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Preface

If mathematics is a language, then taking a topology course at the undergradu-
ate level is cramming vocabulary and memorizing irregular verbs: a necessary,
but not always exciting exercise one has to go through before one can read
great works of literature in the original language, whose beauty eventually—in
retrospect—compensates for all the drudgery.

Set-theoretic topology leaves its mark on mathematics not so much
through powerful theorems (even though there are some), but rather by pro-
viding a unified framework for many phenomena in a wide range of mathe-
matical disciplines. An introductory course in topology is necessarily concept
heavy; the nature of the subject demands it. If the instructor wants to flesh
out the concepts with examples, one problem arises immediately in an un-
dergraduate course: the students don’t yet have a mathematical background
broad enough that would enable them to understand “natural” examples, such
as those from analysis or geometry. Most examples in such a course therefore
tend to be of the concocted kind: constructions, sometimes rather intricate,
that serve no purpose other than to show that property XY is stronger than
property YX whereas the converse is false. There is the very real danger that
students come out of a topology course believing that freely juggling with defi-
nitions and contrived examples is what mathematics—or at least topology—is
all about.

The present book grew out of lecture notes for Math 447 (Elementary
Topology) at the University of Alberta, a fourth-year undergraduate course I
taught in the winter term 2004. I had originally planned to use [Simmons 63]
as a text, mainly because it was the book from which I learned the material.
Since there were some topics I wanted to cover, but that were not treated
in [Simmons 63], I started typing my own notes and making them available
on the Web, and in the end I wound up writing my own book. My audience
included second-year undergraduates as well as graduate students, so their
mathematical background was inevitably very varied. This fact has greatly
influenced the exposition, in particular the selection of examples. I have made
an effort to present examples that are, firstly, not self-serving and, secondly,
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accessible for students who have a background in calculus and elementary
algebra, but not necessarily in real or complex analysis.

It is clear that an introductory topology text only allows for a limited
degree of novelty. Most topics covered in this book can be found in any other
book on the subject. I have thus tried my best to make the presentation as
fresh and accessible as possible, but whether I have succeeded depends very
much on my readers’ tastes. Besides, in a few points, this books treats its
material differently than—to my knowledge, at least—any other text on the
subject.

• Baire’s theorem is derived from Bourbaki’s Mittag-Leffler theorem;
• Nets are extensively used, and, in particular, we give a fairly intu-

itive proof—using nets—of Tychonoff’s theorem due to Paul R. Chernoff
[Chernoff 92];

• The complex Stone–Weierstraß theorem is obtained via Silvio Machado’s
short and elegant approach [Machado 77].

With a given syllabus and a limited amount of classroom time, every in-
structor in every course has to make choices on what to cover and what to
omit. These choices will invariably reflect his or her own tastes and biases, in
particular, when it comes to omissions. The topics most ostensibly omitted
from this book are: filters and uniform spaces. I simply find nets, with all the
parallels between them and sequences, far more intuitive than filters when
it comes to discussing convergence (others may disagree). Treating uniform
spaces in an introductory course is a problem, in my opinion, due to the lack of
elementary, yet natural, examples that aren’t metric spaces in the first place.

Any book, even if there is only one author named on the cover, is to
some extent an accomplishment of several people. This one is no exception,
and I would like to thank Eva Maria Krause for her thorough and insightful
proofreading of the entire manuscript. Of course, without my students—their
feedback and enthusiasm—this book would not have been written. I hope that
taking the course was as much fun for them as teaching it was for me, and that
they had A Taste of Topology that will make their appetite for mathematics
grow in the years to come.

Volker Runde
Edmonton, March 14, 2005
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C The Arzelà–Ascoli Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Symbols

(0), 68
‖ · ‖, 24
‖ · ‖1, 24
‖ · ‖∞, 24
T

{S : S ∈ S}, 8
S{S : S ∈ S}, 8
∈, 5
∞, 34
/∈, 5
∂S, 33
Q

{S : S ∈ S}, 18
Q

i∈I
Si, 18

∼, 134
�, 136
⊂, 6
�, 6
∅, 5
2κ, 16

ℵ0, 16
(a, b), 6
[a, b], 6
(a, b], 6
[a, b), 6
A ∩ B, 8
A ∪ B, 8
A \ B, 8
Ar,R[x0], 135

βX, 118
Bn, 143
Br(x0), 28
Br[x0], 30
B(S, Y ), 24

Bx, 65

c, 16
C, 5
C∞, 86
C([0, 1]), 24
C(X, Y ), 42
Cb(X, Y ), 42
C0(X, F), 126
cl, 67

d, 24
diam, 44
dim, 40
dist, 34
distF , 122

φα, 144
f |A, 10
f(A), 10
f−1(B), 10
f ◦ g, 11
F, 24
f−1, 12
f∗, 142
f : S → T , 10
F (S, Y ), 65

[γ], 141
γ1 � γ2, 98
γ−1, 98

H(Ω), 159



x List of Symbols

idS , 10

limα xα, 74
limn→∞ xn, 35
L(U), 58

µ, 95

N, 5
N0, 5
Nx, 29
Nf,C,ε, 65
Nx, 64

π, 8
π1(X, x0), 138
πn(X, x0), 155
p, 63
P(S), 7
P (X, x0), 138
P (X; x0, x1), 138

Q, 5

R, 5
R(f ;P , ξ), 74

S, 30
|S| = |T |, 13
|S| ≥ |T |, 14
|S| > |T |, 14
◦
S, 34

|S| ≤ |T |, 14
|S| < |T |, 14
Spec(R), 63
Sn−1, 90
S2, 9
S × T , 9
SI, 18
Sn, 17

T , 61
TC, 65
T∞, 86

V (I), 63

χn, 95
(xα)α, 74
(xα)α∈A, 74
xα → x, 74
(X, d), 24
X∞, 86
(xn)∞n=1, 10
(xn)∞n=m, 10
xn → x, 35
x � y, 18
(X, T ), 62
““

X̃, T̃
”

, p
”

, 149

(x, y), 9

Yx, 94

Z, 5





Introduction

The present book is an introduction to set-theoretic topology (and to a tiny
little bit of algebraic topology).

The prerequisites for a reader who wants to read this book profitably
are modest. First of all, a basic familiarity with set-theoretic terminology is
necessary. It is also helpful to have a good background in calculus (both in
one variable and in several variables), not so much because we rely on results
from calculus, but rather because having been exposed to a certain concept
(continuity, for instance) in the relatively concrete framework of calculus will
make it easier to grasp the same concept in the more abstract and less intuitive
setting of general topology. For some examples and exercises, as well as for
the last two chapters, some familiarity with the definitions of basic algebraic
objects—rings, ideals, groups, and so on—is also needed.

Chapter One gives a quick introduction to the set theory required for the
remaining four chapters. Since the reader is presumed to have encountered
basic set-theoretic notions (set, element, subset, etc.) before, we decided to
keep it brief. Based on a naive notion of set, we introduce the basic set-
theoretic constructions, such as unions and intersections, define functions, and
discuss cardinalities. We use Zorn’s lemma to derive the axiom of choice. This
chapter is somewhat less rigorous than the remaining ones of this book: we
never outline a system of formal axioms for set theory. As the main purpose of
this book is to serve as an introduction to topology, a version of this chapter
that would have been up to the same standards of rigor as the rest of the
book would simply have taken too much space.

Chapters Two to Four deal with set-theoretic topology. Roughly speaking,
set theoretic topology is about providing a conceptual framework to meaning-
fully speak about continuity: equip sets with just enough structure so that it
makes sense to say whether maps between them are continuous. The generality
of the concepts and results of set-theoretic topology makes its basics indis-
pensable for anyone who wishes to study any branch of analysis or geometry
in some depth.



2 Introduction

Chapter Two introduces metric spaces, discusses topological concepts in
the metric context, and treats continuity and the peculiar features of com-
pactness in the metric space situation. There are many notions and results
contained in this chapter that are not actually about metric spaces, but about
topological spaces. Hence, some material from Chapter Two is duplicated in
Chapter Three. From a pedagogical point of view, it is probably better to
treat (some) topological concepts first in the relatively concrete setting of
metric spaces, than do it in full generality right away. Whenever a result in
Chapter Two holds true for general topological spaces, a proof is given that
is as topological as possible, that is, without direct reference to metrics, so
that later, when the result becomes available in its full generality, a simple
reference to the proof in the metric case is sufficient. Baire’s theorem is ob-
tained in a somewhat unusual way, namely as an application of Bourbaki’s
Mittag-Leffler theorem.

General topological spaces are introduced in Chapter Three. We define
topological spaces by axiomatizing the notion of an open set, but alternative
approaches—through neighborhoods or a closure operation—are also covered.
We then proceed to the definition of continuity: since sequences turn out to
be inadequate tools for the study of topological spaces, we first give a defi-
nition of continuity that avoids any notion of convergence. Subsequently, we
introduce nets and use them to characterize continuity and various topologi-
cal phenomena. Due to the formal parallels between nets and sequences, this
allows an approach to general topological spaces that still formally resembles
the treatment of the metric case. In particular, the use of nets allows us to
give a relatively simple proof of Tychonoff’s theorem due to Paul R. Cher-
noff [Chernoff 92]. We discuss connectedness and path connectedness, as
well as their local variants. The chapter closes with an overview of separation
properties, from T0 to normality.

In Chapter Four, we turn to the actual raison d’être of topological spaces:
the study of continuous functions (here, with values in R or C). Urysohn’s
lemma along with its consequences—Urysohn’s metrization theorem and Ti-
etze’s extension theorem—are presented, and subsequently the Stone–Čech
compactification of a completely regular space is introduced. The chapter
ends with a discussion of the real and complex Stone–Weierstraß theorems,
both on compact and locally compact spaces; the proof is based on the short
and elegant approach due to Silvio Machado [Machado 77].

Even though they are both called topology, set-theoretic and algebraic
topology have relatively little in common. They share the objects of study,
topological spaces, and before one can start learning algebraic topology, one
needs a certain familiarity with set theoretic topology, but surprisingly little is
needed: most of algebraic topology can do perfectly well without Tychonoff’s
theorem, separation axioms, and Urysohn’s lemma with all its consequences.
Algebraic topology is about studying algebraic invariants of topological spaces:
to a given topological space, an algebraic object (often a group) is assigned in
such a way that if the spaces can be identified, then so can the associated al-
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gebraic objects. Since the tools of algebra are generally very powerful, this can
be used to tell that two spaces are different because the associated algebraic
invariants can be told apart.

In Chapter Five, we take a brief look at one of those invariants: the fun-
damental group. We introduce the notions of homotopy and path homotopy,
and define the fundamental group of a topological space at a given base point.
We compute the fundamental group for convex subsets of normed spaces (it is
trivial) and for the unit circle in R2 (it is Z). Since the fundamental groups of
homotopically equivalent spaces are isomorphic, we conclude that the closed
unit disc and the unit circle—or more generally, any closed annulus—in R2

cannot be homotopically equivalent (let alone homeomorphic). In order to
identify the fundamental group of the unit circle as Z, we take an even briefer
look at the concept of a covering space. We show that paths in a topological
space can be lifted to a covering space in such a way that path homotopies
are preserved.

Each section of each chapter ends with exercises, which (what else?) are
intended to help deepen the reader’s understanding of the material. Within
each section, exercises are just referred to by their numbers; from other sec-
tions, references to a particular exercise are made by combining the section
number and the exercise number. For example, Exercise 4 in Section 3.2 is
referred to as Exercise 4 throughout Section 3.2, but as Exercise 3.2.4 from
anywhere else.

Each chapter has an unnumbered remarks section at its end. These sections
contain remarks of an historical nature, views to beyond the actual contents
of the chapter, and suggestions for further reading.

There are three appendices. Their contents could have been fitted into
the five chapters of the book (Appendix A into Section 2.4, Appendix B into
Section 2.5, and Appendix C into Section 3.3). The material in all three appen-
dices, however, is more analytical than topological in nature, and Appendix
A also requires some knowledge of the theory of holomorphic functions from
the reader.



1

Set Theory

If an introduction to topology is about learning some essential vocabulary of
the language of mathematics, then set theory provides the alphabet in which
this vocabulary is expressed.

1.1 Sets and Functions

Since the main focus of this book is topology and not set theory, we adopt a
completely naive attitude towards sets.

“Definition” 1.1.1. A set is a collection of certain objects considered as a
whole.

This is, of course, far from being a precise definition (that’s why the word is
in quotation marks): What is a “collection”? What are “certain objects”? And
what does it mean to consider a collection of certain objects—whatever that
may be—“as a whole”? Instead of dwelling on these questions (and becoming
overly formalistic), we content ourselves with fleshing out the notion of a set
with some examples:

Example 1.1.2. The collection of positive integers (excluding 0) is a set de-
noted by N. Also the nonnegative integers (including 0), the integers, the
rational numbers, the reals, and the complex numbers constitute sets that are
denoted by N0, Z, Q, R, and C, respectively.

We also want to call a collection of nothing a set: this is the empty set
denoted by ∅.

If x is one of the objects collected in the set S, we call x an element of S
and denote this by x ∈ S (we then say that x “is contained” in S or “lies in”
S); if x is not an element of S, we write x /∈ S.

Example 1.1.3. We have
√

2 ∈ R, but
√

2 /∈ Q.



6 1 Set Theory

If T and S are sets, then T is called a subset of S (in symbols: T ⊂ S )
if each element of T is also an element of S (with some risk of ambiguity, we
then also say that T “is contained in” S).

Examples 1.1.4. (a) We have

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

(b) Since ∅ has no elements, it is a subset of every other set.

If T ⊂ S and S ⊂ T , we say that the two sets S and T are equal and write
S = T . In the case T ⊂ S, but S �= T , we use the symbol T � S; we then call
the subset T of S proper .

Example 1.1.5. Clearly,

N � N0 � Z � Q � R � C

holds.

Let S be a set, and let P be any property that is either satisfied by a
particular element of S or isn’t. Then

{x ∈ S : x satisfies P}

is the collection of all elements of S satisfying P and is a subset of S.

Examples 1.1.6. (a) The even numbers

{x ∈ Z : 2 divides x}

form a subset of Z.
(b) Let a, b ∈ R ∪ {−∞,∞} with a ≤ b. Then the open interval

(a, b) := {x ∈ R : a < x < b},

the closed interval

[a, b] := {x ∈ R : a ≤ x ≤ b},

as well as the half-open intervals

(a, b] := {x ∈ R : a < x ≤ b} and [a, b) := {x ∈ R : a ≤ x < b}

are subsets of R. Note that we allow a = b. Hence, (a, a) = (a, a] = [a, a) =
∅ and [a, a], which is ∅ if a is −∞ or ∞ and consists of the one element
a if a ∈ R, are also intervals; we call such intervals degenerate.

Since sets themselves are also “certain objects,” a collection of sets should
again be a set.
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Example 1.1.7. If S is any set, then its power set P(S) is defined as the col-
lection of all subsets of S. For example, S ∈ P(S) and ∅ ∈ P(S).

Given finitely many distinct objects x1, . . . , xn, we denote by {x1, . . . , xn}
the set made up by them. Sets arising in this fashion are called finite, and we
say that n is the cardinality of the set S or that S has n elements. Sets of
cardinality one (i.e., consisting of one single element) are sometimes referred
to as singletons . The way the elements x1, . . . , xn are ordered doesn’t affect
the set {x1, . . . , xn} at all: for instance, {1, 2, 3} = {2, 1, 3} = {3, 1, 2} = · · · .

Proposition 1.1.8. Let S be a set having n elements. Then P(S) has cardi-
nality 2n.

Proof. If n = 0, then S = ∅, so that P(S) = {∅}; that is, P(S) has 1 = 20

elements.
Suppose that the claim holds for n ∈ N0, and let S have n + 1 elements;

that is, S = {x1, . . . , xn, xn+1}. Let T := {x1, . . . , xn}. Any subset of S thus
must either be a subset of T or contain xn+1. Therefore we have:

number of subsets of S

= number of subsets of T + number of subsets of S containing xn+1.

By the induction hypothesis, there are 2n subsets of T . Given any subset
A of S containing xn+1, we may define a subset A′ := {x ∈ A : x �= xn+1} of
T . Clearly, each such subset A of S yields a unique subset A′ of T . Moreover,
whenever B is a subset of T , we can define a unique subset B̃ of S by letting
B̃ := {x ∈ S : x ∈ B or x = xn+1}. It is clear that (̃A′) = A for each subset A

of S containing xn+1 and that
(
B̃
)′

= B for each subset B of T . Hence, there
are as many subsets of S containing xn+1 as there are subsets of T . Again, by
the induction hypothesis, we obtain that there are 2n subsets of S containing
xn+1.

Eventually, we have

number of subsets of S = 2n + 2n = 2 · 2n = 2n+1,

as claimed. �	

Forming sets out of sets again, however, can be dangerous.

Example 1.1.9 (Russell’s antinomy). Since collections of sets are sets again,
the collection of all sets should again be a set. Given any set S, it either
contains itself as an element or it doesn’t. The property of a set to contain
itself as an element looks strange, all examples of sets one naively comes up
with don’t have it, but that’s beside the point: it is a legitimate property of
sets, which they may or may not have. Hence, we can form the subset

S := {S : S is a set not containing itself as an element}
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of the set of all sets. Does the set S contain itself as an element? If so, then
(by its own definition!) it should not be contained in itself, which is nonsense.
On the other hand, if S is not contained in itself, then its definition again
forces the contrary to be true. This doesn’t make sense at all.

What goes wrong in Example 1.1.9? Apparently, we cannot just form ar-
bitrary collections of objects and label them sets. Roughly speaking, the col-
lection of all sets is simply too “large” (whatever that may mean precisely)
to be a set again. We thus have to impose restrictions. Since this is a book on
elementary topology and not on set theory, we avoid trouble with Russell’s
antinomy the easy way: all sets we encounter are supposed to be subsets of
one very large set, the universe, which is large enough for us to do everything
we need (e.g., form power sets) in order to do topology, but too small for
monsters like the “set of all sets.”

We now give our first formal definition.

Definition 1.1.10. Let S be a set, and let A, B ⊂ S. Then:

(i) The union A ∪ B of A and B is the set consisting of all elements of S
that are contained in A or in B.

(ii) The intersection A ∩ B of A and B is the set consisting of all elements
of S that are contained both in A and in B. If A∩B = ∅, we say that A
and B are disjoint.

(iii) The set-theoretic difference A \B of A and B is the set consisting of all
elements of S contained in A, but not in B. We call S\A the complement
of A in S.

Examples 1.1.11. (a) We have, for example,

(−2, π) ∪ (π, 7] = (−2, 7] \ {π}.

(b) Let A consist of the prime numbers, and let B be the set of all even
numbers. Then A ∩B = {2} holds.

(c) The set R \Q consists of all irrational numbers.
(d) For any set S and A, B ⊂ S, we have (A \B) ∩B = ∅.

Definition 1.1.10(i) and (ii) easily extend to arbitrary families of sets. Given
a collection S of sets (all subsets of one given set), its union is⋃

{S : S ∈ S} := {x : x is contained in one of the sets S ∈ S}

and its intersection is⋂
{S : S ∈ S} := {x : x is contained in all of the sets S ∈ S}.

Often, the sets in our collection S will be indexed by some other set, I say,
which is then called an index set . Informally, this means that each S ∈ S gets
an index i ∈ I attached to it as some sort of tag, so that it can be identified
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as Si. For S, we then write (Si)i∈I or simply (Si)i if no confusion can arise
about I. In this situation, we write

⋃
i∈I Si and

⋂
i∈I Si (or simply,

⋃
i Si and⋂

i Si if no confusion can arise) instead of
⋃
{S : S ∈ S} and

⋂
{S : S ∈ S},

respectively.

Examples 1.1.12. (a) We have

∞⋃
n=1

[−n, n] = R and
∞⋂

n=1

[
− 1

n
,
1
n

]
= {0}.

(b) Any set S is the union of its singleton subsets:

S =
⋃
x∈S

{x}.

(c) For n ∈ N, let

Sn := Q ∩
[√

2− 1
n

,
√

2 +
1
n

]
.

Since
√

2 /∈ Q, it follows that
⋂∞

n=1 Sn = ∅.

Euclidean 2-space R2 is the 2-dimensional plane of geometric intuition.
Each point in the plane can be identified through a pair (x, y) with x, y ∈ R,
where x is the first and y the second coordinate of the point. The ordered pair
(x, y) must not be confused with the set {x, y}: we have {1, 2} = {2, 1}, but
(1, 2) �= (2, 1).

In more formal terms, we define the following.

Definition 1.1.13. Let S and T be sets. Then the Cartesian product of S
and T is defined as

S × T := {{x, {x, y}} : x ∈ S, y ∈ T }.

For x ∈ S and y ∈ T , we denote {x, {x, y}} ∈ S × T by (x, y) and call it
the ordered pair with first coordinate x and second coordinate y. We write S2

instead of S × S.

Our next definition is also an attempt to formalize an already familiar
notion.

Definition 1.1.14. Let S and T be sets. A function (or map) f from S to T
is a subset of S × T with the following properties.

(a) For each x ∈ S, there is y ∈ T such that (x, y) ∈ f ;
(b) Whenever (x, y1), (x, y2) ∈ f holds, we have y1 = y2.

The set S is called the domain of f .
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This definition looks worlds apart from the intuitive notion of a function
as something that assigns values in its range to the points in its domain. In
fact, it isn’t: it is just a more precise wording of that intuitive notion. Given
x ∈ S, we have, by Definition 1.1.14(a), a value y ∈ T such that (x, y) ∈ f ,
which is uniquely determined by Definition 1.1.14(b). We may thus denote
that particular y by f(x) and say that “f maps x to f(x)”. To indicate that
f is a function from the set S to the set T , we write f : S → T , and for
(x, y) ∈ f , we use the notation y = f(x). The expression

f : S → T, x �→ f(x)

then stands for {(x, f(x)) : x ∈ S} ⊂ S × T .

Examples 1.1.15. (a) Let S and T be sets. Then

S × T → S, (x, y) �→ x

is the coordinate projection onto S. Similarly, the coordinate projection
onto T is defined.

(b) Let S be any set. Then {(x, x) ∈ S2 : x ∈ S} is the identity map

idS : S → S, x �→ x

on S. (If no confusion can arise about the set S, we also simply write id.)
(c) If S and T are sets, f : S → T is a function, and A ⊂ S, then the restriction

of f to A is defined as

f |A := {(x, f(x)) : x ∈ A}.

Clearly, f |A : A → T is again a function.
(d) Let S be any set. A map from N to S is called a sequence in S; instead of

x : N → S, we then often write (xn)∞n=1. If the domain of x is not N but
a subset of N0 of the form {n : n ≥ m} for some m ∈ N0, we still speak
of a sequence and denote it by (xn)∞n=m. We call a sequence (yk)∞k=1 a
subsequence of (xn)∞n=1 if there are n1 < n2 < · · · in N such that yk = xnk

for k ∈ N.

The following definitions are useful throughout.

Definition 1.1.16. Let S and T be sets, let f : S → T be a function, and let
A ⊂ S and B ⊂ T .

(a) The image f(A) of A under f is the subset {f(x) : x ∈ A} of T . The
image of S under f is also called the range of f .

(b) The inverse image f−1(B) of B under f is the subset {x ∈ S : f(x) ∈ B}
of S.
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Examples 1.1.17. (a) Let
f : R → R, x �→ x2.

Then f(R) = [0,∞), f([2, 3]) = [4, 9], f−1(R) = f−1([0,∞)) = R,
f−1((−∞, 2)) = f−1([0, 2)) =

(
−
√

2,
√

2
)
, f−1([−π,−e]) = ∅, and so

on, hold.
(b) Let

f : R2 → R, (x, y) �→ x− y.

Then, for example,

f−1({7}) = {(x + 7, x) : x ∈ R}

and
f([−3, 7]× [13, 42)) = (−45,−6]

hold.

Definition 1.1.18. Let S and T be sets, and let f : S → T be a function.
Then:

(a) f is called injective (or an injection) if f(x1) �= f(x2) for all x1, x2 ∈ S
with x1 �= x2.

(b) f is called surjective (or a surjection) if, for each y ∈ T , there is x ∈ S
with f(x) = y.

(c) f is called bijective (or a bijection) if it is both injective and surjective.

Whether a function is injective or surjective or bijective (or none of them)
depends, of course, on the sets S and T .

Example 1.1.19. The function

f : S → T, x �→ x2

is

• Bijective if S = T = [0,∞),
• Injective, but not surjective if S = [0,∞) and T = R,
• Surjective, but not injective if S = R and T = [0,∞), and
• Neither injective nor surjective if S = T = R.

The bijective maps are especially important for us.

Definition 1.1.20. Let R, S, and T be sets, and let g : R → S and f : S → T
be functions. Then the composition f ◦ g of f and g is the function

f ◦ g : R → T, x �→ f(g(x)).

Proposition 1.1.21. Let S and T be sets. Then the following are equivalent
for a function f : S → T .
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(i) f is bijective.
(ii) There is a function g : T → S such that f ◦ g = idT and g ◦ f = idS.

In this case, the function g in (ii) is unique and called the inverse function of
f (denoted by f−1).

Proof. (i) =⇒ (ii): Define g : T → S as follows. Given y ∈ T , the surjectivity
of f yields x ∈ S with f(x) = y. The injectivity of f ascertains that x is
unique. Hence, we may define g(y) := x. From this definition, it is clear that
f(g(y)) = y and that g(f(x)) = x.

(ii) =⇒ (i): Let y ∈ T . Letting x := g(y), we obtain x ∈ S with f(x) = y.
Hence, f is surjective. If x1, x2 ∈ S are such that f(x1) = f(x2), we obtain
that x1 = g(f(x1)) = g(f(x2)) = x2, so that f is also injective.

Since the function g in (ii) has to assign, to each y ∈ T , the unique x ∈ S
with f(x) = y, it is clear that g is unique. �	

Examples 1.1.22. (a) The function

f : [0,∞) → [0,∞), x �→ x2

is bijective and its inverse function is

f−1 : [0,∞) → [0,∞), x �→
√

x.

(b) The tangent function is injective when restricted to
(
−π

2 , π
2

)
. Since the

image of that interval under tan is all of R, we obtain an inverse function—
arctan–of tan from R to

(
−π

2
, π

2

)
.

In view of Definition 1.1.16, one might have second thoughts whether it is
a good idea to denote the inverse function of a bijective map f by f−1. What
is f−1(B) supposed to mean? The inverse image of B under f or the image
of B under f−1. As it turns out, the symbol f−1(B) means the same in both
contexts (Exercise 5 below).

Exercises

1. Prove de Morgan’s rules: for a family (Si)i∈I of subsets of a given set S, the
identities

S \
 

[

i∈I

Si

!

=
\

i∈I

(S \ Si) and S \
 

\

i∈I

Si

!

=
[

i∈I

(S \ Si)

hold.
2. Let S and T be sets, and let f : S → T be a map. Show that f is injective if and

only if f |A is injective for each subset A of S containing at most two elements.
3. Let S and T be sets, and let f : S → T be a function. Show that

(a) f is injective if and only if f−1(f(A)) = A for all subsets A of S.
(b) f is surjective if and only if f(f−1(B)) = B for all subsets B of T , which is

the case if and only if f(S) = T .
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4. Let f be a bijective map with inverse function f−1. Show that f−1 is also
bijective.

5. Let S and T be sets, let f : S → T be bijective, and let B ⊂ T . Show that the
image of B under f−1 is the inverse image of B under f .

6. Let R, S, and T be sets, and let g : R → S and f : S → T be bijective. Show
that f ◦ g is bijective. How is (f ◦ g)−1 expressed in terms of f−1 and g−1?

7. Let S and T be sets, and let f : S → T be a function. Show that:
(a) f is injective if and only if there is a function g : T → S such that g◦f = idS .
(b) f is surjective if and only if there is a function g : T → S such that f ◦ g =

idT .

1.2 Cardinals

Which of the sets {1, 2, 3} and {1, 2, 3, 4} is larger? The second one, of course:
it contains the first one as a proper subset. What if neither of two sets is
contained in the other one; for example, what about {1, 2, 3} and {♣,♦,♥,♠}?
Of course, {♣,♦,♥,♠} is larger than {1, 2, 3}: it has the same number of
elements as {1, 2, 3, 4}, which we know to be larger than {1, 2, 3}. All in all,
it is intuitively clear, for finite sets, what it means when we say that one of
them is larger than the other or that two of them have the same size. But
what does it mean if we make such a statement about sets that aren’t finite,
that is, about infinite sets?

Since N is a proper subset of N0, one might think that N0 is “larger” than
N. On the other hand, the map

N0 → N, n �→ n + 1

is easily seen to be bijective, so that each element of N0 corresponds to pre-
cisely one element of N. Hence, N0 and N should have “the same number of
elements” and thus be of equal size. This second approach turns out to be the
appropriate one when it comes to dealing with “sizes” of infinite sets.

Definition 1.2.1. Two sets S and T are said to have the same cardinality ,
in symbols: |S| = |T |, if there is a bijective function f : S → T .

Examples 1.2.2. (a) Two finite sets have the same cardinality if and only if
they have the same number of elements. In particular, a subset T of a
finite set S has the same cardinality as S if and only if S = T .

(b) If |R| = |S| and |S| = |T |, then |R| = |T | holds.
(c) The sets N and N0 have the same cardinality, even though N is a proper

subset of N0.
(d) For each x ∈ R, let �x� ∈ Z denote the largest integer less than or equal

to x. The map
N → Z, n �→ (−1)n

⌊n

2

⌋
is bijective, so that |N| = |Z|.
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The last example shows that strange things happen when one starts dealing
with cardinalities of infinite sets. (We show below that even Q has the same
cardinality as N.) Do all infinite sets have the same cardinality? This is not
true.

Theorem 1.2.3. There is no surjective map from N onto (0, 1).

Proof. We require a fundamental fact from analysis.

Every number r ∈ (0, 1) has a decimal expansion r = 0.σ1σ2σ3 . . .;
that is, r =

∑∞
k=1

σk

10k , with σk ∈ {0, 1, . . . , 9} for k ∈ N.

Assume towards a contradiction that there is a surjective map r : N →
(0, 1). For each n ∈ N, the number r(n) has a decimal expansion:

r(n) = 0.σ1(n)σ2(n)σ3(n) . . . .

We then define r ∈ (0, 1) by giving its decimal expansion r = 0.σ1σ2σ3 . . .:

σk =
{

2, if σk(k) �= 2,
3, if σk(k) = 2.

Since (0, 1) = r(N), there must be n ∈ N with r = r(n) and thus σn = σn(n),
which is absurd by the definition of r. �	

Instead of 2 and 3 in the proof of Theorem 1.2.3, we could have used any
other two digits from {0, 1, . . . , 8} (but excluding 9).

Corollary 1.2.4. The sets N and (0, 1) do not have the same cardinality.

Hence, N and (0, 1) represent “different sizes” of infinity, so that (c) in the
following definition actually covers some ground.

Definition 1.2.5. A set S is called

(a) Countably infinite if it has the same cardinality as N,
(b) Countable if it is finite or countably infinite, and
(c) Uncountable if it is infinite, but not countable.

If a set is countably infinite, each of its elements corresponds uniquely
to a positive integer. We therefore sometimes denote countable (possibly fi-
nite) sets as {x1, x2, x3, . . .}, with the understanding that the enumeration
x1, x2, . . . breaks off after some point if the set is finite.

Having defined what it means for arbitrary sets to have the same cardi-
nality, we now turn to defining what it means for a set to have a cardinality
less than another set.

Definition 1.2.6. Let S and T be sets. We say that the cardinality of S is
less than or equal to the cardinality of T , in symbols: |S| ≤ |T | or |T | ≥ |S|,
if there is an injective map from S to T . If |S| ≤ |T |, but not |S| = |T |, we
write |S| < |T | or |T | > |S|.
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If S and T are finite sets with |S| ≤ |T | and |S| ≥ |T |, it is immediate that
|S| = |T |. Somewhat surprisingly, this remains true for arbitrary sets.

Theorem 1.2.7 (Cantor–Bernstein). Let S and T be sets such that |S| ≤
|T | and |S| ≥ |T |. Then |S| = |T | holds.

Proof. Let f : S → T and g : T → S be injective maps. Even though f
and g need not be bijective, both maps become bijective if considered as
maps f : S → f(S) and g : T → g(T ), so that it makes sense to speak of
f−1 : f(S) → S and g−1 : g(T ) → T .

We call an element x ∈ S an ancestor of itself of degree zero. If x ∈ g(T ),
we call g−1(x) an ancestor of x of degree one. If g−1(x) ∈ f(S), we call
f−1(g−1(x)) an ancestor of x of degree two, and if f−1(g−1(x)) ∈ g(T ), we
say that g−1(f−1(g−1(x))) is an ancestor of x of degree three. This pattern
can go on indefinitely or it breaks off at some point. Anyhow, we can define

deg(x) := sup{n ∈ N0 : x has an ancestor of degree n} ∈ N0 ∪ {∞}.

Let

S∞ := {x ∈ S : deg(x) = ∞}, Seven := {x ∈ S : deg(x) ∈ N0 is even},

and
Sodd := {x ∈ S : deg(x) ∈ N0 is odd}.

Clearly, each element of x lies in precisely one of the sets S∞, Seven, or Sodd.
With an analogous argument, we obtain a similar partition T∞, Teven, and
Todd of T .

The following are then easily verified: f(S∞) = T∞, f(Seven) = Todd, and
g−1(Sodd) = Teven. We can thus define h : S → T by letting

h(x) :=
{

f(x), if x ∈ S∞ ∪ Seven,
g−1(x), if x ∈ Sodd.

We claim that h is bijective.
To see that h is surjective, let y ∈ T . We need to show that there is x ∈ S

with h(x) = y.
Case 1: y ∈ T∞. Since f(S∞) = T∞, there is x ∈ S∞ with f(x) = y. From

the definition of h, it follows that h(x) = f(x) = y.
Case 2: y ∈ Teven. Since g−1(Sodd) = Teven, there is x ∈ Sodd such that

h(x) = g−1(x) = y.
Case 3: y ∈ Todd. Since f(Seven) = Todd, there is x ∈ Seven such that

h(x) = f(x) = y.
To prove the injectivity of h, let x1, x2 ∈ S be such that h(x1) = h(x2).

Since h(S∞) = T∞, h(Seven) = Todd, and h(Sodd) = Teven, and since T∞,
Teven, Todd are mutually disjoint, we conclude that either x1, x2 ∈ S∞ or
x1, x2 ∈ Seven or x1, x2 ∈ Sodd. Since f and g−1|Sodd are injective, it follows
from the definition of h that x1 = x2. �	
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Examples 1.2.8. (a) Let S and T be countable sets. It is easy to see that S×T
is again countable if S or T is finite. We therefore suppose that S and T
are both countably infinite. Let f : N → S and g : N → T be bijective.
Fixing y ∈ T ,

N → S × T, n �→ (f(n), y)

is an injective map. On the other hand,

S × T → N, (x, y) �→ 2f−1(x)3g−1(y)

is also injective (due to the uniqueness of the prime factorization in N).
The Cantor–Bernstein theorem thus yields that S × T is also countably
infinite.

(b) The map
Z× N �→ Q, (n, m) �→ n

m

is surjective, so that, by Exercise 1 below and the previous example, |Q| ≤
|Z × N| = |N|. Since trivially |N| ≤ |Q|, it follows that Q is countably
infinite.

(c) The function

R → R, t �→ 1
π

(
arctan t +

π

2

)
maps R bijectively onto (0, 1). Hence, R and (0, 1) have the same car-
dinality. From the previous example and Theorem 1.2.3, it follows that
|R| > |Q|.

Two finite sets have the same cardinality if and only if they have the same
number of elements: given a finite set, the class—not a set!—of all sets that can
be mapped bijectively onto it is represented by one positive integer, namely the
number of elements of the given set. In analogy, for any set, the class of all sets
with the same cardinality as that set is defined as a cardinal number or simply
cardinal . The positive integers then are nothing but particular cardinals; since
they are represented by finite sets, we call them finite cardinals ; all other
cardinals are called infinite. Usually, cardinals are denoted by letters from the
middle of the Greek alphabet, such as κ or λ. The cardinality of N is commonly
denoted by ℵ0 (ℵ, spelled aleph, is the first letter of the Hebrew alphabet)
whereas c (for continuum) stands for |R|. If κ is any cardinal, represented by
a set S, then the cardinality of its power set is often denoted by 2κ (which
makes sense in view of Proposition 1.1.8).

From Theorem 1.2.3 and Exercise 2 below, it is clear that both ℵ0 < c and
ℵ0 < 2ℵ0 . But more is true.

Proposition 1.2.9. c = 2ℵ0.

Proof. Given S ⊂ N, define (σn(S))∞n=1 by letting σn(S) = 1 if n ∈ S and
σn = 2 if n /∈ S, and let r(S) :=

∑∞
n=1

σn(S)
10n . Then
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P(N) → (0, 1), S �→ r(S)

is injective, so that 2ℵ0 ≤ c.
For the converse inequality, we use the fact that every r ∈ (0, 1) not

only has a decimal expansion, but also a binary one: r =
∑∞

n=1
σn(r)
2n with

σn(r) ∈ {0, 1} for n ∈ N. Hence, every number in (0, 1) can be represented
by a string of zeros and ones. This representation, however, is not unique: for
example, both 1000 . . . and 0111 . . . represent the number 1

2
. This, however,

is the only way ambiguity can occur. Hence, whenever r ∈ (0, 1) has a period
1̄, we convene to pick its nonperiodic binary expansion. In this fashion, we
assign, to each r ∈ (0, 1), a unique sequence (σn(r))∞n=1 in {0, 1}. The map

(0, 1) → P(N), r �→ {n ∈ N : σn(r) = 1}

is then injective, so that 2ℵ0 ≥ c. �	

Exercises

1. Let S and T be sets. Show that |S| ≤ |T | if and only if there is a surjective map
from T onto S.

2. Let S be a set. Show that |S| < |P(S)|. (Hint : Assume that there is a surjective
map f : S → P(S), and consider the set {x ∈ S : x /∈ f(x)}.)

3. Let (Sn)∞n=1 be a sequence of countable sets. Show that
S∞

n=1 Sn is countable.
4. A real number is called algebraic if there is a nonzero polynomial p with rational

coefficients such that p(x) = 0 and transcendental otherwise (for instance,
√

2
is algebraic, but π is transcendental). Show that the set of algebraic numbers
is countable, and conclude that there are uncountably many transcendental
numbers.

5. Show that ℵ0 ≤ κ for each infinite cardinal κ.
6. Let κ be a cardinal such that κ < ℵ0. Show that κ is finite.

1.3 Cartesian Products

In Definition 1.1.13, we formally defined the Cartesian product of two sets.
It is easy to extend Definition 1.1.13 to Cartesian products of finitely many
sets, S1, . . . , Sn say: simply define

S1 × S2 × · · · × Sn := (S1 × · · · × Sn−1)× Sn

through induction on n (if S1 = · · · = Sn =: S, we often write Sn). The
elements of S1×· · ·×Sn are then ordered n-tuples (x1, . . . , xn) with coordinates
xj ∈ Sj , which are inductively defined as

(x1, x2, . . . , xn) := ((x1, . . . , xn−1), xn) (xj ∈ Sj , j = 1, . . . , n).

Now, let S be an arbitrary (i.e., possibly infinite) collection of sets. How
should their Cartesian product

∏
{S : S ∈ S} be defined? To answer this

question, we first take a closer look at Cartesian products of finitely many
sets.
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Example 1.3.1. Let S1, . . . , Sn be sets. Since it is a standing hypothesis of ours
that all sets we encounter are subsets of one giant universe, we may form the
union S1 ∪ · · · ∪Sn. Let f : {1, . . . , n} → S1 ∪ · · · ∪Sn be a function such that
f(j) ∈ Sj for j = 1, . . . , n. Then (f(1), . . . , f(n)) is an element of S1×· · ·×Sn.
Conversely, if (x1, . . . , xn) ∈ S1 × · · · × Sn, the function

f : {1, . . . , n} → S1 ∪ · · · ∪ Sn, j �→ xj

satisfies f(j) ∈ Sj for j = 1, . . . , n. Hence, another way to describe S1×· · ·×Sn

is as the set of all functions f from {1, . . . , n} to S1∪· · ·∪Sn such that f(j) ∈ Sj

for j = 1, . . . , n.

This motivates the following definition.

Definition 1.3.2. Let S be a nonempty collection of sets. Then the Cartesian
product

∏
{S : S ∈ S} is defined to be the collection of all functions f : S →⋃

{S : S ∈ S} such that f(S) ∈ S for all S ∈ S.

If the sets in S are indexed, by I say, so that S = (Si)i∈I, we also write∏
i∈I Si (and

∏
i Si if no confusion can arise) for their Cartesian product. If

Si = S holds for some set S and for all i ∈ I, we also write SI instead of∏
i∈I S, which is nothing but the set of all functions from I to S.
It is straightforward that

∏
{S : S ∈ S} �= ∅ whenever S is finite and

S �= ∅ for each S ∈ S. (The same can be shown if S is countable; see Exercise
2 below.) The question of whether

∏
{S : S ∈ S} �= ∅ for an arbitrary

nonempty collection S of nonempty sets, however, is surprisingly intricate. At
first glance, the answer seems to be straightforward: we need to find a choice
function, a function f : S →

⋃
{S : S ∈ S} that chooses an element f(S)

from each set S ∈ S. If S is finite, say S = {S1, . . . , Sn}, this is easy: pick
f(S1) ∈ S1, which is possible because S1 �= ∅, then choose f(S2) ∈ S2, and
continue in this fashion until f(Sn) ∈ Sn has been chosen. If S is arbitrary,
there is no procedure like this that would allow us to find a choice function.
Nevertheless, it still seems plausible that

∏
{S : S ∈ S} is always nonempty;

there is an element in every S ∈ S and therefore there should be a way of
choosing one element from every such S. To prove this statement, however,
requires more powerful set-theoretic tools than we have seen so far.

By a relation R on a set S, we mean a subset of S2.

Definition 1.3.3. A relation R on a set S is called an ordering if the follow-
ing are satisfied.

(a) (x, x) ∈ R for each x ∈ S;
(b) If (x, y), (y, z) ∈ R, then (x, z) ∈ R;
(c) If (x, y), (y, x) ∈ R, then x = y.

Instead of (x, y) ∈ R, we rather write x � y, and we use the symbol � to
denote the ordering R. A set S equipped with an ordering � is called ordered ;
if, for any x, y ∈ S, one of x � y or y � x holds, we say that S is totally
ordered .
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Examples 1.3.4. (a) The real numbers with their usual order are a totally
ordered set.

(b) Let S be any set. For A, B ⊂ S define

A � B :⇐⇒ A ⊂ B.

This turns P(S) into an ordered set that is not totally ordered if S has
more than one element.

Definition 1.3.5. Let S be an ordered set.

(a) An element x ∈ S is called an upper bound for T ⊂ S if y � x for all
y ∈ T .

(b) An element x ∈ S is called maximal if there is no y ∈ S, x �= y, such that
x � y.

We can now formulate Zorn’s lemma.

Axiom 1.3.6 (Zorn’s lemma). Let S be an ordered, nonempty set with the
property that each nonempty, totally ordered subset of S has an upper bound.
Then S has maximal elements.

The label “lemma” for Zorn’s lemma is highly deceptive: it is not a lemma,
but an axiom of set theory that cannot be proven without other—equally
nontrivial—hypotheses.

It is fair to say that the statement of Zorn’s lemma is far from being
intuitive. With its help, however, the following can be proven:

Theorem 1.3.7. Let (Si)i∈I be a nonempty family of nonempty sets. Then∏
i∈I Si is nonempty.

Proof. Let P be the collection of all pairs (Jf , f), where ∅ �= J ⊂ I and
f : Jf →

⋃
j∈Jf

Sj is such that f(j) ∈ Sj for all j ∈ Jf . Clearly, P is not
empty: fix i ∈ I, let x ∈ Si, and define f : {i} → Si by letting f(i) = x; it is
clear that ({i}, f) ∈ P .

We define an order on P by letting, for (Jf , f), (Jg, g) ∈ P ,

(Jf , f) � (Jg, g) :⇐⇒ Jf ⊂ Jg and g|Jf
= f.

Let Q be a nonempty, totally ordered subset of P . Let

Jg :=
⋃
{Jf : (Jf , f) ∈ Q},

and define g : Jg →
⋃

j∈Jg
Sj as follows: for j ∈ Jg, there is (Jf , f) ∈ Q such

that j ∈ Jf ; set g(j) = f(j). Since Q is totally ordered, it is easily seen that
g is well defined; that is, the value of g(j) does not depend on the particular
choice of (Jf , f) ∈ Q with j ∈ Jf . It is clear that (Jg, g) ∈ P is an upper
bound for Q.



20 1 Set Theory

Zorn’s lemma then yields a maximal element (Jmax, fmax) of P . Assume
that Jmax �= I (i.e., there is i0 ∈ I \ Jmax). Fix x0 ∈ Si0 , and define f̃ :
Jmax ∪ {i0} →

⋃
j∈Jmax

Sj ∪ Si0 by letting

f̃(j) :=
{

fmax(j), j ∈ Jmax,
x0, j = i0.

It follows that
(

Jmax ∪ {i0}, f̃
)
∈ P with (Jmax, fmax) �

(
Jmax ∪ {i0}, f̃

)
,

but (Jmax, fmax) �=
(
Jmax ∪ {i0}, f̃

)
, which contradicts the maximality of

(Jmax, fmax). Hence, Jmax = I holds, so that fmax ∈
∏

i Si. �	

On the surface, the statement of Theorem 1.3.7 seems to be far more
plausible than that of Zorn’s lemma, so that one is tempted to ask if one
really needs Zorn’s lemma to prove Theorem 1.3.7. One does. In fact, one can
suppose that the assertion of Theorem 1.3.7—which is then called the axiom
of choice—is true and then deduce Zorn’s lemma from it.

Exercises

1. Let S �= ∅ be a set. A relation R on S is called an equivalence relation if it is
(i) Reflexive (i.e., (x, x) ∈ R for each x ∈ S),
(ii) Symmetric (i.e., if (x, y) ∈ R, then (y, x) ∈ R for all x, y ∈ S), and
(iii) Transitive (i.e., if x, y, z ∈ S are such that (x, y), (y, z) ∈ R, then (x, z) ∈ R

holds).
(Often, one writes, x ∼ y, x ≈ y, etc., instead of (x, y) ∈ R.) Given x ∈ S, the
equivalence class of x (with respect to a given equivalence relation R) is defined
to consist of those y ∈ S for which (x, y) ∈ R. Show that two equivalence classes
are either disjoint or identical.

2. Let (Sn)∞n=1 be a sequence of nonempty sets. Show without invoking Zorn’s
lemma that

Q∞
n=1 Sn is not empty.

3. A Hamel basis of a (possibly infinite-dimensional) vector space (over an arbitrary
field) is a linearly independent subset whose linear span is the whole space. Use
Zorn’s lemma to show that every nonzero vector space has a Hamel basis.

4. Let R be a commutative ring with identity 1. An ideal m is called maximal if
m � R and I = m or I = R for each ideal I of R with m ⊂ I ⊂ R. Use Zorn’s
lemma to show that every proper ideal in R (i.e., one that doesn’t equal R) is
contained in a maximal ideal.

Remarks

Expressing mathematics in set-theoretic terms seems so completely natural
nowadays that it is hard to imagine to do mathematics any way otherwise.
Nevertheless, set theory didn’t enter the mathematical stage before the second
half of the nineteenth century, and when it did, not everyone greeted it with
applause.
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Set theory is the brainchild of Georg Cantor. Born in the Russian capital
St. Petersburg in 1845, to a German father and a Russian mother, he studied
mathematics in Germany and Switzerland and obtained his doctorate for a
thesis on number theory from Berlin in 1867. From number theory, he moved
to analysis, and investigations into the convergence of Fourier series led him
to eventually develop set theory. By the early 1870s, Cantor had proven that
the algebraic numbers were countable whereas the reals weren’t. From the
late 1870s to the mid 1880s, he systematically laid down the foundations of
set theory in a series of papers.

Cantor’s approach to set theory was “naive” in the sense that it used
the intuitive, but ultimately insufficiently rigorous “Definition” 1.1.1 of a set.
Later in his life, Cantor himself discovered the first disturbing paradoxes in
his intellectual constructions.

Russell’s antinomy, from 1901, is named after its discoverer, the English
mathematician, philosopher, Nobel laureate (for literature), and political ac-
tivist, Bertrand Russell.

The contradictions in Cantor’s set theory were eventually overcome with
the help of rigorous axiomatizations that impose restrictions on how sets
could be formed from other sets, but still allow enough freedom for every-
day mathematical work. The system of axioms most commonly used today by
set theorists is called Zermelo–Fraenkel set theory (and sometimes Zermelo–
Fraenkel–Skolem set theory), named after its creators and abbreviated as ZF.
The vast majority of mathematicians today are working within the framework
of ZF, even though most of them would probably flunk a quiz on what pre-
cisely its axioms are. For a very accessible introduction to ZF-style axiomatic
set theory see [Halmos 74]; despite its title, the set theory presented there
is not naive in any way.

By the early twentieth century, set theory had become accepted by most
mathematicians. David Hilbert worded it memorably: “No one shall expel us
from the paradise that Cantor has created for us.”

The axiom of choice (AC) is independent of ZF: both ZF + AC, that is,
ZF with the axiom of choice added as an additional axiom, and ZF +¬AC,
where the negation of AC is added as an axiom, are free from contradictions.
The axiom of choice and Zorn’s lemma (ZL) are equivalent in the sense that
precisely the same theorems can be proven in ZF+ AC and ZF+ ZL. A third
statement equivalent to the axiom of choice and Zorn’s lemma, respectively,
is the well-ordering principle. A well ordering on a set S is a total order such
that each non-empty subset of S has a minimal element; the canonical order
on N, for example, is a well-ordering. The well-ordering principle asserts:

There is a well ordering on every nonempty set.

For proofs of how to derive AC, ZL, and the well-ordering principle from one
another, see [Halmos 74].

Most mathematicians working today accept the axiom of choice/Zorn’s
lemma/the well-ordering principle for pragmatic reasons: it enables them to
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prove useful theorems in their respective fields. One of the most important
theorems in set-theoretic topology, for instance, is Tychonoff’s theorem (The-
orem 3.3.21 below); Zorn’s lemma is indispensable for its proof. It is probably
not exaggerated to say that most of functional analysis and abstract algebra
would collapse without the axiom of choice.

As Cantor proved, ℵ0 < c holds, and he himself already asked if there was
any cardinal strictly between ℵ0 and c. The belief that no such cardinal exists is
called the continuum hypothesis . His failure to prove it troubled Cantor deeply.
In 1900, David Hilbert gave a famous speech at the International Congress of
Mathematicians in Paris, in which he identified twenty-three open problems
as central to mathematical research in the coming century; among them was
the question of whether the continuum hypothesis was true. This problem
was solved, in a certain sense, by the American Paul Cohen more than half a
century later. The continuum hypothesis relates to ZF + AC in the same way
as AC does to ZF: they are independent. Cohen received the Fields medal for
his discovery in 1966.

From his late thirties onward, Cantor suffered from bouts of depression.
The sometimes bitter controversies surrounding his mathematical ideas didn’t
help. Due to his depression, he was hospitalized several times throughout his
later years; he was in a sanatorium when he died from a heart attack in 1918.
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Metric Spaces

What is the minimum of structure one needs to have on a set in order to be
able to speak of continuity?

If f is a function defined on a subset of R—or, more generally, of Euclidean
n-space Rn—we say that f is continuous at x0 if “f(x) approaches f(x0) as x
approaches x0.” With ε and δ, this statement can be made sufficiently precise
for mathematical purposes.

For each ε > 0, there is δ > 0 such that |f(x) − f(x0)| < ε for all x
such that |x− x0| < δ.

Crucial for the definition of continuity thus seems to be that we can measure
the distance between two real numbers (or, rather, two vectors in Euclidean
n-space).

If we want to speak of continuity of functions defined on more general sets,
we should thus have a meaningful way to speak of the distance between two
points of such a set: this, in a nutshell, is the idea behind a metric space.

2.1 Definitions and Examples

In Euclidean 2-space, the distance between two points (x1, x2) and (y1, y2)
is defined as

√
(x1 − y1)2 + (x2 − y2)2. More generally, in Euclidean n-space

Rn, one defines, for x = (x1, . . . , xn) and y = (y1, . . . , yn), their distance as

d(x, y) :=

√√√√ n∑
j=1

(xj − yj)2.

The Euclidean distance has the following properties.

1. d(x, y) ≥ 0 for all x, y ∈ Rn with d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ Rn;
3. d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ Rn.
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In the definition of a metric space, these three properties of the Euclidean
distance are axiomatized.

Definition 2.1.1. Let X be a set. A metric on X is a map d : X ×X → R
with the following properties:

(a) d(x, y) ≥ 0 for all x, y ∈ X with d(x, y) = 0 if and only if x = y (positive
definiteness);

(b) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
(c) d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X (triangle inequality).

A set together with a metric is called a metric space.

We often denote a metric space X whose metric is d by (X, d); sometimes,
if the metric is obvious or irrelevant, we may also simply write X .

Examples 2.1.2. (a) Rn with the Euclidean distance is a metric space.
(b) Let (X, d) be a metric space, and let Y be a subset of X . Then the re-

striction of d to Y ×Y turns Y into a metric space of its own. The metric
space (Y, d|Y ×Y ) is called a subspace of X . In particular, any subset of Rn

equipped with the Euclidean distance is a subspace of Rn.
(c) Let E be a linear space (over F = R or F = C). A norm on E is a map

‖ · ‖ : E → R such that: (i) ‖x‖ ≥ 0 for all x ∈ E with ‖x‖ = 0 if and only
if x = 0; (ii) ‖λx‖ = |λ|‖x‖ for λ ∈ F and x ∈ E; (iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖
for all x, y ∈ E (a linear space equipped with a norm is called a normed
space). For x, y ∈ E, define

d(x, y) := ‖x− y‖.

This turns E into a metric space. For example, let E be C([0, 1], F), the
space of all continuous F-valued functions on [0, 1]. Then there are several
norms on E, for example, ‖ · ‖1 defined by

‖f‖1 :=
∫ 1

0

|f(t)| dt (f ∈ E)

or ‖ · ‖∞ given by

‖f‖∞ := sup{|f(t)| : t ∈ [0, 1]} (f ∈ E).

Each of them turns E into a normed space.
(d) Let S �= ∅ be a set, and let (Y, d) be a metric space. A function f : S → Y

is said to be bounded if

sup
x,y∈S

d(f(x), f(y)) < ∞

The set
B(S, Y ) := {f : S → Y : f is bounded}

becomes a metric space through D defined by

D(f, g) := sup
x∈S

d(f(x), g(x)) (f, g ∈ B(S, Y )).
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(e) France is a centralized country: every train that goes from one French city
to another has to pass through Paris. This is slightly exaggerated, but not
too much, as the map shows.

c©Document SNCF, Direction de la Communication, 2001

Fig. 2.1: Map of the French railroad network

This motivates the name French railroad metric for the following construc-
tion. Let (X, d) be a metric space (“France”), and fix p ∈ X (“Paris”).
Define a new metric dp on X by letting

dp(x, y) :=
{

0, x = y,
d(x, p) + d(p, y), otherwise,
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for x, y ∈ X . Then (X, dp) is again a metric space.
(f) Let (X, d) be any metric space, and define d̃ : X ×X → R via

d̃(x, y) :=
d(x, y)

1 + d(x, y)
(x, y ∈ X).

We claim that d̃ is a metric on X . It is obvious that d̃ is positive definite
and symmetric. Hence, all we have to show is that the triangle inequality
holds. First note that the function

[0,∞) → R, t �→ t

1 + t
(∗)

is increasing (this can be verified, for instance, through differentiation).
Let x, y, z ∈ X , and observe that

d̃(x, z) =
d(x, z)

1 + d(x, z)

≤ d(x, y) + d(y, z)
1 + d(x, y) + d(y, z)

, because (∗) is increasing,

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)
1 + d(x, y) + d(y, z)

≤ d(x, y)
1 + d(x, y)

+
d(y, z)

1 + d(y, z)

= d̃(x, y) + d̃(y, z).

Consequently, d̃ is indeed a metric on X .
(g) A semimetric d on a set X satisfies the same axioms as a metric with one

exception: it is possible for x, y ∈ X with x �= y that d(x, y) = 0. If d
is a semimetric, then d̃ as constructed in the previous example is also a
semimetric. Let X be equipped with a sequence (dn)∞n=1 of semimetrics
such that, for any x, y ∈ X with x �= y, there is n ∈ N with dn(x, y) > 0.
Then d : X ×X → R defined by

d(x, y) :=
∞∑

n=1

1
2n

dn(x, y)
1 + dn(x, y)

(x, y ∈ X)

is a metric. Clearly, d is symmetric and satisfies the triangle inequality,
and if x, y ∈ X are such that x �= y, there is n ∈ N with dn(x, y) > 0, so
that d(x, y) ≥ 1

2n
dn(x,y)

1+dn(x,y)
> 0.

(h) The previous example can be used, for instance, to turn a Cartesian prod-
uct X of countably many metric spaces ((Xn, dn))∞n=1 into a metric space
again. For each n ∈ N, the map

δn : X ×X → [0,∞), ((x1, x2, x3, . . .), (y1, y2, y3, . . .)) �→ dn(xn, yn)
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is a semimetric. Moreover, if x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .)
are different points of X , there is at least one coordinate n ∈ N such that
xn �= yn, so that δn(x, y) = dn(xn, yn) > 0. For x = (x1, x2, x3, . . .) and
y = (y1, y2, y3, . . .) in X , let

d(x, y) :=
∞∑

n=1

1
2n

δn(x, y)
1 + δn(x, y)

=
∞∑

n=1

1
2n

dn(xn, yn)
1 + dn(xn, yn)

.

Then d is a metric on X .
(i) Let X be any set. For x, y ∈ X define

d(x, y) :=
{

0, x = y,
1, otherwise.

Then (X, d) is easily seen to be a metric space. (Metric spaces of this form
are called discrete.)

Exercises

1. Let S be any set, and let X consist of the finite subsets of S. Show that

d : X × X → [0,∞), (A, B) �→ |(A \ B) ∪ (B \ A)|

is a metric on X.
2. Verify Example 2.1.2(d) in detail.
3. Let S �= ∅ be a set, and let E be a normed space. Show that

‖f‖∞ := sup{‖f(x)‖ : x ∈ S} (f ∈ B(S, E))

defines a norm on B(S, E). How does ‖ · ‖∞ relate to the metric D from the
previous exercise?

4. Let (E, ‖ · ‖) be a normed space, and define ||| · ||| : E → [0,∞) by letting

|||x||| :=
‖x‖

1 + ‖x‖ (x ∈ E).

Is ||| · ||| a norm on E?
5. Let X be any set, and let d : X × X → [0,∞) be a semimetric. For x, y ∈ X,

define x ≈ y if and only if d(x, y) = 0.
(a) Show that ≈ is an equivalence relation on X.
(b) For x ∈ X, let [x] denote its equivalence class with respect to ≈, and let

X/≈ denote the collection of all [x] with x ∈ X. Show that

(X/≈) × (X/≈) → [0,∞), ([x], [y]) �→ d(x, y)

defines a metric on X/≈.
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2.2 Open and Closed Sets

We start with the definition of an open ball in a metric space:

Definition 2.2.1. Let (X, d) be a metric space, let x0 ∈ X, and let r > 0.
The open ball centered at x0 with radius r is defined as

Br(x0) := {x ∈ X : d(x, x0) < r}.

Of course, in Euclidean 2- or 3-space, this definition coincides with the
usual intuitive one. Nevertheless, even though open balls are defined with
the intuitive notions of Euclidean space in mind, matters can turn out to be
surprisingly counterintuitive:

Examples 2.2.2. (a) Let (X, d) be a discrete metric space, let x0 ∈ X , and let
r > 0. Then

Br(x0) =
{
{x0}, r < 1,
X, r ≥ 1,

holds; that is, each open ball is a singleton subset or the whole space.
(b) Let (X, d) be any metric space, let p ∈ X , and let dp be the corresponding

French railroad metric. To tell open balls in (X, d) and (X, dp) apart, we
write Br(x0; d) and Br(x0; dp), respectively, for x0 ∈ X and r > 0. Let
x0 ∈ X , and let r > 0. Since, for x ∈ X with x �= x0, we have

dp(x, x0) = d(x, p) + d(p, x0) < r ⇐⇒ d(x, p) < r − d(p, x0),

the following dichotomy holds.

Br(x0; dp) =
{

{x0}, if r ≤ d(p, x0),
Br−d(p,x0)(p; d) ∪ {x0}, otherwise.

Like the notion of an open ball, the notion of an open set extends from
Euclidean space to arbitrary metric spaces.

Definition 2.2.3. Let (X, d) be a metric space. A set U ⊂ X is called open
if, for each x ∈ U , there is ε > 0 such that Bε(x) ⊂ U .

If our choice of terminology is to make any sense, an open ball in a metric
space better be an open set. Indeed, this is true.

Example 2.2.4. Let (X, d) be a metric space, let x0 ∈ X , and let r > 0. For
x ∈ Br(x0), choose ε := r − d(x, x0) > 0. Hence, we have for y ∈ Bε(x):

d(y, x0) ≤ d(y, x) + d(x, x0) < ε + d(x, x0) = r − d(x, x0) + d(x, x0) = r.

It follows that Bε(x) ⊂ Br(x0).

The following proposition lists the fundamental properties of open sets.

Proposition 2.2.5. Let (X, d) be a metric space. Then:
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(i) ∅ and X are open;
(ii) If U is a family of open subsets of X, then

⋃
{U : U ∈ U} is open;

(iii) If U1 and U2 are open subsets of X, then U1 ∩ U2 is open.

Proof. (i) is clear.
For (ii), let U be a family of open sets in X , and let x ∈

⋃
{U : U ∈ U}.

Then there is U0 ∈ U with x ∈ U0, and since U0 is open there is ε > 0 such
that

Bε(x) ⊂ U0 ⊂
⋃
{U : U ∈ U}.

Hence,
⋃
{U : U ∈ U} is open.

Let U1, U2 ⊂ X be open, and let x ∈ U1 ∩ U2. Since U1 and U2 are open,
there are ε1, ε2 > 0 such that Bεj (x) ⊂ Uj for j = 1, 2. Let ε := min{ε1, ε2}.
Then it is immediate that Bε(x) ⊂ U1 ∩ U2. This proves (iii). �	

Proposition 2.2.5(i) may seem odd at the first glance. The closed unit
interval in R is a subspace of R, thus a metric space in its own right, and
thus open by Proposition 2.2.5(i). But, of course, we know that [0, 1] is not
open. How is this possible? The answer is that openness (as well as all the
notions that are derived from it) depends on the context of a given metric
space. Thus, [0, 1] is open in [0, 1], but not open in R.

Example 2.2.6. Let (X, d) be a discrete metric space, and let S ⊂ X . Then

S =
⋃
x∈S

{x} =
⋃
x∈S

B1(x)

is open; that is, all subsets of X are open.

A notion closely related to open sets is that of a neighborhood of a point.

Definition 2.2.7. Let (X, d) be a metric space, and let x ∈ X. A subset N
of X is called a neighborhood of x if there is an open subset U of X with
x ∈ U ⊂ N . The collection of all neighborhoods of x is denoted by Nx.

Proposition 2.2.8. Let (X, d) be a metric space, and let x ∈ X. Then:

(i) A subset N of X belongs to Nx if and only if there is ε > 0 such that
Bε(x) ⊂ N ;

(ii) If N ∈ Nx and M ⊃ N , then M ∈ Nx;
(iii) If N1, N2 ∈ Nx, then N1 ∩N2 ∈ Nx.

Moreover, a subset U of X is open if and only if U ∈ Ny for each y ∈ U .

Proof. Suppose that N ⊂ X is such that there is ε > 0 such that Bε(x) ⊂ N .
Since Bε(x) is open, it follows that N ∈ Nx. Conversely, suppose that N ∈ Nx.
Then there is an open subset U of N with x ∈ U . By the definition of openness,
there is ε > 0 such that Bε(x) ⊂ U ⊂ N . This proves (i).

(ii) is obvious, and (iii) follows immediately from Proposition 2.2.5(iii).
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Let U ⊂ X be open. Then, clearly, U is a neighborhood of each of its points.
Conversely, let U ⊂ X be any set with that property. By the definition of a
neighborhood, there is, for each y ∈ U , an open subset Uy of U with y ∈ Uy.
Since U =

⋃
y∈U Uy, Proposition 2.2.5(ii) yields that U is open. �	

As in Euclidean space, we define a set to be closed if its complement is
open.

Definition 2.2.9. Let (X, d) be a metric space. A subset F of X is called
closed if X \ F is open.

Examples 2.2.10. (a) Let (X, d) be any metric space, let x0 ∈ X , and let r > 0.
The closed ball centered at x0 with radius r is defined as

Br[x0] := {x ∈ X : d(x, x0) ≤ r}.

We claim that Br[x0] is indeed closed. To show this, let x ∈ X \ Br[x0],
that is, such that d(x, x0) > r. Let ε := d(x, x0)−r > 0, and let y ∈ Bε(x).
Since d(x, x0) ≤ d(x, y) + d(y, x0), we obtain that

d(y, x0) ≥ d(x, x0)− d(x, y) > d(x, x0)− ε = d(x, x0)− (d(x, x0)− r) = r.

It follows that Bε(x) ⊂ X \Br[x0]. Consequently, X \Br[x0] is open and
Br[x0] is closed.

(b) In a discrete metric space, every subset is both open and closed.

The following is a straightforward consequence of Proposition 2.2.5.

Proposition 2.2.11. Let (X, d) be a metric space. Then:

(i) ∅ and X are closed;
(ii) If F is a family of closed subsets of X, then

⋂
{F : F ∈ F} is closed;

(iii) If F1 and F2 are closed subsets of X, then F1 ∪ F2 is closed.

Of course, in most metric spaces there are many sets that are neither open
nor closed. Nevertheless, we can make the following definition.

Definition 2.2.12. Let (X, d) be a metric space. For each S ⊂ X, the closure
of S is defined as

S :=
⋂
{F : F ⊂ X is closed and contains S}.

From Proposition 2.2.11(ii) it is immediate that the closure of a set is a
closed set. The following is an alternative description of the closure.

Proposition 2.2.13. Let (X, d) be a metric space, and let S ⊂ X. Then we
have:

S = {x ∈ X : N ∩ S �= ∅ for all N ∈ Nx}
= {x ∈ X : Bε(x) ∩ S �= ∅ for all ε > 0}.
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Proof. Each open ball is a neighborhood of its center, and any neighborhood
of a point contains an open ball centered at that point; therefore

{x ∈ X : N ∩ S �= ∅ for all N ∈ Nx} = {x ∈ X : Bε(x) ∩ S �= ∅ for all ε > 0}

holds. We denote this set by cl(S).
Let x ∈ S, and let N ∈ Nx. Then there is an open subset U of X contained

in N with x ∈ U . Assume that N∩S = ∅, so that U∩S = ∅ (i.e., S ⊂ X \U).
Since X \U is closed, it follows that S ⊂ X \U and thus x ∈ X \U , which is
a contradiction. Consequently, x ∈ cl(S) holds.

Conversely, let x ∈ cl(S), and assume that x /∈ S. Then U := X \ S is an
open set containing x (thus belonging to Nx) having empty intersection with
S. This contradicts x ∈ cl(S). �	

Examples 2.2.14. (a) Any open interval in R contains a rational number.
Hence, we have Q = R.

(b) Let (X, d) be any metric space. It is obvious that Br(x0) ⊂ Br[x0] for all
x0 ∈ X and r > 0. In general, equality need not hold. If (X, d) is discrete
and has more than one element, we have for any x0 ∈ X that

B1(x0) = {x0} = {x0} � X = B1[x0].

(c) Let E be a normed space, let x0 ∈ E, and let r > 0. We claim that (in
this particular situation) Br(x0) = Br[x0] holds. In view of the previous
example, only Br[x0] ⊂ Br(x0) needs proof. Let x ∈ Br[x0], and let ε > 0.
Choose δ ∈ (0, 1) such that δ‖x− x0‖ < ε, and let

y := x0 + (1− δ)(x − x0) = (1 − δ)x + δx0,

so that
‖y − x0‖ = (1 − δ)‖x− x0‖ ≤ (1 − δ)r < r;

that is, y ∈ Br(x0). Furthermore, we have

‖y − x‖ = ‖(1− δ)x + δx0 − x‖ = δ‖x− x0‖ < ε,

and thus y ∈ Bε(x). From Proposition 2.2.13, we conclude that x ∈
Br(x0).

The closure of a set is important in connection with two further topological
concepts: density and the boundary.

Definition 2.2.15. Let (X, d) be a metric space.

(a) A subset D of X is said to be dense in X if D = X.
(b) If X has a dense countable subset, then X is called separable.

Examples 2.2.16. (a) Q is dense in R. In particular, R is separable.
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(b) A subset S of a discrete metric space (X, d) is dense if and only if S = X .
In particular, X is separable if and only if it is countable.

The following hereditary property of separability is somewhat surprising,
but very useful.

Theorem 2.2.17. Let (X, d) be a separable metric space, and let Y be a sub-
space of X. Then Y is also separable.

Proof. Let C = {x1, x2, x3, . . .} be a dense countable subset of X . One might
be tempted to use Y ∩ C as a dense (and certainly countable) subset of Y ,
but this may not work: if X �= C, take Y = X \ C, for example.

Let

A :=
{

(n, m) ∈ N× N : there is y ∈ Y such that d(y, xn) <
1
m

}
.

For each (n, m) ∈ A, choose yn,m ∈ Y with d(yn,m, xn) < 1
m . Then CY :=

{yn,m : (n, m) ∈ A} is a countable subset of Y . We claim that CY is also
dense in Y . Let y ∈ Y , and let ε > 0. Choose m ∈ N such that 1

m ≤ ε
2 . Since

C is dense in X , there is n ∈ N such that d(y, xn) < 1
m . By the definition of

A, this means that (n, m) ∈ A. It follows that

d(y, yn,m) ≤ d(y, xn) + d(xn, yn,m) <
2
m
≤ ε.

By Proposition 2.2.13, this means that y lies in the closure of CY in Y . �	

Examples 2.2.18. (a) The irrational numbers are a separable subspace of R.
(b) Let X = B(N, R) be equipped with the metric introduced in Example

2.1.2(d); that is,

d(f, g) = sup
n∈N

|f(n)− g(n)| (f, g ∈ X).

We claim that X is not separable. We assume towards a contradiction that
X is separable. Let Y denote the subspace of X consisting of all {0, 1}
valued functions. From Theorem 2.2.17, it follows that Y is separable, too.
Since, for f, g ∈ Y , we have

d(f, g) = sup
n∈N

|f(n)− g(n)| =
{

0, f = g,
1, f �= g,

it follows that Y is a discrete metric space and therefore must be countable.
However, the map

Y → [0, 1], f �→
∞∑

n=1

f(n)
2n

is surjective, and [0, 1] is not countable. This is a contradiction.
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To motivate the notion of boundary, we first consider an example.

Example 2.2.19. Let (E, ‖ · ‖) be a normed space, let x0 ∈ E, and let r > 0.
Then, intuitively, one might view the boundary of the open ball Br(x0) as the
sphere

Sr[x0] := {x ∈ E : ‖x− x0‖ = r}.
Let x ∈ Sr[x0], and let ε > 0. Let δ ∈ (0, 1) be such that δ‖x − x0‖ < ε,
and let y := x0 + (1 − δ)(x − x0). As in Example 2.2.14(c), it follows that
y ∈ Bε(x) ∩Br(x0), so that

Bε(x) ∩Br(x0) �= ∅ and Bε(x) ∩ (E \Br(x0)) �= ∅. (∗∗)

On the other hand, since Br(x0) and E \Br[x0] are open, it follows that any
element x of E satisfying (∗∗) for each ε > 0 must lie in Sr[x0].

In view of this example, we define the following.

Definition 2.2.20. Let (X, d) be a metric space, and let S ⊂ X. Then the
boundary of S is defined as

∂S := {x ∈ X : Bε(x) ∩ S �= ∅ and Bε(x) ∩ (X \ S) �= ∅ for all ε > 0}.

An argument similar to that at the beginning of the proof of Proposition
2.2.13 yields immediately that

∂S = {x ∈ X : N ∩ S �= ∅ and N ∩ (X \ S) �= ∅ for all N ∈ Nx}

for each subset S of a metric space X .

Proposition 2.2.21. Let (X, d) be a metric space, and let S ⊂ X. Then:

(i) ∂S = ∂(X \ S);
(ii) ∂S is closed;
(iii) S = S ∪ ∂S.

Proof. (i) is a triviality.
For (ii), let x ∈ X \ ∂S; that is, there is N ∈ Nx such that N ∩ S = ∅

or N ∩ (X \ S) = ∅. Let U ⊂ N be open such that x ∈ U . It follows that
U ∩S = ∅ or U ∩(X \S) = ∅. Since U is a neighborhood of each of its points,
it follows that U ⊂ X \ ∂S. Hence, X \ ∂S is a neighborhood of x. Since x
was arbitrary, it follows that X \ ∂S is open.

For (iii), note that, by Proposition 2.2.13, ∂S ⊂ S holds, so that S ∪∂S ⊂
S. Conversely, let x ∈ S, and suppose that x /∈ S. For each N ∈ Nx, it is clear
that N ∩ (X \ S) �= ∅, and Proposition 2.2.13 yields that N ∩ S �= ∅ as well.
�	

The closure of a given set is, by definition, the smallest closed set containing
it. Analogously, one defines the largest open set contained in a given set.
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Definition 2.2.22. Let (X, d) be a metric space. For each S ⊂ X, the interior
of S is defined as

◦
S:=

⋃
{U : U ⊂ X is open and contained in S}.

The following proposition characterizes the interior of a set:

Proposition 2.2.23. Let (X, d) be a metric space, and let S ⊂ X. Then we
have:

◦
S= {x ∈ X : S ∈ Nx} = S \ ∂S.

Proof. Let x ∈
◦
S. Then there is an open subset U of S with x ∈ U , so that

S ∈ Nx. Conversely, if S ∈ Nx, then there is an open set U of X with
x ∈ U ⊂ S, so that x ∈

◦
S.

Let x ∈
◦
S, so that S ∈ Nx by the foregoing. Since, trivially, S∩(X\S) = ∅,

we see that x /∈ ∂S. Conversely, let x ∈ S \ ∂S. Then there is N ∈ Nx such
that N ∩ (X \ S) = ∅. Let U ⊂ N be open in X such that x ∈ U . It follows

that U ∩ (X \ S) = ∅ and therefore U ⊂ S. Consequently, x ∈ U ⊂
◦
S holds.

�	

Exercises

1. Show that a finite subset of a metric space is closed.
2. Let (E, ‖ · ‖) be a normed space, let U ⊂ E be open, and let S ⊂ E be any set.

Show that S + U := {x + y : x ∈ S, y ∈ U} is open in E.
3. Let U ⊂ R be open.

(a) For each x ∈ U , let Ix be the union of all open intervals contained in U and
containing x. Show that Ix is an open (possibly unbounded) interval.

(b) For x, y ∈ U , show that Ix = Iy or Ix ∩ Iy = ∅.
(c) Conclude that U is a union of countably many, pairwise disjoint open in-

tervals.
4. Let (X, d) be a metric space, and let S ⊂ X. The distance of x ∈ X to S is

defined as
dist(x,S) := inf{d(x, y) : y ∈ S}

(where dist(x, S) = ∞ if S = ∅). Show that S = {x ∈ X : dist(x,S) = 0}.
5. Let Y be the subspace of B(N, F) consisting of those sequences tending to zero.

Show that Y is separable.
6. Let (X, d) be a metric space, and let Y be a subspace of X. Show that U ⊂ Y is

open in Y if and only if there is V ⊂ X that is open in X such that U = Y ∩V .

2.3 Convergence and Continuity

The notion of convergence in Rn carries over to metric spaces almost verbatim.
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Definition 2.3.1. Let (X, d) be a metric space. A sequence (xn)∞n=1 in X is
said to converge to x ∈ X if, for each ε > 0, there is nε ∈ N such that
d(xn, x) < ε for all n ≥ nε. We then say that x is the limit of (xn)∞n=1 and
write x = limn→∞ xn or xn → x.

It is straightforward to verify that a sequence (xn)∞n=1 in a metric space
converges to x if and only if, for each N ∈ Nx, there is nN ∈ N such that
xn ∈ N for all n ≥ nN .

Examples 2.3.2. (a) Let (X, d) be a discrete metric space, and let (xn)∞n=1 be
a sequence in X that converges to x ∈ X . Then there is n1 ∈ N such
that d(xn, x) < 1 for n ≥ n1; that is, xn = x for n ≥ n1. Hence, every
convergent sequence in a discrete metric space is eventually constant.

(b) Let C([0, 1], F) be equipped with the metric induced by ‖ · ‖∞ (Example
2.1.2(c)). We claim that a sequence (fn)∞n=1 in C([0, 1], F) converges to
f ∈ C([0, 1], F) with respect to that metric if and only if it converges (to
f) uniformly on [0, 1]. Suppose first that ‖fn − f‖∞ → 0, and let ε > 0.
Then there is nε ∈ N such that

|fn(t)− f(t)| ≤ ‖fn − f‖∞ < ε (n ≥ nε, t ∈ [0, 1]),

so that fn → f uniformly on [0, 1]. Conversely, let (fn)∞n=1 converge to f
uniformly on [0, 1], and let ε > 0. By the definition of uniform convergence,
there is nε ∈ N such that

|fn(t)− f(t)| < ε

2
(n ≥ nε, t ∈ [0, 1])

and consequently,

‖fn − f‖∞ = sup{|fn(t)− f(t)| : t ∈ [0, 1]} ≤ ε

2
< ε (n ≥ nε).

Hence, we have convergence with respect to ‖ · ‖∞.

As in Rn, the limit of a sequence in a metric space is unique.

Proposition 2.3.3. Let (X, d) be a metric space, let (xn)∞m=1 be a sequence
in X, and let x, x′ ∈ X be such that (xn)∞n=1 converges to both x and x′. Then
x and x′ are equal.

Proof. Assume that x �= x′, so that ε := 1
2
d(x, x′) > 0. Since xn → x, there

is n1 ∈ N such that d(xn, x) < ε for n ≥ n1, and since xn → x′, too, there is
n2 ∈ N such that d(xn, x′) < ε for n ≥ n2. Let n := max{n1, n2}, so that

d(x, x′) ≤ d(x, xn) + d(xn, x′) < ε + ε = d(x, x′),

which is nonsense. �	
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Here is the idea of the proof of Proposition 2.3.3 in a sketch.

ε
2x

xn

n 1x

x’

x

ε

n

Fig. 2.2: Uniqueness of the limit

Also, as in Rn, convergence in metric spaces can be used to characterize
the closed subsets.

Proposition 2.3.4. Let (X, d) be a metric space, and let S ⊂ X. Then S
consists of those points in X that are the limit of a sequence in S.

Proof. Let x ∈ X be the limit of a sequence (xn)∞n=1 in S, and let ε > 0.
By the definition of convergence, there is nε ∈ N such that d(xn, x) < ε for
n ≥ nε; that is, xn ∈ Bε(x) for n ≥ nε. In particular, Bε(x) ∩ S is nonempty.
Since ε > 0 is arbitrary, it follows that x ∈ S by Proposition 2.2.13.

Conversely, let x ∈ S. By Proposition 2.2.13, we have B 1
n
(x) ∩ S �= ∅ for

each n ∈ N; there is thus, for each n ∈ N, some xn ∈ S with d(xn, x) < 1
n . It

is clear that the sequence (xn)∞n=1 converges to x. �	

Corollary 2.3.5. Let (X, d) be a metric space. Then F ⊂ X is closed if and
only if every sequence in F that converges in X has its limit in F .

Of course, with a notion of convergence at hand, continuity of functions
can be defined.

Definition 2.3.6. Let (X, dX) and (Y, dY ) be metric spaces, and let x0 ∈ X.
Then f : X → Y is said to be continuous at x0 if, for each sequence (xn)∞n=1

in X that converges to x0, we have limn→∞ f(xn) = f(x0).
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The following characterization holds.

Theorem 2.3.7. Let (X, dX) and (Y, dY ) be metric spaces, and let x0 ∈ X.
Then the following are equivalent for f : X → Y .

(i) f is continuous at x0.
(ii) For each ε > 0, there is δ > 0 such that dY (f(x), f(x0)) < ε for all x ∈ X

with dX(x, x0) < δ.
(iii) For each ε > 0, there is δ > 0 such that Bδ(x0) ⊂ f−1(Bε(f(x0))).
(iv) For each N ∈ Nf(x0), we have f−1(N) ∈ Nx0 .

Proof. (i) =⇒ (ii): Assume otherwise; that is, there is ε0 > 0 such that, for
each δ > 0, there is xδ ∈ X with dX(xδ , x0) < δ, but dY (f(xδ), f(x0)) ≥ ε0.
For n ∈ N, let x′

n := x 1
n
, so that d(x′

n, x0) < 1
n

and thus x′
n → x0. Since,

however, dY (f(x′
n), f(x0)) ≥ ε0 holds for all n ∈ N, it is impossible that

f(x′
n) → f(x0) as required for f to be continuous at x0.
(iii) is only a rewording of (ii).
(iii) =⇒ (iv): Let N ∈ Nf(x0). Hence, there is ε > 0 such that Bε(x0) ⊂ N .

By (iii), there is δ > 0 such that

Bδ(x0) ⊂ f−1(Bε(f(x0))) ⊂ f−1(N).

This implies that f−1(N) ∈ Nx0 .
(iv) =⇒ (i): Let (xn)∞n=1 be a sequence in X with xn → x0. Let N ∈ Nf(x0),

so that f−1(N) ∈ Nx0 . Since xn → x0, there is nN ∈ N such that xn ∈ f−1(N)
for n ≥ nN ; that is, f(xn) ∈ N for n ≥ nN . Since N ∈ Nf(x0) was arbitrary,
this yields f(xn) → f(x0). �	

The following definition should also look familiar.

Definition 2.3.8. Let (X, dX) and (Y, dY ) be metric spaces. Then a function
f : X → Y is said to be continuous if it is continuous at each point of X.

Example 2.3.9. Let (X, d) be a metric space. We first claim that

|d(x, y) − d(x0, y0)| ≤ d(x, x0) + d(y, y0) (x, x0, y, y0 ∈ X). (∗ ∗ ∗)

Fix x, x0, y, y0 ∈ X , and note that

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y)

and therefore
d(x, y) − d(x0, y0) ≤ d(x, x0) + d(y0, y).

Interchanging the roles of x and x0 and, respectively, y and y0, yields
d(x0, y0) − d(x, y) ≤ d(x, x0) + d(y0, y). Altogether, we obtain (∗ ∗ ∗). The
Cartesian square X2 becomes a metric space in its own right through

d̃((x, y), (x′, y′)) := d(x, x′) + d(y, y′) ((x, x′), (y, y′) ∈ X2).

The inequality (∗ ∗ ∗) immediately yields that d : X2 → R is continuous if X2

is equipped with d̃.
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Corollary 2.3.10. Let (X, dX) and (Y, dY ) be metric spaces. Then the fol-
lowing are equivalent for f : X → Y .

(i) f is continuous.
(ii) f−1(U) is open in X for each open subset U of Y .
(iii) f−1(F ) is closed in X for each closed subset F of Y .

Proof. (i) =⇒ (ii): Let U ⊂ Y be open, so that U ∈ Ny for each y ∈ U and
thus U ∈ Nf(x) for each x ∈ f−1(U). For Theorem 2.3.7(iv), we conclude that
f−1(U) ∈ Nx for each x ∈ f−1(U); that is, f−1(U) is a neighborhood of each
of its points and thus open.

(ii) =⇒ (iii): Let F ⊂ Y be closed, so that Y \ F is open. Since X \
f−1(F ) = f−1(Y \ F ) then must be open by (ii), it follows that f−1(F ) is
closed. Analogously, (iii) =⇒ (ii) is proved.

(ii) =⇒ (i): If f satisfies (ii), it trivially also satisfies Theorem 2.3.7(iii) for
each x ∈ X . �	

We now give an example which shows that continuous maps between gen-
eral metric spaces can be quite different from what we may intuitively expect.

Example 2.3.11. Let (X, dX) and (Y, dY ) be metric spaces such that (X, dX)
is discrete, and let f : X → Y be arbitrary. Let U ⊂ Y be open. Since in a
discrete space every set is open, it follows that f−1(U) is open. Consequently,
f must be continuous.

As we have seen, there can be different metrics on one set. For many
purposes, it is convenient to view certain metrics as identical.

Definition 2.3.12. Let X be a set. Two metrics d1 and d2 on X are said
to be equivalent if the identity map on X is continuous both from (X, d1) to
(X, d2) and from (X, d2) to (X, d1).

In view of Corollary 2.3.10, two metrics d1 and d2 on a set X are equivalent
if and only if they yield the same open sets (or, equivalently, the same closed
sets).

Examples 2.3.13. (a) The Euclidean metric on Rn and the discrete metric are
not equivalent.

(b) For j = 1, . . . , n, let (Xj , dj) be a metric space. Let X := X1 × · · · ×Xn,
and for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X , define

D1(x, y) :=
n∑

j=1

dj(xj , yj) and D∞(x, y) := max
j=1,...,n

dj(xj , yj).

Then D1 and D∞ are metrics on X satisfying

D∞(x, y) ≤ D1(x, y) ≤ n D∞(x, y) (x, y ∈ X).

Consequently, D1 and D∞ are equivalent.
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(c) Let (X, d) be any metric space, let p ∈ X , and let dp be the corresponding
French railroad metric. Since

d(x, y) ≤ dp(x, y) (x, y ∈ X),

it is easily seen that the identity is continuous from (X, dp) to (X, d). On
the other hand, let (xn)∞n=1 be a sequence in X that converges to x �= p
with respect to d. If xn �= x, we have

dp(xn, x) = d(xn, p) + d(p, x) ≥ d(p, x),

so that, for dp(xn, x) → 0 to hold, (xn)∞n=1 must be eventually constant.
Hence, for example, the Euclidean metric on Rn and—no matter how
“Paris” is chosen—the corresponding French railroad metric are not equiv-
alent. On the other hand, if (X, d) is discrete, then the identity from (X, d)
to (X, dp) is also continuous, so that d and dp are equivalent.

(d) Let (X, d) be any metric space, and let d̃ be the metric defined in Example
2.1.2(f). We claim that d and d̃ are equivalent. The function

f : [0,∞) → [0, 1), t �→ t

1 + t

is continuous and bijective with continuous inverse

g : [0, 1) → [0,∞), s �→ s

1− s
.

Since d̃ = f ◦ d (and, consequently, d = g ◦ d̃), it follows that d and d̃ are
indeed equivalent.

(e) Let (X, d) be any metric space, and let U ⊂ X be open. Define

dU (x, y) := d(x, y) +
∣∣∣∣ 1
dist(x, X \ U)

− 1
dist(y, X \ U)

∣∣∣∣ (x, y ∈ U).

(If U = X , we formally set 1
dist(x,X\U) = 1

dist(y,X\U) = 1
∞ = 0.) From

Exercise 2.2.4, it follows that dU is well defined on U × U . We claim that
dU is a metric on U . Clearly, dU is positive definite and symmetric. Let
x, y, z ∈ U , and note that

dU (x, z) = d(x, z) +
∣∣∣∣ 1
dist(x, X \ U)

− 1
dist(z, X \ U)

∣∣∣∣
≤ d(x, y) + d(y, z) +

∣∣∣∣ 1
dist(x, X \ U)

− 1
dist(y, X \ U)

+
1

dist(y, X \ U)
− 1

dist(z, X \ U)

∣∣∣∣
≤ d(x, y) +

∣∣∣∣ 1
dist(x, X \ U)

− 1
dist(y, X \ U)

+
∣∣∣∣

+ d(y, z) +
∣∣∣∣ 1
dist(y, X \ U)

− 1
dist(z, X \ U)

∣∣∣∣
= dU (x, y) + dU (y, z).
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We claim that d restricted to U × U and dU are equivalent. Since

d(x, y) ≤ dU (x, y) (x, y ∈ U),

the continuity of the identity from (U, dU ) to (U, d) is clear. To prove that
the identity on U is also continuous in the converse direction, first note
that nothing has to be shown if U = X . We may thus suppose without loss
of generality that U � X . Let (xn)∞n=1 be a sequence in U that converges
to x ∈ U with respect to d; that is, d(xn, x) → 0. By Exercise 3 below,
this entails that dist(xn, X \ U) → dist(x, X \ U) and thus

dU (xn, x) = d(xn, x) +
∣∣∣∣ 1
dist(xn, X \ U)

− 1
dist(x, X \ U)

∣∣∣∣ → 0.

Hence, (xn)∞n=1 converges to x as well with respect to dU .

Exercises

1. Let ((Xk, dk))∞k=1 be a sequence of metric spaces, and let X :=
Q∞

k=1 Xk be
equipped with the metric d from Example 2.1.2(g). Show that convergence in

X is coordinatewise convergence: a sequence
““

x
(n)
1 , x

(n)
2 , x

(n)
3 , . . .

””∞

n=1
in X

converges to (x1, x2, x3, . . .) ∈ X with respect to d if and only if x
(n)
k → xk for

each k ∈ N.
2. Let (X, dX) and (Y, dY ) be metric spaces, let p ∈ X, and let dp denote the

corresponding French railroad metric on X. Show that f : X → Y is continuous
with respect to dp if and only if it is continuous at p with respect to dX .

3. Let (X, d) be a metric space, and let ∅ �= S ⊂ X. Show that the function

X → R, x �→ dist(x, S)

is continuous.
4. Let E and F be normed spaces, and let T : E → F be linear. Show that the

following are equivalent.
(i) T is continuous;
(ii) T is continuous at 0;
(iii) There is C ≥ 0 such that ‖T (x)‖ ≤ C‖x‖ for all x ∈ E.

5. Let E and F be normed spaces, let T : E → F be linear, and suppose that
dim E < ∞. Show that T is continuous. (Hint : For x ∈ E, define |||x||| :=
max{‖x‖, ‖T (x)‖}; show that ||| · ||| is a norm on E, and use Proposition B.1.)

6. On C([0, 1], F) we have the two norms ‖ · ‖1 and ‖ · ‖∞ introduced in Example
2.1.2(c). Show that the metrics induced by these two norms are not equivalent.

2.4 Completeness

As we can define convergent sequences in metric spaces, we can speak of
Cauchy sequences.
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Definition 2.4.1. Let (X, d) be a metric space. A sequence (xn)∞n=1 in X
is called a Cauchy sequence if, for each ε > 0, there is nε > 0 such that
d(xn, xm) < ε for all n, m ≥ nε.

As in Rn, we have the following.

Proposition 2.4.2. Let (X, d) be a metric space, and let (xn)∞n=1 be a con-
vergent sequence in X. Then (xn)∞n=1 is a Cauchy sequence.

Proof. Let x := limn→∞ xn, and let ε > 0. Then there is nε > 0 such that
d(xn, x) < ε

2
for all n ≥ nε. Consequently, we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε (n, m ≥ nε),

so that (xn)∞n=1 is a Cauchy sequence. �	

In Rn, the converse holds as well: Every Cauchy sequence converges. For
general metric spaces, this is clearly false: the sequence

(
1
n

)∞
n=1

is a Cauchy
sequence in the metric space (0, 1)—equipped with its canonical metric—but
has no limit in that space. This makes the following definition significant.

Definition 2.4.3. A metric space (X, d) is called complete if every Cauchy
sequence in X converges.

A normed space that is complete with respect to the metric induced by
its norm is also called a Banach space.

Examples 2.4.4. (a) Rn is complete.
(b) In a discrete metric space, every Cauchy sequence is eventually constant

and therefore convergent. Hence, discrete metric spaces are complete.
(c) Let S �= ∅ be a set, and let (Y, d) be a complete metric space. We claim

that the metric space (B(S, Y ), D) from Example 2.1.2(d) is complete. Let
(fn)∞n=1 be a Cauchy sequence in B(S, Y ). Let ε > 0, and choose nε > 0
such that D(fn, fm) < ε for all n, m ≥ nε. For x ∈ S, we then have

d(fn(x), fm(x)) ≤ D(fn, fm) < ε (n, m ≥ nε).

Consequently, (fn(x))∞n=1 is a Cauchy sequence in Y for each x ∈ S. Since
Y is complete, we can therefore define f : S → Y by letting

f(x) := lim
n→∞

fn(x) (x ∈ S).

We first claim that f lies in B(S, Y ) and is, in fact, the limit of (fn)∞n=1

with respect to D. To see this, let x ∈ S, and note that

d(fn(x), f(x)) = lim
m→∞

d(fn(x), fm(x))

for n ∈ N by Example 2.3.9. It follows for n ≥ nε that
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d(fn(x), f(x))
= lim

m→∞
d(fn(x), fm(x)) ≤ lim sup

m→∞
D(fn, fm) ≤ ε (x ∈ S).

Let n ≥ nε, and let C := supx,y∈S d(fn(x), fn(y)), which is finite by
the definition of B(S, Y ). From the previous inequality, we obtain, for
arbitrary x, y ∈ S, that

d(f(x), f(y)) ≤ d(f(x), fn(x))+ d(fn(x), fn(y))+ d(fn(y), f(y)) ≤ 2ε+C.

Hence, f belongs to B(S, Y ). Since d(fn(x), f(x)) ≤ ε for all x ∈ S and
n ≥ nε, we eventually obtain:

D(fn, f) = sup
x∈S

d(fn(x), f(x)) ≤ ε (n ≥ nε).

This is sufficient to guarantee that f = limn→∞ fn in (B(S, Y ), D).

The following proposition indicates how to get new complete spaces from
old ones.

Proposition 2.4.5. Let (X, d) be a metric space, and let Y be a subspace of
X.

(i) If X is complete and if Y is closed in X, then Y is complete.
(ii) If Y is complete, then it is closed in X.

Proof. Suppose that X is complete and that Y is closed in X . Let (xn)∞n=1 be
a Cauchy sequence in Y . Then (xn)∞n=1 is also a Cauchy sequence in X and
thus has a limit x ∈ X . Since Y is closed, Corollary 2.3.5 yields that x ∈ Y ,
so that Y is complete. This proves (i).

For (ii), let (yn)∞n=1 be a sequence in Y that converges to y ∈ X . Since
(yn)∞n=1 converges in X , it is a Cauchy sequence in X and thus in Y . Since Y
is complete, there is y′ ∈ Y with y′ = limn→∞ yn. If (yn)∞n=1 converges to y′

in Y , it does so in X . Uniqueness of the limit yields that y′ = y. Hence, y lies
in Y . Corollary 2.3.5 thus yields that Y is closed in X . �	

Example 2.4.6. Let (X, dX) and (Y, dY ) be metric spaces. We define

C(X, Y ) := {f : X → Y : f is continuous}

and
Cb(X, Y ) := B(X, Y ) ∩ C(X, Y ).

Clearly, Cb(X, Y ) is a subspace of the metric space (B(X, Y ), D). We claim
that Cb(X, Y ) is closed in B(X, Y ) and therefore complete if (Y, dY ) is. Let
(fn)∞n=1 be a sequence in Cb(X, Y ) that converges to f ∈ B(X, Y ). We claim
that f is again continuous. To see this, fix x0 ∈ X . We show that f is contin-
uous at x0. Let ε > 0. Since fn → f in B(X, Y ), there is nε ∈ N such that
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D(fn, f) < ε
3

for n ≥ nε. Fix n ≥ nε. Since fn is continuous at x0, the set
N := f−1

n (B ε
3
(fn(x0))) is a neighborhood of x0. Let x ∈ N , and note that

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0))
≤ D(fn, f) + d(fn(x), fn(x0)) + D(fn, f)

<
2ε

3
+ d(fn(x), fn(x0)), because n ≥ nε,

< ε, because x ∈ N.

It follows that N ⊂ f−1(Bε(f(x0))), so that f−1(Bε(f(x0))) ∈ Nx0 . Since
ε > 0 was arbitrary, this is enough to guarantee the continuity of f at x0.

In view of Proposition 2.4.5, the following assertion seems to defy reason
at first glance.

Proposition 2.4.7. Let (X, d) be a complete metric space, and let U ⊂ X
be open. Then (U, dU ) is a complete metric space, where dU is defined as in
Example 2.3.13(e).

Proof. If U = X , we have dU = d, so that the claim is trivially true. Hence,
suppose that U � X .

Let (xn)∞n=1 be a Cauchy sequence in (U, dU ). Then (xn)∞n=1 is easily seen
to be a Cauchy sequence in (X, d) as well. Let x ∈ X be its limit in (X, d).
We first claim that x ∈ U . Assume towards a contradiction that x ∈ X \ U .
From Exercise 2.3.3, we conclude that dist(xn, X \ U) → 0. Since (xn)∞n=1 is
a Cauchy sequence in (U, dU ), there is n1 ∈ N such that∣∣∣∣ 1

dist(xn, X \ U)
− 1

dist(xm, X \ U)

∣∣∣∣ ≤ dU (xn, xm) ≤ 1 (n, m ≥ n1).

Fix m ≥ n1, and note that therefore

1
dist(xn, X \ U)

≤
∣∣∣∣ 1
dist(xn, X \ U)

− 1
dist(xm, X \ U)

∣∣∣∣ +
1

dist(xm, X \ U)

≤ 1 +
1

dist(xm, X \ U)
(n ≥ n1).

This is impossible, however, if dist(xn, X \U) → 0. Consequently, x ∈ U must
hold.

Since d and dU are equivalent on U , we see that dU (xn, x) → 0 as well.
Hence, x is the limit of (xn)∞n=1 in (U, dU ). �	

At first glance, Proposition 2.4.7 seems to be paradoxical, to say the least.
Any open subset of a complete metric space is supposed to be complete with
respect to an equivalent metric. Doesn’t this and Proposition 2.4.5(ii) imme-
diately yield that every open subset of a complete metric space is also closed?
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This is clearly wrong. The apparent paradox is resolved if one recalls the defi-
nition of a subspace of a metric space: (U, dU ) is not a subspace of the metric
space (X, d), even though the two metrics d and dU are equivalent on U .

We now present a famous property of complete metric spaces, for which
we first require a definition.

Definition 2.4.8. Let (X, d) be a metric space. The diameter of a subset
S �= ∅ of X is defined as

diam(S) := sup{d(x, y) : x, y ∈ S}.

Theorem 2.4.9 (Cantor’s intersection theorem). Let (X, d) be a com-
plete metric space, and let (Fn)∞n=1 be a sequence of nonempty closed subsets of
X such that F1 ⊃ F2 ⊃ F3 ⊃ · · · and limn→∞ diam(Fn) = 0. Then

⋂∞
n=1 Fn

contains precisely one point of X.

Proof. For each n ∈ N, let xn ∈ Fn. We claim that the sequence (xn)∞n=1 is a
Cauchy sequence. To see this, let ε > 0. Choose nε ∈ N such that diam(Fn) < ε
for n ≥ nε. Let n, m ≥ nε. Since the sequence (Fn)∞n=1 is decreasing, it follows
that xn, xm ∈ Fnε , so that

d(xn, xm) ≤ diam(Fnε) < ε.

Consequently, (xn)∞n=1 is indeed a Cauchy sequence and therefore converges
in X , to x say. Since

⋂∞
n=1 Fn is closed, it is clear that this set contains x by

Corollary 2.3.5.
To show that

⋂∞
n=1 Fn = {x}, assume towards a contradiction that there

is x′ ∈
⋂∞

n=1 Fn different from x. Let ε0 := d(x, x′) > 0, and choose n ∈ N so
large that diam(Fn) < ε0. Since x, x′ ∈ Fn, we obtain

d(x, x′) ≤ diam(Fn) < ε0 = d(x, x′),

which is impossible. �	

Next, we show that any metric space is—in a sense yet to be made
precise—already a subspace of a complete metric space.

Definition 2.4.10. Let (X, d) be a metric space. A completion of (X, d) is
a metric space

(
X̃, d̃

)
together with a map ι : X → X̃ with the following

properties.

(a)
(
X̃, d̃

)
is complete;

(b) d̃(ι(x), ι(y)) = d(x, y) for x, y ∈ X;
(c) ι(X) is dense in X̃.

We show that, first of all, every metric space has a completion and, sec-
ondly, that this completion is unique (in a certain sense).

To specify what we mean by uniqueness of a completion, we require another
definition.
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Definition 2.4.11. Let (X, dX) and (X, dY ) be metric spaces. A function f :
X → Y is called an isometry (or isometric) if

dY (f(x), f(y)) = dX (x, y) (x, y ∈ X).

If f is also bijective, we call f an isometric isomorphism.

Lemma 2.4.12. Let (X, d) be a metric space, let
(
X̃1, d̃1

)
and

(
X̃2, d̃2

)
be

completions of (X, d), and let ι1 : X → X̃1 and ι2 : X → X̃2 denote the
corresponding maps from Definition 2.4.10. Then there is a unique isometric
isomorphism f : X̃1 → X̃2 such that f ◦ ι1 = ι2.

Proof. We begin with the definition of f . Let x ∈ X̃1. Since ι1(X) is dense in
X̃1, there is a sequence (xn)∞n=1 in X such that x = limn→∞ ι1(xn). It is clear
that (ι1(xn))∞n=1 is a Cauchy sequence in X̃1, and Definition 2.4.10(b) implies
that (xn)∞n=1 is a Cauchy sequence in X . Again Definition 2.4.10(b) guarantees
that (ι2(xn))∞n=1 is a Cauchy sequence in X̃2 and therefore converges. Let
f(x) := limn→∞ ι2(xn).

We first prove that f is well defined , that is, does not depend on the
particular choice of a sequence (xn)∞n=1. To prove this, let (x′

n)∞n=1 be another
sequence in X with x = limn→∞ ι1(x′

n). It follows that

d(xn, x′
n) = d̃1(ι1(xn), ι1(x′

n)) ≤ d̃1(ι1(xn), x) + d̃1(x, ι1(x′
n)) → 0

and therefore

d̃2(ι2(x′
n), f(x)) ≤ d̃2(ι2(x′

n), ι2(xn)) + d̃2(ι2(xn), f(x))
= d(x′

n, xn) + d̃2(ι2(xn), f(x))
→ 0.

All in all, f(x) = limn→∞ ι2(x′
n) holds, so that f is indeed well defined.

Next, we prove that f is an isometry. Let x, y ∈ X̃1 and let (xn)∞n=1 and
(yn)∞n=1 be the corresponding sequences in X used to define f(x) and f(y),
respectively. From

d̃2(f(x), f(y)) = lim
n→∞

d̃2(ι2(xn), ι2(xn))

= lim
n→∞

d(xn, yn)

= lim
n→∞

d̃1(ι1(xn), ι1(xn))

= d̃1(x, y),

we see that f is isometric. This immediately also proves the injectivity of f .
Clearly, f ◦ ι1 = ι2 holds, so that f

(
X̃1

)
⊃ ι2(X) must be dense in X̃2.

We claim that f
(
X̃1

)
is a complete subspace of X̃2 and therefore closed (this
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implies that f
(
X̃1

)
must be all of X̃2). Let (xn)∞n=1 be a sequence in X̃1 such

that (f(xn))∞n=1 is a Cauchy sequence in X̃2. Since f is an isometry, (xn)∞n=1

is also a Cauchy sequence in X̃1 and thus convergent to some x ∈ X̃1. Again
since f is an isometry, it follows that limn→∞ f(xn) = f(x) in X̃2.

Finally, to prove the uniqueness of f , let f̃ : X̃1 → X̃2 be another map as
described in the statement of the lemma. Let x ∈ X̃1. By Definition 2.4.10(c),
there is a sequence (xn)∞n=1 in X with limn→∞ ι1(xn) = x. We obtain that

f(x) = lim
n→∞

f(ι1(xn)) = lim
n→∞

ι2(xn) = lim
n→∞

f̃(ι1(xn)) = f̃(x).

Since x ∈ X̃1 was arbitrary, this proves that f = f̃ . �	

In less formal (but probably much more digestible) language, Lemma
2.4.12 asserts that a completion of a metric space (if it exists at all!) is unique
up to isometric isomorphism.

The existence of the completion of a given metric space is surprisingly easy
to establish.

Theorem 2.4.13. Let (X, d) be a metric space. Then (X, d) has a completion,
which is unique up to isometric isomorphism.

Proof. In view of Lemma 2.4.12, only the existence of the completion still
has to be shown. It is sufficient to find some complete metric space and an
isometry ι from X into that space: just let X̃ := ι(X). The complete metric
space into which we embed X is the Banach space Cb(X, R).

Fix x0 ∈ X . For x ∈ X , define

fx : X → R, t �→ d(x, t) − d(x0, t).

In view of Example 2.3.9, it is clear that fx is continuous for each x ∈ X , and
also, due to the inequality (∗ ∗ ∗) from Example 2.3.9, we have

|fx(t)| ≤ d(x, x0) + d(t, t) = d(x, x0) (t ∈ X),

so that fx lies even in Cb(X, R). We claim that the map

ι : X → Cb(X, R), x �→ fx

is an isometry. To see this, fix x, y ∈ X and note that, by (∗ ∗ ∗) again,

D(ι(x), ι(y)) = sup
t∈X

|fx(t)− fy(t)| = sup
t∈X

|d(x, t) − d(y, t)| ≤ d(x, y),

holds; on the other hand, we have

D(ι(x), ι(y)) = sup
t∈X

|fx(t)− fy(t)| ≥ |fx(y)− fy(y)| = d(x, y),

which proves the claim. �	
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In view of the uniqueness of a completion up to isometric isomorphism,
we are justified to speak of the completion of a metric space. For the sake
of notational convenience, we also identify a metric space with its canonical
image in its completion.

We now turn to one of the most fundamental theorems on complete metric
spaces.

Theorem 2.4.14 (Bourbaki’s Mittag-Leffler theorem). Suppose that
((Xn, dn))∞n=0 is a sequence of complete metric spaces, and let fn : Xn → Xn−1

for n ∈ N be continuous with dense range. Then

∞⋂
n=1

(f1 ◦ f2 ◦ · · · ◦ fn)(Xn)

is dense in X0.

Proof. We first inductively define new metrics d̃0, d̃1, d̃2, . . . on the spaces
X0, X1, X2, . . . such that

• d̃n and dn are equivalent for n ∈ N0,
•

(
Xn, d̃n

)
is complete for each n ∈ N0, and

• d̃n−1(fn(x), fn(y)) ≤ d̃n(x, y) for n ∈ N and x, y ∈ Xn.

This is accomplished by letting d̃0 := d0 and, once d̃0, . . . , d̃n−1 have been
defined for some n ∈ N, letting

d̃n(x, y) := dn(x, y) + d̃n−1(fn(x), fn(y)) (x, y ∈ Xn).

In what follows, we consider the spaces X0, X1, X2, . . . equipped with the
metrics d̃0, d̃1, d̃2, . . . instead of with d0, d1, d2, . . ..

Let U0 ⊂ X be open and not empty. We need to show that

U0 ∩
∞⋂

n=1

(f1 ◦ · · · ◦ fn)(Xn) �= ∅.

Since f1(X1) is dense in X0, there is x1 ∈ X1 with f1(x1) ∈ U0. Since f1

is continuous at x1, there is δ1 ∈ (0, 1] such that f1(Bδ1(x1)) ⊂ U0. Let
U1 := Bδ1(x1). Since f2(X2) is dense in X1, there is x2 ∈ X2 with f2(x2) ∈ U1.
Since f2 is continuous at x2, there is δ2 ∈

(
0, 1

2

]
such that f2(Bδ2(x2)) ⊂ U1.

Let U2 := Bδ2(x2), and continue in this fashion.
We thus obtain a sequence (Un)∞n=1 of open balls such that fn(Un) ⊂ Un−1

for n ∈ N and such that Un has radius at most 1
n . For n ∈ N0 and m ∈ N, let

Yn,m := (fn+1 ◦ · · · ◦ fn+m)(Un+m).

It follows that Yn,m �= ∅, that diam(Yn,m) ≤ 2
n+m , and that Yn,m+1 ⊂ Yn,m.

From Cantor’s intersection theorem, it follows that there is yn ∈
⋂∞

m=1 Yn,m.
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From the construction, it is immediate that fn(yn) = yn−1 and thus that
(f1 ◦ · · · ◦ fn)(yn) = y0 for n ∈ N. Consequently,

y0 ∈ U0 ∩
∞⋂

n=1

(f1 ◦ · · · ◦ fn)(Xn)

holds. �	

The name “Mittag-Leffler theorem” for Theorem 2.4.14 may sound be-
wildering, but the well-known Mittag-Leffler theorem from complex analysis
(Theorem A.1) can be obtained as a consequence of it (see Appendix A; be-
sides some background from complex variables, you will also need material
from Sections 3.1 to 3.4 for it). We turn, however, to another consequence of
Theorem 2.4.14.

Lemma 2.4.15. Let (X, d) be a metric space, and let U1, . . . , Un ⊂ X be
dense open subsets of X. Then U1 ∩ · · · ∩ Un is dense in X.

Proof. By induction, it is clear that we may limit ourselves to the case where
n = 2. Let x ∈ X , and let ε > 0. Since U1 is dense in X , we have Bε(x)∩U1 �=
∅. Since Bε(x)∩U1 is open—and thus a neighborhood of each of its points—it
follows from the denseness of U2 that Bε(x) ∩ U1 ∩ U2 �= ∅. Since ε > 0 was
arbitrary, we conclude that x ∈ U1 ∩ U2. �	

Theorem 2.4.16 (Baire’s theorem). Let (X, d) be a complete metric
space, and let (Un)∞n=1 be a sequence of dense open subsets of X. Then⋂∞

n=1 Un is dense in X.

Proof. By Lemma 2.4.15, we may replace Un by U1∩· · ·∩Un and thus suppose
without loss of generality that U1 ⊃ U2 ⊃ · · · . Let (X0, d0) := (X, d), and let
(Xn, dn) := (Un, dUn), where dUn is defined for n ∈ N as in Example 2.3.13(e).
Furthermore, let fn : Xn → Xn−1 be the inclusion map for n ∈ N. Since d and
dUn are equivalent on Xn for n ∈ N, it is clear that f1, f2, . . . are continuous.
By the hypothesis, (X0, d0) is complete and the same is true for (Xn, dn) with
n ∈ N by Proposition 2.4.7. It follows from Theorem 2.4.14 that

∞⋂
n=1

(f1 ◦ · · · ◦ fn)(Xn) =
∞⋂

n=1

Un

is dense in X0 = X . �	

The following is an immediate consequence of Baire’s theorem (just pass
to complements).

Corollary 2.4.17. Let (X, d) be a complete metric space, and let (Fn)∞n=1 be
a sequence of closed subsets of X such that

⋃∞
n=1 Fn has a nonempty interior.

Then at least one of the sets F1, F2, . . . has a nonempty interior.
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To illustrate the power of Baire’s theorem, we turn to an example from
elementary calculus. We all know that there are continuous functions that
are not differentiable at certain points (take the absolute value function, for
instance), and it is not very hard to come up with continuous functions that
are not differentiable at a finite, and even countable, number of points. But is
there a continuous function, on an interval say, that fails to be differentiable
at each point of its domain? The following example gives the answer.

Example 2.4.18. For n ∈ N, let Fn consist of those f ∈ C([0, 2], R) for which
there is t ∈ [0, 1] such that

sup
h∈(0,1)

|f(t + h)− f(t)|
h

≤ n.

Obviously, if f ∈ C([0, 2], R) is differentiable at some point t ∈ [0, 1], then

sup
h∈(0,1)

|f(t + h)− f(t)|
h

< ∞

must hold, so that f ∈
⋃∞

n=1 Fn. Hence, if every continuous function on [0, 2]
is differentiable at some point of [0, 1], we have C([0, 2], R) =

⋃∞
n=1 Fn. Using

Corollary 2.4.17, we show that this is not possible.
To be able to apply Corollary 2.4.17, we first need to show that the sets Fn

for n ∈ N are closed in C([0, 2], R). Fix n ∈ N, and let (fm)∞m=1 be a sequence
in Fn such that ‖fm − f‖∞ → 0 for some f ∈ C([0, 2], R). For each m ∈ N,
there is tm ∈ [0, 1] such that

sup
h∈(0,1)

|fm(tm + h)− fm(tm)|
h

≤ n.

Suppose without loss of generality that (tm)∞m=1 converges to some t ∈ [0, 1]
(otherwise, replace (tm)∞m=1 by a convergent subsequence). Fix h ∈ (0, 1) and
ε > 0, and choose mε ∈ N so large that⎧⎨⎩

|f(t + h)− f(tm + h)|
‖f − fm‖∞
|f(tm)− f(t)|

⎫⎬⎭ <
ε

4
h (m ≥ mε).

For m ≥ mε, this implies

|f(t + h)− f(t)|
≤ |f(t + h)− f(tm + h)|︸ ︷︷ ︸

< ε
4 h

+ |f(tm + h)− fm(tm + h)|︸ ︷︷ ︸
< ε

4 h

+ |fm(tm + h)− fm(tm)|︸ ︷︷ ︸
≤nh

+ |fm(tm)− f(tm)|︸ ︷︷ ︸
< ε

4 h

+ |f(tm)− f(t)|︸ ︷︷ ︸
< ε

4 h

≤ nh + εh,
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so that
|f(t + h)− f(t)|

h
≤ n + ε.

Since h and ε were arbitrary, this means that f ∈ Fn. Hence, Fn is closed.
Assume towards a contradiction that every f ∈ C([0, 2], R) is differentiable

at some point in [0, 1], so that C([0, 2], R) =
⋃∞

n=1 Fn. By Corollary 2.4.17,
there are n0 ∈ N, f ∈ C([0, 2], R), and ε > 0 such that Bε(f) ⊂ Fn0 . By the
Weierstraß approximation theorem (Corollary 4.3.8 below), Bε(f) contains at
least one polynomial, say p. Since Bε(f) is open, there is δ > 0 such that
Bδ(p) ⊂ Bε(f) ⊂ Fn0 . Replacing f by p and ε by δ, we can thus suppose
without loss of generality that f is continuously differentiable on [0, 2].

For k ∈ N and j = 0, . . . , k, let tj := 2j
k . Define a “sawtooth function”

gk : [0, 2] → R by letting

gk(t) :=
{

ε
2k(t− tj−1), t ∈

[
tj−1, tj−1 + 1

k

]
,

ε
2
k(tj − t), t ∈

[
tj − 1

k
, tj

]
for j = 1, . . . , n and t ∈ [tj−1, tj ].

t

_ε
g2

g1

g3

0 1 2

2

Fig. 2.3: Sawtooth functions

Then gk is continuous with ‖gk‖∞ = ε
2 , but

sup
h∈(0,1)

|gk(t + h)− gk(t)|
h

=
ε

2
k (†)

holds for any t ∈ [0, 1]. Since f + gk ∈ Bε(f) ⊂ Fn0 , there is t ∈ [0, 1] such
that

sup
h∈(0,1)

|(f + gk)(t + h)− (f + gk)(t)|
h

≤ n0.

This, however, yields
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sup
h∈(0,1)

|gk(t + h)− gk(t)|
h

≤ sup
h∈(0,1)

|(f + gk)(t + h)− (f + gk)(t)|
h

+ sup
h∈(0,1)

|f(t + h)− f(t)|
h

= n0 + ‖f ′‖∞,

which contradicts (†) if we choose k ∈ N so large that ε
2k > n0 + ‖f ′‖∞.

Hence, the sets F1, F2, . . . have an empty interior, thus their union
⋃∞

n=1 Fn

cannot be all of C([0, 2], R), and consequently there must be a continuous
function on [0, 1] that is nowhere differentiable.

Exercises

1. Let (X, d) be any metric space, let p ∈ X, and let dp be the corresponding
French railroad metric. Show that (X, dp) is complete.

2. Let (X, d) be a complete metric space, and let (xn)∞n=0 be a sequence in X such
that there is θ ∈ (0, 1) with d(xn+1, xn) ≤ θ d(xn, xn−1) for n ∈ N. Show that
(xn)∞n=0 is convergent.

3. Use the previous problem to prove Banach’s fixed point theorem : if (X, d) is a
complete metric space, and if f : X → X is such that

d(f(x), f(y)) ≤ θ d(x, y) (x, y ∈ X)

for some θ ∈ (0, 1), then there is a unique x ∈ X with f(x) = x.
4. Let (X, d) be a metric space, and let ∅ �= S ⊂ X. Show that

diam(S) = inf{r > 0 : S ⊂ Br(x) for all x ∈ S}.

5. Give an example showing that the demand that limn→∞ diam(Fn) = 0 in Can-
tor’s intersection theorem cannot be dropped if we still want

T∞
n=1 Fn �= ∅ to

hold.
6. Let E be a normed space with a countable Hamel basis. Show that E is a

Banach space if and only if dim E < ∞. (Hint : You may use the fact that all
finite-dimensional subspaces of a normed space are closed (Corollary B.3); then
use Corollary 2.4.17.)

7. Let (fk)∞k=1 be a sequence in C([0, 1], F) that converges pointwise to a function
f : [0, 1] → F.
(a) For θ > 0 and n ∈ N, let

Fn := {t ∈ [0, 1] : |fn(t) − fk(t)| ≤ θ for all k ≥ n}.

Show that Fn is closed, and that [0, 1] =
S∞

n=1 Fn.
(b) Let ε > 0, and let I be a nondegenerate, closed subinterval of [0, 1]. Show

that there is a nondegenerate, closed interval J contained in
◦
I such that

|f(t) − f(s)| ≤ ε (t, s ∈ J).

(Hint : Apply (a) with θ := ε
3

and Corollary 2.4.17.)
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(c) Let I be a nondegenerate closed subinterval of [0, 1]. Show that there is a

sequence (In)∞n=1 of nondegenerate closed subintervals of I with I1 ⊃
◦
I 1⊃

I2 ⊃
◦
I 2⊃ I3 ⊃ · · · such that

• The length of In is at most 1
n
, and

• |f(t) − f(s)| ≤ 1
n

for all s, t ∈ In.
What can be said about f at all points in

T∞
n=1 In?

(d) Conclude that the set of points in [0, 1] at which f is continuous is dense in
[0, 1].

2.5 Compactness for Metric Spaces

The notion of compactness is one of the most crucial in all of topology (and
one of the hardest to grasp).

Definition 2.5.1. Let (X, d) be a metric space, and let S ⊂ X. An open cover
for S is a collection U of open subsets of X such that S ⊂

⋃
{U : U ∈ U}.

Definition 2.5.2. A subset K of a metric space (X, d) is called compact if,
for each open cover U of K, there are U1, . . . , Un ∈ U such that K ⊂ U1 ∪
· · · ∪ Un.

Definition 2.5.2 is often worded as, “A set is compact if and only if each
open cover has a finite subcover.”

Examples 2.5.3. (a) Let (X, d) be a metric space, and let S ⊂ X be finite;
that is, S = {x1, . . . , xn}. Let U be an open cover of X . Then, for each
j = 1, . . . , n, there is Uj ∈ U such that xj ∈ Uj . It follows that S ⊂
U1 ∪ · · · ∪ Un. Hence, S is compact.

(b) Let (X, d) be a compact metric space, and let ∅ �= K ⊂ X be compact.
Fix x0 ∈ K. Since {Br(x0) : r > 0} is an open cover of K, there are
r1, . . . , rn > 0 such that

K ⊂ Br1(x0) ∪ · · · ∪Brn(x0).

With R := max{r1, . . . , rn}, we see that K ⊂ BR(x0), so that diam(K) ≤
2R < ∞. This means, for example, that any unbounded subset of Rn (or,
more generally, of any normed space) cannot be compact. In particular,
the only compact normed space is {0}.

(c) Let X = (0, 1) be equipped with the usual metric. For r ∈ (0, 1), let
Ur := (r, 1). Then {Ur : r ∈ (0, 1)} is an open cover for (0, 1) which has
no finite subcover.

Before we turn to more (and more interesting) examples of compact metric
spaces, we establish a few hereditary properties.

Proposition 2.5.4. Let (X, d) be a metric space, and let Y be a subspace of
X.
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(i) If X is compact and Y is closed in X, then Y is compact.
(ii) If Y is compact, then it is closed in X.

Proof. For (i), let U be an open cover for Y . Since Y is closed in X , the
family U ∪{X \Y } is an open cover for X . Since X is compact, it has a finite
subcover, i.e., there are U1, . . . , Un ∈ U such that

X = U1 ∪ · · · ∪ Un ∪X \ Y.

Taking the intersection with Y , we see that Y ⊂ U1 ∪ · · · ∪ Un.
For (ii), let x ∈ X \ Y . For each y ∈ Y , there are εy, δy > 0 such that

Bεy(x)∩Bδy (y) = ∅. Since {Bδy(y) : y ∈ Y } is an open cover for Y , there are
y1, . . . , y1 ∈ Y such that

Y ⊂ Bδy1
(y1) ∪ · · · ∪Bδyn

(yn).

Letting ε := min{εy1, . . . , εyn}, we obtain that

Bε(x) ∩ Y ⊂ Bε(x) ∩
(
Bδy1

(y1) ∪ · · · ∪Bδyn
(yn)

)
= ∅

and thus Bε(x) ⊂ X \Y . Since x ∈ X \Y was arbitrary, this means that X \Y
is open. �	

Proposition 2.5.5. Let (K, dK) be a compact metric space, let (Y, dY ) be any
metric space, and let f : K → Y be continuous. Then f(K) is compact.

Proof. Let U be an open cover for f(K). Then {f−1(U) : U ∈ U} is an open
cover for K by Corollary 2.3.10. Hence, there are U1, . . . , Un ∈ U with

K = f−1(U1) ∪ · · · ∪ f−1(Un)

and thus
f(K) ⊂ U1 ∪ · · · ∪ Un.

This proves the claim. �	

Corollary 2.5.6. Let (K, d) be a non-empty, compact metric space, and let
f : K → R be continuous. Then f attains both a minimum and a maximum
on K.

Proof. Let M := sup f(K). Since f(K) is compact, it is bounded, so that
M < ∞. For each n ∈ N, there is yn ∈ f(K) such that yn > M − 1

n
; it is clear

that M = limn→∞ yn. Since f(K) is closed in R, it follows that M ∈ f(K).
Hence, there is x0 ∈ K such that f(x0) = M .

An analogous argument works for inf f(K). �	

The real line R has the Bolzano–Weierstraß property: every bounded se-
quence in R has a convergent subsequence. The following lemma asserts that
compact metric spaces enjoy a similar property:
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Lemma 2.5.7. Let (K, d) be a compact metric space. Then every sequence in
K has a convergent subsequence.

Proof. Let (xn)∞n=1 be a sequence in K. Assume that (xn)∞n=1 has no con-
vergent subsequence. This means that, for each x ∈ X (it cannot be the
limit of any subsequence of (xn)∞n=1!) there is εx > 0 such that Bεx(x) con-
tains only finitely many terms of (xn)∞n=1; that is, there is nx ∈ N such that
xn /∈ Bεx(x) for n ≥ nx. Since {Bεx(x) : x ∈ K} is an open cover for K, there
are x′

1, . . . , x
′
m ∈ K with

K = Bεx′
1
(x′

1) ∪ · · · ∪Bεx′
m

(x′
m).

For n ≥ max{nx′
1
, . . . , nx′

m
}, this means that

xn /∈ Bεx′
1
(x′

1) ∪ · · · ∪Bεx′
m

(x′
m) = K,

which is absurd. �	

Proposition 2.5.8. Let (K, d) be a compact metric space. Then K is both
complete and separable.

Proof. Let (xn)∞n=1 be a Cauchy sequence in K. By Lemma 2.5.7, (xn)∞n=1

has a convergent subsequence, say (xnk
)∞k=1, whose limit we denote by x. Let

ε > 0. Then there is kε ∈ N such that d(xnk
, x) < ε

2
for k ≥ kε. Furthermore,

there is nε ∈ N with d(xn, xm) < ε
2 for n ≥ nε. Choose k0 ≥ kε so large that

nk0 ≥ nε. For n ≥ nε, we obtain that

d(xn, x) ≤ d(xn, xnk0
) + d(xnk0

, x) <
ε

2
+

ε

2
= ε.

It follows that x = limn→∞ xn.
To see that K is separable, first note that

{
B 1

n
(x) : x ∈ K

}
, the collection

of all open balls in K of radius 1
n
, is an open cover for K for each n ∈ N.

Since K is compact, each such open cover has a finite subcover: there are, for
each n ∈ N, a positive integer mn as well as x1,n, . . . , xmn,n ∈ K such that

K = B 1
n
(x1,n) ∪ · · · ∪B 1

n
(xmn,n).

The set
⋃∞

n=1{x1,n, . . . , xmn,n} is clearly countable. We claim that it is also
dense in K. To see this, let x ∈ K, and let ε > 0. Let n ∈ N be so large that
1
n < ε. Since K = B 1

n
(x1,n) ∪ · · · ∪B 1

n
(xmn,n), there is j ∈ {1, . . . , mn} such

that x ∈ B 1
n
(xj,n) and thus xj,n ∈ Bε(x). �	

We now turn to two notions related to compactness.

Definition 2.5.9. Let (X, d) be a metric space. Then:
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(a) X is called totally bounded if, for each ε > 0, there are x1, . . . , xn ∈ X
with

X = Bε(x1) ∪ · · · ∪Bε(xn).

(b) X is called sequentially compact if every sequence in X has a convergent
subsequence.

Some relations among compactness, total boundedness, and sequential
compactness are straightforward. Every compact metric space is trivially to-
tally bounded and also sequentially compact by Lemma 2.5.7. On the other
hand, (0, 1) is easily seen to be totally bounded, but fails to be compact.
The following theorem relates compactness, total boundedness, and sequen-
tial compactness in the best possible manner.

Theorem 2.5.10. The following are equivalent for a metric space (X, d).

(i) X is compact.
(ii) X is complete and totally bounded.
(iii) X is sequentially compact.

Proof. By Lemma 2.5.7, (i) =⇒ (iii) holds.
(iii) =⇒ (ii): The same argument as in the proof of Proposition 2.5.8 shows

that X is complete. Assume that X is not totally bounded. Then there is ε0

such that
Bε0(x

′
1) ∪ · · · ∪Bε0(x

′
n) � X

for any choice of x′
1, . . . , x

′
n ∈ X . We use this to inductively construct a

sequence in X that has no convergent subsequence. Let x1 ∈ X be arbitrary.
Pick x2 ∈ X \ Bε0(x1). Then pick x3 ∈ X \ (Bε0(x1) ∪ Bε0(x2)). Continuing
in this fashion, we obtain a sequence (xn)∞n=1 in X with

xn+1 /∈ Bε0(x1) ∪ · · · ∪Bε0(xn) (n ∈ N).

It is clear from this construction that

d(xn, xm) ≥ ε0 (n, m ∈ N, n �= m),

so that no subsequence of (xn)∞n=1 can be a Cauchy sequence. This is impos-
sible if X is sequentially compact.

(ii) =⇒ (i): Let U be an open cover of X , and assume that it has no
finite subcover. Since X is totally bounded, it can be covered by finitely many
open balls of radius 1. Consequently, there is at least one x1 ∈ X such that
B1(x1) cannot be covered by finitely many sets from U . Again by the total
boundedness of X , the open ball B1(x1) can be covered by finitely many open
balls of radius 1

2
(not necessarily centered at points of B1(x1)). Consequently,

there is at least one x2 ∈ X such that B 1
2
(x2) ∩B1(x1) cannot be covered by

finitely many sets from U . Continuing this construction, we obtain a sequence
(xn)∞n=1 in X such that
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B 1
n
(xn) ∩ · · · ∩B 1

2
(x2) ∩B1(x1)

cannot be covered by finitely many sets from U . For n ∈ N, let

Fn := B 1
n
(xn) ∩ · · · ∩B 1

2
(x2) ∩B1(x1).

Since diam(Fn) ≤ 2
n → 0, Cantor’s intersection theorem yields that

⋂∞
n=1 Fn =

{x} for some x ∈ X . Let U0 ∈ U be such that x ∈ U0, and let ε > 0 be such
that Bε(x) ⊂ U0. Choose nε ∈ N such that 2

nε
< ε. Since diam(Fnε) ≤ 2

nε
,

this means that Fnε ⊂ Bε(x) ⊂ U0. In particular, {U0} is a finite cover of
B 1

nε
(xnε) ∩ · · · ∩ B1(x1), which is impossible according to our construction.

�	

Corollary 2.5.11. Let (X, d) be a totally bounded metric space. Then its com-
pletion is compact.

Proof. Let
(
X̃, d̃

)
be the completion of (X, d). For r > 0 and x ∈ X , we write

Br(x; X) and Br

(
x; X̃

)
for the open balls with radius r centered at x in X

and X̃ , respectively.
Let ε > 0. Since X is totally bounded, there are x1, . . . , xn ∈ X such that

X = B ε
2
(x1; X) ∪ · · · ∪B ε

2
(xn; X) ⊂ B ε

2

(
x1; X̃

)
∪ · · · ∪B ε

2

(
xn; X̃

)
.

Now, B ε
2

(
x1; X̃

)
∪· · ·∪B ε

2

(
xn; X̃

)
is a closed subset of X̃ containing X and

therefore must be all of X̃. Since B ε
2

(
xj ; X̃

)
⊂ Bε

(
xj ; X̃

)
for j = 1, . . . , n,

we obtain that
X̃ = Bε

(
x1; X̃

)
∪ · · · ∪Bε

(
xn; X̃

)
.

Hence, X̃ is also totally bounded and thus compact by Theorem 2.5.10. �	

The Heine–Borel theorem, which characterizes the compact subsets of Rn,
is probably familiar from several variable calculus. At the end of this section,
we deduce it from Theorem 2.5.10, thus increasing our stock of compact and
noncompact metric spaces.

Corollary 2.5.12 (Heine–Borel theorem). Let K ⊂ Rn. Then K is com-
pact if and only if it is bounded and closed in Rn.

Proof. In view of Example 2.5.3(b) and Proposition 2.5.4(ii), the “only if”
part is clear.

For the converse, first note that, since K is bounded, there is r > 0 such
that K ⊂ [−r, r]n. Since K is closed in Rn and therefore in [−r, r]n, we
can invoke Proposition 2.5.4(i) and suppose without loss of generality that
K = [−r, r]n.
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As a closed subset of a complete metric space, K is clearly complete. It is
therefore sufficient to show that K is totally bounded. Let ε > 0. For m ∈ N
and j ∈ {1, . . . , m}, let

Ij :=
[
−r + (j − 1)

2r

m
,−r + j

2r

m

]
,

and note that

[−r, r] =
m⋃

j=1

Ij

and thus
K =

⋃
(j1,...,jn)∈{1,...,m}n

Ij1 × · · · × Ijn .

Let (j1, . . . , jn) ∈ {1, . . . , m}n, and let x, y ∈ Ij1 × · · · × Ijn . The Euclidean
distance of x and y can then be estimated via

‖x− y‖ =

√√√√ n∑
k=1

(xk − yk)2 ≤

√√√√ n∑
k=1

(
2r

m

)2

=
2r

m

√
n.

Let m be so large that 2r
m

√
n < ε. For (j1, . . . , jn) ∈ {1, . . . , m}n, let

x(j1,...,jn) ∈ Ij1 × · · · × Ijn . By the foregoing estimate, Ij1 × · · · × Ijn ⊂
Bε

(
x(j1,...,jn)

)
holds, so that

K ⊂
⋃

(j1,...,jn)∈{1,...,m}n

Bε

(
x(j1,...,jn)

)
.

Consequently, K is totally bounded and therefore compact. �	

Outside the realm of Euclidean n-space, the Heine–Borel theorem is no
longer true, and even worse: for general metric spaces, it fails to make sense.
First of all, every metric space is closed in itself, so that requiring a set to be
closed depends very much on the metric space in which we are considering it.
Secondly, what does it mean for a subset of a metric space to be bounded?
We could, of course, define a set to be bounded if it has finite diameter, but
since every metric is equivalent to a metric that attains its values in [0, 1),
and since compactness is not characterized via a particular metric, but rather
through open sets, boundedness cannot be used in general metric spaces to
characterize compactness.

In normed spaces, it still makes sense to speak of bounded sets as in Rn,
but the Heine–Borel theorem becomes false.

Example 2.5.13. Let E = C([0, 1], F) be equipped with ‖ · ‖∞, and let (fn)∞n=1

be defined by
fn : [0, 1] → R, t �→ tn (n ∈ N).
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This sequence is contained in the closed unit ball B1[0] of E. If the Heine–
Borel theorem is true for E, then B1[0] is compact and, consequently, (fn)∞n=1

has a convergent subsequence, say (fnk
)∞k=1, with limit f . Since fn ∈ S1[0] for

n ∈ N and since S1[0] is closed, it is clear that f ∈ S1[0]; that is, ‖f‖∞ = 1.
On the other hand, convergence in E is uniform convergence and thus entails
pointwise convergence. Hence, we have for t ∈ [0, 1) that

f(t) = lim
k→∞

fnk
(t) = lim

k→∞
tnk = 0.

Since f is continuous, this means that f(1) = 0 as well and thus f ≡ 0. This
is a contradiction.

More generally, the closed unit ball of a normed space E is compact if and
only if dim E < ∞ (Theorem B.5).

Exercises

1. Show that a discrete metric space (X, d) is compact if and only if X is finite.
2. Let (X, d) be a metric space, and let (xn)∞n=1 be a sequence in X with limit x0.

Show that the subset {x0, x1, x2, . . .} of X is compact.
3. Let (X, d) be a metric space, and let F and K be subspaces of X such that F

is closed in X and K is compact. Show that

F ∩ K �= ∅ ⇐⇒ inf{d(x, y) : x ∈ F, y ∈ K} = 0.

What happens if we replace the compactness of K by the demand that it be
closed in X?

4. Let (K1, d1), . . . , (Kn, dn) be compact metric spaces, and let K := K1×· · ·×Kn

be equipped with any of the two (equivalent) metrics D1 and D∞ from Example
2.3.13(b). Show that K is compact.

5. More generally, let ((Kn, dn))∞n=1 be a sequence of compact metric spaces, and
let K :=

Q∞
n=1 Kn be equipped with a metric d as in Example 2.1.2(h). Show

that (K, d) is compact.
6. Let E be a normed space, and let K, L ⊂ E be compact. Show that K + L :=

{x + y : x ∈ K, y ∈ L} is also compact.
7. A subset S of a metric space (X, d) is called relatively compact if S is compact.

Show that S ⊂ X is relatively compact if and only if each sequence in S has
a subsequence that converges in X. To what more familiar notion is relative
compactness equivalent if the surrounding space X is complete?

8. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is called
uniformly continuous if, for each ε > 0, there is δ > 0 such that dY (f(x), f(y)) <
ε whenever dX(x, y) < δ. Show that any continuous function from a compact
metric space into another metric space is uniformly continuous.

9. Lebesgue’s covering lemma. Let (K, d) be a compact metric space, and let U
be an open cover of K. Show that there is a number L(U) > 0 (the Lebesgue
number of U) such that any ∅ �= S ⊂ K with diam(S) < L(U) is contained in
some U ∈ U .



Remarks 59

Remarks

Metric spaces are roughly one hundred years old: their axioms appear for the
first time in Maurice Fréchet’s thesis [Fréchet 06] from 1906. Instead of met-
ric spaces, Fréchet speaks of classes (E), and the distance of two elements with
respect to the given metric is called their écart , which is French for gap. A few
years later, the German mathematician Felix Hausdorff rechristened Fréchet’s
classes (E) in his treatise [Hausdorff 14]: he called them metrische Räume,
which translates into English literally as metric spaces . Most of the material
from Sections 2.1, 2.2, 2.3, and 2.5 can already be found in [Hausdorff 14].

What we call a semimetric is usually called a pseudometric. However, a
map p from a linear space into [0,∞) that satisfies all the axioms of a norm,
except that it allows that p(x) = 0 for nonzero x, is called a seminorm, not a
pseudonorm. This is our reason for deviating from the standard terminology,
so that p(x − y) for a seminorm p defines a semimetric, which is a metric if
and only if p is a norm.

Bourbaki’s Mittag-Leffler theorem (Theorem 2.4.14) is from “his” mon-
umental treatise Eléments de mathématique [Bourbaki 60]. The possessive
pronoun is in quotation marks because Nicolas Bourbaki is not one man but
the collective pseudonym of a group of French mathematicians that formed in
1935 and, from 1939 on, started publishing the aforementioned multivolume
opus Eléments de mathématique with the goal to rebuild mathematics from
scratch. Members of Nicolas Bourbaki have to leave once they reach age 50,
and new members are appointed to replace the retiring ones. Hence, Nico-
las Bourbaki is a truly immortal mathematician! Even though it is widely
claimed (and believed), Nicolas Bourbaki was not the name of a French gen-
eral in the Franco–Prussian war of 1871: there was a general in that war
by the last name of Bourbaki, but his first names were Charles Denis. (He
was offered the throne of Greece in 1862, which he turned down, and in the
Franco–Prussian war, he unsuccessfully attempted suicide in order to avoid
the humiliation of surrender.)

For a good reason, our Theorem 2.4.14 is somewhat less general than the
result from [Bourbaki 60]. As Jean Esterle remarks in [Esterle 84]:

Incidentally, the reader interested in a French way of writing a result as
clear as Corollary 2.2 [≈ Theorem 2.4.14] in a form almost inaccessible
to human mind is referred to the statement by Bourbaki [. . . ].

In statement and proof of Theorem 2.4.14, we follow [Dales 78].
Baire’s theorem is sometimes referred to as Baire’s category theorem (es-

pecially in older books). The reasons for this are historical. A subset of a
metric space is called nowhere dense if its closure has an empty interior. A
subset that is a countable union of nowhere dense sets used to be called a
set of the first category in the space, and all other subsets were said to be of
the second category . In this terminology, Baire’s theorem (or rather Corollary
2.4.17) asserts that every complete metric space is of the second category in
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itself. The first/second category terminology has not withstood the test of
time (when mathematicians nowadays speak of categories, they mean some-
thing completely different), but the nametag category theorem still survives
to this day.

Maurice Fréchet died in 1973, at the age of 94, decades after the concept
he had introduced in his thesis had become a mathematical household item.
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Set-Theoretic Topology

Why would one want to attempt to extend notions such as convergence and
continuity to a setting even more abstract than metric spaces?

The answer is that, already at a very elementary level, one encounters
phenomena that do not fit into the framework of metric spaces: pointwise
convergence, for instance—the most basic notion of convergence there is for
functions—cannot be described as convergence with respect to a metric (as
we show in this chapter).

Convergence and continuity in the metric setting were based on a notion of
“closeness” for points: two points were sufficiently close if their distance, mea-
sured through the given metric, was sufficiently small. Going beyond metric
spaces and still being able to meaningfully speak of convergence and continu-
ity therefore ought to be based on an axiomatized notion of closeness. Such
an axiomatization exists (and is surprisingly simple): it lies at the heart of
the concept of a topological space. (For technical reasons, we pursue a slightly
different, but equivalent route.)

3.1 Topological Spaces—Definitions and Examples

A topological space is supposed to be a set that has just enough structure to
meaningfully speak of continuous functions on it. In view of Corollary 2.3.10,
a reasonable approach would be to axiomatize the notion of an open set:

Definition 3.1.1. Let X be a set. A topology on X is a subset T of P(X)
such that:

(a) ∅, X ∈ T ;
(b) If U ⊂ T is arbitrary, then

⋃
{U : U ∈ U} lies in T ;

(c) If U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

The sets in T are called open. A set together with a topology is called a
topological space.
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We often write (X, T ) for a topological space X with topology T ; some-
times, if the topology is obvious or irrelevant, we may also simply write X .

Examples 3.1.2. (a) Let (X, d) be a metric space, and let T denote the col-
lection of all subsets of X that are open in the sense of Definition 2.2.3.
By Proposition 2.2.5, T is indeed a topology. It is clear that T does not
depend on the particular metric d, but only on its equivalence class: any
metric on X equivalent to d yields the same topology. Topological spaces
of this type are called metrizable.

(b) Let X be any set, and let T = P(X). This is just a special case of the
first example: equip X with the discrete metric. Such topological spaces
are called discrete.

(c) Let X be any set, and let T = {∅, X}. Such topological spaces are called
chaotic.

(d) Let X be any set, and let T consist of ∅ and all subsets of X with finite
complement.

(e) Let X be any set, and let T consist of ∅ and all subsets of X with countable
complement.

(f) Let (X, T ) be a topological space, and let Y ⊂ X . The relative topology
on Y (or the topology inherited from X) is the collection

T |Y := {Y ∩ U : U ∈ T }

of subsets of Y . It is clearly a topology on Y . The space (Y, T |Y ) is then
called a subspace of X .

Is every topological space metrizable? Of course not, and here is why.

Definition 3.1.3. A topological space (X, T ) is called Hausdorff if, for any
x, y ∈ X with x �= y, there are sets U, V ∈ T with x ∈ U , y ∈ V , and
U ∩ V = ∅.

Informally, Definition 3.1.3 is often expressed as, “In a Hausdorff space,
points can be separated by open sets.”

Examples 3.1.4. (a) Let (X, d) be a metric space, and let x, y ∈ X be such
that x �= y. It follows that ε := 1

2d(x, y) > 0. Let U := Bε(x) and let
V := Bε(y). It follows that U ∩ V = ∅, so that X is Hausdorff.

(b) If X is any set with more than one element, then X equipped with the
chaotic topology is not Hausdorff (and therefore not metrizable).

(c) Let X be an infinite set equipped with the topology from Example
3.1.2(d), and let x, y ∈ X be such that x �= y. Assume that X is Haus-
dorff. Then there are open sets U and V of X with x ∈ U , y ∈ V , and
U ∩ V = ∅. This, however, entails that X = (X \ U) ∪ (X \ V ) is finite,
which is a contradiction.

(d) Similarly, if X is any uncountable set equipped with the topology from
Example 3.1.2(e), the resulting topological space fails to be Hausdorff (see
Exercise 1 below).
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We soon encounter Hausdorff spaces that nevertheless fail to be metrizable.
With a notion of open sets at hand, we can define, of course, what a closed

subset of a topological space is supposed to be:

Definition 3.1.5. Let (X, T ) be a topological space. A subset F of X is called
closed if X \ F is open.

As for metric spaces, we have the following.

Proposition 3.1.6. Let (X, T ) be a topological space. Then:

(i) ∅ and X are closed.
(ii) If F is a family of closed subsets of X, then

⋂
{F : F ∈ F} is closed.

(iii) If F1 and F2 are closed subsets of X, then F1 ∪ F2 is closed.

Of course, one can also define a topology on a given set by declaring certain
sets as closed, then checking that these sets satisfy Proposition 3.1.6(i) through
(iii), and defining their complements as open; it is clear that this approach is
equivalent to Definition 3.1.1.

Example 3.1.7. Let R be a commutative ring with identity. Recall that a
proper ideal p of R (i.e., p � R) is called prime if ab ∈ p implies that
a ∈ p or b ∈ p. For example, let R = Z; then every ideal of Z is of the
form nZ := {nm : m ∈ Z} with n ∈ N0, and it is a prime ideal of Z if and
only if n is zero or a prime number. Let

Spec(R) := {p : p is a prime ideal of R}.

We now define a topology on Spec(R) by declaring certain subsets of
Spec(R) as closed.

For any ideal I of R, let

V (I) := {p ∈ Spec(R) : I ⊂ p},

so that, in particular, ∅ = V (R) and Spec(R) = V ({0}). Let I be a family of
ideals of R, and let

∑
{I : I ∈ I} be the set of all finite sums

∑n
j=1 aj such

that there are I1, . . . , In ∈ I with aj ∈ Ij for j = 1, . . . , n. It is clear that∑
{I : I ∈ I} is again an ideal of R, and it is easy to see that⋂

{V (I) : I ∈ I} = V
(∑

{I : I ∈ I}
)

.

Let I1 and I2 be ideals of R, and let I be the ideal of R generated by the set
{ab : a ∈ I1, b ∈ I2}. It is easy to see that I consists precisely of those elements
of R that are of the form

∑n
j=1 ajbj with a1, . . . , an ∈ I1 and b1, . . . , bn ∈ I2.

We claim that V (I1) ∪ V (I2) = V (I). If p is a prime ideal containing both
I1 or I2, it is clear that I ⊂ p. Consequently, V (I1) ∪ V (I2) ⊂ V (I) holds.
Conversely, let p ∈ V (I), and, without loss of generality, suppose that p /∈
V (I1), so that there is a ∈ I1 with a /∈ p. Since p ∈ V (I), it follows that
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{ab : b ∈ I2} ⊂ I ⊂ p

and therefore, because p is a prime ideal, that I2 ⊂ p; that is, p ∈ V (I2). All
in all, we obtain V (I1) ∪ V (I2) = V (I) as claimed.

The sets of the form V (I), where I is an ideal of R, are thus the closed
sets of a topology on Spec(R). This topology is called the Zariski topology .

With a notion of openness, we can define neighborhoods in topological
spaces.

Definition 3.1.8. Let (X, T ) be a topological space, and let x ∈ X. A subset
N of X is called a neighborhood of x if there is an open subset U of X with
x ∈ U ⊂ N . The collection of all neighborhoods of x is denoted by Nx.

The following proposition is proven as for metric spaces.

Proposition 3.1.9. Let (X, T ) be a topological space, and let x ∈ X. Then:

(i) If N ∈ Nx and M ⊃ N , then M ∈ Nx.
(ii) If N1, N2 ∈ Nx, then N1 ∩N2 ∈ Nx.

Moreover, a subset U of X is open if and only if U ∈ Ny for each y ∈ U .

The following is of interest because it shows that, instead of through ax-
iomatizing the notion of openness, a topology can also be defined via an
axiomatized notion of neighborhood.

Theorem 3.1.10. Let X be a set, and let, for each x ∈ X, there be ∅ �=
Nx ⊂ P(X) such that:

(a) x ∈ N for each N ∈ Nx;
(b) If N ∈ Nx and M ⊃ N , then M ∈ Nx;
(c) If N1, N2 ∈ Nx, then N1 ∩N2 ∈ Nx;
(d) For each N ∈ Nx there is U ∈ Nx such that U ⊂ N and U ∈ Ny for all

y ∈ U .

Let T be the collection of all subsets U of X with U ∈ Ny for each y ∈ U .
Then T is the unique topology on X such that Nx = Nx for each x ∈ X.

Proof. Trivially, ∅ and X are in T .
Let U ⊂ T , and let y ∈

⋃
{U : U ∈ U}. It follows that there is U0 ∈ U

with y ∈ U0; that is, U0 ∈ Ny. By (b), this means that
⋃
{U : U ∈ U} ∈ Ny

as well. Since y was arbitrary, this means that
⋃
{U : U ∈ U} ∈ T , too.

Let U1, U2 ∈ T , and let y ∈ U1 ∩ U2; that is, U1, U2 ∈ Ny. From (c), it
follows that U1 ∩U2 ∈ Ny. Again, since y was arbitrary, U1 ∩U2 ∈ T follows.

All in all, T is a topology, so that it makes sense to speak of Nx for x ∈ X .
(Note that no use has been made so far of (d).)

Let x ∈ X , and let N ∈ Nx. By (d), there is U ∈ Nx such that U ∈ Ny

for each y ∈ U . By the definition of T , this means that U is open, and since
x ∈ U ⊂ N , we have N ∈ Nx. Conversely, if N ∈ Nx, there is U ∈ T with
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x ∈ U ⊂ N . By the definition of T , we have U ∈ Nx, so that N ∈ Nx by (b).
Hence, Nx = Nx holds for all x ∈ X .

From the “moreover” statement of Proposition 3.1.9, it is clear that T is
uniquely determined by this property. �	

Example 3.1.11. Let S �= ∅ be a set, let (Y, d) be a metric space, and let
F (S, Y ) denote the set of all functions from S to Y . Let ∅ �= C ⊂ P(S) be
closed under finite unions. For f ∈ F (S, Y ), C ∈ C, and ε > 0, let

Nf,C,ε :=
{

g ∈ F (S, Y ) : sup
x∈C

d(f(x), g(x)) < ε

}
,

and, for f ∈ F (S, Y ), let

Nf := {N ⊂ F (S, Y ) : N ⊃ Nf,C,ε for some C ∈ C and ε > 0}.

We claim that Nf satisfies conditions (a) through (d) of Theorem 3.1.10.
Trivially, (a) and (b) are satisfied, and since

Nf,C1,ε1 ∩Nf,C2,ε2 ⊃ Nf,C1∪C2,min{ε1,ε2}

for C1, C2 ∈ C and ε1, ε2 > 0, it follows that (c) holds as well. To see that
(d) is also true, let N ∈ Nf , so that there are C ∈ C and ε > 0 with U :=
Nf,C,ε ⊂ N . Let g ∈ U , so that supx∈C d(f(x), g(x)) < ε, and let δ := ε −
supx∈C d(f(x), g(x)) > 0. It is routinely seen that Ng,C,δ ⊂ U , so that U ∈ Ng.
Since g ∈ U was arbitrary, it follows that Nf also satisfies Theorem 3.1.10(d).

By Theorem 3.1.10, we therefore have a unique topology, which we denote
by TC , on F (S, Y ) with Nf = Nf for each f ∈ F (S, Y ). (The definition of TC
may seem bewildering, but we show in the next section that such topologies
can be used to capture well-known phenomena in analysis, such as pointwise
and uniform convergence.)

In Example 3.1.11, we constructed a system of neighborhoods at each point
of the space F (S, Y ) by defining those neighborhoods as containing certain,
more basic sets. This may serve as motivation for the following definition.

Definition 3.1.12. Let (X, T ) be a topological space, and let x ∈ X. A base
for Nx is a subset Bx of Nx such that, for each N ∈ Nx, there is B ∈ Bx with
B ⊂ N . Neighborhoods in Bx are called basic.

Examples 3.1.13. (a) In Example 3.1.11, for given f ∈ F (S, Y ), the sets of the
form Nf,C,ε with C ∈ C and ε > 0 form a base for Nf .

(b) Let (X, T ) be any topological space, and let x ∈ X . Then {U ∈ Nx :
U is open} is a base for Nx.

(c) Let (X, d) be a metric space, and let x ∈ X . Then both {Bε(x) : ε > 0}
and

{
B 1

n
(x) : n ∈ N

}
are bases for Nx.
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With the notions of a base of neighborhoods at hand, we can now exhibit
topological spaces that are Hausdorff, but not metrizable.

Definition 3.1.14. A topological space (X, T ) is called first countable if, for
each x ∈ X, there is a countable base for Nx.

Examples 3.1.15. (a) In view of Example 3.1.13(c), every metrizable topolog-
ical space is first countable.

(b) Let S be an uncountable set, let Y be any metric space with more than one
point, and let F := {F ⊂ S : F is finite}. We claim that the topological
space (F (S, Y ), TF ) from Example 3.1.11 is not first countable—and thus
not metrizable—but nevertheless Hausdorff.
Let f, g ∈ F (S, Y ) such that f �= g. Hence, there is x ∈ S with f(x) �= g(x).
Let ε := 1

2d(f(x), g(x)). It follows that

Nf,{x},ε ∩Ng,{x},ε = ∅,

so that (F (S, Y ), TF ) is Hausdorff.
Let f ∈ F (S, Y ), and assume that Nf has a countable base, {B1, B2, . . .}
say. We first claim that

⋂∞
n=1 Bn = {f}. To see this, assume towards

a contradiction that there is g �= f in
⋂∞

n=1 Bn. Since (F (S, Y ), TF ) is
Hausdorff, there is N ∈ Nf with g /∈ N , and from the definition of a
base for Nf , we obtain that g /∈ Bm for some m ∈ N: this contradicts our
assumption. From the definition of Nf , it follows immediately that, for
each n ∈ N, there are Fn ∈ F and εn > 0 such that Nf,Fn,εn ⊂ Bn. It
follows that

{f} ⊂
∞⋂

n=1

Nf,Fn,εn ⊂
∞⋂

n=1

Bn = {f}.

Define g : S → Y as follows,

g(x) :=
{

f(x), if x ∈
⋃∞

n=1 Fn,
some y �= f(x), otherwise;

this is possible because Y has more than one point. Since S is uncountable,
S �

⋃∞
n=1 Fn must hold, so that g �= f . It is clear, however, that g ∈⋂∞

n=1 Nf,Fn,εn , which is impossible. Consequently, (F (S, Y ), TF ) is not
first countable and therefore not metrizable.

Since, in general topological spaces, a notion of closed sets exists, we can
define the closure of an arbitrary subset.

Definition 3.1.16. Let (X, T ) be a topological space. For each S ⊂ X, the
closure of S is defined as

S :=
⋂
{F : F ⊂ X is closed and contains S}.
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Example 3.1.17. Let R be a commutative ring with identity, and let Spec(R)
be equipped with the Zariski topology. Let S ⊂ Spec(R). We claim that

S = V
(⋂

{p : p ∈ S}
)

.

Since
⋂
{p : p ∈ S} is an ideal of R, it follows that V (

⋂
{p : p ∈ S}) is closed

(and trivially contains S), so that

S ⊂ V
(⋂

{p : p ∈ S}
)

.

Let I be an ideal of R with S = V (I). It follows that I ⊂ p for each p ∈ S
and thus I ⊂

⋂
{p : p ∈ S}. This, in turn, yields that

V
(⋂

{p : p ∈ S}
)
⊂ V (I) = S,

so that equality holds.

As for metric spaces, we have the following proposition.

Proposition 3.1.18. Let (X, T ) be a topological space, and let S ⊂ X. Then
we have

S = {x ∈ X : N ∩ S �= ∅ for all N ∈ Nx}.

The proof is an almost verbatim copy of that of Proposition 2.2.13.
As with the notion of neighborhood, that of closure can be used to define

a topology on a given set.

Definition 3.1.19. Let X be a set. A Kuratowski closure operation is a map
cl : P(X) → P(X) satisfying

(a) cl(∅) = ∅,
(b) S ⊂ cl(S) for all S ⊂ X,
(c) cl(cl(S)) = cl(S) for all S ⊂ X, and
(d) cl(S ∪ T ) = cl(S) ∪ cl(T ) for all S, T ⊂ X.

It is immediate that taking the closure in a topological space is a Kura-
towski closure operation: (a), (b), and (c) hold trivially, and (d) is easy to
verify (see Exercise 2 below).

Theorem 3.1.20. Let X be a set equipped with a Kuratowski closure oper-
ation cl. Then those subsets F of X such that cl(F ) = F form the closed
subsets of a unique topology T on X.

Proof. Set
T := {U ⊂ X : cl(X \ U) = X \ U}.

We show that T is a topology on X such that S = cl(S) for each S ⊂ X .
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We refer to a set F ⊂ X as T -closed if its complement in X is in T ; that
is, cl(F ) = F . We check that the family of all T -closed subsets of X satisfies
properties (i), (ii), and (iii) of Proposition 3.1.6.

By Definition 3.1.19(a) and (b), ∅ and X are T -closed, and by (d), the
union of any two T -closed sets is T -closed again.

For S, T ⊂ X with S ⊂ T , observe that, by (d),

cl(S) ⊂ cl(S) ∪ cl(T ) = cl(S ∪ T ) = cl(T ).

Let F be a family of T -closed sets, and let F0 ∈ F . Then we have, in view of
the foregoing, that

cl
(⋂

{F : F ∈ F}
)
⊂ cl(F0) = F0.

Since F0 ∈ F was arbitrary, we obtain

cl
(⋂

{F : F ∈ F}
)
⊂

⋂
{F : F ∈ F}.

The converse inclusion holds by (b), so that
⋂
{F : F ∈ F} is T -closed.

All in all, T is a topology on X .
Let S ⊂ X . By (b), we have S ⊂ cl(S) and thus S ⊂ cl(S) because cl(S)

is T -closed by (c). On the other hand, S ⊂ S implies that

cl(S) ⊂ cl
(
S
)

= S,

so that in the end S = cl(S). �	

With the definition of closure comes that of density.

Definition 3.1.21. Let (X, T ) be a topological space. Then D ⊂ X is said to
be dense in X if D = X.

Example 3.1.22. Let R be a commutative ring with identity, and let p ∈
Spec(R). By Example 3.1.17, we have

{p} = {q ∈ Spec(R) : p ⊂ q}.

Suppose now that R is an integral domain; that is, ab = 0 implies a = 0 or
b = 0 (this is the same as saying that the zero ideal (0) is prime). For example,
Z and any field are integral domains whereas Z/4Z isn’t. Then we have

{(0)} = {q ∈ Spec(R) : (0) ⊂ q} = Spec(R);

that is, the singleton subset {(0)} is dense in Spec(R).

This example shows that general topological spaces can display somewhat
bizarre phenomena that cannot occur in metric spaces: a singleton subset is
dense in a metric space if and only if the whole space itself is a singleton set.
Example 3.1.22 is not contrived in any way: the Zariski spectra of commutative
rings are important objects in commutative algebra and algebraic geometry.

With the definition of density at hand, separability can be defined.
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Definition 3.1.23. A topological space is called separable if it has a dense
countable subset.

One might guess that, in analogy with the situation for metric spaces, a
subspace of a separable topological space is again separable, but as we show,
this is not true. We use this as an excuse to introduce yet another definition
(actually two definitions).

Definition 3.1.24. Let (X, T ) be a topological space. Then:

(a) A base for T is a collection B of open sets such that each open set is a
union of sets in B;

(b) A subbase for T is a collection S of open sets such that the collection of
all finite intersections of sets in S is a base for T .

Examples 3.1.25. (a) Let (X, d) be a metric space. Then {Br(x) : x ∈ X, r >
0} is a base for the topology induced by d.

(b) Let R be a commutative ring with identity. For a ∈ R, let

V (a) := {p ∈ Spec(R) : a ∈ p}.

It is clear that V (a) equals V (aR) and thus is closed for each a ∈ R. Let
F ⊂ Spec(R) be closed; that is, F = V (I) for some ideal I of R. It follows
that

F = V (I) =
⋂
{V (a) : a ∈ I}.

Consequently, {Spec(R) \V (a) : a ∈ R} is a base for the Zariski topology.

Let X be any set, and suppose that B ⊂ P(X) has the property that, for
any B1, B2 ∈ B, their intersection B1 ∩ B2 is empty or belongs to B again.
Then, as is straightforward to verify, the collection of all unions of sets from
B is a topology on X having B as base. More generally, if S ⊂ P(X) is
arbitrary, then the collection of all unions of finite intersections of sets from
S is a topology on X with S as subbase.

Example 3.1.26. Let X = R2. For a, b ∈ R, let

Ba,b := {(x, y) ∈ R2 : x ≥ a, y ≥ b}.

Then B := {Ba,b : a, b ∈ R} is stable under finite intersections. Hence, by the
preceding remark, there is a (necessarily unique) topology T on X with B as
base. We first claim that (X, T ) is separable. We show that C := {(n, n) : n ∈
N} is dense in X . Assume that C is not dense in X . Then ∅ �= U := X \ C
is open and thus contains a set of the form Ba,b with a, b ∈ R. However, if
n ≥ max{a, b}, it is clear that (n, n) ∈ C ∩Ba,b, which yields a contradiction.

Let Y := {(x,−x) : x ∈ R}. For any a ∈ R, we have

Y ∩Ba,−a = {(a,−a)}.
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Hence, all singleton subsets of Y are open with respect to T |Y , so that the
topological space (Y, T |Y ) must be discrete. Clearly, Y is uncountable, and
that’s impossible if it were separable.

y

b , c )

( b , c )Ba , −a( )

B( a , −a)

C

Y

x

(

Fig. 3.1: A separable space with a nonseparable subspace

We finish this section with a brief discussion of the boundary and the
interior of subsets of topological spaces: the definitions and results very much
parallel those for metric spaces, and the corresponding proofs carry over.

Definition 3.1.27. Let (X, T ) be a topological space, and let S ⊂ X. Then
the boundary of S is defined as

∂S := {x ∈ X : N ∩ S �= ∅ and N ∩ (X \ S) �= ∅ for all N ∈ Nx}.

Proposition 3.1.28. Let (X, T ) be a topological space, and let S ⊂ X. Then:

(i) ∂S = ∂(X \ S);
(ii) ∂S is closed;
(iii) S = S ∪ ∂S.

Definition 3.1.29. Let (X, T ) be a topological space. For each S ⊂ X, the
interior of S is defined as

◦
S:=

⋃
{U : U ⊂ X is open and contained in S}.
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Proposition 3.1.30. Let (X, T ) be a topological space, and let S ⊂ X. Then
we have:

◦
S= {x ∈ X : S ∈ Nx} = S \ ∂S.

Exercises

1. Let (X, T ) be the topological space from Example 3.1.2(e); that is, U ⊂ X is
open if and only if U is empty or has a countable complement. Show that X is
countable if and only if (X, T ) is discrete and if and only if (X, T ) is Hausdorff.

2. Let (X, T ) be a topological space, and let S, T ⊂ X. Show that S ∪ T = S ∪ T
and S \ T ⊂ S \ T .

3. Let R be a commutative ring with identity, and let p ∈ Spec(R). Show that {p}
is closed in Spec(R) if and only if p is a maximal ideal of R.

4. A topological space (X, T ) is called second countable if T has a countable base.
Show that:
(a) Every second countable space is first countable;
(b) Every separable metric space is second countable.

5. Let (X, T ) be the separable space from Example 3.1.26. Show that X is first
countable, but not second countable. (This space is not Hausdorff; in Example
3.5.14 below, a separable Hausdorff space—easily seen to be first countable—is
discussed that fails to be second countable.)

6. A topological proof for the infinitude of primes. For any a ∈ Z and b ∈ N, let

Na,b := {a + nb : n ∈ Z}.

For a ∈ Z, let Na consist of those sets N such that there is b ∈ N with Na,b ⊂ N .
(a) Show that, for each a ∈ Z, the system Na satisfies the hypotheses of Theo-

rem 3.1.10, so that there is a unique topology T on Z such that Na = Na

for each a ∈ Z.
(b) Argue that any open subset of (Z, T ) is either empty or infinite.
(c) Show that, for any a ∈ Z and b ∈ N, the set Na,b is both open and closed.
(d) Argue that

Z \ {−1, 1} =
[

{N0,p : p is a prime number}.

(e) Conclude that there are infinitely many prime numbers.

7. Let (X, T ) be a topological space, and let S ⊂ X. Show that X\
◦
S= X \ S and

X \ S = (X \ S)◦.
8. Quotient spaces. Let (X, T ) be a topological space, and let ≈ be an equivalence

relation on X. For x ∈ X, let [x] denote its equivalence class with respect to
≈, and let X/≈ denote the collection of all [x] with x ∈ X. Show that the
collection of all subsets U of X/≈ such that {x ∈ X : [x] ∈ U} ∈ T is a
topology on X/≈. (This topology is called the quotient topology on X/≈, and
the resulting topological space is the quotient space of X with respect to ≈.)
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3.2 Continuity and Convergence of Nets

One can, of course, define convergence for sequences in topological spaces as
for metric spaces.

Definition 3.2.1. Let (X, T ) be a topological space. A sequence (xn)∞n=1 in
X is said to converge to x ∈ X if, for each N ∈ Nx, there is nN ∈ N such
that xn ∈ N for all n ≥ nN .

This definition is perfectly fine, but if one attempts to prove analogues of
results for convergent sequences in metric spaces, problems show up. Propo-
sition 2.3.4, for example, is no longer true in general topological spaces.

Example 3.2.2. Let X be an uncountable set equipped with the topology of
Example 3.1.2(e); that is, the open sets are ∅ and those with a countable
complement. Fix a point x0 ∈ X . Then X \ {x0} is not closed, so that
X \ {x0} = X must hold. Let (xn)∞n=1 be a sequence in X \ {x0}, and let
U := X \ {x1, x2, . . .}. Due to the nature of our topology, U is open and thus
is a neighborhood of x0. However, xn /∈ U for all n ∈ N by definition, so that
(xn)∞n=1 cannot converge to x0.

A less contrived example for the failure of Proposition 2.3.4 in general
topological spaces is given in Exercise 11 below.

So, how are we going to define continuity on arbitrary topological spaces?
Of course, we could try it via sequences as for metric spaces, but in view
of Example 3.2.2, we are likely to run into unexpected difficulties. Of the
four equivalent conditions of Theorem 2.3.7, the fourth one doesn’t make any
explicit reference to a metric. We thus use it as the definition of continuity.

Definition 3.2.3. Let (X, TX) and (Y, TY ) be topological spaces. Then f :
X → Y is said to be continuous at x0 ∈ X if f−1(N) ∈ Nx0 for each N ∈
Nf(x0). If f is continuous at every point of X, we simply call f continuous.

As for metric spaces (Corollary 2.3.10), we have (with an identical proof):

Proposition 3.2.4. Let (X, TX) and (Y, TY ) be topological spaces. Then the
following are equivalent for f : X → Y .

(i) f is continuous.
(ii) f−1(U) is open in X for each open subset U of Y .
(iii) f−1(F ) is closed in X for each closed subset F of Y .

Examples 3.2.5. (a) Let (X, TX ) and (Y, TY ) be topological spaces such that
X is discrete. Then every function f : X → Y is continuous.

(b) Let (X, TX ) be a chaotic topological space (i.e., TX = {∅, X}), let (Y, TY )
be a Hausdorff space, and let f : X → Y be continuous. We claim that f
has to be constant. Otherwise, there are x, y ∈ X such that f(x) �= f(y).
Choose U, V ∈ TY such that f(x) ∈ U , f(y) ∈ V , and U ∩ V = ∅. Since
f is continuous, f−1(U) is open in X and nonempty because it contains
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x. Due to the definition of a chaotic topology, f−1(U) must equal X .
This, in turn, implies that y ∈ f−1(U) and therefore f(y) ∈ U , which is a
contradiction. (The demand that (Y, TY ) be Hausdorff cannot be dropped;
if Y is also chaotic, every map from X to Y is continuous.)

These two examples show drastically, how the continuous functions be-
tween topological spaces depend on the topologies with which those spaces
are equipped. Sometimes, we want particular maps between sets to be contin-
uous and will adjust the topologies accordingly.

Definition 3.2.6. Let X be a nonempty set, and let T1 and T2 be topologies
on X. We say that T1 and T2 are comparable if T1 ⊂ T2 or T2 ⊂ T1. If
T1 ⊂ T2, we say that T1 is coarser than T2 or, equivalently, that T2 is finer
than T1.

Clearly, T1 is finer than T2 if and only if id : (X, T1) → (X, T2) is continuous.

Proposition 3.2.7. Let X be a set, let ((Yi, Ti))i∈I be a family of topological
spaces, and let fi : X → Yi be a function for each i ∈ I. Then there is
a coarsest topology on X such that each of the maps fi is continuous. The
collection {f−1

i (U) : i ∈ I, U ∈ Ti} is a subbase for this topology.

Proof. Let S := {f−1
i (U) : i ∈ I, U ∈ Ti}, and let T be the collection of

all unions of finite intersections of sets from S. Then T is a topology on X
having S as a subbase and turning each fi : (X, T ) → (Yi, Ti) into a continuous
function by Proposition 3.2.4.

Let T ′ be any topology on X such that fi : (X, T ′) → (Yi, Ti) is continuous
for each i ∈ I. By Proposition 3.2.4, it is clear that S ⊂ T ′ and thus T ⊂ T ′;
that is. T is coarser than T ′. �	

The relevance of Proposition 3.2.7 becomes clear in the next section.
As we have seen at the beginning of this section, sequences are too lim-

ited an instrument in the study of topological spaces (and the continuous
functions on them). Nevertheless, arguments involving sequences were often
very convenient when we studied metric spaces in the previous chapter. Isn’t
there somehow a way to “rescue” sequences for the use in general topological
spaces? There is, but it comes at a price: instead of just N, we have to admit
more general index sets.

Definition 3.2.8. An ordered set A is called directed if, for any α, β ∈ A,
there is γ ∈ A such that α � γ and β � γ.

Examples 3.2.9. (a) Every totally ordered set is directed. In particular, N is
directed.

(b) Let S be any set. Then P(S), ordered by set inclusion, is directed.

Definition 3.2.10. A net or a generalized sequence in a set S is a function
from a directed set into S.



74 3 Set-Theoretic Topology

If A is a directed set serving as the domain of some net, we often use the
notation (xα)α∈A; if no ambiguity can arise about A, we sometimes simply
write (xα)α. It is clear that a sequence is just a particular case of a net.

Example 3.2.11. Let a < b be real numbers. A partition P of [a, b] consists of
finitely many numbers t0, t1, . . . , tn such that a = t0 < t1 < · · · < tn = b. We
write

P = {a = t0 < t1 < · · · < tn = b}. (∗)
The collection P of all partitions of [a, b] is naturally ordered; given P as in
(∗) and

Q = {a = s0 < s1 < · · · < sm = b},
we define

P � Q :⇐⇒ {t0, t1, . . . , tn} ⊂ {s0, s1, . . . , sm}.

Clearly, this turns P into a directed set. For P ∈ P as in (∗), a tag associated
with P is an n-tuple ξ = (ξ1, . . . , ξn) with ξj ∈ [tj−1, tj ] for j = 1, . . . , n. Given
P ∈ P, an associated tag ξ, and a function f : [a, b] → R, the corresponding
Riemann sum is defined as

R(f ;P , ξ) :=
n∑

j=1

f(ξj)(tj − tj−1).

If, for each P ∈ P, we fix a tag ξP , the Riemann sums (R(f ;P , ξP))P∈P form
a net in R.

It is clear how Definition 3.2.1 has to be extended to general nets.

Definition 3.2.12. Let (X, T ) be a topological space. A net (xα)α∈A in X is
said to converge to x ∈ X if, for each N ∈ Nx, there is αN ∈ A such that
xα ∈ N for all α ∈ A such that αN � α. We then say that x is a limit of
(xα)α∈A and write x = limα xα or xα → x.

The notation limα xα = x has to be handled with caution: a limit of a net
in a general topological space need not be unique. An easy, albeit extreme,
example is a chaotic topological space with more than one point: every net
converges to every point. Writing limα xα = x therefore does not mean that
x is the limit of the net (xα)α, but rather that x is one (of possibly many)
limits of that net.

We now give a few examples of convergent nets that may not be all that
unfamiliar.

Examples 3.2.13. (a) In the situation of Example 3.2.11, suppose that f is
Riemann integrable on [a, b]. Then (R(f ;P , ξP))P∈P converges, namely

lim
P

R(f ;P , ξP) =
∫ b

a

f(t) dt.

Conversely, if (R(f ;P , ξP))P∈P converges for each choice (ξP)P∈P of tags,
and if this limit is independent of (ξP)P∈P, then f is Riemann integrable.
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(b) Let S �= ∅ be a set, and let (Y, d) be a metric space. We say that
a net (fα)α∈A in F (S, Y ) converges to f ∈ F (S, Y ) pointwise on S if
limα fα(x) = f(x), for each x ∈ S; that is, if for each x ∈ S and for each
ε > 0, there is αx,ε ∈ A with

d(fα(x), f(x)) < ε (α ∈ A, αx,ε � α);

and we say that (fα)α∈A converges to f uniformly on S if, for each ε > 0,
there is αε ∈ A with

d(fα(x), f(x)) < ε (x ∈ S, α ∈ A, αε � α).

(In the situation where S ⊂ Rn, Y = R, and with (fα)α∈A a sequence,
these definitions are just the familiar ones.)
We now show how to express these notions of convergence in terms of
the topologies TC (discussed in Example 3.1.11), where ∅ �= C ⊂ P(X)
is stable under finite unions. Let (fα)α∈A be a net in F (S, Y ), and let
f ∈ F (S, Y ). Since the collection of sets {Nf,C,ε : C ∈ C, ε > 0} forms a
base for Nf , it is clear that limα fα = f with respect to TC if and only if,
for each C ∈ C and for each ε > 0, there is αC,ε ∈ A such that

sup
x∈C

d(fα(x), f(x)) < ε (α ∈ A, αC,ε � α).

Let F be the collection of all finite subsets of S, and suppose that (fα)α∈A

in F (S, Y ) converges pointwise to f ∈ F (S, Y ). Let F ∈ F , say F =
{x1, . . . , xn}, and let ε > 0. Then, for j = 1, . . . , n, there is αj,ε ∈ A such
that

d(fα(xj), f(xj)) < ε (α ∈ A, αj,ε � α).

Since A is directed, there is αF,ε ∈ A with αj,ε � αF,ε for j = 1, . . . , n. It
follows that

max
j=1,...,n

d(fα(xj), f(xj)) < ε (α ∈ A, αF,ε � α),

so that we have convergence with respect to TF . Conversely (and straight-
forward to verify), we have pointwise convergence whenever we have con-
vergence with respect to TF . We therefore sometimes call TF the topology
of pointwise convergence (on S).
Similarly, uniform convergence is nothing but convergence with respect
to T{S}, so that we sometimes refer to this topology as to the topology of
uniform convergence.

As we saw at the beginning of this section, sequences are an inadequate
instrument in the study of general topological spaces because, among other
things, Proposition 2.3.4 is no longer true. As it turns out, this changes if we
only replace sequences by nets.



76 3 Set-Theoretic Topology

Proposition 3.2.14. Let (X, T ) be a topological space, and let S ⊂ X. Then
S consists of those points in X that are a limit of a net in S.

Proof. Let x ∈ S. Turn Nx into a directed set via reversed set inclusion; that
is, by letting

M � N :⇐⇒ N ⊂ M (N, M ∈ Nx).

By Proposition 3.1.18, there is, for each N ∈ Nx, an element xN ∈ N ∩ S.
Then (xN )N∈Nx is a net in S such that x = limN xN .

Let (xα)α∈A be a net in S such that x = limα xα, and assume that x ∈
U := X \ S. Then there is αU ∈ A such that xα ∈ U ⊂ X \ S for all α ∈ A
such that αU � α, which is impossible. �	

Corollary 3.2.15. Let (X, T ) be a topological space. Then F ⊂ X is closed
if and only if every net in F that converges in X has its limits in F .

Proposition 3.2.14 yields further examples for the nonuniqueness of limits
in general topological spaces (and more natural ones than chaotic spaces).

Example 3.2.16. Let R be a commutative ring with identity that is an integral
domain. The singleton subset {(0)} is then dense in all of Spec(R) (Example
3.1.22). By Proposition 3.2.14, the constant net ((0))α, no matter what the
index set is, therefore converges to every point in Spec(R). If R is not a field
(e.g., R = Z), then Spec(R) has other elements besides (0). In this case, the
net ((0))α has several limits, namely each point in Spec(R).

Our next proposition shows that Definition 3.1.3 is crucial when it comes
to uniqueness of the limit in topological spaces.

Proposition 3.2.17. The following are equivalent for a topological space
(X, T ).

(i) X is Hausdorff.
(ii) Every convergent net in X has a unique limit.

Proof. (i) =⇒ (ii): Let (xα)α∈A be a net in X such that there are x, x′ ∈ X
such that xα → x and xα → x′, but x �= x′. By Definition 3.1.3, there are
N ∈ Nx and M ∈ Nx′ such that N∩M = ∅. By the definition of convergence,
there are αN , αM ∈ A such that xα ∈ N for all α ∈ A with αN � α and
xα ∈ M for all α ∈ A with αM � α. Since A is directed, we can find α ∈ A
with both αN � α and αM � α. Consequently, xα ∈ N ∩ M must hold for
such α, which is impossible because N ∩M = ∅.

(ii) =⇒ (i): Assume that X is not Hausdorff. Then there are x, y ∈ X with
x �= y such that N ∩M �= ∅ for all N ∈ Nx and M ∈ Ny. Turn Nx ×Ny into
a directed set by letting, for (N1, M1), (N2, M2) ∈ Nx ×Ny,

(N1, M1) � (N2, M2) :⇐⇒ N2 ⊂ N1 and M2 ⊂ M1.

For any (N, M) ∈ Nx×Ny pick x(N,M) ∈ N ∩M . It is routinely checked that(
x(N,M)

)
(N,M)∈Nx×Ny

is a net in X that converges to both x and y. �	
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As it turns out, with nets instead of sequences, we have an analogue of
Theorem 2.3.7.

Theorem 3.2.18. Let (X, TX) and (Y, TY ) be topological spaces, and let x0 ∈
X. Then the following are equivalent for a function f : X → Y .

(i) f is continuous at x0.
(ii) For each net (xα)α in X with limα xα = x0, we have limα f(xα) = f(x0).

Proof. (i) =⇒ (ii): Let (xα)α be a net in X with limα xα = x0, and let
N ∈ Nf(x0). By the definition of continuity at a point, we have f−1(N) ∈ Nx0 .
Consequently, there is an index αf−1(N) such that xα ∈ f−1(N) for all α
such that αf−1(N) � α. But this means that f(xα) ∈ N for those α. Since
N ∈ Nf(x0) was arbitrary, this means that limα f(xα) = f(x0).

(ii) =⇒ (i): Let N ∈ Nf(x0), and assume towards a contradiction that
f−1(N) /∈ Nx0 . It follows that U �⊂ f−1(N) for each open subset U of X con-
taining x0. Let Ux0 denote the collection of all open subsets of X containing
x0. Then Ux0 is a directed subset of Nx0 (with respect to reversed set inclu-
sion). By our assumption, we can choose xU ∈ U \ f−1(N) for each U ∈ Ux0 .
It is clear that limU xU = x0. However, since f(xU ) /∈ N for all U ∈ Ux0 , it
follows that f(xU ) �→ f(x0). �	

We can use Theorem 3.2.18 to give an alternative description of the topol-
ogy introduced in Proposition 3.2.7.

Proposition 3.2.19. Let X be a set, let ((Yi, Ti))i∈I be a family of topological
spaces, let fi : X → Yi be a function for each i ∈ I, and let T be the coarsest
topology on X such that each of the maps fi is continuous. Then a net (xα)α∈A

converges in (X, T ) to x ∈ X if and only if (fi(xα))α∈A converges to fi(x) in
(Yi, Ti) for each i ∈ I.

Proof. Suppose that x = limα xα in (X, T ). Since each fi : X → Yi is contin-
uous, it follows that limα fi(xα) = fi(x) in (Yi, Ti) for each i ∈ I.

Conversely, suppose that limα fi(xα) = fi(x) in (Yi, Ti) for each i ∈ I. Let
N be a neighborhood of x in (X, T ). By the definition of a neighborhood,
there is an open subset U of (X, T ) with x ∈ U ⊂ N . By the description of
a subbase for T given in Proposition 3.2.7, there are i1, . . . , in ∈ I along with
sets Uj ∈ Tij for j = 1, . . . , n such that

x ∈ f−1
i1

(U1) ∩ · · · ∩ f−1
in

(Un) ⊂ U.

Since limα fij (xα) = fij (x) for j = 1, . . . , n, there are α1, . . . , αn ∈ A such
that

fij (xα) ∈ Uj (j = 1, . . . , n, α ∈ A, αj � α).

Since A is directed, there is αN ∈ A such that αj � αN for j = 1, . . . , n.
Consequently, we have

xα ∈ f−1
i1

(U1) ∩ · · · ∩ f−1
in

(Un) ⊂ U ⊂ N (α ∈ A, αN � α),

so that x = limα xα holds in (X, T ). �	
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Exercises

1. Let (X, TX), (Y, TY ), and (Z, TZ) be topological spaces, let g : X → Y be
continuous at x0 ∈ X, and let f : Y → Z be continuous at g(x0) ∈ Y . Show
that f ◦ g is continuous at x0.

2. Let (X, TX) and (Y, TY ) be topological spaces, and let BY and SY be a base
and a subbase, respectively, for TY . Show that f : X → Y is continuous if and
only if f−1(B) ∈ TX for each B ∈ BY and if and only if f−1(S) ∈ TX for each
S ∈ SY .

3. Let (X, TX) and (Y,TY ) be topological spaces, and let X1 and X2 be two sub-
spaces of X such that X1 ∪ X2 = X which are both open or both closed. Show
that f : X → Y is continuous if and only if f |Xj is continuous for j = 1, 2.

4. Let (X, T ) be a first countable topological space. Show that, for any S ⊂ X,
the closure S of S consists of those points x ∈ X such that there is a sequence
in S converging to x.

5. Let R and S be commutative rings with identity, and let φ : R → S be a unital
ring homomorphism, that is, an additive and multiplicative map that maps the
identity of R to the identity of S. Show that:
(a) For any ideal I of S, its inverse image φ−1(I) is an ideal of R; if I is proper

or prime, respectively, the same is true for φ−1(I);
(b) The map

φ∗ : Spec(S) → Spec(R), p �→ φ−1(p)

is continuous if both Spec(S) and Spec(R) are equipped with their respec-
tive Zariski topology.

6. Let (X, T ) be a topological space, and let ≈ be an equivalence relation on
X. Show that the quotient topology on X/≈ (see Exercise 3.1.8) is the finest
topology on X/≈ making the quotient map

X → X/≈, x �→ [x]

continuous.
7. Let (X, T ) be a topological space, and let f, g : X → F be continuous. Show

that f + g, fg, and (provided that f(x) �= 0 for x ∈ X) 1
f

are also continuous.
8. Let (X, T ) be a topological space, and let f, g : X → R be continuous. Show

that max{f, g} and min{f, g} are continuous.
9. Let (X, TX) and (Y, TY ) be topological spaces, let S ⊂ X, and let f : X → Y

be continuous. Show that f
`

S
´

⊂ f(S).
10. Let (X, TX) and (Y, TY ) be topological spaces such that Y is Hausdorff, let D be

dense in X, and let f, g : X → Y be continuous functions such that f |D = g|D.
Show that f = g. What happens if we drop the demand that Y be Hausdorff?

11. Let F denote the collection of all finite subsets of [0, 1], and let F ([0, 1], F) be
equipped with the topology TF . Show that the continuous functions from [0, 1]
to F are dense in (F ([0, 1], F),TF ), but that there is no sequence of continuous
functions from [0, 1] to F converging to f : [0, 1] → F given by

f(t) :=

j

1, t /∈ [0, 1] ∩ Q,
0, t ∈ [0, 1] ∩ Q.

(Hint : Recall that convergence in TF is pointwise convergence by Example
3.2.13(b), and use Exercise 2.4.7 to show that f cannot be the limit of a sequence
of continuous functions.)
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12. Let (X, d) be a metric space. A net (xα)α∈A in X is called a Cauchy net if, for
each ε > 0, there is αε ∈ A such that d(xα, xβ) < ε for all α, β ∈ A such that
αε � α, β.
(a) Show that every convergent net in X is a Cauchy net.
(b) Show that X is complete if and only if each Cauchy net in X converges.

3.3 Compactness

Compactness for topological spaces is defined as in the metric situation.

Definition 3.3.1. Let (X, T ) be a topological space, and let S ⊂ X. An open
cover for S is a collection U of open subsets of X such that S ⊂

⋃
{U : U ∈ U}.

Definition 3.3.2. A subset K of a topological space (X, T ) is called compact
if, for each open cover U of K, there are U1, . . . , Un ∈ U such that K ⊂
U1 ∪ · · · ∪ Un.

Before we flesh out this definition with examples (nonmetrizable ones), we
introduce yet another definition.

Definition 3.3.3. A topological space (X, T ) has the finite intersection prop-
erty if, for any collection F of closed subsets of X such that

⋂
{F : F ∈ F} =

∅, there are F1, . . . , Fn ∈ F such that F1 ∩ · · · ∩ Fn = ∅.

The following is straightforward (just pass to complements).

Proposition 3.3.4. Let (X, T ) be a topological space. Then the following are
equivalent.

(i) X is compact.
(ii) X has the finite intersection property.

The reason why we introduced the finite intersection property at all is that
it is sometimes easier to verify than compactness.

Example 3.3.5. Let R be a commutative ring with identity. We claim that
Spec(R) has the finite intersection property (and thus is compact). Let I be
a family of ideals of R such that⋂

{V (I) : I ∈ I} = V
(∑

{I : I ∈ I}
)

= ∅.

This implies that
∑
{I : I ∈ I} = R: otherwise, Exercise 1.3.4 would yield

a maximal ideal containing
∑
{I : I ∈ I}, and since maximal ideals are

prime, this would be a contradiction. Since 1 ∈
∑
{I : I ∈ I}, there are

I1, . . . , In ∈ I and aj ∈ Ij for j = 1, . . . , n such that 1 =
∑n

j=1 aj . It follows
that 1 ∈ I1 + · · ·+ In. Since the only ideal of R containing 1 is R itself, this
means that I1 + · · ·+ In = R, so that

∅ = V (R) = V (I1 + · · ·+ In) = V (I1) ∩ · · · ∩ V (In).

Consequently, Spec(R) has the finite intersection property.
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As can be expected, many of the properties of compact metric spaces do,
in fact, hold for compact topological spaces.

Proposition 3.3.6. Let (X, T ) be a topological space, and let Y be a subspace
of X.

(i) If X is compact and Y is closed in X, then Y is compact.
(ii) If X is Hausdorff and Y is compact, then Y is closed in X.

Proof. (i) is proved as for metric spaces (Proposition 2.5.4(i)).
For (ii), let x ∈ X \ Y . For each y ∈ Y , there are open subsets Uy, Vy of

X such that x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. Since {Vy : y ∈ Y } is an open
cover for Y , there are y1, . . . , yn ∈ Y such that

Y ⊂ Vy1 ∪ · · · ∪ Vyn .

Letting U := Uy1 ∩ · · · ∩ Uyn , we obtain that

U ∩ Y ⊂ U ∩ (Vy1 ∪ · · · ∪ Vyn) = ∅,

so that X \ Y is a neighborhood of x. Since x ∈ X \ Y was arbitrary, this
shows that X \ Y is open. �	

The requirement in Proposition 3.3.6(ii) that X be Hausdorff cannot be
dropped.

Example 3.3.7. Let R be a commutative ring with identity that is an integral
domain, but not a field; for example, R = Z. Then the singleton subset {(0)}
of Spec(R) is dense in R, but not closed (otherwise (0) would be the only
prime ideal of R making it a field). Nevertheless, as a singleton subset, {(0)}
is trivially compact.

The following also holds (with an identical proof) as in the metric case.

Proposition 3.3.8. Let (K, TK) be a compact topological space, let (Y, TY )
be any topological space, and let f : K → Y be continuous. Then f(K) is
compact.

Corollary 3.3.9. Let (K, TK) be a nonempty, compact topological space, and
let f : K → R be continuous. Then f attains both a minimum and a maximum
on K.

We now use Proposition 3.3.8 to prove one of the most useful results on
compact topological spaces. We first state another definition.

Definition 3.3.10. Let (X, TX ) and (Y, TY ) be topological spaces. A homeo-
morphism between X and Y is a bijective map f : X → Y such that both f
and f−1 are continuous. If there is a homeomorphism between X and Y , the
two spaces are called homeomorphic.
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To put it in a nutshell: two homeomorphic topological spaces cannot be
told apart as topological spaces; that is., whatever topological property one
space has is also enjoyed by the other.

Theorem 3.3.11. Let (K, TK) and (Y, TY ) be topological spaces such that K
is compact and Y is Hausdorff, and let f : K → Y be bijective and continuous.
Then f is a homeomorphism.

Proof. We verify Proposition 3.2.4(iii) for f−1. Let F ⊂ K be closed. Since f
is bijective, it is clear that the inverse image of F under f−1 is just f(F ).

Since K is compact, so is F by Proposition 3.3.6(i). Consequently, f(F )
is compact in Y by Proposition 3.3.8 and thus closed in Y (because Y is
Hausdorff) by Proposition 3.3.6(ii). This proves Proposition 3.2.4(iii) for f−1

and thus the continuity of f−1. �	
Corollary 3.3.12. Let X be a set, and let T1 and T2 be comparable topologies
on X each turning it into a compact Hausdorff space. Then T1 = T2 holds.

A metric space is compact if and only if each sequence in the space has
a convergent subsequence. As we saw in the previous section, sequences are
inadequate when it comes to dealing with general topological spaces. We now
characterize the compact topological spaces in a similar way involving nets.
We first need to define what we mean by a subnet.

Definition 3.3.13. Let A and B be directed sets. A map φ : B → A is called
cofinal if, for each α ∈ A, there is βα ∈ B such that α � φ(β) for all β ∈ B
such that βα � β.

Definition 3.3.14. Let S be a nonempty set, and let (xα)α∈A and (yβ)β∈B be
nets in S. Then (yβ)β∈B is a subnet of (xα)α∈A if yβ = xφ(β) for a cofinal
map φ : B → A.

If (yβ)β is a subnet of (xα)α, we sometimes write (xαβ
)β instead of (yβ)β

or
(
xφ(β)

)
β
.

Of course, a subsequence of a sequence is a subnet. We want to stress,
however, that a subnet of a sequence need not be a subsequence anymore: in
Example 3.3.22 below, we encounter a sequence that has a convergent subnet,
but no convergent subsequence.

Nevertheless, as for sequences, we have the following.

Proposition 3.3.15. Let (X, T ) be a topological space, let (xα)α∈A be a net
in X, and let x ∈ X be a limit of (xα)α∈A. Then each subnet of (xα)α∈A

converges to x as well.

Proof. Let (yβ)β∈B be a subnet of (xα)α with corresponding cofinal map φ :
B → A.

Let N ∈ Nx. Since x = limα xα, there is αN ∈ A such that xα ∈ N for
α ∈ A with αN � α. Since φ is cofinal, there is βN ∈ B such that αN � φ(β)
for all β ∈ B with βN � β. It follows that yβ = xφ(β) ∈ N for all β ∈ B with
βN � β. �	
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The following definition and proposition are also helpful.

Definition 3.3.16. Let (X, T ) be a topological space, and let (xα)α∈A be a
net in X. A point x ∈ X is an accumulation point for (xα)α∈A if, for each
α ∈ A and for each N ∈ Nx, there is β ∈ A with α � β such that xβ ∈ N .

Proposition 3.3.17. Let (X, T ) be a topological space, and let (xα)α∈A be a
net in X. Then the following are equivalent for x ∈ X.

(i) x is an accumulation point of (xα)α∈A.
(ii) There is a subnet of (xα)α∈A converging to x.

Proof. (i) =⇒ (ii): Let B := A×Nx. For (α1, N1), (α2, N2) ∈ B define:

(α1, N1) � (α2, N2) :⇐⇒ α1 � α2 and N2 ⊂ N1.

This turns B into a directed set. Let (α, N) ∈ B. By the definition of an accu-
mulation point, there is φ(α, N) ∈ A with α � φ(α, N) such that xφ(α,N) ∈ N .
The map φ : B → A is cofinal, and the net

(
xφ(α,N)

)
(α,N)∈B

converges to x.
(ii) =⇒ (i): Let B be a directed set, and let φ : B → A be cofinal, such that(

xφ(β)

)
β∈B

converges to x. Let N ∈ Nx and let α ∈ A. Since φ is cofinal, there
is βα ∈ B such that α � φ(β) for all β ∈ B with βα � β. Since x = limβ xφ(β),
there is βN ∈ B such that xφ(β) ∈ N for all β ∈ B with βN � β. Since B
is directed, there is β ∈ B such that βα � β and βN � β. It follows that
α � φ(β) and xφ(β) ∈ N . �	

We can now prove an analogue of Theorem 2.5.10 for general topological
spaces.

Theorem 3.3.18. For a topological space (X, T ) the following are equivalent:

(i) X is compact.
(ii) Each net in X has a convergent subnet.

Proof. (i) =⇒ (ii): Let (xα)α∈A be a net in X . By Proposition 3.3.17, it is
sufficient to show that (xα)α∈A has an accumulation point. Assume towards a
contradiction that (xα)α∈A has no accumulation point. Then, for each x ∈ X ,
there is a neighborhood Ux of x (which we can choose to be open by making
it smaller if necessary) and an index αx ∈ A such that xα /∈ Ux for all α ∈ A
such that αx � α. The collection {Ux : x ∈ X} is an open cover of X . Since
X is compact, there are x1, . . . , xn ∈ X such that

X = Ux1 ∪ · · · ∪ Uxn .

Choose α ∈ A such that αxj � α for j = 1, . . . , n, so that

xα /∈ Ux1 ∪ · · · ∪ Uxn = X,

which is absurd.
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(ii) =⇒ (i): Assume that X is not compact. Then there is an open cover U
of X that has no finite subcover. Let U be the collection of all finite subsets
of U ordered by set inclusion. For each υ ∈ U, there is

xυ ∈ X \
⋃
{U : U ∈ υ} =

⋂
{X \ U : U ∈ υ}

(otherwise, U would have a finite subcover). By hypothesis, the net (xυ)υ∈U

has an accumulation point x ∈ X .
Fix U ∈ U . By definition, {U} ∈ U holds. Therefore, by the definition

of an accumulation point, there is, for any neighborhood N of x, an element
υU ∈ U with {U} � υU (meaning U ∈ υU ) such that xυU ∈ N . Since also

xυU ∈
⋂
{X \ V : V ∈ υU} ⊂ X \ U,

it follows that N ∩ (X \U) �= ∅. Assume that x ∈ U . Since U is then an open
neighborhood of x, the preceding argument implies that U ∩ (X \ U) �= ∅,
which is absurd. It follows that x ∈ X \ U .

Since U ∈ U is arbitrary, we eventually obtain

x ∈
⋂
{X \ U : U ∈ U} = X \

⋃
{U : U ∈ U} = ∅,

which is again absurd. �	

We shall see in Example 3.3.22 below that the corresponding statement
about convergent subsequences of sequences in compact spaces becomes false
in the general topological setting.

We now prepare the ground for Tychonoff’s theorem, one of the most
fundamental results in set-theoretic topology.

Definition 3.3.19. Let ((Xi, Ti))i∈I be a family of topological spaces, and let
X :=

∏
i∈I Xi. Then the product topology on X is the coarsest topology T on

X making the coordinate projections

πi : X → Xi, f �→ f(i) (i ∈ I)

continuous. We call (X, T ) the topological product of ((Xi, Ti))i∈I.

By Proposition 3.2.7, the product topology does exist, and its open sets
are the unions of sets of the form

π−1
i1

(U1) ∩ · · · ∩ π−1
in

(Un),

where i1, . . . , in ∈ I and Uj ∈ Tij for j = 1, . . . , n. From Proposition 3.2.19
we know that a net (fα)α converges to f in (X, T ) if and only if (fα(i))α =
(πi(fα))α converges to f(i) = πi(f) in (Xi, Ti) for each i ∈ I: the product
topology is the topology of coordinatewise convergence. This second fact shows
that, implicitly, we have already encountered the product topology in two
special instances.
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Examples 3.3.20. (a) Let S �= ∅ be a set, and let (Y, d) be a metric space.
Then F (S, Y ) is just another symbol for Y S , and the product topology on
Y S is the topology of pointwise convergence, that is, TF , where F is the
collection of finite subsets of S.

(b) Let ((Xn, dn))∞n=1 be a sequence of metric spaces. Then the product topol-
ogy on X :=

∏∞
n=1 Xn is metrizable via the metric

d((x1, x2, . . .), (y1, y2, . . .)) =
∞∑

n=1

1
2n

dn(xn, yn)
1 + d(xn, yn)

for (x1, x2, . . .), (y1, y2, . . .) ∈ X ; this follows from Exercise 2.3.1.

Theorem 3.3.21 (Tychonoff’s theorem). Let ((Ki, Ti))i∈I be a nonempty
family of compact topological spaces. Then their topological product is also
compact.

Proof. Let (fα)α be a net in K :=
∏

i∈I Ki. Let J ⊂ I be nonempty and
let f ∈ K. We call (J, f) a partial accumulation point of (fα)α if f |J is an
accumulation point of (fα|J)α in

∏
j∈J Kj. Obviously, a partial accumulation

point (J, f) is an accumulation point of (fα)α if and only if J is all of I.
Let P be the set of all partial accumulation points of (fα)α. For any two

(Jf , f), (Jg, g) ∈ P , define

(Jf , f) � (Jg, g) :⇐⇒ Jf ⊂ Jg and g|Jf
= f.

Since Ki is compact for each i ∈ I, the net (fα)α has partial accumulation
points ({i}, fi) for each i ∈ I by Theorem 3.3.18; in particular, P is not empty.

Let Q be a totally ordered subset of P . Let Jg :=
⋃
{Jf : (Jf , f) ∈ Q}.

Define g ∈ K by letting g(j) := f(j) for j ∈ Jf with (Jf , f) ∈ Q (and
arbitrarily on I \ Jg). Since Q is totally ordered, g is well defined. We claim
that (Jg, g) is a partial accumulation point of (fα)α. Let N ⊂

∏
j∈Jg

Kj be a
neighborhood of g|Jg . By Proposition 3.2.7, we may suppose that

N = π−1
j1

(Uj1) ∩ · · · ∩ π−1
jn

(Ujn),

where j1, . . . , jn ∈ Jg, and Uj1 ⊂ Kj1 , . . . , Ujn ⊂ Kjn are open. Let (Jh, h) ∈ Q
be such that {j1, . . . , jn} ⊂ Jh (this is possible because Q is totally ordered).
Since (Jh, h) is a partial accumulation point of (fα)α, it follows that there is,
for each index α, an index β with α � β and

fβ(jk) = πjk
(fβ) ∈ Ujk

(k = 1, . . . , n),

so that fβ ∈ N . Hence, (Jg, g) is indeed a partial accumulation point of (fα)α

and thus lies in P .
By Zorn’s lemma, P has a maximal element (Jmax, fmax). Assume that

Jmax � I; that is, there is i0 ∈ I \ Jmax. Since (Jmax, fmax) is a partial
accumulation point of (fα)α, there is a subnet (fαβ

)β of (fα)α such that
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πj(fαβ
) → πj(fmax) for each j ∈ Jmax. Since Ki0 is compact, we may find

a subnet
(
fαβγ

)
γ

of (fαβ
)β such that πi0(fαβγ

)γ converges to some xi0 in

Ki0 . Define f̃ ∈ K by letting f̃ |Jmax = fmax and f̃(i0) = xi0 . It follows that(
Jmax ∪ {i0}, f̃

)
is a partial accumulation point of (fα)α, which contradicts

the maximality of (Jmax, fmax). �	

We now use Tychonoff’s theorem to exhibit a compact topological space
and a sequence in that space without a convergent subsequence:

Example 3.3.22. Let I be the set of all strictly increasing sequences in N, that
is, sequences (nk)∞k=1 such that n1 < n2 < n3 < · · · . It is not difficult to see
that I has cardinality c; we won’t need this, however. For each i = (nk)∞k=1 in
I, define a sequence (fn(i))∞n=1 as follows,

fn(i) :=
{

(−1)k, if n = nk for some k ∈ N,
0, otherwise.

Then (fn(i))∞n=1 is a sequence in [−1, 1] such that the subsequence (fnk
(i))∞k=1

diverges. The topological product [−1, 1]I is compact by Tychonoff’s the-
orem. Assume that the sequence (fn)∞n=1 has a convergent subsequence,
say (fnk

)∞k=1. By the definition of the product topology, this means that
(fnk

(i))∞k=1 converges for each i ∈ I. For i = (nk)∞k=1, this is impossible ac-
cording to our construction. Of course, the sequence (fn)∞n=1 has a convergent
subnet .

Another application of Tychonoff’s theorem, namely a proof of the Arzelà–
Ascoli theorem, is given in Appendix C.

Concluding this section, we deal with a class of possibly noncompact topo-
logical spaces which, nevertheless, are reasonably close to being compact.

Definition 3.3.23. Let (X, T ) be a topological space. Then X is said to be
locally compact if Nx contains a compact subset of X for each x ∈ X.

Examples 3.3.24. (a) Compact spaces are (obviously and trivially) locally
compact.

(b) Rn is locally compact, but fails to be compact.
(c) Every discrete topological space is locally compact.
(d) Let E be the linear space C([0, 1], F) equipped with the norm ‖ · ‖∞, and

assume that it is locally compact. Then 0 has a compact neighborhood,
say K. By the definition of a neighborhood, there is ε > 0 such that
Bε(0) ⊂ K, and since K is closed in E, it follows that Bε[0] = Bε(0) ⊂ K
as well. Consequently, Bε[0] must be compact. Since

Bε[0] → B1[0], x �→ 1
ε
x

is a homeomorphism, this implies that B1[0] is compact, too. As we have
seen in Example 2.5.13, this is not true. (Invoking Theorem B.5 instead
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of Example 2.5.13, one can see that no infinite-dimensional, normed space
is locally compact.)

Nevertheless, even though Rn is not compact, it is not far away from a
certain compact space. We illustrate this in the case where n = 2.

Example 3.3.25. We may identify C ∼= R2 with the xy-plane in R3. Let C∞
be the unit sphere in R3 (i.e., those vectors with Euclidean length one): this
space is compact. Let p = (0, 0, 1). Then, for each z = x + iy ∈ C, there is
a unique line in R3 connecting (x, y, 0) with p. Let ι(z) be the intersection
point of this line with C∞. Then ι : C → C∞ is a continuous injective map
whose range is C∞ \ {p} and that is a homeomorphism onto its image. (All
this needs to be checked, of course.) The sphere C∞ is sometimes referred to
as the Riemann sphere.

z = x+iy

= (0,0,1)

(ι z )

x

(0,1,0)

(0,0,0) (1,0,0)

y

p

Fig. 3.2: Riemann sphere

Interestingly, a similar construction works for arbitrary locally compact
Hausdorff spaces.

Theorem 3.3.26. Let (X, T ) be a locally compact Hausdorff space. Then
there is a compact Hausdorff space (X∞, T∞) , the one-point compactifica-
tion of X, along with a map ι : X → X∞ such that

(i) ι is a homeomorphism onto its image, and
(ii) X∞ \ ι(X) consists of just one point.

Moreover, (X∞, T∞) is unique up to homeomorphism.
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Proof. Let ∞ be any point not contained in X , and let X∞ := X ∪ {∞}.
Define

T∞ := T ∪ {X∞ \K : K ⊂ X is compact}.
From this definition, it is clear that T ⊂ T∞ and that X ∩ U ∈ T for each
U ∈ T∞ (since X is Hausdorff, all its compact subsets are closed).

We claim that T∞ is a topology on X∞. It is clear that ∅, X∞ ∈ T∞.
Let U be an arbitrary family of sets in T∞. If U ⊂ T , nothing has to be

shown. Hence, we may suppose that there is a compact subset K of X such
that X∞ \K ∈ U . Since K ∩ U ∈ T |K for each U ∈ U , there is V ∈ T such
that ⋃

{K ∩ U : U ∈ U} = K ∩ V.

It follows that⋃
{U : U ∈ U} =

⋃
{K ∩ U : U ∈ U} ∪ (X∞ \K)

= (K ∩ V ) ∪ (X∞ \K)
= V ∪ (X∞ \K)
= X∞((X \ V ) ∩K).

Since K is compact and X \V is closed, the subset (X \V )∩K of X is closed
in K and thus compact. It follows that

⋃
{U : U ∈ U} ∈ T∞.

Let U1, U2 ∈ T∞. If U1, U2 ⊂ X , nothing has to be shown. Hence, suppose
that U2 = X∞ \K2 for some compact subset K2 of X . If U1 ⊂ X , it follows
that

U1 ∩ U2 = U1 ∩ (X∞ \K2) = U1 ∩ (X \K2),

which belongs to T because K2 is closed. If U1 �⊂ X , there is a compact set
K1 ⊂ X with U1 = X∞ \K1. Since K1 ∪K2 is again compact (see Exercise 1
below), it follows that

U1 ∩ U2 = X∞ \ (K1 ∪K2) ∈ T∞.

All in all, T∞ is a topology on X∞. By the remarks at the beginning of
this proof, T∞|X is just T , so that the canonical embedding ι : X → X∞ is
indeed a homeomorphism onto its image.

We claim that (X∞, T∞) is Hausdorff. To see this let x, y ∈ X∞ be such
that x �= y. Without loss of generality, suppose that y = ∞. Let K ⊂ X be
a compact neighborhood of x. Then there is U ∈ T with x ∈ U ⊂ K. Let
V := X∞ \K. Then V ∈ T∞ with ∞ ∈ V , and U ∩ V = ∅ holds.

Let U be an open cover for X∞. Then there is U0 ∈ U such that ∞ ∈ U0.
Consequently, there is a compact subset K of X with U0 = X∞ \ K. Since
{X ∩ U : U ∈ U} is an open cover for K, there are U1, . . . , Un ∈ U with
K ⊂ U1 ∪ · · · ∪ Un. It follows that

X∞ = U0 ∪K = U0 ∪ U1 ∪ · · · ∪ Un.
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Consequently, X∞ is compact.
Let (X ′

∞, T ′
∞) be any other compact Hausdorff space containing a home-

omorphic copy of X such that X ′
∞ \X consists of only one element, say ∞′.

Define f : X∞ → X ′
∞ as the identity on X and such that f(∞) := ∞′, and

let U ∈ T ′
∞. Then there are two possibilities: U ∈ T or ∞′ ∈ U . If U ∈ T ,

then f−1(U) = U ∈ T ⊂ T∞ holds. Suppose that ∞′ ∈ U . Then K := X∞ \U
is a subset of X that is closed in X ′

∞ and thus compact. It follows that
f−1(U) = X∞ \K ∈ T∞. Hence, in either case, f−1(U) belongs to T∞. Since
U ∈ T ′

∞ was arbitrary, this means that f is continuous. Reversing the rôles
of X∞ and X ′

∞ yields the continuity of f−1, so that f is a homeomorphism.
This proves the uniqueness part of the theorem. �	

Note that this construction also works when X is already compact.

Exercises

1. Let (X, T ) be a topological space, and let K1, . . . , Kn be compact subsets of X.
Show that K1 ∪ · · · ∪ Kn is compact.

2. Let (X, T ) be a topological space, and let B be a base for T . Show that X is
compact if and only if each open cover U ⊂ B of X has a finite subcover.

3. Dini’s lemma. Let (K, T ) be a compact topological space, let f : K → R be
continuous, and let (fα)α∈A be a net of continuous functions from K to R such
that f(x) = limα fα(x) for all x ∈ K and fβ(x) ≤ fα(x) for all x ∈ K and α, β ∈
A with α � β. Show that (fα)α converges to f uniformly on K. (Hint : Fix ε > 0
and consider, for each α ∈ A, the set Uα := {x ∈ K : 0 ≤ fα(x) − f(x) < ε}.)

4. Let (X, TX) be a topological space, let ((Yi, Ti))i∈I be a family of topological
spaces, and let (Y, TY ) denote its topological product. Show that f : X → Y
is continuous if and only if πi ◦ f : X → Yi is continuous for each i ∈ I, where
πi : Y → Yi is the coordinate projection.

5. Let (X1, T1), . . . , (Xn, Tn) be topological spaces, and, for j = 1, . . . , n, let Bj be a
base for Tj . Show that the subsets of X1×· · ·×Xn of the form B1×· · ·×Bn with
Bj ∈ Bj for j = 1, . . . , n form a base for the product topology on X1 ×· · ·×Xn.

6. Let ((Xi, Ti))i∈I be a family of topological spaces. The sets of the form
Q

i∈I
Ui,

where Ui ∈ Ti for i ∈ I, form a base for a topology on
Q

i∈I
Xi, the box topology .

Show that the box topology is finer than the product topology and that the
two topologies coincide if and only if (Xi, Ti) is chaotic for all but finitely many
i ∈ I.

7. Let ((Xi, Ti))i∈I be a family of topological spaces, and let (X, T ) be their topo-
logical product. Show that (X, T ) is Hausdorff if and only if (Xi, Ti) is Hausdorff
for each i ∈ I.

8. Let (X, T ) be a topological space, and let X ×X be equipped with the product
topology. Show that {(x, x) : x ∈ X} is closed in X × X if and only if X is
Hausdorff.

9. Let E be a normed space over F = R or F = C. A linear functional on E is a
map φ : E → F such that φ(λx + µy) = λ φ(x) + µ φ(y) for all λ, µ ∈ F and
x, y ∈ E. Let F denote the collection of all finite subsets of E, and let

K :=
n

φ ∈ FE : φ is a linear functional on E with |φ(x)| ≤ ‖x‖ for x ∈ E
o

.

Prove the Alaoglu–Bourbaki theorem : (K, TF |K) is compact.
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10. Show that Q with the topology inherited from R is not locally compact.

3.4 Connectedness

Intuitively, one would call a topological space connected if one can “walk”
from any point of the space to any other point of the space without having to
“jump” over a “gap”. How can this be made precise?

Definition 3.4.1. Let (X, T ) be a topological space. A path in X is a contin-
uous map from [0, 1] to X.

Of course, any nondegenerate, closed, and bounded interval in R may serve
as a domain for a path.

Definition 3.4.2. Let (X, T ) be a topological space, and let x0, x1 ∈ X. Then
x0 and x1 can be connected by a path in X if there is a path γ : [0, 1] → X
such that γ(0) = x0 and γ(1) = x1. We say that γ connects x0 with x1.

Definition 3.4.3. A topological space (X, T ) is called path connected if any
two of its points can be connected by a path in X.

Example 3.4.4. Let E be a normed space. Recall that a subset C of E is called
convex if, for any x, y ∈ C, the line segment {x + t(y− x) : t ∈ [0, 1]} also lies
in C. Trivially, the whole space is convex as are all its singleton subsets. The
same is true for all open balls. Let x0 ∈ E, let r > 0, and let x, y ∈ Br(x0);
then we have

‖x + t(y − x) − x0‖ = ‖(1− t)x + ty − (1− t)x0 − tx0‖
≤ (1− t)‖x− x0‖+ t‖y − x0‖
< r (t ∈ [0, 1]).

Similarly, one sees that all closed balls are convex. Every convex subset C of
E is path connected: for x0, x1 ∈ C, the function

γ : [0, 1] → E, t �→ x0 + t(x1 − x0)

is a path in C connecting x0 with x1. In particular, all intervals in R—possibly
unbounded or degenerate—are path connected.

Here comes an easily proven hereditary property for path connectedness.

Proposition 3.4.5. Let (X, TX) and (Y, TY ) be topological spaces such that
X is path connected, and let f : X → Y be continuous. Then f(X) is path
connected.

Proof. Let y0, y1 ∈ f(X), and let x0, x1 ∈ X be such that yj = f(xj) for
j = 0, 1. Let γ : [0, 1] → X be a path connecting x0 with x1. Then f ◦ γ is a
path in f(X) that connects y0 with y1. �	
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Examples 3.4.6. (a) For n ∈ N, let Sn−1 denote the unit sphere in Rn, that
is, the collection of all vectors in Rn with Euclidean length one. We claim
that Sn−1 is path connected for n ≥ 2, which we prove by induction on
n. For n = 2, this is easy to see: the convex subset [0, 2π] of R is path
connected as is, by Proposition 3.4.5, S1 as the range of

[0, 2π] → R2, θ �→ (cos θ, sin θ).

Suppose that we have already established the path connectedness of Sn−1

for some n ≥ 2. Then Sn is the range of the continuous map

[0, 2π]× Sn−1 → Rn+1, (θ, x) �→ (cos θ, (sin θ)x).

Since [0, 2π] × Sn−1 is path connected by the induction hypothesis and
Exercise 2 below, it follows from Proposition 3.4.5 that Sn is path con-
nected.

(b) The subspace {(
x, sin

(
1
x

))
: x ∈ (0, 1]

}
of R2 is the image of the path connected space (0, 1] under the continuous
map

(0, 1] → R2, x �→
(

x, sin
(

1
x

))
and therefore path connected.

x

( )1
xsin

10

−1

1

Fig. 3.3: Graph of sin
(

1
x

)
for x ∈ (0, 1]
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Even though path connectedness is probably the most intuitive notion of
connectedness it is often too restrictive to work with. Here comes the “proper”
definition of connectedness.

Definition 3.4.7. A topological space (X, T ) is said to be connected if there
are no U, V ∈ T—both nonempty—such that U ∩ V = ∅ and U ∪ V = X.
Otherwise, X is called disconnected.

If X is not connected, then there are nonempty open subsets U and V of
X such that U ∩ V = ∅ and U ∪ V = X . It follows that both U and V are
also closed. Subsets of topological spaces that are both open and closed are
often referred to as clopen. Clearly, a topological space X is connected if and
only if its only clopen subsets are the trivial ones: ∅ and X .

Examples 3.4.8. (a) We claim that [0, 1] is connected. Otherwise, there are
nonempty open sets U, V ⊂ [0, 1] such that U ∩V = ∅ and U ∪V = [0, 1].
Without loss of generality, suppose that 0 ∈ U , so that 0 /∈ V . Since
U is open in [0, 1], there is ε > 0 such that [0, ε) ⊂ U ; it follows that
b := inf V ≥ ε > 0. Since V is also closed in [0, 1], it is easy to see that
b ∈ V . Let a := sup{t ∈ U : t < b}. Clearly, a ≤ b holds, and since U is
closed in [0, 1], we have a ∈ U and thus a < b. This, however, means that
(a, b) ⊂ [0, 1] \ (U ∪ V ), which is impossible.

(b) Any discrete space with more than one point is disconnected.
(c) Let (X, T ) be any topological space, and let S, T ⊂ X be nonempty such

that there are U, V ∈ T with S ⊂ U , T ⊂ V , and U ∩ V = ∅. Then the
subspace S∪T of X is disconnected (this subsumes the previous example).
For instance, (−∞,−2]∪ [−1, 2)∪ [7, π2] is a disconnected subspace of R.

What does connectedness in the sense of Definition 3.4.7 have to do with
path connectedness? Here is the answer.

Proposition 3.4.9. Let (X, T ) be a path connected topological space. Then
X is connected.

Proof. Assume that X is not connected. Then there are nonempty open sub-
sets U and V of X such that U ∩ V = ∅ and U ∪ V = X . Let x0 ∈ U and
x1 ∈ V . Since X is path connected, x0 and x1 are connected by a path, say γ.
Then, however, γ−1(U) and γ−1(V ) are open, nonempty, with an empty in-
tersection, and their union is all of [0, 1]. Hence, [0, 1] is not connected, which
is impossible by the preceding example. �	

Example 3.4.10. Clearly, every interval in R (possibly unbounded or degen-
erate) is path connected and thus connected. Conversely, let ∅ �= I ⊂ R be
any connected subspace. If I is not an interval, then there is c ∈ R \ I such
that (−∞, c) ∩ I �= ∅ and (c,∞) ∩ I �= ∅. Clearly, U := I ∩ (−∞, c) and
V := I ∩ (c,∞) are open in I such that U ∩V = ∅ and U ∪V = I. Therefore,
the only connected (or, equivalently, path connected) subsets of R are the
intervals.
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There is an analogue of Proposition 3.4.5 for connectedness.

Proposition 3.4.11. Let (X, TX) and (Y, TY ) be topological spaces such that
X is connected, and let f : X → Y be continuous. Then f(X) is connected.

Proof. Let U, V ∈ TY |f(X) be such that U ∩ V = ∅ and U ∪ V = f(X).
Then f−1(U) and f−1(V ) are in TX such that f−1(U) ∩ f−1(V ) = ∅ and
f−1(U) ∪ f−1(V ) = X . Since X is connected, this is possible only if f−1(U)
or f−1(V ) is empty, which, in turn, is possible only if U or V is empty. Hence,
f(X) is connected. �	

Corollary 3.4.12 (intermediate value theorem). Let (X, T ) be a con-
nected topological space, and let f : X → R be continuous. Then, for any
x1, x2 ∈ X and c ∈ R with f(x1) ≤ c ≤ f(x2), there is x0 ∈ X with f(x0) = c.

Proof. Since f(X) is a connected subspace of R, it is an interval and thus
contains all of [f(x1), f(x2)]. �	

Is path connectedness actually really stronger than mere connectedness?
To answer this question, we prove another proposition.

Proposition 3.4.13. Let (X, T ) be a topological space, and let Y be a dense
connected subspace of X. Then X is connected.

Proof. Let U, V ∈ T be such that U ∩ V = ∅ and U ∪ V = X . Since Y ∩
U, Y ∩ V ∈ T |Y , (Y ∩ U) ∩ (Y ∩ V ) = ∅, and (Y ∩ U) ∪ (Y ∪ V ) = Y , the
connectedness of Y yields that Y ∩ U = Y or Y ∩ V = Y ; without loss of
generality, suppose that Y ∩U = Y (i.e., Y ⊂ U). Since U is clopen, it follows
that X = Y ⊂ U as well, so that U = X and thus V = ∅. �	

Example 3.4.14. Let X be the closure of the (path) connected space

Y :=
{(

x, sin
(

1
x

))
: x ∈ (0, 1]

}
in R2. Proposition 3.4.13 immediately yields that X is connected. It is easy
to see that

X =
{(

x, sin
(

1
x

))
: x ∈ (0, 1]

}
∪ {(0, y) : y ∈ [−1, 1]}.

We claim that there is no path γ : [0, 1] → X with γ(0) ∈ {0}× [−1, 1] and
γ(1) ∈ Y . Assume towards a contradiction that there is such a path, and let
γ1, γ2 : [0, 1] → R be its coordinate functions; that is, γ(t) = (γ1(t), γ2(t)) for
t ∈ [0, 1]. Set F := γ−1({0}× [−1, 1]). Then F is closed and thus contains a :=
sup F . Obviously, a < 1 must hold. Replacing [0, 1] with [a, 1], if necessary,
we may suppose that γ1(t) > 0 for all t ∈ (0, 1].

Let ε > 0 be arbitrary. Since γ1 is continuous, γ1([0, ε]) ⊂ R is connected
and thus an interval. Clearly, γ1([0, ε]) contains zero and is nondegenerate.
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Hence, there is δ > 0 with [0, δ] ⊂ γ1([0, ε]). Since
{
sin

(
1
x

)
: x ∈ (0, δ]

}
=

[−1, 1], and since

γ2(t) = sin
(

1
γ1(t)

)
(t ∈ (0, 1]),

it follows that γ2([0, ε]) = [−1, 1].
Let r > 0 be so small that [−1, 1] �⊂ [γ2(0) − r, γ2(0) + r]. The continuity

of γ2 at 0 then yields ε > 0 with γ2([0, ε]) ⊂ [γ2(0) − r, γ2(0) + r], which is
impossible if γ([0, ε]) = [−1, 1].

x

sin( )1
x

10

−1

1

Fig. 3.4: Closure of
{(

x, sin
(

1
x

))
: x ∈ (0, 1]

}
in R2

What if a space is not connected? The few examples of disconnected spaces
we have encountered so far—discrete spaces and, for instance, (1, 2)∪ [7, 8)—
have arisen as disjoint unions of connected “building blocks.” We show that
this phenomenon occurs generally. First, of course, we have to make precise
what we mean by a connected building block.

Definition 3.4.15. Let (X, T ) be a topological space. A component of X is a
connected subspace of X that is not properly contained in any other connected
subspace of X.

As we show in Theorem 3.4.17 below, every topological space can be “bro-
ken down” into its components. For its proof, the following proposition is
crucial.

Proposition 3.4.16. Let (X, T ) be a topological space, and let Y be a family
of connected subspaces of X such that Y1 ∩ Y2 �= ∅ for any Y1, Y2 ∈ Y. Then⋃
{Y : Y ∈ Y} is connected.
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Proof. Set Y0 :=
⋃
{Y : Y ∈ Y}. To see that Y0 is connected, let U, V ∈ T be

such that

(Y0 ∩ U) ∩ (Y0 ∩ V ) = ∅ and (Y0 ∩ U) ∪ (Y0 ∩ V ) = Y0.

For each Y ∈ Y, we thus have

(Y ∩ U) ∩ (Y ∩ V ) = ∅ and (Y ∩ U) ∪ (Y ∩ V ) = Y,

and since all subspaces Y ∈ Y are connected, it follows that each Y ∈ Y is
either contained in U or in V . Assume that there are Y1, Y2 ∈ Y such that
Y1 ⊂ U and Y2 ⊂ V . This implies that

Y1 ∩ Y2 ⊂ (Y0 ∩ U) ∩ (Y0 ∩ V ) = ∅,

which is impossible. Consequently, we have Y ⊂ U for all Y ∈ Y or Y ⊂ V for
all Y ∈ Y. It follows that Y0 ⊂ U or Y0 ⊂ V . This proves the connectedness
of Y0. �	

Theorem 3.4.17. Let (X, T ) be a topological space. Then:

(i) For each x ∈ X, there is a unique component Yx of X containing x;
(ii) For each x ∈ X, the component Yx is closed;
(iii) For any x, y ∈ X, the components Yx and Yy are equal or disjoint.

Proof. For x ∈ X , let

Yx := {Y ⊂ X : Y contains x and is connected}.

Note that Yx �= ∅ because {x} ∈ Yx. Since x ∈
⋂
{Y : Y ∈ Yx}, Proposition

3.4.16 yields that Yx :=
⋃
{Y : Y ∈ Yx} is connected. By its definition, Yx

contains x and is not properly contained in any other connected subspace of
X . This proves the existence part of (i) (the uniqueness will follow from (iii)).

For (ii), note that Yx is again connected by Proposition 3.4.13, so that
Yx = Yx.

For (iii), let x, y ∈ X be such that Yx ∩ Yy �= ∅. Then Proposition 3.4.16
yields the connectedness of Yx ∪ Yy, so that Yx ∪ Yy = Yx and thus Yy ⊂ Yx.
Interchanging the rôles of x and y, we obtain Yx = Yy. �	

Loosely speaking, every topological space is the disjoint union of its com-
ponents.

Examples 3.4.18. (a) If (X, T ) is connected, then X is the only component of
X .

(b) The components of, say [−1, 0)∪ [2, 3]∪(π, 7), are [−1, 0), [2, 3], and (π, 7).
(c) In a discrete space, the components are just the singleton subsets.
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(d) We claim that the components of Q, when equipped with the topology
inherited from R, are just the singleton subsets (even though Q is not
discrete). Any connected subspace of Q is also a connected subspace of
R and therefore an interval by Example 3.4.10. Since the only intervals
contained in Q are the degenerate ones (i.e., those consisting of a single
point only), the claim follows.

(e) The Cantor set C is constructed as follows. Let C1 := [0, 1], let

C2 :=
[
0,

1
3

]
∪
[
2
3
, 1

]
,

let

C3 :=
[
0,

1
9

]
∪
[
2
9
,
1
3

]
∪
[
2
3
,
7
9

]
∪
[
8
9
, 1

]
,

and continue the construction of C1 ⊃ C2 ⊃ C3 ⊃ · · · as follows. Obtain
Cn+1 from Cn by removing the “middle third” of each of the intervals
making up Cn. Define C :=

⋂∞
n=1 Cn. Clearly, C is a closed subset of [0, 1]

and thus compact. It is easy to see that C is infinite: by construction,
it contains 1

3
, 1

9
, 1

27
, . . .. (In fact, C is even uncountable; see Exercise 7

below.) For n ∈ N, let χn denote the indicator function of Cn; that is,

χn(t) :=
{

1, t ∈ Cn,
0, otherwise,

and let

µ(Cn) :=
∫ 1

0

χn(t) dt

be the Jordan content of Cn, so that

µ(Cn) =
2
3
µ(Cn−1) = · · · =

(
2
3

)n−1

,

as can easily be seen by induction. Let a, b ∈ R be such that a ≤ b
and [a, b] ⊂ C. Assume that a < b, and choose n ∈ N so large that(

2
3

)n−1
< b− a. On the other hand, since [a, b] ⊂ Cn, we have

b − a ≤ µ(Cn) ≤
(

2
3

)n−1

,

which contradicts the choice of n. Hence, a = b, so that C does not contain
any nondegenerate intervals. Consequently, the components of C are its
singleton subsets.

The phenomenon displayed in the last three of the preceding examples (not
necessarily discrete spaces whose only components are the singleton subsets)
warrants another definition.
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Definition 3.4.19. A topological space (X, T ) is called totally disconnected
if, for each x ∈ X, the component of X containing x is {x}.

Of course, a topological space is totally disconnected if and only if its only
connected subsets are the singletons.

At the end of this section, we turn to local versions of both connectedness
and path connectedness.

Definition 3.4.20. A topological space (X, T ) is called locally (path) con-
nected if Nx has a base consisting of (path) connected sets for each x ∈ X.

Example 3.4.21. Open balls in normed spaces are path connected. Hence, any
open subset of a normed space is locally path connected.

It is easy to come up with locally (path) connected spaces that fail to be
(path) connected, for instance, (−1, 0) ∪ (0, 1), but it is less obvious that the
converse implication may fail as well.

Example 3.4.22. Let

X = {(x, 0) : x ∈ [0, 1]}∪{(0, y) : y ∈ [0, 1]}∪
∞⋃

n=1

{(
1
n

, y

)
: y ∈ [0, 1]

}
⊂ R2.

Intuitively, one can think of X as a comb with infinitely many teeth.
We claim that X is path connected. To see this, let (x0, y0), (x1, y1) ∈ X ,

and define γ : [0, 1] → R2 by letting

γ(t) :=

⎧⎪⎨⎪⎩
(x0, (1− 3t)y0), t ∈

[
0, 1

3

]
,

(x0 + (3t− 1)(x1 − x0), 0), t ∈
[
1
3 , 2

3

]
,

(x1, (3t− 2)y1), t ∈
[
2
3
, 1

]
.

It is easy to see that γ is a path in X that connects (x0, y0) with (x1, y1). To
show that X is not locally connected (let alone locally path connected), let y′ ∈
(0, 1], let r ∈ (0, y′), and let C contain (0, y′) such that C ⊂ X ∩ Br((0, y′)).
Since r < y′, it is immediate that C ∩ {(x, 0) : x ∈ [0, 1]} = ∅, so that

C ⊂ {(0, y) : y ∈ [0, 1]} ∪
∞⋃

n=1

{(
1
n

, y

)
: y ∈ [0, 1]

}
.

This, in turn, yields that

{0} ⊂ I ⊂ {0} ∪
{

1
n

: n ∈ N
}

, (∗∗)

where I is the image of C under the projection onto the x-axis. Suppose now
that C is connected. Since the projection from R2 onto the x-axis is continu-
ous, I ⊂ R is also connected and thus an interval. From (∗∗) we conclude that
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I = {0}. Finally, assume that C is a neighborhood of (0, y′), so that there is
ε > 0 with X ∩Bε((0, y′)) ⊂ C. Since

(
1
n
, y′) ∈ X ∩Bε((0, y′)) for n ∈ N such

that 1
n < ε, there must be nonzero points in I, which is impossible.

All in all, X ∩ Br((0, y′)) cannot contain a connected neighborhood of
(0, y′), so that X is not locally connected.

y’

1
2
_1_

3
1_
4

x

y

C

0 1

1

Fig. 3.5: A path connected, but not locally connected space

In a similar vein, one can show that the connected, but not path connected
space from Example 3.4.14 is not locally connected (Exercise 12 below).

Here is a reason why local connectedness is of importance.

Proposition 3.4.23. Let (X, T ) be a locally connected topological space, and
let U be an open subspace of X. Then the components of U are open.

Proof. Let Y be a component of U , and let x ∈ Y . Since U is open, it is a
neighborhood of x in X and thus contains a connected neighborhood, say N ,
of x. Since x ∈ Y ∩N , Proposition 3.4.16 yields the connectedness of Y ∪N .
Theorem 3.4.17(i) finally implies that N ⊂ Y , so that Y is a neighborhood of
x. Since x ∈ Y was arbitrary, this proves the openness of Y . �	

Corollary 3.4.24. Let (X, T ) be a locally connected topological space. Then
the components of X are open (and thus clopen).

Local path connectedness combined with connectedness yields path con-
nectedness; in fact, a weaker condition is sufficient.
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Proposition 3.4.25. Let (X, T ) be a connected topological space. Then the
following are equivalent.

(i) X is path connected.
(ii) Each point of X has a path connected neighborhood.

For the proof, we require two constructions on paths that are also handy
later on.

• Let γ be any path in a topological space X . Then the reversed path γ−1 :
[0, 1] → X is defined through

γ−1(t) := γ(1− t) (t ∈ [0, 1]).

• Let X be any topological space, and let γ1, γ2 : [0, 1] → X be any two paths
such that γ1(1) = γ2(0). Then their concatenation γ1 � γ2 : [0, 1] → X is
defined through

(γ1 � γ2)(t) :=

{
γ1(2t), t ∈

[
0, 1

2

]
,

γ2(2t− 1), t ∈
[
1
2 , 1

]
.

Proof (of Proposition 3.4.25). Since X ∈ Nx for each x ∈ X , only (ii) =⇒ (i)
needs proof.

Fix x0 ∈ X , and let

Y := {x ∈ X : x0 and x can be connected by a path}.
Clearly, x0 ∈ Y , so that Y �= ∅. It is also easy to see that Y is path connected:
for x1, x2 ∈ Y , let γj be a path connecting x0 with xj for j = 1, 2. It follows
that γ−1

1 � γ2 connects x1 and x2.
Let x ∈ Y , and let N ∈ Nx be path connected. Let y ∈ N . Then x0 and

x can be connected by a path as can x and y. Concatenating the respective
paths yields that x0 and y can be connected by a path. Consequently, y ∈ Y
holds, and since y ∈ N was arbitrary, this means that N ⊂ Y , so that Y is a
neighborhood of x. Since x was arbitrary, it follows that Y is open.

Let x ∈ Y , and let N ∈ Nx be path connected. Since x ∈ Y , there is
y ∈ N ∩ Y . Then x0 can be connected with y by a path, and y can be
connected with x by a path; concatenation of paths again yields that x0 and
x can be connected by a path. It follows that x ∈ Y , so that Y = Y .

We have just seen that Y �= ∅ is clopen. Since X is connected, this means
that X = Y , so that X is in fact path connected. �	
Corollary 3.4.26. Let (X, T ) be a connected, locally path connected space.
Then X is path connected.

Examples 3.4.27. (a) Any connected open subset of a normed space is path
connected.

(b) The space discussed in Example 3.4.14 is connected, but not path con-
nected and therefore fails to be locally path connected. (In fact, it even
fails to be locally connected although this is harder to show; see Exercise
12 below.)
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Exercises

1. Let C be a family of convex subsets of a linear space. Show that
T{C : C ∈ C}

is convex. Is
S{C : C ∈ C} necessarily convex?

2. Let ((Xi, Ti))i∈I be a family of topological spaces, and let (X, T ) be their topo-
logical product. Show that (X, T ) is path connected if and only if (Xi, Ti) is
path connected for each i ∈ I.

3. Show that Rn \ {0} is (path) connected if and only if n ≥ 2, and conclude that
Rn with n ≥ 2 and R are not homeomorphic.

4. Let (X, TX) and (Y, TY ) be connected topological spaces. Show that X × Y
equipped with the product topology is also connected. (Hint : For y ∈ Y fixed,
apply Proposition 3.4.16 to the family {(X × {y}) ∪ ({x} × Y ) : x ∈ X}.)

5. Let ((Xi, Ti))i∈I be a family of topological spaces, and let (X, T ) be their topo-
logical product. Show that (X, T ) is connected if and only if (Xi, Ti) is connected
for each i ∈ I. For the “if” part, proceed as follows.
(a) Use Exercise 4 to prove the claim in case I is finite.
(b) Fix (xi)i∈I ∈ X. For any J ⊂ I, let XJ consist of those (yi)i∈I ∈ X such that

yi = xi for i ∈ I \ J. Use (a) to prove that XJ is connected whenever J is
finite.

(c) Use (b) and Proposition 3.4.16 to conclude that
S{XJ : J ⊂ I is finite} is

connected.
(d) Finally, use (c) and Proposition 3.4.13 to complete the proof that X is

connected.
6. Let G be a topological group, that is., a group equipped with a Hausdorff

topology such that

G × G → G, (x, y) �→ xy and G → G, x �→ x−1

are continuous, and let G0 be the component of G containing the identity ele-
ment. Show that G0 is a closed normal subgroup of G.

7. Show that t ∈ [0, 1] lies in the Cantor set C if and only if it has a ternary
expansion where all digits that occur are 0 or 2; that is, there is a sequence
(σn)∞n=1 in {0, 2} such that t =

P∞
n=1

σn
3n . Conclude that |C| = c.

8. Let ((Xi, Ti))i∈I be a family of topological spaces, and let (X, T ) be their topo-
logical product. Show that (X, T ) is totally disconnected if and only if (Xi, Ti)
is totally disconnected for each i ∈ I.

9. Let (X, TX) be a connected space, and let (Y, TY ) be a totally disconnected
space. Show that every continuous map f : X → Y must be constant.

10. A topological space (X, T ) is called zero-dimensional if, for any x, y ∈ X with
x �= y, there are U, V ∈ T with x ∈ U , y ∈ V , U ∩ V = ∅, and U ∪ V = X.
(a) Show that every zero-dimensional space is a totally disconnected Hausdorff

space.
(b) Show that Q is zero-dimensional (like any totally disconnected subspace of

R).
(c) Let (X, T ) be a Hausdorff space such that T has a base consisting of clopen

sets. Show that X is zero-dimensional.
(d) Let (K, T ) be a compact Hausdorff space. Show that K is zero-dimensional

if and only if T has a base consisting of clopen sets. (Hint : If K is zero-
dimensional, the clopen subsets of K form a base for a Hausdorff topology
coarser than T .)
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11. Let

X :=

j

1

n
: n ∈ N

ff

∪ {0} and Y := {0, 1}

have their relative topologies as subspaces of R, and let X×Y be equipped with
the product topology. Define an equivalence relation ≈ on X × Y by letting

(x1, y1) ≈ (x2, y2) :⇐⇒ x1 = x2 �= 0.

Show that the quotient space (X ×Y )/≈ is totally disconnected, but not Haus-
dorff (and thus not zero-dimensional).

12. Show that the connected subspace

j„

x, sin

„

1

x

««

: x ∈ (0, 1]

ff

∪ {(0, y) : y ∈ [−1, 1]}

of R2 is not locally connected.

3.5 Separation Properties

In a metric space, the metric enables us to separate points: any two distinct
points have a strictly positive distance. In general topological spaces, separat-
ing points from each other is more subtle.

We have already encountered one of the so-called separation axioms ,
namely the Hausdorff separation property (Definition 3.1.3). This section is
devoted to the discussion of other separation properties: some stronger, some
weaker than the Hausdorff property.

Our first separation axiom is indeed very weak.

Definition 3.5.1. A topological space (X, T ) is called a T0- or Kolmogorov
space if, for any x, y ∈ X with x �= y, there is an open set U ⊂ X with x ∈ U
and y /∈ U or y ∈ U and x /∈ U .

Examples 3.5.2. (a) Let X be any set with at least two elements equipped
with the chaotic topology. Then X is not T0.

(b) Let R be a commutative ring with identity, and let p, q ∈ Spec(R) be
such that p �= q. Without loss of generality, suppose that q �⊂ p. By the
definition of the Zariski topology, the set U := Spec(R) \ V (q) is open,
contains p, but not q. Hence, Spec(R) is T0.

The next separation axiom is somewhat stronger.

Definition 3.5.3. A topological space (X, T ) is called a T1-space if, for any
x, y ∈ X with x �= y, there are open sets U, V ⊂ X with x ∈ U , but y /∈ U ,
and y ∈ V , but x /∈ V .

Obviously, every T1-space is T0, and every Hausdorff space is T1. But what
about the converse inclusions? The following proposition helps.
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Proposition 3.5.4. Let (X, T ) be a topological space. Then X is a T1-space
if and only if {x} is closed for each x ∈ X.

Proof. Suppose that X is a T1-space, and let x ∈ X . For any y ∈ X with
y �= x, there is an open subset Uy of X with y ∈ Uy, but x /∈ Uy. It follows
that

X \ {x} =
⋃
{Uy : y ∈ X, x �= y}

is open, so that {x} is closed.
Conversely, suppose that all singleton subsets of X are closed, and let

x, y ∈ X be such that x �= y. Then U := X \ {y} and V := X \ {x} satisfy the
requirements of Definition 3.5.3. �	
Examples 3.5.5. (a) Let X be any set, and let T be the topology consisting of

∅ and those subsets of X that have a finite complement. Then, trivially, all
singleton subsets of X are closed, so that X is a T1-space by Proposition
3.5.4. However, unless X is finite, the space (X, T ) is not Hausdorff (see
Example 3.1.4(c)).

(b) Let R be a commutative ring with identity. As we just saw, Spec(R) is
always a T0-space. By Proposition 3.5.4 and Exercise 3.1.3, Spec(R) is T1

if and only if each prime ideal of R is maximal. If R is an integral domain,
for instance, but not a field (R = Z, say) then Spec(R) is a T0-space that
fails to be a T1-space.

The T in T0 and T1 comes from the German word “Trennungsaxiom” (sep-
aration axiom). Hausdorff spaces are sometimes called T2-spaces, and some
authors generally label separation properties with a tag of the form Tt, where
t is some nonnegative number (and at most five, to my knowledge).

Our next separation axiom has a somewhat different flavor; it is not defined
in terms of the topology, but via continuous functions.

Given metric spaces (X, dX ) and (Y, dY ), we used the symbol Cb(X, Y )
to denote the continuous functions in B(X, Y ). We continue to use the same
symbol if X is merely a topological space.

Definition 3.5.6. Let (X, T ) be a T1-space. Then X is called completely reg-
ular if and only if, for each x ∈ X and each closed set F ⊂ X with x /∈ F ,
there is f ∈ Cb(X, R) with f(X) ⊂ [0, 1], f(x) = 1, and f |F = 0.

Examples 3.5.7. (a) Let (X, d) be a metric space, let x0 ∈ X , and let F ⊂ X
be closed such that x0 /∈ F . To avoid triviality, suppose that F �= ∅.
Define

g : X → R, x �→ dist(x, F ).

Then g is continuous with g|F = 0 and g(x0) �= 0. Define f : X → R by
letting

f(x) := min
{

g(x)
g(x0)

, 1
}

(x ∈ X).

Then f(X) ⊂ [0, 1], f(x0) = 1, and f |F = 0, so that X is completely
regular.
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(b) The Sorgenfrey line is R equipped with the Sorgenfrey topology, that is,
the collection of all unions of half-open intervals [a, b) with a < b. The
Sorgenfrey topology is finer than the canonical topology because

(a, b) =
⋃
{[c, b) : a < c < b}

is Sorgenfrey open for any a < b. Let a ∈ R; then the half line

[a,∞) =
⋃
{[a, b) : b ∈ R, b > a}

is Sorgenfrey open, and since it is closed with respect to the canonical
topology on R, it is also Sorgenfrey closed. Consequently, whenever a < b,
the half-open interval

[a, b) = [a,∞) \ [b,∞)

is Sorgenfrey clopen. Let F ⊂ R be Sorgenfrey closed, and let x ∈ R \ F .
By the definition of the Sorgenfrey topology, there are a < b such that
x ∈ [a, b) ⊂ R \ F . Let f be the indicator function of [a, b). Since [a, b)
is Sorgenfrey clopen, f is continuous (and clearly satisfies f(R) ⊂ [0, 1],
f(x) = 1, and f |F = 0). Consequently, the Sorgenfrey line is completely
regular (even though it is not metrizable; see Example 3.5.14 below).

(c) Every subspace of a completely regular space is again completely regular.

How does complete regularity relate to the separation axioms we have
encountered so far? One implication is fairly straightforward.

Proposition 3.5.8. Let (X, T ) be a completely regular space, let x ∈ X, and
let F ⊂ X be closed such that x /∈ F . Then there are open subsets U and V of
X such that x ∈ U , F ⊂ V , and U ∩ V = ∅. In particular, X is Hausdorff.

Proof. Let f : X → R be continuous such that f(x) = 1 and f |F = 0. Let

U :=
{

y ∈ X : f(y) >
1
2

}
and V :=

{
y ∈ X : f(y) <

1
2

}
.

It follows that U and V are open, that x ∈ U and F ⊂ V , and that U∩V = ∅.
Singleton subsets of a T1-space are closed, thus it is immediate that X is

Hausdorff. �	

Is, perhaps, complete regularity equivalent to the Hausdorff separation
property? The following example gives the (negative) answer.

Example 3.5.9. For each x ∈ R, we define a system Nx of neighborhoods as
follows. If x �= 0, let Nx be the system of neighborhoods of x in the ordinary
topology; if x = 0, let Nx consist of all sets containing a set of the form

(−ε, ε) \
{

1
n

: n ∈ N
}
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with ε > 0. By Theorem 3.1.10, there is a unique topology T on R such that
Nx = Nx for x ∈ R. Clearly, T is finer than the usual topology on R and thus
Hausdorff.

Let

F =
{

1
n

: n ∈ N
}

.

The way T is defined, it is obvious that R \ F is a neighborhood of each of
its points, so that F is closed. Assume that (R, T ) is completely regular. By
Proposition 3.5.8, there are U, V ∈ T such that 0 ∈ U , F ⊂ V , and U∩V = ∅.
By the definition of N0, there is ε > 0 such that

(−ε, ε) \
{

1
n

: n ∈ N
}
⊂ U,

and by the definition of Nx for x �= 0, there is, for each n ∈ N, a number
εn > 0 such that (

1
n
− εn,

1
n

+ εn

)
⊂ V.

Since U ∩ V = ∅, it follows that(
(−ε, ε) \

{
1
n

: n ∈ N
})

∩
(

1
n
− εn,

1
n

+ εn

)
= ∅ (n ∈ N).

This, however, is impossible for 1
n < ε. (Incidentally, this example is first

countable, but not metrizable because otherwise it would be completely reg-
ular.)

We conclude our discussion of separation axioms with yet another one.

Definition 3.5.10. A T1-space (X, T ) is called normal if, for any closed sets
F, G ⊂ X with F ∩G = ∅, there are open sets U, V ⊂ X with F ⊂ U , G ⊂ V ,
and U ∩ V = ∅.

Examples 3.5.11. (a) Let (X, d) be a metric space, and let F, G ⊂ X be closed
(and nonempty, to avoid triviality). Then

f : X → R, x �→ dist(x, F )− dist(x, G)

is continuous. Let

U := {x ∈ X : f(x) < 0} and V := {x ∈ X : f(x) > 0}.

Then U and V are open such that F ⊂ U , G ⊂ V , and U ∩V = ∅. Hence,
X is normal.

(b) Let (K, T ) be a compact Hausdorff space, and let F, G ⊂ K be closed and
disjoint (and again nonempty, to avoid triviality). Fix x ∈ F . For y ∈ G,
there are Uy, Vy ∈ T such that x ∈ Uy, y ∈ Vy, Uy ∩ Vy = ∅. Obviously,
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{Vy : y ∈ G} is an open cover for G, and since G (being a closed subspace
of a compact space) is compact, there are y1, . . . , yn ∈ Y such that

G ⊂ Vy1 ∪ · · · ∪ Vyn .

Let
Ux := Uy1 ∩ · · · ∩ Uyn and Vx := Vy1 ∪ · · · ∪ Vyn .

Then Ux and Vx are open such that x ∈ Ux, G ⊂ Vx, and Ux ∩ Vx = ∅.
Clearly {Ux : x ∈ F} is an open cover for F , and therefore, there are
x1, . . . , xm ∈ F such that

F ⊂ Ux1 ∪ · · · ∪ Uxm .

Letting

U := Ux1 ∪ · · · ∪ Uxm and V := Vx1 ∩ · · · ∩ Vxm ,

we obtain open subsets of X with F ⊂ U , G ⊂ V , and U ∩ V = ∅. All in
all, K is normal.

All normal spaces are trivially Hausdorff, and Example 3.5.9 shows that
the converse is false. But what is the relation between normality and complete
regularity? We give a complete answer in the next chapter. For now, we content
ourselves with giving an example of a completely regular space that fails to
be normal.

We first prove an elementary hereditary property for complete regularity.

Proposition 3.5.12. Let ((Xi, Ti))i∈I be a family of completely regular spaces,
and let (X, T ) denote their topological product. Then X is completely regular.

Proof. For i ∈ I, we use πi : X → Xi as usual to denote the ith coordinate
projection.

Let x = (xi)i∈I and y = (yi)i∈I be distinct points of X . Hence, there is
i0 ∈ I such that xi0 �= yi0 . Since Xi0 is a T1-space, there are Ui0 , Vi0 ∈ Ti0

with xi0 ∈ Ui0 , yi0 /∈ Ui0 , yi0 ∈ Vi0 , and xi0 /∈ Vi0 . Let U := π−1
i0

(Ui0) and
V := π−1

i0
(Vi0). Then U, V ⊂ X are open such that x ∈ U , y /∈ U , y ∈ V , and

x /∈ V . Hence, X is a T1-space.
Let ∅ �= F ⊂ X be closed, and let x = (xi)i∈I ∈ X \ F . By the definition

of the product topology, there are i1, . . . , in ∈ I and Uj ∈ Tij for j = 1, . . . , n
with

x ∈ π−1
i1

(Ui1) ∩ · · · ∩ π−1
in

(Uin) ⊂ X \ F.

The spaces Xi1 , . . . , Xin are all completely regular. Hence, for j = 1, . . . , n,
there is fj ∈ Cb(Xij , R) with fj(Xij ) ⊂ [0, 1] such that

fj(xij ) = 1 and f |Xij
\Uj

= 0.

Define
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f : X → R, y �→
n∏

j=1

fj(πij (y)).

Then f is continuous with f(X) ⊂ [0, 1], f(x) = 1, and f |F = 0. All in all, X
is completely regular. �	

Next, we prove a somewhat surprising statement about discrete subspaces
of normal spaces.

Theorem 3.5.13. Let (X, T ) be a separable normal space, and let D be a
closed discrete subspace of X. Then D cannot have cardinality c or larger.

Proof. Let S ⊂ D. Then S and D \ S are closed in D (D is discrete!), and
since D is closed in X , both S and D \ S are also closed in X . Hence, by
the normality of X , there are US, VS ∈ T with S ⊂ US , D \ S ⊂ VS , and
US ∩ VS = ∅.

Let C be a dense countable subset of X , and define

f : P(D) → P(C), S �→ C ∩ US.

We claim that f is injective. Let S, T ⊂ D be such that S �= T . We can
suppose that S \ T �= ∅. It follows that US ∩ VT is nonempty (and open).
Since C is dense in X , we conclude that C ∩US ∩VT �= ∅. On the other hand,
C ∩ UT ∩ VT = ∅ must hold due to the choice of UT and VT . Consequently,
we have C ∩ US �= C ∩ UT .

The injectivity of f yields

|P(D)| ≤ |P(C)| ≤ 2ℵ0 = c,

and since |D| < |P(D)|, the claim follows. �	
Example 3.5.14. Let (X, T ) be the Sorgenfrey plane, that is, the topological
product of the Sorgenfrey line with itself. By Example 3.5.7(b) and Proposi-
tion 3.5.12, X is completely regular.

Since the sets of the form

[a, b)× [c, d) (a < b, c < d)

form a base for T , and since every such set has a nonempty intersection with
Q2, it is clear that (X, T ) is separable, and equally clearly, T is finer than the
usual topology on R2. Since

D := {(x,−x) : x ∈ R}
is closed in R2 with respect to the ordinary topology, it is therefore also closed
with respect to T . For x ∈ R and a, b ∈ R with x < a and −x < b, note that

D ∩ ([x, a)× [−x, b)) = {(x,−x)},
so that (D, T |D) is discrete (compare Example 3.1.26). Obviously, D has car-
dinality c, which, by Theorem 3.5.13, would be impossible if X were normal.
(This example also shows that the Sorgenfrey line cannot be metrizable; oth-
erwise the Sorgenfrey plane would be metrizable, too, and thus normal.)
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Exercises

1. Show that a topological space (X, T ) is T1 if and only if each constant net in
X has a unique limit.

2. Let (X, T ) be a T1-space such that T has a base consisting of clopen sets. Show
that X is completely regular.

3. Let ((Xi, Ti))i∈I be a family of topological spaces such that their topological
product is completely regular. Show that Xi is completely regular for each i ∈ I.

4. Let (X, T ) be a completely regular space with infinitely many points. Show
that there is a sequence (Un)∞n=1 of nonempty open subsets of X such that
Un∩Um = ∅ for n �= m. Conclude that X contains a countably infinite, discrete
subspace. (Hint : Show first that there is a non-empty open subset U of X such
that X \ U is infinite.)

5. A topological space (X, T ) is called Lindelöf if, for each open cover U of X,
there are U1, U2, . . . ∈ U with X =

S∞
n=1 Un; that is, every open cover has a

countable subcover.
(a) Suppose that X is σ-compact ; that is, there is a sequence (Kn)∞n=1 of com-

pact subsets of X with X =
S∞

n=1 Kn. Show that X is Lindelöf.
(b) Let B be a base for T . Show that X is Lindelöf if and only if every open

cover U ⊂ B of X has a countable subcover (so that, in particular, every
second countable space is Lindelöf).

(c) Show that a closed subspace of a Lindelöf space is again Lindelöf.
6. Let (X, T ) be a completely regular Lindelöf space, and let F, G ⊂ X be closed

and disjoint.
(a) Show that, for each x ∈ F and y ∈ G, there are open subsets Ux and Vy of

X with x ∈ Ux, y ∈ Vy, G ∩ Ux = ∅, and F ∩ V y = ∅.
(b) Argue that there are sequences (xn)∞n=1 in F and (yn)∞n=1 in G with F ⊂

S∞
n=1 Uxn and G ⊂ S∞

n=1 Vyn .
(c) Let

U :=
∞
[

n=1

Uxn \
`

V y1 ∪ · · · ∪ V yn

´

and

V :=

∞
[

n=1

Vyn \
`

Ux1 ∪ · · · ∪ Uxn

´

.

Show that U and V are open and disjoint with F ⊂ U and G ⊂ V , and
conclude that X is normal.

7. Let (X, T ) be the Sorgenfrey line. Show that X is Lindelöf (and thus normal
by the previous problem). Proceed as follows.
(a) Let U be an open cover for X. Argue that one can suppose without loss of

generality that U only consists of sets of the form [a, b) with a < b.
(b) Let V := {(a, b) : [a, b) ∈ U}, and let C := X \S{V : V ∈ V}. Prove that C

is countable.
(c) Argue that R \ C is Lindelöf with respect to the canonical topology on R,

and use this and (b) to show that U has a countable subcover.
What can you conclude about the normality of the topological product of a
family of normal spaces?

8. Show that a closed subspace of a normal space is normal again.
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Remarks

In 1895, the French mathematician Henri Poincaré published a book named
Analysis situs (Latin for analysis of places), which is considered the first
attempt to systematically study the phenomena that would later be called
topology (which is derived from the Greek words topos , meaning place, and
logos, meaning study, and therefore means study of places). Further attempts
were soon made by Fréchet [Fréchet 06] and others.

It was Felix Hausdorff, the one after whom the Hausdorff spaces are named,
in [Hausdorff 14] who came up with the modern definition along with the
modern name (in German, of course). He used the approach presented in The-
orem 3.1.10, that is, through an axiomatization of the notion of neighborhood.
Kuratowski closure operations, which provide an alternative, but equivalent
approach to topology, were introduced by and named after the Polish math-
ematician Kazimierz Kuratowski in the early 1920s. The approach we give,
through an axiomatization of openness, is the most widespread one these days.

Modern introductions to set theoretic topology are, among many others,
the books by John L. Kelley [Kelley 55], George F. Simmons [Simmons 63],
Stephen Willard [Willard 70], Graham J. O. Jameson [Jameson 74], and
James R. Munkres [Munkres 00].

The product topology was discovered by the young Andrey N. Tychonoff
(Andrei N. Tikhonov), then at most in his early twenties, about 1926. Inter-
estingly, his teacher Pavel S. Alexandroff (Alexandrov) was doubtful if it was a
good concept at all. It was, and Tychonoff used it to prove the famous theorem
that is now named after him. Nowadays, various proofs of Tychonoff’s theorem
are available; the one we present is due to Paul R. Chernoff [Chernoff 92].
Since Tychonoff’s theorem is about Cartesian products, objects whose very
existence cannot be guaranteed other than by Zorn’s lemma (or one of its
equivalent formulations), it isn’t much of a surprise that each of its proofs
relies on Zorn’s lemma in some form. Interestingly, Tychonoff’s theorem is
not only implied by Zorn’s lemma, but equivalent to it [Kelley 50].

Our definition of total disconnectedness is considered to be the “standard”
one, in the sense that most textbooks nowadays use it. But there are excep-
tions: for example, [Simmons 63] calls a space totally disconnected when we
call it zero-dimensional as defined in Exercise 3.4.10.

The names for the separation axioms are also not entirely standardized. For
instance, in [Kelley 55], completely regular and normal spaces need not be
T1, and what we call a completely regular space is called a Tychonoff space in
[Kelley 55]. The term T1 originates in Alexandroff’s fundamental treatise
[Alexandroff & Hopf 35] with Heinz Hopf: there, the authors consider
five separation axioms Tj for j = 1, . . . , 5. The T2-axiom is nowadays called
the Hausdorff separation property, and besides the T1-axiom, their nomen-
clature has not survived. Other authors have considered separation axioms
labeled Tt with values for t other than 1, . . . , 5: this is how the T0-axiom came
into existence (completely regular spaces, for instance, are sometimes—half
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mockingly—referred to as T3 1
2
-spaces). The separation property considered

in Proposition 3.5.8, which is implied by complete regularity and implies the
Hausdorff property, is called regularity. The subsequent example is of a space
which is Hausdorff, but not regular. It is not obvious that regularity is indeed
weaker than complete regularity, but it is true; an example, not for the faint
of heart, is given as an exercise in [Willard 70].

Kuratowski, Tychonoff, and Alexandroff all had long and successful pro-
fessional careers despite trying political circumstances in their countries, and
all died in their eighties. Tychonoff, born in 1906, before the Soviet Union
existed, passed away in 1993, when it no longer existed.

Twentieth-century politics wouldn’t allow Felix Hausdorff to die in peace.
Being Jewish, he was notified in 1942 of his impending deportation to the
concentration camp Theresienstadt (Tereźın) in occupied Czechoslovakia. Not
willing to give up their dignity as human beings, whatever was left of it in
1942, he, his wife, and his sister-in-law took their own lives.
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Systems of Continuous Functions

Topological spaces were introduced in the first place because they are the
natural habitat for continuous functions.

Given two topological spaces X and Y , the number of continuous functions
from X to Y can vary greatly, depending on the topologies involved: every-
thing is possible from “all functions are continuous” to “only the constants are
continuous.” In this chapter, we are interested in continuous functions from
topological spaces into R or C. On a metric space, the metric itself easily
provides a plentiful supply of such functions. But can anything meaningful be
said in the absence of a metric?

4.1 Urysohn’s Lemma and Applications

Let (X, T ) be a topological space. Is there any nonconstant function from X
to R?

If X is normal, the surprising (and surprisingly easy to prove) answer is
given by Urysohn’s lemma, for whose proof we require the following.

Lemma 4.1.1. Let (X, T ) be normal, let F ⊂ X be closed, and let U ⊂ X be
open such that F ⊂ U . Then there is an open subset V of X such that

F ⊂ V ⊂ V ⊂ U.

Proof. Since F and X \ U are both closed and disjoint, the definition of nor-
mality yields disjoint open sets V, W ⊂ X such that F ⊂ V and X \ U ⊂ W .
Since V ∩W = ∅ (i.e., V ⊂ X \W ), and since X \W is closed, it follows that

V ⊂ X \W ⊂ (X \ (X \ U)) = U,

as claimed. �	
Theorem 4.1.2 (Urysohn’s lemma). Let (X, T ) be a normal topological
space, and let F and G be disjoint closed subsets of X. Then there is a con-
tinuous function f : X → R such that f(X) ⊂ [0, 1], f |F = 0, and f |G = 1.
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Proof. Since X \G is open and contains F , Lemma 4.1.1 yields an open set
U 1

2
⊂ X with

F ⊂ U 1
2
⊂ U 1

2
⊂ X \G.

Via the same argument, we obtain open subsets U 1
4

and U 3
4

of X such that

F ⊂ U 1
4
⊂ U 1

4
⊂ U 1

2
⊂ U 1

2
⊂ U 3

4
⊂ U 3

4
⊂ X \G.

In the next step, we obtain open sets U 1
8
, U 3

8
, U 5

8
, and U 7

8
in X , such that

F ⊂ U 1
8
⊂ U 1

8
⊂ U 1

4
⊂ U 1

4

⊂ U 3
8
⊂ U 3

8
⊂ U 1

2
⊂ U 1

2
⊂ U 5

8
⊂ U 5

8
⊂ U 3

4
⊂ U 3

4
⊂ U 7

8
⊂ U 7

8
⊂ X \G.

Let D denote the set of dyadic rationals in (0, 1), that is., all numbers of
the form m

2n , where n ∈ N, and m ∈ {1, 2, . . . , 2n− 1}. Continuing the process
outlined before, we obtain, for each t ∈ D, an open subset Ut of X such that,
for any s, t ∈ D, with s < t, we have

F ⊂ Us ⊂ U s ⊂ Ut ⊂ U t ⊂ X \G.

Define f : X → R as follows,

f(x) :=
{

sup{t ∈ D : x /∈ Ut}, x /∈
⋂

t∈D Ut,
0, otherwise.

It is clear that f(X) ⊂ [0, 1], that f |F = 0, and that f |G = 1. All that remains
to be shown is the continuity of f .

Since f(X) ⊂ [0, 1], it is sufficient to show that f−1(U) is open for each
subset U of [0, 1] that is open in [0, 1], that is, open with respect to the
relative topology of [0, 1]. Since {[0, a), (b, 1] : a, b ∈ [0, 1]} is a subbase for
this topology, it is sufficient to show that f−1([0, a)) and f−1((a, 1]) are open
for each a ∈ [0, 1].

Let a ∈ [0, 1]. It follows from the definition of f that f(x) < a if and only
if there is t ∈ D, t < a, with x ∈ Ut. Consequently,

f−1([0, a)) =
⋃
t<a

Ut

is open. Also, f(x) > a holds if and only if there is t ∈ D, t > a, with x /∈ U t.
Therefore,

f−1((a, 1]) =
⋃
t>a

X \ U t

is also open.
It follows that f is indeed continuous. �	

It is easy to see that the interval [0, 1] in Urysohn’s lemma can be replaced
by any interval [a, b] with a < b.
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Corollary 4.1.3. Let (X, T ) be a normal topological space, let F and G be
disjoint closed subsets of X, and let a < b. Then there is a continuous function
f : X → R such that f(X) ⊂ [a, b], f |F = a, and f |G = b.

Proof. By Urysohn’s lemma, there is a continuous function g : X → [0, 1] with
g|F = 0 and g|G = 1. Define f : X → [a, b] via

f(x) := (b− a)g(x) + a (x ∈ X),

which proves the corollary. �	

As another straightforward consequence of Urysohn’s lemma, we can now
clarify the relation between normality and complete regularity:

Corollary 4.1.4. Let (X, T ) be a normal. Then X is completely regular.

Further consequences are as follows.

Corollary 4.1.5. Let (X, T ) be a locally compact Hausdorff space. Then X
is completely regular.

Proof. The one-point compactification of X is a compact Hausdorff space,
therefore normal, and thus completely regular. As a subspace of a completely
regular space, X itself is completely regular. �	

Corollary 4.1.6. The following are equivalent for a topological space (X, T ).

(i) X is a compact Hausdorff space.
(ii) There is an index set I, such that X is homeomorphic to a closed subspace

of [0, 1]I.

Proof. (i) =⇒ (ii): Let

I := {f ∈ C(X, R) : f(X) ⊂ [0, 1]},

and define
ι : X → [0, 1]I, x �→ (f(x))f∈I.

Clearly, ι is continuous, and by Urysohn’s lemma, it is also injective. Hence,
ι : X → ι(X) is a continuous bijection from a compact space into a Hausdorff
space. By Theorem 3.3.11, this means that ι is actually a homeomorphism
between X and ι(X). Finally, since X is compact, so is ι(X), which is therefore
closed in the Hausdorff space [0, 1]I.

(ii) =⇒ (i): Since [0, 1]I is a compact Hausdorff space, so are each of its
closed subspaces. �	

Next, we put Urysohn’s lemma to work on the question of metrizability of
topological spaces. We have already encountered a few necessary properties for
a topological space to be metrizable: the Hausdorff separation property, first
countability, and normality. None of these properties, however, is sufficient.

We first prove a technical lemma.
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Lemma 4.1.7. Let (X, T ) be a topological space, let B a base for T , and
suppose that, for each U ∈ B and each x ∈ U , there is a continuous function
fU,x : X → R such that fU,x(x) = 1 and fU,x|X\U = 0. Then T is the coarsest
topology on X such that all functions in {fU,x : U ∈ B, x ∈ U} are continuous.

Proof. Let T ′ denote the coarsest topology on X such that all functions in
{fU,x : U ∈ B, x ∈ U} are continuous. Clearly, T is finer than T ′. Assume
towards a contradiction that there is a set U ∈ T that is not in T ′. Without
loss of generality, we may suppose that U ∈ B. If U is not in T ′, then X \U is
not closed with respect to T ′. Consequently, there is x /∈ X \ U (i.e., x ∈ U)
that lies in the closure of X \ U with respect to T ′. Let (xα)α be a net in

X \ U such that xα
T ′
→ x. It follows that

1 = fU,x(x) = lim
α

fU,x(xα) = 0,

which is absurd. Hence, T and T ′ must coincide. �	

Corollary 4.1.8. Let (X, T ) be a completely regular space. Then T is the
coarsest topology on X such that all functions in Cb(X, R) are continuous.

The following definition was already given in Exercise 3.1.4, but repeating
it won’t hurt.

Definition 4.1.9. A topological space (X, T ) is called second countable if T
has a countable base.

Theorem 4.1.10 (Urysohn’s metrization theorem). Let (X, T ) be a nor-
mal, second countable space. Then X is metrizable.

Proof. Let {U1, U2, U3, . . .} ⊂ T be a countable base for T , and let

A :=
{
(n, m) ∈ N2 : Un ⊂ Um

}
.

We claim that, for each m ∈ N, and for each x ∈ Um, there is n ∈ N with
x ∈ Un ⊂ Un ⊂ Um (so that, in particular, (n, m) is in A). Indeed, Lemma
4.1.1 yields U ∈ T with x ∈ U ⊂ U ⊂ Um. Since {U1, U2, . . .} is a base for T ,
the existence of n as required follows.

By Urysohn’s lemma, there is, for each (n, m) ∈ A, a continuous function
fn,m : X → R with fn,m(X) ⊂ [0, 1], fn,m|Un

= 1, and fn,m|X\Um
= 0. Define

d : X ×X → R by letting

d(x, y) :=
∑

(n,m)∈A

1
2n+m

|fn,m(x)− fn,m(y)| (x, y ∈ X).

It is straightforward that d is a semimetric on X . To see that d is, in fact,
a metric, let x, y ∈ X be such that x �= y. Since X is Hausdorff, there is
m ∈ N with x ∈ Um and y /∈ Um. By the foregoing, there is n ∈ N such that
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x ∈ Un ⊂ Um, so that (n, m) ∈ A. Since fn,m|Un
= 1, and fn,m|X\Um

= 0, we
have |fn,m(x)− fn,m(y)| = |fn,m(x)| = 1 and thus d(x, y) ≥ 1

2n+m > 0.
It is routine to verify that the identity from (X, T ) to (X, d) is continuous—

because each function fn,m is continuous—so that the topology induced by d
is coarser than T . On the other hand, each function fn,m with (n, m) ∈ A is
continuous with respect to d, and from Lemma 4.1.7, we conclude that T is
also coarser than the topology of (X, d). �	

Corollary 4.1.11. The following are equivalent for a compact Hausdorff
space (K, T ).

(i) K is second countable.
(ii) K is metrizable.

Proof. (i) =⇒ (ii) follows immediately from the metrization theorem.
For the converse implication, note that a compact metrizable space is

always separable and thus second countable by Exercise 3.1.4. �	

The following lemma has already been proven for metric spaces as (a spe-
cial case of) Example 2.4.6; the proof, however, given there works for general
topological spaces as well.

Lemma 4.1.12. Let (X, T ) be a topological space. Then Cb(X, F), equipped
with the norm ‖ · ‖∞ given by

‖f‖∞ := sup{|f(x)| : x ∈ X} (f ∈ Cb(X, F)),

is a Banach space.

We require Lemma 4.1.12 in the proof of yet another application of
Urysohn’s lemma.

Theorem 4.1.13 (Tietze’s extension theorem). Let (X, T ) be a normal
space, let Y be a closed subspace, and let f : Y → R be continuous such
that f(Y ) ⊂ [a, b]. Then there is a continuous function f̃ : X → R with
f̃(X) ⊂ [a, b] that extends f .

Proof. The claim is trivial if a = b, so suppose that a < b. Without loss of
generality, suppose further that a = −1 and b = 1.

Set f0 := f , and let

F0 :=
{

x ∈ Y : f0(x) ≤ −1
3

}
and G0 :=

{
x ∈ Y : f0(x) ≥ 1

3

}
.

Then F0 and G0 are closed and disjoint. By Corollary 4.1.3, there is a con-
tinuous function g0 : X →

[
− 1

3 , 1
3

]
such that g0|F0 = − 1

3 and g0|G0 = 1
3 . Let

f1 := f0 − g0|Y . It follows that f1(Y ) ⊂
[
− 2

3 , 2
3

]
. Let

F1 :=
{

x ∈ Y : f1(x) ≤ −1
3

2
3

}
and G1 :=

{
x ∈ Y : f1(x) ≥ 1

3
2
3

}
.



114 4 Systems of Continuous Functions

From Corollary 4.1.3 again, we obtain a continuous function g1 : X →[
− 1

3
2
3
, 1

3
2
3

]
with g1|F1 = − 1

3
2
3

and g1|G1 = 1
3

2
3
. Set f2 := f1 − g1|Y and

observe that f2(Y ) ⊂
[
− 2

3
2
3 , 2

3
2
3

]
. Continuing in this fashion, we obtain con-

tinuous functions f0, f1, f2, . . . on Y and g0, g1, g2, . . . on X with

fn(Y ) ⊂
[
−

(
2
3

)n

,

(
2
3

)n]
and gn(X) ⊂

[
−1

3

(
2
3

)n

,
1
3

(
2
3

)n]
for n ∈ N0. Moreover, we have

fn = f0 − (g0 + g1 + · · ·+ gn−1)|Y (n ∈ N).

Let ε > 0. Since
∞∑

n=0

‖gn‖∞ ≤
∞∑

n=0

1
3

(
2
3

)n

= 1 < ∞, (∗)

there is nε ∈ N such that∥∥∥∥∥
m∑

k=n+1

gk

∥∥∥∥∥
∞

≤
m∑

k=n+1

‖gk‖∞ < ε (m > n ≥ nε).

Consequently, the sequence (
∑n

k=0 gk)∞
n=1

is a Cauchy sequence in the Banach
space Cb(X, R) and therefore converges to a function f̃ : X → R. By (∗), we
have for x ∈ X that ∣∣∣f̃(x)

∣∣∣ ≤ ∞∑
n=0

|gn(x)| ≤ ‖gn‖∞ = 1,

so that f̃(X) ⊂ [−1, 1]. Moreover, for x ∈ Y ,

∣∣∣f(x)− f̃(x)
∣∣∣ = lim

n→∞

∣∣∣∣∣f(x)−
n∑

k=0

gk(x)

∣∣∣∣∣ = lim
n→∞

|fn(x)| ≤ lim
n→∞

(
2
3

)n

= 0

holds. Hence, f̃ extends f as claimed. �	

The following is a nice consequence of Urysohn’s lemma and Tietze’s exten-
sion theorem and shows that normality is precisely the condition that makes
these two results work.

Corollary 4.1.14. The following are equivalent for a T1-space (X, T ).

(i) X is normal.
(ii) For any closed and disjoint F, G ⊂ X, there is a continuous function

f : X → R such that f(X) ⊂ [0, 1], f |F = 0, and f |G = 1.
(iii) For any closed and disjoint F, G ⊂ X, there is a continuous function

f : X → R such that f |F = 0 and f |G = 1.
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(iv) For any closed subspace Y of X and for any continuous function f : Y →
R with f(Y ) ⊂ [a, b], there is a continuous function f̃ : X → R with
f̃(X) ⊂ [a, b] such that f̃ |Y = f .

(v) For any closed subspace Y of X and for any continuous function f : Y →
R, there is a continuous function f̃ : X → R such that f̃ |Y = f .

Proof. (i) =⇒ (ii) is Uryhsohn’s lemma, and (ii) =⇒ (iii) is a triviality.
(iii) =⇒ (i): Let F, G ⊂ X be closed and disjoint, and let f be a function

as in (iii). Set

U :=
{

x ∈ X : f(x) <
1
2

}
and V :=

{
x ∈ X : f(x) >

1
2

}
.

Then U and V are open and disjoint such that F ⊂ U and G ⊂ V .
(i) =⇒ (iv) is Tietze’s extension theorem.
(iv) =⇒ (v): Let g := arctan ◦f . Then g : Y → R is continuous such that

g(Y ) ⊂
(
−π

2
, π

2

)
. By (iv), there is a continuous function g̃ : X → R extending

g such that g̃(X) ⊂
[
−π

2
, π

2

]
.

One might be tempted to simply set f̃ := tan ◦g̃. The problem with this
approach is that, even though g does not attain −π

2 or π
2 , we cannot rule

out by (iv) that these two values do not lie in the range of g̃, so that tan ◦g̃
may not be defined on all of X . To get around this difficulty, we invoke (iv) a
second time.

Let F := g̃−1
({
−π

2 , π
2

})
. Then F is closed and has an empty intersection

with Y . Define h : F ∪ Y → [0, 1] such that h|F = 0 and h|Y = 1. Then h is
continuous because F and Y are clopen in F ∪Y , and (iv) yields a continuous
extension h̃ : X → [0, 1] of h. It follows that h̃g̃ is a continuous extension
of g attaining all its values in

(
−π

2 , π
2

)
. Consequently, f̃ := tan ◦

(
h̃g̃

)
is a

continuous extension of f .
(v) =⇒ (iii): Let F, G ⊂ X be closed and disjoint. Set Y := F ∪ G and

define f : Y → R through f |F := 0 and f |G := 1. Then f is continuous, and
thus has a continuous extension to all of X . This extension satisfies (iii). �	

Exercises

1. Let (X, T ) be a T1-space such that, for each closed F ⊂ X and each open U ⊂ X
with F ⊂ U , there is an open subset V of X with F ⊂ V ⊂ V ⊂ U . Show that
X is normal.

2. Show that an open subset of a compact Hausdorff space is locally compact, and
conclude that, for a locally compact Hausdorff space (X, T ), the neighborhood
system Nx has a base consisting of compact sets for each x ∈ X.

3. Let (X, d) be a metric space (so that X is normal and Urysohn’s lemma holds),
and let F, G ⊂ X be nonempty, closed, and disjoint. Give a “concrete” descrip-
tion of f as in Urysohn’s lemma in terms of dist(·, F ) and dist(·, G).

4. Let (X, T ) be a completely regular space, let K ⊂ X be compact, and let
F ⊂ X be closed such that K ∩ F = ∅. Show that there is a continuous
function f : X → R such that f(X) ⊂ [0, 1], f |K = 1, and f |F = 0.
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5. Let (X, T ) be a normal space, and let {U1, . . . , Un} be an open cover for X.
(a) Show that there is an open cover {V1, . . . , Vn} of X such that V j ⊂ Uj for

j = 1, . . . , n.
(b) Show that there are continuous functions f1, . . . , fn : X → [0,∞) such that

f1 + · · · + fn = 1 and {x ∈ X : fj(x) �= 0} ⊂ Uj for j = 1, . . . , n.
6. Show that the following are equivalent for a topological space (X, T ).

(i) X is completely regular.
(ii) X is homeomorphic to a subspace of [0, 1]I for some index set I.
(iii) X is homeomorphic to a subspace of a compact Hausdorff space.

7. Show that a Hausdorff space (X, T ) has a base for T consisting of clopen sets
if and only if X is homeomorphic to a subspace of {0, 1}I for some index set I
(here, {0, 1} is equipped with the discrete topology).

8. Give an example showing that, in Tietze’s extension theorem, the requirement
that Y be closed cannot be dropped.

9. Let (X, T ) be a normal space, and let Y be a closed subspace of X. Show that
the restriction map

Cb(X, R) → Cb(Y,R), f �→ f |Y

is continuous and surjective, and conclude that, if Cb(X, R) is separable, then
so is Cb(Y, R). What if we replace R by C?

4.2 The Stone–Čech Compactification

In Theorem 3.3.26, we saw that every locally compact Hausdorff space X is a
subspace of a compact Hausdorff space, namely its one-point compactification
X∞. This compactification is minimal: it just contains one point not contained
in X .

By Exercise 4.1.6, the topological spaces that have a “compactification”
(i.e., are homeomorphic to a subspace of a compact Hausdorff space) are pre-
cisely the completely regular ones. In this section, we show that, among the
compactifications of a completely regular space, one particular compactifica-
tion stands out—in a sense yet to be made precise—as maximal.

We start with a look at the continuous functions on a compact Hausdorff
space. This set of functions is a commutative ring with identity under the
pointwise operations; we may thus speak of ideals in this ring.

Proposition 4.2.1. Let (K, T ) be a compact Hausdorff space. Then the fol-
lowing are equivalent for m ⊂ C(K, F).

(i) m is a maximal ideal of C(K, F).
(ii) There is a nonzero, multiplicative linear map φ : C(K, F) → F such that

m = {f ∈ C(K, F) : φ(f) = 0}.
(iii) There is x ∈ K such that m = {f ∈ C(K, F) : f(x) = 0}.

Proof. (iii) =⇒ (ii): The map C(K, F)  f �→ f(x) is nonzero (because the
constant functions are continuous), linear, and multiplicative, and has the
required property.
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(ii) =⇒ (i): It is routinely checked that m is an ideal of C(K, F). To see that
m is indeed maximal, first note that φ is surjective: φ is nonzero and linear,
therefore the range of φ is a nonzero linear subspace of the one-dimensional
linear space F and thus all of F. Let I be an ideal of C(K, F) with m � I.
Since φ is surjective, φ(I) is an ideal of F, and since I �= m, it cannot be
that φ(I) is the zero ideal. Since F is a field and thus does not have ideals
besides (0) and F, this means that φ(I) = F. Assume that I � C(K, F), and
let f ∈ C(K, F) \ I. Since φ(I) = F, there is g ∈ I such that φ(g) = φ(f).
This, in turn, implies that f − g ∈ m, so that

f = g + (f − g)︸ ︷︷ ︸
∈m⊂I

∈ I,

which is a contradiction.
(i) =⇒ (iii): For each x ∈ K, let

mx := {f ∈ C(K, F) : f(x) = 0}.

Assume that m �= mx for all x ∈ K. Since m is maximal, this is equivalent
to m �⊂ mx for each x ∈ K. Hence, for each x ∈ K, there is fx ∈ m with
fx(x) �= 0. For x ∈ K, let

Ux := {y ∈ K : fx(y) �= 0}.

Then {Ux : x ∈ K} is an open cover for K and thus has a finite subcover:
there are x1, . . . , xn ∈ K such that

K = Ux1 ∪ · · · ∪ Uxn .

Let
f := fx1 f̄x1 + · · ·+ fxn f̄xn .

It follows that f ∈ m and that f(x) > 0 for all x ∈ K. Since 1
f is again

continuous, it follows that 1 = f 1
f
∈ m, which is impossible if m �= C(K, F).

�	
Corollary 4.2.2. Let (K, T ) be a compact Hausdorff space, and let φ :
C(K, F) → F be a nonzero, linear, and multiplicative map. Then there is
a unique x ∈ K such that

φ(f) = f(x) (f ∈ C(K, F)).

Proof. Let m = {f ∈ C(K, F) : φ(f) = 0}. By Proposition 4.2.1, there is
x ∈ K such that m = {f ∈ C(K, F) : f(x) = 0}. Note that φ(1) = 1: since
φ(1)2 = φ(12) = φ(1), it follows that φ(1) ∈ {0, 1}, and φ(1) = 0 is impossible
because otherwise, φ(f) = φ(f)φ(1) = 0 would hold for each f ∈ C(K, F).
Let f ∈ C(K, F) be arbitrary. It follows that f − f(x)1 ∈ m, so that

φ(f) = φ(f − f(x)1) + φ(f(x)1) = f(x)φ(1) = f(x).

This proves the existence of x. The uniqueness follows from Urysohn’s lemma.
�	
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The following proposition provides information on certain maps between
spaces of continuous functions.

Proposition 4.2.3. Let (K, TK) and (L, TL) be compact Hausdorff spaces.
Then the following are equivalent for a map φ : C(K, F) → C(L, F):

(i) φ is linear, unital ring homomorphism, that is, is linear, multiplicative,
and maps the identity of C(K, F) to the identity of C(L, F).

(ii) There is a continuous map κ : L → K such that

φ(f) = f ◦ κ (f ∈ C(K, F)).

Moreover, κ as in (ii) is necessarily unique.

Proof. (ii) =⇒ (i) is trivial.
(i) =⇒ (ii): For any x ∈ L, define

φx : C(K, F) → F, f �→ φ(f)(x).

It is immediately checked, that φx is nonzero, linear, and multiplicative. By
Corollary 4.2.2, there is therefore κ(x) ∈ K with the property that

φ(f)(x) = f(κ(x)) (f ∈ C(K, F)).

It remains to be shown that κ : L → K is continuous. What is clear is that κ is
continuous if K is equipped with the coarsest topology making all functions in
C(K, F) continuous. This topology, however, is nothing but TK by Corollary
4.1.8.

Finally, the uniqueness assertion of Corollary 4.2.2 yields the uniqueness
of κ. �	

We can now formulate (and prove) the main result of this section.

Theorem 4.2.4 (Stone–Čech compactification). Let (X, TX) be a com-
pletely regular topological space. Then there is a compact Hausdorff space
βX—the Stone–Čech compactification of X—along with a continuous map
ι : X → βX, which is a homeomorphism onto a dense subset of βX, with the
following universal property. If (K, TK) is any compact Hausdorff space and if
κ : X → K is continuous, then there is a unique continuous map κ̂ : βX → K
such that the diagram

X
ι � βX

K

κ̂

�

κ
�

commutes. Moreover, βX is unique up to homeomorphism.
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Proof. Let X̃ :=
∏

f∈Cb(X,R) f(X) be equipped with the product topology, so
that X̃ is compact by Tychonoff’s theorem, and define

ι : X → X̃, x �→ (f(x))f∈Cb(X,R).

By the definition of the product topology, ι is continuous. Moreover, since X is
completely regular, ι is injective, and Corollary 4.1.8 immediately yields that
ι is a homeomorphism onto its image. Let βX := ι(X). For f ∈ Cb(X, R), let
πf : X̃ → R be the coordinate projection associated with f . Define f̂ : βX → R
by letting f̂(ω) := πf (ω) for ω ∈ βX . It follows that f̂ ◦ ι = f . Identifying
X with its image in βX , we see that f̂ is a (necessarily unique) continuous
extension of f to all of βX . It is easy to see that

Cb(X, R) → C(βX, R), f �→ f̂

is a linear, unital ring isomorphism.
Let (K, TK) be any compact Hausdorff space, and let κ : X → K be

continuous. Then

C(K, R) → Cb(X, R), f �→ f ◦ κ

is a linear, unital ring homomorphism. In view of the isomorphism between
Cb(X, R) and C(βX, R), Proposition 4.2.3 yields a continuous map κ̂ : βX →
K such that

f(κ̂(ι(x))) = f(κ(x)) (f ∈ C(K, R), x ∈ X).

It follows that κ̂ ◦ ι = κ.
Suppose that there are κ̂1, κ̂2 : βX → K such that κ̂j ◦ ι = κ for j = 1, 2.

Then κ1 and κ2 coincide on the dense subset ι(X) and (because K is Haus-
dorff) must therefore be equal (Exercise 3.2.10). This proves the uniqueness
of κ̂.

To prove the uniqueness of βX up to homeomorphism, let β1X and β2X
be Stone–Čech compactifications of X with corresponding maps ιj : X → βjX
for j = 1, 2. Then ι1 and ι2 have continuous extensions ι̂1 : β2X → β1X and
ι̂2 : β1X → β2X such that ι̂1 ◦ ι2 = ι1 and ι̂2 ◦ ι1 = ι2. It follows that ι̂1 and
ι̂2 are inverse to each other, so that β1X and β2X are homeomorphic via ι̂1
and ι̂2. �	

The following is a byproduct of the proof of Theorem 4.2.4, at least for
F = R, but we rather deduce it from that theorem.

Corollary 4.2.5. Let (X, T ) be a completely regular topological space. Then
each f ∈ Cb(X, F) has a unique extension f̂ ∈ C(βX, F), so that

Cb(X, F) → C(βX, F), f �→ f̂ (∗∗)

is a linear, unital ring isomorphism and an isometry of Banach spaces.
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Proof. For f ∈ Cb(X, F), apply Theorem 4.2.4 to K := f(X) and κ := f .
The uniqueness of f̂ follows from the denseness of X in βX , which also yields
that (∗∗) is a linear, unital ring homomorphism and an isometry of Banach
spaces. If g ∈ C(βX, F), then its restriction f to X lies in Cb(X, F), and the
uniqueness of f̂ yields that f̂ = g. Hence, (∗∗) is bijective. �	

With the help of the Stone–Čech compactification, we can now tie up one
loose end from the section on separation properties. With the exception of
normality, it is easy to see that all the separation properties we discussed
were inherited by arbitrary subspaces. For normality, this is not only not
obvious, but false.

Example 4.2.6. Let (X, T ) be any completely regular space that fails to be
normal, the Sorgenfrey plane from Example 3.5.14, for instance. By Theorem
4.2.4, we can identify X with a dense subspace of its Stone–Čech compactifi-
cation βX . As a compact Hausdorff space, βX is normal whereas its subspace
X isn’t.

In general, the existence of the Stone–Čech compactification is a mixed
blessing. When dealing with bounded continuous functions on a completely
regular space, one can replace the given space by a compact Hausdorff space,
a generally better-behaved object. On the other hand, for most completely
regular spaces, the Stone–Čech compactification is so enormously large and
removed from intuition that little can be said beyond that it exists and is
compact. The exercises at the end of this section give an inkling of how huge
and bizarre the space βN is.

Exercises

1. Let (K, T ) be a compact Hausdorff space. Then, by Proposition 4.2.1,

mx := {f ∈ C(K, F) : f(x) = 0}

is a maximal, and therefore prime, ideal of the commutative ring C(K, F). Show
that

K → Spec(C(K, F)), x �→ mx

is a homeomorphism onto the subspace of Spec(C(K, F)) consisting of the max-
imal ideals of C(K, F). (Hint : Show that the map is continuous and then that
{mx : x ∈ K} equipped with the topology inherited from Spec(C(K, F)) is
Hausdorff.)

2. Let (K, T ) be a separable compact Hausdorff space. Show that there is a contin-
uous surjection from βN onto K, where N is equipped with the discrete topology.

3. An idempotent in a commutative ring R with identity is an element e ∈ R such
that e2 = e; for example, 0 and 1 are idempotents. Show that a topological
space (X, T ) is connected if and only if Cb(X, F) has no idempotents other than
the constant functions 0 and 1, and conclude that a completely regular space is
connected if and only if its Stone–Čech compactification is.
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4. Let (X, T ) be a discrete topological space.
(a) Show that the linear span of the idempotents in Cb(X, F) is dense in

Cb(X, F).
(b) Conclude that βX is zero-dimensional in the sense of Exercise 3.4.10 (and

thus totally disconnected).
5. Let N be equipped with the discrete topology.

(a) Show that a sequence in N converges in βN if and only if it is eventually
constant.

(b) Let x ∈ βN \ N. Show that Nx does not have a countable base (so that βN
is not first countable and thus not metrizable).

6. Show that βN has the same cardinality as RR. Proceed as follows.
(a) Show that [0, 1][0,1], equipped with the product topology, is a separable,

compact Hausdorff space, and conclude that |βN| ≥
˛

˛

˛

[0, 1][0,1]
˛

˛

˛

=
˛

˛RR
˛

˛.

(b) Show that Cb(N, R) = B(N, R) has cardinality c, and conclude that also
|βN| ≤

˛

˛RR
˛

˛ (so that, in fact, |βN| =
˛

˛RR
˛

˛ by the Cantor–Bernstein theo-
rem).

4.3 The Stone–Weierstraß Theorems

In Example 2.4.18, we used the classical Weierstraß approximation theorem:
Every continuous function on a compact interval can be uniformly approxi-
mated by a sequence of polynomials.

In this section, we extend this result to continuous functions on arbitrary
compact Hausdorff spaces. The first question that arises here is, of course,
what is a polynomial supposed to be on an arbitrary compact Hausdorff space.

Definition 4.3.1. An algebra is a commutative ring A that is also a vector
space over F = R or F = C such that

λ(ab) = (λa)b = a(λb) (λ ∈ F, a, b ∈ A).

If A has an identity, we call A unital. A linear subspace B of A that is also
a subring, is called a subalgebra; if A has an identity and if this identity is
contained in B, we call B a unital subalgebra.

Of course, the continuous functions on a compact interval form a unital
algebra, and the polynomials form a unital subalgebra, and the Weierstraß
approximation theorem asserts nothing but that the subalgebra of the con-
tinuous functions consisting of the polynomials is dense. It is in this direction
that we generalize the Weierstraß approximation theorem.

We start with a definition.

Definition 4.3.2. Let (K, T ) be a compact Hausdorff space, and let A be
a closed unital subalgebra of C(K, C). Then ∅ �= S ⊂ K is called A-
antisymmetric if f ∈ A with f(S) ⊂ R means that f is constant on S.



122 4 Systems of Continuous Functions

Of course, no matter what A is, the singleton subsets of K are triv-
ially A-antisymmetric. Our first lemma ascertains the existence of “large”
A-antisymmetric sets for any algebra closed subalgebra A of C(K, C). To
make precise what we mean by “large”, we introduce some notation.

Let (K, T ) be any compact Hausdorff space, let ∅ �= F ⊂ K be closed,
and define

‖f‖F = sup{|f(x)| : x ∈ F} (f ∈ C(K, C)).

Clearly, if F = K, then ‖ · ‖K is just the norm ‖ · ‖∞. For F � K, there are
nonzero f ∈ C(K, C) such that ‖f‖F = 0 by Uhrysohn’s lemma. Hence, ‖ · ‖F

is generally not a norm, but only what is called a seminorm; nevertheless,
it still satisfies the triangle inequality and scalars come out as their absolute
values. Let E be a subspace of C(K, C), and let f ∈ C(K, C). We define

distF (f, E) := inf{‖f − g‖F : g ∈ E}.

Of course, if F = K, then distF (f, E) is nothing but the distance dist(f, E).

Lemma 4.3.3. Let (K, T ) be a compact Hausdorff space, let f ∈ C(K, C),
and let A be a closed unital subalgebra of C(K, C) (over C). Then there is a
closed, A-antisymmetric subset F of K such that distF (f, A) = dist(f, A).

Proof. Let

F := {∅ �= F ⊂ K : F is closed such that distF (f, A) = dist(f, A)} .

Trivially, K ∈ F , so that F �= ∅. Let F be ordered by reversed set inclusion;
that is,

F1 � F2 :⇐⇒ F2 ⊂ F1 (F1, F2 ∈ F).

Let G be a totally ordered subset of F , and set G0 :=
⋂
{G : G ∈ G}. It is

clear that G0 is again closed, and since K has the finite intersection property
and G is totally ordered, it follows that G0 �= ∅. We claim that G0 ∈ F . To
see this, fix g ∈ A, and note that, for any G ∈ G, the set

{x ∈ G : |f(x)− g(x)| ≥ dist(f, A)}

is compact and not empty. Again invoking the finite intersection property of
K, we obtain that

{x ∈ G0 : |f(x)−g(x)| ≥ dist(f, A)} =
⋂

G∈G
{x ∈ G : |f(x)−g(x)| ≥ dist(f, A)}

is also compact and nonempty, so that ‖f − g‖G0 ≥ dist(f, A). Since g ∈ A
was arbitrary, we conclude that distG0(f, A) ≥ dist(f, A). Since the reversed
inequality holds trivially, we see that G0 ∈ F . By Zorn’s lemma, F thus
has maximal (meaning: minimal with respect to set inclusion) elements. Let
F ∈ F be such a minimal set.
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We claim that F is A-antisymmetric. Assume otherwise, so that there is
a function g ∈ A which is real-valued, but not constant on F . Without loss of
generality, suppose that g(F ) ⊂ [0, 1], and that [0, 1] is the smallest interval
containing g(F ). Set

F1 :=
{

x ∈ F : g(x) ≤ 2
3

}
and F2 :=

{
x ∈ F : g(x) ≥ 1

3

}
.

Then F1 and F2 are nonempty, proper closed subsets of F whose union is all of
F . By the minimality of F , there are h1, h2 ∈ A with ‖f − hj‖Fj < dist(f, A)
for j = 1, 2. For n ∈ N, define

gn := (1− gn)2
n

and kn := gnh1 + (1− gn)h2,

so that gn, kn ∈ A for all n ∈ N. We show that ‖f−kn‖F < dist(f, A) if n ∈ N
is sufficiently large and thus arrive at a contradiction.

First, consider x ∈ F1 ∩ F2 and note that

|f(x) − kn(x)|
= |gn(x)f(x) + (1− gn(x))f(x) − gn(x)h1(x) + (1− gn(x))h2(x)|
≤ gn(x)|f(x) − h1(x)|+ (1 − gn(x))|f(x) − h2(x)|
≤ gn(x)‖f − h1‖F1 + (1− gn(x))‖f − h2‖F2

< dist(f, A)

for all n ∈ N.
For x ∈ F1 \ F2, we have

1 ≥ gn(x)
≥ 1− 2ng(x)n, by Bernoulli’s inequality,

≥ 1−
(

2
3

)n

(n ∈ N).

It follows that ‖gn − 1‖F1\F2 → 0 and thus ‖kn − h1‖F1\F2 → 0. Since ‖f −
h1‖F1 < dist(f, A), we obtain n1 ∈ N such that ‖f −kn‖F1\F2 < dist(f, A) for
all n ≥ n1.

For x ∈ F2 \ F1, first observe that gn(x) ≤ 1
(1+g(x)n)2

n because

gn(x)(1 + g(x)n)2
n

= (1− g(x)n)2
n

(1 + gn(x))2
n

= (1− g(x)2n)2
n

≤ 1,

so that
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0 ≤ gn(x)

≤ 1
(1 + g(x)n)2n

≤ 1
1 + 2ng(x)n

, again by Bernoulli’s inequality,

≤ 1
2ng(x)n

≤
(

3
4

)n

(n ∈ N).

Consequently, ‖gn‖F2\F1 → 0 holds, so that ‖kn − h2‖F2\F1 → 0. Since ‖f −
h2‖F2 < dist(f, A), there is thus n2 ∈ N such that ‖f − kn‖F2\F1 < dist(f, A)
for all n ≥ n2.

Let n ≥ max{n1, n2}, and let x0 ∈ F be such that |f(x0) − kn(x0)| =
‖f − kn‖F . Since F = F1 ∪ F , there are three possibilities: x0 ∈ F1 ∩ F2,
x0 ∈ F1 \ F2, or x0 ∈ F2 \ F1. By the foregoing estimates, we have in any of
those cases that

distF (f, A) ≤ ‖f − kn‖F = |f(x0)− kn(x0)| < dist(f, A),

which is impossible if F ∈ F . �	

With Lemma 4.3.3 proven, the main result of this section is surprisingly
easy to obtain.

Theorem 4.3.4 (complex Stone–Weierstraß theorem). Let (K, T ) be
a compact Hausdorff space, and let A be a subalgebra of C(K, C) with the
following properties.

(a) 1 ∈ A,
(b) For any x, y ∈ K with x �= y, there is f ∈ A such that f(x) �= f(y),
(c) If f ∈ A, then f̄ ∈ A, where f̄ stands for pointwise conjugation.

Then A is dense in C(K, C).

Proof. Replace A by its closure; it is clear that this does not affect properties
(a), (b), and (c).

Let f ∈ C(K, C). By Lemma 4.3.3, there is an A-antisymmetric subset
∅ �= F ⊂ K such that distF (f, A) = dist(f, A). Assume that there are x, y ∈ F
with x �= y. By (b), there is f ∈ A such that f(x) �= f(y). Since f̄ ∈ A by
(c), both Re f = 1

2
(f + f̄) and Im f = 1

2i
(f − f̄) belong to A, and since

f = Re f + i Im f , it is clear that Re f(x) �= Re f(y) or Im f(x) �= Im f(y).
This is impossible, however, due to the definition of an A-antisymmetric set.

We conclude that F is a singleton set, say {x0}. Since the constant function
f(x0)1 belongs to A, we see that

dist(f, A) = distF (f, A) ≤ ‖f − f(x0)1‖F = 0,

so that f ∈ A. �	
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The demand that A be closed under pointwise conjugation cannot be
dropped.

Example 4.3.5. Let K = {z ∈ C : |z| ≤ 1} (i.e., the closed unit disc in C),
and let A be the subalgebra of C(K, C) consisting of those functions that are
holomorphic on {z ∈ C : |z| < 1}. This is a closed subalgebra of C(K, C) that
satisfies conditions (a) and (b) of Theorem 4.3.4, but nevertheless is not all
of C(K, C).

A real Stone–Weierstraß theorem is easily deduced from the complex one.

Corollary 4.3.6 (real Stone–Weierstraß theorem). Let (K, T ) be a
compact Hausdorff space, and let A be a subalgebra of C(K, R) with the fol-
lowing properties.

(a) 1 ∈ A,
(b) For any x, y ∈ K with x �= y, there is f ∈ A such that f(x) �= f(y).

Then A is dense in C(K, R).

Proof. Let AC := {f + ig : f, g ∈ A}. Then AC is a subalgebra of C(K, C)
that satisfies the requirements of the complex Stone–Weierstraß theorem and
thus is dense in C(K, C). This, in turn, yields that A is dense in C(K, R). �	

To appreciate the generality of Theorem 4.3.4 and Corollary 4.3.6, consider
the following.

Corollary 4.3.7. Let K ⊂ Rn be compact, and let f : K → F be continuous.
Then there is a sequence of polynomials in n variables and with coefficients
in F that converges to f uniformly on K.

Proof. Apply Theorem 4.3.4 or Corollary 4.3.6 to the algebra of all polyno-
mials in n variables with coefficients in F. �	

And just for the record, we have the following.

Corollary 4.3.8 (Weierstraß approximation theorem). Let a, b ∈ R
with a < b, and let f : [a, b] → F be continuous. Then there is a sequence of
polynomials with coefficients in F that converges to f uniformly on [a, b].

Even though our approach to the Weierstraß approximation theorem (via
Lemma 4.3.3 and the Stone–Weierstraß theorem) is very short and elegant
(if not slick), it has its drawbacks: given a continuous function on a compact
interval, we know that there somehow is a sequence of polynomials converging
uniformly to f , but we have no information whatsoever on what such poly-
nomials might look like for concrete f (Lemma 4.3.3 relies on Zorn’s lemma).
An alternative proof of the approximation theorem, which is both elementary,
nothing beyond first-year calculus is required, and constructive, is outlined in
Exercise 1 below.

As another application of the Stone–Weierstraß theorem, we present an-
other characterization of metrizability for compact Hausdorff spaces.
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Proposition 4.3.9. The following are equivalent for a compact Hausdorff
space (K, T ).

(i) C(K, F) is separable.
(ii) K is metrizable.

Proof. (i) =⇒ (ii): Let {fn : n ∈ N} be a countable dense subset of C(K, F),
and define

d : K ×K → [0,∞), (x, y) �→
∞∑

n=1

1
2n

|fn(x) − fn(y)|
1 + |fn(x)− fn(y)| .

Then d is a metric on K such that id : (K, T ) → (K, d) is continuous (and,
trivially, bijective), so that, by Theorem 3.3.11, it is a homeomorphism.

(ii) =⇒ (i): Suppose that K is metrizable. From Corollary 4.1.11, it follows
that K is second countable. Let {U1, U2, . . .} be a countable base for T , let
(as in the proof of Urysohn’s metrization theorem)

A :=
{
(n, m) ∈ N2 : Un ⊂ Um

}
,

and (again as in the proof of the metrization theorem) choose, for each
(n, m) ∈ A, a continuous function fn,m : X → R with fn,m(X) ⊂ [0, 1],
fn,m|Un

= 1, and fn,m|X\Um
= 0. Certainly, S := {fn,m : (n, m) ∈ A} is

countable, as is ΠS, the collection of all finite products of elements of S. If
F = R, let F0 := Q, and if F = C, let F0 := {q + i r : q, r ∈ Q}; in either case,
F0 is a countable subfield of F. The linear combinations of elements from
ΠS over F0 then form a countable subset of C(K, F) whose closure is a—
necessarily separable—subalgebra A of C(K, F). It is immediate that 1 ∈ A
and that, if f ∈ A, then f̄ ∈ A (vacuous if F = R). Let x, y ∈ K be such
that x �= y. As in the proof of Urysohn’s metrization theorem, we see that
there is (n, m) ∈ A such that fn,m(x) �= fn,m(y). By the complex and real
Stone–Weierstraß theorems, A therefore equals C(K, F), so that C(K, F) is
separable. �	

Concluding this section, we turn to locally compact spaces.

Definition 4.3.10. Let (X, T ) be a locally compact Hausdorff space. A con-
tinuous function f : X → F is said to vanish at infinity if, for each ε > 0,
there is a compact subset K of X such that |f(x)| < ε for all x ∈ X \K. The
collection of all continuous functions from X to F that vanish at infinity is
denoted by C0(X, F).

Examples 4.3.11. (a) Every continuous function on a compact space vanishes
at infinity.

(b) A function f on the real line vanishes at infinity (in the sense of Definition
4.3.10) if and only if

lim
t→∞

f(t) = 0 = lim
t→−∞

f(t).
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The following proposition explains the choice of terminology.

Proposition 4.3.12. Let (X, T ) be a locally compact Hausdorff space with
one-point compactification X∞. Then a continuous function f : X → F van-
ishes at infinity if and only if f has a continuous extension f̃ : X∞ → F such
that f̃(∞) = 0.

Proof. Suppose that f vanishes at infinity, and let f̃ be the unique extension
of f to X∞ such that f̃(∞) = 0. We need to show that f̃ is continuous at ∞.
Let ε > 0 and choose K ⊂ X compact such that |f(x)| < ε for all x ∈ X \K.
From the definition of the topology on X∞, it follows that X∞ \ K belongs
to N∞. Consequently, f̃−1(Bε(0)) is a neighborhood of ∞ for each ε > 0.

Conversely, suppose that f has a continuous extension f̃ vanishing at ∞.
Let ε > 0. Then f̃−1(Bε(0)) is an open neighborhood of ∞ and thus is of the
form X∞ \K for some compact set K ⊂ X ; that is, |f(x)| < ε for x ∈ X \K.
�	

We can thus identify the continuous functions vanishing at infinity on a
locally compact Hausdorff space with those functions on its one-point com-
pactification that vanish at the point ∞.

With this in mind, we can prove a version of the Stone–Weierstraß theorem
for locally compact spaces, which we do simultaneously over both R and C.

Theorem 4.3.13. Let (X, T ) be a locally compact Hausdorff space, and let A
be a subalgebra of C0(X, F) with the following properties.

(a) For any x ∈ X, there is f ∈ A with f(x) �= 0,
(b) For any x, y ∈ X with x �= y, there is f ∈ A such that f(x) �= f(y),
(c) If f ∈ A, then f̄ ∈ A, where f̄ stands for pointwise conjugation (which is

vacuous if F = R).

Then A is dense in C0(K, F).

Proof. In view of Proposition 4.3.12, we may identify C0(X, F) and thus A
with a subalgebra of C(X∞, F). Let A# := {f + λ1 : f ∈ A, λ ∈ F}, so
that A# is a subalgebra of C(X∞, F) containing 1 and closed under pointwise
conjugation. Let x, y ∈ X∞ with x �= y. If x, y ∈ X , it follows from (b)
that there is f ∈ A ⊂ A# such that f(x) �= f(y). If y = ∞, (a) yields
f ∈ A ⊂ A# such that f(x) �= 0 = f(y). All in all, it follows from Theorem
4.3.4 and Corollary 4.3.6, respectively, that A# is dense in C(X∞, F). Let
f ∈ C0(X, F) and let ε > 0. Then there is g ∈ A# such that ‖f − g‖∞ < ε

2 .
Let h := g − g(∞)1, so that h ∈ A. Since f(∞) = 0, we have

|g(∞)| ≤ |f(∞)− g(∞)| ≤ ‖f − g‖∞ <
ε

2
.

We thus obtain that

‖f − h‖∞ ≤ ‖f − g‖∞ + |g(∞)| < ε

2
+

ε

2
= ε.

Hence, A is dense in C0(X, F) as claimed. �	
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Since every compact space is locally compact, it follows that Theorem
4.3.13 also applies to compact spaces and improves Theorem 4.3.4 and Corol-
lary 4.3.6, respectively: condition (i) of Theorem 4.3.13 is considerably weaker
than condition (i) of both Theorem 4.3.4 and Corollary 4.3.6.

Exercises

1. A constructive proof of the Weierstraß approximation theorem. Let f : [0, 1] → R
be continuous. For n ∈ N0, the nth Bernstein polynomial of f is defined as

Bn(t) :=

n
X

k=0

 

n

k

!

tk(1 − t)n−kf

„

k

n

«

(t ∈ [0, 1]).

Show that the sequence (Bn)∞n=1 converges to f uniformly on [0, 1]. Proceed as
follows.
(a) Successively prove the following identities for n ∈ N and t ∈ [0, 1].

1 =
n
X

k=0

 

n

k

!

tk(1 − t)n−k,

0 =

n
X

k=0

 

n

k

!

tk(1 − t)n−k(k − nt),

n =
n
X

k=0

 

n

k

!

tk−1(1 − t)n−k−1(k − nt)2,

and
t(1 − t)

n
=

n
X

k=0

 

n

k

!

tk(1 − t)n−k

„

t − k

n

«2

.

(Hint : Obtain the second identity through differentiation of the first one,
and differentiate the second identity, to obtain the third one.)

(b) Show that

|Bn(t) − f(t)| ≤
n
X

k=0

 

n

k

!

tk(1 − t)n−k

˛

˛

˛

˛

f

„

k

n

«

− f(t)

˛

˛

˛

˛

(t ∈ [0, 1]).

(c) Fix ε > 0, and (using the uniform continuity of f on [0, 1]) choose δ > 0
such that |f(s) − f(t)| < ε

2
for s, t ∈ [0, 1] with |s − t| < δ. Fix t ∈ [0, 1],

and let Nδ :=
˘

k ∈ {0, . . . , n} :
˛

˛

k
n
− t
˛

˛ < δ
¯

. Show that

X

k∈Nδ

 

n

k

!

tk(1 − t)n−k

˛

˛

˛

˛

f

„

k

n

«

− f(t)

˛

˛

˛

˛

<
ε

2
.

(d) With ε, δ, t, and Nδ as in (c), show that

X

k/∈Nδ

 

n

k

!

tk(1 − t)n−k

˛

˛

˛

˛

f

„

k

n

«

− f(t)

˛

˛

˛

˛

≤ 2‖f‖∞
X

k/∈Nδ

 

n

k

!

tk(1 − t)n−k

≤ 2‖f‖∞
δ2

t(1 − t)

n

≤ 2‖f‖∞
4δ2n

.
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(e) Conclude that there is nε ∈ N such that |Bn(t) − f(t)| < ε for all t ∈ [0, 1]
and n ≥ nε.

2. Let (K, T ) be a compact Hausdorff space. Show that K is zero-dimensional (see
Exercise 3.4.10 for the definition) if and only if the linear span of the idempotents
is dense in C(K, F).

3. A complex trigonometric polynomial on R is a C-valued function of the form

n
X

k=−n

ckeikt (t ∈ R),

where n ∈ N and c−n, . . . , cn ∈ C. Use the complex Stone–Weierstraß theorem
to show that, for every continuous 2π-periodic function f : R → C, there is a
sequence of complex trigonometric polynomials converging to f uniformly on R.

4. A real trigonometric polynomial on R is an R-valued function of the form

n
X

k=−n

ak cos(kt) + bk sin(kt) (t ∈ R),

where n ∈ N and a−n, b−n, . . . , an, bn ∈ R. Show that, for every continuous 2π-
periodic function f : R → R, there is a sequence of real trigonometric polynomi-
als converging to f uniformly on R. (Warning : The space of all real trigonometric
polynomials on R is not an algebra.)

5. Let (X, T ) be a locally compact Hausdorff space. Show that X is compact if
and only if the constant function 1 belongs to C0(X, F).

6. Let (X, T ) be a locally compact Hausdorff space. Show that X is σ-compact
(see Exercise 3.5.5) if and only if there is f ∈ C0(X, R) with 0 < f(x) ≤ 1 for
x ∈ X.

7. Let (X, T ) be a locally compact Hausdorff space, and let C00(X, F) denote
those continuous functions f : X → F such that f |X\K = 0 for some compact
set K ⊂ X.
(a) Show that C0(X, F) and C00(X, F) are ideals in Cb(X, F).
(b) Show that C0(X, F) is closed in Cb(X, F).
(c) Show that C00(X, F) is dense in C0(X, F).

8. Let (X, TX) and (Y, TY ) be locally compact Hausdorff spaces, and let X ×Y be
equipped with the product topology. Show that X × Y is locally compact and
that, for any f ∈ C0(X × Y, F) and ε > 0, there are g1, . . . , gn ∈ C00(X, F) and
h1, . . . , hn ∈ C00(Y, F) with

˛

˛

˛

˛

˛

f(x, y) −
n
X

j=1

gj(x)hj(y)

˛

˛

˛

˛

˛

< ε (x ∈ X, y ∈ Y ).

Remarks

Pavel S. Urysohn, after whom the “lemma” and the metrization theorem are
named, was a close friend and collaborator of Alexandroff. Two years younger
than Alexandroff, he was outlived by him by almost six decades; on a visit to
France in 1924, Urysohn drowned while swimming in the sea. He was only 26.
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Urysohn’s metrization theorem gives a sufficient condition for metrizabil-
ity, which is also necessary if the space is compact. A condition for the metriz-
ability of general topological spaces that is both necessary and sufficient is
given by the Nagata–Smirnoff (Smirnov) theorem, sometimes also called the
Bing–Nagata–Smirnoff theorem (see [Munkres 00], for example).

The Stone–Čech compactification was discovered, independently, by Mar-
shall H. Stone [Stone 37], an American, and Eduard Čech, Czech not only
by name, but by ethnicity as well.

The monumental paper [Stone 37] also contains the generalization of
the Weierstraß approximation theorem that would later become known as
the Stone–Weierstraß theorem. The proof we present is due to the Brazilian
mathematician Silvio Machado [Machado 77].

Let (K, T ) be a compact Hausdorff space. By Exercise 4.2.1, the space K
can be identified with the maximal ideals of the unital ring C(K, C); that is,
all information on K is already encoded in the algebraic structure of C(K, C).
This allows for a far-reaching generalization of topology, namely noncommu-
tative topology.

An involution on an algebra A over C is a map

A → A, a �→ a∗

such that (λa + µb)∗ = λ̄a∗ + µ̄b∗, (ab)∗ = b∗a∗, and a∗∗ = a for all a, b ∈
A and λ, µ ∈ C. For example, if A = C(K, C), then pointwise conjugation
is an involution. Another examples of an algebra with involution consists,
for given n ∈ N, of all n × n matrices over C (with entrywise addition and
scalar multiplication, and with matrix multiplication as product): for any
such matrix a, the matrix a∗ is obtained by transposing a and conjugating its
entries.

Suppose now that A is not only equipped with an involution, but also
with a norm ‖ · ‖ that turns A into a Banach space and satisfies ‖ab‖ ≤
‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 for all a, b ∈ A. Then A is called a C∗-algebra. Of
course, C(K, C) is a commutative C∗-algebra. The surprising statement of the
Gelfand–Naimark theorem is that all commutative unital C∗-algebras are of
this form! Hence, a unital commutative C∗-algebra is nothing but a compact
Hausdorff space in disguise: every statement about such an algebra translates
into a statement about the associated space. For example, A = C(K, C) has
nontrivial idempotents if and only if K is connected, and the linear span of
the idempotents is dense in A if and only if K is zero-dimensional (Exercises
4.2.3 and 4.3.2).

Instead of considering commutative C∗-algebras as disguised topological
spaces, one can take the opposite point of view and say that compact Hausdorff
spaces are nothing but disguised C∗-algebras. This may seem artificial, but
it opens up a whole new world of mathematical objects: the noncommutative
C∗-algebras. Here is an example. Let A consist of the n × n matrices with
complex entries; if n ≥ 2, this algebra is not commutative. For any a ∈ A,
define



Remarks 131

‖a‖ := sup{‖ax‖ : x ∈ Cn, ‖x‖ ≤ 1},

where Cn is equipped with the Euclidean norm of R2n. This norm then turns
A into a finite-dimensional, unital C∗-algebra, and since it is noncommutative,
it cannot be of the form C(K, C) for some compact Hausdorff space K.

Every C∗-algebra—commutative or not—can be represented as bounded
linear operators on some Hilbert space. Going into the details here would go
too far in this book, but loosely speaking it means that every C∗-algebra is
an algebra of matrices, which may be “infinitely large” (whatever that may
mean).

One can already get a good impression of noncommutative C∗-algebras
in the finite-dimensional situation, and this can be done with a surprisingly
elementary mathematical toolkit. The text [Farenick 01], written for un-
dergraduates, is highly recommended. A more advanced introduction to C∗-
algebras, requiring a background in complex and functional analysis, is the
equally recommended book [Murphy 90].





5

Basic Algebraic Topology

A grand theme in any mathematical discipline is the classification of its ob-
jects: When are two such objects “essentially the same”?

In linear algebra, for example, the objects of study are the finite-dimen-
sional vector spaces. One can agree that two such vector spaces are “essentially
the same” if they are isomorphic as linear spaces, and one learns in any in-
troduction to the subject that two finite-dimensional vector spaces (over the
same field) are isomorphic if and only if their dimensions coincide. For exam-
ple, R3 and the vector space of all real polynomials of degree at most two are
isomorphic because they are both three-dimensional, but R3 and R2 are not
isomorphic because their respective dimensions are different.

The dimension of a finite-dimensional vector space is what’s called a nu-
merical invariant : a number assigned to each such vector space, which can be
used to tell different spaces apart.

It would be nice if a classification of topological spaces could be accom-
plished with equal simplicity, but this is too much to expect. There is a
notion of dimension for topological spaces (we have only encountered zero-
dimensional spaces in this book; see Exercise 3.4.10), and there are other
numerical invariants for (at least certain) topological spaces. In general, how-
ever, mere numbers are far too unstructured to classify objects as diverse as
topological spaces.

In algebraic topology, one therefore often does not use numbers, but alge-
braic objects, mostly groups, as invariants. To each topological space, partic-
ular groups are assigned in such a way that, if the spaces are “essentially the
same”, then so are the associated groups.

5.1 Homotopy and the Fundamental Group

If two topological spaces are homeomorphic, then they are “the same” in the
sense that they are indistinguishable as far as every property is concerned that
can be formulated in terms of their topologies. Hence, for example, the closed
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unit disc in Rn, which is compact, cannot be homeomorphic to the open unit
disc, which isn’t. Very often, however, it is not so straightforward to decide
whether two spaces are homeomorphic.

The closed unit disc in R2 and its boundary S1 are both compact, con-
nected, and metrizable spaces. Why shouldn’t they be homeomorphic? One
can show by elementary means that they aren’t (see Exercise 1 below), but
the argument requires a little trick. And what about the closed unit disc in
R2 and a closed annulus? Again, both spaces are compact, connected, and
metrizable, but—unless the annulus is a circle—the trick from Exercise 1 is
useless.

We show in this section that the closed unit disc in R2 cannot be home-
omorphic to an annulus (Example 5.1.27 below), but for this purpose we
require new and more powerful tools than we have developed so far. As can
be expected, developing those tools requires new definitions.

Definition 5.1.1. Let (X, TX) and (Y, TY ) be topological spaces. Two contin-
uous maps f, g : X → Y are called homotopic, f ∼ g in symbols, if there is a
continuous map F : [0, 1]×X → Y such that

F (0, x) = f(x) and F (1, x) = g(x) (x ∈ X).

The map F is called a homotopy between f and g.

Intuitively, one can think of a homotopy as a way of “morphing” one
function into another.

f

F

g

Fig. 5.1: Homotopy
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Examples 5.1.2. (a) Let (X, T ) be any topological space, and let C �= ∅ be
a convex subset of a normed space. Then any two continuous maps f, g :
X → C are homotopic. Just let

F (t, x) := (1− t)f(x) + t g(x) (t ∈ [0, 1], x ∈ X).

(b) Let X = [0, 2π], and let Y = S2. Let

f : [0, 2π] → S2, θ �→ (cos θ, sin θ, 0)

and
g : [0, 2π] → S2, θ �→ (0, 0, 1).

Define a homotopy between f and g by letting

F (t, θ) =
(
cos

(π

2
t
)

cos θ, cos
(π

2
t
)

sin θ, sin
(π

2
t
))

for t ∈ [0, 1] and θ ∈ [0, 2π].
(c) Let (X, TX) be any topological space, let (Y, TY ) be totally disconnected,

and let f, g : X → Y be homotopic. Let F : [0, 1]×X → Y be a homotopy
between f and g. Fix x ∈ X , and define Fx : [0, 1] → Y by letting Fx(t) :=
F (t, x). Then Fx is continuous, so that Fx([0, 1]) is a connected subspace
of Y . Since Y is totally disconnected, this means that Fx([0, 1]) consists
of one point only, so that

f(x) = F (0, x) = Fx(0) = Fx(1) = F (1, x) = g(x).

Hence, f and g must be identical.

Definition 5.1.3. Let (X, TX) and (Y, TY ) be topological spaces. Then X and
Y are called homotopically equivalent or of the same homotopy type if there
are continuous maps f : X → Y and g : Y → X such that f ◦ g ∼ idY and
g ◦ f ∼ idX . The maps f and g are then called homotopy equivalences.

Examples 5.1.4. (a) Any two homeomorphic spaces are trivially homotopically
equivalent.

(b) Let C1 and C2 be nonempty convex subspaces of normed spaces E1 and
E2, respectively. Let f : C1 → C2 and g : C2 → C1 be any continuous maps.
In view of Example 5.1.2(a), it is clear that f ◦g ∼ idC2 and g◦f ∼ idC1 , so
that C1 and C2 are homotopically equivalent. In particular, every convex
subset of a normed space is homotopically equivalent to a singleton space.
This shows at once that homotopic equivalence is a much weaker notion
than homeomorphism.

(c) Let E be a normed space, let x0 ∈ E, and let 0 ≤ r ≤ R ≤ ∞. Then the
closed annulus with center x0, inner radius r, and outer radius R is the
set

Ar,R[x0] := {x ∈ E : r ≤ ‖x− x0‖ ≤ R}.
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(Of course, one can also consider open and half-open annuli.) In the case
r = R < ∞, the annulus Ar,R[x0] is nothing but the sphere Sr[x0].
Suppose that 0 < r ≤ ρ ≤ R. We claim that Sρ[x0] and Ar,R[x0] are
homotopically equivalent. Let

f : Ar,R[x0] → Sρ[x0], x �→ ρ

‖x− x0‖
(x− x0) + x0,

and let g : Sρ[x0] → Ar,R[x0] be the inclusion map. It is then clear that
f ◦ g = idSρ[x0]. Define

F (t, x) :=
(1− t)ρ + t‖x− x0‖

‖x− x0‖
(x− x0) + x0 (t ∈ [0, 1], x ∈ Ar,R[x0]).

Then F is easily seen to be a homotopy between g ◦ f and idAr,R[x0].
Since any two spheres in E are homeomorphic, it follows that Ar,R[x0]
and any sphere in E are homotopically equivalent.

(d) We claim that the Cantor set C (Example 3.4.18(e)) and Q are not
homotopically equivalent. Assume that there are homotopy equivalences
f : C → Q and g : Q → C. By Example 5.1.2(c) (remember that both C
and Q are totally disconnected) this means that f◦g = idQ and g◦f = idC ;
that is, C and Q are even homeomorphic. However, C is compact whereas
Q isn’t.

This list is not very impressive. In particular, we still lack satisfactory tools
to check if two spaces fail to be homotopically equivalent.

Definition 5.1.5. Let (X, T ) be a topological space. Two paths γ, γ′ : [0, 1] →
X with γ(0) = x0 = γ′(0) and γ(1) = x1 = γ′(1) are called path homotopic
(γ ! γ′ in symbols) if there is a continuous map Γ : [0, 1]× [0, 1] → X, a path
homotopy between γ and γ′, such that

Γ (0, s) = γ(s) and Γ (1, s) = γ′(s) (s ∈ [0, 1])

as well as
Γ (t, 0) = x0 and Γ (t, 1) = x1 (t ∈ [0, 1]).

Path homotopy is hence slightly stronger than mere homotopy: while mor-
phing γ into γ′, we retain control over γ(0) = γ′(0) and γ(1) = γ′(1).
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Γ

’

γ

γ

Fig. 5.2: Path homotopy

Examples 5.1.6. (a) Let C �= ∅ be a convex subset of a normed space, and
let x0 ∈ C be arbitrary. For any path γ in C with γ(0) = γ(1) = x0, we
define

Γ (t, s) := tx0 + (1− t)γ(s) (t, s ∈ [0, 1]).

It follows that Γ is a path homotopy between γ and γ′ defined as γ′(s) :=
x0 for s ∈ [0, 1].

(b) Let X = R2 \ {(0, 0)}, let

γ : [0, 1] → X, s �→ (cos(2πs), sin(2πs)),

and let γ′(s) := (1, 0) for s ∈ [0, 1]. Intuitively, it is clear that γ and
γ′ are not path homotopic: γ describes the unit circle, and when we try
to “morph” it into the singleton (1, 0) without breaking it up, the origin
(0, 0) simply “gets in our way.” This, of course, is not a mathematically
acceptable proof. We return to this example later on and then give a
rigorous proof for the path nonhomotopy of γ and γ′; we don’t have the
tools yet. It is easy to see, however, that γ and γ′ are homotopic in the
sense of Definition 5.1.1. Define F : [0, 1]2 → X through

F (t, s) := (cos(2πs(1− t)), sin(2πs(1− t))) (t, s ∈ [0, 1]).

Then F is a homotopy, but not a path homotopy, between γ and γ′.

For convenience, we introduce some more terminology and notation.
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Definition 5.1.7. Let (X, T ) be a topological space, and let γ : [0, 1] → X be
a path. We say that γ starts at x0 ∈ X (or that x0 is the starting point) of
γ if x0 = γ(0), and we call x1 ∈ X the endpoint of γ (or say that γ ends
at x1) if x1 = γ(1). We denote the set of all paths in X starting at x0 and
ending at x1 by P (X ; x0, x1). If x0 = x1, we simply write P (X, x0) instead
of P (X ; x0, x1); paths in P (X, x0) are called closed paths or loops, and x0 is
called their base point.

Proposition 5.1.8. Let (X, T ) be a topological space, and let x0, x1 ∈ X.
Then ! is an equivalence relation on P (X ; x0, x1).

Proof. Of course, every path starting at x0 and ending at x1 is path homotopic
to itself, so that ! is reflexive.

Let γ ! γ′, and let Γ : [0, 1]2 → X be a corresponding path homotopy.
Define Γ̃ : [0, 1]2 → X by letting

Γ̃ (t, s) = Γ (1− t, s) (t, s ∈ [0, 1]).

Then Γ̃ is a path homotopy between γ′ and γ, so that ! is symmetric.
Let γ ! γ ′ and let γ′ ! γ′′. Let Γ and Γ ′ be corresponding path homo-

topies. Define Γ̃ by letting

Γ̃ (t, s) :=

{
Γ (2t, s), t ∈

[
0, 1

2

]
, s ∈ [0, 1],

Γ ′(2t− 1, s), t ∈
[

1
2
, 1

]
, s ∈ [0, 1].

Then Γ̃ is a path homotopy between γ and γ′′. Hence, ! is also transitive.
�	

We can now define the fundamental “group” of a topological space.

Definition 5.1.9. Let (X, T ) be a topological space, and let x0 ∈ X. Then the
set of all equivalence classes of loops in P (X ; x0) with respect to ! is called
the fundamental group of X at x0 and is denoted by π1(X, x0).

Just calling something a group doesn’t make it one yet. In order to show
that the fundamental group of a space can indeed be turned into a group, we
prove a series of lemmas.

Lemma 5.1.10. Let (X, T ) be a topological space, let x0, x1, x2 ∈ X, and let
γ1, γ

′
1 ∈ P (X ; x0, x1) and γ2, γ

′
2 ∈ P (X ; x1, x2) be such that γ1 ! γ′

1 and
γ2 ! γ′

2. Then γ1 � γ2, γ
′
1 � γ′

2 ∈ P (X ; x0, x2) are also path homotopic.

Proof. Let Γ1, Γ2 : [0, 1]× [0, 1] → X be the path homotopies involved. Define
Γ̃ : [0, 1] → [0, 1] → X as follows,

Γ̃ (t, s) :=

{
Γ1(t, 2s), t ∈ [0, 1], s ∈

[
0, 1

2

]
,

Γ2(t, 2s− 1), t ∈ [0, 1], s ∈
[
1
2 , 1

]
.

It is immediate that Γ̃ is a path homotopy between γ1 � γ2 and γ′
1 � γ′

2. �	
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Lemma 5.1.11. Let (X, T ) be a topological space, let x0, x1, x2, x3 ∈ X, and
let γj ∈ P (X ; xj−1, xj) for j = 1, 2, 3. Then (γ1 � γ2) � γ3, γ1 � (γ2 � γ2) ∈
P (X ; x0, x3) are path homotopic.

Proof. Define Γ : [0, 1]2 → X by letting

Γ (t, s) :=

⎧⎪⎪⎨⎪⎪⎩
γ1

(
4s

1+t

)
, 0 ≤ s ≤ t+1

4
,

γ2(4s− 1− t), t+1
4 ≤ s ≤ t+2

4 ,

γ3

(
1− 4(1−s)

2−t

)
, t+2

4
≤ s ≤ 1.

This definition may look complicated at first glance, but the idea behind it
is, in fact, quite simple, as the following sketch shows.

t
γ1 γ2 γ3

γ1 γ2 γ30

1

1 s

Fig. 5.3: Associativity of path concatenation modulo path homotopy

It is routinely checked that Γ is a path homotopy between (γ1 � γ2)� γ3

and γ1 � (γ2 � γ3). �	

If x is any point in a topological space, we use the same symbol to denote
the constant loop with base point x, given by γ(t) := x for t ∈ [0, 1].
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Lemma 5.1.12. Let (X, T ) be a topological space, let x0, x1 ∈ X, and let
γ ∈ P (X ; x0, x1). Then γ, x0 � γ, γ � x1 ∈ P (X ; x0, x1) are path homotopic.

Proof. Define Γ : [0, 1]2 → X through

Γ (t, s) :=

{
x0, 0 ≤ s ≤ 1

2
t,

γ
(

2s−t
2−t

)
, 1

2 t ≤ s ≤ 1.

Then Γ is a path homotopy between γ and x0 � γ. As in the proof of Lemma
5.1.11, the idea behind the definition of Γ becomes clearer through a sketch.

γ0

0

1

1 s

t

γ

x

Fig. 5.4: Concatenation with constant paths

In an analogous way, one constructs a path homotopy between γ and γ�x1.
�	

Lemma 5.1.13. Let (X, T ) be a topological space, let x0, x1 ∈ X, and let γ ∈
P (X ; x0, x1). Then γ� γ−1 ∈ P (X, x0) and x0 as well as γ−1� γ ∈ P (X, x1)
and x1 are path homotopic.

Proof. Define Γ : [0, 1]2 → X as follows,
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Γ (t, s) :=

⎧⎨⎩
γ(2s), 0 ≤ s ≤ 1

2
t,

γ(t), 1
2
t ≤ s ≤ 1− 1

2
t

γ(2− 2s), 1− 1
2
t ≤ s ≤ 1.

Again, a sketch illustrates the idea.

γ −1

x00

1

1 s

t
γ

Fig. 5.5: Concatenation with the reversed path

Then Γ is a path homotopy between x0 and γ � γ−1.
Similarly, one obtains a path homotopy between γ−1 � γ and x1. �	
Combining Lemmas 5.1.10 to 5.1.13, we obtain the following.

Theorem 5.1.14. Let (X, T ) be a topological space, and let x0 ∈ X. Then
π1(X, x0) is a group under the operation

[γ1] · [γ2] := [γ1 � γ2] ([γ1], [γ2] ∈ π1(X, x0)),

where [γ] ∈ π1(X, x0) denotes the equivalence class of γ ∈ P (X, x0).

Proof. In view of Lemma 5.1.10, · is well defined.
Associativity of · follows from Lemma 5.1.11, [x0] is the neutral element

of (π1(X, x0), ·) by Lemma 5.1.12, and by Lemma 5.1.13, each [γ] ∈ π1(X, x0)
has an inverse, namely [γ−1].

All in all, π1(X, x0) is indeed a group. �	
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Examples 5.1.15. (a) Let C be a convex subset of a normed space, and let
x0 ∈ C. By Example 5.1.6(a), it is clear that π1(C, x0) = {[x0]} ∼= {0}.

(b) We now turn to the fundamental group of the unit circle S1. We compute
π1(S1, (1, 0)) at the end of the next section (Example 5.2.7 below) with the
help of the theory of covering spaces: it is (isomorphic to) Z. Intuitively,
one counts for [γ] ∈ π1(S1, (1, 0)) how often γ ∈ P (S1, (1, 0)) winds around
the origin, where winding in a counterclockwise direction counts positive
and negative in a clockwise direction. The canonical parametrization of
S1, given by

γ : [0, 1] → S1, t �→ (cos(2πt), sin(2πt))

winds around (0, 0) once, in a counterclockwise direction, and thus corre-
sponds to 1 ∈ Z. (In particular, γ and (1, 0) cannot be path homotopic
in S1.) Right now, we don’t have the theoretical tools yet to turn this
idea into a rigorous mathematical proof, and we content ourselves with
believing that π1(S1, (1, 0)) is Z.

So, we have defined the fundamental group, and calculated it—well, not
quite yet in the case of S1—in two cases. But what can we do with it?

Here is one of the fundamental properties of the fundamental group.

Proposition 5.1.16. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈
X, and let f : X → Y be continuous. Then

f∗ : π1(X, x0) → π1(Y, f(x0)), [γ] �→ [f ◦ γ]

is a group homomorphism. Moreover, if (Z, TZ) is another topological space,
and g : Y → Z is continuous, then (g ◦ f)∗ = g∗ ◦ f∗. In particular, if f is a
homeomorphism, then f∗ is a group isomorphism.

Proof. Straightforward. �	

Example 5.1.17. Let C be any nonempty convex subset of a normed space.
Then C and S1, the unit sphere in R2, cannot be homeomorphic. Otherwise,
π1(C, x0) and π1(S1, (1, 0)) would be isomorphic for some x0 ∈ C, and this
is impossible. In particular, S1 and the closed unit ball in R2 are not home-
omorphic (for an alternative, more elementary proof of this see Exercise 1
below).

For another application of the fundamental group, we present another
definition.

Definition 5.1.18. Let (X, T ) be a topological space. Then a subspace Y of
X is called a retract if there is a retraction of Y : a continuous map r : X → Y
which is the identity on Y .
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Example 5.1.19. The unit sphere Sn−1 is a retract of Rn \ {0}. A retraction is
given by

r : Rn \ {0} → Sn−1, x �→ x

‖x‖ .

Proposition 5.1.20. Let (X, T ) be a topological space, let Y be a subspace
of X, let r : X → Y be a retraction of Y , and let y0 ∈ Y . Then the group
homomorphism ι∗ : π1(Y, y0) → π1(X, y0), where ι : Y → X is the canonical
inclusion, is injective.

Proof. Let r : X → Y be a retraction of Y ; that is, r is a continuous left
inverse of ι. Consequently, r∗ is a left inverse of ι∗. Hence, ι∗ is injective. �	

Examples 5.1.21. (a) In Example 5.1.6(b), we claimed that the paths

γ : [0, 1] → R2 \ {(0, 0)}, t �→ (cos(2πt), sin(2πt))

and (1, 0) were not path homotopic in R2 \ {(0, 0)} because (0, 0) some-
how “was in the way.” In terms of the fundamental group π1(R2 \
{(0, 0)}, (1, 0)), another way of wording this is that [γ] and [(1, 0)] are
different elements of π1(R2 \ {(0, 0)}, (1, 0)). With what we have learned
so far about fundamental groups, we can now give a rigorous argument
for our claim (with one gap that is closed later). Since γ([0, 1]) ⊂ S1,
the path γ also yields an element of π1(S1, (1, 0)), which we denote by
[γ]S1 to tell it apart from [γ] ∈ π1(R2 \ {(0, 0)}, (1, 0)); similarly, we write
[(1, 0)]S1 for the equivalence class of (1, 0) in P (S1, (1, 0)). In Example
5.1.15(b), we had convinced ourselves (admittedly with a lot of hand-
waving) that [γ]S1 �= [(1, 0)]S1 . Since S1 is a retract of R2 \ {(0, 0)}, the
canonical map from π1(S1, (1, 0)) to π1(R2 \ {(0, 0)}, (1, 0)) is injective,
so that [γ] �= [(1, 0)], as claimed in Example 5.1.6(b). (This “proof,” of
course, depends on some yet unproven claims about π1(S1, (1, 0)): they
are proven fully rigorously in Example 5.2.7 below.)

(b) If we believe that π1(S1, (1, 0)) is nonzero (Example 5.1.15(b)), then S1

cannot be homeomorphic to any retract of a nonempty convex subset of
some normed linear space. In particular, S1 is not a retract of the closed
unit ball of R2.

This last example has a lovely application.

Theorem 5.1.22 (Brouwer’s fixed point theorem for n = 1, 2). Let
n = 1, 2, and let Bn denote the closed unit ball in Rn. Then every continuous
map f : Bn → Bn has a fixed point.

Proof. Assume that f does not have any fixed point; that is, f(x) �= x for all
x ∈ Bn. For each x ∈ Bn, let r(x) denote the unique intersection point of the
line starting at f(x) and passing through x (in this direction!) with Sn−1.

It is immediate that r is continuous such that, if x ∈ Sn−1, we have
r(x) = x. Hence, r is a retraction of Sn−1. This part of the proof, by the way,
does not require at all that n = 1, 2.
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If n = 1, this is impossible because then S0 = {−1, 1} = r([−1, 1]) would
have to be connected. If n = 2, this is impossible by Example 5.1.21(b). �	

The following sketch illustrates the idea of the proof.

x

( x )

r ( x )

f

Fig. 5.6: Proof of Brouwer’s fixed point theorem

With more sophisticated methods—which we do not develop in this book—
it can be shown that Sn−1 is not a retract of Bn for every n ∈ N, so that
Brouwer’s fixed point theorem holds in all dimensions.

Toward the end of this section, we focus on two further questions around
the fundamental group. The first one is: how does it depend on the base point
of the loops. Given a space (X, T ) and x0, x1 ∈ X , how are π1(X, x0) and
π1(X, x1) related? In general, nothing can be said unless x0 and x1 lie in the
same component of X (Exercise 6 below). If x0 and x1, however, not only
lie in the same component, but can be connected by a path, the situation is
different.

Proposition 5.1.23. Let (X, T ) be a topological space, and let x0, x1 ∈ X be
such that there is α ∈ P (X ; x0, x1). Then

φα : π1(X, x0) → π1(X, x1), [γ] �→ [α−1 � γ � α]

is a group isomorphism.
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Proof. It follows from Lemma 5.1.10 that φα is well defined.
Invoking Lemmas 5.1.11, 5.1.13, and then 5.1.12, we obtain that φα is

indeed a group homomorphism, whose inverse is given by

π1(X, x1) → π1(X, x0), [γ] �→ [α� γ � α−1].

This completes the proof. �	

Corollary 5.1.24. Let (X, TX) be a path connected topological space. Then
π1(X, x0) and π1(X, x1) are isomorphic for any x0, x1 ∈ X.

Even though π1(X, x0) and π1(X, x1) are isomorphic for path connected X ,
no matter how x0 and x1 are chosen, the isomorphism need not be canonical:
it depends on the choice for a path connecting x0 and x1.

In Proposition 5.1.16, we saw that any continuous map f between two
topological spaces induces a homomorphism f∗ of fundamental groups. Our
last theorem in this section tells us how f∗ and g∗ are related when f and g
are both continuous and homotopic.

Theorem 5.1.25. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈ X,
and let f, g : X → Y be homotopic. Then:

(i) If F : [0, 1]×X → Y is a homotopy between f and g, then

α : [0, 1] → Y, t �→ F (t, x0)

is a path in P (Y ; f(x0), g(x0)).
(ii) The diagram

π1(Y, f(x0))

π1(X, x0)

f ∗

�

π1(Y, g(x0))

φα

�

g∗
�

commutes, where φα is defined as in Proposition 5.1.23.

Proof. (i) is obvious.
For (ii), we need to show that

α� (g ◦ γ) ! (f ◦ γ)� α (γ ∈ P (X, x0)).

Let γ ∈ P (X, x0), and define γ0, γ1 : [0, 1] → [0, 1]×X through
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γ0(t) := (0, γ(t)) and γ1(t) := (1, γ(t)) (t ∈ [0, 1]).

Furthermore, let
c : [0, 1] → [0, 1]×X, t �→ (t, x0).

It is then immediate that

F ◦ γ0 = f ◦ γ, F ◦ γ1 = g ◦ γ, and F ◦ c = α.

Define
G : [0, 1]× [0, 1] → [0, 1]×X, (t, s) �→ (t, γ(s)),

and let β1, . . . , β4 be parametrizations of the line segments that make up
∂([0, 1]× [0, 1]); that is,

β1(t) := (0, t), β2(t) := (t, 1), β3(t) := (1, t), and β4(t) := (t, 0)

for t ∈ [0, 1]. It is immediate that

G ◦ β1 = γ0, G ◦ β3 = γ1, and G ◦ β2 = G ◦ β4 = c.

The concatenated paths β1�β2 and β4�β3 are in [0, 1]2, which is a convex
subset of R2, so that they are path homotopic, via a path homotopy, say B.
It follows that G ◦ B is a path homotopy in [0, 1] × X between γ0 � c and
c� γ1, and, consequently, that F ◦ (G ◦B) is a path homotopy between

(F ◦ γ0)� (F ◦ c) = (f ◦ γ)� α and (F ◦ c)� (F ◦ γ1) = α� (g ◦ γ).

This proves (ii). �	

Corollary 5.1.26. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈
X, and let f : X → Y be a homotopy equivalence. Then f∗ : π1(X, x0) →
π1(Y, f(x0)) is a group isomorphism.

Proof. Let g : Y → X be such that f ◦ g ∼ idY and g ◦ f ∼ idX . By Theorem
5.1.25, we obtain a commutative diagram

π1(X, g(f(x0)))

π1(X, x0)

(g
◦ f

) ∗
�

π1(X, x0)

φ

�

id
�
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for a suitable group isomorphism φ; that is, id = φ ◦ (g ◦ f)∗ = (φ ◦ g∗) ◦ f∗.
In particular, f∗ : π1(X, x0) → π1(Y, f(x0)) has a left inverse and thus is
injective.

In a similar vein, we obtain a group isomorphism ψ : π1(Y, f(g(f(x0)))) →
π1(Y, f(x0)) such that

π1(Y, f(g(f(x0))))

π1(Y, f(x0))

(f
◦ g

)∗
�

π1(Y, f(x0))

ψ

�

id
�

commutes; that is, id = ψ ◦ (f ◦ g)∗ = (ψ ◦ f∗) ◦ g∗. Hence, ψ ◦ f∗ :
π1(X, g(f(x0))) → π1(Y, f(x0)) has a right inverse and thus is surjective,
and since ψ is bijective, f∗ : π1(X, g(f(x0))) → π1(Y, f(g(f(x0)))) must
be surjective, too. Since g ◦ f ∼ idX , there is α ∈ P (X ; g(f(x0)), x0)—
see Theorem 5.1.25(i)—so that f ◦ α ∈ P (X ; f(g(f(x0))), f(x0)). With φα :
π1(X, g(f(x0))) → π1(X, x0) and φf◦α : π1(Y, f(g(f(x0)))) → π1(Y, f(x0)) as
in Proposition 5.1.23, we obtain a commutative diagram

π1(X, g(f(x0)))
f∗� π1(Y, f(g(f(x0))))

π1(X, x0)

φα

�

f∗
� π1(Y, f(x0)).

φf◦α

�

Since φα and φf◦α are group isomorphisms, it follows that f∗ : π1(X, x0) →
π1(Y, f(x0)) is also surjective.

All in all, f∗ : π1(X, x0) → π1(Y, f(x0)) is bijective and therefore a group
isomorphism. �	

Example 5.1.27. Let A be any closed annulus in R2 whose inner radius is
strictly positive, and let x0 ∈ A. By Example 5.1.4(c), A and S1 are of the
same homotopy type, so that π1(A, x0) ∼= Z by Corollaries 5.1.26 and 5.1.24.
Invoking Corollary 5.1.26 again, we see that, if C is any nonempty convex
subset of a normed space, then A and C cannot be of the same homotopy
type. In particular, A and the closed unit ball in R2 are not homotopically
equivalent and thus not homeomorphic.
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Exercises

1. Prove by elementary means (i.e., without involving any notion of homotopy)
that B2 and S1 are not homeomorphic. (Hint : What can you say about the
connectedness of B2 and S1 if two distinct points have been removed from both
spaces?)

2. Let (X, TX), (Y,TY ), and (Z, TZ) be topological spaces, and let g, g′ : X → Y
and f, f ′ : Y → Z be continuous maps such that g ∼ g′ and f ∼ f ′. Show that
f ◦ g ∼ f ′ ◦ g′.

3. Let (X, TX) and (Y, TY ) be topological spaces. Show that ∼ is an equivalence
relation on the set of all continuous maps from X to Y .

4. A subset S of a normed space is called star-shaped with center x0 ∈ S if tx +
(1 − t)x0 ∈ S for all t ∈ [0, 1] and x ∈ S.
(a) Show that every convex set is star-shaped, but that the converse fails.
(b) Show that every star-shaped set is path connected.
(c) Let S be star-shaped with center x0, and let γ : [0, 1] → S be a path with

γ(0) = γ(1) = x0. Show that γ � x0.
5. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈ X and y0 ∈ Y , let

X × Y be equipped with the product topology, and let πX : X × Y → X and
πY : X × Y → Y be the canonical projections. Show that

πX
∗ ×πY

∗ : π1(X×Y, (x0, y0)) → π1(X, x0)×π1(Y, y0), [γ] �→
“

πX
∗ ([γ]), πY

∗ ([γ])
”

is a group isomorphism.
6. Let (X, T ) be a topological space, let x0 ∈ X, and let Yx0 denote the compo-

nent of X containing x0. Show that the inclusion of Yx0 in X induces a group
isomorphism of π1(Yx0 , x0) and π1(X, x0).

7. Let G be a topological group with identity element e. For γ1, γ2 ∈ P (G, e),
define

γ1 � γ2 : [0, 1] → G, t �→ γ1(t)γ2(t).

(a) For γ1, γ
′
1, γ2, γ

′
2 ∈ P (G, e) such that γ1 � γ′

1 and γ2 � γ′
2, show that

γ1 � γ2 � γ′
1 � γ′

2.
(b) Show that

γ1 � γ2 � γ1 � γ2 � γ2 � γ1 (γ1, γ2 ∈ P (G, e)).

(Hint : What is (γ1 � e) � (e � γ2) for γ1, γ2 ∈ P (G, e)?)
(c) Conclude that π1(G, e) is abelian.

5.2 Covering Spaces

In the previous section, we defined the fundamental group of a space, and we
showed that it is trivial for certain spaces. Nevertheless, we haven’t computed
a single nontrivial fundamental group yet (Example 5.1.15(b) was more a
heuristic argument than a rigorous computation).

In this section, we rigorously prove that π1(S1, (1, 0)) is indeed (isomorphic
to) Z as claimed in Example 5.1.15(b). For this purpose, we develop the theory
of covering spaces to a minuscule extent.
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Definition 5.2.1. Let (X, T ) be a topological space. Then a covering space
of X is a pair

((
X̃, T̃

)
, p

)
such that:

(a)
(
X̃, T̃

)
is a topological space;

(b) p : X̃ → X is surjective and continuous;
(c) Each x ∈ X has an open neighborhood U such that p−1(U) is the disjoint

union of a family V of open subsets of X̃ such that p|V is a homeomorphism
onto U for each V ∈ V.

The map p is called a covering map and the elements of V are called the sheets
of p−1(U).

Intuitively, the sheets can be thought of as covering U (hence the name).

U

−1( U )

p

p

Fig. 5.7: Covering space

We are mainly interested in the following example.

Example 5.2.2. Consider,

p : R → S1, x �→ (cos(2πx), sin(2πx)).

Let (x0, y0) ∈ S1. We only consider the case where x0 > 0 (all other cases—
x0 < 0, y0 > 0, and y0 < 0—can be treated analogously). Then U := {(x, y) ∈
S1 : x > 0} is an open neighborhood of (x0, y0) such that

p−1(U) =
⋃{(

n− 1
4
, n +

1
4

)
: n ∈ Z

}
.

It is easy to see that p maps
(
n− 1

4 , n + 1
4

)
homeomorphically onto U for each

n ∈ Z.
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What makes covering spaces interesting for our purpose is that paths can
be “lifted” from a given topological space to a covering space:

Lemma 5.2.3. Let (X, T ) be a topological space, let
((

X̃, T̃
)

, p
)

be a cover-

ing space of X, and let x0 ∈ X and x̃0 ∈ X̃ be such that p(x̃0) = x0. Then for
each path γ in X with starting point x0, there is a unique path γ̃ in X̃ with
starting point x̃0 such that p ◦ γ̃ = γ.

Proof. For each x ∈ X , let Ux be an open neighborhood as specified in Def-
inition 5.2.1. Then {γ−1(Ux) : x ∈ X} is an open cover of [0, 1]. For each
s ∈ [0, 1], there are xs ∈ X and as < bs such that

s ∈ [0, 1] ∩ (as, bs) ⊂ [0, 1] ∩ [as, bs] ⊂ γ−1(Uxs).

Since {(as, bs) : s ∈ [0, 1]} is an open cover for [0, 1], and since [0, 1] is compact,
there are s1, . . . , sm ∈ [0, 1] with

[0, 1] ⊂ (as1 , bs1) ∪ · · · ∪ (asm , bsm) ⊂ [as1 , bs1 ]︸ ︷︷ ︸
⊂γ−1(Uxs1

)

∪ · · · ∪ [asm , bsm ]︸ ︷︷ ︸
⊂γ−1(Uxsm

)

.

We may therefore find 0 = t0 < t1 < · · · < tn = 1 such that, for j = 1, . . . , n,
there is xj ∈ X with [tj−1, tj ] ⊂ γ−1(Uxj ).

Let x1 ∈ X be such that [t0, t1] ⊂ γ−1(Ux1). Let V1 be the unique sheet of
p−1(Ux1) containing x̃0. Define

γ̃(t) := (p|V1)
−1(γ(t)) (t ∈ [t0, t1]).

Now, let x2 ∈ X be such that [t1, t2] ⊂ γ−1(Ux2), and let V2 be the unique
sheet of p−1(Ux2) containing γ̃(t1). Then define

γ̃(t) := (p|V2)
−1(γ(t)) (t ∈ [t1, t2]).

Then, choose x3 ∈ X with [t2, t3] ⊂ γ−1(Ux3) and continue in this fashion.
Successively, we thus obtain a path γ̃ in X̃ with γ̃(0) = x̃0 and p ◦ γ̃ = γ.
Suppose that γ̃′ is another path with these two properties. Let V1 be the

collection of sheets of p−1(Ux1). Since γ([t0, t1]) ⊂ Ux1 , it follows that

γ̃′([t0, t1]) ⊂ p−1(Ux1) =
⋃
{V : V ∈ V1}.

Since γ̃′([t0, t1]) is connected, and since the sheets of p−1(Ux1) are clopen in
p−1(Ux1), it follows that there is one sheet, say V ′

1 ∈ V1 with γ̃′([t0, t1]) ⊂ V ′
1 .

Since γ̃′(0) = x̃0, it is clear that V ′
1 = V1, and since p ◦ γ̃′ = γ, we see that

γ̃′(t) = (p|V1)
−1(γ(t)) = γ̃(t) (t ∈ [t0, t1]).

Successively, we obtain that γ̃′(t) = γ̃(t) for all t ∈ [0, 1]. �	
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The following sketch conveys the idea of the proof.

x~0

x 0

p −1( x 1
U )

γ ( t 1)

γ(t)

2

γ ( t )2 U x 1

γ∼
V1

U x 2

V2

p −1( x 2
U )

p

p

γ

Fig. 5.8: Lifting a path

We call the path γ̃ in Lemma 5.2.3, the lifting of γ with starting point x̃0.
So, we can lift paths to covering spaces. What about path homotopies?

Lemma 5.2.4. Let (X, T ) be a topological space, let
((

X̃, T̃
)

, p
)

be a cov-

ering space of X, and let x0 ∈ X and x̃0 ∈ X̃ be such that p(x̃0) = x0. Then,
for each continuous map Γ : [0, 1]2 → X with Γ (0, 0) = x0, there is a unique
continuous map Γ̃ : [0, 1]2 → X̃ with Γ̃ (0, 0) = x̃0 and p ◦ Γ̃ = Γ . Moreover,
if Γ is a path homotopy, then so is Γ̃ .

Proof. For each x ∈ X , choose an open neighborhood Ux of x as specified
in Definition 5.2.1. An argument similar to that in the proof of Lemma 5.2.3
yields 0 = t0 < t1 < · · · < tn = 1 and 0 = s0 < s1 < · · · < sm = 1
such that, for any j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, there is xj,k ∈ X with
Γ ([tj−1, tj ]× [sk−1, sk]) ⊂ Uxj,k

.
Let V1,1 be the sheet of p−1(U1,1) containing x̃0, and define

Γ̃ (t, s) := (p|V1,1)
−1(Γ (t, s)) ((t, s) ∈ [t0, t1]× [s0, s1]).

Let V2,1 be the sheet of p−1(Ux2,1) containing Γ̃ (t1, s0). Since sheets are clopen,
and since Γ̃ (t1, [s0, s1]) is connected, we conclude that Γ̃ (t1, [s0, s1]) ⊂ V2,1.
Defining
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Γ̃ (t, s) := (p|V2,1)
−1(Γ (t, s)) ((t, s) ∈ [t1, t2]× [s0, s1])

thus extends Γ̃ to [t0, t2] × [s0, s1] as a continuous map. Continuing in this
fashion, we obtain a continuous Γ̃ : [0, 1]× [s0, s1] → X̃ with Γ̃ (0, 0) = x̃0.

Next, let V1,2 be the sheet of p−1(Ux1,2) containing Γ̃ (t0, s1). Again the
clopenness of sheets yields that Γ̃ ([t0, t1], s1) ⊂ V1,2, so that

Γ̃ (t, s) := (p|V1,2)
−1(Γ (t, s)) ((t, s) ∈ [t0, t1]× [s1, s2])

extends Γ̃ continuous to ([0, 1] × [s0, s1]) ∪ ([t0, t1] × [s1, s2]). Let V2,2 be
the sheet of p−1(Ux2,2) containing Γ̃ (t1, s1). Again a connectedness argument
shows that both Γ̃ (t1, [s1, s2]) ⊂ V2,2 and Γ̃ ([t1, t2], s1) ⊂ V2,2, so that

Γ̃ (t, s) := (p|V2,2)
−1(Γ (t, s)) ((t, s) ∈ [t1, t2]× [s1, s2])

defines a continuous extension of Γ̃ to ([0, 1] × [s0, s1]) ∪ ([t0, t2] × [s1, s2]).
Repeating the argument again and again, we eventually obtain a continuous
map Γ̃ : [0, 1]× [s0, s2] → X̃ with p ◦ Γ̃ = Γ and Γ̃ (0, 0) = x̃0.

The next step is then to extend Γ̃ (using the same arguments as before)
to [0, 1]× [s0, s3], then to [0, 1]× [s0, s4], and so on, till we have it defined on
all of [0, 1]× [0, 1]. This proves the existence of Γ̃ .

To prove the uniqueness, suppose that Γ̃ ′ : [0, 1]2 → X̃ is any contin-
uous map with p ◦ Γ̃ ′ = Γ and Γ̃ ′(0, 0) = x̃0. Let V1,1 be the sheet of
p−1(Ux1,1) containing x̃0. Since Γ̃ ′([t0, t1] × [s0, s1]) is connected, it follows
that Γ̃ ′([t0, t1]× [s0, s1]) ⊂ V1,1, so that

Γ̃ ′(t, s) = (p|V1,1)
−1(Γ (t, s)) = Γ̃ (s, t) ((t, s) ∈ [t0, t1]× [s0, s1]).

Hence, Γ̃ ′ and Γ̃ coincide on [t0, t1]× [s0, s1]. Successively (as in the proof of
the existence part) we show that Γ̃ ′ and Γ̃ coincide on all of [0, 1]× [s0, s1],
then on [0, 1]× [s0, s2], and so on, and finally on all of [0, 1]× [0, 1].

Finally, suppose that Γ is a path homotopy; that is, the maps

[0, 1] → X, t �→ Γ (t, s)

are constant for s ∈ {0, 1}. The uniqueness part of Lemma 5.2.3 then yields
that

[0, 1] → X, t �→ Γ̃ (t, s)

are also constant for s ∈ {0, 1}, so that Γ̃ is a path homotopy. �	

It should be noted that Lemma 5.2.4 contains Lemma 5.2.3 as a particular
case, and relies on Lemma 5.2.3 only for the proof of the statement about
path homotopies.

A simple consequence of Lemma 5.2.4 is as follows.
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Corollary 5.2.5. Let (X, T ) be a topological space, let
((

X̃, T̃
)

, p
)

be a cov-

ering space of X, let x0 ∈ X and x̃0 ∈ X̃ be such that p(x̃0) = x0, and let γ
and γ′ be path homotopic paths in X with starting point x0. Then their liftings
γ̃ and γ̃′ with starting point x̃0 are also path homotopic.

Theorem 5.2.6. Let (X, T ) be a topological space, let
((

X̃, T̃
)

, p
)

be a cov-

ering space of X, and let x0 ∈ X and x̃0 ∈ X̃ be such that p(x̃0) = x0.
Then:

(i) The lifting correspondence

φ : π1(X, x0) → p−1({x0}), [γ] �→ γ̃(1)

is well defined;
(ii) If X̃ is path connected, then φ is surjective;
(iii) If X̃ is simply connected, that is, X̃ is path connected and π1

(
X̃, x̃0

)
=

{0} holds, then φ is bijective.

Proof. Let γ, γ′ ∈ P (X, x0) be path homotopic. Then so are their liftings by
Corollary 5.2.5 and thus, in particular, have the same endpoints. This proves
(i).

Suppose that X̃ is path connected, and let x̃ ∈ p−1({x0}) be arbitrary.
By the definition of path connectedness, there is a path γ̃ in X̃ connecting x̃0

with x̃. Letting γ := p ◦ γ̃ (so that γ̃ is trivially the lifting of γ with starting
point x̃0), we obtain that φ([γ]) = x̃. This proves (ii).

For (iii), let [γ1], [γ2] ∈ π1(X, x0) be such that φ([γ1]) = φ([γ2]); that is,
the liftings γ̃1 and γ̃2 have the same endpoint, say x̃1. Consequently, γ̃1� γ̃−1

2

represents an element of π1

(
X̃, x̃0

)
= {0}, so that there is a path homotopy Γ̃

between γ̃1� γ̃−1
2 and x̃0. Letting Γ := p◦ Γ̃ , we thus obtain a path homotopy

between γ1 � γ−1
2 and x0, so that [γ1] · [γ2]−1 = [γ1 � γ−1

2 ] = [x0] and thus
[γ1] = [γ2]. This proves (iii). �	

We now use Theorem 5.2.6 to compute π1(S1, (1, 0)).

Example 5.2.7. Let

p : R → S1, x �→ (cos(2πx), sin(2πx)),

which turns, as we saw in Example 5.2.2, R into a covering space of S1, and
note that p−1({(1, 0)}) = Z. Since R is simply connected, Theorem 5.2.6
immediately yields that the lifting correspondence φ : π1(S1, (1, 0)) → Z is a
bijective map. What remains to be shown is that it is a group homomorphism.

Let n, m ∈ Z, and let γn, γm ∈ P (S1, (1, 0)) be such that their liftings
γ̃n, γ̃m ∈ P (R, 0) satisfy γ̃n(1) = n and γ̃m(1) = m. Define

α̃ : [0, 1] → R, t �→ n + γ̃m(t),
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so that α̃ ∈ P (R; n, n + m) with p ◦ α̃ = γm. The path γ̃n � α̃ is then well
defined, and satisfies

p ◦ (γ̃n � α̃) = γn � γm.

Since the starting point of γ̃n � α̃ is 0 and its endpoint is n + m, we conclude
that γ̃n � α̃ is the lifting ˜γn � γm of γn � γm with starting point 0. All in all,
we obtain that

φ([γn] · [γm]) =
(

˜γn � γm

)
(1) = (γ̃n � α̃)(1) = n + m.

This proves the claim.

Exercises

1. Let n ∈ N, and define
pn : S1 → S1, z �→ zn,

where S1 is viewed as a subset of C. Show that (S1, pn) is a covering space of
S1.

2. Let (X, TX) and (Y, TY ) be topological spaces, where Y is discrete, let X×Y be
equipped with the product topology, and let p : X × Y → X be the projection
onto the first coordinate. Show that (X × Y, p) is a covering space of X.

3. Let (X, T ) be a connected topological space, let
““

X̃, T̃
”

, p
”

be a covering

space for (X, T ), and suppose that there are n ∈ N and x ∈ X such that
p−1({x}) has n elements. Show that p−1({y}) has n elements for each y ∈ X.
(Hint : Show that the set {y ∈ X : p−1({y}) has n elements} is nonempty and
clopen in X.)

4. Let (X, T ) be a topological space, and let
““

X̃, T̃
”

, p
”

be a covering space of

X such that X̃ is path connected. Show that p : X̃ → X is a homeomorphism if
π1(X, x0) = {0} for some x0 ∈ X.

Remarks

What we have done in this chapter is to at most dip one toe into the vast
ocean algebraic topology really is.

The only fundamental groups we have computed in this chapter are {0}
and Z, and with the help of Exercise 5.1.5, it is easy to come up with spaces
with fundamental group Zn for any n ∈ N. All these examples are abelian.
It is not true, however, that fundamental groups are generally abelian: the
∞-shaped subspace below of R2 has the free group in two generators as its
fundamental group. This follows from the Seifert–van Kampen theorem (see
[Massey 91] for details).
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y

x(0,0)

Fig. 5.9: A space with nonabelian fundamental group

The fundamental group is not the only (and by no means the most fun-
damental!) algebraic invariant of a topological space. As one might guess in
view of the symbol π1(X, x0) for the fundamental group of X at x0, there
are also groups πn(X, x0) for n ≥ 2. Unlike the fundamental group, these
higher homotopy groups are always abelian. Other important invariants stud-
ied in algebraic topology are homology and cohomology groups . Just to define
those groups—let alone compute them—requires extensive preparations that
go beyond the scope of this book.

Introductions to algebraic topology are [Munkres 84] and [Massey 91].
The undergraduate textbook [Munkres 00] also limits itself to a discussion of
the fundamental group and of covering spaces, but covers much more ground
than this book.

Even though we treat algebraic topology after set-theoretic topology, it is
fair to say that algebraic topology is the older of the two topological disci-
plines. Attempts to classify various kinds of surfaces go as far back as to the
first half of the nineteenth century. The notion of homotopy (along with the
definition of the fundamental group) appears for the first time in Poincaré’s
Analysis situs from 1985.

Due also to Poincaré is one of the most famous problems there is in
topology—and in all of mathematics—the Poincaré conjecture.

Every closed, 3-dimensional manifold that is homotopically equivalent
to S3 is already homeomorphic to S3.

(A closed, 3-dimensional manifold is a compact topological space that “looks
locally like R3,” such as S3.) One can, of course, generalize the Poincaré con-
jecture by replacing the number three in it by an arbitrary positive integer n.
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Interestingly, n = 3 is the only value for which this generalized Poincaré con-
jecture is still open. For n = 1, the problem is easy, and the n = 2 case was al-
ready known to Poincaré. The American mathematician Steven Smale proved
the conjecture for n ≥ 5 and was subsequently awarded the Fields medal in
1966. Finally, Michael Freedman, another American, solved the n = 4 case
(and received the Fields medal for it in 1986). In 2002, Grigori Perelman of
the Steklov Institute in St. Petersburg, Russia, claimed to have solved the
original Poincaré conjecture, but as this is being written, his proof is still
being checked. If Perelman is right, his accomplishment would not only bring
him fame, but also make him rich. In 2000, the Clay Mathematics Institute, a
private, nonprofit organization based in Cambridge, Massachusetts, selected
the Poincaré conjecture as one of its seven Millennium Prize problems: the
first person to solve any of these problems will receive prize money of one
million US dollars.



A

The Classical Mittag-Leffler Theorem Derived
from Bourbaki’s

This is the Mittag-Leffler theorem from complex variables.

Theorem A.1 (Mittag-Leffler theorem). Let ∅ �= Ω ⊂ C be open, let
{c1, c2, c3, . . .} be a discrete subset of Ω, and let (rn)∞n=1 be a sequence of
rational functions of the form

rn(z) =
mn∑
j=1

aj,n

(z − cn)j
(n, mn ∈ N, a1,n, . . . , amn,n ∈ C, z ∈ Ω \ {cn}).

Then there is a meromorphic function f on Ω with {c1, c2, c3, . . .} as its set
of poles such that, for each n ∈ N, the singular part of f at cn is rn.

This theorem is usually treated in courses on complex variables, and a
proof can be found in probably any text on the subject (such as [Conway 78],
for example). But what does this theorem have to do with Theorem 2.4.14?
Following [Esterle 84], we show in this appendix that the Mittag-Leffler
theorem can, in fact, be derived from Theorem 2.4.14. Besides Theorem 2.4.14,
the proof also requires (of course) some knowledge of complex variables, as
well as further topological background from Sections 3.1 to 3.4.

We first need to bring complete metric spaces into the picture. To this
end, we prove a lemma.

Lemma A.2. Let ∅ �= Ω ⊂ Rm be open. Then there is a sequence (Kn)∞n=1

of compact subsets of Ω with the following properties.

(i) Ω =
⋃∞

n=1 Kn;

(ii) Kn ⊂
◦

Kn+1 for all n ∈ N;
(iii) For each n ∈ N, every component of Rm

∞ \ Kn contains a component of
Rm

∞ \Ω.

Proof. If Ω = Rm, letting Kn := Bn[0] for n ∈ N will do.
Hence, we may suppose that Ω �= Rm. We may then define
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Kn :=
{

x ∈ Ω : ‖x‖ ≤ n and dist(x, Rm \Ω) ≥ 1
n

}
(n ∈ N).

It is easy to see that (i) and (ii) are satisfied.
Let n ∈ N, and let C be a component of Rm

∞ \ Kn, where Rm
∞ is the

one-point compactification of Rm.
Case 1: ∞ ∈ C.
Let C∞ be the component of Rm

∞ \Ω containing ∞. Then C∞ ⊂ Rm
∞ \Kn

is connected and contains ∞. Consequently, C∞ ⊂ C must hold.
Case 2: ∞ /∈ C.
The subset C0 := {x ∈ Rm : ‖x‖ > n}∪{∞} of Rm

∞\Kn is connected. Since
C is a component of Rm

∞ \Kn, it follows that either C0 ⊂ C or C0 ∩ C = ∅.
Since ∞ ∈ C0 whereas ∞ /∈ C, the first alternative cannot occur, so that
C0 ∩C = ∅; that is, ‖x‖ ≤ n for all x ∈ C and therefore, by the definition of
Kn, dist(x, Rm\Ω) < 1

n
for all x ∈ C. Consequently, there is x0 ∈ Rm\Ω such

that B 1
n
(x0)∩C �= ∅. Note that B 1

n
(x0) ⊂ Rm \Kn by the definition of Kn.

Since B 1
n
(x0) is connected, Proposition 3.4.16 yields that B 1

n
(x0) ⊂ C. As in

the first case, we see that C contains the component of Rm
∞ \Ω containing x0.

�	

With the help of Lemma A.2, we can introduce a metric on the space of
continuous functions on an open subset of Rm.

Proposition A.3. Let ∅ �= Ω ⊂ Rm be open, and let (Kn)∞n=1 be a sequence
as in Lemma A.2. For f, g ∈ C(Ω, F) define

dn(f, g) := sup{|f(x)− g(x)| : x ∈ Kn} (n ∈ N)

and

d(f, g) :=
∞∑

n=1

1
2n

dn(f, g)
1 + dn(f, g)

.

Then:

(i) d is a metric on C(Ω, F) such that d(f +h, g+h) = d(f, g) for all f, g, h ∈
C(Ω, F);

(ii) The topology on C(Ω, F) induced by d is TK|C(Ω,F), where K is the collec-
tion of all compact subsets of Ω;

(iii) The metric space (C(Ω, F), d) is complete.

Proof. (i) is clear.
For (ii), let C := {Kn : n ∈ N}. It is routine to check that d induces

the topology TC |C(Ω,F). Since C ⊂ K, it is clear that TK|C(Ω,F) is finer than

TC |C(Ω,F). On the other hand,
{ ◦
Kn: n ∈ N

}
is an open cover for Ω. Hence, for

any K ∈ K, there is n ∈ N such that K ⊂
◦

Kn⊂ Kn. It follows that TK|C(Ω,F)

and TC |C(Ω,F) coincide.
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Let (fn)∞n=1 be a Cauchy sequence in (C(Ω, F), d). Then, for each x ∈
Ω, the sequence (fn(x))∞n=1 is a Cauchy sequence in F, so that f(x) :=
limn→∞ fn(x) exists. It is routine to check that (fn)∞n=1 converges to f : Ω → F
uniformly on each K ∈ K. Let x0 ∈ Ω, and let ε > 0 be such that Bε(x0) ⊂ Ω.
Since (fn)∞n=1 converges to f uniformly on Bε(x0), it follows that f |Bε(x0)

is

continuous, and since Bε(x0) is a neighborhood of x0, the function f is con-
tinuous at x0. This proves (iii). �	

To prove Theorem A.1, we apply Theorem 2.4.14 not to all of C(Ω, C),
but to a subspace.

Definition A.4. Let ∅ �= Ω ⊂ C be open. Then H(Ω) denotes the space of
all holomorphic functions on Ω.

For the following corollary of Proposition A.3, we identify C with R2.

Corollary A.5. Let ∅ �= Ω ⊂ C be open, and let d be as in Proposition A.3.
Then H(Ω) is a closed subspace of (C(Ω, C), d) (and therefore complete).

Proof. Let (fn)∞n=1 be a sequence in H(Ω) that converges to f ∈ C(Ω, C)
with respect to d and thus, by Proposition A.3(ii), uniformly on all compact
subsets of Ω. It is well known that this forces f to be holomorphic, too (see,
for example, [Conway 78, 2.1 Theorem]). �	

We can now prove Theorem A.1 with the help of Theorem 2.4.14.

Proof (of Theorem A.1). Let (Kn)∞n=1 be a sequence as specified by Lemma

A.2, and let Ωn−1 :=
◦

Kn for n ∈ N. For each n ∈ N0, let d̃n be a metric on
H(Ωn) ⊂ C(Ωn, C) as specified by Proposition A.3.

Let n ∈ N0 be fixed, and let Sn := {m ∈ N : cm ∈ Ωn}. Since Kn+1

is compact, and since {c1, c2, . . .} is discrete, each Sn is finite (and possibly
empty). Hence, the rational function Rn :=

∑
m∈Sn

rm is well defined (the
sum is finite). Let Xn be the set of those meromorphic functions f on Ωn

such that f − Rn has a holomorphic extension to all of Ωn, and define a
metric on it via

dn(f, g) := d̃n(f −Rn, g −Rn) (f, g ∈ Xn).

It follows from Corollary A.5 that (Xn, dn) is a complete metric space. For
n ∈ N, let φn : Xn → Xn−1 denote the restriction map. In view of Proposition
A.3(ii), it is clear that φn is continuous.

We claim that φn has dense range. Let g ∈ Xn−1, so that g − Rn−1 ∈
H(Ωn−1). Since the rational functions rm for m ∈ Sn \ Sn−1 have their poles
off Ωn−1, it follows that g−Rn is in H(Ωn−1) as well. Due to Lemma A.2 and
Runge’s approximation theorem [Conway 78, 1.14 Corollary], we can find a
sequence (qm)∞m=1 of rational functions with poles off Ωn−1 (which therefore
belong to H(Ωn−1)) such that d̃n−1(g −Rn, qm) → 0. It follows that
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dn−1(g, φn(qm + Rn)) = d̃n−1(g −Rn−1, qm + Rn −Rn−1)
= d̃n−1(g −Rn + (Rn −Rn−1︸ ︷︷ ︸

∈H(Ωn−1)

), qm + (Rn −Rn−1︸ ︷︷ ︸
∈H(Ωn−1)

))

= d̃n−1(g −Rn, qm)
→ 0

as m →∞, and consequently, φn(Xn) is dense in Xn−1.
From Theorem 2.4.14, we conclude that

⋂∞
n=1(φ1 ◦· · ·◦φn)(Xn) is dense in

X0 and thus, in particular, is not empty. Let (gn)∞n=0 be a sequence such that
gn ∈ Xn for n ∈ N0 and φn(gn) = gn−1 for n ∈ N. Define f : Ω \{c1, c2, . . .} →
C by letting f(z) := gn(z) if z ∈ Ωn \ {cm : m ∈ Sn}. Since Ω =

⋃∞
n=1 Ωn,

this defines a meromorphic function on Ω with the required properties. �	



B

Failure of the Heine–Borel Theorem in
Infinite-Dimensional Spaces

We first show that the Heine–Borel theorem holds in all finite-dimensional,
normed spaces.

The following is the crucial assertion for this.

Proposition B.1. Let E be a finite-dimensional, linear space (over F = R
or F = C), and let ‖ · ‖ and ||| · ||| be norms on E. Then there is a constant
C ≥ 0 such that

‖x‖ ≤ C|||x||| and |||x||| ≤ C‖x‖ (x ∈ E).

Proof. Let e1, . . . , en ∈ E be a basis for E. For x = λ1e1 + · · ·+ λnen, let

|x| := max{|λ1|, . . . , |λn|}.

Clearly, | · | is a norm on E.
Set C1 := ‖e1‖+ · · ·+ ‖en‖, and note that

‖x‖ ≤ |λ1|‖e1‖+ · · ·+ |λn|‖en‖ ≤ C1|x| (x ∈ E).

Next, we show that there is C2 ≥ 0 with |x| ≤ C2‖x‖ for all x ∈ E.
Assume otherwise. Then there is a sequence (xm)∞m=1 in E with |xm| >

m‖xm‖ for m ∈ N. Let

ym :=
xm

|xm|
(m ∈ N).

For each m ∈ N, there are unique λ1,m, . . . , λn,m ∈ F with ym =
∑n

j=1 λj,mej .
It follows that

1 = |ym| = max{|λ1,m|, . . . , |λn,m|} (m ∈ N).

In particular, the sequence ((λ1,m, . . . , λn,m))∞m=1 is bounded in Fn and thus
has—by the Bolzano–Weierstraß theorem (for Rn if F = R and for R2n if
F = C)—a convergent subsequence, say ((λ1,mk

, . . . , λn,mk
))∞k=1 with limit
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(λ1, . . . , λn). It follows that (ymk
)∞k=1 converges, with respect to | · |, to y :=

λ1e1+· · ·+λnen, so that necessarily |y| = 1 and thus y �= 0. Since ‖·‖ ≤ C1|·|,
we see that y = limk→∞ ymk

as well with respect to ‖ · ‖. However,

‖ym‖ =
∥∥∥∥ xm

|xm|

∥∥∥∥ =
‖xm‖
|xm|

<
1
m
→ 0,

so that y = 0. This is impossible.
For C′ := max{C1, C2}, we have

‖x‖ ≤ C′|x| and |x| ≤ C′‖x‖ (x ∈ E),

and in a similar vein, we obtain C′′ ≥ 0 such that

|||x||| ≤ C′′|x| and |x| ≤ C′′|||x||| (x ∈ E).

Consequently, with C := C′C′′,

‖x‖ ≤ C|||x||| and |||x||| ≤ C‖x‖ (x ∈ E)

holds. �	

As an immediate consequence, any two norms on a finite-dimensional vec-
tor space E yield equivalent metrics, and if E is a Banach space with respect
to one norm, it is a Banach space with respect to every norm. Hence, if
dimE = n and if e1, . . . , en is a basis of E, the map

Fn → E, (λ1, . . . , λn) �→ λ1e1 + · · ·+ λnen

is continuous with continuous inverse and carries Cauchy sequences to Cauchy
sequences (as does its inverse).

We therefore obtain the following.

Corollary B.2. Let E be a finite-dimensional, normed space. Then E is a
Banach space, and a subset of E is compact if and only if it is closed and
bounded.

Combining this with Proposition 2.4.5(ii) yields the following.

Corollary B.3. Let E be a normed space, and let F be a finite-dimensional
subspace of E. Then F is closed in E.

By Corollary B.2, the Heine–Borel theorem holds true in any finite-
dimensional normed space. For the converse, we require the following.

Lemma B.4 (Riesz’ lemma). Let E be a normed space, and let F be a
closed, proper (i.e., F �= E), subspace of E. Then, for each θ ∈ (0, 1), there
is xθ ∈ E with ‖xθ‖ = 1, and ‖x− xθ‖ ≥ θ for all x ∈ F .
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Proof. Let x0 ∈ E \ F , and let δ := dist(x0, F ). If δ = 0, the closedness of
F implies x0 ∈ F , which is a contradiction. Hence, δ > 0 must hold. Since
θ ∈ (0, 1), we have δ < δ

θ . Choose yθ ∈ F with 0 < ‖x0 − yθ‖ < δ
θ , and let

xθ :=
yθ − x0

‖yθ − x0‖
,

so that trivially ‖xθ‖ = 1. Let x ∈ F , and note that

‖x− xθ‖ =
∥∥∥∥x− yθ − x0

‖yθ − x0‖

∥∥∥∥ =
1

‖yθ − x0‖
‖‖yθ − x0‖x− yθ + x0‖.

Since x, yθ ∈ F , we have ‖yθ − x0‖x− yθ ∈ F as well, so that

‖‖yθ − x0‖x− yθ + x0‖ ≥ dist(x0, F ) = δ.

Eventually, we obtain

‖x− xθ‖ =
1

‖yθ − x0‖
‖‖yθ − x0‖x− yθ + x0‖ >

θ

δ
δ = δ.

Since x ∈ F was arbitrary, this completes the proof. �	

We can now prove the following.

Theorem B.5. For a normed space E, the following are equivalent.

(i) Every closed and bounded subset of E is compact.
(ii) The closed unit sphere of E is compact.
(iii) dimE < ∞.

Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii): Suppose that dimE = ∞. We construct a sequence in S1[0]

that has no convergent subsequence, so that S1[0] cannot be compact by
Theorem 2.5.10

Choose x1 ∈ E with ‖x1‖ = 1. Since dim E = ∞, the one-dimensional
space F1 spanned by x1 is not all of E. By Riesz’ lemma, there is thus x2 ∈ E
such that ‖x2−x‖ ≥ 1

2
for x ∈ F1, so that, in particular, ‖x2−x1‖ ≥ 1

2
. Since

dimE = ∞, the two-dimensional space F2 spanned by {x1, x2} is also not all
of E. Again by Riesz’ lemma, there is thus x3 ∈ E such that ‖x3 − x‖ ≥ 1

2
for x ∈ F2, and thus, in particular, ‖x3 − xj‖ ≥ 1

2 for j = 1, 2. Let F3 be the
linear span of {x1, x2, x3}, so that F3 �= E. Appealing again to Riesz’ lemma,
we obtain x4 ∈ E, and so on.

Inductively, we thus obtain a sequence (xn)∞n=1 in S1[0] such that

‖xn − xm‖ ≥
1
2

(n �= m).

It is clear that no subsequence of (xn)∞n=1 can be a Cauchy sequence.
Finally, (iii) =⇒ (i) is Corollary B.2. �	





C

The Arzelà–Ascoli Theorem

As we have seen in Example 2.5.13, the Heine–Borel theorem is false for
C([0, 1], F) (and, more generally, for every infinite-dimensional normed space;
see Appendix B).

The Arzelà–Ascoli theorem can be thought of as the right substitute for
the Heine–Borel theorem in spaces of continuous functions. In this appendix,
we derive it from Tychonoff’s theorem.

For the statement of the Arzelà–Ascoli theorem, we require two notions:
that of relative compactness, which was introduced in Exercise 2.5.7, and that
of equicontinuity.

Definition C.1. Let (X,T ) be a topological space, and let (Y, d) be a metric
space. Then a family F of functions from X to Y is said to be equicontinuous
at x0 ∈ X if, for each ε > 0, there is N ∈ Nx0 such that d(f(x0), f(x)) < ε
for all f ∈ F and x ∈ N . If F is equicontinuous at every point of X, we call
F equicontinuous.

If F consists only of one function, say f , then F is equicontinuous if and
only if f is continuous.

Let (K, T ) be a compact topological space, let (Y, d) be a metric space,
and let f : K → Y be continuous. Then f(K) is compact and therefore has
finite diameter, which means that f is actually in Cb(K, Y ). In the following
result, we have C(K, Y ) = Cb(K, Y ) equipped with the metric D introduced
in Example 2.1.2(d).

Theorem C.2 (Arzelà–Ascoli theorem). Let (K, T ) be a compact topo-
logical space, and let (Y, d) be a complete metric space. Then the following are
equivalent for F ⊂ C(K, Y ).

(i) F is relatively compact in C(K, Y ).
(ii) (a) {f(x) : f ∈ F} is relatively compact in Y for each x ∈ X , and

(b) F is equicontinuous.

Proof. (i) =⇒ (ii): For x ∈ K , let
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πx : C(K, Y ) → Y, f �→ f(x).

Then πx is continuous, so that πx

(
F
)

is compact in Y and contains {f(x) :
f ∈ F}. Consequently, {f(x) : f ∈ F} is relatively compact in Y . This proves
(ii)(a).

Assume towards a contradiction that (ii)(b) is false; that is, there are
x0 ∈ X and ε0 > 0 such that, for each N ∈ Nx0 , there are fN ∈ F and
xN ∈ N such that d(fN (x0), fN (xN )) ≥ ε0. Since F is compact, the net
(fN )N∈Nx0

, where Nx0 is ordered by reversed set inclusion, has a subnet
(fα)α∈A converging (with respect to D) to some f ∈ F. Let N0 ∈ Nx0 be such
that d(f(x0), f(x)) < ε0

3 for x ∈ N0 (this is possible because f is continuous),
let φ : A → Nx0 be the cofinal map associated with the subnet (fα)α∈A, and
let α ∈ A be such that D(fα, f) < ε0

3
and φ(α) ⊂ N0. We then have:

d(fα(x0), fα(xφ(α)))
≤ d(fα(x0), f(x0)) + d(f(x0), f(xφ(α))) + d(f(xφ(α)), fα(xφ(α)))
≤ D(fα, f) + d(f(x0), f (xφ(α))) + D(fα, f)

<
2ε0
3

+ d(f(x0), f(xφ(α)))

<
2ε0
3

+
ε0
3

, because φ(α) ⊂ N0,

= ε0.

This contradicts the choices of fN and xN for N ∈ Nx0 . (This part of the proof
has not made any reference to the completeness of Y or to the compactness
of K.)

(ii) =⇒ (i): Since (a) and (b) are not affected if we replace F by its closure,
we can suppose without loss of generality that F is closed.

Let (fα)α be a net in F. We show that it has a convergent subnet.
For x ∈ K , let Kx := {f(x) : f ∈ F}, so that Kx is compact by (a).

Tychonoff’s theorem then yields the compactness of the topological product∏
x∈K Kx. Hence, (fα)α has a subnet (fβ)β∈B such that (fβ(x))β∈B converges

for each x ∈ K . By Exercise 3.2.12(a), this means in particular that, for each
ε > 0 and x ∈ K , there is βx,ε ∈ B such that d(fβ(x), fγ(x)) < ε for all
β, γ ∈ B with βx,ε � β, γ.

Fix ε > 0. For each x ∈ X , choose an open neighborhood Ux of x such
that d(f(x), f (x′)) < ε

3
for x′ ∈ Ux. Clearly, {Ux : x ∈ K} is an open cover

for K. Since K is compact, there are x1, . . . , xn ∈ K such that

K = Ux1 ∪ · · · ∪ Uxn .

Choose βε ∈ B such that d(fβ(xj), fγ(xj)) < ε
3

for all j = 1, . . . , n and β, γ ∈ B
with βε � β, γ. Let x ∈ K, and choose j ∈ {1, . . . , n} such that x ∈ Uxj . Then
we have for β, γ ∈ B with βε � β, γ:
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d(fβ(x), fγ(x)) ≤ d(fβ(x), fβ(xj)) + d(fβ(xj), fγ(xj)) + d(fγ(xj), fγ(x))

<
ε

3
+

ε

3
+

ε

3
= ε.

It follows that D(fβ, fγ) ≤ ε for β, γ ∈ B with βε � β, γ, so that (fβ)β∈B is
a Cauchy net in C(K, Y ). Since B(K, Y ) is complete by Example 2.4.4(c), it
follows from Exercise 3.2.12(b), that (fβ)β∈B converges to some f ∈ B(K, Y ).
As in Example 2.4.6, where the case of the domain being a metric space was
treated, one sees that f ∈ C(K, Y ). �	

Let (K, T ) be a compact topological space. Then C(K, F) is a normed
space, so that it makes sense to speak of bounded sets. As an immediate
consequence of Theorem C.2, we obtain what may be construed as an infinite-
dimensional Heine–Borel theorem.

Corollary C.3. Let (K, T ) be a compact topological space. Then a subset of
C(K, F) is compact if and only if it is closed, bounded, and equicontinuous.
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Stone–Čech, 118

compactness, 52, 79
comparable topologies, 73
complement, 8
completely regular space, 101
completeness, 41
completion, 44, 46, 56
component, 93
composition, 11
concatenation of paths, 98
connectedness, 91
continuity, 37, 72

at a point, 36, 72
continuum hypothesis, 22
convergence

coordinatewise, 40, 83
of a net, 74
of a sequence, 35, 72
pointwise, 51, 58, 75
uniform, 58, 75

convex set, 89
coordinate, 9, 17
coordinate projection, 10, 83
coordinatewise convergence, 40, 83
covering

map, 149
space, 149

de Morgan’s rules, 12
dense subset, 31, 68
diameter, 44
Dini’s lemma, 88
directed set, 73
disjoint sets, 8
distance, 34

Euclidean, 23
domain, 9
doughnut, see coffee cup

element, 5
maximal, 19

empty set, 5
equicontinuity, 165

at a point, 165
equivalence

class, 20
relation, 20, 138

Esterle, Jean, 59

finite intersection property, 79
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