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Chapter 1: Introduction

Chapter 1
Introduction

Welcome to 120 Mathematical economics which is a ‘300’ course
offered on the Economics, Management, Finance and Social Sciences
(EMEFSS) suite of programmes.

In this brief introduction, we describe the nature of this course and advise
on how best to approach it. Essential textbooks and Further reading
resources for the entire course are listed in this introduction for easy
reference. At the end we present relevant examination advice.

1.1 The structure of the course

The course consist of two parts which are roughly equal in length but
belonging to the two different realms of economics.

* The first part deals with the mathematical apparatus needed to rigoursly
formulate the core of microeconomics, the consumer choice theory.

* The second part presents a host of techniques used to model
intertemporal decision making in macreconomy.

The two parts are also different in style. In the first part it is important to
lay down rigourous proofs of the main theorems while paying attention

to to assumption details. The second part often dispenses with rigour in
favour of slightly informal derivations needed to grasp the essenceof the
methods. The formal treatment of the underlying mathematical foundations
is too difficult to be within the scope of undergraduate studys; still, the
methods can be used fruitfully without the technicalties involved: most
macroeconomists actively employing them have never taken a formal course
in optimal control theory.

If taken as part of a BSc degree, courses which must be passed before this
course may be attempted are 66 Microeconomics, 05a Mathematics
1 and 05B Mathematics 2 or 174 Calculus, which cover multivariate
calculus and integration. As you already have this understanding, we have
striven to make the exposition in both parts of the subject completely self-
contained. This means that beyond the basic prerequisites you do not need
to have an extensive background in fields like functional analysis, topology,
or differential equations. Howeve, such a background may allow you to
progress faster. For instance, if you have studied the concepts and methods
of ordinary differential equations before you may find you can skip parts of
Chapter 8.

By design the course has a significant economic component. Therefore

we apply the techniques of constrained optimisation to the problems of
static consumer and firm choice; the dynamnic programming methods
are employed to analyse consumption smoothing, habit formation and
allocation of spending on durables and non-durables; the phase plane
tools are used to study dynamic fiscal policy analysis and foreign currency
reserves dynamics; Pontryagin’s maximum principle is utilised to examine
firm’s investment behaviour and the aggregate saving behaviour in an
economy.
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1.2 Aims

The course is specifically designed to:

* demonstrate to you the importance of the use of mathematical
techniques in theoretical economics

* enable you to develop skills in mathematical modelling.

1.3 Learning outcomes

At the end of this course, and having completed the Essential reading and
activities, you should be able to:

* use and explain the underlying principles, terminology, methods,
techniques and conventions used in the subject

* solve economic problems using the mathematical methods described in
the subject

1.4 Syllabus

Techniques of constrained optimisation. This is a rigourous
treatment of the mathematical techniques used for solving constrained
optimisation problems, which are basic tools of economic modelling.

Topics include: Definitions of a feasible set and of a solution, sufficient
conditions for the existence of a solution, maximum value function, shadow
prices, Lagrangian and Kuhn-Tucker necessity and sufficiency theorems
with applications in economics, for example General Equilibrium theory,
Arrow-Debreau securities and arbitrage.

Intertemporal optimsiation. Bellman approach. Euler equations.
Stationary infinite horizon problems. Continuos time dynamic optimisation
(optimal control). Applications, such as habit formation, Ramsay-Kass-
Coopmans model, Tobin’s q, capital taxation in an open economy, are
considered.

Tools for optimal control: ordinary differential equations. These
are studied in detail and include linear 2nd order equation, phase portraits,
solving linear systems, steady states and their stability.

1.5 Reading advice

While topics covered in this subject are in every economists essential
toolbox, their textbook covereage varies. There are a lot of first-rate
treatments of static optimisation methods; most textbooks that have
‘mathematical economics’ or ‘ mathematics for economists’ in the title
with have covered theses in various levels of rigour. Therefore students
with difffernebt backgrounds will be able to choose a book with the most
suitable level of exposition.

Essential reading

Dixit, A.K. Optimization in Economics Theory. (Oxford University Press, 1990)
[ISBN 9780198772101]

The textbook by Dixit, is perhap in the felictous middle. However until
recently there has been no textbook that covers all the aspects of the
dynamic analysis and optimisation used in macroeconomics models.

Sydsaeter, K., P Hammond, A. Seierstad and A. Strom Further Mathematics for
Economic Analysis. (Pearson Prentice Hall, 2005) [ISBN 9780273655763]
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The book by Sydsaester et al. is a recent attempt to close that gap, and is
therefore the Essential reading for the second part of the course, despite
the factthatthe exposition is slightly more formal than in this giude. This
book covers almost all of the topics in the course, although the empasis
falls on the technique and not on the proof. It also provides useful
reference for Linear algebra, calculus and basic topology. The style of the
text is slightly more formal than the one adopted in this subject guide.

For that reason we have included references to Further reading, especially
from various macroeconomics text books, which may help develop a more
intuitive (non-formal) understanding of the concepts from the application-
centred perspective. Note that whatever your choice of further reading
reading textbooks is, textbook reading is essential. As with lectures,
this guide gives structure to your study, while the additional reading
supplies a lot of detail to supplement this structure. The are also more
learning activities and Sample examination questions, with solutions, to
work through in each chapter.

Detailed reading references in this subject guide refer to the editions of the
set textbooks listed above. New editions of one or more of these textbooks
may have been published by the time you study this course. You can use

a more recent edition of any of the books; use the detailed chapter and
section headings and the index to identify relevant readings. Also check
the virtual learning environment (VLE) regularly for updated guidance on
readings.

Further reading

Please note that as long as you read the Essential reading you are then free
to read around the subject area in any text, paper or online resource. You
will need to support your learning by reading as widely as possible and by
thinking about how these principles apply in the real world. To help you
read extensively, you have free access to the VLE and University of London
Online Library (see below).

Other useful texts for this course include:

Barro, R. and X. Sala-i-Martin Economic Growth. (McGraw-Hill, 1995)

[ISBN 9780262025539] The mathematical appendix contains useful
reference in condensed form for phase plane analysis and optimal control.

Kamien, M. and N.L. Schwarz Dynamic optimisation: the calculus of variations
and opptimal control in economics and management. (Elsevier Science,
1991) [ISBN 9780444016096] This book extensively covers optimal control
methods.

Lunjqvist, L. and T.J. Sargent Revcursive macroeconomic theory. (MIT Press,
2001) [ISBN 9780262122740] This book is a comprehensive (thus huge!)
study of macroeconomical applications centred around the dynamic
programming technique.

Rangarajan, S. A first course in optimization theory. (Cambridge, 1996)

[ISBN 9780521497701] Chapters 11 and 12. This book has a chapter on
dynamic programming.

Sargent, T.J. Dynamic macroeconomic theory. (Harvard University Press, 1987)
[ISBN 9780674218772] Chapter 1. This book has a goof introduction into
dynamic programming.

Simon, C.P and L. Blume Mathematics for economists. (W.W Norton, 1994)
[ISBN 9780393957334] This textbook deals with static optimisation topics
in a comprehensive manner. It also covers substantial parts of differential
equations theory.

Takayama, A. Analytical methods in economics. (University of Michigan Press,
1999) [ISBN 9780472081356] This book extensively covers the optimal
control methods.



120 Mathematical economics

Varian, H.R. Intermediate microeconomics: A modern approach. (W.W. Norton &
Co, 2005) [ISBN 9780393927023] Chapters 2-6, or the relevant section of
any intermediate microeconomics textbooks.

Varian, H.R. Microeconomic Analysis. (W.W Norton & Co, 1992) third edition
[ISBN 9780393957358] Chapters 7. For a more sophisticated treatment
comparable to Chapter 2 of this guide.

1.6 Online study resources

In addition to the subject guide and the reading, it is crucial that you take
advantage of the study resources that are available online for this course,
including the VLE and the Online Library.

You can access the VLE, the Online Library and your University of London
email account via the Student Portal at:
http://mylondoninternational.ac.uk

You should have received your login details for the Student Portal with
your official offer, which was emailed to the address that you gave

on your application form. You have probably already logged in to the
Student Portal in order to register! As soon as you registered, you will
automatically have been granted access to the VLE, Online Library and
your fully functional University of London email account.

If you forget your login details at any point, please email uolia.support@
london.ac.uk quoting your student number.

The VLE

The VLE, which complements this subject guide, has been designed to
enhance your learning experience, providing additional support and a
sense of community. It forms an important part of your study experience
with the University of London and you should access it regularly.

The VLE provides a range of resources for EMFSS courses:

* Self-testing activities: Doing these allows you to test your own
understanding of subject material. :

* Electronic study materials: The printed materials that you receive from
the University of London are available to download, including updated
reading lists and references.

¢ Past examination papers and Examiners’ commentaries: These provide
advice on how each examination question might best be answered.

* A student discussion forum: This is an open space for you to discuss
interests and experiences, seek support from your peers, work
collaboratively to solve problems and discuss subject material.

* Videos: There are recorded academic introductions to the subject,
interviews and debates and, for some courses, audio-visual tutorials
and conclusions.

* Recorded lectures: For some courses, where appropriate, the sessions
from previous years’ Study Weekends have been recorded and made
available.

* Study skills: Expert advice on preparing for examinations and
developing your digital literacy skills.

¢ Feedback forms.

Some of these resources are available for certain courses only, but we
are expanding our provision all the time and you should check the VLE
regularly for updates.
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Making use of the Online Library

The Online Library contains a huge array of journal articles and other
resources to help you read widely and extensively.

To access the majority of resources via the Online Library you will either
need to use your University of London Student Portal login details, or you
will be required to register and use an Athens login:
http://tinyurl.com/ollathens

The easiest way to locate relevant content and journal articles in the Online
Library is to use the Summon search engine.

If you are having trouble finding an article listed in a reading list, try
removing any punctuation from the title, such as single quotation marks,
question marks and colons.

For further advice, please see the online help pages:
www.external.shl.lon.ac.uk/summon/about.php

1.7 Using the subject guide

We have already mentioned that this guide is not a textbook. It is
important that you read textbooks in conjunction with the guide and
that you try problems from them. The Learning activities, and the sample
questions at the end of the chapters, in this guide are a very useful
resource. You should try them all once you think you have mastered a
particular chapter. Do really try them: don’t just simply read the solutions
where provided. Make a serious attempt before consulting the solutions.
Note that the solutions are often just sketch solutions, to indicate to

you how to answer the questions, but in the examination, you must
show all your calculations. It is vital that you develop and enhance
your problem-solving skills and the only way to do this is to try lots of
examples.

Finally, we often use the symbol m to denote the end of a proof, where we
have finished explaining why a particular result is true. This is just to make
it clear where the proof ends and the following text begins.

1.8 Examination

Important: Please note that subject guides may be used for several years.
Because of this we strongly advise you to always check both the current
Regulations, for relevant information about the examination, and the VLE
where you should be advised of any forthcoming changes. You should also
carefully check the rubric/instructions on the paper you actually sit and
follow those instructions.

Two Sample examination papers are given at the end of this giude. Notice
that the actual questions may vary, covering the whole range of topics
considered in this course syllabus. You are required to answer FOUR of
the SIX questions: TWO from Section A and TWO from Section B. All
questions carry equal marks and you are advised to divide your time
accordingly.

Also note that in the examination you should submit all your derivations
and rough work. If you cannot completely solve and examination question
you should still submit partial answers as many marks are awarded for
using the correct approach or method.
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Remember, it is important to check the VLE for:

* up-to-date information on examination and assessment arrangements
for this course

* where available, past examination papers and Examiners’ commentaries
for this course which give advice on how each question might best be
answered.



Chapter 2

- Constrained optimisation:
tools

Aim of the chapter

The aim of this chapter is to introduce you to the topic of constrained
optimisation in a static context. Special emphasis is given to both the
theoretical underpinnings and the application of the tools used in
economic literature.

Learning outcomes

By the end of this chapter, you should be able to:

» formulate a constrain optimisation problem

» discern whether you could use the Lagrange method to solve the
problem

u use the Lagrange method to solve the problem, when this is
possible

s discern whether you could use the Kuhn-Tucker Theorem to solve
the problem

* use the Kuhn-Tucker Theorem to solve the problem, when this is
possible

« discuss the economic interpretation of the Lagrange multipliers

= carry out simple comparative statics using the Envelope Theorem.

Essential reading

This chapter is self-contained and therefore there is no essential reading
assigned.

Further reading
Sydsaeter, Knut, Peter Hammond, Atle Seierstad, Arne Strom Further
Mathematics for Economic Analysis. Chapters I and 3.

Dixit Avinash K. Optimization in Economic Theory. Chapters 1-8 and
the appendix.
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Introduction

The role of optimisation in economic theory is important because we
assume that individuals are rational. Why do we look at constrained
optimisation? The problem of scarcity.

In this chapter we study the methods to solve and evaluate the
constrained optimisation problem. We develop and discuss the intuition
behind the Lagrange method and the Kuhn-Tucker theorem. We define
and analyse the maximum value function, a construct used to evaluate
the solutions to optimisation problems.

The constrained optimisation problem
Consider the following example of an economics application.

Example 1 ABC is a perfectly competitive, profit maximizing firm,
producing y from input = according to the production function y = x°.
The price of output is 2, and of the price of input is 1. Negative levels
of x are impossible. Also, the firm cannot buy more than k units of
nput.

The firm is interested in two problems. First, the firm would like to
know what to do in the short run; given that its capacity, k, (e.g., the
size of its manufacturing facility) is fixed, it has to decide how much to
produce today, or equivalently, how much units of inputs to employ
today to maximise its profits. To answer this question, the firm needs
to have a method to solve for the optimal level of inputs under the
above constraints.

When thinking about the long run operation of the firm, the firm will
consider a second problem. Suppose the firm could, at some cost,
invest in increasing its capacity, k, is it worthwhile for the firm? By
how much should it increase/decrease k? To answer this the firm will
need to be able to evaluate the benefits (in terms of added profits) that
would result from an increase in k.

Let us now write the problem of the firm formally:

(The firm's problem) max g(x) = 2z° —z

s.t. h(x) =x<k
x>0

More generally, we will be interested in similar problems as that outlined above.
Another important example of such a problem is that of a consumer maximising
his utility trying to choose what to consume and constrained by his budget. We can
formulate the general problem denoted by COP as:



The constrained optimisation problem

(COP) max g(x)

s.t. h(x) <k
XET

Note that in the general formulation we can accomodate
multidimensional variables; In particular g : z — R, x is a subset of
R™ h:xz— R™ and k is a fixed vector in R™.

Definition 1 z* solves COP if z* € Z,h(z*) < k, and for any other
2 € Z satisfying h(z) < k, we have that g(z*) > g(z).

Definition 2 The feasible set is the set of vectors in R™ satisfying
z€ Z and h(z) < k.

Learning activity 2.1

Show that the following constrained maximisation problems have no
solution. For each example write what you think is the problem for the
existence of a solution.

(a) Maximize Inz subject to 2 > 1.
(b) Maximize Inz subject to z < 1.
(c) Maximize Inz subject to z < 1 and z > 2.

Solutions to learning activities are found at the end of the
chapters.

To steer away from the above complications we can use the following
theorem:

Theorem 1 [f the feasible set is non-empty, closed and bounded
(compact), and the objective function g is continuous on the feasible
set then the COP has a solution.

Note that for the feasible set to be compact it is enough to assume
that z is closed and the constraint function h(z) is continuous. Why?

The conditions are sufficient and not necessary. For example 22 has a
minimum on R? even if it is not bounded.

Learning activity 2.2

For each of the following sets of constraints either say, without proof,
what is the maximum of 22 subject to the constraints, or explain why
there is no maximum: (3) z <0,z > 1

(b) z <2

(c)o<z<1

(d)z>2

(e)-1<z<1

fHll<z<?2

(g)1<z<1

hl<z<2
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In what follows we will devote attention to two questions (similar to
the short run and long run questions that the firm was interested in the
example). First, we will look for methods to solve the COP. Second,
having found the optimal solution we would like to understand the
relation between the constraint k and the optimal value of the COP
given k. To do this we will study the concept of the maximum value
function.

Maximum value functions

To understand the answer to both questions above it is useful to follow
the following route. Consider the example of firm ABC. A first
approach to understanding the maximum profit that the firm might
gain is to consider the situations that the firm is indeed constrained by
k. Plot the profit of the firm as a function of z and we see that profits
are increasing up to = 1 and then decrease, crossing zero profits
when z = 4. This implies that the firm is indeed constrained by k when
k < 1; in this case it is optimal for the firm to choose z* = k. But
when k > 1 the firm is not constrained by k; choosing z* =1 < k is
optimal for the firm.

Since we are interested in the relation between the level of the
constraint k£ and the maximum profit that the firm could guarantee, v,
it is useful to look at the plane spanned by taking k on the x — azis
and v on the y — axis. For firm ABC it is easy to see that maximal
profits follow exactly the increasing part of the graph of profits we had
before (as z* = k). But when k£ > 1, as we saw above, the firm will
always choose z* = 1 < k and so the maximum attainable profit will
stay flat at a level of 1.

More generally, how can we think about the maximum attainable value
for the COP? Formally, and without knowing if a solution exists or not,
we can write this function as

s(k) = sup{g(z);z € z, h(z) < k}.

We would like to get some insight as to what this function looks like.
One way to proceed is to look, in the (k,v) space, at all the possible
points, (k,v),that are attainable by the function g(z) and the
constraints. Formally, consider the set,

B = {(k,v) : k > h(z),v < g(z) for some z € z}.

The set B defines the 'possibility set’ of all the values that are feasible,
given a constraint k. To understand what is the maximum attainable
value given a particular k is to look at the upper boundary of this set.
Formally, one can show that the values v on the upper boundary of B
correspond exactly with the function s(k), which brings us closer to the
notion of the maximum value function.

It is intuitive that the function s(k) will be monotone in k; after all,
when k is increased, this cannot lower the maximal attainable value as
we have just relaxed the constraints. In the example of firm ABC,
abstracting away from the cost of the facility, a larger facility may

10



S(k)

The set B

Figure 2.1: The set B and S(k).

never imply that the firm will make less profits! The following Lemma
formalises this.

Lemma 1 Ifk) € K and k1 < ko then ko € K and s(k1) < s(kz).

Proof. |If k; € K there exists a z € Z such that h(z) < k; < kg so
ks < K. Now consider any v < s(ky). From the definition there exists a
z € Z such that v < g(z) and h(z) < k1 < ka, which implies that
s(ke) = sup{g(z); z € Z,h(z) < ka} > v. Since this is true for all

v < s(ky) it implies that s(k2) > s(k;). W

Therefore, the boundary of B defines a non-decreasing function. If the
set B is closed, that is, it includes its boundary, this is the maximum
value function we are looking for. For each value of k it shows the
maximum attainable value of the objective function.

We can confine ourselves to maximum rather than supremum. This is
possible if the COP has a solution. To ensure a solution, we can either
find it, or show that the objective function is continuous and the
feasible set is compact.

Definition 3 (The maximum value function) /f z(k) solves the
COP with the constraint parameter k, the maximum value function is

v(k) = g(z(k)).

The maximum value function, if it exists, has all the properties of s(k).
In particular, it is non-decreasing. So we have reached the conclusion
that z* is a solution to the COP if and only if (k, g(z*)) lies on the
upper boundary of B.

Learning activity 2.3

XY Z is a profit maximizing firm selling a good in a perfectly
competitive market at price 4. It can produce any non-negative
quantity of such good y at cost c(y) = y2. However there is a transport
bottle-neck which makes it impossible for the firm to sell more than k&
units of y, where k& > 0. Write down XY Z’s profit maximisation
problem. Show on a graph the set B for this problem. Using the graph
write down the solution to the problem for all non-negative values of k.

Maximum value functions

11
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The Lagrange sufficiency theorem

In the last Section we defined what we mean by the maximum value
function given that we have a solution. We also introduced the set, B,
of all feasible outcomes in the (k,v) space. We concluded that z* is a
solution to the COP if and only if (k, g(z*)) lies on the upper
boundary of B. In this section we proceed to use this result to find a
method to solve the COP.

Which values of = would give rise to boundary points of B? Suppose
we can draw a line with a slope A through a point

(k,v) = (h(z*)), g(z*)) which lies entirely on or above the set B. The
equation for this line is:

v — Ak = g(z*) — Ah(z™))

Example 2 (revisiting example 1) We can draw such a line through
(.25,.75) with slope ¢ =1 and a line though (1,1) with slope 0.

If the slope A is non-negative and recalling the definition of B as the
set of all possible outcomes, the fact that the line lies entirely on or
above the set B can be restated as

g9(z*) = Ah(z") = g(z) — Ah(z)

for all z € z. But note that this implies that (h(z*)), g(z*)) lies on the
upper boundary of the set B implying that if z* is feasible it is a
solution to the COP.

Example 3 (revisiting example 1) [t is crucial for this argument that
the slope of the line is non-negative. For example for the point (4,0)
there doesn't exist a line passing through it that is on or above B. This
corresponds to x = 4 and indeed it is not a solution to our example.
Sometimes the line has a slope of ¢ = 0. Suppose for example that

k = 4, if we take the line with ¢ = 0 through (4,1), it indeed lies above
the set B.The point £* = 1 satisfies:

g9(z*) = Oh(z") = g(z) — Oh(z)

for all x € X, and as h(z*) < k*, then z* solves the optimisation
problem for k = k* > 1.

Summarising the argument so far, suppose k*, A and z* satisfy the
following conditions:

g(z*) — Ah(z*) > g(z) — Mh(z) for all z €
A>0
e
either k™ = h(z")
or k* > h(z*) and A=0

then z* solves the COP for k = k*.

This is the Lagrange sufficiency theorem. It is convenient to write it
slightly differently: adding Ak* to both sides of the first condition we
have

12
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g(z*) + AME" — h(z")) =2 g(z) + Mk™ ~ h(z)) forallz ez
A>0
z* € x and k" > h(z*)
AE* — h(z*)] =0

We refer to A as the Lagrange multiplier. We refer to the expression
g(z) + Mk* — h(z)) = L(z,k*, \) as the Lagrangian. The conditions
above imply that z* maximises the Lagrangian given a non-negativity
restriction, feasibility, and a complementary slackness (CS) condition
respectively. Formally:

Theorem 2 If for some q > 0, 2* maximises L(z,k*,q) subject to the
three conditions, it also solves COP.

Proof. From the complementary slackness condition,

glk* — h(z*)] = 0. Thus, g(z*) = g(z*) + q(k* — h(z*)). By ¢ > 0 and
k* — h(z) = 0O for all feasible z, then g(z) + q(k* — h(z)) > g(z). By
maximisation of L we get g(z*) > g(z), for all feasible z and since z*
itself is feasible, then it solves COP. M

Example 4 (Example 1 revisited) We now solve the example of the
firm ABC. The Lagrangian is given by:

L(z,k, ) =22 —z + A[k — 2]

Let us use first order conditions, although we have to prove that we
can use them and we will do so later in the Chapter. Given ), the first
order condition of L(z,k*, \) with respect to z is:

27% —1—X=0 (FOC)

We need to consider the two cases (using the CS condition), A > 0 and
the case of A = 0. Case 1: If A = 0. CS implies that the constraint is
not binding and (FOC) implies that z* = 1 is a candidate solution. By
Theorem 1, when z* is feasible, i.e., k > z* = 1 this will indeed be a
solution to the COP. Case 2: If A > 0. In this case the constraint is
binding; by CS we have x* = k as a candidate solution. To check that
it is a solution we need to check that it is feasible, i.e., that k > 0, that
it satisfies the FOC and that it is consistent with a non-negative \.
From the FOC we have:

EP—1=2A

and for this to be non-negative implies that:
E™9—1>0«=k<1

Therefore when k < 1, z* = k solves the COP.
Remark 1 Some further notes about what is to come:

m The conditions that we have stated are sufficient conditions. This
means that some solutions of COP cannot be characterised by the
Lagrangian. For example, if the set B is not convex, then solving
the Lagrangian is not necessary.

» As we will show later, if the objective function is concave and the
constraint is convex, then B is convex. Then, the Lagrange
conditions are also necessary. That is, if we find all the points that
maximise the Lagrangian, these are all the points that solve the
COP.

13
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w With differentiability, we can also solve for these points using first
order conditions.

s Remember that we are also interested in the maximum value
function. What does it mean to relax the constraint? The
Lagrange multipliers are going to play a central role in
understanding how relaxing the constraints affect the maximum
value.

S(k)

The set B

Figure 2.2: Note that the point C represents a solution to the COP
when k = k*, but this point will not be characterised by the Lagrange
method as the set B is not concave.

Concavity and convexity and the Lagrange
Necessity Theorem

In the last section we have found necessary conditions for a solution to
the COP. This means that some solutions of COP cannot be
characterised by the Lagrangian method. In this section we investigate
the assumption that would guarantee that the conditions of the
Lagrangian are also necessary.

To this end, we will need to introduce the notions of convexity and
concavity. From the example above it is already clear why convexity
should play a role: if the set B is not convex, there will be points on
the boundary of B (that as we know are solutions to the COP) that
will not accommodate a line passing through them and entirely above
the set B as we did in the last section. In turn, this means that using
the Lagrange method will not lead us to these points.

We start with some formal definitions:

Definition 4 A set U is a convex set if for all z € U and y € U, then
for all t € [0,1]:
tx+(1-t)yeU

Definition 5 A real valued function f defined on a convex subset U of
R™ is concave, if for all z,y in Uand for all t € [0,1]:

flx+ (1—1t)y) > tf(x)+ (1 -t)f(y)

14
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A real valued function g defined on a convex subset U of R™ is convex,
if for all z,y in U and for all t € [0, 1]:

g(tx+ (1 -t)y) < tg(x) + (1 —t)g(y)

Remark 2 Some simple implications of the above definition that will
be useful later:

m f is concave if and only if —f is convex.
» Linear functions are convex and concave.

m Concave and convex functions need to have convex sets as their
domain. Otherwise, we cannot use the conditions above.

Learning activity 2.4

A and B are two convex subsets of R™, which of the following sets are
always convex, sometimes convex, or never convex? Provide proofs for
the sets which are always convex, draw examples to show why the
others are sometimes or never convex. (a) AU B.

(b)) A+ B={zlz e R",z =a+b,a€ Abe B}.

In what follows we will need to have a method of determining whether
a function is convex, concave or neither. To this end the following
characterisation of concave functions is useful:

Lemma 2 Let f be a continuous and differentiable function on a
convex subset U of R™. Then f is concave on U if and only if for all
z,y inU:

fy) = f(x) < Df(x)(y —x)
= (ig—g(:lc)(yl —Z1) + ...

+ %fT(nX)(yn - 5571)

Proof. Here we prove the result on R! : since f is concave, then:

U@ +A-DF@) < flty+(1-be) e
HF) - F@) + f@) < flatily—) e
o) - f@) < LEEMZT@

for h = t(y — z). Taking limits when h — 0 this becomes:
fy) = f(=z) < fl(2)(y - 2).
|

Remember that we introduced the concepts of concavity and convexity
as we were interested in finding out under what conditions is the
Lagrange method also a necessary condition for solutions of the COP.

Consider the following assumptions, denoted by CC:

15
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1. The set z is convex.
2. The function g is concave.
3. The function A is convex.

To see the importance of these assumption, recall the definition of the
set B:

B = {(k,v) : k > h(z),v < g(z) for some z € xz}.
Proposition 1 Under assumptions CC, the set B is convex.

Proof. Suppose that (k1,v1) and (k2,v2) are in B, so there exists z;
and 29 such that:

ky

U1

IN IV

By convexity of h:

Oky + (1 — 0)ka > Oh(21) + (1 — 0)h(22) > h(0z1 + (1 — 0)z2)
and by concavity of g:

fv1 + (1 — O)vz < 0g(z1) + (1 — 0)g(22) < g(0z1 + (1 - 0)22)

thus, (8k1 + (1 — 0)ka,0v1 + (1 — B)ve) € B for all § € [0, 1], implying
that B is convex. Wl

Remember that the maximum value is the upper boundary of the set
B. When B is convex, we can say something about the shape of the
maximum value function:

Proposition 2 Assume that the maximum value exists, then under
CC, the maximum value is a non-decreasing, concave and continuous
function of k.

Proof. We have already shown, without assuming convexity or
concavity, that the maximum value is non-decreasing. We have also
shown that if the maximum value function v(k) exists, it is the upper
boundary of the set B. Above we proved that under CC the set B is
convex. The set B can be re-written as:

B ={(k,v):veRkeK,v<uv(k)}

But a set B is convex iff the function v is concave. Thus, v is concave,
and concave functions are continuous, so v is continuous. W

The Lagrangian necessity theorem

We are now ready to formalise under what conditions the Lagrange
method is necessary for a solution to the COP.

Theorem 3 Assume CC. Assume that the constraint qualification
holds, that is, there is a vector zy € Z such that h(zg) << k*. Finally
suppose that z* solves COP. Then:

(i) there is a vector ¢ € R™ such that z* maximises the Lagrangian
L(g, k", 2) = g(2) + q[k* = h(z")].

16
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2.7.1

First order conditions: when can we use them?

(ii) the lagrange multiplier q is non negative for all components, ¢ > 0.
(iii) the vector z* is feasible, that is z € Z and h(2*) < k™.

(iv) the complementary slackness conditions are satisfied, that is,
qlk* — h(z*)] = 0.

First order conditions: when can we use
them?

So far we have found a method that allows us to find all the solutions
to the COP by solving a modified maximisation problem (i.e.,
maximising the Lagrangian). As you recall, we have used this method
to solve for our example of firm ABC by looking at first order
conditions. In this section we ask under what assumptions can we do
this and be sure that we have found all the solutions to the problem.
For this we need to introduce ourselves to the notions of continuity and
differentiability. :

Necessity of first order conditions

We start with some general definitions.

Definition 6 A function g: Z —R™,Z C R", is differentiable at a
point zg in the interior of Z if there exists a unique mxn—matrix,
Dg(zp), such that given any € > 0, there exists a 0 > 0, such that if
|z — 20| < 8, then |g(z) — g(20) — Dg(z0)(z — 20)| < €|z — 20]-

There are a few things to note about the above definition. First, when
m=mn=1, Dg(zo) is a scalar, that is, the derivative of the function
at z that we sometimes denote by g'(z¢). Second, one interpretation
of the derivative is that it helps approximate the function g(z) for z's
that are close to zg by looking at the line, g(zo) + Dg(zo)(z — zo),
that passes through (zo, g(zo)) with slope Dg(zo). Indeed this is an
implication of Taylor's theorem which states that for any n > 1:

D3g(z)

D™g(xo)
9l +

(z—z0)%+... o

(x—z0)"+Rnp,
(2.1)

g(z)—g(zo) = Dg(z0)(z—z0)+

where R, is a term of order of magnitude (z — o)™ *!. The
implication is that as we get closer to zy we can more or less ignore the
elements with (z — zp)* with the highest powers and use just the first
term to approximate the change in the function. We will later return to
this when we will ask whether first order conditions are sufficient, but
for now we focus on whether they are necessary.

But (2.1) implies that if zo is a point which maximises g(z) and is
interior to the set we are maximising over then if Dg(z) exists then it
must equal zero. If this is not the case, then there will be a direction
along which the function will increase (i.e., the left hand side of (2.1)
will be positive); this is easily seen if we consider a function on one
variable, but the same intuition generalises. This leads us the following
result:

17
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Theorem 4 (Necessity) Suppose thatg:Z — R, Z C R™, is
differentiable in zy and that zg€ intZ maximizes g on Z, then
Dg(z) = 0.

Finally, we introduce the notion of continuity:

Definition 7 f: R* — R™ is continuous at oy € R* if for any
sequence {z,}°%; in R® which converges to zq, {f(zn)}3,
converges to f(zg). The function f is continuous if it is continuous at
any point in RF.

Note that all differentiable functions are continuous but the converse is
not true.

Sufficiency of first order conditions

Recall that if f is a continuous and differentiable concave function on
a convex set U then

fly) = f(x) < Df(x)(y —x).

Therefore, if we know that for some xg,y € U,

Df(x0)(y —x%0) <0

we have
f(y) = f(x0) < Df(x0)(y —%0) <0
implying that
f(y) < f(xo0).
If this holds for all y € U, then xq is a global maximiser of f. This
leads us to the following result:

Proposition 3 (Sufficiency) Let f be a continuous twice
differentiable function whose domain is a convex open subset U of R™.
If f is a concave function on U and D f(xy) = 0 for some zg, then xg
is a global maximum of f on U.

Another way to see this result is to reconsider the Taylor expansion
outlined above. Assume for the moment that a function g is defined on
one variable z. Remember that for n = 2, we have,

D?g(zo)

ol (CE - xo)Q + R3 (2,2)

g(z) — g(z0) = Dg(wo)(z — o) +

If the first order conditions hold at zg this implies that Dg(z) = 0 and
the above expression can be rewritten as,

2 X
o(x) ~ g(z0) = 22 (o 2 1 By (23

But now we can see that when D?g(zg) < 0 and when we are close to
zp the left hand side will be negative and so zg is a local maximum of
g(z), and when D?g(zq) > 0 similarly zg will constitute a local
minimum of g(z). As concave functions have D?g(z) < 0 for any z
and convex functions have D2g(z) > 0 for any z this shows why the
above result holds.

The above intuition was provided for the case of a function over one
variable z. In the next section we extend this intuition to functions on
R™ to discuss how to characterise convexity and concavity in general.

18
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First order conditions: when can we use them?

Checking for concavity and convexity

In the last few sections we have introduced necessary and sufficient
conditions for using first order conditions to solve maximisation
problems. We now ask a more practical question. Confronted with a
particular function, how can we verify whether it is concave or not? If
it is concave, we know from the above results that we can use the first
order conditions to characterise all the solutions. If it is not concave, we
will have to use other means if we want to characterise all the solutions.

It will be again instructive to look at the Taylor expansion for n = 2.
Let us now consider a general function defined on R™ and look at the
Taylor expansion around a vector z° € R™. As g is a function defined
over R™, Dg(zo) is now an n—dimensional vector and D?g(zo) is an
n X m matrix. Let  be an n—dimensional vector in R™. The Taylor
expansion in this case becomes

D?g(xo)

g9(z) — g(z°) = Dg(zo) (z — 2°) + (& — x")TT (z —2°%) + Rs

If the first order condition is satisfied, then Dg(zo) = 0, where 0 is the
n—dimensional vector of zeros. This implies that we can write the
above as,

(@)~ 9(a) = (o = 20)T 242 (o _ 09) 4 Ry

But now our problem is a bit more complicated. We need to determine
the sign of (z — a:O)TZ%L!ﬂ’—)- (z — z°) for a whole neighbourhood of

z's around z°! We need to find what properties of the matrix D%g(zo)
would guarantee this. For this we analyse the properties of expressions

of the form (z — a:O)TQE%‘Q (z — °), i.e., quadratic forms.

Consider functions of the form Q(x) = xT Ax where z is an
n—dimensional vector and A a symmetric n x n matrix. If n = 2, this

becomes
( T, o ) ail %a T
H2 ag T2

and can be rewritten as

2 2
a112] + a12Z129 + a22x3

Definition 8 (i) A quadratic form on R™ is a real-valued function
Q(z1,22,...,Tn) = Zaijwﬂj
i<j
or equivalently,

(i) A quadratic form on R™ is a real-valued function Q(x) = xT Ax
where A is a symmetric n X n _matrix.

Below we would like to understand what properties of A relate to the
quadratic form it generates, taking on only positive values or only
negative values.

19



2.7.4

2.7.5

120 Mathematical economics

Definiteness of quadratic forms

We now examine quadratic forms, Q(x) = xT Ax. It is apparent that
whether x = 0 this expression is equal zero. In this section we ask
under what conditions Q(x) takes on a particular sign for any x # 0
(Strictly negative or positive, non-negative or non-positive).

For example, in one dimension, when
y = az?

then if @ > 0, az? is non negative and equals 0 only when z = 0. This
is positive definite. If a < 0, then the function is negative definite. In
two dimensions,

z3 + a3
is positive definite, whereas

~a} — 23
is negative definite, whereas

22 — 22

is indefinite, since it can take both positive and negative values,
depending on x.

There could be two intermediate cases: if the quadratic form is always
non negative but also equals 0 for non zero x’s, then we say it is
positive semidefinite. This is the case, for example, for

(z1 + z2)?

which can be 0 for points such that z; = —z5. A quadratic form which
is never positive but can be zero at points other than the origin is
called negative semidefinite.

We apply the same terminology for the symmetric matrix A, that is,
the matrix A is positive semi definite if Q(x) = xT Ax is positive semi
definite, and so on.

Definition 9 Let A be an n X n symmetric matrix. Then A is:

= positive definite if T Az > 0 for all z # 0 in R™,
u positive semi definite if T Az > 0 for all z # 0 in R™.
 negative definite if 1T Az < 0 for all z £ 0 in R™,
w negative semi definite if zT Az < 0 for all z # 0 in R™,

= indefinite zT Az > 0 for some x # 0 in R™ and 2T Az < 0 for
some x # 0 in R™.

Testing the definiteness of a matrix

In this section, we try to examine what properties of the matrix, A4, of
the quadratic form Q(x) will determine its definiteness.

We start by introducing the notion of a determinant of a matrix. The
determinant of a matrix is a unique scalar associated with the matrix.

Computing the determinant of a matrix proceeds recursively:
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First order conditions: when can we use them?

For a 2x2 matrix, A = ( a1 Gz ) the determinant, det(A) or |A], is
az1 Q22

ay1022 — 012021

ay1 a1z a3
For a 3x3 matrix, A = as; Q23 G23 the determinant is:
azi1 asz 033

a as; a ay;
ay, det 22 G923 — agpdet 21 23
asz ass azy  as3

+ a3 det ( 02 022 ) .

31 Q32

ay e Q1n
Generally, for a n X 1 matrix, A = , the

Gpy .o Gnp
determinant will be given by

det(A) =Y (—1)"'ay; det(Ay)
i=1

where A;; is the matrix that is left when we take out the first row and
i'th column of the matrix A.

Definition 10 Let A be an n x n matrix. A k X k submatrix of A
formed by deleting n — k columns, say columns i1,ia,...,in—% and the
same n — k rows from A, 1,12, ...,9n_k , Is called a k—th order
principal submatrix of A. The determinant of a k x k principal
submatrix is called a k—th order principal minor of A.

Example 5 For a general 3 x 3 matrix A, there is one third order
principal minor, which is det(A). There are three second order principal
minors and three first order principal minors. What are they?

Definition 11 Let A be an n x n matrix. The k—th order principal
submatrix of A obtained by deleting the last n — k rows and columns
from A is called the k—th order leading principal submatrix of A,
denoted by Ay. Its determinant is called the k—th order leading
principal minor of A, denoted by {Ay|.

We are now ready to relate the above elements of the matrix A to the
definiteness of the matrix:

Proposition 4 Let A be an n X n symmetric matrix. Then

(a) A is positive definite if and only if all its n leading principal minors
are strictly positive.

(b) A is negative definite if and only if all its n leading principal minors
alternate in sign as follows:

[A1] < 0,]42] > 0,|A3] < O etc.

The k—th order leading principal minor should have the same sign as
(~1)*.

(c) A is positive semidefinite if and only if every principal minor of A is
non negative.
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(d) A is negative semidefinite if and only if every principal minor of odd
order is non positive and very principal minor of even order is non
negative.

ay O 0
Example 6 Consider diagonal matrices 0 a O . These
0 0 as

correspond to the simplest quadratic forms:
ale + agzvg + aga:g.

This quadratic form will be positive (negative) definite if and only if all
the a's are positive (negative). It will be positive semidefinite if and
only if all the a;; s are non negative and negative semidefinite if and
only if all the a’s are non positive. If there are two a}s of opposite
signs, it will be indefinite. How do these conditions relate to what you
get from the proposition above?

Example 7 To see how the conditions of the above Proposition relate
to the definiteness of a matrix consider a 2 x 2 matrix, and in particular
its quadratic form

Q(z1,22) = (xl,x2)< ‘; 2 > < 2 >

= a:c% + 2bz1x9 + c:c%
If a = 0, then Q cannot be negative or positive definite since
Q(1,0) = 0. So assume that a # 0 and add and subtract b*z3/a to get:
b2 b?
Q(x1,x2) = ax? + 2bxy 39 + cxd + ng - —a—wg =

2b.’1,‘1$2 b2 b2
a(z? + 2 + ﬁmg) - —a—mg + cz3

12
)2+(ac b)wg

b
=a(z; + -2
a a

If both coefficients above, a and (ac — b?)/a are positive, then Q will
never be negative. It will equal 0 only when z1 + %xz and zo =0 in
other words, when £1 = 0 and x4 = 0. Therefore, if

a b

b >0

la] > 0 and det A =

then Q is positive definite. Conversely, in order for () to be positive
definite, we need both a and det A = ac — b® to be positive. Similarly,
Q will be negative definite if and only if both coefficient are negative,
which occurs if and only if a < 0 and ac — b*> > 0, that is, when the
leading principal minors alternative in sign. If ac —b® < 0. then the two
coefficients will have opposite signs and Q will be indefinite.

Example 8 Numerical examples. Consider A = ( 23 > . Since

3 7
|A1] =2 and |A3] = 5, A is positive definite. Consider
B = ( Z ;1 ) . Since |B1| = 2 and |Ba| = —2, B is indefinite.

Back to concavity and convexity

Finally we can put all the ingredients together. A continuous twice
differentiable function f on an open convex subset U of R™ is concave
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on U if and only if the Hessian D?f(x) is negative semidefinite for all
x in U. The function f is a convex function if and only if D?f(x) is
positive semidefinite for all x in U.

Therefore, we have the following result:

Proposition 5 Second order sufficient conditions for global
maximum (minimum) in R". Suppose that x* is a critical point of a
function f(x) with continuous first and second order partial derivatives
on R"™. Then x* is:

= a3 global maximiser for f(zx) if D? f(zx) is negative (positive)
semidefinite on R™.

= a strict global maximiser for f(z) if D*f(x) is negative (positive)
definite on R™.

The property that critical points of concave functions are global
maximisers is an important one in economic theory. For example, many
economic principals, such as marginal rate of substitution equals the
price ratio, or marginal revenue equals marginal cost are simply the first
order necessary conditions of the corresponding maximisation problem
as we will see. ldeally, as economist would like such a rule also to be a
sufficient condition guaranteeing that utility or profit is being
maximised, so it can provide a guideline for economic behaviour. This
situation does indeed occur when the objective function is concave.

The Kuhn-Tucker Theorem

We are now in a position to formalise the necessary and sufficient first
order conditions for solutions to the COP. Consider once again the
COP:

max x
s.t. h(z)<k™ g( )
e SE

where g : 2 — R, x is a subset of R", h:x — R™, and k* is a fixed
m—dimensional vector.

We impose a set of the following assumptions, (CC’) :

1 The set x is convex,
2 The function g is concave,
3 The function A is convex,
(these are assumptions (CC) from before), and

4 The functions g and A are differentiable

Consider now the following conditions, which we term the Kuhn-Tucker
conditions:

1. There is a vector A € R™ such that the partial derivative of the
Lagrangian
L{k™, A, z) = g(z) + A[k™ — h(z)]

evaluated at z* is zero, in other words:

OL(k*, A\, z)

5 = Dg(x™) — ADh{(z*) =0

The Kuhn-Tucker Theorem
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2. The Lagrange multiplier vector is non negative:

A>0

3. The vector z* is feasible, that is, z € z and h(z*) < k*.
4. The complementary slackness conditions are satisfies, that is,

AE* —h(z*)] =0
The following Theorem is known as the Kuhn-Tucker Theorem.

Theorem 5 Assume (CC').

(i) If z* is in the interior of Z and satisfies the K-T conditions, then
z* solves the COP.

(ii) If the constraint qualification holds (there exists a vector zy € Z
such that h(zp) << k*), z*is in the interior of Z and solves COP,
then there is a vector of Lagrange multipliers q such that z* and ¢
satisfy the K-T conditions.

Proof. We first demonstrate that under CC and for non-negative
values of Lagrange multipliers, the Lagrangian is concave. The
Lagrangian is:

L(k*,q,2) = g(2) + qlk™ — h(2)]
Take z and z’. Then:

tg(z) + (1 —t)g(2")
2"

g g(tz + (1 —1)2")
th(z) 4+ (1 —t)h(

h(tz + (1 —t)2")

IV IA

and thus with ¢ > 0, we have:
gtz + (1 —)2') + gk* — qh(tz + (1 — t)2)
> tg(z) + (1 - t)g(2) + gk — q(th(z) + (1 - t)h(2)),
It follows that:
L(k*,q,tz+ (1 —t)2)
gtz + (1 —)2') + q[k* — h(tz + (1 —t)2")]

tlg(2) +q(k* = h(2))] + (1 = t)[g(¢') + q(k* — h(z"))]
= tL(k* q,2) + (1 —t)L(k*, q,2").

Il

v

This proves that the Lagrangian is concave in z. In addition, we know
that g and h are differentiable, therefore also L is a differentiable
function of z. Thus, we know that if the partial derivative of L with
respect to z is zero at z*, then z* maximises L on Z. Indeed the partial
of L at z* is zero, and hence, we know that if g is concave and
differentiable, h is convex and differentiable, the Lagrange multipliers ¢
are non-negative, and

Dg(z") — qDh(z") =0

then z* maximizes the Lagrangian on Z. But then the conditions of the
Lagrange sufficiency theorem are satisfied, so that z* indeed solves
COP. We have to prove the converse result now. Suppose that the
constraint qualification is satisfied. The COP now satisfies all the
conditions of the Lagrange necessity theorem. This theorem says that if
z* solves the COP, then it also maximises L on Z, and satisfies the
complementary slackness conditions, with non negative Lagrange
multipliers, as well as being feasible. But since partial derivatives of a
differentiable function are zero at the maximum, then the partial
derivatives of L with respect to z at z* are zero and therefore all the
Kuhn-Tucker conditions are satisfied. W
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2.9.1

The Lagrange multipliers and the Envelope Theorem

Remark 3 (Geometrical intuition) Think of the following example in
R?. Suppose that the constraints are: 1) hy(z) = —z; < 0. 2)

ho(z) = —2zp < 0. 3) hs(z) < k*. Consider first the case in which the
point zy solves the problem at a tangency of h(z) = k* and the
objective function g(z) = g(zo). The constraint set is-convex, and by
the concavity of g it is also the case that

{z:2€ R?g(2) > g(z0)}
is a convex set. The Lagrangian for the problem is:

L(k*,q,2) = g(2) + q[k™ — h(2)]
= g(Z) +q121 + @222 + Q3(k* - h3(z))

In the first case of 2y, the non negativity constraints do not bind. By
the complementary slackness then, it is the case that q; = gz = 0 so
that the first order condition is simply:

Dg(20) = g3 Dh3(z0)

Recall that q3 > 0. If g3 = 0, then it implies that Dg(z¢) = 0 so zg is
the unconstrained maximiser but this is not the case here. Then

q3 > 0, which implies that the vectors Dg(zg) and Dhs(zg) point in
the same direction. These are the gradients: they describe the direction
in which the function increases most rapidly. In fact, they must point
in the same direction, otherwise, this is not a solution to the
optimisation problem.

The Lagrange multipliers and the Envelope
Theorem

Maximum value functions

In this Section we return to our initial interest in Maximum (minimum)
Value functions. Profit functions and indirect utility functions are
notable examples of maximum value functions, whereas cost functions
and expenditure functions are minimum value functions. Formally, a
maximum value function is defined by:

Definition 12 /f z(b) solves the problem of maximising f(x) subject
to g(z) < b, the maximum value function is v(b) = f(z(b)).

You will remember that such a maximum value function is
non-decreasing.

Let us now examine these functions more carefully. Consider the
problem of maximising f(z1,z2, ..., Z) subject to the k inequality
constraints

g9(z1, T2, ..., zn) <Y,y g(@1, T2,y ooy T0) < B
where b* = (b7,...,b%). Let z7(b*), ...,z (b*) denote the optimal
solution and let A;(b*), ..., Ax(b*) be the corresponding Lagrange
multipliers. Suppose that as b varies near b*, then z}(b*), ..., 27 (b*)
and A1 (b*), ..., \e(b*) are differentiable functions and that z*(b*)
satisfies the constraint qualification. Then for each j = 1,2, ...,k :

2i(b*) = g%f(l“*(b*))
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Proof. (We consider the case of a binding constraint, and for
simplicity, assume there is only one constraint, and that f and g are
functions of two variables) The Lagrangian is

L(z,y, A 0) = f(a:,y) - )\(g(:r,y) -b)

The solution satisfies:

0 = -(z"(0),y7(6), A" (b); b)

= z"(b),y"(b), A" (b))
—/\*(b)—a—y(x*(b)y’y*(b),X’(b)),

for all b. Furthermore, since h(z*(b),y*(b)) = b for all b,

R+ g
for every b. Therefore, using the chain rule, we have:
df (z*(b), y* (b))
db
S e L
= xoge - Sy 2
= A*(b).

The economic interpretation of the multiplier is as a ‘shadow price":
For example, in the application for a firm maximising profits, it tells us
how valuable another unit of input would be to the firm's profits, or
how much the maximum value changes for the firm when the
constraint is relaxed. In other words, it is the maximum amount the
firm would be willing to pay to acquire another unit of input.

The Envelope Theorem

Recall that
L('Tvyv /\) = f(zvy) - )\(Q(I, y) - b)a
so that

2 @), y6):) = XB) = 5 L(@(b),y(0) A ).

Hence, what we have found above is simply a particular case of the
envelope theorem, which says that

d 0
(@ (0),5(0)58) = 52 L(w (1), y(b), AB)b).
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Solutions to fearning activities

Consider the problem of maximising f(z1, z2, ..., T»,) subject to the k
inequality constraints

hi(z1,%2, 0y Tn,€) = 0, .., (@1, X2, ooy Ty c) = 0

Let z7(c), ..., z,(c) denote the optimal solution and let p,(c), ..., ;. (c)
be the corresponding Lagrange multipliers. Suppose that

zi(e), ..., zx(c) and p,(c), ..., uy(c) are differentiable functions and
that z*(c) satisfies the constraint qualification. Then for each
i=12,...,k:

L5 (00) = g (@) (el

Note: if h;(z1,Z2, ..., Tn, ) = 0 can be expressed as some
hl(zy,2z2,...,2,) — ¢ = 0, then we are back at the previous case, in
which we have found that

d . . O s

I (@),0) = - L(*(0), 1e)s ) = My(c)
But the statement is more general.
We will prove this for the simple case of an unconstrained problem. Let
f(x;a) be a continuous function of x € R™ and the scalar a. For any

a, consider the problem of finding max f(z;a). Let z*(a) be the
maximiser which we assume a differentiable of a. We wili show that

I @) = £ (e @) 0)
Apply the chain rule:
2 jet @y a)
=Y L@@+ L@

_of
" da

(z*(a);a)

since 52~ 2f -(z*(a); @) = 0 for all 7 by the first order conditions.
|ntumveiy when we are already at a maximum, changing slightly the
parameters of the problem or the constraints, does not affect the
optimal solution (but it does affect the value at the optimal solution).

Solutions to learning activities

Solution to learning activity 2.1

(a) For any possible solution, z* > 1, we have that 2* +1 > 1 and
In(z* 4+ 1) > In(2*) and therefore z* cannot be a solution. As lnz
is a strictly increasing function and the feasible set is unbounded
there is no solution to this problem.

(b) For any possible solution, z* < 1, we can choose an ¢, where
g <1 —z%, such that have that z* + ¢ < 1. But then we have
In(z* 4+ ¢€) > In(z*) and therefore z* cannot be a solution. As lnz
is a strictly increasing function and the feasible set is not closed
there is no solution to this problem.
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(c) As the feasible set is empty there is no solution to this problem.

Solution to learning activity 2.2

(a) In this case there is no maximum as the feasible set is empty.

(b) In this case there is no maximum as the feasible set is unbounded.

(c) The maximum is achieved at z = 1.

(d) In this case there is no maximum as the feasible set is unbounded.

(e) The maximum is achieved at either z =1 or at z = —1.

(f) In this case there is no maximum as the feasible set is not closed
around 2.

(g) The only feasible z is z =1 and therefore = 1 yields the
maximum.

(h) The maximum is achieved at 2 = 2. Note that this is true even
though the feasible set is not closed.

Solution to learning activity 2.3

In what follows refer to the following figure. The profit function for this
problem is 4y — c(y) and the problem calls for maximising this function
with respect to y subject to the constraint that y < k. To graph the set
B and to find the solution we look at the (k,v) space. We first plot
the function v(k) = 4k — c(k). As can be seen in the figure this
function has an inverted U shape which peaks at £ = 2 with a
maximum value of 4. Remember that the constraint is y < k and
therefore, whenever k > 2 we can always achieve the value 4 by
choosing y = 2 < k. This is why the boundary of set B does not follow
the function v(k) = 4k — c(k) as k is larger than 2 but rather flattens
out above k = 2. From the graph it is clear that for all £ > 2 the
solution is y = 2 and for all 0 < k < 2 the solution is y = k.

Solution to learning activity 2.4

(a) AU B is sometimes convex and sometimes not convex. For an
example in which it is not convex consider the following sets in R :
A=10,1] and B=[2,3]. Considerct=1€ AC AUB and
y=2€ B C AUB and ¢t = 0.5. We now have
tr+(1—t)y=15¢[0,1]U[2,3].

(b) This set is always convex. To see this, take any two elements
z,y € A+ B. By definition z =24 + zp where z4 € A and
rp € B. Similarly, y = ya + yp where y4 € A and yp € B.
Observe that for any ¢ € [0, 1],
tr+(1—t)y=tea+(1—-t)ya+tep+(1—t)ys. As Aand B are
convex, txa + (1 —t)ysa € A and tzp + (1 — t)yp € B. But now
we are done, as by the definition of A+ B, tz + (1 —t)y € A+ B.
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Sample examination questions

Profit(k)=4k-k*

Figure 2.3: Concave profit function in learning activity 2.3

A reminder of your learning outcomes

At the end of this chapter, you should be able to:

= formulate a constrain optimisation problem

= discern whether you could use the Lagrange method to solve the
problem

use the Lagrange method to solve the problem, when this is
possible

w discern whether you could use the Kuhn-Tucker Theorem to solve
the problem

use the Kuhn-Tucker Theorem to solve the problem, when this is
possible

s discuss the economic interpretation of the Lagrange multipliers

= carry out simple comparative statics using the Envelope Theorem.

Sample examination questions

Question 2.1 A household has a utility u(z1,zs) = z¢x8 where
a,b>0and a+b = 1. It cannot consume negative quantities of either
good. It has strictly positive income y and faces prices p;,ps > 0.
What is its optimal consumption bundle?

Question 2.2 A household has a utility u(zy,z2) = (23 +1)%(zo +1)®
where a,b > 0 and a + b = 1. It cannot consume negative quantities of
either good. It faces a budget with strictly positive income y and prices
p1,p2 > 0. What is its optimal consumption bundle?
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Comments on the sample examination
questions

Solution to question 2.1 The utility function, u(x1, z2), is
real-valued if x1,x9 > 0. therefore, we have

Z = {(z1,x2) € R?|z1, 22 > 0}. Our problem is to maximise u(x1, Tz)
on Z and subject to the budget constraint: p1x1 + paza < y.

The constraint function is differentiable and convex. The problem is
that while the objective function, u(z1,s), is concave (see below), it
is not differentiable at (0,0) as Du(z1,z2) = (az{ '8, bzizs 1) is
not well-defined at that point.

Note, however, that in a valid solution both z1 or zo must be non-zero,
for suppose that without loss of generality 1 = 0. The marginal utility
for good 1 is infinite, which means that trading a small amount of
good 2 for good 1 would increase the utility. As a result the constraint
(z1,2z2) € Z should be slack at the maximum.

We next verify that the objective function is concave. For this we look
at the Hessian:

a—1,_b—-1 a..b—2

a—2,b a—1,_b-1
Du(z1,32) = —abz{"“zy abz{ x5
’ abz$ ™z —abzixs

The principal minors of the first order are negative,

—abml_ng, —abx'{zg_z < 0; the second order minor is non-negative,
|Ao| = (a2b? — a2b2)z2 @ Vz2=Y) = 0. Therefore, the Hessian is
negative semi-definite and so u (z1,x2) is concave. As for the
constraint, it is a linear function and hence convex.

As prices and income are strictly positive, we can find strictly positive
x, and xo that would satisfy the budget constraint with inequality.
Therefore, we can use the Kuhn-Tucker Theorem to solve this problem.
The Lagrangian is:
L = z$zh + Ay — p1z1 — pawa).

The first order conditions are:

ax‘f‘lwg = Ap1

bx‘fzg_l = A\ps
If X > 0, dividing the two equations we have,

ars  p1 . .

—= = —{MRS=price ratio

i p }

Plugging this into the constraint (that holds with equality when X\ > 0),

e by

I = y 1 =
P D2

As all the conditions are satisfied, we are assured that this is a solution.
To get that maximum value function, we plug the solution into the
objective function to get,

v(p1,p2,y) = a®b%py *p5°.
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Solution to question 2.2 The utility function, u(z1,z), is real
valued if x1,x2 > —1, but the consumer cannot consume negative
amounts. Therefore, we have Z = {(z1,72) € R%|z1,z2 > 0}. Our
problem is to maximise u(z1,x2) on Z and subject to the budget
constraint: p1x1 + p2T2 < Y.

The constraint function is differentiable and convex. The objective
function, w(x1,T2), is concave (see below) and differentiable (see
below).

We first make sure that the objective function is concave. For this we
look at the Hessian:

2 _ —-CLb((El + 1)0’—2(22 + 1)b ab(a:l + l)a_l(.’l,‘Q + 1)b_1
Dy, m2) = ( ab(zy + 1)* Y (zg + 1)P71 —ab(zy + 1)%(z2 +1)° 72

The principal minors of the first order are negative,

—ab(zy + 1)*2(z2 + 1)%, —ab(zy + 1)%(z2 + 1)°7 < 0 and of the
second order is non negative,

|As| = (a?b? — a?b?)(z1 + 1)2@7D (25 4 1)20=1) = 0. Therefore, the
Hessian is negative semi-definite and so u(z1,x2) is concave. As for
the constraint, it is a linear function and hence convex.

As prices and income are strictly positive, we can find strictly positive
7, and o that would satisfy the budget constraint with inequality.
Therefore, we can use the Kuhn-Tucker Theorem to solve this problem.
As in this problem z; = 0 could be part of a solution, we can add the
non-negativity constraints. The Lagrangian is:

L =287y + Moly — pro1 — paza] + MiT1 + AaT2.
The first order conditions are:
a(zy + 1)z + 1) = Ap1 + My
b(z1 +1)% (@2 + 1P = Apa + Xz

There may be three types of solutions (depending on the multipliers),
one interior and two corner solutions. Assume first that A\ = A1 =0
but that Ao > 0, dividing the two equations we have,

a(z2+1) _m
- = 7 M —
Mot D) { RS=price ratio}
Plugging this into the budget constraint (that holds with equality when

Ao > O),

ay + apz — bp1 - by — aps + bp1
P1 ’ D2
/\O — aabapl—ap;b

Iy =

This is a solution only if both z1 and x5 are non-negative. This
happens if and only if,
_ b _
y > max( aps + 0p1 ’ apa bpl)
a b
Consider now the case of Ay > 0 implying that z, = 0. In this case we

must have that zo = i implying that Ay = 0, as the consumer might
as well spend all his lncome on good 2. From the first order conditions

we have,
do= ()L + 1)
o~ P2
bpy — aps —
AL = (p_lw)(_y_ +1)@

P2 D2
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This is part of a solution only if \y > 0, i.e., if and only ify < 931—5%
and in that case the solution is x1 = 0 and zo = %. Similarly, if

y < _—bp-laiﬂp—?, the solution is 1 = - and x5 = 0.
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Chapter 3

The consumer’s utility
maximisation problem

Aim of the chapter

The aim of this chapter is to review the standard assumptions of
consumer theory on preferences, budget sets and utility functions,
treating them in a more sophisticated way than in intermediate
microeconomics courses, and to understand the consequences of these
assumptions through the application of constrained optimisation
techniques.

Learning outcomes

By the end of this chapter, you should be able to:

= outline the assumptions made on consumer preferences

a describe the relationship between preferences and the utility
function

» formulate the consumer’s problem in terms of preferences and in
terms of utility maximisation

n define uncompensated demand, and to interpret it as the solution
to a constrained optimisation problem

u define the indirect utility function, and to interpret it as a
maximum value function.

Essential reading

This chapter is self-contained and therefore there is no essential reading
assigned. But you may find further reading very helpful.

Further reading

For a reminder of the intermediate microeconomics treatment of
consumer theory read

Varian, H.R. Intermediate Microeconomics. Chapters 2-6, or the
relevant in section of any intermediate microeconomics textbook.

For a more sophisticated treatment comparable to this chapter read
Varian, H.R. Microeconomic Analysis. Chapter 7 or the relevant
section of any mathematical treatment of consumer theory.
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Preferences

Preferences

Consumer theory starts with the idea of preferences. Consumers are
modeled as having preferences over all points in the consumption set,
which is a subset of R™. Points in R™ are vectors of the form

x = (x1, T3...Tx) Where z; is the consumption of good 7. Most
treatments of consumer theory, including this chapter, assume that the
consumption set is R™ that is the subset of R™ with z; > 0 for
i=1..n.

If x and y are points in R™* that a consumer is choosing between:

m X > y means that the consumer strictly prefers x to y so given a
choice between x and y the consumer would definitely choose y

m x ~ y means that the consumer is indifferent between x and y so
the consumer would be equally satisfied by either x or y

® x 7~ y means that the consumer weakly prefers x to y that is
either x =y or x ~y.

Assumptions on preference

The most important assumptions on preferences are:

= Preferences are complete if for any x and y in R** either x = y
ory I X.

m Preferences are reflexive that is for any x in R*" x = x.

» Preferences are transitive, that is for x, y and z in R"" x = y
and y 77 z implies that x - z.

A technical assumption on preferences is:

» Preferences are continuous if for all y in R™ the sets
{x:xeR", x2=y}and {x:x €R", y = x} are closed.

Closed sets can be defined in a number of different ways.

In addition we often assume:

s Preferences satisfy nonsatiation if for any x and y in R™*,
X >y, that is z; > y; for i = 1,2...n, implies that x > y.

Note that nonsatiation is not always plausible. Varian argues that if the
two goods are chocolate cake and ice cream you could very plausibly be
satiated. Some books refer to nonsatiation as ‘more is better’, others
use the mathematical term ‘monotonicity’.

» Preferences satisfy convexity, that is for any y in R™* the set
{x:x € R"", x = y} of points preferred to y is convex.

Convex sets are defined in the previous chapter and on pages 70 and 71
of Chapter 6 of Dixit and Section 2.2 of Chapter 2 of Sydszeter et al.
The convexity assumption is very important for the application of
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3.2

3.21

The consumer’s budget

Lagrangian methods to consumer theory and we will come back to it.
Some textbooks discuss convexity in terms of diminishing rates of
marginal substitution, others describe indifference curves as being
convex to the origin.

Different textbooks work with slightly different forms of these
assumptions; it does not matter, the resulting theory is the same.

Learning activity 3.1

Assume there are two goods and that all the assumptions given above
hold. Pick a point y in R2*.

(a) Show the set {x :x € R™", x ~y}. What is this set called?
(b) What is the marginal rate of substitution?

(c) Show in a diagram the set of points weakly preferred to y, that is
{x:x € R™, x 7 y}. Make sure that it is convex. What does
this imply for the marginal rate of substitution?

(d) Show the set of points {x : x € R™", x > y}, where x >y means
that z; > y; for i = 1,2...n. Explain why nonsatiation implies that
this set is a subset of the set of points weakly preferred to y, that
is{x:x €R", xZ y}.

(e) Explain why the nonsatiation assumption implies that the
indifference curve cannot slope upwards.

The consumer’s budget

Definitions

Assumption. The consumer’s choices are constrained by the
conditions that

1Ty + P2zo.... +PpTp <M
x € R*F

where p; is the price of good 7, and m is income. We assume that
prices and income are strictly positive, that is p; >0 for i = 1..n and
m > 0.

Definition 13 The budget constraint is the inequality
p1Z1 + P2T2.... + Ppn < M.
The budget constraint is sometimes written as px < m where p is the

vector of prices (pi1...pn) and px is notation for the sum
P1T1 + P2Z2-... T PnTn.

Definition 14 The budget line is the set of points with
P11 + PaZo + .o.Prn =m and ; > 0 fori = 1..n.

Definition 15 The budget set is the subset of points in R**
satisfying the budget constraint. In formal notation it is

{x :x € R p12y + paza.... + DrZn <M }
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Learning activity 3.2
Assume that n = 2 and draw a diagram showing

(a) the budget line and its gradient
(b) the points where the budget line meets the axes
(c) the budget set.

Learning activity 3.3

Draw diagrams showing the effects on the budget line and budget set
of the following changes

(a) an increase in p;

(b) a decrease in p2

(c) an increase in m.

Preferences and the utility function

The consumer’s problem in terms of preferences

Definition 16 The consumer’s problem stated in terms of preferences
is to find a point x* in R™* with the property that x* satisfies the
budget constraint, so

D1x] + D2xh + ... ppZs <M
and
x*mx

for all x in R™" that satisfy the budget constraint.

Preferences and utility

The difficulty with expressing the consumer’s problem in terms of
preferences is that we have no techniques for solving the problem.
However preferences can be represented by utility functions, which
makes it possible to define the consumer’s problem in terms of
constrained optimisation and solve it using the tools developed in the
previous chapter.

Definition 17 A utility function u (x) which takes R™* into R
represents preferences - if

m y(x) > u(y) implies that x =y
w u(x) =u(y) implies that x ~y
m y(x) > u(y) implies that x =7 y.
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Preferences and the utility function

The following result and its proof are beyond the scope of this course,
but the result is worth knowing

Theorem 6 If preferences satisfy the completeness, transitivity and
continuity assumptions they can be represented by a continuous utility
function.

Varian’s Microeconomic Analysis proves a weaker result on the
existence of a utility function in Chapter 7.1. Again this is beyond the
scope of this unit.

Cardinal and ordinal utility

One of the standard points made about consumer theory is that the
same set of consumer preferences can be represented by different utility
functions so long as the order of the numbers on indifference curves is
not changed. For example if three indifference curves have utility levels
1, 2 and 3, replacing 1, 2 and 3 by 2, 62 and 600 does not change the
preferences being represented because 1 < 2 < 3 and 2 < 62 < 600.
However replacing 1, 2 and 3 by 62, 2 and 600 does change the
preferences being represented because it is not true that 62 < 2 < 600.
The language used to describe this is that the utility function is ordinal
rather than cardinal, so saying that one bundle of goods gives higher
utility than another means something, but saying that one bundle gives
twice as much utility as the other is meaningless.

This can be stated more formally.

Theorem 7 [f the utility function u (x) and the function b(x) are
related by u (x) = a (b(x))where a is a strictly increasing function,
then b(x) is also a utility function representing the same preferences as
u (X).

As there are many different strictly increasing functions this result
implies that any set of preferences can be represented by many
different utility functions.

Proof. As a is strictly increasing and u represents preferences

b(x) > b(y) implies that u (x) > u (y) which implies x > y

b(x) = b(y) implies that u (x) = u (y) which implies that x ~ y

b(x) > b(y) implies that u (x) > u (y) which implies that x = y so
b(x) is a utility function representing the same preferences as u (x). M

Learning activity 3.4

Suppose that [ is a function taking R™* into R, and the term = is
defined by f(x) > f(y) implies that x s y. Explain why the
relationship given by 7 is complete, reflexive and transitive.

Learning activity 3.5

Suppose that the utility function is differentiable, and that
du (x)

Bz >0fori=1..n.
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Explain why this implies that the preferences satisfy nonsatiation.

The consumer’s problem in terms of utility

Uncompensated demand and the indirect utility
function

Definition 18 The consumer’s utility maximisation problem /s

max u(x)

s.t. P11 +p2Ta + ....DpTn <M
x € R*.

Note that this has the same form as the constrained optimisation
problem in the previous chapter. The previous chapter showed you how
to solve the consumer's problem with the Cobb-Douglas utility function
u(z1,2) = 2¢x8 and the utility function

u(z1,x2) = (21 + 1)a (z2 + l)b.

Definition 19 The solution to the consumer’s utility maximisation
problem is uncompensated demand. [t depends upon prices
p1,P2..Pn and income m. The uncompensated demand for good 1 is
written as

xi(p19p2"'p‘n.v m)
or using vector notation as x; (p, m) where p is the vector (p1,p2..Pn)-
Notation x (p, m) is used for the vector of uncompensated demand
(z1 (p,m) , 22 (P, M) ...Tn (P, ) -

The notation x (p, m) suggests that uncompensated demand is a
function of (p,m), which requires that for each value of (p,m) there is
only one solution to the utility maximising problem. This is usually so
in the examples economists work with, but it does not have to be, and
we will look at the case with a linear utility function where the
consumer’s problem has multiple solutions for some values of p.

Recall from Chapter 1 the definition of the maximum value function as
the value of the function being maximised at the solution to the
problem.

Definition 20 The indirect utility function /s the maximum value
function for the consumer’s utility maximisation problem. It is written
as

v(p1,P2---Pn, ™)

or in vector notation v (p, m) where

v(p,m) = u(x(p,m)).

There are two important results linking preferences and utility functions.

Theorem 8 [f preferences are represented by a utility function u (x)
then the solutions to the consumer’s utility maximising function in
terms of preferences are the same as the solutions to the consumer's
problem in terms in utility.
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The consumer’s problem in terms of utility

Theorem 9 [f two utility functions represent the same preferences the
solutions to the consumer’s utility maximisation problem are the same
with the two utility functions but the indirect utility functions are
different.

These results are not difficult to prove, the next learning activity asks
you to do this.

Nonsatiation and uncompensated demand

The nonsatiation assumption on preferences is that for any x and y in
R, if x >y, that is ; > y; for all 4, and z; > y; for some ¢, then
x = y. If the preferences are represented by a utility function u, this
requires that if x > y then u (x) > u(y), so the utility function is
strictly increasing in the consumption of at least one good, and
non-decreasing in consumption of any good. In intuitive terms, the
assumption says that more is better, so a consumer will spend all
available income.

Proposition 6 If the nonsatiation condition is satisfied any solution to
the consumer’s utility maximising problem satisfies the budget
constraint as an equality.

Proof. To see this, suppose that the budget constraint is not satisfied
as an equality so
PIT1 + PaXy.. + Py <M

and increasing consumption of good 7 increases utility so if ¢ > 0
w(L, Loy + &, .o Bp) > U(T1, To..Tiy T ) -

As 121 + PaZa... + Pnn < m if € is small enough the point
(z1,22...%; + €, ...2y,) satisfies the budget constraint and gives higher
utility that (21, z2...2;, ...T,) 5O (21, T2...T;, ...T,) cannot solve the
consumer's problem. M

Learning activity 3.6

Explain why Theorem 8 holds.

Learning activity 3.7

Explain why Theorem 9 holds

Learning activity 3.8

Find the indirect utility function for the Cobb-Douglas utility function

u(zy, og) = 2.
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Learning activity 3.9

The objective of this activity is to solve the consumer's utility
maximising function with a linear utility function 2z; + z2 subject to
the constraints p1x1 + peze < m, 1 > 0 and x5 > 0. Assume that
p1 >0, p2 >0 and m > 0.

(a) Draw indifference curves for the utility function u (z1, z2)
= 2x1 + x2. What is the marginal rate of substitution?

(b) Assume that p;\ps < 2. Use your graph to guess the values of z;
and x5 that solve the maximising problem. Which constraints bind,
that is have h; (z1,22) = k; where h; is constraint function 4.
Which constraints do not bind, that is have h; (71, 22) < k;? Does
the problem have more than one solution?

(c) Assume that p1\p2 = 2. Use your graph to guess the values of z;
and z2 that solve the maximising problem. Which constraints
bind? Which constraints do not bind? Is there more than one
solution?

(d) Assume that p;\p2 > 2. Use your graph to guess the values of z;
and zo that solve the maximising problem. Which constraints
bind? Which constraints do not bind? Does the problem have
more than one solution?

(e) Explain why the Kuhn-Tucker conditions are necessary and
sufficient for a solution to this problem.

(f) Write down the Lagrangian for the theorem. Confirm that your
guesses are correct by finding the Lagrange multipliers associated
with the constraints for activities 3.6—3.8. Does the problem have
more than one solution?

Learning activity 3.10
Find the indirect utility function for the utility function

u(z1,T2) = 271 + T2

Solution to learning activities

Solution to learning activity 3.1

Assume that the consumer's preferences satisfy all the assumptions of
Section 3.1. Refer to Figure 3.1.
(a) The set {x:x € R™", x ~ y} is the indifference curve.

(b) The marginal rate of substitution is the gradient of the indifference
curve.
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Figure 3.1: Indifference curves and preference relationships

(c) The set {x:x € R™, x 7 y} is the entire shaded area in Figure
3.1. The marginal rate of substitution decreases as z; increases
because this set is convex.

(d) The set {x:x € R"", x >y}, where x > y means that z; > y;
for ¢ = 1,2...n is the lightly shaded area in Figure 3.1. The
nonsatiation assumption states that all points in this set are weakly
preferred to y, that is x 7 y.

(e) If the indifference curve slopes upwards there are points on the
indifference curve x = (21, 22) and y = (y1,y2) with y; >z, and
Yo > o S0 X > y. Nonsatiation then implies that x > y which is
impossible if x and y are on the same indifference curve.

Solution to learning activity 3.2

The budget line in Figure 3.2 has gradient —p; /ps and meets the axes
at m/p1 and m/pa.

Solution to learning activity 3.3

Refer to Figure 3.3:

» An increase in p; to p} shifts the budget line from CE to CD.
The budget line becomes steeper.

» A decrease in po to p4 shifts the budget line from CE to BE. The
budget line becomes steeper.

w An increase in m to m’ shifts the budget line out from CFE to AF.
The gradient of the budget line does not change.

Solution to learning activities
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m/p,

budget line, gradient —p./p,

budget
set

0 m/p; X4

Figure 3.2: The budget set and budget line.

D E F
0 m/p’;  m/p, m/p,; Xy

Figure 3.3: The effect of changes in prices and income on the budget
line.

Solution to learning activity 3.4

This learning activity tells you conditions on the utility function that
ensure that preferences have various properties, and asks you to explain
why.

Suppose that f is a function taking R™* into R, and the term 5 is
defined by f(x) > f(y) implies that x Zf y.

The values of the function f (x) are real numbers. The relationship >
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Solution to learning activities

for real numbers is complete, so for any x and y either f(x) > f (y)

or f(y) = f(x)-

The relationship > for real numbers is reflexive so for any x,

f(x) 2 f(x).

The relationship > is transitive, so for any x, y and z, f (x) > f(y)
and f (y) = f (z) implies that f (x) > f(z).

Thus, as f(x) > f(y) implies that x = ¢ y, the relationship = sis
complete, reflexive and transitive.

Solution to learning activity 3.5

As

—= >0fori=1.n

Ou (x)
8CL‘Z'

if y; > z; fori=1.nthen u(y) > u(x), so y > x, and nonsatiation
is satisfied.

Solution to learning activity 3.6

Theorem 8 states that if preferences are represented by a utility
function u (x) then the solutions to the consumer's utility maximising
function in terms of preferences are the same as the solutions to the
consumer's problem in terms in utility.

To see why suppose that a point x* solves the consumers problem in
terms of preferences so x* = x for all points in R™T that satisfy the
budget constraint. A point x* solves the consumer's utility
maximisation problem if u (x*) > u (x) for all points in R™* that
satisfy the budget constraint. If the utility function represents the
preferences then the set of points for which x* = x is the same as the
set of points for which u (x*) > u (x), so the two problems have the
same solutions.

Solution to learning activity 3.7

Theorem 9 states that if two utility functions represent the same
preferences the solutions to the consumer’s utility maximisation
problem are the same with the two utility functions but the indirect
utility functions are different.

This follows directly from Theorem 8, because if u (x) and u (x*)
represent the same preferences the solutions to the consumer’s utility
maximisation with the two utility functions are the same as the solution
to the consumer’s problem in terms of the preferences and so are the
same as each other.

43



120 Mathematical economics

Solution to learning activity 3.8

The examination question for Chapter 2 gave the solution to the
consumer's Cobb-Douglas utility function u (z1,22) = z¢z8 where
a>0,b>0anda+b=1. The solutions is z; = a(m/p1),

z9 = b(m/p2) so uncompensated demand is

m
z1 (p1,p2, M) = a—.
h
m
Z2 (plaPZ)m) =b—
D2

so the indirect utility function

a b
o= () ()
P1 P2

ma+b

piph

adbb
- (5) ™
P1D3

The third line here follows from the second line because a + b = 1.

abb

=a

Solution to learning activity 3.9

The objective of this activity is to solve the consumer's utility
maximising function with a linear utility function 2z; + 2 subject to
the constraints p1z1 + pexe < m, 1 > 0 and o > 0. Assume that
p1 >0, pz >0and m > 0.

indifference
X2 / curves
gradient = - MRS = -2
budget line
solution with
pi/py <2
0 Xy

Figure 3.4: Utility maximisation with «(z1,22) = 2z1 + z2 and
p1/p2 = 2.

(a) The indifference curves for the utility function u (z1, z2)
= 2z + x4 are parallel straight lines with gradient —2 a shown in
Figure 3.4. The marginal rate of substitution is 2.
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indifference
curves
gradient=- MRS = -2

All points on the
budget line solve
the problem if
pi/p, = 2.

Figure 3.5: Utility maximization with u(zy,z2) = 221 + T2 and

p1/p2 =2
indifference
Xz
/ curves
solution with gradient - 2
py/p2 > 2

budget line

Figure 3.6: Utility maximisation with u (21,72) = 2z + z2 and
pl/pg > 2.

(b)

(d)

From Figure 3.4 if p1/p2 < 2 the budget line is less steep than the
indifference curves. The solution is at z; = m/p1, 22 = 0. The
constraints p1z1 + paz2 <mand zo >0 bind. The constrain

x1 > 0 does not bind. There is only one solution.

From Figure 3.5 if p1/p2 = 2 the budget line is parallel to all the
indifference curves, and one indifference curve coincides with the
budget line. Any (z1,z2) with z1 >0, 22 = 0 and

P12 + P2tz = m solves the problem. If z; = 0 the constraints

z1 > 0 and pyz1 +paz2 <M bind and the constraint zo > 0 does
not bind. If zo = 0 the constraints 3 > 0 and p1Z1 +P2Z2 =™
bind and the constraint z; > 0 does not bind. If z; >0 and

x5 > 0 the constraint p1x1 + paz2 <M binds and the constraints
21 > 0 and z2 > 0 do not bind. There are many solutions.

From Figure 3.6 if py/p2 > 2 the budget line is steeper than the
indifference curves. The solution is at 1 =0, z2 = m/ps. The
constraints p1z1 + peze < m and z1 2 0 bind. The constraint
x4 > 0 does not bind. There is only one solution.
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(e)

(f)

The objective 2z1 + x5 is linear so concave, the constraint
functions p1x1 + p2x2, 1 and z, are linear so convex, the
constraint qualification is satisfied because there are points that
satisfy the constraints as strict inequalities, for example

z1 = m/2p1, £ = m/2py. Thus the Kuhn-Tucker conditions are
necessary and sufficient for a solution to this problem.

The Lagrangian is:

L =2z1 + z2 + Ao (M — p1&1 — paz2) + \T1 + A2z
=21 (2= Xop1 + A1) + 22 (1 = Aop2 + A2) .

The first order conditions require that:

2= Xop1 — M1
1= Aopz — Az

Checking for solutions with z; > 0 and z3 = 0, complementary
slackness forces A\; =0, so A\g = 2/p; > 0 and

Ao = Aop2 — 1 = 2pe/p; — 1. Thus non-negativity of multipliers
forces p1 /p2 < 2. Complementary slackness forces z; = m/p;.
The point £1 = m/p;, To = 0 is feasible. Thus if py/p2 < 2 the
point £; = m/p1, T2 = 0 solves the problem. If p1/p2 < 0 this is
the unique solution.

Checking for solutions with z; = 0 and z3 > 0, complementary
slackness forces Ay = 0, so A\g = 1/p2 and

A1 = Aop1 — 2 = p1/p2 — 2. Thus non-negativity of multipliers
forces p1 /p2 > 2 . Complementary slackness forces z3 = m/ps.
The point z1 = 0, 2 = m/ps is feasible. Thus if p2/ps < the
point z; = 0, To = m/py solves the problem. If p; < p1/2 this is
the only solution.

|fp1/p2 =2, and \g = 2/p2 = l/pg, then A\1 = A2 =0, so
solutions with 21 > 0 and 25 > 0 are possible. As A\g > 0
complementary slackness forces p;z1 + paz2 = m. In this case
there are multiple solutions.

Solution to learning activity 3.10

Finding the indirect utility function for the utility function u (z1, x2)
=2z + T2,

if p1/p2 < 2, then z1 (p1,p2, m) = m/p1 and z2 (p1,p2,m) =0 so
v(p17p27m) = 2fl:l + ZTo = 2m/p1

If p1/p2 = 2, any z1, 2 with £; >0, z2 > 0, and
Ty = (m — p121) /P2, solves the problem, so:

(m—piz1) _ m _ 2m

U(pl7p27m):2ml+ .
) P2 n

If p1/p2 > 2, then 21 (p1,p2,m) = 0 and 3 (p1,p2,m) = m/p2 S0
v (p1,p2, m) = 21 + T2 = m/pz.

This is perfectly acceptable answer to the question, but the indirect
utility function can also be written more concisely as
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3.6

A reminder of your learning outcomes

By the end of this chapter, you should be able to:

m outline the assumptions made on consumer preferences

m describe the relationship between preferences and the utility
function

» formulate the consumer's problem in terms of preferences and in
terms of utility maximisation

» define uncompensated demand, and to interpret it as the solution
to a constrained optimisation problem

» define the indirect utility function, and to interpret it as a
maximum value function.

Sample examination questions

When answering these and any other examination questions be sure to
explain why your answers are true, as well as giving the answer. For
example here when you use Lagrangian techniques in question 2 check
that the problem you are solving satisfies the conditions of the theorem
you are using, and explain your reasoning.

Question 3.1 (a) Explain the meaning of the nonsatiation and
transitivity assumptions in consumer theory.

(b) Suppose that preferences can be represented by a utility function
u (z1,T2). Do these preferences satisfy the transitivity assumption?

(c) Assume that the derivatives of the utility function u(z1,x2) are
strictly positive. Do the preferences represented by this utility
function satisfy the nonsatiation assumption?

(d) Continue to assume that the derivatives of the utility function
u (z1,Z2) are strictly positive. Is it possible that the solution to
the consumers utility maximisation problem does not satisfy the
budget constraint as an equality?

Question 3.2 (a) Define uncompensated demand.
(b) Define the indirect utility function.

(c) A consumer has a utility function u (z1,z2) = zf + = where
0 < p < 1. Solve the consumer’s utility maximisation problem.

(d) What is the consumer’s uncompensated demand function for this
utility function?

(e) What is the consumer’s indirect utility function for this utility
function?

Sample examination questions
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3.7 Comments on sample examination questions

As with any examination question you need to explain what you are
doing and why.

Solution to question 3.2 (d) The uncompensated demand functions
for consumer’s utility maximisation problem with
u(zy,T2) = o] + b are

z1(p1,p2,m)= | —————F|m
z2 (p1,p2,m) = | ———= | m-

(e) The indirect utility function is

-2 T 1-p 0
v(pl,pz,m)=(p1 +P, ) me.
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