive game which must terminate 
in at most n moves, and let Pn - l  be the Plus pileworm containing 

n - l segments; then the game X. + P. _ 1  is still positive, because Minus 
cannot allow the worm to hatch. (The resulting pile would give Plus 
n - I moves, and Minus would have at most n - I moves left in X. 
after playing his first.) In other words, a pi leworm containing n - l 
segments is smaller than any positive game which is guaranteed to 
terminate within n moves. 

One final frivolity. Suppose that we have a game consisting of 
pileworms alone. The worm with the fewest segments now dominates. 
Figure 9 . 1 5  shows one single-segment Minus pileworm (which is a 
positive game) faced with several double-segment Plus pileworms. 
Plus, to play, pupates a worm as usual .  Minus, to play, pupates his 
worm in the hope that Plus will get rid of it, since everything else in 
sight is  negative; but Plus pupates one of his own in reply, and Minus 
must remove it since it will dominate his own if it is allowed to hatch . 
So Plus gets rid of all his own worms before he has to take Minus's 
pupa. The worm with the fewest segments is actually the largest worm. 
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Figure 9. 1 5  The war of the worms 

Infinite games 
So far, we have been careful to confine our attention to finite games. 
To round off the chapter, let us look at a few infinite games. 

The simplest infinite games are infinite piles. We give three examples. 
The most straightforward of all is the infinite pile of positive counters, 
shown in Figure 9 . 1 6(a) . Plainly, the possession of such a pile enables 
Plus to win against any combination of finite piles. But if Minus has 
a similar pile? If there is no other pile in play, the second player wins, 
since his opponent's first move must reduce his pile to finite proportions 
and he can choose his own first move so as to leave a larger pile. If 
we call the infinite pile of positive counters Z, this amounts to the 
observation that Z + ( - Z) = 0. 

Almost as straightforward is the pi le shown in Figure 9 . 1 6(b ) .  This 
is clearly positive, but i t  is a pi le of very small  measure; indeed, i t  is 
smaller than any pile of finite measure z - • . Since i t  lies at the other 
end of the scale of numbers from Z, we might perhaps call it A. Yet 
A ,  infinitesimal though it might seem, is still larger than any multiple 
of U. The argument given earlier in the chapter, wherein we showed 
that the composite game U + U + . . .  + U + ( - P) was a win for Minus, 
remains valid if we replace - P by - A ;  as before, Minus can refrain 
from removing the bottom counter of - A  until nothing remains of 
any U. 

z A T 

I '  1r ar - 1 /.12 + l /l2 
- 1 / 1 6  - 1 / 1 6  
- I ll\ + 1 /X 
- 1 /4 - 1 /4 
- 1 /2 - 1 /2 

I I 

(a) (b) (c ) 

Figure 9. 16 Some infinite piles 



1 34 The measure of a game 

The third and perhaps the most interesting of our examples is the 
pile T shown in Figure 9 . 1 6(c), which is the pile obtained by applying 
our previous rule to the number 1 / 3 .  Now when we wished to test 
the proposition that the game G in Figure 9 .5  had measure 1 /2,  we 
set up the composite game G + G + ( - P,) and showed that it was a 
win for the second player. This suggests that if T truly has measure 

I /3 then the game T + T + T + ( - P1) should be a win for the second 
player. Well ,  is it? Figure 9. 1 7  shows typical play with Plus starting. 
The first three moves are essentially arbitrary; Plus must make his 
first move somewhere in one of the piles T, Minus should reply higher 
up in a second pile T, and Plus should now play still higher up in a 
third. The rest is automatic, and we see that Minus can indeed win if 
Plus starts. A similar analysis shows that Plus can force a win if 

Minus starts, so we conclude that the pi le T does indeed have measure 
1 /3 .  Readers with a taste for such things may also care to verify that 
the pile in which the counters alternate + - + - + - . . . right from 
the bottom has measure 2/3 . 

T T T 

Figure 9. 17 A pile worth a third of a counter 

But it can be argued that infinite piles are not truly infinite, merely 
unbounded. It  may be impossible to say in advance how long a game 
will last, but ultimate termination is certain. The game of Figure 9. 1 7  
i s  triply unbounded, but ultimate termination i s  certain even here; 
once we have broached a pile, we are certain to finish it, and we must 
then broach another. To obtain a truly infinite game, we must allow 
a player to return to a previous state. The simplest game in this class 
is the single-state game shown in Figure 9 . 1 8(a), in which Plus is 
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Figure 9. 18 Loopy games 

allowed to return but Minus is not allowed to move. Since the 
conventional positive direction of angular movement is anticlockwise, 
we might call this game L W  for 'left wheel ' .  Now the game L W  
presents theoretical difficulties, since it cannot be defined by induction; 
an inductive procedure defines a game by allowing the players to 
move to games that have already been defined, and Plus's only move 
in L W  is to L W  itself. Yet L W  clearly exists, and its properties are 
straightforward albei t somewhat drastic. If F is any finite game, 
LW + F is an easy win for Plus, since he can keep moving in L W  and 
wait for Minus to run out of moves in F. Indeed, even L W + ( - Z) 
is a win for Plus, because Minus's first move reduces - Z to a finite 
pile. More generally, let X be any game, terminating or not; then Plus 
certainly doesn't lose in L W+ X, since he can keep moving in L W. 
In other words, nothing can beat L W; in a sense, it is the largest 
game that exists. 

Apparently complementary to LW is the game R W  ( 'right wheel') 
in which Minus can pass, as shown in Figure 9. 1 8(b). But there is  a 
trap. When we introduced complements earlier in the chapter, we 
were careful to say that the relation X+ ( - X) =  0 applied only if the 
rules of the game guaranteed termination. No such guarantee applies 
here; quite the reverse, in fact. Indeed, we cannot say that L W  + R W = 0, 
because this would mean that L W + R W is a second-player win, and 
we have already seen that Plus doesn' t  lose in L W  + X  whatever X 
might be. So we see that Z and L W represent quite different kinds of 
'infinity' . Not only is L W  bigger than Z, in the sense that L W  + ( - Z) 
is a win for Plus, but we do have Z + ( - Z) = O  whereas we don't have 
any game ' - L W '  such that L W+ (  - L W) = O. 

But if L W+ R W  doesn't equal 0, what does it equal instead? The 
answer is  the game shown in Figure 9 . 1 8(c), in which both players 
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can loop. This figure looks like the conventional infinity symbol oo ,  

and this is not a n  inappropriate name for the game. Whatever the 
game X, the combination oo + X  cannot be lost by either player; even 
if he cannot move in X, he can always move in oo .  
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WHEN THE COUN T I N G  H A S  T O  
STO P 

To complete our study of games of pure skill, we l�ok at what happens 
when mathematical analysis fails to provide a satisfactory answer; and 
we consider the fundamental paradox, that a game of pure skill can 
be played in competition only as long as the players are sufficiently 
ignorant. 

The symptoms of a hard game 
We start by looking at the meaning of the term 'hard' as applied to 
mathematical games, and at the practical implications of hardness . 

In everyday usage, the word 'hard' is an imprecise term of abuse, 
and means only that the speaker finds i t  difficult or impossible to 
perform what is demanded. 

·
In the theoretical analysis of a finite game, 

the question of impossibility does not arise, while 'difficult' is a 
comment on the player as much as on the game. We need a definition 
which relates solely to the game itself but is  consistent with the 
connotations of everyday life .  

One way of achieving such a definition is to generalize the game in 
some way, and then to observe how the amount of computation 
needed to analyse a specific 'instance' of it (typically, the play from a 
given starting posi tion) increases with the amount of numerical 
information needed to define this instance. If the increase is  merely 

linear, the game is relatively easy; if i t  follows some other polynomial 
of low degree, the game may not be too bad; if  it is exponential, the 
game is likely to be difficult; and if it is worse than exponential, the 

game is  hard indeed . !  
But we  cannot play a generalized game; we  can only play a specific 

instance. It does not help us to know that the amount of computation 

1 For a fuller discussion, see Winning ways for your mathematical plays 2 1 8 -20; for 
a fuller discussion still, see the bibliography cited therein.  
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demanded by a generalized game increases only linearly, if the specific 
instance which we are required to play is too large and complex for 
us to analyse; while, conversely, many instances of theoretically hard 
games are in practice quite tractable. Nevertheless, if a generalized 
game is hard then some of its instances must reflect i ts hardness, and 
this reflection typically takes the form of a lack of apparent pattern 
in the play. We cannot use logic to diagnose short cuts, but must 
examine variations in depth. 

An instructive example is given by chess . That a game as complex 
as chess should be hard is  not surprising, but in fact its hardness may 
become perceptible even in apparently straightforward endgame 
situations. Suppose that each side has a king and a queen, and that 
White also has one or more pawns. In general, White will now attempt 
to win by promoting a pawn to a second queen, while Black will seek 
to draw by subjecting the White king to 'perpetual check' (repeated 
attacks from which he can never escape). These objectives are 
exemplified by Figures I 0. 1 and I 0.2 .  

In Figure 1 0 . 1 ,  White has a simple win. Although he is in check, 
he can promote his leading pawn, which leaves Black with no sensible 
further check; and the rest is easy. Furthermore, the White pawns 
form a shelter towards which White could have aimed earlier in the 
play, so the play leading up to Figure 1 0 . 1  may also have been 
straightforward. 

In Figure 1 0.2, on the other hand, Black has a draw. Even after 
White has promoted his pawn to a second queen, his king is open to 
attack from three directions (on the rank, on the file, or on the 
diagonal) and he can only cover two of them at once. So if  White 
leaves the file uncovered, Black checks on A; if White leaves the 
diagonal uncovered, Black checks on B; and if White leaves the rank 
uncovered, Black checks on his present square. Black can keep this 
up indefinitely, and White can never escape. 

But there is an intermediate class of position in which White can 
prevent an immediate repetition but apparently cannot prevent Black 
from continuing to check somewhere or other. Such a case is illustrated 
in Figure 1 0.3 .  This particular position can in fact be won by White, 
as was first shown in a computer analysis by E. A. Komissarchik and 
A. L. Futer, but there is no apparent pattern to the winning 

manoeuvres, and they could not have been discovered without 
exhaustive analysis .  Figure 1 0 .4 shows the moves required of the 
White king in reply to Black's  best play, and the contorted sequences 
are characteristic of the play that is required in instances of hard 
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Figure 10. 1  Chess: an easy win 

Figure 10.2 Chess: an easy draw 
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Figure 10.3 Chess: a very difficult win 

games. Subsequent computer analyses by K. L. Thompson and A.  J. 
Roycroft have evaluated all chess positions featuring king, queen, and 
one pawn against king and queen, and have discovered some which 
require winning sequences even longer and more convoluted than 
those demanded by Figure 1 0 . 3 . 2  

2 The Thompson- Roycroft results are recorded in Roycroft's 5-man chess endgame 
series (Chess Endgame Consultants and Publishers, London, 1 986). This publisher also 
produces the chess endgame study magazine EG which records advances in this field. 
The Komissarchik-Futer solution to Figure 10.3 was originally published in the paper 
'Ob analize ferzevovo endshpielya pri pomoschi EVM', Problemy kibernetiki 29 2 1 1 -
20 (Nauka, Moscow, 1 974); the main line is reprinted with additional commentary in 
EG 4 239-4 1 (November 1 979), and more briefly in The Oxford companion to chess 
(D. V. H ooper and K. Whyld, 1 984, entry 'Basic endgame') .  The Thompson-Roycroft 
solution to Figure 1 0.3  is in fact slightly different from the Komissarchik- Futer solution, 
and suggests that the latter is  not quite optimal for either player; the discrepancies are 
not such as to cast serious doubt on the overall conclusions, but they do make the 
point that a mathematical proof depending on exhaustive analysis by computer should 
really be regarded as provisional until it  has been confirmed by an independent worker. 
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Figure 10.4 The odyssey of the White king (Kommisarchik and Futer). I f  
Black plays his best moves, this is what White must do in order t o  win. There 
is no question of systematic progress towards a perceptible goal, and only 
exhaustive analysis by computer could have discovered the solution 

When you know who, but not how 
If we are playing an instance of a hard game, we may not be able to 
find the best play within a reasonable time, and the same may be true 
even of instances of games which are not hard.  However, some games 
have the remarkable property that we can diagnose the winner without 
being able to say how he wins. Most of these games are now well 
known, but they bear repetition. 

(a) The completion of patterns 
There is a class of games, typified by the humble noughts and crosses 
(tic-tac-toe), in which each player occupies a cell on a board in tum 
and seeks to complete a specified pattern before his opponent does 
so. 
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Hex, invented by Piet Hein, is a game in this class. It is played on 
a board such as that shown in Figure 1 0 . 5 ,  the actual size of the 
board being a matter for agreement between the players. Each player 
takes a pair of opposite sides, and his move is to place a man in any 
unoccupied cell ,  his objective being to form a continuous chain 
between his two sides. Thus Figure I 0.5 shows a win for Black . 

Fi�ure 1 0.5 Hex: a win for Black 

It is  not difficult to see that a game of hex can never be drawn. 
After the last cell has been filled, we can start at one White edge, 
marking all White cells now joined to that edge. If the marked cells 
extend right across the board, they form a winning chain for White; 
if they do not, they must be blocked by a solid line of Black cells, 
and these form a winning chain for Black . 

It is also not too difficult to see that the first player has a certain 
win, and the proof, due to J .  L. Nash, appears to have been the first 
application of the argument now known as 'strategy stealing' . Suppose 
that the second player has a winning strategy. Now let the first player 
make his first move at random and then follow this strategy himself, 
substituting another random move whenever the strategy requires him 
to play in a cell already occupied. The extra man placed at random 
does the first player no harm, so this procedure must guarantee him 
a win. Hence no winning strategy for the second player can exist. 

A similar argument applies to every game of this type in which a 
draw is impossible and an extra man is never harmful. Bridg-it, 
invented by David Gale, is a case in point. It is played on a pair of 
interlaced lattices such as are shown in Figure 1 0 .6, and a player's 
move is  to join two adjacent points of his own colour. His objective, 
as in hex, is to connect his own two sides of the board. The game 
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Figure 10.6 Bridg-it :  another win for Black 

cannot be drawn and an extra line never does any harm, so the first 
player always has a win.3 

Indeed, a weaker form of the argument applies even to noughts 
and crosses itself. This game can be drawn, so strategy stealing does 
not prove that the first player can win; but it does prove that he can 
prevent the second player from doing so. 

(b) Chomp 

This is a game of quite a different character. It is played on a 
rectangular array which is initially full of men, and the move is to 
take a rectangular bite from the top right-hand corner (Figure 1 0 .7) .  
The objective is to force the opponent to take the last man. The game 
is due to Gale, the name (I think) to BCG. 

If the rectangle comprises a single man only, the first player loses 
trivially; if i t  contains more, he can always win. The proof is due to 
Gale himself. If the first player can win by removing just the top 
right-hand man then there is nothing to prove. Alternatively, if the 
first player cannot win by removing just this man then the second 
player must have a winning reply, by removing everything upwards 
and rightwards from some other man; but this move would have 

s There is  a difference, however. Bridg-it possesses a known and reasonably 
straightforward winning strategy for the first player, whereas generalized hex is  hard . 
See Winning ways for your mathematical plays 680-2.  
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Figure 10.7 Chomp 

removed the original top right-hand man had it still been present, so 
the first player could have produced the same position by making this 
move immediately. 

(c) Sylver coinage 

More subtle than any of the previous games is Conway's game of 
sylver coinage.4  In this game, each player in turn names a positive 
integer, which is to be minted as a unit of coinage; but he may not 
name a unit which can already be achieved as a sum of existing units. 
For example, if  '5' has already been named, a player may not name 
any multiple of 5 ;  if '5' and '3' have both been named, a player may 
not name any number higher than 7 .  The first player to name ' I ' 
loses. 

This game also yields to a strategy-stealing argument, due to R .  L. 
Hutchings. 

(i) Suppose that we have a position in which only a finite number 
of integers remain to be named, and that the highest of these will 
become unavailable if any lower integer is named. There is now a 

winning move for the first player, by a similar argument to that used 

4 It is a slightly moot point whether the name should be 'sylver' or 'Sylver' coinage. 
In accordance with the modern style, I have omitted the initial capitals which used to 
be customary when naming games, but sylver coinage is punningly named in honour 
of J .  J .  Sylvester, whose theorem plays an important role in its theory. When does a 
proper name cease to be proper? The analogy with scientific units suggests that the 
capital should be dropped, but the matter is not entirely clear.  
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above; if he cannot win by naming the highest remaining integer, he 
can win by making the second player's winning reply. 

(ii) If a and b have no common factor, the naming of a and b 
makes unavailable all except a finite number of integers, the highest 
being ab - a - b; furthermore, unless this highest integer i s  I (which 
happens only if a and b are 2 and 3), i t  will be made unavailable by 
the naming of any lower integer. This is Sylvester's theorem of 1 884 
(Math. Quest. Educ. Times 41 2 1 ) . 

(iii) Therefore the first player can win by naming any prime greater 
than 3 .  

This beautiful proof seems to  me to  be  in quite a different class 
from others involving strategy stealing. It  even specifies an infinite 
number of winning moves for the first player. Yet in spite of this, i t  
is not very helpful .  You, being knowledgeable, start by naming 5;  I ,  
following the sound policy of complicating a lost position in the hope 
that you will make a mistake, reply by naming 999 999 999; and your 
computer has to do a lot of work before you can make your next 
move with confidence. 

The paradox underlying games of pure 
skill 
Inability to determine the result of a game without impracticably 
detailed calculation does have one apparent compensation: i t  leaves 
the game alive for competitive play. Once a game of pure skill has 
been fully analysed, it  is  competitively dead. It i s  only the ignorance 
of players that keeps games such as chess alive at championship level . 

Yet it must be questioned whether ignorance really provides a sound 
basis for the perpetuation of a game of skill . Draughts (checkers) is 
rarely played at the highest level , because good players find i t  too 
easy to hold a game to a draw. Chess has not yet reached this stage, 
but the recent Karpov-Kasparov matches for the world championship 
have not been encouraging. Their first match, in 1 984, should have 
gone to the first player to win six games, but it was controversially 
abandoned by the authorities when the score was 5-3 with 40 draws. 
Subsequent matches have been restricted to 24 games, the defending 
champion retaining his title in the event of a tie, and such a formula 
should reduce the number of draws since there is always one player 
who must take risks in order to gain ground; yet even so, nearly two 
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thirds of the games played in the 1 985-7 matches were drawn. Overall, 
Kasparov currently leads by 1 7- 1 6  with 87 draws, and this is not a 
recipe for the maintenance of popular enthusiasm. 

Why, then, do people retain an interest in such a game, whether as 
performers or as spectators? Perhaps there are three reasons. Some 
enthusiasts are merely competitive; some seek beauty; and some seek 
truth . 

Those who are merely competi tive are of no interest to us. Sadly, 
however, they are all too prevalent; at every level of the game, there 
appear to be players whose sole concern is to prove themselves better 
than their neighbours. Persons of this class do not care that their 
'triumphs' merely reflect the limitations of their opponents. This 

excessive competi tiveness is frequently fostered by the i ll-considered 
ambition of parents and schoolteachers; and also by national pride, 
since success at a game is all too often represented as demonstrating 
the superiority of a particular nation or political ideology. Politically 
motivated persons should be wary of quoting these words in argument, 
since propagandists for many nations and ideologies have been guilty 
of this folly. 

Those who seek beauty are quite different. It is almost intrinsic that 

a game of skill may contain moments of beauty; a blunder by the 
opponent may be necessary to set the scene, but the exploitation of 
the situation once i t  has arisen is another matter entirely. So the 
games containing beautiful incidents find their way into anthologies, 
where they can be studied and replayed for pleasure by ordinary 
enthusiasts; and it is not a very large step from the exploitation of 
casual accidents to the search for beautiful play as an end in itself, 
regardless of whether a plausible sequence of blunders might produce 
the necessary position in an actual game. Even the highest competitive 
levels contain players who have taken this step. Reti and Mattison 
each had a victory over a reigning world champion to his credit, yet 
neither was obsessed by competition for its own sake; each could turn 
aside from the burly-burly of tournament play, and spend time 
discovering play such as is shown in Figures 1 0 .8  and 1 0 .9 .  The deeper 
complexities of chess have been avoided in this book, but every reader 
who plays the game at all will enjoy getting out a set and playing 
these through . 

Those who analyse games mathematically come into the third 
category: seekers after truth. The truth may indeed turn out to be 
beautiful, as in most of the games which we have considered here, 
but we do not know this before we start; it is sought as an end in 
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itself. This is the motivation that drove Bouton to discover the 
mathematical theory underlying nim, and Thompson and Roycroft to 
seek a resolution of all chess endings with queen and pawn against 
queen. In the words of Hillary's justification for climbing Everest, we 
seek the truth because it is there; and the implications for competitive 

play are not of interest. 

8 

7 B*B B 
6 B B 
5 B B B 
4 B Bjt�-- ;;N/N/� 
3 B • 0///� B 
2 B B i B  

a b c d e g h 

Figure 10.8 Chess: an endgame study by Reti, as modified by Rinck. White 
will win if he can capture the pawns without losing his rook, and after 
I Bf5 + Kd6(d8) 2 Rd4 + Ke7 3 Re4 + he appears to have done so. But Black 
has a subtle resource: 3 . . . Kd8. Now 4 RxP Pe l = Q  5 RxQ will give 
stalemate, and surely White has no other way of making progress? But indeed 
he has, in the remarkable move 4 Bd7. Like all really brilliant moves, this 
looks at first like a beginner's blunder, since it gives away the bishop and 
seems to do nothing useful; but if 4 . . .  KxB then 5 RxP Pe l = Q  6 RxQ and 
there is no longer a stalemate, and if 4 . . .  Pe l = Q  instead then the elegant 
continuation 5 Bb5 shields the White king, and Black can avoid immediate 
mate only by sacrificing his queen 
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Figure 10.9 Chess: an endgame study by Mattison. The obvious I Pe7 does 
not win, since Black can sacrifice rook for pawn by I . . .  Re i + 2 Kf6 RxP 
3 KxR; White may be a bishop and a pawn ahead, but he has no way of 
driving the Black king out of the corner. So White must try I Be3 + Kb7 
2 Pe7, and 2 . . .  RxP now seems unanswerable; if 3 Pe8 = Q  then Black plays 
3 . . .  RxB + and 4 . . .  RxQ, and if the bishop moves to safety then Black 
can draw by 3 . . .  Ra8 and 4 . . .  ReS. There is just one way to win: 3 Ba7. 
This lovely move prevents 3 . . .  Ra8, and neither rook nor king can safely 
capture the interloper; if 3 . . .  RxB then 4 Pe8 = Q  and queen wins against 
rook, while if 3 . . .  KxB then 4 Kf4 (or Kd4) and White will promote as 
soon as Black's checks have run out. But Black can fight on by 3 . . .  Ra J ,  
aiming for e l .  Now 4 Pe8 = Q  Re i +  fails t o  win, as does 4 Ke4 KxB 
5 Pe8 = Q  Re i + ;  White must play the subtle 4 Kf4. The intended 4 . . .  Re i 
can now be met by 5 Be3, and if Black tries to dislodge the king by 4 . . .  Rfl + 
then White sacrifices the bishop again, and this second sacrifice allows the 
king to cramp the rook: 5 Bf2 RxB + 6 Ke3 Rfl 7 Ke2 (quickest) and the 
pawn will safely be promoted 



I I  
ROUN D AND R OUN D I N  CI RCLE S 

In this final chapter, we examine some purely automatic games. They 
prove to be unexpectedly interesting, both in themselves and in the 
light they throw on certain fundamental paradoxes of mathematics. 

Driving the old woman to bed 
There is a wel l known card game for children which is cal led 'beggar 
your neighbour' or 'drive the old woman to bed' .  Each player has a 
stack of cards, and plays in rotation to a trick . Play passes normally 
as long as the cards played are plain cards (two to ten inclusive), but 
the rule changes the moment a court card is played; the next player 
must now play repeatedly until either he has laid down a certain 
number of plain cards (one if the court card was a jack, two if a 
queen, three if a king, four if an ace) or he plays a court card himself. 
In the former case, the player who played the court card picks up the 
trick, puts it on the bottom of his stack, and leads to the next trick; 
in the latter, the next player in turn must play to the new court card 
in the same way. A player whose stack is exhausted drops out, and 
the winner is the last to be left in play. 

This is an automatic game with no opportunity for skill , which is 

why it is so suitable for family play. From a mathematical point of 
view, however, it raises some interesting questions. 

(a) How long is a game likely to last? 

(b) Can a game get into an infinite loop? 

(c) If it cannot, can we hope to prove this? 

I know of no complete answer to the first of these questions, but 
Table 1 1 . 1 ,  which summarizes a computer simulation of slightly 
over ten thousand two-player deals, may throw some light. The 
interpretation of this table is straightforward; for example, the first 
row states that no game terminated on the first or second trick, 2 
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Table l l . l  Beggar your neighbour: a simulation b y  computer 

Tricks Occurrences R(% )  D2o(%) 

1 - 1 0  0 0 2 2 1  84 1 90 250 237 243 265 87 .5  49.4 
1 1 -20 30 1 274 273 273 258 263 228 234 236 237 62 . 5  49. 5  
2 1 - 30 237 2 1 9  1 98 209 1 92 1 6 1  1 63 1 76 1 78 1 43 44.3  49.4 
3 1 -40 1 40 1 67 1 44 1 37 1 44 1 44 1 1 5 1 1 2 1 03 1 1 0 3 1 . 5 50.9 
4 1 - 50 8 1  1 1 2 95 1 02 1 1 0 87 74 98 92 90 22.4 50.7 

5 1 -60 8 1  75 78 66 92 70 58 63 74 55 1 5 . 5  5 1 .0 
6 1 -70 65 48 52 39 46 56 36 40 4 1  3 6  1 1 .0 50.9 
7 1 - 80 40 36 28 45 47 37 35  29  23 35 7 .6 50.4 
8 1 -90 30 1 8  22 27 25 20 27 1 5  20 20 5.4 54.0 
9 1 - 1 00 24 23 1 3  1 6  1 8  1 7  1 9  1 4  1 7  1 0  3 .8  52.6 

1 0 1 - 1 1 0  1 8  9 1 5  1 6  I I  1 2  I I  1 4  1 4  I I  2 . 5  50.2 
I l l - 1 20 6 7 1 2  7 5 7 I I  5 7 6 1 .8 50.5 
1 2 1 - 1 30 8 7 8 6 4 3 4 3 8 5 1 .2 50.8 
1 3 1 - 1 40 3 3 4 6 6 4 3 4 3 I 0.9 5 1 .6 
1 4 1 - 1 50 4 4 2 6 2 2 3 4 0 I 0.6 58.7 
1 5 1 - 1 60 2 4 I I 0 2 3 I 4 I 0.4 6 1 .4 

1 6 1 - 1 70 3 3 2 I 3 2 0 0 2 2 0 .3  50.0 
1 7 1 - 1 80 0 0 I I 2 0 0 I 3 I 0.2 47 . 1  
1 8 1 - 1 90 I 0 I 0 0 0 2 0 0 0 0. 1 46.2 
1 9 1 -200 I I I 0 0 0 0 I 0 0 0. 1 

20 1 -2 1 0  0 0 0 0 2 0 0 0 0 0 0. 1 
2 1 1 -220 0 I 0 0 0 0 0 I 0 0 0.0 
22 1 -230 0 0 0 0 0 0 I I 0 I 0.0 
23 1 -240 I 0 0 0 0 0 0 0 I 

I 0 3 1 1  pseudo-random deals were simulated by computer. Column R gives 
the percentage of games that had not terminated after the stated number of 
tricks; column D2o gives the percentage of these games that did terminate 
within a further 20 tricks. The longest deal took 239 tricks. 

games terminated on the third, 2 1  on the fourth, and so on; that 87 .5 
per cent of the games had not terminated after ten tricks; but that 
49.4 per cent of these had terminated within a further twenty tricks. 

The approximate constancy of this last column is the most interesting 
feature of the table, because i t  suggests that the game has a 'half-life' 
of about twenty tricks when played with a standard 52-card pack (in 
other words, if a game is down to two players but has not yet finished, 
the probability is about evens that it will still not have finished within 
a further twenty tricks). This implies that the beggaring of neighbours 
is by no means an ideal pursuit for small children immediately before 
bedtime, but no doubt resourceful parents have ways of coping. 
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It i s  even less clear whether the game can loop. The simulation 
recorded in Table 1 1 . 1  failed to produce a loop, which suggests that 
one is very unlikely in practice (and even if an appropriate starting 
arrangement were to be dealt, a misplay would probably destroy the 
loop sooner or later) . On the other hand, loops can certainly occur 
with reduced packs. For example, suppose that the pack is reduced 
to six cards, four plain and two jacks, that there are two players, and 
that the cards are initially distributed as in Figure 1 1 . 1 .  If A starts, 
he plays a plain card, B plays a jack, A plays another plain card, and 
B takes the trick. B now has four cards to his opponent's two, but 
he has to lead to the next trick, so the original situation has been 
exactly reversed. A second trick restores the original situation, and so 
on. 

A 8 
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Figure 1 1 . 1  Driving the old woman round in circles 

A loop as simple as this cannot occur with a standard pack, because 

the proportion of plain to court cards is different; there are only 36 
plain cards, whereas the four jacks, queens, kings, and aces create a 
total demand of 40. So from time to time, one court card must be 
played on another, and the trick becomes more complicated. But this 
does not of itself preclude a loop. In the situation shown in Figure 
1 1 .2, A leads a plain card to the first trick, B plays a plain card, A 
plays his first jack, and B plays another plain card, so A wins the first 
trick. A then leads his other jack to the second trick, but B plays his 
own jack, and A can only play a plain card; so B wins the second 
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Figure 1 1 .2 A more complicated circuit for the old woman 

trick, capturing a jack from A in the process. This again exactly 
reverses the original situation. 

Whether a loop does exist for a full 52-card pack is  not known to 

me. If i t  does, the problem can be resolved by finding one; but random 
dealing is unlikely to be profitable, and even systematic exploration 
is  not certain to succeed within a reasonable time.l  Yet if no loop 
exists, the proof is  likely to be even more difficult. Since the pack is 
finite, we can in principle try every case, but such a task is well beyond 
the scope of present-day computers, and we shall see in the next two 
sections that there are games where even this miserable option is 

denied to us. Other options appear few indeed. The most common 

1 A crude probabilistic argument i s  revealing. Suppose that a pack can be arranged 
in a large number N of different ways, that a proportion p of these arrangements are 
defined as ' terminal', that each of the others has a defined successor, and that no two 
arrangements have the same predecessor .  If the successors have been determined at 
random, the probability that a randomly chosen starting arrangement leads into a loop 
can be shown to be approximately ( 1 -p)fpN. A half-life of around twenty corresponds 
to p � 0.035, upon which this probability reduces to approximately 28/N. On the other 
hand, the probability that there i s  a loop somewhere can be shown to exceed 0.9. So 
we have a needle in a haystack; a loop is  very l ikely to exist, but almost impossible to 
find. 
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way of proving that a process cannot repeat indefinitely is to show 
that some property is i rreversibly changed by it; for example, the 
non-existence of perpetual motion machines is a consequence of an 
experimental law of thermodynamics known as 'the law of increase 
of entropy' .  But it is hard to envisage a property that is i rreversibly 
changed by a run through a standard 52-card pack but not by a run 
through the restricted packs of Figures 1 1 . 1  and 1 1 . 2 .  

Turing games 
The essential ingredients of an automatic game are a set of movable 
objects and an automaton which can assume various states. In each 
state, the automaton examines the set of objects, moves them, and 
assumes a new state. For example, the automaton in 'drive the old 
woman to bed' can assume four states: A I (A to play, no court card 
having been played to the current trick), A2 (A to play, at least one 
court card having been played), and Bl and B2 (B to play similarly). 
Its action in state A I is to stop if A 's stack is empty, and otherwise 
to move A's top card to the trick and to assume state Bl or B2 
according as this is a plain or court card . Its action in state A2 is 
more complicated, since it must compare the number of plain cards 
on top of the trick with the number demanded by the most recent 
court card, but there is no difference in principle. 

Another example is provided by a Turing game. Such a game 
features a line of coins, together with a robot which runs up and 
down turning them over. The robot is extremely simple; in each state, 
it can only examine the current coin, turn it over if required, and 
move one step to the left or right. Thus the action of a robot in state 
I might be specified as fol lows: if the current coin is a head, leave it 
alone, move one step right, and remain in state I ;  if a tail ,  turn it 
over, move one step left, and assume state 2 .  The outcome of the 
game is completely determined by the actions of the robot in each 
state and by the initial orientations of the coins . 2  

The progress of a Turing game is most  easily i l lustrated by an 
example. Suppose that the robot is indeed in  state I as defined above, 
and that it is in  the middle of a row of heads. It  therefore sees a head, 

2 Some readers may recognize a 'Turing game' as a thinly disguised form of the 
'Turing machine' which was invented by Alan Turing ( 1 9 1 2 - 54) to resolve a fundamental 
problem in the theory of computation. Perhaps it  is  selling Turing short to present his 
conception in the guise of a game, but the logic is  unaffected, and the present form is 
undoubtedly the more suitable here. 
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so it leaves it alone, steps right, and remains in state I .  This continues 

until the robot moves off the end of the row, when it sees a tail and 
turns it over. So the robot adds a head to the right-hand end of the 
current row, and then assumes state 2. 

Table 1 1 . 2  shows a complete program of actions. Suppose that the 
line of coins contains a single row of heads, and that the robot is 
somewhere within this row (Figure 1 1 .3) .  In state I ,  as has been shown 
above, the robot adds a head to the right-hand end of the row. We 
shall see in a moment that this new head provides a seed from which 
a new row is generated. Being now in state 2,  the robot turns over 
the right-hand member of the previous row, steps to the next coin on 
the left, and assumes state 3. The coin at which the robot is now 
looking is  another head, so it steps back to the right and assumes 
state 4.  In this state, it runs over the new tail and then the new head; 
in state 5,  it adds a further new head on the right; in state 6, it runs 
back over the new row; and it  then reverts to state 2 .  A pattern now 
begins to emerge, in that the robot is systematically removing a head 
from the right-hand end of the old row and adding one to the 
right-hand end of the new. This process continues until there is nothing 
left in the old row, upon which the robot finds a tail while in state 3. 
This tail causes i t  to assume state 7, in which it turns back everything 

Table 1 1 .2 A specification of a simple Turing game 

Seeing a head Seeing a tail 
New New 

State Action Step state Action Step state 

I Leave Right I Turn Left 2 
2 Turn Left 3 Leave Left 2 
3 Leave Right 4 Leave Right 7 
4 Leave Right 5 Leave Right 4 
5 Leave Right 5 Turn Left 6 
6 Leave Left 6 Leave Left 2 
7 Turn Right 8 Turn Right 7 
8 Leave Right 8 Turn None 

. . . . . . .  0 0 0 0 0 0 0 0 0 ·  . . . . .  . 
0 

Figure 1 1 .3 The start of a Turing game 
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. . . . . . .  0 0 0 0 0 0 0 0 0 ·  . . . . . . 
0 

Figure l l .4 The finish of the game 

in the old row and also the original seed coin for the new; and in 
state 8, i t  then adds a final coin to the end of the new row.  When the 
robot eventually rests its weary limb, we find that i t  has exactly 
duplicated the original row (Figure 1 1 .4). 

Table 1 1 . 3  shows a more complicated program, which assumes that 
the line initially contains two rows of heads, separated by a single 
tail, and that the robot starts within the right-hand row (Figure 1 1 . 5 ) .  
We omit the details; suffice it  to say that in  states 1 -6, the robot 
duplicates the row in which it  starts; in states 7- 1 4, i t  adds a copy of 
the second row; and in states 1 5- 1 8 , i t  tidies up. The overall effect is 
to form a new row whose length is the sum of the lengths of the 

original rows (Figure 1 1 .6) .  

Table 1 1 .3 A more complex Turing game 

Seeing a head Seeing a tail 
New New 

State Action Step state Action Step state 

I Leave Right I Turn Left 2 
2 Turn Left 3 Leave Left 2 
3 Leave Right 4 Turn Left 7 
4 Leave Right 5 Leave Right 4 
5 Leave Right 5 Turn Left 6 
6 Leave Left 6 Leave Left 2 
7 Turn Left 8 
8 Leave Right 9 Leave Right 1 5  
9 Leave Right 1 0  Leave Right 9 

10 Leave Right I I  Leave Right 1 0  
I I  Leave Right I I  Turn Left 1 2  
1 2  Leave Left 1 2  Leave Left 1 3  
1 3  Leave Left 1 4  Leave Left 1 3  
14 Turn Left 8 Leave Left 1 4  
1 5  Turn Right 1 6 Turn Right 1 5 
1 6  Turn Right 1 7  Turn Right 1 6  
1 7  Leave Right 1 7  Turn Right 1 8  
1 8  Turn None 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0· 0 0 0 0 0 0 

0 
Figure 1 1 .5 The start of another game 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0· 0 0 0 0 0 0 

0 
Figure 1 1 .6 The finish of the game 

This is an exercise in addition, which brings us to the heart of the 
matter. It can be shown that each of the fundamental operations of 
computing (addition, subtraction, multiplication, and division) can be 
performed by a suitably programmed Turing robot. The reader with 
a taste for such things may care to develop Table 1 1 . 2 into a program 
to perform a multiplication. Al l  that is necessary is to count down a 
second row to the left of the first, and to perform the copying of the 
first row once for each head in the second; the details are mildly 
tedious, but the task is not difficult in principle. For another example, 
suppose the program in Table 1 1 . 3  to be altered so that the detection 
of a tail in state 1 8  causes the robot to reassume state I instead of 
stopping. If the initial configuration represents the numbers I and I ,  
the robot now computes the Fibonacci sequence 2,3 ,5 ,8 , 1 3 ,2 1 ,  . . . 
(Figure I I . 7) .  

Figure 1 1 .7 The Fibonacci game. The arrowed tails become heads 

But the operations of addition, subtraction, multiplication, and 
division are the building blocks from which all computations are 
constructed, and it fol lows that if a number can be computed at al l  
then it can be computed by supplying a Turing robot with a suitable 

program . Furthermore, the playing of an automatic game is logically 
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equivalent to the performance of a computation, so every automatic 
game can be simulated by a Turing robot. For example, i t  is possible 
to devise a representation of playing cards in terms of heads and tails, 
and then to program a Turing robot to play 'drive the old woman to 
bed' .  It is  perhaps unlikely that anyone would actually sit down and 
write the program, but the task is perfectly feasible. 

Turing's paradox 
Having introduced Turing games, we can return to the question of 
deciding whether an automatic game can get into a loop. 

We first observe that the action of a Turing robot is completely 
specified by a finite ordered array of numbers, and so can be 
represented by a coin arrangement containing a finite number of 
heads. 'Leave' and 'turn' can be represented by rows of one and two 
heads respectively; ' step left', 'step right' ,  and 'stay put' can be 

represented similarly; and the number of the next state to be assumed 
can be represented by a row containing this number of heads. Figure 
1 1 .8 shows the start of a coin arrangement representing Table 1 1 . 2 .  

� 

. · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · . 
Figure I 1 .8 The start of a coin representation of Table 1 1 .2 

Now we have remarked that every automatic game is equivalent to 
a Turing game, so the problem of deciding whether an automatic 
game terminates is equivalent to deciding whether a Turing game 
terminates. Let us therefore consider a general Turing program P and 
a coin arrangement c which contains a finite number of heads, let us 
assume that the robot starts at the rightmost head of c (Figure 1 1 .9), 
and let us postulate the existence of a Turing program Q which will 

tell us whether P now terminates. To fix our ideas, let us postulate this 
program Q to be specified as follows: (i) the robot is to start at the 
rightmost head of c; (ii) the space to its right is to be occupied by the 
coin arrangement representing P (Figure 1 1 . 1 0); (ii i) the program Q 

is always to terminate, the robot coming to rest on a head if P 
terminates and on a tail if P does not. It can be shown that this 
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Coin arrangement c 

0 0· · · · · · · 0 0· · · · · · ·  
B 

Figure 1 1 .9 The starting position for program P 

Coin arrangement c Representation of program P 

0 0· · · · · · · 0 0 0· · · · · · · 0 0 · · · · · · ·  
rm 

Figure 1 1 . 10 The starting position for program Q 

Space for second 
Representation of program P representation of program P 

0 0· · · · · · · 0 0 0· · · · · · · 0 0 · · · · · · ·  
(@ ( or S )  

Figure 1 1 . 1 1  The starting position for programs R and S 

detailed specification of Q involves no loss of generality; if Q exists 
at al l ,  i t  can be specified in this form. 

Now if such a program Q does exist, we can develop from it a 
program R which requires the coin array to contain only the 
arrangement representing P (Figure 1 1 . 1 1 ) and which will detect 
whether P terminates if the robot starts at the rightmost head of the 
coin arrangement representing P itself. All that R needs to do is to 
copy the coin arrangement representing P into the space immediately 
to the right, to move the robot back to the starting position, and then 
to invoke Q. 

Having obtained R, we can obtain a further program S by replacing 
all the 'stop' commands within R by commands to assume the 
following new state: 'seeing a head, leave it alone, stay put, and remain 
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in this state; seeing a tai l ,  leave it alone, stay put, and stop . '  If R 
stops on a tail ,  S now does likewise; but if R stops on a head, S does 
not terminate. 

Let us summarize all this. The programs R and S are each presented 
with a coin arrangement representing another program P. If P 
terminates on being presented with the coin arrangement representing 
itself, R stops on a head, and S does not terminate; if  P does not 
terminate, R stops on a tai l ,  and S stops likewise. 

We now imagine S presented with the coin arrangement representing 
itself (Figure 1 1 . 1 2), and we find its behaviour impossible to decide. 
If it terminates, then it  does not; if it does not terminate, then i t  does. 
Hence no such program S can exist, and so R and Q cannot exist 
either. In other words, there can be no general procedure for 
determining whether an automatic game always terminates. 

Representat ion of progmm S 

· · · · · · · 0 0 · · · · · · · 0 0 · · · · · · ·  

� 
Figure 1 1 . 1 2  The paradox 

The hole at the heart of mathematics 
The essence of the technique in the previous section is quite simple. 
We establish a correspondence between the objects on which we are 
operating and the operations themselves, and we then show that a 
certain operation cannot exist, because it would generate a paradox 
if applied to the object corresponding to i tself. 

This technique can be applied more widely. A formal logical system 
is based on axioms and rules of construction, and a proposition is 
said to be 'provable' if it can be derived from the axioms by following 
the rules of construction. For a trivial example, let us suppose that 
we have an axiom 'Polly is a parrot' and a rule of construction which 
states that ' is a parrot' may be replaced by 'can talk' ;  then we can 
derive the statement 'Polly can talk '  by applying the rule of construction 
to the axiom. To put matters more formally, let us suppose the phrases 

'Polly', 'is a parrot' ,  and 'can talk' to be denoted by P, R, and K 
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respectively, and the rule of construction 'throughout a given phrase 
X, replace R by K '  to be denoted by C(X). If PR is defined as an 

axiom, the symbol sequence 'C(PR)' now becomes a formal proof of 
PK. 

In a general logical system, every proposition P has a complementary 

proposition - P ( 'not P'), and this makes it necessary to refine the 
definition of provability. In principle, there are four possibi l ities. 

(a) P can be derived from the axioms by fol lowing the rules of 
construction,  but - P cannot. Only in this case is P now said to be 
provable. 

(b) P cannot be derived from the axioms, but - P can . P is now 
said to be disprovable. 

(c) Neither P nor - P can be derived from the axioms. P is now 
said to be formally undecidable. 

(d) Both P and - P can be derived from the axioms. In this case, 
the logical system is said to be inconsistent .  

The belief of mathematicians, at least in respect of arithmetic, used 
to be that all propositions came into classes (a) and (b); proof or 
disproof always existed, even though it might not have been found. 
This belief was shattered in 1 930, when Kurt Godel discovered a 
proposition in class (c) .3 

What Godel did was to assign a number to every symbol in a 
formal logical argument in such a way that the logical proposition 
'The string of symbols S consti tutes a proof of the proposition P' 
became equivalent to an arithmetical proposition about the numbers 
representing S and P. The proposition 'There is no string of symbols 
which constitutes a proof of proposition P' accordingly became 
equivalent to an arithmetical proposition about the number rep
resenting P; but, being i tself a proposition, it was represented by a 
number, and when it was applied to the number representing itself, 
either a proof or a disproof was seen to lead to a contradiction. So 
this proposition was neither provable nor disprovable. 

3 The date of Giidel 's discovery i s  variously reported as ' 1 930' and ' 1 93 1 ' . In fact 
he announced it to the Vienna Academy of Sciences in 1 930, and I have adopted that 
date even though his detai led paper was not published until 1 93 1 .  Giidel actually 
demonstrated his proposition to be undecidable only under the assumption that 
arithmetic i s  'w-consistent', a slightly more demanding requirement than ordinary 
consistency . The technical definition of w-consistency is  beyond the scope of this book, 
and in any case it  is  now irrelevant; J .  B.  Rosser, using a more complicated proposition 
of the same type, reduced the requirement to ordinary consistency in 1 936. 
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This was Godel 's first theorem, which was quite remarkable enough; 
but his second theorem was even more remarkable, because it identified 
the proposition 'Arithmetic is consistent' with the proposition 'There 
is no P such that both P and - P are provable' and then showed the 

latter to be another undecidable proposition . So the consistency of 
arithmetic, on which the whole of mathematics relies, is formally 
unprovable.4 

Godel's theorems were known to Turing, and were indeed among 
the clues which led him to the discovery of his own paradox. With 
our modern knowledge of computers, however, i t  is easier to approach 
matters the other way round, and to use Turing's paradox to il luminate 
Godel. That a program can be represented by a number is now 
obvious; this is how programs are stored in the memory of a computer. 
That a logical argument can be represented by a number is now 
perhaps just as obvious, but it was no means obvious in 1 930. 

In no sense has this been intended as a book of instruction; its 
sole object has been to entertain. Nevertheless, entertainment and 

instruction are more closely interwoven in mathematics than in any 
other subject, and few things demonstrate this more strikingly than 
the way in which speculations about the behaviour of elementary 
games for children can illuminate fundamental questions about the 

nature of reasoning itself. 

4 However, the fact that we cannot prove the consistency of arithmetic doesn't mean 
that it isn't true. 'Truth' and 'provability' are quite different things. Indeed, if  the 
proposition 'Arithmetic is consistent' were not true, we could prove it ,  since i f  a logical 
system is inconsistent then any proposition which can be formulated in i t  can also be 
proved in i t .  Readers who would like to pursue this paradox further will find an 
excellent discussion in Raymond Smullyan's Forever undecided: a puzzle guide to Godel 
(Knopf, 1 987; Oxford, 1 988).  
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A writer o n  recreational mathematics i s  rather like a small boy i n  an 
orchard, or a tourist in an art gallery; he can take a nibble from each 
of several delights, or he can concentrate on one and ignore the rest. 

This book, unashamedly, has nibbled, and the books listed below 
form a natural next stage for readers whose appeti tes have been 
whetted by particular topics. New books are continually appearing, 
however, and this list should be supplemented by intelligent browsing 
in bookshops. 

We start with two important general recommendations. All Martin 
Gardner's Scientific American books are worth reading; their range is 
wide, and their depth of treatment well judged. Not for nothing did 
Berlekamp, Conway, and Guy, in dedicating Winning ways for your 
mathematical plays to him, describe him as having brought 'more 
mathematics to more mill ions than anyone else' .  In the same way, 
Winning ways i tself (Academic Press, 1 982) will long be a standard 

reference for games of pure ski l l .  It contains an immense amount of 
material, a remarkably high proportion of which is original either 
with the authors themselves or with their students, colleagues, and 
friends. These books also contain extensive bibliographies which will 
assist readers who would l ike to pursue matters more deeply sti l l .  

Let us now take our various topics in turn. The odds affecting card 
and dice games, although important, are only a starting point, and 
among matters which you may wish to explore further are (i) the 
diagnosis of situations in which the usual probabilities appear not to 
apply (the l iterature of bridge, and in particular the many books by 
Terence Reese, being especially strong in this respect); (ii) card 

shuffling, which is discussed in Martin Gardner's Mathematical carnival 
(Knopf, 1 975 ;  George Allen and Unwin, 1 978, subsequently reprinted 
by Penguin); and (ii i) cheating and deception, which are perhaps best 
covered in Scarne's complete guide to gambling (Scarne, Simon and 
Schuster, 1 96 1  ) . Each of these takes matters beyond mere mathematics. 
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For example, Gardner's bibliography contains nearly twice as many 
items by magicians as by mathematicians, since it is very useful to a 
magician to know when an apparently random shuffle actually 
performs a known operation on a key card . 

The published l i terature on the effect of chance on ball games is 
scattered among academic journals, and usually contains only crude 
analyses in which the variation due to external influences is not 
distinguished from the variation inherent in the game itself. This is 
perhaps a field in which you will now find it more profitable to 
perform an investigation yourself than to read about somebody else's .  
All that you need to do is to think about the game, to identify an 
apparently influential event, to analyse the effect of chance on this 
event, and to see to what extent this appears to explain the observed 
variation in the results. In some cases, you will find adequate data 
either in the newspapers or in standard annuals such as Playfair and 
Wisden; in others (the behaviour of tennis rallies, for example) you 
will have to collect your own. You should not be deterred from 
attempting such an investigation because you regard yourself as 
lacking statistical expertise. Some analyses of games do indeed require 
statistical subtlety, but the first stage in a competent statistical 

investigation is always an examination of the data using common 
sense, and in many cases this examination will tell you all that you 
need to know. If common sense fails to throw sufficient light, you can 
always ask an expert how to perform a more sophisticated analysis .  

The estimation of ski l l  from individual scores is an important topic 
within the study of statistics and economics, and those in search of 
further information should consult specialist textbooks. The problem 
here is not in finding material but in remembering amidst the mass 
of detail that all such estimates are subject to the l imitations 
demonstrated in the early part of Chapter 5 .  The most widely available 
book on the estimation of skill at interactive games i s  currently Elo's 
The rating of chessplayers, past and present (Batsford, 1 978), but this 
must be read with caution. Elo deserves the credit for being a pioneer 
and for doing a great deal of work, much of it before automatic 
computers were available to perform the arithmetic, but his work 
contains too many errors to be acceptable as a continuing standard. 

The classic work on the von Neumann theory is The theory of games 
and economic behaviour (J . von Neumann and 0. Morgenstern, 
Princeton, third edition 1 953) .  It  is not light reading, but it has no 
competitor. Chapters 2-4 cover two-person 'zero-sum' games, in which 
one player's gain is the other's loss, and the remaining two thirds of 
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the book discuss more general games. Its major omission is of the use 
of computers to analyse games; the original 1 944 edi tion was written 
before computers became available, and the later editions incorporate 
only minor revision. I know of no book for the layman which fills 
this gap, and indeed the task should not be attempted by other than 
a trained numerical analyst. If, as such, you wish to investigate further, 
your requirement is for a textbook whose title includes the words 
'Theory of games' and ' Linear programming'; many such are in 
existence. 

The li terature of puzzles is vast. Most books on mathematical 
recreations contain some puzzle material; the Gardner books certainly 
do, as to a lesser extent does Winning ways for your mathematical 
plays. For that matter, three of the four books already published in 
the present series (Sliding piece puzzles by Hordern, Rubik's cubic 
compendium by Rubik and others, and my own The ins and outs of 
peg solitaire) are devoted to puzzles, and it  will be interesting to see 

how the series develops in future. In general, however, the availability 
of puzzle books is so great that even a random browse in a games 
shop or bookshop has a reasonable chance of proving profitable. 

The books for immediate further reading on games of pure skill 
are Winning ways for your mathematical plays and the earlier On 
numbers and games (Conway, Academic Press, 1 976). There is ap
preciable overlap between them, but On numbers and games contains 
the more abstract mathematical material, whereas the larger Winning 
ways for your mathematical plays is oriented more towards the general 
reader. Because of the more formal mathematical basis of these books, 
their notation is different from ours, but the differences are soon 
absorbed. Our players Plus and Minus usually become 'Left' and 
' Right'; our game U becomes 'up', denoted by a small upward arrow; 
our worms become 'tiny' and 'miny'; and our infinite games Z, A ,  
L W, R W, and co become ' w' , ' 1 /w' ,  'on' ,  'off', and 'dud' .  As those 
who do read these books will discover, our Chapters 8 - 1 0  have 
touched only the outside of a very wide field . 

The standard popular books on the topics of Chapter I I  are Godel, 
Escher, Bach: an eternal golden braid by Douglas R. Hofstadter (Basic 
Books/Harvester 1 979, subsequently reprinted by Penguin) and the 
much more recent Forever undecided: a puzzle guide to Godel by 
Raymond Smullyan (Knopf, 1 987;  Oxford, 1 988) .  In so far as they 
overlap, Smullyan seems to me greatly superior, but the Turing 
material is only in Hofstadter. Several translations of Godel 's actual 
paper also exist in English (for example, On formally undecidable 
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propositions of Principia Mathematica and related systems, translated 
by B. Meltzer with an introduction by R. B. Braithwaite, Oliver and 

Boyd, 1 962), but they are not easy reading for anybody unused to 
the notation of formal logic. 

There are also periodicals: magazines, newspaper columns, and so 
on. These provide a rich source of material, but their average lifetime 
is so short that there is little point even in listing those which are 
currently prominent; all too many will have vanished within a few 
years, while others will have arisen to take thei r place. Nearly every 
successful games magazine or newspaper column depends on the 
energy and ability of one man, and volatility is inevitable. 

There are in fact six main classes. 

(a) Magazines produced as private hobbies, the editor having a 
separate full-time job. These are the most volatile of all .  If the editor 
thrives, the magazine thrives with him; if he falls ill, or finds that the 
regular editorial grind has become greater than he can accommodate, 
the magazine lapses. Yet many of the best magazines have come into 
this class. T. R. Dawson's legendary Fairy chess review was one, and 
all who have trodden this path since have marvelled at the amount 
of work which he did. 

(b) Journals published by societies whose members are interested 
in a particular game. These have much in common with the previous 
class, since the editor and his contributors are usually unpaid hobbyists, 
but the broader base of a typical society means that they are slightly 
less volatile. 

(c) Journals published for teachers of mathematics. Many of these 
contain excellent puzzle columns, and some contain occasional analyses 
of games (though the emphasis is usually on the mathematical lessons 
that can be learned rather than on the behaviour of the game itself) .  

(d) Magazines produced by general commercial publishers. Such a 
publisher usually produces a range of magazines, so that the overheads 
of distribution and administration can be shared . Even so, each 
magazine must generate enough income to pay its editor and its 
contributors, to cover its other costs, and to contribute its share to 
the overall profits, so the ' logic' of the market-place is always present. 
Puzzles follow fashions, as Rubik's cube has graphically demonstrated. 
While a craze lasts, a magazine can adapt its content to it, and sales 
rise. When the craze has worked itself out, the magazine must find 
other material, and the result may not be commercially viable. 
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(e) Magazines produced by specialist commercial organizations. 
Typically, the magazine is devoted to a particular game, and the 
publisher also acts as a mail-order retailer of books and equipment. 
As long as the game can support such a retailer, this is a good recipe 
for stabi lity; the administrative overheads are shared among more 
than one activity, and the magazine provides both a focal point and 
a highly efficient advertising medium. Yet personal volatility may 
intrude even here. The corporate front of such an organization often 
conceals an active involvement of only one or two people, and illness 
or advancing age may cause problems. 

(f) Columns in newspapers and general journals. Although these 
are frequently long-lasting, their commercial purpose is to boost the 
sales of the parent publication, and they are always subject to the 
changing views of proprietors as to what potential readers really want. 
A good column also reflects the individual knowledge and ability of 
its wri ter, to an extent which may be realized only after his departure. 
For many years, Martin Gardner's column Mathematical games in 
Scientific American was one of the fixed points in the recreational 
mathematician's universe; yet on his retirement, the column became 
Computer recreations, and changed noticeably in character. 

In this opaque situation, by far the best guide is personal re
commendation. Failing this, a column in a teaching journal, newspaper, 
or general magazine makes a good starting point. Not only are the 
best of such columns very good in themselves, but some columnists 
make a point of regularly mentioning magazines which they believe 
worthy of notice. It is also a reasonable strategy to make occasional 
random purchases of the puzzle magazines which are sold on bookstalls 
at railway stations and airports . These vary widely in quality, but 
even the more feeble contain an occasional nugget among the dross, 
and at the worst you have only wasted the cost of one issue. 

I t  may seem depressing that no better advice is possible, yet this is 

in the nature of the subject. One of the beauties of recreational 
mathematics is that it is an individual pursui t; it does not demand 
elaborate organization or expensive equipment, merely interest and 
abi l i ty .  The volatility of its magazines is an inevitable consequence. 
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