


A Journey in Mathematics Education Research



Mathematics Education Library
VOLUME 48

Managing Editor

A.J. Bishop, Monash University, Melbourne, Australia

Editorial Board

M.G. Bartolini Bussi, Modena, Italy
J.P. Becker, Illinois, U.S.A.
M. Borba, Rio Claro, Brazil

B. Kaur, Singapore
C. Keitel, Berlin, Germany

G. Leder, Melbourne, Australia
F. Leung, Hong Kong, China
D. Pimm, Edmonton, Canada

K. Ruthven, Cambridge, United Kingdom
A. Sfard, Haifa, Israel

Y. Shimizu, Tennodai, Japan
O. Skovsmose, Aalborg, Denmark

For further volumes:
http://www.springer.com/series/6276



Erna Yackel · Koeno Gravemeijer · Anna Sfard
Editors

A Journey in Mathematics
Education Research

Insights from the Work of Paul Cobb

123



Editors
Erna Yackel
Purdue University Calumet
730 Roy St
Dyer, Indiana, 46311
USA
yackeleb@purduecal.edu

Koeno Gravemeijer
Eindhoven University of Technology
Eindhoven School of Education
Campus TU/e, Traverse 3.27
5600 MB Eindhoven
The Netherlands
koeno.gravemeijer@esoe.nl

Anna Sfard
University of Haifa
Dror Street 4
68135 Tel Aviv
Apt. 11
Israel
annasfar@math.msu.edu

ISBN 978-90-481-9728-6 e-ISBN 978-90-481-9729-3
DOI 10.1007/978-90-481-9729-3
Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Paul dedicates this book to his mother, to the
memory of his father, and to Jenny, his
partner in life for over 35 years.





Foreword

Paul Cobb’s contributions to research in mathematics education in the past quarter
century have been outstanding and exemplary. The progression of his understand-
ing represented in this very valuable and enjoyable volume corresponds in important
ways to a progression of concepts and methods that developed in the field of math-
ematics education research and, more generally, in the learning sciences. Cobb’s
trajectory is a prototype of the field’s progress. He has played, and continues to play,
a major role in shaping the problems, methods, and explanations that the field has
developed, and, in turn, the problems, methods, and explanations he has developed
have been shaped by those that others in the field have developed.

In this foreword, I hope to make two points, both of which relate Cobb’s extraor-
dinary contributions to the advancement of the learning sciences, especially in
mathematics education research, during the time that he (and I) have been active
members of these communities. First, I describe my understanding of some ways
in which the field has progressed. Cobb’s progression is prototypical and seminal
in the field’s conceptual trajectory during this period, as I understand it, although I
believe the field’s progress has been less linear than Cobb’s has been, at least as it is
presented in the reconstruction he has given us in this book. The second point I try
to make here is primarily methodological, relating to recent and current discussions
aimed to strengthen the scientific quality of educational research. By reflecting on
the progression of methods in Cobb’s research program, I believe that we gain in
our understanding of what makes research scientific, conceptually productive, and
potentially valuable for efforts to improve educational practice.

Cobb’s, and the Field’s, Learning Trajectory

The view of learning that Cobb developed (explicitly, in the middle four papers
of this collection) focuses on progressive changes in the practices of a group and
changes in the participation of individuals in those changing practices. A strong
methodological claim, stated by Cobb, is that any event in a classroom can be con-
sidered productively both by focusing on the practices that are enacted collectively
and on the participation of individuals in those practices. I believe that the same can
be said about the kind of learning that constitutes scientific progress. The materials
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in this book focus appropriately on advances in concepts, findings, and methods that
were achieved in the contributions of Cobb and his collaborators. Of course, during
the time that Cobb has been working, the field of mathematics education research
has also advanced, for which Cobb and his colleagues bear a considerable share of
the responsibility.

The metaphor of a journey is apt. Cobb and his colleagues have traveled along
a conceptual and methodological pathway, and the opportunity this book gives us
to travel their route provides valuable insights into important features, structures,
and resources of the domain of mathematics education research. Cobb encourages
a spatial metaphor when he states, more than once, that he had “modified [his] the-
oretical position.” There are different kinds of journeys, of course, and the journey
that Cobb and his colleagues have traveled has been more than a tour. It has had
the property of a quest, in which each new location has presented a challenge that
had to be overcome. But this modern scientific quest lacks a property of the classi-
cal quest narrative. Classically, the challenge of each stage of a quest is met if the
protagonist survives, and the quest succeeds because the protagonist and (usually
some of) his colleagues are strong, brave, pious, clever, or lucky enough to avoid a
catastrophe that would destroy them all. We scientists usually don’t risk our lives to
solve the problems we work on. In addition, Cobb’s, and our, quest has an impor-
tant property that classical quests lack: the achievements that we accomplish along
the way are cumulative. By making progress toward understanding some aspects
of phenomena that we study, we develop conceptual and methodological resources
that we carry along and that can be utilized when we encounter the next challenge.
Indeed, the resources that we develop as we go along are influential in shaping our
understanding of what subsequent challenges are.

Challenge #1: Explaining Elementary Understanding of Numbers. Cobb’s first
paper in this collection presents part of the product of work done by Cobb with
his mentors, Steffe and von Glasersfeld, while Cobb was a doctoral student. The
challenge, as it was understood then, was to advance scientific understanding
of children’s early understanding of number beyond the conclusions that Piaget
and his associates had provided (e.g., Piaget, 1942). Steffe and Cobb, with von
Glasersfeld (1988) provided a stunning analysis that focused on units that chil-
dren constructed and used in counting operations, which progressed from external
objects to motor actions to entirely mental entities as their understanding developed.
Methodologically, this study was an exemplary adaptation of a teaching experiment,
which is the focus of the reprinted paper (Cobb & Steffe, 1983).

The understanding provided by research conducted at about this time included
models of children’s understanding of additive and subtractive relations between
quantities (Carpenter & Moser, 1983; Nesher, 1983; Riley, Greeno & Heller, 1983),
as well as Gelman and Gallistel’s (1978) contribution that showed that preschool
children’s conceptual understanding of number includes implicit cognizance of prin-
ciples that are represented explicitly in mathematical formulations of the concept.
Anderson (1983) constructed a computational model that simulates the informa-
tion structures involved in solving geometry proof exercises, along with hypotheses
about processes of learning. The theoretical and methodological achievements of
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this early cognitive period were carried forward into later work, including Cobb’s
detailed designs and analyses of learning trajectories, for which Steffe et al.’s (1988)
developmental trajectory provided a kind of prototype.

While contributions in the early 1980s that drew on information processing and
cognitive developmental approaches were complementary and convergent, there
was another program that provided an antithesis to the cognitive thesis. The spear-
head of this counter-program was contributed by Lave, Murtaugh, and de la Rosa
(1984), who argued that reasoning with and about quantities should be understood
as an achievement jointly produced by individuals and resources in the environ-
ment, not just as operations on symbols in mental representations, an argument
that Lave (1988) developed extensively. Bauersfeld (1980) also had raised issues
that challenged the adequacy of analyzing mathematics learning without taking into
account aspects of interaction in the classroom. Lave, Smith, and Butler (1988)
argued that problem solving in school mathematics should be understood as an
everyday practice, embedded in school activity. More generally, Searle (1980) and
Suchman (1985) presented critical arguments against the assumption that cogni-
tion can be understood as occurring in a self-contained mental system, and Lave
and Wenger (1991) reviewed analyses of apprenticeship learning and proposed a
framing of learning as trajectories of participation in communities of practice.

Challenge #2: Explaining Learning in Interaction. The analyses focused on indi-
viduals’ understandings that Cobb and others developed were evidently incomplete.
Cobb’s response to this challenge included the papers reprinted in Parts II, III,
and IV of this volume. Cobb and his colleagues concluded that students’ emo-
tional acts depend (partly) on properties of classroom practices, not just on their
individual emotional tendencies. They designed and studied curriculum sequences,
considering them as occasions for the students and teacher to progress through a
trajectory of practices, corresponding to increasingly sophisticated understanding of
mathematical concepts and principles. And they analyzed the progress of mathemat-
ical understanding achieved by a class as the group advanced through increasingly
sophisticated practices, but also analyzed variations between individual students in
their participation in the practices, thereby showing that considering learning at the
level of the classroom and at the level of individual students are not only compati-
ble perspectives, but that it is productive to examine relations between findings that
result from framing analyses with each of them.

During the years that Cobb and his colleagues wrestled with the challenge of
reconciling individual and social levels of analysis, others in the field were similarly
engaged. The result was that early in the twenty-first century, the field had devel-
oped a strong beginning toward a body of concepts, principles, and methods for
understanding, designing, and studying productive classroom environments, espe-
cially in mathematics. Examples include Lampert’s (1990, 2001) and Ball’s (Ball &
Bass, 2000) analyses of the interactions they organized in their classrooms, Boaler’s
(1997/2002) findings that different classroom practices resulted in different “forms
of mathematical knowledge,” which she documented with assessments and inter-
views with individual students, Brown and Campione’s (1994) design and studies of
the curriculum and learning environment called Fostering Communities of Learners,
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and Engeström’s (2001) design and study of learning by two groups of medical pro-
fessionals, interpreted as participants in two activity systems, through interaction
organized to address and solve a problem of practice.

While Cobb’s studies documented and interpreted variation in the ways that stu-
dents participated in classroom practices, this variation was unexplained by the
concepts Cobb and his colleagues presented in the papers reprinted in Parts II, III,
and IV. Also during the 1990s, though, others in the field began to develop concepts
of individual identity in perspectives of participation in activity systems. Holland,
Lachicotte, Skinner, and Cain (1998) developed a concept of positional identity,
characterizing patterns of participation in which individuals comply with or resist
prevalent ways of participation in what they called figured social worlds. Wenger
(1998) characterized individual identities as trajectories of participation within and
across communities of practice.

Challenge #3. Explaining Personal Continuities Across Situations. The perspec-
tive that emphasizes students’ activity and learning as participation clarifies many
aspects of learning, but it also leaves many questions unanswered. Cobb and his
colleagues’ interpretive framework for understanding aspects of identity and issues
of equity provides one way to begin to account for sources of difference between
ways of participating that different students develop. The idea that an individual’s
identity is co-constructed and emerges in interaction in an activity system was also
developed in recent studies by Gresalfi (2004; 2009) and by Nasir and Hand (2008).

The general proposition that people learn by participating in practices applies to
teachers as well as to students. Research on teachers’ learning has been an active
program, and a general finding is that teachers’ efforts to develop more effective
practices benefit from interacting in a committed professional community in which
they reflect on their teaching aims, accomplishments, and challenges (e.g., Little,
1994).

Challenge #4. Explaining Teachers’ Progress in Developing Practices. In their
discussion of institutional contexts, Cobb and his colleagues contribute observa-
tions and thoughtful reflections on two cases in which school leaders differed in
supporting teachers opportunities to learn in interaction with each other (and with
university-based designer-researchers) to significantly different extents.

The Scientific Quality of Cobb’s Research

In his introduction to Part I of this volume, Cobb writes, “. . . there is no substitute for
sustained, first-hand engagement with the phenomena that we seek to understand.”
I take this to be one of two fundamental commitments of Cobb’s research method-
ology. The other is the importance of constructing examples of phenomena that are
worthy of close study and exemplary of learning resources that would strengthen
our institutions of education.

I believe that the test of a methodology is whether its use is productive in
producing findings and especially (following Toulmin, 1972) in advancing the
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field’s explanatory capabilities. The field of mathematics education research has
progressed very significantly in the years that Cobb and his colleagues have been
active in it, and Cobb and his colleagues’ contributions have played a major role
in that progress. Their, and the field’s, progress has included advances in empiri-
cal findings, explanatory concepts, and methods, and Cobb and his colleagues have
been particularly helpful in reflecting on properties of the methods they and others
use that contribute to their and others’ success. As the scope of scientific research
has expanded throughout the history of science, methods that provide empirical
information to constrain explanatory theories have been assembled and tailored
to characteristics of the domain. The methods shown in the sequence of studies
reprinted in this volume illustrate this, as the transition from intensive interview-
ing of a small group of children, to intensive observation of classroom activity
along with interviewing individuals, as Cobb and his colleagues shifted their the-
oretical focus from understanding mathematics by individuals to including growth
of mathematical understanding by classroom groups of students, to mathemati-
cal identities of students, to conditions that support teachers in changing their
practices.

This progression of substantive issues and methods has been a remarkable
achievement in Cobb and his colleagues’ research, as it has been for the field of
mathematics education research and development. We are fortunate to have had
Paul Cobb’s participation and leadership during this past quarter century.
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development contexts. Paul Cobb was Dean’s advisor at Vanderbilt University while
she pursued her PhD in Mathematics Education, which she received in August 2005.
During her graduate work, Dean’s collaboration with Cobb focused on the first 2
years of a 5-year professional development design experiment working with a group
of middle-school mathematics teachers in the content area of data analysis. This
design experiment was often and adequately described as “building a plane while

xxi



xxii About the Contributors

flying it.” Naturally, this “opportunity for growth” included frequent plane trips on
the best airline (Southwest), prayers while traveling on Interstate 40, and a great
deal of “rubbishing.”

Koeno Gravemeijer is Professor of Science and Technology Education at the
Eindhoven University of Technology, The Netherlands. Earlier he held a private
chair as Professor of Mathematics Education at Utrecht University. From 1987
through 2008 he was affiliated with the Freudenthal Institute, the cradle of real-
istic mathematics education (RME). His experience with RME and instructional
design was the reason Paul Cobb invited him for a visiting professorship at Purdue
University in 1991. This formed the starting point for a productive collaboration of
more than a decade in a continuous series of National Science Foundation and Office
of Educational Research funded research projects. The RME approach to instruc-
tional design and the socio-constructivist perspective on teaching and learning
proved to be an inspiring and productive combination that resulted in an elaboration
of both RME theory and design research.

Melissa Gresalfi is Assistant Professor in the Learning Sciences at Indiana
University. She earned a PhD in Educational Psychology from Stanford University
in 2004, and spent the following 2 years doing post-doctoral research with Paul
Cobb. During that time, her work focused on issues of mathematical identity with
students and teachers. More generally, Gresalfi’s research considers cognition and
social context by examining student learning as a function of participation in activ-
ity settings. With support of the National Science Foundation, the MacArthur
Foundation, the Spencer Foundation, and the US Department of Education, she
has investigated the development of dispositions toward learning in mathematics
classrooms by examining how opportunities to learn are constructed in mathematics
classrooms, and how, when, and why different students take up those opportunities.
Using this lens, Gresalfi has explored the extent to which classroom practices are
equitable and examined categories such as race, gender, and previous mathematical
experience as they arise in interaction.

Lynn Liao Hodge is Assistant Professor of Mathematics Education at the
University of Tennessee. She is interested in investigating how classroom prac-
tices create opportunities for all students to develop both an appreciation and a deep
understanding of mathematics. In addition, she is interested in efforts that seek to
increase the participation of women and minority students in mathematics and engi-
neering. During her doctoral studies at Vanderbilt, she collaborated with Paul Cobb
on two statistics design experiments. Her dissertation, under the direction of Cobb,
explored issues of equity and identity in mathematics classrooms.

Kay McClain is currently a math interventionist and instructional specialist with the
Madison School District, Phoenix, AZ. She started her career as a classroom teacher
in Alabama where she received the Presidential Award for Excellence in Teaching
Mathematics. She subsequently attended Vanderbilt University where she had the
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opportunity to work with Paul Cobb for 18 years on a variety of issues pertaining to
mathematics teaching and learning.

Teruni Lamberg is Associate Professor of Elementary Mathematics Education at
the University of Nevada, Reno. She received her doctorate from Arizona State
University and worked as a research associate/post doctorate fellow with Paul Cobb
at Vanderbilt from 2001 to 2004. She worked on Paul Cobb’s National Science
Foundation funded projects titled “Developing and Sustaining Technology-Intensive
Classrooms Where Mathematics is Learned with Understanding” from 2001 to
2002; and she also worked on the project titled “Supporting and Sustaining the
Learning of Professional Teaching Communities in the Institutional Setting of the
School and School District” from 2003 to 2004. Her work involved collecting and
analyzing data on Professional Learning Communities and the institutional context
of the school district. Her current research interests include teacher education, insti-
tutional context, and children’s mathematical thinking, particularly in the area of
rational numbers and integrating technology in education.

Anna Sfard is Professor of Mathematics Education at the University of Haifa, Israel
and the first holder of the Lappan-Phillips-Fitzgerald endowed chair at Michigan
State University. Her research, focusing on the development of mathematical
discourses in individual lives and in the course of history, has been recently summa-
rized in the book Thinking as communicating: Human development, the growth of
discourses, and mathematizing. She is the recipient of the 2007 Freudenthal Medal
for research in mathematics education.

Leslie P. Steffe is distinguished research professor in the Department of
Mathematics and Science Education at the University of Georgia where he has
directed a succession of research projects involving analysis of young children’s
number concepts and mathematical thinking. Steffe served as Paul Cobb’s major
professor during his doctoral studies at the University of Georgia.

Michelle Stephan teaches mathematics at Lawton Chiles Middle School in Oviedo,
Florida and is a University of Central Florida research scholar. Her current interests
involve writing middle-school instructional sequences using Realistic Mathematics
Education theory, providing professional development (including cognitive coach-
ing) to support middle-school teachers’ incorporation of an inquiry teaching
approach, and creating and sustaining mathematical professional learning commu-
nities. Stephan worked with Cobb from 1994 to 1998 as a doctoral student and
then afterwards to publish work on design research as a Journal for Research in
Mathematics Education monograph.

Jana Visnovska is Mathematics Education Lecturer at the School of Education
of the University of Queensland, Australia. As Paul Cobb’s doctoral student
and research assistant, she collaborated on longitudinal studies “Supporting and
Sustaining the Learning of Professional Teaching Communities in the Institutional
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Setting of the School and School District” (2002–2005), and “Designing Schools
and Districts For Instructional Improvement In Mathematics” (2006–2007) at
Vanderbilt University. Her research interests include classroom instructional prac-
tices in which teachers provide all students access to significant mathematical ideas
and the design of tools and environments that support teachers in developing such
practices.

Terry Wood was professor of Mathematics Education at Purdue University until
her untimely death in 2010. She collaborated with Cobb during the early years
of his classroom-based research focusing her attention on the teacher’s learning.
Subsequently her research emphasis was on teacher education.

Erna Yackel is Professor of Emerita of Mathematics Education at Purdue
University Calumet. She earned a PhD in Mathematics Education from Purdue
University in 1984. In 1986 Paul Cobb invited her, along with Terry Wood, to join
him in conducting a year-long classroom teaching experiment in a second-grade
classroom. Yackel’s collaboration with Cobb continued for more than a decade.
Since retirement from Purdue University Calumet, Yackel has devoted her efforts
to working with elementary school teachers in Northwest Indiana to foster their
development of an inquiry form of instructional practice in mathematics.

Qing Zhao is a graduate student at Vanderbilt University. She is interested in
learning about ways to support teachers’ learning across the setting of professional
development and their classroom. As a graduate student she was fortunate to have
had the opportunity to substantially participate in a variety of research projects under
the direction of Paul Cobb from year 2000 to 2007. These projects ranged from
supporting students’ learning of mathematics in a classroom setting to designing
teacher professional development programs in two contrasting institutional settings
to the most recent one that focuses on investigating support structures in schools
and districts that will enhance improvement in teachers’ mathematical instructional
practices. This unique combination of research experiences has enabled Zhao to
bring together perspectives on students’ learning, teaching and institutional context
while seeking to understand and improve mathematics instruction.



Chapter 1
Introduction

Erna Yackel and Koeno Gravemeijer

[R]esearch is literally that—an unending process of searching.
The scientist [or researcher] arrives not at some final answer
but a deeper set of questions. There’s always a bit further to go,
a bit more to learn. . .

Tom Montgomery-Fate (2009, p. 167)

The last quarter of the twentieth century has seen fundamental shifts in educational
theories. These shifts were initiated by the research of Fullan and Pomfret (1977),
which revealed fundamental flaws in the curriculum-innovation model of “research,
development, and diffusion,” known as the RDD model. These flaws showed that
one of the key pillars of the RDD model, the presumed fidelity of the implementation
of new curricula, could not stand a reality check. They found that the actual imple-
mentation process was better described as a mutual adaptation of both the users of
the curriculum and the curriculum itself. Also the limitations of corresponding theo-
ries about instructional design, such as Gagné’s “principles of instructional design”
(Gagné & Biggs, 1974) and Bloom’s “mastery learning” (Bloom, 1968), both of
which focused on learning outcomes, were revealed. Finally, the underlying theo-
ries, behaviorism, and later information processing proved ineffective in improving
instruction, especially in mathematics. In mathematics education, these shifts coin-
cided with a push for mathematics as a sense-making activity, in which problem
solving, understanding, and applying were central tenets. As a consequence, a broad
scope of new theories and new approaches in education in general, and in mathe-
matics education especially, had to be developed to replace the discredited ones.
We may note, however, that according to Kuhn (1970) scientific theories are not
abandoned merely because of the problems they encounter. Instead, theories are
abandoned only when there are new theories available that better explain observed
phenomena.

In this process, Paul Cobb plays a central role on all fronts, from fundamental
background theories to theories about instructional design and research, curriculum
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innovation, and policy issues. The basis for his contributions is invariably grounded
in research. Over time this research has stretched from one-on-one teaching experi-
ments, to classroom teaching experiments, to professional development in schools,
and to investigations into diversity and equity. In this manner, Paul Cobb has not
only made a unique contribution to the field, his work also offers a coherent view
on the broad spectrum of all elements that influence and constitute mathematics
education reform.

In recognition of his contributions to the field of mathematics education,
the International Commission of Mathematics Instruction awarded the Hans
Freudenthal Medal to Cobb in 2005. The citation for that award reads in part,

[Cobb’s] work is a rare combination of theoretical developments, empirical research and
practical applications. . . .The dynamic character of Paul Cobb’s theoretical perspective is a
natural outcome of his thoughtful studies. His work shows an acute awareness of the insuf-
ficiency of an over-delineated approach, and he has gradually moved the focus of his work
from individual learners to teams, to classrooms, and to district-wide infrastructure. Across
these settings, he has been systematically examining the consequences of the assumption
that human learning is inherently social. . . .Thanks to this systematic foundational contri-
bution, Paul Cobb is today regarded as one of the leading sociocultural theorists in the field
of mathematics education and beyond, and his work is currently yielding new insights on
issues such as equity and students’ identities. (International Commission on Mathematics
Instruction, 2005)

The awarding of the Hans Freudenthal Medal to Cobb provided the motivation
for this book, which has a twofold purpose. The first purpose is to provide a sum-
mary of the school of thought that has evolved through Cobb’s work. The book is
divided into six parts that represent what might be called stations in Cobb’s jour-
ney in mathematics education research thus far, while recognizing that he is still an
active research scholar. These stations are radical constructivism, social construc-
tivism, symbolizing and instructional design, classroom mathematical practices,
diversity and equity, and the institutional setting of mathematics teaching and learn-
ing. Each part of this book consists of an introductory chapter written by Cobb
himself (sometimes with a number of colleagues), followed by a previously pub-
lished work, in which Cobb, together with his associates at that time, introduced
new theoretical perspectives and methodologies into the literature. In this way, the
book provides the reader with a comprehensive view of the major theoretical and
methodological contributions of his work up to this time.

The second purpose of this book is to demonstrate with the help of this particular
body of work how exemplary educational research is conducted, how it evolves, and
why it is useful. While some educational researchers make significant contributions
by working within a single paradigm and from a single perspective throughout their
entire careers, Cobb’s work is characterized by shifts in perspective and in method-
ology. These shifts were motivated by pragmatic attempts to address and resolve
issues and dilemmas that presented themselves in research investigations.

Except for Part I, which presents the field as Cobb found it, the introductory
chapters in each part consist of both a detailed discussion of the transition to that
station and Cobb’s own retrospective comments. These introductions explain the
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motivation and rationale for developing new perspectives and methodologies and
the processes through which they were developed. Each also retrospectively con-
textualizes, elaborates, and further clarifies the main theoretical constructs of the
accompanying chapter in its respective part. In this way, the book provides the
reader with heretofore-unpublished material that details the issues and problems
Cobb has confronted in his work that, from his viewpoint, have required theoretical
and methodological shifts and advances. In addition, the book provides insight into
how he has achieved the shifts and advances. The result is a volume that, in addition
to explaining Cobb’s contributions to the field of mathematics education thus far,
also provides the reader with insight into what is involved in developing a powerful
and evolving research program.

As the parts in this book reveal, when Cobb confronts problems and issues in
his work that cannot be addressed using his existing theories and frameworks, he
looks to other fields for theoretical inspiration. A critical feature of Cobb’s work is
that in doing so, he consciously appropriates and adapts ideas from the other fields
for the purpose of supporting processes of learning and teaching mathematics. As
a result, Cobb reconceptualizes and reframes issues and concepts so that new ways
of investigating, exploring, and explaining phenomena that he encounters in the
practical dimensions of his work, including work in classrooms, with teachers, and
with school systems, emerge. The effect is that the field of mathematics education
is altered. Other researchers have found his “new ways of looking” useful to them,
and they, in turn, adapt these ideas for their own use.

The complexity of many of the ideas that Cobb has introduced into the field of
mathematics education can lead to a multiplicity of interpretations by practitioners
and by other researchers, based on their own experiential backgrounds. Therefore,
by detailing the development of Cobb’s work, including the tensions involved in
recognizing and subsequently reconciling apparently contrasting perspectives, the
book sheds additional light on the processes of reconceptualization and thus helps
the reader to understand the reasons, mechanisms, and outcomes of a researcher’s
constant pursuit of new insights.

Cobb sets the stage for the entire book in the introductory chapter in Part I by
outlining the initial assumptions and perspectives with which he began his work
in the field of mathematics education and indicating which of these assumptions
and perspectives he has altered in the intervening years and which commitments
remain the same. He concludes the introductory chapter in Part I by explaining the
rationale for his shift in epistemological perspective from radical constructivism to
pragmatic realism. As he explains, pragmatic realism leads us to acknowledge that
we make choices when we adopt theoretical perspectives and that these choices
need to be justified. This book demonstrates that a foundational pillar of Cobb’s
work is that the theoretical choices he makes are driven by the questions he is inves-
tigating at any given time and by the purposes of the investigation. As a result, his
choices are grounded in the reality of working in classrooms or with teachers in
their institutional settings.

Central among Cobb’s theoretical and methodological contributions are those
that relate to understanding and investigating collective aspects of mathematical
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learning. These form the major emphases in Parts II–IV. They include the devel-
opment of constructs and analytic frameworks to account for and document the
mathematical learning of a classroom community. Cobb’s contributions, while
drawing on a variety of sociocultural perspectives, have their roots in symbolic inter-
actionism and ethnomethodology. Consequently, in these three parts, much attention
is given to explaining both what is meant by interactive constitution and how it is
accomplished and to elaborating analytic means for investigating and documenting
collective activity.

In the introductory chapter in Part III, Cobb cites his work in analyzing math-
ematical learning in collectivist terms as a major shift from his earlier radical
constructivist position. He goes on to comment on the extent to which collective
constructs are frequently misunderstood and concludes that such misunderstandings
indicate that despite increasing emphasis on sociocultural and cultural perspectives,
individualistic perspectives remain predominant when it comes to math content.

Part IV provides an in-depth account of both the design experiment methodology
and one of the central constructs Cobb has introduced into mathematics education,
namely “Classroom Mathematical Practices.” This part, more than any other in the
book, clarifies what is meant by the coordination of sociological and psychological
perspectives. In addition, the notion of emergence of phenomena, which permeates
Cobb’s work, is elaborated in this part with respect to the emergence of classroom
mathematical practices.

Parts V and VI differ from the earlier parts of the book in that they represent
shifts to arenas well beyond the classroom. Part V elaborates an interpretive scheme
for analyzing the identities that students develop in mathematics classrooms that
can inform instructional design and teaching, while Part VI describes an analytic
approach for situating teachers’ instructional practices within the institutional set-
tings of the schools and school districts in which they work. As the introductory
chapters to both parts explain, the issues addressed in the research that formed the
basis for the reprinted chapters have their genesis in the earlier research projects.
Further, the issues of equity and identity and those related to scaling up are treated
in ways that keep students’ mathematical learning in the classroom as the central
focus.

Cobb is well known for his generosity in collaborating with others. As the
authorships of the reprinted chapters in this book and the introductory chapters
to the various parts show, his group of collaborators has changed over time. In
planning for the book, we worked with Cobb to identify individuals who might
make contributions to the part introductions. These individuals were invited to pro-
vide their recollections and accounts of the issues that led to the shift in research
agenda, the problems that were encountered, and ways the problems were addressed.
Cobb incorporated these comments and recollections into each of the introductory
chapters. The list of contributors to the introductory chapters reflects those who
responded to the invitation. In some cases, one or more of the contributors to the
introductory chapter in a part is also a co-author of the reprinted chapter in that part.

As the co-authors, contributors, and collaborators vary from part to part, the
groups of individuals represented by the first person plural pronouns that appear
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throughout the book vary. In some cases, “we” refers to the research team that
conducted the relevant research and may include some individuals not listed as
co-authors and contributors.

There are several approaches to reading this book, depending on the reader’s
purpose. Each of the reprinted chapters stands alone in its own right as a scholarly
research contribution. The introductory chapters offer unique insights by provid-
ing behind-the-scenes views of the motivation for the research that led up to the
reprinted chapters. In a sense, the reader has an opportunity to hear first hand about
the complexities and the messiness of field-based research. Readers may elect to
read individual parts of the book in isolation. However, by reading the book in its
entirety, the reader gains a greater appreciation of how and why the research agenda
unfolded as it did and gains insights into how an exemplary research program
evolves over time.
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Part I
Radical Constructivism





Chapter 2
Introduction

Paul Cobb

My career as a mathematics education researcher began in 1978 when I entered the
master’s program in mathematics education at the University of Georgia. Prior to
moving to Georgia with my wife Jenny, I had completed an undergraduate degree in
mathematics at Bristol University in England and was a secondary math teacher for
2 years. Our primary reason for going to Georgia was simply our wish to seize the
opportunity to travel. The mathematics education department chaired by James W.
Wilson had offered me a graduate assistantship that covered tuition and provided a
modest stipend. We had originally planned to spend just 16 months in the US but our
plans changed when I became interested in the radical constructivism of Les Steffe
and Ernst von Glasersfeld. We eventually spent five happy years in Athens, Georgia,
where I finished my master’s degree and then completed a doctorate in mathematics
education.

Given my secondary background, I initially intended to focus on the teaching
and learning of algebra during my graduate studies. However, that changed dra-
matically at the end of my first quarter in the masters program when Patrick W.
Thompson, a fellow graduate student, gave me two theoretical papers on radical
constructivism by Ernst von Glasersfeld. I found Ernst’s epistemological argu-
ments about the relation between knowledge and reality to be both compelling
and jaw dropping. I was also fascinated by the neo-Piagetian model of cogni-
tive development that Ernst had developed, which holds that people reorganize
their thinking in order to resolve perturbations or disruptions in the world of their
personal experience. At that time, Ernst was collaborating with Leslie P. Steffe
on a research project funded by the US National Science Foundation, in which
they were investigating the development of young children’s arithmetical reason-
ing. I asked Les to be my major professor so that I could work on this project
as a research assistant. Les kindly agreed and so I quickly became immersed
in the world of early number learning and left thoughts of focusing on algebra
behind.
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The research project that Les directed was called Interdisciplinary Research on
Number (IRON) and also involved John Richards,1 a philosopher of mathematics,
and Pat Thompson, a senior doctoral student. My most vivid recollection of my first
few months as a member of the project team is of periodic project meetings that
lasted between 2 and 4 days. Initially, there was little that I could contribute and
I found the high level of discussions in these meetings intimidating. Les typically
showed (black and white) video-clips of interviews or one-on-one teaching episodes
that he or Pat Thompson had conducted with children. His goal in doing so was to try
to illustrate his recent insights into the development of arithmetical reasoning. Ernst
and John would push Les and Pat for greater clarity and would frequently challenge
their interpretation of the children’s problem-solving activity. The discussion of a
single video-clip often lasted an hour or more and frequently became very heated.
I was struck both by the passion with which they engaged in these exchanges and
by the fact that the arguments were never personal. The object of the exercise was
not to win the argument as an end in itself, but to develop and refine theoretical
constructs that gave insight into the development of arithmetical reasoning. As a
consequence, what counted was the substance of an argument rather than the formal
position or role of the person making it. As my grounding in the issues under debate
improved, I gradually began to make initial, tentative contributions. Les, Ernst, Pat,
and John showed me great kindness in treating these initial proposals with more
seriousness than they probably merited as they scaffolded my induction into their
research enterprise.

Within hindsight, I regard the IRON project as a near ideal learning environ-
ment for a beginning researcher and consider myself to have been remarkably
fortunate. In addition to participating in project meetings, I was involved in an inves-
tigation in which we taught six children one-on-one twice each week in order to
bring about and thus study what Les termed the critical moments when cognitive
restructuring occurs.2 Commencing in my third year as a graduate student, I also
became a member of an interdisciplinary faculty reading group at Ernst’s invitation.
This group met once a month to discuss a paper selected by one of the mem-
bers, whose fields included biology, philosophy and history of science, and literary
criticism. The papers shared by this group proved to be a rich source of analo-
gies and ideas for someone attempting to understand young children’s arithmetical
learning.

In many respects, my experience as a graduate student at the University of
Georgia was that of an apprentice researcher whose induction into academia in gen-
eral and mathematics education research in particular was supported at every step
of the way. In this process, I learned much that is intangible from my two primary
mentors, Les Steffe and Ernst von Glasersfeld, two scholars of great intellectual

1John later became senior education advisor to CNN, the US cable news network.
2The findings of this teaching experiment were eventually published in Steffe and Cobb (1988).
In my doctoral dissertation, I analyzed the six children’s development of thinking or derived fact
strategies.
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and personal integrity. A few years ago, Kenneth Tobin3 asked me to write a short
reflection on Ernst’s contributions to science education for a paper that he was writ-
ing in honor of Ernst’s 90th birthday. The paragraph I wrote is reproduced below.
The sentiments that I expressed apply equally to Les.

I had the great privilege of studying with Ernst as a graduate student. As has been the case
for many others, learning about epistemology and cognition with him proved to be a life-
changing experience. Most importantly, Ernst has provided us with a model of what it means
to be a scholar. It is a form of scholarship that permeates the very essence of how one under-
stands oneself, others, and the world. He has taught us many things. One of the simplest and
yet most profound is that there is no substitute for sustained, first-hand engagement with the
phenomena that we seek to understand. Ernst’s influence on research in science (and math-
ematics) education is far reaching and ranges from basic issues of epistemology, to the
methodologies we use, to how we think about cognition and communication. In a very real
sense, he has precipitated a change in the discourse of science education. For this, we are
very much in his debt. (Tobin, 2007, p. 529)

The chapter reprinted in this part of the book was written while I was a doctoral
student at the University of Georgia. It reflects a strong commitment to the con-
structivist view of mathematical learning developed by Les and Ernst. For example,
we portrayed individual students as active constructors of increasingly sophisti-
cated forms of mathematical reasoning. Further, we characterized the process of
mathematical learning as one in which students simultaneously reorganize both
their mathematical activity and the worlds in which they act. One of our goals
when analyzing students’ mathematical activity from this perspective was there-
fore to identify qualitative changes in students’ mathematical reasoning, in the
process delineating how the worlds of meaning and significance in which students
act change in the course of development.

It is now over a quarter of a century since I completed my studies with Les
and Ernst. As the chapters reprinted in the successive parts of this book document,
my basic assumptions about the process of mathematical learning have changed
significantly over the years. At the same time, however, several recurrent themes
run throughout my work and are evident in the chapter reprinted in this part of
the book.

First and foremost, I continue to believe in the importance of sustained, direct
engagement with the phenomena under investigation, be it young children’s under-
standing of measurement, the collective mathematical learning of the teacher and
students in a classroom, or the learning of a professional teaching community. A
number of years ago, I read Bruno Latour’s (1987) book Science in Action in order to
learn something about the role of representations in scientific practice. I was struck
by Latour’s account of how the typical career trajectory of scientists move away
from what he termed bench science and toward research administration in which
the head of a lab is the public face of a number of large projects but is removed from
the concrete practice of inquiry. Latour’s description of the work of senior scientists

3Ken moved from Australia to begin his doctoral studies in science education at the University of
Georgia at the same time that I entered the masters program in mathematics education.
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served as an early warning for me and, in recent years, I have sought to remain true
to Les’ and Ernst’s dictum about the importance of staying close to the processes
into which we seek to gain insight.

Second, I remain committed to the view that people’s practices are reasonable
from their perspective, be they mathematics students, teachers, or school admin-
istrators. The challenge for researchers as I see is to attempt to understand the
rationality of the people whose practices we study. As a consequence, I consider
an analysis to be lacking in explanatory power if it portrays the people as less
than rational given their personal histories and current circumstance. This basic
rule of thumb has served me well over the years. As an illustration, the students
with whom my colleagues and I have worked when conducting classroom design
experiments have occasionally developed some very strange forms of mathematical
reasoning. In these situations, we always assumed that we unknowingly taught the
students to think in these peculiar ways. On each of these occasions, when we have
reviewed video-recordings of prior instructional sessions, we have found that this
was indeed the case: it was a failure of our instructional design for supporting the
students’ learning, rather than of the students per se. And once we have identified the
source of the problem in this manner, we are immediately in a position to adjust our
instructional design accordingly. More generally, I continue to believe that a solid
understanding of why people’s current practices are reasonable from their perspec-
tive is a prerequisite for developing effective designs for supporting their learning.
An approach of this type helps us move beyond an exclusive focus on what people
currently do not know or cannot do and orients us to view their current practices as
resources on which to build when supporting their learning.

Third, I continue to see considerable value in the types of distinctions that Les,
Ernst, Pat Thompson, and other constructivist researchers have identified in the qual-
ity of students’ mathematical reasoning in particular mathematical domains. To be
sure, I now view the form of reasoning attributed to a student as a relation between
the student and the situation rather than as an inherent property of the student (see
the chapter reprinted in the fourth part, Classroom Mathematical Practices). Even
with this modification, I find that the qualitative distinctions in students’ mathe-
matical reasoning made by constructivist analyses continue to give us insight into
the world of students’ mathematical experience (with the understanding that those
experiences are socially and culturally situated). As a consequence, analyses of this
type help us understand why students’ mathematical activity is rational from their
perspective.

Fourth, I continue to subscribe to core tenets of the constructivist teaching exper-
iment methodology as outline in the reprinted chapter and regard it as a direct
antecedent of the design experiment methodology. As we make clear in the reprinted
chapter, the primary goal when conducting a constructivist teaching experiment is
to gain insight into the development of students’ mathematical reasoning. For their
part, researchers conducting a design experiment frame the development of instruc-
tional designs for supporting students’ mathematical learning as an explicit goal.
There are a number of additional points of contact between the two methodologies.
For example, we clarify in the reprinted chapter that our intent when conducting
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a constructivist teaching experiment was to test and revise conjectures about stu-
dents’ mathematical reasoning. This conjecture-testing process foreshadowed the
tightly integrated cycles of design and analysis that characterize design research.
In addition, we indicated in the reprinted chapter that the primary products of a
constructivist teaching experiment are conceptual models composed of theoretical
constructs that have some generality in that they can be used to account for the
learning not merely of the students who participated in the experiment, but for the
learning of other students as well (Thompson & Saldanha, 2000). Design exper-
iments also have a theoretical orientation in that the goal is not merely to refine
a particular instructional design, but also to develop domain-specific instructional
theories by systematically studying students’ development of particular forms of
learning and the means by which their learning was supported (Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003). Thus, researchers conducting constructivist
teaching experiments and those conducting design experiments both strive for gen-
erality by means of explanatory frameworks that provide process explanations of
causality (Steffe & Thompson, 2000).

Finally, in the chapter reprinted in this part of the book, we focused explicitly
on what we termed "the context within which the child constructs mathematical
knowledge" (Cobb & Steffe, 1983, p. 84). To be sure, we were referring to what
might be termed the individual psychological context within which a particular child
approaches and attempts to solve mathematical tasks. However, we also considered
that this personal context was influenced by interactions with the teacher and argued
that the teacher could (and should) help students reconstruct the contexts within
which they learn mathematics. Our concern for students’ personal mathematical
contexts drew directly on Fish’s (1980) discussion of the influence of context on
the interpretation of literary text, as well as on a number of other ideas that were
in wide currency at the time (e.g., Kuhn’s, 1962, notion of a scientific paradigm).
With hindsight, it would be fair to say that we psychologized ideas from a number
of fields by bracketing out their social and cultural dimensions. In many ways, the
chapters reprinted in this book document an ongoing attempt to come to grips with
the notion of context, be it the social context of the classroom, the cultural context
of students’ out-of-school lives, or the institutional context within which teachers
develop and refine their instructional practices.

The five recurrent themes that I have described indicate the influence that Les
and Ernst have had on my thinking even as some of my basic theoretical commit-
ments have evolved over the last 25 years or so. In the introductions to the chapters
reprinted in the next three parts, I outline some of the major changes in my general
perspective on mathematical learning. I would, however, be remised if I failed to
acknowledge that radical constructivism as developed by Ernst von Glasersfeld is
an epistemology as well as a theory of learning. The radical constructivist episte-
mology is grounded on the assertion that it is impossible to check whether our ideas
and concepts correspond to external reality (von Glasersfeld, 1984). It is important
to emphasize that von Glasersfeld did not deny the existence of a pre-given external
reality. His central epistemological claim was instead that this reality is unknowable
precisely because it exists independently of human thought and action. He therefore
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argued that knowledge that has proven viable fits with, rather than matches, external
reality in that it satisfies the constraints of that reality much as a key satisfies the
constraints of a particular type of lock (von Glasersfeld & Cobb, 1984). In develop-
ing this position, von Glasersfeld challenged the traditional project of epistemology,
that of identifying a universal method for determining whether a particular theory
or conceptual scheme matches or corresponds with external reality.

This epistemology proved to be controversial within the mathematics education
research community and provoked considerable debate, much of it emotional in
nature. In retrospect, I do not believe that these exchanges were particularly produc-
tive, especially since none of the leading participants changed their basic positions.
At the time that I completed my doctoral studies, I was a strong adherent to radical
constructivism as an epistemology. Although I have modified my epistemological
stance over the years, I did not find the arguments of critics of radical constructivism
compelling. Instead, I came to see great value in the pragmatic philosophy of Dewey
(1929/1958) and Peirce (1958), as well as the work of contemporary pragmatist such
as Bernstein (1983), Rorty (1979), and particularly Putnam (1987, 1988). In the
remainder of this introduction, I outline Putnam’s pragmatic realist perspective, in
the process indicating why I have changed my basic epistemological commitments.

Like radical constructivism, pragmatic realism seeks to end the traditional
epistemology’s quest to achieve absolute certainty in our knowledge claims by
demonstrating a match or correspondence with external reality. However, whereas
radical constructivism contends that it is impossible to bridge the gulf between
knowledge and reality, pragmatic realism questions the very notion of reality on
which traditional epistemology and radical constructivism seem to agree. This real-
ity is not populated with tables and chairs, students and teachers, or differential
equations and geometry proofs. It is instead an imagined, or perhaps better, an imag-
inary realm that has been the center of philosophical debate since the time of Plato.
Putnam (1987) referred to it as Reality with a capital “R” to distinguish it from
the world in which our lives take on significance and meaning. For all their dif-
ferences, realist and radical constructivist epistemologies both take as fundamental
the basic image of people as knowers separated from Reality (with a capital “R”).
In contrast, Putnam and other pragmatists follow Dewey and Peirce by challenging
this dichotomy between a putative external Reality on the one hand, and the con-
cepts and ideas that people use when they think and talk about it on the other. Thus
whereas radical constructivism seeks to offer a new solution to traditional epistemo-
logical problems, pragmatism questions the way in which epistemological problems
have traditionally been framed.

For Putnam and Dewey, the experience is not screened off from reality but is
instead a path into it. As Dewey (1929/1958) put it, “experience is of as well as
in nature. It is not experience that is experienced, but nature” (p. 12, italics in the
original). In speaking of people being in nature, Dewey eschewed the traditional
preoccupation with Reality in favor of a focus on people’s activities in the realities
in which they actually live their lives. With this change in orientation, the quest
for certainty is given up in favor of understanding how people are able to produce
fallible truths and achieve relative security in their knowledge claims. The primary
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concern is then with processes of inquiry as they are enacted by flesh-and-blood
people.

As Putnam observed, contemporary science as it is actually enacted by research-
ers has taken

away [ahistorical] foundations without providing a replacement. Whether we want to be
there or not, science has put us in a position of having to live without foundations . . .

That there are ways of describing what are (in some way) the ‘same facts’ which are (in
some way) ‘equivalent’ but also (in some way) ‘incompatible’ is a strikingly non-classical
phenomenon. (1987, p. 29)

Putnam went on to note that scientists in many fields switch flexibly from one
perspective to another and treat each set of facts as real when they do so. On this
basis, he concluded that these scientists act as conceptual relativists who treat what
count as relevant facts and as legitimate ways of describing them as relative to the
background theoretical perspective that they adopt (cf. Sfard, 1998). This obser-
vation led Putnam to reject as irrelevant the traditional epistemological project of
determining which of the resulting constellations of phenomena correspond to an
imaginary Reality. He termed his position pragmatic realism to emphasize it takes
at face value the realities that scientists investigate. In his view, questions concerning
the existence of abstract mathematical and scientific entities should be addressed not
by making claims about Reality (with a capital “R”) but by examining disciplinary
practices. In this regard, he noted approvingly that Quine (1953)

urges us to accept the existence of abstract entities on the ground that these are indispensable
in mathematics, and of microparticles and space–time points on the ground that these are
indispensable in physics; and what better justification is there for accepting an ontology
than its indispensability in our scientific practice? (Putnam, 1987, p. 21)

Putnam made it clear that the conceptual relativism evident in scientific inquiry is
also apparent in everyday common sense. In addition, he was careful to differentiate
conceptual relativism, the notion that the phenomena treated as real differ from one
perspective to another, from the view that every perspective is as good as every
other. “Conceptual relativity sounds like ‘relativism,’ but it has none of the ‘there
is no truth to be found . . . ‘true’ is just a name for what a bunch of people can
agree on’ implications of relativism” (Putnam, 1987, pp. 17–18). His goal in making
this differentiation was to rehabilitate the notion of truth that is dispensed with by
radical constructivism while simultaneously rejecting the view that Truth should be
ascertained in terms of correspondence with Reality. His primary reason for taking
this approach was that the notion of truth is pragmatically real in both scientific
practice and everyday life. In the view that he proposed, truths are characterized as
fallible, historically contingent, human productions that are subject to correction.

In my view, the grounding of pragmatic realism in analyses of both everyday
practice and scientific practice constitutes one of its primary strengths. My shift
from radical constructivism to pragmatic realism has clearly involved a significant
change in fundamental epistemological commitments. Radical constructivism views
the traditional epistemological debate as legitimate and engages in it by denying that
Reality is knowable. In contrast, philosophical pragmatism in general, and prag-
matic realism in particular, contend that the notion of Reality (with a capital “R”)
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is a discursive construct in a philosophical language game that fails to make con-
tact with the worlds in which people actually live their lives. Pragmatists therefore
consider that this debate is irrelevant to both everyday and scientific concerns. As a
consequence, they refuse to engage in this traditional debate and instead change the
conversation by taking people’s concrete practices rather than Reality as their point
of reference (cf. Rorty, 1979). In doing so, they treat the concept of truth (with a
small “t”) as entirely legitimate and focus on the processes by which people indi-
vidually and collectively establish and revise knowledge claims that attain the status
of truths.

As I have indicated, pragmatic realism is primarily descriptive rather than pre-
scriptive in that it does not attempt to tell scientists how they should go about the
business of developing insights into the phenomena under investigation. I nonethe-
less find pragmatic realism valuable because it, in effect, holds up a mirror to
scientific practice and clarifies that it is quite reasonable for scientists to act as
conceptual relativists. This insight provides a useful orientation as we attempt to
come to terms with the plethora of distinct theoretical perspective on learning and
teaching that characterize mathematics education as a field of inquiry. On the one
hand, it leads us to question claims made by adherents to a particular perspective
that their viewpoint gets the world of teaching and learning right – that the phe-
nomena that they take as real correspond to Reality. Pragmatic realism instead leads
us to acknowledge that we make choices when we adopt a particular theoretical
perspective, and that these choices reflect particular interests and concerns. On the
other hand, it alerts us to the danger of inferring from the conclusion that there is
no neutral algorithm of theory choice that any theoretical perspective is as good as
any other, and that the decision to subscribe to a particular “ism” is a matter of per-
sonal preference or taste. Pragmatic realism instead underscores that such choices
need to be justified, and that the justification should be pragmatic in nature. The rel-
evant question is then for whom and for what purposes are the forms of knowledge
produced within different perspectives useful in enabling them to contribute more
effectively to the improvement of classroom teaching and learning.
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Chapter 3
The Constructivist Researcher
as Teacher and Model Builder

Paul Cobb and Leslie P. Steffe

The constructivist teaching experiment is used in formulating explanations of
children’s mathematical behavior. Essentially, a teaching experiment consists of a
series of teaching episodes and individual interviews that covers an extended period
of time—anywhere from 6 weeks to 2 years. The explanations we formulate consist
of models—constellations of theoretical constructs—that represent our understand-
ing of children’s mathematical realities. However, the models must be distinguished
from what might go on in children’s heads. They are formulated in the context
of intensive interactions with children. Our emphasis on the researcher as teacher
stems from our view that children’s construction of mathematical knowledge is
greatly influenced by the experience they gain through interaction with their teacher.
Although some of the researchers might not teach, all must act as model builders to
ensure that the models reflect the teacher’s understanding of the children.

Our methodology for exploring the limits and subtleties of children’s construc-
tion of mathematical concepts and operations is the primary object of attention in
this paper. We argue that, in such an exploration, there is no substitute for experi-
encing the intimate interaction involved in teaching children. We then discuss the
constructivist view of teaching and stress the importance of modeling children’s
mathematical realities. Next, the similarities and differences between constructivist
and nonconstructivist teaching experiments are highlighted. In the remainder of the
paper, we focus on models and model building.
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Why We, as Researchers, Act as Teachers

We believe that the activity of exploring children’s construction of mathemati-
cal knowledge must involve teaching. Theoretical analysis by the researcher does
play an important role in understanding the significance of children’s mathematical
behavior. But knowledge gained through theoretical analysis can at best intersect
only part of the knowledge gained through experiencing the dynamics of a child
doing mathematics. These experiences give the researcher the opportunity to test
and, if necessary, revise his or her understanding of the child. The continual tension
created by inexplicable or seemingly contradictory observations leads ultimately to
a knowledge of the child that supersedes the initial theoretical analysis. The insuffi-
ciency of relying solely on a theoretical analysis serves as one reason for our belief
that researchers must act as teachers. Some of our most humbling experiences have
occurred when knowledge gained through theoretical analysis has failed to be of
value in understanding children’s mathematical realities. On the other hand, totally
unexpected solutions by children have constituted some of our most exhilarating
experiences.

A second reason we believe researchers must act as teachers is that the
experiences children gain through interactions with adults greatly influence their
construction of mathematical knowledge. The technique of the clinical interview is
ideally suited to the psychological objective of investigating a sequence of steps
children take when constructing a mathematical concept. In an interview, math-
ematical knowledge can be traced back to less abstract concepts and operations.
Further, using the clinical interview, a researcher can specify structural patterns chil-
dren may abstract from the experience gained through interaction with their milieu.
However, the researcher conducting a clinical interview does not intend to focus
on those critical moments when cognitive restructuring takes place. Consequently,
the resulting accounts of abstraction are devoid of the experiential content that a
teacher needs when planning specific interventions. More importantly, some chil-
dren might take a different sequence of steps and construct different concepts in
particular instructional settings.

A third reason for acting as teachers stems from the importance we attribute to
the context within which the child constructs mathematical knowledge. The cru-
cial role played by context can best be illustrated by example. Erlwanger (1973)
found that Benny, a sixth grader, had developed a coherent rationale that accounted
for his experiences in using Individually Prescribed Instruction (IPI) materials.
Erlwanger concluded that, for Benny, the activity of learning and using mathematics
involved formulating unrelated rules that yielded the correct answers to particular
sets of problems. Benny frequently searched for patterns in the numerals of related
problems. Erlwanger explains that Benny

thought these rules were invented “by a man or someone who was very smart.” This was an
enormous task because, “It must have took this guy a long time.. . about 50 years ... because
to get the rules he had to work all of the problems out like that.” (p. 17)

Benny had arrived at his conception of mathematics by reflecting on, and attempt-
ing to make sense of, his past experiences of doing mathematics. This conception
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served as an encompassing framework within which he formulated anticipations of
what sorts of events might happen and how he should respond when he worked with
IPI materials (cf. Skemp, 1979, for a discussion of meta-learning).

Confrey (1982) also found it necessary to consider the context within which stu-
dents do mathematics when she investigated ninth graders’ mathematical abilities.
She concluded that “in order to understand a student’s mathematical performances
and to judge their abilities, one must consider the influence which the context of
classroom instruction has on those performances” (p. 27). By acting as teachers,
and by forming close personal relationships with children, we help them reconstruct
the contexts within which they learn mathematics. In particular, we help them differ-
entiate between the contexts of doing mathematics in class and doing mathematics
with us. This is essential given our objective of exploring the limits and subtleties
of children’s creative possibilities in mathematics.

In summary, we believe that the failure to observe children’s constructive pro-
cesses firsthand denies a researcher the experiential base so crucial in formulating
an explanation of those processes. Researchers who do not engage in intensive and
extensive teaching of children run the risk that their models will be distorted to
reflect their own mathematical knowledge.

The Constructivist View of Teaching

The actions of all teachers are guided, at least implicitly, by their understanding of
their students’ mathematical realities as well as by their own mathematical knowl-
edge. The teachers’ mathematical knowledge plays a crucial role in their decisions
concerning what knowledge could be constructed by the students in the immedi-
ate future. Through reflecting on their interactions with students, they formulate, at
least implicitly, models of their students’ mathematical knowledge. Constructivist
and nonconstructivist views of teaching differ in the emphasis they place on the
activity of modeling children’s realities. In the constructivist view, teachers should
continually make a conscious attempt to “see” both their own and the children’s
actions from the children’s points of view. This emphasis stems from an analysis of
teaching as primarily the activity of communicating with students. As Schubert and
Lopez Schubert (1981) point out, teaching in this sense is rooted in action:

It is in the subtly powerful interaction of some teachers . . . with their students. It is in the
daily striving of teachers who try to understand their students’ sources of meaning, their
out-of-school curricula, their personal “theories” or sense-making constructs. It exists in
attempts made by teachers to determine how their experience and knowledge can bolster
their students’ quest for meaning. (p. 243)

In the course of an interaction, both the teacher and the children attempt to
make sense of each others’ verbal and nonverbal activity. The children, for exam-
ple, interpret and give meaning to the teacher’s actions in terms of their current
conceptual structures. In some cases, these interpretations are influenced by the chil-
dren’s intuitions about the teacher’s motives and intentions. In any event, the teacher
acts with an intended meaning, and the children interpret the actions within their
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mathematical realities, creating actual meanings (MacKay, 1969; von Glasersfeld,
1978).

Obviously, to communicate successfully with children, there must be some fit
between the intended and the actual meanings. The likelihood that a teaching com-
munication will be successful is increased whenever the teacher’s actions are guided
by explicit models of the children’s mathematical realities. From this perspective,
the activity of teaching involves a dialectic between modeling and practice. The
teacher’s actions are formulated within the framework of his or her current models.
The plausibility of these models is in question when the teacher attempts to make
sense of observations of the children’s behavior in subsequent encounters.

Teaching Episodes and Clinical Interviews

In our work, we use teaching episodes as well as occasional clinical interviews as
an observational technique. The interviews are used when we want to update our
models of the children’s current mathematical knowledge, usually after a vacation
or when the child has been absent for some time. However, the main emphasis is on
the teaching episodes, as these give us a better opportunity to investigate children’s
mathematical constructions. Our primary objective is to give the children opportuni-
ties to abstract patterns or regularities from their own sensory-motor and conceptual
activities. Guided by our current model, we hypothesize certain patterns or regular-
ities that it is possible for a child to abstract. Activities are then initiated in the hope
that the child will reflect on and abstract those patterns or regularities from his or her
experiences. For the constructivist teacher, the key is to help children hold their own
mathematical activity at a distance and take it as its own object. This is the crucial
aspect of reflection (von Glasersfeld, 1991).

The teaching episodes (and the occasional clinical interviews) are routinely
videotaped. These tapes serve as a record of the episodes and permit a longitudi-
nal analysis of a child’s mathematical development. Members of the research team
can discuss interpretations of the child’s behavior when viewing the tape. Although
the researcher responsible for making the video-recording of the episode is free to
intervene during or after an episode, the teacher has the right to ignore interventions
made during an episode. The research team try to help the teacher in two ways.
First, they help the teacher explicate his or her intentions and interpretations by
asking appropriate questions. Second, they suggest alternative interpretations and
propose activities that the teacher might wish to initiate. During these discussions,
attention is given to the child’s conception of the activity of doing mathematics as
well as to his or her mathematical knowledge.

Our emphasis on formulating and revising explicit models of children’s mathe-
matical realities in the context of acting as teachers is in harmony with Vygotsky’s
research as modeling rather than empirically studying mathematical processes
(El’konin, 1967, p. 36). Unfortunately, this emphasis has been submerged in the lit-
erature dealing with the methodology of the teaching experiment (Kantowski, 1978;
Kieran, 1985; Menchinskaya, 1969a). In the following sections, we first consider the
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characteristics shared by all teaching experiments and then differentiate between the
constructivist teaching experiment and other variants of the method.

Teaching Experiments

One general characteristic shared by constructivist and nonconstructivist teaching
experiments is the “long-term” interaction between the experimenters and a group
of children. A second is that the processes of a dynamic passage from one state of
knowledge to another are studied. What students do is of concern, but of greater
concern is how they do it. A third characteristic is that the data are generally
qualitative rather than quantitative. The qualitative data emanate from two possi-
ble sources. The first source is teaching episodes with the children. For example,
Davydov (1975) reports anecdotal data obtained from his observations of teach-
ing in classes for which he had designed learning material. The data took the form
of verbatim exchanges between the teacher and her students as well as descrip-
tions of the instructional contexts and the students’ responses in those contexts. The
second source is clinical interviews conducted at selected points in the teaching
experiment.

Macroschemes and Microschemes

Menchinskaya (1969a) identifies two types of teaching experiments reported in the
Soviet literature. She calls the first type a macroscheme: “Changes are studied in
a pupil’s school activity and development as he makes the transition from one age
level to another, from one level of instruction to another” (p. 5). This type is exem-
plified by Davydov’s (1975) teaching experiment. He constructed teaching material
that reflected his view of quantity, a view derived from his previous work with
children. Children were expected to compare objects on various attributes, reverse
the sense of an equality, reverse the sides of an equality, reason transitively, add
a quantity to equalize inequalities, and so on. Because Davydov was interested
in processes expressible in terms of an ontological notion of quantity, his exper-
iment involved teaching children to behave in certain ways so that they would
experience these processes. Consequently, he used intact classes for his teaching
experiment.

The second type of teaching experiment identified by Menchinskaya is the
microscheme, where “in a single pupil the transition is observed from ignorance to
knowledge, from a less perfect mode of school work to a more perfect one” (p. 6).
Kantowski (1977) conducted a teaching experiment of this type in the United States.
She went outside the realm of mathematics for processes. Goal-oriented heuristics,
analysis, synthesis, persistence, and looking-back strategies were among the pro-
cesses of interest in her study. These processes, being “thought” oriented rather than
“content” oriented, led her to investigate individual students as they attempted to
acquire the processes in the context of her instruction in geometry.
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These examples illustrate the considerable variation in how the passage from one
state of knowledge to another is investigated. In general, a macroscheme such as
Davydov’s has a curriculum orientation, and a microscheme such as Kantowski’s
has a psychological orientation. Given our focus on children’s constructive activity,
it is clear that constructivist teaching experiments are microschemes.

Constructivist and Nonconstructivist Microschemes

Kantowski’s outstanding investigation exemplifies a characteristic shared by non-
constructivist teaching experiments. The processes studied are determined a priori to
be the ones of interest. Alternative processes are of secondary importance. This char-
acteristic reflects beliefs about how learning and teaching are related. Menchinskaya
(1969b) states the Soviet position succinctly when she says that “neither scientific
nor everyday concepts spring forth spontaneously; both are formed under the influ-
ence of adult teaching,” (p. 79). One can see, then, that she believes that children
form scientific concepts as a result of receiving instruction in specific school sub-
jects and that the processes of mastery can be studied only in the context of these
subjects.

We, too, believe that adults can help children as they attempt to learn mathe-
matics. However, it is not the adult’s interventions per se that influence children’s
constructions, but the children’s experiences of these interventions as interpreted in
terms of their own conceptual structures. In other words, the adult cannot cause the
child to have experience qua experience. Further, as the construction of knowledge
is based on experience, the adult cannot cause the child to construct knowledge.
In a very real sense, children determine not only how but also what mathematics
they construct. Consequently, we do not attempt to study children’s construction
of certain preselected processes in instructional contexts. Instead, we attempt to
understand the constructions children make while interacting with us.

Model Building in a Teaching Experiment

We contend that children’s mathematical knowledge can be modeled in terms of
coordinated schemes of actions and operations (von Glasersfeld, 1980). Our goal is
to specify these schemes and to intervene in an attempt to help the children as they
build more sophisticated and powerful schemes.

We offer a brief glimpse of the steps that Jason, a six-year-old child in 1980, took
when constructing his counting scheme. We also mention some of our concomitant
intentions when teaching Jason. However, this brief illustration focuses on Jason’s
counting behavior and our interpretation of it rather than on our teaching episodes
(cf. Steffe & Cobb, 1982, for an elaboration of a teaching episode). We make this
choice to emphasize that our models are of children’s understanding. It will be seen
that we conduct an experiential analysis of Jason’s progress within the framework
of a theoretical model of children’s counting types.
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Development of Jason’s Counting Schemes

We distinguish between the activities of counting and of reciting a sequence of
number words. When we say a child counts, we mean the child coordinates the
production of a sequence of number words with the production of a sequence of
unit items (items that are equivalent for the child in some way). This activity of
counting follows the establishment of a collection of countable items. The result of
the counting activity is a collection of counted items.

Our investigations indicate that the quality of the items that children create while
counting undergoes a developmental change (Steffe, von Glasersfeld, Richards, &
Cobb, 1983). In October 1980, Jason was what we call a counter of motor unit items.
His most sophisticated counting activity involved counting his movements as sub-
stitutes for visual items screened from view. For example, in a clinical interview,
we asked Jason to find out how many marbles there were in all when four were
hidden beneath the interviewer’s hand and seven were visible. Jason counted the
visible marbles, pointing to each in turn. He continued his count of the entire col-
lection by pointing rhythmically over the interviewer’s hand while synchronously
uttering the number words “8-9-10-11.” Jason was successful because his counting
acts completed a temporal pattern. He also counted a partially screened collection
of seven squares, where three were visible, by first counting the three visible ones
and then continuing over the screen, stopping when his counting acts completed a
square pattern. When five squares were screened, however, he did not know when
to stop counting.

Our immediate intention was to help Jason develop spatial and temporal patterns
in counting activity involving more than four items. He might then continue until the
pointing acts in the continuation completed, say, a domino five pattern. This decision
was based on our belief that the coordination of spatial and temporal patterns with
the counting scheme can play a crucial role in the process of constructing more
sophisticated types of unit items. Our technique was to hide a collection of felt
squares beneath a cloth, lift the cloth briefly, and then ask Jason how many squares
he thought were hidden. When Jason did not recognize the pattern, the teacher would
ask Jason to count “what you saw.” Jason counted by pointing over the cloth where
his points of contact completed a spatial pattern analogous to what he had seen.
The squares were arranged both randomly and in regular patterns, such as in linear
and square four patterns ( .... and ::). Within three sessions (in December 1980)
Jason had constructed patterns for the number words up to “seven.” Further, these
patterns eventually were coordinated with his counting scheme. For example, on 8
April 1981, to find out how many checkers were under two cloths after being told
that nine were under one and five under the other, Jason pointed over the first cloth
while synchronously uttering “1-2-...-9” and then continued by pointing over the
second cloth while uttering “10-11-12-13-14.” He stopped when his points over the
second cloth completed a domino five pattern.

We hypothesized that Jason always counted starting from 1 because what was
significant for him while counting was the perceptual and motor activity. We thought
that Jason would not be able to find out how many items there were in all by
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counting-on over the second cloth until the verbal aspect of counting became sig-
nificant for him (Steffe et al., 1983). Starting at 1 was not merely a habit. From
his perspective, he had to count all the items—he had no alternative. His failure
to count-on was ultimately related to the types of unit items he could create while
counting.

The difficulty Jason had in curtailing his counting activity over the first cloth was
exemplified in the 8 April teaching episode. Our goal was to help Jason take his
utterances as substitutable items (i.e., to count verbal unit items) and thus curtail his
motor activity in counting. We presented a sequence of ten tasks in which Jason was
asked to count all the items hidden under two screens. Jason folded his hands while
counting to perform the last two tasks, indicating that he was counting verbal unit
items. He finally showed some awareness of the superfluousness of counting over
the first cloth when performing the last task. After uttering “1-2-. . .-12,” he said
“wait,” pointed to the cloth, and said “12” before continuing. Immediately after-
wards, the interviewer presented three addition sentences (9 + 3 = __, 17 + 3 = __,
and 25 + 3 = __). Jason counted to solve them starting with 1, gesturing in the
air in synchrony with uttering number words. In the teaching episode, Jason made
progress toward becoming a counter of verbal items (i.e., he could substitute vocal
utterances as well as movements for visual items) in the context of counting the
hidden items. But his solutions to the number sentences indicate that his progress in
this episode was limited to particular local contexts.

The limitations of being a counter of motor items can be illustrated by Jason’s
almost total lack of knowledge of the basic addition facts. Although we do not want
to give the impression that counters of motor unit items cannot learn the basic facts,
their spontaneous methods and strategies for doing so are very limited. For example,
in a teaching episode held on 23 March 1981, Jason found the sum of 3 and 4 by
simultaneously extending three fingers, simultaneously extending four fingers, and
then counting them all. He clearly did not know the sum of 3 and 4. To find the
sum of 7 and 4, Jason sequentially put up seven fingers in synchrony with uttering
“1-2-. . .7,” and continued sequentially putting up fingers while uttering “8-9-10-
11.” He reused one finger he had already put up. These primitive methods inhibit
children from using addition facts they already know to help them find a given sum.
There were indications that Jason knew the sums 3 + 3 and 5 + 4, but he did not
spontaneously use this knowledge to find the sums 3 + 4 and 7 + 4. He found each
sum independently as a new task. This was a recurrent feature of his mathematical
behavior.

Throughout April and most of May 1981, Jason’s counting scheme remained
sensory-motor. However, he made rapid progress during this period and could soon
count verbal unit items in a variety of contexts. Further, by the end of May 1981,
he had a flexible, adaptive counting scheme that he could use to solve a variety of
problems. He could take a sensory-motor unit itself as a unit to be counted (or cre-
ate abstract units). He solved problems by intentionally finding out how many times
he counted. Counting was an expression of numerical structure. For example, in an
interview in November 1981, he counted 16 units beyond 14 to find the sum of 14
and 16 by sequentially putting up fingers in synchrony with uttering “16-17-. . .-31”
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(he stopped at 31 because of an executive error). He intentionally kept track of
his utterances. Moreover, he counted backwards “16-15-14---13” to find how many
marbles were left in a tube containing 16 after 3 had been removed, which had
been completely beyond him in April. This great flexibility in his use of the count-
ing scheme was consistent with the adaptiveness he displayed in the November
interview. Initially, he could not solve a missing addend task like 11 + __ = 16 by
counting. However, with only minor suggestions from the interviewer, he solved not
only that particular task, but others as well. In addition to using his counting scheme
creatively in finding sums, missing addends, and differences, Jason displayed pow-
erful numerical strategies. For example, after counting to solve 5 + __ = 12, he knew
that 9 was the answer to 5 + __ = 14, because 9 is 2 greater than 7!

We have discussed some of Jason’s typical mathematical behavior within the
framework of our model of counting types. In particular, we accounted for Jason’s
use of increasingly sophisticated solution procedures in terms of changes in his
counting scheme. This experiential analysis allows us to further elaborate the
counting types model.

Model Building—The Quest for Generality and Specificity

Thus far, the discussion of model building has focused on interactions between chil-
dren and a teacher. The reader might well have inferred that our sole objective is to
account for the mathematical progress made by the small number of children who
participate in a teaching experiment. However, we strive to build models that are
general as well as specific. On the one hand, the model should be general enough to
account for other children’s mathematical progress. On the other hand, it should be
specific enough to account for a particular child’s progress in a particular instruc-
tional setting. We attempt to attain these seemingly contradictory objectives by
ensuring that there is a dialectical interaction between the theoretical and empiri-
cal aspects of our work. Although one aspect may be more prominent for a time,
it should never completely dominate the other. The interaction can be seen in the
following brief account of a sequence of teaching experiments.

One objective of our research program was to build a viable model to account for
children’s construction of numerical concepts and operations. An initial model of
children’s counting (Steffe, Richards, & von Glasersfeld, 1978) was formulated on
the basis of the experience of teaching six-year-old children in two yearlong teach-
ing experiments. Although we constantly attempted to organize and make sense of
these experiences, our emphasis in the initial phase was empirical. The next phase
of the modeling process involved reformulating the initial model, aided by a theo-
retical model of the construction of units and number (von Glasersfeld, 1981). The
reformulation of the initial model into a developmental model of counting types
was also aided by analyses of videotapes of children solving arithmetical tasks. Our
constant return to children’s behavior via the videotapes both stimulated and mod-
ified our thinking. But it was the theoretical work that predominated during this
phase.
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Even though the developmental model of counting types had an experiential
basis, it did not indicate how we might help children make progress. A new teaching
experiment was called for to fill out and, if necessary, refine the skeleton of some
possible courses of development specified by the developmental model. When we
formulated the model, we were primarily concerned with the form and structure
of the counting scheme at various points in its development. The teaching experi-
ment allowed us to conduct an analysis of the steps the children took when making
progress in the construction of more sophisticated unit items. A cursory experien-
tial analysis of children’s progress is exemplified by the above discussion of Jason’s
progress in counting. Analyses of teaching episodes made possible the reconsti-
tution of what had before been couched in terms of theoretical constructs only.
The human activities that might constitute “doing mathematics,” as referred to by
Plunkett (1982, p. 46), were used to specify the construction of the counting scheme.
The theoretical aspect of our methodology is apparent in the final phase of the mod-
eling process in that the theoretical model served as a guiding framework. However,
the primary emphasis was, once again, empirical.

In summary, we attempt to account for the observed regularities in children’s
progress by developing abstract, theoretical constructs. This constitutes our quest
for generality. We strive for specificity by filling out these constructs with experien-
tial content. At any point in the modeling process, novel, unexpected observations
can lead to a reformulation of the theoretical constructs. Conversely, a theoretical
reformation can lead to the novel interpretation of previous observations. The inter-
dependence of theory and observation is consistent with Lakatos’ (1970) analysis
of a scientific research program. We firmly believe that this feature of our method
is essential and contributes enormously to the understanding of how children might
construct their mathematical realities. However, we should not forget that a model
is no more than a plausible explanation of children’s constructive activities. One
can never claim a correspondence between the model and children’s inaccessible
mathematical realities. Although a model can be viable, it can never be verified.

The Educational Significance of Models

Hawkins (1973a) offers the following characterization of the activity of teaching:

The teacher begins to assemble...information over a variety of children although for thirty
children the task is enormous, and even the best teachers will confess to omissions. Then
there is a trial-and-error of communication, further observation, a gradual and still tenta-
tive sort of portraiture involving the child’s style, strengths, weakness, skills, fears, and the
like.... What [the teacher] finds himself doing is beginning to build what I would call a map
of each child’s mind and of the trajectory of his life. It is fragmentary, fallible, but it is
subject always to corrections. (p. 13)

Hawkins (1973b) emphasizes the commonality of research and teaching:

The really interesting problems of education are hard to study. They are long-term and too
complex for the laboratory, and too diverse and nonlinear for the comparative method. They
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require longitudinal study of individuals.... The investigator who can do that and will do it
is, after all, rather like what I have called a teacher. (p. 135)

The researcher who conducts a teaching experiment attempts to perform the
same activities as Hawkins’ teacher. The single difference between the researcher
and the teacher is that the researcher interacts with fewer children and has greater
opportunity and more time to make sense of their behavior.

Essentially, our models are the results of attempts to explicate our understand-
ing of children’s constructions. These models, which were developed by intensively
analyzing children’s behavior, capture our knowledge of recurrent features of the
activity of doing mathematics. They also embody our suggestions on how to aid
children as they attempt to construct mathematical knowledge. The counting-types
model, for example, constitutes the organization that we use when interpreting chil-
dren’s behavior and when planning interactions with children on the basis of those
interpretations.

We believe that nothing could be more useful to teachers than the type of knowl-
edge represented by a model. However, just as children construct mathematical
knowledge, so teachers construct their own understanding of children’s mathemat-
ical realities. We can no more give teachers our counting-type model than we can
give children our knowledge that subtraction is the inverse of addition. The question
of how to help teachers as they strive to understand children’s mathematical realities
is of critical importance.
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Chapter 4
Introduction

Paul Cobb with Erna Yackel

I completed my dissertation studies with Les Steffe and Ernst von Glasersfeld at
the University of Georgia in 1983 and then accepted a faculty position at Purdue
University in Indiana. The first study that I conducted at Purdue University was
built on my dissertation work and focused on the psychological contexts within
which young children interpret and attempt to solve arithmetical tasks in school
(see Chapter 2). In this study, I interviewed approximately 40 first-grade students
from two classrooms at the beginning, middle, and end of the school year. In the
initial interviews, most of the children attempted to solve all types of arithmetical
tasks presented by reasoning about quantities. However, in the interviews at the end
of the school year, most of the same children attempted to solve all interview tasks
that were similar to those in their school textbook by either using very elementary
counting methods or by focusing on patterns in numerals regardless of whether they
made sense in terms of relations between quantities. In this respect, the children’s
solutions were reminiscent of those that Erlwanger (1973) had documented in his
influential case of study of a fifth-grade student’s conception of mathematics.

I called the two distinct personal contexts within which the first-graders’
approached arithmetical tasks the context of pragmatic numerical problem solv-
ing and the context of academic arithmetic, respectively (Cobb, 1986). One of the
most striking observations made during the interviews conducted at the end of the
school year was that it was possible to influence the context within which chil-
dren interpreted tasks by making seemingly superficial changes to tasks formats. For
example, the children almost invariably acted in the context of academic arithmetic
and used relatively primitive counting methods when addition and subtraction tasks
were presented in a vertical format similar to their school textbooks. In contrast, they
acted in the context of pragmatic numerical problem solving and used more sophis-
ticated methods when addition and subtraction tasks involving exactly the same
number combinations were presented as horizontal number sentences. Furthermore,
the children did not see any contradiction if they arrived at different answers to
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tasks involving the same number combinations. I took this to indicate that tasks that
differed only in the format of presentation were not the same task for the children
when they interpreted them within different personal contexts. The conclusions I
drew from this study were that the two contexts were separate domains of activ-
ity for the children, and that typical US first-grade instruction supported children’s
construction of academic arithmetic contexts that were divorced from their everyday
lives and that had little to do with numbers as quantities.1

This interview study served to emphasize that typical US instruction was a poor
setting in which to investigate students’ development of increasingly sophisticated
ways of reasoning about numerical quantities. It was against this background that
Grayson Wheatley, the senior mathematics educator at Purdue University, and I sub-
mitted a successful proposal to the US National Science Foundation in which we
planned to extend the one-on-one constructivist teaching experiment methodology
to the classroom. Our goal in proposing a study of this type was to support students’
development of the forms of mathematical reasoning that we wanted to study. As
part of our preparations for what would now be called a classroom design exper-
iment, we recruited Graceann Merkel, an experienced second-grade teacher who
worked in a rural/suburban school, to the project team.

Wheatley took a leave of absence from Purdue University during the year in
which the design experiment was conducted to work in Malaysia (1986–1987). I
therefore invited Erna Yackel and Terry Wood to work with me in Merkel’s class-
room. Yackel had completed her dissertation under Wheatley’s supervision and was
teaching statistics courses in the Statistics Department at Purdue University. Wood’s
background was in educational psychology and she was teaching mathematics
pedagogy courses for future elementary teachers.

Our original plan was to conduct the design experiment during the first three
months of the school year and to focus exclusively on arithmetic. However, as the
experiment progressed, Merkel came to value the positive nature of the learning
environment established in her classroom and also became intrigued by the var-
ious ways in which her students reasoned about quantity. During a project team
meeting, she stated that she could not return to using the textbook adopted by her
school district and asked the researchers directly what she was supposed to do for the
remainder of the school year. We viewed Merkel’s concerns as legitimate and even-
tually decided to continue the experiment for the entire school year, in the course
of which we developed a complete set of instructional activities for second-grade
mathematics.

Our initial findings about the quality of the learning environment established
in Merkel’s classroom were encouraging and, on this basis, the National Science
Foundation supported a request for additional funding to enable Yackel and Wood
to contribute to retrospective analyses of the video-recordings of classroom sessions.
While the experiment was in progress, Merkel shared her positive views of the

1These conclusions are consistent with the findings of a series of studies that Schoenfeld (1983)
conducted to investigate the beliefs that high-school students developed as a consequence of typical
US instruction.
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developments in her classroom with other teachers and with school administrators.
A number of them observed classroom sessions and were typically impressed by
the nature of students’ engagement in classroom activities. As a consequence of
these positive reports, we subsequently supported the learning of approximately
20 second-grade teachers who used the instructional activities we had developed
as the basis for their mathematics instruction. In addition, we conducted a third-
grade design experiment in collaboration with another teacher in the same school.
At about this same time, Yackel accepted a faculty position at another Purdue
University campus and conducted a series of design experiments in an urban dis-
trict. Wood accepted a faculty position at Purdue University and continued to work
with groups of teachers in order to study their classroom practices after I moved to
Vanderbilt University in 1992. Sadly, she died in january 2010 after a long battle
with pancreatic cancer.

Our original research goal when we began the design experiment in Merkel’s
classroom was to study the development of individual children’s arithmetical rea-
soning. Our theoretical perspective on mathematical learning when preparing for
the experiment acknowledged social interactions as a source of learning opportuni-
ties for individual children. We had been influenced by neo-Piagetian studies that
focused on the interpersonal conflicts that occur between children as they work
together to solve tasks (Doise & Mugny, 1979; Doise, Mugny, & Perret-Clermont,
1975; Perret-Clermont, 1980). These studies indicated that interpersonal social con-
flicts in task interpretations could give rise to intrapersonal cognitive conflicts or
perturbations for individual students. From a constructivist perspective, conflicts
or perturbations of this type are considered to be critical precipitators of substan-
tial learning in which students reorganize their reasoning. Thus, at the outset of the
design experiment, we viewed social interactions between students, and between the
teacher and students, as catalysts for individual students’ cognitive development.
The significance that we attributed to social interactions as a source of learning
opportunities was evident in the way that we organized classroom activities dur-
ing the design experiment: the children solved tasks in pairs and then Merkel led a
whole class discussion of their interpretations and solutions.

Our research focus changed significantly during the first days of the design exper-
iment as a consequence of events that we observed in Merkel’s classroom. As we
noted in the chapter reprinted in this part of the book, Merkel’s expectation that her
students should explain how they had interpreted and attempted to solve tasks ran
counter to the students’, prior experiences of class discussions in school. Entirely
on her own initiative, Merkel initiated a process that we subsequently came to call
the renegotiation of classroom social norms. In the reprinted chapter, we describe
an incident in which a student became embarrassed during a discussion when he
realized that the answer he had given was incorrect. As we report, Merkel used this
incident to clarify her expectations for the students. In doing so, she characterized
mistakes both as normal and as opportunities for learning. Exchanges of this type
took on immediately significance against the background of my prior work on the
personal contexts within which students approach arithmetical tasks. In particular,
we realized that Merkel was supporting her students to interpret tasks within the
context of pragmatic numerical problem solving.



36 P. Cobb with E. Yackel

The reprinted chapter was published just 2 years after we completed the year-long
design experiment in Merkel’s classroom. The chapter documents that we devel-
oped an initial approach for analyzing the negotiation of classroom social norms
relatively quickly. We were able to make relatively rapid progress because we could
build directly on the work of a number of scholars. Erickson’s (1986) discussion of
what, at the time, we referred to as the social dimension of the classroom convinced
us of the importance of understanding the interactional grammar of classroom life if
we were to develop adequate analyses of the children’s mathematical learning. We
were also influenced by a distinction that Bateson (1973) made between learning
within an established context and learning to act in a new context. This distinction
is evident in the reprinted chapter in the distinction that we drew between the teacher
and students talking about mathematics, and talking about how to talk about mathe-
matics. We also took seriously Maturana’s (1980) argument that individual cognitive
processes and collective social processes are non-intersecting domains of analysis.
In a formulation that we were later to learn from Gotz Krummheuer, an interac-
tional analysis documents the conditions for the possibility of learning, whereas a
cognitive analysis documents learning process as they are located within those social
situations.

In addition to drawing on work outside mathematics education, we were also
profoundly influenced by two papers written by mathematics education researchers.
The first was Bauersfeld’s (1980) discussion of patterns in classroom interactions.
Bauersfeld’s arguments led us to conclude that our view of social interactions as
catalysts for otherwise autonomous cognitive developments was unduly restricted.
As he demonstrated, the nature of classroom social interactions influences not
merely the process of mathematical learning but also its products, the forms of
mathematical reasoning that students develop. Voigt (1985) extended Bauersfeld’s
line of argument in a paper published 5 years later in which he described and
illustrated an approach for analyzing classroom interaction patterns in terms of
the largely implicit obligations that the teacher and students attempt to fulfill in
particular situations, and the expectations that they have for each others activity.
It was readily apparent that this approach had (and continues to have) con-
siderable explanatory power and was well suited to our immediate purpose of
accounting for the negotiation of social norms in Merkel’s classroom. As we
indicated in the reprinted chapter, our analysis of social norms drew directly on
Voigt’s work.

Our focus in the reprinted chapter was on the children’s emotional acts in the
design experiment classroom. As background, Yackel and I had attended a meet-
ing on affect and mathematical problem solving organized by Douglas McLeod in
San Diego in June 1987, near the end of the design experiment. We were surprised
when the other mathematics educators who participated in the meeting reported that
students’ affective responses to challenging mathematical problems were almost
universally negative. The research question as they framed it was to explain why
this was the case. Our observations in Merkel’s classroom directly contradicted the
assumption that such reactions are an inevitable aspect of mathematical problem
solving. We therefore volunteered to write a chapter for a book that McLeod was
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editing on this topic. The resulting chapter was shaped by a number of contributions
to a book edited by Rom Harré (1986), The Social Construction of Emotion. A key
insight that we took from this book was that, within the microculture established
in a particular classroom, certain emotional acts are warranted when attempting to
solve challenging mathematical tasks. This insight in turn implies that the warranted
emotional acts can differ significantly from one classroom to another depending on
the nature of the social norms that have been established. We therefore concluded
that we had observed generally positive responses to mathematical problem solv-
ing in Merkel’s classroom because she had initiated and guided the negotiation of
social norms that contrasted sharply with those established in most US mathemat-
ics classroom. The reprinted chapter was out of step with the approaches to affect
that mathematics educators took at the time and made little impact. It did, however,
represents a significant advance in our thinking in that we were beginning to move
beyond our initial view of context solely as a personal orientation to mathematical
tasks. In this chapter, we made a first attempt to treat the local world of the classroom
as a social context that was established jointly by the teacher and the students.

Yackel, Wood, and I began a 3-year collaboration with Heinrich Bauersfeld, Gotz
Krummheuer, and Jorg Voigt in 1990, shortly after the reprinted chapter was pub-
lished. I met (and shared a room with) Bauersfeld at a conference on cybernetics
in 1986. I subsequently visited Bauersfeld and his colleagues at the University of
Bielefeld in Germany, and the idea of a sustained collaboration was developed
during this meeting. The explicit goal of this collaboration, which was supported
by the Spencer Foundation, was to formulate an approach for integrating social
and cognitive perspectives on mathematical learning. To this end, we met for a
week approximately every 9 months to try and hammer out agreed-upon theoretical
constructs. Typically, we began these meetings by viewing a short video-recorded
episode from Merkel’s classroom. The differences in the theoretical perspectives
of the two groups of researchers were such that the resulting discussions of core
suppositions and assumptions typically continued for several hours. We eventually
concluded that it would not be possible to develop a single, overarching set of con-
structs and instead attempted to achieve the more modest goal of developing a way
of coordinating social and cognitive perspective on mathematical learning.2 The
collaboration was particularly valuable to us as US researchers in that it gave us
access to ideas of symbolic interactionism (e.g., Blumer, 1969; Schutz, 1962) and
ethnomethodology (e.g., Mehan & Wood, 1975). These ideas proved to be critical
in our subsequent work in which we elaborated our nascent social perspective on
mathematics classrooms.

The first major step in this elaboration involved the development of the notion of
sociomathematical norms (Yackel & Cobb, 1996). This notion originated in an anal-
ysis Yackel carried out of a design experiment she had conducted with Willie King,

2This collaboration resulted in an edited book (Cobb & Bauersfeld, 1995) in which the six partic-
ipating researchers each reported an analysis that they had conducted of the video-recordings of
Merkel’s classroom.
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a second-grade teacher who worked in a predominantly African-American inner city
school.3 Yackel’s analysis focused on shifts in what counted as an acceptable math-
ematical explanation and as a legitimate challenge. As the analysis continued, we
identified two further norms, what counted as a different and as a sophisticated math-
ematical solution. It was at this point that we began to realize that these norms were
instances of a particular type or class that was distinct from general classroom social
norms because they were all specific to mathematical activity. We called norms of
this type sociomathematical norms to indicate both that they are jointly constituted
by the teacher and students and that they are specifically mathematical.

The final step in our elaboration of a social perspective on mathematics class-
rooms is discussed in the fourth part of this book and involved the development of
the notion of a classroom mathematical practice. We called the resulting perspective
the emergent perspective to emphasize that the classroom social context or micro-
culture emerges from (and is continually regenerated by) the teacher’s and students’
coordinated actions (Cobb & Yackel, 1996).

At the time that we wrote the chapter reprinted in this part of the book, we
differentiated between what we termed the social aspects of the classroom, which
included classroom social norms, and the cognitive aspects that included students’
mathematical reasoning. We subsequently revised this view while developing the
notions of sociomathematical norms and classroom mathematical practices, and in
doing so questioned our assumption that some aspects of the classroom are inher-
ently social and other aspects are inherently cognitive. We instead came to the view
that any aspect of the classroom can be analyzed from either a social or a cognitive
perspective. This revised view is central to the resulting emergent perspective as it
involved the explicit coordination of a social perspective on classroom events with
a cognitive perspective on the teacher’s and students’ individual interpretations as
they participate in those events.

In looking back, we now regard the classroom design experiment that we con-
ducted in Merkel’s classroom as limited in two important respects. First, as we
discuss in the next chapter of this book, our design of instructional tasks was
somewhat ad hoc and, as a consequence, the tasks we developed do not consti-
tute coherent instructional sequences. Second, we did not organize the whole class
discussions conducted in Merkel’s classroom systematically to achieve a mathe-
matical agenda. To be sure, we worked to ensure that students explained their
reasoning, attempted to understand others’ reasoning, asked clarifying questions,
and so forth. However, we did not build systematically on students’ solutions to
make sure that key mathematical ideas emerged as the focus of discussion. In later
classroom design experiments, we planned more carefully for class discussions
by first documenting the range of solutions that students were developing as they
worked individually or in groups, and then deciding which students should present
their solutions so that mathematically significant issues would emerge as topics of

3In this experiment, Yackel and King adapted the instructional tasks that had been developed in
Merkel’s classroom to the inner city setting in which King worked.
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conversation. The discussions in these latter design experiments were often less ani-
mated than those in Merkel’s classroom, but were superior in terms of the learning
opportunities that arose for significant mathematical learning (Cobb, 1998).

The observations that we made in Merkel’s classroom during the first days of the
design experiment initiated a productive line of inquiry that continued for more than
a decade. Certainly, we read widely and worked long hours when conducting sub-
sequent classroom design experiment and when analyzing the resulting classroom
video-recordings. In addition, the collaboration with Bauersfeld and his colleagues
enabled us to become familiar with a range of theoretical ideas that were largely
unknown to US mathematics education researchers. However, more than a little
luck was also involved, not least our good fortune to collaborate with two teach-
ers whose classroom practices gave us rich data with which to work. The first was
Graceann Merkel, who had a remarkable feel for classroom social relationships and
who repeatedly made decisions on her own initiative that supported the develop-
ment of productive classroom social norms.4 The second was Willie King, who was
skilled in recognizing the potential mathematical significance of his students’ con-
tributions to whole class discussions and who made in-the-moment decisions that
supported the development of what we later called (productive) sociomathemati-
cal norms.5 The fact that we developed an approach for analyzing classroom social
norms while analyzing data from Merkel’s classroom and then developed the notion
of sociomathematical norms while analyzing data from King’s classroom is surely
not coincidence. The advances that we made are attributable in large measure to
Merkel’s and King’s complementary strengths as mathematics teachers.
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Chapter 5
Young Children’s Emotional Acts While
Engaged in Mathematical Problem Solving

Paul Cobb, Erna Yackel, and Terry Wood

Several authors in this book have eloquently argued that affective issues in mathe-
matics teaching and learning have long been under-represented themes in research.
Our interest in the emotional acts of teachers and children is due in part to Doug
McLeod’s gentle prodding. In addition, we have recently conducted a teaching
experiment in a second-grade classroom for an entire school year. We and oth-
ers observed that many “nice things” happen in this classroom. The children were
generally excited about doing mathematics, were very persistent, did not become
frustrated, frequently experienced joy when they completed solutions to person-
ally challenging problems, and did not evidence either embarrassment or jealousy.
These observations contrast with the findings of Goodlad’s (1983) study of over
1,000 classrooms. He concluded that “affect—either positive or negative—was vir-
tually absent. What we observed could only be described as neutral, or perhaps
‘flat’”(p. 467). In fact, the emotional tone of the classroom we observed seemed
to contribute substantially to the favorable opinions of the mathematics instruction
formed by classroom observers such as parents, other teachers, and administrators.
At a minimum, the nurturing of positive emotional experiences for children would
seem to have immediate propaganda value.

From the beginning, the classroom teaching experiment gave explicit atten-
tion to the children’s noncognitive development. The general instructional goals
included the promotion of intellectual and moral autonomy (Kamii, 1985) and task-
involvement (Nicholls, 1983) as a form of motivation. It was not until we observed
and tried to understand what was happening in the classroom that the children’s
emotional acts in specific situations began to take on greater significance. Initially,
we viewed these emotional acts as desirable outcomes and as indicators that things
were working out in the classroom as we had hoped. As the year progressed, we
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have increasingly come to view these acts as essential features of the dynamic,
self-organizing social system that characterized life in the classroom.

This chapter is divided into four general sections, the first of which presents the
current framework within which we are analyzing the children’s emotional acts. We
then outline the classroom teaching experiment, focusing primarily on methodol-
ogy, the rationale for the instructional activities, the classroom organization, and
the nature of typical classroom social interactions. Next, we present examples of
analyses of the emotional acts of children as they occurred within the context
of social life in the classroom. Finally, we consider possible implications of this
analysis.

Emotional Acts, Beliefs, and Social Context

Like other contributors to this book, we subscribe to the cognitive and constructivist
approach to emotions. More specifically, we believe that emotional acts are based
on cognitive appraisals of particular situations (Mandler, this volume, Chapter 1).
From this perspective, emotions are not uncontrollable impulses that just happen to
passive sufferers. Instead, “our capacity to experience certain emotions is contingent
upon learning to make certain kinds of appraisals and evaluations. . . . It is learning
to interpret and appraise matters in terms of norms, standards, principles, and ends
or goals judged desirable or undesirable” (Pritchard, 1976, p. 219). The observation
that emotions are generated by cognitive appraisals of particular situations makes it
possible to talk meaningfully about the construction of emotions.

As Mandler (this volume, Chapter 1) noted, emotional experiences or feelings
typically involve the perception of visceral arousal in concatenation with cognitive
appraisals. These two aspects of emotions correspond to the distinction between
emotion viewed as a state and emotion viewed as an act (Armon-Jones, 1986a).
Emotion as state is concerned primarily with the phenomenological aspect of emo-
tional experiences, with emotions as inner feelings. Emotion as act acknowledges
the performatory aspect of emotions, which conveys appraisals relating to some
standard or value. Our focus in this chapter will be almost exclusively on emotions
as acts. As Harré (1986) observed, “emotion words cannot be the names for the
[distinct physiological] agitation since it has been clearly demonstrated that qual-
itatively one and the same agitation can be involved in many different emotions”
(p. 8). In other words, introspection does not reveal the existence of a multitude of
distinct feelings that correspond to the subtle linguistic differentiation of our vocab-
ulary for discussing emotions (Beford, 1986). The situation is much the same when
we focus on the behavior of someone who is having an emotional experience. The
behavior associated with anger, for example, differs across people and occasions;
conversely, the same observed behavior is interpreted differently depending on the
circumstances. The distinction between shame and embarrassment, for example,
depends on whether an individual interprets that he or she is at fault in a situa-
tion (Beford, 1986). More generally, we agree with Coulter’s (1986) claim that we
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cannot “identify the emotion we are dealing with unless we take into account how a
person is appraising an object or situation” (p. 121).

Social Norms

As the example of shame and embarrassment illustrates, emotions have an under-
lying rationale. Within a culture in general and a local social world, such as an
elementary mathematics classroom, in particular, certain emotions are not only war-
ranted in specific situations but, at times, ought to occur (Armon-Jones, 1986a).
The teacher in our project capitalized on this aspect of emotions by attempting to
teach the children how they ought to feel in particular situations during mathematics
instruction. The cognitive basis of emotions is also indicated by the observation that
expressions of emotion are open to criticism by reference to the way in which the sit-
uation has been interpreted (Armon-Jones, 1986b). We might, for example, attempt
to defuse a confrontation by explaining to the angry party that the transgressor did
not intentionally infringe on his or her rights. As this example of anger suggests
and other analyses show, “the study of emotions . . . will require careful attention to
the details of the local systems of rights and obligations, of criteria of value and so
on. In short . . . emotions cannot be seriously studied without attention to the local
moral order. . . . What is at issue in differentiating emotions are the rights, duties,
and obligations of . . . people, in that culture” (Harré, 1986, p. 6). In other words,
“emotions achieve their qualitative character by being contextualized in the social
reality that produces them” (Bruner, 1986, p. 117). It was therefore essential that we
pay careful attention to the social norms that the teacher and children mutually con-
structed when we analyzed emotional acts as they occurred in the project classroom.
These acts must be placed in the social context within which they were performed
and within which they take on meaning. We will in fact argue that it was because
the teacher and children established social norms that contrast sharply with those of
typical classrooms that we observed generally desirable emotional acts.

Our concern with the unfolding social world within which we observed emo-
tional acts implies that we will not attempt to abstract particular emotions and
treat them as objects that can be studied as independent, detachable objects. We
will not, for example, analyze particular emotions, such as joy, but will instead
focus on joyful acts as they occur in the concrete world of contexts and activi-
ties. Further, because emotional acts have a rationale with respect to the local social
order, individuals

can offer an account of their conduct through an examination of “reasons.” The causality
of internal and external forces becomes irrelevant. Instead of asking, “What caused me to
feel ashamed?” the actor asks, “What were my reasons for being ashamed?” The scientific
observer may be guided by the same perspective (Sarbin, 1986, p. 92).

In other words, emotions are often used to account for someone’s actions. Emotion
words, therefore, “set the action to be explained, not merely in the context of the rest
of the individual’s behavior, but in a social context. . . . Emotion words explain by
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giving one sort of reason for action, i.e., by giving a justification, or partial justifi-
cation, for it” (Beford, 1986, p. 30). Consequently, we make an inference about the
child’s appraisal of a situation each time we attribute a particular emotional quality
to his or her actions.

The kinds of appraisals that lead to emotional acts follow the occurrence of some
perceptual or cognitive discrepancy in which expectations are violated (Mandler,
this volume, Chapter 1). McLeod (1985) has noted that this viewpoint is relevant for
researchers interested in students’ mathematical problem solving because discrep-
ancies or blockages are precisely what characterize true problem solving. Mandler
also observed that emotional acts following a discrepancy are less intense if they
are considered to be a routine part of life. Similarly, Hundeide (1985) suggested that
“what is interesting and problematic is always related to a standard of what is taken
for granted as typical and normal . . . and it is the deviations from that standard
that create reactions. . . . As this standard changes, new experiences become habit-
uated and taken for granted” (p. 311). This insight is particularly relevant to our
work because all areas of second-grade mathematics, including arithmetical com-
putation, were taught through small-group problem solving that was followed by
discussions involving the whole class. Therefore, it is possible that the blockages
that occurred during problem solving were not construed as discrepancies by the
children because they took the occurrence of blockages for granted—that is, they
expected to encounter difficulties. Such expectations would, of course, be expres-
sions of the children’s beliefs about the nature of mathematical activity (Cobb,
1986c; Confrey, 1984). The children’s beliefs would therefore seem to be a crucial
aspect of what Hundeide called the “standard of normative expectancies” (1985,
p. 311).

Sources of Beliefs

If emotional acts are influenced by the nature of the beliefs used to interpret situa-
tions, then questions concerning the origin of beliefs immediately become relevant.
In our view, students’ construction of their beliefs about the nature of mathematical
activity involves drawing on paradigm cases to thematize their experiences of doing
mathematics. These experiences include interactions with the teacher and peers in
the classroom. As Balacheff (1986) noted:

We have to realize that most of the time the pupil does not act as a theoretician but as a
practical man. His job is to give a solution to the problem the teacher has given, a solution
that will be acceptable with respect to the classroom situation. In such a context the most
important thing is to be effective (p. 12).

A student’s realization that he or she has failed to fulfill an obligation can itself give
rise to a problematic situation for the student. To the extent that the student wants to
fulfill the obligation, situations of this sort can precipitate strong emotions. It should
be noted that this case is distinct from that in which the student has experiences that
confound what he or she takes for granted. For example, a student might repeat-
edly fail to meet the teacher’s expectations. Failure (as the teacher defines it) is the
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norm for this student, and he or she expects to fail in the future. Nonetheless, each
future failure might be quite traumatic for the student, and give rise to feelings of
guilt or embarrassment depending on the circumstances. Here, the discrepancy is
with respect to the student’s understanding of what he or she is expected to accom-
plish rather than with respect to his or her understanding of what is typical. In fact,
anticipations of typical experiences can lead to emotional acts.

Consideration of students’ obligations emphasizes the claim that emotional acts
occur within the context of the local social world. This point is crucial to our anal-
ysis because the teacher we worked with actively attempted to place the children
under certain obligations that differed markedly from those of typical classrooms.
In other words, the teacher and children mutually established a nonstandard work-
ing consensus (Hargreaves, 1975) or didactical contract (Brousseau, 1984). We are
attempting to understand this contract by first identifying the regularities or pat-
terns that occurred in classroom social interactions. For the most part, these patterns
are outside the conscious awareness of both the teacher and the students and are
repeatedly constructed in the course of interactions (Voigt, 1985). Thus, although
the teacher and students did not have a blueprint of the interaction patterns, each
subconsciously knew how to act appropriately in specific situations as they arose.
By teasing out these patterns, one can infer the largely implicit social norms nego-
tiated by the teacher and students, the norms that structured the local social reality
within which they taught and learned mathematics and from which emotional acts
derived meaning.

The interaction patterns and associated social norms can themselves be analyzed
in terms of both the largely implicit, taken-for-granted obligations that the teacher
and students accepted in particular situations and the expectations that they had for
each other (Voigt, 1985). Such an analysis simultaneously addresses the teacher’s
and student’s beliefs about their own and each others’ roles as they were played
out while interacting in the classroom. These beliefs, together with beliefs about
the nature of mathematical activity, would seem to constitute a substantial part of
the standard of normative expectancies. It is perceived discrepancies with these
expectations that give rise to emotional acts.

Thus far, we have argued that emotional acts are generated by cognitive
appraisals of situations, and that these appraisals are influenced by the local social
order. The appraisals involve a comparison of the interpreted situation with expec-
tations. As Averill (1986) stated, “In cognitive terms, emotions may be conceived of
as belief systems or schemas that guide the appraisal of situations, the organization
of responses, and the self-monitoring (interpretation) of behavior” (p. 100). With
regard to mathematical problem solving, beliefs about the nature of mathematical
activity and about one’s own and others’ roles in the classroom would seem to be
particularly relevant. These beliefs are constructed in an attempt to make sense of
classroom life during mathematics instruction. Our emphasis on the cognitive basis
of emotions as acts in no way denies that people feel emotions or that they may, on
occasion, feel gripped by a particular emotion that is beyond their control. In our
view, these sometimes intense emotional experiences are generated by subjective
cognitive interpretations of particular situations.
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As a further point, emotional acts are “functional in that they are constituted and
prescribed in such a way as to sustain and endorse cultural systems of beliefs and
value” (Armon-Jones, 1986b, p. 57). In other words, emotional acts play a role in
the development and regeneration of the obligations and expectations that regulate
activity in such situations as a classroom during mathematics instruction. We have
noted that emotional acts have a rationale, and that this rationale derives in part
from the local order (or at least the acting individual’s understanding of it as repre-
sented by his or her beliefs). Emotional acts that are warranted in one social context
might well be completely inappropriate in another. This would seem to be the case
with the second-grade classroom we studied when compared with a more typical
classroom. Occasions when the children in our class make socially appropriate
emotional acts (e.g., rushing excitedly to the teacher to tell her about their solu-
tion to a personally challenging problem) served to sustain and endorse the beliefs
about mathematical activity and themselves that the teacher had attempted to nur-
ture. In effect, these emotional acts serve the social function of helping to keep the
communal story about doing mathematics alive. The emotional sentiment of their
actions indicated not only their sincerity but also the significance and importance
they attributed to the story. Further, the social appropriateness of their emotions
made them autonomous adherents to the story in a way that mere rational compre-
hension of it would not (Armon-Jones, 1986b, p. 81). This simultaneously served to
regulate socially undesirable behavior. It is one thing for a child to understand that
some act would transgress particular norms, and quite another to know that he or
she will feel guilty after doing it.

Thus far, we have claimed that appropriate emotional acts sustain social norms.
Conversely, socially inappropriate emotional acts indicate either that the student has
misinterpreted others’ intentions or that the student’s beliefs are incompatible with
social norms that are acceptable to the teacher and other students. Because these acts
are open to criticism by reference to norms, their occurrence constitutes opportuni-
ties for the teacher and other students to initiate a dialogue about beliefs and values.
Further, socially undesirable acts can be criticized by explaining that their construal
by others will constitute a cognitive basis for negative emotions. In other words,
the student can be told that his or her actions in this social context will probably
make other people feel bad. Finally, the teacher does not have to wait for students
to evidence a particular emotion, whether positive or negative, before ascribing that
emotion (Armon-Jones, 1986b). For example, delight can be prescribed in those
situations in which the teacher believes that students ought to feel pleased with their
accomplishments (e.g., situations in which they persisted and solved a personally
challenging problem through their own efforts). In attempting to understand the
prescription and feel delighted, students have the opportunity to reorganize their
beliefs about the nature of mathematical activity. In the last analysis, however, it
is the students who have to make construals that constitute a cognitive basis for
delight.

In summary, emotional acts not only support but can actually play a role in the
teacher’s and students’ mutual construction of social norms. This certainly appears
to be the case with the classroom that we observed. We discuss the essential features
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of the teaching experiment in the following section before analyzing examples of
emotional acts as they occurred in the classroom.

Overview of the Teaching Experiment

The teaching experiment was conducted in one second-grade public school class-
room for the entire school year as part of a 3-year research and development project.
The experiment had a strong pragmatic emphasis in that we were responsible for
the mathematics instruction of the 20 children in the classroom; thus, we had to
accommodate a variety of institutional constraints while developing and imple-
menting instructional activities in a manner compatible with constructivist learning
theory (Cobb & von Glasersfeld, 1984; Piaget, 1970, 1980; von Glasersfeld, 1983,
1984). Not surprisingly, the constraints profoundly influenced the ways in which we
attempted to develop a form of practice compatible with both constructivism as a
general theory of knowledge and specific models of early number learning (Steffe,
von Glasersfeld, Richards, & Cobb, 1983; Steffe, Cobb, & von Glasersfeld, 1988).
We were fortunate in that the classroom teacher was a member of the project staff.
Her practical wisdom and insights proved to be invaluable.

Methodology

The teaching experiment conducted in the classroom is a natural extension of the
constructivist teaching experiment methodology, in which the researcher interacts
with a single child and attempts to guide the constructive activities of the child
(Cobb & Steffe, 1983; Steffe, 1983). In our view, the two methodologies are appro-
priate for different phases of a research program (Cobb, 1986a). Both methodologies
allow the researcher to focus on the critical moments when children make cognitive
restructurings as they develop increasingly powerful ways of knowing mathemat-
ics. In the case of the classroom teaching experiment, these restructurings occur as
the children interact with the teacher and their peers rather than with the researcher.
The methodology also allows the researcher to address a variety of related issues;
the most important is to embed the children’s learning of mathematics in social con-
text. To this end, the mutually constructed social norms are analyzed in terms of
the teacher’s and children’s obligations and expectations in the classroom. The chil-
dren’s emotional acts both take meaning from and contribute to the construction and
continual regeneration of these norms.

The classroom teaching experiment also bears certain resemblances to a type
of Soviet experiment that Menchinskaya (1969) called a macroscheme: “Changes
are studied in a pupil’s school activity and development as he [or she] makes the
transition from one age level to another, from one level of instruction to another”
(p. 5). However, there is a crucial difference between our approach and that of the
Soviet researchers. Typically, Soviet investigators construct the instructional mate-
rials before the experiment begins (e.g., Davydov, 1975). We, in contrast, developed
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samples of a wide range of possible instructional activities in the year preceding
the experiment, but the specific activities used in the classroom were developed,
modified, and in some cases, abandoned while the experiment was in progress. To
aid this process, two video cameras were used to record every mathematics lesson
for the school year. While working in groups, eight children faced the cameras.
Consequently, it was possible to record the problem-solving activity of approx-
imately half of each of the four pairs of children. Initial analyses of both the
whole class dialogues and the small group interactions focused on the quality of
the children’s mathematical activity and learning as they completed and discussed
their solutions to specific instructional activities. These analyses, together with the
classroom teacher’s observations, guided the development of instructional activi-
ties and, on occasion, changes in classroom organization for subsequent lessons.
Thus, the processes of developing materials, conducting a formative assessment,
and developing an initial explanation of classroom life were one and the same.

Rationale for Instructional Activities

From the constructivist perspective, substantive mathematical learning is an active
problem-solving activity (Cobb, 1986b; Confrey, 1987; Thompson, 1985; von
Glasersfeld, 1983). This is the case even when students receive direct recitation
instruction. In this context, substantive learning refers to cognitive restructuring as
opposed to accretion or tuning (Rumelhart & Norman, 1981). Consequently, our
primary focus as we developed, implemented, and refined instructional activities
was on that aspect of cognitive development that is both the most significant and the
most difficult to explain and influence.

At the risk of oversimplification, an immediate implication of constructivism is
that mathematics, including the so-called “basics,” such as arithmetical computa-
tion, should be taught through problem solving. Admittedly, the application of an
efficient computational algorithm, once constructed, can be a routine task for a child;
however, the process of constructing such algorithms is characterized by active
problem solving (Cobb & Merkel, 1989; Kamii, 1985; Labinowicz, 1985) in which
conceptual and procedural developments should ideally go hand in hand (Cobb,
Wood, & Yackel, 1991b; Hiebert & Lefevre, 1986). The concern with mathematical
problem solving does not mean that the instructional activities necessarily empha-
size what are traditionally considered to be problems—stereotypical textbook word
problems. The general notion that readymade problems can be given to students is
highly questionable; instead, teaching through problem solving acknowledges that
problems arise for students as they attempt to achieve their goals in the classroom.
The approach respects that students are the best judges of what they find problem-
atic and encourages them to construct solutions that are acceptable to them given
their current ways of knowing. The situations that children find problematic take a
variety of forms, including resolving obstacles or contradictions that arise when they
use their current concepts and procedures, accounting for surprising outcomes (par-
ticularly when two alternative procedures lead to the same result), verbalizing their
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mathematical thinking, explaining or justifying solutions, and resolving conflicting
points of view. As these examples make clear, genuine mathematical problems can
arise from classroom social interactions as well as from attempts to complete the
instructional activities. (A more detailed discussion of problematic situations can be
found in Cobb, Wood, & Yackel, 1991a.)

Classroom Organization

The instructional activities were of two general types: teacher-directed wholeclass
activities and small-group activities. To the extent that any lesson can be considered
typical (Erickson, 1985), the teacher would first spend at most 5 minutes introducing
the small-group activities to the children to clarify the intent of the activities. She
would, for example, ask the children what they thought a particular symbol meant
or ask them how they interpreted the first activity. In doing so, she did not attempt to
steer the children towards an official solution method, but instead tried to ensure that
the children’s understanding of what they were to do was compatible with the intent
of the activity as she understood it. Any suggested interpretation or solution, how-
ever immature, was acceptable provided it indicated the child had made appropriate
suppositions.

Next, a child gave an activity sheet to each group of two or, occasionally, three
children. As the children worked in groups for perhaps 25 minutes, the teacher
moved from one group to the next, observing and frequently intervening in their
problem-solving efforts. Children moved around the classroom on their own ini-
tiative. Some went to a table to get one of the available manipulatives that they had
decided was needed. Others got additional activity sheets or perhaps a piece of scrap
paper. Some groups completed four or five activity sheets while others completed
only one, with the teacher’s assistance. Finally, the teacher told the children when
there was only 1 minute of work time remaining. Most of the children began to put
away the manipulatives and prepared for the discussion of their solutions.

The teacher started the discussion by asking the children to explain how they
solved the first activity. Sometimes she asked follow-up questions to clarify the
explanation or to help the child reconstruct and verbalize his or her solution.
Occasionally, a child would become aware of a problem with his or her solution
while explaining it to the class. Because of the accepting classroom atmosphere,
the child did not become embarrassed or defensive but might simply say “I dis-
agree with my answer” and sit down. It was immediately apparent that the teacher
accepted all answers and solutions in a completely nonevaluative way. If, as fre-
quently happened, children proposed two or more conflicting answers, she would
frame this as a problem for the children and ask them how they thought the conflict
could be resolved. Children volunteered to justify particular answers and, typically,
the class arrived at a consensus. On the rare occasions when they failed to do so,
the teacher wrote the activity statement on a chalk board so that the children could
think about it during the following few days. Although the discussion might have
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continued for 15 or 20 minutes, the time was sufficient to consider only a small pro-
portion of the activities completed by some groups (the children have much to say
about their mathematics). Eventually, the teacher terminated the discussion owing
to time constraints. She collected the children’s activity sheets and glanced through
them before distributing them to parents; however, she did not grade their work or
in any way indicate whether or not their answers were correct.

In the remaining 10 minutes of the 1-hour lesson, the teacher introduced a whole-
class activity and posed one or more questions to the children. She was again
nonevaluative when the children offered their solutions and, as before, attempted
to orchestrate a discussion among the children.

Classroom Social Interactions

The teacher’s overall intention as she led the class in discussions was to encourage
the children to verbalize their solution attempts. Such dialogues give rise to learn-
ing opportunities for children as they attempt to reconstruct their solutions (Levina,
1981), distance themselves from their own activity in an attempt to understand
alternative points of view (Sigel, 1981), and resolve conflicts between incompati-
ble solution methods (Perret-Clermont, 1980). However, the teacher’s expectation
that the children should verbalize how they actually interpreted and attempted to
solve the instructional activities ran counter to their prior experiences of class dis-
cussions in school (Wood, Cobb, & Yackel, 1988). The teacher, therefore, had to
exert her authority in order to help the children reconceptualize their beliefs about
both their own roles as students and her role as the teacher during mathematics
instruction. She and the children initially negotiated obligations and expectations at
the beginning of the school year, which made possible the subsequent smooth func-
tioning of the classroom. Once established, this mutually constructed network of
obligations and expectations constrained classroom social interactions in the course
of which the children constructed mathematical meanings (Blumer, 1969). The pat-
terns of discourse served not to transmit knowledge (Mehan, 1979; Voigt, 1985)
but to provide opportunities for children to articulate and reflect on their own and
others’ mathematical activities.

The teacher’s and students’ mutual construction of social as well as mathematical
realities was reflected in the dual structure of classroom dialogues. At one level,
they talked about mathematics; at another level, they talked about talking about
mathematics. As in a traditional classroom, the teacher was very much an authority
figure who attempted to realize an agenda. The difference resided in the way she
expressed her authority in action (Bishop, 1985). When she and the children talked
about talking mathematics, the teacher typically initiated and attempted to control
the conversation. When they talked about mathematics, however, she limited her
role to that of orchestrating the children’s contributions. These two conversations
were conducted at distinct logical levels (Bateson, 1973), one in effect serving as a
framework for the other; therefore, it makes sense to say that the teacher exerted her
authority to enable the children to say what they really thought.
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The following dialogue, which is taken from an episode that occurred at the
beginning of the school year, illustrates the development of the basic pattern of
interaction during whole-class discussions. The dialogue centers on word problems
that were shown on an overhead projector.

Teacher: There are 6 more tulips behind the rock [4 are in front of the rock].
How many in all? What do we have to do to figure it out? Kara.

Kara: 10.
Teacher: How did you figure this out? . . . Kara, how did you get your answer?
Kara: I got 6 and then added 4 more.
Teacher: She got 6 and added 4 more. Did anybody else get that answer or

maybe did it a different way? Yes, Andrew.
Andrew: 11.
Teacher: You had 11. How did you get 11?

Because the teacher wanted to make the children aware that she respected their
solutions to the problems and, at least implicitly, help them come to believe that
mathematical solutions should be justifiable, her response at this point deviated
distinctly from typical patterns of classroom interaction (Mehan, 1979). Instead of
evaluating Andrew’s response, she asked him for an explanation.

Andrew: Well. Um. Wait a minute. There would be 10 flowers.
Teacher: How did you discover that?
Andrew: If it was 4 flowers, 6 flowers in front and 6 flowers in back. That would

equal up to 12. If you took 2 away to make 4 in front and 6 in back it
would make 10.

Teacher: Did anybody else do it a different way? Lisa.
Lisa: 5, 6, 7, 8, 9, 10 (counting on her fingers).

The teacher’s nonauthoritarian, nonevaluative role as she orchestrated the children’s
contributions to discussions about mathematics was in contrast to her directive inter-
ventions when she initiated and guided conversations in which she and the children
talked about talking about mathematics. The following incident occurred later in the
same episode.

Teacher: Take a look at this problem. “The clown is first in line. Which animal
is fourth?” Peter.

Peter: The tiger.
Teacher: How did you decide the tiger? . . . Would you show us how you got

the fourth?
Peter: (Goes to the screen at the front of the room.) I saw the clown and then

. . . (He counts the animals.) Oh, the dog [is fourth]. (He hesitates.)
Well, I couldn’t see from my seat. (He looks down at the floor.)

Teacher: Okay. What did you come up with?
Peter: I didn’t see it. (He goes back to his seat quickly.)

The teacher realized that in making Peter obliged to explain his solution, she had put
him in the position of having to admit that his answer was wrong in front of the entire
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class. Peter construed this as a situation that warranted embarrassment. Crucially,
the teacher was immediately directive in her comments as she talked about talking
about mathematics.

Teacher: That’s okay, Peter. It’s all right. Boys and girls, even if your answer
is not correct, I am most interested in having you think. That’s the
important part. We are not always going to get answers right, but we
want to try.

She expressed her expectations for the children by telling them how she as an
authority interpreted the situation. She emphasized that Peter’s attempts to solve
the problem were appropriate in every way, and simultaneously expressed to the
other children her belief that it was more important in this class to think about
mathematics than to get right answers.

As the preceding example illustrates, it was the teacher who typically initiated
the mutual construction of obligations and expectations in the classroom. In doing
so, she simultaneously had to accept certain obligations for her own actions. If she
expected the children to honestly express their current understandings of mathemat-
ics, then she was obliged to accept their explanations rather than to evaluate them
with respect to an officially sanctioned method of solution; thus, the teacher had
obligations to the children, just as they did to her. The interlocking obligations and
expectations established by the teacher and her class constituted a trusting relation-
ship. The teacher trusted the children to resolve their mathematical problems, and
they trusted her to respect their efforts.

These obligations and expectations influenced the children’s activity as they
worked in small groups, because the children anticipated that they would have to
explain and, if necessary, justify their solutions. In addition, the teacher attempted
to place the children under the obligation of solving problems in a cooperative man-
ner and of respecting each others’ efforts when they worked in groups. As with the
whole-class setting, the teacher was explicit about what she expected of the chil-
dren as they worked together in small groups (Wood & Yackel, 1988). The children
were obligated to explain their solution methods to each other and, at a minimum,
to agree on a common answer. When possible, the teacher also encouraged them to
agree on a solution method.

Our discussion of obligations and expectations directly addresses the children’s
evolving beliefs about their own and the teacher’s role. In addition, we have implic-
itly dealt with certain aspects of the children’s beliefs about the activity of doing
mathematics, another crucial aspect of the standard of normative expectancies. For
example, the whole-class obligations nurtured the belief that mathematical activ-
ity should be explainable, justifiable, and rationally grounded. Further, the children
had the opportunity to view mathematics as an activity under their control rather
than as disembodied, objectified, subject matter content. The children also came
to realize that mathematical problems can have multiple solutions. With regard to
small-group work, the children’s acceptance of the obligation to think through their
problems for themselves, as indicated by their persistence, evidenced the belief
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that it sometimes takes hours (literally) rather than minutes to solve mathematical
problems.

Examples from the Classroom

The teacher’s insistence that the children reach a consensus as they worked in groups
meant that the children had two distinct types of problems to solve. The first con-
cerned the mathematical problems that arose as they attempted to complete the
instructional activities; the second involved the negotiation of a viable cooperative
relationship that would make it possible for them to solve their mathematical prob-
lems. Emotional acts occurred as the children attempted to resolve each of these two
types of problems. In this chapter, our primary focus is on the emotional acts related
to doing mathematics rather than those related to the problem of cooperation. With
regard to the pragmatics of the classroom, a basic level of cooperation was necessary
if the children were to construct mutually acceptable solutions to the mathematics
activities (Cobb, Wood, & Yackel, 1991a). Consequently, children were assigned
to different partners if they were unable even with teacher intervention to solve the
problem of cooperation over an extended period of time. This became increasingly
rare as the year progressed.

Construction of Classroom Norms

The emotional acts displayed in a specific situation depend on the interpretation
given to the situation, which in turn depends on the social norms (or at least under-
standing of the norms, as represented by beliefs). The teacher played a crucial role
in initiating the mutual construction of the classroom norms. On numerous occa-
sions, she brought specific situations to the attention of the whole class and asked
the children to elaborate on their feelings in that situation. In effect, the teacher told
the children how they ought to construe the situation. For example, the following
episode occurred at the beginning of a class discussion that followed small-group
work. One pair of children volunteered that they had spent the entire 20 minutes
allocated to group work on a single problem.

Kara and Julie: Because at first we didn’t understand it.
Teacher: How did you feel when you finally got your solution?
Kara and Julie: Good!

Kara and Julie’s excitement at having solved the activity was indicated by the man-
ner in which they stood up and almost jumped up and down on the spot during this
interchange with the teacher. Julie went on to explain that she had wanted to go on
to another activity but that Kara had insisted that they continue working until they
had solved the problem. By calling the attention of the entire class to this incident,
the teacher demonstrated that the two girls had construed the situation appropriately.
In doing so, she implicitly ruled out as inappropriate construals that would lead to
feelings of embarrassment, inadequacy, or stupidity at having completed only one
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activity, even though a number of groups had completed several. At the same time,
she illustrated that the classroom social norms are such that “feeling good”—that
is, a feeling of satisfaction and pride in one’s own accomplishments—is a socially
acceptable emotional response to situations in which the children fulfill their obli-
gation of persisting in problem solving and complete a personally challenging task.
By way of contrast, the teacher never drew attention to a group that had completed
a relatively large number of activities.

The teacher repeatedly emphasized that figuring out problems for yourself ought
to make you “feel good.” The following episode occurred less than a week after the
one just reported. Children had been working in pairs on several problem-solving
tasks and found one activity particularly challenging. The following dialogue is part
of the total-class discussion that followed small-group work.

Teacher: One of the problems you’re having is figuring out what you’re
expected to do. (The teacher then said that they would talk about the
problem to clarify what is expected.)

Andy: Wow! I figured it out.
Teacher: What if someone asks you for the answer?
Andy: I won’t tell them.
Teacher: Good for you. Let them figure it out for themselves and get the enjoy-

ment out of figuring it out for themselves. It makes us feel so good
when we do something.

In both of these episodes, the teacher used the children’s emotional acts to endorse
and to sustain the construals from which the emotional acts were derived. The chil-
dren’s positive emotional acts indicated that their understandings of the classroom
norms were appropriate and, through the teacher’s interventions, served to sustain
and perpetuate the norms.

The teacher also capitalized on situations that arose naturally in the classroom
in an attempt to indicate to the children that some acts were socially undesirable in
this classroom because they might make people feel bad. The following episode is
extracted from a dialogue that occurred at the beginning of a whole-class discussion
about an activity that was designed to encourage the construction of increasingly
sophisticated concepts of 10 and increasingly sophisticated thinking strategies.
The episode began with the teacher talking about incidents that she had observed
and that she considered inappropriate with respect to the social norms of the
classroom.

Teacher: Now another thing I noticed was happening, and it is something I don’t
like and I don’t want to hear because it makes me feel bad, and if it
makes me feel bad it probably makes someone else in here feel bad.
It’s these two words. (She writes “that’s easy” on the chalkboard and
draws a circle around the phrase.) These words are no, no’s starting
today. What are these two words, Mark?

Mark: That’s easy.
Teacher: That’s right. When we are working in math, I’ve had kids come up to

me and say, “Oh, that’s easy!” Well, maybe I look at it and say, “Gee
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whiz, I don’t think that’s very easy.” How do you think that’s going to
make me feel?

Brenda: Bad.

The teacher listened as several other children offered their suggestions and then
explicitly told them her interpretations.

Teacher: . . .It hurts my feelings when someone says, “Oh that’s easy!” (She
points to the words on the board.) When I am struggling and trying so
hard, it makes me feel kind of dumb or stupid. Because I am thinking,
gosh, if it’s so easy why am I having so much trouble with it?

She closed the conversation by explicitly telling the children that saying “that’s
easy” violates a social norm.

Teacher: So that’s going to be something we are not going to say. You can think
it if you like, but I don’t want you to say it out loud because that can
hurt other people’s feelings. And what’s one of our rules in here? It’s
to be considerate of others and their feelings.

Interpreting Situations

Another way in which the teacher initiated the mutual construction of the social
norms that determined the appropriateness of emotional acts was to articulate alter-
native interpretations of situations. In the following example, the children were
working on an activity about time in which they were to answer questions indi-
vidually about their daily schedules. Andy had completed his own answers and
began to tell John what to write for his answers, but John refused to accept Andy’s
suggestions. At this point, the teacher arrived to observe the pair’s activity.

Teacher: How are you gentlemen doing here? Okay, whose side is whose here?
. . . Okay, it says, “What time do you each go to bed?” You [John] go
to bed at 8 o’clock. You [Andy] go to bed at 8:30. And what time do
you get up? You both get up at 7. How many hours do each of you
sleep?

John: I’m still figuring that out.
Andy: I sleep 11 hours.
Teacher: (To Andy.) Will his [John’s] time be the same time as your time?
Andrew: Un-uh. I told him 111/2 hours for him. But he doesn’t believe me.
John: I don’t know.
Teacher: (To John.) You just don’t know. (To Andy.) It’s not that he doesn’t

believe you. Maybe he’s just not really sure.
John: I’m not really sure. (The teacher leaves and John writes in his answer.)

Andy tried to meet his obligation of helping his partner work out the solution to
the problem. In Andy’s view, John rejected his attempt to be helpful, and Andy
showed severe irritation. But the teacher suggested an alternative explanation. In
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this classroom, children were also obligated to think things through for themselves
and try to make sense of them. John was still trying to figure out how to solve
the problem and did not want to simply accept Andy’s answer. By proposing this
alternative explanation, the teacher encouraged Andy to construe the situation in
a different way. In effect, she told Andy that John’s rejection of his answer did
not warrant irritation and that he ought to consider the possible reasons for John’s
rejection.

The teacher also attempted to defuse confrontations that arose in the total-class
setting by suggesting interpretations that would make a child’s emotional acts
unwarranted. The following brief episode is taken from a whole-class discussion
in which one child complained angrily that another had provided the answer to a
problem.

Teacher: Well, I think what was happening—I think he [Ronnie] was proud he
had the answer because we had worked that out.

In this situation the “offending” child, Ronnie, was the weakest student in the class.
The teacher’s comment reflects an interpretation that he may have been so proud
that his group had solved the problem that he wanted to share the accomplishment
with others. Interpreted in this way, Ronnie’s intent was not to violate the classroom
norms that obliged children to figure out problems for themselves; consequently, a
negative sanction, such as expression of anger, against Ronnie was unwarranted.

Thus far, we have focused on reinterpretations initiated by the teacher. The chil-
dren also responded to the emotional acts of their partners by suggesting alternative
construals and, in doing so, sustained the classroom social norms. The following
episode is taken from a class period in which the children solved story problems
in small groups. After 20 minutes of intense effort, Andy and Rodney were still
working on their first problem.

Rodney: I’ve been sitting here all day not figuring out this problem. Look at
John and them. They’re on their third problem.

Andy: They didn’t get this one.

Andy’s remark expressed the belief that persistence and figuring out personally
challenging problems were expected in this class, and that fulfilling this obligation
was more important than completing as many problems as possible. His state-
ment implicitly indicated to Rodney that he should not interpret the situation as
warranting negative emotions such as frustration or anxiety.

Another example from small group work early in the year shows how a task-
motivated child, Kara, responded to an ego-motivated child, Lois, by suggesting
an alternative interpretation of a situation. Kara and Lois had just completed the
following problem.
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The problem is to determine the number indicated by the arrow and to indicate at
the right a relationship between successive numbers (e.g., plus 2, add 2, or skip 1
number). The children’s paper looked like this:

Lois: Erase those [numbers above the intermediate dots] because then they
can’t tell that you did that.

Kara: We should leave them in because they help you.

Lois’ comment indicates the public self-awareness that is typical of ego-
involvement (Nicholls, 1983) because she would be embarrassed if others (“they”)
saw that she and Kara had used what she considered to be a relatively immature
method. Such embarrassment would be appropriate in a situation in which children
are publicly compared with others on the basis of their solution methods. Kara’s
comment implies that these concerns were misplaced in this classroom and that
whatever method they used to solve a problem was acceptable. With regard to Kara’s
interpretation, embarrassment was not warranted in the event that others saw their
paper.

Beliefs About the Teacher’s Role

Unlike traditional mathematics classes in which children typically experience frus-
tration when they encounter situations in which they do not know what to do
(McLebd, this volume, Chapter 2), children in the project classroom quickly learned
that not knowing what to do was routine. Also, the process of genuine prob-
lem solving became an overriding feature of mathematical activity. The children’s
understanding of the teacher’s role as one of framing problematic situations and
facilitating solution processes developed simultaneously with their beliefs about the
nature of mathematical activity. The teacher frequently responded to students’ ques-
tions about what they were “supposed to do” with “I don’t know” or “You are going
to have to figure that out for yourself.” Students accepted the teacher’s response
from the outset but interpreted it differently as the year progressed. To illustrate the
students’ evolving beliefs about the teacher’s role, we first consider an episode that
occurred early in the year. One pair of children was working on an arithmetical task
in which they had to decide what number to put in an empty box to equilibrate a pan
balance.

Ann: I’m going to ask Mrs. M if we’re supposed to add or subtract. (Ann
goes off to talk to the teacher. She returns and reports to her partner.)

Ann: She doesn’t know either.

Later in the year, Ann came to understand that the teacher’s failure to tell her what
to do was not an indication of ignorance, but instead implied that she expected the
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children to figure things out for themselves. This was indicated by Ann’s recom-
mendation to another child; “Don’t ask her [Mrs. M.]. She won’t tell you.” Once
the children had reconceptualized their understanding of the teacher’s role, they had
no reason to become angry or frustrated because she would not tell them what they
were to do. At the same time, the children realized that they were not expected to
use any particular method that the teacher had in mind.

Beliefs About Doing Mathematics

At the beginning of the school year, the teacher guided the mutual construction of
social norms that made it possible for the children to freely express their mathemat-
ical ideas for the remainder of the year. The following episode occurred during the
third day of the school year. The discussion centered on the word problem “How
many runners altogether? There are six runners on each team. There are two teams
in the race.”

Teacher: Jack. What answer-solution did you come up with?
Jack: 14
Teacher: 14. How did you get that answer?
Jack: Because 6 plus 6 is 12. 2 runners on 2 teams . . . (Jack stops talking,

puts his hands to the side of his face and looks down at the floor.
Then he looks at the teacher and then at his partner, Ann. He turns and
faces the front of the room with his back to the teacher, and mumbles
incoherently.)

Teacher: Would you say that again. I didn’t quite get the whole thing. You had
. . . Say it again, please.

Jack: (Softly, still facing the front of the room.) It’s 6 runners on each team.
Teacher: Right.
Jack: (Turns to look at the teacher.) I made a mistake. It’s wrong. It should

be 12. (He turns around and faces the front of the room.)

The teacher realized that Jack had interpreted the situation as warranting acute
embarrassment. His concern with social comparison confounded the teacher’s desire
that the children should feel free to publicly express their thinking. For her pur-
poses, it was vital that children feel no shame or embarrassment when they present
solutions in front of others. Consequently, she immediately responded:

Teacher: (Softly.) Oh, okay. Is it okay to make a mistake?
Andrew: Yes.
Teacher: Is it okay to make a mistake, Jack?
Jack: (Still facing the front of the class.) Yes.
Teacher: You bet it is. As long as you’re in my class it is okay to make a mistake.

Because I make them all the time, and we learn from our mistakes, a
lot. Jack already figured out, “Oops. I didn’t have the right answer the
first time” (Jack turns and looks at the teacher and smiles), but he kept
working at it and he got it.
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Later in the year, as the following episode illustrates, admissions of mistakes were
no longer construed as warranting embarrassment or shame but were instead viewed
simply as events that occur in the normal course of classroom life.

Charles: 67.
Teacher: 67. (She starts to write the answer.)
Joel: Disagree.
Teacher: All right, Joel. What do you think?
Joel: 72.
Teacher: You think it’s 72 (several students disagree).
Joel: Well . . . (he stands up and walks to the front of the class).
Teacher: Let’s listen to Joel’s explanation.
Joel: (Stands looking at the board.) I used 25 and 10 makes 35. And another

10 makes 45 and another 10 makes 55. (He stops and looks at his
paper in his hand.) Another makes 65 (pause) [and 2 more make] 67.
(He turns and looks at the teacher.) I disagree with my answer. (He
smiles.)

Teacher: (Laughing) I like that. I disagree with my answer. That’s great. Raise
your hand if you ever disagree with your own answer. It happens to all
of us.

Because children came to believe that doing mathematics is essentially a problem-
solving activity, typical negative emotions such as anxiety, embarrassment, and
shame, which accompany the obligation of producing publicly evaluated solutions
to a large number of tasks in a quick, error-free manner by using prescribed meth-
ods, did not occur in this classroom. As in any classroom, however, occasions when
a child transgressed the social norms were construed by others as situations war-
ranting negative emotional acts. For example, because the children felt obliged to
figure things out and to be able to justify their answers, they did exhibit frustration,
disappointment, and sometimes anger with their peers when they were denied the
opportunity to do just that. In these cases, the negative emotional acts were directed
at other children and not at mathematics or the teacher. The following episode illus-
trates this point. Connie and Rodney worked on the problem of determining which
number goes in place of the arrow in the following number-dot sequence:

Rodney had figured out that 18 should go above the first dot after 13, but Connie did
not understand how he arrived at this result. Ann, a member of a neighboring pair,
leaned over to tell them the answer that she and her partner had came up with.

Ann: The answer is 21.
Connie: (To Rodney) The answer is 21.
Rodney: (Angrily) No it isn’t. This is—look! I’m going to figure it my own way.
Connie: I already told you.
Rodney: I don’t want to copy.
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(At this point, the teacher comes by to observe the group working.)
Rodney: (To the teacher) I don’t want them to tell me the answer!
Teacher: They want to—I know you’re trying to work—
Rodney: (Interrupting her) I want to try to work it out myself, but they’re over

here telling me the answer and everything. I think it should be 18
because . . . (Rodney explains his thinking to the teacher.)

The anger Rodney displayed in this episode was appropriate according to the
norms established in this classroom. Children were expected to construct justifi-
able solutions and not simply fill in answers. Rodney’s display of anger sustained
those norms and served to remind both Ann and Connie that their actions had
deprived him of the opportunity to fulfill his obligations. The teacher’s affirma-
tion of the rationale for his anger gave his interpretation of the situation further
credence.

Later in the year, the following incident occurred during a whole-class discus-
sion. The episode began as the teacher called on Dan and his partner Brenda for a
solution.

Teacher: Dan.
Dan: They [another pair] were bothering us.
Brenda: They were telling us the answers.
Teacher: Oh. . . . You know when people give you the answers, boys and girls,

does that really help you understand what you’re doing? You don’t
know how you got it, you might as well just not waste your pencil.

The teacher recognized the appropriateness of Dan and Brenda’s complaint and
immediately initiated a conversation in which she reminded the children that
understanding what they were doing mathematically was paramount.

Teacher: If you don’t know what you are doing, it isn’t going to help you get
the answer. It’s like saying, “Yup the answer is 7. Yes, I got it right.
How did I get 7? I don’t know.” That doesn’t help you one single bit.
I know you are all friends. I know you want to help each other, but
you help each other more by helping each other figure out an answer,
rather than saying “7. Just write down 7. That’s the answer. Trust me.”
You have to try and understand it.

By explicitly telling the children that it was wrong to give others the answer,
the teacher used the incident to indicate to the rest of the class that Dan’s and
Brenda’s indignation was warranted. She further sustained the social norm by posing
a problematic situation for Dan and Brenda to solve.

Teacher: How did you handle the situation?
Brenda: We just said we didn’t want the answer. . . . We were on the same ques-

tion, and they were telling us the answer. We didn’t pay any attention,
because we wanted to figure it out for ourselves.

Teacher: Good! Good for you. I’m proud of you. It’s easy to take someone else’s
answer, isn’t it, than to think about it yourself?
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Students: Yeah.
Teacher: Sure it is. I could just fill these all in (points to the problems) and say,

“These are the answers, kids.” But would you learn anything?
Brenda: (Interrupts) We have to think for ourselves. We can’t have other people

think for us. . . .They might be wrong.
Teacher: That’s right.

Positive Emotional Acts

The project classroom was characterized by both a general absence of negative
emotional acts and the frequent occurrence of positive emotional acts when solv-
ing mathematical (as opposed to social) problems. Visitors to the project classroom
invariably remarked about the excitement for mathematics displayed by the children
as they solved the activities. Children frequently jumped up and down, hugged each
other, and rushed off to tell the teacher when they solved a particularly challeng-
ing problem. Significantly, the positive emotional acts occurred when the children
completed personally challenging tasks or constructed mathematical relationships.
Because doing mathematics is thought by many, including many mathematics edu-
cators, to be associated with negative emotion (McLeod, 1985), it is especially
important to clarify that, in the project classroom, positive emotional acts were not
reactions to extraneous factors, such as receiving extrinsic rewards or ego satisfac-
tion, but stemmed directly from mathematical activity. In this sense, the emotional
acts of the children parallel those of the mathematician when solving a prob-
lem or developing an elegant proof (Silver & Metzger, this volume, Chapter 5).
To illustrate, we present examples from both whole-class discussions and small-
group work.

The whole-class episode began with a problem from an activity called
number-line.

The children were to figure out what number goes above the dot indicated by the
arrow and to construct a relationship between successive numbers.

Teacher: We have a 3, 8, 13, and then nothing. Ann, how did you and Alex do
this?

Ann: We got 25.
Teacher: Okay. This is 25. (On an overhead transparency, she writes 25 over the

dot where the arrow is pointing.)
Alex: The pattern was add 5.
Teacher: Plus 5. Good. I’m going to keep going very quickly. lf you disagree,

shoot up your hand and say, “I disagree.” (Several students raise their
hands and say disagree.) Oh, my gosh! Good thing I stopped when I
did. Okay, Jeff what did you want to say?
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Jeff: It should be 22.
Teacher: 22. (She writes 22 under the 25. Dan, Brenda, Lisa, and Johanna wave

their hands frantically in the air saying “No, Uh! Uh!” John turns and
looks at Jeff and shakes his head no.)

Teacher: Gee. Here we go (laughs). Dan, What do you say?
Dan: 18.
Teacher: You say 18. Okay. (She writes 18 under 22 and pauses. Hands wave in

the air.) Kirsten.
John: (Speaks out.) He wants to change his answer.
Peter: (Shouts out.) I disagree.
Teacher: I know you do. I hear you loud and clear.
Lisa: (Standing up waving her hand frantically.) It’s 23! It’s 23!

The children continued giving their answers. Finally, the teacher asked:

Teacher: How are we going to figure this out very quickly? Lisa?
Lisa: Count on our hands, 13, 14, . . . 23.
Teacher: What’s another way of checking your work?
Andrew: Well, the pattern is plus 5. (He stands up and rushes excitedly to the

front of the class and gestures at the screen.) This dot is 13. (He counts
the next two dots.) 5 plus 5 is 10. Just add 10 to 13.

Teacher: 13 plus 10 is . . .
Students: (In unison) 23.
Teacher: 23. You bet.

As the relative merits of solutions were never discussed in the whole-class setting, it
is unlikely that Andrew was excited because his solution was the most sophisticated.
Rather, he had reconceptualized his understanding of the task and construed his
insight as warranting excitement. Furthermore, with respect to the classroom social
norms, he gave his explanation to share this insight, not to show how clever he was.
The other children seemed genuinely pleased by his breakthrough.

The following dialogue once again illustrates the excitement that the children
typically experienced when they constructed mathematical relationships. The dia-
logue is between two children as they solved a sequence of multiplication tasks
corresponding to the sentences 10 × 4 = __, 9 × 4 = __, 8 × 4 = __, and 8 ×
5 = __. (The children’s use of the term sets in talking about multiplication derives
from the teacher’s use of the term when she first introduced “×” as the mathemati-
cal symbol for multiplication.) They are working on 10 x 4 = __ after having found
5 × 4 = 20.

John: It’s five more sets [of 4]. Look. Five more sets than 20.
Andy: Oh! 20 plus 20 is 40. So its gotta be 40. No.
John: Yeah!
Andy: No. 4, 8, 12, 16, 20, 24, 28, . . . (keeping track on his fingers).
John: 40.
Andy: 40.
John: Yeah, I know . . . ’cause ten 4 s make 40.
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Andy: Like five 4s make 20.
John: Four sets of 10 makes 40. Just turn it around.
Andy: Five sets of 4s make 20 and so five more than that.
John: Yeah, just turn it around. Just turn it around.
Andy: 5 times 4 is 20, so 20 more than that makes 40.
John: Just switch them around.

John’s visible excitement did not stem from the fact that he had solved the prob-
lem because he had previously arrived at 40 as an answer by relating 10 × 4 = __
to 5 × 4 = 20. Instead, it derived from his construction of the principle of commu-
tativity of multiplication, which allowed him to develop a second, more satisfying
solution to the problem. John’s reaction was analogous to that of the mathematician
who succeeds in proving a theorem by a particularly elegant method. At this point
in the episode, Andy did not display any emotion. John’s repeated comment, “Just
turn it around,” is an indication that he is trying to convey both his excitement and
his insight to Andy, but Andy is oblivious to John’s intent. As the episode contin-
ued, John again exhibited excitement when he constructed a relationship between
successive tasks.

9 × 4 =__
John: Just take away 4 from that [10 × 40].
Andy: 36.
John: (pause) Yeah!
8 × 4 =__
John: Look! Look! Just take away 4 from that [9 × 4] to get that [8 × 4]. See!

Just take away 4 from there [9 × 4]. (The dialogue continues as Andy
solves the problem using a different method.)

8 x 5 =__
Andy: Five more than that [8 × 4] is 37.
John: Eight sets of 4. Eight sets of 5.
Andy: No. 9, 39, I think.

(Both children pause to reflect for a few moments.)
John: (Very excitedly) It’s 40.
Andy: It is?
John: Yeah, it’s 40! Yeah, look!

The episode concluded as John demonstrated his method and Andy verified it.
Throughout, John repeatedly displayed excitement at having constructed mathe-
matical relationships. It was his construction of mathematical knowledge, in and
of itself, that gave rise to this excitement.

Reflections

In presenting the sample episodes from the classroom we have attempted to illus-
trate that children’s beliefs, their emotional acts, and the network of obligations and
expectations that constitute the social context within which they do mathematics are
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all intimately related. Consider, for example, beliefs and emotional acts. The pro-
cess of attributing a particular emotional quality to someone’s actions necessarily
involves inferences about his or her construal of the situation. This construal in turn
reflects underlying beliefs. Consequently, emotional acts can be viewed as expres-
sions of beliefs and, from the observer’s perspective, are valuable sources of insight
into the possible nature of those beliefs (Cobb, 1986c). In other words, if someone
acts in an emotional way, we know that they really mean it, and a “willingness to
act and . . . the assumption of some risk and responsibility for action in relation to a
belief represent essential indices of actual believing” (Smith, 1978, p. 24). In short,
emotional acts depend on beliefs.

The converse, that beliefs depend on emotional acts, is at least partially true.
We have seen how the teacher frequently capitalized on the children’s emotional
acts to renegotiate the classroom social norms. In doing so, she explicitly discussed
obligations that she expected the children to fulfill. To the extent that the children
accepted these obligations—and there is every indication that they did, for the most
part—they reorganized their beliefs about their own role, the teacher’s role, and
the activity of doing mathematics. Thus, the teacher intuitively agreed with Smith’s
dictum and spontaneously focused on the children’s emotional acts as prime indi-
cators of their beliefs. Within the unfolding stream of classroom life, the teacher
acted on the basis of her interpretations of the children’s emotional acts and gave
the children opportunities to reorganize their beliefs. We use the phrase “gave them
opportunities” for the simple reason that beliefs can no more be transmitted from
one person to another than can conceptual knowledge of mathematics. The teacher
helped the children construct their own beliefs by, in effect, setting puzzles for them
to solve. For example, she told the children in no uncertain terms that the phrase
“that’s easy” was inappropriate. In the last analysis, however, the children had to
figure out for themselves why it was inappropriate. They had to understand that
this could make other people feel bad, and that making people feel bad is morally
wrong. Their ability to reorganize their beliefs in a way that was compatible with
the teacher’s expectations depended on their current conceptions of morality—that
is, on how they interpreted the teacher’s statements. We note in passing that the
puzzles set by the teacher also gave opportunities for moral growth and, thus, the
development of moral autonomy. This was one of the initial noncognitive goals of
the project.

It has been argued that beliefs span the cognitive and affective domains
(Schoenfeld, 1985). Our analysis expresses the alternative view that beliefs are basi-
cally cognitive but that they function in the construals that generate emotional acts.
We suggest that beliefs span the individual and social domains. We argued previ-
ously, for example, that one has to consider unfolding classroom social life in order
to appreciate the partial dependence of beliefs on emotional acts. A child’s beliefs
about his or her own role and the teacher’s role are, in fact, the child’s understand-
ing of the classroom social norms. It should be clear that here we include both the
implicitly and the explicitly held beliefs that give rise to obligations and expecta-
tions in the course of social interactions in the classroom. In fact, to infer that a child
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holds particular beliefs is a way of summarizing the child’s inferred obligations and
expectations in a variety of concrete situations.

The claim that beliefs span the individual and the social domain is an instance of
the more general contention that neither the individual nor the social domain is pri-
mary (Bauersfeld, 1988; Cobb, 1986c; Cobb, Wood, & Yackel, 1991a; Voigt, 1985).
One cannot adequately analyze one without considering the other, because the activ-
ities of individuals (including their emotional acts) serve to construct the social
norms that constrain those very same activities. Conversely, the norms constrain the
activities that construct the norms. Thus, to acknowledge that social context is an
integral part of an individual’s cognition and affect does not imply that social norms
are taken as solid, independently existing bedrock upon which to anchor analyses of
learning and teaching.

In the first section of this chapter, we proposed that children’s beliefs about their
own role, the teacher’s role, and the nature of mathematical activity comprise a vital
core of children’s standards of normative expectancies. Emotional acts occur when
experience is incompatible with these expectancies. At several points in the analysis
of sample episodes, we hinted that the three types of beliefs develop together. In
fact, it was for this reason that we avoided language that might suggest that they
are three independent components. Instead, we view them as mutually dependent
aspects of a self-organizing system. It is readily apparent that a child’s beliefs about
his or her own role and the teacher’s role are intimately connected. In our project
classroom, for example, the children’s beliefs about the teacher’s role changed with
the realization that they were obliged to resolve their problems for themselves and
that they were not obliged to use any particular solution method. Their beliefs about
the nature of mathematical activity also changed once they accepted and attempted
to fulfill this obligation. Similarly, the belief that mathematical solutions should be
justifiable evolved together with beliefs about their own role and the teacher’s role
during both small-group work and whole-class discussions. Consideration of these
relationships suggests a way to get at the system in belief systems. As we have seen,
emotional acts played a crucial role in the children’s construction of these systems.

Finally, the reader may recall that nurturing the development of the children’s
intellectual autonomy was a major noncognitive goal of the project. The astute
reader may have noted that many of the sample episodes presented were strong
indicators of intellectual autonomy. In the course of the teaching experiment, we
came to realize that the manner in which the children reorganized their beliefs was
synonymous with the growth of both intellectual and moral autonomy, developments
that involved emotional acts. We now prefer to talk of beliefs rather than autonomy
because the latter is a more global, less easily differentiable construct.

Implications

The sample episodes serve as prototypical cases of the ways in which the teacher
capitalized on the children’s emotional acts to initiate, guide, and sustain the
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mutual construction of what Silver (1985) called a problem-solving atmosphere.
The episodes exemplify our view of what constitutes effective mathematics teach-
ing. More far-reaching implications become apparent when we relate our analysis
of the project classroom to current theories of achievement motivation, particularly
that of Nicholls (1983, 1984, 1987).

Nicholls distinguishes between two conceptions of ability. The more differenti-
ated conception is that embodied in standard ability-testing procedures, in which
ability is defined with reference to the performance of others. When this concep-
tion of ability is operative, effort is considered to improve mathematical learning
and problem solving only up to the limit of one’s present capacity; “that is, abil-
ity is conceived as capacity—an underlying trait that is not observed directly but
is inferred from both effort and performance, in a context of social comparison”
(Nicholls, 1984, p. 41). When two students are equally successful in solving math-
ematical problems, for example, but one had to expend much greater effort than
the other, we would conclude with respect to the differentiated conception that
the more conscientious student was less able. Students who assess their perfor-
mance in terms of this conception and believe that their ability is low come to
believe that they lack capacity. They believe that persisting and doing their best
will frequently not be good enough because of inadequacies that are beyond their
control.

When the undifferentiated conception of ability is operative, “high ability is
implied by learning or by success at tasks they [students] are uncertain of being
able to complete. They do not judge ability with reference to performance norms or
social comparison” (Nicholls, 1984, p. 41). A sense of being able comes from per-
sisting in solving a personally challenging problem. The fact that others might have
solved the problem with less effort is irrelevant. As Nicholls (1984, p. 42) stated:
“Ability does not, in this case, imply an inferred trait . . . When more effort is needed
for success, this implies more learning, which is more ability . . . The subjective
experience of gaining insight or mastery through effort is the experience of com-
petence of ability.” Individuals do not typically assess their performance uniformly
in terms of one or the other conception of ability; for example, a student might
typically employ the differentiated conception during mathematics lessons and the
undifferentiated conception in art lessons. In other words, use of the conceptions is
contextual.

The promotion of task-involvement as a form of motivation (and thus employ-
ment of the less differentiated conception of ability) was the third major noncogni-
tive goal of the project. We have provided initial documentation elsewhere (Cobb,
Wood, & Yackel, 1991b) that the project was extremely successful in this regard.
Furthermore, the emotional acts presented in the sample episodes are consistent with
the inference that the children became increasingly involved in their mathematical
problems; for example, they became excited and reported that they felt good when
they solved personally challenging problems, irrespective of whether other groups
had already completed the same instructional activities. Negative emotional acts
occurred when they were deprived of the opportunity to think things through for
themselves, as when another child told them the answer, but not when they struggled
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to solve a problem. This success is directly attributable to the manner in which the
teacher initiated and guided the mutual construction of the classroom social norms.
Thus, the children’s reorganization of their beliefs occurred concomitantly with the
development of task-involvement as a form of motivation. (See Silver, 1982, and
Cobb, 1985, for more detailed discussions of the relationship between beliefs and
motivations.)

The most general implication of our work is that the teacher should renegotiate
the social context within which children attempt to solve mathematical problems and
thus influence their beliefs about their own and the teacher’s roles and the nature of
mathematical activity. The objective is for both the teacher and the students to create
a social context in which construals that warrant detrimental negative emotions such
as frustration are simply not made while solving mathematical problems. This rec-
ommendation can be contrasted with those that attempt to help students cope with
emotions that are warranted in ego-involving situations.

Consider, for example, recommendations derived from Weiner’s (1979) casual
attribution theory. Weiner conducted an analysis of the possible causes of (what he
takes for granted is) success and failure and classified them according to whether the
causes are internal or external to the individual, stable or unstable, and controllable
or uncontrollable. Within this scheme, ability is considered to be an uncontrollable,
stable, internal cause. This is the differentiated conception of ability—ability as
capacity. With regard to this conception, “if students attribute their failures in prob-
lem solving to their lack of ability, they are likely to be unwilling to persist in
problem-solving tasks very long” (McLeod, 1985, p. 275). As long as the differ-
entiated conception of ability is accepted unquestioningly as the way things are and
must be, interventions are limited to persuading students to make alternative attribu-
tions. We, in contrast, suggest that the problem of deleterious attributions disappears
if social norms are renegotiated to encourage task-involvement and the undifferen-
tiated conception of ability. Students would then “have no reason to consider the
role of factors such as ability, difficulty, or luck because effort can be perceived
directly. . . . Thus, if effort attributions were the prime mediators of achievement
affect, causal attribution theory would be irrelevant to achievement motivation”
(Nicholls, 1984, p. 62).

To clarify this point, consider frustration as an emotional act. Frustration is gen-
erally warranted in situations in which one is unable to achieve one’s purposes.
In terms of Weiner’s scheme, this emotion is appropriate when students attribute
failure to lack of ability, in the differentiated sense, because it is beyond their
control. In line with the claim that the children in the project classroom became
increasingly task-involved during mathematics instruction, we were unable to iden-
tify a single instance during the second semester in which a child became frustrated
and gave up because he or she could not complete an instructional activity. We
observed children who, when compared with their peers, failed repeatedly day
after day, yet these children continued to persist during small-group work, con-
tributed to whole-class discussions, and achieved personal satisfaction by doing so.
In terms of the undifferentiated conception of ability, these children were not fail-
ing. Their purpose was not to demonstrate superior capacity, avoid looking stupid,
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or put one over on the teacher. Engaging in mathematical activity was an end in
itself, and as long as they did their best they considered themselves to be suc-
ceeding. Indeed, they were succeeding in a classroom in which the social norms
obliged them to think their problems through for themselves and take responsibil-
ity for their own learning. With respect to these norms, then, frustration was not
warranted.

In conclusion, we contend that well-meaning attempts to either persuade students
to make alternative attributions of the cause of failure or to teach students about
detrimental affective variables that might influence them miss an essential point.
The students’ undesirable attributions and affects are appropriate only with respect
to the social norms established in settings that are characterized by competition,
social comparison, and public self-awareness and, thus, induce ego-involvement
(Nicholls, 1983). The same can be said of recommendations to develop blockage-
free instruction or to design computer-based learning environments that alleviate
blockages and thus reduce frustration. (We believe that such environments can
have educational value. We are merely questioning one proposed rationale for their
use.) Here again, it is assumed that blockages are inevitably construed as warrant-
ing negative emotions that interfere with learning. If one believes, as we do, that
substantive mathematical learning is a problem-solving process, them attempts to
exorcise or ameliorate blockages or problematic situations reduce students’ oppor-
tunities to learn. Surely, the solution to the problem of students’ negative emotions
during mathematical problem solving is not to quash mathematical problem solving.
We suggest instead that it is more productive to initiate and guide the construc-
tion of alternative social norms with respect to which deleterious emotions and
attributes are not warranted. The sample episodes illustrate how one teacher cap-
italized on children’s emotional acts to do just this and, in the process, achieved
greater psychic rewards (Lortie, 1975) as she observed the children learn in her
classroom.
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Chapter 6
Introduction

Paul Cobb with Koeno Gravemeijer, and Erna Yackel

The emergent perspective described in Chapter 4 serves to orient the analysis of
the teacher’s and students’ actions and interactions in particular mathematics class-
rooms. As noted in Chapter 4, this framework was developed while analyzing
the data generated in the course of two year-long classroom design experiments
(an initial experiment conducted with Erna Yackel and Terry Wood in Graceann
Merkel’s second-grade classroom in a rural suburban school, and a follow-up exper-
iment that Erna Yackel conducted in Willie King’s second-grade classroom in an
urban school). One of the key characteristics of design research is that instructional
design and research are interdependent.1 Current descriptions of the methodology
emphasize that the design of classroom learning environments serves as the con-
text for research and, conversely, ongoing and retrospective analyses are conducted
in order to inform the improvement of the design. It is fair to say that our pri-
mary focus while conducting the design experiment in Merkel’s classroom was
on the research aspect of design research – on attempting to understand what was
going on in the classrooms in which we worked. To be sure, Yackel, Wood, and
I developed a complete set of instructional activities for second-grade mathemat-
ics. However, our motivation for doing so was pragmatic: instructional activities
were a means to the end of supporting the forms of mathematical learning that
we wanted to study given our view about what was worth knowing and doing
mathematically.

It is important to note that broad theoretical perspectives such as radical con-
structivism, social constructivism, and sociocultural theory orient the process of
accounting for students’ mathematical learning. They offer at best relatively global
and ill-focused design heuristics for guiding the development of sequences of
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instructional activities.2 The same can be said of interpretive frameworks that are
narrower in scope such as the emergent perspective on mathematics classrooms. As
a consequence, our efforts to develop instructional tasks in the design experiment
conducted in Merkel’s classroom had the characteristics of a craft activity rather
than of a principled effort to gain insight into the means of supporting students’
learning in particular mathematical domains. We attempted to develop instructional
activities that would give rise to cognitive perturbations for individual students,
thereby providing occasions for significant mathematical learning. In doing so, we
took account of the diversity in the students’ reasoning and tried to ensure that every
child would be able to engage in each task, and that every task had the potential to
advance the sophistication of each child’s mathematical reasoning. In addition, we
focused on social interactions in classroom. However, as described in Chapter 4, we
conjectured that interactions in which conflicts in students’ interpretations became
apparent would give rise to individual cognitive perturbations, and that students
might reorganize their reasoning as they attempted to resolve these perturbations.
In addition, we attended to the types of social norms3 that were established while
the design experiment was in progress with the intent of ensuring that the types of
social interactions that occurred would give rise to learning opportunities.

In retrospect, it is apparent that the sets of instructional activities we developed
in the course of the experiment did not, by any stretch of the imagination, constitute
coherent instructional sequences. It was against this background that I read Adrian
Treffers’s (1987) book, Three dimensions: A model of goal and theory description
in mathematics instruction – The Wiskobas Project. In this book, Treffers discussed
two decades of instructional design work and classroom experimentation that had
been conducted at the Freudenthal Institute in the Netherlands. In doing so, he illus-
trated a number of positive heuristics for instructional design that underpinned the
design theory of Realistic Mathematics Education (RME). It was apparent from
Treffers’s account that RME was a detailed, empirically grounded design theory
that was compatible with our constructivist perspective on mathematical learning.
For example, RME’s basic tenets of mathematics as a human activity and of math-
ematical learning as the progressive reorganization of activity were both consistent
with our general viewpoint. In addition, we valued the manner in which RME
placed students’ mathematical reasoning at the center of the design process while
simultaneously proposing specific means for systematically supporting the develop-
ment of their reasoning. Furthermore, Treffers’s account of RME clarified that the

2As the currently fashionable notion of constructivist teaching indicates, efforts have frequently
been made to derive pedagogical recommendations from broad theoretical perspectives. In our
view, these attempts involve a fundamental category error in which theoretical assumptions are
erroneously translated into pedagogical prescriptions.
3As we indicated in the previous part of this book, social norms emerged as significant while
conducting design experiment in Merkel’s second-grade classroom. Yackel and I developed the
notion of sociomathematical norms while conducting a retrospective analysis of video-recordings
of King’s classroom.



6 Introduction 77

purpose for conducting design experiments was not limited to developing explana-
tory constructs, but could also include developing, testing, and revising sequences
of instructional activities.

These insights led us to realize that we had, to this point, attempted to study stu-
dents’ mathematical learning in situations in which the supports for learning had
been less than optimal. The design decisions that Treffers illustrated involved a rel-
atively fine-grained level of detail that had been absent in our work. The types of
design decisions that we especially noted included both the careful selection of the
problem situations that were used during the first part of an instructional sequence
and the explicit attention given to the design of non-standard notation schemes as
a means of supporting students’ reorganization of their mathematical activity. In
addition to taking account of these and other aspects of RME theory, we also came
to appreciate some of the limitations of the relatively global design heuristics on
which we had relied when compared with the finely honed heuristics that Treffers
described and illustrated.

Our interest in RME design theory led Terry Wood and myself to visit the
Freudenthal Institute in 1989. In the course of this visit, I met Koeno Gravemeijer for
the first time and was impressed by his perspective on issues of instructional design.
I therefore invited him to spend the spring 1991 semester at Purdue University and
to participate in a year-long design experiment that Wood and I were conducting
in a third-grade classroom.4 Gravemeijer had been introduced to us as a researcher
and instructional designer who was still working on his doctorate. It was not until
he had been at Purdue for several months that I learned that he was the Research
Coordinator at the Freudenthal Institute. When I made this discovery, I was espe-
cially relieved that I had been able to bend the rules for appointments at Purdue
University so that he had a visiting faculty position.

Gravemeijer’s stay at Purdue led to a 10-year collaboration that proved to be
productive for all involved, in large measure because the strengths of the Dutch
and US researchers5 were complementary. Gravemeijer wanted to enhance the
research component of the RME work at the Freudenthal Institute, whereas the
US researchers wanted to improve their approach to instructional design. The ini-
tial basis for communication that we developed was grounded in the perceived
fit between RME and constructivism in terms of their perspectives on mathemat-
ical learning, and in a common background of working intensively in classrooms.
The face validity that RME had for the US researchers reflected the fact that it
had emerged from and yet remained grounded in the activities of designing and

4This experiment was a follow up to the experiment that we had conducted in Merkel’s second-
grade classroom and was conducted in collaboration with Kathy Fahlsing, a third-grade teacher in
the same school. Yackel had moved to another Purdue University campus by the time we began
this experiment and was developing relationships with teachers (including Willie King) at a nearby
urban district. She visited one day each week throughout the third-grade experiment.
5The US researchers were initially Yackel, Wood, and myself, and then later Yackel, Kay McClain,
and myself after I moved from Purdue University to Vanderbilt University in 1992.
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experimenting in classrooms.6 There were nonetheless differences in viewpoints
that became an explicit focus of discussion and negotiation over a period of years.7

In the course of our collaboration, we conducted three classroom design experi-
ments that focused on arithmetic and linear measurement in the early elementary
grades, and two experiments that focused on statistical data analysis in the mid-
dle grades. Practically, we developed seven instructional sequences in the course of
these experiments.8 Theoretically, we developed a joint perspective on RME and on
instructional design that is described in the chapter reprinted in this part.

In introducing the paper, it is important to note that the US researchers did not
accept RME instructional design theory readymade and simply attempt to apply it.
Instead, we adapted and elaborated some of the key ideas of RME in the course
of our collaboration. We were aware at the time that in doing so, we were devel-
oping what we came to think of as our version of RME. The chapter reprinted in
this part describes this version of RME and illustrates key constructs by referring
to an instructional sequence that was developed in a first-grade design experiment
that I conducted with Kay McClain and Koeno Gravemeijer after I had moved to
Vanderbilt University. As an orientation to the chapter, it is worth noting two of
the most important adaptations we made to RME theory. The first adaptation con-
cerns the way in which we formulated instructional goals. As we have indicated, the
intent of the illustrative instructional sequence was to support students’ in coming
to reason flexibly with numbers up to 20. Reasoning of this type is indicated obser-
vationally by students’ flexible use of thinking or derived fact strategies to solve a

6The Dutch researchers called their methodological approach “developmental research” to empha-
size that it involved both instructional development and research on mathematical learning
(Freudenthal, 1988; Gravemeijer, 1994b; Streefland, 1991). This methodology anticipated many
of the key tenets of design research.
7McGatha’s (2000) analysis of the year-long process of formulating a hypothetical learning trajec-
tory for a design experiment conducted after we had worked together for several years documents
that differences in viewpoint continued to emerge even at this point in our collaboration. In retro-
spect, our design meetings can be viewed as a trading zone for sharing, appropriating, and adapting
ideas across research traditions (cf. Gorman, 2002).
8These sequences were (1) the Patterns and Partitioning sequence that focused on adding and
subtracting numbers up to 10 (McClain & Cobb, 2001b; Whitenack, 1995) and was informed
by Neuman’s (1987) analysis of young children’s numerical finger patterns, (2) the Structuring
Numbers sequence that focused on adding and subtracting numbers up to 20 (Gravemeijer, Cobb,
Bowers, & Whitenack, 2000) and was based on the Arithmetic Rack developed by Treffers (1990),
(3) the Candy Shop sequence that focused on the addition and subtraction of numbers up to 100
(Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997), (4) the Candy Factory sequence that
focused on the addition and subtraction of numbers up to 1,000 (Bowers, 1996; Bowers, Cobb,
& McClain, 1999), (5) a Measurement sequence that focused on elementary linear measurement
as a precursor to mentally adding and subtracting number up to 100 (Stephan, 1998; Stephan,
Bowers, & Cobb, 2003), (6) a Statistics Sequence that focused on the analysis of univariate data
(Cobb, 1999; McClain & Cobb, 2001a), and (7) a Statistics Sequence that focused on the analysis
of bivariate data (Cobb, McClain, & Gravemeijer, 2003).
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wide range of tasks. For example, students might solve a task interpreted as 14 –
__=6 by reasoning that 14–4=10, and 10–4=6, so the answer is 8 (i.e., a going-
through-ten strategy). Alternatively, they might reason that 7+7=14, so 14–7=7,
and 14–6=8 (i.e., a doubles strategy). However, in formulating the instructional
goals for the instructional sequence, we also went beyond this focus on observable
solution methods by emphasizing that our intent was that students would come to act
in a quantitative environment structured by relationships between numbers up to 20
(cf. Greeno, 1991). In other words, our intent was that the students would come to
act in what Gravemeijer (1999) termed a new mathematical reality in which relation-
ships between numbers are ready-to-hand for them. This framing of instructional
goals in terms of the nature of the students’ (socially situated) mathematical expe-
rience was a significant adaptation of RME because researchers at the Freudenthal
Institute tended to characterize students’ mathematical development in terms of stu-
dents’ development of increasingly sophisticated solution methods (see for instance
Treffers, 1991).9

This adaptation in how we conceptualized instructional goals has implications
for the nature of classroom discourse and thus for students’ learning opportuni-
ties. In the chapter reprinted in the next part of this book, we distinguish between
calculational and conceptual classroom discourse. The contrast between these two
types of discourse concerns the norms or standards for what counts as an acceptable
mathematical argument. It should therefore not be confused with Skemp’s (1976)
well-known distinction between instrumental and relational understandings. In cal-
culational classroom discourse, contributions are acceptable if students describe
how they produced a result and they are not obliged to explain why they used a par-
ticular method. The formulation of instructional goals primarily in terms of students’
development of increasingly sophisticated solution methods orients instructional
designers and teachers to view students’ calculational explanations of their solutions
as acceptable. In contrast to this focus on solution methods, conceptual explana-
tions involve an account of both solution methods and the reasons for using those
methods (cf. Thompson, Philipp, Thompson, & Boyd, 1994). As we clarify in the
next part of this book, the issues that can (and should) become explicit topics of
conversation in conceptual discourse include the task interpretations that underlie
different solution methods and that constitute their rationales. Conceptual explana-
tions therefore provide greater support than calculational explanations for students
as they attempt to understand each others’ (and the teacher’s) mathematical reason-
ing. Furthermore, conceptual explanations facilitate the teachers’ task of ensuring
that central mathematical ideas become an explicit topic of classroom discussions

9Our concern for the mathematical realities in which students were coming to act was influenced
in large measure by Sfard’s (1994) notion of a virtual mathematical reality, and Thompson’s (1993,
1994, 1996) theory of quantitative imagery.
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(e.g., numerical part – whole relations in the case of adding and subtracting numbers
up to 20).

The second adaptation that we made to RME was to reframe the individualistic
notion of a learning trajectory in collectivist terms. In the approach to instructional
design developed at the Freudenthal Institute, the designer first conducts an antic-
ipatory thought experiment in which he or she envisions both a route or trajectory
for students’ mathematical learning,10 and the specific means by which their learn-
ing can be supported. The focus of designers at the Freudenthal Institute when they
described initial design conjectures developed in this way appeared to be on the
mathematical learning of individual students. To be sure, they aimed to develop
tasks that had multiple points of entry and allowed for a range of solution meth-
ods. However, the acknowledged diversity in students’ reasoning tended to fade in
the background when they outlined long-term trajectories that constituted the ratio-
nale for instructional sequences. This way of characterizing trajectories gave the
impression that students would engage in tasks in similar ways and develop the
same insights as they did so. Although the general notion of a learning trajectory
appeared to be valuable, we found the implicit implication that students’ learning
would be relatively uniform to be problematic. As the chapters reprinted in this and
the next parts illustrate, we attempted to resolve this difficulty by conceptualizing a
learning trajectory as a sequence of collective or communal mathematical practices,
each of which emerges as a reorganization of prior practices. The actual learning
trajectory realized in the classroom as the teacher and students enact an instruc-
tional sequence in a classroom can then be analyzed as a sequence of successive
mathematical practices.

The analysis of mathematical learning in collectivist terms represented a major
shift in my position when compared with the radical constructivist position illus-
trated in the first part. The notion of a classroom mathematical practice extended our
effort described in the previous part to break down the distinction between the social
and mathematical aspects of the classroom. As the reprinted chapter makes evident,
we considered it both sensible and useful (for the purposes of instructional design)
to speak of the mathematical learning of the classroom community as well as of indi-
vidual students. In taking this view, we conceptualized the classroom mathematical
practices in which students participated as constituting the immediate social con-
texts of their learning. We realized that this position challenged an assumption that
was widely held in the mathematics education research community: explanations
of mathematical learning are primarily the province of cognitive and developmental
psychology.

In retrospect, it is fair to say that our conceptualization of hypothetical and actual
learning trajectories in terms of evolving mathematical practices has had remark-
ably little impact in mathematics education research. This contrasts with the way in
which the constructs of classroom social norms and sociomathematical norms were

10The term learning trajectory was coined by Simon (1995) and fits well with the approach to
instructional design developed at the Freudenthal Institute.
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taken up and continue to be used relatively widely. Several mathematics educators
have critiqued our conceptualization of learning trajectories for implying that all stu-
dents in a classroom should follow a single learning path. As the section “In Praise
of the Individual” in Chapter 7 indicates, this was an unfortunate interpretation given
that our primary reason for recasting the notion of a learning trajectory in collectivist
terms was to take account of the diversity in students’ mathematical reasoning. In
my view, these critiques (and much of the mathematics education literature on learn-
ing trajectories) reflect a fundamental miscommunication. Although we attempted
to be as explicit as possible in emphasizing that students participate in the practices
established in their classroom in a range of different ways, it seems that many read-
ers of the reprinted paper and other of our papers nonetheless interpreted the notion
of a learning trajectory in precisely the individualistic terms that we sought to chal-
lenge. In other words, our talk of a collective or communal learning trajectory that
constitutes the evolving social setting of the students’ learning appears to have been
interpreted as statements about a single learning trajectory that all students should
follow in lock step.11 The apparent prevalence of this interpretation indicates that
despite the widespread use of sociocultural and situated perspectives in mathemat-
ics education, individualistic perspectives frequently hold sway when the focus is
on issues of mathematical content.

The joint perspective on instructional design presented in the reprinted chap-
ter indicates that the collaboration with Gravemeijer was particularly productive
for the US researchers. The content-specific design heuristics outlined in the
first part of the chapter contrast sharply with the global, content-independent
heuristics that were evident in the second-grade design experiment conducted in
Merkel’s classroom. A doctoral student who made notes of our project meetings
recorded that one thing we did quite explicitly while conducting the experiment
reported in the reprinted chapter was “to select initial situations such that stu-
dents’ interpretation of and activity in them can constitute a basis for subsequent
mathematizing while, at the same time, the situation in imagery can serve as a
paradigm case or prototype for students.” In Ball’s terms, we attempted to “keep
one eye on the mathematical horizon and the other on students’ current under-
standings, concerns, and interests” (1993, p. 377). It is worth noting in passing
that the perspective on modeling described in the chapter was a primary means
of supporting students’ mathematization of their initially informal mathematical
activity (cf. Gravemeijer, 1999). The prominent role of modeling and, more gener-
ally, of tools (including informal and conventional notations) in RME challenged
the US researchers’ initial conception of mathematical reasoning as a process
grounded in sensory-motor activity and bounded by the skin. Our initial construc-
tivist position had conspicuously little to say about the use of tools as an integral

11It is important to distinguish these critiques based on a fundamental miscommunication from an
alternative approach to instructional design that contends that students should each be encouraged
to follow up on their personal findings and interests. The grounding metaphor for approaches of
this latter type is that of a learning landscape rather than a learning trajectory (Bakker, 2004). In
my view, the two approaches reflect a genuine difference in design philosophy.
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part of mathematical activity. As a consequence, I found it essential to develop
a theoretical position on use of tools that was useful for the purposes of instruc-
tional design. The chapter reprinted in this part gives an account of the resulting
position.

As a final observation, it is worth noting that RME is an inter-related set of prac-
tices that has been developed by a community of designers and researchers over
an extended period of time. As the US researchers came to realize, it is one thing
to attempt to understand a sophisticated form of practice such as RME by read-
ing about it and quite another to become competent in developing instructional
designs for supporting students’ mathematical learning. The competence that the
US researchers developed as consequence of reading books by some of the leading
contributors to RME (e.g., Gravemeijer, 1994a; Streefland, 1991; Treffers, 1987)
was that of commentating on the design theory (cf. Fish, 1989). However, we had to
co-participate in the process of formulating, testing, and revising designs before we
could begin to contribute to the development of adequate designs. In this regard, the
collaboration with Gravemeijer was, in many respects, a process of apprenticeship
in the course of which the US researchers were legitimate peripheral participants
in the RME research community (cf. Lave & Wenger, 1991). The following chap-
ter reports the results of this collaboration in the course of which we adapted RME
to fit with our emerging collectivist perspective on mathematical learning. At the
same time, our engagement in the process of developing, testing, and revising
instructional sequences in classrooms spurred the development of this collectivist
perspective.
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Chapter 7
Learning from Distributed
Theories of Intelligence

Paul Cobb

The analysis reported in this article is grounded in the practice of classroom-based
developmental or transformational research and focuses on the distributed views of
intelligence developed by Pea (1993) and by Hutchins (1995). The general areas of
agreement with this theoretical perspective include both the nondualist orientation
and the critical role attributed to tool use. Against this background, I focus on two
aspects of the distributed view that I and my colleagues have found necessary to
modify for our purposes. The first concerns the legitimacy of taking the individual as
the unit of analysis, and here I argue that the distributed view implicitly accepts key
tenets of mainstream American psychology’s characterization of the individual even
as it explicitly rejects it. The second modification concerns distributed intelligence’s
characterization of tool use. Drawing on a distinction made by Dewey, I argue that
it is more useful for the purposes of instructional design to focus on activity that
involves using the tool as an instrument, rather than focusing on the tool itself.

As the title of this article implies, I see much value in recent analyses of activity that
stress the distributed nature of intelligence. My overall purpose is both to clarify the
contributions of these analyses and to discuss the adaptations and modifications that
I and my colleagues have found necessary to make as we have attempted to come to
grips with the basic assumptions of this theoretical orientation. I focus specifically
on accounts of the distributed nature of intelligence developed by Pea (1987, 1992,
1993) and by Hutchins (1995). Further, I approach this theoretical orientation from
the perspective of a mathematics educator who conducts classroom-based develop-
mental or transformational research in collaboration with teachers. I therefore make
no pretense at offering a neutral or distanced appraisal but instead address issues that
appear pertinent from the viewpoint of someone who is interested in instructional
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design and reform at the classroom level. As a consequence, the focus of the article
is not on the theories as things-in-themselves, as constellations of constructs that
have careers of their own in traditional academic discourse. Instead, engagement in
design and reform constitutes the setting within which I discuss distributed accounts
of intelligence.

As background, I should clarify that I originally approached instructional design
from the essentially individualistic perspective of psychological constructivism.
During the past 10 years, I have modified my position considerably as I have strug-
gled to develop ways of making sense of what might be going on in the classrooms in
which I and my colleagues1 have worked. These shifts in basic theoretical commit-
ments have been profoundly influenced by the writings of a number of sociocultural
and sociolinguistic theorists. However, this process has not involved either a whole-
sale conversion or a conscious attempt to apply the central tenets of sociocultural
theory to mathematics education. Instead, it has involved some resistance to what
might be called the official sociocultural narrative, or at least neo-Vygotskian ver-
sions of it. Wertsch’s (1994b) discussion of the narrative construction of identity
strikes a resonant chord as I reflect and attempt to describe this process of change. In
Wertsch’s account, the process of constructing the self is not merely one of appro-
priating the official narratives of the community by figuring out how one fits into
them. It can also involve resistance in which a series of counter-claims are made to
parts of the official story. Wertsch observed that, even in opposition, resistance is
profoundly influenced by the official narrative in that it occurs on what he termed
the semiotic territory of the other. The self constructed in the course of resistance
can therefore be seen to emerge during a dialogical encounter with the official nar-
rative. In the case of me and my colleagues, the issues we have delineated in the
course of our research practice are located, to a considerable extent, on the semiotic
territory of sociocultural theory and include semiotic mediation, communication,
and interaction.

This metaphor of locating oneself within and, at times, resisting an official nar-
rative also helps clarify our attempts to come to terms with distributed accounts
of intelligence. On one hand, the claim that the tools with which students act pro-
foundly influence the mathematical ways of knowing that they develop has come to
orient our approach to instructional design. On the other hand, we have resisted cer-
tain parts of the distributed intelligence narrative as developed by Pea and Hutchins.
These concern the individual as a unit of analysis and the way in which tool use is
characterized. In addressing these issues, we have operated on the semiotic territory
of distributed accounts of intelligence and have learned from these accounts in the
process.

In the following sections of this article, I first ground the discussion by clarifying
why tool use has emerged as the central focus of our classroom-based practice.

1I repeatedly use the first-person plural to acknowledge the collaborative nature of our research.
From 1986 until 1991, these colleagues were Ema Yackel and Terry Wood, and from 1991 until the
present they are Ema Yackel, Koeno Gravemeijer, Janet Bowers, Kay McClain, and Joy Whitenack.
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Against this background, I then briefly outline areas of agreement with what might
be called the official narrative of distributed intelligence. Finally, I describe two
points of resistance and contrast the adaptations we have made with the basic tenets
of the distributed perspective.

Classroom-Based Instructional Design

The methodology we use when collaborating with teachers is that of the classroom
teaching experiment (Cobb, 2000; Confrey & Lachance, 2000; Yackel, 1995). The
duration of these experiments extends from a few months to 1 year, in the course of
which the collaborating teacher is a full member of the research and development
team. As part of the process of preparing for an experiment, we identify possible
global goals for the students’ mathematical development and outline provisional
sequences of instructional activities.2 Gravemeijer (1994) described the initial phase
of this design process in some detail. As he put it, the designer carries out an antici-
patory thought experiment that involves envisioning how the instructional activities
might be realized in interaction in the classroom and how students’ interpretations
and solutions might evolve as the students participate in them. In approaching design
in this manner, the designer formulates conjectures about both the course of the
classroom community’s mathematical development and the means of supporting
and organizing it. The domain-specific instructional theory that we draw on when
conducting these orienting thought experiments is that of Realistic Mathematics
Education (RME; Gravemeijer, 1994; Streefland, 1991; Treffers, 1987). The issue of
tool use comes to the fore when we consider the general heuristics of this approach
to design.

A first heuristic of RME is that the starting points of an instructional sequence
should be experientially real to students. One indication that the initial activities are
appropriate is that only a minimal negotiation of task conventions is required before
students can engage in what might colloquially be called meaningful mathematical
activity. This heuristic is consistent with recommendations derived from investiga-
tions that have compared and contrasted mathematical activity in school with that
in out-of-school settings (e.g., Nunes, Schliemann, & Carraher, 1993; Saxe, 1991).
As a point of clarification, it should be stressed that the term experientially real
means only that the starting points should be experienced as real by students given
their prior participation in both in-school and out-of-school practices, not that they
should necessarily involve so-called real-world situations. Further, we take it as self-
evident that even when everyday scenarios are used, they are necessarily different
from the situations as students might experience them out of school (Lave, 1993;
Walkerdine, 1988).

2These provisional sequences provide an initial orientation for the teaching experiment.
Adaptations and modifications are made on a daily basis throughout the experiment so that the
actual sequences realized in the classroom typically differ significantly from those envisioned at
the outset.
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A second heuristic of RME is that the initial instructional activities should also
be justifiable in terms of the global endpoints of the conjectured learning sequence.
This implies that as students participate in and contribute to the evolving classroom
mathematical practices, their initially informal activity should constitute a basis on
which they can reorganize and construct increasingly sophisticated mathematical
understandings.

The third heuristic of RME focuses on the means of supporting the evolution
of classroom mathematical practices and the constructive activities of students as
they participate in them. This heuristic proposes that instructional sequences should
involve settings in which students are expected to develop and elaborate models of
their informal mathematical activity. This modeling activity might involve acting
with physical devices, or it might involve making drawings, diagrams, or tables, or
developing nonstandard notations and using conventional mathematical notations.
The conjecture underlying this third heuristic is that, with the teacher’s guidance,
students’ models of their informal activity will evolve into models for increas-
ingly sophisticated mathematical reasoning. With regard to communal practices,
this heuristic involves the conjecture that a shift will occur such that means of sym-
bolizing initially developed as protocols of action (Dörfler, 1989) will subsequently
take on a life of their own and become integral to mathematical reasoning in a range
of settings.

This transition from a model of informal mathematical activity to a model
for mathematical reasoning can be illustrated by referring to an instructional
sequence developed during a first-grade teaching experiment we conducted with
6- and 7-year-old students. The intent of the sequence was, in terms of Greeno’s
(1991) environmental metaphor, that the students would come to act in a quanti-
tative environment structured by relations between numbers with sums up to 20.
Observationally, this would be indicated by their flexible use of thinking or derived
fact strategies to solve a wide range of additive tasks. For example, they might solve
a task interpreted as 14 − = 6 by reasoning that 14 − 4 = 10, and 10 − 4 = 6,
so the answer is 8. Alternatively, they might reason that 7 + 7 = 14, so 14 − 7 =
7, and 14 − 8 = 6. Our global goal was that the numerical relations implicit in
these and other observable strategies would be ready-to-hand for the students. In
other words, they would not have to consciously figure out appropriate strategies to
use. Instead, our intent was that the students would come to have the experience of
directly perceiving relations as they interpreted tasks. Needless to say, coming to act
in such an environment is a major intellectual achievement that requires proactive
developmental support.

The sequence of instructional activities developed in the course of the teaching
experiment involved the use of a physical device called the arithmetic rack designed
by Treffers (1990). It consists of two parallel rods on each of which are five red and
five white beads. To use the rack, the students move beads from right to left either
by counting individual beads or by moving several beads at once. For example, a
student might show seven (beads) by simultaneously moving three beads on the
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Fig. 7.1 Two ways of acting with the arithmetic rack to solve 9+7=−: (a) Going through-10 and
(b) doubles

top rod and three on the bottom rod, and then moving an additional bead on the
top rod.3

The rationale for introducing this device can be clarified by considering possible
solutions to a specific task such as one interpreted as 9 + 7 = 16. Suppose that a
student has moved 9 beads on the top rod and intends to add 7 more. To complete
the solution, the student might move 1 bead on the top rod and then 6 on the bottom
rod (see Fig. 7.1a). From the observer’s perspective, a going-through-10 strategy is
implicit in the student’s activity (i.e., 9 + 1 = 10, 10 + 6 = 16).

Alternatively, a student might first show 9 beads on the top rod as before, but
then move 7 beads on the bottom rod and read the resulting configuration as 7 and
7 is 14, and 2 more is 16 (see Fig. 7.1b). In this case, a doubles strategy is implicit
in the student’s activity. The instructional challenge is then to organize and support
the emergence of these aspects of students’ ways of acting with the rack as explicit
topics of conversation in the classroom.

A longitudinal analysis of the teaching experiment completed by Whitenack
(1995) revealed that acting and reasoning with the rack first emerged as a model
of problem-solving activity that centered on a scenario involving a double-decker
bus. In particular, the students moved beads on the top and bottom rods to show the
number of passengers on the top and bottom decks of the bus.

At a later point in the sequence, the teacher used both conventional and non-
standard notations to symbolize the ways in which the first graders reasoned with

3Coming to reason with groups of beads rather than counting beads one by one is itself a
developmental achievement for young children. We supported the development of these ways of
reasoning in the teaching experiment by designing an instructional sequence called Patterning and
Partitioning. This sequence was enacted in the classroom immediately before the arithmetic rack
was introduced.
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Fig. 7.2 Ways of notating
the two alternative solutions
to 9 + 7 = 16

the rack. For example, the two solutions to 9 + 7 described previously might be
symbolized as depicted in Fig. 7.2.

At this juncture, references to the scenario of the double-decker bus had ceased.
At least in the public discourse of the classroom, acting with the rack now served
as a model for reasoning with written notations. As the instructional sequence
progressed, reasoning in this way without either acting with the rack or writing
notations became increasingly routine. In individual interviews conducted after the
instructional sequence was completed, 10 of the 18 students used thinking strategies
that reflected the ways they had acted with the rack to solve all of a wide variety
of number sentences and story problems posed to them. Three more students used
thinking strategies to solve at least half of the tasks presented to them in the inter-
views. Viewed as a group, both the path of these students’ mathematical learning
and the mathematical understandings they developed differ markedly from those
typically reported in the psychological research literature (cf. Fuson, 1992).4

This example of the arithmetic rack and the more general discussion of RME
illustrate that designing tools is central to our attempts to support students’ math-
ematical development. Parallel examples could have been given from any one of
several recent teaching experiments, including those in which we designed com-
puter microworlds as components of coherent instructional sequences (cf. Bowers,
Cobb, & McClain, 1999). As a consequence, Vygotsky’s (1987) claim that the tools
with which people act profoundly influence the understandings they develop is more
than a theoretical conjecture for us. It is a description of the pedagogical reality in
which we act when conducting teaching experiments. As van Oers (1996) put it, the
struggle for mathematical meaning can be seen in large part as a struggle for means
of symbolizing. Given these considerations, it is readily apparent that theories that
emphasize the distributed nature of intelligence are relevant to our work in class-
rooms. I focus on this issue in the remainder of the article by first outlining broad
areas of agreement between our perspective and theories of distributed intelligence,
and then discussing points of resistance.

4Psychological analyses almost universally report a developmental progression of increasingly
sophisticated counting methods (e.g., counting all and counting on) followed by thinking strategies.
The purview of these analyses is, of course, restricted to students who participate in currently
institutionalized classroom practices.
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Distributed Intelligence

It is important to note at the outset that although Pea (1993) and Hutchins (1995)
both drew on sociocultural theory, their distributed accounts of intelligence evolved
from American mainstream psychology. A central assumption of both accounts is
that intelligence is distributed “across minds, persons, and the symbolic and physi-
cal environments, both natural and artificial” (Pea, 1993, p. 47). Hutchins’s (1995)
analysis of a team navigating a warship into a harbor illustrates this general per-
spective. As he observed, when the unit of cognitive analysis is moved out beyond
the skin,

communication among the actors is seen as a process internal to the cognitive system.
Computational media, such as diagrams and charts, are seen as representations internal
to the system, and the computations carried out on them are more processes internal to the
system, (p. 128)

Dörfler (1993) developed the general implications of this theoretical approach
for mathematics education by noting that thinking

is no longer considered to be located exclusively within the human subject. The whole sys-
tem made up of the subject and the available cognitive tools and aids realizes the thinking
process. Mathematical thinking for instance not only uses those cognitive tools as a sep-
arate means but they form a constitutive and systematic part of the thinking process. The
cognitive models and symbol systems, the sign systems, are not merely means for express-
ing a qualitatively distinct and purely mental thinking process. The latter realizes itself and
consists in the usage and development of the various cognitive technologies.

Similarly, Hutchins argued that the relevant cognitive system when a mathemati-
cian went about solving problems

was a person actually doing the manipulation of the symbols with his or her hands and
eyes. The mathematician or logician was visually and manually interacting with the mate-
rial world. A person is interacting with the symbols and that interaction does something
computational, (p. 361)

The discussion of the first-grade teaching experiment exemplifies the contention
that the use of cognitive technologies is central to intellectual development. As Pea
(1993) and Hutchins (1995) both noted, tools are not mere amplifiers of human
capabilities. Instead, their use is integral to the creation and reorganization of those
capabilities. In the case of the teaching experiment, the students came to act in a
quantitative environment of organized number relations as they participated in class-
room mathematical practices that involved reasoning with the arithmetic rack and
with written notations. More generally, this distributed view of intelligence is at least
partly consistent with RME in that the conjectured model-of/model-for transition is
premised on the assumption that modeling and symbolizing are directly implicated
in the reorganization of mathematical activity.

As has been frequently noted, the distributed view of intelligence attempts to
transcend the traditional philosophical dualism between the cognizing individual
and the world about which he or she cognizes. The description given of the first-
grade classroom can also be cast in nondualist terms. In particular, the students can



92 P. Cobb

be seen to have participated in and contributed to the development of classroom
mathematical practices that involved reasoning with tools. By virtue of this partici-
pation, they can also be viewed as acting in a taken-as-shared world of signification
that constituted what Lemke (1997) called the semiotic ecology of the classroom
community. As a consequence, the relation between the students’ activity and the
world in which they acted can be characterized as one of mutual constitution, a posi-
tion consistent with Pea’s and Hutchins’s positions. Hutchins (1995), for example,
made the point directly when he stated that “humans create their cognitive powers by
creating the environments in which they exercise those powers” (p. 169). Similarly,
Pea (1985) argued that “our productive activities change the world, thereby chang-
ing the ways in which the world can change us. By shaping nature and how our
interactions with it are mediated, we change ourselves” (p. 169). As Whitson (1997)
observed, theoretical approaches of this type that begin with activity in a world of
signification simply bypass a number of philosophical issues including the classical
problem of reference.

Points of Resistance

The areas of consensus identified previously serve to situate the contrasts between
Pea’s and Hutchins’s distributed perspectives and the interpretive stance that has
emerged in the course of our classroom-based work. The first of the two points of
resistance that I discuss deals with the individual as a unit of analysis, whereas the
second concerns the way in which tool use is characterized.

In Praise of the Individual

Pea has been outspoken in delegitimizing analyses that take the individual as a unit
of analysis. In his view, the functional system consisting of the individual, tools, and
social contexts is the appropriate unit of analysis. Pea’s admonition contrasts sharply
with the explicit attention that I and my colleagues give to individual students’ inter-
pretations and meanings. Hutchins (1995) was more forgiving and identified a range
of cognitive systems that include (a) the processes internal to a single individual,
(b) an individual in coordination with a set of tools, and (c) a group of individuals
in interaction with one another and with a set of tools (p. 373). In his theoretical
approach, analyses of more encompassing systems composed of individuals manip-
ulating tools serve to specify the cognitive tasks actually facing the individuals.
I suggest here that, despite this difference in their positions. Pea and Hutchins sub-
scribed to similar characterizations of the individual that are at odds with the view
that had emerged in our work. Thus, the issue at hand is not that of siding with either
Pea or Hutchins, but instead it concerns the way in which the individual is treated in
both their accounts. To set the stage, I first illustrate that this is a pragmatic issue for
me and my colleagues by explaining why we find it essential to analyze individual
students’ mathematical interpretations when we experiment in classrooms.
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The lessons conducted in the course of a teaching experiment typically involve
periods in which the students work either in pairs or individually but with the proviso
that they can move around the classroom to discuss their ongoing activity with peers
of their choosing. This small-group or individual work is typically followed by a
teacher-orchestrated whole-class discussion that takes the students’ interpretations
and solutions as its starting point. During the pair and individual work, the teacher
usually circulates around the classroom to gain a sense of the diverse ways in which
the students are attempting to solve the tasks.5 For our part, I and a graduate research
assistant each observe and interact with two students to document the process of
their mathematical development throughout the teaching experiment. In doing so,
we consciously attempt to infer their individual mathematical interpretations on an
ongoing basis.

Towards the end of pair or individual work, the teacher, the graduate assistant,
and I “huddle” in the classroom to discuss our observations and to plan for the
subsequent whole-class discussion. In these conversations, we routinely focus on
individual students’ qualitatively different interpretations and solutions to develop
conjectures about mathematically significant issues that might emerge as topics of
discussion. In this opportunistic approach, our intent is to capitalize on prior indi-
vidual or small-group activity by identifying specific students whose explanations
might give rise to substantive mathematical discussions that will advance our peda-
gogical agenda. At times, the discussions might focus on one student’s mathematical
activity, whereas on other occasions, the discussions might involve a comparison of
two or more solutions. It is important to emphasize that our intent in proactively
organizing discussions in this manner is not to confront solutions so that students
who initially agree with the one classified as less sophisticated in some purely psy-
chological scheme will come to appreciate the superiority of the other solution.
Instead, our primary concern is with the quality of the discussion as a social event in
which the students will participate. It is for this reason that we attempt to anticipate
mathematically significant issues6 that might emerge as topics of conversation with
the teacher’s guidance. In doing so, we conjecture that participating in discussions

5Although atypical in the United States, this approach of monitoring students’ activity to plan for
the subsequent whole-class discussion is routine in Japan (Stigler, Fernandez, & Yoshida, 1996).
6Judgments of mathematical significance are made with respect to current conjectures about the
classroom community’s learning trajectory and the means of supporting it. In other words, although
goals and conjectures continue to evolve throughout the experiment, one has in mind an envisioned
learning trajectory at any particular point in the experiment. The currently anticipated learning tra-
jectory both provides a sense of direction and constitutes the broader setting in which judgments
of mathematical significance are made. In particular, an issue is judged to be mathematically
significant if it contributes to the realization of the currently envisioned learning trajectory. Our
observations of the subsequent whole-class discussion can, however, lead us to revise this judgment
and to modify the conjectured learning trajectory. As a consequence, the actual learning trajectory
realized in the classroom is enacted jointly by the students, the teacher, and the researchers. To
paraphrase Varela, Thompson, and Rosch (1991), it is much like a path that exists only as it is laid
down by walking, even though we have a sense of where we are going and how we might get there
at each moment.
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in which such issues emerge constitutes a supportive situation for the students’
mathematical development.

To be as clear as possible, it is important to stress that the analyses we con-
duct on a daily basis throughout a teaching experiment involve a psychological
constructivist perspective that focuses squarely on individual students’ mathemat-
ical reasonings. In a recently completed experiment that dealt with measuring, for
example, we developed key terms and explanatory constructs by drawing heavily
on individualistic constructivist accounts of children’s early number development
(Steffe, Cobb, & von Glasersfeld, 1988). To be sure, when we step back, we
realize that we are analyzing individual students’ activity as they participate in
and contribute to the development of the mathematical practices of the classroom
community. However, these practices fade into the background when we actu-
ally observe and interact with individual students in the classroom and attempt to
understand their personal meanings. In effect, both we and the students are, at that
moment, “inside” the communal practices.

The approach I have described for planning whole-class discussions emerged
during a series of teaching experiments conducted over a 10-year period. Our focus
on individual students’ diverse meanings is a central aspect of our classroom prac-
tice in that it has enabled us to be more effective as we collaborate with teachers to
investigate ways of supporting their students’ mathematical development. However,
analyses of this type are prime examples of those disallowed by Pea. In addition, the
way in which we view individual students as they participate in classroom practices
clashes with Hutchins’s characterization of individuals as processors of symbolic
structures, some of which are external and others of which are internal representa-
tions of external symbols. Given that our classroom-based practice itself constitutes
the ultimate justification for our theoretical approach, we find it necessary to resist
theoretical arguments that delegitimize this way of working in classrooms.

Characterizing the Individual

I have noted that the distributed theories of intelligence proposed by Pea and
Hutchins evolved from mainstream American psychology. More precisely, these
theories have been developed in part by resisting central tenets of mainstream
psychology.7 Foremost among these is the traditional separation between internal
representations in the head and external representations in the world. However, as
we have seen, resistance begins on the semiotic territory of the other. In this regard,
Pea’s and Hutchins’s accounts of intelligence carry the vestiges of their develop-
ment from mainstream psychology even as they react against it. This is particularly
apparent in the debate between Pea (1993) and Salomon (1993) on the legitimacy
of taking the individual as a unit of analysis. Salomon contended that, in distributed
accounts of intelligence,

7This is particularly the case with Hutchins (1995), whose book is directed primarily toward
cognitive scientists.
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the individual has been dismissed from theoretical consideration, possibly as an antithe-
sis to the excessive emphasis on the individual by traditional psychology and educational
approaches. But as a result the theory is truncated and conceptually unsatisfactory, (p. 111)

Salomon went on to argue that some competencies are not distributed but are
instead solo achievements and that the individual is the appropriate unit of analy-
sis in such cases. Pea, for his part, countered that many tools and social networks
are invisible and that intelligence is distributed even in the case of apparently solo
intelligence and purely mental thinking processes.

Despite these differences in perspective. Pea and Salomon appear to agree on at
least one point. The individual of whom they both speak is the disembodied creator
of internal representations who inhabits the discourse of mainstream psychology.
It is this theoretical individual who features in Pea’s claim that intelligence is dis-
tributed across the individual, tools, and social context. In developing his viewpoint.
Pea, in effect, attempted to equip this mainstream character with cultural tools and
place it in social context. However, in doing so, he implicitly accepted the traditional
characterization of the individual and preserves it as a component of tool-person
systems even as he rejected it. The choice that Pea and Salomon offer us is that of
either accepting one specific characterization of the individual—that of mainstream
psychology—or rejecting the very notion of the individual as a legitimate unit of
analysis.

Hutchins’s detailed analysis of navigation is helpful in clarifying the role of this
mainstream character within a sociocultural system. Hutchins observed that it is
often possible to follow the trail of directly observable representations quite a long
way when analyzing sociocultural systems. However, Hutchins (1995) went on to
note that “from time to time the stream of representational state disappears inside the
individual actors and is lost to direct observation” (p. 129). It is in these situations
that Hutchins admitted analyses of internal symbol processing. In doing so, he took
care to emphasize the differences between his theoretical approach and traditional
cognitive science. In the case of navigation, for example, he stressed that

not all the representations that are processed to produce the computational properties of this
[sociocultural] system are outside the heads of the quartermasters. Many of them are in the
culturally constituted material environment that the quartermasters share with and produce
for each other, (p. 360)

As a consequence

although some of the representations are internal, they are still all cultural in the sense
that they are the residua of a process enacted by a community of practice rather than
idiosyncratic inventions of their individual users, (p. 130)

The theoretical model that emerges on my reading is again that of the mainstream
character of cognitive science equipped with tools and located in social context. The
differences between Pea’s and Hutchins’s positions on the legitimacy of taking the
individual as a unit of analysis appears to be primarily one of terminology. Pea might
point to a history of participation in cultural practices to argue that Hutchins’s focus
on internal symbolic processing is not entirely individualistic.
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Hutchins’s (1996) recent exchange with Latour (1996) served to illustrate how
the mainstream character is implicit in his account of cognition. Latour described
the numerous merits he saw in Hutchins’s work but Latour was “disturbed by the
idea, frequent in the book, that on one side there is the world and on the other cog-
nitive skills. Distribution, in my [Latour’s] view does not go all the way” (p. 60). In
responding, Hutchins (1996) countered that Latour “would dissolve the individual
and the psychology of the individual as well” (p. 64). He continued, “One cannot
empty the person by delegating cognitive activity to ‘something or someone else.’
The work must be done somewhere, and some of the work will be done in regions
that lie inside the bounds of persons” (p. 65). Thus, the debate as both Hutchins
and Latour framed it is about how much of the cognitive activity of a sociocultural
system is internal to persons and how much is external. For them, as for most oth-
ers who focus on the legitimacy of various units of analysis, it is the boundary of
the skin that is decisive. In casting the issue this way, Hutchins and Latour, like
Pea and Salomon, conducted their exchange on the semiotic territory of mainstream
psychology. If we accept Hutchins’s arguments, we take an approach that seems
to involve partitioning rather than distributing intelligence. If we follow Latour’s
line of reasoning, we push cognition out beyond the skin, thereby distributing intel-
ligence by “emptying the person.” Against the background of my own and my
colleagues’ work in classrooms, not one of these alternatives is particularly attrac-
tive. As was the case with Pea and Salomon, the issue at hand is not that of choosing
sides in such exchanges. Instead, we need to scrutinize a central assumption that is
taken for granted in these debates: Mainstream psychology offers the only possible
conception of the individual.

As a starting point, I first note that, in the discussion of the first-grade teaching
experiment, the students were not the putative creature of mainstream psychology.
More generally, the psychological orientation that I and my colleagues take when
analyzing individual students’ activity is not part of the mainstream story, but is
instead part of an alternative European tradition that draws on aspects of Piaget’s
genetic epistemology (von Glasersfeld, 1991). In this tradition, there is no talk of
cognitive skills or processing symbols, or creating internal representations. Instead,
intelligence is seen to be embodied, or to be located in activity (Johnson, 1987;
Piaget, 1970; Winograd & Flores, 1986). Further, rather than representing a world,
people are portrayed as individually and collectively enacting a taken-as-shared
world of signification (Varela, Thompson, & Rosch, 1991). The goal of analyses
conducted from this perspective is therefore not to specify internal cognitive behav-
iors located in the head that intervene between perceptual input from the world and
observed output responses. Instead, it is to infer the quality of individuals’ experi-
ence in the world and to account for developments in their ways of experiencing in
terms of the reorganization of activity and of the world acted in.

Once the shift is made from characterizing the individual in terms of cognitive
behavior to activity-in-the-world, it no longer makes sense to talk of intelligence
being stretched over individuals, tools, and social contexts. To anticipate the dis-
cussion of the tool metaphor, the physical devices and notations that people use
are not considered to stand apart from or outside the individual but are instead
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viewed as constituent parts of their activity. It was for this reason that I spoke of
the first graders reasoning with the arithmetic rack and with notations. What, from
Pea’s and Hutchins’s distributed perspectives, is viewed as a student-rack system is,
from the perspective I have outlined, characterized as an individual student engag-
ing in mathematical activity of which the arithmetic rack is a constituent part. Thus,
although the focus of this psychological viewpoint is explicitly on individual activ-
ity, its emphasis on tools is generally consistent with the notion of mediated action
(John-Steiner, 1995; Meira, 1995; Ueno, 1995; Wertsch, 1994a).

With regard to the remaining component of the functional system posited by dis-
tributed intelligence, the social context, I have already suggested that a student’s
individual activity is an act of participating in the collective mathematical practices
of the classroom community. Consequently, although our focus when actually con-
ducting a psychological analysis is on individual students’ activity per se, we can
subsequently step back and view it as an analysis of students’ qualitatively different
ways of participating in communal classroom practices. In effecting this reconcep-
tualization, we explicitly coordinate psychological analyses of individual students’
acts of participation with an analysis of the evolving mathematical practices in
which they participate8 (cf. Bowers, Cobb, & McClain, 1999; Cobb, 1996; Cobb,
Gravemeijer, Yackel, McClain, & Whitenack, 1997; Gravemeijer, Cobb, Bowers, &
Whitenack, 2000). This latter analysis of communal practices, it should be noted,
serves simultaneously to delineate the learning of the classroom community and the
evolving social situation of the individual students’ mathematical development. In
such an approach, the basic relation between the communal practices and the activ-
ity of the students who participate in them is one of reflexivity.9 This is an extremely
strong relation in that it does not merely mean that individual activity and commu-
nal practices are interdependent. Instead, it implies that one literally does not exist
without the other (cf. Mehan & Wood, 1975). On one hand, participation in com-
munal practices is seen to support, enable, and constrain the ways in which students
reorganize their individual acts of participating. On the other hand, in reorganizing
their activity, students are seen to contribute to the development of the practices that
enable and constrain their reasoning. Cast in these terms, both the process of individ-
ual students’ mathematical development and its products, increasingly sophisticated
ways of mathematical knowing are seen to be social through and through.10 As a

8Some years ago, we described this relation as dialectical. However, German colleagues noted that,
in their country, the use of the term dialectical is often viewed as indicating a commitment to the
philosophy of dialectical materialism. To avoid such confusions, we prefer to speak of reflexive
rather than dialectical relations.
9It is important to stress that the issue at hand is not that of coordinating two sets of separate
processes—one psychological and the other communal. Instead, we coordinate different ways of
interpreting and describing classroom activity.
10As stated at the outset, the interests that motivate this discussion are those of instructional design
and reform at the classroom level. It should however be acknowledged that mathematical knowing
is social through and through in a second sense. In particular, generally accepted beliefs about
what counts as normal in development and as more and less sophisticated are themselves social
constructions that are reflexively verified in practice (Cobb & Yackel, 1996; Walkerdine, 1988).
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consequence, although psychological analyses are an essential part of our practice in
classrooms, they do not by themselves result in adequate accounts even of individ-
ual students’ mathematical development. By the same token, an analysis that focuses
only on communal practices is also inadequate for our purposes. Given our agenda,
we find it necessary to focus on both the practices in which students participate and
the quality of their individual acts of participating.

In the approach that I have sketched, the analytic focus is not on activity at the
expense of the individual. Instead, the individual has been reconceptualized such
that his or her activity is necessarily located in social context that is not assumed
to exist apart from that activity. As a consequence of this reflexive relation, it does
not make sense to talk of intelligence as being stretched over the individual and
the social context because this formulation implies that they are separate entities
that need to be brought together. Concerns about whether it is legitimate to take the
individual as a unit of analysis arise only if one accepts mainstream psychology’s
characterization of the individual. The issue dissolves if social context is viewed
as an inseparable aspect of individual activity, and vice versa. Given the alternative
view of the individual, there is no need to equip individuals with tools or to place
them in social contexts for the simple reason that individuals are not seen to exist
apart from tools and contexts.

The approach I have sketched of coordinating analyses of individual activ-
ity and communal practices is closely related to several other proposals. These
include Hatano’s (1993) call to synthesize constructivist and Vygotskian perspec-
tives, Saxe’s (1991) discussion of the intertwining of cultural forms and cognitive
functions, and Rogoff’s (1995) distinction between three planes of analysis that
correspond to personal, interpersonal, and community processes. In the case of
me and my colleagues, the need to coordinate perspectives is rooted in and has
emerged from our classroom-based practice. Recall, for example, the manner in
which we plan for whole-class discussions during teaching experiments. A psycho-
logical focus comes to the fore when we draw on analyses of individual students’
activity, and the communal practices in which the students are participating fade
into the background. This focus can be contrasted with that which we take when we
plan whole-class discussions by focusing on the social event in which students will
participate. At this moment, our focus is on the discussion as a collective activity,
and the students’ individual interpretations and meanings have now faded into the
background. In addition, once the classroom discussion begins, we find ourselves
monitoring both the nature of the discussion as a social event and individual stu-
dents’ qualitatively distinct contributions to it. Thus, in describing how I and my
colleagues coordinate analytical perspectives, I have in effect attempted to expli-
cate a relation that is implicit in our practice in the classroom. As a consequence,
this theoretical approach can be viewed as a report from the field that outlines a
way of working that we currently find useful when collaborating with teachers. It
should therefore be differentiated from discussions in which various types of pro-
cesses characteristic of different perspectives (e.g., personal processes, communal
processes) are sometimes spoken of as though they have an existence independent
of our interests and purposes as researchers. Such attempts to specify the legitimate
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universe of inquiry for sociocultural investigation involves what Shotter (1995)
called the lure of cosmology. The tenet of self-reflexive consistency mandates that
this temptation should be strongly resisted.

Tool Use

In discussing characterizations of the individual, I hinted at a second point where I
and my colleagues find it necessary to resist the theories of distributed intelligence
formulated by Pea and Hutchins. This concerns the way in which tool use is dealt
with in their accounts. To sharpen the contrast between perspectives, I focus on an
individual acting with a tool. As a consequence, the communal practices in which
individuals participate fade into the background. I would, however, note in passing
that my view is consistent with that articulated by Ueno (1995) when he argued that
the usefulness of a tool is not a property of the tool itself Instead, the formulation of
a tool as useful “presupposes accomplishment of a social construction of reality in
a specific practice” (Ueno, 1995, p. 233).

We have seen that, in distributed accounts, intelligence is said to be stretched
over individual tool-context systems. In this scheme, tools are typically treated in
instrumental terms that separate ends from means. This contention can be clarified
by referring to Dewey’s (1977) discussion of two different ways of thinking about
tool use. The particular example that Dewey considered was that of the role of scaf-
folding in the construction of a building. In one characterization, the scaffolding is
viewed as an external piece of equipment, and in the other it is viewed as integral to
the activity of building.

Only in the former case can the scaffolding be considered a mere tool. In the latter case,
the external scaffolding is not the instrumentality; the actual tool is the action of erecting
the building, and this action involves the scaffolding as a constituent part of itself. (Dewey,
1977, p. 362, as cited in Prawat, 1995, p. 20)

The view of the individual implicit in both Pea’s and Hutchins’s distributed
accounts of intelligence leads to the first of these characterizations in which peo-
ple are equipped with tools. The separation of means from ends is apparent, for
example, in Hutchins’s (1995) contention that the evolution of material means “per-
mits a task that would otherwise be difficult to be recoded and represented in a
form in which it is easy to see the answer” (p. 367). In general, analyses cast
in distributed terms provide compelling demonstrations that the introduction of a
tool results in changes in forms of activity. For example, it has frequently been
noted that when students are equipped with computers, they “off load” computa-
tional processes and engage in planning and problem-solving activities to a greater
extent. Illustrations of this type make an important contribution by clarifying that
tools are not mere amplifiers of activity. However, accounts based on the first of
the two characterizations identified by Dewey typically limit their focus to that of
documenting the reorganizations that occur when people are equipped with tools
by contrasting before and after snapshots. Although analyses of this type might be
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appropriate for many purposes, they do not address an issue central to my inter-
ests as a mathematics educator. This issue concerns the process by which activity
evolves. In the case of the first-grade teaching experiment, for example, it was not
sufficient to demonstrate that the first graders’ mathematical activity was qualita-
tively different from that of students who were not equipped with arithmetic racks.
When we planned the sequence of instructional activities, we found it essential to
envision the process by which ways of reasoning with the arithmetic rack might
evolve. Further, when we planned whole-class discussions, we focused on the var-
ious qualitatively distinct ways in which individual students acted with the rack.11

In doing so, we adopted the second of Dewey’s two characterizations of tool use
by viewing the rack as a constituent part of the students’ activity that was itself the
instrumentality.

Bateson’s (1973) example of a blind person using a stick provides perhaps the
most well-known illustration of this second characterization of tool use.

Suppose I am a blind man, and I use a stick. I go tap, tap, tap. Where do I start? Is my
mental system bounded at the handle of the stick? Is it bounded by my skin? Does it start
halfway up the stick? Does it start at the top of the stick? (p. 459)

For Bateson, the person acting and the artifact-acted-with are inseparable.
Significantly, in making this point, Bateson approached activity from the inside
rather than from the position of someone observing a blind person. He asked us
to pretend that we are blind and to imagine the nature of our experience when using
the stick. This actor’s viewpoint stands in sharp contrast to the observer’s orienta-
tion inherent in Pea’s and Hutchins’s distributed accounts wherein an artifact and a
person using it are treated as separate components of a functional system. For the
actor, however, the two are inseparable. In the case of Bateson’s illustration, the tool
is the act of tapping with the stick, not the stick per se.

Our preference for an actor’s rather than an observer’s viewpoint is not restricted
to the issue of tool use, but instead runs throughout the discussion of the first-grade
teaching experiment. For example, in stating the overall intent of the arithmetic rack
instructional sequence in terms of Greeno’s environmental metaphor, I described
a world in which students might come to act by paying particular attention to the
quality of their experience12 as they acted in it. Similarly, in differentiating our
psychological orientation from mainstream cognitive science approaches, I empha-
sized that our purpose is to infer the quality of individual students’ experiences
in the world and to account for developments in their ways of experiencing in

11In doing so, we took a psychological perspective and focused on individual students’ qualita-
tively distinct ways of participating in classroom mathematical practices. In contrast, we adopted
a social perspective when we planned the instructional sequence and envisioned the evolution of
taken-as-shared, communal ways of reasoning with the arithmetic rack.
12Strictly speaking, this focus on experience is redundant: The world acted in is the world expe-
rienced. I have used the term experience to differentiate the world-acted-in from what an observer
might take to be the environment that can be analyzed independently of activity in propositional
terms.
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terms of the reorganization of activity and of the world acted in.13 In the most
general terms, this adoption of the actor’s viewpoint is central to our activity as
mathematics educators who coparticipate in learning-teaching processes with teach-
ers and their students. To coparticipate is to engage in communicative interactions
that involve a reciprocity of perspectives characteristic of the actor’s viewpoint
(cf. Rommetveit, 1992; Schutz, 1962). Our commitment to the second of the two
characterizations of tool use identified by Dewey is symptomatic of this broader
interest.

Conclusion

In this article, I have delineated general areas of agreement with distributed the-
ories of intelligence and have identified two points of resistance. In doing so,
I have described my learning in this dialogical encounter, thereby acknowledging
my debt to the developers of distributed theories. The challenges that these the-
ories pose for those of us who see value in constructivist analyses of individual
students’ activity is particularly apparent in the case of tool use. As Walkerdine
(1988) and Kaput (1991) both noted, semiotic processes in general and symbol-
izing in particular have often played little if any role in constructivist analyses
of mathematical development. There are, to be sure, several notable exceptions
(e.g., Bednarz, Dufour-Janvier, Poirier, & Bacon, 1993; Kaput, 1987; Mason, 1987;
Nemirovsky, 1994; Pirie & Kieren, 1994; Sfard & Linchevski, 1994; Thompson,
1992). Nonetheless, there has been a tendency to view mathematical reasoning as
occurring apart from mediational means and to treat symbols as mere vehicles used
to express its results. Therefore, much remains to be learned from distributed anal-
yses of activity. The challenge as I have framed it is to view mediational means as
constituent parts of individual students’ qualitatively distinct ways of acting when
we take a psychological perspective. The analyses that I and my colleagues have
conducted of recent teaching experiments represent one attempt to move in this
direction.

In this article, I have focused on accounts of distributed intelligence that
evolved from mainstream psychology and have not considered those located more
directly within the sociocultural tradition. In closing, I note that some of the
distributed views of intelligence developed within the sociocultural tradition exem-
plify the observer’s viewpoint on tool use and others the actor’s viewpoint. For
example, Cole and Engeström (1993) adopted the observer’s viewpoint when
they argued that the mediation of activity through artifacts “implies a distri-
bution of cognition among individual, mediator, and environment” (p. 13). In
contrast, Meira (1995), like Ueno (1995), adopted the actor’s viewpoint when
he questions the treatment of individuals and tools as distinct components of

13Critiques of IP psychology that elaborate the contrast between the actor’s and the observer’s
viewpoints can be found in Cobb (1987, 1990).
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an encompassing system. He instead stressed the “dialectical [or reflexive] rela-
tion between notations-in-use and mathematical sense making” (p. 270) and
proposed

an activity-oriented view that takes cultural conventions, such as notational systems, to
shape in fundamental ways the very activities from which they emerge, at the same time
that their meanings are continuously transformed as learners produce and reproduce them
in activity, (p. 270)

It should be clear that accounts of this latter type are of greater relevance to my
interests as a mathematics educator. I also suggest that many of the recent contri-
butions to sociocultural theory that involve the observer’s perspective have emerged
at least implicitly in opposition to mainstream cognitive science. Although these
contributions might well be useful for many purposes, I nonetheless contend that
the development of sociocultural theory would benefit by acknowledging a broader
range of psychological theories, some of which are concerned with meaning in
the world rather than with cognitive behaviors that intervene between perceptual
input and response output. Once we move beyond the semiotic territory of main-
stream cognitive science, several oppositions, including that between the individual
and more encompassing systems as units of analysis, dissipate, thus enabling us to
transcend a range of dichotomies.
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Classroom Mathematical Practices





Chapter 8
Introduction

Paul Cobb with Michelle Stephan, and Janet Bowers

The notion of a classroom mathematical practice was introduced in the chapter
reprinted in the previous section of this book. It is fair to say in retrospect that
my initial use of this construct was largely intuitive: I had not defined a classroom
mathematical practice with any precision or clarified how other researchers might
identify the mathematical practices interactively constituted by the teacher and stu-
dents in other classrooms. The primary goal of the chapter reprinted in this part was
to overcome some of these limitations. The process of attempting to explicate and
refine this notion was lengthy and occurred as Janet Bowers1 and Michelle Stephan2

conducted retrospective analyses of two classroom design experiments for their dis-
sertation studies (Bowers, 1996; Stephan, 1998). A report of Bowers’ analysis was
subsequently published in Cognition and Instruction (Bowers, Cobb, & McClain,
1999) and a revised version of Stephan’s dissertation was published as a Journal for
Research in Mathematics Education monograph (Stephan, Bowers, & Cobb, 2003).
The chapter reprinted here framed part of Stephan’s dissertation analysis as a case
in which to explicate the process of analyzing the collective mathematical learning
of a classroom community.3

I can best clarify the phenomenon that we sought to account for when analyz-
ing the mathematical learning of a classroom community by asking the reader to
consider the following thought experiment. The analysis reported in this reprinted
chapter is of a classroom design experiment conducted in a first-grade classroom

P. Cobb (B)
Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5701, USA
e-mail: paul.cobb@vanderbilt.edu
1Janet Bowers is currently a member of the mathematics education faculty at San Diego State
University.
2Michelle Stephan is currently a middle-school mathematics teacher in Seminole County, Florida,
where she recently received the award of teacher of the year.
3Stephan and Rasmussen (2002) subsequently identified an additional evidentiary criterion for
claiming that a particular type of mathematical activity has been constituted as normative in a
classroom.
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that focused on linear measurement.4 Suppose that we had interviewed not only
the students in the design experiment classroom at the end of the school year but
also the students from another first-grade classroom in the same school. I have no
doubt that if the video-recordings of these interviews were shuffled, the reader could
nonetheless identify which classroom each student came from with few errors. An
analysis of the mathematical practices established in the two classrooms documents
differences in the classroom learning environments. These content-specific differ-
ences in the classroom social settings in turn account for the contrasts in the forms
of mathematical reasoning that the two groups of students developed.

To continue the thought experiment, suppose that we now focus only on
video-recorded interviews conducted with the students in the teaching experiment
classroom. The contrast set is then not one group of students compared with another,
but is instead the mathematical reasoning of students in the same classroom. This
comparison brings to the fore the (socially situated) diversity in the reasoning
of students who have participated in the same classroom mathematical practices.
As we illustrated in the reprinted chapter, analyses of individual students’ mathe-
matical activity as they participate in collective practices complement analyses of
collective mathematical learning and provide an account of the diversity in their
mathematical reasoning. In the reprinted chapter, we also emphasize that we view
an individual student’s mathematical reasoning as an act of participating in col-
lective practices. As a consequence, students are seen to actively construct their
mathematical understandings as they participate in (and contribute to the develop-
ment of) collective classroom practices. It is in this sense that we regard students’
participation in collective practices as constituting the conditions for the possibility
of their mathematical learning.

In the reprinted chapter, we state that a mathematical practice comprises three
inter-related types of mathematical norms:

• normative purpose for engaging in mathematical activity;
• normative standards of mathematical argumentation;
• normative ways of reasoning with tools and symbols.

In arriving at this characterization, we intentionally kept the number of con-
stituent elements of a mathematical practice to a minimum. The key criterion used
when formulating this definition was that there was evidence that variations in each
constituent element significantly influenced the quality of participating students’
learning. The inclusion of normative standards of mathematical argumentation as
a constituent element extended prior work on sociomathematical norms that I had
conducted with Erna Yackel (Yackel & Cobb, 1996). The inclusion of normative
ways of reasoning with tools and symbols was a direct consequence of our efforts
to draw on the theory of Realistic Mathematics Education (RME) when design-
ing instructional sequences (see the chapter reprinted in the previous part). The
inclusion of a normative purpose as an integral aspect of a mathematical practice

4This experiment was conducted in collaboration with Beth Estes, a first-grade teacher. The mem-
bers of the research team in addition to Estes and myself were Koeno Gravemeijer, Michelle
Stephan, Kay McClain, and Beth Petty.
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was inspired by the philosopher Philip Kitcher’s (1984) analysis of mathematical
knowledge and reflects prior work that I had conducted on the orientations to math-
ematics that students typically develop in school (see the introduction to the second
chapter reprinted in this book).

It is of course possible to conduct analyses of classroom mathematical activity
that focus just on one of the three aspects of a mathematical practice. However, as
we illustrate in the reprinted chapter, accounts of how a single aspect evolves over
time are incomplete and lack explanatory power unless they relate changes in the
focal aspect to changes in the other two aspects. This claim that the three aspects of
a mathematical practice are interdependent is consistent with Stigler and Hiebert’s
(1999) observation that classrooms are systems of mutually influencing elements
rather than collections of independent variables that investigators can manipulate
at will.

In addition to being more explicit about the nature of a classroom mathematical
practice, the second goal that we sought to address in the reprinted chapter was
to understand how one practice emerges as a reorganization of prior practices. As
the analysis of data generated in the course of the measurement design experiment
illustrates, there is often a (sometimes protracted) period of emergence during which
novel forms of mathematical reasoning are introduced by one or more students or
by the teacher, and are negotiated and legitimized in public classroom discourse.
We had initially assumed that the emergence of a new mathematical practice would
be tied to the introduction of a new type of instructional activity, but the analysis of
the measurement sequence makes it clear that this is not necessarily the case. After
completing this analysis, we in fact came to regard it as entirely natural for a new
practice to emerge as a reorganization of prior practices as students worked on a
single type of instructional activity.

The third goal of this chapter was to illustrate the relationship between the evo-
lution of collective practices and the development of the participating students’
mathematical reasoning. We therefore included analyses of two children’s learn-
ing as the measurement instructional sequence was enacted in the classroom. In
doing so, we interwove these analyses with our account of the evolution of collec-
tive practices to highlight the reflexive relation between individual and collective
mathematical learning. Reflexivity is an extremely strong relationship and implies
not only that the two phenomena are interdependent, but also that one does not exist
without the other. On the one hand, the ways in which individual students participate
in collective practices change as they learn, thereby contributing to the evolution of
those practices. On the other hand, the collective practices in which the students
participate both support and constrain their individual learning.5

5This characterization of the relation between individual and collective learning makes contact
with Sfard’s (2008) recent analysis of mathematical learning from a strong discourse perspective.
Sfard stresses the process of both individualizing collective practices and collectivizing novel indi-
vidual contributions. In addition, it is consistent with the sociologist Anthony Giddens’ (1984)
characterization of the relation between social structure and human agency. Giddens argues that
social structure both enables and constrains the ways in which agency can be exercised, and that
structure is created, reproduced, and potentially transformed as people exercise agency.
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We refined the notion of a classroom mathematical practice over a period of sev-
eral years. The order in which this and the previous section appear in this book
is somewhat arbitrary as Gravemeijer, Yackel, and I were working out the version
of Realistic Mathematics Education (RME) described in the previous part during
this same time period. In retrospect, it is apparent that our version of RME and the
interpretive constructs that we developed for making sense of what was going on
in mathematics classrooms were interdependent. On the one hand, the construct
of a classroom mathematical practice grew out of our efforts to test and revise
the design conjectures inherent in instructional sequences. On the other hand, the
interpretations of classroom events that we made while using the emerging interpre-
tative framework fed back to inform the ongoing instructional development effort.
It is worth highlighting that in this process, we proposed and modified theoreti-
cal constructs in response to problems and issues encountered in the classroom.
The strength of this approach to theory development is that the resulting constructs
do not stand apart from the reality of working in classrooms but were instead
grounded in our efforts to support students’ learning in particular mathematical
domains.6

As a point of clarification, I should stress that the notion of a classroom math-
ematical practice and, more generally, the interpretive framework did not emerge
from classrooms per se, but from our activity of experimenting in classrooms. As
I have indicated, we initially used the notion of a mathematical practice intuitively.
In other words, the precursor to this construct was an interpretive routine that we
enacted both when formulating hypothetical learning trajectories as we planned for
design experiments, and when documenting the actual learning trajectory jointly
enacted by the teacher and students in a classroom. The process of reifying this con-
struct by defining it explicitly proved to be challenging, in part because we had to
explicate how, in action, we made sense of specific classroom episodes. Our goal
in doing so was to describe in general terms how we came to grips with and made
judgments in concrete cases. In my view, the most important contribution that theory
can make to educational practice is to inform the process of making pedagogical and
design decisions and judgments in particular cases. As the reprinted chapter makes
clear, our commitment to ground constructs in the reality of educational practice
results in strongly situated accounts of mathematical learning.

Toward the end of the reprinted chapter, we argued that analyses of the type
that we present together with the associated sequence of instructional activities
could serve as resources for supporting the learning of teacher communities. This
conjecture oriented a subsequent research project in which we collaborated with
two groups of middle-school mathematics teachers who worked in two different

6This approach has much in common with grounded theory as described by Glaser and Strauss
(1967). The primary difference is that grounded theory emphasizes the importance of grounding
constructs empirically when analyzing data. The design research approach that I and my colleagues
take also emphasizes the importance of developing constructs in response to problems encountered
while intervening to support and understand students’ mathematical learning.
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urban districts to support their learning over a 5-year period.7 In the course of these
collaborations, we investigated whether and in what ways instructional sequences
developed in two prior design experiments that had focused on statistical data anal-
ysis could serve as supports for the teacher’s learning.8 Two issues that emerged in
the course of this project bear directly on the analysis of classroom mathematical
learning and the design of instructional sequences.

With regard to the first of these issues, we found that we were able to support the
middle-school teachers in reconstructing the learning trajectory that underpinned
the statistics instructional sequences. However, the process of doing so was not as
straightforward as we had anticipated and it proved essential to address a range
of additional issues including the school and district settings in which the teachers
worked, the deprivatization of the teachers’ classroom practices, and the cultiva-
tion of students’ mathematical interests (Cobb, Zhao, & Dean, 2009; Dean, 2005;
Visnovska, 2009; Visnovska, Zhao, & Gresalfi, 2007; Zhao & Cobb, 2007). We
did not formally introduce the term mathematical practice while working with
the teachers. Nonetheless, the practices that we had identified when conducting a
retrospective analysis of the two statistics design experiments proved useful in delin-
eating major phases of the statistics instructional sequences. In addition, it was also
important for the teachers to tease out qualitative differences in students’ ways of
participating in these collective practices during each phase of the two sequences. In
retrospect, this is eminently reasonable given that students’ diverse interpretations
and solutions constituted the primary resource on which the teachers capitalized
in their classrooms as they attempted to move the entire group forward and thus
achieve their mathematical agendas. In particular, the visions of high-quality math-
ematics instruction that the two groups of teachers developed with our support
involved building on students’ solutions to initiate and guide whole-class discus-
sions that focused on significant statistical ideas. Based on this experience, if I
were to revise the reprinted chapter, I would augment the detailed analysis of the
two students’ mathematical learning by giving a broad overview of the full range
of ways in which the students participated in each of the classroom mathematical
practices.

The second issue that emerged while we were collaborating with the two groups
of teachers concerns instructional designers’ intent when developing instructional
tasks. In our experience, designers frequently assume that they are developing
tasks and associated resources such as computer tools in order to support stu-
dents’ learning directly. The implicit model is that of students learning as they

7This project was conducted by Paul Cobb, Kay McClain, Chrystal Dean, Jana Visnovska, Qing
Zhao, Teruni Lamberg, Melissa Gresalfi, and Lori Tyler. In their dissertation studies, Dean (2005)
documented the gradual transition of one of these groups into a professional learning community
during the first 2 years of our collaboration with the teachers, and Visnovska (2009) documented
the collective learning of this community during the final 3 years of our collaboration.
8Reports of the classroom design experiments in which these two instructional sequences were
developed can be found in Cobb (1999), Cobb, McClain, and Gravemeijer (2003), and McClain
and Cobb (2001).
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complete tasks either on their own or in groups. In this model, the teacher’s role
is to ensure that instructional tasks are enacted in the classroom as the designer
intends. We had questioned this model while conducting classroom design exper-
iments by emphasizing the importance of whole-class discussions that focused on
central mathematical issues. However, it was during our collaboration with the two
groups of teachers that our framing of instructional tasks as tools that teachers can
use to achieve an instructional agenda became increasingly explicit. In this framing,
teachers’ use of instructional tasks and associated resources can be seen to involve
adaptations that de Certeau (1984) characterized as a second process of creation or
production (cf. McLaughlin, 1987; Wertsch, 1998). In my view, this perspective is
potentially productive for both instructional design and teacher professional devel-
opment because it orients us to focus our efforts on supporting the development of
both teachers’ capabilities and social resources such as professional networks and
communities on which they can draw as they adapt instructional sequences to their
local setting.

The increasing importance that we came to attribute to the teachers’ central
mediating role is at odds with the way in which the teacher is backgrounded in
the reprinted chapter. It is apparent from the transcribed excerpts included in the
chapter that the teacher’s actions as a more knowledgeable were crucial. However,
the teacher’s initiatives and her responses to students are treated as ancillary to the
focus on the students’ learning. At one level, this is justifiable in that choices nec-
essarily have to be made about what to focus on when studying social settings as
complex as classrooms. Nonetheless, a companion analysis that focused explicitly
on the teacher’s role in interaction with the students would have been valuable.9

In the final paragraphs of the reprinted chapter, we discuss possible limitations
of the analytical approach that we have illustrated. One of the limitations we identi-
fied is that the focus is restricted to the social context of the classroom and ignores
the institutional setting in which the classroom was located. The broader school
and districts setting in which teachers develop and refine their instructional prac-
tices became a major focus of my subsequent work and is the subject of the final
chapter reprinted in this book. As a further limitation, we note that the analyti-
cal approach does not address issues of equity in students’ access to significant
mathematical ideas explicitly. When we conducted the measurement design experi-
ment, we attempted to ensure that we supported the learning of all the participating
students. However, we treated this as a pragmatic concern that was ancillary to
our primary research focus on the students’ individual and collective mathemati-
cal learning. In contrast, we framed issues of equity in learning opportunities as an
explicit research focus in the subsequent design experiments that focused on statis-
tical data analysis. A paper that grew out of this work is reprinted in the next part of
this book.

9Kay McClain did subsequently analyze aspects of her role as teacher in the later classroom design
experiments that focused on statistics (e.g., McClain, 2002).
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Chapter 9
Participating in Classroom
Mathematical Practices

Paul Cobb, Michelle Stephan, Kay McClain, and Koeno Gravemeijer

In this article, we describe a methodology for analyzing the collective learning of
the classroom community in terms of the evolution of classroom mathematical prac-
tices. To develop the rationale for this approach, we first ground the discussion in
our work as mathematics educators who conduct classroom-based design research.
We then present a sample analysis taken from a 1st-grade classroom teaching exper-
iment that focused on linear measurement to illustrate how we coordinate a social
perspective on communal practices with a psychological perspective on individual
students’ diverse ways of reasoning as they participate in those practices. In the con-
cluding sections of the article, we frame the sample analysis as a paradigm case in
which to clarify aspects of the methodology and consider its usefulness for design
research.

In his introduction to this special issue, Barab (Barab, & Kirshner, 2001) clari-
fies why new methodologies are needed that capture learning in rich environments
and that feed back to inform design and instruction. We contribute to this effort by
describing an approach that involves analyzing the collective mathematical learning
of the classroom community in terms of the evolution of classroom mathematical
practices. In doing so, we follow Skemp (1982) in interpreting methodology broadly
to include background assumptions as well as specific analytical methods. As Saxe
(1994) observed, discussions of methodology typically take one of two forms. One
is technique based and focuses on data gathering techniques, procedures for ana-
lyzing data, and so forth. The second form is framework based and focuses on the
framing of questions about a general class of phenomena by relating the method-
ological approach to central epistemological assumptions. In concert with Saxe, we
attempt to blend the two types of discussions by describing both basic theoretical
tenets and analytical techniques.
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In the first of the eight sections of the article, we provide a grounding for the ana-
lytic approach we use by describing the type of classroom-based design research
that we conduct. As we clarify, this research involves teaching experiments of up to
a year duration in the course of which we develop sequences of instructional activi-
ties. In the second section of the article, we present the interpretive framework that
we use to organize our analyses of classroom events. We illustrate that this frame-
work coordinates a social perspective on communal activities with a psychological
perspective on the reasoning of the participating students. In the third section of the
article, we turn our attention to the specific method we use when analyzing the rela-
tively large corpus of classroom video recordings and other data sources generated
during a classroom teaching experiment. We clarify that, as the approach we take
is an adaptation of Glaser and Strauss’s (1967) constant comparison method, it falls
within the interpretivist tradition and is concerned with meaning and context. We
then go on to describe how we systematically work through the data by continually
testing and revising conjectures. The sample analysis that we present in the fourth
section of the article to illustrate our analytic approach is taken from a first-grade
teaching experiment that focused on linear measurement. Although we primarily
describe the classroom social and the sociomathematical norms, we concentrate on
explicating the process by which we analyze the evolution of both the classroom
mathematical practices (social perspective) and the reasoning of individual students
(psychological perspective).

Following our discussion and application of the methodology, in the sixth section
of the article we consider the traditional methodological issues of trustworthiness
and replicability. As we note, it is the grounding of final claims and assertions in the
data that makes the analytic approach trustworthy; final claims and assertions can
be justified by backtracking through the various phases of the analysis, if necessary
to the original data sources. With regard to replicability, we argue that an approach
of this type, which brings context and meaning to the fore, can facilitate disciplined,
systematic inquiry into instructional innovation while simultaneously doing justice
to the complexity of the classroom. In the seventh section of the article, we consider
the usefulness of the analytic approach. In doing so, we return to one of the criteria
that we discussed in the first part of the article, namely that an analytic approach that
is appropriate for our purposes should feed back to inform the ongoing instructional
design effort. Finally, in the last section of the article, we discuss the limitations of
our methodological approach.

Design Research

As an initial orientation, it is important to note that the analytical approach we use
to develop accounts of students’ mathematical learning as it occurs in the social
context of the classroom has emerged over a 12-year period as we have conducted
a series of teaching experiments in elementary and middle-school classrooms.1 In

1A discussion of the purposes for conducting a classroom teaching experiment and of the theoret-
ical and pragmatic issues involved can be found in Cobb (2000b), Confrey and Lachance (2000),
Simon (2000), and Yackel (1995).
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Fig. 9.1 The instructional design research cycle

the course of these experiments, which are up to a year in duration, we develop
sequences of instructional activities and analyze both students’ mathematical learn-
ing and the means used to support that learning. Research of this type falls under the
general heading of design research in that it involves both instructional design and
classroom-based research.2 The basic design–research cycle is shown in Fig. 9.1.

The first aspect of the cycle involves developing instructional sequences as
guided by a domain-specific instructional theory. In our case, we draw on the the-
ory of Realistic Mathematics Education developed at the Freudenthal Institute in
the Netherlands (Gravemeijer, 1994a; Gravemeijer, Cobb, Bowers, & Whitenack,
2000; Streefland, 1991; Treffers, 1987). Gravemeijer (1994a, 1994b) has written
extensively on the process of instructional design within the design–research cycle
and clarifies that the designer initially conducts an anticipatory thought experiment.
In doing so, the designer envisions how mathematical activity and discourse may
evolve as proposed types of instructional activities are enacted in the classroom,
thereby developing conjectures about both possible trajectories for mathematical
learning, and the means that may be used to support and organize that learning. It
is important to stress that these conjectures are tentative and provisional, and are
tested and modified on a daily basis once the teaching experiment begins. The pro-
cess of adapting and revising the conjectures is informed by an on-going analysis of
classroom events and it is here that the second aspect of the design–research cycle,
classroom-based analyses, comes to the fore.

Our purpose in outlining the design–research cycle is to clarify the purposes that
motivate our attempts to make sense of what is happening in the classrooms in which
we work. It is with respect to these concerns and interests that we have become
aware of several criteria that an analytical approach should satisfy if it is to enable
us to contribute to reform in mathematics education as an ongoing, iterative process
of improvement. These criteria for an appropriate analytical approach include that

2Following Gravemeijer (1994a), we have previously called this type of research developmen-
tal research. Our purpose in relabeling it design research is to reduce the possibility that it may
be confused with either child development research or with noninterventionist research into the
development of particular mathematical concepts.
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1. It should enable us to document the collective mathematical development of the
classroom community over the extended periods of time covered by instructional
sequences.

2. It should enable us to document the developing mathematical reasoning of indi-
vidual students as they participate in the practices of the classroom community.

3. It should result in analyses that feed back to inform the improvement of our
instructional designs.

These criteria can be thought of as constituting design specifications for an appro-
priate analytic approach. In the following paragraphs, we discuss the rationale for
each in turn.

The first of these criteria stems from the observation that the conjectures the
designer develops when conducting an anticipatory thought experiment cannot be
about the trajectory of each and every student’s learning for the straightforward
reason that there are significant qualitative differences in their mathematical think-
ing at any point in time. In our experience, descriptions of planned instructional
approaches written so as to imply that all students will reorganize their thinking
in particular ways at particular points in an instructional sequence involve, at best,
questionable idealizations. An issue that has arisen for us is therefore that of clari-
fying what the envisioned learning trajectories that are central to our (and others’)
work as instructional designers may be about. The resolution we propose involves
viewing a hypothetical learning trajectory as consisting of conjectures about the
collective mathematical development of the classroom community. This proposal
in turn indicates the need for a theoretical notion or construct that enables us to
talk explicitly about collective mathematical learning, and it is for this reason that
we have developed the notion of a classroom mathematical practice. Cast in these
terms, an envisioned learning trajectory then consists of an envisioned sequence of
mathematical practices together with the means of supporting and organizing the
emergence of each practice from prior practices.

The second of the three criteria focuses on the qualitative differences in individ-
ual students’ mathematical reasoning. The rationale for this criterion is again deeply
rooted in our work in classrooms. In particular, the classroom sessions we conduct
during a teaching experiment are frequently organized so that students initially work
either individually or in small groups before convening for a whole-class discussion
of their solutions. A pedagogical strategy that we have found productive involves the
teacher and one or more of the project staff circulating around the classroom dur-
ing individual or small-group work in order to gain a sense of the diverse ways in
which students are interpreting and solving instructional activities. Toward the end
of the individual or small-group work, the teacher and project staff members then
confer briefly to prepare for the whole-class discussion. In doing so, they routinely
focus on the qualitative differences in students’ reasoning in order to develop conjec-
tures about mathematically significant issues that may, with the teacher’s proactive
guidance, emerge as topics of conversation. Their intent is to capitalize on the
diversity in the students’ reasoning by identifying interpretations and solutions that,
when compared and contrasted, may lead to substantive mathematical discussions.
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Given this pragmatic focus on individual students’ reasoning, we require an analytic
approach that takes account of the diverse ways in which students participate in
communal classroom practices. As becomes apparent when we present the sample
analysis, this diversity is, in the hands of a skillful teacher, a primary motor of the
collective mathematical learning of the classroom community.

The rationale for the third criterion, that analyses should feed back to inform
the improvement of instructional designs, is readily apparent given our interest in
design research (see Fig. 9.1). This criterion in turn implies that analyses should
enable us to document individual and collective mathematical learning over, say,
the 3-month period of an instructional sequence. Although this requirement may
appear innocuous at first glance, we found it challenging to develop an analytical
approach that enables us to step back and view in broad relief what has transpired in
a classroom over a time period of this length. In making this comment, we note that
analyses that locate students’ mathematical activity in a social context often deal
with a small number of lessons, or perhaps focus on just a few minutes within one
lesson. One of us has in fact contributed to entire articles that deal with classroom
episodes that last 10 min (e.g., Cobb, Wood, & Yackel, 1992). Although detailed
microanalyses of this type can make an important contribution to design research,
they do not enable us to achieve the broad perspective on individual and collective
mathematical development that we require.

It should be clear from this discussion that we view a theoretical idea such as
that of classroom mathematical practice as a conceptual tool whose development
reflects particular interests and concerns. We mention this because academic dis-
course about education often reflects the assumption that instructional approaches
should be derived from theory in a top–down manner. The design–research cycle
involves an alternative view of the relation between theory and instructional practice
in which neither is taken as primary. Instead, the basic relation is one of reflexivity
in which the development of theoretical ideas is driven by and remains rooted in
instructional practice that is itself guided by current theoretical ideas (cf. Cobb &
Bowers, 1999). From this point of view, the relevant criterion when assessing the
value of a theoretical construct is whether it enables us to be more effective in
supporting students’ mathematical learning.

Interpretative Framework

The interpretative framework that we use to organize our analyses of individual
and collective mathematical learning is shown in Fig. 9.2. As the column head-
ings “Social Perspective” and “Psychological Perspective” indicate, the analytical
approach involves coordination two distinct theoretical viewpoints on mathematical
activity. The entries in the column under social perspective indicate three aspects
of the classroom microculture3 that we have found useful to differentiate, and the

3For a justification of the notion of a classroom microculture, see Cole (1995).
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Fig. 9.2 An interpretive framework for analyzing communal and individual mathematical activity
and learning

entries in the column under psychological perspective indicate three related aspects
of individual students’ activity in the classroom.

Social and Psychological Perspectives

The social perspective indicated in Fig. 9.2 is concerned with ways of acting,
reasoning, and arguing that are normative in a classroom community. From this
perspective, an individual student’s reasoning is framed as an act of participation
in these normative activities. In contrast, the psychological perspective focuses
squarely on the nature of individual students’ reasoning or, in other words, on his
or her particular ways of participating in communal activities. Thus, whereas the
social perspective brings to the fore normative taken-as-shared4 ways of talking and
reasoning, the psychological perspective brings to the fore the diversity in students’
ways of participating in these taken-as-shared activities. Together, these two per-
spectives therefore address the first two criteria that an analytical approach should
satisfy if it is to be appropriate for our purposes. An issue central to the methodology
being discussed is that of coordinating these two distinct perspectives on mathe-
matical activity, and, as described later, we take the relation between them to be
reflexive.5

In terms of intellectual lineage, the social perspective draws inspiration from
sociocultural theory (e.g., Cole, 1996; Lave, 1988; Rogoff, 1997) and from

4We speak of normative activities being taken as shared rather than shared to leave room for
the diversity in individual students’ ways of participating in these activities. The assertion that
a particular activity is taken as shared makes no deterministic claims about the reasoning of the
participating students, least of all that their reasoning is identical.
5For a number of years, we spoke of the relation between the two perspectives as being dialectical.
However, German colleagues pointed out that, in their country, this term was associated with neo-
Marxist theories of dialectical materialism. It was to avoid this miscommunication that we began
to describe the relation as reflexive.
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ethnomethodology and symbolic interactionism (Blumer, 1969) as they have
been adapted to problems and issues in mathematics education (cf. Bauersfeld,
Krummheuer, & Voigt, 1988). The lineage of the psychological perspective can
be traced to both constructivism (Piaget, 1970; Steffe & Kieren, 1994; Thompson,
1991) and to distributed accounts of intelligence (e.g., Hutchins, 1995; Pea, 1993).
Given this relatively comprehensive list of intellectual sources, we should clarify
that our goal is not to achieve some grand theoretical synthesis.6 Instead, our focus
is pragmatic and centers on supporting and organizing students’ mathematical learn-
ing. As a consequence, in drawing on the theoretical sources we have listed, we have
adapted and modified ideas to suit our purposes.7 Although space limitations prevent
a complete discussion of these modifications, we briefly touch on two assumptions
that have been adapted and that are central to this discussion.

We have already indicated that a key theoretical construct we use when we take a
social perspective is that of a classroom mathematical practice—a construct adapted
from sociocultural theorists’ notion of a cultural practice (cf. Axel, 1992; Minick,
1989). In sociocultural theory, this notion typically refers to normative ways of act-
ing that have emerged during extended periods of human history. We found this
idea attractive in that it makes it possible to characterize mathematics as a complex
human activity and in that it brings meaning to the fore by eschewing a focus on
socially accepted ways of behaving in favor of an emphasis on the development
of taken-as-shared meanings (van Oers, 1996, 2000). Despite these advantages,
sociocultural theorists’ notion of a cultural practice is not a completely adequate
conceptual tool given our interest in changes in the normative activities of class-
room communities. For example, in sociocultural theory, the historically developed
practices of the discipline are seen to exist prior to and independently of teach-
ers and their students. In contrast to preexisting, historically developed disciplinary
practices, we view the normative practices of a local classroom community as being
constituted by the teacher and his or her students in the course of their ongoing
interactions (cf. Boaler, 2000). Thus, when we take the local classroom commu-
nity rather than the discipline as our point of reference, a practice is seen to be
an emergent phenomenon rather than an already-established way of reasoning and
communicating into which students are to be inducted.

6Given our discussion of social and psychological perspectives, we need to say explicitly that
we are not attempting to reconcile Vygotskian and Piagetian theory as some have assumed (e.g.,
Lerman, 1996).
7In reflecting on his activity as an instructional designer, Gravemeijer (1994b) argued that design
resembles the thinking process that Lawler (1985) characterized by the French word bricolage,
a metaphor taken from Claude Levi–Strauss. A bricoleur is a handy man who invents pragmatic
solutions in practical situations. The bricoleur has become adapt at using whatever is available.
The bricoleur’s tools and materials are very heterogeneous: Some remain from earlier jobs; others
have been collected with a certain project in mind. Extending this metaphor, we would add the
interpretative framework we use can also be viewed as a bricolage. In developing it, we have
acted as bricoleurs who have drawn on and adapted ideas from a range of theoretical sources for
pragmatic ends. Casting our work in these down-to-earth terms serves to differentiate it from more
grandiose efforts that aim to fashion theoretical cosmologies (cf. Shotter, 1995).
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We made similar modifications when fashioning a psychological perspective that
is appropriate for our purposes, in this case by drawing on constructivism and dis-
tributed theories of intelligence. For example, our debt to distributed accounts of
intelligence acknowledged (Pea, 1992), we could not accept this theoretical orienta-
tion ready made given its rejection of analytical approaches that focus explicitly on
the nature of individual students’ reasoning. In the psychological perspective that
we take, the tools and symbols that students use are not considered to stand apart
from or outside the individual, but are instead viewed as constituent parts of their
activity (cf. Dewey, 1981). There is no talk of processing information or creating
internal representations. Instead, intelligence is seen to be embodied, or to be located
in activity (Bateson, 1973; Johnson, 1987; Winograd & Flores, 1986). Rather than
representing a world, people are portrayed as individually and collectively enacting
a taken-as-shared world of signification (Varela, Thompson, & Rosch, 1991).

The goal of analyses conducted from this psychological perspective is therefore
not to specify cognitive mechanisms located inside students’ heads. Instead, it is
to infer the quality of individual students’ reasoning in, with, and about the world,
and to account for developments in their reasoning in terms of the reorganization
of activity and the world acted in.8 Consequently, what is viewed as a student–tool
system from the perspective of distributed intelligence is, from our psychological
perspective, an individual student engaging in mathematical activity that involves
reasoning with tools and symbols. Thus, although the focus of this psychological
viewpoint is explicitly on the quality of individual students’ reasoning, its emphasis
on tools is generally consistent with the notion of mediated action as discussed by
sociocultural theorists (cf. Kozulin, 1990; van der Veer & Valsiner, 1991; Wertsch,
1994). Furthermore, as we have seen, the remaining component of the functional
system posited by distributed theories of intelligence, social context, becomes an
explicit focus of attention when this psychological perspective is coordinated with
the social perspective of the framework.9 An approach of this type is fundamentally
nondualist in that learning involves the reorganization of the world acted in as well
as of ways of acting in the world (cf. Roth & McGinn, 1998).

In summary, there is an extremely strong relation between what we have
described as the social and psychological perspectives that does not merely
mean that the two perspectives are interdependent. Instead, it implies that neither
perspective exists without the other in that each perspective constitutes the
background against which mathematical activity is interpreted from the other

8The characterization of the individual is generally consistent with Roth’s use of the individual’s
life world or the individual in the world as his unit of analysis (Roth & McGinn, 1998). In his
terms, our concern when we adopt the psychological perspective of the interpretive framework is
to delineate the ontology of the world in which an individual student acts.
9This approach of coordinating psychological and social analyses is closely related to several
other proposals. These include Hatano’s (1993) call to synthesize constructivist and Vygotskian
perspectives, Saxe’s (1991) discussion of the intertwining of cultural forms and cognitive func-
tions, and Rogoff’s (1995) distinction between three planes of analysis that correspond to personal,
interpersonal, and community processes.
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perspective. For example, normative activities of the classroom community (social
perspective) emerge and are continually regenerated by the teacher and students
as they interpret and respond to each other’s actions (psychological perspective).
Conversely, the teacher’s and students’ interpretations and actions in the classroom
(psychological perspective) do not exist except as acts of participation in commu-
nal classroom practices. When we take a social perspective, we therefore locate a
student’s reasoning within an evolving classroom microculture, and when we take
a psychological perspective, we treat that microculture as an emergent phenomenon
that is continually regenerated by the teacher and students in the course of their
ongoing interactions. As a consequence the coordination is not between individual
students and the classroom community viewed as separate, sharply defined entities.
Instead, the coordination is between two alternative ways of looking at and making
sense of what is going on in classrooms. The resulting analytical approach brings
the diversity in students’ reasoning to the fore while situating that diversity in the
social context of their participation in normative classroom activities.

Aspects of the Classroom Microculture and Individual
Students’ Reasoning

Having described the social and psychological perspectives that underpin our analyt-
ical approach, we now focus on the details of the interpretative framework shown in
Fig. 9.2. We should again clarify that this framework summarizes the way in which
we organize our analyses of classroom events. Thus, the framework does not itself
give rise to direct implications for educational change and improvement. Instead, it
is a conceptual tool that we use to understand what is going on in the classrooms
in which we work. The insights that we develop in the process do, however, have
practical consequences in that they lead to conjectures about how we can improve
our instructional designs.

In Fig. 9.2, the three entries under the column headed “Social Perspective” indi-
cate three distinct aspects of the classroom microculture. The first of these aspects is
classroom social norms. In general, an analysis that focuses on social norms serves
to delineate the classroom participation structure (Erickson, 1986; Lampert, 1990).
Social norms are characteristics of the classroom community and document regu-
larities in classroom activity that are jointly established by the teacher and students.
Examples of social norms include explaining and justifying solutions, attempting to
make sense of explanations given by others, indicating agreement or disagreement,
and questioning alternatives when a conflict in interpretations had become apparent
(Cobb, Yackel, & Wood, 1989). When developing conjectures about social norms,
we look for instances where a student appears to violate a proposed norm and check
to see whether his or her activity is constituted in the classroom as legitimate or
illegitimate. In the former case we, of course, have to revise our conjecture whereas,
in the latter case, the observation that the students’ activity was constituted in the
classroom as a breach of a norm provides evidence in support of the conjecture.
This approach of focusing on regularities in joint activity can be contrasted with an
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alternative approach that casts criteria in terms of the proportion of students who act
accord with a proposed norm. Criteria of this type are neither helpful nor relevant
in our view because they are framed from a psychological perspective that is con-
cerned with individual students’ activity rather than from a social perspective that
is concerned with how students’ activity is constituted in the classroom. Similarly,
because social norms document regularities in joint activity, we question accounts
framed in individualistic terms in which the teacher is said to establish or specify
social norms for students. To be sure, the teacher is an institutionalized authority in
the classroom (Bishop, 1985). He or she expresses that authority in action by initiat-
ing, guiding, and organizing the renegotiation of classroom social norms. However,
the students also play their part in contributing to the evolution of social norms. One
of our primary conjectures is in fact that, in making these contributions (social per-
spective), students reorganize their individual beliefs about their own role, others’
roles, and the general nature of mathematical activity (psychological perspective).
As a consequence, we take these beliefs to be what, for want of a better term, we
refer to as the psychological correlates of classroom social norms (see Fig. 9.2).
We therefore conjecture that in guiding the establishment of particular classroom
social norms, teachers are simultaneously supporting their students’ reorganization
of these beliefs. Furthermore, in line with our discussion of the reflexive relation
between the social and psychological perspectives, we give primacy to neither the
social norms nor individual students’ beliefs. This implies that it is neither a case
of a change in social norms causing a change in students’ beliefs, nor a case of stu-
dents first reorganizing their beliefs and then contributing to the evolution of social
norms. Instead, social norms and the beliefs of the participating students coevolve
in that neither is seen to exist independently of the other.

Our interest in classroom social norms emerged within the context of design
research as we attempted to further our agenda of supporting students’ mathemati-
cal learning, and it was within this context that we subsequently came to view our
preoccupation with classroom social norms as inadequate. In particular, we came
to realize that these norms are not specific to mathematics, but apply to any subject
matter area. For example, one may hope that students would explain and justify their
reasoning in science or history classes as well as in mathematics. We attempted to
address this limitation by shifting our focus to normative aspects of students’ activ-
ity that are specific to mathematics (Lampert, 1990; Simon & Blume, 1996; Voigt,
1995; Yackel & Cobb, 1996). Examples of these so-called sociomathematical norms
include what counts as a different mathematical solution, a sophisticated mathemat-
ical solution, an efficient mathematical solution, and an acceptable mathematical
explanation.

Pragmatically, the analysis of sociomathematical norms has proven useful in
helping us understand the process by which the teachers with whom we work
foster the development of intellectual autonomy in their classrooms. This issue is
particularly significant to us given that the development of student autonomy was
an explicitly stated goal of our work in classrooms from the outset. However, we
originally characterized intellectual autonomy in individualistic terms and spoke



9 Participating in Classroom Mathematical Practices 127

of students’ awareness of and willingness to draw on their own intellectual capa-
bilities when making mathematical decisions and judgments (Kamii, 1985; Piaget,
1973). As part of the process of supporting the growth of autonomy, the teach-
ers with whom we have collaborated initiated and guided the development of a
community of validators in their classrooms such that claims were established
by means of mathematical argumentation rather than by appealing directly to the
authority of the teacher or textbook. For this to occur, it was not sufficient for
the students to merely learn that they should make a wide range of mathemati-
cal contributions. It was also essential that they became able to judge both when
it was appropriate to make a mathematical contribution and what constituted an
acceptable contribution. This required, among other things, that the students could
judge what counted as a different mathematical solution, an insightful mathemat-
ical solution, an efficient mathematical solution, and an acceptable mathematical
explanation. However, these are precisely the types of judgments that are nego-
tiated when establishing sociomathematical norms. We therefore conjectured that
students develop specifically mathematical beliefs and values that enable them to
act as increasingly autonomous members of the classroom mathematical community
as they participate in the negotiation of sociomathematical norms (Yackel & Cobb,
1996). Furthermore, we took these specifically mathematical beliefs and values to be
the psychological correlates of the sociomathematical norms (see Fig. 9.2). In doing
so, we conjecture that, in guiding the establishment of particular sociomathemat-
ical norms, teachers are simultaneously supporting their students’ reorganization
of the beliefs and values that constitute what may be called their mathematical
dispositions. Once again, this conjecture is open to empirical investigation.

It is apparent from this discussion of sociomathematical norms that we revised
our conception of intellectual autonomy as we worked in classrooms. At the outset,
we defined autonomy in purely individualistic terms as a characteristic of students.
However, as the notion of sociomathematical norms emerged, we came to view
autonomy as a characteristic of an individual’s way of participating in a community.
In particular, the development of autonomy can be equated with a gradual movement
from relatively peripheral participation in classroom activities to more substantial
participation in which students increasingly rely on their own judgments rather than
on those of the teacher (cf. Forman, 1996; Lave & Wenger, 1991). The example
of autonomy is paradigmatic in this regard in that it illustrates the general shift we
have made in our theoretical orientation during the 12 years that we have worked in
classrooms away from an initially individualistic position toward one that involves
coordinating social and psychological perspectives.

Returning to the interpretive framework (see Fig. 9.2), we have already clarified
that our motivation for teasing out a third aspect of the classroom microculture,
classroom mathematical practices, stems directly from our concerns as instruc-
tional designers. In particular, we argued that the conjectures inherent in a learning
trajectory formulated while planning a teaching experiment cannot be about the
anticipated mathematical learning of each and every student in a class. We then sug-
gested that it is feasible to view a conjectured learning trajectory as consisting of
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an envisioned sequence of classroom mathematical practices together with conjec-
tures about the means of supporting their evolution from prior practices. Extending
this line of reasoning, we note that, in analyzing the evolution of classroom mathe-
matical practices, we can document the actual learning trajectory of the classroom
community as it is realized in interaction. Such analyses therefore draw together
the two general aspects of design research, instructional design and classroom-
based analyses, and can therefore feed back to inform ongoing design efforts (see
Fig. 9.1). In addition, analyses of this type bear directly on the issue of account-
ing for students’ mathematical learning as it occurs in the social context of the
classroom. Viewed against the background of classroom social and sociomathemat-
ical norms, the mathematical practices established by a classroom community can
be seen to constitute the immediate, local situations of the students’ development.
Consequently, in delineating sequences of such practices, the analysis documents
the evolving social situations in which students participate and learn. We take indi-
vidual students’ mathematical interpretations and actions to be the psychological
correlates of these practices and view the two as reflexively related (see Fig. 9.2).
What is seen from one perspective as an act of individual learning in which a student
reorganizes his or her mathematical reasoning is seen from the other perspective as
an act of participation in the evolution of communal mathematical practices. In coor-
dinating social and psychological perspectives, the approach we propose therefore
seeks to analyze the development of students’ mathematical reasoning in relation to
the local social situations in which they participate and to whose emergence they
contribute.

We conclude this discussion of the interpretative framework by giving an illus-
tration, which brings the social perspective to the fore in order to further clarify
the distinction between the three aspects of the classroom microculture. For the
purposes of the illustration, consider the social norm of explaining and justifying
interpretations. As we have noted, this and other social norms deal with facets of
the classroom participation structure that are not specific to mathematical activ-
ity. In contrast, the related sociomathematical norms for argumentation deal with
criteria that the teacher and students establish in interaction for what counts as
an acceptable mathematical explanation and justification. For example, a criterion
that became established during a teaching experiment that focused on place value
numeration was that explanations had to be clear in the sense that the teacher
and other students could interpret them in terms of actions on numerical quanti-
ties rather than, say, the mere manipulation of digits (Bowers, Cobb, & McClain,
1999). Due to the fact that sociomathematical norms are concerned with the evolv-
ing criteria for mathematical activity and discourse, they are not specific to any
particular mathematical idea. Thus, the criterion that mathematical explanations
should be clear could apply to elementary arithmetical word problems or to dis-
cussions about relatively sophisticated mathematical ideas that involve proportional
reasoning. Classroom mathematical practices, in contrast, focus on the taken-as-
shared ways of reasoning, arguing, and symbolizing established while discussing
particular mathematical ideas. Consequently, if sociomathematical norms are spe-
cific to mathematical activity, then mathematical practices are specific to particular
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mathematical ideas. In the case of the teaching experiment that focused on place
value numeration, the analysis of mathematical practices were concerned with the
specific arguments and ways of reasoning about quantities that were treated as being
clear and beyond further justification. In addition, the analysis described how each
mathematical practice delineated in this way emerged as a reorganization of prior
practices, thereby providing an account of the process by which these taken-as-
shared ways of reasoning about place value numeration became established in this
particular classroom.

This illustration serves to emphasize the analyses of classroom mathematical
practices that take mathematics seriously by documenting the emergence of what is
traditionally called mathematical content. We return to this point in the concluding
sections of the article, once we have presented the sample analysis.

Methodological Considerations

Our primary focus when we present the sample analysis is on the evolution of class-
room mathematical practices, as this is the least developed aspect of the interpretive
framework. Our unit of analysis, therefore, is that of a classroom mathematical
practice and students’ diverse ways of participating in and contributing to its consti-
tution. It should be noted that in making reference to both communal practices and
individual students’ reasoning, this unit captures the reflexive relation between the
social and psychological perspectives on mathematical activity. The data corpus for
an analysis of this type is relatively large and typically consists of video recordings
of all classroom sessions conducted during a teaching experiment, copies of all the
students’ written work, and video recordings of student interviews conducted before
and after the teaching experiment. Given this wealth of data, an obvious concern is
that of developing a method for analyzing the data corpus in a systematic manner.
This issue has been the focus of considerable debate in the interpretative social sci-
ences in the course of which a range of methods has been proposed. The approach
that we take follows Glaser and Strauss’s (1967) constant comparison method as it
has been adapted to the needs of design research (Cobb & Whitenack, 1996). Glaser
and Strauss’s method treats data as text and aims to develop coherent, trustworthy
accounts of their possible meanings. They argued that, to produce such accounts,
investigators must immerse themselves in the social situation they wish to under-
stand by acting as participant observers. In doing so, they document incidents of the
participants’ activity which, when compared against one another, give rise to general
themes or patterns. A hallmark of their method is that, as new data are generated,
they are compared with currently conjectured themes or categories. This process of
constantly comparing incidents leads to the ongoing refinement of the broad theo-
retical categories developed from the data. As Glaser and Strauss noted, negative
cases that appear to contradict a current category are of particular interest and are
used to further refine the emerging categories.

As we clarify shortly, the method we follow to document the emergence of
classroom mathematical practices and the development of the reasoning of the
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participating students is consistent with this process. Like Glaser and Strauss (1967),
we look for regularities and patterns in the ways that the teacher and students act and
interact as they complete instructional activities and discuss solutions. The primary
difference between our approach and that of Glaser and Strauss concerns the way in
which we capitalize on the results of prior analyses when we begin a new analysis.
In Glaser and Strauss’s method, theoretical categories or constructs are developed
anew from the data in each investigation. In contrast, we had developed and refined
the general notion or category of a classroom mathematical practice before we began
the sample analysis that we present in this article. To be sure, this notion was itself
open to refinement and elaboration during the analysis as we interrogated data to
delineate the specific practices that emerged during one teaching experiment. Thus,
whereas Glaser and Strauss seem to imply that the development of theoretical cate-
gories or constructs is limited to the investigation at hand, for us this process spans
a series of investigations.

The emphasis that our method, like that of Glaser and Strauss (1967), gives
to intention and meaning serves to distinguish it from alternative approaches that
take a strong social point of view by equating rational action as a matter of acting
in accord with the norms or standards of a community. The difficulty for us with
such an approach is that mathematical learning is treated exclusively as a process
of coming to use conventional tools and symbols in socially accepted ways. This
reduction of meaning to social use leads to an epistemological behaviorist position,
which ignores what Sfard (2000) called the experiential aspect of meaning includ-
ing imagery and emotion. The analytic approach we take is interpretivist precisely
in the sense that we go beyond the observed social use of tools and symbols by
inferring both the taken-as-shared intentions and meanings established by the class-
room community (social perspective) and the interpretations that individual students
make as they participate in communal practices (psychological perspective). This
attention to both individual and taken-as-shared meaning is important given our
agenda as mathematics educators who coparticipate in the learning–teaching pro-
cess with teachers and their students. As Rommetveit (1992) and Schutz (1962)
both observed, to coparticipate is to engage in communicative interactions that
involve a reciprocity of perspectives characterized by a concern for socially situated
meaning.

With regard to the actual process of analyzing data, the first phase of the method
involves working through the data chronologically episode by episode. We are able
to clarify what constitutes an episode in some detail once we have presented the
sample analysis. For the present, we note that the determining characteristic of an
episode is that a single mathematical theme is the focus of activity and discourse.
When working through the data in this way, we develop conjectures both about the
ways of reasoning and communicating that might be normative at a particular point
in time and about the nature of selected individual students’ mathematical reason-
ing. These conjectures together with the evidence that supports them are explicitly
documented as part of a permanent log of the analysis. This log also records the pro-
cess of testing and revising conjectures as subsequent episodes are analyzed. When
we first attempted to coordinate the two perspectives some years ago, we found it
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useful to keep two parallel records, one labeled social and the other psychologi-
cal. This strategy was helpful in that it enabled us to avoid confounding the two
distinct perspectives for the most part. It was as we included cross references that
indicated how inferences made from one perspective informed those made from the
other perspective that we gradually improved our ability to coordinate the two view
points. On reflection, constructing two parallel records in this manner proved to be
an important means by which we supported and organized our own learning.10

The result of this first phase of the analysis is a chain of conjectures, refutations,
and revisions that is grounded in the details of the specific episodes. In the sec-
ond phase of the analysis, the logs of the first phase themselves become data that
are meta-analyzed to develop succinct yet empirically grounded chronologies of the
mathematical learning of the classroom community and of selected individual stu-
dents. It is during this phase of the analysis that the conjectures developed during
the first phase about the possible emergence of classroom mathematical practices
are scrutinized from a relatively global viewpoint that looks across the entire teach-
ing experiment. The results of the analysis are then cast in terms of the unit that
was alluded to earlier, namely mathematical practices and students’ diverse ways of
participating in them.

As part of the process of testing and refining conjectures about mathematical
practices, we differentiate between three types of mathematical norms: (a) a taken-
as-shared purpose, (b) taken-as-shared ways of reasoning with tools and symbols,
and (c) taken-as-shared forms of mathematical argumentation. The first of these
aspects of a practice, the taken-as-shared purpose, is concerned with what the
teacher and students are doing together mathematically. The second aspect is con-
cerned both with the ways of using tools and symbols that are treated as legitimate
and with the taken-as-shared meanings that these actions with tools and symbols
come to have in the classroom. It is important to stress that these taken-as-shared
meanings do not correspond to an overlap in the teacher’s and students’ individ-
ual interpretations (Voigt, 1996). Any attempt to delineate an overlap of this type
involves the psychological perspective in that the focus is on the relation between
individual interpretations. In contrast, inferences about taken-as-shared interpreta-
tions are made from the social perspective and concern the ascription of meanings
that are constituted as legitimate and beyond question in the classroom. Such mean-
ings are collective rather than individual accomplishments in that the status of
legitimacy is established in the course of ongoing classroom interactions.

We have found Toulmin’s (1969) scheme of justification to be a useful tool when
we analyze the third aspect of mathematical practices, taken-as-shared forms of
argumentation (see Fig. 9.3).

In the case of the sample analysis that we present, which deals with linear mea-
surement, the data is the physical extension of an object and the conclusion is the

10In psychological terms, this learning can be described as the internalization and interiorization
of the activity of creating two coordinated logs. This activity was socially situated in that we were
participating in the practices of our research community as we conducted the analyses.
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Fig. 9.3 Toulmin’s (1969) scheme of argumentation

numerical measure of that physical extension. An appropriate warrant that serves
to explain why the data support the conclusion may involve demonstrating how a
measurement tool was used to produce the numerical result. This warrant can of
course be questioned, thus obligating the student to give a backing that indicates
why the warrant or measurement procedure should be accepted as having authority.
A backing that may be treated as legitimate could involve explaining how the use of
the measurement tool structures the physical extension of the object into quantities
of length.

The illustration we have given is relatively general and constitutes a sociomath-
ematical norm in that it applies to any measuring activity in which a serviceable
tool is used. In contrast to this general scheme of argumentation for measuring, the
specific types of arguments that we discriminated when conducting the sample anal-
ysis take account of the taken-as-shared ways in which particular tools were used
to measure. In both the sample analysis and in other analyses that we have con-
ducted (e.g., Bowers et al., 1999; Cobb, 1999, 2000a; Cobb, Gravemeijer, Yackel,
McClain, & Whitenack, 1997; Gravemeijer et al., 2000), we have often found it
fruitful to initially focus on changes in forms of arguments when attempting to
delineate mathematical practices. Observations made by Yackel (1997) help clar-
ify why this analytical strategy can be productive. We can best elaborate her insight
by again referring to the measurement teaching experiment. As we document when
we present the sample analysis, students were typically obliged to give backings for
their measuring activity when they first used a new measurement tool. This need for
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a backing provides indication that the way in which the use of the tool structured
the physical extent of objects into quantities was still being negotiated. However, it
frequently happened that in later episodes it was no longer necessary for students
to give backings to justify their use of the new tool. Shifts of this type provide one
indication that a taken-as-shared meaning for the use of the tool may have become
established (i.e., the way in which the use of the tool structures the physical extent
of an object into qualities of length has become taken-as-shared). Further evidence
would be provided by instances in which members of the classroom community
object when they perceive that the conjectured normative meaning has been violated
(cf. Much & Shweder, 1978). Consequently, we test our conjectures as we analyze
subsequent episodes by looking for occasions when a student’s activity appears to
be at odds with a proposed normative meaning and examine whether the student’s
contribution is treated as illegitimate by the other members of the classroom com-
munity. In the event that the contribution is treated as legitimate, we of course have
to revise our conjecture.

The methodological points that we have made thus far provide an initial orienta-
tion to our analytical approach. We should acknowledge that the trustworthiness
and replicability of interpretivist approaches of this type have sometimes been
questioned. We address these issues directly once we have teased out additional
aspects of the approach by using the sample analysis as a paradigm case. For the
present, we note that an analysis developed in this manner contributes to the devel-
opment of what may be termed a local instructional theory by documenting both the
actual learning trajectory of the classroom community and the means by which that
learning was supported and organized (cf. Gravemeijer, 1998).

Measurement Practices

The sample analysis was taken from a 14-week teaching experiment that was con-
ducted in a first-grade classroom with 16 students. Two instructional sequences were
enacted during the experiment. The first sequence spanned 31 classroom sessions
over a 7-week period and focused on linear measuring. The second sequence, which
lasted the remaining 7 weeks of the experiment, built directly on the first sequence
and focused on mental computation with numbers up to 100. Stephan (1998) ana-
lyzed the measurement sequence as it was enacted in the classroom and argued
that it can be divided into five phases, each of which involves the emergence of a
distinct mathematical practice. For the purposes of this article, we briefly summa-
rize the process by which the first two practices emerged and then focus in some
detail on the emergence of the third practice and on two students’ reasoning as they
participated in and contributed to it.

Background to the Teaching Experiment

The classroom teacher with whom we collaborated was a full member of the
research team and assumed primary responsibility for instruction in all classroom
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sessions. However her relationship with other members of the research team was
such that they were free to intervene by posing questions to students both during
individual and small-group work and during whole-class discussions. The primary
data sources generated during the teaching experiment were video recordings of all
classroom sessions made with two cameras, copies of all the students’ written work
and other products, three sets of field notes made by observing researchers, video
recordings of individual interviews conducted with all students at the beginning and
end of the experiment, video recordings of interviews conducted with five target
students midway through the measurement sequence, and audio recordings of the
weekly meetings of the research team.

On the basis of the initial interviews, which focused on the students’ numerical
reasoning, we selected five students to track throughout the experiment. The selec-
tion criteria we used were that there was considerable diversity in the ways that
they were reasoning in the social setting of the interview and that they were will-
ing to try and explain their reasoning. During individual and small-group work, the
two cameras followed two researchers as they documented how the five students
were attempting to complete instructional activities. These researchers intervened
to ask clarifying questions when they inferred that a viewer of the classroom video
recordings would have difficulty in understanding how the students were approach-
ing particular instructional activities.11 At the end of individual or small-group
work, the two researchers conferred with the teacher to plan the subsequent whole-
class discussion. In addition, they recorded their ongoing conjectures about the
target students’ reasoning in reflective journals after each classroom session. When
we describe the emergence of the third mathematical practice, we focus on the
reasoning of two of these students, Nancy and Megan.

Our initial objective when we planned the measurement sequence was that the
activity of measuring by iterating a tool along the physical extent of an object would
come to signify the accumulation of distance (cf. Piaget, Inhelder, & Szeminska,
1960; Thompson & Thompson, 1996). In other words, if students were measuring
by pacing heel to toe, we wanted it to become taken as shared that the number
words said while pacing each signified the measure of the distance paced thus far
rather than the single pace taken while saying a particular number word. In the case
of the number word five, for example, we hoped that it would come to signify the
measure of the distance from the beginning of the object’s physical extension to
the end of the fifth pace rather than merely the fifth pace. Beyond this, we also
hoped that practices involving the use of tools that signified multiple units would
become established (e.g., a paper strip that was five paces long). Participation in
such a practice would involve interpreting the numerical results of measuring in a
variety of different ways as the need arose (e.g., 25 paces, 5 strips, 2 distances of 10
paces and a distance of 5 paces, etc.). Described more generally, our instructional

11These interventions clearly changed the social interactions in which the target students engaged.
We justify the interventions on the pragmatic grounds of generating information that we needed to
make pedagogical decisions.
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intent was therefore that a taken-as-shared spatial environment would become estab-
lished in which distances are quantities of length whose numerical measures can be
specified by actually measuring (Greeno, 1991). In such an environment, it would
be self-evident that although distances are invariant, their numerical measures vary
according to the size of the measurement unit used (i.e., if a larger measurement unit
is used, then the resulting numerical measure will be smaller).

In sociocultural terms, this statement of our instructional intent specifies the his-
torically developed mathematical practices into which we planned to induct the
students. It is readily apparent from this description of our intent that we did not
view learning to measure as solely a matter of coming to use tools in socially
accepted ways. Instead, we were also vitally concerned with the taken-as-shared
meanings that the use of the tools may come to have or, in other words, with how
they may become structured as measurement practices evolve in the classroom. This
emphasis on measuring as the structuring of space is clearly value laden and reflects
what we consider is important in the doing of mathematics in school.12

The Classroom Microculture

The instructional activities used during the teaching experiment were embedded
in ongoing narratives that extended over several classroom sessions. The teacher
typically began each classroom session by engaging the students in a story in which
the characters in the narrative either encountered a problem or needed to complete a
task that involved measurement. The students worked either individually or in pairs
to solve the problem or complete the task before returning to the whole-class setting
to discuss their solutions. Stephan (1998) presented evidence that indicates that,
even though social norms were renegotiated throughout the experiment, the general
classroom participation structure was relatively stable. The social norms that she
identified for whole-class discussions can be summarized as follows:

1. Students were obliged to explain and justify their reasoning.
2. Students were obliged to listen to and attempt to understand others’ explanations.
3. Students were obliged to indicate nonunderstanding and, if possible, to ask the

explainer clarifying questions.
4. Students were obliged to indicate when they considered solutions invalid, and to

explain the reasons for their judgment.

Stephan also notes that the two overriding values that characterized whole-class
discussions and that the teacher frequently discussed explicitly with her students
were those of attempting to understand and of being actively involved at all times.

12The emphasis that we give to quantitative reasoning can be contrasted with the almost exclusive
emphasis on numerical reasoning both in traditional classrooms and in many classrooms where
instruction is compatible with recent reform recommendations (cf. Smith, 1997; Thompson, 1993,
1994; Thompson & Thompson, 1996).
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A sociomathematical norm that is particularly important for the purposes of this
article is that of what counted as an acceptable explanation. One of our objec-
tives was that classroom discourse should be conceptual rather than calculational
in nature (Cobb, 1998b; Lampert & Cobb, 1998b; Thompson, Philipp, Thompson,
& Boyd, 1994). In calculational discourse, the focus of classroom conversations is
on the calculational method or process for producing results. In terms of Toulmin’s
(1969) scheme of justification, calculational explanations of measuring activity
involve giving a warrant by demonstrating how a measurement tool was used to
produce a numerical result. However, calculational explanations would not involve
a backing for the measurement procedure that describes how the enactment of the
procedure structures the physical extent of objects into quantities of length.

To avoid misunderstanding, we should stress that students’ measuring activity
can be meaningful (i.e., it can involve structuring space into quantities of length)
even if they give calculational explanations. The key point is that the ways in which
students structure space as they use a measurement tool do not become topics of
conversation when the classroom discourse is calculational. In contrast, the hall-
mark of conceptual discourse about measuring is that students are obliged to give
a backing by explaining how they structured space as they measured. Elsewhere,
we have argued that classroom discussions in which the discourse is conceptual
rather than calculational can be particularly productive settings for mathematical
learning. Stephan’s analysis documents that the teacher with whom we collaborated
was generally successful in ensuring that, during whole discussions, students were
obliged to give a backing by explaining how they structured the space measured.13

The establishment of this sociomathematical norm had implications for our analysis
in that it facilitated our task of differentiating between cases in which their mea-
suring activity involved the structuring of space. This distinction would have been
much harder to make had the classroom discourse been calculational rather than
conceptual in nature.

The Emergence of the First Two Mathematical Practices

Our purpose in briefly outlining the emergence of the first two practices is to both
give some indication of the scope of an analysis of classroom mathematical practices
and to provide a backdrop against which to give a more detailed account of the
third practice and of two students’ reasoning as they participated in it. We therefore
reserve our methodological comments for the discussion of the third practice.

The first of five classroom mathematical practices emerged during Sessions 1
through 3. The instructional activities were all posed within a narrative about a king
who measured items in his kingdom by pacing heel to toe. During Session 1 of the
experiment, we observed two distinct ways of counting paces. The contrast between

13This is not to say that all explanations involved a backing. It was not necessary for a student to
give a backing when other students indicated that they understood a particular method of measuring
structured space.
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Fig. 9.4 Two methods of
counting as students paced
the length of a rug

these methods became the focus of the concluding whole-class discussion when the
students paced along the edge of a rug at the front of the classroom. In one method,
some students placed one foot such that the heel was aligned with the beginning of
the rug but did not count “one” until they placed the other foot heel to toe with the
first (see Fig. 9.4a).

In the other method, students counted the placement of one foot aligned with the
beginning of the rug as “one” and then continued “two” as they placed their other
foot (see Fig. 9.4b). During the whole-class discussion, the teacher made a record of
a student’s paces along the edge of the rug by placing pieces of masking tape on the
floor. This intervention proved crucial in that it supported a conceptual conversation
in which arguments focused not merely on the two methods of counting paces but on
how these methods structured the physical extension of the rug. For example, several
students reasoned with the record to argue that those who did not count the first pace
had “missed” a piece of the rug. In doing so, they gave backings to explain why
the method of counting the first pace should be accepted as having authority. These
arguments proved to be decisive in that all the students counted their first pace in the
remaining two sessions of this first phase of the teaching experiment. Furthermore,
forms of argumentation in which backings focused on amounts of space (or pieces of
the rug) became taken as shared. Issues that emerged as topics of conversation in the
final two sessions during which the first practice emerged included the differences
in numerical results when students with different size feet measured the physical
extension of the same object and the adjustments that should be made when the final
pace extended beyond the end of the object being measured. In the course of these
discussions, the numerical results obtained when measuring were spoken about in
public discourse as signifying the last pace (or the amount of space it defined) rather
than the space covered by the entire sequence of paces. It therefore appeared to
be taken as shared that measuring by pacing structured the physical extension of
an object into a chain or sequence of individual paces, each of which defined an
amount of space. Furthermore, the taken-as-shared purpose of measuring appeared
to be to find out how many paces were needed to traverse the physical extension
of the object. These assertions about the first mathematical practice that emerged,
measuring by pacing, were significant given our instructional agenda in that they
indicated that measuring did not involve the accumulation of distance.

The second mathematical practice emerged as a reorganization of the practice
of measuring by pacing during the next seven classroom sessions. The teacher
continued the narrative about the king who used his foot to measure by explaining
that the king was receiving too many requests to measure things in his kingdom and
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could not be everywhere at once. The problem the students addressed was therefore
that of devising ways in which the king’s foot could be used as the unit of mea-
sure even though the king would not do the measuring himself. The solution that
emerged during several classroom sessions involved tracing five feet heel to toe on
a strip of paper that the students called a footstrip. The students initially constructed
footstrips by tracing around their feet and were given standard footstrips once the
issue of obtaining different numerical results when using different sized footstrips
had been resolved.

A taken-as-shared method for using the footstrip emerged with little need for
discussion in Session 1, in which the students used it to measure objects in the
classroom. This method involved iterating the footstrip along the physical extension
of objects while counting “5, 10,” and so forth. The ease with which this normative
method emerged led us to conjecture that it was taken as shared that each place-
ment of the footstrip was equivalent to taking five paces. This conjecture proved
viable when we analyzed subsequent sessions. For example, explanations in which
students spoke of taking one “big step” of five and of measuring now being faster
(i.e., it was faster to count five paces at a time than to count single paces by ones)
were treated as legitimate.

It was not until 2 days after the students first used the footstrip as a measuring
tool that differences in their personal meanings became an explicit topic of con-
versation. This occurred during a whole-class discussion in Session 8 when two
students demonstrated how they had measured a cabinet at the side of the classroom
that abutted a wall (see Fig. 9.5).

The students iterated the footstrip three times while counting “5, 10, 15” but
found that there was not enough room to place the footstrip for a fourth time. They
attempted to resolve the dilemma by placing the footstrip so that one end touched
the wall and then counting the individual paces that filled the gap beyond the third
placement of the footstrip. However, they had difficulty in completing their solution

Fig. 9.5 The method of measuring the cabinet using a footstrip



9 Participating in Classroom Mathematical Practices 139

and a researcher intervened by suggesting that they move the footstrip so that it
extended up the wall. A number of students argued that this method would not work,
contending that the space being measured would then extend up the wall to the end
of the footstrip. It appeared that, for these students, the placement of the footstrip
defined the space being measured. Their arguments appeared to reflect their prior
participation in the first mathematical practice in that it had been taken as shared that
each physical act of taking a pace defined an amount of space and that, consequently,
the final pace could not extend beyond the end of the object being measured.

As the exchange continued, one student argued against the rejection of the
researcher’s proposal by explaining that he imagined cutting the footstrip at the
point where the cabinet met the wall. Several students then reversed their position
and, the following day, none of the students appeared to encounter any difficulty
when part of the footstrip extended beyond the end of an object being measured.
Furthermore, this approach of mentally cutting the footstrip at any point as the need
arose seemed to be beyond justification. It now appeared to be taken as shared that
the structured space created while measuring was no longer tied to the physical acts
of placing the footstrip (or taking a pace) but was instead treated as a property of
the object being measured. This was the most crucial advance made by the class-
room community as the second mathematical practice of measuring by iterating a
footstrip emerged.

A final point that we need to clarify concerns the structure of the space that was
now attributed to objects. Two competing interpretations became the explicit focus
of discussion on several occasions, but the conflict between them was not resolved
during the time that the students used the footstrip. Several students’ arguments indi-
cated that, for them, measuring with the footstrip structured the physical extension
of an object into a sequence or chain of individual paces much as had measuring by
pacing. In contrast, for other students the physical extension of the object being mea-
sured constituted what they called a “whole space” that was partitioned into paces.
Thus, in this latter interpretation, “the whole 12” meant the distance from the begin-
ning of the 1st pace to the end of the 12th pace whereas, in the former interpretation,
it meant the whole 12th pace. Furthermore, in the latter interpretation, a measure of
121/2 meant 12 paces and an additional half of a pace whereas, in the former, it meant
half of the 12th pace. The contrast between these two interpretations constituted a
mathematically significant issue given our instructional intent that measuring would
come to signify the accumulation of distance. However, as a resolution was yet to
be achieved, the most that we can claim is that the two ways of structuring space,
both of which were treated as properties of the object being measured, emerged as
an explicit focus of public discussion when students participated in the practice of
measuring by iterating the footstrip.

The Emergence of the Third Mathematical Practice

The two students on whose reasoning we will focus as we discuss the third math-
ematical practice had participated in the second practice in different ways. Nancy
interpreted measuring with the footstrip in terms of the accumulation of distance
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whereas, for Megan, the result of measuring was a sequence of individual paces.
The third practice emerged over a period of 11 classroom sessions and commenced
on the 11th day of the reaching experiment. In these sessions, the teacher devel-
oped a narrative about a village of Smurfs (dwarf-like creatures from the television
cartoon The Smurfs). In this narrative, the Smurfs encountered various situations
in which they needed to measure objects. According to the narrative, the Smurfs
measured by taking empty food cans and placing them end to end to determine the
length or height of an object. The students solved the problems the Smurfs encoun-
tered by using Unifix cubes as substitutes for food cans. With little discussion, all
the students including Megan and Nancy clipped cubes together to make a rod that
spanned the physical extension of the object being measured and then counted the
cubes by ones.

We should clarify that the students measured by making rods of Unifix cubes
only during Sessions 11 and 12. In Session 13, the teacher explained that the Smurfs
found it problematic to carry a large number of food cans with them when they
wanted to measure something and needed to develop a new method. The solution
that emerged with the teacher’s guidance during a whole-class discussion was to
use a bar of 10 cubes that the students called a Smurf bar as a measurement tool.
The taken-as-shared method that became established with little need for discus-
sion involved iterating a Smurf bar along the physical extension of an object while
counting by tens. This development would appear to be made possible by the stu-
dents’ prior participation in the second mathematical practice in which they iterated
a footstrip while counting by fives.

It was against this background that an issue that relates directly to our instruc-
tional focus on measuring as the accumulation of distance became an explicit topic
of conversation in subsequent sessions. This is illustrated by a series of exchanges
that occurred between Megan, Nancy, and a researcher as they worked together to
measure objects in the classroom on the 14th day of the experiment and the first on
which they used a Smurf bar as a measuring tool. Nancy first measured the length
of a table while Megan watched her. A researcher intervened after Nancy had iter-
ated the Smurf bar twice while counting “10, 20” to clarify what “20” signified
for her. Nancy responded by gesturing to the space covered by the first two itera-
tions while explaining, “Twenty is how many little cubes we’ve done so far.”14 She
then continued iterating the Smurf bar until she reached the end of the table and
obtained a numerical result of exactly 80. This exchange is consistent with all other
observations of Nancy’s measuring activity during this period of the experiment

14Nancy’s gesturing as she explained, “Twenty is how many little cubes we’ve done so far”
illustrates Roth’s (2001, this issue) arguments concerning the integration of word and gesture in
establishing the entities that are spoken about. Several other examples of this phenomenon are
apparent in our account of the emergence of the first three mathematical practices. In this con-
nection, it is worth noting that we attended to the teacher’s gesturing as part of our instructional
design. In particular, we conjectured that it would be important for the teacher to indicate by gesture
the entire distance that had been measured when iterating a Smurf bar rather than the successive
placements of the bar.
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Fig. 9.6 Megan’s method for
measuring the animal tank

and indicates both that measuring involved the accumulation of distance for her
and that iterating the Smurf bar structured the physical extension of an object into
a single spatial quantity that was itself partitioned into spaces each of which was
10 cubes long.

Megan next used a Smurf bar for the first time and began to measure the height of
an animal tank at the side of the classroom. She iterated the bar twice while counting
“10, 20” and then iterated it for a third time while saying “30” even though the bar
extended beyond the top of the tank (see Fig. 9.6).

She then held the Smurf bar in this position and counted the individual cubes in
the bar by ones, starting at 31 until she reached the top of the tank. We conjectured
on the basis of this observation that interacting with the Smurf bars for a third time
while saying “30” indicated to her that the cubes that composed the bar were in the
30 s decade. This conjecture implied that, in contrast to Nancy, measuring with the
Smurf bar was not a curtailment of measuring with individual cubes and counting
them by ones for Megan. Instead, the relation between the two methods appeared
to be based primarily on a number word relation for her. This in turn led us to infer
that when Megan iterated the Smurf bar, it structured the height of the tank into a
chain of spaces, each of which was composed of ten cubes long, rather than into a
single spatial quantity.

Nancy, for her part, challenged Megan’s reasoning by iterating the Smurf bar
twice while counting “10, 20” before moving it a third time and counting individual
cubes “21, 22, 23.” Megan responded by measuring as she had before and again
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obtained 33 as a numerical result, indicating that she did not understand Nancy’s
calculational explanation. This led Nancy to elaborate the backing for her argument
by counting the individual cubes in each iteration of the Smurf bar, “1, 2, . . .10; 11,
12,. . .20; 21, 22, 23.” She then continued, “If the top [of the third iteration] ended
here (points to the top of the tank), then it would be 30. But it [the third iteration]
ended way up there (points above the tank) so it would not be 30.” In making this
final argument, Nancy may have been attempting to explain how iterating the Smurf
bar structured the height of the tank for her (i.e., “it would not be 30” may, for her,
have signified that 30 individual cubes would not fit into the space between the bot-
tom and top of the tank). However, because she spoke in calculational terms, the
differences in the meaning that measuring with the Smurf bar had for the two girls
did not become a topic of conversation. Instead, Megan continued to measure as she
had before for the remainder of the session even though she accepted Nancy’s result
of 23 in this instance. In the subsequent whole-class discussion, the teacher asked
Nancy and Megan to demonstrate how they would measure the length of the white
board at the front of the classroom. The episode serves to further corroborate the
assertion that measuring with the Smurf bar involved the accumulation of distance
for Nancy. In addition, subsequent events indicate that this exchange was particu-
larly significant for Megan. (T indicates the teacher, and R indicates a researcher.)

Both: 10 [the teacher marks the end of the first iteration with the numeral 10, as
shown in Fig. 9.7], 20 [the teacher marks the end of the second iteration with the
numeral 20].

R: Where’s the 20? What does 20 mean?
Megan: 20 means 20 food cans.
R: That means 20 food cans. How much space would that be? Can somebody

show me how much space 20 cans would take up there? Mitch?
Mitch: About that long [indicates the space between 10 and 20].
Nancy: No [indicates the space from the edge of the white board to 20]. This

is, because he [Mitch] did 10, not 20. [Mitch indicates he has changed his
mind.]

Fig. 9.7 The teacher’s record of Nancy and Megan’s measuring activity



9 Participating in Classroom Mathematical Practices 143

R: Oh, so it’s the whole 20.
Megan: [Continues to measure with the Smurf bar as the teacher marks each

iteration.] 21,22, . . . 30; 40; 50; 60; 61, 62, 63, 64.

In this exchange, the questions the researcher posed together with the record the
teacher made of the girls’ measuring activity served to initiate a conceptual discus-
sion that focused on how Megan and Nancy’s method of measuring structured the
physical extension of the white board. This contrasts with the calculational con-
versations that Nancy and Megan had during small-group work. Their small-group
interactions were typical in this respect in that the students rarely gave backings for
their methods of measuring when they first used the Smurf bar unless an adult gave
support. The pattern that emerged across the experiment was in fact one in which the
teacher and researcher had to intervene at the beginning of the emergence of each
new practice to initiate conceptual discussions.15 The sociomathematical norm of
what counted as an acceptable explanation was relatively stable during whole-class
discussions only because of these interventions. However, as each mathematical
practice emerged, students assumed increasing responsibility for answering their
peers’ questions that required a conceptual response.

Turning now to consider the substance of the episode, it is apparent from the
exchange between Nancy and Mitch that measuring as the accumulation of distance
was not taken as shared. Our point in making this claim is not that we, as observers,
can identify differences in Mitch and Nancy’s individual interpretations. Instead, we
have adopted a social perspective from which we note that the issue of how measur-
ing with the Smurf bar structured space became an explicit topic of conversation. In
this regard, we remind the reader that our concern when identifying taken-as-shared
ways of reasoning is not to delineate an overlap in individual students’ interpre-
tations. Instead, we are concerned with normative ways of reasoning, with ways of
reasoning that are beyond justification. As a consequence, we focus on the status that
individual students’ contributions come to have in public classroom discourse. In the
case at hand, Nancy’s explanation was constituted as legitimate, whereas Mitch’s
proposal was treated as illegitimate. In responding to Mitch, Nancy therefore con-
tributed to the emergence of the third mathematical practice, that of measuring by
iterating the Smurf bar. Similarly, Mitch contributed by making his proposal and by
indicating that he had changed his mind.

A final observation about the episode concerns the manner in which Megan com-
pleted the task of measuring the white board. In contrast to her activity during the
prior small-group work with Nancy, she continued to count individual cubes “61, 62,
63, 64” when she iterated the Smurf bar for a final time and it extended beyond the
edge of the white board. This is particularly noteworthy given that she and Nancy
were the first students to demonstrate during the whole-class discussion how they
had measured. When we first analyzed this episode, we conjectured that she may

15Bowers and Nickerson (1998) reported a similar pattern in their analysis of a university
mathematics course that focused on quantitative reasoning.
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have reorganized her reasoning with the Smurf bar as she listened to the exchange
between the researcher, Mitch, and Nancy. However, this conjecture was extremely
speculative and it was not until we continued to work through the data that we
were able to substantiate it and to clarify the nature of the reorganization she made.
Switching to the social perspective, we can also note that, in measuring as she did,
Megan, like Nancy, contributed to the emergence of the third mathematical practice.
The fact that we can make this observation before we can substantiate our inferences
about her reasoning serves to emphasize that we are not concerned with an overlap
in individual interpretations when we delineate taken-as-shared meanings.

Events that occurred the following day during the Session 16 proved particu-
larly helpful as we tested and refined our conjectures about Megan’s reasoning. The
instructional activities involved helping the Smurfs cut lumber a certain length so
that they could use the boards to build a house. Students were given long pieces of
adding machine tape as the lumber and asked to produce boards of given lengths.
During small-group work, Megan and Nancy recorded each iteration of the Smurf
bar on the adding machine tape by writing numerals much as the teacher had dur-
ing the whole-class discussion the previous day. Furthermore, measuring seemed
to involve the accumulation of distance for both students. During the subsequent
whole-class discussion, the issue of how measuring with a Smurf bar structures
space again emerged as a topic of conversation. Midway through this conversation,
a student alternated between two methods of measuring and was unable to resolve
the conflict in the numerical results she produced. One method was consistent with
measurement as the accumulation of distance, whereas the other involved counting
within a decade as Megan had the previous day when she measured the animal tank.
At this juncture, Megan volunteered that she could help but said that she would
need the teacher’s assistance. She then measured with a Smurf bar while the teacher
marked each iteration at her request. A researcher interrupted her after she had iter-
ated the bar twice and asked her how many cans would fit into the spaces the teacher
had marked. Megan placed one hand at the beginning of the adding machine tape
and the other at the end of the second iteration and replied that 20 cans would fit
into the whole space and that 10 cans would fit into each of the small spaces. She
then completed her solution by iterating the Smurf bar for a third time and count-
ing three cubes to find where the adding machine tape should be cut to produce a
board 23 cans long. In doing so, she again contributed to the emergence of the third
mathematical practice.

Megan’s activity during this session is consistent with the conjecture that she
had reorganized her reasoning and that measuring with a Smurf barnow involved
the accumulation of distance for her. However, these observations also led us to
modify our conjecture by speculating that measuring with a Smurf bar only had this
meaning for her when she made or had access to symbolic records of her activity.
As it transpired, this inference proved to be viable when we continued to analyze
data during the remainder of this period of the experiment. For example, in an indi-
vidual interview conducted after Session 16, Megan counted within a decade as she
had when measuring the animal tank and became visibly confused. However, she
resolved the difficulty by writing numerals after each iteration of the Smurf bar on



9 Participating in Classroom Mathematical Practices 145

her own initiative. Significantly, she appeared to be aware of the role that making
records played in her reasoning both in this instance and on other occasions.

With regard to the learning of the classroom community, the last occasion on
which an explanation consistent with measuring as the accumulation of distance was
publicly questioned and thus had to be justified was during Session 15. In addition,
explanations that were at odds with this way of structuring space were consistently
challenged throughout the remainder of the experiment. These two observations
together provide the basis for our assertion that a new mathematical practice had
emerged.

In reflecting on the sequence of events we have described, an issue of immediate
interest given our agenda is that of teasing out the conditions that may have sup-
ported Megan’s reorganization of her reasoning with the Smurf bar. Three points
are worth mentioning in this regard. The first concerns Megan’s (and the other
students’) prior participation in the first two mathematical practices, measuring by
pacing and measuring with the footstrip. We contend that it is only against the back-
ground of this prior participation that we can understand how iterating the Smurf
bar emerged as a taken-as-shared method almost immediately when the tool was
introduced. Megan’s learning was therefore situated historically with respect to an
emerging sequence of mathematical practices.

Second, we conjecture that the researcher’s intervention during the whole-class
discussion to support a conceptual conversation was crucial. As a consequence of
this intervention, the issue of Megan and Nancy’s method of measuring structured
space became a focus of discussion. We note that, in contrast, Nancy’s calculational
explanations during the prior small-group work did not lead Megan to modify her
reasoning. It would of course be premature to make an assertion about the impor-
tance of conceptual discourse on the basis of this single case of learning. However,
our conjecture about the supportive role of this type of classroom discourse did hold
up when we reviewed our chronological analysis of the entire data set. In Megan’s
case, it is therefore reasonable to suggest that her learning was situated with respect
to the quality of the immediate conversation.

Third, the records that the teacher made of Megan and Nancy’s measuring activ-
ity appeared to play a critical role. From the social perspective, these records
supported the conceptual conversation about their measuring activity.16 From the
psychological perspective, the records made it possible for Megan to reflect on and
interpret her ongoing activity in terms of the accumulation of distance when she
listened to the exchange between Nancy, Mitch, and the researcher. Her learning
was therefore situated with respect to the inscriptions that were available for her to
reason with.

These claims about the various ways in which Megan’s learning was situated
indicate why we find it useful to view her act of reorganizing her reasoning (psy-
chological perspective) as simultaneously an act of participation in the emergence of

16See Thompson et al. (1994) for a more extensive discussion of the role of inscriptions in
supporting conceptual conversations.
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a new mathematical practice (social perspective). We can further clarify this point by
noting that the teacher and researcher both assumed that Megan had already devel-
oped aspects of the type of reasoning that they wanted to engender.17 For example,
the possibility that Megan may have been merely moving the Smurf bar end to end
while reciting the number word sequence “10, 20,” and so forth was not consid-
ered by the researcher. Instead, his intervention was premised on the assumption
that she and Nancy were structuring space. As a consequence of this intervention,
Megan became a participant in a conversation in which the taken-as-shared purpose
for measuring may have differed from her initial intentions. What Megan appeared
to learn in the course of this exchange was how to create records of her measur-
ing activity so that she could reason in a way compatible with explanations that
were treated as legitimate in public classroom discourse. Her learning was there-
fore supported by her participation in the emergence of the very practice to which
she contributed by learning. It is in this sense that we elevate neither individual stu-
dents’ learning nor the emergence of communal classroom practices above the other
but instead see them as reflexively related.

In closing this discussion of the emergence of the third mathematical practice,
it is important to emphasize that the analytic approach we have illustrated is tai-
lored to our purposes as mathematics educators. For example, each of the three
ways in which Megan’s learning was situated has implications for the assessment
and revision of our instructional design. First, our observation of the students’ prior
participation in the first two mathematical practices indicates that the modifications
we made to the first part of the instructional sequence during the teaching experi-
ment are generally viable. To complete this assessment, we would of course have
to consider the subsequent mathematical practices that emerged during the remain-
der of the experiment as reorganizations of the third practice. As it transpired, this
assessment is favorable in that a fourth practice that involved using paper strips 100
cans long as a measurement tool emerged with the teacher’s guidance. In the fifth
practice, this tool was used not as a measurement device but as a means of rea-
soning about measures (e.g., the students found the difference between the heights
of two items that they were told measured 49 cans and 73 cans). This in turn pro-
vided a basis for the emergence of the subsequent practices that involved mental
computation with numbers up to 100 (cf. McClain, Cobb, & Gravemeijer, 2000).

Second, the assertion we made about the importance of conceptual discourse has
implications for both the teacher’s role in teaching mathematics for understanding
and for teacher education (cf. Bowers & Nickerson, 1998; Thompson & Thompson,
1996). For example, it indicates the importance of teachers themselves engaging in
conceptual mathematical conversations and reflecting on such conversations as situ-
ations for mathematical learning. Third, our claims about the supportive role played
by symbolic records of measuring activity have more specific implications for the

17The important role of interactions in which an adult attributes greater competence to a child than
the child is displaying features prominently in the Vygotskian literature (e.g., Newman, Griffin, &
Cole, 1989; Stone, 1993).
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teacher’s role when teaching children to measure with understanding. In particular,
it indicates the importance of teachers making such records and intervening to ask
students about the way in which space is being structured as they measure.

We return to this discussion of the potential contributions of the analytic
approach we have illustrated when we consider its usefulness in more general terms.
First, however, we tease out additional aspects and discuss its trustworthiness and
replicability.

Methodological Reflections

A methodological issue about which we can be more explicit in light of the sample
analysis is that of what constitutes an episode during the first phase of an analysis
when we work through the data chronologically. The determining characteristic of
an episode is that a single mathematical theme is the focus of mathematical activity
and discourse. As an example, we viewed the exchange between Megan and Nancy
as they measured the height of an animal tank in Session 14 as a single episode. In
this case, the theme was that of how to count individual cubes when the final iter-
ation of the Smurf bar extends beyond the object being measured. Had this theme
continued when they moved on to measure another object, we would have treated
their subsequent activity as part of this episode. As a second example, recall the
whole-class exchange that occurred during the emergence of the second mathemat-
ical practice when a pair of students used a footstrip to measure the length of a
cabinet that abutted a wall. In this instance, the theme that we identified when delin-
eating a single episode was that of how to resolve the difficulty that arose when
there was not enough room to place the footstrip for a final time and thus complete
the measurement of the cabinet. As it so happened, the focus of discussion when a
previous pair of students had demonstrated how they measured the cabinet was on
the number of paces corresponding to a certain number of iterations of the footstrip.
Thus, in contrast to the exchange that occurred as Megan and Nancy measured the
animal tank, we viewed the discussion that occurred while measuring the physical
extension of a single object (the cabinet) as consisting of two distinct episodes.

As the two examples we have given illustrate, an episode does not necessarily
correspond to either a single measuring solution or to a single instructional activity.
Instead, in keeping with our interpretivist approach, episodes are determined by the
mathematical themes that we identify in the students’ and teacher’s activity and dis-
course. As a related issue, it is worth clarifying the characteristics of episodes that
prove to be particularly critical when we move to the second phase of the analysis
and meta-analyze the results of the initial episode-by-episode analysis. In general,
the critical episodes are those that prove pivotal in either refuting a conjecture or
substantiating an assertion. We should add that these episodes might initially appear
to be of little significance when viewed in isolation. Their critical role only becomes
apparent when they are located within the chain of conjectures, refutations and revi-
sions that result from the first phase of the analysis. The first example we have given
is a critical episode when viewed in light of Megan’s measuring activity during the
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remainder of the teaching experiment in that it documents that measuring with the
Smurf bar was yet to involve the accumulation of distance for her. This episode is
therefore central to our claim that she reorganized her reasoning as she participated
in the whole-class discussion that followed this episode. The second example in
which a pair of students measured with a footstrip proved critical when we devel-
oped an empirically grounded chronology of the classroom community during the
second phase of the analysis. We juxtaposed this episode with both prior and sub-
sequent episodes to claim that it was during this exchange that it became taken as
shared that the structured space created while measuring was a property of the object
being measured. These two examples are representative in that all of the episodes
we described when presenting the sample analysis proved critical and were in fact
included for this reason.

A second important methodological issue that we have yet to address concerns
the criteria we use when we delineate mathematical practices. The sample analy-
sis is helpful in this regard in that it clarifies that the distinctions we draw between
different practices are oriented by our instructional agenda. Recall that we wanted
measuring to come to involve the accumulation of distance and that we cast our
instructional intent in terms of the emergence of a taken-as-shared spatial environ-
ment in which distances are quantities whose numerical measures can be specified
by actually measuring. Given this focus, the distinctions we drew when we delin-
eated the three mathematical practices in the sample analysis go beyond changes
in observed measuring strategies by focusing on the emergence of taken-as-shared
ways of structuring space. The hallmark of the first practice was that it was taken
as shared that measuring by pacing structured the physical extension of an object
into a chain of single paces. As the second practice of measuring with the footstrip
emerged, it became taken as shared that the structured space created by measur-
ing was no longer tied to the physical measuring activity but was instead treated
as a property of the object being measured. In the case of the third practice, it
became taken as shared that measuring with a Smurf bar involved the accumulation
of distance.

We can highlight the contrast between this analytic approach and one that focuses
on observed solution methods by considering the emergence of the third mathe-
matical practice. Recall that, at the beginning of the third phase of the teaching
experiment, the students measured by making rods of Unifix cubes that spanned the
physical extension of the object being measured and then counted them by ones.
Clearly, this is a distinct measuring procedure when compared with both measuring
with a footstrip and with a Smurf bar. However, the emergence of this taken-as-
shared method did not appear to involve an advance in the taken-as-shared way of
structuring space when compared with the second practice. As a consequence, we
did not treat it as a distinct practice but instead viewed it as a step in the emer-
gence of the third practice, measuring with a Smurf bar. We would note that, in
the last analysis, we would justify this approach of focusing on the evolution of
taken-as-shared mathematical meanings by referring to our values as mathematics
educators. Given our arguments about what is important in the knowing and doing
of mathematics, an analytic approach that behaviorizes communal mathematical
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practices by equating them with taken-as-shared procedures is ill suited to our
purpose.

A third methodological issue that the sample analysis enables us to further clar-
ify is that of what is involved in taking a social perspective. Clearly, when we view
classroom video recordings, we do not see the classroom community as the discrete,
concrete entity in the same way that we see the teacher and students as distinct phys-
ical beings. As a consequence, we cannot observe mathematical practices directly
any more than we can directly observe the meanings that individual students’ mea-
suring activity had for them. Instead, we develop and test conjectures about both
communal practices (social perspective) and individual students’ reasoning (psy-
chological prospective) as we analyze what the teacher and individual students say
and do in the classroom. The distinction between the two interpretative perspectives
resides in what may be termed the grain size with reference to which we charac-
terize what they are doing. In the case of the psychological perspective, we view
the teacher and students as a group of individuals who engage in acts of reasoning
as they interpret and respond to each other’s actions. In contrast, when we take the
social perspective, we view the teacher and students as members of a local commu-
nity who jointly establish communal norms and practices. As an example, consider
again Nancy’s explanation to Mitch in the whole-class discussion during Session
14 of the teaching experiment. Nancy argued that 20 cans would take up the space
from the beginning of the white board to the end of the second iteration of the Smurf
bar. In taking a psychological perspective, we were concerned with the quality of
Nancy’s reasoning and saw her activity in the exchange with Mitch as substantiat-
ing our conjecture that measuring with a Smurf bar involved the accumulation of
distance for her. In contrast, when we interpreted this same episode from the social
perspective, we were concerned with the status that her explanation came to have
and argued that it was in fact constituted as a legitimate explanation. The important
point to note is that its constitution as a legitimate explanation was not an individual
act but was instead a collective accomplishment. It was from this perspective that we
viewed Nancy as contributing to the emergence of the third mathematical practice.
We established our basic unit of analysis, that of classroom mathematical practices
and students’ diverse ways of participating in them, when we coordinated inter-
pretations of what the teacher and students were doing from the two perspectives.
This diversity in the students’ reasoning was illustrated in the sample analysis by
the contrast between Megan and Nancy’s measuring activity. As we saw, measuring
with a Smurf bar involved the accumulation of distance for Nancy from the outset.
However, measuring with a Smurf bar had this meaning for Megan only when she
generated or had access to records of her measuring activity.

A fourth methodological issue that we can clarify by referring to the sample
analysis concerns our treatment of the role of tools in individual and collective
mathematical learning. The sample analysis addresses this issue directly in that the
students reasoned with tools as they participated in all three of the mathematical
practices that we have described. At first glance, it may in fact appear that the use of
a new tool leads to the emergence of a new mathematical practice. This, however, is
not always the case. The fourth and fifth mathematical practices that we described
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briefly both involved the use of a paper strip that was 100 cans long. In one prac-
tice, the strip was used as a measuring tool whereas, in the other, it was used as
a tool for reasoning about the measures of objects that the students had not actu-
ally measured. As a further example, suppose that it had become taken as shared
that measuring with the footstrip involved the accumulation of distance. In such a
scenario, use of the Smurf bar may not have involved a significant change in how
measuring structured the physical extension of objects into quantities of space. We
would therefore have treated use of the Smurf bar as a part of the second practice,
rather than as a distinct practice. A final example draws on the observations we have
made about the use of a rod of Unifix cubes as a measurement tool. As we noted,
the use of this tool did not appear to involve a restructuring of space, and therefore
did not, in our view, constitute a distinct practice.

Our purpose in presenting these examples is not to dismiss the important role that
students’ use of tools plays in their mathematical learning, but instead to rule out a
simplistic view of the relation between tool use and the emergence of mathematical
practices. The fact that the three practices we have described involved the use of
a different tool is attributable in part to the viability of our instructional design.
These tools were specifically designed so that their use would involve significant
mathematical learning. We can best clarify our position on tool use by focusing on
a notion that has common currency in distributed accounts of intelligence, that of
affordances. We have no doubt that it would in fact be possible to develop an analysis
of our data in which great emphasis is placed on the affordances of the various
measuring tools that the students used. To give but one example, we saw that it
became taken as shared when the students used the footstrip that the structured space
created by measuring was a property of the object being measured. A whole-class
discussion that focused on what to do when the last iteration of a footstrip extended
beyond the end of a cabinet appeared to be particularly crucial in this regard. It is
noteworthy that a similar issue, that of what to do when the measuring tool extends
beyond the end of the object being measured, had emerged earlier when the students
measured by pacing. However, in that case, some students resolved the difficulty to
their satisfaction by turning their foot sideways so that the last pace did not extend
beyond the end of the object. Such a solution was not possible when the students
used the footstrip because of its physical structure. Instead, the idea of mentally
cutting the footstrip became an explicit topic of conversation. It may therefore be
argued that the footstrip afforded ways of reasoning in which structured space is
treated as a property of the object being measured.

A central feature of this explanation is that it treats the affordances of the foot-
strip and of feet as intrinsic characteristics of the tools. Such an account embodies
what Meira (1998), following Roschelle (1990), called the epistemic fidelity view in
that it emphasizes the perceived relation between the material features of tools and
particular mathematical ideas. In focusing on the physical characteristics of tools,
this approach ignores both students’ prior participation in particular mathematical
practices and the taken-as-shared purposes for using the tool. For example, we saw
that it was as a consequence of the students’ participation in the first mathematical
practice (measuring by pacing) that iterating the footstrip involved structuring the
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physical extension of the objects into a chain of paces from the outset. Furthermore,
the taken-as-shared purpose for using the footstrip was to specify how many paces
it would take to transverse the physical extension of the object being measured.
Against this background, a number of potential ways of resolving the difficulty of
what to do when the last iteration extended beyond the end of the object simply
failed to materialize. For example, none of the students suggested aligning the foot-
strip with the end of the cabinet that was being measured and then counting all five
paces, presumably because they understood that some of these paces would overlap
with those of the second last iteration. It was also against this background that some
of the students immediately saw value in the proposal of mentally cutting the foot-
strip at the point where the cabinet met the wall. They presumably understood that
the paces on the footstrip up to the cut would fill the gap beyond the last iteration
and complete the process of traversing the physical extension of the cabinet. Their
contributions to the emergence of the second mathematical practice, like those of
the student who made the proposal, reflect both the taken-as-shared purposes that
have been established for using the footstrip and their prior participation in the first
practice.

We should emphasize that our rejection of the epistemic fidelity view does not
imply a complete abandonment of the notion of affordances. It is self-evident, for
example, that the central mathematical idea of measurement as the accumulation
of distance would not have emerged but for the students’ use of particular tools.
Although the approach of equating affordances with particular material features of
tools is problematic, they can reasonably be characterized as both individual and
collective accomplishments. There is every reason to doubt that the footstrip would
have afforded the emergence of structured space as a property of the object being
measured had the students used it from the very beginning of the teaching exper-
iment. Instead, in more general terms, the affordances that tools come to have are
constituted as they are used for particular purposes against the background of par-
ticipation in previously established practices. This view is highly compatible with
Meira’s (1998) contention that “instructional devices should be thought of in con-
nection to some task, system of activities, and cultural context in which they make
sense” (p. 140). For our purposes as instructional designers, this implies that we
should not focus on the material features of tools per se, but on how students reason
with them as they participate in an evolving sequence of mathematical practices.

As a final observation about our treatment of tool use, the reader may have
noticed that we did not follow the standard sociocultural approach when speaking of
students appropriating ways of reasoning with tools. Megan’s learning in the course
of the exchange between Nancy, Mitch, and a researcher during Session 14 would
seem open to this kind of explanation. One may argue, for example, that Megan
appropriated a way of reasoning with the Smurf bar from a publicly accessible con-
versation. Our reason for eschewing this relatively straightforward explanation is
not that we believe that the general idea of appropriation is misguided. Instead,
our rationale relates to our purposes of design research. At a gross level, one can
plausibly speak of Megan appropriating a way of reasoning from an ongoing con-
versation. In such an account, the process of appropriation is, in effect, a black box.
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We find it essential for our purposes to look inside the box by analyzing how teach-
ers and students mutually adjust their interpretations and actions in the course of
ongoing interactions. We took this psychological perspective when we analyzed the
exchange involving Megan by focusing on what it may have meant to her. This in
turn enabled us to identify aspects of the ongoing events that may have supported her
learning, and thus to consider the implications of the episode for the improvement
of our instructional design. We contend that we were able to develop these conjec-
tures about possible improvements only because we “unpacked” the appropriation
process. As we have noted elsewhere, explanations cast in terms of appropriation
are adequate for many purposes in that they provide a broad overview of the process
of induction into a culture (Cobb, Jaworski, & Presmeg, 1996). However, given our
interest in classroom-based design research, it is important to complement a strong
social perspective with an equally strong psychological perspective.

Trustworthiness, Replicability, And Commensurability

Turning now to consider the legitimacy of the methodological approach we have
illustrated, we first note that the standard convention when reporting interpretivist
analyses is to clarify general assertions by presenting a limited number of criti-
cal episodes (Atkinson, Delamont, & Hammersley 1988; Taylor & Bogdan, 1984).
However, a difficulty arises in that the interpretations of these episodes frequently
do not seem justified if they are considered in isolation from the rest of the data.
For example, we ruled out the possibility that, during Session 14, Megan was
merely imitating a measuring procedure she knew was valued only when we tested
and refined conjectures while working through the remainder of the data corpus.
Our assertion that she significantly reorganized her reasoning during Session 14 is
substantiated by regularities we observed in her mathematical activity during the
remainder of the teaching experiment. In this analytical approach, the interpretation
of specific episodes and the delineation of general regularities are therefore inter-
dependent in that each informs the other. As a consequence, the interpretation of
a particular episode is located within a network of mutually reinforcing inferences
that span the entire data set. In such an approach, a central methodological concern
is that of the trustworthiness of the analysis.

The notion of trustworthiness acknowledges that a range of plausible analyses
may be made of a given data set for a variety of different purposes. The issue at
hand is that of the reasonableness and justifiability of the inferences and assertions.
The most important criterion in this regard is the extent to which the analysis of
a longitudinal data set of this type generated during a teaching experiment is both
systematic and thorough. The hallmark of an analytical approach that satisfies this
criterion is that inferences are treated as provisional conjectures that are continually
open to refutation. We attempted to give a sense of this process of testing and refin-
ing conjectures during the sample analysis when we discussed the emergence of the
third mathematical practice. To satisfy the criterion, we find it essential to document
all phases of the analysis including that of positing and testing initial conjectures.
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Final interpretations and assertions can then be justified by backtracking through
the various phases of the analysis, if necessary to the video recordings and other
data sources. This procedure provides a way of differentiating systematic analy-
sis in which sample episodes are used to illustrate robust claims from questionable
analyses in which a few possibly atypical episodes are used to support unsubstan-
tiated assertions. Additional criteria that enhance the trustworthiness of an analysis
include both the extent to which it has been critiqued by other researchers, some but
not all of whom are familiar with the teaching experiment from which the data were
generated, and the extent to which it derives from a prolonged engagement with
teachers and students. This latter criterion is typically satisfied in the case of design
research and can be viewed as a strength of the methodological approach we take.

The issue of replicability is relevant to the type of design research we conduct in
that the approach rests on the assumption that the mathematical practices and asso-
ciated patterns of learning documented during a teaching experiment can emerge
when the instructional sequence is enacted in other classrooms. However, as we
know only too well, the history of educational research in general, and in mathe-
matics education in particular, is replete with more than its share of disparate and
irreconcilable findings. In our view, a primary source of difficulty is that the inde-
pendent variables of traditional experimental research are often relatively superficial
and have little to do with either context or meaning. The conceptualization of the
classroom as a matrix of variables is at odds with the approach we have taken in
which the classroom microculture is viewed as a semiotic ecology that involves
meaning making in which one thing is taken as a sign for another.18 We have
attempted to illustrate that, from this point of view, students are seen to perceive, act,
and learn as they participate in and contribute to the development of a system that is
larger than themselves, the classroom community. As Lemke (1997) put it, learning
can be characterized as “an aspect of self organization, not just of the human organ-
ism as a biological system, but of ecosocial systems in which the organism functions
as a human being“ (p. 49). It is this sense of participation in an evolving commu-
nity of practice that typically falls beyond the purview of traditional experimental
research.

We contend that the central issue is not so much that past findings have been dis-
parate, but that they have been irreconcilable: It has not been possible to account for
differences in findings when different groups of students have received supposedly
the same instructional treatment. In contrast to traditional experimental research, the
challenge as we see it is not that of replicating instructional treatments by ensuring
that instructional sequences are enacted in exactly the same way in different class-
rooms. The conception of teachers as professionals who continually adjust their
plans on the basis of ongoing assessments of their students’ reasoning would in

18This semiotic ecology can be made explicit by delineating the chain of signification (Lacan,
1977; Walkerdine, 1988) that is constituted as successive classroom mathematical practice emerge.
Stephan (1998) described the chain of signification that was constituted during the measurement
teaching experiment. Examples of other analyses of this type can be found in Cobb et al. (1997)
and Gravemeijer et al. 2000).
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fact suggest that complete replicability is neither desirable nor, perhaps, possible
(Ball, 1993; Carpenter & Franke, 1998; Gravemeijer, 1994b). The challenge for us
is instead to develop ways of analyzing treatments so that their realizations in dif-
ferent classrooms can be made commensurable. We contend that the approach we
have illustrated in the sample analysis offers this possibility. The key point to note is
that an analysis of the mathematical practices that are established when an instruc-
tional sequence is enacted in a particular classroom documents the sequence as it
is realized in interaction. Furthermore, when it is viewed against the background
of classroom social and sociomathematical norms, the instructional sequence as
enacted by a particular classroom community can also be seen to constitute the
evolving social situation in which the students’ mathematical learning occurred.
Consequently, an analysis of two different enactments of the same instructional
sequence enables us to relate the differing patterns of what are traditionally called
learning outcomes to the differing situations of learning as they were actually con-
stituted in the two classrooms. In such an analysis, the focus on the practices in
which the students actually participated as they reorganized their mathematical rea-
soning brings context and meaning to the fore. It is this that makes it possible to
compare and contrast critical aspects of different enactments of a treatment, thereby
making them commensurable. We therefore claim that an analytical approach of this
type can lead to greater precision and control by facilitating disciplined, systematic
inquiry into instructional innovation and change that embraces the messiness and
complexity of the classroom.

Usefulness

Throughout this article, we have indicated that a primary criterion by which an ana-
lytic approach should be judged is its usefulness. In this regard, there are three
additional points that should be considered. The first is to note that, in docu-
menting the actual learning trajectory of the classroom community, the approach
we have taken simultaneously documents the emergence of what is traditionally
called mathematical content as it occurs in particular classrooms. In the case of the
sample analysis, for example, we described how a taken-as-shared mathematical
environment in which space was structured in relatively sophisticated ways grad-
ually emerged during the first part of the teaching experiment. The fact that this
approach takes mathematics seriously is obviously important given our purposes.
This in turn enables us to address two questions that Roth (2001, this issue), in his
contribution to this special issue, contends should be asked: How does being in the
world change in the course of activity? What are the long-term effects of students’
engagement in individual instructional activities? The sample analysis is paradig-
matic in that, in Roth’s terms, it documents both the emergence of a taken-as-shared
ontology of space and students’ learning as they participated in and contributed to
its emergence. Furthermore, in line with Roth’s questions, the account we gave of
this process of emergence is grounded in the students’ use of particular tools to
complete specific instructional activities.
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A second observation about the usefulness of the analytical approach centers
on the manner in which it situates students’ mathematical activity and learning.
We have noted that what we need in order to improve our instructional designs are
accounts of students’ learning that are tied to analyses of what happened in the class-
rooms where that learning occurred. Analyses of classroom mathematical practices,
when coordinated with psychological analyses of individual students’ reasoning,
provide situated accounts of students’ learning in which the process of their learn-
ing is directly related to the means by which it was supported. As a consequence, a
difficulty that often arises when more individualistic approaches are followed, that
of figuring out what the results of an analysis may imply for instruction, simply fails
to materialize. Instead, we are in a position to immediately develop testable conjec-
tures about how we might be able to improve the means of supporting students’
learning. For our purposes as instructional designers, the situated nature of this ana-
lytical approach is a strength when compared with alternative approaches that aim to
produce context free descriptions of cognitive development that apparently unfold
independently of history, situation, and purpose.19 The all-to-familiar gulf between
theoretical analyses and instructional practice is side stepped because theoretical
insights about the means of supporting students’ learning in a particular domain are
rooted in the practice of attempting to support that learning. At a minimum, situ-
ated approaches of the type that we have illustrated support a process of educational
innovation in which change is a process of continual iterative improvement.

Our third observation about the usefulness of the analytical approach touches on
an issue about which we have said little thus far, that of collaborating with teach-
ers. In this regard, we conjecture that analyses of the type that we have illustrated
together with the associated instructional sequences can serve as important means
of supporting the development of professional teaching communities (cf. Ball &
Cohen, 1996; Hiebert & Wearne, 1992).20 As we have seen, the analyses justify the
instructional sequences that are developed in the course of teaching experiments in
terms of the trajectory of the classroom community’s mathematical learning, and the

19Wertsch (1991) made a similar point when he observed that much contemporary research in
psychology does not in fact have the practical implications claimed for it: “In my view, a major
reason is the tendency of psychological research, especially in the United States, to examine human
mental functioning as if it exists in a cultural, institutional, and historical vacuum” (p. 2).
20It could be argued that the forms of instruction developed in the course of a teaching experiment
are unfeasible for any teacher working alone. We would acknowledge, for example, that the entire
research team in effect constitutes a collective teacher with some members of the team actually
teaching, whereas others observe and analyze classroom events. The demands of this collective
activity are, however, balanced by the possibility that the collaborating teachers will be able to
capitalize on our learning as represented by instructional sequences and learning trajectories. This
conjecture about the proposed role of instructional sequences as a means of supporting the devel-
opment of professional teaching communities is discussed in some detail by Cobb and McClain
(2001). As part of our work with teachers, we are currently developing a series of companion
CD-ROMs to support their learning that are based on the video recordings and other data sources.
Readers who are interested in the practical implications of our work are referred to a series of arti-
cles and book chapters that we have developed for practitioner audiences (e.g., McClain & Cobb,
1999; McClain, Cobb, & Gravemeijer, 1999; McClain, Cobb, Gravemeijer, & Estes, 2000).
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means of supporting that learning. If the sequences were justified solely with tradi-
tional experimental data, teachers would know only that the sequences had proved
effective elsewhere but would not have an understanding of the underlying rationale
that would enable them to adapt the sequences to their own instructional settings. In
contrast, the type of justification that we favor offers the possibility that teachers will
be able to adapt, test, and modify the sequences in their classrooms. In doing so, they
can then contribute to both the improvement of the sequences and the development
of local instructional theories, rather than merely being the passive consumers of
instructional innovations developed by others. In this view, implementation may bet-
ter be seen as a process of idea-driven adaptation in which pedagogical approaches
that have proven effective elsewhere are tested and refined.

Limitations

In focusing on the limitations of our analytical approach, we first note that it was
developed while analyzing data from classrooms in which instruction was generally
compatible with current reform recommendations. Although we see no reason, a pri-
ori, why this approach could not be applied to more traditional instructional settings,
a difficulty does arise that concerns the process of documenting individual students’
learning. We noted when introducing the sample analysis that the predominance of
conceptual discourse in which students were obliged to explain how measuring with
a particular tool structured space greatly facilitated our analysis of their reasoning.
In contrast, the participation structure in traditional instructional settings is typically
such that students are rarely expected to articulate their mathematical interpreta-
tions. It would therefore be necessary to supplement classroom data by repeatedly
interviewing target students in order to assess their developing reasoning. However,
this strategy leads to a further difficulty in that interviews can be learning situa-
tions for students despite the interviewer’s intentions (Mishler, 1986). This implies
that the interviews should be included in the chronological data set that is analyzed
to document the process of the students’ learning. Furthermore, to tie their learn-
ing to the means by which it was supported, it would be important to coordinate
a psychological analysis with a social analysis that focuses on the obligations and
expectations jointly established by the student and researcher during each interview
(cf. Schoenfeld, 1982; Voigt, 1995).

A second limitation of the type of analysis we have illustrated is that its treat-
ment of social context is restricted to norms and practices that are established in the
course of face-to-face classroom interactions. The approach, therefore, does not take
account of the location of classrooms within schools and local communities, and
ultimately within the activity system that constitutes schooling in the United States.
The work of scholars who look beyond the classroom demonstrates that schooling
involves a number of taken-for-granted policies and practices that foster inequity
due to race, gender, class, and economic status (Apple, 1995; Zevenbergen, 1996).
Furthermore, as Lave (1996) observed, school as a social institution involves an
inherent contradiction between the functions of universal socialization on the one
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hand and those of the unequal distribution of particular ways of knowing a cultural
capital on the other hand. We have acknowledged these and other global, struc-
tural characteristics of schooling elsewhere by arguing that our analytical approach
should itself be complemented by a strong sociocultural perspective that places the
classroom in broader sociopolitical context (Cobb & Yackel, 1996). This is, in our
view, essential if we are to pay more than lip service to the pressing concerns of
equity and diversity. Minimally, it will be important to take account of teachers’
and students’ participation in practices located outside the classroom at the school
and community levels. When we do, a variety of other methodologies including
ethnography can be seen to be appropriate.

A further limitation of our analytic approach stems from the observation that it
cannot sensibly be proceduralized because it does not limit its focus to observable
activity but is also concerned with mathematical meaning. As the sample analy-
sis illustrates, the approach assumes a relatively deep grasp of the mathematics
being taught that transcends the topics, methods, and procedures institutionalized
in traditional school mathematics. In addition, the adoption of a social perspective
on teachers’ and students’ classroom activity is a nontrivial accomplishment that
is at odds with the graduate education of most mathematics educators and psy-
chologists. We are therefore under no illusion that readers will immediately be
able to use the methodology to analyze data they have generated even though we
have been relatively direct in describing the approach. Although this may seem
unsatisfactory to some, we take comfort from the observation that the situation is
similar in the physical, chemical, and biological sciences. The stipulation is inher-
ently conservative in that a methodology can be stripped of conceptual content and
reduced to mere method only when researchers share basic theoretical commitments
and assumptions. Consequently, although we value explicitness, we contend that
pronouncements which equate methodology with method should be challenged in
much the same way that we would question the proceduralization of mathematics in
school.

Conclusion

Throughout this article, we have stressed that our overall goal is to be increasingly
effective in developing instructional designs that support student’s mathematical
learning. We reiterate this point to emphasize that our commitment to a situated
viewpoint on mathematical activity is not ideological. When we described our theo-
retical position in the first part of this article, for example, we balked at the claim that
approaches that involve a focus on individual students’ reasoning should be delegit-
imized. Our reasons for doing so are pragmatic and relate directly to the purposes
of design research. As we clarified, we find it essential to focus on the particu-
lar ways in which individual students are reasoning when we make instructional
decisions in the classroom. In addition, we illustrated how the analysis of indi-
vidual students’ reasoning can lead to conjectures about how we can improve our
instructional designs. The importance of focusing on individual students’ reasoning
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acknowledged, we also clarified why we reject purely individualistic approaches
and instead find it useful to view students’ reasoning as acts of participation in com-
munal practices that they and the teacher establish in the course of their ongoing
interactions. The reasons we gave were again pragmatic and relate to the process of
planning a teaching experiment. In particular, we discussed why we need a language
in which to develop conjectures about the envisioned learning of the classroom
community. We also illustrated how this approach has the benefit of enabling us to
develop analyses of individual students’ mathematical learning that are tied directly
to the means of supporting that learning.

Given these considerations, the methodology we have presented may be best
viewed as a report from the field rather than a contribution to the ongoing debate
between adherents of situated cognition and those who subscribe to more stan-
dard psychological paradigms. For us, the methodology is nothing more than a
potentially revisable solution to the concrete problems and issues that we have
encountered while experimenting in classrooms. We can therefore readily accept
that alternative methodologies may be more appropriate for other purposes. We
leave it to the reader to judge whether aspects of the analytical approach we have
described are relevant to the problems of interest to them. In doing so, we extend
the view of implementation as an idea-driven adaptation to our fellow researchers
as well as to the teachers with whom we collaborate.
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Part V
Diversity and Equity





Chapter 10
Introduction

Paul Cobb with Lynn Liao Hodge, and Melissa Gresalfi

Supporters of US current reform recommendations argue that the classroom instruc-
tional practices they advocate are more equitable than traditional instructional
practices in giving all students access to significant mathematical ideas. The
approach to instructional design outlined in the previous part of this book is broadly
compatible with the influential set of reform recommendations proposed by the
National Council of Teachers of Mathematics (2000). The arguments of profes-
sional organizations such as NCTM not withstanding, I nonetheless took the view
that reform advocates’ claims about equity should be scrutinized carefully. My
doubts stemmed from prior work with groups elementary teachers in two differ-
ent school districts in the late 1980s and early 1990s. The first of these districts was
rural/suburban, whereas the second served an almost exclusively inner-city student
population. Erna Yackel, Terry Wood, and I collaborated with teachers in first dis-
trict for several years. Our overall goal was to help these teachers reorganize their
classroom instructional practices in ways consistent with reform recommendations.
To this end, we formulated an initial approach to teacher professional development
while working with teachers at this site that proved to be reasonably effective (Cobb,
Wood, & Yackel, 1990).

Our initial goal when working with the teachers in this district was to help them
make aspects of their current instructional practices problematic, so that they might
then have reason and motivation to want to reform their instructional practices. To
this end, the teachers analyzed video-recordings of both individual interviews and
classroom episodes to explore the consequences of traditional instruction. In doing
so, they differentiated between students’ correct adherence to prescribed mathemat-
ical procedures and their development of forms of reasoning that have quantitative
significance. Once the teachers began to question the adequacy of their current
ways of teaching, they became willing to consider alternative instructional activities
designed to support the development of quantitative reasoning. We noted at the time
that
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we did not have to convince them that children should learn with understanding. Rather,
they had assumed that this kind of learning was occurring in their classrooms. A shared
desire to facilitate meaningful learning and a general concern for children’s intellectual
and social welfare constituted the foundation upon which we and the teachers began to
mutually construct a consensual domain. (Cobb et al., 1990, p. 140, emphasis added)

Shortly after the above passage was written, Yackel began working with a
group of teachers in the inner-city district. It soon became apparent that our initial
approach to teacher development was not viable in this setting. For the most part, an
exploration of the consequences of traditional instruction did not lead these teach-
ers to question their current instructional approaches. Yackel’s subsequent efforts to
support these teachers were more successful and several of them did in fact develop
forms of practice that were compatible with current reform recommendations in
mathematics education.

In accounting for these experiences, Yackel and I concluded that what counts as
students’ intellectual and social welfare reflects particular culturally specific beliefs
and values (Cobb & Yackel, 1996). We argued that the teachers in the rural/suburban
district shared our view that instruction that emphasizes formal procedures at the
expense of quantitative meaning is not in students’ long-term interest. However,
it was apparent from observations of classroom lessons and teacher induction ses-
sions at the inner-city site that the teachers who worked in this district were also
committed to providing instruction that was beneficial to their students. Crucially,
the teachers in this district appeared to take a different view of students’ intellectual
and social welfare. In particular, teachers and administrators in the inner-city district
seemed to value a highly regulated environment. We also noticed that the reasons
for school and classroom regulations were not discussed with students. Although
the issue of whether a regulation had been violated in a particular instance was dis-
cussed, the appropriateness of the regulations and reasons for complying did not
become topics of conversation.

Yackel and I argued on the basis of these observations that “what it means to be
a student in school” is constituted by school and school district staff in the course
of their ongoing interactions (cf. Banks, 1995; Walkerdine, 1988). In other words,
assumptions about the legitimate ways that student’s can exercise agency informs
teachers’ and administrators’ interpretations of individual students’ actions. These
assumptions are not fixed and universal, but is instead continually regenerated by
members of educational institutions as they participate in the practices of school-
ing. In the inner-city district, for example, to be a student in school was to follow
specific rules and instructions. Further, to understand was to be able to verbalize
relevant rules. Consequently, adults showed their concern for students’ welfare by
helping them learn to follow and verbalize the relevant rules. It might well have
been the case that in guiding the development of a regulated school environment,
the inner-city teachers were attempting to provide students with a safe and secure
setting for learning. The crucial point for my purposes is that there was no conflict
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for the teachers at this site between the consequences of traditional mathematics
instruction and the institutionalized view about what it meant to be a student in
school. The teachers therefore had no reason to revise their current instructional
practices.

The analysis that Yackel and I conducted revealed that core assumptions and
values implicit in current reform recommendations were compatible with those
of the teachers at the rural/suburban site but conflicted with those of teachers at
the inner-city site (Cobb & Yackel, 1996). This conclusion implied that reform
efforts in which mathematics educators assume that their culturally situated com-
mitments are universal might well result in even greater disparities in the types
of mathematics education that children experience than is currently the case. It
was against this background that Lynn Liao Hodge1 and I submitted a very mod-
est proposal to the US National Science Foundation (NSF) in 1998 to develop
a synthesis of then current research literature on issues of equity and diversity
in mathematics education. The proposal received favorable reviews and, much to
our chagrin, we were asked to expand the scope of the project by organizing
two working meetings that brought together leading researchers in mathematics
education and in the field of educational equity.2 These meetings provided the
grounding for a special double issue of Mathematical Thinking and Learning and
an edited book (Nasir & Cobb, 2007). The chapter reprinted in this part is a
longer version of a chapter included in the edited book. It represents a tempo-
rary resting place in my and Hodge’s ongoing efforts to develop a position on
issues of equity and diversity that can inform the formulation, testing, and revi-
sion of designs for instructional improvement at the classroom, school, and district
levels.

As Hodge and I made clear near the beginning of the reprinted chapter, we were
under no illusion that we would be able to make a seminal contribution to research
on issues of equity in mathematics education. Our more modest goal was to explore
how a focus on equity in students’ learning opportunities can become an integral
aspect of what might be termed mainstream mathematics education research. As
we dug into the literature, we realized relatively quickly that the term equity was
being used in a range of differing and often not entirely compatible ways. We were
also struck by the general lack of acknowledgement of these differences.3 The three

1At that time, Hodge was a doctoral student in the mathematics education program at Vanderbilt
University. She subsequently completed her dissertation study that focused on issues of equity and
diversity in 2001 and is currently a member of the mathematics education faculty at the University
of Tennessee.
2The principal investigators for this project were Paul Cobb, Lynn Liao Hodge, and Carol Lee.
Lee was a faculty member at Northwestern University and later became president of the American
Educational Research Association. Her work focuses on equity in student learning opportunities in
the field of language and literacy.
3For a notable exception, see Gutiérrez (2002).
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aspects of the definition that we proposed in the reprinted chapter emerged as we
worked to understand various conceptions of equity against the backdrop of our
concerns and interests as design researchers.

The first aspect of the definition we proposed concerns students’ development
of forms of mathematical reasoning that have authority and pull beyond the class-
room. This aspect of the definition was influenced by Delpit’s (1988) argument that
students from underserved groups should be inducted into what she termed the lan-
guages of power within society. In addition, it reflects design researchers’ concern
that what students learn in the classroom should enable them to become relatively
substantial participants in significant practices beyond school (cf. Brown, Collins,
& Duguid, 1989; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). The second
aspect of the definition was influenced by Secada’s (1995) critique of progressive
reform proposals for failing to take account of the current organization and functions
of schooling. This aspect acknowledges that instruction that gives students access
to the language of power is inequitable if it does not also enable them to enroll
and succeed in future mathematics courses, particularly those that serve as gate-
keepers to future educational and economic opportunities. The final aspect of the
definition focuses on what has traditionally been called student motivation and high-
lights the importance of cultivating students’ mathematical interests as an explicit
instructional goal. This aspect of the definition draws on Dewey’s (1913/1975) anal-
ysis of mathematical interests as an integral facet of mathematical literacy, and on
Nicholls’ (1989) critique of standard US instructional practices as a primary source
of inequities in student motivation.

Hodge and I developed the proposed definition of equity at the same time that
we and others prepared for and conducted two classroom design experiments that
focused on statistical data analysis.4 The first experiment focused on the analysis
of univariate data and was conducted with an intact class of 13-year-old students
in an urban school, and the second experiment focused on the analysis of bivariate
data and was conducted with some of the same students a year later. It is appar-
ent in retrospect that these experiments illustrate the design challenges involved in
attempting to address all three aspects of equity as we defined it.

The first aspect of our definition came to the fore when we were preparing for
the two experiments and asked ourselves why statistics should be included in the
school mathematics curriculum. As we indicate in the reprinted chapter, the justifi-
cation that we found compelling builds on the observation that debates about public
policy issues typically involve presenting and critiquing arguments that involve the
analysis of data (G. Cobb, 1997). In many respects, this discourse has become the
language of power in the public policy arena. Inability to participate necessarily
entails disenfranchisement and, potentially, alienation from the political process.
Cast in these terms, statistical literacy that involves reasoning with data in relatively

4These design experiments were conducted by Paul Cobb, Kay McClain, Koeno Gravemeijer, Erna
Yackel, Clifford Konold, Jose Luis Cortina, Lynn Liao Hodge, Maggie McGatha, Beth Petty, Carla
Richards, and Michelle Stephan.
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sophisticated ways bears directly on both equity and participatory democracy. The
image that guided our preparation for the statistics design experiments was therefore
that of students as increasingly substantial participants in public policy discourse.
This image led us to frame students’ formulation and critique of data-based argu-
ments as a central instructional goal. This framing influenced our design efforts
by orienting us to develop tasks in which the students analyzed data sets that they
viewed as legitimate for reasons that they considered significant from the outset of
the first design experiment.5

With regard to the second aspect of our definition of equity, it was essential that
the instructional sequences we designed supported students’ development of key
statistical ideas that are typically addressed in school instruction and assessed by
high-stakes tests. In the middle grades, these notions included mean, mode, and
median as well as a range of statistical graphs culminating with histograms, box-
and-whiskers plots, and scatter plots. The challenge inherent in addressing the first
two aspects of our definition was therefore to transcend what Dewey (1980) termed
the dichotomy between process and content by supporting the emergence of key sta-
tistical ideas while simultaneously ensuring that students engaged in genuine data
analysis. This non-trivial challenge proved tractable once we identified distribution
as an overarching statistical idea that could orient our instructional design effort.
In the approach that we took, mean, mode, median, skewness, spread-outness, and
relative frequency emerged as ways of describing how specific data sets were dis-
tributed. Further, various statistical graphs emerged as different ways of structuring
distributions in order to understand a phenomenon and thus make a consequential
decision or judgment (cf. Cobb, 1999; Cobb et al., 2003).

The third aspect of our definition, cultivating students’ interest in analyzing data,
emerged as an explicit research focus while the design experiments were in progress.
As the teacher in whose classroom we conducted the first of the two design exper-
iments6 put it, the students were initially not at all interested in analyzing data,
then became somewhat interested, and by the latter part of the experiment had
become extremely interested. When Hodge and I conducted a retrospective analysis
of the experiments in collaboration with Jana Visnovska and Qing Zhao, we found it
essential to differentiate between what we termed pragmatic interests and statistical
interests (Cobb, Hodge, Visnovska, & Zhao, 2007). We classified an interest as prag-
matic if the students’ developed and critiqued analyses in order to justify pragmatic
decisions or judgments. In contrast, we classified an interest as statistical if students’
attempts to understand an analysis presented during a class discussion centered on
clarifying a statistical idea rather than making a pragmatic decision. This retro-
spective analysis documented the process by which the teacher cultivated students’
pragmatic interest at the beginning of the first experiment, and then subsequently
supported the students’ development statistical interests as the first experiment

5A detailed report of our design decisions can be found in Cobb (1999) and Cobb, McClain, and
Gravemeijer (2003).
6McClain served as the teacher in both experiments and was assisted in this role by Cobb.
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progressed. The analysis implicated all major aspects of the classroom learning
environment in this process: the structure of lessons (including the social norms
established in each phase of a lesson), the key characteristics of instructional tasks,
the data analyses tools the students used, and the nature of classroom discourse
(including norms of statistical argumentation). The analysis therefore indicates that
surface-level modifications to an instructional design will not be sufficient to sup-
port students’ development of mathematical interests. Efforts to addresses inequities
in motivation should attend to all aspects of the classroom learning environment if
they are to be effective.

The process of formulating this definition of equity and, indeed, of writing the
chapter reprinted in this part was a long and tortuous process in the course of which
our synthesis of the literature went through nine major revisions. Many of the stud-
ies we reviewed focused on differences between the out-of-school practices in which
students engage and the practices established in the classroom as potential sources
of inequities in students’ learning opportunities. In organizing this literature, we
found it useful to distinguish between two general lines of scholarship, one that
focuses on the practices of students’ local, home communities and a second that
focuses on the practices of broader groups within society. The importance of stu-
dents’ local, home communities was highlighted by studies that identified significant
differences between mathematical reasoning in school and in various out-of-school
settings such as grocery shopping (Lave, 1988), packing crates in a dairy (Scribner,
1984), selling candies on the street (Nunes, Schliemann, & Carraher, 1993; Saxe,
1991), laying carpet (Masingila, 1994), farming sugar cane (de Abreu, 1995), and
playing basketball (Nasir & Cobb, 2002). We viewed the work of de Abreu (1995;
2000) as particularly significant within this line of scholarship because she empha-
sized that the issue at hand is not merely one of cultural difference but also concerns
the manner in which the forms of mathematical reasoning associated with par-
ticular out-of-school communities are frequently treated as illegitimate in school.
Against this background, we saw considerable value in Moll’s (1997) and Civil’s
(2002) efforts to frame the practices of the students’ home communities as funds of
knowledge on which teachers can capitalize in the classroom.

The second line of scholarship complements the work of de Abreu, Moll, and
Civil by illustrating the value of analyzing the practices of broader groups in wider
society as potential instructional resources. We viewed Lee’s (1995) work in sup-
porting the learning of high school English students as paradigmatic in this regard.
Lee illustrated that there are important continuities between signifying, a form of
social discourse prominent in the African-American community, and the process of
interpreting literary texts in that both involve figurative language, irony, and double
meanings. Lee demonstrated in a series of intervention studies that instruction that
capitalizes on these continuities is indeed feasible. We also saw considerable value
in a related program of research conducted by Warren and Rosebery in science
education (Warren, Ballenger, Ogonowski, Rosebery, & Hudicourt-Barnes, 2001;
Warren & Rosebery, 1995). As part of the process of developing their instructional
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designs, Warren, Rosebery, and the teachers with whom they collaborated looked
for potential continuities between the out-of-school discourse practices of Haitian
immigrant students and key aspects of scientific argumentation. Thus, like Moll,
Civil, and Lee, they recast ways of knowing that are typically devalued in school as
potential instructional resources. Furthermore, they reported encouraging empiri-
cal findings concerning students’ development of a relatively deep understanding
of the specific scientific phenomena and the role of hypotheses and the use of
evidence.

In reviewing these two lines of work, we came to view diversity and equity as
emerging from the relations between students’ participation in the practices of the
mathematics classroom, the local home community, and broader groups in wider
society. The key point to emphasize is that in this relational perspective, equity
concerns the continuities and discontinuities between the out-of-school ways of rea-
soning and talking into which students have been enculturated and the norms and
practices established in the mathematics classroom (Cobb & Hodge, 2002).

For many mathematics educators, this view of equity necessarily implies that
classroom activities should be aligned with students’ out-of-school practices. As we
continued to explore the literature, we began to question whether this is the most
productive approach for two reasons. First, an approach of this type is problematic
if students in a particular classroom are members of a number of distinct out-of-
school groups and communities whose practices differ significantly from each other.
We were struck by the fact that Moll, Civil, Lee, and Warren and Rosebery all por-
trayed the students with whom they worked as coming from a single group that
was culturally homogeneous. Second, we knew from our own work as instructional
designers that it is extremely difficult to develop effective designs of this type even
in cases where students are members of a single identifiable group. Doing justice
both to students’ informal ways of reasoning that are grounded in out-of-school
practices and to central disciplinary ideas is no easy task. We therefore appreci-
ated Civil’s (2007) and Enyedy and Mukhopadhyay’s (2007) frank accounts of the
difficulties they encountered while pursuing approaches of this type in the class-
room. The problems they described only increased our admiration for Lee’s and
Warren and Rosebery’s pioneering efforts. We did, however, question whether such
approaches are feasible in all areas of mathematics and with truly diverse groups of
students.

The alternative approach that we have come to value also views students as
cultural beings and attends explicitly to the possibility that the norms and prac-
tices established in the classroom might disadvantage certain groups of students. In
this approach, the teacher’s responsibilities include identifying instances in which
particular groups of students might be disadvantaged and adjusting instruction
accordingly. As an illustration, the teacher would not restrict the selection of task
scenarios to out-of-school situations with which the students are already famil-
iar. However, the teacher would be aware that task scenarios necessarily involve
cultural-specific suppositions and assumptions, and that some of these assumptions
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might be foreign to some or all the students (cf. Ladson-Billings, 1995). The teacher
would therefore support students’ access to tasks by leading a discussion of task sce-
narios in the classroom with the goal of ensuring that they become real in imagery
for all students (Boaler, 2002). In this alternative approach, the range of poten-
tial tasks is much broader. Task scenarios would only be rejected if they cannot
become real for students as they participate in a discussion in which grounding
assumptions become explicit topics of conversation. The challenge for the teacher
in such an approach is to pursue a significant mathematical agenda while ensur-
ing that all students can participate substantially in classroom activities. Yackel
followed such an approach with considerable success while working with elemen-
tary teachers and their students at the urban site. The statistics design experiments
also indicate that an approach of this type can be reasonably effective. In adopt-
ing this approach, we follow Boaler and Staples (2008) in noting that there are
different routes to equity in learning opportunities, not all of which involve align-
ing instruction with out-of-school practices. In our view, an approach of this type
is potentially feasible with diverse groups of students in a range of mathematical
domains.

In the last few paragraphs, we have focused on the development of instructional
designs that are equitable in terms of student learning opportunities. From the per-
spective of design research, a set of coherent design heuristics that can guide the
development of classroom learning environments is one of two essential conceptual
tools. The second essential tool is an interpretive framework for making sense of
what is going on in the classroom in a manner that can feedback to inform the ongo-
ing instructional design effort (Cobb et al., 2003). In the latter part of the chapter
reprinted, we outlined an interpretive scheme of this type that enables researchers to
document the personal identities that students are developing as they participate in
classroom activities. Hodge and I subsequently collaborated with Melissa Gresalfi7

to revise and elaborate this interpretive scheme. The revised scheme is described
and illustrated in some detail in an article published in Journal for Research in
Mathematics Education (Cobb, Gresalfi, & Hodge, 2009).

The phenomenon the scheme is designed to explain is that of why, in particular
classrooms, some students come to identify with classroom mathematical activity
whereas others merely cooperate with the teacher, and still others actively resist
engaging in classroom activities. This scheme builds on and extends the prior work
on classroom social and sociomathematical norms. In the reprinted chapter, we
introduce the notion of the normative identity established in the mathematics class-
room. As we clarify, the normative identity is a communal or collective construct
and refers to key aspects of the classroom learning environment with which students
would have to identify in order to develop a sense of affiliation with classroom math-
ematical activity. We argue that these key aspects include norms, which we define

7Gresalfi accepted a 2-year post doc position at Vanderbilt University in 2004 to work with Cobb on
issues of equity and student identity in mathematics classrooms. She is currently a faculty member
in the learning sciences program at Indiana University.
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as recurrent patterns in joint activity that is regulated by the expectations that the
teacher and students have for each other’s actions in particular situations (Searing,
1991). We then go on to illustrate how the classroom learning environment can be
analyzed in terms of the expectations that the teacher and students have for others’
actions, and the obligations that they attempt to fulfill (or resist) by acting in accord
with expectations.

This perspective on the mathematics classroom aligns well with Holland,
Skinner, Lachicotte, and Cain’s (1998) characterization of identification as a pro-
cess whereby communal activities “in which one has been acting according to
the directions of others becomes a world that one uses to understand and orga-
nize aspects of one’s self and at least some of one’s own feelings and thoughts”
(p. 121). An analysis of the classroom learning environment conducted using the
revised scheme presented in the JRME article focuses on the general and specif-
ically mathematical obligations that a student would have to fulfill in order to
be an effective student in that classroom. In addition, this analytical approach
documents whether these obligations-to-others become obligations-to-oneself8 for
students who come to identify with classroom mathematical activity, or whether they
remain obligations-to-others for students who merely cooperate with the teacher, or
become obligations-for-others for students who resist engaging in classroom activ-
ities. The strength of this interpretive approach is that the resulting analyses of the
identities that students are developing in the classroom are situated with respect to
key aspects of the classroom learning environment. The analyses can therefore feed
back to inform instructional design and teaching because the resulting accounts of
the identities that students are developing are situated with respect to the classroom
learning environment, and because they focus on specifically mathematical aspects
of the classroom learning environment.

As the various parts of this book indicate, I have contributed to investigations of
a relatively wide range of phenomena that relate to mathematics teaching and learn-
ing over the years. Along the way, I have analyzed the development of individual
students’ mathematical reasoning in particular mathematical domains, the evolu-
tion of learning environments established in particular classrooms, the learning of
professional teaching communities, and the school and district settings in which
mathematics teachers develop and revise their instructional practices. As a point of
reference, the effort to develop useful ways of understanding issues of diversity and
equity as they play out in the mathematics classroom constitutes the most complex
and challenging set of problems that I have attempted to address. I will be more than
satisfied if my work in this area contributes to a issues of equity becoming a routine
aspect of mainstream research in mathematics education.

8This formulation of obligations-to-others becoming obligations-to-oneself directly parallels Sfard
(2008) argument that learning involves turning discourse-for-others into discourse-for-oneself. The
account we have given of the process of identifying is consistent with Sfard’s participationist view-
point, the basic tenet of which is that “patterned, collective forms of distinctly human forms of
doing are developmentally prior to the activities of the individual” (p. 43).
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Chapter 11
Culture, Identity, and Equity
in the Mathematics Classroom

Paul Cobb and Lynn Liao Hodge

The motivation for this chapter stems in part from the relatively marginalized sta-
tus of issues of diversity and equity within mathematics education research. As
Lubienski (2002) documents, research on equity is underrepresented in the math-
ematics education literature. Furthermore, as Secada (1995) observes, the relatively
limited number of studies with an equity focus have, for the most part, been con-
stituted as peripheral to the field. Against this background, we have struggled
with the challenge of making a concern for issues of diversity and equity inte-
gral to our ongoing research for the last several years. We do not pretend that
we have either the experience or expertise to make a seminal contribution to
research on diversity and equity in mathematics education. Instead, the issue that
we have sought to address is how a focus on diversity and equity can become part
and parcel of mainstream research that involves the development of instructional
designs and the analysis of the learning and teaching of significant mathematical
ideas.

In this chapter, we first offer a definition of equity that reflects our focus on
classroom processes of mathematics learning and teaching. We then differentiate
between two views of culture that can be discerned in the mathematics education
literature. In one view, culture is treated as a characteristic of readily identified and
thus circumscribable communities, whereas in the other view it is treated as a set of
locally instantiated practices that are dynamic and improvisational. We clarify the
relation between these two characterizations of culture and argue that both are rele-
vant to the goal of ensuring that all students have access to significant mathematical
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ideas. We then focus on the second, more recent view of culture as local and impro-
visational in the remainder of the chapter and consider its potential relevance. We
argue that the manner in which this perspective brings the identities and interests
that students develop in mathematics classrooms to the fore make it directly rele-
vant to researchers who focus on instructional design, learning, and teaching at the
classroom level. We then go on to develop this perspective in the latter part of the
chapter by proposing an interpretive scheme for analyzing the identities that stu-
dents develop in mathematics classrooms that can inform instructional design and
teaching.

A Provisional Definition of Equity

As R. Gutierrez (2002, this volume) observes, ongoing debates over how equity
might be usefully construed in mathematics education constitute important con-
texts within which to articulate both immediate and longer-range goals in the field.
Our purpose in attempting to clarify what we mean by equity is not to close down
these debates but to offer a potentially revisable definition that reflects our interest
in instructional design, learning, and teaching at the classroom and school level.
The concept of equity encompasses a complex range of concerns that emerge when
people who are members of various local communities and broader groups within
society act and interact in the mathematics classroom. Foremost among these is the
issue of students’ access to opportunities to develop forms of mathematical rea-
soning that, as Bruner (1986) puts it, have clout. Bruner went on to clarify that,
in his view, forms of reasoning have clout to the extent that they enable students
to participate in significant out-of-school practices in relatively substantial ways.
As an illustration, it is apparent that public policy discourse increasingly involves
the formulation and critique of data-based arguments. Students’ development of the
relatively sophisticated forms of statistical reasoning that are implicated in such
arguments therefore have clout in that they enable them to participate in a type of
discourse that is central to what Delpit (1988) termed the culture of power (cf. Cobb,
1997; Cobb, 1999).

In offering this perspective on what it means for particular forms of reasoning
to have clout, Bruner viewed the societal function of schools to be that of induct-
ing students into what he referred to as culture as lived. In developing a working
definition of equity, it is essential that we also consider a second societal function
of schooling, that of comparing and differentiating between students in ways that
have direct consequences for their future educational and economic opportunities.
The pervasiveness of this function of schooling indicates the need to broaden what
it means for forms of reasoning to have clout by taking account of criteria that are
internal to the school (cf. Secada, 1995). Foremost amongst these is that of students’
access to future mathematics courses (Tate & Rousseau, 2002). As an illustration,
Moses and Cobb (2001) clarify that the goal of the Algebra Project is to make it
possible for all students to have access to and to succeed in high school algebra
courses that function as gatekeepers to college-preparatory tracks. Moses and Cobb
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also alert us to a third aspect of equity that concerns the cultivation of students’
interests in and feelings of equity about the future study of mathematics. As we
discuss later in this chapter, this aspect of equity brings to the fore the identities
that students develop as they engage in classroom mathematical activities. For the
present, it suffices to note that a perspective on equity is inadequate if it is limited
to students’ participation in out-of-school practices and to their access to particular
school mathematics courses. The definition that we propose also includes what are
traditionally referred to as students’ motivations to continue to study mathematics
and their persistence while doing so. Thus, equity as we construe it encompasses stu-
dents’ development of a sense of efficacy (empowerment) in mathematics together
with the desire and capability to learn more about mathematics when the opportunity
arises.

Two Views of Culture

Two lines of scholarship that are grounded in differing views of culture can be
discerned in research on issues of equity in mathematics education. The first line
of research reflects the view of culture as a way of life that is characteristic of a
bounded community. In this view, culture comprises a network of relatively stable
practices that capture daily life within a group or community that are passed on
from one generation to the next. This view of culture is prominent in the mathemat-
ics education literature and is consistent with the typical use of the term in everyday
discourse. The second line of research reflects a more recent view of culture that
has emerged within the past 20 years to capture the changing aspects of contempo-
rary life. In this second view, culture is viewed as a network of locally instantiated
practices that are dynamic and improvisational (Bauman, 1999; Calhoun, 1996;
Gutierrez, Baquedano-Lopez, & Tejeda, 1999; Eisenhart, 2001). This perspective
emphasizes people’s participation in multiple communities or groups and considers
the boundaries between these groups or communities to be blurred and permeable.

The changes that precipitated the emergence of the second view of culture
include technological advances in communication and travel that have made the
world a much smaller place. These advances have made possible a dramatic increase
in immigration in many parts of the world, thereby altering demographic patterns
that once seemed relatively stable. A second set of changes concern the role of
women and the composition of the work force. Children frequently grow up in a
variety of social settings (e.g., in day care, with babysitters, in school, and among
peer groups) that function together with the family and home communities to raise
them (Gutierrez & Rogoff, 2003). As Eisenhart (2001) observes, it is difficult to
capture these and other aspects of contemporary life when culture is viewed as a
way of life within a bounded community.

[I]t is no longer straight-forward for anthropologists to plan to study “cultural groups,”
i.e., designated groups of people with coherent, shared value systems, households or
communities with clearly defined boundaries, or shared funds of knowledge transmitted
primarily from adults to their children. Conventional assumptions of culture as coherent
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and co-terminous with social background, language use, region, or ethnicity have become
impossible to sustain. (p. 16)

In this more recent view, culture is grounded in shifting social networks and relation-
ships as people who are members of a variety of communities present themselves
to and are recognized by others (Clifford, 1986; Eisenhart, 2001). It is in the course
of often-contested interactions that people identify themselves and are identified by
others. As Calhoun (1996) notes, an explicit concern for issues of identity in both
everyday life and in the social sciences is a defining aspect of the modern age.

It is not simply – or even clearly the case – that it matters more to us than to our forebears
to be who we are. Rather, it is much harder for us to establish who we are and maintain this
own identity satisfactorily in our lives and in the recognition of others. (p. 32)

Calhoun goes on to clarify that the difficulties that we frequently face in estab-
lishing who we are stem both from the disintegration of all-encompassing identity
schemes and from changes in discourse about identity. As an illustration, Calhoun
observes that identity schemes such as kinship within a bounded community offered
clear notions of who particular people were in relation to others and how they should
participate in social relations with each other. However, the modern age has brought
about a questioning of social categories and social networks that were once taken for
granted, thereby problematizing the process of determining who we are in relation
to others. Calhoun demonstrates that this process is further complicated by socially
sustained discourses that center on identity. It is not merely that how we are recog-
nized often does not fit with who we consider ourselves to be. Discourse about who
it is important to be and who it is possible to become is continually changing and
may be in conflict with who people view themselves to be and who they want to
become. A number of scholars have in fact coined the metaphor of people existing
in the borderlands of various communities to capture their struggle to construct or
maintain who they are (Gutierrez et al., 1999; Rosaldo, 1989).

The first view of culture as a way of life within a bounded community is far more
prominent in the mathematics education research on equity. Research oriented by
this view typically identifies discontinuities between the out-of-school practices in
which students participate and those established in the mathematics classroom as
the primary source of inequities. In more sophisticated investigations of this type,
the significance of the discontinuities is clarified by locating them within the con-
text of broader sociostructural processes that encompass race, ethnicity, and social
class and that account for the major fault lines within society. Researchers who take
this approach emphasize that the relative value attributed to a particular practice
in school typically reflects the differential position that the group with which the
practice is associated occupies in society (cf. de Abreu, 1995, 2000). The work of
Moll (1997) and Civil (1998, this volume) is paradigmatic of one body of research
that attempts to reorganize traditional patterns in schooling by taking the practices
of students’ home communities as its point of reference for classroom design. Civil
describes how she and her colleagues collaborate with the mathematics teachers
of predominantly Latino students to reduce conjectured sources of inequities by
analyzing the practices of the students’ home communities in terms of funds of
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knowledge. The goal in doing so is to develop innovative instructional activities and
practices that build on students’ out-of-school mathematical experiences. The work
of Warren and Rosebery (Warren & Rosebery, 1995; Warren et al., 2001) illustrates
a second body of work that takes the Discourse of broader groups within society as
its point of reference. The Discourse on which Warren and Rosebery focus is that
of Haitian immigrants in the United States. As part of the process of developing
their instructional designs, Warren and Rosebery collaborate with teachers to iden-
tify potential continuities between this out-of-school Discourse and the Discourse
of scientific argumentation.

Willis’s (1977) seminal analysis of how British working-class students typi-
cally end up in working-class jobs is paradigmatic of investigations oriented by
the second view of culture as local and dynamic. His ethnographic analysis of a
group of working-class boys demonstrates how manifestations of the boys’ working-
class backgrounds were devalued in school. Thus, like Moll, Civil, and Warren and
Rosebery, Willis places discontinuities in practices in the context of sociostructural
processes. However, in contrast to researchers who are oriented by the view of cul-
ture as a way of life, Willis did not assume that the delegitimization of out-of-school
practices in school necessarily leads to lack of academic success. It was not self-
evident to him, for example, why the boys and their families did not demand better
treatment so that they could move into the middle class. He also sought to under-
stand why the boys did not follow some of their working-class peers in attempting
to accommodate the expectations of the school. Rather than assuming that the boys
were passive bearers of a working-class culture that had been passed down to them
by their parents, he examined the meaning that the discontinuities he identified had
for the boys. His analysis focused on the boys’ identities and revealed that they could
not reconcile accommodation to the school’s expectations with who they were and
who they wanted to be. He documents that the boys actively constructed a posi-
tive sense of their lives in school by drawing on a number of sources that included
popular culture and their parents’ shop-floor culture. Willis therefore concludes that
the boys’ resistance to the school was not predetermined by their socialization into a
monolithic working-class culture. Instead, the boys actively contributed to the repro-
duction of their relatively low status in society by constructing a local counterculture
and fashioning oppositional identities that involved a sense of self-worth and status.
As he makes clear, this local culture was both dynamic and improvisational.

Local Cultures and Broader Discourses

An issue that arises when culture is viewed as local and dynamic is that of how
to account for the types of relatively broad and enduring macro patterns in peo-
ple’s individual and collective activity that are of interest to sociologists. Willis’s
analysis is again relevant as he did not set out to develop a narrative about a partic-
ular group of boys in Britain in the 1970’s. Rather, he framed the boys’ activity
as a paradigm case to understand students’ resistance to schooling more gener-
ally. Two aspects of his analysis contribute to its potential generalizability. First, he



184 P. Cobb and L.L. Hodge

took account of the boys’ position within class-stratified British society and docu-
mented that the school devalued manifestations of their working-class backgrounds.
Second, he stressed that the cultural resources on which the boys could draw as
they constructed their local counterculture and their oppositional identities were
constrained by their positioning within broader sociostructural processes, the most
evident of which is social class. On this basis, he argued that working-class stu-
dents in other British high schools might be treated similarly and that some would
attempt to make positive sense of their lives in school by drawing on similar cul-
tural resources to create local countercultures that, while not identical, shared family
resemblances. For Willis, the resulting pattern of resistance in different schools is
an emergent phenomenon situated within but not directly caused by class stratifica-
tion in British society. As Erickson (1992) notes, an explanation of this type would
appear to be relevant to societies such as the United States in which the major
sociostructural distinctions fall along lines of race and ethnicity as well as class
(Erickson, 1992).

In this account of the production of relatively stable macro patterns, it is tempting
to interpret the resources such as popular culture and their parents’ shop floor culture
on which the boys drew as ways of life that are characteristic of bounded commu-
nities. However, we have argued elsewhere (Cobb & Hodge, 2002) that it is more
useful to treat these broader and more enduring practices as aspects of a Discourse. It
is important to stress that a Discourse involves much more than linguistic practices.
Gee (1997) offers the following definition:

Discourses are sociohistorical coordinations of people, objects (props), ways of talking,
acting, interacting, thinking, valuing, and (sometimes) writing and reading that allow for
the display and recognition of socially significant identities, like being a (certain type of)
African American, boardroom executive, feminist, lawyer, street-gang member, theoretical
physicist, 18th-century midwife, 19th-century modernist, Soviet or Russian, schoolchild,
teacher, and so on through innumerable possibilities. If you destroy a Discourse (and they do
die), you also destroy its cultural models, situated meanings, and its concomitant identities.
(pp. 255–256)

The crucial differences between culture and Discourse as theoretical constructs con-
cerns their origins and what they take as central. The notion of culture has its origins
in anthropology and sociology and emphasizes activities that transform the world
and that involve the use of physical and symbolic artifacts. In contrast, the notion
of a Discourse has its origins in linguistics and semiotics and emphasizes commu-
nication together with everything that makes it possible. Our proposal to follow
Gutierrez et al. (1999) in viewing culture as a set of locally instantiated practices
that are dynamic and improvisational in nature emphasizes people’s mutual engage-
ment in joint activities that involve the directly negotiated use of artifacts. In viewing
broader practices that extend beyond the scope of mutual engagement as constitut-
ing a Discourse, we bring processes of communication beyond direct interaction to
the fore.

As an illustration close to the experience of most mathematics educators, the
various Standards documents produced by the National Council of Teachers of
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Mathematics (NCTM, 1989, 1991, 2000) can be viewed as proposing an educa-
tional Discourse. Thus, a group of teachers who are members of a local professional
teaching community might also view themselves as members of the broader commu-
nity of mathematics education reformers. In such a case, the Standards documents
serve as a primary resource on which the teachers draw as they jointly construct
a local culture of mathematics teaching. As this illustration indicates, Discourses
such as that of reform teaching tie local communities of practice into broader con-
figurations (Wenger, 1998). It is only as people actively draw on a Discourse as a
resource when improvising a local culture that the Discourse can touch their experi-
ence and be given new life (Holland et al., 1998; Wenger, 1998). In the illustration,
the Discourse of reform in mathematics education touches teachers’ experience only
to the extent that they actually attempt to change their instructional practices. The
illustration also serves to clarify the relation between local, improvizational cul-
tures and broader Discourses. On the one hand, Discourses constitute resources for
the construction of local cultures. On the other hand, people contribute to both the
vitality of a Discourse and to its ongoing evolution as they use it as a resource.

Structural and Situational Rationales for Learning in School

Erickson (1992) clarifies that achievement and motivation in school are explicitly
political processes “in which issues of institutional and personal legitimacy, identity,
and economic interest are central” (p. 33).

Students in school, like other human beings, learn constantly. When we say they are “not
learning” what we mean is that they are not learning what the school authorities, teachers,
and administrators intend for them to learn as a result of intentional instruction . . . Learning
what is deliberately taught can be seen as a form of political assent. Not learning can be seen
as a form of political resistance. (Erickson, 1992, p. 36)

For his part, D’Amato (1992) distinguishes between two ways in which learning
in school can have value for students. D’Amato refers to the first of these ways
as extrinsic value or structural significance, in that achievement in school has
instrumental value as a means of attaining other ends such as entry to college and
high-status careers, or acceptance and approval in the household and other social
networks. D’Amato contrasts this source of value with what he terms intrinsic value
or situational significance, in which students view their engagement in classroom
activities as a means of maintaining valued relationships with peers and of gaining
access to experiences of mastery and accomplishment. The crucial point to note for
our purposes is that students’ participation in Discourses that give them access to a
structural rationale varies as a consequence of family history, race or ethnic history,
class structure, and caste structure within society (D’Amato, 1992; Erickson, 1992;
Mehan et al., 1994).

Where school success has been associated with social mobility, as in the case of the middle
and upper classes, the need to succeed in school [and in mathematics in particular] is empha-
sized in home-life networks, and children take for granted the value to their futures and to
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present social relationships of positive teacher evaluations and other markers of school suc-
cess. . . . School, however, tends to have little credible structural significance for castelike
minority children (Ogbu, 1978) and for the majority of children of lower socioeconomic
strata. (D’Amato, 1992, p. 191)

In our terms, Discourses that inscribe the achievement ideology wherein soci-
ety is seen to reward hard work and individual effort with future educational and
economic opportunities constitute a resource on which some students but not others
can draw as they attempt to make positive sense of their lives in school. From our
perspective as mathematics educators interested in instructional design, the result-
ing inequities in motivation (Nicholls, 1989) emphasize the importance of ensuring
that all students have access to a situational rationale for learning mathematics. It
is here, we contend, that issues of equity can potentially intersect with mathemat-
ics educators’ traditional focus on instructional design, teaching, and learning. In
our view, supporting students’ development of a sense of affiliation with math-
ematics as it is realized in their classrooms should be an explicit goal of both
instructional design and teaching. Elsewhere, we have reported an initial attempt
to address issues of instructional design by documenting an approach for cultivating
students’ mathematical interests (Cobb & Hodge, 2003a). In the remainder of this
chapter, we focus on the challenge of analyzing classroom actions and interactions
in a manner that can feed back to inform the improvement of such designs. The
interpretive scheme that we outline focuses on the identities that students develop in
mathematics classrooms.

Identity and Learning

The notion of identity has become increasingly prominent in the mathematics edu-
cation research literature in recent years (de Abreu, 1995; Boaler & Greeno, 2000;
Cobb & Hodge, 2002; Gutstein, 2002a, 2002b; Sfard, 2002). Part of the appeal of
this construct is that it enables researchers to broaden the scope of their analyses
beyond an exclusive focus on the nature of students’ mathematical reasoning by
also considering the extent to which they have developed a sense of affiliation with
and have come to see value in mathematics as it is realized in their classrooms. The
notion of identity as it is used in mathematics education therefore encompasses a
range of issues that are typically subsumed under the heading of affective factors.
These include students’ persistence, interest in, and motivation to engage in class-
room mathematical activity. As Nasir (2002) clarifies, the development of students’
classroom identities is intimately related to the development of their mathematical
reasoning.

[On the one hand,] as members of communities of practice experience changing (more
engaged) identities, they come to learn new skills and bodies of knowledge, facilitating
new ways of participating which, in turn, helps to create new identities relative to their
community. . . [On the other hand,] increasing identification with an activity or with a com-
munity of practice motivates new learning. In this sense, identities can act as a motivator for
new learning, prompting practice participants to seek out and gain the new skills they need
to participate in their practice more effectively. (p. 239–240)
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This interrelation underscores the importance of cultivating students’ identification
with mathematical activity as a goal for both instructional design and teaching.

The interpretive scheme that we propose for analyzing the identities that students
develop in mathematics classrooms involves three primary constructs: normative
identity, core identity, and personal identity. We introduce these constructs by draw-
ing on seminal studies conducted by Boaler and Greeno (2000) and Martin (2000)
and then discuss each construct in turn. As part of an investigation of students’ val-
uations of classroom mathematical activity, Boaler and Greeno (2000) interviewed
students from four high schools who were enrolled in advance placement calculus
classes in which they were expected to complete tasks by applying methods and
strategies presented by the teacher. Many of these students indicated both that they
found their experiences of engaging in mathematical activity in these classes dis-
tasteful and that they had come to dislike mathematics and would choose not to
study it further. Boaler and Greeno’s analysis of these student interviews revealed
that the students’ viewed themselves as having to give up agency and creativity if
they were to become mathematical persons. Boaler and Greeno account for this find-
ing by arguing that for these students, the identity that they would have to develop
in order to become mathematical persons was in conflict with who the students
viewed themselves to be and who they wanted to become. In terms of the interpre-
tive scheme that we propose, the identity that the students would have to develop
in order to become mathematical persons corresponds to the normative identity as
a doer of mathematics established in their classrooms, whereas who the students
viewed themselves to be and who they wanted to become corresponds to their core
identities. This distinction is crucial to Boaler and Greeno’s analysis in that they iso-
late the irreconcilable differences that the students experienced between their core
identities and the normative identities established in their classrooms as the source
of their alienation from mathematics.

The notion of identity also plays a central role in Martin’s (2000) investigation
of mathematically successful and failing African American students in an urban
middle school. In the course of his analysis, Martin identified two distinct groups
of students. In one group that he calls the dominant group, learning mathematics
had a negative connotation and the students in this group promoted norms of under-
achievement that involved resisting mathematics instruction, frequently by being
disruptive. In contrast, the students in the second group, most of whom were suc-
ceeding in mathematics, had high levels of confidence in their mathematical ability,
viewed their teachers positively, and regarded achievement in mathematics as neces-
sary to fulfill their long-term goals that involved careers in high status occupations.
In terms of the interpretive scheme that we propose, these students’ envisioned life
trajectories are aspects of their core identities, of who the students viewed them-
selves to be and who they wanted to become. Martin’s analysis demonstrates that it
is both possible and useful to distinguish between students’ core identities and the
personal identities that they develop as they participate in (or resist) the activities
of particular groups and communities, including those of the mathematics class-
room. It is also apparent from Martin’s analysis that personal identity is a relational
construct and concerns the extent to which students have reconciled their core
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identities with the normative identity as doers of mathematics established in their
classroom. The succeeding students that he studied subscribed to the achievement
ideology and had reconciled this aspect of their core identities with the normative
identities as doers of mathematics established in their classrooms by viewing math-
ematics achievement as a means of social and economic advancement. In contrast,
the oppositional personal identities that the failing students were developing indi-
cate that they experienced irreconcilable conflicts between their core identities and
the normative classroom identities established in their classrooms. Like the boys
that Willis (1977) studied, these students were active contributors to the processes
that delimited their access to significant mathematical ideas.

Normative Identity

We have indicated that normative identity concerns the identity that students would
have to develop in order to become mathematical persons in a particular classroom.
In order to develop this sense of affiliation, a student would have to identify with the
obligations that he or she would have to fulfill in order to be an effective and success-
ful mathematics student in that classroom. Operationally, the process of analyzing
the normative identity established in a classroom therefore involves documenting
the obligations that the teacher and students interactively constitute and continually
regenerate in the course of their ongoing classroom interactions. The obligations
that proved relevant in a previously completed investigation (Cobb & Hodge, 2003b)
include general norms for classroom participation as well as several sociomathemat-
ical norms that are specific to mathematical activity: (1) norms for what counts as
an acceptable mathematical argumentation, (2) normative ways of reasoning with
tools and written symbols, (3) norms for what counts as mathematical understand-
ing, and relatedly, (4) the normative purpose for engaging in mathematical activity.
It is important to note that these specifically mathematical norms collectively serve
to specify what counts as mathematical competence in a particular classroom. The
level of specificity that we propose when documenting the normative identity estab-
lished in a classroom moves beyond characterizations of classrooms as traditional
or reform in nature. It can therefore be viewed as a response to Boaler’s (2002) call
for investigations of classroom practices that promote equity to “pay attention to
a level of detail in the enactment of [mathematics] teaching that has been lacking
from many analyses” (p. 243).

Ideally, the data generated to document the normative identity established in
a particular classroom should include classroom video-recordings. Elsewhere, we
have described in some detail the types of evidence that we use to determine whether
a particular norm has been established in a classroom (Cobb et al., 2001). For our
current purposes, it suffices to clarify that the teacher and students jointly constitute
both general and specifically mathematical norms. The process of delineating class-
room norms therefore involves identifying patterns or regularities in the teacher’s
and students’ ongoing interactions. Consequently, the conjectures that are substan-
tiated or refuted in the course of an analysis apply not to individual students’ actions
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but to patterns in collective activity and to students’ obligations as they contribute to
the regeneration of these patterns. We would therefore question accounts in which
the teacher is portrayed as inviting students to adopt a normative identity as a doer
of mathematics that exists independently of their classroom participation. Instead,
in the perspective that we propose, students are seen to develop their personal iden-
tities in particular classrooms as they contribute to (or resist) the initial constitution
and ongoing regeneration of the normative identity as a doer of mathematics.

Core Identity

Normative identity is concerned with the immediate social context of the classroom,
whereas core identity is concerned with students’ more enduring sense of who they
are and who they want to become. We developed the notion of core identity by
drawing directly on the work of Gee (2001, 2003). Gee observes that students each
have a unique trajectory of participation in the activities of various groups and com-
munities both in and out of school. As a consequence of this personal history of
engagement, they have had a unique sequence of specific experiences of presenting
themselves and being recognized in particular ways, some of which have recurred.
“This trajectory and the person’s narrativization . . . of it are what constitute his
or her (never fully formed and always potentially changing) ‘core identity’” (Gee,
2001, p. 111). Two aspects of this definition make it particularly relevant to our
purposes as mathematics educators. First, in emphasizing students’ active role in
developing their life stories, Gee acknowledges personal agency as well as the social
structures inherent in the activities in which they participate. It is therefore conceiv-
able that students with similar life histories might develop markedly different core
identities at any particular point in time. Second, Gee emphasizes that students’
development of new personal identities in particular settings can involve changes in
their core identities. This is important and alerts us to the possibility that students’
development of particular personal identities in specific classroom settings might,
over time, influence their more enduring sense of who they are and who they want to
become.

A primary consideration when documenting students’ core identities in relation
to schooling is to determine whether they have access to a structural rationale for
learning in school and subscribe to the achievement ideology. Investigating this issue
might involve using questionnaires or interviews that focus on a range of issues
including (1) students’ long-term aspirations, (2) their commitment to learning in
school and in their mathematics classes, and (3) their assessments and explanations
of other students’ commitment to and perceptions of the benefits of succeeding in
school and in their mathematics classes. As this proposal for data generation indi-
cates, we question the common assumption that students’ core identities can be
equated with their membership of particular racial and ethnic groups (Gutierrez &
Rogoff, 2003). Our intent in doing so is not to deny that a sense of affiliation with
the common ancestry and cultural patterns of an ethnic group can be an important
source of identity (Nasir & Saxe, 2003). Instead, it is to highlight students’ personal
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agency in constructing multifaceted core identities while also acknowledging that
their core identities are informed by who others say they are based on racial and
ethnic group membership (Gee, 2003).

In taking this approach, we follow Martin (2000) in questioning Ogbu’s (1992,
1999) influential thesis that children of historically oppressed groups become skep-
tical about their prospects for social advancement as they are socialized into a
collective cultural identity. It is important to note that in developing his thesis, Ogbu
adopted the view of culture as a way of life characteristic of a bounded community.
This view is apparent in his contention that historically oppressed groups have devel-
oped a monolithic cultural identity in opposition to institutions such as schools that
are equated with assimilation into dominant social groups. His thesis is sociostruc-
turally deterministic in that it implies that children of marginalized groups will resist
instruction regardless of the teacher’s actions in order to maintain a sense of affil-
iation with their cultural group. However, as Martin (2000) notes, Ogbu’s appeal
to the family as the locus of socialization into cultural values does not adequately
account for the manner in which successful African American students come to
identify with academic achievement. In contrast to Ogbu’s notion of a collective
cultural identity, the notion of core identity that we have presented reflects the view
that cultures are local and dynamic and are constructed by using broader Discourses
as resources. This perspective capitalizes on Ogbu’s crucial insight about the impor-
tance of sociostructural processes but also acknowledges personal agency and treats
the classroom as the immediate social context in which sociostructural processes
play out in face-to-face interaction. It is therefore a perspective that offers some
hope to the instructional designer and the teacher by questioning the claim that inter-
actions in mathematics classrooms necessarily have to unfold in a sociostructurally
determined manner.

Personal Identity

While core identity is concerned with students’ relatively enduring sense of who
they are and who they want to become, personal identity is concerned with who stu-
dents are becoming in particular mathematics classrooms. The goal in analyzing
students’ personal identities is to document the extent to which they have rec-
onciled their core identities with participation in the ongoing regeneration of the
normative identity as a doer of mathematics established in their classroom. Personal
identity as we define it is therefore an ongoing process of being a particular kind
of person in the local social world of the classroom. The data generated might
include questionnaires, surveys, and interviews that focus on students’ understand-
ings of both their general and specifically mathematical obligations in the classroom,
and on their valuations of those obligations. The intent in generating these data
is to document (1) students’ understandings of what counts as effectiveness and
mathematical competence in their classrooms, and (2) whether and to what extent
they identify with those forms of effectiveness and competence. The analysis of
these data can therefore inform the interpretation of additional data that document
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students’ assessments of their own and other students’ mathematical competence in
the classroom.

We can glean several distinctions in the types of personal identities that stu-
dents might develop in their mathematics classes by synthesizing the available
literature in mathematics education and related fields (Cobb & Hodge, 2003b).
For example, students might reconcile their core identities with participation in the
ongoing regeneration of the normative identity as doer of mathematics established
in the classroom, thereby identifying with classroom mathematical activity (Cobb &
Hodge, 2003b; Gutstein, 2002a, 2002b; Nasir & Hand, 2003). A second possibility
is that students might reconcile their core identity with a broader goal for which suc-
ceeding in their mathematics classes is the means, such as going on to college and
having a high-status career (Martin, 2000; Mehan et al., 1994; Nasir & Hand, 2003).
In this case, striving to succeed in mathematics classes may not involve an experi-
enced conflict, but neither does it involve identification with mathematical activity.
A third possibility is that students might be unable to reconcile their core identity
with the normative classroom identity but might nonetheless be willing to cooperate
with the teacher in order to maintain relationships at home or with the teacher. In
such cases, students experience an inner conflict or tension even as they strive to
succeed in their mathematics classes, in the process becoming disenchanted with
or alienated from mathematical activity (Boaler & Greeno, 2000; Cobb & Hodge,
2003b). A final possibility is that students might actively resist contributing to the
establishment of the normative identity as a doer of mathematics, in the process
developing oppositional classroom identities (Gutierrez, Rymes, & Larsen, 1995;
Martin, 2000).

The first three of these four possibilities correspond to key distinctions made by
self-determination theorists (Deci & Ryan, 2000; Grolnick, Deci, & Ryan, 1997;
Ryan & Deci, 2000). Self-determination theory seeks to account for the inner
adaptations that occur in the course of socialization such that children eventually
accept and endorse the values and behaviors advocated by parents, experiencing
them as their own. The three corresponding distinctions are: (1) regulation through
integration, in which the value of the activity has been fully integrated with the per-
son’s core identity; (2) regulation through identification, in which the person sees
the activity as instrumentally important for his or her own goals; and (3) introjected
regulation, in which the source of regulation is internal but has not been integrated
with the self and thus gives rise to tensions and inner conflicts. To these distinctions,
we add regulation through opposition to take account of the fourth possibility, in
which students develop oppositional classroom identities. We should acknowledge
that there are significant theoretical difference between self-determination theory
and the perspective on identity that we have presented. Self-determination theory
focuses on core identity and accounts for its development in terms of the internal-
ization of preestablished norms. We, in contrast, differentiate between core identity
and the personal identities that people construct as they participate in the activities
of particular groups and communities. In our view, people reconstruct their core
identities as they attempt to reconcile who they are and who they want to be with
participation in particular groups and communities. Despite these differences, the
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parallels between the forms of regulation identified by self-determination theorists
and the types of personal classroom identities that we have discerned add credibility
to the latter.

To conclude this discussion of the interpretive scheme, we note that most prior
investigations of the personal identities that students are developing in mathemat-
ics classrooms have restricted their focus to general norms of participation and to
the degree of openness of instructional tasks. Although these analyses open up
new, potentially productive lines of inquiry, the constructs employed are not spe-
cific to mathematics and could be employed to analyze the learning environments
established in science or in social studies classes. The resulting characterizations
of classroom environments are therefore relatively global and provide only limited
guidance for instructional design and the improvement of mathematics instruction.
In contrast, the analytic scheme that we have outlined focuses on the extent to which
students have reconciled their core identities with several specifically mathematical
norms. The scheme is therefore designed to produce analyses of students’ engage-
ment (or the lack thereof) in the mathematics classrooms that take account of both
their core identities and of critical features of the learning environments established
in those classrooms. The relatively detailed, targeted nature of the analyses con-
tributes to their potential to inform instructional designers’ and teachers’ efforts to
support students’ development of a sense of affiliation with classroom mathematical
activity.

Conclusion

We have said little about instructional design in this chapter, as our primary focus
has been on understanding who students are becoming in mathematics classrooms.
We can clarify the general implication of the perspective we have developed for
design by noting with Dewey that the process of identifying with an activity is syn-
onymous with the development of what he termed a true interest in that activity.
Dewey (1913/1975) explicated this relation between students’ interests and their
personal identities in particular settings by observing that “true interests are signs
that some material, object, mode or skill (or whatever) is appreciated on the basis
of what it actually does in carrying to fulfillment some mode of action with which a
person has identified him [- or her]self” (p. 43). He also emphasized that motivation
“expresses the extent to which the end foreseen is bound up with an activity with
which the self is identified” (p. 60). In conceptualizing interests in this way, Dewey
took an explicitly developmental perspective and repeatedly emphasized that the
evolution of students’ interests is a deeply cultural process. This viewpoint implies
that the cultivation of students’ interest in engaging in mathematical activity should
be an explicit goal of instructional design. Elsewhere, we have followed diSessa
(2001) in making an initial contribution to the development of a theory of this type
(Cobb & Hodge, 2003a). A theory of this type would orient the development of
designs, whereas the perspective that we have presented on identity guides analyses
that inform the improvement of such designs.
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In the first part of this chapter, we noted that research on equity has generally
been marginalized within mainstream mathematics education research. The inter-
pretive scheme we have outlined is the product of our efforts to make a concern for
issues of equity integral to our ongoing research. Theoretically, it is premised on
the view of broad Discourses as resources on which people draw to construct local,
dynamic cultures. It therefore reflects a shift away from the more established view of
culture as a way of life that is characteristic of a bounded community. Pragmatically,
the interpretive scheme is premised on the assumption that supporting students’
development of a sense of affiliation with classroom mathematical activity should
be an explicit goal of instructional design and teaching. Although this proposal
complicates the process of developing instructional designs, the potential pay off
is substantial. In complementing the traditional focus on students’ mathematical
reasoning with a concern for who they are becoming in mathematics classrooms,
we necessarily make an interest in issues of equity an integral aspect of mainstream
research in mathematics education. In our view, this opportunity is too important to
pass up.
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Teaching and Learning





Chapter 12
Introduction

Paul Cobb with Chrystal Dean, Teruni Lamberg, Jana Visnovska,
and Qing Zhao

The chapter reprinted in this part of the book outlines an analytical approach for
documenting the school and district settings in which teachers develop and revise
their instructional practices. The institutional setting of mathematics teaching as we
conceptualize it encompasses district1 and school policies for mathematics instruc-
tion. It therefore includes both the adoption of curriculum materials and guidelines
for using those materials (e.g., pacing guides that specify a timeline for complet-
ing instructional units) (Ferrini-Mundy & Floden, 2007; Remillard, 2005; Stein &
Kim, 2006). The institutional setting also includes the people to whom teachers
are accountable and what they are held accountable for (e.g., expectations for the
structure of lessons, the nature of students’ engagement, as well as assessments
of students’ learning) (Elmore, 2004). In addition, the institutional setting includes
supports that give teachers access to new tools and forms of knowledge together
with incentives to take advantage of these supports (e.g., opportunities to participate
in formal professional development activities and in informal professional networks,
assistance from a school-based mathematics coach, or a principal who is an effec-
tive instructional leader) (Bryk & Schneider, 2002; Coburn, 2001; Cohen & Hill,

P. Cobb (B)
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for 3 years. She is a member of the mathematics education faculty at the University of Nevada
at Reno. Chrystal Dean, Jana Visnovska, and Qing Zhao all worked on the project as gradu-
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1As background for non-US readers, we should clarify that each US state is divided into a num-
ber of independent school districts. In rural areas, districts might serve less than 1,000 students
whereas a number of urban districts serve more than 100,000 students. Larger districts typically
have a central office whose staff are responsible for selecting curricula and for providing teacher
professional development in various subject matter areas including mathematics. In the US, the dis-
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2000; Horn, 2005; Nelson & Sassi, 2005). The findings of a substantial and grow-
ing number of studies document that teachers’ instructional practices are partially
constituted by the instructional materials and resources that they use in their class-
rooms, the institutional constraints that they attempt to satisfy, and the formal and
informal sources of assistance on which they draw (Cobb, McClain, Lamberg, &
Dean, 2003; Coburn, 2005; Spillane, 2005; Stein & Spillane, 2005).

The importance of taking account of the school and district setting when work-
ing with mathematics teachers to support their learning was first made clear to me
during a teacher development project in which I participated in the late 1980s. In
this project, Erna Yackel, Terry Wood, and I worked with a group of approximately
20 second-grade teachers to support their reorganization of their classroom prac-
tices.2 One year after we began working with the second-grade teachers, several
members of the newly elected school board responsible for the overall governance
of the district questioned the changes that were occurring in how mathematics was
being taught and learned. A 2-year struggle then ensued in the district that cen-
tered on the issue of who controlled the mathematics curriculum (see Dillon, 1993,
for an account of these events). As a consequence of their collaboration with us,
the teachers had become able to justify their new instructional practices in terms
of the quality of their students’ mathematical learning and therefore believed that
they were more qualified than the school board members to make decisions about
mathematics instruction (Simon, 1993). The teachers, supported by their principals,
eventually prevailed and were given considerable autonomy in making curricular
and instructional decisions in mathematics.

The role of the research team in this sequence of events was largely reactive and
involved responding to a series of unanticipated crises that threatened the contin-
uation of the project. The lesson that I drew from this experience for any future
collaborations with teachers was that it would be crucial to attend to what transpires
outside the teachers’ classrooms as well as what occurrs within them by document-
ing the institutional settings in which they work (Cobb & McClain, 2001). I reasoned
that in doing so, my colleagues and I would be able to anticipate potential tensions
and conflicts, and could then adjust our plans accordingly before they escalated into
full-scale crises. This would enable us to be proactive rather than merely reactive.
In addition, I anticipated that analyses of the school and district settings in which
the collaborating teachers worked might allow us to better understand the teach-
ers’ activity in both professional development sessions and their classrooms, thus
enabling us to be more effective in supporting their learning.

Kay McClain and I developed an initial approach for documenting the insti-
tutional setting of teaching in the late 1990s as we prepared for what Simon
(2000) termed a teacher development experiment3 conducted with two groups of

2These teachers worked in the rural/suburban district referred to in the introductions to several
previous parts of this book.
3A teacher development experiment is a design experiment that aims to support and understand
the learning of a group of teachers.
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middle-school mathematics teachers who worked in two different urban districts.4

We then tested and refined this approach as we worked with the teachers to sup-
port their learning. We initially planned to collaborate with one or more researchers
in educational policy or educational leadership on this aspect of the experiment.
However, it soon became apparent that researchers in these fields typically conduct
observational studies in which they investigate others’ efforts to support instruc-
tional improvement. As a consequence, we were not able to find a policy or
leadership researcher who was willing to work with us to develop analyses that
would actually inform a teacher development effort while it was still in progress.
As one prominent leadership researcher put it, providing feedback about the insti-
tutional setting in order to inform work with teachers would involve “messing with
the intervention.” With some trepidation, I took the lead in attempting to develop a
way of analyzing the institutional setting of mathematics teaching that was tailored
to our purposes as mathematics educators. In doing so, I read extensively in both
the policy and leadership literature, and in the sociocultural literature with the goal
of identifying potentially relevant constructs. As the reprinted chapter makes clear,
I found Wenger’s (1998) book, Communities of Practice, to be especially helpful.
An article by Ueno (2000) published in Mind, Culture, and Activity also proved to
be an extremely valuable source of ideas. Both pieces have been criticized for being
unnecessarily abstract (Wenger, personal communication, January, 2001). However,
I found them to be relatively concrete as I looked at the schools in which the middle-
school teachers worked through these texts, and found that both gave rise to insights
that were immediately relevant to the task of support for the teachers’ learning.

As we clarify in the reprinted chapter, the overall approach constitutes a general
way of documenting the institutional settings in which specific groups of teachers
work. The approach involves first identifying the groups of people within a school
and district that are pursuing an agenda for how mathematics should be taught, and
then documenting the interconnections between these groups. We illustrate the use-
fulness of this approach in the reprinted chapter by presenting a sample analysis
of one of the districts in which the collaborating middle-school teachers worked.
As our analysis indicates, this district was organized to support teachers’ ongoing
improvement of their instructional practices. One important aspect of this organi-
zation was the presence of teacher networks in which interactions focused directly
on instructional practice. Crucially, the teachers’ interactions typically went beyond
the sharing of materials and involved both discerning the mathematical potential
of instructional tasks and identifying the relative sophistication of student rea-
soning strategies. As a consequence, participation in these networks constituted a
supportive context for teachers’ learning.

The second significant aspect of the district organization concerned the devel-
opment of a common vision of high-quality mathematics instruction across the
district. Importantly, this vision was generally consistent with current reform

4This experiment was conducted by Paul Cobb, Kay McClain, Chrystal Dean, Teruni Lamberg,
Melissa Gresalfi, Lori Tyler, Jana Visnovska, and Qing Zhao.
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recommendations (e.g., National Council of Teachers of Mathematics, 2000) and
with current research on learning in mathematics education and related fields.
Research in educational leadership indicates that teacher networks are more likely
to emerge and be sustained if the vision of high-quality mathematics instruction
that they promote is consistent with the instructional vision of school leaders. This
research also indicates that collegiality between teachers and school leaders is rarely
effective unless it is tied to a common vision of high-quality instruction that gives
their work purpose and direction (Elmore, Peterson, & McCarthey, 1996; Newman
& Associates, 1996; Rosenholtz, 1985, 1989; Rowan, 1990). In the reprinted chap-
ter, we describe the interconnections between various groups in the school district
that made possible the ongoing regeneration of a common vision for mathemat-
ics instruction across teachers, school leaders, and district leaders even as they and
indeed the district as an organization continued to learn. As our account indicates,
the development of a common instructional vision is a significant accomplishment
even for a relatively small school district given that teachers, school leaders, and dis-
trict leaders have different responsibilities, engage in different forms of practice, and
have different professional affiliations and identities. In the reprinted chapter, we
also highlight the critical role of district leaders in framing the challenges posed by
a state-mandated high-stakes accountability program5 primarily in terms of improv-
ing instructional quality (and thus student learning) rather than gaming the student
testing system6 (cf. Confrey, Bell, & Carrejo, 2001). In my view, the case on which
we focused in the reprinted chapter has important implications for the process of
supporting the improvement of mathematics teaching and learning at scale.

Elmore’s (2006) observation that most US schools and districts are clueless about
how to respond productively to high-stakes accountability makes it clear that this
district was atypical. In a companion paper (Cobb et al., 2003), we reported an
analysis of the second urban district in which we collaborated with a group of
middle-school teachers. This district was, like the first, located in a US state that
had implemented a high-stakes accountability program. However, it proved to be
much more typical of urban districts in the US. In contrast to leaders of the first

5As background for non-US readers, the US Congress passed a national policy called No Child
Left Behind (NCLB) in 2001 with the overwhelming support of both Republicans and Democrats.
The intent of NCLB is to enable all students to meet high performance standards in language
arts and mathematics. The legislation provides financial incentives for States to design and enact
the three central components of NCLB policy: content standards, tests aligned with the standards,
and mechanisms for holding schools accountable for increasing test scores. The resulting state
accountability policies constitute key aspects of the settings within which district and school lead-
ers formulate local policies for mathematics instruction. The resulting local policies as they are
actually enacted in schools in turn constitute key aspects of what we have termed the institutional
setting of mathematics teaching.
6Heilig and Darling-Hammond (2008) document some of the strategies that districts use to increase
test scores by exploiting loopholes in State accountability systems. As Cohen, Moffitt, and Goldin
(2007) and Elmore (2004) observe, this gaming of the accountability system is to be expected
when school and district leaders are held accountable of boosting test scores but do not know how
to improve the quality of instruction.
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district, leaders of this district viewed mathematics teaching as a relatively rou-
tine activity that does not require specialized knowledge or expertise. They framed
accountability challenges in terms of raising test scores rather than improving the
quality of instruction by supporting teachers’ learning. School leaders, for their
part, responded to the district leaders’ focus on test scores by attempting to monitor
and regulate teachers’ instructional practices. In doing so, they focused on whether
students were on task and whether instruction targeted objectives that would be
assessed by the state test. In the companion paper, we also documented that the
mathematics curriculum specialists in this district were attempting to support mathe-
matics teachers’ improvement of their instructional practices in line with the current
reform recommendations. As a consequence, school leaders and mathematics spe-
cialists used conflicting criteria to assess the quality of instruction when they visited
classrooms. Not surprisingly, the institutional setting as experienced by the teachers
with whom we collaborated was characterized by tension and struggle.

The contrast between the institutional settings in which the two groups of middle-
school teachers worked had a profound influence on our efforts to support their
learning. For example, the teachers in the first district routinely observed each
other’s instruction and were already collaborating to improve their instructional
practice when we began working with them. It therefore took only 3 months for
the teacher group to become a full-fledged professional teaching community whose
joint enterprise was to improve their instructional practices. In contrast, the frequent
classroom observations that school leaders in the second district conducted to mon-
itor and evaluate instruction had resulted in mathematics teaching becoming highly
privatized (Cobb et al., 2003). It was not until we had worked with the teachers in
this district for 19 months that teaching became fully deprivatized and the group
became a professional teaching community that worked collectively on problems of
practice (Dean, 2005). Our analysis of the institutional setting of teaching in this
district proved to be an important means of supporting this development.

Interviews that we conducted with the teachers in this district to understand
their perceptions of the settings in which they worked revealed that they viewed
the school leaders solely as managerial or administrative leaders who gave instruc-
tional issues a low priority (Cobb et al., 2003). However, the interviews conducted
with school leaders consistently indicated that they considered instructional lead-
ership in mathematics to be an important part of their work. The reasons for this
discrepancy in perspectives are beyond the scope of this introduction. We did, how-
ever, conclude at the time that it was important for the teachers and the mathematics
leaders to appreciate that the school leaders’ ineffectiveness as instructional leaders
in mathematics was primarily a matter of competence rather than will. We con-
jectured that if they understood the school leaders’ current view of high-quality
mathematics instruction, they might be better positioned to influence them on issues
central to mathematics teaching and learning. We therefore shared our analyses
of the school leaders’ practices with the teachers. In doing so, we described how
the school leaders’ view that effective mathematics teaching is a relatively routine
activity influenced their approach to instructional leadership. This analysis consti-
tuted a primary point of reference during a series of activities that we subsequently
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conducted with the teachers. Dean’s (2005) analysis of the learning of this teacher
group during the first two years of our work in the district indicates that the teachers’
developing understanding of how the institutional setting influenced their instruc-
tional practices made possible the deprivatization of instructional practice. This was
in turn a crucial step in the group becoming a professional teaching community
whose members collaborated to address problems of practice.

As I have indicated, I initially anticipated that analyses of the institutional setting
would inform our plans for supporting the teachers’ learning, and could contribute
to our accounts of the teachers’ activity in both professional development sessions
and their classrooms. The realization that analyses of this type could also be a useful
support for the learning of a teacher group therefore constituted significant learning
on our part.

In the course of our collaboration with the two groups of middle-school teachers,
we identified a further way in which documenting the institutional setting of teach-
ing enabled us to be more effective in supporting the teachers’ learning. Early in our
work at both sites, we conducted individual interviews and group conversations with
the teachers that focused on their perceptions of the school and districts settings. It
soon became apparent that these interviews and conversations constituted excellent
contexts in which to begin developing collaborative relationships with the teachers.
Although our immediate purpose was to generate data, we necessarily attempted
to understand some of the problems with which the teachers had to cope on a daily
basis. This appeared to be a relatively novel experience for the teachers in the second
district in particular, and seemed to indicate to them that we took their viewpoints
seriously. Further, as we came to understand their concerns, we were better able to
explicitly negotiate a joint agenda with them that reflected their priorities and con-
cerns. Based on this experience, I now routinely initiate conversations of this type
when I first begin working with a group of teachers.
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Chapter 13
The Collective Mediation of a High-Stakes
Accountability Program: Communities
and Networks of Practice

Paul Cobb and Kay McClain

This article describes an analytic approach for situating teachers’ instructional prac-
tices within the institutional settings of the schools and school districts in which
they work. The approach treats instructional leadership and teaching as distributed
activities and involves first delineating the communities of practice within a school
or district whose enterprises are concerned with teaching and learning and then ana-
lyzing three types of interconnections between them: boundary encounters, brokers,
and boundary objects. We illustrate the analytic approach by focusing on one urban
school district in which we have conducted an ongoing collaboration with a group
of middle school teachers. In doing so, we clarify the critical role that school and
district-level leaders can play in mediating state and federal high-stakes account-
ability policies. We conclude by discussing the implications of the analysis for the
process of upscaling and the diffusion of instructional innovations.

Our purpose in this article is twofold.1 The first is to describe an analytic
approach for situating teachers’ instructional practices in the institutional settings of
the schools and districts within which they work. The approach treats instructional
leadership and teaching as distributed activities and involves delineating the com-
munities of practice within a school or district whose enterprises are concerned with
teaching and learning. Our second purpose is more pragmatic and involves demon-
strating the critical role that school and district-level leaders can play in mediating
state and federal high-stakes accountability policies. To address these two purposes,
we illustrate the analytic approach by focusing on one urban school district in which
we have collaborated with a group of middle school mathematics teachers for the
past 4 years. The district is of interest because school and district leaders have
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responded to a state-mandated accountability program not by attempting to regulate
teachers’ instructional practices but by giving teachers access to material resources
(e.g., instructional materials, joint planning time, release time, outside consultants)
and by supporting their development of social and personal resources. These social
resources encompass collaborative relationships in which teachers jointly address
issues that emerge from their instructional practices. The concomitant personal
resources include the teachers’ conceptualizations of particular content domains,
their understanding of the development of students’ reasoning in these domains, and
the possibilities they see in their students’ solutions and explanations. This case is
significant because it is sometimes assumed that high-stakes accountability policies
necessarily delimit opportunities for teachers to develop instructional practices that
focus on supporting the development of conceptual understandings of significant
ideas.

In illustrating the analytic approach, we focus both on the leadership practices of
school and district leaders and on teachers’ instructional practices. As will become
apparent when we document the interconnections between the various communities
of practice to which they belong, teachers and leaders constitute significant aspects
of the environment for each other (see McDermott, 1976). The members of each
community therefore afford and constrain the practices developed by members of
other communities. It is in this sense that we speak of the practices of each com-
munity being partially constituted by the institutional setting in which its members
act and interact. In focusing on the communities of practice in which the functions
of teaching and instructional leadership are actually accomplished, we are primarily
concerned with what Engeström (1998) described as a middle level between the for-
mal structures of schools on the one hand and the content and methods of instruction
on the other.

The middle level consists of relatively inconspicuous, recurrent, and taken-for-granted
aspects of school life. These include grading and testing practices, patterning and punc-
tuation of time, uses (not contents) of textbooks, bounding and uses of the physical space,
grouping of students, patterns of discipline and control, connections to the world outside
the school, and interactions among teachers as well as between teachers and parents [and
administrators]. (p. 76)

Engeström characterized these middle-level features as sense- and identity-
building processes and argued that they largely determine the sense of schoolwork
and thus the experience of what it means to be an instructional leader, teacher, or
student within the institutional setting of a particular school and district. This ori-
entation steers us away from a structural perspective on the school as an institution
and toward a focus on leaders’ and teachers’ activities as they participate in what
he terms the taken-for-granted aspects of school life. In adopting this latter orienta-
tion, our focus is on schools and school districts viewed as lived organizations rather
than as formal structural systems that have been abstracted from the activities of the
persons who constitute them.

In the first part of the article, we provide an overview of the district and our
collaboration with the middle school mathematics teachers. We then discuss the
methodology that we used for analyzing a school or district as a configuration of
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communities of practice. Against this background, we present the results of an anal-
ysis of both the relevant communities of practice in the collaborating district and
the interconnections between them. In describing the critical role of school and dis-
trict leaders in mediating a state-mandated accountability program, we document
in some detail that their leadership practices were not solo accomplishments but
were instead partially constituted by the institutional setting in which leaders devel-
oped and refined such practices. In the final section of the article, we broaden our
purview beyond the district by considering the prospects for diffusing and upscaling
the innovative leadership and instructional practices that we document. In doing so,
we introduce the notion of networks of practice that have considerable spatial reach
and that link groups of teachers and leaders in numerous schools and districts whose
enterprises and practices are broadly compatible. A defining feature of such a net-
work is that innovations developed in one community of practice can diffuse rapidly
and be assimilated readily by members of other communities within a network. As
we clarify, analyses of the topology of networks and communities of practice can
provide guidance for efforts at improvement that aim to transform rather than merely
augment currently institutionalized instructional and leadership practices.

Background to the District and to Our Collaboration

The district in question, which we call Washington Park, is located in a large city in
the southwest United States and serves a 42% minority student population with 46%
of the students on free or reduced-cost lunches and 36% of the students receiving
special services. The district’s seven schools serve Grades K–8. Students in Grades
6–8 attend three of these schools. Two of the schools span Grades 5–8, and the
third spans Grades 3–8.2 The remaining four schools each serve a configuration
of Grades K–4. There is considerable variation in the composition of the student
population across the three middle schools. In addition, there is high turnover in
the student enrollment, even within an academic year. As an example, the student
turnover rate at one of the middle schools was 29% during the 2002–2003 aca-
demic year, and the English-language learner population doubled during a 2-week
period.

A state-mandated testing program was in place when we began our collabora-
tions. In this program, students are tested in mathematics, reading, and language
arts at each grade level on a nationally norm-referenced test. The results of these
annual assessments are disseminated widely in the local media, and school and dis-
trict leaders are held accountable for student performance. An effort to improve
mathematics and language arts instruction was underway before our collaboration.
With respect to mathematics, the district had, for example, adopted a National
Science Foundation (NSF) funded middle school curriculum compatible with cur-
rent reform recommendations—for example, the National Council of Teachers of

2Although the term middle school is not entirely accurate in all three settings, we use it nonetheless
in the remainder of the article to designate the three schools that housed Grades 6–8.
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Mathematics (1999) document Professional Standards for Teaching Mathematics—
and had received an NSF implementation grant. In addition, the district routinely
hired university mathematics educators, many with national reputations, as consul-
tants to conduct professional development sessions with teachers. Similar efforts
had been conducted in language arts.

Scores on the norm-referenced state-mandated test have remained consistently
high because the district has undertaken these efforts to reform mathematics and
language arts instruction. Further, there has been improvement in students’ math-
ematics scores in Grades 6, 7, and 8 over the 4 years of our collaboration with
teachers in the district, even in the context of high student turnover and rapidly
changing demographics. Teachers and administrators in the district almost uni-
formly attributed their success in mathematics as assessed by the norm-referenced
state-mandated test to the implementation of the NSF curriculum. Comments such
as “If we just teach the curriculum, the test will take care of itself” reflect teachers’
and administrators’ confidence in these instructional materials. However, teachers
and administrators also acknowledged that it is “difficult for teachers to really do
[the curriculum] well.” One teacher described the process of learning to use the
materials effectively as follows:

It is not like computation, you know, you have the formulas and computation here and go.
And so this takes a lot of work and a lot of thinking. . . . And so, it’s an extremely difficult
program to teach. So for me, the first two years were literally just keep your head above
water and learn something about it. Make sure you got through day by day. Then at the
third year I felt I started feeling a little more comfortable knowing what is coming, what
were some problems the kids ran into, and that I could fill in a little bit better so that they
didn’t have those problems.

Because of the perceived challenges of implementation, school and district
leaders invested considerable material resources (e.g., both time and money) in pro-
fessional development activities so that teachers might learn to use the instructional
materials as the developers intended.

Our initial classroom observations revealed that most of the collaborating math-
ematics teachers’ instructional practices exhibited fidelity to the materials when we
began working with them. In particular, their instruction was guided by the inves-
tigations around which the curricular materials are organized, and their sequencing
of activities mirrored that advocated by the developers. As an example, the text
resources typically engage students in an exploratory activity that is intended to
provide them with an opportunity to generalize a process or strategy, such as
finding a missing quantity through the use of proportions. In these instances, the
teachers carefully guided the students’ explorations and then worked to support
the emergence of the mathematical generalization in a subsequent discussion. The
regularities that we identified in the teachers’ instructional practices therefore cen-
tered on the manner in which they guided the students through the investigations
and activities. Variations in their instructional practices became apparent when we
analyzed the ensuing whole-class discussions.

The purpose of whole-class discussions for some teachers was to teach a par-
ticular solution method, whereas, for others, the intent was to enable their students



13 The Collective Mediation of a High-Stakes Accountability Program 211

to share what they had learned during the investigation. In the first of these two
approaches, the teachers seemed to view the prior investigation as a pretext for their
introduction of a predetermined solution method, and, as a consequence, whole-
class discussions were somewhat disconnected from the prior investigations. In
the second approach, the teachers expected that their students would develop rel-
evant mathematical understandings as they engaged in the investigation and, as a
consequence, did not intervene to support their learning during whole-class discus-
sions. As an example, in one instance students analyzed graphs to investigate rate of
change in a graph as a precursor to understanding slope. Teachers who focused on
a predetermined solution method introduced the formula for slope without attempt-
ing to relate it to students’ activity during the prior investigation. Teachers who
focused on students’ discoveries assumed that their students had deepened their
understanding of slope as they engaged in the prior investigation.

It was apparent from our initial observations that most of the teachers assessed
their students’ reasoning in terms of their completion of instructional activi-
ties and their contributions to whole-class discussions. However, the adjustments
that they made when they judged that a significant proportion of their students
did not understand typically involved either explaining the process for a sec-
ond time or asking their students to engage in a second, similar investigation.
In doing so, most of the teachers did not seem to view their students’ interpre-
tations and solutions as resources on which they could build. Instead, they took
an implicit deficit view of their students by using the instructional goal of an
investigation or activity as a norm against which to assess their performance. One
teacher’s explanation of her approach of repeating an instructional activity when she
judged that students did not understand as she had hoped is representative in this
regard:

And see, that’s kind of like this program is because I do what [the developers] call a launch,
like an introduction, and then the kids start working. So I kind of like clue them in on what’s
coming, this is what you’re going to learn, this is what I hope you figure out. I just kind of
give them, I know they don’t completely understand, so then when they start working with
it, then as I walk around, if I notice that there’s too many people, sometimes I regroup, and
I kind of, teach the whole class again, and go, everybody’s asking me how to do number
two, so everybody stop, if you understand number two, you can keep working quietly, but
everybody else is, and do that a lot, and then, if I notice that nobody’s got it, I’ll do it again
the next day.

At the time that we began working with them, the teachers’ efforts to use the cur-
riculum materials as intended were supported by a variety of informal professional
networks both within and across schools. Participation in these networks involved
conversations that focused on instructional issues and frequent visits to each other’s
classrooms. At the beginning of our collaboration with them, the teachers all indi-
cated that they viewed their colleagues as resources on whom they could draw when
questions or issues arose in the course of their instruction. Mary Jean’s response to
the question of how she resolved problems that arose in her classroom is typical in
this respect:
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Mary Jean: . . .that is something that I’ve never been afraid to say, wait a minute, something
is rotten here, I’m not understanding it. I’ll find about it, and then I would ask. . . . and that’s
when I go hunt Pamela down real quick, and find another example, another idea.

Comments by Joan, Beth, and Julian indicate a similar reliance on colleagues.

Joan: I think I’ll probably always go to [Pamela] because I know she’s taught the program,
she’s the more experienced person. So at the beginning of the year, I was asking her about
everything, about assemblies, how do I get the kids to lunch, so she was there for that. Now
I just go to her for the math stuff. . . . The questions the kids ask me, then I’m out of time,
I’m going, you guys I really don’t know, I’ll get back to you tomorrow, then I find Pamela,
go find Pamela.

Beth: No, I’ll go talk, usually, I will go to [another teacher] first cause she has been here
long as I have. We’ve taught in the program the same amount of years. I’ll go and say, you
know, how did it go with you, what’s going on. And usually her and I will figure something
out, and if it’s still a big issue, then we bring it to the math meetings that we have once a
month.

Julian: I talk to other sixth-grade math teachers. Other fifth-grade math teachers. I talk to
Joseph about it. He’s a wealth of information. I go to him. Mari is over at [another school]
and I know Mari so I go to Mari. You know, how did you do it? Does this sound appropriate?

It is apparent from these and other teachers’ comments that they drew on an
array of social resources as a routine part of their practice. Our intent in collab-
orating with a group of teachers in the district has been to initiate and support
the development of a professional teaching community by capitalizing on these
resources. To this end, during each of the 4 years of the collaboration, we have con-
ducted a summer work session and half-day work sessions each month during the
school year. At the outset, we worked with 14 mathematics teachers representing
all three middle schools, and 15 teachers are currently involved in the collabora-
tion. Our pragmatic goal in working with the teachers has been to support their
eventual development of instructional practices in which they place students’ rea-
soning at the center of their instructional decision making. In the envisioned forms of
instructional practice to which the collaboration aims, students’ interpretations and
solutions are viewed as resources on which the teachers can capitalize to achieve
their instructional agenda. Instructional materials would then serve not as blueprints
for instruction but as resources that teachers adapt to the context of their class-
room as informed by conjectures about both students’ reasoning and the means of
supporting its development.3 Furthermore, implementation would become a pro-
cess of conjecture-driven adaptation rather than one of fidelity of reproduction.
However, the complex and demanding nature of instructional practices of this type
indicate the importance of social resources, such as those on which we planned
to build when supporting the development of a professional teaching community

3We construe these means of support broadly so that they include the nature of classroom discourse
and the classroom activity structure as well as instructional materials and associated tools.
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(Gamoran et al., 2003). When situated within such a community, the process of
instructional improvement then becomes a collaborative problem-solving activity
in which teachers generate knowledge about students’ mathematical reasoning and
the process of supporting its development (Franke, Carpenter, Levi, & Fennema,
2001).

This overview of the district, the teachers’ initial instructional practices, and
our proposed collaboration with them serves to describe the setting in which we
pursued our primary research goal of investigating conjectures about the means of
supporting and sustaining the development of professional teaching communities.4

To achieve this goal, we conducted a design experiment (cf. Brown, 1992; Cobb,
Confrey, diSessa, Lehrer, & Schauble, 2003) in which we tested and revised con-
jectures about both a learning trajectory for a professional teaching community and
the specific means that might be used to support that learning. A detailed discussion
of the conjectures that informed our initial plans for working with the collaborating
teachers can be found in Cobb and McClain (2001). The analyses that we conducted
to inform the ongoing revision of these initial conjectures track the evolution of the
activities of the professional teaching community and changes in the participating
teachers’ instructional practices.

The data we generated to document the learning of the professional teaching
community throughout our collaboration with the teachers include semistructured
interviews conducted with the teachers each year, video recordings of all work ses-
sions, and copies of all material artifacts produced by the teachers.5 To document
the teachers’ instructional practices, we generated modified teaching sets (Simon
&Tzur, 1999) each year for each teacher. A modified teaching set consists of class-
room observations followed by an audio-recorded semistructured interview with
the teacher that focused on instructional planning and on reflections of lessons.
Analyses of these data indicate that we had some success in supporting the learn-
ing of the professional teaching community and the participating teachers. Within
the professional teaching community, we were able to document growth not only
in the teachers’ mathematical understandings (McClain, 2003) but also in their
understanding of students’ reasoning as a resource on which they could capital-
ize to achieve their instructional agendas. In particular, in the course of discussions
within the professional teaching community, the teachers analyzed student work
samples to delineate distinct types of mathematical reasoning and focused on how

4We are in fact investigating these conjectures by collaborating with groups of teachers in two
contrasting urban districts. A description of the second district can be found in Cobb, McClain,
Lamberg, and Dean (2003).
5The process of documenting the learning of a professional teaching community involved iden-
tifying the successive norms that became established for general participation, mathematical
reasoning, pedagogical reasoning, and strategic norms (i.e., the ways of understanding the insti-
tutional setting for mathematics teaching that have become normative within the professional
teaching community). A discussion of the criteria that need to be satisfied when identifying
communal norms can be found in Cobb, Stephan, McClain, and Gravemeijer (2001).
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they can build on their students’ mathematical thinking during whole-class discus-
sions. Thus, rather than introduce a predetermined method or expect students to
develop relatively sophisticated mathematical understandings without support, some
of the teachers assumed a proactive role in which they use their students’ reasoning
as a resource.

The Institutional Setting in Which the Teachers Revised
Their Instructional Practices

The analyses that we have described to this point are internal to the professional
teaching community. However, a number of investigations have documented that
teachers’ instructional practices are profoundly influenced by the institutional con-
straints that they attempt to satisfy, the formal and informal sources of assistance
on which they draw, and the materials and resources that they use in their class-
room practice (Ball, 1996; Brown, Stein, & Forman, 1996; Feiman-Nemser &
Remillard, 1996; Nelson, 1999; Senger, 1999; Stein & Brown, 1997). The find-
ings of these studies indicate the need to take account of the institutional setting
in which the collaborating teachers developed and refined their instructional prac-
tices. It is only when we do so that we can adequately explain both our success
in supporting the teachers’ development of increasingly sophisticated instructional
practices and the district’s success as assessed by student performance on state-
mandated achievement tests. We have therefore complemented our focus on the
activities of the professional teaching community and the teachers’ instructional
practices with analyses of the institutional setting in which the collaborating
teachers work.

The approach that we have taken when conducting these analyses involves iden-
tifying the communities of practice within a school or district whose missions or
enterprises are concerned with the teaching and learning of mathematics. We build
from Wenger (1998) by using his three interrelated dimensions that serve to char-
acterize a community of practice: a joint enterprise, mutual relationships, and a
well-honed repertoire of ways of reasoning with tools and artifacts. In the following,
we clarify each dimension of the professional teaching community in Washington
Park by example.

A Joint Enterprise

In the case of the professional teaching community, the joint enterprise was to
ensure that students come to understand central mathematical ideas while perform-
ing more than adequately on high-stakes assessments of mathematics achievement.
This entailed the teachers’ developing a relatively deep understanding of the mathe-
matical intent of instructional activities so that they could achieve their instructional
agendas by capitalizing on students’ reasoning.
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Mutual Relationships

In the case of the professional teaching community, these relationships encompass
general norms of participation as well as norms that are specific to mathematics
teaching, such as norms of mathematical reasoning and the standards to which the
members of the community hold each other accountable when they justify peda-
gogical decisions and judgments. As an illustration, when sharing the results of
instructional activities, the teachers routinely challenged arguments that take the
goal of instruction as a normative point of reference and characterized students’
reasoning in terms of deficits. In doing so, the teachers held each other accountable
to the norm of attempting to tease out differences in students’ current capabilities.

A Well-Honed Repertoire of Ways of Reasoning
with Tools and Artifacts

In the case of a professional teaching community, this repertoire includes (a) nor-
mative ways of reasoning with instructional materials and other resources when
planning and organizing for mathematics instruction and (b) normative ways of
using instructional activities and other resources to make students’ mathematical
reasoning visible. The normative ways of reasoning with instructional materials
that have emerged within the professional teaching community encompass both
the mathematical domain that is the focus of instruction and the diverse ways that
students might approach and solve instructional activities. These norms became
apparent in discussions as the teachers worked together to plan instructional activ-
ities that they would use in their classrooms. In these conversations, the teachers
who characterized instructional goals solely in terms of processes that students were
to learn for producing answers were typically challenged for failing to explicate
the underlying mathematical ideas. Furthermore, in the course of these conversa-
tions, the teachers typically envisioned the nonstandard approaches that students
might take.

Methodologically, we used what Spillane (2000) referred to as a snowballing
strategy and Talbert and McLaughlin (1999) termed a bottom-up strategy to delin-
eate the communities of practice within the Washington Park district whose missions
or enterprises were concerned with the teaching and learning of mathematics. The
first step in this process involved conducting audio-recorded semistructured inter-
views with the collaborating teachers to identify people within the district who
influenced their classroom instructional practices in some significant way. The
issues addressed in these interviews included the professional development activ-
ities in which the teachers have participated, their understanding of the district’s
policies for mathematics instruction, the people to whom they are accountable, their
informal professional networks, and the official sources of assistance on which they
can draw. To corroborate these interview data, we also administered a survey that
addressed these same issues to all the mathematics teachers in the Washington Park
district who taught Grades 6–8. The second step in this bottom-up, or snowballing,
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process involved interviewing the people identified in the teacher interviews and
surveys to understand their agendas as they related to mathematics instruction and
the means by which they attempted to achieve those agendas. We then continued
this process as we identified additional people in this second round of interviews
who actively attempted to influence how mathematics is taught in the district.

The communities of practice that we identified in addition to the professional
teaching community as we analyzed these data were the districtwide mathematics
leadership community and the school leadership communities in the three schools
in which the teachers work.

The Mathematics Leadership Community

The core members of the mathematics leadership community were the mathematics
teacher leaders in each of the three middle schools who received 50% release time
from teaching to lead the district’s instructional improvement effort in mathematics.
A number of teachers were also members of this community but had peripheral
roles. The mathematics teacher leaders were, for their part, full members of the
professional teaching community and participated in all sessions.

In addition to the semistructured interviews conducted with the core mem-
bers, the data generated to document the activities of the mathematics leadership
community include a series of follow-up interviews, scheduled monthly meet-
ings, frequent informal discussions, and an ongoing e-mail exchange as well as
observations of professional development sessions that the mathematics teacher
leaders conducted in the district. These data consistently indicate that the math-
ematics teacher leaders viewed themselves as members of a broader community
of mathematics education reformers and had a relatively deep understanding of
and a commitment to the general intent of proposals for mathematics teaching and
learning. For example, they attempted to organize mathematics instruction around
central mathematical ideas and viewed mathematical communication not merely as
a possible instructional strategy but as an important instructional goal in its own
right.

The analysis of the data that we generated consistently indicates that the joint
enterprise of this community was to improve the mathematics understanding of all
students by assisting teachers in developing a relatively deep understanding of both
the mathematical ideas addressed in the NSF textbook series and the ways in which
students’ reasoning might evolve as they complete instructional activities. As part
of the process of supporting teachers’ learning, the mathematics leaders had devel-
oped a district curriculum guide that correlated the NSF text resources with the state
standards and provided a pacing guide to ensure coverage of the text resources. The
tools with which the members of the mathematics leadership community reasoned
as they organized for mathematics teaching and learning therefore included the state
standards, the district curriculum guide, the NSF instructional materials, the pacing
guide, and samples of students’ work that served to document their mathematical
reasoning. In contrast to this array of tools, the mathematics teacher leaders all
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indicated that they made students’ learning visible by relying almost exclusively
on scores on the state-mandated test.

As part of the process of organizing for mathematics instruction, the mathemat-
ics teacher leaders conducted biweekly meetings with the teachers at a particular
grade level in each school. Although the mathematics teacher leaders gave priority
to the implementation of the curriculum and adherence to the state standards in these
grade-level meetings, their larger goal was to support the teachers’ development of
instructional practices that would support students’ development of mathematical
understanding as reflected on state test scores. To achieve this goal, the mathematics
teacher leaders focused on the teachers’ understanding of the mathematical intent of
instructional activities when they addressed implementation issues. To this end, they
and the teachers worked together to complete instructional activities and examined
student work on these and similar activities.

One classroom teacher described this emphasis in the grade-level meetings as
follows:

I would call it a grade-level learning group. It’s a grade level math meeting where you go in
and you usually pick the topic at the prior meeting [based] on where you’ll be. That’s where
you go in and really look at what are you studying, how close your students are getting. We
take a bit of time doing that, then we may tear apart the [mathematics] book. We may sit and
look at a fraction book, we have two fraction books. We may say, this is really redundant,
these are the same lessons, let’s do one and take the other out for expediency’s sake. Or
we may say, you know, this is really crucial so we need more lessons. I know people are
reading this and that, but look at this lesson over here and how relates to it. And this one
and this one, and this one. We may bring in articles that we found were valuable. Or we
may say, you know what, I have no idea what the point is, I have no idea what the form or
the function is. We can sit and discuss how important that is, and how it works.

To make mathematics learning visible, the mathematics teacher leaders (MTLs)
spent time analyzing standardized test scores, typically in collaboration with the
leadership community in each school. Their primary purposes in doing so were to
monitor achievement levels in each school at each grade and to identify potential
weaknesses in the curriculum strands both within and across grades. The MTLs
then typically analyzed the fit between potential areas of weakness and the curricu-
lum to investigate whether there had been “adequate coverage” during the year. It
was apparent from these analyses that the MTLs viewed the state test scores as an
assessment of not only the students but also the curriculum and the teachers’ ability
to implement it effectively. For this reason, their first step when investigating a drop
in scores was to determine which parts of the curriculum had been implemented the
previous year. In conducting these analyses, the MTLs assumed that fidelity to the
curriculum correlated strongly with high test scores.

School Leadership Communities

The school leadership communities in each of the three schools in which the col-
laborating teachers work consist of the principal and the assistant principal. In
addition, the mathematics teacher leader and one or more teachers in each school
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were peripheral members. We relied on semistructured interviews conducted with
the school leaders to document the activities of these communities, and we triangu-
lated these interviews with the collaborating teachers’ descriptions of the settings
of their work. These data document that the joint enterprise of each of the school
leadership communities is to support mathematics teachers’ efforts to improve the
quality of mathematics teaching and learning in the district while remaining vigi-
lant about student test scores on state-mandated tests. The interviews indicate that
the school leaders, like the mathematics teacher leaders, viewed fidelity to the cur-
riculum as evidence of effective instructional practice. The school leaders at each
school characterized an effective classroom as one in which

• There is more than one way to solve a problem.
• There are ample opportunities for students to explain their thinking.
• There is enthusiastic interaction among the students around mathematical ideas.
• Teachers are using formative assessment to plan instruction.

They pursued their agenda for mathematics teaching and learning by providing
resources (e.g., texts, materials, release time, attendance at professional meetings),
arranging schedules to facilitate collaboration, and modifying observation forms so
that they supported reflection rather than assessment.

The primary tools that members of the school leadership communities used
as they organized for mathematics teaching and learning were the state standards
and the NSF curriculum. These tools were frequently the focus of discussion in
regularly scheduled meetings between the leaders in each school and the mathemat-
ics teacher leaders and during the classroom observations that the school leaders
conducted. The focus in these settings was on fidelity to the curriculum, on the
assumption that this entailed alignment with state standards. One principal con-
firmed this sentiment when he described his job by noting, “If you teach the
curriculum, then the test scores will go up. My job is to make sure they teach the
curriculum.”

It is important to note that the school leaders had a relatively deep understand-
ing of the general intent of current reform proposals in mathematics education. This
reflected their engagement in activities conducted as part of an implementation grant
funded by the NSF. Their participation included numerous professional develop-
ment seminars as well as 120 contact hours of mathematics content courses during
the past 4 years. In this process, the school leaders had experienced instruction con-
sistent with the vision articulated in National Council of Teachers of Mathematics
reform documents. Furthermore, they had come to see these competencies as being
crucial to their role as instructional leaders in their schools. For example, the school
leaders devoted a portion of their districtwide biweekly meetings to mathematics.
In these settings, they completed an instructional activity from the NSF curriculum
to develop their own mathematical reasoning and to appreciate the mathematical
intent of the curriculum. These experiences supported their belief that fidelity to the
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curriculum was the primary means of improving student learning as indicated by
test scores.

To make mathematics teaching and learning visible, the members of the school
leadership communities analyzed state test scores in the context of districtwide
administrative meetings and at the school level with members of the mathematics
leadership community. As they sought explanations for the scores, the school lead-
ers acknowledged and relied on the expertise of the MTLs. As an example, school
leaders typically brought drops in test scores to the attention of the MTLs but left
the analysis of possible causes to them. The development of plans to address these
deficiencies was also the purview of the MTL. The school leaders, for their part,
made resources available to the MTLs so that they could pursue courses of action
with respect to the scores.

It is apparent from these descriptions of the mathematics leadership and school
leadership communities that the visions they attempted to realize for mathematics
teaching and learning were broadly compatible. For the mathematics teacher leaders
and the school leaders, mathematics teaching is a complex and demanding activ-
ity that requires a deep understanding of students’ mathematical reasoning and the
mathematical ideas that are the focus of instruction. Furthermore, the mathematics
teacher leaders and the school leaders conceptualized instructional goals in terms
of mathematical ideas and pursued agendas that were not limited to instructional
methods or strategies but also encompassed the nature of students’ engagement in
classroom activities and the forms of mathematical reasoning that they were devel-
oping. Although the school leaders in particular were attentive to student scores on
state-mandated tests, it is significant that they and the mathematics teacher leaders
participated primarily in the discourse of reform in mathematics education rather
than the discourse of high-stakes testing and accountability (see Confrey, Bell, &
Carrejo, 2001).

It should also be apparent from the account that we have given of the var-
ious communities in the Washington Park district that teachers developed and
refined their instructional practices in an institutional setting in which they were
consistently supported to implement the NSF curriculum with fidelity. We saw,
for example, that teachers’ participation in grade-level meetings conducted by
mathematics teacher leaders supported their development of relatively deep under-
standings of central mathematical ideas. The consistently supportive nature of the
institutional setting was particularly evident when aspects of a teacher’s instruc-
tional practice were perceived to be problematic. In such cases, the teacher and
a school leader (e.g., the assistant principal or the principal) jointly constructed
an improvement plan. The teachers often talked openly about these plans in the
professional teaching community and solicited advice about how they might best
approach the identified problems they were experiencing in their classrooms. This
deprivatization of instructional practices was made possible by and contributed to
an institutional setting in which teachers viewed the mathematics teacher leaders,
school leaders, and each other as resources for their learning.
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Interconnections Between Communities of Practice

To this point, we have documented that the practices of the professional teaching
community, mathematics leadership community, and school leadership communi-
ties were in broad alignment. However, we have not explained how this alignment
was sustained or how the practices of the mathematics and school leaders related
to and influenced teachers’ instructional practices. To address these issues, we
have to take the analysis one step further by delineating the interconnections
between the various communities that we have identified. In doing so, we distin-
guish between three types of interconnections: boundary encounters, brokers, and
boundary objects.

Boundary Encounters

The first type of interconnection arises when teachers’ or leaders’ routine partici-
pation in the practices of their community involves boundary encounters in which
they engage in activities with members of another community. As an illustration,
boundary encounters occurred in the Washington Park district when mathematics
leaders and school leaders conducted classroom observations. Additional boundary
encounters included the grade-level meetings that the mathematics teacher lead-
ers conducted with teachers and the regularly scheduled meetings between the
school leaders and the mathematics teacher leader in each school. The mathematics
teacher leaders’ institutionalized role as authorities with expertise in the teaching
and learning of mathematics was readily apparent in these two series of meetings.

Brokers

The second type of interconnection that we documented when analyzing the insti-
tutional settings in which the collaborating teachers developed and revised their
instructional practices concerns the activities of brokers who were at least peripheral
members of two or more communities of practice. Brokers can bridge between the
activities of different communities by facilitating the translation, coordination, and
alignment of perspectives and meanings (Wenger, 1998). Their role can therefore
be important in developing alignment between the enterprises of different commu-
nities of practice. In the Washington Park district, the mathematics teacher leaders
were the most visible brokers. As we have noted, they were not only members of the
mathematics leadership community but were also core members of the professional
teaching community and peripheral members of the school leadership community.
In this pivotal role as brokers between their own and the other communities, the
mathematics teacher leaders had at least partial access to the practices of the pro-
fessional teaching community and the school leadership community. This in turn
enabled them to provide the school leaders and teachers with access to the practices
of each other’s communities. One important consequence of their activity as brokers
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was that they could therefore provide teachers with a voice in the school leadership
communities.

Boundary Objects

The third type of interconnection between the communities of practice involves the
use of a common boundary object by members of two or more communities as a
routine part of their activities. In the Washington Park district, boundary objects
include the curriculum materials, the state standards, and reports of students’ test
scores. As Wenger (1998) noted, boundary objects are based on what he termed
reification rather than participation.6 Wenger defined reification as “the process of
giving form to our experience by producing objects that congeal this experience into
‘thingness’” (p. 58). He argued that in creating reifications, “we project our mean-
ings into the world and then we perceive them as existing in the world, as having
a reality of their own” (p. 58). However, as he went on to emphasize, reifications
cannot capture the richness of lived experience precisely because they are frozen
into a concrete form such as a text. As a consequence, although a reifying object is
a relatively transparent carrier of meaning for members of the community in which
it was created, there is the very real possibility that these objects will be used dif-
ferently and come to have different meanings when they are incorporated into the
practices of other communities. Even when this occurs, common boundary objects
that are used differently in different communities can nonetheless enable the mem-
bers of these communities to coordinate their activities. Consequently, as Star and
Griesemer (1989) demonstrated, successful coordination does not require that mem-
bers of different communities achieve consensus. Boundary objects do not therefore
carry meanings across boundaries but instead constitute focal points around which
interconnections between communities emerge.

In our experience, the role of boundary objects is typically far less visible to
leaders and teachers than are interconnections that involve boundary encounters and
brokers. Their inclusion in an analysis of the institutional setting in which a group
of teachers have developed their instructional practices is therefore crucial if we are
to document the inconspicuous, recurrent, and taken-for-granted aspects of school
life. In the case of the Washington Park district, the curriculum materials and the
state standards were constituted as boundary objects between all three communities
as their members organized for mathematics instruction. However, only reports of
students’ scores on the state-mandated test were constituted as boundary objects as

6Reification as Wenger (1998) defined it should not be confused with Sfard’s use (1991, 1994) of
this same term. For Sfard, reification is the process by which mathematical objects are constructed
from operational mathematical processes. Wenger’s use of the term is less technical and refers
to the process by which members of a community create objects that, for them, carry particular
practice-based meanings. As he made clear, the process of reification complements participation
in the sense that mutual engagement typically involves the use of artifacts that are the product of
prior reifications.
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the members of the various communities made mathematics teaching and learning
visible.

Given Star and Griesemer’s observation (1989) that boundary objects do not
carry meanings across boundaries, the compatibility in the ways that members of the
various communities used the state standards, curriculum, and test scores needs to be
explained. Two observations are relevant in this regard. First, boundary encounters,
particularly those in which the mathematics teacher leaders acted as brokers, consti-
tuted contexts in which the members of the different communities could explicitly
negotiate how they used the state standards, curriculum materials, and students’
test scores. For example, the mathematics teacher leaders had access to the ways
in which the school leaders used instructional materials and could give the school
leaders access to the ways in which they and the teachers used these materials. As
a consequence, differences in uses of this and other boundary objects could become
an explicit topic of conversation in the meetings between the school leaders and
mathematics teacher leaders. Similar comments apply to the mathematics teacher
leaders’ participation in the professional teaching community and to grade-level
meetings that they conducted with the teachers in each school. In each of these
cases, the boundary objects supported brokering and the bridging of perspectives,
thereby contributing to the alignment of the enterprises of the various communities.
More generally, Wenger (1998) noted that mutual engagement and reification offer
two complementary ways of attempting to shape the future and that one is rarely
effective without the other.

Our second observation concerns the practices in which the various boundary
objects originated within the district. For example, the state standards and the
reports of test scores were primarily grounded in the practices of school leaders
as they monitored students’ performance on the state-mandated test. The consti-
tution of the state standards and test scores as boundary objects enabled teachers
and mathematics teacher leaders to contribute to the enterprise of the school lead-
ership communities. In contrast, the adopted curriculum was primarily grounded in
the practices of teachers and the mathematics teacher leaders. Its constitution as a
boundary object enabled the school leaders to contribute to the enterprises of the
mathematics leadership and professional teaching communities. The alignment that
we have documented between the practices of the various communities was con-
tinually regenerated as the members of particular communities contributed to the
enterprises of other communities in this manner.

In concluding this characterization of the Washington Park district, we note that
the analysis of interconnections based on boundary objects is pragmatically useful
in that it can inform our efforts to support the learning of the professional teaching
community. As an illustration, we consider it significant that the only tool for mak-
ing mathematics teaching and learning visible that was constituted as a boundary
object was grounded primarily in the practices of the school leadership community.
As we have seen, the negotiation of the ways in which the members of various com-
munities used students’ test scores enabled teachers and the mathematics teacher
leaders to contribute to the enterprise of the school leaders. In contrast, the samples
of students’ work that teachers generated to document their mathematical reasoning
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were a focus of discussion only in grade-level meetings with the teacher leaders.
As a consequence, school leaders had few opportunities to negotiate their under-
standings of students’ reasoning with the members of the other communities. This
in turn delimited their contributions to the enterprises of the professional teaching
and mathematics leadership communities. In our future work in the district, we will
therefore endeavor to support the constitution of student work as a boundary object
between all three communities.

As this example illustrates, analyses of the institutional setting of teaching that
include a focus on interconnections between communities can provide a perspective
from which to consider whether collaborations with teachers should entail con-
certed attempts to bring about changes in the settings in which they have developed
their current instructional practices. In addition, analyses of this type can inform
the development of testable conjectures about the means of bringing about such
changes. The approach that we have illustrated was in fact developed as a gen-
eral way of documenting and analyzing the specific institutional settings in which
particular groups of teachers work that can feed back to inform efforts to sup-
port their learning. The potential value of such an approach is that it can support
teacher development efforts by enabling researchers and teacher educators to mon-
itor the institutional settings of the sites in which they are working on an ongoing
basis.

Discussion

In stepping back from the Washington Park district, we first foreground key char-
acteristics of the analytical approach and then draw together the central aspects of
the sample analysis. We conclude by discussing the implications of the analysis
for the process of working in multiple districts and the diffusion of instructional
innovations.

It should be clear that in identifying relevant leadership communities, we do
not assume that school and district leadership resides exclusively with the indi-
viduals who occupy designated leadership positions. Instead, we follow Spillane,
Halverson, and Diamond (1999, 2001) by discerning how various leadership func-
tions are actually accomplished with the expectation that we will find that many
are in fact distributed across several people who use a range of tools to accomplish
those functions. Similarly, the analytic approach that we have illustrated character-
izes teaching as a distributed activity. At first glance, this assumption might seem
highly questionable for districts where, in contrast to Washington Park, teachers
work in relative isolation and have limited opportunities for collaboration with each
other. However, this contention becomes plausible when we note that the approach
that we have taken focuses not on actions of individual teachers working alone in
their classrooms but on the functions of teaching as they are accomplished in schools
and school districts. As we have illustrated, these functions are not restricted to inter-
acting with students in the classroom to support their mathematical learning but also
include
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Organizing for mathematics teaching and learning by, for example, delineating
instructional goals and by selecting and adapting instructional activities and
other resources.

Making mathematics learning and teaching visible by, for example, posing
tasks designed to generate a record of students’ mathematical reasoning.

When we analyze how these latter two functions are actually accomplished in spe-
cific cases, it almost invariably proves to be the case that a number of persons in
various designated positions within the school and district are involved in accom-
plishing them and that they use a variety of tools as they do so. As an illustration, the
mathematics teacher leaders used the state standards and the curriculum materials
as they organized for mathematics teaching and learning by conducting grade-level
meetings and by meeting regularly with the members of the leadership community
in each school.

As a point of clarification, we should stress that this distributed perspective on
teaching does not imply that people within a school or district necessarily coordinate
their activities seamlessly or smoothly. Although this was the case in the Washington
Park district, we have reported an analysis of a second district elsewhere (Cobb et al.,
2003) in which mathematics teaching was a site of tension and struggle as people
within that district pursued conflicting agendas. More generally, the immediate insti-
tutional setting within which teachers develop and refine their instructional practices
is constituted as members of different communities of practice pursue sometimes-
conflicting instructional visions and gauge the extent to which their visions have
been realized in classrooms.

Consistent with the distributed perspective that we have proposed on mathemat-
ics teaching, the analytical approach characterizes individual teachers’ instructional
practices as situated and as partially constituted by the institutional setting in which
they work. For example, the instructional practices of the collaborating teachers
were situated in that they involved

• Reasoning with the NSF instructional materials and with work samples that
served as records of students’ reasoning.

• Having coordinated schedules and joint planning time.
• Having access to computer labs and other physical resources.
• Having access to peers when difficulties arose in their classrooms.
• Drawing on their understanding of their students’ mathematical reasoning and

the intent of the NSF materials to justify their pedagogical decisions to mem-
bers of the professional teaching community and the mathematics leadership
community.

• Receiving assistance rather than assessment from mathematics teacher leaders
and school leaders during classroom observations.

Taken together, these aspects of the institutional setting in which the collaborat-
ing teachers developed their instructional practices provided them with access to
resources for improving their instructional practices while simultaneously insulating
them from high-stakes accountability pressures.
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Similarly, the analytical approach also produced situated accounts of the activ-
ities of the mathematics teacher leaders and the school leaders. For example, the
mathematics teacher leaders’ activity was situated in that they

• Were constituted as content experts as they interacted with members of both
the professional teaching community and the school leadership communities.

• Reasoned with the NSF instructional materials and state standards when
organizing for mathematics teaching and learning.

• Had access to and could influence the practices of school leaders.
• Had the autonomy and material resources to investigate and address perceived

problems with test scores.
• Had access to and could influence teachers’ instructional practices during

classroom visits and grade-level meetings.

The responsibilities of mathematics teacher leaders as they were constituted in the
Washington Park district involved supporting teachers to improve their instructional
practices while collaborating with school leaders to ensure that test scores continued
to be acceptable.

The school leaders’ activity was situated in that they

• Were held accountable by district leaders and the community for test scores.
• Reasoned with the NSF instructional materials and state standards when

organizing for mathematics teaching and learning and with test scores when
making mathematics teaching and learning visible.

• Negotiated their interpretations of the instructional materials and test scores
with the mathematics teacher leader in their school.

• Deepened their understanding of the mathematical intent of the NSF instruc-
tional materials during biweekly meetings of school leaders in the district.

• Observed teachers’ instructional practices during classroom visits and
addressed perceived difficulties by formulating an improvement plan in
collaboration with the teacher.

The responsibilities of school leaders as they were constituted in the Washington
Park district involved collaborating with mathematics teacher leaders in their efforts
to improve the quality of mathematics teaching and learning while remaining
vigilant about test scores.

In the first part of this article, we note that the Washington Park district is
of particular interest because school and district leaders have responded to a
state-mandated accountability program not by attempting to regulate teachers’
instructional practices but by giving teachers access to material resources and by
supporting their development of social and personal resources. The analysis that
we present demonstrates that the roles of individual school leaders in mediating the
state accountability program were not solo accomplishments but were instead par-
tially constituted by the institutional setting in which they worked. For example, we
point to the opportunities for the school leaders to deepen their understanding of the
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learning and teaching of mathematics through courses that they had been required
to take. We also saw that in meeting regularly with the mathematics teacher leader
in their school, they had the opportunity to negotiate their interpretations of the NSF
instructional materials with a person who was constituted in the district as a content
expert. These and other aspects of the institutional setting in which the school lead-
ers worked afforded and constrained their development of leadership practices that
involved supporting teachers’ learning by giving them access to resources and by
engaging in the discourse of educational reform rather than of high-stakes testing
when they interacted with them. In a very real sense, what it meant to be a school
leader in the Washington Park district was partially constituted by the institutional
setting in which the school leaders developed and refined their leadership practices.

The analysis that we present of the Washington Park district substantiates
research in the fields of educational policy and educational leadership that has
sought to identify characteristics of schools in which innovative instructional prac-
tices are likely to be sustained. As Newman and Associates (1996) documented,
facets of the organizational capacity for change and improvement of such schools
include knowledge and skills, shared visions, collaboration among staff, class-
room autonomy, and collective responsibility for students’ learning. The analysis of
various communities that comprise the Washington Park district and the intercon-
nections between them serve to specify the underlying processes that give rise to
these characteristics in this particular case. For example, we illustrate how the insti-
tutional niches in which the members of each community developed and refined
their practices involved considerable autonomy while simultaneously giving them
access to new skills and forms of knowledge. Similarly, we clarify how an alignment
between the enterprises and practices of the different communities involved shared
visions, collaboration, and collective responsibility for student learning was gen-
erated and sustained. More generally, analyses of the type that we have illustrated
complement those conducted in the fields of educational policy and educational
leadership by documenting the processes by which teachers and leaders in particular
schools and districts collectively generate characteristics of schools associated with
a high capacity for change and improvement in mathematics teaching and learning.

Given the success of teachers and leaders in the Washington Park district in sup-
porting students’ mathematical learning, a question that naturally arises is that of
how innovative aspects of their practices might be disseminated to other districts.
In addressing this issue, we draw on Brown and Duguid’s work (2000) to intro-
duce the notion of a network of practice. Brown and Duguid clarified that networks
of practice have considerable spatial reach that transcend the constraints of direct
interaction. A defining feature of such a network is that innovations developed in one
community of practice can diffuse rapidly and be assimilated readily by members
of other communities. As an illustration, the mathematics teacher leaders and most
members of the professional teaching community in the Washington Park district
considered themselves to be members of a nationwide community of mathemat-
ics education reformers. This broader community is not a tight-knit community of
practice in which people negotiate meanings directly as they interact while engaging
in joint activities. Instead, it is a network of practice that links groups of teachers
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and leaders in numerous schools and districts whose enterprises and practices are
broadly compatible.

Brown and Duguid (2000) emphasized that people whose local community of
practice is part of such a network are separated from other people whose local
communities are oriented by different enterprises and are thus part of different net-
works in terms of dispositions, attitudes, and knowledgeability. Brown and Duguid
also clarified that networks of practice often correspond to occupational groups.
In the case of the Washington Park district, for example, the mathematics teacher
leaders, school leaders, and teachers differed from each other in terms of their con-
cerns and interests even though the enterprises of their respective communities were
aligned.

The relevance of the notion of networks of practice to the issue of upscal-
ing becomes apparent once we note that innovations are not taken up uniformly
but instead diffuse according to what Brown and Duguid (2000) referred to as
the topology of networks and communities of practice. As they put it, innova-
tions “leak” along networks of practice while sticking between communities of
practice in different networks. Brown and Duguid’s account of diffusion indicates
that it might be possible to disseminate instructional and leadership innovations
in the Washington Park district successfully to other districts that already have a
high capacity for change and improvement. In contrast, their analysis indicates that
these innovations are unlikely to diffuse to school districts with a limited capacity
for change even when concerted efforts that involve newsletters, websites, list-
servs, and so forth are made to support this process. This is particularly the case
for other urban districts in high-stakes testing environments where administrators
have responded to accountability pressures by attempting to monitor and regulate
teachers’ instructional practices.

The analysis that we present documents that the Washington Park district dif-
fers significantly from most other urban districts in terms of what it means to be
a teacher and an instructional leader. The analysis also illustrates that teachers’
and leaders’ attitudes and dispositions are not solo achievements but are partially
constituted by the institutional setting in which they work. Taken together, these
observations imply that upscaling an innovation from a high-capacity district such as
Washington Park to other urban districts cannot be accomplished merely by attempt-
ing to develop more effective ways to reify the innovation. This is the case even if
new information technologies are used (Brown & Duguid, 2000). To be success-
ful, the dissemination process would have to involve the restructuring of the target
districts as lived organizations such that the communities of practice that consti-
tute them might become part of the same networks of practice as the corresponding
communities of the high-capacity district. This required restructuring process is both
profound and daunting in that it penetrates the inconspicuous, recurrent, and taken-
for-granted aspects of teaching and leadership. However, in the absence of such a
restructuring, it is highly probable that even if objects that reify the innovation are
seen as being relevant, they will be used in very different ways and come to have dif-
ferent and quite possibly conflicting meanings when they are incorporated into the
practices of communities in the target districts. As the term travel is frequently used
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to describe the process of upscaling, it is worth noting that this metaphor is grounded
in cases where innovations “leak” from one community of practice to another within
a network of practice. It is only in such instances that reifying objects are perceived
to function as relatively transparent carriers of meaning by members of different
communities.

The notion of networks of practice goes some way toward explaining the rel-
ative ineffectiveness of most large-scale educational reform efforts. It also serves
to clarify the daunting challenges involved in upscaling instructional and leader-
ship practices that place students’ mathematical reasoning at the center of decision
making. The perspective that this construct offers on the process of dissemination is
consistent with Rogers’s seminal analysis (1995) of the features of an innovation and
the mechanisms of communication that influence the success or failure of diffusion.
In summarizing Rogers’s findings, Zaritsky, Kelly, Flowers, Rogers, and O’Neill
(2003) noted that “among the factors relevant to successful innovation is perceived
relative advantage: the degree to which an innovation is perceived as better than the
idea, product, or technique it hopes to supersede” (p. 33). Zaritsky et al. explained
that measures of relative advantage include complexity, or the degree to which the
innovation is perceived as being relatively difficult to understand and use, and com-
patibility, or the extent to which the innovation is perceived as being compatible
with existing values and needs. In our terms, complexity and compatibility are mea-
sures of the extent to which the practices of different communities are aligned. It is
therefore understandable that, on our reading, the cases of successful innovation that
Rogers discussed to illustrate his perspective are cases of “travel” within established
networks of practice.

As Zaritsky et al. observed, the application of Rogers’s analysis (1995) of dif-
fusion to educational settings would restrict dissemination efforts to innovations
that fit with teachers’ and administrators’ current practices. In contrast, current
reform efforts in mathematics education aim to penetrate what Gamoran et al. (2003)
termed the instructional core of basic suppositions and assumptions about learn-
ing, teaching, and mathematics. Gamoran et al.’s observation strongly suggests that
Rogers’s analysis cannot, by itself, provide adequate guidance for reform efforts that
seek to transform rather than merely augment the instructional core by supporting
teachers’ development of increasingly sophisticated instructional practices. Instead,
it will also be important to attend to the local topology of networks and communi-
ties of practice. The analysis that we present demonstrates an approach for doing
so that is specifically tailored to the needs and interests of researchers and teacher
educators. In this regard, the analytic approach can best be viewed as a tool that
is designed to support transformative educational change as iterative processes of
continual improvement.
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Chapter 14
Epilogue: On the Importance of Looking Back

Anna Sfard

It may be a useful exercise to look at the story of Paul Cobb’s life-long quest for
an ever better understanding of educational processes as a modern representative of
the same genre as the ancient tales of Argonauts attempting to recover the Golden
Fleece or of Sir Galahad pursuing the phantom of the Holy Grail. As I will be argu-
ing in this epilogue, much of what can be learned from those old myths is certainly
relevant to what can be found on the preceding pages.

Much, but not all. The success of some of the mythological heroes was predicated
on their ability to refrain from looking back. For instance, Orpheus lost Eurydice
forever when, on his way out of Hades, he turned back to his beloved and threw
her a wistful glance. This book is an attempt to do what was not to be done by the
mythological protagonist. I wish to claim that in our present case such looking back
may have important payoffs. By saying so, I forestall the question that might have
been asked by a prospective reader of this book: Why should a group of busy people
decide to take the trouble of reprinting formerly published articles? Be Paul Cobb’s
work in general, and these six chapters in particular, as important and influential
as they might, what value can be added in such enterprise? I hope that no doubt
about the worthiness of the endeavor is left in the minds of those who are reaching
these summarizing passages after a thorough walk through the preceding pages. As
with any long journey rich in consequential revelations and memorable experiences,
constructing a retrospective travelogue of one’s odyssey through the world of ideas
is a creative undertaking, likely to bring new insights and understandings simply by
putting each episode of the decades-long wandering and wonderings in the context
of all the others.

Such enlightening experience was my own unanticipated reward for engaging
in this project. Having been in regular contact with Paul over the last 20 years,
and thus being able to follow his exploits from their early stages, the last thing
I expected was that preparing this book would turn, for me, into an opportunity
for substantial learning. I have definitely underestimated the power of recombining
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and recontextualizing. While putting the familiar pieces together, I arrived at two
types of insights. First, I was suddenly able to see the big picture. Over the years,
Paul has been releasing his work piece by piece, and my vision of his project, so
far, was like the proverbial blind person’s idea of an elephant. Once illuminated by
the logic of the whole, the fragments grew in meanings and associations, as does a
single note when heard as a part of a concerto. The other type of learning occurred
at the meta-level, the level of reflection on the art of researching. Indeed, Paul’s life
project is an exemplary case of its genre, to be studied by those who wish to deepen
their understanding of what research is all about, where its power to innovate comes
from, and what makes it possible for the researcher to change lives of people who
have never heard as much as his name. In the rest of this closing piece let me share
my vision of the contribution the present retrospective of Paul’s work can make to
the project of answering these important questions.

What Is New – Seeing the Big Picture

Considering what was said along these pages by Paul himself, one may wonder
whether the six different images of educational processes to be found in this vol-
ume really combine into one “big picture”. Paul, the conceptual nomad, has been
changing places and vantage points with considerable frequency. Some of these
changes would amount to a wholesale overhaul, with transformations occurring
in all aspects of research, including in what he was looking at and in the way he
navigated his gaze. In the span of two decades, Paul has revolutionized the epis-
temological foundations of his research by moving from radical constructivism to
pragmatic realism; he gradually extended the object of his study from the individual
learner to classroom community to institution; and he reformed his research method
when abandoning teaching experiment for the sake of design experiment. The latter
type of experiment, by the way, has been recently scaled-up from 1-year classroom
study to district-wide years-long project.

Can the different pieces produced in this way be really parts of one consistent
whole? Being grounded in seemingly conflicting epistemologies, shouldn’t these
six images be rather treated as mutually exclusive alternatives? I wish to claim
that even if Paul finds faults in his past creations, he does not dissociate himself
from them altogether. On the contrary, judging from his own stories, his guiding
principle can be described as “Try to reconcile differences before you trash the dif-
ferent.” Reconciling differences, by the way, does not mean the kind of cutting and
bending that would be necessary if one was to squeeze all the pieces into a single
theoretical “shoe.” Paul deeply believes that one can live with differences and even
thrive on them. As he said more than a decade ago in the midst of our email con-
versation, “[my] attempt is NOT to develop one single encompassing perspective.
Instead, it is to acknowledge perspectival relativity and to explicate on possible way
of coordinating them that might be helpful for our purposes” (emphasis as in the
original).
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If one opens oneself to Paul’s call for coexistence of incommensurables, one may
also agree that the six pictures of educational processes republished in this volume
constitute, as it were, a series of camera takes with a successively increased frame.
As Paul has been moving along, changing his lenses and broadening his field of
vision, his eyes stayed fixed on the same final destination. Because of the successive
zooming out and the simultaneous increase in the amount of fine details, it may
sometimes be difficult to see that all the images target the same slice of reality,
albeit with different resolution and at different levels of complexity.

The overall change that occurs because of this gradual scaling-up results, above
all, in the reversal in the degree of visibility and in the roles of the individual
and the collective. Whereas in the first of these pictures the individual is the pri-
mary focus and the construction of the collective version, to be done by a simple
reiteration of this basic unit, is left to the reader, the first thing that meets the
eye in the second, third, and fourth study is the classroom community and its
collective actions. The individual does not disappear altogether from these latter
pictures; it only loses its hitherto unquestionable primacy. Rather than being fore-
grounded and immediately visible, as it was in the first part of this travelogue, it
requires some deliberate effort to be dug out from the latter collective pictures.
This digging out is actually done in the fifth part, where the authors speak about
students’ identities, those special entities which, although inextricably tied to the
individual, are nevertheless the product of collective doing, be the collective a class-
room community, a community defined by school, or the one delineated by school
district.

Using Paul’s own terms (Cobb, 2007), one can say that his and his colleagues’
work took us as far as one can wish from the collective individual, the statistically
constructed protagonist of positivistically minded psychological studies, also known
as the “typical representative” of his kind. After a brief affair with the epistemic indi-
vidual, the diligent builder of her own conceptual structures, Paul decided to devote
his studies to individual-in-cultural-practice, the learner whose activity cannot be
understood unless considered as a part of an activity of a collective. In this latter ver-
sion, individual shifts are the result of and a cause for the collective motion. Today,
Paul and his colleagues view the development of a child’s mathematical activity
and the emergence of classroom mathematical practices as two sides of the single
process of learning mathematics in class. What happens in the class as a whole
is, in turn, in a similar reflexive relation with what happens in the school at large.
Needless to say, the school is not an isolated island either; it is subject to an analo-
gous, albeit larger-scale dynamics of district-wide processes. All in all, Paul’s work
draws a compelling multilayer picture of mathematics learning and teaching. In this
picture, the “learning subject” may be a single person or a collective of any size and
complexity, but whatever the nature of this basic unit, the change called learning is
always the same: It is a process of intricate multilevel interactions that transform all
parties involved.

Let me make one final remark on the added value of re-reading Paul’s classic
papers. It regards our ability to appreciate the novelty of his ideas. Since these ideas
were first published, they became a canon and, as such, acquired the appearances of
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self-evident truths.1 Today, terms coined by Paul and his associates a decade or two
ago, such as sociomathematical norms and classroom mathematical practices, are
so much a part of our discourse that taking them away would likely make at least
some of us fall silent. This book helps us to put Paul’s work in its historical context
and re-appreciate its pioneering character. While doing so, one is also in a position
to get a fresher, deeper insight into some of his ideas.

How Does Innovation Happen

What could be learned from Paul and his colleagues about classroom learning can
now be retold as a story of their own work. After all, mathematics learners and edu-
cational researchers aim at comparable goals and are engaged in a similar type of
activity: mathematics students and the students of mathematical learning alike pur-
sue new understandings and, while doing so, they develop new collective practices.
Both types of learning, the individual and the societal – and research can be seen
as this latter type of learning – change the narratives the learners are able to tell
about the world. These stories may be innovative in two ways: First, their authors
may be saying new things; second, the very way the stories are told may be novel.2

One of the factors that make Paul’s project unique is its being always geared toward
both kinds of innovation, toward object- and meta-level learning, alike.3 Whereas
the majority of us just talk and rarely stop to reflect on the way we do it, Paul never
moves his gaze from the discourse itself and, as a rule, looks not just for new things
to say, but also for ever better ways to say them. Let us take a closer glance at how
the resulting multilevel innovation happens.

When a child tries to become a participant in the discourse of a community, the
process of innovating begins with her attempt at individualization of that discourse,
that is, with the effort to turn the discourse of the community into her own. More
often than not, this process entails modification, when the learner develops her sig-
nature way of participating. Some of these individual modifications will often end up
being individualized by other participants, thus contributing to the communalization
of the altered form of discourse. I am tempted to call these three types of occurrence,
individualization, modification, and communalization, “phases” of innovation, but
this name would imply a serial order, which is not the way things are. The three
steps are in fact inextricably intertwined. Moreover, my work has taught me that the

1To be sure, some of the declared adherents of this vision may, in fact, be closer to the position that
Paul, after Lave (1997), likes to call “cognition plus”; this, however, only reinforces my claim that
today, it may not be easy to fully appreciate how innovative Paul and colleagues’ approach was
only two decades ago.
2In the context of learning, where the “new” is new for the students even if it is not new to other
people.
3Object- and meta-level learning correspond to phenomena that inspired Piaget’s ideas of, respec-
tively, assimilation and accommodation. In the context of research, where the name of the game is
to create stories never told before, these two types of development bring to mind Kuhn’s ideas of
normal science and scientific revolution, respectively.
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individualization–modification–communalization cycle may repeat itself on many
levels, inflicting any kind of change, from a cosmetic amendment to a complete
transformation. A major innovation is likely to occur through evolution rather than
revolution – through a series of individualization–modification–communalization
cycles, with each consecutive round refining the outcome of the previous one (Sfard,
2002). While reading Paul’s historical account, one realizes that the vision of inno-
vation as a combination of the complementary processes of individualization of the
collective and communalization of the individual is as true for Paul’s own quest
for ideas as it is for the class developing its mathematical discourse. Each of the
six reports from Paul’s intellectual journey presents an episode of substantial meta-
level learning. With some assistance from Paul himself, each one of them reveals its
tripartite structure. Let’s have a look.

In the six studies, the trigger for the cycle of meta-learning is always the same:
A sense of dissatisfaction with at least some aspects of what had been done before.
It is remarkable how critical Paul and his colleagues have always been and how
closely they have been monitoring their own moves. They were gauging what had
been done against standards either clearly stated in advance or ones that kept emerg-
ing as the work went on. Thus, in the introduction to the first episode Paul recalls
that while trying to account for his interviewees’ discursive actions, he and his
colleagues could feel that the picture they were able to draw was lacking some
potentially consequential elements. At hindsight, he ascribes this problem to his
rather impoverished initial idea of context (“[we were] bracketing out . . . social
and cultural dimensions”). In a similar way, in the second study the team realized
post factum that the instructional tasks they used and the whole class discussion
led by the teacher were “somewhat ad hoc.” In the introduction to the fifth episode,
Paul tells us about how he and Erna Yackel learned through their work with teach-
ers about pitfalls of the objectified discourse on “welfare of the student,” of this
omnipresent form of talk that provides no tools for dealing with the cultural situat-
edness of what counts as “good for the student.” These examples should suffice to
show the workings of Paul’s tightly observed principle of constant self-monitoring
and persistent doubting.

Faced with a shortcoming of their project so far, Paul and his colleagues would
typically shift their glance to the meta-level – they would scrutinize their discourse
for limitations. Once they identified those weaknesses that could be seen as respon-
sible for the team’s failure to deal effectively with the object-level problem, the
deliberate search for a new discourse would begin. The sense of having exhausted
the potential for new understandings attainable with their present discursive tools,
Paul and his travel companions would turn to others for ideas about how their own
tools might be usefully modified. And this is where the process of individualization
would typically commence.

Reading Paul’s first person account of his forays into other researchers’ dis-
courses is a particularly educative experience. One could not wish for a better
instantiation of what a genuine attempt at individualization is. Throughout my ongo-
ing decades-long conversation with Paul, I had an opportunity to watch this process
many times and in great detail. His approach to other people’s discourses from
which he hoped to learn brings to mind a traveler arriving in a new place and
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considering the possibility to settle: Paul would be acting in the new discursive
setting as if it was to become his own. Never mind that his critical mind was only
too likely to prevent him from using ready-made solutions. At least for the time
being, he would give the authors a fair chance to convince him. True to his motto
“people’s practices are reasonable from their perspective” (Introduction to Part I),
but also aware that seeing the logic of the other may require abandoning one’s own,
he would suspend disbelief and apply the same Kuhnian advice which has probably
been guiding him in the task of interpreting classroom interactions:

[L]ook first for the apparent absurdities in the text and ask yourself how a sensible person
could have written them. When you find an answer . . . when those passages make sense,
then you may find that more central passages, once you previously thought you understood,
have changed their meaning. (Kuhn, 1977, p. xii; quoted on Cobb, 2007, p. 32)

The exercise in potential permanent residency never prevented Paul from being
critical. Work of others, once understood, as much as possible, on its own terms,
would invariably become subject to the same close scrutiny as his own. Thus, as
he testifies himself, as keen as he was to learn from sociocultural discourse of neo-
Vygotskians, from the Dutch school of Realistic Mathematics Education, from the
social philosophy of Alfred Schütz as brought to his attention through the work of
his German associates, and from distributed theories of learning, he could not help
finding limitations in each one of them. His subsequent return to his own discourse
with the intention to incorporate what he was able to learn from others was never an
act of wholesale acceptance. Rather, as is not uncommon for a traveler impressed by
the culture and language of a new place, Paul would preserve much of his old way of
talking, while also making his narratives unmistakably tinted with the local dialect.
True, some of the new words, expressions and routines would appear as if simply
transferred from the original. Nevertheless, while amalgamated with Paul’s earlier
discourse, they would undergo an adaptation, sometimes quite radical. And thus,
the words norms, hypothetical learning trajectory, or practice, although borrowed
from others, became the signature elements of Paul’s work precisely because of the
special way he applied them in his discourse. The change in use was always explicit
and well argued. This, indeed, is what individualization is all about: taking from
others, but making it unmistakably one’s own.

Two characteristics of the way in which Paul and his colleagues worked toward
the desired modification of their discourse are particularly noteworthy. First, theirs
was a truly collective work, a work of people who more often than not would hold
differing views, but whose agreed goal “was not to win the argument as an end
in itself, but to develop and refine theoretical constructs” (Introduction to Part I).
What makes Paul and his teams’ work special is their approach to the task of
attaining consensus. Although the process of modifying was not considered to be
completed unless all parties involved arrived at an agreement, this did not mean that
the team was determined to end up with a single well-defined discourse. Rather,
conflicts were seen as resolved when a platform had been created for communicat-
ing across participants’ differing discourses. Thus, the US–German team satisfied
itself with “developing a way of coordinating social and cognitive perspective on
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mathematics learning” (Introduction to Part II) and the US–Dutch group’s work was
described in retrospect as an ongoing and never fully completed process of “shar-
ing, appropriating, and adapting ideas across research traditions” (Introduction to
Part III).

The second distinctive feature of Paul’s techniques is that his modifications have
been grown in the field not any less than in the university halls. The evolving
discourse was incessantly tested by being applied in one design experiment after
another. This process can be described in terms I used a few years ago while inves-
tigating learning in one of Paul’s classes: as a process of intermittent intimations
and implementations, that is, of forging proposals for refinement and then testing
them empirically. As I was able to show, children’s intimations about what was pos-
sible were coming mainly from intuitions spurred by metaphors. In Paul’s case, the
intimating was always a systematic process, where the ideas for refinement were
analytically substantiated theoretical principles. The implementation, in turn, was
not just an application of the refined discursive tools in the hope of producing a bet-
ter story about processes of teaching and learning, but also an attempt at refining
the processes themselves. Undeterred by the risk of being criticized for “mess-
ing with intervention” (Introduction to Part VI), Paul was always determined to
reciprocate to the participants of his studies by leaving their place better than it
was upon his arrival. His implementation was thus an act of altering the investi-
gated phenomena before becoming an act of telling a new story about them. This is
what design experiment is all about: changing ways of talking to transform class-
room practices and allowing the latter transformation, in return, to alter the ways of
talking.

This brings one last remark about the mechanism of modification, as can be
gleaned from the preceding pages. Paul often speaks about his being quite lucky.
He claims to have come across various opportunities for learning fortuitously, by
chance encounter, incidental reading or a choice randomly made. And yet, while it
is certainly true that contingency rather than necessity is responsible for what we
find on our way, what we eventually choose from the available options is usually
a matter of our own reasoned decisions. As a witness of Paul’s long travel, I can
attest to his being a much more thoughtful decision-maker than the majority of peo-
ple I know. The odds are that much of what he noticed on his way and deemed as
an opportunity to grab, many other travelers would have passed without paying any
attention.

When it comes to the last element in the cycle of innovation, to the communal-
ization of the modified discourse, Paul and his fellow researchers’ practices prove,
once again, to be a source of valuable insights. Perhaps the most important lesson
to learn is that the work of spreading the message, far from being a final act in the
process of innovating, plays an all important role in this process all along. From
the earliest stages of their travels, Paul and his colleagues would be sending interim
reports back home, to the community. Their stories, usually compiled at some “rest-
ing place” (Cobb, Introduction to Part V), have been told in real time, as things
were happening. These frequent bulletins constituted an important trigger for modi-
fications, since they provided the researchers with opportunities to hear themselves,
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to assess what has been said, and to decide on the need for a subsequent refine-
ment. After all, trying to be understood by others may be the best way to understand
oneself.

Having presented the mechanism of innovation that worked extremely well for
Paul’s teams, it is only natural to follow with the question: What is it that made this
cyclic process of innovation so productive? In the search for an answer one should,
no doubt, turn to the research practice developed by Paul and his associates over the
years. This practice can be described as a set of norms he and his colleagues have
been observing while traveling in the world of ideas. The metaphor of traveling is
particularly apt in our present case, since Paul, as I know him, is almost as keen
on trotting the globe as on exploring intellectual landscapes. Even if none of the
norms that define both his traveling practices is quite unique, the special power
of Paul’s research practice lies in these norms particular combination and in the
determination with which they have always been observed. Counting them all would
not be easy. Following is just the beginning of the long list of the dos and don’ts of
Paul’s traveling practice which I managed to glean from all I know about his work.

• Don’t embark on a new expedition without consulting those who were there
before you. Whatever new discovery you subsequently make, it has to be clearly
related to what was known before you began.

• Don’t travel alone. Traveling together is not only safer, but also richer in
opportunities. A good team is much more than the sum of its parts.

• While visiting foreign places remember that the otherness of its inhabitants is
your problem, not theirs. If you cannot understand what they are saying, the odds
are that it is not because they make no sense but because you insist on speaking
your language, which is obviously not the one they use.

• Reciprocate to those whom you meet on your way. Don’t be just a visitor. Try
to make the location you explore a better place to live. Your commitment to the
locals is not any lesser, perhaps even greater, than is your obligation toward your
own community, which is waiting to hear your story.

• While traveling, keep your eye on your tools as much as on what you are sup-
posed to use them for. Improving the tools for exploring is part and parcel of your
mission as an explorer.

• Never stay in one place for too long. If you do, you expose yourself to the risk
of going in circles. You are more likely to arrive at new insights by moving to
another vantage point.

• While reporting on the results of your expedition, be multivocal. Avoid the pitfalls
of monological discourse. Never talk as if you were the spokesperson of the world
itself. In the insights you offer to others, seek to be of help rather than to be right.

• Watch your stories. Remember that the narratives inspired by your travels, far
from being merely shaped by phenomena they describe, have the power of
shaping these phenomena in return.

• Always bear in mind that it is your responsibility to be understood. The value of
your travelogue depends not only on its being a collection of original insights,
but also on its potential for becoming a solid basis on which others will be able to
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build through their own explorations. For this to happen, you have to make your
discourse as clear and immune to misunderstandings as humanly possible.

After giving this book the close read it deserves, I am feeling more clearly than
ever that traveling with Paul, or even just witnessing his pursuits from afar, is a hum-
bling experience. Having compiled the above list of norms that define his practice
I can also see why. There is much I am taking home, to my own studies, from this
new exposure to the familiar body of work.

Coda

In the beginning of these summarizing remarks, I claimed that Paul’s story belongs
to the same genre as the ancient tales of great quests. After having a close look at
Paul’s intellectual adventures so far, I can close the circle and justify the analogy.
Paul’s is a story of life on the road with a clear destination but no end in sight. Just
like Jason and Sir Galahad he is surrounded by a team of people who share his goals
and perseverance. Like Argonauts, he does not mind changing places every so often
and never spends in one location more than absolutely necessary to make a major
advance toward his ultimate goal. In trying to achieve his destination, he is as persis-
tent as any of the mythological pursuers, and the fact that the goal he set to himself
is not any less elusive than the Holy Grail does not undermine his determination. On
the contrary, the inherent unattainability may be this goal’s principal merit: Thanks
to its tantalizing nature, it will never stop spurring novelty and insights. There is
thus no reason to suspect that this book is any more than an interim summary of
Paul’s ongoing travel.
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