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Foreword to Second Edition

The first edition of ‘Mathematics for Dyslexics: A Teaching Handbook’ by
Steve Chinn and Richard Ashcroft put a previously neglected area of education
on the map for those concerned with dyslexia. Teachers have found much
support and inspiration from the guidelines set out by the authors. This second
edition, updated and expanded will again be welcomed by both teachers and
learners.

The mysteries of mathematics have always posed some problems for me and
therefore I add my personal welcome to this edition and would like to wish
both authors and users achievement and success.

Marion Welchman, MBE.
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Chapter 1
Dyscalculia, Dyslexia
and Mathematics

Introduction
In 1981, when we moved from working in mainstream schools and began
teaching in schools for dyslexic learners, our initial expectation was that
teaching mathematics would be much the same as before. At that time, we
could not find any source of guidance to confirm or contradict this expectation.
We thought dyslexia meant difficulties with languages, not mathematics.
Experience would change this impression!

Over the last 25 years, we have accumulated experience, tried out new
(and old) ideas, researched, read what little appropriate material was available
(there is still far less published on learning difficulties in mathematics than
on languages), learned from our learners and have become convinced that
difficulties in mathematics go hand in hand with difficulties in language and
that a different teaching attitude and approach is needed.

The first four chapters of this book look at some of the background that
influenced the evolution of these teaching methods and continues to underpin
their ongoing evolution. This necessitates a look at the learner, the subject
(mathematics) and the teacher. The main mathematical focus of this book
is number, primarily because this is the first area of mathematics studied
by children and thus provides the first opportunity to fail. Our experience
suggests that number remains the main source of difficulty for most learners,
even in secondary education. We also know that the foundations for all studies
leading to General Certificate of Secondary Education (GCSE), and beyond,
are based in these early learning experiences. The evaluations and expectations
of a child’s mathematical potential are often based, not always correctly, on
performance in early work on number. The remaining chapters describe some
of the methods we use to teach our dyslexic learners, with the ever-present
caveat that no one method will work for all learners.

1



2 Mathematics for Dyslexics

One of the main reasons for the first four chapters is that the methods
described in the subsequent chapters will not meet the needs of every single
child. As Watson (2005) states, ‘There is no standard recipe for mathematical
success’. The joyous range of characteristics that makes each child an individual
ensures that this is true, so teachers need an understanding of the child and the
subject to be able to adjust methods and improvise, from secure foundations
and principles, to meet those individual needs.

We also believe that a greater understanding of the ways dyslexic and
dyscalculic students learn and fail mathematics will enhance our understanding
of how all children learn and fail mathematics. The extrapolation from this
is that many, if not all, of the methods advocated in this book will also help
many non-dyslexic students learn mathematics.

Definitions of Dyslexia

The year 1996 marked the 100th anniversary of the publication of the first
paper describing a dyslexic learner (Pringle-Morgan, 1896, reproduced in
the BDA Handbook 1996), yet it was only in the 1980s that definitions
of dyslexia began to include difficulties in learning mathematics (often as
numeracy) alongside difficulties in learning languages. Our hypothesis is that
a profile similar to the one created by the factors that can create difficulties
in learning mathematics (Chapter 2) could affect learning languages. A brief
survey of definitions of dyslexia (and learning disabilities, an American term)
shows how difficulties with learning mathematics were introduced alongside
difficulties with learning languages. Now in the new millennium, it seems that
the definitions of dyslexia are moving back to focus solely on language. Perhaps
this is due to the current interest in dyscalculia and the trend in the United
Kingdom to see specific learning difficulties used as an umbrella term, to cover
dyslexia, dyscalculia, dyspraxia and dysgraphia, rather than as a label that was
interchangeable with dyslexia.

In 1968 the World Federation of Neurology defined dyslexia as

A disorder manifested by a difficulty in learning to read, despite conventional
instruction, adequate intelligence and socio-cultural opportunity. It is dependent
upon fundamental cognitive difficulties that are frequently of a constitutional
character.

By 1972 the Department of Education and Science for England and Wales
included number abilities in its definition of specific reading (sic) difficulties.
In the United States, the Interagency Conference’s (Kavanagh and Truss,
1988) definition of learning disabilities included ‘significant difficulties in the
acquisition of mathematical abilities’ and, in the United Kingdom, Chasty
(1989) defined specific learning difficulties as follows:
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Organising or learning difficulties, which restrict the students competence in
information processing, in fine motor skills and working memory, so causing
limitations in some or all of the skills of speech, reading, spelling, writing, essay
writing, numeracy and behaviour.

In 1992 Miles and Miles, in their book Dyslexia and Mathematics, wrote:

The central theme of this book is that the difficulties experienced by dyslexics in
mathematics are manifestations of the same limitations which also affect their
reading and spelling.

Light and Defries (1995) highlighted the comorbidity of language and mathe-
matical difficulties in dyslexic twins. Comorbidity, the co-occurrence of two or
more disorders in the same individual, has since become more of a mainstream
term with the acknowledgement of specific learning difficulties other than
dyslexia. For example, there has recently been a surge in the interest shown in
dyscalculia (Shalev et al., 2001; DfES, 2001; Ramaa and Gowramma, 2002;
Butterworth, 2003; Butterworth and Yeo, 2004; Henderson et al., 2003;
Chinn, 2004; Hannell, 2005).

So definitions of dyslexia have now dropped any reference to mathematics
and have focused on language, for example, as per the British Psychological
Society (1999),

Dyslexia is evident when accurate and fluent word reading and/or spelling
develops very incompletely or with great difficulty. This focuses on literacy
learning at ‘word level’ and implies that the problem is severe and persistent
despite appropriate learning opportunities. It provides the basis for a staged
process of assessment through reading.

This definition was adopted by the International Dyslexia Association (IDA)
in 2002.

Dyslexia is a specific learning difficulty that is neurobiological in origin. It is
characterised by difficulties with accurate and/or fluent word recognition and
by poor spelling and decoding abilities. These difficulties typically result from
a deficit in the phonological component of language that is often unexpected
in relation to other cognitive abilities and the provision of effective classroom
instruction. Secondary consequences may include problems in reading compre-
hension and reduced reading experience that can impede growth of vocabulary
and background knowledge.

If dyslexia and dyscalculia are to be defined as separate, distinct specific
learning difficulties, then the concept of comorbidity becomes very relevant.
An important question for researchers is to decide whether the comorbidity is
causal, independent or different outcomes resulting from the same neurological
basis. Our experience is that most of the dyslexics we have taught have had
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difficulties in at least some areas of mathematics. The outcomes, in terms
of grades achieved in GCSE (the national exam for 16-year-old students in
England) can be from A∗ to F and with one ex-student, who was severely
dyslexic, a degree in mathematics. The theme of this book is of positive
individual prognosis.

Recently, Yeo (2003) has looked at the issues surrounding dyspraxia,
dyslexia and mathematics difficulties. The specific learning difficulty, dyspraxia,
brings another set of issues in learning mathematics.

Resources and research

There is still a paucity of research in this field, particularly in comparison to
research into language, as noted by Austin (1982), Sharma (1986), Miles and
Miles (1992, 2004), Jordan and Montani (1997), Geary (2004)and Gersten
et al. (2005). There are many examples of minimal mathematical content in
publications on dyxlexia, including the Annals of the Orton Dyslexia Society
(now the IDA), which had just three papers on mathematics in the 10 years
from 1995 to 2004. At the last International Conference of the British Dyslexia
Association (BDA) in 2004 the programme only contained 5 talks on mathe-
matical difficulties out of some 200 talks. Similarly, in Belgium Desoete et al.
(2004) from 1974 to 1997 only 28 articles on mathematical learning difficulties
were cited in Psyc-Info, whereas there were 747 articles on reading disabilities.

There is, however, some reference material. Magne (1996) has compiled
what must be the most extensive bibliography of publications on mathematical
low achievement to that date, but he cast his net wide. Dowker (2005),
Westwood (2004), and Miles and Miles (2004) have also produced thorough
lists of references to relevant research. Geary remains a leading researcher in
the field (for example, Geary, 1993, 1994, 2000).

One of the key factors for interventions for dyslexia is that the teaching and
learning are multisensory. One of the earliest papers to suggest a multisensory
approach to the teaching of mathematics to dyslexics was written by Steeves
(1979), a pioneer in this field. Steeves advocated the same teaching principles
for mathematics as Orton had suggested for language. Joffe (1980a, b, 1983),
another pioneer in investigating dyslexia and mathematics, provided an excel-
lent overview of the relationship between dyslexia and mathematics. Within
these three relatively short papers, Joffe provided many observations that
add to a clearer understanding of difficulties in learning mathematics. Most
notably, Joffe drew attention to a deficit in the essential skill of generalising.

Equally, the interventions need mathematical structure and credibility.
Sharma (see Berkshire Mathematics, Appendix 1) was a pioneer of this
philosophy.

Sometimes the advice given by experts is contradictory, which may in part
be due to the complexity of the interactions between learners and the various
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manifestations of mathematics. Ashlock et al. (1983), in an otherwise very
useful book, state that all children learn and come to understand an idea in
basically the same way, whereas Bley and Thornton (2005) begin their book
with the sentence, ‘Learning disabled children are unable to learn the way
most children do’. (We consider the statement of Bley and Thornton to be the
correct one, and hence this book!)

Dyscalculia
The concept of a specific mathematics difficulty, now named as dyscalculia in
the United Kingdom, has slipped (Poustie, 2000) into common usage in our
official documents (in sharp contrast to the acceptance of the word and concept
of ‘dyslexia’). The term is, however, not yet well defined. For some researchers
it suggests learning difficulties that are solely related to mathematics, that is,
there is an absence of a language difficulty. For some it seems to suggest a
dire prognosis, that of a failure to do any mathematics or an inability to do
mathematics. The little research that exists (when David Geary spoke at the
2002 IDA conference, he compared our knowledge of dyslexia to being close
to adulthood and our knowledge of mathematical learning difficulties to being
in its early infancy) suggests that the proportion of children in this category of
a specific mathematical learning difficulty, without any comorbid condition, is
small. As one would expect, the prevalence of dyscalculia will be dependent
on how it is defined. It should also be noted that Geary (2004) describes
dyscalculia as numerical and arithmetical deficits following overt brain injury,
using instead the term ‘mathematics learning difficulties’ to describe the 5–8%
of school-age children who have some form of memory or cognitive deficit
that interferes with their ability to learn concepts or procedures in one or more
mathematical domains.

The work of Kosc, a pioneer in the field of dyscalculia, and a review of the
early literature on dyscalculia can be found in Focus on Learning Difficulties in
Mathematics (Kosc, 1986). Butterworth and Yeo’s new book (2004) ‘Dyscal-
culia Guidance’ provides a more recently compiled comprehensive reference
list.

There are many parallels at many levels between dyslexia and dyscalculia and
all that surrounds these specific learning difficulties, for example, prevalence,
definition, teaching methods, etiology, perseveration, attitude of academics
and so forth.

The definition of dyscalculia from the Department for Education and Skills
(U.K.) booklet (2001) on supporting learners with dyslexia and dyscalculia in
the National Numeracy Strategy is as follows:

Dyscalculia is a condition that affects the ability to acquire mathematical skills.
Dyscalculic learners may have difficulty understanding simple number concepts,
lack an intuitive grasp of numbers, and have problems learning number facts and
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procedures. Even if they produce a correct answer or use a correct method, they
may do so mechanically and without confidence.

Very little is known about the prevalence of dyscalculia, its causes, or treat-
ment. Purely dyscalculic learners who have difficulties only with numbers will
have cognitive and language abilities in the normal range, and may excel in non-
mathematical subjects. It is more likely that difficulties with numeracy accompany
the language difficulties of dyslexia.

Perhaps it is not surprising, given that we do not have a clear agreed definition
of the problem, that there is a range of figures given for the prevalence of
dyscalculia and/or specific mathematics difficulties. For example, in a study
by Lewis et al. (1994) of 1200 children aged 9 to 12, only 18 were identified as
having specific mathematics difficulties in the absence of language difficulties.
Lewis et al. did not find any one pattern or reason for this, but the study
did focus on a difficulty only in mathematics, not a comorbid condition with
language difficulties. The same distinction is made by Ramaa and Gowramma
(2002) in a fascinating study of children in India. Ramaa and Gowramma
used both inclusionary and exclusionary criteria to determine the presence
of dyscalculia in primary schoolchildren. Both experiments suggest that the
percentage of children identified as potentially dyscalculic was between 5.5 and
6%. Ramaa and Gowramma also list 13 observations from other researchers
about the nature and factors associated with dyscalculia, including persistent
reliance on counting procedures and extra stress, anxiety and depression.
Sutherland (1988) states that, on the basis of his study, few children have
specific problems with number alone. Rather, Miles (Miles and Miles, 1992)
suggests that mathematical difficulties and language difficulties are likely to
occur concurrently, and we come to the same conclusion in the last part of this
chapter. More recently, Badian (1999) has produced figures for the prevalence
of persistent arithmetic, reading, or arithmetic and reading disabilities, from a
sample of over 1000 children, suggesting that for grades 1 to 8, 6.9% qualified
as low in arithmetic, which included 3.9% low only in arithmetic.

Shalev et al. (2001) working in Israel, have suggested that developmental
dyscalculia, taking a discrepancy model, has a significant familial aggregation.
They estimate the prevalence of developmental dyscalculia to be between 3
and 6.5% of children in the general school population and conclude that there
is a role for genetics in the evolution of this disorder. Inevitably this will raise
a mathematical version of the nature/nurture debate.

The publication of Brian Butterworth’s Screening Test for Dyscalculia
(2003) and the inclusion of dyscalculia as a specific learning difficulty on
a Department for Education and Skills (DfES) web site are helping to push
dyscalculia into the educational spotlight in the United Kingdom. We contend
that dyscalculia is going to be a complex concept, not least because there is
unlikely to be a single reason behind the problem of the many, many people
who fail to master mathematics, not all of whom will be dyscalculic.
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Kosc (1974, 1986) a pioneer in the study of dyscalculia defined it in terms
of brain abnormalities:

Developmental dyscalculia is a structural disorder of mathematical abilities
which has its origin in a genetic or congenital disorder of those parts of the
brain that are the direct anatomico-physiological substrate of the maturation of
the mathematical abilities adequate to age, without a simultaneous disorder of
general mental functions.

More recently, O’Hare et al (1991) found right-hemisphere dysfunction in one
case of childhood dyscalculia, with the difficulties manifesting as problems
in understanding the abstract values of numbers; another child showing a
poor understanding of number symbols and inability to write numbers from
dictation was found to have left-hemisphere dysfunction.

Sharma (1990) comments that ‘although there are significant differences
between dyscalculia and acalculia, some authors have used the terms inter-
changeably . . . the descriptions of these terms are quite diverse to say the least’.
He explains dyscalculia and acalculia as follows:

Dyscalculia refers to a disorder in the ability to do or to learn mathematics, ie,
difficulty in number conceptualisation, understanding number relationships and
difficulty in learning algorithms and applying them. (An irregular impairment of
ability.)

Acalculia is the loss of fundamental processes of quantity and magnitude
estimation. (A complete loss of the ability to count.)

It seems that some researchers are confusing acalculia with dyscalculia, tending
to take the pessimistic line, which is basically viewing the problem as acalculia,
whereas, if one views dyslexia and dyscalculia as similar in nature, then
it would follow that many of the problems of learning mathematics can be
circumvented, but will still persist into adulthood, with the danger of regression
if hard-won skills are not regularly practised. This more optimistic view would
not preclude great success in mathematics for some ‘dyscalculics’ in the same
way that dyslexia has not held back some great writers and actors.

So, in some perspectives, dyscalculia infers lack of success in mathematics,
which in turn suggests the questions, ‘What does it mean to be success-
ful at mathematics?’ and ‘What skills and strengths does a learner need
to be successful at mathematics?’ and ‘Is it important to be successful at
mathematics?’

In terms of comorbidity, Joffe’s much quoted, pioneering paper (1980a)
on mathematics and dyslexia included a statistic that has been applied over-
enthusiastically and without careful consideration of how it was obtained,
that is, ‘61% of dyslexics are retarded in arithmetic’ (and thus, many have
since assumed, 39% are not). The sample for this statistic was quite small,
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some 50 dyslexic learners. The mathematics test on which the statistic was
largely based was the British Abilities Scales Basic Arithmetic Test, which
is primarily a test of arithmetic skills. Although the test was not timed,
Joffe noted that the high attainment group would have done less well if
speed was a consideration. She also stated that the extrapolations from
this paper would have to be cautious. Other writers seem to have over-
looked Joffe’s cautions and detailed observations, for example, she states,
‘Computation was a slow and laborious process for a large proportion of
the dyslexic sample.’ The results from mathematics tests can depend on
many factors and speed of working will be one of the most influential
of these factors for a population that is often slow at processing written
information.

At Mark College, a DfES-approved independent school for boys who have
been diagnosed as dyslexic (often at the severe end of the spectrum), the results
for GCSE mathematics are significantly above the national average. Usually,
at least 75% of grades are at C and above compared to the national average
of around 50%. Obviously we believe that if the teaching is appropriate, then
a learning difficulty does not necessarily mean lack of achievement.

Later (Chapter 2), we look at the factors, such as short-term memory,
working memory and long-term memory that contribute to success and failure
in mathematics. These are likely to contribute to mathematics difficulties in
general, and it is likely that a combination of many of these factors, within
the learner and within the way he is taught, will create problems that could
well be identified as dyscalculia. Butterworth’s hypothesis in his recent paper
(2005) is that developmental dyscalculia appears to be a specific problem with
understanding, and accessing quickly (Landerl et al., 2004), basic numerical
concepts and facts. He also notes that ‘there are several major gaps in our
knowledge’.

As for the importance of mathematics, there is the mathematics you need for
everyday life, which rarely includes algebra, fractions (other than 1/4 and 1/2),
coordinates or indeed much of what is taught in secondary schools. Mathematics
for everyday does include money, measurement, time and percentage. As an
example of a real life mathematics exercise, let us consider the question of paying
for a family meal in a restaurant. It needs estimation skills, possibly accurate
addition skills, subtraction skills if using cash, and percentage skills to calculate
the tip. Some careers require mathematical knowledge and skills and mathematics
has a tendency to be a part of many higher education courses, even if those courses
seem a long way away from mathematics.

So there are a number of questions and issues that need better answers than
current knowledge can provide. Some of these questions may look rhetorical,
but they are framed within the context of seeking better awareness of the
nature of dyscalculia.
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What is mathematics?

Mathematics is not just arithmetic or manipulating numbers. It is possible that
a person could be good at some topics in mathematics and a failure in other
topics. Does dyscalculia imply an inability to succeed in any of the many topics
that make up mathematics?

In terms of subject content, early mathematics mostly deals with numbers.
Later it becomes more varied with new topics such as measure, algebra and
spatial topics. Up to GCSE, despite the different headings, the major component
remains as number. So the demands of mathematics can appear quite broad,
and this can be very useful, but number can be a disproportionate part of early
learning experiences. So it seems that poor number skills could be a key factor
in dyscalculia, but it also suggests that we have to consider the match between
the demands of the task and the skills of the learner.

In terms of approach, mathematics can be a written subject or a mental
exercise. It can be formulaic or intuitive. It can be learnt and communicated
in either way, or a combination of ways by the learner and it can be taught
and communicated in either way or a combination of ways by the teacher.
Mathematics can be concrete, but fairly quickly moves to the abstract and
symbolic. It has many rules and a surprising number of inconsistencies. In
terms of judgment, feedback and appraisal, mathematics is quite unique as a
school subject. Work is usually a blunt ‘right’ or ‘wrong’ and that judgement
is a consequence of mathematics itself, not of how the teacher appraises work.
And mathematics has to be done quickly. Even on this brief overview it is
obvious that the demands of mathematics are varied.

What is the role of memory?

We often pose the question in lectures ‘What does the learner bring?’ (to
mathematics). We have already mentioned some factors such as anxiety. But
what about memory? We know that Krutetskii (1976) lists mathematical
memory as a requirement to be good at mathematics. We are sure that short-
term memory and working memory are vital for mental arithmetic, particularly
for those sequential, formula-based mathematics thinkers, but can a learner
compensate for difficulties in some of these requirements and thus ‘succeed’ in
mathematics?

In English schools, we have the excellent National Numeracy Strategy. This
truly is, in our opinion, an excellent programme, but however excellent be
the programme, it is virtually impossible for any one programme to meet the
needs of every learner. An essential part of the National Numeracy Strategy
(NNS) in the early years of education is mental arithmetic, which is an activity
that needs effective memories, long, short and working. So a learner with a
poor short-term memory could fail when it involves mental mathematics, even
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though he may have the potential to become an effective mathematician. If
failure is internalised as a negative attributional style by the learner, then that
potential may never be realised.

It is possible that Krutetskii’s mathematical memory draws a parallel with
Gardner’s multiple intelligences. Perhaps there are multiple memories. That
would explain some of the discrepancies we see in children’s memory perfor-
mances. Like any subject, there is a body of factual information in mathematics,
and if a learner can remember and recall this information, then he will be greatly
advantaged, and if he cannot, then failure is likely.

So a good memory may be required for doing mathematics in general.
Short-term and working memories may be essential for mental mathematics
and mathematical long-term memory will be essential for the number facts and
formulae you need when you are doing mental arithmetic. Geary considers
memory a key factor in mathematics learning difficulties (Geary, 2004).

Counting

The first number test on the Butterworth Dyscalculia Screener is a test for
subitizing. This refers to the ability to look at a random cluster of dots and
know how many are there, without counting. Most adults can subitize 5–7
items.

A person who has to rely entirely on counting for addition and subtraction
is severely handicapped in terms of speed and accuracy. Such a person is even
more handicapped when trying to use counting for multiplication and division.
Often their page is covered with endless tally marks and often they are just
lined up, not grouped as 1111 that is, in fives. Mathematics is done in counting
steps of one. If you show them patterns of dots or groups, they prefer the lines.

It is not just the ability to ‘see’ and use 5. It is the ability to see 9 as one
less than 10, to see 6 + 5 as 5 + 5 + 1, and to count on in twos, tens and fives,
especially if the pattern is not the basic one of 10, 20, 30 . . . but 13, 23, 33,
43. . . .

Students need to progress beyond the counting strategy.
It is the ability to go beyond counting in ones by seeing the patterns and

relationships in numbers (Chinn and Ashcroft, 2004).

What distinguishes the dyscalculic learner from the garden-variety poor
mathematician?

Stanovich (1991) asked, ‘How do we distinguish between a ‘garden-variety’
poor reader and a dyslexic?’ A key question to ask is, ‘How do we distinguish
between a ‘garden-variety’ poor mathematician and a dyscalculic?’ We would
suggest that the answer to this latter question has a lot to do with perseveration
of the difficulty in the face of skilled, varied and appropriate intervention.
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This leads to further questions, such as, ‘Can you be a good reader and
still be a dyslexic? Can you be good at some areas of mathematics and still
be dyscalculic?’ Our hypothesis is that the answer to both questions is ‘Yes’,
but that is partly because mathematics is made up of many topics, some of
which make quite different demands (and for both these questions, good and
appropriate teaching can make such a difference). It has also to do with this
difficulty being a continuum and that the interaction of a learner’s position on
that spectrum and the way he is taught creates the potential to move forwards
or backwards along that spectrum of achievement.

The temptation is to return to the thought that problems with numbers are
at the core of dyscalculia. It is numbers that will prevail in real life, when
algebra is just a distant memory. And it is likely that the main problem is in
accessing these facts accurately and quickly, usually straight from memory,
rather than via inefficient strategies such as counting. There is also the practice
among some educators to hold learners at the number stage in the mistaken
belief that mastery of number, often judged in terms of mechanical recall of
facts and procedures, is an essential prerequisite for success in mathematics.

Not all factors involved in learning difficulties are solely within the cognitive
domain. A difficulty may be exacerbated by a bureaucratic decision. For
example, some bureaucrats specify a level of achievement that defines whether
a child’s learning difficulties may be addressed in school or even assessed,
influenced in this decision, at least in part, by economic considerations. But,
even then, is a child’s dyslexia or dyscalculia defined solely by achievement
scores? Is there room to consider the individual and what he brings to the
situation?

In terms of diagnosing dyscalculia, one of the few papers (Macaruso et al.,
1992) looked at the assessment of patients with acquired dyscalculia, exploring
which mathematical tasks should be incorporated into a diagnostic protocol.
These tasks included understanding of the symbols and words used for the
four operations, oral and written arithmetic and transcoding numbers.

What is appropriate teaching?

For many teachers, the first reaction to hearing that a child is diagnosed
as dyscalculic will be ‘So he’s dyscalculic, how can I teach him?’ We are
certain that use of the range of methods and strategies we have developed
at Mark College for teaching our dyslexic learners will also be effective with
dyscalculic learners. Indeed we have probably taught many learners who
have the comorbid problems of dyslexia and dyscalculia. What we address as
teachers is the way the learner presents, not a learner defined solely by some
stereotypical attributes.

Our colleague, Julie Kay when faced with a learner who is struggling with
learning mathematics asks herself the questions, ‘Where do I begin? How far
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back in mathematics do I go to start the intervention?’ This may be a difference,
should we need one, between the dyscalculic and the dyslexic who is also bad
at mathematics. It may be that the starting point for the intervention is further
back in the curriculum for the dyscalculic than for the dyslexic. (This may be
yet another topic needing research.) It may also be that the subsequent rates of
progress are different. Kaufmann et al. (2003) advocate a numeracy interven-
tion programme that involves both basic numerical knowledge and conceptual
knowledge, and that there is a need for explicit teaching of numerical domains
that often have been neglected in school mathematics. In other words, ‘How
far back do you start to explain mathematics?’

And for a final thought in this section, we ask, ‘What is the influence of the
style of curriculum?’ We know, for example, from a European study in which
one of the authors was involved (Chinn et al., 2001), that the design of the
mathematics curriculum certainly affects the thinking style in mathematics for
many pupils.

What are the other interactions and factors?

There are many reasons why a child or an adult may fail to acquire mathemat-
ical skills and knowledge. For example, a child who finds symbols confusing
may have been successful with mental arithmetic, but finds written arithmetic
very challenging. There may be other examples of an onset of failure at differ-
ent times that will most likely depend on the match between the demands of
the curriculum and the skills and deficits of the learner, for example, a dyslexic
will probably find word problems especially difficult, and a child who is not
dyslexic but is learning at the concrete level may find the abstract nature of
algebra difficult. A child who is a holistic learner may start to fail in mathemat-
ics if his new teacher uses a sequential and formula-based inchworm teaching
style. A learner may have a poor mathematical memory and the demands on
memory may suddenly exceed his capacity.

A difficulty will depend on the interaction between the demands of the task,
the skills of the teacher and the skills and attitudes of the learner. For example,
if one of the demands of mental arithmetic is that it be done quickly, then
any learner who retrieves and processes facts slowly will present with learning
difficulties. Learning difficulties are obviously dependent on the interaction
between the learner and the learning task.

None of the underlying contributing factors discussed above are truly
independent. Anxiety, for example is a consequence of many influences. Our
hypothesis is that the factors mentioned are the key ones. There may well be
others and the pattern and interactions will vary from individual to individual,
but these are what we consider to be the difficulties at the core of dyscalculia.

Of the definitions quoted, the version of the National Numeracy Strat-
egy (DfES, 2001) seems to be the most realistic. We have added some extra
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notes into the definition, which may then be better seen as a description (and
thus not as a label).

Dyscalculia is a perseverant condition that affects the ability to acquire
mathematical skills despite appropriate instruction. Dyscalculic learners may
have difficulty understanding simple number concepts (such as place value
and use of the four operations, +, −, × and ÷), lack an intuitive grasp
of numbers (including the value of numbers and understanding and using the
interrelationship of numbers), and have problems learning, retrieving and using
number facts quickly (for example, multiplication tables) and procedures (for
example, long division). Even if they produce a correct answer or use a correct
method, they may do so mechanically and without confidence (and have no
way of knowing or checking that the answer is correct).

The NNS version focuses on number, which makes sense in the light of
relevant research. It mentions memory and includes those who present as com-
petent in some areas, but whose performance has no underlying understanding
of number. An addendum could list some of the key contributors, such as the
following:

A learner’s difficulties with mathematics may be exacerbated by anxiety,
poor short-term memory, inability to use and understand symbols, inflexible
learning style and inappropriate teaching.

The Nature of Mathematics

In order to teach successfully, you need knowledge of the learner and knowledge
of the subject. You may not need to be a degree level mathematician, but to
teach mathematics effectively you must have a good understanding of the
nature of mathematics and its progression beyond the immediate topics being
taught. Mathematics is a subject that builds on previous knowledge as it
extends knowledge. Of late we have become more convinced of the need
for teachers to be flexible in ways of teaching and doing mathematics and to
recognise and accept this flexibility in their pupils, too. To some extent, the new
Wave 3 intervention materials (in England) that are designed to address the
mathematical learning needs of those who are failing in the National Numeracy
Strategy illustrate this. They are detailed, logically sequenced, heavily scripted
but lacking overviews, analysis of ‘what the learner brings’ and ‘where the
learning is heading’.

Number and arithmetic are the first experience of mathematics for most
children and the mathematics most people use in later life. Early experience of
success or failure at this stage sets the scene for later stages, academically and
emotionally. Some learners learn competence in limited areas of arithmetic,
for example, they are comfortable with addition, but cannot carry out sub-
tractions. What can create significant problems for learners are programmes
that require mastery before progression (for example, Kumon mathematics)
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because mastery, especially of rote learning tasks, and even more especially
under the pressure of working quickly, is a transient stage for many dyslexics.
Consolidation and sustained mastery without frequent reviews, revision and
careful interlinking of the developing strands of mathematics is a difficult task
for most dyslexics. Finding the right balance between mastery and progress
will be a consequence of knowing the child well and of the adaptation and
structure of the teaching programme.

In terms of subject content, early mathematics consists of mostly numbers.
Later it becomes more varied with new topics introduced, such as measure,
algebra and spatial topics. Up to GCSE, despite the different headings, the
major component remains as number. So the demands of mathematics can
appear quite broad, and this can be very useful, but number can remain a
disproportionate part of early learning experiences.

Numbers can be exciting, challenging tools (McLeish, 1991) or the cause of
great anxiety (Buxton, 1981; Cope, 1988). Mathematics is a sequential subject,
building on early skills and knowledge to take the student on to new skills
and knowledge. It is a subject involving organisation and patterns (Ashcroft
and Chinn, 2004) and abstract ideas and concepts. Gaps in the early stages
of understanding can only handicap the learner in later stages, in the speed of
processing number problems if not anything else.

Mathematics has an interrelating/sequential/reflective structure. It is a sub-
ject in which one learns the parts; the parts build on each other to make a
whole; knowing the whole enables one to reflect with more understanding on
the parts, which in turn strengthens the whole. Knowing the whole also enables
one to understand the sequences and interactions of the parts and the way they
support each other so that the getting there clarifies the stages of the journey.
Teachers are (usually) in the fortunate position of being conversant with the
subject and can bring to the work knowledge and experience beyond the topic
they are teaching. The learner is rarely in this position and is thus vulnerable
to assumptions about his levels of knowledge and experience, which are often
made unconsciously by the teacher.

It is important that the learner develops a clear, broad and flexible under-
standing of number and processes at each stage, and that he begins to see the
interrelationships, patterns, generalisations and concepts clearly and without
anxiety. To teach a child to attain this understanding of mathematics requires
that you also need to understand mathematics and numbers. This is not to say
that every teacher who teaches arithmetic needs a degree in mathematics, but it
is to say that they need to understand where mathematics is going beyond the
level at which they teach and where it has come from, so that what they teach
is of benefit to the child at the time and helps, not hinders, him later on as his
mathematics develops. Teachers need to be mindful of what are the concepts
that follow what they have taught, because the development of a concept starts
long before it is addressed directly.



Dyscalculia, Dyslexia and Mathematics 15

To illustrate this point, consider the strategy advocated in this book for
teaching the 9 times table (see Chapter 6). The method uses previous infor-
mation (the 10 times table), estimation, refinement of estimation and patterns.
Although a child may not need to realise that he is doing all these things when
he learns how to work out 6 × 9, the processes are being used, concepts are
being introduced and foundations are being laid. We agree with Madsen et al.
(1995) that instruction should be conceptually oriented.

A second illustration of the influence of early ideas involves a subtraction
such as

93
−47

A likely error is the answer 54, which occurs when the child subtracts 3
from 7. This is an easier process than the correct one, but can also be the
consequence of earlier subtraction experience where the child is told to ‘Take
the smaller number from the larger number.’ Dyslexics have a tendency to take
instructions literally and feel safer in the consistency of procedures. There is
also the problem that a first learning experience is often a dominant learning
experience (Buswell and Judd, 1925), which means that the consequences of
that experience being incorrect are very detrimental.

Margaret Rawson said of teaching English to dyslexics, ‘Teach the language
as it is to the child as he is’. Harry Chasty says, ‘If the child does not learn
the way you teach, then you must teach the way he learns’. This advice is
apposite for teaching mathematics. One of the attributes of an effective teacher
is clear communication. This is usually a consequence of knowing the child,
usually enhanced by listening to the child, and presenting work in a way that
preempts as many of the potential difficulties as possible. Thus the teacher
needs to understand the way each child learns and fails to learn, though
individual learning can be frustrating in that a lesson that works superbly with
one child may not work at all with another (see Chapter 2). This combined
understanding of the child and all his strengths, weaknesses and potentials
together with a knowledge of the nature, structure and skills of mathematics
will help pre-empt many of the potential learning problems. In modern UK
terminology, it can keep the child at the earliest stage of intervention, Wave 1.

Finally, it should be remembered that an insecure learner values consistency.
This characteristic must be linked to automaticity, in that automaticity allows
the brain to devote more capacity to what is different or an extension of a
known procedure. Consistency will also reduce anxiety.

Although we will refer to it again later, the culture of mathematics is that
calculations should be done quickly. This, of course, dramatically handicaps
any child who is a slow processor and heightens any sense of anxiety.

We believe that there are only a few key concepts in mathematics as taught
to most children up to the age of 16 and that these concepts therefore reappear



16 Mathematics for Dyslexics

regularly throughout a child’s progression through his school years. The benefit
of this is that the child may strengthen that concept as each new manifestation
appears. The drawback is that the child may never develop the concept if he
has not generalised all or even some of the preceding experiences. It is a vital
part of the teacher’s role to ensure that as many children as possible develop
a sound understanding of these concepts, rather than produce a rote-learned
regurgitation of a mass of unconnected memories.



Chapter 2
Factors that may Contribute
to Learning Difficulties
in Mathematics

Children bring different combinations of strengths and weaknesses to math-
ematics. These will interact with each other, with the mathematical topic
and with the learning situation to create different levels of success and failure.
Homan (1970) and Chinn (1991) have looked at deficits that may affect perfor-
mance in mathematics. Chinn (1995, 1996) has conducted studies on error pat-
terns, speed of working, basic fact knowledge, auditory sequential memory and
IQ, and has extended this to studies on children from two other European coun-
tries in collaboration with his Dutch and Irish colleagues (Chinn et al., 2001).

The deficits and difficulties interrelate and combine to form a large part of
the picture of what the child brings to the problem. Each deficit may make a
different contribution to the overall problem and the contribution may affect
the situation at different times, so, for example, reading may not be a major
problem until the child reaches word problems. Interactions between factors are
also varied and influential. As a consequence, there is an enormous individuality
among dyslexic children, a fact that most specialist teachers readily recognise.
Comorbid conditions such as Attention Deficit Hyperactivity Disorder (ADHD)
and, we suspect, particularly Attention Deficit Disorder (ADD) and dyspraxia
(Yeo, 2003) complicate the situation even more. A knowledge of the deficits
and difficulties and, of course the strengths, provides a general background,
which you, the teacher, must always take into account as you individualise
your approach to each child or as you work with a group. Empathy is a key
characteristic of an effective teacher.

Potential Areas of Difficulty in Learning Mathematics
There are many factors that might contribute to a child’s failure to master
mathematics. Some of these are within the child, for example, a poor short-term

17
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memory. Some are a consequence of the subject, for example, any inconsistency
in the patterns a child seeks to support his learning. Some are interactions of
two or more factors.

Directional confusion

If children are uncertain about the direction of a procedure, their learning may
well be less secure. For example, we always write from left to right, whereas in
Egypt one of the authors watched the hotel receptionist write the bill from right
to left and the numbers within the bill from left to right. Children may form
inverted numbers, for example, E for 3, or may be confused by the inconsistent
‘starting points’ of algorithms, for example, addition, where the child starts
at the right and works left with the answer appearing at the bottom of the
‘sum’, versus division, where the child starts at the left and works right and
the answer appears at the top. Dyslexic learners often rely on the consistency
of work. Changes that seem irrational to the learner will confuse, for example,
the ‘teen’ numbers, where the syllable used to represent the ‘10’ comes after
the word used to represent the ‘unit’. The number ‘thirteen’ will illustrate this
point. From the ‘teen’ syllable a ‘10’ is inferred and from the ‘thir’ a ‘3’ is
inferred. The order therefore implies ‘31’ when compared to the words used
for the other decades, for example, ‘sixty four’ (six tens and four) is written as
64. Patterns and generalisations will support weak memories.

This situation is illustrated in the four mathematical operations. In the
procedure for addition, the answer is not affected whether the top number is
added to the bottom number or vice versa. Although it is normal practice to
add from right to left, if the sum does not involve ‘carrying’ and the child adds
from left to right the answer will still be correct as in example A (Indeed some
children scan the sum to see if this is the situation and then add left to right.)

A 362
+ 431

This will not work as well, though we have seen learners do even this
successfully, with ‘carry backwards’ examples such as B.

B 578
+ 266

‘500 plus 200 is 700. 70 plus 60 is 130. Add this to 700 to get a running total
of 830. 8 plus 6 is 14. Add this to 830 to achieve the answer 844.’

Subtractions are less open to flexibility, partly because subtraction facts are
not commutative. It now matters which number is taken from which, but the
normal practice for subtraction of starting from the right (units) column is not
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necessary if there is no renaming required as in example C.

C 875
− 562

‘8 take away 5 is 3. 7 take away 6 is 1. 5 take away 2 is 3. The answer is 313.’
This operation is also susceptible to early experience where it is tempting to

describe subtraction as ‘taking the little number from the big number’, which
creates problems with examples such as D.

D 643
− 276

‘6 take away 3 is 3. 7 take away 4 is 3. 6 take away 2 is 4.’ The student takes
the three digits and reverses the order, to give an incorrect answer of 433.

An example of the interactions of factors was provided by a learner who
found difficulty with decimals. From his perception it seemed illogical that,
using the decimal point as a focus, the place values to the left are units,
tens, hundreds, thousands, and so on, increasing by a factor of 10 each
time, whereas to the right of the decimal point the place values are tenths,
hundredths, thousandths and so on, decreasing by a factor of 10 each time.
There are implications here for concept, direction and language. The sounds
of ‘thousand’ and ‘thousandths’ are very similar and thus easily confused.

Some learners find the directional demands of negative coordinates [for
example, (−3, −7)] significantly harder to master than positive coordinates.
This is the first example we have used to illustrate an interesting and challenging
characteristic of many dyslexic learners when doing mathematics, that is, the
surprising impact of what may be perceived as a minor change in difficulty by
a teacher could be a huge extra difficulty for the child.

Sequencing problems

There are many sequences in mathematics. Indeed, the numbers 1–10 are the
first experience of a mathematical sequence for most children. Being able to
recognise and remember sequences is a useful skill. Children often manage
safe, familiar sequences such as 10, 20, 30, and 40, but fail to recognise a
variation such as 12, 22, 32, and 42. Such automatic extension and/or transfer
of knowledge cannot be assumed. They may recite 2,4, 6, and 8 readily but be
more hesitant with 1, 3, 5, 7, and 9.

Some children find one-to-one correspondence difficult when counting and
have to rely on strategies such as touching the nose with one finger while
touching the objects to be counted with the other hand. The ability to
master one-to-one correspondence is fundamental for the development of
mathematical skills.
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Many of the sequences of mathematics are not automatised by dyslexic
learners as demonstrated in an interesting exercise (Nicholson and Fawcett,
1994), where it was found that dyslexics could balance successfully on one
foot, but lost their balance when asked to count backwards from one hundred
at the same time, that is, to perform a dual task. It is not uncommon to find
children for whom counting backwards is difficult, raising the issue of any
change to the demands of a task. It may be assumed by a teacher that counting
backwards is as easy a task as counting forwards, but for some learners the
difference in difficulty is enormous. It is easy to underestimate the impact of a
modification to a task for a dyslexic learner.

For example, one of the exercises in the National Numeracy Strategy (NNS)
is to count forwards in 6s to a target number, which would be quite a difficult
task for many dyslexics, but then the child is also required to count backwards
in 6s. It may seem that these two tasks are of almost equivalent difficulty, but
the counting backward task is very much harder and may result in the child
withdrawing from the task.

There may also be a difficulty in remembering the sequence of steps to
follow for algorithms, particularly long division, which may be in part due to
the difficulty in trying to build some understanding to support their recall of
this particular procedure.

Place value requires the ability to sequence numbers. The English language
is not as supportive as we may assume, for example, the teen numbers. With
bigger numbers, too there can be problems as with the not uncommon error,
where a pupil writes 600300050 for six hundred and three thousand and fifty
or the less common, but equally logical answer of 3650. Ho and Cheng (1997)
have shown that training in place value can improve children’s addition skills,
which will be another example of going back in the sequence of the curriculum
for learning mathematics.

The understanding of a sequence is often related to the ability to generalise
and sometimes to the ability to recognise and discount irrelevant information.

Visual difficulties

These may include perceptual difficulties, for example, the learner may confuse
+, ÷ and × (especially if written carelessly) or six and nine or three and five or
x2 and x2 or the learner may just not see the decimal point.

The presentation style of a worksheet or exercise can be confusing and even
overwhelming, especially if items are written too closely together, where the
interaction between short-term memory difficulties and spatial tracking of the
place on the page may cause the student to copy information inaccurately. Some
form of separation, for example, lining off will help reduce this aspect of visual
confusion. Sometimes a coloured overlay (available from Crossbow Games, see
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Appendix 1) can help change the black/white contrast of normal worksheets
and books and help the student to maintain a more focused image of the page.
Sometimes it helps if a card can be used to help pinpoint information. This has
the added benefit of screening off some of the text, helping to make the task
look less daunting. The process of copying from a board to an exercise book
may be even more problematic, since screening off is less available and the
time lag involved in moving from looking up at a board then back down onto
a desk is longer. There is a strong argument for any text written in quantity
on a board to be written using different colours to separate different sections.

While some textbooks overwhelm the user with the density of information
presented on a page, some more modern books, in an attempt to look
more appealing to the student, use a layout, that is too cluttered, or one
where it is difficult for the reader to track through the information in the
correct order. This problem is particularly true of many computer programmes
for mathematics, where the temptation to use every visual known to the
programmer is just too strong. The result is a blur of images that fail to convey
the necessary mathematics message.

The pressure of having to work quickly in mathematics may exacerbate
the problems of visual discrimination and students may fail to notice that the
operation symbol has changed, for example, from + to ×, and consequently,
they perseverate with addition. Lining off different sections of a worksheet
may help prevent this problem.

The selection of appropriate worksheets and textbooks is vitally important
for a dyslexic student. These materials tend to be used independently by the
student. An older student may not wish to draw attention to himself in class
by constantly asking for help with accessing the text, so the text should be
critically appraised by the teacher to ensure it is at a level commensurate with
the reading ability of the pupil.

Spatial awareness

Spatial awareness can be considered as being closely linked to visual difficulties.
Spatial awareness is needed for work such as geometry, place value, algebra
(distinguishing between 2x, x2 and x2, for example, where it could also be
classed as problems with visual discrimination).

The student may not be able to relate two-dimensional drawings to the
three-dimensional shapes they represent. He may not be able to track across
graph paper for coordinates and this may be particularly noticeable in negative
co-ordinates [e.g., (−3, −7)] when the direction of the tracking changes. The
same problem may be true for information presented in the form of a timetable.
Teachers should look for a pattern in difficulties in these areas, as the child
himself may not be aware that he has problems.
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Spatial awareness also affects organisation of work on paper, so what seems
straightforward may in fact be a very demanding task. For example, the sum

1 1

638
+ 794

1432

needs to have the place values lined up correctly, the ‘carry’ numbers in the right
place (and remembered), and the relevant numbers have to be added together.

Questions such as 2x(x2 + 2x2) can be a real challenge as the location
in space of each ‘2’ in this expression is very significant in terms of its
mathematical meaning.

Short-term and working memory

Poor short-term and working memories can create several areas of difficulty
and have a strong influence on how a learner processes numbers (Adams and
Hitch, 1998; Chinn, 2000a). Deficits in short-term memory combine with
those in long-term memory to give a working memory problem. For example,
a child trying to add 47 and 78 mentally has to hold the sum in his memory,
probably work out 7 + 8 (poor long-term and retrieval memory for basic facts
means he may well have to count on, thus increasing the time the original
sum has to be held in memory), remember 5, carry 1, remember that he has
to add 4 and 7 (and the carried 1), work out 7 + 4 + 1, recall the 5 and put
them all together in the right (reverse) sequence as 125. The NNS lessons in
England are meant to be started with 10 minutes of mental arithmetic. Unless
it is carefully differentiated, this may not be a motivating experience for some
learners.

Short-term memory difficulties may even prevent a learner from starting on
a problem (see also anxiety, stress and self-image). He may simply forget some
or most of the teacher’s instructions, especially if distracted in some way. If his
short-term memory is overloaded, he may be so confused as to have no clues
as to where to start. The learner may not be able to ‘hold’ the visual image of
the sum he is trying to solve. He may not be able to hold the sum in visual
or auditory memory while he searches for a necessary number fact (Indeed the
working out of that fact, say 9 + 6 by counting on, may overload the memory
and leave him not remembering the initial sum).

Short-term memory may also handicap the interpretation of a series. For
example, if the series has five items before repetition as in abcedabcdeabcdeab . . .

and the child analyses within his short-term memory capacity of three items,
he gets abc, dea, bcd, efa . . .A similar problem for this child would occur with
numbers over three digits.
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Short-term memory obviously creates a problem with mental addition, but
it also impacts on written work, causing the learner to use extra notations such
as tally marks, which may lead to confusion and will certainly lead to slower
work. Ackerman et al. (1986) make an interesting speculation on differential
achievement in reading and arithmetic, observing that the child’s acquisition of
reading is monitored more closely (by adults) than the acquisition of number
facts. The child reads aloud and the teacher corrects him on the spot when he
falters compared to more independent practice in arithmetic (See also Buswell
and Judd in Conceptual Ability, page x).

Ashcraft et al. (1998) have shown that under certain conditions anxiety
can adversely affect the working memory that is used for mathematical tasks.
Keeler and Swanson (2001) found that significant predictors of mathematics
achievement are verbal and visuospatial working memory and knowledge of
strategies (for example, clustering or rehearsal) to enhance working memory.

Long-term memory

Rote learning as a means of loading information such as spellings or times
table facts into long-term memory is rarely effective with dyslexics (Pritchard
et al., 1989), though teachers still persist in trying, often under ‘back to basics’
pressure (Hackett, 1996) and parents are often encouraged to use ingenious
methods such as convoluted mnemonics (McDougal, 1990) or presenting times
tables as songs or as rap, which has had varying degrees of success. The reality
is that many dyslexics have significant difficulties learning basic facts such
as times tables (Pritchard et al., 1989; Chinn, 1995, 2003; Turner Ellis et al.,
1996). Ginsburg (1997) suggests that the deficit in learning basic facts is a major
feature differentiating children with and without learning disabilities. Geary
(2004) suggests that a retrieval deficit resistant to instructional intervention
might be a useful diagnostic indicator of arithmetical forms of mathematics
learning difficulties (LD). This problem of poor retrieval of basic facts is
particularly frustrating for parents who encourage the child to practise until he
achieves mastery one day, only to find that the child has forgotten again soon
after, probably later that same day. If this issue is not recognised and actively
acknowledged by educators, then many children will be condemned to failure
in mathematics.

Poor long-term memory may also handicap other areas of mathematics,
such as recall of algorithms (methods) or formulae. At university level, the
ex-student who went on to achieve a degree in mathematics had problems
remembering the names of formulae even though he could easily manipulate
and use them mathematically.

Geary (2004) recognises the important role that memory plays in mathe-
matics LDs, noting that children who have lower than expected mathematics
achievement scores over successive academic years often have some form of
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memory or cognitive deficit, and that a diagnosis of mathematics LD is often
warranted.

Krutetskii (1976) lists ‘mathematical memory’ as an essential requirement
for mastering mathematics. This could well be a parallel to Gardner’s multiple
intelligences. There could be multiple memories rather than just ‘a memory’ (a
point made by Elaine Miles in a conversation with one of the authors many
years ago) with some learners having a significant deficit in their mathematical
memory.

As an illustration of a memory difficulty in relation to a possible circum-
vention, in a 1995 pilot study, Chinn presented basic addition facts (e.g.,
4 + 7, 6 + 5) at 4-second and 12-second intervals using a tape recorder and
working with 11- to 13-year-old learners in mainstream and specialist dyslexia
schools. Dyslexic learners scored much lower on average than their main-
stream counterparts on the 4-second (instant recall) tasks for both addition
and multiplication facts. For addition, given 12 seconds, the dyslexic learners
could use strategies (even the most basic of strategies, finger counting, is effec-
tive in 12 seconds for addition) to score almost on par with the mainstream
learners. However, this was not the case for the times table facts, where
there seemed to be less availability of appropriate strategies (for example,
the most fundamental strategy of finger counting for facts such as 8 × 7 is
not efficient). This deficit will affect accuracy and speed in many areas of
mathematics.

Chinn and Kay (2003) conducted a classroom study on errors in recall of
multiplication facts and found that the more errors a student made, the more
likely his errors were to be inconsistent, that is, not the same type of error for
each mistake. The hypothesis is that when information has no meaning for the
learner, his recall will have no patterns and no rationale, with this being true
even for his errors.

Speed of working

Many of the factors described in this section, together with other factors such
as speed of writing, affect the speed of work in mathematics, and speed of
working is often an issue in mathematics. For example, the Kumon mathematics
scheme looks for ‘demanding but realistic standards for speed and accuracy’
and Ladybird Books publish a times table practice book that evaluates success
on the basis of completing an exercise in 30 seconds. Speed of working is a
classic example of the interaction between a characteristic of the learner and
an unnecessary, yet firmly established, requirement of the subject.

Chinn (1995) compared the average time to stop work on 21 basic numeracy
questions for a mainstream school population and a specialist dyslexia school
population. The results of this pilot study showed that, on average, dyslexic
learners took 50% longer to stop attempting the task.



Factors that may Contribute to Learning Difficulties in Mathematics 25

Ackerman and Dykman (1996) suggest that slowness impedes automatisa-
tion in reading, spelling and arithmetic. A hypothesis that one could advance
to explain this is the influence of weak short-term memory on performance in
computation.

For the Key Stage 3 tests of mental arithmetic, given to all pupils aged years
in the United Kingdom, the administrators do not allow extra time for each
item on the basis that a 25% increase in time normally allocated to pupils with
dyslexia changes 12 seconds to 15 seconds and this difference is not considered
to be of any practical value to the pupil. There is a temptation to write a short
dissertation on the logic of that situation.

The issue of speed is a good example of interacting and indeed cyclic factors.
The demand for speed can induce anxiety, anxiety can reduce the effectiveness
of working memory (Ashcraft, 1998) and reduced memory impacts on accuracy
and on speed of working!

Ackerman et al. (1986) drew attention to a contrary effect of speed of work-
ing: ‘. . . standardised arithmetic tests may fail to reveal automatisation failure
in younger school children because of over generous time limits.’ (Though it is
the pressure of working quickly for many tests that depresses performance).

Many of the dyslexic students we have worked with over the past 25
years are slow processors of mathematical work. This has many implications,
including the potential for a misdiagnosis on the Dyscalculia Screener.

The language of mathematics

Mathematics has its own vocabulary and language (Kibel, 2004; Miles and
Miles, 2004; Leong and Jerrel, 2001; Grauberg, 1998). Much of its vocabulary
is shared with non-mathematical uses (Morgan, 1999; Chinn, 2004), for
example, ‘operation’ can be ÷, −, × or + in mathematics or, in everyday
language, it is what takes place in a hospital. The semantics and language
of mathematics can be very peculiar to mathematics and, in children’s eyes,
they may be totally divorced from the language or realities of everyday life,
bringing further problems for the dyslexic whose language skills may be weak.
To complicate the issue further, mathematics has its own collection of symbols,
which are vital to an understanding of mathematics.

It is largely by the use of symbols that we achieve voluntary control over our
thoughts. (Skemp, 1971)

In addition to having to master the subtle differences in the appearance
of three of the key symbols in early number work (+ × ÷), the fact that
the same symbol often has different names, for example, + can be read as
‘add, more, plus, positive’ and could throw up further challenges (Henderson,
1989; Chinn, 2004). Perhaps, because the use of addition and all of the four
operations are a common and frequent activity, they have acquired a varied
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vocabulary, an issue with much of early number work including, for example,
the teen numbers. This situation is exacerbated by the compilers of word
problems manipulating the semantics of a word problem so that the operation
required to solve the problem is the opposite of the key word built into the
problem.

It is problematic that this confusing choice of vocabulary is most apparent
in early numeracy, the area of mathematics the child meets first. It is particu-
larly apparent in the vocabulary used for time (Chinn, 2001a). The need for
consistency is again threatened. ‘Language is the key to learning. ‘(Rothman
and Cohen, 1989) Later in mathematics, the language becomes more math-
ematically specific, for example, ‘exponential x’ though education has given
new meaning to differentiation and integration. Not even calculus is safe from
the jargon vendors.

The vocabulary used by teachers to explain a topic is critical and may give
rise to different aspects of a concept. For example, ‘Six times eight’ is a fairly
abstract statement, whereas ‘Six lots of eight’ has more meaning. ‘How many
quarters in a half?’ makes some sense as compared to ‘What is a half divided
by a quarter?’ Kelly et al. (1990) quote an American textbook’s instruction
for adding fractions: ‘To add fractions that have the same denominator, add
the numerators and use the same denominator.’—hardly a classic of clarity or
conceptual development.

The vocabulary of word problems beyond mathematical terms can also
create problems. Since the choice of ‘pens’ or ‘apples’ or ‘digestive biscuits’ is
unpredictable, there is less a teacher can do to preempt this difficulty compared
to discussing the flexibility in the vocabulary for +.

It is obvious that the vocabulary of worksheets and textbooks should not
be a barrier to the mathematical content. Chinn and Kay (2004) offered a
checklist for worksheets and textbooks. They have also designed worksheets
set at Years 4 and 5 content level that are suitable for older learners too—in
that they are not age specific in appearance and language—who need to revisit
key topics (Chinn et al., 2001).

A child needs to be able to read a problem with accuracy, speed and
comprehension. He also needs to be sufficiently sophisticated in his skills
to be able to adjust his style of reading to the task in hand. The wording
for mathematical problems tends to be precise (and sometimes deliberately
confusing) and so needs accurate reading and interpretation. A child who
misses key words or perhaps small words such as ‘not’ will be disadvantaged.

In an interesting study by Smith (1996), the dyslexic learners’ error rate
compared to controls was much greater for the question, ‘How many is 6 less
than 28?’ than for ‘What is 7 more than 32?’ A possible reason for this is
the greater importance of the sequence of numbers in the subtraction question
than in the addition question. Even a subtle language difference such as this
can have an enormous impact on success.
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Harries and Sutherland (1999) carried out an international comparison
of primary school textbooks (pre-dating the introduction of the NNS in the
United Kingdom). Their observations focus more on the ways that the structure
of numeracy is developed in books from different countries rather than the
design, layout and language, but they do make the interesting observation that
the use of colour in the United Kingdom and the United States is more for
decorative purposes than for instructional gains. Thus, language and teaching
philosophies and structure will be inextricably interlinked. Deficits in either
area will be detrimental to the learner.

Siegel and Fonzi (1995) looked at the diversity of reading tasks in a
secondary setting, emphasising its contribution to the learning environment.
A child who has difficulties with reading will be disadvantaged, perhaps more
than we might think, in a subject that is usually considered to be less intensive
in its use of words. However, the semantic structure of mathematical questions
can be a long way from everyday English. Rothman and Cohen (1989) discuss
the importance of teaching the vocabulary and language of mathematics.

Fuchs and Fuchs (2002) looked at the performance of students with only
mathematical disabilities, students with comorbid mathematical and reading
disabilities and controls when faced with word problems at three levels of
increasing complexity. (The paper is also a useful source of references for
research into word problems.) The lowest level of difficulty was for arithmetic
story problems, which were one-step story problems that involved minuends
of 9 or less. The students were provided with a box of pennies (1 unit coins)
and instructed to use whatever strategy would get the right answer. The next
level was the complex story problems, based on the problems taught in the
third-grade curriculum. These involved shopping list problems and pictograph
problems. The answers were scored on the basis of accurate computations
and problem-solving skills such as identifying the relevant information. These
questions included one to three step operations. The third level was real-world
problem solving, based on third-grade skills that teachers identified as essential.
Students were presented with tabular and graphic information and then they
answered questions that involved selecting relevant information and using 10
essential problem-solving skills. Again, these took one to three step operations
to solve.

Not surprisingly, the scores decreased when the students proceeded from
level 1 to level 3 problems. What is interesting is the comparison of the scores for
the three categories of students. For the students with mathematical difficulties
only, the scores for level 1 were 75%, level 2, 14% and level 3, 12%. For
the students with comorbid mathematical and reading difficulties, the figures
were 55, 8 and 5%, respectively. For the typical students, the scores at level 2
were 30% and at level 3, 19%. None of the groups showed great success with
more complex word problems, which we suspect, on the basis of lecturing for
teachers around the world, is an international problem, but the combination
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of mathematical disability with reading disability has a highly depressing effect
on problem-solving skills (even though the problems were read to them).

There are a number of strategies that can be taught to improve performance
in word problems, including learning how to rephrase a question, learning how
to illustrate the problem or using one of the multi-read strategies, such as read
through to overview, read through to identify relevant and irrelevant informa-
tion, read through to understand what is being asked, identify the operation(s),
and solve and read through to check if the answer obtained makes sense in the
original question. Problem-solving skills require reflection and time, in contrast
with the culture of quick work for much of the previous mathematics that
students are used to. Students need to be encouraged to make this adjustment.

Sharma (1985) advocates the use of a reverse ‘translation,’ that is, the
learner translates a number problem into a word problem and vice versa. We
have found this a very effective technique, particularly when structured to
show how problems of increasing complexity can be written (Chinn, 2004).

Finally, Bryant et al(2000) have produced a list of characteristic behaviours
of students with LD who have teacher-identified mathematics weaknesses,
for example, ‘Takes a long time to complete calculations’, comparing the
frequency of occurrence in the study group with LD pupils without mathematics
difficulties. Not too surprisingly, the top three difficulties were, ‘Difficulties
with word problems. Difficulties with multi-step problems. Difficulties with
the language of mathematics.’

Cognitive style or thinking style

The child’s cognitive style or thinking style, the way he works out a problem,
is significantly influenced by the factors mentioned earlier (see Chapter 2). To
be a successful mathematician, a child needs to be flexible in his cognitive
style (Krutetskii, 1976), but this goal may not be achieved because of the
child’s learning experiences, which in turn may be controlled by the style of
the mathematics curriculum (Chinn et al., 2001). If a learner’s cognitive style
is inflexibly set at one extreme, he is at risk of failure. There is an additional
problem if the teacher’s style is also inflexible and unresponsive to the learner’s
style. For example, marks awarded for different problem-solving styles may
vary from teacher to teacher (Chinn, 1994).

This particular facet of mathematics learning and teaching was highlighted
by Cockcroft (1982), who stated (in Section 242):

We are aware that there are some teachers who would wish us to indicate a
definitive style for the teaching of mathematics, but we do not believe this is
either desirable or possible.

and, later (Section 256):



Factors that may Contribute to Learning Difficulties in Mathematics 29

. . . The now well established fact that those who are mathematically effective in
daily life seldom make use in their heads of the standard written methods which
are taught in the classroom.

The need for flexible thinking is being recognised internationally, for
example, in Hong Kong, where the Mathematics Syllabus for Secondary
Schools (1999) states:

It is important that students need to develop their capabilities to learn how to
learn, to think logically and creatively . . .

Conceptual ability

In a 1996 study, Chinn looked at the WISC (Wechsler Intelligence Scale for
Children) scores and the GCSE mathematics grades of 26 dyslexic boys. The
(expected) relationship between full IQ and grades was found with grade C
and above, achieved by all learners with an IQ above 115. However, for
learners with IQs in the average range, the controlling factor seemed to be
motivation and confidence (all 26 subjects were learners at Mark College and
so we could estimate these somewhat unquantifiable factors). Interestingly,
verbal IQ gave better correlation than performance IQ and, although showing
a low average score (8.65), the arithmetic sub-test showed high correlation
(also consider that this sub-test focuses on mental arithmetic). The study also
showed that it would be very unwise to make predictions for individuals on
the basis of any full or sub-test score, an observation echoed by Ackerman
et al. (1986):

We likely will never find one-to-one associations between hypothesised cognitive
weaknesses and achievement outcomes. In part, this is because we can never be
certain people are giving their best effort, especially children and adolescents. But,
even more there is the problem of devising tasks that measure only one aspect
of cognitive processing. It is difficult to control the variables when working with
humans!

A child’s ability to form concepts will be aided by the range and extent
of the experiences he receives. ‘Drill and practice’ is often used to reinforce
a new topic, but it may not help the development of a concept. A dyslexic
student is typically slower and will often manage less practice owing to this
reason alone. A child who continually fails in mathematics will also have a
smaller variety of successful experiences and consequently will be less likely to
be able to see patterns, generalise, and thus form concepts. This has the effect of
compounding his difficulties and retarding his progress. Piaget’s belief was that
a child’s building up of mathematical knowledge developed as a result of the
more general growth of the child’s activities and thought discoveries (Hughes,
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1986). It is more logical to believe that children with LD in mathematics will
fare better if given more explicit instructions.

We have similar doubts over children’s conceptual development from the
concrete manipulatives to the abstract symbols of mathematics, for example,
Hiebert as quoted in Hughes (1986):

Many children do not connect the mathematical concepts and skills they possess
with the symbols and rules they are taught in school. I shall argue that it
is the absence of these connections that induces the shift from intuitive to
meaningful problem-solving approaches to mechanical and meaningless ones . . . .
Even though teachers illustrate the symbols and operations with pictures and
objects, many children will have trouble establishing important links.

This point is also made by Hart (1989), warning us that materials may not
necessarily generate the same links and learning images in the teacher and the
learner.

Dyslexic children are also at risk from a phenomenon described by Buswell
and Judd (1925). They point out a potential consequence of unsupervised
practice. For example, if a child misunderstands a new idea and then uses
the wrong procedure or method in his first practice at this new topic, then
subsequent remediation and even mastery will not be sustained. The child will
return to the first method he used. It is advisable to check the first few examples
a learner tries before an incorrect procedure becomes embedded in his brain.
This obviously links to the observation of Ackerman et al. (1986) (see Section
‘Short-term and working memory’).

A related problem Linking is the slow speed of working of many dyslexic
learners which means they are likely to attempt fewer practice examples
of any new topic. Carnine (quoted in Kelly et al., 1990) demonstrated that
presenting a limited number of examples of a concept causes students to form
misconceptions about that concept.

Anxiety, stress and self-image

Overlying all the above areas of difficulty are the emotional issues of self-
esteem, self-concept, expectations, mathematics anxiety (Buxton, 1981) and
attributional style (Seligman, 1998).

Risk taking is an important part of the learning process. Too many pupils
learn to avoid risk taking in mathematics lessons and homework by opting out
(Houssart, 2005). An ex-student (who studied mathematics at degree level)
of the authors told us that one of the biggest causes of anxiety for him was
to be told, on failing at some task, ‘Never mind, you did your best.’ He
would anticipate potential failure and not do his best so that when he did fail
he could say, ‘Well, I didn’t try.’ This situation was further illustrated in a
study of the mathematics errors made by dyslexics (Chinn, 1995). The most
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notable difference in the errors made by dyslexic and mainstream learners was
the percentage of no attempts. If you are anxious about trying something,
a ‘no attempt’ strategy is a crude, but effective, way of dealing with the
anxiety. We have always tried to develop an understanding of mathematics
facts and procedures as a way of reducing this problem, a philosophy endorsed
by Madsen et al. (1995), who investigated the effect of conceptually oriented
teaching on mathematical competence. One of their outcomes was the decrease
in ‘no attempts’. This ‘no attempt’ situation is somewhat compounded by
society’s attitude to mathematics and its belief that being unable to ‘do’
mathematics is a common characteristic in people and thus acceptable. Such
beliefs shape our expectations.

There are other beliefs associated with these attitudes to mathematics
(Mtetwa and Garofalo, 1989) such as ‘Mathematics problems have only one
answer.’ (and you have to get it right) and ‘Only geniuses are capable of creating
mathematics.’ ‘Fractions are impossible.’ ‘If the two numbers in a word problem
are relatively close in value, for example, 2300 and 1950, then you either add or
subtract them. If the two numbers are not relatively close, for example, 33 and
497, then you multiply or divide them.’ Beliefs can exacerbate anxiety in that
often they imply inflexibility and restricted access to success in mathematics.

There are also expectations; for example, we know that many teachers
and parents expect their children to learn the times table. In contrast to
this expectation, because being bad at mathematics holds no social stigma
in Western cultures, we do not expect everyone to do well at mathematics.
Our expectation that people may not be good at mathematics means that
a low ability in mathematics, in fact, being ‘hopeless’ at mathematics, may
well attract much mutual sympathy. The consequences of difficulties with
mathematics have a better social acceptance than the consequences of reading
or writing difficulties. However, schools, of course, rarely reflect life. In school
there may well be significant consequences of being bad at mathematics, for
example, a learner could be allocated to a teaching group that may limit the
levels of work in several other subjects. Also in school, unlike life, it is hard to
completely avoid the mathematics you feel you cannot do. Expectations can
also result in self-fulfilling prophesies, which are, sadly, usually negative.

Two key factors that aid learning are ability and attitude. The latter
can go a long way towards compensating for the former, but then the two
factors are pretty closely interlinked, for example, when success encourages
a good attitude. A teacher from one of our Postgraduate Certificate courses
investigated the concerns that mathematics teachers had about their pupils. She
found that when the pupils were younger, up to around age 8, the main concern
from teachers was that some pupils could not learn the basic mathematics facts.
The main concern of teachers of older pupils was the low motivation and poor
attitude of some of these pupils. It would not seem an unreasonable hypothesis
to see a causal link between these two concerns.
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It seems that mathematics creates anxiety for many learners and it usually
seems to be an anxiety that does not facilitate learning. Ashcraft et al. (1998)
have shown that anxiety in mathematics can impact on working memory and
thus depress performance even more. Skemp (1986) suggests that it is the
reflective activity (the activity of introspective analysis) of intelligence that is
most easily inhibited by anxiety.

The anxiety many dyslexic (and other) pupils have with examinations can be
partly addressed by rehearsing and practising under examination conditions.
Indeed, many special needs children, as well as dyslexic pupils, can experience
anxiety when facing change or new situations. Levels of anxiety can be reduced
by flagging up the change by telling the pupils that it will be occurring and
what will be the likely outcomes. One of the main reasons we had school-based
examinations twice a year at Mark College was to give pupils the experience
of examinations and hopefully to reduce the stress and anxiety levels when
they finally reached the GCSEs. This strategy is targeted at the students’ trait
anxiety about examinations. Trait anxiety resides in the individual at all times.

State anxiety is aroused at specific times and in specific situations, so it
could occur when a student is asked to answer a mental arithmetic question in
front of her classmates. Richardson and Shuinn (1972) devised a Mathematics
Anxiety Rating Scale, used by Ashcraft et al. (1998) for their study on anxiety
and working memory.

A recurring theme in this book is our concerns regarding over-emphasis on
rote learning in mathematics. Skemp (1971) explains how over-reliance on this
strategy can result in anxiety:

. . . the increasing efforts the student makes will inevitably use the only approach
which he knows, memorising. This produces a short-term effect, but no long-
term retention. So further progress comes to a standstill, with anxiety and loss of
self-esteem.

There are those who believe that persistence with rote learning will even-
tually lead to mastery and reduced anxiety. That simple, misguided belief
is based on a total ignorance of education in general, and the learning and
understanding of mathematics in particular.

More worrying than even debilitating anxiety or low self-esteem is that
some learners develop an attributional style (Seligman, 1998) for mathematics
that makes their attitude to mathematics personal as in ‘I’m too stupid to do
mathematics’; pervasive, ‘I can’t do any mathematics’; and permanent, ‘I’ll
never be able to do mathematics.’ An attribution is the way we explain the
causes of success or failure. An individual with a combination of the three
attributions identified above could well present as a dyscalculic, even if he
started his mathematics experiences with optimism and some successes. It is
an important part of a teacher’s role in the mathematics classroom to listen for
the clues that reveal the development of negative attributions and to challenge
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them. We suspect it is the uniquely judgmental nature of mathematics, often
exacerbated by those who design teaching programmes and those who actually
teach mathematics, that makes mathematics a topic that creates negative
attributional style in so many students (and thus in adults).

One of the many interesting facets of attributional style theory is the idea
of positive or negative attitudes. Bryan and Bryan (1991) found that two
very different socio-economic samples of students both benefited from positive
mood induction in both the completion of more mathematics examples and
their expressed self-efficacy.

Anxiety, self-esteem and attribution are a cumulative and cyclic prob-
lem—more failure, more anxiety, poorer self-image, more failure, more
anxiety, more helplessness, and so on.

General Principles of Intervention
Looking at the factors that may lead to difficulties in mathematics sets up a
background awareness of the characteristics of the learners. This has to be
matched to the subject being taught, mathematics, and the present level of
knowledge of the learner. The combination of all these variables ensures that
no one method will work for all. We despair each time we see some dictate that
says all children will be taught by some new or, even worse, because we should
have learned last time around, some recycled method (see also Chapter 16).

Our principles are based on the following:

• using what the child does know to take him to what he can know (as
opposed to demanding facts and procedures he does not know so that he
no longer wishes to meet anything else that he might not know).

• acknowledging the pupil’s thinking style and teaching him in a way that
takes account of the need to teach to that style while attempting to develop
a more harmonious approach (as opposed to imposing your own style or
the programme’s thinking style on every child).

• making the mathematics developmental so that, in building on what he
does know, he constantly revisits it and it provides an increasingly secure
base on which to build further new learning (as opposed to seeking the
quick plaster to stick on the one problem . . . plasters fall off after a while).

• using the language that communicates the idea to the child and backing
up that language with appropriate visual images whenever possible (as
opposed to telling a child that ‘this works, so just do it’).

• acknowledging that even our absolutely best method for doing a particular
part of mathematics will not successfully teach every child (and so we
need to be responsively flexible in our presentation of methods yet keep in
mind that, although some children will need the alternative method, other
children may be confused by it).
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• using the same basic numbers to build an understanding of each process or
concept (and not a mixture of mnemonics, recipes and ‘tricks’).

• teaching ‘Why’ as well as ‘How’.
• keeping a responsive balance in all teaching.

These principles are applicable to any child but, to paraphrase Miles and
Miles (1992), the consequences of not applying them for dyslexics will be dis-
astrous. We would like learning to be robust and based on understanding, not
transitory and based solely on a number of unrelated memorised facts and pro-
cedures. This pragmatic philosophy has been advocated by several researchers
(see Kaufmann et al., 2003), who postulate the need for an integration of
procedural (knowing how to) and conceptual (knowing why) knowledge.

Consequently, most interventions discussed in this book are to a large
extent built on the typical knowledge levels of dyslexics, for example, with
times tables the usual knowledge base is 1×, 2×, 10× and 5×. Other times
tables are addressed by using these facts, for example, the 4× table can be
computed from twice the two times table, which also introduces the idea of
staged multiplications.

Our intervention plan is aimed to help the learner to ‘catch up’ with his
peers. There are some cautionary notes to this ideal. Some areas of mathematics
will remain a considerable challenge, for example, instant recall of times table
facts. The teacher has to look at the target and the investment required (by
teacher and learner) and make a decision as to how much time (and frustration)
can be expended on the target and whether the target can be by-passed without
undue impact on general development. The teaching has to be efficient and
effective for the child, not for the teacher, and ‘catch up’ may not always mean
taking the most direct route.

Secondly, the intervention needs to be developmental. This helps concepts
by ensuring frequent revisiting and reinforcement of ideas and strategies. The
programme we used at Mark College spirals through content, but concepts
often occur obliquely as well. We try to capitalise on this. For example,
breaking down a times table fact such as 7 × 8 into 5 × 8 plus 2 × 8 is the
same principle we will use for 23 × 47 (breaking it down into 20 × 47 plus
3 × 47). Generally, we try to check a teaching idea by asking ourselves if it is
leading anywhere else, that is, is it developmental mathematically?

Thirdly, this book is not about games or activities. We feel that a teacher
knows his or her group enough to be the best judge of what games or activities
may best suit. However, we have produced a number of worksheets (see
Appendix 1) that, although based on the Years 4 and 5 NNS programme, are
designed to be acceptable in appearance to older students.
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Summary
Despite the new focus on language in the definitions of dyslexia and the omis-
sion of arithmetic difficulties, it has not changed the situation that arithmetic
difficulties are likely to co-occur for the majority of dyslexic learners. Also,
there is now a greater awareness that there may be difficulties in mathematics
that are significant enough to merit the label of dyscalculia.

We have focused on areas that may create difficulties in learning mathe-
matics. Chinn (1995, 1996) has tried to investigate the influence of individual
factors and is now convinced that any prediction, either of success or failure,
is not a simple matter. Not only are there the interactions between areas of
difficulty, but also the learning environment, the learner’s ability to adapt to
his problems and circumvent them (often a learner is unaware of his differences
and abilities) and, of course, motivation and attitude. These latter influences
are effectively impossible to quantify. Thus, it is possible to say that a particular
factor, for example, auditory sequential memory (Chinn, 1997), will impact
on learning, but it is not possible to predict levels of success or failure based
on even a quantified deficit.

Mathematics is a sequential subject, so if early difficulties are not addressed
effectively, then ‘classroom-acquired’ difficulties will be added to inherent
difficulties and compound the child’s failure. If the remediation is started at the
right time but is too slow, or continues for too short a time, the extent of the
child’s problems will still be increasing because, while his peers progress, the
dyslexic child will be marking time (or even regressing). Lack of knowledge and
skills will develop into lack of confidence, which will develop into reluctance to
become involved in learning. We suspect that this final stage occurs somewhere
around age 11.

Thus it seems to be accepted that many dyslexics have difficulty in at least
some aspects of mathematics, though this is not necessarily true in all areas of
mathematics. Indeed some dyslexics are gifted problem solvers, despite persist-
ing difficulties in, for example, rote learning of basic facts. An inappropriate
education may leave such a child floundering in early numeracy when he has
the ability to leapfrog over these difficulties into more advanced aspects of
mathematics. If the problem is not appropriately (and continuously) addressed,
these LDs may reduce the extent of the child’s mathematical experiences, mak-
ing it harder for him to develop concepts and to progress past the very basic
levels of knowledge. The difficulty may create a cumulative effect beyond its
original potential if it is not addressed at an early stage (and thereafter).

As the teacher, you require both empathy, that is, an understanding of the
strengths and weaknesses that the child brings to each lesson (our experience is
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that a child often knows more than he realises he knows, but has not generalised
or organised his knowledge, a situation also observed by Askew and William,
1995, p.6) and a knowledge of the structure and interrelating nature of
mathematics. It is the successful interaction of these areas of knowledge that
helps to make an effective teacher.



Chapter 3
Cognitive (Thinking) Style
in Mathematics

Introduction
We use the term ‘cognitive’ (or thinking) style in mathematics to refer to the
way a person thinks through a problem. Allport (1937, quoted in Riding
and Cheema, 1991) describes cognitive style as a person’s typical or habitual
mode of problem solving, thinking, perceiving and remembering. We have the
optimistic attitude of many teachers and would challenge the word ‘habitual’.
Mathematically, its history can be dated back as far as Descartes (1638,
cited in Krutetskii, 1976), who described two styles of problem solvers. The
first solves problems by a succession of logical deductions, while the second
uses intuition and immediate perceptions of connections and relationships.
These two contrasting styles are described again in later literature. Boltevskii
(1908, cited in Krutetskii, 1976) and Harvey (1982) labelled the two styles
as geometers and algebraists, where the algebraist links most closely to the
logical, sequential thinker and the geometer to the intuitive style. Kovalev and
Myshishchev (Krutetskii, 1976) used the term ‘intuitive’ to describe a person
who is not conscious of every step in his thought processes but perceives
essential connections more clearly and quickly than his complementary stylist,
the ‘discursive’ thinker. Skemp (1981 and 1986, also Choat, 1982) describes
relational and instrumental understanding. Marolda and Davidson (2000)
describe ‘Mathematical Learning Profiles’, looking at how students learn and
how teaching can be differentiated to meet preferred profiles.

Although in his classic book How to Solve It Polya (1962, 1990) identified
four styles of problem solvers, the four can readily be combined in pairs,
reducing them to two distinct styles. Polya called the four styles as groping,
bright idea, algebra and generalisation. The first two describe intuitive thinkers
and the last two describe sequential thinkers. This reduction down to two
distinct styles seems a possibility for all models of thinking styles.

37



38 Mathematics for Dyslexics

Riding and Cheema (1991) provide a good overview of cognitive styles as
applied to all areas of learning. Mortimore (2003), a former Mark College
teacher, provides an excellent overview of learning styles and dyslexia, taking
a broader view beyond just the thinking style.

While not labelling the issue as thinking styles, Brown (1999) distinguishes
between ‘procedural’ and ‘conceptual’ philosophies for mathematics education:

Ever since numeracy has been part of the curriculum for a significant proportion
of the population in England, there has been a tension between the accurate use
of calculating procedures and the possession of ‘number-sense’ that underlies the
ability to apply such procedures sensibly.

The reality should be that both approaches should be used. This is not rocket
science.

Qualitative and Quantitative Style
Sharma (1986, 1989) identified and labelled two extreme styles of learning
personalities (again taking a broader construct than thinking style) as quantita-
tive and qualitative. The characteristics of the quantitative style are essentially
sequential/logical and those of the qualitative are intuitive and holistic. Sharma
also suggested that most personalities lie on a continuum between these two
extremes. He uses the order in which the Rey-Osterrieth Complex Figure is
copied as one of the instruments to diagnose the preferred learning personality.
Sharma uses this figure to analyse whether the detail takes precedence over the
outline, or vice versa, when the figure is reproduced.

CFT

Figure 3.1 The Rey-Osterrieth Complex Design Test

Sharma’s qualitative learner approaches problems holistically and is good at
spotting patterns. He uses an intuitive approach, tends not to show his working



Cognitive (Thinking) Style in Mathematics 39

and does not like practice exercises. This contrasts with the quantitative learner
who processes information sequentially, looking for formulae, methods and
‘recipes’. This learner attempts to classify problems into types and identify a
suitable process to use in solving the problem.

It is worth noting that the intuitive style is not always viewed favourably.
For example, Skemp (1971) considered it a hit-and-miss method, which is not
always reproducible. Most people have experiences of the teacher who says, ‘I
am not marking that mathematics until I can see some method written down’.
(While there are some very valid reasons for this to be a reasonable comment,
it can indicate a lack of understanding of thinking style.)

The brain

Some writers have linked cognitive style to hemispheric specialisation. Kane
and Kane (1979) suggested the roles played by each hemisphere in a variety of
different modes. For thinking, the right brain is described as deductive, diver-
gent, intuitive, and holistic, relating to concepts, simultaneity and geometry,
while the left brain is described as inductive, convergent, segmented, logical
and algebraic. Wheatley (1977) and Wheatley et al. (1978) linked problem-
solving styles with the left- and the right-brain specialisations. He described
the right brain as all-at-once and gestalt and the left brain as one-at-a-time and
serial. Wheatley also concluded that a good problem solver achieves a smooth
integration of the two modes of thinking.

The interpretation (or speculation) as to what the brain is doing is of some
interest, in that it gives more credit to intuitive thinking. It seems somewhat
dismissive to describe the ‘global’ thinker as intuitive, which seems to infer
little conscious thought, when the intuitive process is probably based on rapid
consideration of possibilities, experiences and knowledge rather than being a
sort of inspired, unconsidered guess.

Springer and Deutsch (1993) add some caution to those who claim that
schools fail to educate the right side of the brain:

But are these right-hemisphere functions? We do not think it is as simple as
that and there is certainly no conclusive evidence to that effect. Our educational
system may miss training or developing half of the brain, but it probably does so
by missing out on the talents of both hemispheres.

They go on to agree with Sagan about the need to educate broadly:

He concluded that the most significant creative activities of a culture—legal
and ethical systems, art and music, science and technology—are the result of
collaborative work by the left and right hemispheres. We completely agree.
Sagan also suggested, ‘We might say that human culture is the function of the
corpus callosum’. This may be true, not so much because the corpus callosum
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interconnects ‘analytic’ and ‘intuitive’ thinking, but because every structure in
the brain plays a role in human behaviour, and human culture is a function of
human behaviour.

The location of brain activity is a fascinating area that modern technology is
making more accessible to investigation. However, the way the student presents
in class may be enough information for a teacher when planning appropriate
responses and interventions. Cognitive style is often easy to identify if teachers
just take time to observe the student as he works and possibly to reinforce those
observations with some carefully chosen diagnostic questions and comments.

Cognitive (Thinking) Style in the Classroom Grasshoppers
(Intuitive/Answer Oriented) and Inchworms (Step by
Step/Formula Oriented)

The work of Bath and Knox (1984) and Bath et al. (1986) on cognitive style
arose from observations in the classroom, more specifically from teaching
dyslexic children of secondary school age. It therefore has its roots in the
observation of children with specific learning difficulties as they studied math-
ematics. Bath et al. labelled the two extremes of the continuum of cognitive
styles as grasshoppers and inchworms. The characteristics of the two styles
are summarised in Table 3.1 Bath, Chinn and Knox (1986) by looking at the
three stages of solving a problem: identification, solving and verification.

The teacher’s role

Bath et al. (1986) investigated cognitive style by classifying answers to a series
of selected mathematics questions, thus taking directly into account how a child
actually does mathematics. One of the main recommendations of this book
is the necessity for the teacher and the child to be flexible in their approach
to mathematics. Krutetskii (1976) uses the wonderful word ‘harmonious’ to
describe the blending of styles—yet to be aware that learners (and teachers)
may not always achieve this goal. Sharma (1989) commented on the need for
teachers to be aware of cognitive style:

All of us show and use different and unique mixtures of the two (personalities)
but one approach is more dominant than the other in different individuals. And,
that is what the teacher should be aware of almost constantly.

Since you, the teacher, are usually in the controlling role, then the source and
sanction for this flexibility must come predominantly from you. This situation
is well expressed by Cobb (1991):
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Table 3.1 Cognitive styles of the inchworm and grasshopper

Inchworm Grasshopper

I. Analysing and
identifying the
problem

1. Focuses on the parts
and details; separates

1. Tends to overview;
holistic; puts together

2. Looks at the numbers
and facts to select a
relevant formula or
procedure

2. Looks at the numbers
and facts to estimate an
answer or restrict the
range of the answer;
controlled exploration

II. Solving the
problem

3. Formula, procedure
orientated

4. Constrained focus; uses
a single method

5. Works in serially
ordered steps, usually
forward (rifle)

6. Uses numbers exactly as
given

7. More comfortable with
paper and pen;
documents the method

3. Answer orientated
4. Flexible focusing;

methods change
5. Often works back from a

trial answer;
multi-method (shot gun)

6. Adjusts, breaks
down/builds up numbers
to make an easier
calculation

7. Rarely documents the
method; performs
calculation mentally

III. Checking and
evaluating

8. Unlikely to check or
evaluate the answer; if
check is done, uses the
same procedure or
method

8. Likely to appraise and
evaluate answer against
original estimate; checks
by an alternate method

9. Often does not
understand procedure
or values of numbers;
works mechanically

9. Has good understanding
of the numbers, methods
and relationships

Source: Chinn (1997)

We do not mean to imply that the teachers beliefs are simply transferred to the
student. Rather, the teacher has the authority to legitimise what is acceptable and
to sanction what is not acceptable.

The structure of mathematical abilities

Krutetskii (1976), in presenting a broad outline of the structure of mathematical
abilities during school age, specifies a need for flexible thinking (and some skills
that dyslexics may find hard). He specifies the following:
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• The ability for logical thought in the sphere of quantitative and spatial rela-
tionships, number and letter symbols; the ability to think in mathematical
symbols.

• The ability for rapid and broad generalisation of mathematical objects,
relations and operations.

• Flexibility of mental processes in mathematical activity.
• Striving for clarity, simplicity, economy and rationality of solutions.
• The ability for rapid and free reconstruction of the direction of a mental

process, switching from a direct to a reverse train of thought.
• Mathematical memory (generalised memory for mathematical relation-

ships), and for methods of problem solving and principles of approach.

These components are closely interrelated, influencing one another and forming
in their aggregate a single integral syndrome of mathematical giftedness.

Although Krutetskii makes these observations concerning giftedness in
mathematics, they are equally appropriate for competence. The reader can
see where dyslexics may typically be at a disadvantage and where learning
difficulties may create problems.

There are other sources of support for different learning styles (see for
example, and a more general treatment, de Bono, 1970), but the emphasis of
the remainder of this chapter is to paint a clearer picture of the background
reasons for and consequences of different cognitive styles in mathematics.

Thinking styles

To expand and clarify the picture of the two extremes of the cognitive style
continuum, consider some mathematical problems and the methods that an
inchworm and a grasshopper might use to solve them. There is no implied value
judgment on the two (extremes) of style. Indeed Kubrick and Rudnick (1980)
suggested that teachers should encourage a wide variety of approaches, ideas
and solutions. As has already been quoted, Krutetskii looks for a ‘harmonious’
approach, even if for no other reason than that the ability to generate more
than one way of solving a problem allows the student to be more effective
when checking his own work.

Examples

Some of the questions below are taken from the Test of Cognitive Style in
Mathematics (Bath et al., 1986), now revised as the Test of Thinking Style
(Chinn 2001b). When using questions such as these with learners, the key
diagnostic question is ‘How did you work that out?’ or ‘How did you do that?’
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A supplementary question that explores the flexibility in problem-solving skills
is ‘Can you think of another way of doing this problem?’

2 × 4 × 3 × 5 (to be done mentally; no writing)

An inchworm will see first the 2 and the times sign. He tends not to overview
the problem. Also he tends to take the problem ‘literally’, that is, if it says
2 × 4 × 3 × 5, then that is the order and it is not to be changed, and since 2 is
an easy times table, he will begin: 2 × 4 = 8.

The next stage (8 × 3 = 24) may be a little more challenging for times-table
facts.

The last stage (24 × 5) may be too much of a challenge because of the load
on short-term memory in multiplying 4 by 5, remembering that the unit digit is
0, carrying the 2, holding it in memory while multiplying 2 by 5, remembering
the 2, knowing where to incorporate it, remembering the unit digit 0 and
putting it all together to give 120. Some children will just say ‘That’s as far as
I can get’.

A grasshopper, especially if he knows he has limited times-table knowledge,
will overview the problem, reading through to the end to see if there are any
short cuts, easy strategies or rearrangements. He may also be trying to get an
estimate of the value of the answer.

He is likely to rearrange the problem to (3 × 4) × (2 × 5), i.e. 12 × 10 =
120. Thus, he has taken a more global and flexible view of the question. In
doing so, he has reduced the demand on his times-table knowledge, and the
load on his short-term memory.

Find three consecutive numbers that add up to make 60

An inchworm with some algebra skills will develop an equation:

Let the first number be n;
then the second number is n + 1
and the third number is n + 2.

So n + (n + 1) + (n + 2) = 60, which is then solved:

3n + 3 = 60
3n = 60 − 3 = 57
n = 57/3
n = 19, n + 1 = 20, n + 2 = 21

The three numbers are 19, 20 and 21. The process is logical, sequential and
is (effectively) independent of the value of the numbers involved; it will work
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for any similar problem. It takes the solution almost directly from the way the
question is presented.

An inchworm without algebra skills will find it difficult to make a reasonable
guess at a starting number. His subsequent adjustments to his guess will most
probably be step by step, one at a time. So if his first guess is 10, his next guess
is likely to be 11, irrespective of the answer generated with 10.

A grasshopper will start with a controlled exploration, leading to an
estimate. He will see that the three numbers are approximately equal and that
a good estimate of their value is given by 60/3 = 20. It is only a short and easy
step (easy for the grasshopper, but not necessarily as easy for the numerically
literal inchworm) to 19, 20, and 21. Again the strategy is holistic/global and
peculiar to these numbers. It is an answer-oriented strategy.

Figure 3.2

How many squares in Figure 3.2 are black?

The pattern of 7 × 7 squares in Figure 3.2 is not equally divisible into black
and white squares, which makes the problem less straightforward.

The inchworm will probably resort to counting each square, thus focusing
on the parts of the square.

In a formula mode, an inchworm may see a square, count the number of
black squares on each side as 4, multiply 4 × 4 and say ‘16’. Sometimes if the
tester says, ‘49 squares and 16 are black?’ hinting that 16 does not match the
almost half relationship. The inchworm will feel secure in the use of the formula
(4 × 4 = 16) for a square and not see the obvious inaccuracy of the solution.

The grasshopper is holistic in his initial overview. The 7 × 7 squares make
49 and ‘half’ will be seen to be 25 since observation (of the corners or number
of black rows) shows that the larger number of squares are black.

This problem illustrates the ‘whole to parts’ against the ‘part to whole’
contrast in the two styles.

37 + 85 + 36 + 19 + 43
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The inchworm will rewrite the sum in vertical form:

37
85
36
19

+ 43

The addition may be carried out with tallies to mark progress and help the
child keep count as he moves down the numbers. The child is unlikely to use a
pre-estimate or a check.

The inchworm will work in the order in which the numbers are given.
The grasshopper is likely to look for pairs and clusters of numbers that

add to 10 or 20, for example, in the unit column there is 7 + 3 = 10 and
9 + 6 + 5 = 20. In the tens column there is 3 + 3 + 4 = 10 and from 8 + 1 + 3
(carried from units) he can extract 8 + 2, leaving 2. The answer is 220.

The grasshopper will probably have already grouped 85 and 19 as a little
over 100, and 36, 37 and 43 as a bigger bit over 100—estimate 200 and a
bit. He is using numbers as parts of a whole, where the whole is 10 or 100 or
1000. He is taking the numbers out of the order in which they are presented.

Deductions from the examples

These examples are used to show how learners with the two styles approach
problems. Our experience of teaching dyslexic students leads us to some
observations:

• there are some learners at the extremes of the continuum;
• an individual learner may (and should) use both styles;
• the style an individual learner uses can depend on the type of question or

even on the level of difficulty of the same type of question;
• the type of compensatory strategy (e.g., finger counting or interrelating

facts) that is used relates to cognitive style;
• prescriptive curricula create more inchworms than grasshoppers;
• inchworms with poor memory for basic facts are at risk in mathematics;
• insecure learners are more likely to favour the inchworm style;
• grasshoppers in the school system need to learn how to document their

work;
• inaccurate grasshoppers are at risk in mathematics;
• some questions favour grasshoppers, and others favour inchworms;
• having a dominant style does not mean that the learner is successful in

using that style;
• inchworms want to know ‘How?’, grasshoppers want to know ‘Why?’
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Chinn et al. (2001) in a European study of dyslexic pupils found that,
overall, there is a greater tendency for dyslexics to use the inchworm strategies,
not because they relate to this thinking style better, but for security and for a
perceived minimisation of risk in another manifestation of the tendency to try
and avoid errors and thus negative feedback. The study also showed, that at
that time, before the new Primary School Curriculum (1999) was introduced
in Ireland, the prescriptive nature of the mathematics curriculum gave the
Irish sample a heavy inchworm bias. This would suggest that children can
be indoctrinated towards an inchworm thinking style in mathematics by a
prescriptive, formula-oriented curriculum.

You, the teachers, have to be aware of these different styles and the fact
that the child may not use the style he has been taught (Hart, 1978) or may, as
Duffin (1991) observed, use his own method first and then diligently reproduce
to the teacher the standard method he has been taught. Some children may
have their enthusiasm for mathematics crushed if an inflexible cognitive style
approach is demanded by the teacher or the curriculum. This is yet another
characteristic of learners as individuals that should warn us that there is no
such thing as one method for all.

We could speculate which of the sub-skill deficits listed in Chapter 2 affect
the way a child would solve such problems. For example, poor long-term
memory for times-table facts could contribute to a grasshopper style, in that a
child may have to overview and combine data in order to avoid facts that he
cannot recall. What is clear is that the way a child (or adult) solves a question
depends on the blend of deficits and strengths he brings to the problem. You
can usually go a long way in finding out how a child solves a problem by
asking the simple question, ‘How did you do that?’ This interest (based on
awareness), rather than a judgement, will be a major source of help for many
learners, especially when combined with an awareness of what the child brings
to the question.

Contrary to their natural inclination, grasshoppers need to learn to know
how they achieved an answer, not just what the answer is. Contrary to their
natural inclination, inchworms need to learn, where appropriate, what an
answer means and why a procedure works.

Zarzycki (2001) explains that almost all school students in Poland are
taught only one written method for dealing with the addition, subtraction,
multiplication and division of whole numbers. Zarzycki’s research supports the
claim that there can be detrimental side effects stemming from this restriction
in instruction and learning. Our own research with regard to the situation in
Ireland pre-1999 also supports this. (There is, however, a benefit in maintaining
consistency over the years. Parents are not alienated from the way their children
are taught mathematics).
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Cognitive style and problems

Cognitive style can be used to compensate for some of the deficits mentioned
earlier. It can also be used to reinforce the connections and links between
number facts and operations and help students interpret word problems. For
example, in the question below:

‘Sam wins £96 at bingo and decides to share it equally between his six
grandchildren. How much does each child receive?’

At the least sophisticated level of analysis, the word ‘share’ implies that the
operation to use is divide. Most children will assume from previous experience
that divide will refers to a big number divided by a small number, so they will
arrive at 96 ÷ 6.

This has changed a (contrived) real life problem into an abstract number
statement. An inchworm will now try to divide the numbers as they are. It is
unlikely to occur to him that both numbers can be divided by 2, making the
problem 48 ÷ 3, and, indeed, this may not have made the problem any easier
for him.

It is likely that the numbers will be rewritten as 6)96 and a short division
attempted (which may not happen if anxiety takes over). However, if the
student has all these skills and facts at his disposal, then the method is
effective.

A grasshopper is likely to picture the problem, the £96 being shared out
between the six children, visualising the notes and coins being given out in six
piles. So, if six £10 notes are given out, then 6 × £10 has been distributed, so
£96 − £60 leaves £36 for distribution. Now six £5 notes can be given out, so
6 × £5 has gone, with £36 − £30 and leaving £6 to share. So each grandchild
has received £10 and £5 and £1, a total of £16.

The ‘division’ question has been changed into a question involving sub-
traction of chunks (multiples). It has been re-interpreted linguistically and
mathematically. The student has been able to use facts within his memory
bank. An inchworm is highly unlikely to tackle a division problem by using
multiplication.

Teachers and cognitive style

A learner may not have the same cognitive style as his teacher. If neither
party is aware of this fact there are likely to be consequences, at least in
communication and in judgment of work. For example, the marks awarded for
a method could be affected. Chinn (1995) has carried out a survey of marks
awarded by teachers for three very different, yet correctly answered, methods
used to solve a word problem. The range of marks for each answer varied



48 Mathematics for Dyslexics

from 0 to 10 (out of 10), so a child could be with one teacher and receive an
encouraging 10 or be with another teacher and score 0 out of 10. The awarding
of a particular mark can usually be rationalised by the teachers concerned.
This could be a very good reason for a mathematics department to meet and
discuss marking policies. Mackay (1994) noted the restricted range of methods
accepted for mathematics tests at Key Stage 2 (National Curriculum).

Teachers should be aware of their own cognitive style. If they are towards
the extreme ends of the continuum, then they will need to make a conscious
effort to ensure they are communicating with learners from the other end of
the spectrum. This mismatch of cognitive style between learner and teacher
could be one of the reasons why students say, ‘I could understand algebra the
way Mr Jones explained it last year.’

Sometimes when we lecture for teachers we may ask them to try some
questions that can identify their own cognitive style. It is interesting to note, in
almost every group that we have done this with, that there is no domination
of either style within the group, rather a close-to-even split between the two
styles.

Sharma (1989) and Marolda and Davidson (2000) have noted that quan-
titative and qualitative personalities prefer different learning materials, distin-
guishing between discrete or quantitative materials (e.g., number lines) and
continuous or qualitative materials (e.g., base-10 blocks). This is one of the
factors teachers have to take into account when choosing concrete materials to
illustrate a mathematical concept. Choosing appropriate materials is another
teaching skill with, once again, a range of responses from the learners.

Summary
If you are to teach effectively and diagnostically, then you must be aware of
and respond to the nature, variety and consequences of the child’s strengths,
weaknesses and cognitive style. An awareness that there is a range of cognitive
styles in any teaching group can help the teacher present a lesson more
effectively and to a broader spectrum of learners.

The inchworm needs to learn how to overview a problem before embarking
on a procedure and how to appraise and evaluate an answer, preferably by
using an alternative approach. He needs to move towards knowing ‘Why?’ The
grasshopper needs to learn how to document his methods and how to focus
on the detail as one way of checking the validity of his answers. He needs to
move towards knowing ‘How?’ Krutetskii’s advice of harmonious use of both
styles makes for good problem solvers.



Chapter 4
Testing and Diagnosis

Teaching and diagnosis are inextricably intertwined. If you are working with
an individual student, then a diagnostic approach to teaching is inevitable. You
need to appraise the student’s skills and deficits in mathematics as an ongoing
activity. As soon as teaching begins, diagnosis begins.

It is the authors’ experience that children often know more than most
tests reveal, for example, an algorithm may have been almost mastered, but a
small misunderstanding causes failure and it is only the failure that is noted.
Remediation often starts further back than one might initially think, but not
necessarily always from square one, and this should be borne in mind while
testing a student.

If you are working with a group of students, you can still build an ongoing
diagnostic approach into much of the work you do by designing at least some
of the exercises, worksheets, and tests you use to give you that diagnostic
information. One way of doing this is by examining error patterns (Ashlock,
2002; Engelhardt, 1977).

After providing some background, this chapter suggests the use of a testing
procedure. There could be many other equally valid procedures (for example,
Dowker, 2001), and any procedure should be flexible enough in structure to
respond to the child’s answers rather than rigidly following a fixed protocol.

Chinn (1992) has discussed the use of testing, in particular, the benefits and
disadvantages of norm-referenced and criterion-referenced tests. However,
before returning to this discussion, we should step back and ask the obvious
and fundamental question, ‘Why test?’ Some of the answers to this question
include the following:

• Parents may wish to know how their child’s achievements compare with
those of his peers.

49
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• A teacher may wish to monitor the progress of his or her group, identify
those who need extra help, or collect data with which to stream groups.

• There may be a need to measure rates of progress of an individual or a
group.

• There may be some mandatory requirement to test.
• The test may be used to assess the ability of the child to progress to higher

levels of study or move to a new school.
• The test may be used to obtain information for identifying and providing

for a pupil’s special needs.
• The test may be used to award a certificate that records a level of achieve-

ment (for example, GCSE or a Key Stage).
• It may be used for diagnostic reasons (for example, to find the child’s

strengths, weaknesses, knowledge base, and learning style).

It is understandable that a parent, or indeed a concerned educator, wishes
to have an idea of the depth of a child’s problems, measured in terms of
a direct comparison with his peers. Tests that are ‘normed’ against a large
population of children are used for these comparisons, for example, the
Mathematics Competency Test, the Profile of Mathematical Skills, the Basic
Number Screening Test or the Wide Range Achievement Test (see References
and Appendix I for details). It is not the function of these tests to provide
a diagnosis of ‘dyslexic’ or ‘dyscalculic’ problems. If the examiner wishes to
derive a diagnostic profile of the child’s strengths, weaknesses, and learning
style, additional testing will have to be done. The standardised test only sets
the baseline for the diagnosis.

Criterion-referenced tests are more diagnostic (by design) than norm-based
tests. Interpretation of a criterion-based test can identify particular tasks that
the child can and cannot do, but not necessarily his error patterns (Ashlock,
2002; Young and O’Shea, 1981) or why he can or cannot do a particular task.
Such tests can be lengthy if they are designed to be thorough and/or cover
much ground (see Wilson and Sadowski, 1976). Ashcroft (see Appendix I) has
designed a short test based on items that tend to generate the errors typically
made by dyslexics.

If these tests are used with groups, say as a class test, then the accurate
interpretation of an individual child’s errors can be uncertain and relies heavily
on how much of his method the child has documented. Of course, if the test is
administered to an individual, then diagnostic questioning can be used to sup-
plement the written evidence. As in the Test of Thinking Style in Mathematics
(Chinn, 2001a), the key question is ‘How did you do that?’ possibly followed
by ‘And can you think of another way it can be done?’ Careful, knowledgeable,
well-timed, and informed questioning is usually non-threatening.
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Bryant and Rivera (1997) sum up assessment structure with four questions:

When push comes to shove, the following questions should guide our assessment
practices:

Where do students stand in relation to their peers?
What do students know and what don’t they know?
Why do students perform as they do (i.e., how on earth did they come up with

that answer)?
Is what I am teaching working?

A Diagnostic Test Protocol
This diagnostic procedure, structured for a dyslexic child, links back, as does
all the work in this book, to a knowledge of the child and what he brings to
the subject. The procedure is designed to be appropriate to the child and to the
mathematics he is likely to encounter. It also relates to the teaching strategies
described in this book, indicating which are likely to be more effective for the
child. Although the test items suggested here have been carefully selected, they
are by no means meant to be definitive and thus they may be modified to suit
the individual (Mazzoco, 2005). The structure and rationale of the test should,
however, act as a guide.

The diagnostic procedure will examine the child’s knowledge of basic facts,
his level of understanding of fundamental concepts (such as place value), his use
of strategies (if any), and his learning style, and it should provide the examiner
with enough information to construct a teaching programme appropriate to
the child’s needs.

The basic structure of the test protocol suggested in the following text is
designed to measure the child’s present level of achievement and ascertain why
and in what ways the child is having difficulty. Although the basic premise
must be that each child is a unique individual, there are certain common areas
that are likely to create difficulty for the dyslexic (see Chapter 1). The protocol
is designed to investigate these areas and provide the examiner with a profile
of the child’s mathematical abilities. The test focuses on early mathematics
and therefore concentrates on numeracy. It is primarily designed for an age
range from around 8 to about 13, depending on the extent of the deficit, but
it should be easy to modify some of the content to extend this range. The test
need not be given in one session, but may be spread over whatever time the
examiner considers manageable for the child. Some items will be easier than
others (information in itself!). The examiner should unobtrusively encourage
the child to try his best and certainly avoid any pressure with regard to speed
of working.
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Structure of the Diagnostic Protocol
The test structure includes the following components:

• A norm-based test (see Appendix I)
• Counting/adding on tasks and number bonds
• Times-table facts
• Place-value tasks
• Mathematics language
• The four operations
• Money
• Word problems
• Attitude/Anxiety/Attribution
• A thinking style test.

A norm-based (standardised) test

There are several to choose from (see References and Appendix I for sugges-
tions). The individual requirements of each examiner will probably reduce the
choice. It is worth having several tests at the ready as many dyslexic children
have a long history of being tested and may well have already done your first
choice recently.

Counting and adding on tasks

A good starting point is to scatter about 30 matchsticks, one pence coins or
chunky counters on a table top and ask the child to first estimate their number
and then count them. The test is looking at sense of number (estimation),
one-to-one correspondence, speed of counting, accuracy, and whether or not
the child groups the counters/matchsticks and if it does, what is the size of the
group.

The examiner can also ask the child to count the number of dots on a card,
a task where he cannot touch and move the items he is counting. The dots can
be presented in a regularly spaced line and then at random.

A series of fact cards may be made (on index cards) and used to check
basic addition and subtraction skills. When testing for basic addition and
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subtraction fact knowledge and strategies, the examiner should also be
aware of the Einstellung effect (Luchins, 1942), which is the lack of flex-
ible interchange between operations (add, subtract, multiply, and divide)
and which is observed when a child stays with the original operation even
after the operation sign has changed (a behaviour different from misreading
signs).

• 4 + 2 checks a basic, low number addition fact and whether the child counts
on to 4, counts from 1 to 4 and then on to 6, or just knows the answer.

• 3 + 6 checks as above and to see if the child changes the order to the easier
counting on task of 6 + 3.

• 4 + 3 = � introduces the child to the concept of a ‘box’ for writing an
answer, a number to make the question ‘right’. The examiner asks, ‘What
number goes in the box to make the right answer?’

• 5 + � = 9 checks if the child is flexible enough in his knowledge of addition
(and subtraction) to understand what is required, that is, does he count on
or subtract 5 from 9 to obtain 4. The examiner asks ‘What number goes in
the box to make this sum right?’

• 6 + 4 = �. The number bonds for 10 are an important set of data to learn,
so the child’s level of knowing these facts needs to be checked.

• When asked, ‘Can you write three more pairs of numbers that add up to
10, like 6 and 4?’, does the child immediately give you 4 + 6, or does he
have a strategy such as 9 + 1, 8 + 2, 7 + 3?

• Give the child two 5p, six 2p and ten 1p coins and ask him to show you
some ways of forming 10p. Here the test is examining in how many ways
he produces 10p and whether he works to a system, for example, 5 + 5 to
5 + 2 + 2 + 1 to 5 + 2 + 1 + 1 + 1, and so on.

• 10 = 7 + �. Can the child use his number bonds for 10 in a different
(subtraction) format?

• 8 + 7 = �. Many children, even if they say they ‘just know’ the answer,
can be gently persuaded to tell you exactly how they worked it out.
Some children will simply count on, using their fingers or objects in the
room. The finger movements may be very slight, so the examiner will
have to be observant. Some children extend their limited lexicon of facts
by interrelating number facts. So 8 + 7 becomes 1 less than 2 × 8, that
is, 15.
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• 9 + 8 = �, 9 + 6 = �, 9 + 4 = �. In asking this sequence (one at a time),
the examiner is trying to see if the child has a consistent strategy for adding
onto 9. Has the child started to see patterns?

• 17 − 8 = �. The goal of this problem is similar to those above, except that
it is presented as subtraction.

• 60 − 6 = �. Can the child extend his number bonds for 10 to other
‘ten’ situations?

Times-table facts

Pritchard et al. (1989) found that dyslexics had better retrieval of the two-
times, five-times, and ten-times tables, so the protocol can acknowledge this.
The examiner can resort to straightforward questions, especially if he has
established a good rapport with the child. He can simply ask ‘Which of your
times tables do you know?’ and maybe prompt, ‘The twos?’ The most frequent
response is, ‘The 2s, the 5s and the 10s’, with some ‘smart’ kids adding, ‘The
1s and the 0s’.

If the child says he does know the two-times table, the examiner should
ask, ‘What are seven twos, and what is seven times two?’ The examiner must
observe whether the child has instant recall or if he counts up 2, 4, 6, 8, 10,
12, 14 or if he uses a strategy, such as 5 × 2 and 2 × 2, added to make 7 × 2.
Similar, careful diagnostic questioning can be used to establish a broad picture
of the child’s times-table knowledge.

The examiner may also wish to determine how many (if any) strategies the
child uses to work out times-table (and addition) facts. For example, if he
knows that 2 × 8 = 16, does he add on a third 8 for 3 × 8, or if he knows
5 × 8 = 40, does he add another 8 to obtain 6 × 8? This can be checked
by some guided questions. Another common strategy is to halve ten-times
table facts to obtain five-times table facts. (A child who has developed his
own strategies is more likely to be aware of the interrelationships between
numbers.)

The commutative property is expressed as a × b = b × a, or in numbers,
7 × 8 = 8 × 7, that is, it does not matter whether a rectangle is 9 × 4 or 4 × 9,
but the area is the same (36). The commutative property is useful knowledge
and worth including in a test procedure. If nothing else, it effectively halves
the number of facts the child needs to remember. So, a child may be asked to
give the answer to 4 × 8 if he is told 8 × 4 = 32.

Place value

The child is asked a series of questions. The numbers should be written on
cards and shown to the child.
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• If this number is fifty-six (56), what is this number? 243.
• What is this number? 8572. Which digit tells us how many hundreds are

there in the number?
• What is this number? 4016.
• Write the number (as digits) four thousand, two hundred and thirty-three.
• Write the number sixteen thousand and seventeen.
• What is the value of each digit in this number? 5656
• Work out 14 × 2, 14 × 20, 14 × 200.

The language of mathematics

• The child is asked to match the sign with the name. He can be told that
there may be more than one name per sign. (The examiner needs two sets
of cards, one set with four of each of the signs × ÷ +− = /, the other set
with add, divide, subtract, times, multiply, share, minus, plus, equals, same
as, take away, more, less.) The examiner checks the ability of the child to
relate the name with the sign.

• Make up an addition (and possibly subtraction, multiplication, and division)
sum. The examiner may need to talk the child into this (e.g. ‘If we had
5 + 6, can we make that into a word problem?’).

Concepts/understanding

• ‘Explain what you understand by the word divide (or multiply). Tell me
how you would explain to someone what divide is.’ The examiner will have
different levels of expectation for this and may find that discussion can
lead to a clearer picture of the child’s understanding of these deceptively
simple concepts.

• ‘Give me an estimate, an easier number to use, for 97.’ The child may be
bold enough to go up to 100, but many will only go as far as 98. The
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examiner is trying to ascertain if the child has understood the need to find
an estimate to a number that is easy to use in calculations.

• Make up a word problem using, in a mathematical way, the word ‘share’.

The four operations (+ − × ÷)

Ashlock’s (2002) book Error Patterns in Computation introduces the idea of
analysing a child’s errors and then providing appropriate remedial instruction.
Careful selection of computation items should give useful diagnostic infor-
mation, although it may not be possible to identify every error a student
makes. This stage of the protocol also allows the examiner to introduce some
criterion-referenced items.

Chinn (1995) has studied the errors made by 11- to 13-year-old dyslexic
students. The error that dyslexic students made at a rate far above that of
non-dyslexics was the error ‘No attempt’. If there is no answer to a question,
obviously there can be no diagnostic information. This is a very important
reason to keep the whole test protocol as a low-stress assessment. Smith (1996)
also makes some interesting observations on errors, as do Young and O’Shea
(1981).

Some examples of criterion-referenced tests are given below, but teachers
should set up their own battery of criterion tests based on their own circum-
stances, such as the type of student, the syllabus, and the requirements for
record keeping.

Addition

These questions can be presented on a worksheet. The questions must be well
spaced out and preferably ruled off from each other. The child can be asked to
make an estimate for each question first. The use of a worksheet format does
not preclude the continued use of the question, ‘How did you do that?’.

1. 36 checks the addition of two two-digit numbers with no
+ 21 ‘carrying’

2. 20 checks the addition of a number to zero
+ 47

3. 357 checks the addition of two three-digit numbers with two
+ 469 ‘carries’

4. 8 + 5 + 7 + 5 + 1 + 9 + 2 checks if the child uses number bonds for ten,
rewrites the problem vertically, finger counts, tries to use memory, and uses
tallies, either to count each unit or as ‘carries for tens’.
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Subtraction

A further question sheet can be prepared, as the examiner is looking at methods
and errors instead of just whether the answers are right or wrong. Indeed,
both sets of questions were chosen to investigate the typical errors a dyslexic
may make.

1. 46 checks the subtraction of a two-digit number from
− 23 another two-digit number with no renaming

(Renaming refers to changing 46 to 30 and 16)

2. 73 checks the subtraction of a two-digit number from
− 44 another two-digit number with renaming

3. 840 checks the subtraction of a three-digit number from
− 427 another three-digit number with subtraction from zero

4. 1000 checks the use of renaming algorithm as opposed to
− 699 rounding up 699 to 700.

Again the questions are designed to investigate the typical errors dyslexics
(and many other children) may make.

Multiplication

1. 23 checks the multiplication of a two-digit number with a
× 2 one-digit number with no carrying (using easy number facts)

2. 37 checks the multiplication of a two-digit number with a
× 2 one-digit number with carrying

3. 23 relates to the first example to see if child can extend
× 20 multiplication by 2 to multiplication by 20

4. 42 checks the multiplication of a two-digit number with
× 22 another two-digit number

5. 514 checks the multiplication of a three-digit number with
× 203 another three-digit number; also if the middle line is written

as 000, that is, ‘blind’ use of an algorithm
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Note that, although these examples are ‘easy’ they allow the child to
demonstrate his ability to solve the problem without failing because he does
not know times-table facts beyond two, five, and ten. They also provide the
examiner with information about the way the child solves basic multiplication
problems and his error patterns beyond not retrieving basic facts.

Division

1. 2
)
46 Checks the division of a two-digit number by a one-

digit number with no carrying
2. 2

)
74 Checks the division of a two-digit number with a

one-digit number with one carry
3. 5

)
56 Checks the division of a two-digit number with a

one-digit number with remainder (or decimal)
4. 2

)
4008 Checks the division of a number that has zeros

Again, the focus is on methods and number concepts rather than knowledge
of basic facts.

Word problems

Word problems should not be solely a test of reading ability, though the
examiner needs to know if this is another barrier to success in mathematics.
Again a clear worksheet should be written. The following examples are
progressively more challenging.

The child is asked to read and solve the problems.

1. What is 7 add 3?
2. What is 49 minus 7?
3. Take 12 from 25.
4. If six boxes contain two pens each, how many pens are there altogether?
5. Mike has ten red pens, three paper clips and seven pencils. How many

things can Mike use for writing?
6. Pat goes to the shop and buys two sweets at 5p each and ten sweets at 3p

each. How much does he pay?
7. Sally and Kath have 22 model cars to share equally between them. How

many do each get?

• Questions 1 and 2 are the simplest and the most straightforward ones.
• Question 3 reverses the order in which the numbers are to be subtracted.
• Question 4 mixes numbers as digits and numbers as words.
• Question 5 contains extraneous information.
• Question 6 has more than one stage.
• Question 7 requires the child to divide and does not include any digits.
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Thus each question probes a different aspect of the child’s knowledge and
abilities. His answers should give the examiner a good picture of the child’s
expertise with basic word problems. Although the questions are presented as a
written exercise, once again the examiner can ask ‘How did you do that?’

It is worth noting that word problems that require two stages/steps are often
very problematic for dyslexics.

Money

Knowledge of money is a survival skill. It is also interesting to see how a child’s
ability to solve money problems compares with his ability to solve equivalent
number problems. Later, the child’s knowledge of money problems can be
used, for example, to work with decimal fractions (see Chapter 11).

1. How many pences make one pound?
2. How much is half of a pound?
3. Show the child a card with £1.00 − 24p and ask him ‘How much change is

there from a pound if a bar of chocolate costs 24p?’
4. Show the child a card with £100 and £19 written on it and ask, ‘If you have

£100, how many computer games can you buy if each game costs £19? Do
you have any change? How much?’

5. You have £5 and you want to buy four things that cost (show the child a
card with £1.50 £2.50 75p 75p). Have you enough money to buy all four
things?

• Question 1 checks basic knowledge (essential to complete the other ques-
tions).

• Question 2 tests if the child has understood what 50p is.
• Question 3 is ‘real’ life mathematics and looks at division.
• Question 4 checks if the child has a concept of the value of money. Does he

know that £100 is an identifiable amount of money?
• Question 5 deals with another typical ‘shopping’ exercise and requires two

stages.

Attitude and Anxiety
It may also help and encourage the child if he is asked questions such as the
following:

• ‘How do you like mathematics?’
• ‘Do you think you are any good at mathematics?’
• ‘Are there any bits you are quite/especially good at?’
• ‘Which bits of mathematics do you like best?’
• ‘Are there any areas where you think you could do with a little extra help?’



60 Mathematics for Dyslexics

Of course, the child may have given many clues during the interview, such
as ‘I could never do division.’ The teacher should be particularly observant of
any comments that give clues as to the child’s attributions (see Chapter 1).

Thinking Style or Cognitive Style
For an analysis of diagnostic ideas, see Chapter 2

Summary of the Test Protocol
The answers to the questions combined with a knowledge of the way the
child solves each question should provide the examiner with a comprehensive
picture of what the child can do and how he does it, that is, the examiner has a
measure of the child’s number sense, basic knowledge, and his appropriate use
of numeracy skills. The child’s cognitive style can be deduced from behaviours
such as the following: if he counts using his fingers to solve 8 + 7 or if he
uses (2 × 8) − 1, his estimate for 97, or how he solves 1000 − 699. Besides
providing a picture of the child’s strengths and weaknesses, the protocol helps
you, as the teacher, to obtain a clearer idea as to which strategies the child is
likely to find easy and which he will find harder to absorb.

The protocol described here is a guide to a structure for diagnosis. As a
tester gains experience, he will adapt these ideas and introduce new questions
that enable him to follow where the child’s responses lead. It should be the
goal of the teacher/tutor to construct a diagnostic protocol that is appropriate
to his own educational environment.

Testing for Dyscalculia
Currently, this remains an area where there is little choice of tests. Butter-
worth’s (2003) Dyscalculia Screener is exactly that, a screener, administered
individually via a computer and based on Butterworth’s concept of dyscalcu-
lia. As this concept evolves, as it will as Butterworth and his dynamic team
continue their pioneering work, the Screener is likely to evolve, too.

Chinn is currently starting work on a paper-based diagnostic protocol.



Chapter 5
Concept of Number

Introduction
When a child has problems learning the basic facts of numbers, his problems
may be compounded by his consequent failure to develop an understanding of
the values of numbers and the interrelationships among them (and, of course,
it does not automatically follow that a child who successfully rote learns the
basic facts will develop an understanding of numbers). It is important that any
child should develop a ‘feel’ or ‘facility’ for numbers, that is, he needs to learn

• a sense of the size or value of a number (Berch, 2005);
• recognition of the other numbers to which it is near;
• how near it is to other numbers, particularly ‘key/anchor’ numbers such as

tens, hundreds, and so on;
• whether it is larger or smaller, and by roughly how much;
• its relationship to other numbers (twice as big, one less than, etc.), especially

the key numbers, 1, 2, 5 and 10.

For children with dyslexia/dyscalculia/learning difficulties in mathematics,
the development of this facility is a likely alternative route to coping with the
memory demands of early numeracy. Their early failure to learn basic number
facts can keep them away from the range and quality of experiences needed to
develop number concept. Of course, learning the basic facts does not guarantee
the development of concept of number for anyone, so the ideas advocated here
may have benefit for a wider population than just dyslexics. We are trying to
take the child beyond total reliance on counting on.

The first number test on the NFER-Nelson Dyscalculia Screener (Butter-
worth, 2003) is a test for subitizing. This tests the ability to look at a random
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cluster of dots and know how many are there, without counting. Most adults
can do this at 6 plus or minus 1. The sub-test is about a fundamental sense of
numbers.

A person who has to rely entirely on counting for addition and subtraction
is severely handicapped in terms of speed and accuracy. Such a person is
even more handicapped when trying to use counting for multiplication and
division. Often, their mathematics worksheets are covered with endless tally
marks and often they are just lined up, neither neatly nor grouped in fives as in
IIII. Mathematics is done in counting steps of one. If you show these learners
patterns of dots as in dominoes or playing cards, they prefer lines of tallies.
This is not just about the ability to ‘see’ and use five as a cluster. It is also the
ability to see other number relationships such as 9 being one less than 10, to
see 5 + 6 as 5 + 5 + 1, to count on in twos, tens and fives, especially if the
pattern is not the basic one of 10, 20, 30 . . . but 13, 23, 33, 43 . . . and so on.

We are trying to develop the ability to go beyond counting in ones by seeing
the patterns and interrelationships in numbers (Chinn and Ashcroft, 2004).

This chapter looks at the very early stages of number work. These are the
stages where a dyslexic child may have started to fail or fails to progress
conceptually. Thus, even an older child may need work to recover the experi-
ences he has not taken on board earlier. As with much of the material in this
book, the work described may not be age-specific. As tutor/teacher, you need
to adjust the style and approaches of your presentation of the work to avoid
patronising the learner.

Early Recognition of Numbers and Their Values
To return to ‘subitizing’, a small number of objects can usually be recognised
instantaneously by using a visual sense of number, so that a child seeing two
different clusters of, say, four spots will recognise them as the same quantity.
This ability disappears with larger numbers (though some children and adults
have been able to extend the skill to remarkably large numbers).

Slightly larger numbers may be more quickly recognised if

1. the objects are arranged in a recognisable pattern, or
2. the number can be seen as a combination of other numbers.

Thus, even at this early stage of development, the child can be introduced
to the use of patterns and interrelationships.

So, for example nine can be shown as
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or (domino pattern).

Teachers (or parents) can also introduce certain special numbers that can be
used as landmarks, reference points, or stepping stones towards understanding
other numbers. Consider for example ten, so five can be seen as half of ten,
nine can be seen as one less than ten, and twelve can be seen as two more than
ten and twenty as two times ten. Coinage the world over uses key numbers,
almost always using 1, 2, 5, 10, 20, 50, 100, and so on. Other numbers and
values are constructed from these key coins. For example, the lack of a coin
worth 7 does not handicap the manipulation of money for something that
costs 7. A 5 and a 2 will be used.

The Language of Mathematics
In this chapter, we use the word ‘number’ to mean one of the following (see
also Chapter 1):

• the mathematical symbol for the number, for example, 8;
• the written form of the number word, for example, eight;
• the sound of a number word, for example, ate (phonetic: at).

Thus, we already have three interpretations of even such a basic word as
‘number’.

For most of the dyslexics we teach, the problem of mathematics as a
‘foreign’ language becomes particularly acute when there is a necessity to write
the numbers down. The situation is exacerbated by the conventions of place
value (base 10). As an example, we have seen 11-year old boys write ‘six
hundred and five thousand and twenty’ as

600500020, and as—a slightly less obvious error—5620.

It is worth remembering the linguistic confusion that surrounds the two-digit
numbers, 10–19. Sadly, the inconsistencies of these 10 numbers confuse many
children and act as the first experience of failure to understand a mathematics
topic.

Early Number Work
Sorting/classifying

An important mathematical pre-skill is the ability to differentiate objects and
group together those with common attributes, such as colour, size or function.
This activity is the first stage towards counting the objects in a set.
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The number zero is an important concept to introduce, even at this early
stage. It can be introduced here to represent the complete absence of any
objects in the set (or group). This early exposure is important and quite easy
to introduce in a clear way to a child.

Correspondence between sets of objects

Understanding that two sets contain the same number of objects can be
achieved by matching each object from the first set with each object from the
second. If there are any objects left after such a matching process, then one set
contains more objects and the other contains fewer objects.

This level of understanding allows sets of objects to be compared, even
though the actual number in neither set is established. This acts as an early
introduction to the concept of ‘more than’ and ‘less than’ and to the question,
‘Is it bigger or smaller?’ The same approach can be extended to compare more
than two sets and thus understand the idea of rank orders.

The idea of comparing two sets can be extended to record the number of
objects in the first set by using ‘tallies’ in the second set. The tallies should be
a familiar, standard set of objects such as fingers or marks recorded on paper,
one tally for each object, for example,

1, 11, 111, 1111, 11111, 111111, 1111111, 11111111
1, 11, 111, 1111, 1111, 11111, 111111, 1111111

Correspondence between objects and numbers: counting

Stage 1

Introducing the number words and the number symbols gives, in effect, abstract
sets, which can be matched with sets of actual objects. For example, when the
set of three objects is seen to correspond with the symbol ‘3’, we begin to call
the number of objects ‘three’.

It can then be seen that if the objects are counted in any different order, the
correspondence shows that there are still three of them. Furthermore, if other
sets of different objects are also seen to correspond with 3, then the relationship
of a constant ‘three-ness’ for the two ‘different’ sets can be developed. Another
important move forward comes if the child can be encouraged to explore the
arrangement of objects within a set to discover that the number is conserved
even though the arrangement is different. In this way, the child learns the
interrelationship of numbers, for example 3 = 2 + 1 or 1 + 2 and then 3 as
5 − 2 so that the interrelationships between key numbers, 1, 2, 5, 10 is an
early experience.
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Stage 2

At this stage, the child is starting to link together the objects, the symbol for
the number of objects, and the word (sight and sound) for the number, and
the ‘breakdown’ of the number (Table 5.1).

Table 5.1

Objects 1 11 111 1111 11111 111111 1111111 11111111 111111111

Number
symbols

1 2 3 4 5 6 7 8 9

Words/
sounds

One Two Three Four Five Six Seven Eight Nine

It is necessary that the number symbols and the sounds as in the above table
are known to the child by heart. The exact spelling of the number words is
of less importance (and less achievable) for children with this type of learning
difficulty. The ARROW strategy (Lane, 1992) may well be of use to help
achieve this target. ARROW is a multi-sensory learning and teaching approach
developed in schools and researched under the auspices of Somerset County
Council and the University of Exeter. ARROW uses a child’s own voice, the
self-voice, to develop skills central to reading, spelling, speaking and listening.
ARROW is an acronym for Aural–Read–Respond–Oral–Written, in which the
self-voice, replayed on audio-tape or audio-CD, is linked to writing, listening
and speech skills in a series of processes involving spelling, comprehension and
reading books.

Stage 3

Counting can be used to associate the movement from object to object with
a movement to the next number. In the early stages, while counting aloud, a
child cannot always synchronise these movements and it may help if he counts
against a regular rhythm or beat (e.g. a metronome).

Stage 4

The extension of the skill of counting forwards to the skill of counting
backwards is not easy in the dyslexic child. More practice in the reverse
operation of removing one object at a time while counting the numbers
backwards will almost certainly be needed.
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Stage 5

The Number Line (Figure 5.1) is useful at all levels of mathematics. It asso-
ciates each extra mark with the next number and confers an evenness and
proportionality on the counting process. It also establishes the order of the
numbers, as well as the convention that the values increase when we move
to the right and decrease when we move to the left. Furthermore, the reg-
ular spacing of the numbers introduces the connection between numbers
and length. This is reinforced by using apparatus such as Dienes blocks or
Cuisenaire rods.

Counting in both directions along the number line is beneficial for linking
addition and subtraction.

1

0

2 3 4 5 6 7 8 9

Figure 5.1 The number line

Some link between the symbols and the values of low numbers can be
(somewhat artificially) drawn by stylisation of the number symbols. This may
be a useful mnemonic for some children, for example

For this stylisation, the number of bold strokes suggests the number of
objects.

Visual Sense of Number

Experiments can show that the visual sense of numbers is limited to about five
or six. This is to say, most children will immediately recognise the number of
objects in sets of one, two, three, four, five or six (without taking time for
counting). This seems to imply that children have an in-built ‘feel’ for the sizes
or values of these numbers.

From about six objects onwards, the visual sense of numbers is exhausted
and the objects have to be counted, unless there are other clues in the
arrangement of the objects. In other words, the child has to use a one-to-one
correspondence, treating each number as a separate identity; he begins to relate
numbers, build them up and see constituent parts.
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Visual Clues to the Number Concept

Numbers can be more easily ‘assessed’ if they form a recognisable pattern or
if they can be seen as a combination of simpler numbers (this can be done in
the early stages without a formal understanding of addition or multiplication).
At this stage, such an exercise adds further reinforcement to the idea of
breaking down and building up numbers. The work can then be extended to
bigger numbers, as shown in Figure 5.2. Many of the numbers are instantly
recognisable through their patterns, having become familiar because of their
presence in dice and dominoes.
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seen as 5 + 1
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Breaking down and building up numbers

seen as three 3's

Figure 5.2 Breaking down and building up numbers
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Any attempt to ‘standardise’ on a particular version is likely to be counter-
productive, because each child will feel happy with the version that suits him
individually. Our experience is that children have started to build up their own
idiosyncratic lexicons of facts and links. The best version is the one that works
for a particular child, although sometimes a little intrusion helps to rationalise
and organise the child’s ideas, for example in guiding them towards use of the
key numbers, 2, 5 and 10.

Number Bonds
The number bonds (for sums below 10) are fundamental in understanding the
number concept. The preceding work has built up to this formal presentation
of number facts. Knowledge of the number bonds is also important when
addition is tackled formally. There are therefore two important reasons why
they should be understood and learned at this early stage. The following bonds
are likely to be the most useful:

A B C D

2 as 1 and 1
3 as 2 and 1
4 as 3 and 1 2 and 2
5 as 4 and 1 3 and 2
6 as 5 and 1 4 and 2 3 and 3
7 as 6 and 1 5 and 2 4 and 3
8 as 7 and 1 6 and 2 5 and 3 4 and 4
9 as 8 and 1 7 and 2 6 and 3 4 and 5

Column A gives practice at adding 1, column B at adding 2, column C at
adding 3 and column D at adding 4.

Practice can, for example, be scheduled in the following ways:

• adding 1 to each number from 1 to 8;
• adding every number from 2 to 7 to the number 2;
• adding the numbers randomly;
• adding numbers in every possible way to make a given sum, such as 7.

The practice can be supported by using ‘concrete’ materials:

1. Any form of counters that remain separate, so that the child sees the ‘ones’
in each part and the resultant whole, possibly arranged in recognisable
patterns.

2. Blocks, like centicubes, which can be joined together and separated, so that
the child starts to see the numbers holistically.
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3. Cuisenaire rods, each number represented by a different length and colour,
so that the child visualises the ‘sizes’ of the numbers.

4. A number line, which links the numbers to a sense of proportionality and
allows the child to track forwards and backwards.

5. The child can use two spinners that can take any value from 1 to 8, or an
eight-sided dice (used in conjunction with 1–4 if necessary).

An important consequence of this work should be the establishment of the
commutative law, which states that the order in which the numbers are added
does not affect the answer, that is 2 + 5 = 5 + 2 (= 7). This also reinforces
what will be an important component of the developmental structure of our
philosophy, that is, the learner is encouraged to look and consider before
starting to compute. For example, in adding a small number such as 2, it is
better to count on the 2, than start with the 2 as in the example above. This
does require teachers to ease back on the demand for instant answers or instant
reactions.

You will need to establish the commutative law by reminding and organising
the child to see the logic of the demonstrations he has just undertaken.

This latter concept, together with that of number bonds and the results of
the practice described above are all summarised as shown in the following
table:

+ 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9
4 5 6 7 8 9
5 6 7 8 9
6 7 8 9
7 8 9
8 9

This table can be used by the child for reference and as a compact source from
which to memorise the data.

Place Value
The use of base 10 and the consequent place value of numbers are conventions.
The most frequent (and predictable) difficulty that occurs is that the child
does not understand that the value of a number depends on its place in a
group of numbers. This difficulty is not to be confused with the transposal
of numbers (e.g. 34 for 43). There are also some problems with misunder-
standing the language of these conventions. For example a number such as



70 Mathematics for Dyslexics

‘three hundred and fifteen thousand’ could be 30015000. Many problems
that appear in later numeracy can be traced back to a lack of understand-
ing of place value. It therefore needs careful attention, particularly when
zeros are involved. (See Appendix 1 for details on Sharma’s video on place
value.)

Grouping in tens

The number ‘10’ owes its significance to the number of fingers we have and
their use in counting. Ten retains its significance as a collective unit in the
written symbols we use for numbers, so we have 10 fingers and 10 different
number symbols. When we ran out of fingers, we had to use something else (a
second person’s fingers, for example), so when we ran out of number symbols
we had to use a second, additional symbol in another column or place. This
was a crucial concept in the history of mathematics.

The following approach attempts to show a logical connection between the
numbers of objects and the symbols used to write the numbers. The approach
moves from the concrete to the abstract, ‘foreign language’, written form in
progressively more abstract/representative forms.

Step 1. Using physical grouping

Objects do not naturally form themselves into groups of 10. Practice in carrying
out this grouping can be the first step towards understanding this concept. The
type of exercise here is simply to provide a group of items and let the child
group them in tens, possibly as two groups of five. What the child sees are
groups of tens that are numerically proportional to their value (Figure 5.3).

Figure 5.3 Physically grouping
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Step 2. Using counting blocks

Certain types of counting blocks (especially Dienes blocks) have a different
block for 10, which is in direct proportion to the length of 10 unit blocks
(Figure 5.4).

Figure 5.4 Counting blocks

Step 3. Using money

Although a 10p coin is physically larger than a 1p coin, it is not 10 times
bigger. It is a different colour. The use of money therefore brings further
progress towards abstraction (Figure 5.5a).

1 1

1

1

1
1 1

1

1

1

1

10

1

1 1

1 1

Figure 5.5a Using money

Figure 5.5b Using tally symbols

Step 4. Using written tally symbols

The use of different tally symbols for 10 and 1, such as the ancient Egyptian ?
and 1, gives a written symbol parallel to the money activity above (Figure 5.5b).
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Another suitable manipulative type of object here is bundles of 10 cocktail
sticks or straws and single cocktail sticks or straws. The material retains
proportionality, but emphasises the ‘collecting together’ of units into tens.

Step 5. Recording in words

Writing numbers down can be achieved using the words ‘Tens’ and ‘Ones’ as
labels (Figure 5.6).

10 10 1
1 1

1

2 Tens 4 Ones

Figure 5.6 Recording in words

Step 6. Using headings instead of labels

Writing these labels for each number is inefficient and time consuming, but
using them as headings (Figure 5.7) saves some of this effort while leaving
a clear reminder of the existence and value of the number places. Later we
will use place-value cards to help maintain the concept during addition and
subtraction.

2 Tens

Tens Ones

4 Ones

8 Tens 3 Ones

5 Tens 2 Ones

6

2

8

5

6Tens 9

4

3

2

9Ones

Figure 5.7 Using headings

Step 7. Omission of the headings

Eventually, the headings can be dropped when they are ‘understood’ to be
there, defining the place value of the digit (Figure 5.8).

This is a highly structured progression and care must be taken before leaving
any step out. It may be that the teacher simply moves through a particular step
more quickly according to the learner’s response.
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2 4

6 9

5 2

8 3

Figure 5.8 Omission of headings

Tens alone

When we write 10, we mean 1 ten and 0 ones. In some number systems, it
would be redundant to mention the 0 ones, because zero means there are no
objects there. Place value uses fixed relative positions (reinforced by column
headings where place value is less well understood). So an understanding of the
role of 0 as marking that a particular ‘place’ is empty is essential, as is its role
of maintaining the ‘place’ of the other digits. One good way of demonstrating
this with children is to make each child a place value and his fingers the digits,
so that the number 30 looks like Figure 5.9. The teacher can discuss with the
children why the second (unit) child is needed to demonstrate the number 30.

Figure 5.9 Hands showing place value

Figure 5.10 shows three ways of depicting four tens. They must be identified
as tens, classified, counted and recorded together. The 0 in the written version
40 makes it quite clear that

• the four objects are tens, and
• there are no ones.

In the spoken form, ten became abbreviated to ‘-ty’. Hence six tens became
sixty, and so on. Although it is obviously incorrect and contrived, there is some
good teaching value in the use of ‘tenty’ for one hundred. For example, it is a
logical extension of the pattern of the other ‘-ty’ numbers and helps the child
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10p 10p 10p 10p

Figure 5.10 Three ways of depicting four tens

realise something new is happening if we change the rule/pattern to a new
word—hundred. It is also useful in subtraction if renaming from the hundred
column is used.

Grouping in hundreds

After 10, 20, 30, 40, 50, 60, 70, 80, 90, it is impossible to record any more
tens in the tens column (we have run out of number symbols again). If the
example used 10p pieces, there would also be an argument against having too
many coins. The solutions to the two situations are parallel: we use another
collective unit, hundred (in another column), or we use another coin, 1. In
each case, the hundred can be seen as 10 tens. Dienes blocks or cocktail sticks
may again be used here, especially if available in boxes of 100. In Figure 5.11,
the number 237 is represented in various ways.

Grouping in thousands

Thousand is the next collective unit, constituted from 10 hundreds. The
next collective units are ten thousand and hundred thousand. The analogues
of the counting blocks, money, tally symbols, and labels, are less effective
in contributing to an understanding of numbers above a thousand, though
discussions about how many 10-base thousand blocks would be needed to
construct these higher value numbers are helpful, particularly as they follow a
pattern of ‘long’, ‘flat’ and ‘cube’. Fortunately, if place value has been properly
understood up to this point, further extension of the system offers no further
fundamental problems.

Certain large numbers in thousands can cause problems because of language,
the word hundred being repeated in hundred thousand and/or the large number
of digits, many of which can be zeros. For example, the number two hundred
and six thousand and fifty can be incorrectly written as 200600050, 2006050,
20600050, 2060050, 6250, and so on. It may be helpful to consider the number
in two parts: the thousands separate from the rest, which must fill three places
(for hundreds, tens and ones) set aside in advance, for example, for the above
number the first step would be 206***, then 206*50 and then 206050.
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Counting
blocks

Cocktail
sticks

Money

Tally
symbols

With labels

With
headings

Headings omitted

2 Hundreds

Hundreds Tens Units

2

237

3 7

3 Tens 7 Ones

£1 £1
1p 1p 1p

1p1p1p1p

10p 10p

10p

Figure 5.11 Representations of the number 237

Millions and billions

The collective unit million virtually completes the picture. The first new word
after thousand, it is probably best considered as a thousand thousand. Again
consideration of the space occupied by a thousand ‘thousand’ blocks can help
understand the concept. This volume is, of course, the space occupied by a
metre cube.

Some children can cope with exercises such as finding how high a pile of a
million pound coins would be. Ideas like this make useful investigations that
can be used to develop concepts of large numbers.

It is worth noting that base-10 blocks follow a repeating pattern in thou-
sands: unit cube (a centimetre cube), long ten, flat hundred, thousand cube
(decimetre cube), long ten thousand, flat hundred thousand, million cube (one
metre cube). This continues on again to one billion (a 10-metre cube) and
makes a good discussion topic: ‘How big is the billion cube? What object do
you know that is about this size?’

Reminders

At this stage any doubt about a number will usually be clarified by the
reintroduction of column headings.
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Reinforcement

A useful game for place value uses the place value cards and requires the learner
to collect a target number of coins, for example 56p. Dice are used to collect 1p
coins, which are placed in the units column. When the units column contains
more than nine 1p coins then trading ten 1p coins for a 10p coin is used until the
target is reached. The game then continues taking away 1p coins back to zero,
using trading again, but now trading down from a 10p coin to ten 1p coins.

Diagnostic ideas

Questions of the following pattern can be used for practice, and for diagnosing
difficulties:

• What is the value of the 7 in the number 4725?
• Write in the number thirty thousand and five in figures.
• Write the numbers sixteen and then seventy-one
• Write the number 12065 in words.
• Write down the largest and smallest three-digit numbers you can make with

the three digits 2, 6 and 9.

Number Bonds for 10
Because of its universal importance, it is essential for a child to have a good
concept of the number 10. It is worth making a special study of the number
bonds for 10 and, if at all possible, helping the child to learn these facts. This is
said with the clear understanding that rote learning is extraordinarily difficult
for most dyslexics, but then, if the child does have to learn facts, let those facts
be the ones with the most value/mileage. There are several illustrations and
exercises that can be used to help the child understand and visualise these facts.

9 + 1 {Especially useful for estimation/mental arithmetic}
8 + 2
7 + 3
6 + 4
5 + 5 {Some children readily understand and remember ‘doubles’

and also see that 5 is exactly half of 10}
4 + 6
3 + 7
2 + 8
1 + 9

All the different ways of making 10 can be found, for example, by

• joining together 10 centicubes and then breaking them up in various ways;
• using a 10-bead ‘Sumthing’ (www.sumthing.co.uk), which is an excellent

model for emphasising the conservation of 10 as it breaks down into
different number bonds;
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• laying down a Cuisenaire rod for 10 and then laying down combinations
of other rods beside it to give the same length;

• using an abacus;
• using coins or poker chips.

Diagrams like those in Figures 5.12 and 5.13 can help in sharpening the
memory.

Figure 5.12

12345678910

10

9876543210

Figure 5.13

The number bonds for 10 can be used and extended into many areas of
numeracy, for example, when adding a column of numbers by ‘casting out
tens’. They are facts with a high potential for use and thus worth a concentrated
learning effort.

Numbers near 10, 100 or 1000
Ten, hundred and thousand are major ‘landmarks’ and reference points in the
base-10 system.
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• From them, steps outwards can give meaning to numbers nearby, above
or below. For example, the number 8 is just less than 10, and the number
1100 is just over 1000. Later this can be quantified, as in 8 is 2 less than
10.

• A question like 4 × 98 can be seen as just below 4 × 100. This can give the
approximate answer ‘just below 400’, or can form the starting point for
estimation work and (mental) calculations of the (grasshopper) form

4 × 98 = 4 × 100 − 4 × 2
= 400 − 8
= 392.

The estimation question, ‘Is the answer bigger or smaller?’ can be used
again in this context.

• Figures 5.14, 5.15 and 5.16 give a picture of the relative sizes/positions of
the numbers 10, 100, 1000 and of the numbers near them.

10987654321 20 30 40 50 60 70 80 90 10
0

20
0
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0

40
0
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0
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0

80
0

90
0

10
00

Figure 5.14
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Figure 5.15 Number lines with periodic curves
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Advantages/Disadvantages

The pseudo-logarithmic scale in Figure 5.14 shows all the numbers 10, 100,
and 1000, on the same line, but the unequal gaps between the numbers would
confuse some children, and it is difficult to read in parts.

The number lines with periodic curves in Figure 5.15 show the relative
positions clearly, but relating each line to the others may cause problems.

1 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

101 102 103 104 105 106 107 108 109 110

120 119 118 117 116 115 114 113 112 111

121 122 123 124 125 126 127 128 129 130

140 139 138 137 136 135 134 133 132 131

141 142 143 144 145 146 147 148 149 150

160 159 158 157 156 155 154 153 152 151

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.16 Number blocks
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On the number blocks shown in Figure 5.16, the positions and the numbers
are quite clear. However, the number 1000 cannot be included in the same
diagram.

The diagram, or combination of diagrams, which a child follows most easily
is again the best alternative. All this is of course preceded by work using as
many concrete materials as appropriate (e.g. money, Dienes, metre rule). The
diagrams are somewhat demanding conceptually, but they do summarise a
concept and spatial presentation that is difficult to do otherwise.

Summary
This chapter has looked at the concept of numbers and their values, concen-
trating on place value and the importance of key numbers, especially 10. The
remaining chapters will continue to develop number concept and facility by
extending the child’s experiences into the interrelationships of numbers. What
is important at this stage is that the child has some clear ideas as to the values of
the low numbers, their relationship to the key numbers and an understanding
of number bonds in the light of conservation of number and the commutative
law, and a clear concept of place value. This knowledge will form a good base
for the development of the remaining mathematics skills and knowledge and
will thus lay the foundations of the developmental programme.



Chapter 6
Addition and Subtraction:
Basic Facts

Introduction
If you ask dyslexic or dyscalculic children, or indeed any child, to add 8 and 7
and explain how they reached their answer, you will get a selection of methods
depending on each child’s experiences and own idiosyncratic ideas (Ackerman
et al., 1986 call them inconsistent), for example:

• Counting all: the child counts up to 8 and then counts on 7 (probably
counting using fingers or objects in the room).

• Counting on: the child simply starts at 8 and counts on 7, counting through
8 to 15 (again, probably counting using fingers or objects in the room).

• Using 10: the child breaks 7 into 2 + 5, uses the 2 with the 8 to make 10,
then adds on 5, or works via 7 + 3.

• Using doubles: the child uses (2 × 8) − 1 or (2 × 7) + 1.
• Straight recall: the child ‘just knows’.

Carpenter and Moser, quoted in Thompson (1999) identify five levels of
(sophistication of) addition strategies used by young children when solving
simple word problems:

• Count all
• Count on from the first number
• Count on from the larger number
• Recall/retrieval of a known fact
• Derive the fact from a known fact (as in using 5 + 5 to access 5 + 6).

There has been an increased interest from researchers such as Torbeyns
et al. (2004) in the use of strategies by children, although some researchers

81
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have only looked at a limited range of strategies. Generally speaking, these
studies suggest that children with learning difficulties in mathematics (not
surprisingly) continue to use the counting on strategy longer than their age
equivalent ‘normal’ peers. Torbeyns et al. while commenting on the potential
benefits of such strategies remark that ‘early and frequent intervention directed
toward facilitating the development of these children’s procedural skills might
reduce the difference in the rate of development’. If children are left to devise
their own survival strategies, then we must not be surprised if these lack
mathematical sophistication, nor must we be surprised if it is very difficult
to replace these established methods with new ones. In other words, the
intervention should start before it is needed!

(Increasingly in the United States, the term arithmetic, or number, combi-
nations is replacing the term number facts (Gersten et al., 2005), recognising
that the ‘facts’ are not always accessed by simple retrieval.)

In this chapter, we will look at strategies for working out basic facts
efficiently and in a way that enhances and interrelates numbers, number
concept, concept of ten and place value, and facility with number and number
operations. We are assuming that a child will have great difficulty in rote
learning the facts and, even if he should succeed, difficulty in holding those
facts in memory for more than a few hours. Threlfall and Frobisher (1999)
argue that ‘the short term gains that give rote learning its appeal are illusory
and are less efficient in the longer term’ and Threlfall and Frobisher are not
referring to a special needs population, where their comments are even more
apposite. Children will access more facts if they have strategies to use when
memory fails them and leaves them with no way to obtain an answer. Some
strategies are going to be used in their entirety, but others can be mastered
to the stage where they become memory ‘hooks’ and are only used in part to
supplement a half-known fact. Since the strategies use the same key facts each
time, this procedure automatically rehearses these facts over and over again.

The strategy of counting on is a less effective strategy beyond counting on 1
or 2. It is a method that requires too much time to operate and therefore tends
to be susceptible to poor short-term memory. It is also susceptible to counting
errors. Furthermore, it does not support number concept or the relationships
between, and patterns of, numbers. Strategies that use number relationships
are advocated wherever possible. Chinn (1994) looked at the knowledge of
basic addition facts presented at 4-second intervals and 12-second intervals to
a dyslexic population of 11- to 13-year-old students and found that, although
they scored significantly less well than a mainstream population in the 4-second
task, their scores in the 12-second task were virtually equivalent. This is not
surprising, as one would expect any of the facts asked to be accessible in 12
seconds by counting using fingers (although other strategies were used by both
groups).
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It is easy to underestimate just how much early experience and information
a dyslexic student has missed, which makes it difficult to know how far back
to go when starting a teaching programme. One of the key ideas that this
chapter advocates is the breaking down and building up of numbers. So, if a
child did not receive and absorb work such as looking at 6 as in Figure 6.1,
then strategies that suggest that 8 + 6 can be added as (8 + 2) + 4 will be less
easy to teach (or learn). As ever, you have to ‘read’ the child to know how
much material to provide (Ashlock et al., 1983 provide an excellent range of
teaching ideas to develop and reinforce algorithms and concepts.)

0

5 + 1 4 + 2 3 + 3 2 + 4 1 + 5

6 10
6

Figure 6.1

Strategies for Learning/Remembering the Addition and
Subtraction Facts
The basic addition facts (which are also the basic subtraction facts) from 0 to
10 can be arranged in a square (Figure 6.2; see also times-table facts). This
gives the child a task of rote learning 121 addition and 121 subtraction facts
or developing strategies for as many of these facts as possible.

The procedure for teaching the addition/subtraction facts is similar to
that used for times tables. It uses patterns, the interrelationships between
numbers, and the ability to break down and build up numbers. It builds
on strategies that children themselves use, but organises and rationalises
idiosyncratic ideas. It adds structure and pattern. The presentation as a square
of facts gives some motivation in that initial gains can be shown quickly and
strategies are less individual, that is, they can be more flexible, applicable, and
extensible.

Even though we discuss subtraction after work on the addition aspect of
these facts, we feel it is most important to emphasise the subtraction ‘side’ of
the addition fact as each fact is discussed. This again is developmental, leading
to early algebra, for example, as in

15 = 8 + �
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+ 10 2 3 4 5 6 7 8 9 10

100 2 3 4 5 6 7 8 9 10

11 2 3 4 5 6 7 8 9 10 11

2 2 3 4 5 6 7 8 9 10 11 12

33 4 5 6 7 8 9 10 11 12 13

44 5 6 7 8 9 10 11 12 13 14

5 5 6 7 8 9 10 11 12 13 14 15

6 6 7 8 9 10 11 12 13 14 15 16

7 7 8 9 10 11 12 13 14 15 16 17

8 8 9 10 11 12 13 14 15 16 17 18

9 9 10 11 12 13 14 15 16 17 18 19

10 10 11 12 13 14 15 16 17 18 19 20

Figure 6.2 The square of facts

The zero facts: +0

n + 0 and 0 + n can be established using, for example, counters in boxes.

• An empty box is shown to the child and, after discussion about the contents
and zero, 0 is written on the board or a sheet of paper.

• Five counters are added to the box. +5 is written on the board/paper, giving
0 + 5.

• The child counts the number of counters in the box, 5.
• The written form now has 0 + 5 = 5.

A similar procedure may be used to deduce 5 + 0 = 5. Careful and empha-
sised use of language is needed if later confusion with ×0 facts is to be
pre-empted.

This establishes 21 facts, though, as is ever the case, an unusual presentation
of a ‘known’ fact may confuse the child. A typical error occurs in addition
problems such as

356
+ 30

380

Remember to discuss the subtraction of zero.
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Adding on 1 (and 2)

This concept can be introduced by asking the child to look at a number line and
handle counters, so that he sees, say, 4 + 1 as one move on the number line,
that is, a move to the next number. He can also experience a move to the next
number by counting the addition with counters or, say, unifix cubes. The child
has to ‘see’ the process as simply moving to the next number (and the reverse).

A similar argument applies to adding 2, though the child may have to
physically count on the two numbers. This should still be quick and accurate.
A knowledge of the even and odd numbers will support this operation. The
child can practise counting in twos, starting from different numbers. The child
will then need to spend some time looking at facts such as 1 + 9 and 2 + 7,
with the teacher talking to him on the commutative property of 1 + n = n + 1
and teaching that it is quicker, less prone to error, and more effective to count
the smaller onto the bigger number.

For the addition of 2, the learner can be taught to identify even numbers
and odd numbers and their sequences. For these insecure learners, it remains
important to reinforce knowledge at every opportunity and to provide new
locations for that knowledge in a way that is mutually enhancing.

If this can be accomplished, then 36 more fact squares can be shaded in, a
total of 57, leaving 64 to go.

Adding to 10; adding on 10

It is often the case when working with dyslexics that a lesson has more than
one goal. The subsidiary goal is usually a review of a previously ‘learned’ (and
perhaps ‘forgotten’) fact or concept. In this case, the forgotten concept is likely
to be that 10 represents 1 in the tens place-value column and zero in the units
place-value column (i.e. it is an empty column). If this is re-established, then
adding on to 10 is taking the child back to the first family of basic addition
facts, that is, n + 0 and 0 + n and extending it to n + 10 and 10 + n.

A teaching technique is to use a place-value card and discuss and do the
addition in symbols and with counters. There is some benefit in using 1p
and 10p coins or base-10 ‘longs’ and ‘units’ because they clearly illustrate the
difference between unit and ten values.

The visual pattern is

10 + 1 = 11
10 + 2 = 12
10 + 3 = 13
10 + 4 = 14 etc.
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The tens digit (1) does not change, but the units digit becomes the same as the
added number, 10 + d = 1d (not algebra!). Another difficulty sometimes arises
from the unfortunate fact that the names of the numbers from 11 to 19, unlike
subsequent decades, have the unit digit named first, for example, seventeen.
This also makes the aural pattern less consistent.

If this series of facts is understood, then the task has reduced to 49 facts.

Use of doubles

For addition facts, children often know the doubles (similarly, in multiplication
they often know the squares) and also use them to derive other addition facts,
for example, 8 + 7 is often seen as ‘double 8 less 1’ (and sometimes as ‘double
7 plus 1’).

Two columns of counters provide a good representation of the derivation
of these facts. Cuisenaire rods are also useful, for example, two seven rods are
placed side by side and 7 + 7 is written and explained as being equal to 14. A
one rod is placed on the end of a seven rod, increasing the sum to 15 (adding
on 1 takes you to the next number). The seven and one rods are exchanged for
an eight rod and the addition 7 + 8 = 15 is discussed:

(2 + 2) + 1 = 2 + 3 = 5
(3 + 3) + 1 = 3 + 4 = 7
(3 + 3) − 1 = 3 + 2 = 5
(4 + 4) + 1 = 4 + 5 = 9
(4 + 4) − 1 = 4 + 3 = 7
(5 + 5) + 1 = 5 + 6 = 11
(5 + 5) − 1 = 5 + 4 = 9, etc.

This gives seven facts for the doubles and 12 facts for doubles ±1. The task
is down to 30 facts, half of which are commutative, so there are 15 different
facts to be explained.

Again there is an opportunity to look at the concept of odd and even
numbers and at the basic rules for combining them.

Number bonds for 10

This family of facts has significant uses in other situations to solve other
problems. They are therefore important facts to learn. To put this in another
way, if a child has difficulty in rote-learning facts, then let him learn the facts
that are going to be of most use.

There are a variety of concrete images that can be used to illustrate the
number bonds to 10.
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10 9 8 7 6 5 4 3 2 01

0 1 2 3 4 5 6 7 8 9 10

Figure 6.3 Cuisenaire rods

Figure 6.4

• Cuisenaire rods (Figure 6.3) give a colourful image of the linear relationship.
• ‘Sumthing’ is excellent for the concept of the conservation of 10.
• A pile of poker chips (good because they are substantially thick) can be used

to show one pile growing as the other decreases as chips are transferred
from one pile to the other. The same image will apply to piles of coins.

• The number bonds can be written graphically (Figure 6.4).
• A learner can be taught to write this series quickly and accurately at the

top of an exam paper, removing stress when the facts are needed during the
exam.

Whatever materials the child handles, you must make sure that the digits
are presented with each manipulative aid so that the link is made.
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Although this section collects together the number bonds for 10, only
6 + 4, 4 + 6, 7 + 3 and 3 + 7 are ‘new’ facts . . ., so, we have only 26 facts to
deal with.

Number bonds for 9

These follow on from the number bonds for 10. They are important as part of
the strategy for the 9× table facts and for continuing the process of learning
to interrelate numbers. The child has to see that 9 is one less than 10, so the
two sets of number bonds need to be compared and the consistent relationship
emphasised.

Adding on 9

This also follows on from the equivalent 10 facts. They are also useful as an
introduction to estimation. The child is learning again that 10 is one more
than 9 and that 9 is one less than 10. The question to use when comparing the
addition of 9 to the addition of 10 is again, ‘Is the answer bigger or smaller?’

The child can practise the addition with coins or base-10 blocks, comparing
adding ten with adding nine, looking at adding 9 by adding 10 and then
subtracting 1, or using the added number to provide 1 to make the 9 up
to 10 (and the added number one less), for example, 9 + 6 = 10 + 6 − 1 or
9 + 6 = (9 + 1) + (6 − 1).

These two groups of nine facts add 12 more facts, leaving 14 to be dealt
with.

Sharing doubles

n + n is the same as (n − 1) + (n + 1). There are six of these facts left:

3 + 5 and 5 + 3 are the same as 4 + 4 = 8
5 + 7 and 7 + 5 are the same as 6 + 6 = 12
8 + 6 and 6 + 8 are the same as 7 + 7 = 14

(The others are 2 + 4 and 4 + 2; 4 + 6 and 6 + 4; 7 + 9 and 9 + 7.)
Again, these facts can be experienced by moving counters between two

initially equal piles. The strategy is an example of the conservation of number
and is worth inclusion for learning this alone.

There are only eight facts left. The commutative property reduces this to
four: 8 + 3, 8 + 4, 8 + 5, 7 + 4.

Adding on to 8 can be achieved using 10, for example, 8 + 5 becomes
(8 + 2) + 3. 7 + 4 can be seen as one more than the number bond 7 + 3.
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Summary
Some of the facts described in this chapter fall into more than one strategy
group. As flexibility is important, this gives the child some choice of method.
Shading squares for families of strategies in fact emphasises the pattern of each
relationship.

In each strategy, there is ample scope to allow the child to use concrete
manipulative materials. These materials must be used and used in conjunction
with showing the child the written numbers. The child has to learn to progress
from the concrete to the symbolic and the process has to be multisensory.
Again, with each strategy, the child must practise using the digits. Kirkby
(1993; see Appendix) has some useful games to add variety and motivation to
the practice (and which may help to reduce the frequency of transposals, such
as 42 for 24).

Subtraction Facts
Although the subtraction facts should be discussed alongside the addition facts,
there will probably be a need to reinforce this material. From informal surveys
when lecturing to adults on teaching arithmetic, we know that the perception
of subtraction is that it is a harder operation than addition.

When writing and talking about the addition facts, you must use more than
one format, for example, 4 + 6 = 10 can be phrased as follows:

• What is 4 add 6?
• What adds on to 4 to make 10?
• Can you find the ‘right’ number to fit into the box:

4 + 6 = � 4 + � = 10 � + 6 = 10?

The latter two examples are leading the child to see subtraction as ‘adding
on’. 4 + 6 = � is a straight addition fact. The child is, however, learning that
10 can be split into two constituent parts, in this case 4 and 6. With 4 + � = 10
and � + 6 = 10 the child still has to know that we are looking at two parts,
but he now knows the total and only one of the parts. We are changing the
frame of reference, not the knowledge. The child is learning the adaptability
of mathematics facts.

Further examples and the introduction of the vocabulary of subtraction
(minus, subtract, take away, etc.) should help the child to translate his addition
facts into subtraction facts. The idea of a total or sum and two parts or addends
will be used in ‘harder’ subtraction problems in the next chapter.

The child needs to learn that addition and subtraction are variations of the
same process (Ashcroft and Chinn, 1992; Chinn and Ashcroft, 2004). The
ideas above provide the framework that you can use and develop into an
instructional format.
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Extension
Ashcroft and Chinn (1992) and Chinn and Ashcroft (2004) advocate the use
of patterns and sequences. For example, addition facts can be extended to the
sequence/pattern

4 + 7 = 11 4 + 7 = 11
4 + 17 = 21 14 + 7 = 21
4 + 27 = 31 24 + 7 = 31
4 + 37 = 41 34 + 7 = 41
4 + 47 = 51 44 + 7 = 51, etc.

which shows the consistent contribution of 4 + 7 to a sequence of sums. The
dyslexic child often needs the aspects of this pattern (and similar patterns)
pointed out to him. In doing this, you are also leading the child towards
addition sums, where he will be using the addition facts and, hopefully,
reinforcing his knowledge of these facts.



Chapter 7
Times Tables

Introduction
Whenever there is a back-to-basics movement in education, the issue of learn-
ing times tables (and other basic facts) arises. To a large extent, this argument
about rote learning times-table facts is irrelevant for dyslexics. In our com-
bined experience of over 45 years of teaching mathematics to dyslexics, we
have found that rote learning of times tables is a frustrating exercise for both
the learner and the teacher (see also Threlfall and Frobisher, 1999; Turner Ellis
et al., 1996; Chinn, 1995; Pritchard et al., 1989; Miles, 1983, 1993). Yet there
are unrealistic expectations:

‘It is not about drilling children in their tables, but at some stage they do
need to know them. We are suggesting it should be by the end of year 4 rather
than the end of year 5.’—Tim Coulson, director of the National Numeracy
Strategy (2006).

We believe that there is an effective alternative solution to this problem.
Although we suggest a highly effective rote-learning technique, we believe
that strategies, or derived fact strategies (Dowker, 2005), based on patterns
and the interrelationships of numbers are effective in learning how to work
out times-table facts, a principle stated in the Primary School Mathematics
Curriculum Document for Ireland: Teacher Guidelines (1999):

All children can gain from using strategies for number facts. They can learn the
‘easy’ number facts first (×1, ×2, ×5, ×10) and use these to build up the others
using doubles, near-doubles and patterns of odd and even. These strategies are of
particular help to children with memory problems.

These strategies give the learner routes to an answer, as opposed to him or
her relying on memory that gives no possibility of obtaining a correct answer

91
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when he or she forgets the fact (Chinn, 1994). Again, our experience is that
many children already use strategies (Bierhoff, 1996, p32–33) that they have
devised for themselves, though often these strategies are neither consistent nor
organised mathematically.

Siegler (1989) writes:

Children often know and use many strategies for solving a class of problems.
Knowing diverse strategies adds to the children’s flexibility in solving problems.

and

Children’s strategy choices may be less subject to conscious, rational control than
often thought.

Our experience is that strategies need to be taught and organised, though often
working from what the child already knows and uses. We have tried to use
strategies that are developmental, for example, the strategy used to work out
7 × 8 by breaking down the single step to 5 × 8 plus 2 × 8 will be used for
products such as 23 × 54 and later for algebraic expressions (Wigley, 1995).

McCloskey et al. (reported in Macaruso and Sokol, 1998) hypothesise that
the process involved in the retrieval of arithmetic facts is separate from those
involved in the execution of calculation procedures. This is further support
for the principle of not holding a pupil back in mathematics just because he
cannot retrieve basic facts from memory.

Rote Learning with Audio Recorders and Computers
Use of music

Tapes and CDs of times tables set to music are now available. The rhythm
and the tune help some to learn the tables, but in our experience, it is not the
panacea.

Use of ‘fun’ games

These are rarely fun and still rely on rote learning.

The ARROW technique

If the child is to learn by rote, then this technique is powerful, but, as ever, not
for every child. It does not claim to be ‘fun’ other than giving some learners
the rewards of success.

The learner can use the ARROW technique (Lane and Chinn, 1986; Lane,
1992), as described in Chapter 5. This is a multisensory method using the
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learner’s own voice which, in the initial trials, was recorded on audio tape.
Tape recorders with a review button are the easiest to use. Now it is possible
to record the data onto computer and use the screen to provide a multisensory
presentation. This technique is now used in one section of the CD-ROM ‘What
to do when you can’t learn the times tables’ (Chinn, 2001a).

1. The child copies out the table facts he wishes to learn.
2. He records them onto tape, in groups of about four facts at a time, leaving

a 3- to 5-second gap between each fact.
3. He puts on headphones and listens to the first fact. He stops the tape.
4. He repeats the fact (and, to achieve an even more multisensory input, he

can write it). He rewinds the tape back to the start of the fact.
5. He listens again to the fact. He repeats steps 4 and 5 three or four times.
6. He repeats steps 3, 4 and 5 with the next fact.

The learner should experiment within this basic structure to find which
variation of these multisensory procedures is the most effective. The listening
frequency encourages sub-vocalising, which also reinforces learning. This
can be a very effective method for many people, but as with many such
interventions, not for all.

The process should be repeated several days in a row for the same set
of facts. The learner will probably find that five to ten facts per session are
enough, but success has a great motivating effect, so more may be possible.

Learning by Understanding
There are many advantages in learning times-table facts by understanding. The
methods we advocate provide memory ‘hooks’ on which several connected
facts can be hanged and some of them are introductions to procedures used
later on in mathematics, such as in estimation, long multiplication and algebra
(part of the developmental aspect of the programme). The strategies suggested
here encourage the learner to look for patterns and interrelationships between
numbers; they help develop a facility with numbers and an understanding of
algorithms. If taught patiently, they may also enhance the pupil’s confidence.
The MASTER, Mathematics Strategy Training for Educational Remediation
(Van Luit and Naglieri, 1999), using similar techniques, has been shown to be
effective in students for accessing these facts and also for formulating effective
problem-solving strategies in non-trained tasks.

It is our experience that the basic structure for the strategy approach uses
the times-table square, even though initial work is with separate tables. The
square gives an overview of the task, encourages interrelating of facts, presents
facts as division too, and can be used to illustrate progress in an encouraging
way. Also a student can learn how to fill in a blank table square, making good
use of any extra time that may have been allocated for an examination.
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There are 121 facts in the table square (Figure 7.1). The size of this task can
be reduced quite quickly and easily. This progress can be readily shown to the
learner and contrasts with the normal approach of asking, ‘Which tables do
you know?’

You (the teacher) should ask the child to look at the table with you, to
understand several helpful things.

00 0 0 0 0 0 0 0 0 0 0

0× 1 2 3 4 5 6 7 8 9 10

01 1 2 3 4 5 6 7 8 9 10

02 2 4 6 8 10 12 14 16 18 20

03 3 6 9 12 15 18 21 24 27 30

04 4 8 12 16 20 24 28 32 36 40

05 5 10 15 20 25 30 35 40 45 50

06 6 12 18 24 30 36 42 48 54 60

07 7 14 21 28 35 42 49 56 63 70

08 8 16 24 32 40 48 56 63 72 80

09 9 18 27 36 45 54 63 72 81 90

010 10 20 30 40 50 60 70 80 90 100

Figure 7.1 The times-table square

There are patterns, some easier than others, for example, the column and
row for the 10-times facts is 10 20 30 40 50 60 70 80 90 100, the numbers
from 1 to 10 with an extra digit, a 0, at the end (see also place value). If
information can be seen to be in patterns or if it can be organised in patterns,
it is easier to learn. There is also a sound pattern for the 10-times facts which
links to the numbers one to nine: ten, twenty, thirty, forty, fifty, sixty, seventy,
eighty, ninety—one of the authors uses ‘tenty’ as well as one hundred to
reinforce the pattern, to emphasise the place-value need for a special word for
100 and to refer to when in subtraction a hundred is renamed as ten lots of ten
‘tenty’. It’s also fun.

There are other patterns in the square that the child can look at later. At this
stage you are introducing an idea. You must use your professional judgment
to see how far you can go at this stage without becoming counterproductive.



Times Tables 95

Numbers that do not appear

Not all the numbers between 0 and 100 appear in the square, for example, 43.
This does not mean they are not important, but it is just that they are less used
in this area of work.

Limiting the task

The numbers have the lowest value of 0, and the highest value of 100. So
the child has some limits for the task and the task can be made to appear
possible and, with a little understanding of how numbers relate to each other,
even more possible. Indeed there is benefit in referring to the 100 squares to
put the values in context (for example, 7 × 7 = 49, which is 1 less than half
of 100).

Remember that each time the child learns a set of facts, the task remaining
gets smaller. Furthermore, when he learns a fact from say the 5-times table, for
example, 5 × 7 = 35, he also learns 7 × 5 = 35, two facts for the price of one.
This commutative property can be introduced quite early in the work and,
like all interventions, revisited and reviewed frequently until it is thoroughly
internalised by the student.

You will note that the square does not include 11-times or 12-times
facts. This is quite deliberate. Both can be taught, if deemed necessary, using
strategies based on partial products derived from the relationships 11 = 10 + 1
and 12 = 10 + 2.

The order in which to learn the facts

It seems sensible to first learn the facts that lead to the quickest gains and
therefore encourage confidence. You may wish to change the order given in
Table 7.1, but we suggest that the first three remain set as shown. Our order
is based on

1. the facts that a dyslexic learner is most likely to know (1×, 2×, 5× and
10×); and

2. the type of strategy advocated.

So, by the time the child has learnt the times tables listed in Table 7.1, he
has reduced his task from that of learning 121 facts to that of learning 16
(and this can be almost halved to acknowledge the commutative property of
ab = ba). These first 105 facts are the easiest to learn and you can quickly
demonstrate how the child can start to make rapid gains.
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Table 7.1 Times-table learning

Times table Number of facts remaining to be learned

0 100
1 81

10 64
2 49
4 36
5 25
9 16

Check-backs/reviews

Constant reviews are important. You are dealing with severe short- term,
long-term and retrieval memory deficits. It is beneficial to revise and review
material with the child quite often and, as with all skills, a lack of practice
will reduce the skill level. This is especially so with dyslexics. We maintain
that learning-check charts with headings ‘Taught, Revised, Learnt’ should also
have a fourth column for use with dyslexics, ‘Forgotten’.

The Commutative Property
The commutative property is expressed algebraically as

a × b = b × a

It can be introduced to a child as a way of getting double values for most of the
times-table facts that he learns (obviously not for the squares such as 6 × 6).

One of the models or images used for ‘a times b’ is area. Base-10 (Dienes)
blocks, Cuisenaire rods and squared paper are useful to illustrate this model.
To illustrate the commutative property a learner can draw a rectangle of
4 × 10, oriented to have the side of 10 units horizontal, then he can draw a
second rectangle, 10 × 4, with the side of 10 units vertical. These areas can
represent rooms or carpets. If it is not obvious that the two areas are the same,
then the learner can count the squares or, if prone to miscounting, cut out the
two rectangles and place them on top of one another to show they are the
same size (Figure 7.2).

Another illustration of the same property can be achieved with Cuisenaire
rods. So for 3 × 5 and 5 × 3, three five rods (yellows) can be put down to make
a rectangle and then five three rods (light green) can be placed next to them to
show that 3 × 5 and 5 × 3 cover the same area (and that three lots of five and
five lots of three are the same) (Figure 7.3). Area is a powerful model for the
developmental aspect of this work, leading ultimately to algebraic expressions.
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4 10

4

10

Figure 7.2 Using area

3 3

5 5

Figure 7.3 Using Cuisenaire rods

Another effective demonstration that focuses on the ‘lots of’ version of
‘times’ is to use counters in rows and columns. This additional ‘picture’
reinforces and develops further understanding of the concept of multiplication.
For example, 12 counters can be placed down as three rows of four or as four
rows of three (Figure 7.4).

Figure 7.4 Using counters

Each of these methods looks at a different facet of multiplication and each
has future currency; this suggests that all three should be used to demonstrate
and reinforce the concept. Examples of future currency are using area to
provide a picture of multiplications such as (a + b) (a + 3b), and extending
5 × 8 from five lots of eight to six lots of eight.

You have then demonstrated that 4 × 10 is exactly the same as 10 × 4, that
5 × 8 = 8 × 5, that 3 × 7 = 7 × 3 and so on.

Each fact the child learns can have the order changed round, giving him
another fact—free! You may wish to digress to discuss squares, such as
4 × 4—and judge the readiness of the class.
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Learning the Table Square
Zero: 0

Zero is an important concept, so time should be spent establishing that the
child has some understanding of zero: zero, nought, nothing—as ever the
language should be varied.

In later numeracy work, the child will come across examples such as
304 × 23 or 406 + 2, where the process of multiplying a zero, multiplying by
zero or dividing into zero is used. You can start by explaining the meaning of
3 × 0 and so on: 3 × 0 implies the following:

3 times 0
or three lots of 0 giving the answer 0.
0 × 3 is the same as 3 × 0, that is, zero lots of 3 is also zero.

(Another example of the need to use varied language to present a comprehensive
image of the concept).

Two suggested teaching models

• Talk about having nothing in one pocket, nothing in two pockets and so
on.

• Use empty 35-mm film tubes and discuss how much is in one empty tube,
two empty tubes and so on.

The child should then realise that any number times 0 equals 0 and 0 times
any number equals 0. So,

1 × 0 = 0 and 0 × 1 = 0
2 × 0 = 0 0 × 2 = 0
3 × 0 = 0 0 × 3 = 0

Children like massive examples such as a million lots of zero or zero lots of a
million—it impresses much more than zero lots of two even if the result is the
same!

Now you can tell the child to look at the table square.

‘You will see a row of 0s across the top, and a column of 0s down the left hand
side. You have just learnt your first 21 facts.’

Progress check

If you want the child to keep a check on his progress, use the table square in
Figure 7.1. Copy one and hand it to the child to act as his record of progress.
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Tell him to shade in all the zero facts—the top row and the first column. You
will probably find the child needs a second table square to keep as a ‘clean’ copy.

One: 1

One is the basic unit: 4 × 1 implies the following:

4 times 1
or 4 lots of 1 gives the answer 4.
1 × 4 is the same as 4 × 1.
Any number times 1 equals that number.
1 times any number equals that number.
Multiplying a number by 1 does not change its value.

Counters are quite a good manipulative aid for demonstration (they can also
be used on an overhead projector), or for the child to use to understand ‘one
lot of’ or ‘n lots of’. Money can also be introduced here in the form of pennies.
So 7 × 1 = 7 (seven lots of one) and 1 × 6 = 6 (one lot of six) and so on.

The concept you are introducing here is summed up by the following
equations:

n × 1 = n and 1 × n = n

Again, tell the child to look back at the table square and observe that the
1-times table facts appear twice, first written across the second row and then
down the second column.

1 × 0 = 0
1 × 1 = 1
1 × 2 = 2
1 × 3 = 3
1 × 4 = 4
1 × 5 = 5
1 × 6 = 6
1 × 7 = 7
1 × 8 = 8
1 × 9 = 9

1 × 10 = 10

Again explain and demonstrate the important fact that the number you
multiply by 1 does not change in value (the use of the phrase ‘in value’ could
be considered pedantic, but it is important not to teach information that has to
be ‘unlearned’ at a later date, e.g. in fractions). When a number is multiplied
by 1, the number has same value as before.
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0 × 1 = 0
1 × 1 = 1
2 × 1 = 2
3 × 1 = 3

...

10 × 1 = 10

The child has now learnt 19 new facts (he had already learnt 0 × 1 and 1 × 0),
making a total of 40 so far out of 121—almost a third.

Progress check

The child can now shade in the 1 × facts. He shades in the second row and the
second column. These are the numbers 1 to 10 across and down.

Ten: 10

1, 2, 3, 4, 5, 6, 7, 8, 9 are single digits. Ten has two digits, a 1 followed by a 0.
The 0 means no units, and the 1 means 1 ten. Hopefully, the child has retained
earlier work on place value from Chapter 5. A moment’s reinforcement may
be required at this juncture.

Ten is a key number in this chapter (and, indeed throughout the book).
The 10-times table facts will be extended to teach the child how to work out
the 5-times facts and the 9-times facts (and can also be extended to access
the 11×, 12×, 15× and 20× facts). Thus it is well worth reviewing the child’s
understanding of 10 and place value.

So explain that 20 has a 0 for 0 units and a 2 for 2 tens. 2 × 10 implies the
following:

2 times 10 equals 20;
2 lots of 10 are 20.

There is an easy pattern to show:

A BB
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90

10 × 10 = 100
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• The numbers under A are the first ten units.
• The numbers under BB are the first ten tens.

Get the child to listen to the pattern as he says the 10-times table and hears
the connection. For example,

six tens are sixty,
nine tens are ninety.

Even ‘two tens are twenty’ gives a two-letter clue. We find that sometimes
a brief digression to ‘twoten’, ‘twoty’, ‘threeten’, ‘threety’ and ‘fiveten’, ‘fivety’
reinforces rather than confuses the fact.

The auditory and visual clues to each answer within the 10-times tables
enable the student to access an answer without having to count from 1 × 10
to the required answer (which many children do to access the answers for the
2 × table facts).

This pattern can be practised with trading money, always remembering to
have the child say as he trades one 1p coin for one 10p coin, ‘one times ten is
ten’. He then trades two 1p coins for two 10p coins, and says ‘two times ten
is twenty’.

The exercise is carried on till he trades 10 × 10p coins for ten 10p coins,
and says ‘10 times ten is tenten or tenty’; there are no such words of course
and a special word is used instead—hundred. A hundred, 100, has three digits,
the only number with three digits in the table square. A hundred pence has
its own coin, a pound. So 10 × 10p = 100p = 1 pound. All this reinforces the
special importance of 100.

There are other ways to practise the units/tens relationship.

• Single cocktail sticks, and bundles of 10 cocktail sticks:

1 stick × 10 = 1 bundle = 10
2 sticks × 10 = 2 bundles = 20
3 sticks × 10 = 3 bundles = 30;

Each time, ‘10 times bigger’ means exchanging a ten-stick bundle for a
single stick.

• Cuisenaire rods:

1 unit × 10 = 1of ten strips = 10
3 units × 10 = 3of ten strips = 30

and so on (Figure 7.5).
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Figure 7.5

• Base-10 (Dienes) blocks or a metre rule can be used to add to the develop-
ment of the idea of the 10-times table. A useful illustration from the child’s
(probable) experience is the idea of change machines, one giving 1p coins
and one giving 10p coins and pressing, for example, the ‘4’ button on each;
one gives 4p, the other gives 40p.

Remember that some materials are proportional in size to their value, for
example, Cuisenaire rods; some are proportional in number, for example,
bundles of sticks; some are proportional by volume, for example, base-10
blocks; some are proportional by length, for example, a metre rule; some
are representative of value, for example, 1p and 10p coins. Using a mixture
of these and the numbers themselves ensures development from concrete to
symbolic understanding.

Some ‘everyday’ examples may be used to provide reinforcement:

• How many legs are there in 10 cows?
• How many wheels are there in 10 bikes?
• How many pence are there in ten 5p coins?
• How many legs are there in 10 spiders?
• How many sides are there in ten 50p coins?

Progress check

If the child thinks that he has learnt the 10-times facts then he can shade the
10-times facts in the end column and the bottom row of his table square.
Filling in the 10s column and the 10s row should remind the child that for
each times fact he can write the numbers in either order, so, for example,
2 × 10 = 10 × 2. This means that, if he remembers that 10 × 3 = 30, then he
knows 3 × 10 = 30, one fact from the 3-times table and one fact from the
10-times table—two for the price of one! The commutative property should
be reinforced frequently.
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So far the child has learnt 57 facts, which is almost half of the total. He has
still 64 to learn.

Two: 2

First, as for each number, the lessons should look at the concept of the
number and its interrelationships with other numbers. There can be some
demonstrations and discussions and some information on 2, such as the
following facts:

• Two is one more than one.
• It is twice as big as one.
• It is an even number.
• Even numbers are numbers that can be divided into two equal parts, for

example:

8 can be divided (shared) into two lots of 4:
8 ÷ 2 = 4 or 8 = 4 + 4.
20 can be divided into two lots of 10:
20 ÷ 2 = 10 or 20 = 10 + 10.

Each child can try equal sharing with a random pile of pennies, sharing
them out, one at a time, into two piles. If the two piles are equal, then he
started with an even number. If there is one penny left over, then he started
with an odd number.

• Even numbers from 1 to 10 are 2, 4, 6, 8, 10.
• Odd numbers from 1 to 10 are 1, 3, 5, 7, 9.

A useful extra fact (generalisation) here is that any even number ends in 2,
4, 6, 8 or 0, and any odd number ends in 1, 3, 5, 7 or 9. Some review/revision
questions, such as the following, can be used:

• Which of these numbers is even? 2341, 4522, 57399, 34, 70986, 11112,
335792.

• Which of them are evenly divisible by two?
• If the pattern for even numbers is

2 4 6 8 10
12 14 16 18 20
22 24 26 28 30

continue the pattern to 102.
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The 2-times table

1 × 2 = 2
2 × 2 = 4
3 × 2 = 6
4 × 2 = 8
5 × 2 = 10
6 × 2 = 12
7 × 2 = 14
8 × 2 = 16
9 × 2 = 18

10 × 2 = 20

Notice the following facts:

1. The end number pattern repeats 2, 4, 6, 8, 0.
2. The answers are the same as in the even number table

the child completed earlier.

The first four facts can be leant as a chant:

Two, four, six, eight, who do we appreciate?

This chant brings the child to almost midway in learning the 2-times table.
Often it is useful to have reference points in calculations. The child already

has a start reference point, 1 × 2 = 2, and an end reference point, 10 × 2 = 20.
The middle reference point has its value on the child’s hands—two hands, each
with five fingers, two lots of five fingers, ten fingers, 2 × 5 = 10 or 5 × 2 = 10.
It also is illustrated by 5 × 2p = 10p, a trading operation, where five 2p coins
are traded for one 10p coin. So 5 × 2 = 10 is the middle reference point on
which to build the remaining facts 6 × 2 to 10 × 2.

The answers for 6 × 2 to 9 × 2 have the same last digits as the first four
facts, 12, 14, 16, 18—the child needs to be shown the pattern. They have
the same digit pattern because 6 × 2 is one more 2 than 5 × 2 and 7 × 2 is
two more 2s than 5 × 2, and so on, and because 5 × 2 has 0 in its units digit
column. This is the first use of the strategy of a middle reference point, which
in this case combines with the strategy of breaking down numbers to build up
on known facts.

So if the child can remember the reference value 5 × 2 = 10, he can quickly
work out, say, 8 × 2. Eight is 5 + 3, so 8 × 2 is five lots of 2 plus three lots of
2, so 8 × 2 = (5 × 2) + (3 × 2) = 10 + 6 = 16.

There are three useful, regularly occurring strategies here:

1. Breaking down a number into numbers from their repertoire (usually 1,
2, 5, 10), for example, 8 into 5 and 3, so that these facts are used and
extended.

2. The use of a reference point in the middle of the task. A child will claim to
‘know’ the 2-times table. When asked for 7 × 2 he begins at 2 and works
up 2, 4, 6, 8, 10, 12, 14. A middle reference point means that the child can
start at 10.
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3. The use of ‘lots of’ for times leads to six lots of 2 being seen as one more
lot (of 2) than five lots of 2. This mixed image of multiplication to include
repeated addition and clustered addition will be used again later.

Strategies need practice and reinforcement

Some practical work can be built around coins and trading, using a 10p coin
for tens and 2p coins for two. The learner trades five lots of 2p for a 10p coin
to reinforce the middle reference point and the repeating 2, 4, 6, 8 pattern. An
example with 8 × 2 is to take eight 2p coins, take out five of these and trade
them for a 10p coin. This leaves one 10p coin and three 2p coins, which can
be combined as 10 and 3 × 2 to make 16. This reinforces the image of 8 × 2
breaking into clusters of 5 × 2 and 3 × 2.

Trading is a procedure used again in addition and subtraction.

Four: 4

You should give an overview of the properties of four, relating four to other
numbers. The most important of these relationships are the following:

Some information about 4

• Four is two times two: 4 = 2 × 2
• Four is twice two.
• Four is an even number.
• Numbers that are divisible by 4 can be divided by 2 twice.
• Four can be four units, 4, IV, or 1111.

Four-times facts are accessed by doubling the 2 × facts, a strategy encour-
aged by the National Numeracy Strategy. This also has the benefit of revisiting
some of the 2 × facts. Further, this strategy introduces the procedure of multi-
plying by factors. So 4 is used as 2 × 2. Later, learners will multiply by numbers
such as 20 by using two stages, ×2 and then × 10 (or vice versa). This × 2 × 2
method is building on knowledge the child has already learnt and makes use
of the interrelationships of numbers. The child is taught to double the 2-times
table. You have to establish the strategy using methods such as 2p coins, or by
showing the 2-times table alongside the 4-times table, for example,

2 × 2 compared with 2 × 4;
3 × 2 compared with 3 × 4.

The 2-times table is shown with single piles of 2p coins and the 4-times table
is shown with double piles of 2p coins. 35-mm film tubes may also be used to
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reinforce the idea of comparing three lots of 2 with three lots of 4. The child
can see ‘three lots of’ and it should be possible to convince him that he ends up
with twice as much from three tubes with 4p in as he does from three tubes with
2p in. (This is a similar strategy to comparing the 5-times and 10-times tables.)

Once the idea of the strategy is established, you can move on to comparing
the answers to the 2-times and 4-times tables in the same way that the 5-times
and 10-times tables were compared.

1 × 2 = 2 4 = 1 × 4
2 × 2 = 4 8 = 2 × 4
3 × 2 = 6 12 = 3 × 4
4 × 2 = 8 16 = 4 × 4
5 × 2 = 10 20 = 5 × 4
6 × 2 = 12 24 = 6 × 4
7 × 2 = 14 28 = 7 × 4
8 × 2 = 16 32 = 8 × 4
9 × 2 = 18 36 = 9 × 4

10 × 2 = 20 40 = 10 × 4

(It is worth reminding the learner that he already knows 0 × 4, 1 × 4, 2 × 4,
5 × 4, 9 × 4 and 10 × 4 from the tables he has learned previously.)

The values for 1 × 4 to 5 × 4 are obtained by doubling within the known
range of the 2-times table, for example, the learner can manage 4 × 4 as
2 × 4 = 8 and 2 × 8 = 16 and thus 4 × 4 = 16. Some practice may be needed
to reinforce this ‘known’ pattern.

6 × 4 and 7 × 4 are relatively easy since there is no carrying to complicate
the second doubling:

6 × 2 = 12 12 × 2 = 24
7 × 2 = 14 14 × 2 = 28.

The second doubling of 8 × 4 and 9 × 4 can be done using breakdown
strategies, using 8 as 5 + 3 and 9 as 5 + 4 or 10—1. Alternatively, 9 × 4 can
be done as 4 × 9 from the 9-times table.

It may be good practice for the learner to give you the middle step in practice
sessions so that 7 × 4 is delivered in two stages: 14 then 28.

When the 4-times facts are shaded in on the table square, the learner has
just 25 facts to learn.

(And by a triple multiplication of 2 × 2 × 2×, eight times facts can be
accessed.)

Five: 5

As with all the times tables, the first step is to establish a basic understanding
of the number, in this case 5.
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Some information about 5

• The key fact is that five is midway from zero to ten. The learner can be
reminded how five was used as a midway reference point in the 2-times
table, that is, five is half of ten.

• Ten divided by two is five. It can be written in numbers as 10 ÷ 2 = 5.
• Five is an odd number.
• Even numbers multiplied by 5 have 0 in the units place.
• Odd numbers multiplied by 5 have 5 in the units place.

• Five can look like 5 or 1111 or V or 10/2 or 10 ÷ 2 or

∗ ∗

∗
∗

∗

.

The 5-times table

1 × 5 = 5
2 × 5 = 10
3 × 5 = 15
4 × 5 = 20
5 × 5 = 25
6 × 5 = 30
7 × 5 = 35
8 × 5 = 40
9 × 5 = 45

10 × 5 = 50

Notice the following facts

1. The child knows the start reference point 1 × 5 = 5,
and the end reference point 10 × 5 = 50.

2. There is a pattern in the last 5 digits: 5, 0, 5, 0, 5, 0,
5, 0, 5, 0.

3. This shows another pattern: an odd number times
five gives an answer that ends in 5 and an even
number times five gives an answer that ends in 0
(thus revisiting the concept of an odd number).

It is useful to set up a comparison of the 10 × and 5 × tables by writing the
answers side by side. A look at the answers illustrates the relationship between
them, that is each 5 × answer is half of each 10 × answer, for example,
6 × 5 = 30 and 6 × 10 = 60, and 30 is half of 60. It is possible to work out the
fives by taking the tens and halving the answers. So, for 8 × 5 : 8 × 10 = 80 and
half of 80 is 40. As a check, 8 is even, so the answer ends in 0. Again, for 5 × 5 :
5 × 10 = 50 and half of 50 is 25. As a check, 5 is odd, so the answer ends in 5.

This strategy of looking at the last digit helps reinforce the child’s attention to
reviewing an answer and its validity (and revisits the concepts of odd and even).

Some practical work

The learner can practise halving tens by trading 10p and 5p coins; for each
10p trade one 5p. Each time you must help the child rehearse the process:
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‘Seven times five. Start at seven times ten. Half of seventy is thirty plus five, that
is thirty-five. Seven was odd. The answer ends in a five. This checks the answer.’

This can be reinforced by taking seven 5p coins and explaining that they
are worth half as much as seven 10p coins.

If the child has difficulty in dividing 30, 50, 70 and 90 by 2, remind the child
how to break numbers down, for example, 50 is 40 + 10. Halve 40 (answer
20) and halve 10 (answer 5), so that 50 ÷ 2 = 25.

Again you may have to remind the child how sometimes it is easier to use
two small, quick steps than to struggle with one difficult step.

Other materials may be used to reinforce this relationship between five and
ten; these include Cuisenaire rods, 5p and 10p coins and 35-mm film tubes
with 5 or 10 items inside. This last tool emphasises the ‘lots of’ aspect of
multiplication, used when extending knowledge of, say five ‘lots of’ to six or
seven ‘lots of’.

As before, the target is for the learner to be able to recall a 5-times table
fact from memory or work out an answer quickly. Starting from 1 × 5 and
counting up to the required answer is not the target. When the learner can
remember or work out the 5-times facts, then he can shade in the five row and
column on his table square. The times-table task is now reduced to 25 facts.

Nine, three, six and seven

The strategy used for these times-table facts is the same and is very much a part
of the developmental nature of this programme. The strategy is to break down
a ‘difficult’ number into two ‘easier’ numbers. So 3 becomes 2 + 1, 6 is 5 + 1,
7 is 5 + 2 and 9 is 10—1. This procedure is used in long multiplications such
as 35 × 78, where 35 is broken down to 30 + 5 and two partial products are
then recombined for 35 × 78. While this example is the procedure advocated
by many texts, most people do not need to use it for easier numbers such as 6
or 7. We have extrapolated the method back to help with basic fact knowledge.
This also serves as a first introduction to the area model for partial products
in multiplication and defines the framework for future work in other areas of
multiplications such as fractions and quadratic equations. Figures 7.7 to 7.10
illustrate the model and its developmental property.

Nine: 9

The key fact is that nine is one less than ten.

9 = 10 − 1

There is an easy method to work out the 9-times facts using fingers. If
we were being rigidly principled, we might not mention a method that is
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radically different from the other methods and strategies mentioned in this
book. However, working with dyslexics can make you very pragmatic and
eclectic, because the increase in the child’s self-confidence may outweigh any
doubts about the academic validity of a particular technique.

So, if you want to know the answer to 4 × 9, for example, put the fingers of
both hands down on a surface and tuck back the fourth (4) finger from the left
(Figure 7.6). The answer lies each side of this fourth finger, the tens to the left,
three fingers means 30, and the units to the right, six fingers, giving an answer
of 36.

30
6

4 × 9 = 36

Figure 7.6

However, we prefer a strategy with potential for further use. Therefore, the
strategy we advocate is based on estimation, the particularly useful estimation
of ten for use in calculations involving nine and the subsequent refinement of
this estimation. The strategy could also be perceived as a break down/partial
products method, with a subtraction of the partial products rather than the
normal addition.

The first step is to establish the principle of the method, that is that nine is
one less than ten. This can be done by examining nine.

• Nine is nine units.
• Nine is one less than ten.
• 9 = 10 − 1 and 10 = 9 + 1.

The closeness in the values of nine and ten can be demonstrated by showing
the child a pile of ten 1p coins and asking him to say, without counting them,
if there are nine or ten of them. It does not matter what the child guesses. It is
the uncertainty that is important; the nearness of nine and ten makes it hard to
give an answer with certainty. The demonstration can move on to Cuisenaire
rods. A ten rod (orange) and a nine rod (blue) are placed side by side. A one
rod (white) is added to the nine rod to show that the difference is one. This is
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presented in numerals as

9 + 1 = 10 10 − 1 = 9.

This demonstration is now extended to show how to estimate and refine from
the 10-times table to the 9-times table.

Two nine rods are placed on a flat surface. Two ten rods are placed alongside
and two whites are added to the nine rods to show that the difference in value
is two. The process is repeated to develop the pattern that n nine rods are n
ones less than n ten rods. In numbers,

2 × 10 = 20 20 − 2 = 18 2 × 9 = 18
3 × 10 = 30 30 − 3 = 27 3 × 9 = 27
4 × 10 = 40 40 − 4 = 36 4 × 9 = 36.

Thus any 9-times fact can be worked out from a 10-times fact, for example,
6 × 9 is worked out as

6 × 10 = 60 60 − 6 = 54 6 × 9 = 54

This is verbalised as

‘Six times nine is six less than six times ten. Six times ten is sixty, so, six times
nine must be fifty something.’.

The ‘something’, the unit digit, can be found by subtracting 6 from 60, or
6 from 10, using number bonds for 10 (another example of revisiting the key
facts). It can be found by counting backwards from 60, though this is a very
difficult task for some dyslexics, or a further pattern can be used:

1 × 9 = 9
2 × 9 = 18
3 × 9 = 27
4 × 9 = 36
5 × 9 = 45
6 × 9 = 54
7 × 9 = 63
8 × 9 = 72
9 × 9 = 81

10 × 9 = 90

Notice the following facts:
The units column digits are from 9 to 0, 6 × 9 = 54,
while the tens column digits are from 0 to 9. This
results in the sum of the two digits in each answer
always being nine, for example, for 63, 6 + 3 = 9.

So the child can work through the following process for, say, 4 × 9:

4 × 10 = 40;
4 × 9 is smaller and must be ‘thirty something’;
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the ‘something’ must be the number that adds on to 3 to make 9, that is 6. So
the answer is 36. For 6 × 9, again

6 × 10 = 60
6 × 9 = 5�
5 + � = 9

� = 4 so 6 × 9 = 54

The child may think that this is a long process, but with regular practice it
becomes quicker. Also, as the child becomes more adept, he starts to short-
circuit the process and use it to top off a half-known answer. In other words,
the strategy provides a memory hook for the child so that he is not left
floundering when faced with an ‘impossible’ question.

When the child has grasped this strategy, he may shade in the 9-times
column and row. He now has 16 facts left to tackle (Figure 7.7).

10 × 7

9n = 10n − 1n

1 × 7 9 × 7− =

Figure 7.7

Three: 3; Six: 6

The 3 × and 6 × tables share the same, important strategy (Figure 7.8 and
7.9). The 3 × is broken down into 2 × plus1 × and the 6 × is broken down
into 5 × and 1×. Later on, when the student has to calculate products such as
23 × 45, the breaking down strategy (23 × computed as two partial product
multiplications of 20 × and 3×) will be the most likely procedure for all
students, that is including those who can answer 6 × 7 in one go. This strategy
is therefore teaching a procedure that the student will encounter later as he
progresses through the curriculum.

The language of multiplication can be quite abstract. ‘Four time three’
requires the student to know the code. An alternative wording, ‘Four lots
of three’ is more concrete. This latter wording also lends itself to the con-
cept of 3n = 2n + n and 5n + n = 6n, again setting the foundations for the
development of mathematical skills and concepts.



112 Mathematics for Dyslexics

(The same concept applies for 5n + 2n = 7n and 5n + 3n = 8n.)

2 × 4 + 1 × 4 =    3 × 4

2 × 8 + 1 × 8 =    3 × 8

3n = 2n + 1n

Figure 7.8

5 × 6 6 × 6+ 1 × 6 = 6n = 5n + 1n

Figure 7.9

So the 3-times table is calculated by taking a 2 × table fact and adding on
one more multiplicand, for example,

3 × 6 = 2 × 6 + 6 = 12 + 6 = 18
3 × 8 = 2 × 8 + 8 = 16 + 8 = 24

and the 6-times table takes a 5 × table fact and adds on one more multiplicand,
for example,

6 × 6 = 5 × 6 + 6 = 30 + 6 = 36
6 × 7 = 5 × 7 + 7 = 35 + 7 = 42

Seven: 7; Eight: 8

The target has now been lowered to four facts or three separate facts:

7 × 7, 7 × 8 and 8 × 8

These three are often perceived as the hardest to learn, but there are some
helpful strategies here, too. The 5 × facts are extended to 7 × facts by adding
on the relevant 2 × fact. This can be shown as follows:

• Show, using counters, that 8 × 5 (via 8 × 10 as revision) is the same as
5 × 8.
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• Then use film tubes or Cuisenaire rods to show that seven lots of 8 are two
more lots of 8 than five lots of 8.

The film tubes emphasise the move from ‘five lots of’ to ‘seven lots of’ while
the contents (8) are seen to be what is added on to the 40. This should help
explain the strategy and prevent the child from obtaining 47, the most likely
error.

There is a pattern for the hardest fact, 8 × 7. This pattern, which appeals
more to adults than to children, is seen if the normal order of presentation is
reversed:

5678 56 = 7 × 8.

(This order occurs one other time in the table square with 12 = 3 × 4.)
We hypothesise that children do not relate to 56 = 7 × 8 because facts

are normally presented in the 7 × 8 = 56 direction. The 56 = 7 × 8 direction
makes the fact more of a division fact than a multiplication fact. If we expect
children to adapt to division and include it in their repertoire of mathematical
concepts, it might be wise to teach times-table facts in this reverse format as
well (Figure 7.10).

7 × 7 and 7 × 8 can be taught by a similar sequence, that is 5 × 7 = 35
and 2 × 7 = 14, so 7 × 7 = 35 + 14 = 49 and 5 × 8 = 40 and 2 × 8 = 16, so
7 × 8 = 40 + 16 = 56.

5 × 8 7 × 8+ 2 × 8 =

5n + 2n = 7n

Figure 7.10

The comparison of 7 × 7 = 49 (1 less than 50, which is half a 100) with
10 × 10 = 100 is interesting, and makes a useful cutting up exercise with
squared paper. This can be extended to build up 7 × 7 from 5 × 5 + 2(5 ×
2) + 2 × 2, although 5 × 7 + 2 × 7 is likely to be easier.

Again, you are showing how to build up and break down an answer.

Final notes

The squares, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7 and 8 × 8 are connected to the
products of the numbers on ‘each side’ of them, that is, 2 × 4, 3 × 5, 4 × 6,
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5 × 7, 6 × 8 and 7 × 9, respectively by

a × a = (a − 1)(a + 1) + 1
3 × 3 = (2 × 4) + 1; 3 × 3 = 9 2 × 4 = 8
4 × 4 = (3 × 5) + 1; 4 × 4 = 16 3 × 5 = 15
5 × 5 = (4 × 6) + 1; 5 × 5 = 25 4 × 6 = 24
6 × 6 = (5 × 7) + 1; 6 × 6 = 36 5 × 7 = 35
7 × 7 = (6 × 8) + 1; 7 × 7 = 49 6 × 8 = 48
8 × 8 = (7 × 9) + 1; 8 × 8 = 64 7 × 9 = 63

8 × 8 can be explored in terms of powers of 2, for example,

8 × 8 = 8 × 4 × 2 = 4 × 4 × 2 × 2 = 16 × 2 × 2 = 32 × 2 = 64

6 × 6 can be explored in terms of three times twelve:

6 × 6 = 3 × 2 × 6 = 3 × 12 = 36

In all of these strategies, you are introducing factors, as you did with the
‘twotwo’ method.

Developmental aspects

Multiplication facts are, of course also division facts. When students are
factorising equations in algebra, they will need to use the times-table facts in
this format. There are some simple clues as to divisibility and factors for some
of the factors. Some are obvious, such as the rules for a number being divisible
by 2 (and thus 4 and 8) or by 10 or by 5. The rule for divisibility by 9 has
already been mentioned, that is that all the digits will add up to 9, though this
may take more than one step, for example, the digits in 4914 add up to 18 and
1 + 8 = 9.

The rule for divisibility by 3 is that the digits will add up to 3, 6 or 9. If the
number is also an even number, then it will be divisible by 6.

These simple rules allow the learner to deal with divisibility by 2, 4, 5, 6, 8,
9 and 10.

Times-table facts and examinations

Currently, a candidate is not allowed to take a times-table square to the GCSE
examination. But he can take in a blank grid. A student can be taught how to
fill in a blank square very quickly, even if he chooses not to fill in every blank,
leaving some until needed. It is a good practice, and a good revision of the
facts and how they are related, to do this exercise reasonably frequently in the
run up to an exam. The square, of course, gives factors, too.



Times Tables 115

Summary
In this chapter, we have introduced the idea of teaching strategies to learn/work
out the times-tables facts. We believe that this approach is pragmatic, since few
dyslexics can rote learn this information. It has the added bonus of teaching
several useful mathematical processes and concepts, which include estimation;
factors; that number values are interrelated; and partial products, that is the
strategy of breaking down numbers into convenient and appropriate parts. We
hope that a child will, through these strategies, learn to produce quick answers
for the times-table facts, while having a backup strategy for those occasions
when the mind goes blank. We have also tried to introduce some flexibility in
the methods described, being ever mindful of our basic premise that not all
children learn in the same way.

Finally, it is worth repeating the cautionary note concerning division facts.
We feel that so many children perceive these facts as the times-table facts that
they forget that they are also the basic division facts.

A computer-based presentation of these methods can be found on the CD-
ROM ‘What to do when you can’t learn the times tables.’ by Steve Chinn (see
Appendix 1).





Chapter 8
Computational Procedures
for Addition and Subtraction

The child’s knowledge of basic facts concerning addition and subtraction can
now be extended to longer computations. Good teaching will always help a
dyslexic to at least reduce classroom learned difficulties (rather than learning
difficulties), but you still need to understand and adjust to your learner to
maximise the chances of effective learning (Miles and Miles, 1992, 2004).

Our experience with dyslexics leads us to think that some apparent deficits
occur because a procedure appears to have no reference or rationale, which
makes the knowledge seem relevant or distinguishable. For example, directions
for finding your way on a journey that rely solely on instructions for turning
‘left’ and ‘right’ are less likely to be remembered than directions that include
landmarks. The landmarks make the directions more ‘real’ and concrete.
There is also the ever-present potential influence of Buswell and Judd’s (1925)
observation regarding the impact of a child’s first experience of learning new
material. The first experience will be a dominant memory, which could become
problematic if it is an incorrect experience, for example, the child may have
been told in early subtraction lessons, ‘Take the little number from the big
number’.

Addition and subtraction can be taught using multisensory methods and
these methods have dual purposes. First, the child has the benefit of input
through more than one sense and, second, the child has concrete experiences
to which he can relate the abstract symbols called numbers and the abstract
concepts of addition and subtraction. Thus the child may learn to understand
an algorithm rather than just apply it mechanically. The use of concrete
materials should also enhance estimation skills, by giving a sense of the size
of the numbers involved. Kennedy (1975) refers to research that supports
the seemingly obvious statement that children perform better when using
algorithms that they understand. Madsen et al. (1995) refer to the benefits
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of teaching concepts. The use of multisensory teaching in mathematics makes
understanding more likely, especially if the materials are used so as to give
concrete meaning to the abstract concept.

There have been, however, some cautionary words. Hart (1989) cautions
that children do not always relate the ‘bricks’ to the ‘sums’. Indeed some may
not be ready for this transition. Thus concrete materials must be accompanied
by the written symbols and the teacher must watch his pupils to see if the
connection has been taken on board. You must also remember that children
do not all have the same cognitive style and therefore you should encourage
the use of global overviews, estimates, detailed algorithms, documentation and
evaluation (checking), remembering that some of these operations are more
related to one end of the learning and cognitive style spectrum than to the
other.

Finally, we believe there is great value in teaching addition and subtraction
together. We feel that relating the two operations reinforces understanding of
the algorithms used, especially the renaming process. Linking the operations is
as important to developing number sense as linking the numbers.

Estimation
Estimates and evaluations should be encouraged as they serve several purposes.

1. Some dyslexics are likely to transpose numbers so that, for example, 13
becomes 31. Estimates and appraisals reinforce the need to check answers
(before and after they have been calculated) and help the learner to see his
possible errors. We have found that checks made after a break from the
work are often more effective than immediate checks.

2. Estimates and appraisals should be used to check results obtained using
calculators, where dyslexics are prone to press the wrong keys (possibly
also in the wrong sequence).

3. Estimates are often a real-life mathematics calculation. For example, a
driver may only need to know roughly how many litres of petrol he can
buy for £10 rather than to have an answer to three decimal places.

4. Estimates can (and should) use less threatening numbers, requiring the
learner to interrelate numbers again.

Addition
Work on the computational procedures for addition should be preceded by a
review of place value. You need to remember the dyslexic’s need for continual
reminders and memory refreshers. Over-learning is an important part of any
long-term tuition plan and re-establishing the precursors of a new topic reduces
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the sources of potential failure. Consider the following example:

38
+ 27

515

The child adds the unit digits to obtain 15, but fails to realise that the 1
represents a ‘ten’ and should be added into the tens column. Errors such as
these are less likely if the child is taught to preview and review the value of his
answers. Again, you should be trying to encourage the child to be flexible in
his cognitive processes.

The use of concrete materials adds a multisensory dimension to the teaching.
You need to keep in your mind the level of abstraction of the materials you
are using and to remember to link the concrete to the symbols.

A developmental programme for teaching addition and subtraction

The programme is illustrated using two problems:

253 + 312 and 458 + 376

which are added and then used as subtractions:

565 − 253 and 834 − 458

Start with 253 + 312.

Stage 1

You need a place-column card, some base-10 blocks and a sheet of paper on
which the sum can be written as the calculation progresses.

Set the numbers up on a place-value board in base-10 blocks (Figure 8.1).
Write the sum on the paper. Tell the child to add (combine/put together) the
unit blocks (3 + 2), which gives him 5 unit blocks. Write 5 in the units column
of the written sum.

Now tell the child to add the ten blocks (5 + 1), which gives him 6 ten
blocks in the tens column. Write 6 in the tens column of the written sum.

Move to the hundred blocks and tell the child to add/put together the
hundred blocks (2 + 3), which gives him 5 hundred blocks. Write 5 in the
hundreds column of the written sum.

Look at the whole answer and identify it as 565.
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21

35

3

+

2

565

Figure 8.1

Stage 2

Repeat the process with coins, again writing each step of the sum on paper,
identifying the answer as 565.

You can discuss the idea of adding, putting together, leading the discussion
into the idea of taking apart, subtracting the numbers, in this case back to the
original two (unequal) parts.

Set up the problem 565 − 253.

Stage 1

Set up the 565 on a place-value card in base-10 blocks. Tell the child that he is
going to take away 253 from the 565. Write the problem on paper. The answer
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to the subtraction will be the number left behind. From the card take away 3
unit cubes, which leaves 2 unit cubes. Write this on the paper. Now tell the
child to take away/subtract 5 ten blocks, leaving 1 ten block. Write down this
step. Then the child takes away 2 hundred blocks, leaving 3 hundred blocks.
Write down the step.

The child should look at the card and the paper and see that there is
the number 253 in base-0 blocks at the bottom,312 is left at the top of the
place-value card, and that the written sum mirrors this.

Stage 2

The same procedure is followed using coins instead of base-10 blocks.
The subtraction problem and its answers should be reviewed and related to

the equivalent addition problem.
Now set up the second problem, 458 + 376.

Stage 1

Set up the numbers on a place-value board in base-10 blocks (Figure 8.2a).
Tell the child to add (combine/put together) the unit blocks (8 + 6), which
gives him 14 unit blocks. You can then discuss this, looking at 14 as four
units and one ten. The 10 unit blocks can be traded for one 10 block. This is
also shown in symbols, so the child relates the written algorithm to the blocks
(Figure 8.2b). Write this step on paper.

Then tell the child to add the 10 blocks (5 + 7 + 1). Encourage the same
type of discussion, that is the child has 13 ten blocks, which should be viewed
as 100 and 30, that is one 100 and three 10’s. The ten 10 blocks are traded for
one 100 block and the operation is written in symbols (digits) so that the child
relates the written algorithm to the concrete manipulative aids (Figure 8.2c).
Write this step on paper.

Finally, the hundreds column is considered. The blocks show 4 + 3 + 1 in
100 square blocks, giving a total of eight 100 blocks. Then, take the child
through the algorithm again, just in symbols, reminding him of the blocks as
each place value is added. Write this step on paper.

Look at the answer and identify it as 834.

Stage 2

Repeat the process with coins, explaining how a maximum of 9 pennies is
allowed in the units column and the consequent need to trade lots of 10 × 1p
for 1 × 10p and 10 × 10p for 1 × 100p (£1) (Figure 8.3).

Now the addition can be reversed as an example of subtraction. The problem
is 834 − 458.
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H T U

4 5 8

+

3 7 6

Figure 8.2a

Stage 1

Set up the problem on a place-value card with base-10 blocks, so there are
8 hundred blocks, 3 ten blocks and 4 unit blocks. Tell the child that he has
to take away 458, that is 4 hundred blocks, 5 ten blocks and 8 unit cubes
and identify the number left. Each step with the blocks should be written (as
numbers) on paper.

Tell the child to start with the units column and take away 8 unit cubes.
Obviously he cannot do this with only 4 unit cubes available. The subsequent
discussion can look back at the addition when 10 unit cubes were traded for
1 ten block and explain the need to reverse this for this subtraction, which is
the reverse of addition. (Sometimes the authors use the technique of keeping
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Figure 8.2b
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+

TH U

54 8

38 4

731 1 6

Figure 8.2c

H T U

4 5 8

3 7 6

Figure 8.3

the traded blocks from the addition ready to use in the subtraction, adding
further evidence to the interconnection). Thus, a 10 block is traded for 10 unit
cubes and the written version mirrors this.

A similar process deals with the subtraction in the tens column. The trading
is now to take 1 one hundred block and trade it for 10 ten blocks (a ‘tenty’).
The subtraction in the hundreds column is straightforward. For both these
steps, the written version should mirror the concrete materials.

It is also a method that enables the break down/conservation of the number
to be discussed. So, 834 has become

7 hundreds 700
12 tens 120
14 units 14
which add up to 834

Stage 2

The same procedure is followed using coins.
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A final example addresses one of the most frequent sources of error, that
is, problems that include a zero. For example, 507 + 322 and 603 − 247. The
reader will be able to extend the previous examples to cover this important
extension.

Estimation

In an addition problem such as the one above (458 + 376), the child can be
taught various accuracy levels of estimation. At the simplest level, the sum
is reduced to the hundred digits (400 + 300). At a more sophisticated level,
the sum can be presented as 450 + 350 + 30, with the child seeing 458 as
approximately 450, but with 8 left over. The 376 is seen as 350 and 25. The 8
from 458 and the 25 from 376 are combined to give an estimate of 30 and the
total 450 + 350 + 30 = 830.

The grasshopper (see Chapter 3) may even tackle the complete calculation
along these lines, combining convenient parts of the two numbers and mopping
up the remainders. For example, he may take 24 from the 458 to make 376
into 400, and then add on the 434 that is left. He may take out 350 from 376,
450 from 458 and combine these to make 800, which can be put to one side
in short-term memory. Only 8 + 26 is left, which can be added using number
bonds for ten as 26 + 4 + 4 = 34. This is added onto the 800 to make 834.

Similar principles apply for estimating subtractions. For example, 834 − 458
might be seen as close to 858 − 458 or 834 − 434, both giving an answer of
400. Then, if the learner can decide whether the adjustment made the estimate
high or low, he can say that the answer is a little less than 400. If an accurate
answer is needed, then it could be by looking at the adjustment, say, in the
858 − 458 version, which was to add on 24, and hence the actual answer is
400 − 24.

These methods illustrate the advantages of breaking down and building up
numbers and finding the ‘easier’ numbers within the ‘harder’ numbers.

Column addition

The addition of a column of numbers requires somewhat different techniques
and can be a daunting task. There are two low-stress algorithms (Ashlock,
1982, p. 21) that may help. One (Figure 8.4) is more likely to appeal to
inchworms and the other (Figure 8.5) to grasshoppers.

In Figure 8.4, addition starts at the top of the units column with 7 + 8
giving 15. The stroke through the 8 is the tally for the 10 in 15, leaving the 5
units to add to the 4, making 9. Nine is added to 5 to make 14 and the stroke
through the 5 is the tally for the 10 in 14. This leaves 4 units to add to the 3,
making 7, which is added to the next 3, making ten. The stroke through the
3 is the tally for 10. The last unit digit, the 6, is written at the bottom of the
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Each/marks
a 100

34 7

89

42

56

39

33

67

64 3

+

Each/marks
a 10

Figure 8.4 Using tally marks for 10’s (and 100’s) thereby adding only one-digit
sub-sums

7

8940 + 60 = 100

7 + 8 + 5 = 20

4 + 3 + 3 = 10

30 + 70 = 100

90 + 20 + 90 = 200 42

56

39

33

67+

654

34

Figure 8.5 Casting out 10’s (or 20’s) using again number bonds for 10

sum. The tallies in the units column are counted. There are 3, so 3 is written
at the top of the tens column. The same procedure is now used to add down
the tens column.

Mental arithmetic

An extreme inchworm will probably try to visualise a written procedure, so
that 330 + 97 becomes

330
+ 97

which is then added as though on paper, whereas a grasshopper will try to use
numbers near to 10, 100 and 1000 or clusters of other numbers that make
up 10, 100, 1000, and so on. Thus, 330 + 97 becomes 330 + 100 = 430, and
430 − 3 takes the grasshopper to the right answer, 427. It can be helpful for
less skilled grasshoppers to ask themselves, ‘Is the answer bigger or smaller?’
than that obtained when adding a 100 so that the correct adjustment is made
with the 3.
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The latter process is usually a lesser strain on short-term memory, and
requires less knowledge of basic facts.

The same processes apply to subtraction, for example, 578 − 299. The
inchworm will visualise the sum rewritten as

578
− 299

which is a daunting task for those with memory problems!
The grasshopper will round the 299 up to 300, subtract to get 278, add on

1 to obtain the final answer of 279. As with addition, some may need to decide
whether the final answer will be ‘Bigger or smaller?’ than the intermediate
answer before dealing with the 1 used for rounding up the 299.

Teaching Subtraction as a Separate Exercise
Even though we feel there are many advantages in teaching subtraction
and addition together, there may be situations where subtraction has to be
approached separately.

It may be necessary for you to start by providing an overview to remind or
re-establish the concept and vocabulary of subtraction before teaching specific
algorithms. Some examples to which the child can relate, such as change from
shopping, and/or examples using manipulative aids, are suitable.

You should try to establish in the child’s mind a clear picture of the
component parts of the subtraction. It is usually unnecessary to use the
mathematical terms minuend, subtrahend and remainder, but the child needs
to understand the consequences of subtraction and should be able to relate it
to addition.

Subtraction without regrouping

This is the easiest process and acts as a good introduction, as well as reinforcing
the concept of subtraction and the identification of the component parts of the
sum. Thus, a subtraction problem such as

79
− 34

45

may be used to practise the use of manipulative materials such as money or
base-10 blocks. Such manipulative work may have to use a place-value card.
There is, as ever, a need to teach estimating and to re-emphasise its value as a
way to minimise errors.
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Subtraction with regrouping: the decomposition method

This method is well illustrated using base-10 blocks (and coins). As with so
much else in mathematics, the work here relies on previous concepts and
therefore these concepts may need attention before the main agenda is dealt
with. The main review here is to look again at the regrouping of numbers,
for example, 72 is also 60 + 12 (as spoken in French) or at the renaming
(a more descriptive term) of numbers such as 742 to the specific format
600 + 130 + 12.

Work on renaming three-digit numbers into this format can be investigated
and the consequent patterns derived. The following are some examples:

543 = 400 + 130 + 13
754 = 600 + 140 + 14
865 = 700 + 150 + 15
976 = 800 + 160 + 16

The application of this renaming process should lead on to subtraction
examples set up on a place-value board with the teacher talking the child
through the algorithm. For example,

742
− 386

The blocks (Figure 8.6a—used first, followed by money) should be moved by
the child and the progression should be from base-10 blocks to money, each
time writing the numbers as the manipulatives are moved. If the child seems to
understand the work, then you may ask the child to work with just the digits.
The child may well need to start with place-value columns drawn on paper.

Spatial and organisational problems can make the traditional layout too
confusing, at least at first, so an intermediate presentation may help. A separate
middle line is set up with all the renaming done at one time and before the
actual subtraction (Figure 8.6c).

Finally the place-value columns can be removed and the child works on
squared or lined paper (Figure 8.6d).

As in the addition/subtraction programme, examples that include zeros
should be demonstrated.

The equal-additions method

The method is based on the equation a − b = (a + 10) − (b + 10), with 10
added to both a and b, which keeps the difference, a − b, the same. It is a harder
method to explain to a child than the decomposition method, and Kennedy
(1975) quite rightly pointed out that children have more difficulty remembering
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H T U

12

130

600

Figure 8.6a

an algorithm they do not understand. It is also harder to provide multisensory
experiences that clearly illustrate this algorithm. Despite these reservations, if
the process can be mastered it is easy to reproduce. An ‘easy’ example may
clarify the process, for example,

320 − 90 becomes (320 + 10) − (90 + 10) = 330 − 100.

The explanation could be developed from such examples.
Subtraction by equal additions is quicker, and probably easier, than

decomposition as a mechanical process, but Kennedy’s comment should be
remembered as being particularly apposite for dyslexics, who often need a
concrete base on which to build their understanding and memory.

Mental arithmetic

The method of equal additions adjusts the numbers in the calculation and
this adjusting strategy can be extended into mental arithmetic. For example,
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H T U

minus 6

minus
80

minus
300

Figure 8.6b

H T U

−3 8 6

6 13 12

3 5

(c)

6

7 4 2

Figure 8.6c

(d)

−34 89 6

653

7 14 12

Figure 8.6d
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342 − 197 can be made an easier calculation by adding 3 to both numbers:

342 − 197 = 345 − 200

This method is easier for some children than a similar procedure where the
197 is rounded up to 200, 200 is subtracted from 342 and 3 is added back
onto the resultant 142.

A subtraction such as 411 − 115 does require the latter strategy. The
difference is approximately 300 but is less than 300. The question, ‘Is the
answer bigger or smaller?’ comes into play again. This evaluation as to
whether the answer is more than 300 or less than 300 is fundamental to the
success of this strategy. If 4 is added on to 411, then the subtraction gives an
answer of 300. The added-on 4 now needs compensation, so 300 − 4 = 296,
which is the correct answer.

As before, the ability to perform mental arithmetic with facility is greatly
enhanced by an understanding of the interrelationships between numbers and
the relationship between addition and subtraction, so that 411 − 115 is seen
to be close to but less than 300 and 197 is seen to be 3 short of 200. Such
calculations also involve and develop estimation skills.





Chapter 9
Multiplication

Introduction
This topic will be used to illustrate the use of a full programme of instructions.
The principles of this structure are applicable to other topics. The work moves
from a manipulative aid, which is a direct representation of the problem, to
a model (in this case, area), to purely written symbols and an algorithm that
links back to the concrete model. Whenever possible, more than one written
method is given, so as to acknowledge the spectrum of cognitive styles. The
multisensory introduction is used to lead into flexible cognitive processes and
give an introductory overview.

The Special Case of Multiplying by 10 and Powers of 10
The first stage is to secure estimation skills. Estimation skills in multiplication
(used, for example, to back up calculator work) centre on an ability to multiply
by tens, hundreds, thousands, and so on. In our experience, this relatively basic
operation needs frequent review.

The pattern of multiplying by 10 must be explained in terms of the basic
concept and the implication on place value, rather than solely in terms of the
purely mechanical action of ‘adding on’ zeros, a procedure which generates
horror in the minds of mathematicians, yet is readily adopted by children (who
tend to act so pragmatically).

The objective is to explain that multiplying by 10, 100, 1000, and so on,
moves numbers up in place value, but that the digits themselves do not change.
To illustrate this, consider 536 × 10.

• 6 × 10. Use a place-value board and put six unit cubes in the units column.
Remind the child of the 10-times table and the exchanging of ten blocks

133
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for unit cubes. Then ask the child to exchange each unit cube for a ten
block, placing the ten blocks in the tens column. Give the child a sheet
of paper with place-value columns on it and ask him to write the 6 and
the 60 in numerals. Discuss the 60 being ten times bigger than the 6 and
emphasise that the 6 has moved from the units column to the tens column
(Figure 9.1a).

H

H

Th H T U

T U

T U H T U
6

6 0

H T U
0

0
3

3 0

Tb H T U
05 0
00 05

(a)

(b)

(c)

Figure 9.1

• 30 × 10. Repeat the process, but exchange three hundred blocks (squares) in
the hundreds column for three ten blocks in the tens column (Figure 9.1b).

• 500 × 10. Repeat the process again exchanging five thousand blocks (cubes)
for five hundred squares (Figure 9.1c).
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• 536 × 10. Repeat the entire process all in one example (Figure 9.2). Then
discuss what has happened to each digit, the relevance numerically, the
pattern, what has changed and what has not changed in the process. The
procedure can be illustrated with place-value number arrows (Figure 9.3)
as a further reinforcement of the concept.

Th H T U

Th H T U

5

5

3

3

6

6

0

Figure 9.2

It should now be possible for the child to explain facts such as 849 × 10 =
8490, including the significance of the zero in the units column, and to restate



136 Mathematics for Dyslexics

5 0 0 0 .

3 0 0 .

6 0 .

35 6 0 .

Figure 9.3

that the order of digits remains the same. As ever, this work includes a
significant amount of revisiting of previous work and ideas.

A similar process can be used to teach × 100and × 1000 and other powers
of ten. Although this strategy is not as mathematically sound as we would
normally prefer, the relationship between the number of zeros in the multiplier
and the number of extra zeros in the result should be pointed out. The child
should also relate the number of place-value moves to the number of zeros in
the multiplier.

The child should practise the work, using the base-10 blocks for some
examples, and place-value columns and (squared) paper for others. He should
be encouraged to articulate his work and to review the underlying significance
of the procedure.

It may be useful to extend multiplication by powers of ten to examples such
as × 20, ×60, ×300 and so on. The method advocated is a two-stage process,
so that × 20 is calculated as × 2 and then × 10 (or × 10 and then × 2). The
child should compare the results of × 2with × 20 by using base-10 blocks, for
example, 42 × 20:

42 × 10 = 420 (Figure 9.4a)
42 × 2 = 84 (Figure 9.4b)

giving

42 × 20 = 42 × 2 × 10 = 840.

The child needs to realise that, if the multiplier is ten times bigger, then the
result is ten times bigger. This procedure is, of course, similar to the times-table
strategy of using × 2 twice for × 4.

Multiplication
Times-table facts are one digit times one digit operations. This chapter extends
this to two digit times one digit, then to two digit times two digits and thus, by
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Figure 9.4

using the same models, to any multiplication. The model of multiplication used
is area. This model is advocated because it can be extended to other aspects of
multiplication (such as fraction times fraction) (Sharma, 1988).

Introducing the model

For this model, the child needs some square counters (Figure 9.5). The three
piles illustrate three lots of four. This can be discussed as repeated addition,
4 + 4 + 4, leading to the more economical representation 3 × 4. The counters
are then rearranged to represent area.

The concept of a × b as area can be discussed in real-life terms, such as
carpet tiles, areas of walls for painting, and so on.

Two digit times one digit

Consider 23 × 4. As with × 20, the child is going to learn a two-stage procedure
(not the same one). This procedure was used in Chapter 7 for the 2-times table,
where, for example, 7 × 2 was treated as (5 × 2) + (2 × 2), a process of
breaking down followed by building up again.

Set up the multiplication problem using base-10 blocks (Figure 9.6a). The
area is divided into two sub-areas. One area is made up from tens blocks and
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Figure 9.5

the other area from unit blocks. The two areas can be physically separated to
show 20 × 4 (Figure 9.6b) and 3 × 4 (Figure 9.6c). The two areas can then be
brought back together to show 23 × 4 (Figure 9.6d).

4

23

(a)

(d)

4

4

3

20

(b)

(c)

Figure 9.6

At each step, the written symbols are shown to the child. The demonstration
shows and separates the two partial products. The child should set up some
areas for himself and show the partial products both as blocks and as written
digits.

Two digit times two digit

The model is again area. Consider the example 22 × 31. The inefficiency of
repeated addition could be reviewed for this examples:
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22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22
+ 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22
+ 22 + 22 + 22 + 22 + 22 + 22 + 22 + 22

Indeed, this overwhelming presentation would suggest some grouping and
could be another route into the area model and the final algorithm.

1. Set up the multiplication problem as base-10 blocks (Figure 9.7a). The
blocks illustrate area. They are movable, so that the four sub-areas can be

30

30

30

30

30 × 20 = 600

20

2 2

20 20

20

2

(a)

(b)

(c)

Figure 9.7
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separated (Figure 9.7b). These partial products allow a difficult problem to
be broken down into smaller, easier steps. The child can handle the blocks
and physically break down the problem with the blocks, as well as with the
written digits.

2. The four constituent areas are discussed, starting with the largest area,
the area formed by the ‘hundred squares’. This offers a first estimate. The
blocks provide a very real model of this (Figure 9.7c). The estimation sum
is written by the child in digits (30 × 20 = 600).

3. The four areas are examined (Figure 9.8). They are 30 × 20; 1 × 20; 30 × 2;
and 1 × 2.

30 × 20 tens × tens = 600
1 × 20 ones × tens = 20
30 × 2 tens × ones = 60
1 × 2 ones × ones = 2

[total = 682]

This algorithm is (a + b)(c + d) = ac + ad + bc + bd.

30 × 2 1 × 2

1 × 20

2

20

30 × 20

30 1

Figure 9.8

The child needs to see and handle each partial product in order to see
that the area does break down into constituent parts. Each partial product
should be written down in digits.

4. The problem is drawn to scale on squared paper by the child, and this will
look like Figure 9.8. The subdivisions are drawn in, and the relationship
between the areas and the numbers in the partial products is explained.

5. A problem is presented as numbers, for example 22 × 31. The partial prod-
ucts are written down and calculated. The child is asked to identify the
‘estimate’ of the partial product.
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6. The problem is drawn to scale again on squared paper and only one subdivi-
sion is made, leaving out two areas (Figure 9.9). Stated in numbers, the two
areas are 20 × 31 and 2 × 31. The algorithm is based on (a + b)c = ac + bc.

31

20

2

20 × 31

2 × 31

Figure 9.9

The calculation is as follows:

31
×22

31 31 620 (31 × 20)
×20 ×2 62 (31 × 2)
620 62 682 (31 × 22)

The child is still doing four multiplications as before, but he is combining
two on each line of the calculation.

Compare the two methods as used for another example, 54 × 23:

54
×23 54

1000 (50 × 20) ×23
80 (4 × 20) 1080 (50 × 20)

150 (50 × 3) 162 (54 × 3)
12 (4 × 3) 1242

1242

The child should choose the method that best helps his short-term memory,
organisation, and spatial problems.

Mnemonics may help the child

1. FOIL (Figure 9.10)

The First two digits are multiplied together: 50 × 40.
The Outer two digits are multiplied together: 50 × 3.
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The Inner two digits are multiplied together: 2 × 40.
The Last two digits are multiplied together: 2 × 3.

2. The smiley face (Figure 9.10). The lines join the numbers that have to be
multiplied together. There can, however, be place-value problems with this
mnemonic.

5 2

50 × 40 50 × 3 40 × 2 3 × 2

4 3×

F O I L

Figure 9.10

These two ‘tricks’ are merely mnemonics and are not meant for develop-
ing any understanding of the algebra involved. However, a limited use of
mnemonics may be a survival skill for some students.

Estimation
While calculators provide a relatively stress-free way of multiplying, dyslexics
have a tendency to press the wrong number keys, get the numbers in the wrong
order, use the wrong operation key or use the right operation key at the wrong
time. A pre-estimate and a post-evaluation are, therefore, important.

The area model provides a good picture of how to estimate on the basis
of the biggest sub-area plus or minus the other sub-areas. It also allows the
child to evaluate his estimate and see if it is high, low, or fairly accurate. Some
examples will explain this.

• 33 × 54 (Figure 9.11a). This is estimated at 30 × 50 = 1500 and can be
seen to be an underestimate, but reasonably close to the accurate answer.

• 42 × 78 (Figure 9.11b). Subtract to refine the estimate. Note that the 78 has
been estimated up to 80 so that the length of the rectangle drawn is longer.
The shaded part has to be subtracted if refined estimates are required. This,
then, is estimated at 40 × 80 = 3200 and can be seen to be very close to
the accurate answer with the extra 2 × 40 (which has to be subtracted) not
quite compensating for the 2 × 78 (which has to be added).

• 51 × 92 (Figure 9.11c). Subtract to refine the estimate. Note that the 92
has been estimated up to 100. This is estimated at 50 × 100 = 5000 and
can be seen to be an overestimate with 8 × 50 (which has to be subtracted)
being bigger than 1 × 92 (which has to be added).
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Figure 9.11

Extension
The principle of the algorithm for a two digit times two digit calculation can
be readily extended to three digit times three digit calculations, and so on.
The spatial organisation problems may require the child to work on squared
paper (see Chapter 15), and in earlier examples the child may benefit from
writing or articulating what each partial product signifies. The principle of
developing work from manipulative aids, through visual models, to symbol
work is equally applicable to ‘harder’ examples.

These procedures integrate multisensory experiences with sound mathemat-
ical algorithms and provide the child with some concrete experiences and
pictures that will help him to remember what might otherwise seem to him to
be a meaningless random process. The structure provided by the identification
of the partial products (and the number of partial products involved) helps the
child and should help you, the teacher, with diagnosis of errors and subsequent
remedial input.





Chapter 10
Division

Introduction

In this chapter, suggestions for teaching the concept of division and division
by single-digit numbers and powers of 10 are discussed. For more complex
divisions, estimation followed by the use of a calculator is recommended,
though an alternative algorithm to the traditional one is discussed, should you
want to leave the child with at least one method for computation. Once again,
this algorithm is based on linking the operations and making full use of the
easily accessible facts.

The actual process of long division is very demanding on many of the skill
areas that dyslexic students find the most difficult. The algorithm traditionally
used for long division requires good skills in sequencing, memory, knowledge
of basic facts and spatial organisation. It is also difficult to model the logic of
the traditional algorithm with manipulative materials.

Anghileri (1999) observes that ‘there is now evidence that the procedural
approach encouraged by the traditional algorithm leads pupils to ignore the
meaning of the numbers as they try to remember complex procedures they
have learned without really understanding’.

It is worth considering the problems dyslexic learners face in this particularly
difficult topic. The extent of these difficulties may be alleviated by references
to, and building on, other work the child has covered and by interrelating
concepts (such as subtraction and division) so as to try and make old and new
work mutually supportive. Once again, the child’s existing knowledge makes
a good baseline. You need to capitalise on existing knowledge and thus should
begin with informal diagnostic work, which is intended to find out what the
child knows and which examples and illustrations he relates to.

145
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The language of division can lead to early problems and can be an initial
block in understanding the concept and processes of division. A typical
early question could be, ‘Divide 36 by 6’ or ‘36 ÷ 6’. The order in which
the numbers are stated is the opposite of that demanded by the traditional
algorithm, 6)36.

Furthermore, ‘divide’ is an abstract word and children are more likely to
be familiar with phrases such as ‘How many 6s are there in 36?’ or ‘Share
36 among 6 people’. These phrases relate more readily to the manipulative
materials and are easier for the child to grasp, so the move from concrete to
symbolic requires the teacher to be aware of these language needs of the child
as well as of any lag in his conceptual development.

The spatial and organisational demands of division algorithms are consider-
able. The traditional algorithm for 6)378 requires the child to work from left to
right, writing the answer at the top, working from the hundreds to the tens and
then to the units and carrying down numbers as the problem proceeds. These
requirements are almost directly opposite to those for addition, subtraction
and multiplication. Furthermore, to help meet these directional demands, the
child may well need support in getting the correct place values on the answer
line. Extra support for this accuracy can be provided by teaching estimation
skills and by encouraging the child to frame an overview the question (which
may include rephrasing it.)

Introduction to Division
The initial aim is to introduce (or review) division in at least four ways:
as sharing out or dividing up into parts; as finding out how many numbers
there are in; as the converse of multiplication; and as repeated subtraction.
Each of these has a different vocabulary. An introductory activity of taking
(small) numbers of counters and dividing them up into groups helps the
child to see the processes of division in action and the interrelationship
between division and subtraction. You can then extend the child’s perception
of the activity using structured questions and representations of the ‘dividing
up’ actions.

Example

Take 12 counters and place them randomly on a table (Figure 10.1). Ask the
child to count them. (Some children will group the counters automatically
when they do this.) Then ask the child to share/divide them into three groups.

Ask the child to reorganise the groups into rows and columns. Then the
following relationships can be examined as manipulatives and as equations.
Again flexibility of language should help strengthen the concept:
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Figure 10.1

Four lots of 3. (How many 3s in 12?)
Three lots of 4. (How many 4s in 12?)
3 goes into 12 four times.
12 divided by 3 gives 4.
Repeated subtraction of 3 from 12.

This work can be related back to the table square, so that its use as a division
square can be taught. Repeated subtraction relates division to subtraction and
acts as a first exposure to a later algorithm:

4 × � = 12 12 ÷ 3 = 4
3 × � = 12

12
3

= 4
4

3
)
12

12 − 3 = 9
9 − 3 = 6
6 − 3 = 3
3 − 3 = 0

Thus, the child learns the relationship between division and multiplication,
the idea of dividing up, the phrasing ‘How many x’s are there in y?’, the
concept of division as repeated subtraction and the idea of sharing equally.
Simple division facts can be presented as multiplication facts with ’gaps’ and
the child can be shown how to use a table square to obtain division facts.
Again, the child is taught to use the interrelationships between numbers and
operations in a way that makes maximum use of known facts, rather than the
rote learning of seemingly unrelated facts.
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Obviously many other examples besides 12 should be used, with the
possibility of phasing out the (multisensory) manipulative aids as the child
becomes more confident in his knowledge and understanding.

The relationship between the size/value of the divided number, the divisor
and the answer can be shown by examples such as dividing 12 by a series of
divisors: 12, 6, 4, 3, 2, 1. Work of this type (using, as ever, written presentation
alongside manipulative work) helps the child acquire estimation skills. At the
least, the child is learning that, the bigger the divisor, the smaller the answer,
and the smaller the divisor, the bigger the answer (setting the groundwork for
division by numbers less than one). Once more the question, ‘Is the answer
smaller or bigger?’ comes into play as the precursor to any calculation.

Dividing two-digit numbers by one-digit numbers, with remainder

Although the work described so far could be used to introduce a child to the
topic of division, it is best considered as an early stage of remediation. For
these early confidence-building stages, remainders provide less confusion than
answers with decimals or fractions. Thus, 14 ÷ 4 is presented with counters
(Figure 10.2). It is apparent that the answer is 3 and that there are two counters
left over or remaining. ’Remainder’ seems to be a reasonable name for these
counters.

Figure 10.2

Dividing two- and three-digit numbers with renaming (of tens and hundreds)

Examples

65 ÷ 5

An efficient procedure for dividing 65 into five equal parts requires the child
to progress from just counting out 65, unit by unit, into five groups. He has to
learn how to start with ‘How many 10s can I place in each of the five parts?’,
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and then move on to ‘What do you do with the 10 left over and what do you
with the 5 units from the 65?’ In other words, this is quite a leap in skill and
understanding. The demands of the algorithm on deficit areas are significant
(see the Introduction to this chapter). Again, the principle is to relate the
symbols to a concrete base and make the algorithm relate to a manipulative
procedure. A structured approach that pre-empts as many of the difficulties as
possible and creates this concrete image for the child is advocated:

• 65 is presented in base-10 blocks (Figure 10.3a).
• Five tens are taken out, one to each of the five parts (Figure 10.3b).
• The ’left over’ 10 is traded for 10 unit cubes and added to the existing 5

unit cubes.
• The 15 unit cubes are shared out, adding 3 unit cubes to each of the five

parts, making a total of 10 + 3, or 13 (Figure 10.3c).

trade or

decompose

add in the 5
units from

(b)

(a)

(c)

1
6
5

55)
0

1
6
5

155)
0

3

the 65 and
divide by 5

Figure 10.3

At each stage, the written algorithm matches the base-10 manipulatives.
You can explain the significance of each move and relate it back to other work.
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For example, the concept of trading tens for units is used in subtraction.

504 ÷ 4

• A similar structure is presented, with 504 shown in base-10 blocks. Here,
the first move is to take out four hundred blocks and place one in each part
(Figure 10.4a).

• This leaves one hundred block, which is traded for 10 ten blocks, which
are placed in the tens column. This highlights the previously empty tens
column and emphasises the need to mark its presence in the answer line.
Eight 10 blocks are removed, two for each part (Figure 10.4b).

• The two remaining ten blocks are traded for unit cubes, giving 24 unit
cubes to share into the four parts, six in each (Figure 10.4c).

• The final answer is 126.

Note the use of place-value columns in the written version (given alongside
the blocks in the parts of Figure 10.4). (Other suitable manipulative aids are
money and bundles of cocktail sticks.)

Other examples should be used to consolidate this method. When the
manipulative-aid stage is phased out, the use of the place-value lines should
remain as it tends to eliminate the common errors of starting the answer in
the wrong place or missing out a place as in 2)408, which is often erroneously
answered as 24.

The principle is to share out the biggest place value equally, trade the
left-overs to the next place-value down and share those equally, and trading
down again so that the procedure can be seen as a repeating process.

Some alternative algorithms

Ashlock et al. (1983) offer two interesting alternatives, both based on repeated
subtraction. Both require careful presentation. One of these is quite demanding
on directional skills, but both offer a method that helps the child who cannot
work out where to start with. Both methods are based on subtracting multiples
of the divisor. The pyramid algorithm (Figure 10.5a) allows the child to choose
any estimate for his multiples. It also acts as a half-way house to the traditional
algorithm, if that is the goal.

The other algorithm has been adapted by Chinn to utilise the facts dyslexics
can calculate readily, that is multiples of 1, 2, 5, 10, 20, 50, 100, and
so on, followed by repeated subtraction. The algorithm also fits into the
developmental aspects of the programme.

The first step is to set up a table of multiples, based on an easy pattern
and using the facts that are most likely to be easy for a dyslexic learner
(Figure 10.5b).
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H T U

1 2 6
4) 5 0 4

4 0 0
1 0 4

8 0
2 4
2 4

100(a)

(b)

(c)

20

6

126

504 ÷ 4

Figure 10.4
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49 1 ×

2 ×

5 ×

10 ×

20 ×

50 ×

100 ×

200 ×

500 ×

16

32

80

160

320

800

1600

3200

8000

5024

−3200
1824

4

5

20

20
6 294

−120
174

−120
54

−30

24

−24

0

20 + 20 + 5 + 4 = 49

(a) (b) (c)

−1600
224

−160
64

−32
32

−32
0

200

100

10

2

2

314

Figure 10.5

Once 1×, 2×, 10× and 5× are written, the other multiples follow a pattern
that is the same for any division problem. This step also provides an estimate.
In this case, the answer lies between 200 and 500 and since 5024 is nearer to
3200 than to 8000, the estimate must be closer to 200 than 500. Thus, the
procedure encourages the evaluation of the answer too.

The division is then tackled by the subtraction of these multiples of 16
(Figure 10.5c). The method is related to our procedures for multiplication,
showing division to be the reverse operation. It can be illustrated by partition-
ing off an area (Figure 10.6) in line with the subtractions as documented in
Figure 10.5c.

The authors’ experience of this method is that our Year 7 learners can do
this procedure with concrete materials (which act as an introduction to the
method), but usually find the digits too difficult. By Year 9, the upper groups
adapt to it readily. This method provides a good illustration of ‘readiness’ (see
Chapter 15) and the teacher should watch the class carefully to ensure that the
method is understood.

Estimating
The ability to multiply the divisor by powers of 10 can be used to act as
another useful and consistent estimating aid.
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5024

1824

224

64

32

0

−200 × 16 that is −3200

−100 × 16

−10 ×

−2 × 16

= 1600

= 160

= 32

−2 × 16
= 32

 16

and

The
‘Chunks’

200
100

10
2

314
+2

Figure 10.6

Example

1875 ÷ 15

The divisor is multiplied by increasing powers of 10 and the product is
compared with 1875:

15 × 10 = 150
15 × 100 = 1500
15 × 1000 = 15000
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So, the answer will lie between 100 and 1000, but is much closer to 100. It
is, therefore, a three-digit answer and by comparing/evaluating 1875 with 500
and 5000 it can be seen that the quotient will be closer to 100 than to 1000. (A
more sophisticated appraisal of 1875 suggests a close estimate of 120). Again,
the link between division and multiplication is made and there is another
chance for the child to reinforce his ability to multiply by powers of 10.

The ability to judge where the answer will lie is an extension of the skills
acquired in working with number lines, including empty number lines. It may
well be beneficial to quickly revisit the skills associated with using these lines
before attacking this new skill.

Division by Powers of 10
This is the converse of estimating. It requires an understanding of place value,
so a review of this concept can be a precursor to the topic. The child needs
to remember that the place a digit holds in a number controls its value by a
power of 10 (for example, in 58725, the 7 is the third number in, it is in the
hundreds column and its value is 7 × 100 or 700).

Division by powers of 10 produces a pattern, which can be illustrated by
activities where the learner uses base-10 blocks to divide numbers into 10 parts
and thus is drawn to the conclusion that (as with multiplying by powers of ten)
the numbers do not change, but only their place value changes. At this early
stage, it is advisable to avoid answers that are decimals. A series of base-10
block activities leads to series such as the following:

400 ÷ 10 = 40 400 ÷ 100 = 4 4000 ÷ 1000 = 4
440 ÷ 10 = 44 4000 ÷ 100 = 40

4400 ÷ 100 = 44

4000 ÷ 10 = 400
4400 ÷ 10 = 440
4440 ÷ 10 = 444

It will almost certainly be necessary to use place-value columns to emphasise
the way the numbers move. A structured programme with manipulative aids
(base-10 blocks and/or money) and written digits should establish the idea of
movement and values in the child’s mind and lead him to some mnemonics.
If this is so, then the move on to quotients that are decimals does not present
such a difficult hurdle (see Chapter 13).

Division by Multiples of Powers of ten
In problems such as 4000 ÷ 20, 3000 ÷ 2000, 4500 ÷ 50, and so on, the child
can be asked to take a two-stage approach: dividing first by 10 and then by
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2; by 1000 then by 2; by 10 then by 5. This can be a multisensory activity
with base-10 blocks. (It also relates to the making of fractions such as 1/6 by
a two-stage process: ÷2 and ÷3 and back to times-table strategies, where 4×
can be accessed as 2× and 2×.)

Conclusion
Further work may use calculators, provided, as ever, the child has the ability
to estimate and check the answers. The work outlined in this chapter provides
the child with the basic concept and the skills of division by subtraction of
‘chunks’ and the ability to estimate.





Chapter 11
Fractions, Decimals and
Percentages: An Introduction

Introduction
The mathematics dealt with in the previous chapters has been concerned with
using numbers to describe things. This chapter is about describing parts of
things with numbers. There are three ways mathematics goes about this task,
fractions, decimals and percentages, with important differences between the
three forms. Each form is dealt with in a chapter of its own, but this chapter
describes the essential characteristics of each and how they interrelate.

Fractions is a topic which causes difficulty for learners across the world
and considerable anxiety for adults. In developing the Test of Cognitive Style
(1986), we had to take out an item on fractions because it caused so much
anxiety in the trials. Subjects would just stop at that item and not attempt any
more items, even though they were not about fractions.

However, we do use some fractions, mainly half and quarter in everyday
life, decimals, mainly in money work, for example, £4.63 or $13.99, and
percentages, for example, as interest rates for money and for discounts at sale
time in shops.

This chapter will explore the relationship between these formats in an
attempt to strengthen an understanding of each format. As ever, we will work
from the familiar to the new, so our key relationship will be

1/2 = 0.5 = 50%

Fractions
Fractions are the most informative way of describing parts of things, but
only if you understand the concept. They are introduced in primary schools

157
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with an expectation from teachers and parents that children should be able to
understand and work with fractions. Memories tend to be selective here since,
as said above, many people have difficulties dealing with fractions. One of the
main reasons for this is that fractions do not do appear to do what numbers
have previously done.

Fractions use two numbers to describe one quantity, which is the first
challenge to previous experiences with numbers. Thus, a half is written as 1/2,
a quarter as 1/4 and three-quarters as 3/4. The addition of fractions challenges
earlier experiences of addition and subtraction (Skemp, 1971) as is illustrated
below:

1
5

+ 2
5

= 3
5

The addition sign operates on the ‘top’ numbers of the two fractions to be
added, but not on the two ‘bottom’ numbers.

In the series of fractions,

1
2

,
1
3

,
1
4

,
1
5

,
1
6

as the ‘bottom’ number gets bigger, the fraction gets smaller, which is the
second challenge to previous experiences with numbers.

Later in this chapter we will look at the addition and subtraction of fractions,
for example,

1
3

+ 1
3

= 2
3

or

2
5

− 1
5

= 1
5

Here we add and subtract the number at the top of the fraction, but the
numbers at the bottom of each fraction remain unchanged. Thus, the + and
− only appear to apply to half of the numbers! This is the third challenge to
previous experiences.

Many teachers and students make use of paper folding to illustrate how
fractions work. In this book, the idea is taken a step further. The easy, folded-
paper methods are allowed to dictate how questions and answers on fractions
should be written down. The written versions should then be just as easy to
understand. Drawings of folded fractions provide a means of recording and
communicating a point understood from the paper version. They form a step
between the folded-paper fractions and the written fractions.
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We recommend that square or close-to-square shapes be folded and drawn
in all cases. We advocate folding in two dimensions, mainly to comply with our
ongoing model using area for (a times b) calculations. The practice of using
thin strips of paper masks the relationship, which is invaluable to exploit,
between forming fractions and multiplication of fractions (interpreted as two
dimensional in Chapter 12). The other popular alternative, the use of circles
(or circular cakes), requires an understanding of harder concepts, such as terms
related to angles and circles and also, how, for example, a circular piece of
paper can be folded easily into equal fifths.

Terminology

A fraction such as 4/5 will be referred to as ‘part’ of a whole thing. The fraction
is made up of equal fifths, which will be referred to as ‘segments’, rather than
as parts of the fraction. This avoids the duplicate use of the word ‘parts’, and
children will be familiar with the notion of segments of an orange.

The terms ‘denominator’ and ‘numerator’ are confusing for many dyslexic
students. However, if students do wish to have a way of knowing which means
what, then it may help to see the structure of ‘denominator’ as having ‘nom’ or
‘name’ included (Brown et al., 1989). Fifth or tenth or quarter can be seen as
the name of the fraction, that is, the name that tells you how many segments.

What is a fraction?

Part of a whole thing

Start by discussing with students what they know about fractions, in particular,
the ones they are familiar with in everyday life, that is, a half and a quarter.
Include in the discussion observations and questions such as the following:

Half of this square (or any object that can be divided exactly into halves and
quarters) is bigger than a quarter, yet we write a half as 1/2 and a quarter
as 1/4.

Are there other ways we can write the fraction 1/2, for example, half of a pound
(£) could be written as 50/100 or half of an hour as 30/60.

What do we get when we add 1/2 and 1/4?
What do we get when we halve a half?
How many halves are there in a whole, that is, in 1?
How many quarters are there in a half?
How many quarters are there in a whole, that is, in 1?
Can you have a bigger half (of a cake or pizza)?
Can you have an exact half of a pizza?
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These discussions set the basic rules for fractions and can be revisited for
checking a procedure or an answer, possibly using the question, ‘Is it bigger or
smaller?’

• The piece of paper in Figure 11.1a has one-fifth shaded in. It is divided into
five equal segments and one is shaded, so the fraction is written as 1/5.

• The fraction in Figure 11.1b shows three-quarters. The written version is
3/4.

Children can be asked to give the written form for other fractions, such as
those shown in Figure 11.1c.

(a) (b)

(c)

Figure 11.1

Whole things divided into equal segments

• Figure 11.2a shows a whole square of paper is five fifths (that is why they
are called fifths). This is written as 5/5 = 1 whole square. The number at the
bottom of the fraction indicates both the number of segments and the size
of the segments.

• The square in Figure 11.2b has been left as a whole. It can be written as
1/1 = 1 and called 1 whole.

Children can be asked to write down the fraction for given examples, such as
those shown in Figure 11.2c.
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(a) (b)

(c)

Figure 11.2

• The special name for the segments in Figure 11.3a—halves— should be
highlighted.

• The segments in Figure 11.3b are usually known as quarters, but calling
them fourths at the beginning tells children more about them.

• The version of fourths/quarters shown in Figure 11.3c should also be
recognised by the children.

(a) (b) (c)

Figure 11.3

More than one whole thing

• Figure 11.4a shows two squares left as a whole. This can be written as 2/1.
• Figure 11.4b shows two whole squares divided into quarters. This can be

written as 2 × 4/4 = 8/4.
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(a) (b)

Figure 11.4

Making fractions

It is of greatest importance that children make fractions themselves, by folding
paper squares. This will help in the avoidance of fundamental misconceptions
such as the idea that halving, halving and halving again will produce sixths.
Demonstrably, it produces eighths. It will also help in case of difficulty in
future, if children can recall how the fractions were made.

Halving procedure

Figure 11.5a shows the folding procedure that produces halves. If the procedure
is repeated, halving and halving again makes quarters (Figure 11.5b). Repeated
halving produces a family of fractions, whose subsequent members are eighths,
sixteenths, and so on.

Other fractions require different folding procedures.

‘Thirding’ procedure

The procedure shown in Figure 11.6a produces thirds. Repeating the procedure
will produce a family of fractions, the next member of which is ninths.

‘Fifthing’ procedure

The procedure shown in Figure 11.6b produces fifths and repeats to produce
twenty-fifths, and so on.

Other procedures

A new procedure is required every time the number of segments is prime: 2/2,
3/3, 5/5, 7/7, and so on.
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(a)

(b)

2

2

4

4

4

4

Figure 11.5

3

3

Figure 11.6a

5

5

5

5

Figure 11.6b

In practice, halves, thirds and fifths are sufficient, because sevenths, elevenths,
and so on, are very rarely needed—and never desirable at the learning stage.

Some teachers refer to these folding procedures as ‘machines’.

Other fractions

Other important fractions must be made using a combination of folding
procedures.

• Sixths—made by halving and thirding in either order.
• Tenths—made by halving and fifthing in either order.
• Twelfths—made by halving, halving and thirding in any order.
• Twentieths—made by halving, halving and fifthing in any order.
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Table 11.1 summarises how to make all the fractions that are worth
considering at this stage.

Table 11.1

Procedures

Fractions Half Half Half Half Third Third Fifth

Halves *
Thirds *
Fourths/quarters * *
Fifths *
Sixths * *
Eighths * * *
Ninths * *
Tenths * *
Twelfths * * *
Sixteenths * * * *
Twentieths * * *

Equal or equivalent fractions

Fractions are equal (or equivalent) if they cover the same amount/area of a
paper square. For example, Figure 11.7 shows that

3
4

= 6
8

.

Figure 11.7

The extra (horizontal) fold has produced twice as many segments and twice
as many are shaded. The written format that gives the same effect is

3
4

= 3 × 2
4 × 2

= 6
8

.
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Formally, it is permissible to multiply the top and bottom by the same number.
There are many different forms of exercise for establishing this concept.

Children can be asked the following questions.

• Give the written form for the two equal fractions shown in Figure 11.8a.

=

Figure 11.8a

• Draw in the extra fold lines in Figure 11.8b to show that 1/2 = 3/6.

=

Figure 11.8b

• Write the correct numbers in the empty boxes:

1
3

= 1 × 5
3 × 5

= �
�

3
5

= 3 × �
5 × 2

= 6
�

3
8

= 3 × �
8 × � = 9

�
3
4

= 3 × �
4 × � = �

16
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Simplifying fractions

Example

In the example shown in Figure 11.9, it is possible to divide all the tenths into
groups of two, as shown. The four shaded parts are divided into groups of two
in the same process. The written format that gives this effect is

=

Figure 11.9

4
10

= 4 ÷ 2
10 ÷ 2

= 2
5

Formally, it is permissible to divide the top and the bottom of a fraction by the
same number.

A practical problem, here, is to decide what number to use for dividing the
top and the bottom, that is, into what size groups can the segments be divided.
Prime factors can be used, or trial and error (based on a knowledge of the
multiplication/division facts), but the method consistent with the philosophy
of this book is to try the numbers used in forming the original segments by
folding.

In the example above, tenths would have been formed by folding into halves
and fifths. Therefore, dividing into groups of two or five should be tried. Of
these, only the groups of two work for the shaded segments, and so the fraction
is in its ‘lowest terms’, when this has been done.

Example

Simplify 8/12. For this example, the twelfths would be formed by folding
into halves, halves and thirds. Therefore, dividing by 2, 2 and 3 should be
attempted:

8
12

= 8 ÷ 2
12 ÷ 2

= 4
6

= 4 ÷ 2
6 ÷ 2

= 2
3
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Dividing top and bottom by 3 does not work, so the fraction is as simple as it
can be made.

Since halving and halving again produces quarters, a short cut would be to
try dividing directly into groups of four, as illustrated in figure 11.10.

=

8
12 = = 2

3
8 ÷ 4
12 ÷ 4

Figure 11.10

There are many different forms of exercise for establishing this concept.

• What are the folding steps that would make the fraction as in Figure 11.11?
• Write the correct numbers in the empty boxes:

5
10

= 5 ÷ 5
10 ÷ 5

= �
�

4
12

= 4 ÷ 4
12 ÷ � = 1

�

2
6

= 2 ÷ �
6 ÷ � = 1

�

8
20

= 8 ÷ �
20 ÷ � = 4

� = 4 ÷ �
� ÷ � = �

5

6
10

= 6 ÷ �
10 ÷ � = �

�

Decimals
Decimals are also used to represent parts of a whole thing.

Where a number also contains some whole things, the decimal part is
separated by a decimal point, for example, 37.651.
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Figure 11.11

There is a sense in which decimals are just specific fractions—the first
column after the decimal point representing tenths, the second representing
hundredths, and so on. However, because of this, each column is ten times
the previous column, and so decimals are a continuation of the whole-number
system. They demonstrate this property when a number is carried in an
addition, for example, or when a decimal is multiplied by 10.

First place as tenths

This can be demonstrated well with a measuring exercise. Consider the length
AB marked against a scale (Figure 11.12).

0 1 2 3 4 5 6

A B

Figure 11.12

• Each large unit on the scale (cm) is divided into 10 smaller units (mm).
• Each smaller unit will be 1/10 of a large unit.
• The length AB is 53 small units and 5 3/10 large units.
• If AB is written as 5.3 large units, then .3 means 3/10 and the first number

after the decimal point represents tenths.

This convention can be established and reinforced for children by having them
measure a series of modest lengths and write their answers in centimetres as
both fractions and decimals. If centimetres and millimetres are too small, a
ruler graduated in inches and tenths of an inch will give a useful increase
in size.
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Second place as hundredths

This can be demonstrated with an example that uses money.

100p = £1

10p = £
1

10

1p = £
1

100

Almost all children will accept and understand the above equivalents for money
units. The amount of money illustrated in Figure 11.13 is written in pence at
the top and pounds at the bottom.

100 10 1

4 2 3 P

1
10

1

4 2 3£

10p

10p 1p£1

£1

£1

£1

1p

1p

100

1

Figure 11.13

With the amount of money in pounds, the decimal point takes up its familiar
position. Figure 11.13 confirms that the first column after the decimal point
represents tenths and shows that the second column represents hundredths.

A good exercise for establishing and reinforcing this convention is to ask
children to convert various quantities of pennies into pounds, written as both
decimals and fractions, for example,

587p = £5.87 = £5
87

100

Fractions that can be simplified should be avoided at this stage, because, after
simplification, they would produce something other than hundredths.
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Further decimal places

Once the fraction equivalents are established for the first and second places
of decimals, it is relatively easy for children to accept the next place as
thousandths, and so on. A reminder that the familiar whole-number col-
umn headings are ones, tens, hundreds, thousands, and so on, is usually
helpful.

It is worthwhile emphasising here that decimal place-value difficulties
(like difficulties with whole-number place values) are dramatically reduced
if children can be persuaded to write their examples down in columns with
headings.

Converting decimals to fractions

As was outlined earlier, decimals are composed of the specific fractions 1/10,
1/100, 1/1000, and so on, depending on the column(s) in which they are written.
To convert them back to fractions, it is necessary simply to read off which of
these columns they reach. Examples are given in Figure 11.14.

1
10

3

3 7

9

8 9

7

3

0

2

0

7

0

0

3
10

37
100

9
100

789
1000

7
1000

23
1000

1
100

1
1000

Figure 11.14

For those children who, while at this last example, question why the 2 (in
the second column) is not seen as 2/100, there follows an explanation (which
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slightly anticipates addition of fractions).

.023 =

2
100

20
1000

+ = +
3

1000
3

1000

= 23
1000

Examples that can be simplified

After some decimals have been converted into fractions, they can be simplified.

1
10

1
100

1
1000

• 8 = 8
10

= 8 ÷ 2
10 ÷ 2

= 4
5

• 4 5 = 45
100

= 45 ÷ 5
100 ÷ 5

= 9
20

• 0 0 4 = 4
1000

= 4 ÷ 4
1000 ÷ 4

= 1
250

Use of the number 25

In many cases where decimals have been converted into fractions and are to
be simplified, the ability to divide (top and bottom) by 25 is very useful, as a
short cut. There are two in 50, three in 75, four in every 100 and so 40 in
every 1000. For example,

.375 = 375
1000

= 375 ÷ 25
1000 ÷ 25

= 15
40

= 15 ÷ 5
40 ÷ 5

= 3
8

Special decimals

A few decimals can be converted and simplified to very important fractions. It
is desirable that these are memorised:

.1 = 1
10

.01 = 1
100

.001 = 1
1000

.5 = 1
2

.25
1
4

.75 = 3
4

.2 = 1
5
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The significance of zeros

In certain positions, zeros are very important, whereas in others they are
unimportant or optional. As with whole numbers, it is the zeros that hold
other numbers in their right places that have significance. The following pairs
of examples can be used to demonstrate the possibilities:

1
10

1
100

• 7 = 7
10

• 0 7 = 7
100

The zero in .07 gives a value that is different from .7.

1
10

1
100

1
1000

• 1 0 9 = 109
1000

• 1 9 = 19
100

The zero in .109 again affects its value, because it pushes the 9 into a different
place.

1
10

1
100

• 3 = 3
10

• 3 0 = 30
100

= 3
10

The zero in .30 makes no ultimate difference to its value, although there are
ways in which it can sometimes be made useful, as will be shown later.

When a decimal, such as .92 has no whole-number part, it is usually written
in the form 0.92, with an optional zero at the front, as a matter of style. As long
as children are having difficulty with decimals, simplicity is more important
than style, so this should be avoided. In this chapter, such zeros have been
omitted for this reason.

In general, just as for whole numbers, the significant zeros are located
between other numbers, or between a number and the decimal point. The
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unimportant or optional zeros are to be found beyond those numbers furthest
from the decimal point.

Comparing decimals

‘Which decimal is bigger, .87 or .135?’ In answer to this question, many
children will give the answer .135, because they see 135 as being bigger than
87. Of course, they are not comparing like with like, because the 135 are
thousandths whereas the 87 are hundredths. By way of explanation, all that is
necessary is to write the decimals in their columns and make them the same
‘length’ by using optional zeros:

1
10

1
100

1
1000

• 8 7 0

• 1 3 5

This process has the same effect as making segment sizes the same for fractions.
Now the 870 is clearly bigger than the 135.

Some children have a similar problem understanding why .25 is halfway
between .2 and .3, both of which may seem smaller. The column headings and
optional zeros can help again:

1
10

1
100

• 2 0

• 2 5

• 3 0

Quite clearly, 25 hundredths is halfway between 20 hundredths and 30
hundredths.

Another approach to these and other similar problems is to explain with a
decimal number line, such as is shown in Figure 11.15. This number line shows
quite clearly that .87 is bigger than .135. The equivalent fractions above the
line provide further justification. It also shows that .25 lies halfway between
.2 and .3, another such situation being observable at .865, which is halfway
between .86 and .87.

Decimal number sequences

Decimal number sequences can be regarded as extended extracts from a number
line, such as that below. If the extracts are selected carefully, they can provide
a very convincing alternative way of looking at problem areas that have not
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0 0.1 0.2

0.03

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.08
0.25 1.04

0.865

0.86 0.87

0.135

1
10

3
100

25
100

4
100

135
1000

865
1000

8
100

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

1 1
1
10 1

2
10

Figure 11.15 Number line for decimals

been fully understood. One such problem area is tackled below. Consider the
following sequence:

2.97, 2.98, 2.99

Those children who have not properly taken on board the message that
decimals behave, in their columns, just like ordinary whole numbers may
make the mistake of assuming that the next decimal in the sequence is 2.100.
They have not understood that the 1 from the 100 will be carried across
the decimal point to produce 3.00. One way of clarifying this situation is to
suggest that the decimal point could be temporarily ignored, whereupon the
299 would naturally be followed by 300. Perhaps a more satisfactory method,
and certainly a more interesting method for the children, is to challenge them
with a decimal number sequence where the missing number is in the middle of
the sequence. The above sequence could be modified as follows:

2.97, 2.98, 2.99, 3.01, 3.02, 3.03

The opportunity now exists to find the missing decimal more easily, by
approaching it from the other direction. Working towards it downwards gives
3.03, 3.02, 3.01, and then quite naturally 3.00. Furthermore, all kinds of very
sound ideas about checking answers by working backwards and the reciprocity
of addition and subtraction are being quietly covered.

Each of the following sequences straddles a different awkward region, where
the numbers in parentheses would be left out for the children to find:

1.7, 1.8, 1.9, (2.0), (2.1), 2.2, 2.3
7.3, 7.2, (7.1), (7.0), 6.9, 6.8
8.8, 8.6, 8.4, 8.2, (8.0), 7.8, 7.6, 7.4
39.7, 39.8, 39.9, (40.0), (40.1), 40.2, 40.3
20.03, 20.02, (20.01), (20.00), 19.99, 19.98, 19.97.



Fractions, Decimals and Percentages: An Introduction 175

Converting fractions to decimals

Some fractions are very simple to convert into decimals, because they are
already tenths, hundredths or thousandths. They slot into the decimal columns
immediately, like the examples below:

1
10

1
100

1
1000

1
10

= • 1

23
100

= • 2 3

7
100

= • 0 7

3
1000

= • 0 0 3

29
1000

= • 0 2 9

527
1000

= • 5 2 7

There are other fractions that can easily be made into tenths, hundredths or
thousandths, as shown with the following examples:

• 1
10

1
100

1
1000

2
5

= 2 × 2
5 × 2

= 4
10

= • 4

3
4

= 3 × 25
4 × 25

= 75
100

= • 7 5

1
20

= 1 × 5
20 × 5

= 5
100

= • 0 5

7
8

= 7 × 125
8 × 125

= 875
1000

= • 8 7 5

The final example 7/8 in the table above depends, for its conversion, on the
knowledge that 8 × 125 = 1000. The likely absence of this knowledge would
push this conversion into the most difficult category, along with fractions like
5/9. There is no way in which 5/9 can be converted into tenths, hundredths or
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thousandths. For such an example, it is necessary to regard 5/9 as 5 ÷ 9, and to
perform a decimal division, which is beyond the scope of this chapter, so such
conversions are covered in Chapter 13.

Percentages
Percentages are another way of describing parts of whole things.

‘Percent’ means ‘out of a hundred’. For example, 1 percent means 1 out of a
100, which can also be written as 1/100. In essence, ‘percentages are hundredths’.
The sign for percent, %, seems to be constructed from a 1, a 0 and another
0, so it behaves as a perpetual and valuable reminder of the importance of
100. Clearly, since percentages are hundredths, it is a simple matter to convert
between percentages and fractions. Moreover, since hundredths constitute one
of the decimal column headings, it is also easy to convert between percentages
and decimals.

Percentages and whole things

Writing down whole things in terms of percentages is slightly more difficult
with fractions or decimals, where whole numbers are just written separately,
in front. However, there is subsequently much less need to manipulate the
percentages, so the difficulty is not carried further.

A whole thing is 100/100, which is 100%. Every whole thing is 100%, and
so, for example, the whole-number 5 is 500%.

A Global Model for Percentages, Fractions and Decimals
Figure 11.16 shows a whole square divided into 100 equal segments. Each
segment is 1/100, or 1%, or .01 (1 in the hundredths column). These can be
represented physically by the unit bricks in Dienes apparatus. Each column is
1/10, or 10%, or .1 (1 in the tenths column). These can be represented by ‘longs’.
The whole square is 100%, or 1 whole number, and could be represented by
a ‘flat’.

Figure 11.16
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Percentages are a rather more palatable way of expressing parts of whole
things, for most people.

• Because they are so small, any part of a whole thing will contain a workable
number of them.

• Understood to be hundredths, they are fractions written without a denom-
inator, or decimals without the need for the decimal point.

• More generally, it seems easier for most people to visualise 39%, for
example, as 39 out of their picture of 100, rather than 39/100 or .39.

• Percentages are much easier to compare.

Comparing percentages

Unlike fractions, which can have segments of any size, or decimals, which can
be tenths, hundredths, thousandths, and so on, percentages all have the same
segment size—they are all hundredths. Their numerical values can therefore
be compared in a straightforward way—the bigger the number, the bigger the
percentage (and the bigger the part that it represents).

Examples

• 38% is bigger than 26% (by 12%) (Figure 11.17).
• 19% is smaller than 82% (by 61%).
• 31% is bigger than 7.25%.
• 135% is bigger than 87%.

Figure 11.17

Converting percentages to fractions

Percentages are ‘understood’ to be hundredths, so converting them to fractions
is simply a matter of writing them with 100 at the bottom.
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Examples

• 27% = 27
100

(Figure 11.18).

• 127% = 1
27

100

• 91% = 91
100

• 9% = 9
100

Figure 11.18

Sometimes the fraction obtained can be simplified.

Examples

45% = 45
100

= 45 ÷ 5
100 ÷ 5

= 9
20

(Figure 11.19)

=

Figure 11.19



Fractions, Decimals and Percentages: An Introduction 179

62% = 62
100

= 62 ÷ 2
100 ÷ 2

= 31
50

70% = 70
100

= 70 ÷ 10
100 ÷ 10

= 7
10

75% = 75
100

= 75 ÷ 25
100 ÷ 25

= 3
4

5% = 5
100

= 5 ÷ 5
100 ÷ 5

= 1
20

Some percentages produce fractions that need many steps to simplify. Such
simplifications rarely occur elsewhere, and so they are covered here.

Example

12.5% = 12.5
100

= 12.5 × 10
100 × 10

= 125
1000

= 125 ÷ 25
1000 ÷ 5

= 5
40

= 5 ÷ 5
40 ÷ 5

= 1
8

(see Chapter 13 for multiplying decimals by 10.)

Example

331/3% = 331/3

100
= 331/3 × 3

100 × 3
=

100
3

× 3

300

= 100
300

= 100 ÷ 100
300 ÷ 100

= 1
3

(See Chapter 12 for multiplication of fractions.)

Converting fractions to percentages

When fractions are hundredths, a % can replace the 100 in the denominator.
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Examples

83
100

= 83%

2
83
100

= 283%

7
100

= 7%

Some fractions have to be first changed into hundredths. (A similar step was
necessary in converting fractions to decimals.)

Examples

1
2

= 1 × 50
2 × 50

= 50
100

= 50% (Figure 11.20)

2
5

= 2 × 20
5 × 20

= 40
100

= 40%

12
25

= 12 × 4
25 × 4

= 48
100

= 48%

37
50

= 37 × 2
50 × 2

= 74
100

= 74%

Figure 11.20

At times, children will be unable to change the fraction into hundredths,
because they do not know the multiplier that will make the denominator 100.
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Finding this multiplier becomes the first step. Consider 17/20:

17
20

= 17×?
20×?

= ?
100

It is required to identify how many 20s are there in 100. Put this way, it
becomes evident that 100 needs to be divided into 20s. Since 100 ÷ 20 = 5, it
is now possible to multiply the top and the bottom by 5 and obtain hundredths:

17
20

= 17 × 5
20 × 5

= 85
100

= 85%

Sometimes there is no whole number that when multiplied by the denominator
will produce 100. The required multiplier is a decimal. Proper consideration
for decimals is given in Chapter 13, but an example is dealt with here, for
completeness. Consider 5/16. Now 100 ÷ 16 = 6.25, and so this is the required
multiplier:

5
16

= 5 × 6.25
16 × 6.25

= 31.25
100

= 31.25%

5/16 is a very simple fraction, which has become the rather clumsy percent-
age 31.25%. Nevertheless, this form will give some people a much better
understanding of the part of a whole thing represented.

Converting percentages to decimals

Percentages are understood to be hundredths, and the second column of
decimals is understood to be for hundredths. Therefore, it is a simple matter
to write a whole-number percentage in the decimal columns. It is required to
end in the hundredths column.

Examples

1
10

1
100

1
1000

1
10000

28% = • 2 8 (Figure
72% = • 7 2 11.21)
50% = • 5 0

= • 5
8% = • 0 8

31.25% = • 3 1 2 5
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The final example above shows the harder decimal percentage that was
converted from 5/16. Exceptionally, it does not end in the hundredths column,
because of the .25% at the end. This needs extra decimal places, reaching to
the ten thousandths, because

.25% = 0.25
100

= 0.25 × 100
100 × 100

= 25
10000

.

Figure 11.21

Converting decimals to percentages

The second column of decimals is for hundredths. Therefore, any decimal that
can be ‘lifted’ entirely out of the first two columns of decimals can be written
immediately as a percentage.

Examples

1
10

1
100

1
1000

• 2 5 = 25%

• 9 7 = 97%

• 0 5 = 5%

• 1 0 = 10%

so • 1 8 = 18%

If the decimal contains more than two places, then the percentage will have to
be extended to contain them.
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Examples

1
1
10

1
100

1
1000

1
10000

• 6 6 = 66%

so • 6 6 6 6 = 66.66%

• 3 7 = 37%

so • 3 7 5 = 37.5%

• 1 8 = 18%

so 4 • 1 8 = 418%

Special percentages

The following list shows the equivalent percentages, fractions and decimals for
the most important parts of a whole thing:

1
2

= 50% = .5

1
4

= 25% = .25

3
4

= 75% = .75

1
10

= 10% = .1

1
5

= 20% = .2

1
3

= 331/3%

= 33.3% = .333

2
3

= 662/3%

= 66.6% = .666

1
100

= 1% = .01
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A Global Exercise with Fractions, Percentages and Decimals
In order to practise the various conversion processes detailed in this chapter, the
child should give the written forms of the shaded parts on the diagrams, such
as those shown in Figure 11.22. He should write the numbers as percentages,
decimals and fractions (simplified where possible)

Figure 11.22



Chapter 12
Operating with Fractions

Introduction
Work with simple fractions epitomises the argument ‘Mathematics is easy,
only writing it down is hard’. For example, as we shall show, it is very easy
to make 31/4 + 11/2 into 43/4 using the paper–folding model advocated in this
book for introducing fractions, but the written version, which carries with it
a complex and virtually unjustifiable algorithm, seems very difficult indeed by
comparison. The work in this chapter is designed to link the ‘doing’ with the
‘writing down’ with the aim of making them equally easy. The paper–folding
model also provides a visual and kinaesthetic image to help the child recall and
use the algorithm correctly.

As in Chapter 11, the ideas illustrated and substantiated by using paper fold-
ing show the child what the written–down version should be, so that the written
version of the problem relates directly to the concrete model. Thus, whenever
the written problem proves to be difficult there will be a parallel paper-folding
procedure to support memory (or to overcome conceptual difficulties).

Here, as elsewhere in this book, the structure brought out by these models
and the procedures are intended to contribute towards the pupil’s overall
understanding of the algorithms and concepts. The use of folded-paper frac-
tions is usually a clear enough method for understanding the examples and thus
only a minimum amount of explanatory text is needed. As in other chapters,
you must use your experience with the child to blend the work to suit the
individual. The basic structure is, however, best left intact.

Making Segment Sizes the Same
It will become apparent during the course of this chapter that, if two or more
fractions are to be compared, added, or subtracted, their segments must be

185
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the same size. Generally, their segments will not be the same size, but there
is a method of making them so, which is fully consistent with the philosophy
of this book. It depends on the argument that for segments to be made the
same size, the same paper-folding steps must be used for all the fractions. Each
fraction must be given the folds it does not already share with the others. The
folding can be real, drawn, imagined, or written, but the objective will be a
situation where for all fractions the same folding steps have been used. The
experience gained earlier, in actually making fractions, will be valuable here.

Examples

• Consider the fractions 7
8 and 3

4 (Figure 12.1a).

7
8

7
8

3
4

6
8

Halving

Figure 12.1a

Folding it has had Folding it now needs

7
8

Halving, halving, halving —

3
4

Halving, halving Halving

The written version is shown in Figure 12.1b. The folded–paper diagram and
the written version are now showing eighths as the segment size for both
fractions.
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7

3 × 2
4 × 2

8

3
4

7
8

6
8

=

= =

Figure 12.1b

• Consider the fractions 3/4 and 2/3 (Figure 12.2a). 3/4 has been through halving
and halving and 2/3 has been through thirding. 3/4 now needs thirding; 2/3
now needs halving and halving.

Thirding

Halving Halving

3
4

2
3

9
12

8
12

4
6

Figure 12.2a

The written version that gives this effect is shown in Figure 12.2b. Now
twelfths is the segment size for both fractions. Notice that it is unnecessary to
know in advance that the shared segment size will be twelfths.

3 3 × 3
4 × 34

2
3

9
12

8
12

2 × 2
3 × 2

4 × 2
6 × 2

4
6

= =

= = = =

Figure 12.2b

• Consider the fractions 5/6 and 9/10. After analysing how they are formed, it
is evident that 5/6 now needs fifthing and 9/10 needs thirding. Now by using
the written form only, we have

5
6

25
30

= 5 × 5
6 × 5

=

= 9 × 3
10 × 3

=9
10

27
30
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In later examples, where this calculation is done, the region of working will
be highlighted within a dotted rectangle as it has been in these examples. Of
course, this is not necessary outside this book.

Comparing Fractions
Examples

• Which is bigger: 3/5 or 2/3?

Some children would say 3/5, because there are more segments, whereas
others would say 2/3 because the segments are bigger. Even a picture of the
folded-paper version leaves some doubt (Figure 12.3a).

3
5

2
3

Figure 12.3a

Fractions can be compared best when their segments are the same size.
This can be achieved by the procedure detailed in the previous section, which
involves further folding, real, drawn, imagined or written. Again, the objec-
tive is a situation where both fractions have been through the same folding
procedure. 3/5 has been through fifthing. 2/3 has been through thirding.

Therefore, 3/5 now needs thirding and 2/3 needs fifthing (Figure 12.3b).
The written version of this would be as shown in Figure 12.3c. Both the folded
and written versions show 2/3 to be bigger (by 1/15).

• Compare 9/16 and 5/8.

After considering how these fractions would be folded, it is evident that all
that is now needed is for the 5/8 to undergo another halving process. Using
only the written form,

9
16

9
16=

= 5 × 2
8 × 2

=5
8

10
16

which makes 5/8 bigger (by 1/16).
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3
5

9
15

thirding

2
3

10
15

fifthing

Figure 12.3b

3

2 ×   5
3 ×   5

5

2
3

9
15

10
15

3 ×   3
5 ×   3

=

=

=

= =

Figure 12.3c

Converting mixed fractions to top–heavy fractions

21/4 is called a mixed fraction, because it has a whole-number part and a fraction
part. It is frequently necessary to convert the mixed fraction into segments (in
this case quarters). Figure 12.4 shows the paper and written/spoken versions.
The result is known as a top-heavy fraction for obvious reasons. The careful
use of words in the written/spoken version is deliberate and necessary at first.
This is because many children who have seen this work before remember
incorrect methods. They remember a rule that says, ‘Multiply something by
something and add something’, but unfortunately mix up their somethings.
Until they understand why they are multiplying and adding, they are likely to
write 2 × 1 + 4 or 4 × 1 + 2 rather than 2 × 4 + 1.

Subsequently they will perform the correct calculation in their mind, or
write a variant of

21/4 = 2 × 4/4 + 1/4

= 8/4 + 1/4

= 9/4.
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Paper version Written/spoken version

2¼ = 2 × 1 + ¼ 

2 × 4 quarters

+ 1 quarter
=

8 quarters

= 9 quarters

=

+ 1 quarter
=

9 4

Figure 12.4

Converting top–heavy fractions to mixed fractions

Top–heavy fractions have been called ‘improper’ fractions, a name that suggests
it is undesirable to leave them in this form. They can be converted into mixed
fractions as follows.

Example

• 14/3

As the segments are thirds, they must be grouped in threes to form whole
numbers (Figure 12.5). Any remainders will stay as thirds. The essential
working is a division by three:

= 4

=

=
2
3

Figure 12.5

4r2
3
)
14
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The results may be interpreted as follows:

Spoken version Written version
Fourteen-thirds 14/3
equals four times three-thirds plus two-thirds = 4 × 3/3 + 2/3
equals four whole numbers plus two-thirds = 4 × 1 + 2/3
equals four and two-thirds = 42/3

Combining Fractions
Caleb Gattengno (Brown et al, 1989) in his farewell address to the ATM in
1988 spoke of adding fractions:

Once at my desk in Addis Abbaba in 1957, I blushed. I was so ashamed
of myself. 1957, twenty years after I got my doctorate in mathematics, I
understood what we do when we add two fractions . . . I did not know that
to add two fractions involves addition. I said it but I didn’t know it. I could
write it, I could get the answer, but I didn’t know what it meant to add two
fractions. And suddenly, I realised that, whenever I have pears and apples, two
pears and three apples, I don’t have five apples or five pears. I have something
altered, I have five pieces of fruit. So why did I do that? Because I wanted to
find how to get them together, I had to raise myself to another level where
pears, pearness and appleness are replaced by fruitness. And at that moment
I can say five. And I never realised that ‘common denominator’ meant ‘give
the same name’ to both. And in the middle of the word ‘denominator’ I see
a French word ‘nom’ which I knew very well. It didn’t strike me, ever, that
it is addition that forces me to get denominators, common denominators, not
fractions. That was my shame . . .

There are so many messages in that paragraph, not least, that true under-
standing of a topic may come after many years of delusionary success with
that topic.

Vertical and horizontal presentations of fraction problems

We believe that a major cause of misunderstanding and confusion with
fractions derives from the radical differences between the procedures used
for addition and subtraction and those used for multiplication (and division).
These differences are summarised in Table 12.1.

Paper folding is used as the (two–dimensional) model to illustrate the
combining of fractions. This easy demonstration can be shown to dictate, and
therefore relate directly to, the written algorithm. It simplifies each operation
and provides a solution to the problem summarised in Table 12.1. It leads
naturally to a vertical layout for addition and subtraction, which contrasts with
the horizontal presentation suggested for multiplication. Further advantages
of this will be discussed later in this chapter.
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Table 12.1

Addition/Subtraction Multiplication

Addition and subtraction cannot take
place until there are common
denominators (i.e. equal segment
sizes).

Multiplication can take place without
common denominators.

The denominators are neither added
nor subtracted.

The denominators (and numerators) are
multiplied.

Simplification is done at the end. Simplification is done as early as
possible.

Whole numbers are treated separately. Whole numbers are combined with
fractions (to make mixed fractions).

The difficult concept of division of and, especially, division by fractions
is also discussed later in the chapter. The ‘normal’ algorithms that are used
to solve fraction–division problems must seem totally irrational and bizarre
to many children (and adults). Some explanation is given, along with two
methods, one vertical and the other horizontal.

Adding Fractions
This section first uses paper folding to provide a concrete image of the
operation. The explanation then moves to a more conceptual level in order to
extend the child’s performance and streamline his work. The initial descriptions
progress from the easiest operation on fractions with the same denominator
(segment size) to problems that involve mixed fractions.

Fractions where the segments are the same size

Example

• 1/5 + 3/5

Paper, written, and spoken versions are given in Figure 12.6. The reference to a
‘spoken version’ introduces another two senses, oral and aural, and emphasises
that adding fifths to fifths produces fifths, that is, there is no change in segment
size (or name), just as adding a number of marbles to another set of marbles
still produces marbles. Thus, examples of this type are used to establish that
segments must be the same size before addition can proceed. You can judge
how many examples of this type are needed to establish this fundamental
precept.
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Paper version Written version Spoken version

one-fifth

plus three-fifths

four-fifths

1
5

3
5

4
5

+

Figure 12.6

Adding fractions where the segments are of different size

Example

• 1/2 + 2/5

Again the different versions are given (see Figure 12.7). The paper–folding
version signals a problem since the segments of the two pieces of paper in this
type of problem are of different sizes. The spoken version confirms that like is
not being added to like. Furthermore, if such an addition were to proceed, you
could speculate about the problem with the child, ‘What would be the segment
size of the result?’

? ? ?

1
2

2
5

++

Paper version Written version Spoken version

one-half

plus two-fifths

Figure 12.7

The child’s attention should be focused on the segments, which are not the
same size (nor have the same name) and this is the reason addition cannot
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proceed without some modification to one or both of the segment names. The
modification is to make the segments the same size (or give them the same
name).

‘halving’

‘fifthing’

Figure 12.8

In this example, the new segment size is tenths, because both halves and
fifths can be modified to this segment size (see Chapter 11). Both existing
segments are folded again (Figure 12.8). The written version is given below:

1
2

5
10

= 1 × 5
2 × 5

=

= 2 × 2
5 × 2

=+ 2
5

4
10

9
10

This follows the steps shown in Figure 12.8 with the paper and extends the
method described in Chapter 11, which makes segments to be the same size.

Adding more than two fractions

The same method, of making segment sizes the same, can be extended. Again
the principle is to obtain the same segments for each fraction. Since more
fractions are being added there is a likelihood of larger answers, possibly
resulting in a top–heavy fraction.

Example

• 3/4 + 1/6 + 2/3
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The common segment size is twelfths (Figure 12.9). The written version is
as follows:

3
4

9
12

1
6

2
12

= 3 × 3
4 × 3

=

= 1 × 2
6 × 2

=

= 2 × 4
3 × 4

=+ 2
3

8
12

19
12

= 12
12

+ 7
12

= 19
12

= 1
7
12

3
thirding

halving

quartering

=

=

4

1
6

19
12

7
12

1

+2
3

Figure 12.9
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Adding mixed fractions

Mixed fractions with segments that are the same size

The procedure is similar to the addition of simple fractions, but the child is
learning to treat the whole numbers and fractions separately.

Example

• 21/5 + 32/5

+

Figure 12.10

The folded–paper version (Figure 12.10) shows the answer clearly and also
relates well to the written version:

21/5 21

32/5

53/5
compare with

32
53

It demonstrates the need to deal separately with the whole numbers and
the fractions in the same way that tens and units are dealt with separately in
whole–number addition.

Mixed fractions with different segment sizes

Once again, the child has to focus on the size of the segments and remember
from the example above to deal with the whole numbers and fractions
separately. Thus, the exercise can be used to reinforce previously learnt skills.

Example

• 21/4 + 12/3
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The written version is

2
3
12

1
4

= 1 × 3
4 × 3

=

2
3

= 2 × 2
3 × 2

= 4
6

= 4 × 2
6 × 2

=+ 1
8
12

3
11
12

It would be simple to use paper folding to demonstrate the above steps,
confirming the algorithm and the answer:

21/4 + 12/3 = 311/12

Subtracting Fractions
The basic principle is the same as for addition. The child has to learn that the
segments have to be the same size (same name) before subtraction can proceed.
As with addition, a series of progressively more complex examples is given.

Fractions where the segments are the same size

Example

• 3/5 − 1/5

Paper, written, and spoken versions are given in Figure 12.11. The spoken
version confirms that the segments are the same size (have the same name) for
the subtraction process.

Paper version Written version Spoken version

three-fifths

minus one-fifth

two-fifth

3
5

1
5

2
5

−

Figure 12.11
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Fractions with different segment sizes

Example

• 4/5 − 2/3

The paper version (Figure 12.12) shows that the problem is impossible to
complete in this form (by showing different segment sizes). The spoken version
confirms this because the segments have different names. The problem requires,
as with addition, that the segments should be made the same size, in this case
fifteenths. Again, the concrete example of paper folding focuses on the critical
part of the algorithm, the need to work with segments that are the same size:

4
5

12
15

= 4 × 3
5 × 3

=

= 2 × 5
3 × 5

=− 2
3

10
15

2
15

Paper version Written version Spoken version

4
5

2
3

? ? ?

−−

four-fifths

minus two-thirds

Figure 12.12
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Subtracting mixed fractions

Mixed fractions where the segments are the same size

Example

• 35/9 − 21/9

The paper version is shown in Figure 12.13. The answer is quite clearly 14/9,
and it is also clear that the whole numbers should be treated separately. The
written version is as follows:

35/9 35

−21/9

14/9
compare with

−21
14

−

Figure 12.13

Mixed fractions with different segment sizes

Again, the child has to focus on the segment sizes. The segments must be
adjusted to be the same size (and to have the same name) and the whole
numbers and parts must be dealt with separately. The child can use paper
folding for all parts or just the fraction part of this problem. For the convenience
of brevity only the written version is shown for this example:
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• 55/6 − 21/4

5
10
12

5
6

= 5 × 2
6 × 2

=

1
4

= 1 × 3
4 × 3

=−2
3
12

3
7
12

Mixed fractions where a bigger fraction part is subtracted from a smaller
fraction part

Example

• 41/2 − 22/3

Since 2/3 is bigger than 1/2, the problem requires an adjustment not dissimilar to
a whole–number subtraction such as 374 − 158, where 8 is bigger than 4. The
solution to the difficulty with fractions is very similar to that used with whole
numbers. The child has to use a whole number and convert it to a fraction in
the same way as a child doing a whole–number subtraction has to use the tens
column to obtain units.

Thus, the algorithm is not another new, unrelated idea to learn. You
are showing the child the wide applicability of mathematical procedures.
The action of paper folding provides a concrete model for the algorithm
and a multisensory input to the memory. The paper–folding procedure also
confirms for the child that 2/3 is bigger than 1/2. The paper version is given in
Figure 12.14.

Figure 12.14

The written version is as follows:

41/2 = 43/6 = 3
︷ ︸︸ ︷
6/6 3/6

− 22/3 = 24/6 = 2 4/6

1 5/6
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Combined Additions and Subtractions
Both addition and subtraction of fractions require

• segments of the same size (same name) and
• whole numbers to be treated separately from parts.

Consequently, it is possible to perform both operations in the same calculation
without a change of algorithm.

The child may need to use paper folding, but by now he may be able to
move straight to the written algorithm.

Example

• 21/8 + 31/2 − 11/4

2
1
8

+ 3
4
8

1
8

=

1
2

= 1 × 4
2 × 4

=

1
4

= 1 × 2
4 × 2

=−1
2
8

4
3
8

It may be advantageous to show the child why the addition and subtraction of
fractions have been presented in a vertical format. The following summarises
the advantages.

Advantages of the vertical layout for addition and subtraction of fractions

• It signals the need to make segment sizes the same.
• There is less likelihood of adding or subtracting the denominators.
• It allows room horizontally to change the segment sizes.
• It lines up fractions and whole numbers separately and encourages the child

to deal with them separately.
• Numbers are added and subtracted vertically, which is a more familiar and

easier method for most children.

This layout is a well–established method of presentation in the United States.
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Multiplying by Fractions
The language of multiplication should be established first. As with percentages,
the word ‘of’ is frequently used to denote multiplication. For example 3/4 of 8
means 3/4 × 8. If the child needs to be convinced of this use, then refer back to
whole-number examples such as, ‘How many sweets are there in 7 packets of
10?’ or ‘If a pen costs 20p, how much will I pay for 8 of them?’

Fraction times fraction

For multiplication of a whole number by a whole number (Chapter 8) area
was used as a model. Area is a two–dimensional model. The paper–folding
model for fraction times fraction does the same.

The method of finding the fraction of a square of paper was explained
earlier. Multiplication repeats the process in a second dimension. So, one
dimension represents a and the other dimension represents b in a × b.

Example 1

• 1/2 × 1/3

This multiplication is carried out by using a square of paper to find one-half
of one-third of the square.

Figure 12.15

Figure 12.15 shows 1/3 shaded. A vertical fold gives one-half of this third.
The part shaded twice is one-half of one-third. There are six segments in all,
so one segment is 1/6.

This was the method used earlier to fold 1/6, acknowledging the interrela-
tionship among the fractions 1/2, 1/3 and 1/6.

The application of two fraction operations to the same square has two
major implications:

• The change in segment size is seen to be inevitable. It should be obvious to
the child that the answer will have a new segment size (and that it will be
smaller).
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• The horizontally written layout of this multiplication reflects the difference
between this operation and its model and that used for addition and
subtraction.

The written form of the example above is as follows:

1
2

× 1
3

= 1
6

Example 2

• 2/3 of 4/5

2
3

4
5

Figure 12.16

The square is folded into fifths in one direction and four of these fifths are
shaded (Figure 12.16). The square is then folded into thirds in the opposite
direction to give a grid with 15 segments, that is, fifteenths. Two of the thirds
are shaded (in the opposite direction) and the child should see the answer, 8/15,
shaded twice.

The concrete operation of folding and shading the square relates directly to
the written form:

2
3

of
4
5

= 2
3

× 4
5

= 2 × 4
3 × 5

= 8
15

The child is multiplying the top and bottom parts of the fractions, which is
easier to remember if the fractions are written side by side. The folding shows
why 3 and 5 are multiplied together to make 15 segments and why 2 and 4 are
multiplied together to give 8 of these segments.

Example 3

• 1/2 of 4/5

This results in an answer that can be simplified or reduced. The paper–folding
procedure is the same as in Example 2, leading to an answer of 4/10. Although
this is not wrong, it would be more elegant to obtain 2/5.
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The written version may be used to explain cancelling before and after the
multiplication. This offers an opportunity to remind the child that fractions
are about division and that a fraction may have more than one ‘name’.

Fraction times whole number

Example 1

• 1/4 of 1 (Figure 12.17a)

Figure 12.17a

Example 2

• 1/4 of 3 (Figure 12.17b)

Figure 12.17b

The child should see that 1/4 of 3 is 1/4 three ‘times’, relating ‘times’ and ‘of’
once again. The written version relates exactly to fraction times fraction if 3 is
written as 3/1:

1
4

of 3 = 1
4

× 3
1

= 1 × 3
4 × 1

= 3
4
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Example 3

• 2/5 of 2 (Figure 12.17c)

2 of 2 = =
5

4
5

Figure 12.17c

The written version is

2
5

of 2 = 2
5

× 2
1

= 2 × 2
5 × 1

= 4
5

Multiplying Mixed Fractions
Example

• 31/2 × 21/4

The most probable error in this type of calculation arises when the child sepa-
rates the fractions from the whole numbers, following an addition algorithm,
and simply multiplies 3 × 2 and 1/2 × 1/4.

A consistent application of the area model for multiplication shows the need
for four separate multiplications (see Chapter 9).

31/2 × 21/4 gives four areas, A, B, C and D (Figure 12.18).

2 A

1
2

C D

B

3

3
1/4

1
2

2 1
4

Figure 12.18

A is 3 × 2 = 6 (which provides a simple estimate)
B is 2 × 1/2 = 1
C is 3 × 1/4 = 3/4 = 6/8
D is 1/2 × 1/4 = 1/8

Total = 77/8
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Although this provides a method consistent with that used for two digit times
two-digit whole–number multiplications, it is somewhat complex for fractions,
so a procedure that is usually less open to errors is recommended. The mixed
fractions are converted to top–heavy fractions, which can then be multiplied
together as for simple fractions:

31/2 × 21/4 = 7
2

× 9
4

= 7 × 9
2 × 4

= 63
8

= 77/8

1

(7 halves)

(9 quarters)

1

9
4

7
2

Figure 12.19

A new diagram can be drawn to illustrate this written method (Figure 12.19).
This rectangle shows there are halves (seven of them) and that there are fourths
(nine of them). The unit square shows the answer will be in eighths and the
7 × 9 grid shows there are 63 of these eighths.

With these larger numbers, cancellation may be done prior to multiplication,
in examples where this is possible.

Example

• 22/3 × 21/10

22/3 × 21/10 = 8
3

× 21
10

=
4 � 8 × 217

1 � 3 × 105
= 28

5
= 53/5

The advantages of a horizontal layout for multiplication

• It prompts the child to multiply the top numbers together first and then
multiply the denominators together.

• It encourages simplifying (cancelling) at the beginning.
• There is less temptation to treat whole numbers in isolation.
• It distinguishes between addition/subtraction and multiplication.
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The advantages of different presentations for addition/subtraction and mul-
tiplication are best illustrated with an example that combines addition and
multiplication.

Many children will want to begin by inappropriate separation of the portions
of the problem. You should encourage the child to read the problem and analyse
its demands. The layout shown presents the problem clearly and logically.

The structured layout for the operations has extra advantages in this type of
problem. It also follows the rules for the order of operations BOMDAS (Brack-
ets Of Multiply Divide Add Subtract), where multiplication precedes addition.

Example

• 31/2 × 11/2 + 12/3 × 21/5

31/2 × 11/2 = 7
2

× 3
2

= 7 × 3
2 × 2

= 21
4

= 5 = 3
12

1
4

2
3

+ 12/3 × 21/5 =
1� 5
3

× 11
� 51

= 1 × 11
3 × 1

= 11
3

= 3 = 8
12

8
11
12

Multiplication

Addition

Dividing with Fractions

A sequence of divisions may be used to introduce the child to this difficult
concept (Ashcroft and Chinn, 1992):

20 ÷ 4 = 5
20 ÷ 2 = 10
20 ÷ 1 = 20
20 ÷ 1/2 = 40

This may help the child to learn to rephrase the question, a strategy that has
quite extensive value. Thus, 20 ÷ 1/2 can be phrased as ‘How many halves are
there in 20?’ A square of paper may be folded to make two halves, followed
by the question ‘How many halves are there in one?’ It can be halved again,
leading to the question ‘How many quarters are there in one?’ The process can
be continued through 1/8, 1/16, 1/32 to show the answer becoming bigger as
the fraction becomes smaller.
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Division by fractions

Two methods are described here. The first deals with simple examples and
establishes a concrete image for this difficult concept. It is harder to explain the
second method in this way, but it is the expedient way for those who progress
to algebra.

The first method is set out vertically, whereas the second method is presented
horizontally (it being more akin to multiplication).

Division by making the segments the same size

Example

• 7/10 ÷ 1/10

The spoken version of this problem needs flexibility of mathematical vocab-
ulary again. It could be read as ‘Seven-tenths divided by one-tenth’, but the
child is more likely to understand ‘How many tenths are there in seven-tenths?’
Again the ability to rephrase a question can take the child a long way towards
the answer of seven.

Example

• 3/4 ÷ 1/8

The use of the same spoken version leads to ‘How many (one) eighths are there
in three-quarters? This makes about as much sense as ‘How many cars are there
in a pencil?’ However, the alternative interpretation ‘Divide three-quarters into
eighths’ indicates more positively that the segment sizes should be made the
same. So, the first step is to make the segment sizes the same. Figure 12.20
shows the paper, written, and spoken versions.

Example

• 3/5 ÷ 7/10

This is shown in the written version only:

3
5

= 6
10

÷ 7
10

= 7
10

= 6
7
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Paper version Written version Spoken version

three-quarters

six-eighths

dividied by one-eighth

six

divided by one-eighth

=

=

÷

÷

=

3
4
1
8
6
8

6

1
8

Figure 12.20

Examples with mixed fractions

The initial step of the method advocated is to convert the mixed fraction into
a top–heavy fraction.

Example

• 33/4 ÷ 3/4

Since the segments are already the same, the division can be done immediately.
The three versions are shown in Figure 12.21. The question is interpreted and
illustrated as, ‘How many groups of 3 (quarters) are there in 15 (quarters)?’

÷

3

Paper version Written version Spoken version

fifteen quarters
divided by
three quarters

3
4

3
4

÷ 3
4

15
4

5=

Figure 12.21
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Example

• 52/3 ÷ 21/2

This is shown in written version only, because by now the child should have a
well–established model of fractions:

52/3 = 17
3

= 17 × 2
3 × 2

= 34
6

÷21/2 = 5
2

= 5 × 3
2 × 3

= 15
6

34
15

= 24/15

Dividing fractions by inverse multiplication

This method is quicker, but requires the child to remember a seemingly
inexplicable rule. So 4 ÷ 2/3 is calculated as 4 × 3/2. Some children will be happy
enough to accept the explanation (rationalisation) that since multiplication is
the opposite of division then there is a need to do an opposite thing with the
fraction, that is, to turn it upside down.

An explanation for the algorithm can be developed for the child by a series
of paper-folding exercises.

• 1 ÷ 1/3

By definition, one whole number divided into thirds gives 3 (Figure 12.22a).

1 ÷     = 31
3

Figure 12.22a

• 4 ÷ 1/3

Four whole numbers divided into thirds will give 4 × 3 = 12 (Figure 12.22b).

• 4 ÷ 2/3
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4 ÷     = 4 × 3 = 121
3

Figure 12.22b

4 divided into groups of two-thirds will give (Figure 12.22c)

4 × 3 ÷ 2 or
4 × 3

2
or 6

4 ÷     = × = = = 62
3

4
1

3
2

6
2

1 1
4 × 3
1 × 2

Figure 12.22c

Since 2/3 is twice as big as 1/3, the child should expect the answer to be half
that of the previous example, that is, the previous answer has to be divided
by 2. However you choose to justify the rule, it remains a case of inverting the
fraction, and then multiplying:

y ÷ a
b

= y × b
a





Chapter 13
Decimals

Introduction
It is the very great importance of the decimal point that engenders puns such as
‘What’s the point?’ and visual jokes suggesting ‘It’s only a little dot’. Indeed, it
is mainly the necessity to manoeuvre the decimal point into its correct position
that differentiates decimal calculations from whole-number calculations. Apart
from the decimal point, the processes of addition, subtraction, multiplication
and division are identical to those covered for whole numbers in Chapters 8 to
10. The decimal point adds another ‘dimension’ to place value, and another
potential source of errors.

It will be evident from the other chapters in this book that we are wary
of teaching dyslexic children too many rules, because they are likely to forget
or confuse them. However, this situation is an exception, largely because the
rules for positioning the decimal point, once properly justified and established,
are simple enough to make alternative procedures seem clumsy and pedantic.
Indeed, ultimately, for all operations except multiplication, the rules boil down
to keeping the decimal points under each other in a vertical line. Thus, using a
rule becomes pragmatically the best route.

Addition and Subtraction
Addition

Common errors tend to be due to mis-alignment of the decimal point—that
is, incorrectly lining up the place values of the numbers involved (Ashlock,
2002). The following errors demonstrate confusion over the positioning of the
numbers in their columns and consequently of the decimal point. Reinstating
column headings can help, but the tendency persists to line up the numbers

213
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from the right, irrespective of place value:

1.23 + 5 becoming 1.23
+ 5

1.28

and

0.95 + 0.5 becoming 0.09
+ 0. 5

0.14

The correct process can be illustrated by using Dienes base-10 blocks or
similar apparatus, but usually more effective help can be provided with the
use of money. For example, children who begin by adding £1.23 + £5 with
coins will rarely try to add the 5 and the 3, as in the written version above.
Those children still tempted to do this usually respond to the suggestion that
£5 may be written as £5.00, writing the .00 because it has no pennies, and so
the written version becomes

£1.23
+ £5.00

£6.23

If written examples are linked, with the child handling the equivalent money,
generally it becomes clear that pounds are added to pounds, pennies are added
to pennies, and so on. The child can be guided to write them under each other,
which step automatically puts the decimal points (separating the pounds and
pennies) under each other. This gives the child a focus so that the second
example from above can be presented as £0.09 + £0.5(0) and written as

£ 0.09
+ £ 0.5(0)

£ 0.59

Money provides the concrete memory hook for the child.
Another common error with decimal addition is shown below:

3.97 + 1.04 becomes
1

3.97
+ 1.04
4.101

A child who makes this error has been content to carry a 1 from the hundredths
to the tenths column, but is unwilling to carry a 1 from the tenths to the units
column, which requires him to cross over the decimal point. There is a lack
of understanding here that the decimal columns are simply an extension of



Decimals 215

the whole-number columns, that they are related in the same way (increasing
and decreasing in powers of 10) and that they must follow the same rules.
This problem was anticipated in Chapter 11, where the issue was clarified by
the use of decimal number sequences. A demonstration with money can be
used to provide further reinforcement. The example above can be viewed as
£3.97 + £1.04 and written as

£
1
3.

1
97

+ £ 1.04
£ 5.01

Thus 7 + 4 is 11 pence, which is changed (traded) for a single 10 pence, carried
to the 10-pence column, and a one penny which is retained as the answer in
the unit-pence column. Similarly, in the 10-pence column, the carried over 1 is
added to the 9 and 0 to give 10 lots of 10 pence. These can be traded for £1,
which is carried into the pounds column.

Subtraction

Subtraction of decimal numbers presents children with virtually the same
problems as addition. For example, 24.38 − 0.6 might generate the error

24.38
− 0. 6
24.32

Here, the tendency to line up numbers from the right regardless of place value
is compounded by the fact that the 6 is easier to subtract from 8 than 3.
The solution to this problem is, as for addition, to line up the decimal points.
Again, the best manipulative material to illustrate and develop this procedure
is money.

Another common error pattern is illustrated by the example 48.5 − 2.36.
This tends to generate two types of errors:

• Lining up from the right

4
7
� 8.

1
5

− 2.36
24.9 (or 2.49 and sometimes 2.4.9).

• Setting up correctly, but

48.5
− 2.36

6
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the 6 is just transferred (effectively added) to the answer line, before the rest of
the calculation is completed correctly.

48.5
− 2.36
46.26

The use of an optional zero to ‘square off’ the calculation reminds the child
that the 6 has to be subtracted, and gives him something to subtract from.

48.50 48.
41� 50

−2.36 then −2.36
46.14

This can be practised with coins and place-value columns.
Errors in the addition and subtraction of decimals can be reduced though

the policy of instilling into children the universal need to preview and review
a question—to absorb some meaning and value for the numbers and produce
an estimate—and then check their answers against the estimate. This is likely
to reduce the incidence of mis-alignment errors. Mention must also be made
here of Henderson’s (1989) giant decimal point as another way of focusing
attention on the all-important decimal point.

Multiplication and Division by Powers of 10
Multiplication by 10

As with so much work in mathematics, place value is important here, so a
review of the topic may be an advisable precursor to the next work.

Confronted by the question 4.62 × 10, if the child can remember that
4 × 10 = 40 then this can help him to see that 4.62 × 10 (4 and a bit times
10) should be forty-something. Alternatively, 4.62 × 10 can be interpreted as
10 lots of 4.62 and can be evaluated the ‘long’ way (as an addition):

4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62

+ 4.62
46.20
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Many children will notice that the figures 4, 6 and 2 have not changed, as
might be expected in a multiplication; nor has their order. (This observation
is, of course, an extension of the 10 times-table pattern.) The numbers have
moved along one place, so that each number is now 10 times bigger. Most
children can appreciate this pattern when it is pointed out to them. Base-10
blocks or money can be used for manipulative work.

As always, a multiplication is more efficient, quicker and less prone to error
than the repeated addition of 10 numbers.

The pattern can also be shown by considering each of the figures separately,
using base-10 blocks, money or fractions to illustrate the procedure.

10 1

4
4 6

6
(0) 2 × 10 = = =

=

=
=
=

× 10 =
× 10 =

× 10 =
× 10 =
× 10 =

2

101 1001

× 10 =1002 10020 102

× 10 =106 1060

10 1

04
64 2

6
2

101

£1

4
4

10p 1p
0
6 (0)

2

6 2

£10

4
4

£1 10p

0
6

2

6 2

20p = 2 × 10p
60p × 10 = £6

£40

When the pattern is written as 4.62 × 10 = 46.2, some children will imagine
that the decimal point has moved rather than the figures. While this is strictly
incorrect, it is a simplification, whose value can outweigh its disadvantages
and it is often the only way some children can remember the rule. In reality,
the figures and the decimal point both move, relative to each other.

Multiplication by 100

There are children who will be able to predict the effect of multiplying by 100
and they will conclude that the figures (or the decimal point) will move two
places.

As with multiplying by 10, an example that relates to known facts can
provide early understanding of the operation, as well as a valuable estimation
procedure (also useful when calculators are used). For example, if it is known
that 2 × 100 = 200, then 2.375 × 100 (which is 2 and a bit times 100) should
be expected to be two hundred and a bit. Finally, if the digits are not to change,
then the two hundred and a bit must be 237.5. This result can alternatively be
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justified by treating × 100 as 10 × 10 in two stages (compare with × 4 as × 2 ×
2 in Chapter 7), and by using the same manipulative materials used for × 10:

2.375 × 100
= 2.375 × 10 × 10
= 23.75 × 10
= 237.5

Multiplication by 1000

At about this stage, children will usually see the pattern that the number of
zeros in the multiplier dictates the number of places moved:

• Multiplying by 10 causes a movement of 1 place
• Multiplying by 100 causes a movement of 2 places, so
• Multiplying by 1000 will cause a movement of 3 places.

For example, 27.1875 × 1000 = 27187.5. For justification, × 1000 is equiva-
lent to × 10 × 10 × 10. The same manipulative materials may be used.

Multiplication by other powers of 10

The pattern can simply be extended, using similar arguments, illustrations and
materials.

Division by 10

The initial goal is to show that division by 10 is the opposite of multiplication
by 10. The answer becomes 10 times smaller rather than 10 times bigger.
The topic could be introduced using money or base-10 blocks and the child
asked to show coins or blocks that are 10 times bigger or 10 times smaller.
The answers are written on place-value paper. For example, 3p × 10 becomes
30p and conversely 30p ÷ 10 becomes 3p. The movement of the numbers
is demonstrated by their places on the paper. A good demonstration of the
required rule depends on the argument that a division by 10 and a multiplication
by 10 will cancel each other out, because they are opposites:

37.63 × 10 ÷ 10 = 37.63 so
376.3 ÷ 10 = 37.63

The final line above shows that division by 10 causes a movement of one
place. However, the movement is in the direction opposite to that caused by a
multiplication by 10.



Decimals 219

Direction of movement

A decision about convention is now needed for describing the direction of a
movement. Referring to the direction as left or right would be ambiguous,
because if the figures move left, the decimal point moves right, and vice versa.
Furthermore, terms such as left and right, forwards and backwards, in front
and behind are all likely to confuse dyslexics, with their laterality problems
(Miles, 1983). We suggest that a safer and more meaningful practice is to
describe the direction of movement in accordance with whether the answer is
bigger or smaller than the original number.

• Multiplication by powers of 10 produces answers that are bigger than the
original number.

• Division by powers of 10 produces answers that are smaller than the
original number.

This convention encourages overviews, estimates and reviews.

Division by 100, 1000 and other powers of 10

Divisions follow the same pattern as multiplications, in that the number of
zeros in the divisor dictates the number of places moved (now in a direction
that produces smaller answers):

• division by 10 causes a movement of 1 place, so
• division by 100 causes a movement of 2 places,
• division by 1000 causes a movement of 3 places, and so on.

This work can be justified, if necessary, by arranging divisions as repeated
divisions by 10, or as reverse multiplications.

Examples

346.2 ÷ 100 = 3.462
1872.3 ÷ 1000 = 1.8732
23.721 ÷ 10000 = 0.0023721.

The last example illustrates the need to insert leading zeros, and the need to
explain this to a child. Again, there is the importance of using and appreciating
place value.
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Rationalisation (1)

It is worth anticipating children’s potential problems with trying to apply these
procedures to whole numbers—only decimal numbers have been used so far
in this chapter. Whole numbers do not display a decimal point, so three is
written as 3 and not 3.0. Many calculators will change an entry of 3.0 to 3 as
soon as an operation key is pressed. Children tend to simplify multiplication
and division of whole numbers by powers of 10 into a process of gaining or
losing zeros. For example,

2 × 10 = 20
3000 ÷ 1000 = 3000 = 3

It is important that children do not see the treatment of whole numbers and
decimals as two different processes. The two situations can be rationalised by
treating whole-number examples as decimal examples:

2 × 10 = 2.(0) × 10 = 20(.)

Here, the digits and the decimal point have moved one place in a direction to
make the answer bigger.

3000 ÷ 1000 = 3000.(0) ÷ 1000 = 3.(000)

Here, there is a movement of three places to make the answer smaller.
Not only does this rationalise all multiplications and divisions by powers of

10, but these previously understood examples reinforce understanding of the
new decimal work. Thus, in 2 × 10 = 20, the digits and the decimal point do
move one place.

Multiplication of decimals by decimals

There is an expectation, rightly encouraged previously in this chapter, that
multiplying a number will produce an answer that is bigger than the original
number. This has been true for powers of 10. However, for the example
0.6 × 0.8 this will not be the case (see Rationalisation (2)). Consequently, such
examples are very difficult for children still in the earlier stages to answer
correctly, unless they apply the proper rule, backed up by estimation skills
based on good number concepts.

The rule can be first established using the area model (Figure 13.1) for
multiplication, as in other chapters of this book. Within the unit square shown
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in the figure, the required answer is shown by the area of the shaded rectangle.
The small squares, each 1/100, show the answer to be 48/100 or 0.48, which
is less than either of the original numbers, 0.6(0) and 0.8(0). Of course, this is
because the answer represents part of a part.

0.6

0.8
1

1

Figure 13.1

With or without the area model shown in Figure 13.1, the rule is best
presented through fractions (Chapter 11 deliberately interrelated fractions,
decimals and percentages), so 0.6 × 0.8 becomes

6
10

× 8
10

= 48
100

= 0.48

In this example, the decimal places for 0.6 and 0.8 are treated as tenths.
The tenths accumulate, by multiplication, into hundredths, so any rule for the
decimal places must reflect this accumulation:

0.6 1 decimal place
× 0.8 1 decimal place
0.48 2 decimal place

The decimal points do not line up under each other. The rule for positioning
the decimal point can be stated as follows: The number of decimal places in
the answer is equal to the total number of decimal places in the numbers of the
question’. The digits in the answer (48) are the result of multiplying together
the numbers in the question (6 and 8), and are obtained independently of the
decimal places. Therefore, the numbers in the answer and the position of the
decimal point are two separate considerations.
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Examples

0.0003 4 decimal places
× 0.02 2 decimal places

0.000006 6 decimal places

3.2 1 decimal place
×0.05 2 decimal places
0.160 3 decimal places

21.09 2 decimal places
×3 0 decimal places

63.27 2 decimal places

The final example shows that multiplication of a decimal by a whole number
does not increase the number of decimal places. Quoting a special example
such as this too early may lead to the impression that the decimal points do line
up. Taken with other examples, this is seen to occur only in the exceptional
case of a whole-number multiplier.

Rationalisation (2)

In this chapter, it has been suggested that children are taught to expect a
larger answer after multiplying by a power of 10, but a smaller answer after
multiplying by a decimal. There is no ambiguity here, and the following
explanation can be used to rationalise the situation, and also to encourage
good estimation and checking strategy. A sequence such as the following
is used:

45 × 100 = 4500
45 × 10 = 450
45 × 1 = 45
45 × 0.1 = 4.5
45 × 0.01 = 0.45

The pivotal value of the multiplier is 1, because any number times 1 remains
unchanged. A multiplier bigger than 1 gives an answer bigger than the original
number, whereas a multiplier less than 1 gives an answer less than the original
number. This leads to the basic estimate/check procedure: ‘If the multiplier is
bigger than 1, expect the answer to be bigger, and if the multiplier is less than
1, expect the answer to be smaller’. The overview is, once again, an important
ingredient of the procedure.
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(An interesting sidetrack concerns children’s gut estimation of questions
such as 0.4 × 0.002. Given that the choice of the answer may be

• bigger than 0.4,
• a middle value between 0.4 and 0.002, or
• smaller than 0.002

most choose the middle value. A discussion as to the correct answer helps
children understand the concept of multiplication by numbers less than 1 and
acts as a useful reference/guide for similar problems.)

Division of Decimals
Division by a whole number

This work builds on the work of Chapter 10, with the added dimension of
a decimal point, so a comparison with a whole-number example is a good
lead-in. The problem 81 ÷ 3 is traditionally set out as

27
3
)
81
60
21
21
0

A pre-estimate of 81.6 ÷ 3 might be ‘a little more than 27, but less than 30’.
The calculation could then be presented as

27.2
3
)
81.6
60.0
21.6
21.0

.6

.6
0

The result compares well with the pre-estimate. For division by a whole
number, the decimal points line up with each other. This algorithm sets the
model for other decimal divisions.
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Division by a decimal

A question such as 8.64 ÷ 2 follows the procedure above, because it is a
division by a whole number. The question 8.64 ÷ 0.2 will often be set out
(erroneously) in the same way, as follows:

4.32
0.2

)
8.64
8.

.64

.6
4
4
0

Of course, division by 0.2 should produce a different answer and thus will
need a modification to the method of division by 2.

A rephrasing of the language of the question can help. Instead of 8.64
divided by 0.2, the question can be understood as ‘How many 0.2 s are there
in 8.64?’ or ‘How many £0.20 s are there in £8.64?’ with the extra help of
examining the value of 0.2(0) and of using money to set up the question. A
pre-estimate is then unlikely to suggest anything like 4 for the answer.

For the written, exact version, a solution to the problem lies in modifying
the question so that it becomes a division by a whole number. This can be
explained using equivalent fractions: 8.64 ÷ 0.2 may be written as

8.64
0.2

= 8.64 × 10
0.2 × 10

= 86.4
2

or 86.4 ÷ 2.

Multiplying the top and bottom of the fraction alters the division to 86.4 ÷ 2,
without changing the final result. The process can also be seen as matching
movements of the decimal places. The goal is to manoeuvre the decimal places
of both numbers until the dividing number is a whole number (in this case 2).

The division can then proceed as in earlier examples:

43.2
2
)
86.4
80.0
6.4
6.0

4
4
0
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Further examples

• 0.695 ÷ 0.05 becomes 69.5 ÷ 5 (moving both numbers two places)

13.9
5
)
69.5
50.0
19.5
15.0
4.5
4.5

0

• 13.2 ÷ 0.006 becomes 13200 ÷ 6 (moving both numbers three places), and
so on.

• 0.13 ÷ 0.8 becomes 1.3 ÷ 8 (moving both numbers one place)

0.1625
8
)
1.3000
.8
.50
.48
20
16

40
40
0

Note that in the final example 1.3 was written as 1.3000. The extra zeros are
optional (see Chapter 11) and do not affect the value, but help with the setting
out of the question.

Approximations/rounding

Sometimes it is desirable to give an approximate answer in round figures. For
example, £8.29 might be described as ‘nearly £8.30(£8.3)’, or ‘about £8’.

• 8.29 is somewhere between 8.20 and 8.30. It is nearer to 8.30, because it is
above the halfway position of 8.25. Therefore, rounded to 1 decimal place,
8.29 would be written as 8.3.

• 8.29 is somewhere between 8 and 9. It is nearer to 8, because it is below the
halfway position of 8.50. Therefore, rounded to the nearest whole number,
8.29 would be written as 8.
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Such separate judgements need not be made when a general policy is agreed
upon. Where practicable, a number line (Figure 13.2) shows quite clearly
which approximation is nearer.

8 8.1 8.2 8.3

8.29

8.4 8.5 8.6 8.7 8.8 8.9 9

Figure 13.2

A numerical policy is more readily applicable, however. The accepted policy
is demonstrated in Table 13.1 through rounding a complete set of numbers to
1 decimal place. The place to be retained is separated by a line from the place
to be removed.

Table 13.1

Nearer to Rounded to

.60 = .6 0 .60∗ .6

.61 = .6 1 .60 .6

.62 = .6 2 .60 .6

.63 = .6 3 .60 .6

.64 = .6 4 .60 .6

.65 = .6 5 .70∗ .7

.66 = .6 6 .70 .7

.67 = .6 7 .70 .7

.68 = .6 8 .70 .7

.69 = .6 9 .70 .7

It can be seen that:

• When the place to be removed contains a 5 or more, the number retained
is rounded up, by adding 1.

• When the place to be removed contains a 4 or less, the number retained is
rounded down, by adding 0.

This is the policy normally applied, because it is even-handed—half of the
numbers are rounded up and half are rounded down. In fact, it embodies the
twin fallacies (see values with ∗ in Table 13.1) that
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• .60 needs rounding to .6, and
• .65 is nearer to .70 than .60.

Sometimes a division will produce an answer that is too long, and will have
to be shortened, by rounding off excess places. Indeed, some divisions, such
as 39.5 ÷ 7 would carry on forever. The early part of this calculation is
shown:

5.64285, etc.
7
)
39.50000
35
4.5
4.2

30
28

20
14
60
56
40
35

The answer to this division is now given in various approximations:

• 5.(64285 = 6 to the nearest whole number, because a 6 is rounded off;
• 5.6(4285 = 5.6 to 1 decimal place, because a 4 is rounded off;
• 5.642(85 = 5.643 to 3 decimal places, because an 8 is rounded off;
• 5.6428(5 = 5.6429 to 4 decimal places, because a 5 is rounded off.

Some decimals are particularly awkward to round. For example, approximat-
ing 9.999 to two decimal places. When rounding off the final 9, the 9 in the
second decimal place must be rounded up, by adding 1. The likely problems
here are avoided by actually carrying out an addition:

9.99
+ 1

10.00

The act of rounding up has a knock-on effect for all the other figures. The
two zeros after the decimal point must be retained—normally regarded as
optional, they are needed here to give the approximation to the required
number of decimal places.
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Rounding must be performed in a single step, for accuracy. Rounding in
stages can produce errors. For example,

6.247 = 6.2 correct to 1 place.

However, rounding in stages gives

6.247 = 6.25 correct to 2 places, and then
6.25 = 6.3 which is wrong.

Converting harder fractions to decimals

In this chapter, it is possible to cover the types of example like 5/9, which
were beyond the scope of the methods used in Chapter 11. The diagrams in
Figure 13.3 are intended to show that 5/9 is the same as 5 ÷ 9.

5
5 ÷ 9

9

Figure 13.3

The conversion of 5/9 to a decimal can now be achieved by performing 5 ÷ 9
as a decimal division, and rounding the answer to, say, three decimal places.
It will be necessary to work out four decimal places, so that the size of the
fourth decimal place, and its consequent effect on the third decimal place, can
be determined.

0.5555, etc.
9
)
5.0000
4.5

50
45
50
45

50
45
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0.5555 = 0.556 correct to three decimal places.
5/9 = .556 correct to three decimal places.

This method of conversion works for any fraction, even the earlier easy
examples. Furthermore, in Chapter 11, it was seen that the conversion of 7/8
to a decimal requires some special knowledge. Now it can be carried out
mechanically as 7 ÷ 8.

0.875
8
)
7.000
6.4

60
56
40
40
00

7/8 is equivalent to the exact decimal .875.

Summary
As outlined at the beginning of this chapter, the methods used to justify
the rules for decimals would seem far too complicated for most children.
Instead, once the rules are understood, it is much simpler to stick to them. The
working involved in deriving the rules may be worth showing to some children
just once, or it may be held in reserve by the teacher, in case of awkward
questions.

The rules concerning the positioning of the decimal point can be summarised
as follows:

• For addition or subtraction, all the decimal points of the question and the
answer line up vertically.

• The same is true for a division, once it has been modified into a division
by a whole number. This is achieved by moving the figures (or the decimal
point) in both numbers by the same number of places, as appropriate.

• The decimal points in a multiplication do not line up. The number of
decimal places in the answer is given by the total number of decimal places
in the question. The actual numbers can be multiplied together in the
normal way.

• Multiplication and division of decimals by 10, 100, 1000, and so on, never
change the figures—they merely move them. The number of places moved
is dictated by the number of zeros, whereas the direction of movement gives
a bigger answer for multiplication, and a smaller answer for division.
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Because addition, subtraction and division ultimately follow the same rule,
some teachers prefer to teach them first, in the given order. Multiplication, the
odd one out, is then dealt with last.

Finally, and leaving out much of the detail, the policy for approximating
reduces to the following:

• 5 or more means round up
• 4 or less means round down.



Chapter 14
Percentages

Introduction
In Chapter 11 percentages were related to decimals and fractions in an attempt
to show the pattern of the relationships between these concepts and, hopefully,
to make them mutually supportive in the development of the concept of
numbers less than 1. In this chapter, the work will be extended to all numbers,
but the key reference values of 50%, 10% and 1% will be used to build pre-
and post-estimates and to check if an answer and the process used to solve the
problem make sense. The main idea of this chapter is to provide a concrete
image of percentages so that the formulae and algorithms have an anchor for
aiding memory. The image should also instil an understanding of the concept of
percentages. This is achieved by focusing on 100 and 1. There is a consequence
of this image, in that focusing on 1 leads to a division before a multiplication.
This is in contradiction to BOMDAS, the normal order for operations, and
could lead to compounding errors of earlier rounding/estimations of numbers.
Despite this, we feel that the strong image and the supporting logic of the
language of the method advocated overcome this disadvantage.

An Image of Percentage
Since percentage relates to 100, the image presented to the learner should
involve a clear demonstration of 100. Further, it should demonstrate dividing
the quantity up into 100 parts, thereby identifying one part out of the 100
parts. A clear method for this uses empty 35-mm film tubes, 100 of them
arranged in a 10 × 10 square (Figure 14.1). This image should complement
the hundred-square image used in Chapter 11.
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Figure 14.1

There are three types of percentage problems:

• Type 1 is ‘What is x% of N?’ (finding the percentage of a quantity).
• Type 2 is ‘What percentage of y is x?’ (one quantity as a percentage of

another).
• Type 3 is ‘x is n% of which number?’ (finding the original number).

Each type is explained in turn.

Type 1. What is x% of N?

An example can be used to show the tubes in use. Start with an example where
the pupil is likely to know the answer from the introductory work done in
Chapter 11. The question that sets the procedure in familiar territory is ‘What
is 5% of 300?’

This can be approached by working out 10% of 300:

10% is computed by using 1/10, so 300 ÷ 10 is 30.
5% of a number is half of 10% of that number.
So 5% of 300 is half of 30.
5% of 300 is 15.

Then approach the problem by working out 1% of 300:

1% is computed as 1/100 by dividing 300 by 100.
1% of 300 is 300 ÷ 100, which is 3.
5% of a number is 5 times 1% of that number.
So 5% of 300 is 5 × 3.
5% of 300 is 15.

The procedure that will now be introduced has been placed in a known
framework and this includes the ability to estimate an answer and also the use
of a second method to check an answer.
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Now we can move to a slightly more complicated problem, which can be
related back to the ‘easy’ example, and set up the procedure that will be used
for more difficult numbers. We can bring in the visual image of the 100 tubes
arranged in a 10 × 10 square.

Consider the question, ‘What is 12% of 300?’
300 (plastic) pence are used. The pence are divided up into the 100 tubes

(evenly). One tub is examined and would contain three pence (though you may
not have to laboriously do all of this, discussion may short cut the process
to agreeing that all tubes have 3 coins each). You can discuss and explain
that each tub represents one out of 100 tubes and that its contents represent
1/100 of the 300 pence or 1% of the 300. The learner is asked what two tubes
represent and what is in the two tubes. The procedure can be repeated for
three, five and ten tubes, at which stage the learner can be asked to refer back
to the concept of considering 10% as an equivalent of 1/10, as a check. It is
then only a minor progression to reach 12%.

You can emphasise the process as dividing up into 100 (equal) parts to obtain
1 part (1%) and the use of this 1% to find 12% or any other percentage.

A further check can be made against the 15% value found by calculating
10%, halving to get 5% and combining the two results to get 15%. The 12%
answer should lie between the 10% answer and the 15% answer.

This demonstration relates directly to the written algorithm:
300 is divided by 100 to find what is 1% and the result is multiplied by 12

to give 12%. This can be represented as a flow chart (Figure 14.2) or as an
equation:

(300 ÷ 100) × 12.

÷100 ×12300 36
3

Figure 14.2

The work can be extended, depending on the age and ability of the learner, to
lead to the general formula for the following question:

‘What is n% of N?’ ( N/100) n.
Other examples can be demonstrated and/or discussed, such as 8% of 60.

As 60 is less than 100, each tub gets less than 1 (probably through some
revision on dividing by 100 and obtaining decimals or by using money and
imagining £0.60 in each tub).

The algorithm is clearly related to the concrete image of first dividing up
into 100 equal parts (maybe by discussing the language again, remembering
that per cent means divide by 100) followed by taking n lots of the one part,
i.e. a division by 100 followed by a multiplication.
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Whatever the question, learners should be encouraged to compare their
answers with estimates based on the ‘easy’ numbers of 1%, 2%, 5%, 10%,
20%, 25%, 50% and 75%

Type 2. ‘What percentage of y is x?’

This type of percentage is often presented as an examination-score type of
question such as the following:

If a learner gets 46 out of 85 in his maths examination, what is his percentage
mark?

A simple exemplar can be used to illustrate the procedure and act as a check
should the learner forget the procedure. So we could start with the following
question:

What percentage mark is 40 out of 80?
The pupil should know that this is 50%, but is asked to write out the

fraction, 40/80 (‘40 out of 80’) and convert it (by dividing) into a fraction

40/80 = 1/2 = 1 ÷ 2 = 0.5

Then the pupil should make this a percentage, that is a fraction out of 100,
and then multiply by 100.

0.5 × 100 = 50%

This format requires the learner to convert a fraction, x/y, into a decimal and
then into a percentage. The film tubes help to keep the image of 100 in the
learner’s mind. The procedure then is to change x/y into a decimal and to
understand that the resulting decimal represents the amount in one tub.

So, in the example above, 46 out of 85 becomes 46/85 = 0.5412, which
is 54.12%. This last step can be done by understanding that 0.5412 is the
amount in one tub and multiplying the decimal 0.5412 by 100 to find the
number in 100 tubes, that is, relating to the key value of 100%.

This argument can then be strengthened by reflecting back on the 50%
example.

This method uses the same image as for the first type of problem. The focus
is on what is in one tub (1%) and then to multiply that value for 1% up to the
required value, in this case 100%.

If we refer back to Chapter 11, the procedure could also be seen as one of
changing x/y to an equivalent fraction with a denominator 100. The learner
has to appreciate that a percentage is a fraction with a denominator of 100,
where the convention is that only the value of the numerator is quoted.

Again the result can be compared with key values. In this example, 46/85 is
a little over a half and thus a little over 50%.
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Type 3. ‘x is n% of which number?’

Again the focus is on 1%. So, in an example such as ‘36 is 12% of which
number?’ the first operation is to calculate 1%. Using the 100 tubes image
again, the question is ‘What goes into one tub?’

The child is asked ‘If there are 36 objects shared into 12 tubes, can you
work out how many there are in one tub?’ The answer should be ‘three in each
tub’. The calculation of 100% is then a matter of multiplying three by 100,
providing the answer 300.

Estimates from key values

In Chapter 11 we explained the relationship between fractions, decimals and
percentages. In Chapter 7 we showed how all basic multiplication facts could
be accessed by using the key numbers, 1, 2, 5 and 10. This principle can be
extended to percentages for estimating and for many everyday applications.

The key facts are the following:

100% is 1, that is, all of the quantity.∗
50% is 1/2, that is, half of the quantity, obtained by dividing by 2.
10% is 1/10, that is, one-tenth of the quantity, obtained by dividing by 10.
1% is 1/100, that is, one-hundredth of the quantity, obtained by dividing by

100.

Once again, interrelating these numbers to the target number can make
many calculations much easier, provide estimates and enhance the learner’s
understanding of the concept of percentages. It is yet another example of
working from (and using) what the learner knows to take him to what he
can know. In doing this, you are returning to previously taught facts and
procedures and reinforcing work that has been covered earlier.

Consider the problems of the format ‘What is n% of N?’:

Example

What is 50% of £88?

£88 ÷ 2 = £44

(This value can be halved again to give 25% of £88 as £22.)

∗It is worth explaining to pupils that there can be percentage values above 100% (as in football
managers asking their players for 110%). So, 200% is 2×, 500% is 5×, 150% is 1.5× and so on.
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Example

What is 10% of £88?
£88 ÷ 10 = £8.80 (You may have to explain that .8 translates to .80 for

money and vice versa, that is, .80 keyed into a calculator will be displayed on
the screen as .8).

These two values, 10% and 50%, can be combined to give 40% and 60%,
for example, 40% of £88 is 50%–10%.

£44 − £8.80 = £35.20

The 10% value can be doubled to give 20%;

and halved to give 5%;
and halved again to give 2.5%.

To obtain 1% of £88, divide by 100:

88 ÷ 100 = 0.88

This can be doubled for 2%.
So several key values have been obtained with just basic calculations,

allowing the learner to combine values from a selection of

1%, 2%, 5%, 10%, 20%, 25% and 50%

Summary
The film tubes provide an image of 1% and 100% in a way that allows the
algorithm to be related directly to the image/model. The learner has to evaluate
the data in each question and form a mental image of what goes into each tub
in order to understand a difficult concept and procedure.

The estimation procedure allows the learner to check if his calculation is
reasonable and also acts as a simple method for calculating percentages in
daily life such as discounts in sales, which tend to be easy values, and tipping
in restaurants.
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Time

This chapter addresses two aspects of work with time: telling the time and
simple problems involving time. We feel that the topic is often underrated in
terms of its difficulty. This is probably because time is pervasive in everyday
life and we take the skill of ‘telling’ the time for granted. Copeland (1984)
observed that at age 10 some pupils are still not ready for a true understanding
of this concept. If the pupil is dyslexic, he may well have a maturational delay
and even an age of 10 may not mean he is ready for mastery of time. In fact,
being unable to tell the time is a classic weakness for many dyslexics. The
advent of the digital watch has enabled more pupils to ‘tell’ the time, but this
does not mean they have any understanding of what they ‘tell’.

Telling the time or, preferably, understanding the time is an important life
skill. Understanding the 24-hour clock is an essential skill when travelling,
but for many learners dealing with time in a 24-hour context is much more
challenging than using a.m. and p.m. and a 12-hour clock. Time also shifts
the number bases we use to 12 and 60. It also has a time line, as contrasted
to a number line, that is a circle. There are other challenging differences, for
example, the number of words related to time (Haylock and Cockburn, 1997)
(Figure 15.1).

Our comments about the paucity of research in dyslexia and mathematics
pale into insignificance when we look for research in time and dyslexia.

What are the Potential Problems with Time?
Time is complicated by the large number of inconsistencies that learners have to
master. (Chinn, 2001a). Time involves new numerical ideas, for example, using
number bases of 12, 24 and 60. The language of time can be misleading, for
example, we say, ‘Five past one’ and write 1:05 or even more challengingly ‘Ten

237



238 Mathematics for Dyslexics
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Figure 15.1

to nine’ and write 8:50. The language of time itself has to be carefully explained
and the language we use to explain time has to be carefully chosen to be as
unambiguous as possible. For example, a classic mistake that American pupils
make is to write ‘Quarter past four’ as 4:25, using the familiar money/dollar
interpretation of ‘quarter’ as 25 cents. Another potential ambiguity is with
24-hour time, where 08:00 is pronounced as ‘O eight hundred’, which does
not reinforce the concept of 60 minutes in an hour.

We have directional complications, for example, we count on minutes after
the hour until 30 minutes past and then countdown the minutes to the next
hour, for example, as 20 minutes to 6. Fractions are used, but only half and
quarters. The numbers on a clock face only refer to hours. The user has to
work out the minutes. A time may be written in a way that looks like a decimal,
but 8:30 is in fact half past eight and 8.50 is not half past eight.

After working with the dyslexic pupils of Mark College for a while, teachers
get used to being greeted with ‘Good afternoon’ at breakfast time.

Setting the scene: the overview

The adage ‘working from what the pupil knows to what he can know’ applies,
of course, to time. Although digital watches and clocks are more common, the
analogue clock face is still a common sight. The advantage of the analogue
clock face is that it provides a context for time. It gives 12 a prominent place
and 12 is an important part of many calculations involving time. It gives a
visual image of time past and time to go.

So, a clock face is a good visual aid. A cheap cardboard play clock has the
disadvantage of not having synchronised hand movements. It is possible to buy
geared demonstration clocks where the hour hand moves as the minute hand is
moved. Watching a working clock gives some idea of the relative values/speeds
of seconds, minutes and hours.

The clock face allows teachers to explain the key facts: that there are 12
hours (used twice, for a.m and p.m.), that there are 60 minutes, and that each
hour mark also represents a 5-minute interval for the minute hand.
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Starting with the assumption that the pupil has some awareness of time,
a few questions will determine how much or how little that knowledge base
is. Questions that use the pupil’s experiences should be used, such as what
time school finishes, what time lunch break starts, or what time a favourite
programme begins on television. As pupils give the time, the teacher writes
them on the board and shows them on a clock. Work of this kind concentrates
on showing the pupil the use of hours and minutes to identify the time without
the pupil having to read the same.

Work can be focused on terms such as o’clock, quarter past, half past and
quarter to in order to fix some key reference times and introduce the concepts
of a mix of hours and minutes and of using ‘to’ and ‘past’. So, half past can also
be expressed as ‘thirty minutes past’. There is this flexibility in the language
used for time and it needs to be introduced to the learner. For example, the
relationship between morning and a.m. and between afternoon and evening
and p.m. should be taught. If learners can grasp these key reference times they
will be on the first step to accuracy, but will also have a reasonable accuracy
in many everyday needs.

Other key ideas that need to be introduced in an overview are the circular
nature of the clock, that is, for example, everyday has a 1:00 p.m. or a
7.45 a.m., and time moves in cycles. Also, there is our convention of counting
the minutes after an hour only until we reach half past the hour and then
counting down the minutes to the next hour (29, 28, 27, 26 . . . .), so we only
worry about the current hour until we cross over the halfway mark and are
then closer to the new hour. We then change the focus to the new hour. There
is an old conundrum, ‘How far can you walk into a wood? Halfway, and then
you are walking out.’

Reading the Time
The times of television programmes may be written as though they were a
decimal number, for example, 6.21. This can create confusion with pupils
writing ‘one and a half hours’ as 1.30 hours. This confusion between the 60
minute nature of time and decimal notation may also encourage pupils to enter
the time into a calculator as a decimal. We would recommend using the colon,
as in 5:43, for example, to avoid this potential confusion in early experiences
of learning about time.

Digital time is easy to read, but may not give the meaning of the analogue
time. Older learners may be more comfortable with ‘Five to 8’ rather than
‘7:55’, possibly because it seems more relevant to everyday experiences and
possibly because it sounds less pedantic, precise and formal.

Quarter past, half past and quarter to

(In the United States ‘quarter past’ refers to quarter after and ‘quarter to’ refers
to quarter before.)
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These key reference times should be easy to master. Pupils may refer back
to previous experiences of quarters and half. First we divide a circle to show
the hours and then mark the 60-minute intervals. Pupils can then practise
estimation skills by judging the time as being closer to one of these, for
example, 6:40 could be expressed as ‘almost quarter to seven’. The convention
of counting on the minutes up to half past an hour and counting down the
minutes to go to the next hour after half past an hour can be reviewed by
focusing on quarters. As ever, the structure of any topic should incorporate
as many reviews as possible and it is better if these are from slightly different
perspectives each time. This strategy can be practised with a clock face. The
pupils are shown a time, say 4:11 and need to say the nearest quarter, half or
o’clock (‘Quarter past four’) (Figure 15.2).

15

30

45

time
past

time
to

Figure 15.2

There is some rationalisation in the use of ‘past’ and ‘to’ in that we only
refer to the nearest hour, so the nearest hour at 38 minutes past an hour is the
next hour. Half past, that is thirty minutes past is the changeover point. There
is a similarity here to rounding up and rounding down (Figure 15.3).
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5.00

Figure 15.3
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Minutes past and minutes to

This topic extends the work done on quarters and half. The first 30 minutes
after an hour are (normally) referred to as ‘past the hour’. The next 29 minutes
are used to count to the next hour. The quarters can be used for mid-point
check values.

The further the minute hand goes past the hour, the bigger the number of
minutes . . . counting up.

The closer the hand goes to the (next) hour, the lesser the number of
minutes . . . counting down Figure 15.4.
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Figure 15.4

Ante meridiem (a.m.) and post meridiem (p.m)

This is another vocabulary/language task. Pupils need to know the meaning
of a.m. and p.m. The words ‘ante’ and ‘post’ have similar meanings in other
words. Ante means ‘before’ as in antenatal, antecedent and ante-room and
post means ‘after’ as in post-mortem, postscript (PS) and post-date. Meridiem
means middle (12 midday or 12 midnight).

The 24-hour clock

While pupils come across times such as 8:30 a.m. and 10:15 p.m. on a daily
basis, they will be less familiar with the 24-hour clock. They may know, and
should revise anyway, that there are 24 hours in a day, that analogue clocks
almost always show only 12 hours and that digital clocks only show 24 hours
if programmed to do so.

This topic could be introduced through the use of a train timetable. There
are some quite simple timetables, only listing three stations, for example,
Taunton, Reading and London. The train timings can be demonstrated by
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moving the hands of a clock face, counting past 12 to 13, 14, 15 and so on,
pointing to the p.m. time.
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The p.m. time and the 24-hour time could be written side by side in a simple
chart.

12:00 p.m. 12:00
1:00 p.m. 13:00
2:00 p.m. 14:00
3:00 p.m. 15:00
4:00 p.m. 16:00
5:00 p.m. 17:00
6:00 p.m. 18:00
7:00 p.m. 19:00
8:00 p.m. 20:00
9:00 p.m. 21:00

10:00 p.m. 22.00
11:00 p.m. 23:00
12:00 a.m. 24:00

The pattern should be clear from this chart, but the additions of time with the
12-hour clock and the 24-hour clock produces some strange looking results:

6 + 3 = 9
7 + 4 = 11
8 + 7 = 15 (24-hour clock)
8 + 7 = 3 (12-hour clock)

10 + 8 = 18 (24-hour clock)
10 + 8 = 6 (12-hour clock)

Explaining this inconsistency in the rules of addition (because we are using
base 12) as applied to the 24 hour clock may help the pupil’s understanding of
its relationship to the 12 hour clock.
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A similar chart could be set up by the pupil for a typical day in his life,
starting with waking up time, through school time, to dinner time and evening
time.

The conversion from p.m. to 24-hour time requires the pupil to add 12 to
the p.m. time.

The conversion from 24-hour clock to p.m. time requires the pupil to
subtract 12 from the former time.

Thus, this is another example of reversible operations.
The classic error is likely to occur when 20:00 is converted to 10:00 p.m.

This example may need extra practise or can even be used as a key reference
time.

Time Problems
Finishing-time problems

There may arise questions such as the following:

Problem A:

If I start a journey at 9 a.m. and travel for 10 hours, when do I arrive at my destination?
or, the more difficult,

Problem B:

If I start a journey at 8:45 p.m. and travel for 2 hours 37 minutes, when do I arrive at
my destination?

Several alternative methods are available for these essentially addition problems. Once
again, the use of alternative methods addresses the individual needs of learners and also
provides a means for checking an answer.

Using the clock face as a number line and bridging the 12 boundary

Problem A (Figure 15.5):

Use 12:00 noon as the key intermediate stage, so

9 : 00 to 12 : 00 = 3 hours
This leaves 10 − 3 = 7 hours left to travel.
12 : 00 + 7 = 7 p.m. is the finishing time
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Using a linear time line

Problem B:

8 9 10 11 12

8: 45 10: 45 11: 15

11: 22

Stage 1 Stage 3
Stage 2

2 hours

Total 2h 37m

7 min
30 min

The clock face is rolled out to make a ‘time line’ and the journey is represented in
stages.

Stage 1. Move 2 hours down the time line, 8:45 to 10:45 p.m.
Stage 2. Move 30 minutes down the time line, 10:45 to 11:15 p.m.
Stage 3. Move the remaining 7 minutes, 11:15 to 11:22 p.m.

The method encourages the pupil to move in easy chunks of time, a principle used for
both long multiplication and division. It may be necessary to discuss and identify what
are ‘easy’ chunks. These are likely to be hours and half hours, and in some ‘moves’ there
may be a back move to compensate for an over addition, for example, while adding
25 minutes it may be effective to move down the line by 30 minutes and then back by
5 minutes.

This is another example of the use of the same strategies being used throughout the
arithmetic curriculum, for example, when 9 was added by adding 10 and subtracting 1.
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Conversion to the 24-hour clock

If time can be converted to the 24-hour clock format, then the travelling time is simply
added to the starting time. This time can then be converted back into the 12-hour
format if required.

Problem A:

When 9:00 a.m. is converted as 09:00, then the travelling time is added on:

09 : 00
10 : 00+
19 : 00

and 19:00 is converted back to 7:00 p.m. (subtract 12).

Problem B:

When 8:45 p.m. is converted as 20:45 (add 12), then the travelling time is added on:

20 : 45
+2 : 37 45 + 37 = 82 minutes = 1hour 22 minutes
23 : 22

and 23:22 is converted back to 11:22 p.m. (subtract 12).

With additions of this kind, it must be remembered that there are 60 minutes
in an hour, so we are working with base 60 at the boundary between minutes
and hours. It may help the student if the minutes are added as a separate sum
and then converted from minutes to hours and minutes.

Elapsed time problems

These are questions such as the following:

Problem C:

A woman works from 10:00 a.m. until 3:00 p.m. How long does she work? (See
Figure 15.6)

Problem D:

A journey begins at 7:35 a.m. and ends at 1:27 p.m. How long is the journey?

7 8 9 10 11 12 1

a. m. p. m.

2
7: 35 1: 27

Problems C and D can be solved by using modified versions of the methods
used to solve problems A and B.
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Using the clock face as a number line and bridging the 12 boundary

Problem C:

Time worked up to 12 : 00 noon, 12 : 00 − 10 : 00 = 2 hours
Time worked after 12 : 00 noon, 3 : 00 − 0 : 00 = 3 hours
Total time worked = 2 + 3 = 5 hours

The pupil has to understand that 12:00 noon also acts as zero for p.m. and
a.m. time. 12:00 noon and 12:00 midnight are where 12 hour day time returns
to 0:00. It is a key fact in the use of a circular time line that is an analogue
clock face.

Using a linear time line

Problem D:

Time travelled from 7 : 35 to 8 : 00 = 25 minutes
Time travelled from 8 : 00 to 12 : 00 = 4 hours
Time travelled from 12 : 00 to 1 : 00 = 1 hour
Time travelled from 1 : 00 to 1 : 27 = 27 minutes
Total time travelled = 5hours 52 minutes

Conversion to the 24-hour clock

This transforms both the problems into time subtractions, where the pupil
must remember that he is using a 60-minute number base for 1 hour.

Problem C:

Convert the finishing time

3 : 00 p.m. + 12 = 15 : 00

Subtract the starting time

−10 : 00

Time worked (elapsed) 5:00 hours
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Problem D:

Convert the finishing time

1 : 27 p.m. + 12 = 13 : 27

Subtract the starting time

−7 : 35

At this stage, there are more options, for example, the answer is approximately
6 hours (slightly less) and a refinement of this estimate could be used to arrive
at an accurate answer (comparing 27 minutes with 35 minutes, the adjustment
is to take off 8 minutes from 6:00 hours).

Alternatively, we could take an hour from the 13 and change it to 60
minutes, using a decomposition method, but trading for 60 rather than the 10
used in a number calculation.

12 : 87
13 : 27
−7 : 35

5 : 52

Summary
The language used for time is full of inconsistencies that will confuse many
learners, so the language used to explain this concept must be exceptionally
clear and cognizant of the potential problems. Once again, the principles of
starting with ‘easy’ examples that can be referred to as exemplars of methods
and for estimations may be followed. The bridging strategy and the traditional
subtraction algorithm of decomposition are also used, where 60 and 12 are
used instead of 10. The clock face and the time line can be used to provide
visual aid to the calculation procedures. ‘Telling’ the time is a task whose
difficulty is frequently underestimated.





Chapter 16
Teaching the Full Curriculum

Introduction
Faced with a dyslexic child who at a young age is experiencing great difficulty
with mathematics, many teachers will feel it is best to persevere with the basics
of numeracy until the child has mastered them. The teacher might regard these
basics as so fundamentally important that to proceed to other topics would
not seem to represent the best use of time or effort. As time passes, and the
child continues to experience many of the same difficulties, there grows the
temptation to concentrate even harder on a narrow range of activities. Such
a situation can continue to extend over a period of years, during which the
dyslexic child is enduring constant failure and losing all confidence in himself
and the learning process. The loss of confidence is a serious additional problem
in a subject where confidence in performance is so important—mathematics
is like walking a tightrope, in the sense that if you think you are going to fall,
then you will probably fall.

Varying the mathematical diet for such a child is a course of action that
may have beneficial effects of three kinds:

• It may provide him with a small amount of success and bring back some
confidence.

• Even more importantly, it may begin a process that gives him an alternative
way of looking at the subject—a way around his problems, when there may
be no way through them. If building a wall can be used as a metaphor for
the learning of mathematics, then the wall of a dyslexic child will have many
bricks missing, for parts of the subject he has not mastered. Of course, a
wall can remain standing around a few gaps, with the support of the bricks
around the gaps, and the wider the wall, the more missing bricks it can
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bridge. Where the wall of a dyslexic child cannot be built directly upwards,
it should be built across and then upwards, by widening his mathematical
experience, especially at the foundation levels.

• It may give him abilities, such as telling the time, which can be regarded
as social or ‘survival’ skills (Copeland, 1984), the lack of which can be
embarrassing for the child (or his parents).

The introduction of mathematical topics other than number can be achieved
in such a way that it reinforces the numerical work, rather than adding to
the overall load. In a single chapter, it is impossible to cover much curricular
ground, but it is possible to describe some general principles and give a number
of illustrative examples.

Some General Principles
Start early

Experience in teaching pupils from 11 through to 16 seems to show that good
early work pays huge dividends later. Very few special approaches need to
be used for 14-, 15- and 16-year-olds who have been given a very sound
foundation. It seems that they respond to conventional teaching methods, and
add their own motivation derived from increased confidence and being in sight
of the achievable target of GCSE. The early work seems to align all their
efforts in the right direction progressively, and begin a momentum in that right
direction. The earlier this can start, the better.

Plan for the long term

It is extremely important that long-term success should not be jeopardised for
the sake of early gains through the use of short cuts that are not soundly based.
This can be taken to include reliance on special cases or too many rules, which
dyslexics are likely to forget, or remember wrongly.

Examples

• When faced with the mixed fraction 3 1/2, many secondary-aged dyslexics
will feel they know how to convert it into a top-heavy fraction, because they
remember the rule ‘multiply that by that and add that’. When challenged
which ‘that’ should be multiplied by which, and which ‘that’ should then
be added, some will choose 3 times 1 add 2, some will choose 2 times 1
add 3, and some will choose 2 times 3 add 1 (the correct version). That
most of them remember the rule wrongly is bad enough, but what is more
dangerous still is their total conviction that they can rely on what they
remember.
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• In Chapter 12, the division of a fraction by another fraction was dealt with
in two ways. One way was to make segment sizes the same and then divide
the ‘like with like’. The other way suggested, which initially seems bizarre,
was to invert the divisor fraction and then multiply. Forethought should be
given here to the fact that many dyslexics, despite their problems, will go on
much further with their mathematics (even to degree level). Surprisingly, it
is the latter method that will have more lasting value in algebraic fractions
such as

a2b3c
w2y2z

÷ abc
wy2z

= a�2b�32 � c
w�2 � y�2 � z × wy �2z

abc
= ab2

w

Use illustrations of wide applicability

Once children understand the concept of area, and can fluently calculate areas
of rectangles (which is often thought to be the same thing), the area model can
help in many ways. Towards the end of Chapter 9, the use of counting blocks
for multiplications transforms into the use of scale drawings and then area
sketches. For example, the single multiplication 38 × 14 performed as the four
partial products 30 × 10, 30 × 4, 8 × 10 and 8 × 4 can be illustrated using the
areas in Figure 16.1.

A

B D

C

30 8

10

4

38

14

Figure 16.1

38 × 14
= area of whole diagram
= area A + area B + area C + area D
= 30 × 10 + 30 × 4 + 8 × 10 + 8 × 4
= 300 + 120 + 80 + 32
= 532

This idea can be exploited in a very similar way, to perhaps even greater
benefit, in algebraic multiplication. Figures 16.2 and 16.3 show how to work
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out such problems:

(x + a)(y + b) and (x − a)(y − b)

1

2 4

3

x a

y

b

x + a

y + b

Figure 16.2

(x + a)(y + b)
= area of whole diagram
= area 1 + area 2 + area 3 + area 4
= xy + xb + ay + ab

Area 1 Area 3

A
r
e
a
2

y

b

a

x

Figure 16.3

(x − a)(y − b)
= area of whole diagram − area 1 − area 2 + area 3
= xy − xb − ay + ab

There are many other instances where the area model can prove invaluable. It
is used elsewhere in this book, for multiplying fractions, for example.
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‘Maths is easy—only writing it down is hard’

It is all too common to consider only the written form of mathematics, the
most difficult form for most dyslexics. In fact, the written form should be the
last aspect considered.

Example: long division

Consider 425 ÷ 17

25
17

)
425

−34
85

−85
00

It might be taught as an algorithm or a series of steps to be learned and
performed in sequence. This would make things very difficult for a dyslexic,
who has problems with short-term memory, tables and sequencing. A better
approach would be to consider the real mathematics as happening when
a physical division takes place. Then the written version constitutes only the
record of a common event that is well understood. Rather than trying to follow
a badly remembered and badly understood list of steps, a dyslexic is better
encouraged to imagine dividing £4.25 between 17 people, or indeed to actually
perform the division with coins. The written steps will match the physical steps.

Consider the £4.25 as 425p, in the form of 4 one pound coins, 2 ten pence
coins and 5 one penny coins. First, we would attempt to divide the 4 £1 coins
between the 17 people:

17
)
4

Clearly there are not enough even to have one each, so the 4 pounds would
be changed into 40 ten pence pieces, which would added to the existing 2 to
give 42:

17
)
42

Now we would attempt to divide the 42 ten pence coins between the 17 people
(a separate problem in itself). They would receive 2 each, and this would use
up 34 of the ten pence coins:

2
17

)
42
34
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This would leave 8 ten pence coins that could not be divided between the 17
people:

2
17

)
42

−34
8

These would be changed into 80 one penny coins, which is added to the
existing 5 to give 85:

25
17

)
425
−34

85

Now we would attempt to divide the 85 one penny coins among 17 people.
They would receive 5 each and this would use up all 85, with none remaining:

25
17

)
425
−34

85
−85

00

The written form, obtained here by recording the physical steps, is identical
with the version achievable using a difficult algorithm. The difference is that a
dyslexic child would understand what had happened, and how to repeat it.

Example: a rule for equations

Equations are a very important theme, which runs all the way through this
subject. The very stylised procedures to be followed for solving them are highly
likely to confuse many dyslexics. Therefore it is necessary for a teacher to be
extremely alert and sensitive, as well as very careful about how this work is
presented. Once again, the method that will be best understood is the method
derived from physical experience.

For solving an equation like x + 3 = 8, there are various schools of thought.
Pupils can be taught with flow charts. They can be taught that equations are like
balance scales, pivoted about the = sign, and that any operation must be done
to both sides to maintain the balance. For this example, it is possible to subtract
3 from both sides to leave x = 5. Although this method can be physically
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demonstrated with a special pair of balance scales, we have found that it seems
‘artificial’ and leads to some awkward subtractions at times. Our pupils tend to
prefer another method, which they derive naturally for themselves. The teacher
covers up an ‘unknown’ number of counters, adds 3 more and then shows the
result to be 8. If the pupils are then asked to describe how to find the original
number, none of them have any doubt that the extra 3 must be subtracted
(revealing the original 5). In its written form, this appears as follows:

x + 3 = 8

then x = 8 − 3
and therefore x = 5

It looks as though the 3 has crossed over the = and its sign has changed from
+ to −. As the pupils describe it, the number that was added must now be
subtracted. The written form has reflected what the pupils found self-evident.

For solving the equation

x
2

= 5

the teacher again covers up the ‘unknown’ number of counters, this time
explaining that they are being divided into two equal groups and then showing
one group to contain 5. Now if the pupils are asked to suggest how to find the
original number, they will advise that the 5 should be doubled (multiplied by
2) giving 10 for the result. In its written form this appears as follows:

x
2

= 5

then x = 5 × 2
and therefore x = 10

It looks as though the 2 has crossed over the = and its sign changed from
division to multiplication, as the pupils suggest. Again the written form reflects
the pupils’ way of thinking.

Almost incidentally, the pupils have derived for themselves a rule, which is
easily remembered as

Change the SIDE
Change the SIGN

Although there is insufficient space here to demonstrate further examples,
this is the rule pupils will carry with them throughout their mathematical
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careers, no matter how far they advance in the study of equations, and they
will remember as well as understand it all the better for having related it to
physical experience. Further suggestions for teaching equations and another
view deriving the rule can be found later in the chapter.

Teaching the Other Parts of the Curriculum
Having taught dyslexic children mathematics since long before the National
Curriculum was framed, it always seemed that the structure of our pupils’
learning was the first aspect that should be tackled. Our curriculum was
organised into five different parts: Using and applying mathematics, Number,
Algebra, Space and shape and Handling data.

The idea was not to separate the work in each part from the work in
the other parts, because this would have conflicted with the policy to which
experience had led us: that we should offer a wide mathematical ‘wall’, with
the bricks cemented horizontally as well as vertically. Rather, the idea was to
have all the separate pieces ready in advance so that they could be assembled in
the most efficient way. This is somewhat like having ready all the different tools
and materials to build a wall, such as the trowels, shovels and spirit-levels,
damp-proof membrane, air bricks and mortar, and so on.

Consequently, part of the rest of this chapter will offer hints about planning
the curricular materials for the five parts; the rest of the chapter will suggest
some methods of combining them.

Using and applying mathematics

Two uses for this kind of work are dealt with in this chapter. It naturally
helps by combining different skills and knowledge from different mathematical
areas, and this use will be discussed towards the end of the chapter. The
other use is in investigations where children examine a new piece of curricular
work and derive the theory for themselves. This use is not as daunting for the
children as it sounds.

A very simple instance concerns the angle-sum of a triangle. If each child
of a class draws a triangle, measures the angles and adds them up, then the
result will be about 180 degrees for all those who have not made a gross error.
The gross errors might include mistakes in addition, or use of the wrong scale
on the protractor. Once these have been corrected, there should be enough
answers just above 180 to balance those just below 180 and convince the
children that 180 is the right answer. If the triangles are of many different
shapes, then this will confirm the universal application of the result.

A more difficult, though related, example concerns the angle-sum for any
polygon. This used to be taught as 2n − 4 right angles, which is a difficult
formula to remember and employs peculiar units. Asked to investigate this
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polygon problem, instead of being given the formula, children might need the
hint that they should divide the polygon into triangles (preferably from one
corner). If they all draw several polygons, they will usually be able to detect
that they can always draw two triangles less than the number of sides of the
polygon.

For the pentagon in Figure 16.4, this would be 5 − 2 = 3 triangles. From
what they already know, children would be able to work this out as 3 × 180 =
540 degrees. Having worked out the theory for themselves, they are more
likely to have understood it. They are also more likely to remember it, either
using the easier formula (n − 2) × 180 degrees, or in a form of words like ‘two
triangles less than the size’, or simply resolving always to divide their polygons
into as many triangles as it takes.

Figure 16.4

Number

Because the greater part of this book deals with numerical aspects of mathe-
matics, this chapter will concentrate on the other parts of the curriculum.

Algebra

It can be argued that all the way up to GCSE level a significant portion of
the study of mathematics involves not so much of an intellectual challenge as
the acceptance and acquisition of conventions of syntax. Nowhere is this truer
than in algebra. Of course, effective acquisition requires thorough explanation
and practice of every possible type of problem.

Two areas of major importance within algebra concern formulae and
equations (Kitz and Nash, 1995).

Children will be expected to be able to derive formulae for simple situations.
They will subsequently be expected to substitute values into given formulae.

When a problem quite correctly finishes with a formula, for example,
a + b + c as the perimeter of the triangle in Figure 16.5, there are children who
will be dissatisfied with the lack of a numerical answer.
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a b

c

Figure 16.5

They can usually be convinced by the argument that a formula is an
‘instruction’ about what to do when the values of a, b and c become known.
In this sense a formula is superior because it applies to every triangle, while a
numerical answer is only correct for one specific triangle.

Errors in substitution questions can signal fundamental misconceptions.

Example

In this example, 5n represents ‘5 times n’, although the multiplication sign is
not usually visible. If it is required to substitute n = 4 into the formula 5n,
then the multiplication sign should appear before the substitution takes place,
if the common incorrect answer of 54 is to be avoided.

5n
= 5 × n
= 5 × 4
= 20

Children often ask why the multiplication sign is missed out, and a range of
reasons can be given, including the fact that it resembles the letter x too closely
or that we say ‘5 pounds’ rather than ‘5 times a pound’ in everyday language
or that it simply saves effort.

Example

Children substituting y = 2 into the formula 3y2 can produce the incorrect
answer 36, especially with casual use of certain calculators. What they have
computed is (3×2)2 rather than 3 × (2)2. The ‘squared’ applies only to the y
and not to the 3.

An earlier passage described how to arrive at the rule for solving equations.
There are further problems implementing the rule. At the beginning, the
numbers in an equation must be kept simple to avoid clouding the main
issue However, children confronted with the equation x + 3 = 8 will often
rush to guess the answer 5, and then be unhappy when their teacher insists
(appearing pedantic) that they must set out all the steps properly. Ironically,
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the very simplicity of the numbers limits the children’s acceptance of the
need for a careful procedure. It is necessary to convince them that the need
will soon increase, and one way is to show them an equation, such as
31.2x − x(2.5 − x) = 0.654, which they cannot solve mentally but may have
to solve in later years. This can be followed up by adopting the motto,

Look after your equations when they are young, and they will look after you,
when you are older.

Shape and space

Application of the Test of Cognitive Style in Mathematics (Bath et al., 1986)
has indicated that the mathematical style adopted in this branch of the subject,
which covers topics such as angles, volume and symmetry, is often different
from the style for the subject as a whole.

Furthermore, the misconceptions experienced by dyslexics in this branch
can produce some of the most confusing mistakes. For example, it has been
seen that a child argues long and hard that in the diagram in Figure 16.6
‘y = 40, because both angles are the same’.

y
40°

Figure 16.6

Discussion showed that the misconception seemed to derive from observa-
tion that both angles were formed with the same pair of straight lines.

Handling data

The fifth part in our original curriculum split differed slightly from the National
Curriculum version in being called ‘graphs’ rather than handling data. The
calculation of means, medians and modes always seemed very numerical
processes. Pie charts and histograms fit both titles, of course, but we felt that
dealing graphically with a table full of coordinates (from a quadratic equation,
for example) should also count as handling data. The graph in Figure 16.7 for
squares and square roots is such an example.

When covering squares and square roots, a curved graph may be plotted
for the easy, whole number square root values (x) and the easy, whole number
square values (y) in Table 16.1.

When read from one scale to the curve and then from the curve to the other
scale, the graph can provide much more data than the list of values. Broken
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Table 16.1

x 0 1 2 3 4 5 6 7 8 9 10

y 0 1 4 9 16 25 36 49 64 81 100

lines on the graph show how this is done. Additional data is obtainable in at
least two ways.

100
Squares and squares roots

90

80

70

60

50

40

30

20

10

0
0 1 2 3 4 5 6 7 8 9 10

x

y

6.72 = 44

52 = 25

√25 = 5 √72 = 8.5

√

Figure 16.7

• Reading from the x scale to the y scale gives squares, while reading from
the y scale to the x scale gives square roots. In view of this dual capability,
the graph is providing one of the best ways to demonstrate that squaring
and extracting the square root are opposite processes.

25 = 52

so
√

25 = 5

• Between the 11 plotted points, the curve contains an infinite number of
other points, which may be used for values between those in Table 16.1.
For instance, one of the broken lines shows that 6.72 = 44 to the nearest
whole number and another shows that

√
72 = 8.5 correct to 1 decimal

place.
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Combining the Parts of the Curriculum
This final section contains a short series of examples that increase in complexity,
to show how parts of the curriculum may be combined.

Example

Addition in two digits can be illustrated by concurrently covering the combi-
nation of angles, like those shown in Figure 16.8a.

25
+ 50

75

The idea of combining angles can be extended to the case where angles are
represented by letters (Figure 16.8b).

25°

50° 35° 235°
(a) (b) (c)

?x

Figure 16.8

It involves very little extra difficulty for children to add the above angles
and obtain x + 35. It is also conceivable, at this stage, to form the equation
x + 35 = 90, since the outer angle has been carefully chosen as a right angle.

Example

When children are practising subtraction of hundreds, tens and units, its
application to an example such as that in Figure 16.8c can provide credibility
and motivation.

360
− 235

125

Example

Sometimes a carefully chosen example from one part of the curriculum can
help children to derive or confirm rules for another. If the topic of perimeter
has been studied, the diagram in Figure 16.9 could lead elsewhere.
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6

4

Perimeter = 28

6

4

5

x

Figure 16.9

Prompted by the question, ‘How would you find x?’, many children would
have no difficulty in concluding that the given sides should be added, and the
total subtracted from 28. A written version of the problem and its solution:

x + 6 + 4 + 6 + 5 + 4 = 28
x + 25 = 28

x = 28 − 25
x = 3

indicates precisely how a quite difficult equation should be solved, and confirms
the rule derived differently earlier in this chapter.

Change the SIDE
Change the SIGN

Example

70°

Not to scale

x

Figure 16.10

The problem illustrated in Figure 16.10 can be regarded as a spatial problem.
The calculation of the missing angle can be performed numerically, as 180 −
70, or interpreted algebraically in the form of the equation x + 70 = 180.
Furthermore, if the problem was generalised to that shown in Figure 16.11 and
the value of x was allowed to vary, between 0 and 180, then the corresponding
values of y could be tabulated against it, as shown in Table 16.2.

Table 16.2 shows all possible pairs of values, for multiples of 20, and could
be generalised into the relationship y = 180 − x. The graph in Figure 16.12
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x y

Figure 16.11

Table 16.2

x 0 20 40 60 80 100 120 140 160 180

y 180 160 140 120 100 80 60 40 20 0

produces a backwards-sloping straight line (rare in itself at this level), which
can be used to show every possible pair of values, and thereby demonstrate the
problem-solving power of graphs.

20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

x

y

y = 180 − x

Figure 16.12

Work on using and applying mathematics can have the other role, mentioned
earlier, of forcing the combination of many parts of the curriculum.

Example

Investigating the question, ‘Can a person walk a million miles?’ turns a child’s
thoughts to distances and time, and requires him to make various judgements
and estimates. The thoughts on time will range from minutes to eat meals,
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through hours for sleep, days for rest, weeks, months and years, to decades
and centuries. He may wonder how many times around the world is a million
miles or if it is that far to the moon. He will have to make judgements about
how long the person would live and their walking speed or how far they could
reasonably be expected to walk in a day. Dyslexics’ estimates in these areas
can show wild misconceptions, which can be discussed very profitably.

Example

A briefly worded challenge for a child to draw a square and a circle with
the same area provides another example. The sensible (or fortunate) child
will choose a radius, draw a circle first and work out its area. To draw the
square, then only requires him to take the square root of this area to find the
square’s sides. This exercise involves choosing a radius and drawing a circle,
remembering and evaluating the formula for the area of a circle, reversing the
formula for the area of a square to obtain the length of its sides, and then
drawing the square. The less fortunate child will draw the square first and
have a considerably more difficult job reversing the formula for the area of the
circle!

Summary
The purpose of this chapter has been to argue the importance of a structure that
organises the widest possible range of mathematical experiences for a dyslexic
child. While complete coverage of the matter would take several books, the
chapter covers some general principles and includes illustrative examples.
There are notes on the separate parts of the subject and some examples of
when and how to combine them.



Chapter 17
Attacking and Checking
Questions

Mathematics is an activity that has to be ‘performed’. A certain amount of
theory must be committed to memory, but no marks are awarded these days
for the bare restatement of this theory. A pupil must be able to apply it to
produce methodical solutions to questions asked. This will form the evidence
that he is proficient in the subject.

It is well accepted that for dyslexics the process of acquiring knowledge
and understanding in mathematics should be structured and multi-sensory.
However, the provision of help with the application side of the subject should
be given just as much thought. Of all people, dyslexic pupils should not be
expected to work it out for themselves.

This chapter is concerned with helping pupils cross the barrier between
knowing the subject and successfully applying it.

The transitional stage of practising must be acknowledged first. At this
stage, the pupil can obtain help, for example, from the teacher.

Practice Examples
For thorough understanding and preparation, a pupil needs to understand any
topic ‘forwards, backwards, sideways, upside down and inside out’, because
this is the way questions will be asked.

For example, 7 = 5 + can be seen as
5 + = 7 backwards

or 7 − 5 = inside out

For reasons such as lack of time and the pupils’ limited concentration spans, it
is probably not possible to cover all these viewpoints at the exposition stage.
A pupil will encounter them all through practice examples.

265
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There is a danger that should be recognised here. The number of questions a
pupil completes for practice may be limited, for many reasons, such as lack of
motivation or slowness in working. The consequence may be that he reaches
only the earliest and the most straightforward examples in the exercises, never
seeing the later, more searching questions. The result can be the worst of
both worlds. If the simple questions are done correctly, he may think that he
understands the topic totally, while really understanding it only superficially.
Part of the teaching structure for every topic should be a carefully chosen
series of practice examples, which would not have all the easy, straightforward
questions first.

Although they are generally discussed separately in this chapter, attacking
questions and checking them are interdependent processes, something best
exemplified in the ‘trial and improvement’ methods, mentioned later. Indeed
there are some checks that ought to be carried out before a question is
attempted.

Preliminary Checks

1. Recall/look up the correct information/formula.
2. Use given information to check proposed/initial working.
3. Make a rough estimate. A mental estimate will probably be the quickest.

1. Recall/look up the correct formula

Faced with a problem about a circle, many pupils will feel proud of themselves
for remembering the (classic) formula:

On many occasions, pupils will find the area of a triangle by multiplying
base × height. In fact, this answer now should be halved, and the pupil should
have checked and then used the formula

base × height
2

p r2

Unfortunately, they will go ahead and apply it even to questions involving
the circumference of the circle, when they should use the (much less frequently
remembered) formula:
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2 p r
One way to help ensure that the correct formula is chosen is to check its

dimensions.
Formulae for lengths must contain only one length, for example, 4r for the

circumference of a square.
Because areas are two-dimensional, formulae for areas must contain two

lengths multiplied together. For example, the area of a rectangle of sides a and
b is given by A = ab, and the area of an ellipse by �ab.

Because volumes are three-dimensional, formulae for volumes must contain
three lengths multiplied together. For example, the area of a cuboid of sides a,
b and c is given by A = abc, and the volume of a cone by 1/3�r2h.

2. Use given information to check proposed/initial working

Example:

Complete the following table for R = 3V2 and then draw a curve with the
values in the table:

V 0 1 2 3 4 5 6

R 0 48

In the question shown, pupils should first ensure that

when V = 0 they can make the formula produce R = 0, and
when V = 4 they can make the formula produce R = 48 in the same way.

They can then be confident that their method will be right for the values they
have to work out (and that the graph will be correct).

3. Make a rough estimate first

Later, the exact answer should be close to the rough estimate.

Example:

For 12 × 145, we might estimate 10 × 150 = 1500.
We have decreased the 12 to 10, but roughly compensated by increasing

the 145 to 150. This estimate could be done mentally by many pupils. Some
examination questions explicitly test pupils’ ability to think this way, because
this is how we often calculate in everyday life.



268 Mathematics for Dyslexics

Attacking Questions
After the processes of understanding, learning and practising, there comes the
point when the subject has to be applied to problem questions, most signifi-
cantly in test or examination situations. These will be different from practice
situations in the level of pressure they bring, and in the wide variety of the
questions that can appear, which rules out the possibility of rehearsing them all.

At this point, a structured approach is certainly no less necessary than
before. Dyslexic students need to be taught the following:

(a) not just to take a question at face value;
(b) how to examine a question, so as to enable the use of their preferred style

of working, exploit their strengths and circumnavigate their weaknesses;
(c) how connections are made between the various techniques and items of

knowledge needed for a question to be answered.

Attacking a question can be visualised as guessing what a present is before you
are allowed to unwrap it. You might (using most of your senses)

— pick it up and feel its weight, squeeze it or shake it;
— turn it over;
— smell it;
— tap it to see what sound it makes.

Methods of attacking questions
This section will describe a number of practical suggestions for ‘attacking
questions’. Pupils should carry out as many of the following steps as required:

1. Use a refined estimate.
2. Do not be afraid to take the long way round
3. Do what you are told!
4. Draw a diagram.
5. Draw a graph.
6. Try to interpret (decimal) numbers as money, which everybody understands

better.
7. Temporarily replace awkward numbers with easy numbers to clarify the

method (then replace the actual numbers).
8. In multipart questions, answer the later parts even if you cannot answer the

earlier parts.
9. When using a formula, consider whether you prefer to rearrange before

you substitute your values, or vice versa.
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1. Use a refined estimate

After working out a rough estimate, we can often see ways of refining it to
calculate the exact answer.

Example:

For calculating 12 × 45, 10 × 145 = 1450

and for the exact answer, we need another 2 × 145 = 290

12 × 145 = 1740

Example:

Find the cost of 24 square metres of carpet at £17.60 per square metre.
We might estimate by finding the cost of 25 square metres, because it is

close and it is a quarter of 100.

25 × £17.60 = 100 × £17.60/4 = £1760/4 = £440

Having worked out the cost of 25 square metres, we can take 1 square metre
away to get 24.

25 square metres cost £440.00
1 square metre costs £17.60−

24 square metres cost £422.40

2. Do not be afraid to take the long way round

Example 1

Faced with a multiplication like the above, that is 12 × 145, it is better to take
a long way around than do nothing. It is legitimate to add 145 twelve times. It
is highly undesirable to add 12 a hundred and forty five times!

Example 2

A division such as 5202 ÷ 17 would cause many (or even most) pupils to give
up because they do not know the 17-times table. In these circumstances, it is
perfectly possible to quickly write one out:
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17
17 + 306
34 17

)
5202

17 +
17 × 3 = 51 → 51

17 +
68
17 + 102
85
17 +

17 × 6 = 102 → 102
17 +

119
17 + 000

136
17 +

153
17 +

17 × 10 = 170 Going this far gives a check that you have made no errors.

Example 3

Even with a calculator, a longer way around can be beneficial. With a question
like

25.49 × 1.745
61.52 − 43.1

it is possible to do the entire sum using the calculator and come out with a
single, complete answer (= 2.415). However, calculating the top and bottom
separately and then putting them together is clearer and shows the working,
which will earn marks in case of any errors.

25.49 × 1.745
61.52 − 43.1

= 44.48005
18.42

= 2.415

3. Do what you are told!

Apart from the obvious need to avoid doing otherwise, sometimes following the
instructions will lead pupils to places they would not have reached themselves.

Example:

Complete this pattern, and find the answer for 26 × 16
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26 × 16
52 × 8

104 × 4
. . . . × . . . .

. . . . × . . . .

Completing the top pattern gives 208 × 2 and then 416 × 1
Recognition that all multiplications are equivalent shows that

26 × 16 = 416

Pupils will be led to the answer if they follow the given steps.
Many would have given up at the beginning, because they would not have

known how to find 26 × 16.

4. Draw a diagram.

If ‘a picture is worth a thousand words’, then there is an equivalent benefit
to be gained in mathematics. The picture will give strong hints about how
to move forwards. How many pupils could remain stuck if they drew the
diagrams for the following examples?

Example:

What is the perimeter of a square whose side is 21 cm?

21 21

21

21

The likely mistake here is failure to realise we are talking about a square,
although the word is there in the question. The act of drawing is likely to
bring this into the awareness. The danger of adding two sides instead of four
is greatly reduced, as is the lure of multiplying the length by the width.
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Example:

What is the bearing of a ship travelling south-east?
While a pupil might feel he knows what direction south-east is, the picture

allows him to ensure that he is measuring ‘from the north, clockwise’, even if
he does not use a protractor. It also gives him the reminder that his answer
should be between 90 and 180.

N

JE

5. Draw a graph.

A graph is another form of picture, of course.
For the effort expended on drawing and joining a few points on a graph,

what is gained are all the points in between (an infinite number) and any points
where the graph can be extended.

Example:

Consider the problem of how to use 24 m of fencing in a rectangular shape to
enclose the biggest possible area.
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As the length increases (and the width decreases), the area changes.

Length Width Area

1 11 11
2 10 20
3 9 27
4 8 32
5 7 35
6 6 36
7 5 35
8 4 32
9 3 27

10 2 20
11 1 11

1 2 3 4 5 6 7 8

Length

A
re

a

9 10 11 12

5

10

15

20

25

30

35

40

From the table, it is evident that the biggest area is obtained with a square
whose sides are 6 m, but consider the situation if we were forced to deal with
decimal sides. In an examination, we might be asked to prove we have found
the biggest arrangement. The graph of Length against Area, especially with its
symmetry, shows that no other value will give a greater area (even decimal
values not calculated).
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6. Try to interpret (decimal) numbers as money, which everybody understands
better

Example:

Put the following decimals in order, smallest first:

0.95, 0.905, 0.102, 0.9, 0.85

Pupils who do not fully understand place values will have the tendency to see
0.102 as bigger than 0.95, because ‘102 is bigger than 95’. Seeing the numbers
as amounts of money can help, especially if they are lined up one below the
other:

£0.95/

/

£0.90/5
/

£0.10/2
/

£0.9/

/

£0.85/

They will then realise the correct order is

0.102, 0.85, 0.9, 0.905, 0.95

7. Temporarily replace awkward numbers with easy numbers to clarify the
method (then replace the actual numbers)

Given the problem,

‘Find the average speed of a car that travels 82.3 km in 1 hour 45 minutes’,

many pupils would be put off.
If the problem is temporarily changed to

‘Find the average speed of a car that travels 80 km in 2 hours’,

then the method becomes obvious and the answer is clearly seen to be
40 km/hour.
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Pupils can now see that the distance must be divided by the time, and careful
steps can now be taken to divide the more awkward figures of the original
problem.

8. In multi-part questions, answer the later parts even if you cannot answer
the earlier parts

Example:

Using the following diagram,

(a) write down a formula for the area of the triangle;
(b) given that the area of the triangle is 35, show that x2 − 3x − 70 = 0;
(c) solve the equation x2 − 3x − 70 = 0.

x − 3

x

It may be impossible for pupils to write down the required formula for
(a) or form the equation for part (b), but that need not prevent them from
solving the more mechanical equation in (c) and earning the marks available
for that part of the question.

9. When using a formula, consider whether you prefer to rearrange before you
substitute your values, or vice versa

Example:

Use the formula v = u + at, to find the value of a when v = 40, u = 30 and
t = 5.

Rearranging the formula first gives u + at = v
at = v − u

a = v − u
t

then a = 40 − 30
5

a = 10
5

a = 2
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Substituting the values first gives 40 = 30 + a × 5

10 = a × 5
10
5

= a

2 = a

Besides being shorter and simpler, the second method seems to suggest more
clearly what should be done, at each stage.

Checking

Pupils should recognise the need to check for mistakes, so it is important to
emphasise how easily and frequently mistakes are made, and how costly they
are. Left to their own devices, or, worse still, forced to check their work, many
pupils will begin a desultory, and perhaps ill-humoured, process of repeating
their work. This is probably the least effective method of checking, and it
is so boring that most will discontinue it, long before all their answers are
checked.

Some mistakes are obvious and will stimulate an immediate check. Other
errors are less obvious, but pupils should assume they are present, unless they
can guarantee that all their work is perfectly correct! There are many different
kinds of mistakes that can be made, and there need to be just as many ways
of checking for them. Some mistakes are random and can be corrected by
repeating the same process, perhaps a little more carefully. Other mistakes are
systematic and are caused by using incorrect procedures. To locate these takes
more than just repetition.

Dyslexics cannot be expected to work out how to do all this on their
own. There is a need to structure the process or it will be confusing, tedious,
ineffective and consequently omitted.

Methods of checking

1. Is the answer sensible?
2. Repeat the operations.
3. Reverse the operations.
4. Use an entirely different method.
5. Substitute the answer back into the question, especially an equation.
6. Some questions are self-checking, for example, pie charts.
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1. Is the answer sensible?

Sometimes pupils are very confident about their answers, especially if they
found the question easy or were able to use a calculator. However, if they have
worked out that the budgie weighs 10 tonnes, or that the car costs 34p, then
they should be alert enough to see something is wrong.

2. Repeat the Operations

Repeating the operations carries with it the risk of repeating errors made the
first time, even with a calculator. Of course, some errors will be found, and
this method is certainly better than not checking at all.

3. Reverse the operations

Example:

To check a subtraction, we might add back the number subtracted.

The subtraction 137
−25
112

can be checked with the addition 112
+25
137

4. Use an entirely different method

This ensures that none of the same errors will be made.

Example

A train journey begins at 10 : 20 and finishes at 12 : 05. How long does the
journey take?

This could be calculated by subtracting the starting time and the ending
time, remembering that time is not expressed in decimals, and that there are
60 minutes in an hour.

1
12 :

6
05

−10 : 20
1 : 45
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Example:

A completely different method could use a ‘time line’.

Time taken = 1hour + 40 minutes + 5 minutes
= 1hour 45 minutes

10

10:20

11 12 1

12:05

40 minutes
5 minutes

1 hour

5. Substitute the answer back into the question, especially an equation.

This method checks whether the answer really ‘works’.

Example:

Solving the equation 2y + 3 = 7
2y = 7 − 3
2y = 4

y = 4/2
gives y = 2

If y is really equal to 2, then the 2 should fit back into the equation instead of
the y.

2y + 3
= 2 × 2 + 3
= 4 + 3
= 7 as it should be.

This idea forms the basis for iterative or ‘trial and improvement’ methods to
solve equations. A first guess is made at the answer, perhaps from a hint in the
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question, and this is checked by substituting it back into the equation. This
will not only identify a wrong guess, but it will indicate whether it is too big
or too small.

Example:

The equation 5x + 3 = 15 has a solution close to 2. Find the exact solution by
trial and improvement.

Starting with a guess of 2 (from the question), the procedure is best set out
in a table:

Guess for x Calculate 5x + 3 Should be 15

2 13 Too small
3 18 Too big
2.5 15.5 Too big
2.3 14.5 Too small
2.4 15 Correct

The correct answer is 2.4. Usually it will be possible to use a calculator, and
this method will be even more useful for harder quadratic and cubic equations.

6. Some questions are self-checking

Example 1

Members of the public were asked to say which was their favourite terrestrial
television channel.

Draw a pie chart to show the information in the table.

Channel Percentage Angle

BBC 1 25 90
BBC 2 10 36
ITV 1 50 180
Channel 4 10 36
Channel 5 5 18
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A pupil produced the following pie chart:

ITV 1 BBC 2

BBC 1

?

Channel 4
C

hannel 5

Inaccurate drawing of the first four angles (slightly too small) implies that
there was space left over after the Channel 5 sector. This is a signal that should
not be ignored. For another pupil, drawing the angles slightly too big would
leave insufficient space for the Channel 5 angle. Gross errors like drawing the
percentage figure as the angle (e.g. 25 degrees for BBC1) would reveal a more
dramatic amount of unused space, and should signal an error in the method.

Example 2

Using the example described earlier in the chapter, that is, requiring a curve
to be drawn for R = 3 V2, if the points plotted do not form a perfect curve,
then the error is with either the plotting or, more likely, the calculations. This
should not be ignored, even for one point. It will be fairly easy to guess where
the point should be, and correct the mistake accordingly.



Chapter 18
Important Elements of a
Teaching Programme

Introduction
In this final chapter, it is our intention to show how we, as teachers and
organisers, put our ideas into practice. If in many instances we seem to repeat
what has been written earlier, this is because we regard it as sensible to take
our own advice. However, we have avoided the repetition of examples at every
point, to reduce the amount of text, while attempting to make this chapter a
useful summary of the whole book.

We hope that some of our ideas are applicable in all of the different
environments where dyslexic pupils are taught mathematics. However, it is the
principal aim of this chapter to help in the complex situation where they are
taught together in classes, following a secondary curriculum that is as normal
as possible.

Consider the Pupils’ Needs
It is almost certain that the mathematical achievements of pupils diagnosed as
dyslexics will not match their potential. They may be from a wide range of
backgrounds: social, economic, emotional and educational. In many cases, a
child will present with considerable anxieties. The elimination of these anxieties
is an important priority.

The curriculum should be directed towards creating a relaxed, welcoming,
empathetic and low-stress atmosphere. When this is achieved, the pupils start
to feel confident that they can communicate their difficulties and have their
questions answered sensitively.

The early stages of the course should provide work that is relatively easy
in order to restore a sense of success in pupils who may experience (or indeed

281



282 Mathematics for Dyslexics

may have been labelled) failures. It is equally important that the work must
not be perceived as too easy and patronising.

Pupils may have varying abilities and levels of achievement. In their previous
years of education, many would have survived by adopting idiosyncratic
methods (and/or an impressive range of avoidance strategies) and may possess
only a piecemeal understanding and knowledge of the subject. The aim is to
build upon pupils’ strengths and extend what they do know and understand,
trying to avoid imposing of arbitrary changes, which would only add to their
confusion. Teaching should provide the structure and organisation that their
learning difficulty denies them and enable the full spectrum of learning styles
to function (and broaden).

Against this background of intentions, it is crucial to maintain the rigour
and integrity of the subject. Mathematics is a precise means of communication
across the curriculum and in everyday life. It is important to resist the
temptation to try and reduce it to a set of tricks. Even within the constraints of
the National Curriculum and the pressures for success in public examinations,
it is possible to build a sound base for the further studies many pupils will
pursue.

The Structure of the Course
A structure based on a spiral with a small pitch allows regular revisits to
the same topics (see Figure 18.1). This provides opportunities for the ever-
essential over-learning (and acknowledges the difficulty in achieving mastery
of some topics). A spiral with numeracy as its axis recognises the importance
of numerical concepts as building blocks for the whole subject and as obstacles
when they are not well understood. Topics are changed frequently to promote
and sustain interest. Each topic is revisited long before it has been forgotten.
At each revisit, the topic is reviewed and then pushed to a slightly higher level,
allowing for progress and giving time for ‘digestion’, but moving on before the
pupil loses interest.

Numeracy

The vertical axis of the course begins with the following topics:

• Sorting and classifying
• Counting with whole numbers and using them to measure and draw
• Adding in whole numbers
• Subtracting in whole numbers
• Multiplying in whole numbers
• Dividing in whole numbers
• Understanding about parts of whole numbers
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2 3 4 5

Figure 18.1 Progress through the attainment targets

• The four operations for money
• The four operations for decimals
• The four operations for fractions.

The axis is regarded as a continuum, rather than sets of skills to be acquired
separately. The pupils’ own characteristic approaches are encouraged. For
example, a pupil is liberated to view a division like 24 ÷ 4 as

• a reverse multiplication, giving 6, because 6 × 4 = 24;
• a repeated subtraction down to zero:
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24 − 4 = 20 Once 1
20 − 4 = 16 Twice 2
16 − 4 = 12 Thrice 3
12 − 4 = 8 Four times 4

8 − 4 = 4 Five times 5
4 − 4 = 0 Six times 6 = answer

• repeated additions up to the right answer:

0 + 4 = 4 Once 1
4 + 4 = 8 Twice 2
8 + 4 = 12 Thrice 3

12 + 4 = 16 Four times 4
16 + 4 = 20 Five times 5
20 + 4 = 24 Six times 6 = answer

Note that special attention should be given to the number facts for single-
figure addition, subtraction, multiplication and division, since knowing these
facts, or having quick and reliable strategies with which to work them out,
reduces the load on working/short-term memory during calculations. This
knowledge helps not only computation but also understanding of numbers.

General mathematical topics

Topics such as perimeter, area, equations, angle-sums and graphs are intro-
duced only when the required level of numeracy has been reached. The levels
of numeracy can be carefully organised so that any difficulties are readily
identified and the causes diagnosed.

The mathematical variety needs to be as wide as possible, and as early
as possible, in order to maintain motivation and extend experience. It is
particularly useful to introduce algebra very early, in the form of simple
formulae at the conclusions of pieces of fully understood work. For example,
when perimeter has been grasped numerically, it is not a large conceptual leap
for a pupil to accept a + b + c as the formula for the perimeter of a triangle
with sides a, b and c. The introduction of algebra also begins to address the
idea of generalising.

Besides maintaining interest, dealing with a wide variety of topics has
an even greater value in helping build foundations that are wide, so that
difficult areas can be spanned just as missing bricks can be spanned in a wall
(see Figure 18.2). Furthermore, relationships between mathematical topics are
revealed and alternative paths are explored and developed. In this way, it
becomes possible to put into practice the earlier claim to ‘build upon pupils’
strengths and extend what they do know and understand’.
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Figure 18.2

Using and applying mathematics

Investigational and practical work were perhaps seen as ‘bolt ons’ to the
curriculum earlier, but they are integral to the pupils’ understanding of the
reasons for studying the subject and how it all works together. These activities
help pupils with the organisation of their work and offer experiences on
which to build their concepts. Pupils respond with strong motivation to this
alternative kind of work.

The use of patterns

The authors have long advocated the use of patterns in mathematics, as part
of its structure. Patterns act as the mortar that holds the bricks of the subject
together (Chinn and Ashcroft, 2004). We consider that patterns and their
recognition can help in the following ways:

• Streamline the learning of related facts
• Add interest and motivation (as puzzles do)
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• Help with conceptual problems, by providing another way of looking at
things

• Rationalise idiosynchrasies
• Provide structure
• Encourage generalisation skills.

Mental arithmetic

Throughout the course, pupils should be encouraged and shown how to
develop methods of calculating answers mentally, something most of us need
to do in everyday situations. They should not be expected to invent them by
themselves, but any methods they have already adopted should be welcomed.
Whether the expectation is for a correct answer or merely an estimate, pupils
should be encouraged to use mental calculations as their first resort and then
as their last resort when verifying or checking an answer.

Classroom Management: Making the Lessons Suit
the Pupils
In general, the short attention spans and memory deficits of dyslexic pupils
require that a lesson should be divided into short subsections alternating
exposition, demonstration, practical work, discussions, practice, and so on.
Also remember the saying,

Tell me and I will forget

Show me and I will remember

Involve me and I will understand

Perceptual and organisational difficulties dictate the need for clarity of pre-
sentation and thorough lesson preparation. Despite the work involved in the
latter, there is also a seemingly opposite need for the teacher to be flexible
enough to change direction in response to problems or opportunities as they
present themselves during the course of a lesson.

Board work must be clear and uncluttered, preferably without too much
information on display at any one time. Work should be presented both orally
and visually. Memory overload must be avoided.

Teachers should avoid talking (especially about important parts of the
work) while the pupils are writing. A dyslexic pupil finds it hard enough to
copy without this added distraction, which may be further compounded by
worrying about what he is not hearing because he is trying to write.

Spread of ability

A teacher’s organisation and preparation should enable both faster and slower
pupils to make progress. If he is devoting time to slower pupils, then faster
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pupils should have selected extra work to cover. Pupils can often learn well from
each other, so faster pupils can be given the opportunity to develop their ‘com-
munication level of understanding’ (Sharma, 1988b), by helping slower pupils.

Pupils’ mathematical cognitive styles

Chapter 3 explains the two extremes of learning style between which every
pupil will lie. At one extreme is the pupil described as an inchworm or a
qualitative learner, who works part-to-whole, and at the other extreme is the
pupil described as a grasshopper or quantitative learner, who works whole-
to-part. The inchworms follow a rigid, step-by-step, formula/algorithm-based
style when tackling mathematics: this is also usually the way this type of learner
is best taught. Conversely, grasshoppers work more intuitively and are very
answer-oriented: they may have been stifled and demotivated by being taught
in the first style, to which most mathematics teachers arguably belong. A good
mathematician needs to be flexible and make appropriate use of a mixture of
the styles.

Pupils can be helped to find their own best way of working if the teacher

• begins each lesson with an overall picture of its contents, using both oral
and visual stimuli;

• thoroughly explains the logic behind each method;
• offers alternative methods;
• puts the work into a familiar context, or relates it to the pupils’ own

experiences and existing knowledge.

Evolving Expectations and Emphases
The nature of a pupil’s difficulties and his previous experiences in a classroom
situation would often have produced poor levels of achievement and an
antipathy for the subject. It is essential to begin by taking the time to help the
pupil rebuild confidence and develop a positive attitude. Subsequent success,
progressively gained, will lead the pupil to recognise his real abilities and raise
his expectations, while equipping him with the knowledge and skills that will
enable him to fulfil his true potential.

The initial aim of restoring pupils’ belief in their ability to succeed in
mathematics is best met by building on what they already know, because
they often know much more than they realise and their knowledge just needs
rationalisation and organisation. Much of the work should cover the basics, in
a manner that allows the teacher and pupils to

• revise important work;
• fill in as many gaps as possible;
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• rationalise pupils’ established ideas, which may be right, wrong, confused
or inefficient.

As confidence is developed, pupils’ attitudes will become more internalised,
positive and motivated. It becomes the teacher’s function to control the
resulting acceleration.

Lesson management

To be taught in a class by a sympathetic teacher offers some advantages over
the individual help some dyslexic pupils receive. The members of the class
work together, share problems and accept mistakes, safe in the knowledge that
everyone else is also dyslexic. They are encouraged to lose their fear of being
wrong and thereby gain confidence.

As pupils mature as mathematicians, the differences between them will grow
and become more evident. Each will have his own expectations and require
them to be met. In the final stages of the GCSE course, pupils may be working
towards different target grades or even different levels of paper. Allowing
them to work individually for some of the time encourages them to fulfil
more of their potential. Class lessons may remain the main learning mode, but
individual routes can be provided, where pupils choose from the following:

• Help or further practice with troublesome current work
• Revision of recent or completely mastered topics
• Extension work at higher levels.

Published schemes and texts are increasingly usable to support this way of
working.

Teaching materials

A relevant teaching philosophy can be summarised simplistically as ‘Mathe-
matics is easy, only writing it down is hard’. Sometimes the technique followed
by us is to copy Figure 18.3 onto the board and ask pupils what they think it is.

Figure 18.3
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Pupils will inevitably guess that it is a bike or a moped or a motorcycle or a
scooter, and then become annoyed when this is refuted. It is possible to tease
them even further by saying, ‘If it’s a bike, ride it down to the shop’. Eventually
they are told that it is not a bike, but a picture of a bike. In many ways, the
mathematics we study is not real life, but only a written representation of a real
problem. Sharing money between people is a real problem, which we can all
do, while the usual written version of, for example, £12.48 ÷ 4 is just a picture.
If the written version can be shown to mimic the actual processes of dividing up
the money, then many more pupils will understand. This philosophy suggests
the following sequence of steps:

• New topics are introduced through practical work, demonstrations, inves-
tigations, discussions and physical experiences. The use of a variety of these
will facilitate the development and understanding of each concept.

• An attempt is then made to translate the concept into a written form,
linking the concrete experiences directly to the symbolic representation.

• This will lead into the use of worksheets or textbooks. The worksheets
written and used by the authors start with worked examples, which are
related to the earlier experiences. Then questions provide practice and
revision. The worksheets are thus the third stage of the procedure and not
the sole source from which the pupils are expected to learn.

Worksheets can follow a structured course and can be designed to enable
the following:

• present an advance overview of the section of work to be followed;
• eliminate the need for taking down notes, with its inherent risks of slow

progress, mistakes, lack of clarity and readability;
• start at the most appropriate point;
• cover only a single concept, so that any point of difficulty can be readily

identified, isolated and dealt with;
• contain no more information than can be comfortably digested in one bite;
• present work clearly;
• use the fewest possible and simplest words, yet introduce the necessary

technical terms carefully;
• incorporate exercises;
• provide a practical revision aid (used as ready-made and organised notes);
• carefully relate to other sheets.

Later, there will be a point when the differences between individual pupils
begin to outweigh their similarities. Short worksheets, answered together at
the same rate, are no longer ideal. At this point, it is also important for
pupils to begin using mainstream materials, as they must eventually face
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public examinations. An appropriate textbook or a series of textbooks, which
becomes familiar and trusted, can provide help and assurance, especially at the
time of examinations. Textbooks provide different viewpoints and a variety
in language, to which pupils must acclimatise, when they are ready. The
presentation of work in recently published textbooks has become more and
more appealing, with good graphics, uncluttered pages and well-structured
sets of examples. Textbooks must be chosen with great care, so as not to risk a
reversal of the changes in attitude previously achieved. These days, some series’
of textbooks are published by the same GCSE boards whose examinations the
pupils will take, ensuring a perfect match between the style and content of
what is studied and what is examined. Some of the textbooks we have found
to be successful are listed in Appendix 1.

Writing paper

If the responses of younger, newer pupils need more space than a worksheet
allows, there is considerable benefit in using squared paper, either in loose form
to file with their worksheets or in exercise book form. If centimetre squares
are too large for many written answers, half-centimetre (5 mm) squares offer
invaluable help with

• lining up calculations vertically and horizontally;
• setting out tables and charts;
• doing measurements and diagrams, especially those in centimetres and/or

using right angles;
• working out area problems.

These days, the papers of public examinations in mathematics generally
allow areas of blank paper for doing calculations, and lines for writing any
reasons or explanations. As with all things, it is our view that dyslexic pupils
should be coached specifically through the transition from squared paper
to lined and blank paper. The transition can take place when the value of
the squared paper becomes outweighed by the need to prepare for public
examinations, or at a time of the pupil’s choosing.

Calculators

With a course that initially has numeracy as its axis, the use of a calculator
would be counterproductive. Unless there is another purpose to the work and
it involves repetitive calculations, calculators are discouraged, at first.

Mental arithmetic is necessary for everyday life and for checking answers
that are worked out using a calculator. Premature reliance on a calculator
could well delay the acquisition of these mental arithmetic skills.
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Furthermore, many of the later mathematical processes, such as (a + x)(b +
y), are based on the early numerical processes, for example, 35 × 24, which
therefore need to be thoroughly understood.

There will be a point when pupils have learned all they can about manual
calculations. There will also be a point when the advancing curriculum demands
functions that only calculators can provide. Indeed their use is expected at
GCSE. Good calculators can be bought cheaply, but some have too many
functions that will never be used and that make the machine difficult to
operate. A simple solar-powered calculator is recommended, with scientific
functions, including fractions, percentages, and degrees/minutes/seconds, and
which does not resort to scientific form in unnecessary cases.

A calculator is an ideal aid for the short-term memory and can help
compensate for a pupil’s remaining computational difficulties (which might
only be a matter of speed). Logic and keying errors can be filtered out
using checking methods (see Chapter 17). Specific calculator functions should
be introduced on the basis of need, as with the trigonometric functions,
for example. Time can be set aside, however, for the exploration of other
functions, such as n! (n factorial), which are of investigational, rather than
curricular, interest.

Internal Assessment
Pupils need to be assessed regularly for the following purposes:

• Placement in appropriate teaching groups
• Monitoring progress
• Diagnosis of difficulties
• Distinguishing mathematical cognitive style.

Most dyslexic pupils will have a long history of ‘being tested’, but are
usually reassured to be told that the results are for the above purposes only,
and will have limited circulation. Ironically, the more the pupils are tested, the
less they fear the process, which may be no more distasteful than any other
mathematics lesson!

Placement in teaching groups

Pupils seem to feel safer and more comfortable, when asking questions or airing
their problems, if they are among those with similar levels of difficulty and
achievement. In such an arrangement, the diversity of their learning difficulties
is not further compounded by great divides of performance. Each learning
establishment will have its own policy on this question, which can have a
political dimension.
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Monitoring progress

Standardised tests are called so because they have been given to a standard
sample or population, before publication. The performance of any child can
then be compared with this standard population. The results can be expressed
in various ways.

Some tests produce a ‘mathematical age’, which can be compared with a
child’s chronological age to give an idea of how far behind is his attainment.
The results of subsequent repeat tests will show how much improvement has
been made. This can be related to the time that has elapsed to give a ‘value-
added’ factor. For example, 18 months’ progress in a year could be defined as
a value-added factor of 1.5.

Some tests produce a mathematical ‘quotient’, which resembles IQ, and
relates performance to an average figure of 100. For example, 96 is just below
average, but within an average band.

Other tests produce a ‘centile’ or ‘percentile’ figure, which shows a child’s
position in the standard population as a percentage. For example, a percentile
figure of 20 would indicate that 20% of the population would be expected to
perform at or below the child’s level, while 80% would be expected to perform
above the level.

For many years, the authors have used the Junior and Senior Levels of
the Graded Arithmetic-Mathematics Test (Vernon and Miller, 1986), whose
results can be produced in all of the above ways.

Ideally, standardised tests should be repeated at similar times in the year
for purposes of comparison. Test results should be considered in conjunction
with progress in class and any other changes that may have occurred to obtain
a real picture of progress. Single test results should be treated with caution,
as leaps in progress may not coincide with test dates. Although Figure 18.4
shows progress as a continuous wave, with the tests at the dotted times, the
results would have gone repeatedly downwards, with a sudden leap up.

Diagnosis of difficulties

Some tests are designed to assess mathematical sub-skills separately, so that
particular problem areas can be identified. The results can be used to direct
subsequent teaching towards the areas of weakness. An example of such a test
is The Profile of Mathematical Skills (France, 1979).

Pupils’ mathematical styles

The Test of Cognitive Style in Mathematics (Bath et al., 1986) can be used
to determine mathematical learning/cognitive style. It distinguishes between
the step-by-step ‘inchworm’ and the intuitive, holistic ‘grasshopper’. This
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Progress

Time

Figure 18.4

American test is for use with individual pupils and provides a measure of the
pupil’s position on the continuum of styles from extreme inchworm to extreme
grasshopper (see Chapter 3).

GCSE Examinations
Success in public examinations is the yardstick against which pupils will be
measured by the outside world. When they finish secondary education, their
GCSE results will determine the direction of their future, to a significant
extent. It is part of a teacher’s responsibility to use the examination system as
efficiently and effectively as possible.

For dyslexic pupils, this will include applying for whatever special provi-
sions are available. These are secured for each pupil individually, and most
usually will include 25% extra time and sometimes a reader and/or writer.
Qualification for special provisions depends on the confirmation of their need
in a current report from an educational psychologist.

Serious consideration should be given to the choice of examination scheme
to be taken. The authors’ research has led them to use the SMP Graduated
Assessment scheme for many years. This modular scheme places less emphasis
on the terminal examination papers, which only contribute 50% towards the
final grade. The other 50% can be accumulated during Years 10 and 11 and
consists of two long pieces of coursework, which contribute 20% and two
module tests, worth 30%. The module tests are set at increasing levels of
difficulty, from M1 to M10, which can be taken to mean grades G to A*, and
from which the pupil and teacher can carefully choose. They can be taken on
up to four set occasions throughout the two-year period, so they can be built
into the curriculum. In recent years, the examining board OCR have produced
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a series of textbooks exactly matching the work required for the module tests
(ed. Brian Seager, Hodder & Stoughton) and aggregating to the work for the
terminal examination. This means that whatever is asked in the exams will be
in the books, and whatever is in the books could be in the exams, thus ending
the exhausting search for teaching resources.

Summary
Throughout all our years of experience teaching mathematics to dyslexics, we
have tried many things, filtered out what does not work and retained those
ideas that have been successful. Therefore, the suggestions in this chapter and
elsewhere in the book are included because they have worked for us. The
application of the advice should be given careful thought, as other situations
involving other factors may require different responses.
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Appendix 1: Books, Journals, Tests and Games
Books

The following list collects some useful titles together (and provides ISBN
details). Note that the books, together with those cited in the text of the book
are given, in alphabetical order, in the References section.

Background

Askew M, William D (1995) Recent Research in Mathematics Education 5–16.
London: HMSO. ISBN 0-11-350049-1.

Butterworth B (1999) The Mathematical Brain. London: Papermac. ISBN
0-333-76610-5.

Copeland RW (1984) How Children Learn Mathematics: Teaching Implica-
tions of Piaget’s Research. New York: Macmillan. ISBN 0-02-324770-3.

Cornelius M (Ed.) (1989) The Best of Mathematics in School. Harlow: Long-
man. ISBN 0-582-04088-4.

Crawley JF (1985) Cognitive Strategies and Mathematics for the Learning Dis-
abled. Rockville, MD: Aspen Systems Corporation. ISBN 0-87189-120-4.

Datta DK (1993) Math Education at its Best: The Potsdam Model. Framing-
ham, MA: CT/LM. ISBN 0-9638605-1-8.

Devlin K (2000) The Maths Gene. London: Wedenfield and Nicholson. ISBN
0-297-64571-4.

Donlan C (Ed.) (1998) The Development of Mathematical Skill. Hove: Psy-
chology Press. ISBN 0-86377-817-8.

Dowker A (2005) Individual Differences in Arithmetic. Hove: Psychology
Press. ISBN 1-84169-235-2.

Ernest P (Ed.) (1989) Mathematics Teaching: The State of the Art. Lewes:
Falmer Press. ISBN 1-85000-461-7 (pbk).

Hughes M (1986) Children and Number. Oxford: Blackwell. ISBN
0-631-13581-2.

Krutetskii VA (1976) The Psychology of Mathematical Abilities in Schoolchil-
dren. Chicago, IL: University of Chicago Press. ISBN 0220-45492-4.

McKeown S et al. (1993) Dyslexia and Mathematics. Coventry: NCET. ISBN
1-85379-246-2.

Miles TR Miles E (Eds.) (2004) Dyslexia and Mathematics. 2nd edn London:
RoutledgeFalmer. ISBN 0-415-31817-3 (pbk)

Mortimore T (2003) Dyslexia and Learning Style. London: Whurr. ISBN
1-86156-313-2.

Orton A (Ed.) (1999) Pattern in the Teaching and Learning of Mathematics.
London: Cassell. ISBN 0-304-70052-5.

Polya G (1990) How to Solve It? London: Penguin. ISBN 0-14-012499-3.
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Sharp DJ (2001) The Power of 2. Nottingham: Power of 2 Publishing. ISBN
0-9539812-0-7.

Skemp RR (1986) The Psychology of Learning Mathematics. 2nd edn. Har-
mondsworth: Pelican. ISBN 0-14-022668-0.

Stoltz C, Brown M (1982) Low Attainers in Mathematics 5–16. School Council
Publications. London: Methuen. ISBN 0-423-51020-7.

Walton M (1994) Maths Words. from M. Walton, 17 Bryn Bras, Llanfairpwll,
Gwynedd LL61 5PX.

Westwood P (2000) Numeracy and Learning Difficulties. London: David Ful-
ton. ISBN 1-84312-194-8.

Teaching

Ashlock RB (2002) Error Patterns in Computation: Using Error Pat-
terns to Improve Instruction. 8th edn. Columbus, OH: Merrill. ISBN
0-13-027093-8.

Ashlock R, Johnson M., Wilson J, Jones W (1983) Guiding Each Child’s
Learning of Mathematics. Columbus, OH: Charles E. Merrill. ISBN
0-675-20023-7.

Bley N, Thornton C (2000) Teaching Mathematics to the Learning Disabled.
4th edn. Pro-Ed (8700 Shoal Creek Boulevard, Austin, TX 78758–9965).

Brown T, Liebling H (2005) The Really Useful Maths Book: A Guide to
Interactive Teaching. Abingdon: Routledge. ISBN 0-415-25208-3.

Burge V (1986). Dyslexia: Basic Numeracy. Frensham. Helen Arkell. 0-
9506070-6-1.

Butterworth B, Yeo D (2004) Dyscalculia Guidance. London: NFER-Nelson.
ISBN 0-7087-1152.

Chinn SJ (1996a) What to do when you can’t Learn the Times Tables. Baldock:
Egon. ISBN 1-899998-27-6.

Chinn SJ (1996b) What to do when you can’t Add and Subtract. Baldock:
Egon. ISBN 1-899998-31-4.

Chinn S (2004) The Trouble with Maths. A Practical Guide to Helping
Learners with Numeracy Difficulties. London: RoutledgeFalmer. ISBN
0-415-32498-X (Winner of ‘Books for Learning and Teaching’ Award,
TES/NASEN 2004).

Clayton P (2003) How to Develop Numeracy in Children with Dyslexia.
Wisbech: Cambs. LDA 1-85503-379-8.

Clemson D, Clemson W (1994) Mathematics in the early years. London:
Routledge. ISBN 0-415-09628-6.

Connolly W et al. (1992) Mental Methods in Mathematics: A First Resort.
Leicester: The Mathematical Association. ISBN 0-906588-27-8.

Deboys M, Pitt E (1988) Lines of Development in Primary Mathematics. 3rd
edn. Belfast: Blackstaff Press. ISBN 0-85640-194-3.
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Eggleston SJ (1983) Learning Mathematics. How the Work of the Assess-
ment of Performance Unit can Help Teachers. London: DES. ISBN
0-85522-152-6.

French D (2002) Teaching and Learning Algebra. London: Continuum. ISBN
0-8264-5222-1.

Geere B (1991) Seven Ways to Help Your Child with Maths. Seven Ways
Series, published by Barbara Geere.

Grauberg E (1998) Elementary Mathematics and Language Difficulties. Lon-
don: Whurr. ISBN 1-86156-048-6.

Haggarty L (Ed.) (2002) Teaching Mathematics in Secondary Schools. London:
RoutledgeFalmer. ISBN 0415-26069-8.

Haylock D (2001) Numeracy for Teaching. London: Paul Chapman Publishing.
ISBN 0-77619-7461-X.

Henderson A (1998) Maths for the Dyslexic. A Practical Guide. London: David
Fulton. ISBN 1-85346-534-8.

Henderson A, Miles E (2001) Basic Topics in Mathematics for Dyslexics.
London: Whurr. ISBN 1-86156-211-X.

Johnston-Wilder S, Johnston-Wilder P, Pimm D, Westwell, J (Eds.) (1999)
Learning to Teach Mathematics in the Secondary School. London: Rout-
ledgeFalmer. ISBN 0-415-16280-7.

Kay JY, Yeo D (2003) Dyslexia and Maths. London: David Fulton. ISBN
1-85346-965-3.

Martin H (1996) Multiple Intelligences in the Mathematics Classroom. Arling-
ton Heights, IL: IRI/SkyLight. ISBN 1-575617-010-8.

Pimm D (1987) Speaking Mathematically. Communication in Mathematics
Classrooms. London: Routledge. ISBN 0-415-03708-5.

Reisman F (1978) A Guide to the Diagnostic Teaching of Arithmetic, 2nd edn.
Columbus, OH: Charles E. Merrill. ISBN 0-675-008297-4.

Thompson, I (Ed.) (1999) Issues in Teaching Numeracy in Primary Schools.
Buckingham: Open University Press. ISBN 0-335-20324-8.

Yeo D (2003) Dyslexia, Dyspraxia and Mathematics. London: Whurr. ISBN
1-86156-323-X.

Journals

Focus on Learning Problems in Mathematics. Framingham, MA: Center for
Teaching/Learning of Mathematics. P.O. Box 3149, ISBN 1701, USA.

Math Notebook. Center for Teaching/Learning of Mathematics. P.O.
Box 3149, Framingham, MA 01701, USA. (available from P. Brazil, see
below in Videos).

Suppliers of Software

AVP. School Hill Centre, Chepstow, Monmouthshire, NP16 5PH 01291 629
439 info@avp.co.uk www.avp.co.uk.
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Granada Learning, Granada Television, Quay Street, Manchester, M60 9EA
0161 827 2927 info@granada-learning.com www.granada-learning.com/
semercindex.

iANSYST, Cambridge, 01223 420 101 sales@dyslexic.com www.dyslexic.com.
REM, Great Western House, Langport, Somerset, TA10 9YU. 01458 254 700

info@r-e-m.co.uk www.r-e-m.co.uk.
Steve Chinn’s ‘What to do when you can’t learn the times tables’ Version3
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Topologika. www.toplogika.co.uk.
White Space, 41, Mall Rd, London W6 9DG 020 8748 5927 sales@wordshark.

co.uk www.wordshark.co.uk (for Numbershark).

Videos

A range of excellent videos/dvd’s of Mahesh Sharma explaining his philosophies
are available from:

Mrs Brazil P Berkshire Mathematics, The Warren, Mapledurham, Reading
RG4 7TQ, www.berkshiremathematics.com.

Tests

Chinn SJ (2002) Test of Thinking Style in Mathematics. Mark: Markco Pub-
lishing (available from Ann Arbor).

Clausen-May T, Claydon H and Ruddock G, Vernon PE, Miller KM, Izard
JF, Vincent D and Crumpler M (2000) Numeracy Impact. Windsor: NFER-
Nelson.

Denvir H, Bibby T (2002) Diagnostic Interviews in Number Sense. London:
BEAM.

The Dyscalculia Screener (2003) London: Butterworth, NFER-Nelson.
France N (1979) Profile of Mathematics Skills. Windsor: NFER-Nelson.
Gillham W, Hesse K (2001) Basic Number Screening Test. Sevenoaks: Hodder

Murray.
Ginsburg HP, Baroody AJ (1990) Test of Early Mathematics Ability, 2nd edn.

Pro-Ed (8700 Shoal Creek Boulevard, Austin, TX: 78758-9965).
Jastak SJ, Jastak GS (1996) Wide Range Achievement Test. WRAT-3 Jastak

Associates. (Version 4 due soon) (available from the Dyslexia Institute, Park
House, Wick Road, Egham, Surrey, TW20 0HH, or Ann Arbor).

Kubiszyn T and Borich G (2007) Educational Testing and Measurement:
Classroom Application and Practice. 8th edn. Hoboken, NJ: Wiley/Jossey-
Bass Education. ISBN 0-471-70005-3.

Vernon P, with the assistance of Miller K (1986) Graded Arithmetic - Mathe-
matics Test. Junior Version. London: Hodder Murray.
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Vernon and Miller with the assistance of Izzard (1995) Mathematics Compe-
tency Test. London: Hodder Murray.

Vincent and Crumpler (2000) Numeracy Progress Tests Sevenoaks: Hodder
Murray.

Test Suppliers and Publishers

Ann Arbor, PO Box 1, Belford, Northumberland, NE70 7JX tel 01668 214460
fax 01668 214484 e-mail enquiries@annarbor.co.uk.

Dyslexia Institute, Park House, Wick Road, Egham, Surrey, TW20 0HH tel
01784 222300 e-mail info@dyslexia-inst.org.uk.

Hodder Murray, Orders to: Hodder Murray, FREEPOST OF1488, 130 Milton
Park, Abingdon, Oxon, OX14 4TD tel 01235 827720 fax 01235 400454
e-mail schools@bookpoint.co.uk.

NFER-Nelson Education Orders to: FREEPOST LON 16517, Swindon, SN2
8BR or fax 0845 601 5358 Customer Service tel 0845 602 1937 e-mail
information@nfer-nelson.co.uk.

Games and activities

Askew M, Robinson D, Mosely F (2001) Teaching Mental Strategies (Years 5
and 6). London: BEAM Education. ISBN 1-903142-20-2. Also for Years 1
and 2. 0-903142-18-0 and for Years 3 and 4. 0-903142-19-9.

Ball J (2005) Think of a Number. London: Dorling Kindersley. ISBN
1-4053-1031-6.

Beam Education. (2001) Mathematics Accomplished: The Year 6 Booster.
London: BEAM Education. ISBN 1-903142-21-0.

Brown T, Liebling H (2005) The Realy Useful Maths Book. Abingdon: Rout-
ledge. ISBN 0-415-25208-3.

Burns M (1987) The I Hate Mathematics Book. Cambridge: Cambridge Uni-
versity Press. ISBN 0-521-33659-7.

Chinn S, Kay J, Skidmore L (2001) Worksheets Plus. Year 4 (4 books). Year 5
(4 books). Baldock: Egon Publishers.

Easterway R, Wyndham J (2003) How Long is a Piece of String? London:
Robson Books. ISBN 1-86105-625-7.

Edwards R, Williams A, Baggaley P (1997) Number Activities and Games.
Tamworth: NASEN. ISBN 0-906730-54-6.

Ewing L, Ward I (2001) Word Problems. The Language of Mathematics.
Lichfield: QEd. ISBN 1-898873-08-9.

Kirkby D has written several books featuring games and activities, including:

More Games (1993). Glasgow Collins Educational. ISBN 0-00312-5556.
Reimer W, Reimer L (1993) Historical Connections in Mathematics. Vols I, II

and III. Fresno: AIMS Education Foundation.
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Scieszka J, Smith L (1998) Maths Curse. London: Puffin.
Shapiro S (2003) Problem Solving Book 2. Stevenage: Badger. ISBN

1-85880-359-4.
Starting Games (1993). Glasgow: Collins Educational. ISBN 0-00312-5548.
Windsor K (2003) Primary Maths Problem Solving. Leamington Spa:

Scholastic. ISBN 0-439-98474-2.

NUBBLE, from the Happy Puzzle Company (PO Box 24041, London NW4
2ZN) For Key Stages 3 and 4.

Appendix 2: Teaching Materials
Some materials can be made whilst others have to be bought. Unless a supplier
is specified, the material is widely available from educational suppliers such as
Learning Resources, NES, Taskmaster, and so on. (see addresses below).

Dominoes
Playing cards
Blank playing cards
Money (plastic or real)
Base-ten blocks (from NES, Learning Resources or Taskmaster)
Poker chips (buy ‘real’ ones, or buy ‘stackers’ from Crossbow Educational)
Large (2 cm+) counters
Cocktail sticks (in boxes of 100, bundles of 10 and singly)
Squared paper
Place value cards (make your own)
Abacus
Geo boards
Dice (various shapes and values; blank six-sided dice are obtainable)
Cuisenaire rods (from Cuisenaire Company)
Numicon
Flexitable (www.flexitable.co.uk)
Film tubes from 35-mm film
Multi-link cubes
Uni-fix cubes
Sumthing (www.sumthing.co.uk)
Metre rules: mm divisions, cm divisions and dm divisions
Pipe cleaners
Number square, 1 to 100, with counters
Clock faces (synchronised hands)
Calculators
Pie chart scales
10-dm cube (1 litre)
Tape measure
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Trundle wheel
Kitchen scales

Suppliers’ addresses

Crossbow Educational, 41 Sawpit Lane, Brocton, Staffordshire, ST17 0TE
www.crossboweducation.com

Cuisenaire Company, PO Box 3391, Winnersh, Wokingham
www.Cuisenaire.co.uk

Galt Educational, Sovereign House, Stockport Rd, Cheadle, Cheshire, SK8
2EA.
www.galt.co.uk

Learning Resources, 5 Merchants Close, Oldmeadow Road, King’s Lynn,
Norfolk, PE30 4JX
www.learning resources.co.uk

NESArnold, Ludlow Hill Road, West Bridgford, Notts, NG2 6HD.
www.nesarnold.co.uk

Numicon, Pine Close, Avis Way, Newhaven, East Sussex, BN9 0DH

Philip and Tacey, North Way, Andover, Hampshire, SP10 5BA.
www.philipandtacey.co.uk

Taskmaster Ltd, Morris Street. Leicester. LE2 6BR.

Coloured overlays

Available from the Institute of Optometry Sales Ltd. (iOO Sales Ltd),
56–62 Newington Causeway, London, SE1 6DS. www.ioosales.co.uk
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abacus, 78
ability, spread, 287
abstraction

from concrete examples, 101
division concept, 145
multisensory approach, 89, 119
in place value concept, 69, 71

acalculia, 7
achievement levels, 282
addition

algorithms, 18
of angles, 261
carrying, 119, 121
of columns of numbers, 125–126
commutative property, 69, 85
computational procedures, 117–127
counting on, 81
decimals, 213–215
development program, 119–125
directionality, 18
estimation, 125
of fractions, 191–197, 201
individual methods, 81
learning and remembering the facts,

83–89
mental arithmetic, 126–127
multisensory approach, 117, 119
nine, 88
one, 85
and place-value boards, 85, 119, 121

repeated, in multiplication, 138,
216–217

square of addition facts, 84
ten, 85–86
terminology, 89
testing, 56
timing of tasks, 82
two, 85
in whole numbers, 282
zero, 84

algebra, 257–259
algorithms (methods)

addition, 18
directionality, 18
division, 18, 145, 146, 149–152
fractions, 185, 191
multiplication, 140, 141, 143
understanding of, 117–118

a.m. and p.m., 241
angles, 261–264

common misconceptions, 259
answer, checking, 276–280

methods, 276–280
iterative, 278
trial and movement, 278

anxiety, 12
elimination, 281
and self-image, 30–33
and testing, 59–60

appropriate teaching, 11–12
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approximation, 225–228, 230
area model

for decimal multiplication, 220–222
and estimation, 142
for multiplication, 96–97, 137, 138,

205–206, 251–252
arithmetic operations, testing, 56–58
ARROW technique, 65, 92
attainment targets, progress, 283

base sixty, 237, 245
base ten, convention, 69
base-ten (Dienes) blocks

addition, 119–125, 214
continuous and qualitative nature, 48
decimal addition, 214
division, 149, 154
grouping in tens, 74
multiplication, 136, 137, 139, 217
number line, 66
percentages, 176
repeating patterns, 75
subtraction, 119, 122–125, 127, 128
ten times table, 102

base twelve, 237, 242
billion, concept, 75
blocks, see base-ten (Dienes) blocks;

cubes
BOMDAS (order of operations), 207
books, 5
brain, and cognitive style, 39–40
Butterworth Dyscalculia Screener, 10

calculators, 290–292
checking calculations of, 118, 142, 155
in decimal calculations, 220
in division, 145, 155
and estimation skills, 133

cancellation, in fractions, 204, 206
carrying

across the decimal point, 214–215
in addition, 119, 121

centicubes, 68, 76
change machines, 102
checking answers, 118, 142, 155

decimals, 174, 216
circles and circular cakes, 159

circular number line, 237, 240
classifying, 63
classroom management, 286–287
clocks, 238–239

see also time
cocktail sticks, 72, 74, 101
cognitive style, 28, 37–48,

117–118
in the classroom, 40–42
inchworms and grasshoppers, 40,

42–46, 125–127
mathematical, 287
practical examples, 42–46
and problems, 47
qualitative and quantitative, 38–39
teachers and, 47
Test of Thinking Style in Mathematics,

50
see also problem solving

coins
addition of tens, 85
estimation, 109
multiplication by five, 107
number bonds, 78
see also money; money examples

columns
adding numbers in, 125–126
decimals in, 168, 173, 175
headings in place value concept, 72,

75
see also place value

communication, 15
commutative property

addition, 69, 85
multiplication, 54, 96–97

concepts, testing, 55–56
conceptual ability, 29–30
conservation of number, 64, 88
consistency, 15
correspondence

between numbers and objects, 64–66
between sets of objects, 64

counters
in addition, 85
and multiplication, 96–97, 99
and sharing of doubles, 88
square, 137
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as teaching materials, 68
and zero facts, 84

counting, 10, 64–66
and adding on, testing, 52–54
backwards, 20, 65, 110
down to the hour (time), 238
and movement, 65

counting blocks, see base-ten (Dienes)
blocks

counting on, as method of addition, 81
course

early stages, 281
structure, 282–286

criterion-referenced tests, 49, 50
cubes, 75

centicubes, 68, 76
unifix cubes, 85

Cuisenaire rods
doubles, 86
estimation, 109
multiplication

commutative property, 96–97
by five, 108
by nine, 109
by ten, 101

and number bonds, 69, 78, 87
and number line, 66

decimal places, 167–170
decimal point, 167, 213

alignment and misalignment, 213–216,
221

directionality, 19,
218–219

giant, 216
not used in time, 239

decimals, 167–176, 213–230, 283
addition, 213–215
approximation, 225–228, 230
checking results, 216
comparison, 173
conversion

from fractions, 175–176, 228–229
to fractions, 170–171
from percentages, 181
to percentages, 182

directionality, 19, 218–219

division
by decimals, 224–225
by powers of ten, 218–219
by whole numbers, 223

estimation, 216
global model, 176–184
money examples, 167–170, 214
multiplication

by decimals, 220–222
by powers of ten, 216–218

number line, 173–174, 226
number sequences, 173–174
place value, 167–170, 213, 219
positional rules, 213, 229
rationalisation, 220, 222–223
rounding, 225–228, 230
special, 171
subtraction, 215–216
zeros, 172–173, 219, 227

developmental programme, addition and
subtraction, 119–125

diagnosis
and multiplication, 143
and place value concept, 76
and testing, 49–60

dice, 67, 69
Dienes blocks, see base-ten (Dienes)

blocks
difficulties, experienced by dyslexics

calculators, 118, 142
diagnosis of, 293
equations, 254
laterality, 219
memory deficits, 22–23, 45, 82, 96
patterns, 29
potential areas of difficulty, 17–33
reading problems, 26–28
rote learning, 14, 23, 35, 82
telling the time, 237
times tables, 23

directionality
addition, 18
confusion, 18–19, 117
and the decimal point, 19, 218–219
division, 146, 150
and number line, 66
subtraction, 18–19
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division, 145–155
algorithms, 18, 145, 146,

149–152
base-ten blocks, 149, 154
calculator use, 145, 155
of decimals

by decimals, 224–225
by powers of ten, 218–219
by whole numbers, 223

directionality, 20, 146, 150
estimation, 152
facts, 113
of fractions, 208–211
introduction to, 146–152
multisensory approach, 146–148
and place value, 154
by powers of ten and their multiples,

154–155, 218–219
relation to multiplication, 147
by repeated subtraction, 147,

150–152
spatial organisation, 146
teaching, 253–254
terminology, 145, 208
testing, 58
of two- and three-digit numbers,

148–150
of two-digit numbers by one-digit

numbers, 148
in whole numbers, 282

dominoes, 62, 67
double-double method, 105
doubles

in addition, 81, 86
and number bonds, 76
sharing, 88

dyscalculia, 5, 13
v. acalculia, 7
Brian Butterworth’s screening test for,

6
definitions, 5
developmental, 6

definitions, 7
right-hemisphere dysfunction, 7
in terms of brain abnormalities,

7
testing for, 60

dyscalculic learners, 13
v. garden-variety poor mathematician,

10–11
dyslexia, 7

definitions, 2–4
dyslexics

cumulative effects of failure, 33, 35
difficulties of, see difficulties
early mathematical experience, 14, 35,

61, 83
individual methods, 81
predictions of success or failure, 35
problem-solving abilities, 35, 81
self-confidence, 249
sense of success, 249
twins, 3
variation amongst, 17

eight times table, 112–113
Einstellung effect, 53
equal-additions method of subtraction,

128–129
equations, 254–256
estimation

accuracy levels, 125
addition, 125
coins, 109
Cuisenaire rods, 109
decimal calculations, 216, 222
division, 152
grasshopper strategies, 125
important number bonds, 76
landmark numbers, 78–79
multiplication, 133

area model, 142
of decimals, 222
by nine, 109

purposes, 118
in real life, 118
subtraction, 125
testing, 56

evaluations, purposes, 118
even numbers, 103
evolving expectations, and emphases,

287–292
examinations, 51

see also tests and testing
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fact cards, 52
factors, 114

prime, 166
‘feel’ for numbers, 61–81
fifths, 160, 162
film tubes

and multiplication, 98, 105, 108, 113
and percentages, 231–236

finger counting, 53, 60, 81
nine times table, 108

five
number relationships, 108
times table, 54, 106–108

flexibility, in approach to mathematics,
40–42, 115

FOIL, multiplication mnemonic, 141
formulae, 257–259
four

number relationships, 105
times table, 105–106

fourths (quarters), 160–161, 167
fractions, 157–167, 185–211, 283

addition, 191–197, 201
algorithms, 185, 191
cancellation, 204, 206
combining, 191
comparison, 164–165, 188
conversion

from decimals, 170–171
to decimals, 175–176, 228–229
mixed to top-heavy, 189
from percentages, 177–179
to percentages, 179–181
top-heavy to mixed, 190–191

definitions, 159–161
division, 208–211
equivalent, 164–165
global model, 176–184
making, 162–163
mixed, see mixed fractions
multiplication, 191, 202–207
paper folding, 157–159, 162–163,

185, 207
range of, 163
segment sizes, 185–188, 192–194,

198, 208
simplification, 166–167, 171

subtraction, 191, 197–201
terminology, 159, 208
top-heavy, 189–191
vertical and horizontal presentation of

problems, 191, 201, 203,
206–207

fun games, and rote learning, 92

General Certificate of Secondary
Education (GCSE), 1

examinations, 294–295
generalisation skills, 4, 14, 29
graphs, 259–260, 262–264
grasshopper strategies, 40, 42–46,

125–127

halves, 161–162
headings, in place value concept, 72, 75
holistic approach, in problem solving,

38
hours, see time
hundred

grouping, 74
numbers near to, 78–81
terminology (‘tenty’), 73, 94, 101
see also ten, and its powers

hundredths, 169

inchworm strategies, 40, 42–46,
126–127

individual learning, 17
individual teaching, 49
internal assessment, 292–294

need for, 292
intervention, general principles, 33–34
intuition, in problem solving, 38–39
IQ, Wechsler Intelligence Scale for

Children, 29

journals, 4–5

Kumon mathematics, 13, 24–25

landmark numbers, 63, 78, 117
language, see terminology
large numbers, linguistic problem, 74
laterality, 219
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learning
by understanding, 93–94
see also rote learning

learning difficulties
definition, 3
in mathematics, 17

less than (concept), 64
lesson management, 288
logical deduction, in problem solving,

38–39
long division, see division

‘machines’, paper folding, 163
Mark College, years 9, 10 and, 29
mastery v. progression, 13
mathematical abilities, structure, 41
mathematical memory, 10
mathematical styles, 293
mathematical topics, 284
mathematics

counting, 10
definitions, 9
failure to acquire skills, factors for,

12–13
learning difficulties in, 17
memory, role of, 9–10
nature of, 13–16
potential areas of difficulty, 17–33
sequential nature, 14
using and applying, 285
varying approach, 249–250
see also terminology

memory
deficits, 22–23, 45, 82, 96
long-term, 23
overload, 22
role of, 9–10
short-term, 10

and working, 22–23
working, 10

memory hooks
clocks, 238
and learned strategies, 82
multiplication by nine, 111
times-table facts, 93–94

mental arithmetic, 286, 291
addition, 126–127

important number bonds, 76
landmark numbers, 78–79
subtraction, 127, 129

methods, see algorithms (methods)
million, concept, 75
minutes, see time
mistakes

random, 276
systematic, 276

mixed fractions
addition, 194–197
conversion, 189–191
division, 209–210
multiplication, 205–207
subtraction, 199–200

mnemonics
multiplication, 141
number symbols, 66

money, 283
money examples

decimals, 169, 214
place value, 71
in testing, 59
times-table facts, 101, 105
see also coins

more than (concept), 64
motivation, lack, 266
multiplication, 133–143

algorithms, 140, 141, 143
area model, 96–97, 137, 138,

205–206, 251–252
and base-ten blocks, 136, 137, 139,

217
choice of methods, 141
commutative property, 54, 96–97
decimals by decimals, 220–222
decimals by powers of ten, 216–218
and diagnosis, 143
estimation, 133, 142
fractions, 191, 202–207
inchworm v. grasshopper approach,

42–43
inverse, 210–211
mnemonics, 141
multisensory approach, 133, 143
place value boards, 133–136
in real-life, 136
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by repeated addition, 138, 216–217
sign omitted, 258
spatial organisation, 143
and squared paper, 136, 140, 143
teaching aids, 143
by ten and its powers, 133–136,

216–218
terminology, 202
testing, 57
two digit times one digit, 137–138
two digit times two digit, 138–142
in whole numbers, 282
see also times tables

multisensory approach
and abstraction, 89, 119
to addition and subtraction, 117,

119
ARROW technique, 65, 92
to division, 146–148
to multiplication, 133, 143

music, and rote learning, 92

National Curriculum, 249–264
algebra, 257–259
combining parts of, 261–264
handling data, 259–260
number, 257
shape and space, 259
teaching principles, 250–256
using and applying mathematics,

256–257
National Numeracy Strategy (NNS), 9
nine

adding on, 88
number bonds, 88
times table, 108–111

NNS, see National Numeracy Strategy
(NNS)

‘no attempts’, 31
norm-based tests, 49, 52
number bases, in time problems, 237, 242
number blocks, 81
number bonds, 68–69

graphic representation, 87
for nine, 88
for ten, 53, 56, 76–78,

86–88

number line(s)
and adding on, 85
circular, 237, 240
in counting process, 66
decimal, 173–174, 226
directionality, 66
discrete and quantitative nature, 48
with periodic curves, 79
and proportionality, 69
time line, 243, 246

number names, see terminology
number patterns, 13, 62, 67–68
number symbols

abstract, 64, 117
knowledge essential, 65
stylisation, 66

number words
as abstract sets, 64
aural pattern, 86
spelling less important, 65
see also terminology

numbers
breaking down and building up, 67,

83, 104
early recognition, 62
early work on, 63–66
landmark numbers, 63, 78, 117
relationships, for times-table facts, 91
relative size and value, 61, 79
visual sense, 62, 66–68

numeracy, 282–284
levels, 284
testing, 51

odd numbers, 103
one

adding on, 85
times table, 99–100

organisational problems, see spatial
organisation

over-learning, 118, 282

paper, see squared paper
paper folding, 157–159, 162–163, 185,

207
parents

desire for information, 49
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parents (continued)
worried by memory deficits, 23

partial products, 140, 143
patterns

addition facts, 83, 89
difficulty with, 29
in numbers, 13, 62, 67–68
in problem solving, 38
subtraction facts, 83
times-table facts, 91, 93
use, 285–286

pennies, see money; money examples
percentages, 176–184, 231–236

and base-ten blocks, 176
comparison, 177
conversion

from decimals, 182
to decimals, 181
from fractions, 179–181
to fractions, 177–179

and film tubes, 231–236
finding the whole, 235
global model, 176–184
image of, 231–236
key value, estimates from, 235–236
notation, 176
problem types, 232
of a quantity, 232–234
quantity as a, 234
representing parts, 177
special, 183–184
terminology, 176
and whole things, 176
x% of N, 232–234

perimeter, 261–262
place value, 69–76

addition of ten, 85
conventions, 63
decimal, 167–170, 213, 219
division, 154
multiplication by ten, 133–136,

216–217
testing, 54, 76

place-value boards/cards
addition, 85, 119, 121
multiplication, 133–136
subtraction, 119, 122, 128

poker chips, 78, 87
polygons, 256–257
pounds, see money; money examples
powers

squares, 114, 259–260
of ten, 78–81

division, 154, 218–219
multiplication, 133–136, 216–218

of two, 114
practice, errors in understanding, 30
preliminary checks, 266–267
prime factors, 166
problem solving

abilities of dyslexics, 35, 81
styles, 37, 46
see also cognitive style

progress
assessment, 50
monitoring, 293
progression v. mastery, 13

pseudo-logarithmic scale, 80
public examinations, special provisions

for dyslexics, 294
pupils’needs, consideration, 281–282

qualitative and quantitative styles,
38–39

quarters (fourths), 160–161, 167
questions

attacking, 268
and checking, 265–280
drawing diagram, 271
drawing graph, 272
for dyslexics, 265
methods, 268–276
refined estimate, 269

examples, practice, 265–266
recalling the formula, 266

rank ordering, 64
reading problems, 26–28
reference points, 78–79, 104
remainder, in division, 148
research, on mathematics and dyslexia,

4–5
revision, 95–96, 118
Rey Osterrieth Complex Figure, 38
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rote learning
addition facts, 83
difficulty with, 14, 23, 35, 82
number bonds, 76
and number concepts, 61
special decimals, 171
subtraction facts, 83
with tape recorders, 92
times tables, 91–92

rounding, 225–228, 230

segment size, fractions, 185–188,
192–194, 198, 208

self-image, 30–33
sequences, 19

in addition, 90
decimal numbers, 173–174
errors, 26

sets, comparison, 64
seven times table, 108, 112–113
shape and space, 259
signs, in equations, 255
simplification of fractions, 166–167, 171
six times table, 108, 111
sixths, 163
slowness, 266
smiley face, multiplication mnemonic,

142
social skill problems, and time telling,

237–239, 250
sorting and classifying, 63
spatial awareness, 21
spatial organisation

division, 146
multiplication, 143
subtraction, 128

special needs, 50
speed of working, 24–25
spinners, 69
square roots, 259–260
squared paper, for multiplication, 136,

140, 143
squares, 114, 259–260
standardised tests, 293
statement of special needs, 50
strategies

for learning/remembering addition and
subtraction facts, 83–89

practice and reinforcement, 105
for times-table facts, 91–92

stress, and self-image, 30–33
subitizing, 10
subtraction

computational procedures, 117–118
decimals, 215–216
decomposition method, 128
developmental program, 119–125
directionality, 18–19
equal-additions method, 128–129
errors, 57
estimation, 125
fractions, 191, 197–201
learning and remembering facts, 83,

89
mental arithmetic, 127, 129
multisensory approach, 117, 119
and place-value boards, 119, 122,

128
with regrouping, 128
without regrouping, 127
repeated, 147, 150–152
as a separate teaching exercise,

127–131
spatial organisation, 128
terminology, 89, 127
testing, 57
in whole numbers, 282
of zero, 84

tally symbols, 56, 64, 71–72, 126
tape recorders, rote learning with, 92
teachers

and cognitive style, 47
and effective learning, 117–118
flexible approach, 40
marking, discrepancies in, 47
monitoring progress, 50
qualities required, 14–15, 35–36, 48
see also Mark College

teaching groups, placement in, 292
teaching materials, 289–290

‘concrete’, 68, 89, 119
individual preferences, 48

teaching programme, important
elements, 281–295
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teaching style, 28
teen numbers, inverted presentation, 26,

85–86
ten

adding to and adding on, 85–86
concept, 73–74
grouping in tens, 70–72
and its powers, 78–81

division by, 154, 218–219
multiplication by, 133–136,

216–218
number bonds, 53, 56, 76–78, 86–88
numbers near to, 78–81
terminology, 73
times table, 100–103

tenths, 163, 168
terminology

addition, 89
difficulties, 26
division, 145
fractions, 159, 208
multiplication, 202
‘number’, 63
percentages, 176
subtraction, 89, 127
ten, 73
‘tenty’, 73, 94, 101
testing, 55
‘-ty’ suffix, 73, 94, 101
zero, 98

Test of Thinking Style in Mathematics,
50

tests and testing
criterion-referenced, 49, 50
diagnostic, 49–60
examinations, 51
norm-based, 49, 52
reasons for, 49–50
standardised, 52

thinking styles, 42
thirds, 162
thousand

grouping in thousands, 74
numbers near to, 78–81
see also ten, and its powers

thousandths, 170
three times table, 108, 111

time, 237–247
a.m. and p.m., 241
concept, 237–239
digital, 239
elapsed, 245–247
minutes, 241
number bases, 237, 242
problems, 243–247
quarter hours, 239–240
telling the time, 237, 239–243
time line, 244, 246
twenty-four hour clock, 241–243,

245–246
time line, 244, 246
times tables, 91–115

0 times, 98–99
1 times, 99–100
2 times, 54, 103–105
3 times, 108, 111
4 times, 105–106
5 times, 54, 106–108
6 times, 108, 111
7 times, 108, 112–113
8 times, 112–113
9 times, 108–111
10 times, 100–103
development aspects, 114
difficulties with, 23
facts and examinations, 114
flexible approach, 115
learning, 91–96
money examples, 101
order of learning, 95–96
patterns, 91, 93
revision, 95–96
testing, 54

times-table square, 94
top-heavy fractions, 189–191
trading, 101, 105, 107
transposition, 118
triangles, 256
twelfths, 163
twentieths, 163
twenty-five, division by, 171
twenty-four hour clock, 241–243,

245–246
twins, 3
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two
adding on, 85
counting in twos, 85
times table, 54, 103–105

two-two method, 105
‘-ty’ suffix, 73, 94, 101

understanding
testing, 55–56
times tables, 93–94

unifix cubes, 85

visual sense, of number, 62, 66–68
visual–perceptual difficulties, 20–21

Wechsler Intelligence Scale for Children,
29

whole numbers, parts, 282

word labels, in place value concept, 72
word skills, for mathematical problems,

26–28
testing, 58

worksheets, 289
writing paper, 290

zero
adding on, in multiplication, 133
addition, 84
concept, 64, 98–99
in decimals, 172–173, 219, 227
in place value concept, 73–74
subtraction, 84
teaching models, 98
terminology, 98
in times, 246
times table, 98–99
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