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INTRODUCTION

I often hear that humans are poor athletes; that ants can carry ten times their own
weight, cheetahs can run at over 100 kilometres an hour, fleas can jump hundreds
of times their own height, whales can migrate thousands of kilometres with little
apparent rest but humans are really good at … nothing. This has always amazed
me, because while other animal species might have one or two incredible physical
abilities, humans seem to be able to do just about everything. Some humans can lift
260 kg overhead, some can run at over 40 km per hour, some can run for days with
little rest, some can swim long stretches of water, some can dive to depths of
hundreds of metres on a single breath of air and some can jump over a bar that I
can barely touch on my tiptoes! 

We are the all-rounders of the animal world. We also have a competitive spirit
(not unique to humans) that makes us want to run faster, go further, lift more and
jump higher, so we are always trying to work out a better way to perform incredi-
ble feats. Athletes who are trying to beat the world train for hours a day but
unfortunately, even with advances in training methods, we don’t seem to have
come very far in many aspects of our physical ability. Physiologically, today’s
athletes can use about the same amount of oxygen in their muscles as they did forty
years ago. They aren’t better able to tolerate high levels of intense work; they don’t
breathe more rapidly nor do their hearts beat more quickly. Psychologically, you’d
be hard-pushed to show that athletes of many years ago weren’t able to compose
themselves when stressed, motivate themselves for a big effort or rouse their team
mates for one final push, although perhaps more athletes have the skills to do these
things nowadays. So how have we been able to beat world records?

At the risk of being condemned by my colleagues, I suggest that the answer lies
in our present-day understanding of the physics that underlies sporting perform-
ance. We ride bicycles with air-cutting aerodynamic design and wear running shoes
that absorb just the right amount of impact energy while allowing us to bounce on
all manner of surfaces or wear special suits that reduce the vibration in our muscles
and aid us aerodynamically. We manipulate our bodies during running and jump-
ing so that we can eke out every last centimetre and organise our body movements
to apply forces with high magnitudes and in perfectly the right direction to make
an object, or ourselves, travel faster and further.

Mechanics is the field of science concerned with the study of the motion of
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objects; biomechanics is the study of mechanics in biological systems. The
specialised field we work in, which studies biological and man-made systems, is
‘sports biomechanics’.

To understand sports biomechanics, we have to understand mathematics. And
this can be a big problem. No one wants to spend hours learning complex mathe-
matical procedures just to show that if they want to jump up they need to apply a
large … upwards … force. (Actually, you apply it downwards and the Earth applies
it back up at you … but you’ll learn this if you read the book.) I certainly used to
have a problem with that. When I was a student, I never really wanted to be a
biomechanist; there was too much maths involved and I hated it. But as I contin-
ued with my studies I realised that so many answers to my questions required an
understanding of physics and maths, and therefore biomechanics. There was no
point telling an athlete to perform a certain type of training if I didn’t understand
how much force they had to produce, in what direction, over what range of motion
it needed to be produced and at what speed. I also realised that, instead of spend-
ing months giving an already good athlete lots of physical training to make them
just a little bit fitter, I could spend a few weeks altering their technique to make
them staggeringly more efficient … and the world of sports performance seemed
to open.

In this book, I want to use a question-based approach to answer the questions
that (I hope) you’ve always wanted answered. At the same time, I want to get you
to understand the ‘how and why’ of the answer. This will involve a little bit of read-
ing (and probably some re-reading) but I think that sports biomechanics is so
interesting that you won’t have any problems.

To make it easier, I will give you a few tips that helped me when I was first strug-
gling to understand biomechanics:

Always translate ‘scientific language’ into plain language
When I first started to read textbooks, I realised that at the end of the first para-
graph I’d ‘sort of ’ understand what was going on, at the end of the page I’d be less
sure and by the end of the chapter I’d realise I had absolutely no idea! So I changed
the way I read and started to draw pictures in my head of what was going on. For
instance, if the text said ‘so by applying the force at a greater distance the torque will
be increased’, I would imagine someone undoing a nut holding a spanner near to
the nut or farther from it. To do this I needed actually to understand what I was
reading: what is ‘torque’ anyway?

This is why you need to translate. When you see a scientific word, translate it into
an image that you understand. Words like torque, momentum, conservation, iner-
tia and restitution might not mean much if you don’t use them very often. If you
read past them without really understanding what they mean, you’ll never truly
understand what you’re reading. So, instead of ‘the torque will be increased …’ you
might visualise the rotational force increasing.

SPORTS BIOMECHANICSX
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Translating what you read might take you a little longer but you’ll be surprised
how easy and how helpful it is. I try not to use complicated terms but I can’t trans-
late every word every time or the book would be 5000 pages long and you certainly
wouldn’t read that.

Remember that a mathematical equation is just short-hand 
I used to see a mathematical equation, freeze, and move on hoping it wouldn’t bite
me as I read past it, but I have realised that if I can translate equations into English
they are very helpful. For example, τ = F · d simply means ‘torque’ is equal to ‘force’
times ‘distance’. Torque is the rotary effect of a force (or, as I usually tell myself, a
rotary force). So this equation simply reads ‘a rotary force has something to do
with how much force I produce and the distance away from the centre of rotation
that I apply it’. The equation could be re-written as F = τ/d; force is equal to the
torque divided by the distance or, ‘a force is bigger if the rotary effect of the force
is bigger or if the distance over which that force was applied is smaller’.

If you haven’t studied torque and force yet you might not really understand me
but take the principle: translate equations every time you see them. If you don’t,
then don’t wonder why you didn’t understand.

Always read the book from start to finish
This seems pretty logical but I bet you really want to jump to a chapter that
concerns the question you really wanted the answer to. However, I can’t explain
every biomechanical concept in every chapter just in case you read that chapter
first. If I explain something in Chapter 1, I assume you’ve understood it, so I can be
a little briefer in Chapter 2. If you go straight to Chapter 12, you might find it diffi-
cult, because you haven’t understood everything in Chapters 2 to 11. So, please read
the book in order.

I hope that by the end of this book you will be able to analyse your own sport,
pleasure or work and optimise how you move so that you can do it better. Most of
all, I hope you enjoy understanding how humans move within their environment.

INTRODUCTION XI
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CHAPTER 1

POSITION, VELOCITY 
AND ACCELERATION
In a 200 m running race, who is most likely to win,

the athlete with the fastest acceleration or the athlete

with the highest top speed? 

By the end of this chapter you should be able to:

• Describe the different forms of motion and the difference between scalar and
vector quantities (for example, displacement vs distance)

• Define the direction of a movement

• Build a simple biomechanical model to determine the importance of each
segment of a race (for example, acceleration phase vs top speed phase)

• Describe how performance improvements and different phases of a race affect
the race’s outcome
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To answer this question properly, we first need to understand position, velocity
and acceleration. I shall also take the opportunity to introduce some very impor-
tant concepts that will not only help you understand the reasoning behind the
answer to the above question but will also be important for your understanding of
information presented in other chapters. Some of the information might seem like
biomechanics jargon but it is very important. To understand biomechanics, you
must read and understand the following passages.

Types of motion
Linear motion (also referred to as translation, as opposed to rotation) can either
occur in a perfectly straight line (rectilinear motion) or in a curved line (curvilin-
ear motion). Since a 200 m race is usually run on a curved part of the track, it is
partly curvilinear and partly rectilinear.

Scalar versus vector quantities
There are two ways to describe how far someone has run: distance and displace-
ment. One is a scalar quantity and the other is a vector quantity. A scalar quantity is
a simple measure of magnitude (how big, fast, long or wide something is), whereas
a vector quantity has magnitude and direction (north, 22°, left). When describing
motion, ‘distance’ is a scalar quantity and refers to the sum of all movements in
whatever direction, whereas ‘displacement’ refers to the end result of a movement
and is described with both magnitude and direction, for example 21m north or 
3.2 km up (see Figure 1.1). We use different symbols to denote them to avoid confu-
sion; ‘s’ is used to denote displacement, whereas ‘d’ is used to denote distance.

SPORTS BIOMECHANICS2

FIG. 1.1 A runner running on the inside lane of an athletics track displaces (s) 123.8 m at an angle of
36°, while covering a distance (d) of 200 m. The distance, a scalar quantity, is more important than the
displacement, a vector quantity, in this instance.
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If a runner started on a running track (like that in Figure 1.1) at position 0,0 (that
is, the runner has moved 0 m in both forward (y) and sideways (x) directions) 
and finished exactly at the 200 m point, which is at position 73,100 (73 m in the x-
direction and 100 m in the y-direction) while running in the inside lane, then the
displacement (s) is 123.8 m at an angle of 36° relative to a straight line but the
actual distance (d) run is 200 m. So because a 200 m race contains a curvilinear
component, we have to choose whether to measure distance or displacement. There
is not much point knowing the displacement of the runner, since the idea of a 
200 m race is to run 200 m as quickly as possible, so we need only care about
distance. In the rectilinear 100 m race, distance and displacement are the same,
although we have to specify a direction if we describe the displacement.

BOX 1.1 CALCULATING VECTOR QUANTITIES
Calculating the displacement of a person or object is relatively easy if movement
occurs in two directions, such as in the example in Figure 1. However, if you want 
to calculate the displacement of something that has travelled along multiple paths,
you might consider using the ‘tip-to-tail’ method. We can represent an individual
movement as an arrow that has both a length and a direction (remember a vector
quantity, such as displacement, has both a magnitude and direction). By placing
each arrow’s tail next to the tip of a preceding arrow, you can eventually determine
the final displacement (dashed arrow). 

Consider an orienteer who runs for a certain distance east-north-east, then a little
north-north-east, then almost due south, finishing south-west. We can draw arrows
representing these four movements (1 – 4) and thus find the final displacement of
the orienteer (dashed line).

In this case, you would measure the displacement and also designate the
direction. If you were given magnitudes and directions, you could easily calculate
these. For example:

1 • POSITION, VELOCITY AND ACCELERATION 3

FIG. 1

FIG. 2
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If a person moved according to Figure 2 above (2 m to the east, designated as an
angle of 0°, then 3 m to the north, designated as 90°), you can see that we now have
a triangle. We can therefore use Pythagoras’ Theorem (C2 = A2 + B2, where C is the
hypotenuse and A and B are other sides) to calculate the hypotenuse, C (see Appendix
C). C2 = 32 + 22, therefore C2 = 13 and C = 3.6 m (that is, the square root of 13 m). 

Every vector quantity has to also have a direction, so what is the resultant
direction of our object? This can be calculated easily using sin/cos/tan rules. We
now know the length of every side and since it is a right-angled triangle we can use
any rule we wish to. I’ll use the tan rule, because then I won’t have had to calculate
the hypotenuse or if I’ve calculated it wrongly it won’t influence the answer I get for
the direction: tanθ = opposite/adjacent. θ = inv.tan (opposite/adjacent) = inv.tan
(3/2) = 56.3° (‘inv’ is short for ‘inverse’ and is a function on any good scientific
calculator. It is also known as ‘arctan’). So, the resultant displacement is 3.6 cm at
an angle of 56.3° relative to the first direction of movement. You should remember
that you could always calculate the resultant magnitude and direction of a
movement using Pythagoras’ Theorem to calculate the magnitude and the tan rule to
calculate the direction (see Appendix C). If there are more than two movements, you
just calculate the resultant for the first two movements, then use that as the first
movement and add the next movement and so on.

If the angle between the two movements is not a right angle (as is most often the
case; fig 4) you use the cosine rule: C2 = A2 + B2 – 2(AxB) x cos β where β is the
angle between the two vectors and use θ = inv.tan(A sin β / (B + Acosβ)) to
calculate the angle formed between the two vectors. These equations take a little
more time to use but as long as you understand the reasons for their use, you don’t
need to memorise them. You can refer to this page when you need to.

You can see that we now have a triangle with a right angle, so we can use
Pythagoras’ Theorem and proceed as above.

SPORTS BIOMECHANICS4

FIG. 4.

FIG. 3.
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Speed and velocity

Scalar Vector

Position Position (with direction)
Distance Displacement
Speed Velocity
Acceleration Acceleration (with direction)

The third thing we need to know is how to tell the speed with which someone
moved. How quickly did the runner run the 200 m? We can determine how quickly
a runner has run (averaged over the whole 200 m) by dividing ‘how quickly’ by
‘how far’ but the value we get depends on whether we want ‘how quickly’ as a scalar
or a vector quantity. If we want to know the movement speed over the total distance
of 200 m, we would calculate the scalar quantity of speed:

speed = d ÷ ∆t or d/∆t (‘∆’ means ‘change in’, so ‘∆t’ means ‘change in time’)

If we want to know how quickly and in what resultant direction the athlete has
moved, we would calculate the vector quantity of velocity:

velocity (v) = s ÷ ∆t, s/∆t, in a given direction (that is, displacement per
change in time).

For these runners, we want to know the running speed over 200 m, so we use speed
= d/∆t. If a runner took 21.2 s to run 200 m, his or her speed is 200 m/21.2 s;
9.4 m/s. (In scientific notation, this is written as 9.4 m·s-1 – see Box 1.2.) Compare
this to a velocity of 5.8 m·s-1 at an angle of 36° and you can see it makes a big

1 • POSITION, VELOCITY AND ACCELERATION 5

TABLE 1.1 Scalar-Vector table

BOX 1.2 SCIENTIFIC NOTATION IN EQUATIONS
For consistency, it is best to use scientific notation in equations. One way to do this
is to change any division signs to multiplication signs. For example, instead of
writing s = d/t, we can write s = d·t -1, which literally means ‘multiply d by t to the
power of minus one’. ‘Minus one’ means we use the inverse or 1/t. Dividing by a
number is the same as multiplying by its reciprocal. 

You can check this: in your calculator, enter ‘6/2 =’ to which the answer is 3,
then enter ‘6 x 0.5 =’, which will also give 3.You’ve divided by a number in the first
example and multiplied by its reciprocal in the second. 

This notation is commonly used to show the units of measurement in the answers
to maths problems. For example, we use m·s-1 (metres per second) instead of m/s or
m·s-2 rather than m/s/s for acceleration.
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difference whether we calculate speed (scalar) or velocity (vector). In some
instances, it is most useful to calculate the velocity. If a triathlete were supposed
to swim 1.5 km across a lake, what matters is the time taken to move that 
distance, even if they lose their direction and swim an actual distance of 2 km in
getting there!

Acceleration
The fourth thing we need to understand is the concept of acceleration; the rate of
change of velocity. Acceleration (a) = ∆v/∆t (this can be read as ‘change in velocity
over a given change in time’) or v·t -2. Velocity is measured in m·s-1 (metres per
second), and change in velocity over time in m·s-2 (metres per second per second).

Actual rates of acceleration can’t be measured directly from the information in
Figure 1.1 because we only know that the athlete’s average speed over 200 m was 9.4
m·s-1, rather than their instantaneous speeds. If we determined the runner’s speed
at the 10 m mark as 5.9 m·s-1 and it took them 1.8 s to get there, then the accelera-
tion would be calculated as 5.9/1.8 = 3.3 m·s-2 (that is, ∆v/∆t = 3.3 m·s-2 –
remember to read this as ‘change in velocity over a given change in time’). In many
sports, the calculation of acceleration is very important, for example sports in
which changing direction is important, the athlete who can most quickly change
direction and accelerate will usually win. If you want some idea of how rapidly this
athlete accelerated, compare the rate of 3.3 m·s-2 to those in Box 1.3.

BOX 1.3 HOW FAST IS FAST?
Sometimes, when we see numbers, it is difficult to imagine how big or fast or small
they are. By way of comparison, the table below shows the estimated top speeds and
accelerations of some of the fastest land animals.

Animal Speed (m·s-1) Speed (km·h-1) Animal Acceleration (m·s-2)

Humana 12.1 43.6 Humanb 3.5
Cheetah 29 104.5 Lionc 9.5
Lion 22 80 Gazellec 4.5
Gazelle 22 80
Hunting dog 20 72
Ostrich 18 64
Domestic cat 13 48
Elephant 11 40

Data adapted from: Natural History magazine, Copyright Natural History Magazine, Inc., 1974.
a Data of Donovan Bailey measured by Radar in the Atlanta Olympic Games 100 m, 1996.
b Average acceleration of Maurice Greene from 0 – 10 m in 100 m at Athens Grand Prix, 1999 (then world record: 9.79 s).
c Data from Elliott et al., 1977, In: Alexander, R.M. Principles of Animal Locomotion, Princeton University Press.
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Describing movement direction
The final thing we have to know is how to describe changes in displacement/
distance, velocity/speed and acceleration. If we move away from a designated point,
we say that we have increased our distance from it or displaced ourselves further. If
we then move back, this reduces the displacement but increases the distance. (You
can’t have a negative displacement but you can have displacement in positive and
negative directions.) 

FIG. 1.2 Examples of calculations of scalar and vector quantities describing object movement. The
arrow represents the movement of the object (left column), the time over which movement takes place is
included in the middle column (i.e. t = 2 s) and the calculations are shown in the right column.

If we were to draw a diagram of an athlete moving across this page (from A to B in
Figure 1.2), we might say that, as the athlete moves from left to right, they move in
a positive direction and if they move from right to left, that they have moved in a
negative direction. Their overall displacement is the sum of all of the displace-
ments, with a positive value denoting a net move from left to right and a negative
value denoting the opposite.

We don’t use this terminology for distance, because it has no directional compo-
nent. The total distance is the sum of all displacements as if they were all positive
(see the first example in Figure 1.2). It’s the same for velocity and speed: if we move

1 • POSITION, VELOCITY AND ACCELERATION 7
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at a known speed to the right, our velocity is positive but then if we change direc-
tion our velocity is negative.

Acceleration is a little more complicated. Generally, if we speed up we say that
acceleration is positive but if we slow down we say that acceleration is negative.
However, we have to be more specific when we include either positive or negative
direction. If we move to the right (or positive direction) at a constant rate, the
acceleration is zero. If we get faster in the positive direction then we are accelerat-
ing positively. If we then slow down, we accelerate negatively (or decelerate) but still
in the positive direction (see the examples in Figure 1.2).

If we then turn around and accelerate back towards our starting point, that is, in
the negative direction, this is negative acceleration. Acceleration in the negative
direction (or negative acceleration) is what would happen if we continued to apply
a force that opposed our original direction of movement. Think of a light trolley
rolling forward and then being slowed by a gust of wind coming from the other
direction: the wind would first slow it and then eventually push it backwards. The
acceleration is always in the same, negative, direction, although we see the trolley
slow down and then speed up. If the wind stopped and the trolley (which is now
moving backwards) slowed and came to a stop, it would be accelerating negatively
in the negative direction (that is, decelerating in the negative direction – which is
positive acceleration – two negatives make a positive). You can see an athlete accel-
erating positively and negatively in Figure 1.3.

It is probably easiest (and indeed is very common) to use the terms accelerate
and decelerate to indicate speeding up or slowing down, then explain the direction
of travel as positive and negative. However, you should understand the terms so
that you don’t get confused. If an object is getting faster while moving in the positive
direction or slowing down in the negative direction it is accelerating positively but if it
is slowing down while moving in the positive direction or speeding up in the negative
direction it is accelerating negatively.

A simple test will determine whether you truly understand position, displace-
ment/distance, velocity/speed and acceleration. (This test makes more
biomechanists come unstuck than a million maths-problems-to-be-solved-with-
out-the-use-of-a-calculator.) The test is to see if you can draw velocity and
displacement curves – in that order – from a graph of acceleration. Figure 1.4 is an
acceleration graph and below it are two graphs that you should cover up with a piece
of paper. Without peeking, see if you can first work out what the velocity graph
should look like, using the information from the acceleration graph. Then, from the
velocity graph, try to work out what the displacement graph would look like.

Don’t worry if you don’t get it first time. Even Albert Einstein had to go through
things more than once. He even failed the exam to get into technical college to
study electrical engineering!

SPORTS BIOMECHANICS8

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 8



1 • POSITION, VELOCITY AND ACCELERATION 9

FIG. 1.3 In the agility task above, the athlete accelerates positively to his left (our right) from picture A
to B then accelerates negatively from B to C and D. Acceleration is positive again from D to E. Photos B
to C and D to E show the athlete ‘decelerating’.

A

B

C

D

E
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FIG. 1.4 The above graphs are drawn from data representing the fastest 10 m split times for the world’s
best sprinters pre-2002 (adapted from http://run-down.com/statistics/100m_top_splits.php) for men
(dark bold lines and numbers) and women (dashed lines and lighter numbers). The athletes’ reaction
times are not included. As usual, the acceleration graph varies greatly, with the variation being less for
speed and less again for position/distance. It can also be seen that the women accelerate similarly to the
men early (up to 10 m or 20 m), but attain a lower top speed, which they seem to hold equally well. The
greater top speed allows the men to reach each 10-m point sooner than the women, ultimately leading to
them finishing the 100 m much faster. Of interest is that these graphs show that if you took the fastest
segments run by any runner and put them together, the 100 m could be completed in 9.46 s by men and
in 10.20 s by women. Even with a reaction time of 0.1 s (the fastest legal reaction time under current
IAAF regulations), it seems men (9.56 s) and women (10.30 s) are currently capable of running the 
100 m significantly faster than the current world records of 9.78 s and 10.54 s, for men and women
respectively. As a side issue, the units for position/distance, speed and acceleration are not included on
the graphs…what units should be used and what abbreviations are common for these?
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THE ANSWER
But who will run the fastest 200 m? One way to work it out is to set up an exper-
iment and collect data. First, we set up a timing system to measure the time it takes
for our well-trained runner to run 200 m. We also set up the system to record
times to 50 m (acceleration time), time between 50 and 150 (maximum speed
time) and time from 150 to 200 m (which we’ll call the deceleration time, since
this is the part of the race where athletes suffer fatigue and often fail to maintain
their top running speed). We’ll record three trials to try to be certain we have a
‘good’ trial from our runner.

We can then see how running time might differ if we ran each section a little
more quickly or slowly. Such manipulation, to gauge the impact of altering some
part of a performance, is called modelling; we will use this technique again in other
chapters. The recorded times are presented in the left column of Table 1.2. I then
manipulated each section of the race to see how it might have affected overall
performance.

Race phase Actual Accel. Max. Decel. Max. and 
Time (s) -3% -3% -3% Decel. -3%

Acceleration (0-50 m) 5.90 5.72 5.90 5.90 5.90
Maximum Speed (50-150 m) 9.70 9.70 9.41 9.70 9.41
Deceleration (150-200 m) 5.30 5.30 5.30 5.14 5.14
Average Speed (m•s-1) 9.60 9.65 9.70 9.64 9.78
Total Time (s) 20.90 20.72 20.61 20.74 20.45

Looking at the average speeds and total times for running 200 m, we can see that
improving the maximum speed phase by 3% has a more profound effect on the
average speed, and therefore on the total time, than improving any other individ-
ual phase. This is not simply due to the maximum speed phase being twice as long
(100 m) as the acceleration or deceleration phases (both 50 m).

However, one might expect that if a runner had a faster maximum speed, they
would also have a faster deceleration phase, even if they slowed down by the same
degree as another runner (that is, the same deceleration but from a higher speed).
This idea is incorporated in the final column and shows more clearly that

TABLE 1.2 Actual and ‘manipulated’ running times for a well-trained sprint runner. Times in the final
four columns have been altered based on a 3% greater running performance. Times have been adjusted
for the acceleration phase only (Accel. – 3%), maximum speed phase only (Max. – 3%), deceleration
phase only (Decel. – 3%) and for both maximum speed and deceleration phases (Max. and Decel. – 3%).
Changes to running times are emboldened. The greatest improvements in running time are achieved by
improving average speed, which is most affected by improvements in maximum running speed.
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improving top speed leads to a greater improvement in overall running time than
improvement of any other phase.

So, the answer is: the runner who improves their average running speed the most
will run the fastest 200 m, and this can be best done by improving the maximum
running speed.

HOW ELSE CAN WE USE THIS INFORMATION?
Such analyses can be used by biomechanists to understand better the factors influ-
encing performance in many sports. In the 100 m sprint, the relative phases are of
different duration and therefore influence performance differently. In swimming,
the time spent turning and accelerating out of the turn is very small in relation to
the time spent swimming, so swimming time is clearly of great importance.
However, you should be mindful that small improvements in performance of the
small parts of races can make a substantial difference to a result. As an example,
Kieran Perkins’ swimming time (that is, the collective time to swim from 5 to 45 m
of each 50 m lap) in the 1500 m event at the Atlanta Olympic Games was less than
Grant Hackett’s but Hackett’s turn times (that is, the time from 5 m from the end
of each lap to 5 m into each lap) were shorter. Grant Hackett won the gold medal;
Kieran Perkins finished second (Mason, 2005), even though Hackett was only
better in the smallest portion of the race.

Understanding position, velocity and acceleration also can help us work out
tactics for many individual and team sports. For example, what strategies can we
use in sports like rugby, netball, football (soccer) or basketball? Usually, the athlete
with the greatest acceleration will be the most successful. It takes humans about five
seconds to reach top speed. Within that time, we would gain ground on our oppo-
nent if our acceleration were faster, because, at any point, our velocity would be
higher. Only when we reached top speed and our faster opponent continued to
accelerate would he or she finally get away. So, if we are close enough to our oppo-
nent to start with and we have a faster acceleration, we will normally catch them.
(You should be aware, however, that if you are running more quickly than your
opponent and he or she swerves just as you are about to catch them, they will
usually evade you. To find out why, you’ll have to read Chapter 8.)

Useful Equations
speed = ∆d/∆t
velocity (v) = ∆s/∆t (rω for a spinning object)
acceleration (a) = ∆v/∆t
m·s-1 to km·h-1: m·s-1 /1000×3600
km·h-1 to m·s-1: km·h-1×1000/3600
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CHAPTER 2

ANGULAR POSITION, 
VELOCITY AND ACCELERATION
How important is arm length in influencing the 

distance a discus is thrown? Is it more or less important

than the angular velocity of the arm in determining 

the release speed?

By the end of this chapter you should be able to:

• Define the terms angular position, angular velocity and angular acceleration and
state their units of measurement

• Describe the relationship between the rotational speed of an object and the
linear speed of a point on it

• Develop a simple model to determine the impact of factors affecting discus
release speed
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To answer these questions, we first have to work out how to predict the release speed
of the discus (the speed at which it leaves the hand of the thrower). The release speed
is equal to the speed of the discus immediately before release. The thrower creates a
high speed by spinning about their vertical axis (boxes 2.1 and 2.2 have more about
how we describe the planes, axes and relative locations of parts of the body) with
their arm outstretched. The faster the angular velocity of the body, the faster the
discus will be moving. The angular velocity is simply the rate of change in angle of
the thrower. It is quite obvious that the more quickly the thrower spins (that is, the
higher their angular velocity), the faster the discus will be moving.

What is ‘angular velocity’ and how might we calculate it?

BOX 2.1 PRINCIPAL PLANES AND AXES OF THE BODY
It is often useful to describe the axis about which a person (or any other object)
rotates, moves, is pushed or pulled, and so on. Typically, the human body is divided
into three planes and rotates about three axes. Describing movements as in these
planes and about these axes reduces the need for complicated descriptions of how
we move.

Three planes, the ‘cardinal planes’, notionally divide the body in three dimensions.
The frontal (or coronal) plane cuts the body into front and back halves, the sagittal
plane cuts the body into left and right halves and the transverse plane cuts the body
into top and bottom halves.

The body can rotate about these planes. For example, if you do a cartwheel you
rotate about the frontal plane (that is, you are always facing forward), if you do a
forward somersault you rotate about the sagittal plane (your head drops forward as
you rotate) and if you do a pirouette you rotate about the transverse plane. 

Alternatively, we can say you spun about each of three axes of rotation. During a
cartwheel you spin about the anteroposterior axis (literally you spin about a line
drawn from front (anterior) to back (posterior)), during the forward somersault you
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FIG. 1
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spin about the mediolateral axis (about a line drawn from the middle (medial) to the
outside (lateral) of your body) and during a pirouette you spin about the
longitudinal axis (that is, a line drawn from your head to your feet).

In the photograph of the rugby player, you can see the legs and arms swing in
the sagittal plane and rotate about the mediolateral axis, the head has turned in the
transverse plane about the longitudinal axis but no part of the body has moved in
the frontal plane (rotated about the anteroposterior axis) to any significant degree.

FIG. 2

If you look at Figure 2.1, you can imagine that the line in A is a simple representa-
tion of a line drawn from the left to the right shoulder of a discus thrower. As the
thrower rotates, the angle of the line changes, relative to its starting position. In B,
we can see the line has rotated by 15°; that is, it has changed angular position, or
displaced, by 15°. Therefore, its angular displacement is 15°. This is very similar to
the linear dimensions I discussed in Chapter 1, as can be seen in Table 2.1.

If we obtained this information from a video recording and we knew the time
between each frame of the film, we could calculate the angular velocity of the
shoulders. The frame rate of film is generally 25 frames per second, so the time
between frames would be 1/25 = 0.04 s. This calculation is almost the same as was
demonstrated in Chapter 1 for the calculation of linear velocity (s·t-1), except we
use the angular equivalents. Angular velocity (ω) = θ·t-1 (θ is the symbol for angu-
lar displacement, 15° in this example). So, ω in this case is 15/0.04 = 375°·s-1. If we
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FIG. 2.1 Angular position, displacement, velocity and acceleration. The line in A is an imaginary line
joining the left and right shoulders of a thrower. In B, the shoulders have rotated by 15°.

Mediolateral
axis

Anteroposterior
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Sports Biomechanics (AC Black)  6/6/07  13:00  Page 17



spin around in a circle we move through 360°, so at 375°·s-1 we would spin around
a little more than once a second.

Linear dimension SI Unit Angular dimension SI Unit

Position Dimensionless or Angle radians (rad) relative 
scaled co-ordinates to a point or line 

(Figure 2.2)
Displacement metres (m) Angular displacement radians (rad)
Velocity metres per Angular velocity radians per second 

second (m·s-1) (rad·s-1)
Acceleration metres per Angular acceleration radians per second per 

second per second (rad·s-2)
second (m·s-2)

TABLE 2.1 Angular equivalents of linear dimensions.

The right units of measurement
The answer is not quite complete. In science, there is a prescribed system of units: the
Système International (SI). Using the correct SI units is important, because many of
the equations we use in biomechanics will give wrong answers if we don’t use the
correct units (I’ll show you this later). We have expressed our answer in the units of
°·s-1 (degrees per second) but the SI unit for angles is the radian. A radian is equal to
the angle formed when a line joining the centre of a circle to the perimeter is rotated
by the length of one radius, that is, the distance from the centre to the perimeter, as
shown in Figure 2.2. The perimeter of a circle is 2π times radius, so there are 2π radi-
ans in a circle. Therefore 2π radians = 360° and π radians = 180°. Knowing this allows
us to convert from degrees to radians easily: radians = degrees / 180/π. You should
memorise this conversion, mark this page for future use or remember that 180/π =
57.3 (so radians = degrees/57.3 and degrees = radians × 57.3). In our example, the
angular velocity of the thrower in radians is 375°·s-1/57.3 = 6.54 rad·s-1.

FIG. 2.2 A radian is equal to the angle formed when a line joining the centre of a circle to the perimeter
is rotated by one radius.
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BOX 2.2 OTHER ANATOMICAL REFERENCES
We need to describe how one body part relates to another. For example, the hand is
further down the arm than the shoulder; how can we describe that more simply? We
could say that the hand is distal to the shoulder. We could also say that our shoulder
is proximal to our hand. These anatomical designations are shown in Figure 1. 

FIG. 1

Some important distinctions are: 
1. any body part closer to the head is ‘cranial’; 
2. body parts closer to the feet are ‘caudal’; 
3. any body part closer to the front, regardless of the body’s orientation, is ‘anterior’

and anything to the back is ‘posterior’ (so if you lie on your stomach your head 
is cranial and anterior); 

4. the chest (front) surface is ‘ventral’; 
5. the back is ‘dorsal’ (so if you lie on your stomach the ventral surface is inferior to

the dorsal surface);
6. the chest is anterior to the back (but if you were lying down the head would be

anterior to the feet so we would designate the chest as the ventral surface and
the back as the dorsal surface);

7. because the hand can be oriented in many directions, the palm side is always the
ventral surface and the back side is the dorsal surface, although depending on the
orientation of the hand, the ventral and dorsal surfaces might be anterior,
posterior, superior or inferior. If the hand is rotated so the palm is facing
backwards, it is ‘prone’ but if it is rotated so the palm is facing forwards, it is
‘supine’.
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Developing a model to answer the question
Now that we know how to calculate angular velocity and convert it into radians, we
can set about answering our question. We have a thrower who is rotating and an
arm that is swinging, or rotating, about their body. To calculate the release speed of
the discus we need to know two values: (1) the angular velocity of the arm and (2)
the length of the arm.

We know that the faster the arm swings the faster the discus must move.
Increasing the distance of the centre, or axis, of rotation also increases its speed, as
shown in the example in Figure 2.3. The linear velocity of the discus (v) is a func-
tion of the length of the arm (r) and its angular velocity (ω). (The word ‘function’
means that one number is altered in some proportion to another number, but can
often be read as ‘to multiply’, so if linear velocity is a function of arm length and
angular velocity, then v = rω.) Using video, we might find that the angular velocity
of the arm of the thrower was 21 rad·s-1 and we could measure the arm as 0.7 m
long, so the linear velocity of the discus would be approximately 0.7 × 21 = 14.7
m·s-1 (this shows why we use SI units: you could substitute 21 rad·s-1 for 1203°·s-1,
which will give you a highly unrealistic answer of 842.3 m·s-1 (3032 km·h-1). You
must convert all measures to SI units to use common mathematical equations.) 

Given this information, how can we determine the relative importance of each
factor? In Chapter 1 we created a model of the times taken to complete the acceler-
ation, maximum speed and deceleration phases of a sprint run and showed how it
could be improved by 3%, which we considered reasonable. We could do some-
thing similar here, although a better approach would be to alter the magnitudes by
realistic percentages. For example, we might find data suggesting that discus throw-
ers typically have an arm angular velocity of between 18 and 26 rad·s-1 and arm
lengths between 0.60 and 0.85 m. This range of values, expressed as a percentage of
the normal or mean, is different for angular velocity and arm length, so it would-
n’t make sense to just assume a similar percentage variation in both.
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FIG. 2.3 Calculation of the linear velocity of an object that rotates. If you were sitting on this softball
bat when it was swung about its axis of rotation, you would have travelled further if you sat at point A
than if you sat at point B. Since linear velocity (v) is equal to the distance travelled per unit of time, it is
greater at point B. Since the linear distance is a function of the angle through which the bat is swung (θ)
and the radius of the swing circle (r), the distance is equal to θ · r (or just θr). The velocity is therefore 
θ · r / t, where t = time. Since θ/t = ω (angular velocity), we often write v = rω.
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THE ANSWER
Assuming that the arm’s angular velocity ranges between 18 and 26 rad·s-1 and arm
length varies between 0.6 and 0.85 m, to determine the effects of these variations
we use the equation v = rω with this range of values.

Assuming arm length = 0.6 m:
Smallest value (v) = 18 × 0.6 = 10.8 m·s-1

Largest value (v) = 26 × 0.6 = 15.6 m·s-1

Assuming arm length = 0.85 m:
Smallest value (v) = 18 × 0.85 = 15.3 m·s-1

Largest value (v) = 26 × 0.85 = 22.1 m·s-1

So, altering the angular velocity within predicted limits varies the discus velocity
between 4.8 m·s-1 (that is, 15.6 – 10.8 m·s-1 for arm length of 0.6 m) and 6.8 m·s-1

(that is, 22.1 – 15.3 m·s-1 for arm length of 0.85 m), which is 44.4% (4.8/10.8 × 100
and 6.8/15.3 × 100).

However, altering the angular velocity varies discus velocity by between 
4.5 m·s-1 (that is, 15.3 – 10.8 m·s-1 for angular velocity of 18 rad·s-1) and 6.5 rad·s-1

(that is, 22.1 – 15.6 m·s-1, for angular velocity of 26 rad·s-1), which is 41.7%.
From this model, we can tell that increasing either arm length or the arm angular

velocity affects release velocity by something over 40%. However, since individuals
with the longest arms have a greater release velocity, even at slow angular velocities,
the approximately 40% increase is of greater absolute magnitude, with discus veloc-
ity increasing by 6.5 m·s-1 and thus increasing the angular velocity has more of an
effect in throwers who have longer arms. So, one might expect that arm length is very
important for a discus thrower.

Our finding is in agreement with published data (for example, Gregor et al., 1985),
which show that most elite throwers are very tall (men taller than 1.86 m, and women
over 1.70 m) and would thus have long arms. Of course, as you’ll learn in Chapter 7,
increasing arm length might also reduce the speed at which the thrower can swing
their arm so there is probably a limit as to the length of arm that can allow fast discus
release velocities. Nonetheless, these modelling techniques can be very useful for
biomechanists and coaches in predicting the importance of factors that might affect
athletic performance.

Interestingly, the world’s best discus throwers achieve release velocities of greater
than 25 m·s-1 (Gregor et al., 1985). For a thrower with a 0.75 m arm length, we would
predict an arm angular velocity of more than 33 rad·s-1 (1890°·s-1), which seems
highly unlikely. One explanation is that our arm moves with a whip-like action,
where our tendons are first stretched and then recoil at high speeds. Thus the hand,
and therefore the discus, reaches much higher speeds than might be achieved from
using the arm as a rigid bar, where muscle contraction is the only contributor to the
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movement. A second explanation is that the hand and wrist also contribute strongly
at the point of discus release, so the velocity of the fingers, and therefore the discus,
is much faster than that of the whole arm. These movement principles are explored
more fully in Chapter 17. These are important considerations for biomechanists,
who might use simple models to assess the impact of complex factors.

HOW ELSE CAN WE USE THIS INFORMATION?
It is immediately apparent that if we play a sport where we swing a bat or racket
that we will obtain a higher velocity if we swing with our arms outstretched, as long
as reaching out doesn’t slow our movement down; you will see this in Chapter 7.
So, we need to adopt techniques that allow us to ‘free our arms’. If you were, for
example, a pitcher in baseball or softball, you would use this information to ‘cramp
up’ your opponent, meaning to make them swing without their arms straight by
pitching the ball as close to their body as possible. In tennis, a serve that is directed
towards the body can prevent a good returner from making an optimum swing.

This information also allows us to determine that, if two athletes swing their legs
with the same angular velocity, the one with longer legs will have a faster linear foot
speed and therefore body movement velocity. So, as long as you can swing your legs
quickly, having longer legs can benefit top speed walking and running. Those of us
with shorter limbs will have to focus more on strategies to increase limb speed,
while those with longer limbs will have to concentrate more on developing the
force capability to accelerate their longer, and heavier, limbs. Chapters 7 and 8 show
why more force is required to swing long limbs quickly.

Useful Equations
angular velocity (ω) = ∆θ/∆t
angular acceleration (α) = ∆ω/∆t or τ/I
degrees-to-radians (rad) = xº/(180/π) or xº/57.3
radians-to-degrees (deg, º) = xº×(180/π) or xº×57.3

References
Gregor, R.J., Whiting, W.C. & McCoy, R.W. (1985). ‘Kinematic Analysis of Olympic

Discus Throwers’, International Journal of Sports Biomechanics, 1(2): 131–8.

Related websites
Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/rotq.html). Basic and

advanced discussions on angular motion, including maths simulations and
calculations.

Circular Motion and Rotational Kinematics, by Sunil Singh, Connexions
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CHAPTER 3

PROJECTILE MOTION 
What is the optimum angle of trajectory or flight-path

(that is, the angle thrown relative to the ground) for a

shot putter aiming to throw the maximum distance?

(Hint: not 45°.) What factors affect maximum throwing

distance and to what degree? 

By the end of this chapter you should be able to:

• List the factors that influence an object’s trajectory

• Use the equations of projectile motion to calculate flight times, ranges and
projection angles of projectiles

• Design a simple model to determine the influence of factors affecting projection
range

• Create a spreadsheet to speed up calculations to optimise athletic throwing
performance

• Complete video analyses of a throw to optimise performance
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Projectile motion refers to the motion of an object (for example a shot, ball or
human body) projected at an angle into the air. Gravity and air resistance affect such
objects, although in many cases air resistance is considered to be so small that it can
be disregarded. A projected object can move at any angle between horizontal (0°)
and vertical (90°) but gravity only acts on bodies moving with some vertical motion.

Trajectory is influenced by the projection speed, the projection angle and the
relative height of projection (that is, the vertical distance between the landing and
release points; for example, in a baseball throw that lands on the ground, the verti-
cal distance is the height above the ground from which the ball was released).

The distance a projectile covers, its range, is chiefly influenced by its projection
speed. The faster the projection speed, the further the object will go. If an object
is thrown through the air, the distance it travels before hitting the ground (its
range) will be a function of horizontal velocity and flight time (that is, velocity ×
time, as you saw in Chapter 1). In Figure 3.1, you can see that a ball thrown in the
air by a tennis player will hit the ground at the same time regardless of whether it
is hit horizontally by the player or allowed to fall freely but the trajectory of the
ball is different.

If the projectile moves only vertically (for example, a ball thrown straight
upwards), its projection speed will determine the height it reaches before gravity
accelerates it back towards the Earth. If we don’t take air resistance into account,
gravity accelerates all objects at the same rate; 9.81 m·s-2 barring some regional vari-
ations around the planet*. This is about the same acceleration a lion can achieve or
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FIG. 3.1 Tennis ball trajectory. Gravity accelerates the ball toward the ground at the same rate regardless
of whether the tennis player leaves the ball to fall freely or hits it perfectly horizontally. However, the
trajectory of the ball is different in these two circumstances.

* The acceleration of an object due to gravity is different at different places on the Earth. The Earth’s radius
is slightly greater at the equator, since its shape is distorted by its spin, so acceleration due to gravity is slightly
less (9.78m·s -1) than it is at the poles (9.83m·s -1). Gravity is lower at the top of mountains (around 0.2%
lower at the top of Mount Everest). Many record performances were made at the 1968 Olympic Games in
Mexico City, where, due to its altitude and near-equatorial location, gravity is somewhat lower than at other
points on the Earth (air resistance is also less at altitude). You could experiment with performing your
calculations with other values for the acceleration due to gravity.
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more than twice the acceleration of the fastest humans. To get an idea of how fast it
is, drop a small ball from a height of a few metres and watch it accelerate as it falls.

What might position (displacement), velocity and acceleration graphs look like
for a ball thrown vertically?

Projection angle
The angle of projection is also an important factor affecting projectile range. If an
object is projected vertically, it will land back at its starting point, after gravity has
pulled it back to Earth (remember, the object is accelerated positively the whole
way if ‘down’ is assigned the positive direction). So, its range is zero. If the object is
projected horizontally from ground level, it will not get airborne, so again its range
is zero. It can also be projected at angles between 0° and 90°, where it will travel
both vertically and horizontally. At a projection angle of 45°, the object with have
an equal magnitude of vertical and horizontal velocity and its range will be
maximised, as you can see in Figure 3.2. However, we need to take into account
other factors that influence projectile range.

Relative height of projection
The relative height of projection is the vertical distance between the projection point
of an object and the point at which it lands. If the projection point is higher than the
surface on which the object lands, the relative height is positive. If the projection
point is lower than the surface on which the object lands, the relative height is nega-
tive. You can see the importance of relative height in Figure 3.3; the optimum angle
decreases as the relative height becomes more positive but the optimum angle
increases as relative height becomes more negative. One way to think of this is that if
we are projecting an object from a position below where it will land, we have to give
the object some extra flight time, so we increase the vertical velocity and therefore
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FIG. 3.2 The maximum range of a projectile is determined partly by its angle of projection. When the
angle is greater (e.g. 90° and 70° in this example), the object attains a great vertical height but lesser
range. When the angle of projection is too small (e.g. 30° in this example) the object doesn’t have
sufficient vertical velocity to attain a significant range. At a projection angle of 45°, there is an equal
magnitude of vertical and horizontal velocity, and range is maximised.
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the angle of projection. If we project an object from a point higher than where it
will land, the object already has some extra flight time. Instead of giving the object
maximum vertical velocity, we can give it a little more horizontal velocity (so the
angle decreases). So, if you want to throw this book off a cliff, you should send it
horizontally!

If a shot putter released the shot from about two metres above the ground, the
relative release height would be +2.0 m and the optimum release angle would be
less than 45°. How do we know what the optimum angle is? First, we need to under-
stand the equations of projectile motion, or the Equations of Constant Acceleration
as Galileo originally formulated them nearly four hundred years ago.

The equations of projectile motion
Legend has it that Galileo proved that gravity accelerates all objects at the same rate
regardless of their mass by dropping two differently-sized cannon balls from the
Leaning Tower of Pisa, in Italy. To me, this sounds like fun, much like blowing things
up or turning rusty iron into gold. Unfortunately it’s completely untrue: Galileo
performed a much more boring experiment in which he rolled balls of different
masses down a ramp. He noticed that they all got faster as they rolled and that the
increase in speed was dependent on the square of time (t2) but not on the mass of
the ball. Galileo had read the work of Niccolo Tartaglia, who had drawn the motions
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FIG. 3.3 Effect of the relative release height on optimum projection angle. When the relative height is
positive (A), the optimum angle is less than 45°. When the relative height is negative (B), the optimum
angle is greater than 45°.
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of a projected object and realised they followed a curved path – which the Greeks
called a parabola – and was able to use this information to determine equations to
predict the flight of objects. We now use the equations to help us understand how
all objects move under constant acceleration such as when an object is under the
influence of gravity, i.e., in projectile motion.

It is perhaps important to note that Galileo was one of the first to perform well
thought-out experiments to prove/disprove hypotheses, when most before him had
used theoretical reasoning before checking if the mathematics backed up their
thoughts.

The three equations you should know – and memorise – are:

• vf = vi + at
Final velocity (vf) = initial velocity (vi) plus acceleration multiplied by time (at).

• vf
2 = vi

2 + 2as 
Final velocity squared (vf

2) = initial velocity squared (vi
2) plus two times accel-

eration multiplied by displacement (2as).

• s = vit + 1⁄2 at 2

Displacement (s) = initial velocity (vi) multiplied by time plus half of accelera-
tion multiplied by the square of time (1⁄2 at 2).

3 • PROJECTILE MOTION 27

FIG. 3.4 When the batter hits the ball in the air, the ball has both vertical (vV) and horizontal (vh)
velocity. The vertical velocity decreases as the ball reaches the top of its trajectory until it momentarily
reaches zero velocity. We use this as the initial velocity (vi) to help solve the problem. Acceleration due to
gravity is always 9.81 m·s-2, so we can write that down immediately. The time taken to hit the hands
(tdown) is 2.2 s. Drawing a schematic helps us to understand the problem. We can now use equations of
projectile motion to solve the problem.
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Let’s look at an example of the use of the first equation. A batter hits a ball straight
up in the air. It takes the fielder a moment to gauge the trajectory of the ball and so
he or she doesn’t start to run towards the ball until it is at the top of its trajectory.
When a ball is at the top of its trajectory, its vertical velocity is briefly zero and so
we can say its initial velocity is zero. If 2.2 s elapse before the fielder finally gets their
hands to the ball, what will its vertical velocity be when it’s caught? (Figure 3.4
shows the problem schematically.) We can simply plug the numbers into the equa-
tion to see that:

vf = vi + at
then vf = 0 + -9.8 × 2.2
= -21.6 m·s-1 or -77.6 km·h-1

You could find vf, vi or t by re-arranging the equation appropriately (see Appendix
B if you are unsure as how to do this).

As an example of the use of the second equation, I might ask how far off the
ground the ball was at the top of its trajectory, given that it hit the hands at 
21.6 m·s-1 (assuming that the fielder caught the ball only millimetres above the
ground):

vf
2 = vi

2 + 2as

If we know vf, vi and a (using the standard Earth value of 9.8 m·s-1) we can re-
arrange the equation thus:

vf
2 - vi

2 = 2as 

vi
2 was added to 2as, so in moving it to the other side of the equation, it becomes a

subtraction. However, we need s on its own, so we rearrange again to:

(vf
2 - vi

2) / 2a = s 

2a was multiplied by s; in moving it to the other side of the equation, it becomes a
divider. So:

s = (vf
2 - vi

2) / 2a
s = (466.6 - 0)/19.6
= 23.8 m

If the ball fell 23.8 m into the hands, and the hands were effectively on the ground,
the ball must have gone 23.8 m high.

Finally, we have the equation s = vit + 1⁄2 at 2. If I told you that a 10 m platform
diver initiated a dive from a handstand position with an initial vertical velocity of
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zero (that is, they fell straight down, although they would have had some horizon-
tal velocity as well), how long would they take to hit the water? We could re-arrange
the equation as we did above but in this case, the initial vertical velocity is zero, so
vit equals zero (any number multiplied by zero equals zero). So:

s = 1⁄2 at 2

t2 = s/1⁄2 a
10/4.9 = 2.0 s

This gives us t2, so we can find its square root to get t:

t = √2.0 
= 1.4 s

This assumes that the centre of mass of the diver’s body actually falls 10 m in 1.4 s:
the actual time for the hands to enter the water might vary a little. But it still isn’t
very long to complete a triple somersault with a few twists!

THE ANSWER
So you can see we can use these equations to understand vertical motion (that is,
under the constant acceleration of gravity) just as we used the equations of linear
motion from Chapter 1 to understand motion without constant acceleration.
Where does this leave us with our original question? Let’s use these new equations
to find the answer. Follow the process below slowly, and think about what is accom-
plished in each step.

• Step 1: To know how a variable affects an outcome, it is useful first to put in some
dummy (fictional) data and solve the problem using that. We can then see what
happens if we change some of the numbers. So, we might put in some dummy
data for angle, velocity and relative height, and so on, then find the range. Then
we can change the angle to see if range increases or decreases. At some point, we’ll
know at which angle the range was greatest. This is another type of modelling,
which is different from the modelling we used in Chapters 1 and 2.

FIG. 3.5 

3 • PROJECTILE MOTION 29

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 29



We will assume an initial projection velocity of 14 m·s-1, which is about right for a
good thrower, and a release angle of 35°, which is reasonably common (remember,
we know the answer must be less than 45°). We will also assume that the shot was
released from a height of 2 m above the ground (that is, a positive relative height
of release).

We know that: (1) vf = vi + at, (2) vf
2 = vi

2 + 2as and (3) s = vit + 1⁄2 at 2 and also
that without acceleration, v = s·t-1. It is important to remind ourselves of these.

• Step 2: Draw a diagram to visualise the problem. I shall divide the problem into
two parts: part 1 to calculate the range as if the shot landed with a relative
projection height of zero and part 2 to calculate the ‘extra’ range.

FIG. 3.6 

• Step 3: Determine a plan of attack. In simple problems, you might determine
which equation to use by looking at what you know and what you’re trying to
find out. In this case, we know that v = s·t-1, so s = v × t. So, if we know the hori-
zontal velocity and the time of flight, we can calculate the range.

• Step 4: Calculate the initial horizontal velocity (vih). (If necessary, refer to the
cos, sin and tan rules in Box 1.1 or Appendix C.) So we can work out the hori-
zontal velocity thus:
cos 35° = adjacent/hypotenuse = vih/14 m·s-1

vih = cos 35° × 14 = 11.47 m·s-1 or approximately 11.5 m·s-1

• Step 5: Calculate the flight time. This needs to be done in two parts. First, we
calculate the time for the shot to rise to its peak height and back to the starting
(release) height; second, we calculate the time to fall the further 2 m to the
ground.

•• Part 1: There are two things to remember always: (1) the flight time of an
object equals time up plus time down, so if it starts and finishes at the same
vertical height the total time equals time up multiplied by two and (2) the
vertical velocity or final velocity of an object moving upwards is always zero
because it stops briefly at the top of its trajectory before falling back down,
so we know that the final velocity, vf, also equals zero. Just as we calculated
the initial horizontal velocity above, we can calculate the initial vertical
velocity using the sin rule. For this calculation, we can use either vf = vi + at
or t = (vf - vi)/a.

viv (initial vertical velocity) = sin 35° × 14 m·s-1

= 8.03 m·s-1
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So t = (0 - 8.03)/-9.81 = 0.82 s,
and the total time (time up plus time down) = 1.64 s.

•• Part 2: We know the initial vertical velocity of the shot is 8.03 m·s-1, because
if it leaves the hand with this vertical velocity it must attain it again as it falls
back past the level of the hand, but we don’t know the final velocity as it is
about to hit the ground. We could use the equation s = vit + 1⁄2 at2 but this
requires us to understand how to solve a quadratic equation. If you want to
try, have a look at Box 3.1. Fortunately, there is another way: we can use the
equation vf

2 = vi
2 + 2as to find the final vertical velocity and then use vf = 

vi + at to find the time. (I worked out this method by looking at the equations
and thinking about what I already knew. I then realised that if I had vf the
problem would be easy, so I sought a way to do that. The two-step process
isn’t as hard as it might look at first.) Either way:

vf
2 = vi

2 + 2as
vf

2 = 8.032 + 2 × -9.81 × 2 = 103.7 
vf = √103.7 = 10.2 m·s-1

We then put th equation vf = vi + at to find that time = 0.22 s.

FIG. 3.7

So now we know that the time for Part 1 was 1.64 s and the time for Part 2 was 
0.22 s, so the total flight time was 1.86 s. If the initial horizontal velocity was 
11.5 m·s-1 and the range = horizontal velocity × flight time, then the range = 11.5
× 1.86 = 21.4 m. Not a bad throw! But is it the best possible?

We now need to take the range and release velocities (vertical and horizontal) and
everything else we know and recalculate with lots of different release angles. When
the distance is greatest, we’ll have the optimum. Doing this by hand could take a long
time, but we can speed things up by using a spreadsheet, such as Microsoft Excel®.

If you don’t know how to write formulae in spreadsheets, don’t worry, just type
everything exactly as you see below and it should work (including the ‘=’ signs).
You might consider learning how to do these things if you are serious about opti-
mising athletic techniques and you certainly should if you are studying
biomechanics at university. Type the equations below into the cells of the spread-
sheet (don’t put anything into the cells labelled ‘Blank’):
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If you type the numbers 14, 2 and 35 into row 2 of columns A, B and C of the
spreadsheet it should then look like this (format the cells to display to only two
decimal places to make it easier to read):

The answer (column K) differs slightly from the worked answer (21.29 in the table,
21.4 in the worked answer) because we rounded out the numbers in the hand
calculation. For example, we used 11.5 m·s-1 instead of 11.47 m·s-1 for the initial
horizontal velocity.

If you now copy and paste the formulae in each cell into the cells in the rows
below, you can enter different numbers for projection angle and see how this affects
throw distance (or just type a new number into the ‘Angle of projection’ cell (C2)
and see what happens to the throw distance). With some new figures entered, the
spreadsheet looks like this:

 A B C D E F 

1 
Init ial 

Velocity 

Height 

Of 

Release 

Angle 
Of 

projection 

Angle in

radians 

Initial 
vertical 
velocity 

Initial 
horizontal 
velocity 

2 14 2 35 0.61 8.03 12.12 

 G H I  J K 

Time (stage 1) Final vertical velocity Time (stage 2) Total time Throw
distance 

1.64 10.18 0.22 1.86 21.29 

 

 A B C D E F 

1 
Init ial 

Velocity 

Height 

Of 

Release 

Angle 
Of 

projection 

Angle in

radians 

Ini tial 
vertical 
velocity 

Ini tial 
horizontal 
velocity 

2 Blank Blank Blank =C2/57.3 =sin(D2)*A2 =cos(D2)*A2 

 G H I  J K 

Time (stage 1) Final vertical velocity Time (stage 2) Total time Throw
distance 

=2*(E2/9.81) =sqrt((E2)^2+2*9.81*B2 =(H2-E2)/9.81 =I2+G2 =F2*J2 
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 A B C D E F 

1 
Init ial 

Velocity 

Height 

Of 

Release 

Angle 

Of 
projection 

Angle in
radians 

Initial 
vertical 
velocity 

Initial 
horizontal 
velocity 

2 14 2 35 0.61 8.03 12.12 

3 14 2 37.5 0.65 8.52 11.47 

4 14 2 40 0.70 9.00 11.11 

5 14 2 42.5 0.74 9.46 10.73 

6 14 2 45 0.79 9.90 9.90 

 G H I  J K 

Time (stage 1) Final vertical velocity Time (stage 2) Total time Throw
distance 

1.64 10.18 0.22 1.86 21.29 

1.74 10.58 0.21 1.95 21.62 

1.83 10.96 0.20 2.03 21.82 

1.93 11.34 0.19 2.12 21.89 

2.02 11.71 0.19 2.20 21.81 
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You’ll notice that the distance at 45° (row 6) was less than the distance at 42.5°; the
throw is longer if the projection angle is a little less than 45°. This makes sense,
given that earlier we found that if an object lands vertically below its release point
(that is, it has a positive relative height), the optimum angle is less than 45°. Using
the spreadsheet, we can see the optimum is around 42.5°. If we had entered more
data points (angles of release of, for example, 40, 40.5, 41, 41.5°) we could have an
even more accurate record. Lichtenberg & Wills (1978) showed that the optimum
for their ‘thrower’ was about 42.3° but this varies as release speeds and release
heights are changed. You can see this for yourself: put some fictional numbers into
the ‘Initial velocity’ and ‘Height of release’ columns and see how this affects throw
distance and the optimum angle of projection. How do these theoretical figures
compare with real data: the known release angles of elite shot-putters? 

Interestingly, they don’t compare well. Is the theory or the shot-putter wrong?
Elite throwers project the shot at angles much less than 42.5°; typically 36° to 37°
(Hubbard, 1989). There are two possible reasons for this: first, the more vertically
the shot is thrown, the more the shot putter is working against gravity to accelerate
it, so the projection (release) velocity of the shot will be less. The flatter they throw
it, the less they have to push against gravity and so can accelerate it to a higher
velocity. (Release velocity is very important, as you know if you manipulate it in
your spreadsheet, so throwing at a flatter angle is important.) Second, because of
how the chest and shoulder muscles work together in the throw, we can produce
more force if we push out in front than if we push upwards. For example, most
people can bench-press a greater weight than they can press above their shoulders.
If we produce more force, we can accelerate the shot to a greater velocity. So it
seems a lower angle is optimum because the release velocity is greater.

Can we factor the effect of projection angle on projection velocity into our spread-
sheet? Yes: you could perform a simple analysis of a number of video-recorded
throws, to determine how release speed is affected by release angle (see Special Topic:
Basic video analysis). Data from Hubbard et al. (2001) shows that release velocity
decreases by about 1.7 m·s-1 for every increase in angle of 1 rad (57.3°) above hori-
zontal. The increase in release height that might come from having the arm raised to
increase the angle makes very little difference (De Luca, 2005), so we don’t have to
factor this into our work. (I’m disregarding the fact that the release point is more in
front of the body when the angle is less, where the shot would start a few centimetres
further out.) We can put all of this information into our spreadsheet thus:

 A B C D E F G 

1 
Init ial 

Velocity 

Corrected  initial 
velocity 

Height 

Of 

Release 

Angle 

Of 
projection 

Angle in
radians 

Init ial vertical 
velocity 

Initial 
horizontal 

velocity 

2 Blank =A2 Blank Blank =D2/57.3 =sin(E2)*B2 =cos(E2)*B2 

3  
=A3+(($D$2-
D3)/57.3)*1.7 

     

 
H I J K L 

Time (stage 1) Final vertical velocity Time (stage 2) Total time Throw
distance 

=2*(F2/9.81) =sqrt((F2)^2+2*9.81*C2 =(I2-F2)/9.81 =J2+H2 =G2*K2 
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You’ll notice I have inserted a new column B. Cell B2 is a copy of the value entered in
A2, whereas cell B3 starts to calculate the difference in initial velocity. (In Excel, the $
symbol means ‘fix this reference’; in this example, the formula will always be calcu-
lated using the value in cell D2.) We are calculating how different the new release
angle is from the smallest and correcting by 1.7 m·s-1 for every radian (or 57.3°).

Notice also that I’ve had to change every other cell, since each value is now in a
different column. You should re-check your spreadsheet to make sure it’s calculat-
ing correctly. If it is, you should get the values shown below. I’ve started from an
angle of projection of 30° in this example:

So, it looks as if the optimum angle for our shot putter is about 37.5°. This is much
more in line with the practice of the world’s elite throwers (approximately 36° – 37°
(Hubbard, 1989)). Again, it would be more accurate if we used more data with
projection angles that differed by only half a degree or so. Either way, we can see it
makes a big difference to think about the problem more broadly and include the

 A B C D E F G 

1 
Init ial 

Velocity 

Corrected  initial 
velocity 

Height 

Of 

Release 

Angle 

Of 
projection 

Angle in
radians 

Init ial vertical 
velocity 

Initial 
horizontal 

velocity 

2 14 14.00 2 30 0.52 7.00 12.12 

3 14 13.85 2 35 0.61 7.94 11.35 

4 14 13.78 2 37.5 0.65 8.39 10.93 

5 14 13.70 2 40 0.70 8.81 10.50 

6 14 13.63 2 42.5 0.74 9.21 10.05 

  13.55 2 45 0.79 9.58 9.59 

 H I J K L 

Time (stage 1) Final vertical velocity Time (stage 2) Total time Throw
distance 

1.43 9.39 0.24 1.67 20.26 

1.62 10.12 0.22 1.84 20.89 

1.71 10.47 0.21 1.92 21.01 

1.80 10.81 0.20 2.00 20.99 

1.88 11.14 0.20 2.07 20.84 

1.95 11.45 0.19 2.14 20.55 
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FIG. 3.8 Graph of throw distance versus angle of release with (dark diamonds, top curve) and without
(open squares, bottom curve) correcting for the effects of angle of release (x-axis) on release velocity 
(y-axis). The optimum angle is lower when the correction is made.
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effect on release velocity of trying to throw at greater angles as well as only consid-
ering how projectiles move once they are released. To demonstrate the difference
more effectively, I constructed a scattergram of the data as shown in Figure 3.8.
(Use the graphing wizard in Excel to create a scattergram, choose the appropriate x
and y columns and add a line of best fit. Choose a second order polynomial, or
quadratic curve.)
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BOX 3.1 THE QUADRATIC FORMULA
We often want to put data into equations and to find out something that we don’t
know. Sometimes, there are two unknowns in one equation, for example when you
are trying to find a value for time (t) using the equation s = vit + 1⁄2 at2. We could
arrange the formula so it is in quadratic form like this: 1⁄2 at2 + vit – s = 0 and solve
using the quadratic formula:

x = -b ± √(b2 – 4ac)
2a

which becomes t = -vi ± √( vi
2 – 4as)

2a

Where acceleration (a) is ‘a’, initial velocity (vi) is ‘b’ and displacement or height of
release (s) is ‘c’. 

If we put in data of a = 9.81 m·s-2, vi = 8.03 m·s-1 and s = 2 m, we get answers
of +0.22 s and –1.86 s. This literally means that in parabolic flight, the object would
have passed the 0 m point at both 0.22 s after release (which seems appropriate)
and 1.86 s before release (which is not possible). 

Sometimes, having two answers makes good sense. For example, if we wanted to
know when an object in parabolic flight passed a point 2 m above the ground, we
might find answers of 2.1 s and 6.8 s, which would be about right in the example in
Figure 1. Either way, we know that 0.22 seconds is fair and we would use that.

FIG. 1 
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To summarise, we have seen that, 1) using just a few equations, we can work out
how an object will behave when it becomes a projectile; 2) that a projectile’s motion
is influenced by its projection speed, projection angle and the relative height of
release and by how much force we can apply to it when trying to move something
at a given angle; 3) that the significance of each of these factors can be determined
using a model: having solved a problem, you can manipulate parts of your problem
to see how they would affect the answer; and 4) that it is often easiest to use spread-
sheets to easily calculate the effects of altering these parts; and last, that optimum
projection angles are often not 45°, partly because objects in sport are often
released from a point above or below the point where they land and partly because
projection speed is often less when we try to attain a high angle of release.

HOW ELSE CAN WE USE THIS INFORMATION?
It might not have been easy getting to the answer but what an amazing thing to be
able to do! After doing some basic analyses (see Special Topic), you could find the
theoretical optimum projection angle for any throw in any sport: baseball, softball,
cricket and so on. Scientists have used these theories to show that the optimum
angle to throw a soccer ball (for example a throw-in after the ball is kicked out) is
probably about 30° (Linthorne & Everett, 2006), although this varies for individu-
als of different height (because of the different release height) and ability to
produce forces (that is, some might be able to throw at higher angles at high speeds
than others). You’d be able to tell your players not to throw-in at 45° but each
person would have a different optimum. In the long jump, the body projection
angle should also not be 45°, because we lose velocity as we try to jump upwards.
Elite jumpers jump at about 17° to 22° (Hay & Miller, 1985) and take-off angles in
the triple jump are even lower.

We must be careful in using these techniques in sports such as the javelin and
discus, because the implements have flight properties and so are not subject to the
normal laws of projectile motion (see Chapter 15). Believe it or not, rugby or
American/Australian footballs and spinning soccer balls also exhibit flight proper-
ties, so we can’t model them in this way either (see Chapter 16). Neither can we use
them to determine optima for release angles in netball or basketball, because these
sports need greater angles of projection to improve shooting accuracy: the ball is
much more likely to fall through the ring/basket if it falls vertically than when it
skims across the ring/basket.

In the end, it is probably necessary to run biomechanical tests to determine the
optimum trajectory for whatever object you need to throw, based on the athlete
who is actually going to throw or kick it.
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SPECIAL TOPIC: BASIC VIDEO ANALYSIS
We can use relatively simple tools to uncover a lot of information about a person’s
performances. Video analysis is one such method. 

In this chapter we learned how to use information such as implement release angles
and speeds to optimise performance but we need to find methods of obtaining this
information easily. If you don’t have a suite of biomechanical analysis tools, you can use 
a standard video camera, a television, a sheet of plastic and a marker pen. You’ll also need
a protractor (or another instrument to measure angles) and a ruler. You will be recording
the athlete from the side, so that you can record the angle and speed of a shot as it is
put. Set your camera on a tripod a good distance away from the athlete (at least 6 – 8 m
if possible but the further the better) and side on (that is, perpendicular to the line of the
throw) as shown in Figure 3.9. 

FIG. 3.9 Set-up for video analysis. The camera is placed to view the thrower side-on (i.e. perpendicular
to the line of throw) and at a considerable distance. A rod/line of known length is placed in the direction
of the throw near the feet of the thrower.

Objects change their size and shape as they move across or towards/away from the camera,
which can cause errors in calculations. The two main errors are: perspective error, which
occurs as objects seem to get bigger or smaller as they move towards or away from the
camera, and parallax error, which occurs as an object’s size and shape seem to change as
it moves across the camera (think of a person at left of camera where you can see their
front, then moving to centre stage where you see them side on … when you see that same
person a long way away, you will always see them from side on). You can all but eliminate
these errors if you have the camera a good distance from the athlete. You can then zoom
the camera so that the athlete fills the screen sufficiently. 

Next, place a rod or draw a straight line on the ground in the direction of the
forthcoming throw, from a point near where the thrower’s feet will be at the time of
release. This will allow you to measure the angle of trajectory against a known horizontal
line. Measure the rod – if you know its exact length, you can use it to work out how big
the objects are or the distances thrown when they are on the television screen. 
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Take a video of several throws, capturing the point of release and the first part of the
flight of the shot. Only throws where the shot travelled perpendicular to the camera can
be used, because if the shot travels towards or away from the camera you will get
perspective errors.

Once you have taken the video footage, play the first throw on the television and pause
it at the point the shot leaves the hand. Stick the clear plastic sheet on the television and
mark the athlete’s toe, hand (to determine the height of release) and the horizontal line or
rod that was placed on the ground (as shown in Figure 3.10). Last, mark the point of the
shot. Then move the video one frame forward and remark the shot (you now have four
points and one horizontal line).

FIG. 3.10 Determining the angle of trajectory, height of release and speed of release (calculated from
the distance travelled by the shot in one frame of video) can be done using a basic video camera and
television set-up. First, the important landmarks are located and drawn on a clear plastic sheet (A) and
then angles and distances can be measured (B). See text for more detail of the procedures.

Now take your measurements. The angle between the line on the ground and a line joining
the marks of the shot is the angle of trajectory. The distance between the shot marks gives
the displacement of the shot after release. From the frame rate of the camera, you can
work out the time between the two points (for PAL systems this is 0.04 s and for NTSC it
is 0.033 s; see Chapter 2) and then find the velocity of the shot using v = s·t-1 (that is,
distance divided by time). 

Before you can use the displacement of the shot, you have to know how far it travelled
in the real world, not the distance on the television screen. Divide the length of the line
or rod as measured on the television screen by its real length, to get a ‘scaling factor’. For
example, if its length on the television was 0.3 m (30 cm) and its actual length was 2 m
the scaling factor would be 0.3/2 = 0.15. If the shot travelled 0.084 m (8.4 cm) across the
television, 0.084/0.15 gives you the real distance travelled (0.56 m). Therefore the
velocity was 0.56/0.04 = 14 m·s-1.

So now you have the angle of projection and know the projectile velocity was 14 m·s-1.
You can do this for any number of throws but how do we find the relationship between
projectile velocity and angle of projection? 

After analysing a number of throws at different release angles, you can put them into a
spreadsheet: the data might look something like the spreadsheet in Figure 3.11.
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FIG. 3.11 Release angle and release speed entered into a spreadsheet programme.

You can then create a scattergram and add a linear regression trend-line (the slope of this
line tells you the relationship between the two variables). The slope of the line shown in
Figure 3.12 is –0.0853; the equation (at the top of the graph) is in the form y = ax + b,
where y is a value on the y-axis (that is, what we’re trying to find), x is a point on the 
x-axis (that is, what we can measure) and 17.412 is the value that the line would cross
the y-axis if it continued. 

FIG. 3.12 Graph of projection velocity against projection angle. The velocity decreases as the angle
increases. The equation to the line (at top) shows that the velocity decreases by 0.0853 m·s-1 for every
degree increase in projection angle. This would be 0.0853 × 57.3 = 4.89 m·s-1 per radian.

To find y, you simply put in a value of x. For example, the projection velocity at an angle
of 35° would be approximately –0.0853 × 35 + 17.412 = 14.9 m·s-1. The number –0.0853
implies that velocity decreases by this much for every degree increase in angle. In the
spreadsheet you created earlier, the units were radians (1.7 m·s-1 per radian). You can
therefore multiply this figure by 57.3 to find the change in velocity for a whole radian;
4.89 m·s-1, which is significantly larger than the 1.7 m·s-1 you used earlier. For some
reason, the shot-putter loses much more velocity as the angle increases. (You can enter
4.89 in cell B3 of your spreadsheet to see how this affects the optimum projection angle
for this shot-putter.)

For the new thrower, what is the optimum angle of release? How do the original
velocity and the relative height of projection affect the results? How might you coach this
athlete differently to the shot-putter described earlier in the chapter?
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Useful Equations
degrees-to-radians (rad) x°/(180/π) or x°/57.3
radians-to-degrees (deg,°) x°×(180/π) or x°×57.3
projectile motion equations vf = vi + at
vf2 = vi2 + 2as
s = vit + 1⁄2 at2

sine rule sin θ = opposite/hypotenuse
cosine rule cos θ = adjacent/hypotenuse
tan rule tan θ = opposite /adjacent
time per frame (video) 1/Frame rate
scaling factor apparent length/true length
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historical overview of the first accurate descriptions of projectile motion by
Galileo, as well as a concise description of the physics of projectile motion with
animations and games.

Projectile Motion (www.walter-fendt.de/ph14e/projectile.htm). Interactive
demonstration of projectile motion that allows the user to set parameters and
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Lessons on Projectile Motion (www.sciencejoywagon.com/physicszone/lesson/
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investigating the applications of physics in sports.

SPORTS BIOMECHANICS40

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 40

http://library.thinkquest.org/2779
http://www.walter-fendt.de/ph14e/projectile.htm
http://www.sciencejoywagon.com/physicszone/lesson/01projec.htm
http://www.sciencejoywagon.com/physicszone/lesson/01projec.htm
http://home.nc.rr.com/enloephysics/sports.htm


CHAPTER 4

NEWTON’S LAWS
How do we produce forces sufficient to jump to heights

greater than our standing height? What factors do we

have to optimise to maximise jump height? 

By the end of this chapter you should be able to:

• Recite Newton’s laws of motion and use them to explain force production
during a variety of sporting movements

• Determine the optimum force magnitude and direction combinations for differ-
ent sporting tasks, including jumping

• Explain the effect of body mass on jumping performance

• Show an understanding of scientific notation
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The Ancient Greeks were a very inquisitive bunch, whose philosophy led them to
spend time observing, thinking and discussing, rather than experimenting.
Aristotle, when he asked himself ‘what is the natural state of an object, if left to
itself?’, postulated a simple answer: since every object he observed generally came to
rest, every object’s natural state was to be at rest. More recently, about 400 years ago,
Galileo asked himself the same question. But remember from Chapter 3 that he tried
systematically to prove or disprove his hypotheses by experiment. Through careful
experiments, Galileo found that objects with a very low air resistance continued to
move almost indefinitely when on almost-frictionless surfaces. He realised that if the
objects could move in conditions where there were no air resistance or friction, they
would never stop! So every object’s natural state was … to be. If an object were
moving it would continue to move and if it were stationary it would stay, unless of
course a force acted upon it to change that state (see Figure 4.1).

Unfortunately, Galileo’s experiments were constrained only to movements on
horizontal surfaces. In the seventeenth century, Newton generalised the results to
all motions in all planes. From his work, he formulated three laws of motion.

Newton’s First Law states:

An object will remain at rest or continue to move with constant velocity as long
as the net force equals zero 

The propensity for an object to remain in its present state is called inertia: this law
is therefore often referred to as Newton’s Law of Inertia. All objects with a mass
have inertia, and the larger the mass, the more difficult it is to change the object’s
state of motion; I ∝ m, or inertia (I) is proportional to (∝) mass (m). For example,
a large truck has large inertia because it has a large mass, so it is more difficult to
speed up, slow down or change its direction. An important thing to remember
about this law is that it uses the term ‘velocity’, not ‘speed’. So objects not only
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FIG. 4.1 Newton’s First Law. This tennis ball, when travelling through space with no air resistance or
friction acting on it, will continue with the same velocity (speed and direction) until acted upon by
another force. This propensity is called inertia (I).
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continue at their present speed but also in the same direction (the velocity is zero
if the object is stationary).

So, if we want to jump higher, we need to work out how to change our state from
rest (or in the case of a high jump, from a constant horizontal running velocity) to
vertical motion. The first clue is given by Newton’s Second Law:

The acceleration of an object is proportional to the net force acting on it and
inversely proportional to the mass of the object: F = ma 

If we want to change the state of motion of an object, we need to apply a force.
(Force is measured in Newtons (N), in his honour.) Since mass is measured in
kilograms and the acceleration due to gravity is equal to 9.81 m·s-1, the force on
a 1 kg ball would be 9.81 N (or approximately 10 N) since F = 9.81m·s-1/1 kg. We
call this the weight of the ball (mass is the amount of matter in an object; weight
is the effect of gravity on that matter). On Earth, as a rule of thumb, you can esti-
mate an object’s mass by dividing its weight by 10; an 800 N person would have
a mass of about 80 kg. On the moon, where gravity is about 1/6 of that on Earth
(1.6 m·s-2), the 80 kg person would have a weight of 128 N.

What does the formula F = ma really tell us? It tells us that the lighter the object
the faster it will accelerate, or that less force will be needed to cause a given accel-
eration. The lighter a person is, the more they can accelerate their body under a
given force. F = ma also tells us that to accelerate an object faster we need to apply
a bigger force to it. How can we apply this force to ourselves? Do we ask someone
else to apply it for us? The answer is in Newton’s Third Law:

For every action, there is an equal and opposite reaction 

FIG. 4.2 Newton’s Third Law. A vertical (downward) force is applied when the foot contacts the ground
(A: top drawings). The ground exerts an equal and opposite reaction force, in this instance called the
ground reaction force (GRF), which stops the foot sinking into the Earth.

During running and jumping, we apply a force with both vertical (Fy, force in the y-direction) and
horizontal (fx, force in the x-direction) components. The ground exerts an equal and opposite GRF,
which can accelerate us forward if the force is large enough to overcome our inertia. [Be aware: some
people assign these Fy for horizontal and Fz for vertical.]

Notice the arrows indicate the magnitude (length of arrow) and direction (direction of arrow) of the
force vectors as you learned in Chapter 2.
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When you fire a gun, the bullet is projected forwards and the gun is thrown back-
wards with an equal and opposite force – it is said to ‘kick’. For us, this law means
that if we apply a force against something that doesn’t move (that is, the force can’t
overcome its inertia), the object will exert an equal and opposite reaction force
against us. This reaction force is important for two reasons. First, to have the great-
est force applied to us, we need to apply the greatest possible force against that
object. Second, if we need the force to accelerate us in a specific direction, we need
to produce it in a very specific, and opposite, direction.

One question we need to answer is: against what do we apply our large and well-
directed force during a jump? In general, we would apply it against the Earth
(Figure 4.2). Providing the Earth’s surface is solid and doesn’t flex under our force,
it exerts an equal and opposite force every time we exert a force against it. Since 
F = ma, our mass (m) is accelerated (a) at a rate proportional to the force – but so
is the Earth. Every time you push against it to jump, you change its orbit slightly! 

By how much does it move and why don’t we notice it? The mass of the Earth is
about 6 × 1028 (60 000 000 000 000 000 000 000 000 000) kg. (If you’re unfamiliar
with scientific notation, see Box 4.1.) If you could produce a force equal to 2000 N
(about 200 kg force), which is about as much as a grown adult would produce if
they performed a two-legged vertical jump, you would accelerate the Earth by 0.000
000 000 000 000 000 000 000 33 (3.3 × 10-26) m·s-2, which is imperceptible. You
might want to stick to trying to move mountains! 

We kick the Earth and it kicks back; but because we are so small, we are the ones
who go flying through the air. To be kicked doesn’t sound like fun but that’s how
we move. When we walk, run or jump, we apply a force against a relatively immov-
able Earth but it applies an equal and opposite force to move us.

There’s one more thing to remember to optimise a jump. The lighter you are, the
more you would accelerate for a given force (F = ma). This is even more important
when we move vertically, because, in addition to his three Laws of Motion, Newton
also posited a Law of Gravitation:

All bodies are attracted to each other with a force proportional to the product 
of the two masses and inversely proportional to the square of the distance
between them:

F = Gm1m2/r 2

where G is a constant (6.67 × 10 -11 Nm2·kg 2), m1 and m2 are the masses of two
objects and r is the distance between the two objects (that is, radius).

And no, Newton didn’t come up with his Law of Gravitation after being hit on the
head by an apple but he did remark that his idea ‘was occasioned by the fall of an
apple’. It was another Briton, Robert Hooke (regarded as the greatest experimental
scientist of the 1700s, because of his huge contribution to fields of science from
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meteorology to mechanics – Newton has been charged with taking many of
Hooke’s ideas for his own!), who first suggested that the planets might be attracted
to the sun with a strength proportional to their masses and inversely proportional
to the square of their distances but he never applied his idea to objects on Earth.

The law of gravitation is useful, because it shows us that gravity will have less
influence if the product of two masses is smaller. The mass of the Earth is unchang-
ing, so if we reduce the mass of a body, it will be influenced less. That is, the
gravitational force is less when we are lighter. The net force causing acceleration in
the upwards direction is equal to the upwards reaction force plus the downwards
gravitational force (remember, the downwards force would be assigned a negative
value because it acts downwards. See Chapters 1 and 2). As you can see in Figure
4.3, if the force of gravity is smaller, then the net force will be greater.

FIG. 4.3 Effect of mass on acceleration against gravity. These two cannons both release a mass of air
with a constant force (Fair) of 2000 N. The cannon on the left shot a ball weighing 70 kg so the
gravitational force (Fg) equals 683.9 N. The total force then is 2000 + -683.9 = 1316.1 N and the ball
therefore accelerates at 18.8 m·s-2 (a = F/m). The ball shot from the cannon on the right hand side is 
80 kg, encounters a force of gravity equal to 781.6 N, a total force of 1218.4 N and accelerates at 
15.2 m·s-2. The lighter shot accelerates 23.7% faster than the heavier shot. Note: the force of 2000 N is
similar to the peak forces reached during a vertical jump, and the masses are common for humans.

Figure 4.3 shows balls being fired vertically from two cannons, which apply a
constant force of 2000 N (conveniently, this is roughly the force exerted during a
vertical jump). The cannon on the left shot a ball weighing 70 kg (conveniently, this
is approximately the mass of a small man). Gravity exerted a force equal to:

Gm1m2/r2 = 6.67 × 10-11 · 70 · 6.0 × 1024/(6.4 × 106)2

= 2.8 × 1016/4.1× 1013

= 683.9 N

where G is a constant, m1 is the mass of the ball, m2 is the mass of the Earth and r
is the radius of the Earth (we assume this is constant while the ball is so close to the
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Earth’s surface, because a movement of a few metres is nothing compared to the
radius of the Earth). The gravitational force (G) is therefore 683.9 N. The total force
on the cannonball is 2000 + -683.9 = 1316.1 N and the ball therefore accelerates at:

a = F/m
= 1316.1/70
= 18.8 m·s-2

The ball shot from the cannon on the right hand side is 80 kg (about the size of a
slightly larger man) and encounters a force of gravity equal to 781.6 N, a total force
of 1218.4 N and accelerates at 15.2 m·s-2.

Assuming the cannon were able to apply its 2000 N force for one metre, the
lighter and heavier balls would be at speeds of 18.8 and 15.2 m·s-1 (v = a × t),
respectively. (How long would it have taken for the winner to travel 1 m?). The
lighter shot accelerates 23.7% faster than the heavier shot. For comparison, the
balls would accelerate at 28.6 and 25.0 m·s2 if shot horizontally (I’ll leave you to
check this), so the lighter shot would accelerate 14.4% faster. The additive effect of
a heavy mass moving against gravity is substantial. So by being lighter, we end up
with a greater net force accelerating us upwards!

We encountered a similar problem as we raised the projection angle of our shot
in Chapter 3. We should remember that the mass of an object is also important in
horizontal motion. An object’s inertia is proportional to its mass, so heavier objects
require a large force to accelerate. However, the effect is amplified when an object
moves vertically, because of the effects of gravity. In the sporting context, we need
to be more mindful of mass when moving vertically. Since we also project ourselves
into the air when we run, we could also say it is important to be light. In endurance
running events, when there are a large number of steps taken and we project
ourselves slightly vertically each time, we use a lot of energy just getting ourselves
airborne. So endurance runners would also benefit significantly from having a
lighter body mass.

THE ANSWER
In summary, we’ve learned that to jump to greater height, we need to overcome our
inertia (Newton’s First Law) by having a force applied against us (Newton’s Second
Law, F = ma). To do this, we apply a large and well-directed force against the Earth,
which applies an equal and opposite reaction force against us (Newton’s Third
Law). Since the sum of forces dictates our acceleration and the force of gravity acts
downwards (Newton’s Law of Gravitation), it is very important to produce large
vertical forces, or have a lower body mass, to jump very high. Optimising each of
these components is important for obtaining maximum jump height; although we
will learn a little more in the following chapters.
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HOW ELSE CAN WE USE THIS INFORMATION?
While it might seem a simple concept that producing forces in a specific direction
is important for sporting success, too few athletes and coaches consider how to
optimise force production. Foremost in your mind must be the questions: how do
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BOX 4.1 LARGE AND SMALL NUMBERS
The Universe is an amazing place. Some objects are so small that we can’t see them
even with the most powerful microscopes and some are so big that we can’t see to
their ends with the largest telescopes. 

It is easy to say something is 1 m long but how do we describe the size of the
Milky Way? It is approximately 946 000 000 000 000 000 km in diameter. It can be
very difficult to comprehend such numbers. So we use scientific notation for these
very large and very small numbers.

Every number has a base and an exponential component. The exponential is
always in superscript, for example the number ‘17’ below. The base number is always
between 0 and 10, for example 9.46. Essentially, the base gives quantity and the
exponent tells us how many zeros (multiples of ten) would be written after the base
if we wrote the number out in full. So, the diameter of the Milky Way is 9.46 × 1017

km. This is both much easier to write and to understand the magnitude of. Clearly, 
a number with 17 zeros is very large indeed.

The same notation is used for very small numbers, except that the exponential
tells us the place of the first part of the base number after the decimal place (in
other words, how many zeros there are between the decimal point and that number).
The thickness of a human hair is about 2× 10-8 m or 0.00000002 m (the ‘2’ is the
eighth number after the decimal place). Here are some other examples:

Mass of a hydrogen atom = 0.000 000 000 000 000 000 000 000 016 727 (1.673 ×
10-27) kg

Mass of a dust particle = 0.000 000 000 753 (7.53 × 10-10) kg
Diameter of a golf ball = 0.042 (4.2 × 10-2) m (that is, 4.2 cm)
Mass of an African Elephant = 7 000 (7 × 103) kg
Number of stars in the Milky Way = 2 400 000 000 (2.4 × 109)
Mass of the Earth = 60,000,000,000,000,000,000,000,000,000 (6 × 1028) kg

Occasionally, numbers are written as 4.2 × 10^2 or 4.2E2. The ^ symbol (or
exponentiation symbol) means ‘raise the base number to the power of x’ and is the
same as writing the number in superscript – so 10^2 is the same as 102. (This notation
comes from the early days of computer programming languages.) ‘E’ means the same
thing: ‘multiply by 10 to the power of x’ – so 4.2E2 is the same as 4.2 × 102.
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we produce our forces and in what direction should we apply these forces for accel-
eration in the direction desired? 

You might consider, for example, that in swimming we need to produce some
downward force to lift the body slightly in the water (we’ll discuss this in more
depth in Chapter 15) while maximising horizontal force production. In rugby we
often pass the ball with horizontal force to project it, but also with spin to improve
its aerodynamics (you’ll learn about this in Chapter 16). In tennis we often spin the
ball to change its trajectory (see Chapter 16), so we must consider the horizontal
ball velocity and the need to place spin on it. A final example is that in sports such
as golf, cricket, baseball or softball and field or ice hockey, we hit balls using a tech-
nique in which the body rotates as we swing (we’ll learn more about this in Chapter
17) even though we need to impart forward velocity on the ball or puck. How do
we optimise rotation of the body but maintain a forward motion to optimise hori-
zontal ball/puck speed and improve accuracy? The answer is that we need to test
ball or puck accuracy and velocity as we ask the athlete to manipulate the relative
amounts of rotational and forward velocity until he or she reaches an optimum. In
this sense, the job of the coach or biomechanist is to determine each player’s opti-
mum technique.

Useful Equations
speed = ∆d/∆t
velocity (v) = ∆s/∆t (rω for a spinning object)
acceleration (a) = ∆v/∆t
inertia = m
m·s-1 to km·h-1: x m·s-1 /1000×3600
km·h-1 to m·s-1: x km·h-1 ×1000/3600 

Related websites
SciLinks (http://id.mind.net/~zona/mstm/physics/mechanics/forces/newton/

newton.html). Clear descriptions and animations of Newton’s Laws of Motion.
ScienceMaster (www.sciencemaster.com/jump/physical/newton_law.php).

Historical overview of Newton and his laws of motion.
Newton’s Laws of Motion (www.mcasco.com/p1nlm.html). Complete and interac-

tive website exploring Newton’s laws.
The Physics of Sports (http://home.nc.rr.com/enloephysics/sports.htm). Website

investigating the applications of physics in sports.
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CHAPTER 5

THE IMPULSE–MOMENTUM 
RELATIONSHIP
A runner can strike the ground with variable foot 

placement and produce forces of different durations in 

various directions. What strategy of force application is

optimum for those athletes who need to run at high speeds?

By the end of this chapter you should be able to:

• Explain the physical concepts of impulse and momentum and how they relate to
the performance of sporting movements

• Explain how alterations in the magnitude and timing of forces affect rates of
acceleration of objects or implements

• Use these concepts to qualitatively (that is, without numbers being expressed)
describe how to improve sporting performance by altering force production
patterns
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We learned in Chapter 4 that we need to exert a force to cause an object to change
its velocity; that is, to overcome its inertia. If the force is sufficiently large or the
object’s mass is sufficiently small and the force is directed appropriately, we will be
accelerated in our desired direction but is this all we need to know to optimise
sporting techniques? Not quite.

In Chapter 4, a force was described as having a continuous action, which doesn’t
increase or decrease over time, but that usually isn’t the case. Look at the graph of
the ground reaction forces measured from two runners (Figure 5.1). Notice that the
graph of a rear-foot striker first rises (the impact peak), then dips slightly and rises
again (the propulsive peak) before falling. The fore-foot/mid-foot striker has only a
single rise and fall in force. Therefore, force is not consistent through the ground
contact phase of running (or most other movements). The aim of this chapter is to
discover how manipulation of these forces might help us improve performance.

First, you need to understand the concept of momentum. Think of a big bus
moving quickly, as in Figure 5.2. It has a large mass (and therefore has a large iner-
tia) and is moving at high velocity. The bus has a lot of momentum. A snail has very
little mass and moves very slowly, so it has very little momentum. Essentially,
momentum is the product of mass and velocity: momentum (p) = mass (m) ×
velocity (v) and is measured in kg·m·s-1. (Why ‘p’ for momentum? You could use
‘M’, which is common in many texts but you could confuse it with ‘m’ for mass.) If
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FIG. 5.1 When we strike the ground during running the Earth provides a reaction force. The above
graph shows the form of the vertical component of the reaction force, called the vertical ground reaction
force, for a runner who strikes with the heel of their foot first (rear-foot striker) and a runner who
makes contact with a flatter foot (mid-foot striker). There is a larger impact peak (point a) for the rear-
foot striker, followed by a slight decrease (b) then a propulsive peak (c). Force varies as through the
duration of foot–ground contact.
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we want to move an object of constant mass a bit more quickly, we need to increase
its velocity and therefore its momentum. You might be thinking that inertia and
momentum are similar and you’d be nearly right. One way to think about the
difference is to consider that a stationary object has no momentum, because it has
no velocity, but it still has inertia (that is, you still have to apply a force to change
its state of motion); the same object moving doesn’t have a greater inertia, it will
still take the same force to change its velocity by a certain amount.

In sport, we often want to change an object’s momentum, which we do by apply-
ing a force. The larger the force, the greater will be the change in momentum. We
could also apply the same force for longer. Think of what might happen if you tried
to push your car from a stationary position to a reasonable speed when you need
to jump-start it after your battery has gone flat. You apply the largest force you can
but it still takes some time to get the car up to speed. To change the velocity of the
car or to change its momentum, you need to apply a big force for a long time. The
term that describes the product of force (F) and time (t) is Impulse (J). (You will
also see Ft used in many texts.)

Essentially, the greater the impulse (J), the greater will be the change in momen-
tum (p), so ∆Ft = ∆p (∆ means ‘change in’), or ∆Ft = ∆mv. This is the Impulse–
Momentum relationship and gives a hint as to how best to accelerate our body.
When we hit the ground with our foot, we need to apply the largest force possible
for the longest time possible. The greater the impulse, the greater the change in
momentum; since our mass will change, our velocity should. You can see how
impulse is calculated from a force–time curve in Box 5.1.
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FIG. 5.2 A large bus moving quickly has a large momentum. It would take a large force produced over a
significant time period to stop it.
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BOX 5.1 CALCULATION OF IMPULSE FROM A FORCE–TIME CURVE
Impulse is the product of force and time but how do we calculate it? Below is a
force–time curve (A). It shows the force produced over a period of time. Strain
gauges, force platforms and various other tools can measure forces such as these.
Impulse is equal to the area under the curve. 

FIG. 1. 

The easiest way to calculate the area under the curve is to break it up into
rectangular columns (B). Each column has a known width (time) and a known height
(force). The area of a rectangle is given by its height multiplied by its width. 

The height of the column is the distance from the baseline (zero force) to the
curve, such that the middle of the column intersects with the curve. The width is
equal to any time period we choose. Obviously the smaller the time period, the more
accurate we will be, because the top of the column is a straight line whereas the
curve is rounded, and so we reduce inaccuracies if we use thinner columns.

Generally, data such as these are collected by a computer that takes a reading at
fixed time intervals. We might, for example, collect 100 data points in a second, in
which case it is easiest to build columns 1/100 s wide. Each column is therefore the
force measured at that data point multiplied by 0.01 s. 

Once we have the area of each column, we sum them to get the total area 
under the curve – the impulse (impulse equals the sum of each force data point
multiplied by the time interval). The negative areas are calculated in the same way,
remembering that the forces are negative so the impulses are also negative. The
total impulse is the positive impulse plus the negative impulse.
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FIG. 2.
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Remember that velocity has both a magnitude and a direction, so applying this
impulse might change direction rather than speed, which is very useful in evasive
sports. If we direct the impulse in the opposite direction to which we are moving,
it can also slow us down. How is impulse applied during running? You have seen
the vertical impulse trace in Figure 5.1 but what about horizontal forces? If we want
to run horizontally, we need to apply horizontal forces!

Figure 5.3 shows a typical horizontal force trace. Notice that we first apply a
force or impulse in a forward direction, so the ground reaction force is backwards.
That would slow us down! Only later, in the stance phase, do we actually apply a
backwards force to elicit a reaction force to accelerate us forwards. We call these the
braking and propulsive impulses. Since the total impulse is equal to the braking
(assigned a negative value) plus propulsive (assigned a positive value) impulses, we
need to reduce the braking and increase the propulsive forces.

How are braking forces produced? If we assume there is a low air resistance, we
can assume the body is travelling at a horizontal velocity dictated by the previous
propulsive impulses. In the following step, we attempt to accelerate our leg/foot
backwards and downwards towards the ground to apply another impulse. If we
don’t accelerate the foot to the same speed that the ground is rushing towards us, the
foot will still be travelling slightly forwards relative to the ground, although it is trav-
elling backwards relative to us… and yes, the idea of relative velocity is developed in
Einstein’s Theory of Relativity. So, the foot hits the ground while still travelling rela-
tively forwards and therefore applies a braking impulse. Later in the step, we are able
to accelerate the foot enough that it would be travelling faster than the ground, if we
weren’t connected to it, and we are able to produce a propulsive impulse. This is
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FIG. 5.3 Horizontal ground reaction force trace for a runner. A forward force exerted by the runner
elicits a backward or braking reaction force (negative; photo A). Since the force is applied over time, the
area under the curve (force × time) is the braking impulse. As the foot passes under the body, the runner
pushes backwards to elicit a forward or propulsive reaction force (positive; photo B). Since the force is
also applied over time, there is a propulsive impulse.
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FIG. 5.4 During running, the leg is relocated from behind the body to the front (1). At this point, the
foot is travelling forwards relative to both the body and the ground. At (2), the foot is stationary relative
to the body, but because the body is still moving forwards, the foot is also moving forwards relative to
the ground. Immediately prior to foot–ground contact (3), the foot is moving backwards relative to the
body, but is still moving slightly forwards relative to the ground. Therefore, at foot contact, there is a
forward force applied to the ground. The ground exerts an equal and opposite braking force against the
runner. The magnitude and duration of this force determines the braking impulse. At (4), the foot is no
longer applying a forward force, and at (5) the foot is able to produce a backward force. The resulting
forward-directed ground reaction force, applied over time, provides the propulsive impulse. Both
minimising the braking impulse and maximising the propulsive impulse are keys to fast running.

FIG. 5.5 When the foot lands at a greater angle in front of the body (left diagram) the braking impulse
is large. The total positive impulse (braking + propulsive) is therefore smaller so acceleration is lesser.

When the foot lands at a smaller angle and further under the body (right diagram) the braking
impulse is smaller, although the vertical impulse might be bigger. The total positive impulse, however,
is likely to be larger. Elite sprinters land with their foot about 6 cm in front of the body whereas novice
sprinters might land with their foot about twice that distance in front.
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shown in Figure 5.4. In sprinting, the braking impulse is usually greater when the
foot lands further in front of the body (Figure 5.5), so ensuring the foot lands under-
neath the body is important when trying to reach high running speeds.

Braking impulses can be very useful when we are running at a constant velocity,
although the reasons are beyond the scope of this chapter. See Chapters 8 and 17
for more. Braking and sideways impulses are important for athletes who need to
slow down or change direction quickly.

As for the propulsive impulse, traditionally, sprinters have been taught to spend
as little time on the ground as possible. Research in the 1970s showed that the faster
sprinters in a group had smaller hip angles at take-off (Kunz & Kaufmann, 1981).
Essentially, this means that the foot would not travel as far under the body. Top
sprinters tend to extend their hip significantly. Figure 5.6 shows a tracing of Marion
Jones (Olympic 100 m and 200 m champion, 1996). Notice that her foot travels a
long way past the body in the propulsive phase. This allows her to produce her
propulsive force over a long time and therefore attain a greater propulsive impulse.
This is common among top sprinters. How do they keep their ground contact times
so short (less than 0.1 s)? They are able to attain such high forward speeds that their
body travels past the foot very quickly. Remember, time is equal to distance divided
by velocity (t =d/v; Chapter 1). If the body needs to travel a certain distance over
the foot but travels there at a high velocity, the time taken will be small. So the short
contact times of elite sprinters are a result of their fast running speed, rather than
being a cause of them. If they landed with their foot far out in front of their body,
which you already know is not useful since it increases the braking impulse, their
contact time would also be greater. So, part of their short contact time can also be
attributed to the feet not landing too far in front of their body.

FIG. 5.6 Tracing of foot–ground contact phase of Marion Jones (USA). Her significant hip extension
allows the foot to travel far past the body. This provides a greater time for force application, which results
in a greater propulsive impulse. Her short contact times (~0.11 s) result from the high speed of her body
over the foot and the placement of her foot only slightly in front of her body at foot–ground contact.
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THE ANSWER
To improve running performance, it is absolutely essential to determine the opti-
mum impulse direction. If the body needs to be accelerated vertically, we need
larger vertical impulses; if we need to move sideways, we need to apply larger side-
ways impulses (we call these mediolateral impulses, because they are directed
from medial (towards the midline of the body) to lateral (towards the outside of
the body) or vice versa; see Boxes 2.1 and 2.2). To run quickly, we need some verti-
cal impulse to propel us into the air but we also need very large horizontal
propulsive impulses with smaller horizontal braking impulses so that our forward
velocity is maximised. A greater impulse results from the development of high
forces on the ground over a considerable stride length (or time), since impulse is
a function of force and time. Generally, rotational impulses provide little benefit
and should be minimised.

HOW ELSE CAN WE USE THIS INFORMATION?
In the last chapter, we considered how to optimise the direction of force applica-
tion, but we also need to consider the length of time of force application. One of
the benefits of the rotational technique used by many shot-putters, for example, is
that the force accelerating the shot might be applied over a slightly longer time,
allowing a greater acceleration. In swimming and rowing, we use long strokes to
increase the time available for the force to be applied (to increase the impulse). In
rugby, we can perform a longer pass by moving the hands and body through a
greater range of motion.

In many sports, there is a limited time in which to apply forces to an object, such
as a serve in tennis, during running or in some hitting sports such as field or ice
hockey. In these sports, the need is to increase the force applied to ball, ground or
puck by producing large impulses to create a high velocity of racket, foot or stick,
as you saw in Chapters 1 and 2. The problem in other sports is that there is often a
need to produce these high movement speeds in a very short time, for example in
baseball or softball, where there is a short time between the initiation of a swing
and striking the ball. This is often referred to as the need for bat ‘quickness’ rather
than just bat ‘speed’. Obviously, we need to apply the greatest impulses in very short
times by increasing the forces, so that accelerations are great over short time inter-
vals (remember F = ma). The training required for these different sports will
therefore be very specific to their impulse requirements.
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Useful Equations
force (F) = m × a
momentum (p) = m × v
impulse (j) = F × t or Dmv
inertia = m

Reference
Kunz, H. & Kaufmann, D.A. (1981). ‘Biomechanical analysis of sprinting: decath-

letes versus champions’. British Journal of Sports Medicine, 15(3): 177–81.

Related websites
The Physics Classroom (www.glenbrook.k12.il.us/GBSSCI/PHYS/Class/

momentum/u4l1a.html). Lessons and quizzes on the impulse–momentum rela-
tionship.

AJ Design Software (www.ajdesigner.com/phpimpulse/impulse_equation_force.
php). Equations and calculator for impulse–momentum questions.

‘Biomechanics of the Sprint Start’ by Drew Harrison and Tom Comyns, Coaches’
Infoservice (http://coachesinfo.com/category/athletics/219/). Sports science
information for coaches. Description of the sprint running start with reference
to the impulse–momentum relationship.
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COACH’S PERSPECTIVE

Henk Kraaijenhof
Coach: 
Name: Henk Kraaijenhof
Nationality: Dutch
Born: 5 October 1955

Athlete Biography:
Name: Nelli Cooman
Nationality: Dutch
Born: 6 June 1964

Major Achievements:
• World record 60 m (1986): 7.00 s

• Two-time world champion 60 m indoors (1987 and 1989) 

• Five-time European indoor champion at 60 metres

• Personal best 100 metres: 11.08 s (1986 and 1988)

When and how did you use biomechanical analyses or theories to optimise Nelli’s
training? What were the results of the changes made based on these analyses or
theories?
At that time there was no organised biomechanics support for athletes in the
Netherlands so the only way to access it was to allow Nelli to take part in experi-
ments. So our method of obtaining biomechanics support was slightly unusual.
From this participation, we learned about Nelli’s specific individual characteristics
and gained new ideas on how to improve her performance. One problem was,
though, that the results of the research usually sparked as many questions as they
provided answers (and in fact we had other questions to start with that we were not
able to answer), so a longer and more consistent relationship with a biomechanics
support team would have been of great benefit.

The research that Nelli participated in was performed somewhere in the middle
of her (long) career, where the demand for more knowledge and new opportuni-
ties met. The outcomes were: (1) we were able to examine some interesting aspects
with regards to the setting of the starting blocks, (2) there was a starting point for
looking into the relationship between her performance in different jump tests and
performance in the different phases of the 100-m sprint, and (3) there were inter-
esting data about the functioning of the hamstrings while running at full speed.

This led to some significant changes in the approach to training but also to a
better understanding of the sprinting movement in general, and a shift in approach
to technique exercises! The results of these changes are always hard to quantify in
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Nelli Cooman at the University of Leuven (Belgium)
with Herman van Coppenolle and Christoph
Delecluse
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the complex dynamics of training, but they certainly contributed in a positive way
to the improvement of performance. In elite sprinters any improvement, even 10
milliseconds, is respected. Certainly, by changing Nelli’s hamstring exercises as a
result of some of the research we were able to significantly reduce the incidence of
hamstring injury.

What were the strong points (both personally and intellectually) of the best
biomechanists you worked with?
Personally we established a good, even though temporary, relationship with the
biomechanists. I seldom experienced the ‘gap’ between science and practice.
Because the ultimate goal of a biomechanist is to do research and publish, and as
soon as the project is over and the publication done the interest of the biomech-
anists might change to a completely different research subject, long-term
cooperation is difficult. I think a good biomechanics support team needs to provide
ongoing support, and work closely with the athlete and coach.

The only problem with some scientists is that most of the time they only consider
their field as being predominant in the training process and rarely consider, for exam-
ple, physiological factors, psychological factors, etc., although I think this is a result of
the need for specialism in modern science. One exercise might be superior to another
one in respect to optimising muscle contraction timing, for example, but one has to
consider the long-term and accumulating effects of this exercise on the athlete as a
whole. A practical example is that plyometrics training might be superior to other
methods of enhancing explosive performance in the short term, but in the longer
term it may lead to a higher incidence of injuries, especially if performed inappropri-
ately. A team approach to testing and training is far more ideal.

Overall, how important do you feel a good understanding of biomechanics is to a
coach or sport scientist?
Well, I think it is as important as a good understanding of physiology, nutrition,
tactics, psychology, etc. There is no point having the right nutrition and psychol-
ogy if the athlete is not moving optimally. In the total performance chain there
should be no weak link in knowledge of the coach. So, I think it is very important,
unless one coaches chess players!
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Nelli Cooman at the Toppidrettsentret in Oslo,
Norway with Leif Olav Alnes.
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CHAPTER 6

TORQUE AND 
CENTRE OF MASS
Two athletes of the same body stature can jump to the

same height off one leg in a laboratory vertical jump test

but one athlete can jump over a higher bar in the high

jump. Why might this be so? What techniques can we use

to clear obstacles?

By the end of this chapter you should be able to:

• Explain the concept of torque and describe the factors that influence it

• Calculate the centre of mass of an athlete or object

• Describe how an athlete can manipulate their body position about their centre
of mass to maintain balance or evade objects or opponents

• Explain the optimum technique of the high jump bar clearance in these terms
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Both athletes are the same height and seem to have identical athletic ability. It is as
if one of the athletes can manipulate their body to clear the bar in some way the
other athlete can’t. If they went over the bar on their front, perhaps one athlete
might have sucked in their stomach? But high jumpers travel over the bar on their
backs, using a technique called the Fosbury flop. The Fosbury flop technique of
high jump was popularised by Dick Fosbury, who used it to win the gold medal at
the 1968 Mexico Olympics while still a college student. Why is it so effective? The
idea of sucking in your stomach isn’t so bad.

Bodies are made up of a huge number of particles. The weight (in Newtons) of
a body is a function of the mass of each particle and their acceleration due to grav-
ity (weight force, F = ma). The point around which all the particles of the body are
evenly distributed, and therefore the point at which we could place a single weight
vector, is the body’s centre of gravity (Figure 6.1). Gravity only applies a force
downwards towards the Earth but we could look at the body from any direction.
The point at which the mass of the body is evenly distributed in all directions is
the centre of mass. Centre of mass and centre of gravity are basically the same,
except that centre of gravity is only used to denote the centre of the body in the
vertical direction.

To be absolutely correct, we’d need to consider another quantity: torque. The
magnitude of the force causing the rotation of an object (or particle in a body) is
defined as the moment of force (M; you can now see why it is common to use ‘p’
for momentum instead of ‘M’) or more simply torque (τ; the Greek letter tau,
pronounced ‘tor’). The term ‘moment of force’ hints that we are applying a force at
a distance from some pivot point, given that the word ‘moment’ is used in physics
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FIG. 6.1 A body is made up of a nearly infinite number of particles. The weight of the body is a
function of the mass of each particle and their acceleration due to gravity (F = ma). The point around
which all of the particles in the body are evenly distributed, and therefore the point at which we could
draw a single weight vector (W), is called the centre of gravity (top diagram). If we rotate the object 
(a, b, c, bottom diagram), there is an equal mass on each side of a line drawn through the centre of mass
(m1 versus m2). The centre of mass is the point about which the mass of the object is evenly distributed
in all directions.
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FIG. 6.4 In A (left), the biceps brachii muscle produces a force (F) acting on the bone at a distance
(moment arm: d) from the centre of rotation of the elbow. In this instance, the arm is stationary, so the
torque created by the biceps brachii about the elbow is equal to the torque created by the weight of the
forearm and hand (Weight force: W). In B (right), the muscles acting across the shoulder create a
downward force at the hand (F) acting at a distance (d), which is perpendicular to the line of the force.
The downward force creates an upward reaction force large enough to prevent the body falling under its
own weight (W). The sum of the torques and weight force equal zero, and the body is balanced.
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FIG. 6.2 A torque is created when a force (F) is applied at a distance (d) from the centre of rotation of
an object (the nut in this instance). Since the torque (τ) is equal to the force multiplied by the distance,
an increase in the distance over which force is applied, called the moment arm, will increase distance.
In this example, a spanner is used to apply the same force over a greater distance (right diagram versus
left diagram), and hence a greater torque. The distance is always measured perpendicular (at right angles,
90º) to the line of force.

FIG. 6.3 The judo player in A (left) is trying to turn their opponent by applying forces (F1 and F2) to the
shoulders at distances (d1 and d2) from the centre of rotation of the body. The total torque applied is
equal to the sum of both of the torques produced (τ1 and τ2). In B (right), the forces are not applied in a
forward–backward direction so the moment arm, which is always measured perpendicular to the line of
force, is smaller. So even though the forces applied are the same, each torque is smaller and therefore the
total torque is smaller.
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to describe anything where a quantity is multiplied by a distance. Essentially, torque
(τ) is equal to F x d (force x distance). You can see how torque is produced in Figure
6.2. The distance ‘d’ is always measured perpendicular – that is, at right angles or
90° – to the line of action of the force. In Figure 6.3, the judo player is best advised
to apply the forces in the forward–backward direction, to turn their opponent. The
body can also be balanced by production of the appropriate torques, as shown by
the gymnast in Figure 6.4, where the torque developed by the muscle acting across
the joint is influenced by the perpendicular distance from the muscle’s line of
action to the joint’s centre of rotation.

In any object, the downward action of gravity influences every particle. If you
look back at Figure 6.1, you can see that this influence of gravity on each particle
creates a huge number of individual torques. The centre of gravity is the point
about which the sum of all these torques is zero. The centre of mass is therefore the
point about which the sum of torques would be zero if the body were re-oriented
to be in line with gravity.

THE ANSWER
How does understanding all this allow us to determine why someone might ‘jump
higher’? When we jump, we apply a force to the ground (F) to accelerate (a) our
mass (m) upwards, as you learned in Chapters 4 and 5. The body therefore attains
a vertical velocity, with the movement of the body being represented by the move-
ment of the centre of mass. However, we can manipulate the body segments around
the centre of mass, at the appropriate time, to jump a higher bar. Notice in Figure
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FIG. 6.5 The Fosbury flop technique. The jumper applies a large force down into the ground in order to
attain a high vertical velocity at take off (a) while the centre of mass of the body is raised (notice the
arms and one leg are lifted high). The arms are then moved down the body as the head is extended over
the bar (b) while the centre of mass continues to rise. At the peak of trajectory (c) the centre of mass is
slightly below the top of the bar, but the segment of the body crossing the bar is higher; the legs and
head remain below the level of the bar. Finally, as the centre of mass falls, the legs are the last to be
moved over the bar (d). By manipulating the body about its own centre of mass, a jumper can jump over
a bar which is greater than the height of the centre of mass at its highest.
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FIG. 6.6 The gymnast can balance because the centre of gravity of the body is located directly over the
hands (base of support).

FIG. 6.7 In many sports it is important to keep the head and eyes still during the execution of a
movement. This usually improves the accuracy of our movements. In basketball, athletes can manipulate
their body parts while the centre of mass (CM) of the body rises and falls during a jump, according to
the law of conservation of momentum. First they bring their legs up under the body, which tends to
draw the upper body down relative to the CM, and then rapidly extend their legs to thrust the upper
body upwards as the body’s CM falls. Such a technique can be used to project objects in other sports,
and by defenders in sports such as basketball, netball and volleyball.

6.5 (a), the centre of gravity of the jumper is below the level of the bar. This is also
true for b, c and d. However, the jumper has manipulated their body so the point
that is closest to the bar is always highest. Only one part of the body is higher than
the bar at any one time but that’s all there needs to be. Understanding the concept
of centre of mass helps us develop strategies to improve athletic performance. The
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Fosbury flop is a nice example. (‘Special Topic: calculation of an athlete’s centre of
mass – the segmentation method’ (below) shows how to analyse your own tech-
niques to find where your centre of mass is.)

HOW ELSE CAN WE USE THIS INFORMATION?
We can also manipulate our mass in other sports. In evasive sports we try to move
our centre of mass around an opponent, but to evade them we only need part of our
body to be out of reach at any one point. We might move our arms and legs in one
direction, so that our torso or mid-region can be moved in another, out of reach of
an outstretched arm of an opponent. In gymnastics, we manipulate our bodies to
perform elements requiring balance, as in Figure 6.6. In basketball and netball, we
might try to ‘hang’ in the air to block a shot or provide upper body stability on which
to make a shot of our own. We do this by bringing our legs up under our body after
we leave the ground during a jump, as in Figure 6.7. When we would normally be
about to fall back down towards the ground under the influence of gravity, we
rapidly extend our legs downwards, and so, to conserve momentum, our upper body
moves upwards. In effect, since our body’s centre of mass is moving downwards but,
relative to it, our upper body is moving upwards, our upper body momentarily
remains stationary or ‘hangs’. In what other sports might we also alter our shape
about our centre of mass to good effect?

SPECIAL TOPIC: CALCULATION OF AN ATHLETE’S CENTRE OF MASS
– THE SEGMENTATION METHOD

FIG. 6.8

For a coach, it is often important to be able to determine where the centre of mass of an
athlete lies. For a physiotherapist or rehabilitation specialist, it might be important to
determine it to aid a rehabilitating patient maintain balance while performing a daily task.
Using our understanding of torques, we can determine this relatively simply. The barbell in
Figure 6.8 consists of two weights of 250 N and a bar weighing 200 N. Because the barbell
is symmetrical, you can see that its centre of mass would be at the midpoint of the bar 
(at the arrow indicating the weight of the bar – 200 N).
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FIG. 6.9

It can also be shown that the sum of the torques created by these masses, when measured
from an external point, can be calculated to show the same thing. Look at Figure 6.9,
where I’ve arbitrarily placed an external point and shown the distances from this point to
each of the masses.

Let’s calculate the sum of these torques:

250 N × 0.4 m = 100 Nm
200 N × 1.0 m = 200 Nm
250 N × 1.6 m = 400 Nm
Sum of torques = 700 Nm

We assumed that the centre of mass was located at the centre of the bar (1.0 m from my
arbitrary point). If the sum of all of the masses is multiplied by this distance, we get:

700 N × 1.0 m = 700 Nm

The same answer. If we hadn’t known the location of the centre of mass but knew that the
total torque was 700 Nm and the total mass was 700 N, we could just divide 700 Nm by
700 N to get a distance of one metre (torque/force = distance). This method of finding the
centre of mass is called the segmentation method, because we calculate the influence of
each segment to find the centre of mass of a whole object. We can use this idea to find the
centre of mass of a high jumper (for example) by following the steps below.

FIG. 6.10
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Step 1: Obtain a still image of the athlete with all body parts visible. This can be a difficult
task sometimes for a high jumper. I’ve obtained the image Figure ST3 from a video.

Step 2: Draw reference lines for both the x and y directions as shown (Note: in the barbell
example, we only calculated the location of the centre of mass in the x, or horizontal,
direction).

Step 3: Use the data published by other researchers to estimate the centre of mass
locations of each of the body segments. I’ve provided estimates of the general population
in Table 6.1.

Segment Centre of mass location

Head 53.6 (chin–neck intersect to top of head)a

45.0b

Trunk 56.2 (hip axis to base of neck)
61.0 

Upper arm 50.9 (elbow to shoulder)
54.2

Forearm 58.2 (wrist axis to elbow)
56.6 

Hand 52.0 (finger tip to wrist)
53.2 

Thigh 60.0 (knee to hip)
57.2 

Calf 58.2 (ankle to knee)
58.1 

Foot 55.1 (tip of longest toe to heel)
50.0 

a Male data from: Clauser, CE, McConville, J.T. & Young, J.W. (1969). Weight, volume and center of mass of segments of the
human body. AMRL Technical Report 69–70, Wright-Pearson Air Force Base, Ohio: AMRL, pp. 46–55). 

b Plagenhoef, S., Evans, F.G. & Abdelnour, T. (1983). Anatomical data for analyzing human motion. Research Quarterly for
Exercise and Sport, 54: 169–78. 

TABLE 6.1 Centre of mass locations as percentage (%) distance from one end to the other (as described
in the table). The upper number describes the location in men; the lower number describes the location
in women.

Step 4: On the diagram, draw the location of these points, using a ruler to measure the
lengths of each of the segments.

Step 5: For each segment, measure the distance from both the x- and y-axes to the 
centre of mass location on each segment. Make a note of these, as shown in Table 6.3.
Calculations for the high jumper are very difficult; I’ve had to guess just a little for a few
of these.
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For data sources, see Table 6.1.

TABLE 6.2 Relative mass of body segments (Note: proportion for one limb only).

Step 6: Obtain data published by other researchers to estimate the mass of each body part
relative to the mass of the athlete. I’ve provided estimates for the general population in
Table 6.2. Notice you now have both masses and distances, in both the x- and y- directions.

Step 7: Multiply each mass by its distance from the x- and y-axes and then find the sum
of these torques, as shown in Table 6.3.

Segment Segment Distance Torque in x Distance Torque in y 
mass from x-axis direction (Nm) from y-axis direction (Nm)

Head 0.082 1.65 0.135 3.58 0.293
Trunk 0.452 2.94 1.329 4.53 2.046
Upper arm 0.029 2.04 0.059 4.95 0.143
Upper arm 0.029 3.37 0.098 4.05 0.118
Forearm 0.016 2.59 0.041 5.68 0.091
Forearm 0.016 4.20 0.067 5.21 0.083
Hand 0.005 3.10 0.015 6.63 0.033
Hand 0.005 4.51 0.023 6.47 0.032
Thigh 0.118 3.61 0.426 5.79 0.683
Thigh 0.118 5.10 0.602 5.37 0.633
Leg 0.054 4.16 0.224 4.53 0.244
Leg 0.054 6.55 0.354 3.74 0.202
Foot 0.013 4.94 0.064 2.21 0.029
Foot 0.013 6.74 0.088 1.63 0.021

_____ _____ ____
1.000 Sum of torque 

3.525
Sum of torque 4.653x- direction x- direction

Note: distance is measured in arbitrary units as shown in diagram. Since the total mass of the subject is 1 (that is, we didn’t
multiply each segment mass by the mass of the athlete), the distance from the x- and y-axes equals the torque (for example
4.732 / 1 = 4.732). So the centre of mass is 4.732 and 4.200 units along the axes.
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Segment Relative mass

Head 0.073 (male)
0.082 (female)

Trunk 0.507 
0.452

Upper arm 0.026
0.029

Forearm 0.016
0.016

Segment Relative mass

Hand 0.007
0.005

Thigh 0.103
0.118

Leg 0.043
0.054

Foot 0.015
0.013

TABLE 6.3 Calculations to determine the location of the centre of mass for a female high jumper.
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Step 8: To find the distance, we would normally divide the total torque by the total mass
(that is, sum of all the segments or the mass of your subject) but we have kept the masses
as a proportion of 1 instead of finding the total masses by multiplying the proportional
masses by the athlete’s body mass, so this is not needed. The distances obtained can be
measured from the x- and y-axes to the centre of mass of the athlete.

Step 9: Mark this on your diagram.

Step 10: What does this tell you about the technique of the high jumper? How can we use
this information to improve jumping technique? (Note: if you’ve been learning how to
write formulae in spreadsheets, you could make a spreadsheet of this to speed up your
calculations of the athlete at other positions; or for other athletes).

By this analysis, the jumper would have knocked the bar. Instead, she has cleared the bar
easily by manipulating her body segments at the appropriate time. This example highlights
the importance of these analyses to the optimisation of sporting techniques. Such analyses
can be used to optimise many other sports such as diving, gymnastics, evasion sports,
etc., where manipulation of body segments about the centre of mass is important.

Useful Equations
force (F) = m × a
force of gravity (g) = Gm1m2/r2, where G = 6.67 × 1011

torque (moment of force) (τ) = F × d, where d is the moment arm of force τ =Iα
sum of moments or sum of torques (ΣM or Στ) τt = τ1 + τ2 + τ3 …

Related websites
Biomechanics of Human Performance, Jesus Dapeña (www.indiana.edu/~sportbm/

research.html). Website dedicated to biomechanics of athletics, including simu-
lations and animations of the high jump.

Journal of Online Mathematics and its Applications, Center of Mass (http://
mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=390#
discussion). Online article, demonstrations and discussion of the centre of mass
principle.
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CHAPTER 7

ANGULAR KINETICS
What is the optimum method of cycling the legs in

running? How can we increase the speed of the legs to

increase maximum running speed?

By the end of this chapter you should be able to:

• Define the terms moment of inertia, radius of gyration and angular momentum

• Explain the parallel axes theorem and discuss its implications for movement
speed and efficiency

• Show how changes in the mass, or mass distribution, of a body or object affect
its moment of inertia and angular momentum

• Explain how we can modify sporting techniques to influence these parameters
and therefore improve performance

• Describe the optimum leg action in sprint running with reference to the
moment of inertia and angular momentum
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We are able to run forwards because we apply a backwards force against the
ground. The leg swings backwards, from the front of the body to the back, and the
foot strikes the ground in the process. We then move the leg to the front of the body
and repeat. The speed at which we run is limited by the amount of force (more
correctly, the impulse) we can produce and the frequency with which we can apply
it. Therefore, to improve running speed we need to understand how to swing our
legs more quickly.

Moment of inertia
To move the leg backwards from the front of the body (called the ‘swing phase’ of
running) we need to overcome the inertia of the leg. Since the leg swings with the
hip as the centre of rotation (pivot point) we use the term moment of inertia.
(Remember, from Chapter 6, that the word ‘moment’ describes anything where a
quantity is multiplied by a distance.) We use moment of inertia because we are
describing the propensity for masses (that is, objects with inertia), which are at a
distance from a centre of rotation, to resist changes in their state of motion.

You might remember from Chapter 5 that, because of inertia, objects tend to
remain in whatever state of motion they are in unless acted upon by an external
force (Newton’s First Law). This is the same in the rotational sense, so we can say:

An object will remain at rest or continue to move with constant angular velocity
as long as the net forces causing rotation equal zero 

When we talk about an object moving in a straight line, we know that mass and
inertia are basically the same; bigger objects have greater inertia. In the rotational
sense, inertia (I) is a product of the mass of the object (m) and the square of the
distance of that mass from the centre of rotation (r2): I = mr2. All objects can be
thought to be made of very small particles and the total moment of inertia is the
sum of the masses of all these particles multiplied by the distance of each of those
particles from the centre of rotation (see Figure 7.1). We can write: I = Σmr2

(Σ means ‘sum of ’).
The more particles that are further from the pivot, the larger is the moment of

inertia. For example, if a baseball bat has a weight added to it, rather like the bat
weights used by batters in warm-up, we can change the inertia of the bat by chang-
ing the placement of the weight (see Figure 7.1). Have you noticed younger
cricketers, baseball or softball players holding their bat further down the handle?
This reduces the distance from the hands – the centre of rotation – to the main
mass of the bat and therefore reduces the bat’s moment of inertia. We use the same
technique to swing a hammer or pick when we’re tired.

It is obviously impossible to measure the moment of inertia of every particle in
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an object. Instead, we calculate the radius of gyration (k) and multiply the square
of this by the whole mass of the object. The radius of gyration describes the distri-
bution of the mass relative to the centre of rotation. It is very different from the
centre of mass, because particles further away from the pivot point have a greater
influence, since the radius of gyration is squared (that is, I = mk2) and it changes as
the centre of rotation changes.

The radius of gyration can be mathematically determined for many regular
objects and used to calculate the moment of inertia, as shown in Table 7.1. We
could, for example, pretend that a human is made of basic shapes such as rods or
spheres (Figure 7.2) and then guess the moments of inertia. However, for less regu-
lar objects, such as human limbs, bats, clubs or rackets, the radius of gyration can
be experimentally determined. One way of doing this is described in Box 7.2,
although it is often easier to obtain the radius of gyration from an equipment
manufacturer, from published tables or from research articles.
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FIG. 7.1 The moment of inertia of the softball bat (A) is the sum of the moments of inertia of all of the
particles in the bat. In the diagram, the bat is divided into 28 sections (in reality, the bat is the
conglomeration of billions of particles). The total moment of inertia is equal to the sum (Σ) of each
mass multiplied by the square of its distance from the point of rotation (the handle, near particle 1).
Thus, I = Σmr2. When a weight (mweight) is added to the bat (mbat), the moment of inertia is altered 
(B and C). The moment of inertia is greatest when the weight is moved further from the centre of
rotation (i.e. greater ‘d’). So using the same bat weight, a player can manipulate the moment of inertia of
the bat during warm up by altering its distance from the handle.

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 73



Object and pivot Example I = Object and pivot Example I =

Thin rod about 1/12 ml2 Cylinder of disk 1⁄2 mr2
centre about centre

Thin rod about 1⁄3 ml2 Hoop about mr2
end centre

Square about 1/12ml2 Solid sphere 2/5mr2
centre about diameter 

(centre)

Square about 1⁄3 ml2 Empty sphere 2⁄3 mr2
end about diameter

TABLE 7.1 Moments of inertia for regular objects (of uniform density)

FIG. 7.2 Most objects can be modelled as a series of common geometric shapes. This human is ‘built’
out of basic shapes of which the radii of gyrations can be relatively easily determined.

Many coaches and sport scientists do not need actual values for moment of inertia
but only need to understand the principle to optimise sporting techniques; for them,
values for radius of gyration are relatively unimportant. What is important is to
understand that the moment of inertia (I) is a function of the mass of the object (m)
and the square of its radius of gyration (k): I = mk2. Since ‘k’ is squared, it becomes
very important. For instance, if the mass of an object were doubled, its moment of
inertia would be doubled but if the radius of gyration were doubled then the moment
of inertia would be quadrupled (that is, 22 = 4). So, we still need to apply a force that
causes rotation of the leg but it seems that changes in the radius of gyration of an
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object have a great effect on its moment of inertia and therefore the ease with which
we can change its angular velocity.

BOX 7.1 CALCULATING THE MOMENT OF INERTIA OF OBJECTS BY 
THE COMPOUND PENDULUM METHOD 
If we suspend an object at its centre of rotation, it can swing freely. The radius of
gyration can be measured about this point by examining the time it takes to swing.
Short and light pendulums swing quickly, whereas long and heavy pendulums swing
much more slowly. We can use this to measure the moment of inertia of an object
suspended from a given point.

For example, consider a swinging cricket bat: a long bat will swing more slowly
than a shorter one. We can determine the moment of inertia of the bats using the
formula:

I = mgT2/4π2

You can see that the inertia of the bats increases when either their mass (m) or the
period of swing (T) (the time that it takes for them to complete one full swing from
the centre, to the side, back to the centre, to the other side, then to the centre
again) increases. You know that I = mk2, so if you know the mass of the bat you
could then work out the radius of gyration.

FIG. 1

FIG. 2
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Moment of force (torque)
Remember, from Chapter 6, that the magnitude of the force causing rotation of the
leg is defined as the moment of force; more simply, torque. The idea that torque can
alter the rotation of an object with a given moment of inertia is similar to the idea
that a linear force can alter the movement of a mass (Newton’s Second Law; F =
ma). Therefore, we can say that:

The angular acceleration of an object is proportional to the net torque acting on
it and inversely proportional to the inertia of the object: τ = Iα

Remember, ‘I’ stands for inertia and the ‘α’ stands for angular acceleration. You
could re-write this equation α = τ/I, which shows that the angular acceleration of
an object will be greater if the torque is increased or the moment of inertia is
decreased. At the hip joint, strong muscles, including the gluteus maximus and
hamstrings, produce forces at a distance from the hip joint (that is, a torque). The
distance between the muscle and the joint centre is called the moment arm; obvi-
ously the bigger this is the more torque can be generated about the joint for a given
level of muscle force (Figure 7.3). Adults usually have larger moment arms than
children, so even if they have the same size muscles, the adult will be stronger. The
moment arm is not affected by training: we can’t change it but we can improve the
muscle forces. In our running example, we can definitely say that increasing the
torque we apply will increase the angular velocity of the leg and therefore the linear
speed of the foot since v = rω (as you saw in Chapter 2).

FIG. 7.3 The torque generated about a joint is the sum of all of the forces acting across their moment
arms. In this example, the biceps brachii (upper arm flexor) is acting with a given line of force (Fmuscle).
The moment arm is the perpendicular distance from the centre of rotation of the joint to the line of
muscle force. Increasing either the muscle force or the moment arm will increase the joint torque.
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Angular momentum
But what about the time? Surely we can change the momentum of an object more
if we apply a force over a longer time? If we want to increase the velocity of a mass
(that is, change its momentum) we could make use of the impulse–momentum
relationship that we learned in Chapter 5. We now have a mass moving at an
angular velocity, so it has angular momentum ‘H’ (although you might also see it
as L in physics texts) and so we also have to apply an angular impulse (torque ×
time, τ·t).

Linear dimension SI Unit Angular dimension SI Unit

Displacement m Angular displacement rad
Velocity m·s-1 Angular velocity rad·s-1

Acceleration m·s-2 Angular acceleration rad·s-2

Force N Moment of force or torque N·m
Inertia Equivalent to mass Moment of inertia kg·m2

Momentum kg·m·s-1 Angular momentum kg·m2·s-1

Impulse N·s Angular Impulse N·m·s

TABLE 7.2 Angular equivalents of linear dimensions.

Everything in a linear sense has an angular equivalent. You can see this clearly in
Table 7.2. The angular impulse–angular momentum relationship would be: τ·t =
Iω, where a certain impulse creates a change in angular velocity of a certain amount
in an object with a given moment of inertia.

We can examine the idea of angular momentum a little further. As you already
know, any mass moving at any velocity has momentum (remember the big bus in
Chapter 4). Our leg rotates or moves through an angle and therefore has angular
momentum. Just like linear momentum, angular momentum is a function of mass
and velocity, except in this case the velocity is angular (ω) and the mass is at a
distance; that is, it has a moment of inertia (mk2). Angular momentum is actually a
function of the moment of inertia and the angular velocity, H = Iω or H = mk2 ω.

The reason it helps to write the mathematical formula is that we can see the
effect of each part of the equation. For example, you can see that if the angular
momentum (H) remains the same but the moment of inertia (I) is increased, then
the angular velocity (ω) must have decreased (H = ↑I × ↓ω). In the case of sprint-
ing, this would not be beneficial. Where we want the leg to rotate quickly we would
rather the moment of inertia decreased. Since we know that I = mk2, we know we
either have to reduce the mass of the leg (↓m) or keep the mass closer to the centre
of rotation (↓k). Since k is squared, it is more important to keep the mass located
close to the centre of rotation.
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With respect to the swing phase in running, what can we take from this? We
know we need a relatively straight leg when we land on the ground. This is because
the linear velocity of the foot is greatest when it is further away from the hip (v =
rω). We can’t bend at our joints to keep the mass closer to the hip joint but we can
ensure that we don’t build up the distal muscles in the legs to a significant degree
with strength training (for example, have small calf muscles; Figure 7.4) and we can
wear light shoes. In this way, both the mass and radius of gyration are reduced and
therefore the moment of inertia is smaller. If the angular momentum of the leg is
the same, the angular velocity must increase.

Since the change in angular momentum of the leg is greater when the joint
torque is produced over a longer period of time, increasing either the muscle force
or the time over which it is developed would allow higher velocities to be achieved.
Unfortunately, to increase the time of force application, we’d have to move the leg
through a much larger range of motion. This would take longer, even if the veloc-
ity were higher. So the only practical thing to do is to improve the force developed
by the muscles acting at the hip. This is where specific strengthening of the hip
muscles would be beneficial.

THE ANSWER
We can now conclude that to move forwards more quickly we have to swing the leg
backwards more quickly, so we need to increase the torque developed by the hip
muscles, decrease the mass of the leg and ensure that the remaining mass is located
as close to the hip joint as practically possible. Having a low leg mass, with that
mass distributed proximally towards the hip rather than distally towards the foot,
is typical of many of the fastest humans and is also common amongst animals that
need high running speeds to hunt effectively or reduce the likelihood of being
caught by others (Figure 7.4). But in running, we also have to get the leg to the front
of the body again. How can we optimise that?
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FIG. 7.4 In order to reduce the moment of inertia of the lower limbs, the fastest humans tend to have
their leg mass distributed close to their hip (A). Their calf muscles (circled) are relatively small and their
footwear is lightweight. Other animals such as the antelope (B) and cheetah (C) also have muscles that
are high in the leg (large circle) with relatively little muscle mass placed lower down (small circle).

BA C
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The recovery phase
The motion of moving the leg from in front to behind the body is the ‘swing phase’;
the motion of moving it to the front again is the ‘recovery phase’. There is no point
completing the swing phase quickly if we don’t complete the recovery quickly too,
so what is the best way to do that? We know that we can increase the torque devel-
oped by the muscles but since the muscles that provide this torque are relatively
small (compared to the large gluteal and hamstring muscles), we need to come up
with another strategy. The leg’s angular velocity can be greater if the limb is lighter
and the mass is closer to the hip joint. We have already sought to reduce the mass
of the leg to improve the swing phase but in recovery we can also bend the leg up
(flex it) underneath the body, as in Figure 7.5. Elite sprinters, and endurance
runners for that matter, are able to bend their leg very effectively so that their
moment of inertia is minimised and the angular velocity increased.

Such a strategy is common in sports. As shown in Figure 7.5 (b), divers and
gymnasts tuck their bodies very tightly when performing somersaults. Also, figure
skaters start with their arms extended so that their spins are slow but then bring
their arms close to their bodies so that the speed of spin increases. Athletes who
change direction keep the arms and legs close to the body (often done by shorten-
ing the stride length), which is very important as the body rotates towards the new
direction of movement.

The parallel axes theorem: a mathematical proof of the answer
While the answer is just about complete, there is one more thing that you should
know. Any object that rotates has a moment of inertia: a leg swinging about the hip
joint has a moment of inertia, as does any body segment that spins about its own
axis. That means it is possible for a body segment to have two lots of moments of
inertia. The thigh, for example, not only spins about the hip but also about its own
centre of mass (Figure 7.6). The axes about which the thigh spins are ‘parallel axes’,
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FIG. 7.5 Sprint (and endurance) runners flex their leg during the recovery phase to minimise the
moment of inertia (A). Divers and gymnasts tuck their bodies to reduce their moment of inertia and
therefore increase their angular velocity (rotation speed).
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so the total moment of inertia of an object (or limb in our case) is equal to the two
lots of moments of inertia.

The moment of inertia of a body rotating about its centre of mass (ICM) is usually
known and is referred to as the ‘local’ term. The moment of inertia of a body rotat-
ing about its external pivot is equal to the product of mass and distance squared
(mk2) and is called the ‘remote’ term. The total inertia (Itot) = ICM + mk2. This is the
parallel axes theorem.

There are a few questions left to answer. Does it matter whether the local term is
included in the equation? How much of an effect does it have? We’ve also stated
that reducing the weight of the limb and ensuring the mass is not distributed too
distally is important but how much of a difference can it actually make? How much
does bending the leg in the recovery phase matter? We now have the tools to answer
these questions, and the modelling approach we learned in Chapter 3 can help us.

• Step 1: As in Chapter 3, the easiest way to determine the effects of these things is
to use dummy data to solve a problem and then alter each part of the problem
separately to see what effect it has. In this example, we know that the angular
momentum of the leg (the angular impulse provided by the muscle torque being
developed over a period of time) is equal to the moment of inertia multiplied by
the angular velocity (H = Iω). If we assume the muscles are working as hard as
they can and therefore the angular momentum (H) remains constant, we can
manipulate the moment of inertia (I) to see its effects on angular velocity (ω).
The moment of inertia of the whole leg (Ileg) is equal to the sum of the moments
of inertia of the foot, shank (lower leg) and thigh and the moment of inertia of
each of these is equal to ICM + mk2. So we need values for the local and remote
moments of inertia of each of these parts.
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FIG. 7.6 During running, the thigh not only rotates about the hip axis (left, white arrow), which is also
called the remote axis, but also about its own local axis (right, grey arrow). The total moment of inertia
is the sum of the moments of inertia about both the remote and local axes.
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ICM Mass (80kg) dCM dCM-end dhip

Foot 0.0038 0.015 × mass = 1.2 kg 44.9 % 0.127 m 0.90 m
Shank 0.0504 0.043 × mass = 3.44 kg 41.8 % 0.188 m 0.60 m
Thigh 0.1052 0.103 × mass = 8.24 kg 40.0 % 0.180 m 0.25 m

ICM: moment of inertia of the segment measured about its own centre of mass (that is, local term). Measured in kg·m2.
Mass: mass of segment assuming the mass of the runner was 80 kg. 
dCM: proportional distance from the top end of the segment to the centre of mass of it.
dCM-end: distance in real-world units from the top end of the segment to the centre of mass of it.
dhip: distance from the hip to the centre of mass of the segment, measured from the video analysis.
Note: Moment of inertia data from Whitsett, C.E. (1963). Some dynamic response characteristics of weightless man, AMRL
Technical Documentary Report 63–70, Wright-Pearson Air Force Base, Ohio: AMRL, p. 11. 

ICM TABLE 1

To get realistic data, I carried out a simple video analysis, as shown in Chapter 3. I
measured the angular velocity of the limb and the distances of the centres of mass
of each segment from the hip joint, according to the data in Table 6.1 (I put mark-
ers on the athlete’s leg so I knew where these were when I watched the video). I took
local moments of inertia from a published table and used the mass proportions you
saw in Table 6.2 (the athlete has a mass of 80 kg).

From the video, I also found that the angular velocity of the leg, measured at
the thigh, was 460º·s-1 or about 8 rad·s-1, immediately before the foot hit the
ground. The angles of the other joints can be assumed to be constant over this
small part of the stride (that is, the leg is relatively straight and moves as a single
object) so each of them is also swinging around the hip joint and their own centre
of mass at 8 rad·s-1.

• Step 2: Draw a diagram to visualise the problem. See Figure 7.7.

FIG. 7.7 
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• Step 3: Calculate the angular momentum. To keep it clear, I’ve written the maths
below.

Local term H = ICMω Remote term H = mk2ω Total (Local + Remote)
(kg·m2·s-1) (kg·m2·s -1) (kg·m2·s -1)

Lfoot 0.0038 × 8 = 0.03 1.20 × 0.92 × 8 = 7.78 7.81
Lshank 0.0504 × 8 = 0.40 3.44 × 0.62 × 8 = 9.91 10.31
Lthigh 0.1052 × 8 = 0.84 8.24 × 0.252 × 8 = 4.12 4.96
Total 1.28 21.80 23.08
% 5.5 % 94.5 % 100 %

ICM TABLE 2

At present, the numbers 1.28, 21.80 and 23.08 kg·m2·s-1 probably don’t mean too
much to you but they will make a little more sense when we re-do the calculation
for the leg swinging in the recovery phase, because you’ll have something to
compare against.

This solution provides a starting point from which to manipulate masses and
distances to see how much they affect limb velocity.

Effect of reducing limb mass
With these masses and distances and an angular momentum of 23.08 kg·m2·s-1, the
limb was moving at 8 rad·s-1 (which is very, very fast – if the leg were to keep
moving through a complete circle, it would go around 1.3 times in a second!). It
also shows us that, for the leg, the local terms contribute only 5.5% to the overall
angular momentum (and moment of inertia), so they are relatively less important.
In a limb where the segments are lighter or of different length (for example the
arm), the remote to local ratio would be different. You shouldn’t assume that the
local term is insignificant in all cases.

What we really want to know is what effect losing a few kilograms of body mass
might have. Let’s say our sprinter lost 5% of their body mass proportionally over the
body. Their weight is now 76 kg (5% of 80 kg = 4 kg) and the masses of the limbs
will be altered: the masses of the foot, shank and thigh will be 1.14, 3.27 and 7.83 kg,
respectively. If we take account of these new masses, the total moment of inertia will
be lowered (we’ll assume the local moment of inertia will stay the same).

Of course, our hip muscles can still provide the same torque over the same time
period (that is, impart the same momentum), so we could move the leg at a higher
angular velocity (remember H = Iω, so if I is less, ω increases). To get our angular
momentum from 21.92 to 23.08 kg·m2·s-1, we’d need to increase the angular veloc-
ity by five per cent ((23.08 – 21.92)/23.08 × 100% = 5.0%).

SPORTS BIOMECHANICS82

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 82



Local term H = ICMω Remote term H = mk2ω Total (Local + Remote)
(kg·m2·s -1) (kg·m2·s -1) (kg·m2·s -1)

Lfoot 0.0038 × 8 = 0.03 1.14 × 0.92 × 8 = 7.39 7.42
Lshank 0.0504 × 8 = 0.40 3.27 × 0.62 × 8 = 9.42 9.82
Lthigh 0.1052 × 8 = 0.84 7.83 × 0.252 × 8 = 3.92 4.68
Total 1.28 20.73 21.92
% 5.8 % 94.2 % 100 %

ICM TABLE 3.

As the mass of the limb is reduced by 5 per cent, the angular velocity increases by
5 per cent. Five per cent of 8 rad·s-1 is 0.4 rad·s-1, so if the angular momentum stays
the same but the body mass, and therefore inertia, is reduced by 5 per cent, the
angular velocity of the limb will increase to 8.4 rad·s-1. If the limb was about 1 m
long (from the hip joint to ball of foot), then the linear velocity of the foot (rω)
would increase from 8 m·s-1 to 8.4 m·s-1.

Is this enough to make a difference? You could also say that if you held this speed
for the final 60 m of a 100 m race and the backward speed of the foot was trans-
lated exactly into forward speed of the body, you’d improve that part of the race by
0.36 s, which is very significant (you can do the maths on your own). Theoretically,
decreasing body mass, or more importantly decreasing limb mass, can improve
running performance significantly. You should remember that a sprinter also needs
to be able to generate high forces, which requires significant muscle mass: there is
a trade-off to be considered here.

Effect of altering mass distribution
What if we were able to move the masses up the leg a little? Relocating the mass
slightly closer to the centre in a segment won’t change the local moment of inertia
considerably (think of it as taking a small mass located at a distance from the local
axis and placing it on the other side of the axis but at the same distance: the same
mass is still placed the same distance from the axis). So we will keep this the same
but assume that we could move the centre of mass of the thigh and shank segments
about 2 cm (0.02 m) up the leg.
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Local term H = ICMω Remote term H = mk2ω Total (Local + Remote)
(kg·m2·s -1) (kg·m2·s -1) (kg·m2·s -1)

Lfoot 0.0038 × 8 = 0.03 1.20 × 0.92 × 8 = 7.78 7.81
Lshank 0.0504 × 8 = 0.40 3.44 × 0.582 × 8 = 9.26 9.66
Lthigh 0.1052 × 8 = 0.84 8.24 × 0.232 × 8 = 3.49 4.83
Total 1.28 20.53 22.30
% 7.9 % 92.1 % 100 %

ICM TABLE 4

The angular momentum is now 22.30 kg·m2·s-1. If we were to keep the angular
momentum the same, we’d need to increase the velocity by 3.4% (23.08–22.30)/
23.08 × 100 = 3.4). If you had two identical runners but one had the centre of mass
of their thigh and shank segments just 2 cm closer to the top, we estimate that they
would run about 3.4 % faster, which at top speed over 60 m would reduce running
time by 0.25 s! This is a great deal, considering an Olympic medal might be decided
by 0.01 s! 

This highlights the importance of mass being distributed higher up the limbs.
Kumagai and colleagues (2000) used ultrasound imaging of the thigh muscles of
sprinters to show that their muscle mass is larger towards the top of the thigh than
the bottom, compared to untrained individuals. Some of the difference between
these two populations could be attributed to the genes of the individuals
concerned; however it has previously been shown that muscle mass gains from
strength training do not occur evenly throughout the muscles. Both Häkkinen and
colleagues (2001) and Narici and colleagues (1996) have shown that hypertrophy
of the lateral thigh muscle was greatest in distal regions (further down the thigh).
Others (for example Housh and colleagues (1992) and Blazevich and colleagues
(2003)) found that middle and proximal sites showed greater hypertrophy. The
extent to which muscle mass distribution can be altered is still not known, nor is it
known how muscle distribution is altered by different forms of training. Either
way, physical training does seem to influence it, so there is a need to monitor the
effects of training on muscle mass distribution.

Effect of leg flexion in the recovery phase
Finally, we wanted to know how much of a difference it would make to flex the leg
in the recovery phase. The legs have to move through the same range of motion in
the same amount of time, so if the swing leg was moving at 8 rad·s-1 then the recov-
ery leg must be moving at -8 rad·s-1 (we might just call it 8 rad·s-1 but remember it
is going the other way). From the video, I extracted the information shown in Figure
7.8 and did the calculations below.
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Local term H = ICMω Remote term H = mk2ω Total (Local + Remote)
(kg·m2·s -1) (kg·m2·s -1) (kg·m2·s -1)

Lfoot 0.0038 × 8 = 0.03 1.20 × 0.352 × 8 = 1.18 1.21
Lshank 0.0504 × 8 = 0.40 3.44 × 0.352 × 8 = 3.37 3.77
Lthigh 0.1052 × 8 = 0.84 8.24 × 0.252 × 8 = 4.12 4.96
Total 1.28 8.67 9.94
% 12.8 % 87.2 % 100 %

ICM TABLE 5

FIG. 7.8 

Because the inertia of the leg has decreased so much, the angular momentum at 8
rad·s-1 would only be 9.94 kg·m2·s-1. Since the angular momentum of the leg is
proportional to the angular impulse (impulse–momentum relationship) and the
time over which the torque is applied is the same as for the swing leg, the torque
generated at the hip on the recovery leg must be only 56.9% ((23.08/9.94)/23.08 ×
100 % = 56.9 %) of that provided to the swing leg. This makes sense, given that the
muscles that pull the leg forwards (the hip flexors) are much smaller than the larger
gluteal and hamstrings muscles that propel the leg backwards. So, the moment of
inertia is substantially reduced by flexing the leg during recovery. This allows the
smaller hip muscles to move the leg forwards at the same velocity as the swing leg
is moved backwards.

Once again, we have used mathematical modelling to see how important each
factor is to our ability to move. We know that reducing limb inertia is important.
This can be done either by reducing the mass of the limb or moving the mass closer
to the hip (that is, moving it up each segment of the leg), both of which have rela-
tively similar effects. Flexing the leg in the recovery phase also seems important, to
reduce limb inertia and therefore increase angular velocity, given that the smaller
muscles that perform this action are less able to generate torque.

It must be remembered that increasing the angular impulse (τ·t) is also important
to accelerate the leg. The moment arm across which the muscles of the hip move
cannot be changed and we would rather not increase the time over which torque is
produced (because the limbs would have to move through a larger range, which is
counter productive) but we can use strength and speed training techniques to
increase the muscles’ force-generating capacities. These factors should all be consid-
ered together when searching for a biomechanically optimum running technique.
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HOW ELSE CAN WE USE THIS INFORMATION?
In Chapter 3, we found that longer legs should allow a greater foot speed during
running and walking if the hip angular velocity remained the same, but now you
know that it requires more force to accelerate a longer leg since it would not only
weigh more but much of the mass would be distributed away from the hip joint. So
athletes with longer legs probably have a greater need to develop their ability to
generate high forces through, for example, weight training. Runners and walkers
with shorter limbs require less force to increase their angular velocity but their foot
speed for a given angular velocity would be less, so they should focus largely on
training with exercises that increase the absolute speed of movement.

Knowledge of these principles can help us to teach children, or those with lesser
strength, to learn skills involving implements. By holding the implement further
from the end of its handle the radius of gyration is reduced and therefore the
moment of inertia of the implement decreases. This means that less force is
required to swing it and the child can more easily practise an appropriate tech-
nique. We can also use this information to determine that it might be easier to bend
the recovery arm during crawl (freestyle) swimming; to bring the arms close to the
body during diving, gymnastics and other acrobatic sports to reduce the body’s
moment of inertia and thus increase rotational velocity; or to rapidly shorten the
non-throwing arm immediately prior to release of objects such as the discus and
shot and ball hitting in tennis. Alternatively, we can stop the rotation of the upper
body during kicking by rapidly extending the arms as the leg swings through
during kicking movements in rugby and football (soccer) or to stop rotations
during acrobatic sports. Learning to manipulate our body segments during sports
provides the possibility to rotate or create stability of our body or its segments at
any point during the execution of a movement.

Finally, we should answer the question posed in Chapter 1 regarding slower
athletes evading faster athletes with a well-timed swerve. This can be done, because
the slower athlete will have a lower moment of inertia as they swerve about a
central point (think of the runner being a mass rotating about a centre of rotation).
It will require less of an angular impulse to accelerate in a curve or they will accel-
erate more for a given angular impulse (remember that a change of direction
holding constant speed is an acceleration, because velocity changes when direction
changes; this angular acceleration while speed is constant is often called centrifugal
acceleration). The faster runner will have a higher angular momentum and require
a much greater angular impulse, or they will not be able to change direction (that
is, accelerate) as quickly. If the slower runner waits until the faster runner is about
to catch them before swerving, the faster runner will more than likely run past
them. In evasion sports, this technique is very effective. The same technique has
been seen in animals evading capture.
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Useful Equations
torque (moment of force) (τ) = F × d, where d is the moment arm of force.
Also, τ=Iα
sum of moments or sum of torques (ΣM or Στ) τt = τ1 + τ2 + τ3…
angular momentum (H or L) Iω or mk2ω
Angular impulse–momentum relationship, τ·t = Iω
impulse (Ft) = F × t or ∆mv
moment of inertia (I) Σmr2 or mk2

total moment of inertia (parallel axes theorem) (Itot) ICM + md2
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CHAPTER 8

CONSERVATION OF 
ANGULAR MOMENTUM
Why do we move our arms when we run? What is the best

method of swinging the arms?

By the end of this chapter you should be able to:

• Explain the concept of conservation of momentum in the context of sporting
movements

• Describe how athletes can control body rotations through the deliberate rota-
tion of body segments

• Explain how to swing the arms during running to reduce unwanted body rota-
tions and optimise force production
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Most human movements are characterised by a large number of body segments
simultaneously moving in circles. When we run, our legs cycle, while our arms move
through an arc from the front to the back of our body and back again. As Newton
described, every action has an equal and opposite reaction, so when we choose to
move our limbs through a cycle motion, an opposing ‘reaction’ rotation must be
created somewhere else. You can see this clearly when a basketball player ‘slam dunks’
a ball through the hoop, as in Figure 8.1 (A). The forward and downward rotation of
the arm during the dunk creates an equal and opposite reaction rotation in the legs.
Because the legs have a greater inertia, there is less noticeable movement in them.

You can also see this effect when a person loses balance. By circling the arms in
one direction, the body rotates in the other, as in Figure 8.1 (B). You might want to
try this strategy next time a friend tries to push you into a puddle of water! This is
the principle of Newton’s Third Law:

For every angular action there is an equal and opposite angular reaction 

We could also say that when the person in Figure 8.1 (B) started to fall, they had
little angular momentum. Energy can neither be created nor destroyed but remains
constant; for example, the electrical energy going into the filament of a light bulb
is turned into exactly the same amount of heat and light. The energy of a moving
system also remains constant. Whatever momentum was there to start with must
remain in the system unless an external force acts to change it (remember the
moving bus in Chapter 5 only stops if air resistance, friction or the brake acts to
slow it). The Law of Conservation of Momentum states:

The total (angular) momentum of a system remains constant unless external
forces influence the system

Angular momentum is increased when we swing our arms vigorously, so another
part of our body will tend to rotate in the opposite direction to reduce the total
angular momentum; the total momentum remains constant.
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FIG. 8.1 Rotation of one body segment causes a reaction rotation in other body segments, according to
Newton’s Third Law. A: a basketball player ‘slam dunking’ a ball. B: an athlete balancing inside a playing area.
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The concept of conservation of momentum can be used to explain a number of
phenomena. A diver leaves a springboard with a certain amount of angular
momentum, created by the reaction force of the springboard on the diver. Once in
the air, he alters his rotation by manipulating his body about the centre of mass
(just like the high jumper in Chapter 6) but the total angular momentum remains
constant. So how does the diver spin quickly when performing a somersault? He
brings his limbs close to his centre of mass so that the radius of gyration is smaller
(the radius of gyration, as you will remember from Chapter 7, is the distance of the
mass from the centre of rotation). This reduces the moment of inertia (I) of the
body and since momentum (Iω) is conserved, the velocity (ω) increases. When the
diver is about to enter the water, he will open his body up to increase his inertia,
reduce his angular velocity and so aim for a streamlined entry into the water.

A cat uses this principle to land on its feet when dropped upside down from a
height (Figure 8.2). First, the cat lengthens its lower limbs to increase the moment
of inertia and draws in its upper limbs to decrease it. When it rotates its upper body,
the lower body only rotates a small amount in the opposite direction. It then brings
its lower limbs in and lengthens its upper limbs to bring the lower body around.
During this sequence it also displaces its lower, then its upper, body away from the
axis of rotation to further alter the moment of inertia of these parts. With no
change in total angular momentum, the cat is able to right itself. Other animals,
including humans, are also capable of such Houdini acts.

FIG. 8.2 Cats are able to land on their feet by initiating a spin first with their upper body, which has
lower moment of inertia relative to the lower body and spins about the axis of rotation, then with their
lower body.
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The answer to the arms is in the legs
What has this to do with swinging the arms in running? – the need to conserve
angular momentum. Start with what’s happening in a runner’s legs. We can take a
point when the right leg is in front of our body and the left leg is behind; at the
absolute ends of one stride the legs essentially have zero velocity so their momen-
tum is zero. The right leg will be accelerated backwards and down towards the
ground, as in Figure 8.3. The leg moves to the side of the midline (or centre of
mass) and so in a sense is actually rotating around the body (if we were looking
down on the runner, the leg would be moving clockwise). Since its mass is a good
distance from the hip and is therefore moving at a high velocity (remember for a
given angular velocity, the linear velocity of a mass is greater if it is further from the
centre of rotation: v = rω), the momentum of the leg will be large. This must be
opposed by another angular momentum to maintain a total of zero. In this
instance, the upper body would be rotated away from the right leg (that is, anti-
clockwise if viewed from above; see Figure 8.3).

At the same time, the left leg will be accelerated forwards, again to the side of our
midline or centre of mass and again it is rotating around the body. While this leg is
highly flexed (remember from Chapter 7 that the left leg, the recovery leg, is flexed
to decrease its moment of inertia and make it easier to accelerate forward) it still
has angular momentum, which must be opposed. Since the left leg is effectively
moving in a clockwise direction if viewed from above, the upper body must rotate
anti-clockwise to conserve momentum (as shown in Figure 8.3).

At some point, the right leg will strike the ground, which provides an equal and
opposite reaction force. Unfortunately, our feet don’t always land underneath our
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FIG. 8.3 In diagram A, the right leg is swung backwards (dark foot = start, dashed foot = finish) while
the left leg is recovered to the front of the body. These two movements are performed at a distance (dL;
distance of leg) from the body’s centre of rotation and cause an anti-clockwise rotation of the body as
viewed from above. In diagram B, the relatively lighter arms are shown to swing in the other direction at
a slightly greater distance (da; distance of arm) from the centre of rotation of the body causing an
opposite, clockwise, rotation of the body as viewed from above.
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centre of mass. The more slowly we run, the more likely we are to place our feet
under our centre of mass but at the fastest running speeds the feet land more to the
side of the midline. So this reaction force not only accelerates us upwards and
forwards but also spins us around (creates torque or moment of force). The direc-
tion of this torque is towards the left (anti-clockwise if viewed from above), so the
body is rotating partly because of the right leg moving backwards, partly because
of the left leg moving forwards and partly because of the ground reaction force
spinning us around. The upper body would be thrown left then right as the legs
cycle during running. That’s not a very good way to run forwards at speed and
would also look incredibly silly!

This is where the arms come in. If we swing the left arm from the front to the back
of the body in the sagittal plane (that is, from in front past our hip; see Chapter 2),
it is essentially rotating anti-clockwise around the body if viewed from above. This
causes a rotation of the body in the clockwise direction, opposite to that caused by
the legs. The more quickly the arm swings the more angular momentum it
possesses, so the more opposing momentum is induced in the body. At the same
time, the right arm swings from the front to the back of the body, which also causes
the body to rotate anti-clockwise. So, arm swing plays a large part in conserving
angular momentum in the runner. Hinrichs (1987) showed that nearly all the rota-
tional momentum produced by the legs is counteracted by arm swing and upper
body rotation during moderate-speed jogging (3.8 – 5.4 m·s-1) and that the contri-
bution of the arms increased as running speed increased. In sprinting, there is little
upper body rotation, so the arms play a far more important role.

This is not quite the end of the story. The angular momentum of the legs varies
through the stride. For example, the right leg starts its downward and backward
movement while still flexed; because the mass is not moving as quickly past the
body it takes time to accelerate the leg. So, the velocity of the leg is greatest just
before the time of contact between the foot and the ground. The angular momen-
tum of the leg is therefore also highest at this point. The torque created by the
ground reaction force starts midway through the movement, so the angular
momentum of the body is significantly changed at this point. Effectively, the angu-
lar momentum of the legs increases through the movement and peaks during
foot–ground contact. The arms must precisely counter this by producing an equal
and opposite angular momentum, which is greatest during foot–ground contact.

A runner starts with their swing arm (the arm that’s moving backwards) in a
shortened position, as in Figure 8.4; the greater mass of the arm is located close to
the shoulder and its velocity is low. Therefore, the angular momentum of the arm
is small. As the angular momentum of the legs increases, the arm is accelerated and
the elbow is extended, so that the mass of the arm is further away from the shoul-
der and is therefore moving faster. At foot–ground contact, the arm is extended
rapidly to counter the large rotation of the upper body, since the angular velocity
of the arm is greater and the mass is moved further from the shoulder. As the leg
passes under the body, less force is applied to the ground and eventually the leg
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slows in readiness for its recovery to the front of the body (and the recovery leg
slows in readiness to swing towards the ground). The arm therefore slows and
recoils (shortens) so that its momentum is reduced. We use our arms directly to
counter the rotations created by the legs. Often, errors in leg technique can be seen
as variations in this optimum arm swing. Coaches and athletes should watch the
arms closely to understand what is happening with the legs.

THE ANSWER
The optimum arm swing is one where the arms are rotated backwards along the
sagittal plane in opposition to the legs. Because the angular (rotational) momen-
tum of the legs and the torque created by the ground reaction force vary through
the stride, the length of the arms must also vary. When in front of the body, the
elbow angle should be acute, so that the arm is short. At foot-strike the arm should
be lengthened dramatically, by extending the elbow to increase its angular momen-
tum as the lower body’s angular momentum is increased. As the foot moves further
behind the body, the arm should be shortened to reduce its angular momentum as
that of the legs decreases; the natural recoil at the elbow joint usually accomplishes
this. Using this technique, the angular momentum of the upper and lower body
remain equal and opposite and the runner keeps running in a forward direction.

HOW ELSE CAN WE USE THIS INFORMATION?
We see uses of this technique in many other sports. In the long jump, the hitch kick
technique uses forward rotations of the arms and legs while the body is in the air
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FIG. 8.4 The swing arm (bold) starts in front of the body in a shortened position (A). As the legs
accelerate, and particularly once the foot of the swing leg has made contact with the ground, the arm is
extended rapidly (B). The increase in angular velocity of the arm as well as the movement of the mass
further away from the shoulder, which causes a further increase in the velocity of the centre of mass of
the arm, increases the angular momentum of it (H = mk2ω). As the legs come to the end of their swing,
the arm shortens again and its angular velocity slows (C). In this way, the opposing angular momentum
of the arm closely matches that of the legs.
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to counter the forward rotation of the body caused by the horizontal braking force
(that is, forward force) at take-off, as shown in Figure 8.5 (A to C). Similarly, opti-
mum hurdle clearance in sprint hurdling requires prominent and rapid rotation of
the upper body to conserve angular momentum as the legs rotate up over the
hurdle then back down to the ground (Figure 8.5 (D to F)). When jumping to catch
a ball, rugby and Australian Rules football players jump off one leg, which swings
downwards, while swinging the other leg upwards to maintain balance. In fast
bowling in cricket and the delivery phase of javelin throwing, exponents use a run
up and delivery stride (in which the feet are stopped) to create a large forward
angular momentum of the body, which allows the upper body to rotate forwards to
project the ball or javelin while maintaining a near-zero momentum change. The
effectiveness of the run-up and delivery strides are important factors affecting the
velocity of the bowl or throw.

FIG. 8.5 The torque created by the horizontal ground reaction force (GRFh) causes a forward rotation
of the body (bold arrow) during the long jump take-off (A). Forward cycling of the arms and legs using
the hitch-kick technique results in a backward rotation of the body allowing the legs to prepare for
landing (B). Finally, the swinging of the legs to the front of the body causes a reactive forward rotation 
of the upper body to conserve angular momentum (C). Optimum leg cycling is important in order to
maximise landing distance. In the sprint hurdles, the athlete takes off with relatively little
forward–backward angular momentum (D). To rapidly lift the lead leg (left leg in diagram E), an
opposite forward rotation of the upper body is necessary. A forceful backward rotation of the upper
body is also important to counter the rotation of the leg back down toward the ground after hurdle
clearance (F). Prominent and rapid upper body rotation is important in order for the legs to clear the
hurdle quickly.
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Useful Equations
angular momentum (H or L) = Iω or mk2ω
angular impulse–momentum relationship, τ·t = Iω
moment of inertia (I) = Σmr2 or mk2

total moment of inertia (parallel axes theorem) (Itot) = ICM + md2

Reference
Hinrichs, R.N. (1987). ‘Upper extremity function in running. II: Angular momen-

tum considerations’. International Journal of Sport Biomechanics, 3: 242–63.

Related websites
Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/amom.html). Basic and

advanced discussions on angular momentum, including maths simulations and
calculations.

Momentum Machine, Exploratorium.edu (www.exploratorium.edu/snacks/
momentum_machine.html). A series of websites linked from the Exploratorium
website that demonstrates principles of angular momentum through experi-
mentation. Searches for other principles are also possible.

ThinkQuest (http://library.thinkquest.org/3042/angular.html#skater). Basic-level
information and quiz on angular momentum.
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CHAPTER 9

WORK, POWER 
AND ENERGY
A blocker in volleyball needs to be able to perform a 

large number of repeated vertical jumps without tiring.

How can we determine whether training improves the

jump height-to-energy cost ratio?

By the end of this chapter you should be able to:

• Define and calculate the quantities of work, power and energy

• Explain the concept of efficiency, with examples from sport

• Develop tests to measure work, power, energy and efficiency and use these to
optimise athletic performance
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Work
To jump, a volleyballer must apply a force against the ground. This force is applied
while the feet are in contact with the ground as the body is raised against gravity.
The amount of work done is equal to the average force that is applied (F) and the
distance over which it is applied (d) (see Figure 9.1). Work (W) = F·d. You might
normally use the word ‘work’ in the context of working in the garden or doing
homework (so you might feel pain at the sight of the word) but in mechanics ‘work’
has a specific meaning: it is often called ‘mechanical work’, to differentiate it from
other forms.

Several forces might act at any one time. If two equal but opposite forces are
applied to a stationary body, no work is done because the sum of forces is zero (that
is, if Σ F = 0 then W = 0, since W = F·d). If one force is greater than the other, then
the work done is equal to the total (that is, resultant) force multiplied by the
distance over which work is done. If there is no movement, no work has been done.
You can calculate, for example, the work done by a weightlifter lifting a weight from
the floor to a standing position (deadlift), as in Figure 9.2. (Notice that the units are
not Newton-metres (Nm) as you might expect from the equation but joules (J) – 1
Nm equals 1 J. This is helpful because torque is measured in Nm and it could get a
bit confusing.)

The concept of work is important in sport, because we often need to manipulate
it. For example, rugby players might apply a large force over a great distance to push
an opposing player backwards during a ruck or tackle. Rowers apply a force against
the oar over a large distance in each stroke and swimmers apply forces over a large
distance during their stroke. The greater the total work done the better will be the
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FIG. 9.1 The work done during a vertical jump is equal to the average force multiplied by the distance
(dCM) over which the body’s centre of mass moved. Note, however, that there is no force applied while
the jumper is airborne, so no work is done even though the jumper’s centre of mass is moving (work is,
of course, done by gravity while the jumper is airborne).
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performance. Muscles also perform work, because they apply a force as they
shorten (or lengthen) over a given distance.

Power
In the ‘clean’ movement in weightlifting (Figure 9.3), the lifter has to lift the bar
rapidly upwards and then, at some predefined moment, drop quickly under the bar
to allow a second lift while the bar is resting across the shoulders. If the lifter
performed work in the first part of the lift but the bar velocity was zero at the end
of it, then the bar would fall towards the ground as soon as the lifter stopped doing
work on the bar. If the lifter is to have time to get under the bar, the bar needs to
keep moving upwards after the work is done. As you saw in Chapter 3, the higher
the bar velocity, the longer it will take for gravity to slow it and then re-accelerate
it in the negative, or downward, direction.
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FIG. 9.2 The work done during a lift is equal to the work done to lift the bar and the work done to lift
the body. If we assume that both the bar and centre of mass of the lifter moved 40 cm (0.4 m) and that
the average force measured via a force platform was 800 N, then we can calculate the work done:

W = F· d
W = 800 N · 0.4 m
W = 320 N·m, or 320 J.
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FIG. 9.3 In order to increase the upward speed of the bar to have more time to drop under it during the
clean movement, a lifter has to apply a force that results in a large bar power. Power can be calculated if
force and velocity are measured, or if work (force and distance) and time are measured. For example, if
the average force was 1500 N, and the bar was lifted 0.5 m in 0.2 s (i.e. velocity = 2.5 m·s-1):

Power = F·v Power = F·d/t
= 1500 N × 2.5 m·s-1 = 1500 N × 0.5 m/0.2 m·s-1

= 3750 W = 3750 W

If we apply a force (F) to a bar that attains a velocity (v), the bar has power (P);
P = F·v. At any instant, the greater the force, or the faster the velocity, the greater
the power. You know that velocity is equal to distance divided by time (v = d/t), so
we can say that power (P) = F·d/t. Remember that F·d is work, so power is the
amount of work performed in a given time, or the rate of doing work. You might
also notice that, to accelerate the bar to a greater velocity, we need to apply a
greater force, so work (F·d) is also increased; it is, however, not increased in the
same ratio as power. Power is increased when we do a given amount of work in less
time or we do more work in a given time. Increasing power results in an increase
in the velocity of an object, as long as its mass remains constant. This is important
for weightlifters, as it is for a volleyballer trying to attain a high velocity to jump
into the air. (Notice that in Figure 9.3 the units of power are not Nm·s-1, which
might have been confused with an angular quantity – that is, torque/time, Nm/s –
but are Watts (W).)

Energy
To jump up high, the volleyballer has to perform a greater amount of work, or
attain a higher power but they need to repeat such jumps many times in a game.
That is, he or she needs to perform a lot of work with little energy cost. How can
we quantify that? 
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FIG. 9.4 When the shot putter released the 7.26 kg shot, it had a velocity of 18 m·s-1.
Its kinetic energy (KE):
= 1⁄2 mv2

= 0.5 × 7.26 × 182

= 1176.1 J
If the mass of the shot was reduced by 10% (to 6.53 kg) but was thrown with the same velocity, the KE
would be 1057.9 J, which is 118.2 J or 10% less.

If the mass of the shot was not changed, but the shot was thrown 10% slower (16.2 m·s-1), the KE
would be 952.7 J, which is 223.4 J or 19% less. So altering the velocity has the greatest impact on KE.

Two forms of energy are important here: mechanical energy and metabolic energy.
Mechanical energy is the energy associated either with an object’s movement
(kinetic energy) or its position (potential energy). Kinetic energy (KE) is the
energy associated with motion, so in a linear sense, an object with a greater mass or
velocity has a greater energy: KE = 1⁄2 mv2, where ‘m’ is the object’s mass and ‘v’ is its
velocity. You can see that an increase in mass has less effect than an increase in
velocity (i.e. the v is squared), so faster-moving objects have a far greater kinetic
energy. If we produce a greater power and therefore an object or body attains a
higher velocity, it will have more kinetic energy. Kinetic energy can be calculated,
as shown in Figure 9.4. The units of energy are joules (J).

The other form of mechanical energy is potential energy (PE), which is the
energy associated with position. Think of a rock at the top of a cliff (Figure 9.5); if
it were to roll off the cliff, it would fall with a velocity, that is, it would have kinetic
energy. While it is stationary at the top of the cliff, it has the potential to gain kinetic
energy. The distance over which gravity has the chance to accelerate it dictates the
velocity the rock will attain if it falls. The higher the cliff, the greater the velocity the
rock would attain before it hits the ground, that is, the greater its kinetic energy
would be. So its potential energy is also greater. PE = mgh, where ‘m’ is the object’s
mass, ‘g’ is the acceleration due to gravity and ‘h’ is the height of the object at any
given time. A falling object has both kinetic and potential energy at the same time
(see Figure 9.5), so its total energy is equal to the kinetic energy plus the potential
energy (Etotal = KE + PE).
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Kinetic energy (KE) = 1⁄2 mv2

Potential energy (PE) = mgh
Total energy (Etotal) = KE + PE

You might have used this idea of increasing potential energy to crush a drink can
or box. To crush an object, we need to transfer energy to it. If we jump in the air we
increase our potential energy. When we land on the can or box, we will have a
greater kinetic energy. We transfer this energy rapidly (with high power) to the can
or box to crush it. There are many sporting uses too.

Efficiency
Efficiency is the ratio of energy output to input, for any system. To improve jump-
ing efficiency, not just jump height, we need to increase the output (kinetic energy,
resulting in greater jump height) while decreasing the input (the energy required to
jump). The power that we used to jump comes from muscle contraction. Muscles
consume energy through a series of metabolic processes (metabolic processes are
those that occur in a cell or organism that are necessary for life). This energy is
therefore called ‘metabolic energy’. The efficiency of a jumper will be increased if
they produce a greater kinetic energy for a smaller metabolic energy. How do we
measure these energies?

Efficiency is improved when the energy output increases relative to the energy
input.
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FIG. 9.5 When a rock sits at the top of a cliff, it has potential energy. When if falls, it gains kinetic
energy but loses potential energy. The total energy of the system stays constant (KE + PE = c, where ‘c’ is
a constant, which is called the law of conservation of energy). In this example, a 1 kg rock falls 3 m.

Height PE = mgh KE = 1⁄2mv2 TE = PE + KE

3 m 29. 4 J 0 J 29.4 J

2 m 19.6 J 9.8 J 29.4 J

1 m 9.8 J 19.6 J 29.4 J

0 m 0 J 29.4 J 29.4 J
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The work–energy relationship
One way to measure the energy of a jump is to measure the work put into it.
Remember, from Chapter 3, that vf

2 = vi
2 + 2as. In a vertical jump, the velocity after

we lower our body but before we start to jump upwards is zero, so vf
2 = 2as and

therefore a = v2/2s.
You might also remember that F = ma, so if we put in our other version of ‘a’

(that is, vf
2/2s) we get F = mvf

2/2s. We multiply each side of the equation by ‘s’ to
give Fs = mvf

2/2, or Fd = 1⁄2 mv2

F·d = work, so the left side of the equation is ‘work’; ‘1⁄2 mv2’ is kinetic energy. So,
a moving object’s energy is equal to the work done. (It now probably makes more
sense why work and energy are both measured in joules.) To measure the energy of
a volleyballer, we need only measure their work, which means measuring the forces
and the distance over which the forces are applied. If we had an expensive force
platform this would be easy. Can we measure it another way?

If we use a standard video camera or a jump (timing) mat to measure the flight
time of the volleyballer, we can measure their jump height and/or take-off velocity.
If we have their velocity and we know their mass, we will know their kinetic energy
at take-off for each jump. We can use vf = vi + at (since v = 0 at the top of the jump,
vi = -at, where t is the time to reach the top of the jump, or half of the total flight
time as you might measure it) to estimate the velocity at take-off. You can measure
the volleyballer’s mass using ordinary bathroom scales (mass is measured in kilo-
grams) and therefore calculate their kinetic energy. Because you want to calculate
the average kinetic energy in a number of jumps, you might want to set up a
spreadsheet that calculates kinetic energy from body mass and flight time to make
things easier.

You might be thinking: ‘I’ll never be able to work the maths to find these
things!!!’ Don’t worry. As long as you understand the principles, you will be able to
play around with the maths later. Those of you who have learned a foreign language
will know that you need a lot of time and practice before you can easily re-arrange
the first phrases you learned to express other ideas and thoughts. It’s no different
with the language of maths.

Measuring metabolic energy
Measuring kinetic energy is easy enough. How about metabolic energy? Cells that
convert energy use oxygen, so the more oxygen we use the more metabolic energy
we must be producing. We can measure oxygen consumption in a physiology labo-
ratory relatively easily using a gas (oxygen and carbon dioxide) analyser but what
if we don’t have one? 

Happily, there is a reasonably strong relationship between heart rate and oxygen
consumption; the more oxygen we use, the faster the heart rate. This is because we
need to take more oxygen to the cells, so we need to pump more blood. The only
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problem is that everyone has a different heart rate response to exercise, so the only
real way to know the relationship is to test it in a laboratory. However, there is a
strong relationship between oxygen consumption and the heart rate reserve (HRR)
or at least, between the reserve to supply more oxygen (called the VO2max reserve,
or, the difference between current oxygen consumption and the volume of oxygen
consumption at maximum) (Swain & Leutholz, 1997).

To measure HRR, first determine the resting heart rate, such as after sitting
quietly for ten minutes or on first waking in the morning. Then determine the
heart rate after maximum exercise exertion, such as after running as fast as possi-
ble for 20 s four times with 20 s of recovery between each repetition. Finally,
calculate the current or exercise heart rate, as a percentage of the difference between
the resting and maximum heart rates:

%HRR = (HRcurrent - HRresting) / (HRmax - HRresting) × 100

If a volleyballer had a heart rate of 140 beats per minute (bpm) after a series of twenty
maximum vertical jumps (HRcurrent), a resting heart rate of 60 bpm (HRresting)
and a maximum heart rate of 180 bpm (HRmax), their %HRR would be:

%HRR = (140 - 60) / (180 - 60) × 100 = 67.7%

This suggests that they are using oxygen at about 68% of their maximum ability.

THE ANSWER
Kinetic energy is the energy associated with velocity of our body and can be meas-
ured from video or by using a timing mat. The heart rate reserve tells us a lot about
how much oxygen we are using. We can therefore examine the KE:%HRR ratio to
see if we have been able to increase jump performance while minimising energy
cost (that is, maximising efficiency). This is shown in Figure 9.6. If you change the
volleyballer’s technique to improve efficiency or give them a period of physical
training to increase their fitness, they might perform the twenty jumps with the
same average kinetic energy but at a lower %HRR. In that case, the athlete would
be ‘more efficient’. At best, you would want the athlete to jump higher (that is,
higher velocity, therefore higher KE) and have a lower %HRR after the jump series.
That would mean the athlete was both functionally better and more efficient. So
the ratio of KE:%HRR is a good performance indicator.
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FIG. 9.6 Calculation of the efficiency of a jumper. 1. Measure kinetic energy during a series of vertical
jumps. 2. Measure heart rate during the jumps, and measure both the resting and maximum (e.g.
obtained during a repeated maximal sprint test) heart rates of the jumper. 3. Calculate the heart rate
reserve (HRR) and then the jumper’s kinetic energy as a percentage of HRR.

HOW ELSE CAN WE USE THIS INFORMATION?
You could use this information for any athlete who performs repeated jumps, such
as basketball and netball players. However you could also calculate the average
kinetic energy of a runner over a given distance; for example a 60 kg runner
running 5 km at an average speed of 14 km·h-1 (3.89 m·s-1). KE = 1⁄2 mv2 = 30 × 3.892
= 454 J) and measure their %HRR at the end of the run (for example 78%), giving
a ratio of 454/78 = 5.8 J per %HRR.

Most importantly, you should consider how an understanding of work, power,
energy and efficiency could help you improve performance in many different
sports. During lifting, throwing or kicking you might want to increase power
output at the expense of efficiency. However, swimmers and rowers, for example,
will aim to increase their power output while improving efficiency.

Useful Equations
speed = ∆d/∆t
velocity (v) = ∆s/∆t (rω for a spinning object)
acceleration (a) = ∆v/∆t
torque (moment of force) (τ) = F × d, where d is the moment arm of force.
Also τ = Iα
work (w) = F × d
power (P) = F × v or W/t
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For example:

%HRR = (HRcurrent – HRresting) 

÷ (HRmax – HRresting) × 100

= (140 – 60) ÷ (180 – 60) × 100
= 67.7%

KE = 1⁄2mv2 = 1⁄2 × 75 × 2.42

= 181.5 kg·m2

KE:%HRR = 181.5/67.7 = 2.68

1 2 3

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 105



kinetic energy (KE) = 1⁄2 mv2

potential energy (PE) = m × g × h 
total energy (Etot) = KE + PE (plus rotational energy if present)

Reference
Swain, D.P. & Leutholtz, B.C. (1997). ‘Heart rate reserve is equivalent to %VO2

reserve, not to %VO2max’. Medicine and Science in Sports and Exercise, 29(3):
410-14.

Related websites
Energy Transformation for Downhill Skiing, Multimedia physics studios (http://

gbs.glenbrook.k12.il.us/Academics/gbssci/phys/mmedia/energy/se.html).
Discussion of changes in work and energy in relation to downhill skiing.

The Physics Classroom, Work, Energy and Power (www.glenbrook.k12.il.us/gbssci
/phys/Class/energy/u5l1a.html). Website examining work, energy and power.
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COACH’S PERSPECTIVE

Calvin Morriss
Coach: 
Name: Calvin Morriss
Nationality: British
Born: 26 July 1969

Athlete Biography:
Name: Steve Backley
Nationality: British
Born: 12 February 1969

Major Achievements:
• Four times world record holder, javelin

• Only British athlete to win consecutive medals at three Olympic games in any
athletic event (two silver, one bronze, 1992–2000)

• Four consecutive European gold medals

• Personal best 91.46 m
When and how did you use biomechanical analyses or theories to optimise Steve’s
training? What were the results of the changes made based on these analyses or
theories?
I worked with Steve from 1990 to 2004 and, as one would expect, the nature of the
biomechanics support changed during this time. In the early years, we mainly
completed 3-D analyses in a competitive setting. The idea was to establish exactly
how Steve threw when under competitive pressure, and to develop an understand-
ing of how he applied force to the javelin with his particular throwing technique.
With regard to specific examples of how biomechanical analyses shaped the
support offered to Steve, here are three:

• Steve picked up two serious injuries in 1992, a shoulder and right thigh adduc-
tor injury. These problems meant that Steve had to adapt the way he threw to
remain competitive in 1993–4. By 1995, however, he was throwing poorly and in
a different manner than before his injury in 1992. By comparing the results of
biomechanical analyses that we had conducted prior to 1992 to those through
1993–5, we were able to develop a very clear understanding of the problem.
From this, the support team were able to plan a course of technical change
through the off-season in 1996. Steve won a silver medal in the Olympic Games
in 1996, and his throwing technique, we were able to establish, had returned to
what it had been pre-injury in 1996. It was a very successful intervention.

• Steve had exploratory surgery on an Achilles tendon problem. I spoke with the
surgeon and explained that during his final foot plant, the angle at the ankle was
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Steve Backley wins his fourth consecutive European
Championships gold medal in Munich, 2002.
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approximately 135° (i.e. plantar flexed). The surgeon was able to place Steve’s left
ankle in this position under anaesthetic, and in this position, a heel spur that
encroached on the Achilles tendon was identified. It was removed and rehabili-
tation was successful.

• A detailed analysis of Steve’s technique demonstrated that shoulder adduction,
medial rotation and elbow extension were all key contributors to the achieve-
ment of high release speeds. This information was critical in designing bespoke
conditioning programmes for him.

How do you think Steve’s career might have been different had you not changed his
training/technique?
I think Steve will have been successful regardless of the support he was offered due
to his excellent ability to manage himself, and his competitive abilities. That said,
the biomechanics support enabled him to make considered and very definite deci-
sions about his throwing technique and his training. I think that it is as important
for an athlete to believe in their training as it is to actually do the training. The
biomechanical analysis undoubtedly helped develop this confidence and belief. I
also think the analysis demonstrated what Steve’s throwing action required from
his body, which certainly helped to direct his conditioning programmes. Steve had
a particularly long throwing career and I believe that some of this was due to the
way in which he trained for his event.

What were the strong points (both personally and intellectually) of the best
biomechanists you worked with?
The best biomechanists that I worked with all had a very strong grounding in
mechanics – there was never an element of doubt in what they reported, and they
never expanded beyond what their data told them. Dr James Hay was a shining
example of this type of successful biomechanist. The best support biomechanists
that I worked with also had very strong work ethics. It takes time and energy to
provide athletes and coaches with good data to work with, and much of the work
must be done in unsociable hours.

Overall, how important do you feel a good understanding of biomechanics is to a
coach or sport scientist?
Quite simply, I think it helps coaches and athletes to make informed and definite
decisions about their training methods. A biomechanics understanding of movement
helps to separate fact from what sometimes people would like to believe is true.
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CHAPTER 10

COLLISIONS 
You are running towards another player to meet in a

tackle in a game of rugby. How can you ensure that you

are not pushed backwards in the collision that is about to

take place?

By the end of this chapter you should be able to:

• Explain the concept of conservation of momentum in the context of collisions

• Predict the outcome of collisions if the bodies’ masses and velocities are known

• Use this information to improve the outcome of a collision for a player or athlete
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Remember, the Law of Conservation of Momentum states that the momentum of a
system remains unchanged unless it is acted upon by an external force. In a collision,
the total momentum of the system is equal to the sum of the mass × velocity of all
the colliding objects; that is, momentum = m1v1 + m2v2… From this equation, you
can see that it is easy to work out what might happen in a collision.

Let’s say you have a mass of 80 kg and your opponent has a mass of 100 kg. You
are moving towards your opponent at 2 m·s-1 and your opponent is running at you
at 5 m·s-1. What will happen when you collide? The total momentum of the system
must remain the same. Currently, the combined momentum is:

M = 100 kg × 5 m·s-1 + 80 kg × 2 m·s-1

= 500 + 160 = 660 kg·m·s-1

The momentum must remain constant after the collision but how will the players
be moving?

Before collision After collision
m1v1 + m2v2 = m1v1 + m2v2

m1v1 + m2v2 = (m1 + m2)v
(100 × 5 ) + (80 × -2) = (100 + 80) × v
(v2 is -2 m·s-1 because the players are running in opposite directions)
340 = 180 × v
Dividing both sides by 180:
340 / 180 = v
1.8 m·s-1 = v

So the two players will be moving at 1.8 m·s-1 after the collision. Since the value is
positive, it means that they will move in the direction of the player whose velocity
was positive (the 100 kg player) and the 80 kg player will be forced backwards.

THE ANSWER
How can you make sure you continue to move forwards in such a collision (Figure
10.1)? You must have a greater momentum going into the collision. Since your body
mass is smaller, you’d have to have a greater velocity. We can work out the velocity
at which you would exactly match your opposition and the velocity above which you
would knock your opponent backwards. Your velocity is represented by ‘v2’, so we
need to re-arrange the equation to calculate this number with the total final veloc-
ity of the system (v) at zero. I’ve written it out step-by-step below.

Before collision After collision
m1v1 + m2v2 = m1v1 + m2v2

m1v1 + m2v2 = (m1 + m2)v
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m1v1 + m2v2 = 0 (since v = 0)
m1v1 = -m2v2

m1v1 / -m2 = v2

100 kg × 5 m·s-1 / -80 kg = v2

-6.25 m·s-1 = v2

So, if you were to run towards your opponent at 6.25 m·s-1, you would have a result-
ing velocity of zero after the collision. If you run more quickly, your opponent
would be pushed backwards.

Actually, there is a slightly easier way to do this. If you both had the same
momentum as you collided, your velocities after the collision would be zero. So you
could calculate your opponent’s momentum (500 kg·m·s-1) and then find out what
velocity you’d need to run at, given that your mass is 80 kg (m1v1 = 500 kg·m·s-1, so
v2 = 500 kg /80 kg·m·s-1 = 6.25 m·s-1).

There is another way to ensure your opponent is pushed backwards that doesn’t
require you to run at breakneck speed. Remember that the total momentum of the
system must remain the same, because momentum is conserved unless an external
force acts. A second way to make the opponent move backwards is to continue to
apply a force to the ground during the collision so that the ground applies an equal
and opposite force back at you! You are, in effect, performing work on your opponent
during the collision. To do this, you need to apply the force with your legs while your
upper body absorbs the force (or shock) of the impact. So when your coach says
‘drive into your opponent’, that’s what they mean.
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HOW ELSE CAN WE USE THIS INFORMATION?
Remember that velocity is a vector quantity, meaning it is described by a magnitude
and a direction; so momentum is also a vector quantity. You might have a fast
player with a large mass (that is, a high momentum) running towards you, which
means you need to oppose them with a large momentum of your own. Or not. If
you step to one side and let the player run to the side of you before you attempt the
tackle, their velocity, and therefore their momentum, is effectively zero. This is
shown in Figure 10.2. Since the component of the velocity, and therefore of the
momentum directed at you, is zero, you only need to tackle them with a small
momentum to win in the collision.

FIG. 10.2 Catching a ball is made easier when the hands move at a velocity in the same direction as the
oncoming ball, but with slightly lesser magnitude. The lower resultant impact velocity slows the velocity
at which the ball would rebound in the collision with the hands, which makes it easier to time the
clasping of the hands.

As a general rule, if we understand what will happen in a ‘normal’ collision, we can
work out what will happen when any two objects collide. For example, we could
work out how fast a ball will travel after it makes contact with a moving bat, as you
will see in the next chapter. We can also understand why we should ‘give’ with the
ball when we catch. A ball coming to us at a high speed (we’ll call it a positive speed,
since it is coming towards us; a negative speed would indicate that the ball is moving
away) has a high momentum but after a collision with our stationary hands it will
leave with the same velocity but in the negative direction. This makes the ball hard
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to catch, because we’d have to close our hands at precisely the right moment to stop
the fast-moving ball rebounding. The high-speed impact might also hurt a lot! If we
move our hands with a positive velocity (that is, in the direction of the ball) then the
relative velocity of the ball impact is lower and the ball will tend to rebound with a
lower velocity. We have more time to close our hands and prevent the ball from
rebounding away. It will also hurt less, since the impact velocity is less.

Useful Equations
momentum (M) = m × v
conservation of momentum m1v1 = m2v2

impulse (Ft) = F × t or ∆mv

Related websites
The Physics Classroom (www.glenbrook.k12.il.us/gbssci/phys/Class/momentum/

u4l1c.html). Real-world applications of the impulse–momentum relationship,
largely relating to collisions.

Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/elacol.html).
Descriptions, movies and examples of elastic and inelastic collisions.

The Science House (www.science-house.org/student/bw/sports/collision.html).
Description and activities relating to collisions in sports.

The Physics of Sports (http://home.nc.rr.com/enloephysics/sports.htm). Website
investigating the applications of physics in sports.
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CHAPTER 11

THE COEFFICIENT 
OF RESTITUTION
You need to hit a six (cricket) or a home run (baseball or

softball) to win the game. What can you do to increase

the distance the ball flies after it collides with your bat?

By the end of this chapter you should be able to:

• Define the term ‘coefficient of restitution’ in terms of energy loss during a
collision

• Give examples of factors that influence energy loss during collisions

• Manipulate factors involved in collisions to improve the outcome for a player 
or athlete

Sports Biomechanics (AC Black)  6/6/07  13:00  Page 115



In Chapter 10, you learned that if we know the masses and velocities of two objects
before a collision, we can determine what their velocities will be afterwards. Is this
completely true? If a ball were to bounce on a concrete floor, its velocity after the
collision should be the same as its velocity before but this isn’t so. If you drop a ball,
it never bounces back to the same height (Figure 11.1), so its velocity after the
impact cannot have been as great as it was before.

This loss of velocity can be attributed to energy dissipation during the collision.
Some energy will be changed to sound, emitted as the ball hits the ground. Heat
energy is also produced (you might have noticed that a squash ball becomes
warmer when it is hit repeatedly before a game). Energy cannot be destroyed but it
can be converted to other forms. In the example in Chapter 10, some energy would
be converted to other forms during the collision and the energy of our players
involved slightly reduced. We’d see this as a decrease in the total momentum after
the collision but how can we work out the effects of this energy loss?

Coefficient of restitution
The term coefficient of restitution is not as abstract as it might at first seem. If
you’ve ever seen a slow-motion film of an object colliding with another object, you
will have noticed that the objects deform slightly as they collide, as shown in Figure
11.2. As they rebound, they regain their original shape. This is restitution; we say
that the ball is first compressed and then undergoes restitution. The greater the
restitution, the less energy must have been lost during the collision. When a ball of
dough hits the floor, it doesn’t undergo restitution, because all its energy is dissi-
pated. The collision of dough with the floor has a very low coefficient of restitution.
When a rubber ball hits the floor, it bounces back nearly to the height from which
it was dropped; it has a high coefficient of restitution.

The coefficient of restitution is different for every object–material combination
but its magnitude is always expressed as a figure between 0 and 1; where ‘0’ means
that all the energy is lost and ‘1’ means it is all retained (such a collision is called
‘perfectly elastic’). For example, the coefficient of restitution for a collision between
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FIG. 11.1 Due to the energy lost during the collision of the ball with the ground, a ball never bounces to
the same height from which it is dropped.
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a softball and a hardwood floor is 0.31, whereas that between a basketball and the
same floor is 0.76. Further examples are given in Table 11.1.

We know from Chapter 10 that the momentum of a system after a collision must
be the same as before it but that some energy can be lost. If the masses of the two
objects remain the same, then the relationship between the velocities of the objects
and the coefficient of restitution is:
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FIG. 11.2 During an impact, a ball will first compress, during which time energy is released from the
system, and then undergo restitution. The amount of restitution depends on the amount of energy
retained after the collision (i.e. its efficiency).

Type of ball Surface type Coefficient of Height 
Restitution bounced (m)

‘superball’ Hardwood 0.89 1.44
Basketball Hardwood 0.76 1.06
Squash ball (yellow dot) Hardwood 0.41 0.42 (from 2.54m)
Squash ball (white dot) Hardwood 0.46 0.53 (from 2.54m)
Squash ball (red dot) Hardwood 0.48 0.59 (from 2.54m)
Squash ball (blue dot) Hardwood 0.50 0.64 (from 2.54m)
Tennis ball (new) Hardwood 0.67 0.87
Tennis ball (worn) Hardwood 0.71 0.91
Field hockey ball Hardwood 0.50 0.46
Cricket/softball Hardwood 0.31 0.18
Volleyball Hardwood 0.74 1.01
Volleyball Concrete 0.74 1.00
Volleyball Grass 0.43 0.34

TABLE 11.1 Coefficients of restitution for different balls bouncing off different surfaces, calculated by
measuring the height of rebound from a 1.83 m drop height.
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vf1 – vf2 = -e(vi1 – vi2)

Where vf1 and vf2 are the final velocities of our two objects, vi1 and vi2 are their initial
velocities and ‘e’ is the coefficient of restitution. If you look at the equation, you can
see it is simply stating that the velocities of the objects after the collision are equal
to the velocities before the collision but that we have to take account of the coeffi-
cient of restitution. The coefficient, e, will have a greater effect as it gets smaller
(that is, it gets closer to zero).

So, the coefficient of restitution tells us something about how much energy is lost
in a collision and we can ‘correct’ velocity estimates by including it in the equation.
If you don’t happen to have a reference for the exact coefficient you need, you can
work out the coefficient of restitution for various objects yourself. We can use the
information we learned in Chapter 3 to help us. If we drop an object on to the floor,
its velocity immediately before contact can be calculated from the drop height:

vf
2 = vi

2 + 2as (remember, vf is the final velocity, vi is the initial velocity, ‘a’ is
the acceleration due to gravity and ‘s’ is displacement)

vf
2 = 0 +2as

vf = √2as

So the final velocity can be found from ‘a’, which is a constant, 9.81 m·s-1 and
displacement, which we can measure.

In exactly the same way, we can determine the velocity with which the ball left
the ground if we measure the height to which it bounced. Remember that the coef-
ficient of restitution is proportional to the ratio of the velocities before and after a
collision and since the floor has a velocity of zero, we can see that the coefficient for
the ball would be: -e = vf/vi

Instead of measuring vf and vi, we just use the calculation above so that we can
just measure the drop and rebound heights: -e = √2asb / -√2asd

Where sb and sd are the bounce (b) and drop (d) heights. Since the term ‘2a’
appears on both sides, we can cancel it out by dividing both sides by 2a, so it might
be easier to say: e = √hb/hd

hb and hd are the bounce (hb) and drop (hd) heights. (Note that ‘e’ has no nega-
tive sign in the final solution because the rebound velocity would be expressed as
negative in the equation above.) 

If you set up a simple experiment to measure the drop and bounce heights of a
ball off a surface, you could determine its coefficient of restitution (see Figure 11.3).
Or you could clamp a bat or racket and bounce balls off it if you wanted to. You can
see the results of such experiments in Table 11.1. By the way, you could use a video
camera with a scale rod in the background to determine the heights accurately. (Re-
read Chapter 3 if you’ve forgotten how to do this.) Once you can measure these, you
can start to work out the factors that affect the speed of a ball off a bat.

If you were to do some of these experiments, you might well find that the coef-
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ficient of restitution is affected by temperature. A warm ball will bounce higher
than a cold one. Baila (1966) discovered that a baseball bouncing on to a solid
surface from a height of 1.83 m had a coefficient of restitution of 0.53 (bounce
height = 0.51 m). After heating for 15 min at 225°C, this increased to 0.55 (bounce
height = 0.55 m) and after cooling for 1 h in a freezer it decreased to 0.50 (bounce
height = 0.46 m). If you are a keen golfer, it might be more use to know that a golf
ball had a coefficient of 0.80 (bounce height = 1.17 m) but this decreased to 0.67
(bounce height = 0.82 m) when cooled. So, if you’re playing golf on a cold day, keep
your ball in your warm pocket as much as possible, rather than leaving it on the
cold ground or in your cold club bag! This might also explain why sprint runners
feel that they run more quickly on a hot day than on a cold one. It might not just
be that their body temperatures are higher, allowing them to generate more muscle
force, but also that the hotter track allows a greater coefficient of restitution in the
collision with the foot.

The coefficient is also reduced as the velocity of impact increases. Plagenhoef
(1971) found that the coefficient was reduced from 0.60 to 0.58 for a golf ball
striking a wood floor at 22.4 to 26.8 m·s-1 compared to when it struck at 7 m·s-1.
This decrease was far more noticeable for a handball, which had coefficients of 0.8
and 0.5 at the slow and fast velocities. So, it might be easier to hit a fast ball for six
in cricket or a home run in baseball but this is because of the greater momentum
in the collision, not because of a higher coefficient of restitution. More energy is
lost from the collision when the ball comes to you at a higher speed, so, relatively,
the velocity of the ball is lower.

So, we now know that the velocity of a ball after an impact is a function of the
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FIG. 11.3 In this example, the coefficient of restitution of a rubber ball bouncing off a solid floor can be
calculated as:

Drop height (hd) = 0.40 m Bounce height (hb) = 0.34 m
e = √hb/hd

e = √0.34/0.40  = √0.85  = 0.92
So 8% of the energy of the collision is lost as heat and sound, and 92% is retained and is visible as ball
velocity.
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momentum of the system before the collision (which is affected by the masses and
velocities of the bat and ball) and the energy lost from the system (which is meas-
ured by the coefficient of restitution and is affected by temperature and velocity).
There is one last consideration, however: the angle of incidence; the angle at which
the ball strikes the bat relative to a line drawn perpendicular to the bat’s surface (see
Figure 11.4).

The mathematics involved in calculating the angle and speed of a ball after it
strikes a bat at a given angle of incidence are outside the scope of this chapter but
I will tell you that increasing the angle of incidence allows the ball to leave the colli-
sion at a higher velocity. A graph of the relationship, according to Hay (1993), is
shown in Figure 11.5. Notice that the angle at which the ball leaves the bat, the
angle of reflection, is not exactly equal to the angle of incidence.
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FIG. 11.4 Object A impacted with the surface at an angle of incidence (i) and rebounded with an angle
of reflection (r). In collisions where there is a loss of energy, the angle of incidence is always greater than
the angle of reflection. In this example, object B struck the surface with a greater angle of incidence and
left with a greater angle of reflection than object A.

FIG. 11.5 As the angle at which the ball meets a bat (angle of incidence) increases, the speed at which it
exits the collision increases. This effect, however, is quite small and so is probably not a major concern in
most sports. Notice also that the angle of reflection, which is the angle of the ball leaving the bat, is not
the same as the angle of incidence. These data were for a collision of a 0.15 kg ball with a 0.85 kg bat with
bat and ball speeds of 25 and 15 m·s-1 and a coefficient of restitution (e) of 0.5. Data from Hay (1993).
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THE ANSWER
The factors we need to consider when working out how to hit a ball further can be
summarised as:

• Increase the speed of the bat: this increases the total momentum of the system
but also makes it more likely that the bat will continue to move forwards after
the collision while the ball reverses its direction, as you might remember from
Chapter 10.

• Increase the mass of the bat: this increases the total momentum of the system, as
long as the mass of the bat doesn’t compromise your ability to swing it quickly. You
could analyse yourself or other players to determine the mass that optimises
momentum.

• Increase the speed of the ball: this increases the total momentum of the system
and since the ball is light it does not cause the bat to be moved backwards in the
collision.

• Decrease the mass of the ball: this might slightly reduce the total momentum of
the system but also ensures the greatest change in ball velocity, so that it
rebounds off the bat at high speed; compare the speed at which a light baseball
(142–149 g) comes off the bat compared to a heavier softball (177–198 g).

• Increase the angle of incidence: this slightly increases the speed of the ball, as you
saw above.

• Increase the coefficient of restitution: this reduces the energy lost in the collision
of the bat with the ball; it will be reduced slightly as the ball speed increases (the
positive effect of increasing ball speed is greater than its negative effect on the
coefficient of restitution) and increased as ball temperature rises.

If you can manipulate some or all of these factors, you should have no problem
hitting the ball over the fence or out of the park. In particular, you’ll need to find
the bat weight that maximises momentum during the swing, that is, the bat with
the greatest mass that still allows a high swing velocity. I’m sure you can use your
knowledge of inertia and video analysis to find the perfect sized bat. You should
also choose the fastest balls, although we might have to revisit this strategy after
Chapter 16. Unfortunately, it might not be possible (or ethical) to manipulate the
temperature of the ball.

HOW ELSE CAN WE USE THIS INFORMATION?
As far as performance enhancement is concerned, the bat and ball example above
is the best example of how an understanding of impact might influence perform-
ance. However, the major application of this knowledge is in the design of safety
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equipment. Developing equipment with low coefficients of restitution is impor-
tant, since the dissipation of the energy in collisions reduces the likelihood of
impact-related injuries. Everything from body protection equipment, gloves and
pads to goal posts are tested to improve their energy dissipation capability.

More important to many coaches is the use of this theory in tactical situations
in sports. For example, wet ground is not only associated with a lower coefficient
of restitution in collisions with balls but also with collisions of the foot: because
more energy is lost at each contact of the foot with the ground, there is a greater
‘cost’ to running; that is, we have to apply more energy to the collision to get the
same amount back. In field sports, you might adopt tactics that force the opposi-
tion to run more than normal, or reduce the need for you to run.

Useful Equations
speed ∆d/∆t
velocity (v) ∆s/∆t (rω for a spinning object)
acceleration (a) ∆v/∆t
projectile motion equations 

(1) vf = vi + at
(2) vf

2 = vi2 + 2as
(3) s = vit + 1⁄2 at2

coefficient of restitution (e) = (vi1-vi2)/(vf1-vf2) or √(hb/hd)
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CHAPTER 12

FRICTION 
How can we push back our opponent in a rugby tackle,

if the studs on their boots are anchoring them into the

ground?

By the end of this chapter you should be able to:

• Define the term ‘friction’ and identify the different forms of it

• Explain the factors affecting friction, be able to manipulate them and measure
their effects in order to improve sporting performance

• Design a simple model using a spreadsheet to directly assess the effects of chang-
ing the direction of force application on friction and the ability to move an
object (or opponent)
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If you could select the one force that is the most important for your everyday life,
what would it be? Muscle force, without which it would be hard for you to move?
Or gravitational force, without which we would fly into space every time we
produced a vertical force? But an octopus has no muscles; it uses fluid flow through
its limbs to produce movements and spiders and caterpillars make effective use of
their silk anchors to counter gravity.

I think the one force we can’t do without is friction. Friction is the force that
opposes the movement of two surfaces that are in contact with one another. It occurs
when either micro- (very, very small) or macroscopic (big enough to see) bonds form
between two surfaces (Figure 12.1). You can investigate the friction force yourself by
slowly applying a horizontal force to a coffee mug sitting on a flat table. When you
apply a small force, a small friction force develops, preventing the mug from moving.
As you increase the force you are applying, the friction force increases until, at a
specific force level, the mug starts to move. The force required to start the mug slid-
ing is called the force of static friction. Once the mug is moving, you’ll notice that you
need less force to keep it moving, even though there is still friction present. This
smaller friction force is called the force of sliding friction, or sometimes kinetic fric-
tion. If we didn’t have friction, silk anchors wouldn’t work and there would be no
point in developing a way to function without muscles, because we could never apply
our force to anything anyway. Without friction, we couldn’t live.

Rugby players use studs on their boots to increase the friction between the play-
ing surface and their feet. Studs make it possible to apply large forces to the ground
without the foot sliding. When we want to push another player backwards, we have
to overcome the friction between the boot and ground; of course it is easier to keep
them sliding (sliding friction) than it is to start them sliding in the first place (static
friction). To work out the best way to do this, we have to understand the factors that
influence friction.

The coefficient of friction
This coefficient is represented by the Greek letter µ (mu) and describes the
tendency for two surfaces to not slide over each other. For example, the coefficient
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FIG. 12.1 Friction results from an interlocking, or formation, of ‘bonds’ between molecules (A) or
uneven surfaces (B). Increases in interlocking results in an increased friction between the two surfaces.
The tendency for two surfaces not to slide past each other is quantified by the coefficient of friction.
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of static friction between an ice skate and the ice is about 0.03, while the coefficient
of friction between two iron plates is 1.0. Unlike the coefficient of restitution, the
coefficient of friction can be greater than one, as you can see from Table 12.1. Box
12.1 describes how to measure the coefficient of friction but for now you should
just understand that a larger number means there is a lower tendency for two
surfaces to slide past each other.

BOX 12.1 MEASUREMENT OF THE COEFFICIENT OF FRICTION
Measurement of the coefficient of friction can be performed in several ways. One way
is to slowly apply a horizontal force to an object (such as the shoe on Figure 1)
coated with a particular surface which is on a force platform covered in the other
surface of interest. As you apply a greater horizontal force to the shoe, the force
measured on the platform increases. At a certain point, the object will begin to
move and the measured force will drop suddenly. The peak horizontal force measured
is the static friction force. If you know the weight (the normal reaction force, mass
in kg × 9.81) of the object, you can calculate the coefficient of friction by
rearranging the equation Ff = µR to µ = Ff/R, where µ is the coefficient of static
friction, Ff is the force of friction and R is the normal reaction force.

FIG. 1

If you continue to push the object at a constant rate, the horizontal force will also
be constant (but lower than the peak you discovered earlier). This is the force of
sliding friction. You can therefore calculate the coefficient of sliding friction in the
same way.

If you don’t have access to a force platform, there is a very simple, although
mathematically slightly more complex, method to calculate the coefficient of
friction. Take an object, such as a square block of wood, and apply your chosen
surface to it; apply a second surface to a flat plank of wood or a metal bar. When
the plank (with the square block on top of it) is horizontal, the normal reaction
force (R) is at a maximum but the horizontal force causing sliding is nil. Tilt the
plank: as it tilts, the force of gravity – to be totally accurate, its tangential (parallel
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to the plank) component – increases, while the normal reaction force decreases. At a
certain angle of the plank, the block will start to slide. 

You can work out the normal reaction force and friction (that is, tangential to the
plank) using the basic cos/sin rules. When you have these, you can use the equation
above. You could use this technique to examine the effects of heating and cooling of
rubber shoes on their frictional properties, what effect dust has on a court surface or
how the waxing of indoor courts affects friction. 

FIG. 2

Material 1 Material 2 m (static) m (sliding)

Aluminium Aluminium 1.15 1.4
Bone joints - 0.003
Car tyre Asphalt (dry) - 0.5-0.8
Car tyre Asphalt (wet) - 0.25-0.75
Car tyre Grass - 0.35
Ice Ice 0.05-0.50 0.02-0.09
Ice Steel - 0.03
Iron Iron 1.0 -
Rubber Concrete - 1.02
Rubber Rubber - 1.16
Skin Metals 0.8-1.0 -
Teflon Steel 0.2 -
Teflon Teflon 0.04 -
Tendon sheath - 0.0013
Wood Wood 0.28 0.17

TABLE 12.1 Coefficients of static and sliding friction for some common materials. Actual values depend
on the precise conditions of the materials, so these values are for reference only.
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The second thing you should understand is that there are two different coefficients
for a pair of surfaces, because there are two main types of friction: the coefficient
of static friction (µ) and the coefficient of sliding friction (µs)*. Remember that it
took less force to keep the coffee mug moving than it took to move it in the first
place. That’s because the coefficient of static friction is greater than that of sliding
friction. For example, µ for two hard steel plates is about 0.78 but µs is 0.42. This is
probably because strong bonds are less likely to form between two surfaces moving
over each other but are very likely to form when they are stationary.

The coefficient of friction tells us something about the characteristics of the
surfaces involved. Rugby boots have studs that increase the coefficient of friction.
The coefficient would be less on wet, muddy ground, where it is easy to slide and
greater on dry, firm ground but it is very hard for us to influence it (at least in the
opposing player). If we are going to reduce friction to push our opponent back-
wards, we need to look elsewhere.

Normal reaction force
Try this experiment:

Lightly place one open hand on top of the other, palm-to-palm, as shown in
Figure 12.2. Slowly drag one hand past the other. Notice it is easy? Now, push your
hands together as hard as you can and try to slide one past the other. It’s much
harder (or impossible if you’re incredibly strong). The force pushing one surface on
to the other influences the friction between them. Since the force that pushes the
surfaces together acts perpendicular to the surfaces, we call it the normal force.
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* Actually, there are three coefficients because, in addition to static and sliding friction, there is also rolling
friction. Rolling friction is commonly very small (1/100th to 1/1000th of static or sliding) but occurs
because both the curved and flat surfaces deform slightly at their contact point. Rolling friction is
influenced by the normal reaction force, radius of the rolling object (e.g. a wheel), the deformation of the
surfaces, and their coefficients of friction. So a large, heavy, soft (under-inflated) tyre would have a larger
coefficient of rolling friction.

FIG. 12.2 When the hands are pressed only lightly together and the normal reaction force is small (A),
friction is less so the hands slide across each other easily. When the hands are pressed firmly and the
normal reaction force is large (B), the friction force is large and the hands do not slide.

A B
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(By the way, a tangential force acts parallel or in line with – or we might say at a
tangent to – the surface.)

So, the force of friction is dictated by two factors: (1) the coefficient of friction,
which tells us something about how ‘sticky’ two surfaces are and (2) the normal
reaction force, which tells us how hard the two surfaces are being pressed together.
We could describe the relationship thus:

Ff = µR

Where ‘Ff’ is the friction force, ‘m’ is the coefficient of friction and ‘R’ is the normal
force, which is a reaction force, just as you saw in Chapters 4 and 5. What this
means is that if you were given the coefficient of static friction and the normal reac-
tion force, you could calculate the force required to start the surfaces moving across
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FIG. 12.3 In the top picture (A), the force of friction between the sled at the ground can be calculated
using the formula Ff = µR. The normal reaction force, R, is the opposite of the weight force (650 N) and
the coefficient of static friction is shown (0.44).

Ff = µR
= 0.44 × 650N
= 286 N

In the bottom picture (B), we have to calculate the force pushing the sled into the ground, the normal
reaction force (dotted arrow). To do this, we use the cosine rule outlined in Appendix A (notice that the
angle between the solid and dotted arrows is the same as the angle of the sloping ground).

cos 30° = R/650 N
R = cos 30° × 650 N
= 0.866 × 650 N
= 562.9 N

We can then calculate Ff as above:
Ff = µR
= 0.44 × 562.9 N
= 247.7 N

So on a 30° slope, the friction force is 38.3 N less.
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each other. If you were given the coefficient of sliding friction, you could calculate
the force required to keep them moving. The important thing to remember is that
the force holding two objects together is always the normal reaction force. If the
force is measured at an angle to the surfaces, you have to find out the magnitude of
the normal component of it, as shown in Figure 12.3.

THE (FIRST, EASY) ANSWER
Knowing the coefficient of friction doesn’t really help solve our problem but it does
help to know that the force pressing the two surfaces together is a major factor. The
only force pressing the surfaces of the boot and ground together is the weight force
of the player (mass × gravity), so friction is less if the player’s mass is lower. We
might not be able to reduce the actual mass of the opponent but we can apply an
upwards force to them to reduce the normal reaction force (that is, their effective
mass). Providing an upward force with the legs (‘driving into your opponent’)
during a tackle will increase the likelihood of them being pushed backwards. This
isn’t a new idea, indeed Guillaume Amontons (1663–1705) was the first person to
describe the relationship between the force pushing two surfaces together and their
resistance to movement.

Can we get an idea of the angle at which we might need to push? Is it likely to be
a small angle, such as 5°, or do we need to lift at 60°? We can construct a simple
model to find the answer.

THE (SECOND, MORE SPECIFIC) ANSWER
First, we need to think about how to tackle the problem (excuse the pun). We know
how to calculate the force of friction if we have the coefficient and the weight
(normal reaction force) of the player, so we’ll definitely need columns in our
spreadsheet for these. We’ll also need to have an idea of how much force the tack-
ler might be able to produce, so I took a rugby player to the gym to measure his best
squat lift. It was 200 kg, so I’ll assume that if he is lifting a load (his opponent) with
two legs, he could produce about 2000 N of force (200 kg × 9.81m·s-1 = 1960 N, so
that’s a pretty good estimate). We then need some columns to calculate the effect of
the angle of the push on the horizontal and vertical forces our player generates; as
he lifts upwards at a greater angle his horizontal force will decrease while his verti-
cal force will increase. Finally, we will need to calculate the normal reaction force,
which will be equal to his body weight minus the vertical force exerted by the tack-
ler. The smallest angle at which the tackler can push his opponent backwards will
be found when the horizontal force exerted by the player is greater than the force
of friction.

I constructed the spreadsheet as below:
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Basic values are placed in columns A to D. The tackle angle is converted to radians
in column E, before the horizontal and vertical components of the player’s force are
calculated, using basic cos/sin rules, in F and G. (Remember, ‘$’ means ‘fix this
reference’, so ‘$C$2’ means ‘fix reference to column C2’.) The corrected weight in
column H subtracts the vertical force exerted by the tackler from the opponent’s
body weight, to calculate the normal reaction force.

We can thus calculate the force of friction in the usual way in column I. You
might have noticed something new in column J; a calculation based on the logical
function ‘IF’. This function will return ‘Yes’ if the horizontal force (F2) is greater
than Friction (I2). This makes it easier to see whether the tackler would be able to
push his opponent backwards. The output looks something like this:

I used a coefficient of friction of 4.0, since this is the highest value I’ve seen for
rubber on a solid surface. I made a guess that the boots were ‘rougher’ than rubber
but the ground was ‘less rough’ than a normal high-friction solid surface. Ideally, I
would have performed an experiment, such as that outlined in Box 12.1. However,
I created a graph from my results; see Figure 12.4.

 A B C D E F 

1 
Coefficient
of f riction 

Player 
weight 

Force 
Tackle
angle

(deg) 

Tackle
angle

(rad) 

Horizontal
force 

2 4.0 800 2000 0 0.00 2000.0 

3    2 0.03 1998.8 

4    4 0.07 1995.1 

5    6 0.10 1989.0 

6    8 0.14 1980.5 

 
G H I J 

Vert ical force Corrected  weight
(R) 

Friction Horizontal F > 
Friction? 

0.0 800.0 3200.0 No 

69.8 730.2 2920.8 No 

139.5 660.5 2642.0 No 

209.0 591.0 2363.8 No 

278.3 521.7 2086.7 No 

 

 A B C D E F 

1 
Coefficient
of f riction 

Player 
weight 

Force 
Tackle
angle
(deg) 

Tackle
angle
(rad) 

Horizontal
force 

2 4.0 800 2000 0 =D2/57.3 =cos(E2)*$C$2 

 G H I J 

Vertical force Corrected weight
(R) 

Friction Horizontal F > 
Friction? 

=sin(E2)*$C$2 =$B$2-G2 =$A$2*H2 IF(F2>I2,”Yes”,”No”) 
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FIG. 12.4 Graph of changes in vertical (normal) reaction force and friction with the change in angle of
force provision in the tackle for our experiment.

From this, you can tell that the horizontal force is not reduced much as the tackle
angle increases (up to 20°) but there is a dramatic effect on friction. The horizon-
tal force exerted by the player was greater than the friction force of the opponent at
about 9° (vertical line on graph). This is a reasonably small angle. While there are
a few limits to this type of modelling (we should have accurate measures of the fric-
tion coefficient, for example), it at least gives us some idea of the angle to push to
limit the effect of friction. There doesn’t seem to be a need to lift our opponent at
large angles to reduce the friction of the boots on the ground. So, to push our oppo-
nent backwards in the tackle, we should push them backwards and slightly
upwards. How might the angle of tackle change for lighter players or when the coef-
ficient of friction is smaller?

HOW ELSE CAN WE USE THIS INFORMATION?
We can use our understanding of friction to improve performance in many sports.
We can try to optimise the friction between shoes and court surfaces to improve
performance and reduce injury risk, as outlined in Box 12.2. We can use lubricants
to minimise friction between clothing and skin, to prevent abrasion injuries. Very
importantly, we can use the friction force to impart spin to balls to alter their trajec-
tory (see Chapter 16) and use methods of reducing friction between the skin and
air (see Chapter 13) or water (see Chapter 14) to reduce drag and improve speed in
other sports. In dance, and in particular in ballet, rosin is placed on the shoes. Rosin
increases the coefficient of static friction markedly without significantly affecting
sliding friction, so that dancers are stable when stationary but can still perform
pirouettes. In the end, your imagination is the limiting factor on how you can use
this information to improve sporting performance.
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BOX 12.2 IS GREATER FRICTION BETTER FOR PERFORMANCE SPORTS?
We need friction, for example between shoes and a playing surface so that we can
stop, change direction or accelerate rapidly. If we slide as we change direction, the
time it takes is increased. Also, if the foot slides too far, there is an increased injury
risk, as the muscles are stretched more. Is it true to say that more friction is better?
Probably not, from the point of view of injuries.

Research indicates that injury rates are lower on surfaces of lower friction 
(for example clay tennis courts as opposed to hard courts) (e.g. Nigg & Segesser,
1988). This probably happens because a sliding foot allows energy to dissipate and
consequently the speed of the foot will be lower immediately before the foot stops
completely. Lower velocity means lower momentum, so at the point of stopping
there is less momentum (that is, a smaller change in momentum from just before
stopping to stopping). Since the contact point between the foot and the surface is
a pivot point around which the foot can roll, having a smaller momentum before
stopping makes it less likely this rolling will occur (see Figure 1). This is because
the muscles and connective tissues of the ankle will be more likely to cope with the
forces produced during the momentum change. Also, the rate of application of the
force will be less, so the muscles and connective tissues are less likely to be
ruptured. Thus, surfaces with lower friction are usually safer than surfaces with 
high friction. 

Playing surfaces should therefore have a reasonably high but safe level of
friction. Since athletes vary in size and therefore their normal reaction forces vary
significantly, the best surface (or shoe) type for one player might not be the best 
for another. 

FIG. 1 Impact and rotation during an agility task.
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Useful Equations
speed = ∆d/∆t
velocity (v) = ∆s/∆t (rω for a spinning object)
acceleration (a) = ∆v/∆t
force of drag (form) (Fd) = kAv2

momentum (M) = m × v
conservation of momentum = m1v1 = m2v2

impulse (Ft) = F × t or ∆mv
coefficient of variation (CV) = SD/mean × 100%
sine rule, sin θ = opposite side/hypotenuse
cosine rule, cos θ = adjacent side/hypotenuse
tan rule, tan θ = opposite side/adjacent side

Reference
Nigg, B.M. & Segesser, B. (1988). ‘The influence of playing surfaces on the load on

the locomotor system and on football and tennis injuries’. Sports Medicine, 5(6):
375–85.

Related websites
Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/frict2.html). Basic and

advanced discussions on the topic of friction, including maths simulations and
calculations.

The Physics of Sports (http://home.nc.rr.com/enloephysics/sports.htm). Website
investigating the applications of physics in sports.
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CHAPTER 13

FLUID DYNAMICS – DRAG 
We know that aerodynamics is very important in cycling

but how can I determine the optimum aerodynamic body

position on a bike?

By the end of this chapter you should be able to:

• Explain the concept of drag and differentiate between different types of drag

• Describe the factors influencing drag and how we might manipulate them to
improve sporting performance

• Design experiments to assess the impact of body position or equipment modifi-
cations on drag and subsequent performance
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We need to find out what factors affect drag, so that we can highlight a number of
probable ‘best aerodynamic positions’, then test them.

Factors affecting drag
We’ve all noticed that it is harder to run, ride or project an implement such as a
football into a strong wind. The reason is that in these circumstances, the drag force
is increased. Drag occurs when molecules of a fluid (‘fluid’ refers to any moveable
medium, including air) collide with an object and take energy away from it. As you
learned in Chapter 9, all moving objects have kinetic energy. If energy is taken from
them, their mass, or their velocity, must decrease. It is rare for mass to be reduced,
so normally an object loses velocity.

The loss of energy from the object to the fluid can be visualised in two ways. The
theoretically correct way is to assume that the fluid moving towards an object is
ordered into layers, that is, it is not being mixed around. This is laminar flow, as
shown in Figure 13.1. The fluid has a certain amount of energy, which remains
constant. But as it passes an object, it changes direction and therefore velocity and
so gains energy. The energy gained by the fluid is always equal to the energy lost
from the object because (as you already know) energy cannot be created or
destroyed. This non-laminar flow is also called turbulent flow (you might have
come across the word ‘turbulence’ before, especially if you are afraid of flying!). As
a fluid such as air or water is forced from laminar to turbulent flow, its energy
increases and the object loses energy.

FIG. 13.1 A fluid approaching the object exhibits little mixing. This type of fluid is called laminar
because it essentially travels in layers. As it approaches an object, the flow separates. At some point, the
fluid flow may become turbulent as the fluid rushes toward areas of low pressure. This turbulent flow
takes energy away from the object.

Another way to visualise it is to consider that the fluid applies a force to the object
during the collision, while the object exerts a force on the fluid (Figure 13.2). The
more fluid there is, or the greater the area of contact with the object, the more force
is applied. Since the object and fluid exert their forces in opposite directions, their
velocities are affected; the air gets deflected from the object (it changes direction
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violently, because of its very small mass and consequently small momentum) while
the object is slowed (it doesn’t observably change direction, because of its large
mass and momentum).

FIG. 13.2 A drag force can be conceptualised by imagining each particle of a fluid applying a force
against an object as they collide. The larger the number of collisions (i.e. greater surface area of the
object, faster flow of the fluid or a greater density of the fluid) the greater the rate of collisions and
therefore the greater the force exerted by the fluid.

Whichever way you choose to model it, you can see that the movement of an object
within a fluid will tend to slow the object. This is undesirable in many sports, so we
have to minimise it.

Form drag
As I hinted above, one way to minimise drag is to reduce the area of the object that
touches the fluid. This will reduce the amount of fluid that has its velocity changed
in the collision with the object (or in a collision with other fluid molecules that have
been deflected) and therefore reduce the energy lost from the object. In this sense, we
need to find a body position on the bike that has the smallest possible frontal surface
area, so that collisions are minimised. This is one benefit of the ‘tuck’ position.

A second factor that influences drag is the shape of the object, because this
affects how much the laminar flow will become turbulent. If the leading edge of an
object is pointed, the direction of the fluid hitting the object will be changed more
slowly than if the fluid hits the object abruptly (see Figure 13.3 (A)). Remember,
from Chapter 11, that when a ball collides with a bat with a smaller angle of inci-
dence (that is, more parallel to the bat) the coefficient of restitution is increased.
Similarly, if the fluid hits the object at a larger angle of incidence, less energy will
be lost from the object.

However, this effect can be achieved almost as well in objects with a flat front
end. As air hits the face of the object, it is bounced straight back towards the
oncoming air. Because the object is moving in the same direction as the reflected
air, the air moves with the object and forms a boundary layer, which sits at the
front of the object. This boundary layer helps deflect the oncoming air away, much
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like a pointed object (Figure 13.3 (B)). A good example of this is that the dimples
on golf balls help to trap air, creating a boundary layer and allowing the dimpled
ball to travel much further than a ‘smooth’ golf ball.

The shape of the tail end of the object is also important. As the object collides
with the fluid, it moves the fluid away to the side. The object then fills the space that
was once occupied by the fluid (Figure 13.4 (A)). As the object continues to move
through the fluid, a ‘hole’, or region of low pressure, will be left behind the object.
Air will always move from an area of high pressure to an area of low pressure, so it
will rush in behind the object to fill the ‘hole’. You can see this for yourself if you
move your hand quickly through still water next time you are doing the washing up
or having a bath. However, this flow increases turbulence and so takes energy away
from the object. Minimising turbulent flow is achieved by tapering the object at its
tail, as shown in Figure 13.4 (B), which is why objects such as cycling helmets are
tapered. This advanced aerodynamic shaping allows a peregrine falcon to dive at
speeds of over 350 km·h-1 when its wings are swept back!

An object’s size and shape describe its ‘form’. These two factors influence the
form drag on an object. The other factor that affects form drag is the relative speed
of the object and fluid; drag increases with the square of speed:

Fd = kAv2
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FIG. 13.3 A. By shaping objects with a longer leading edge, fluid particles separate earlier and strike the
object’s surface at a larger angle of incidence (angle relative to object surface). This minimises the ability
of the fluid to exert a force on the object and reduces drag. B. Dimpling on a golf ball traps air molecules
to allow an accumulation of air at the front of the ball. This mass of air forces oncoming air molecules
to separate from laminar flow earlier (solid line) to reduce drag compared to when air separates nearer
the ball surface or after a collision with it (dashed line). Thus, roughening objects can, in some instances,
reduce drag.
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Where Fd is the force of drag (drag force), ‘k’ is the coefficient of the shape of the
object, ‘A’ is the frontal surface area of the object and v is the relative velocity of the
object with respect to the fluid. You can see that the velocity of the object and fluid
are the most important considerations; relatively small increases in velocity can
bring about relatively large increases in drag. We are aiming to increase the cyclist’s
speed, so we have to reduce drag by manipulating the coefficient of drag (k; related
to our body position) and the frontal surface area. One body position used in
downhill skiing and (when permitted by the rules) in cycling is the bullet position,
where an athlete in a typical tuck position stretches their arms in front of their
body, almost in ‘Superman’ pose.

Surface drag
There is another type of drag that we can manipulate: surface drag. While form drag
is affected by the gross shape of our body, surface drag is affected by the roughness
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FIG. 13.4 Adding a tapered tail to an object (B) promotes laminar flow across the object when
compared to an object without a tail (A). This shape is commonly used in sports where aerodynamic
configurations are important for enhanced performance.

FIG. 13.5 Rougher surfaces can allow particles of fluid to become trapped, or engage with the object’s
surface (A). This increases drag by allowing the molecules to exert a significant force against the object.
Smoothing of a surface minimises particle trapping and causes particles to move away from the surface
(B). In this case, particles have little time to exert a force on the object, and drag is reduced.

Sports Biomechanics (AC Black)  6/6/07  13:01  Page 139



of our surfaces (that is, skin and clothing). As a fluid makes contact with our surface,
small pockets or ridges in our skin and clothing catch the fluid, thus allowing a force
to be applied and energy to be transferred (Figure 13.5). Essentially, this is a friction
force, so this type of drag is also referred to as friction drag. Wearing synthetic mat-
erials, which are non-porous and allow fluids to travel over their surface easily, is
better than wearing natural materials such as cotton, which are porous and catch
fluids. The effects of surface drag are not as significant as those of form drag but
reductions in surface drag can have measurable effects on performance.

Wave drag
Although it won’t help us improve the aerodynamics of the cyclist, there is one final
type of drag: wave drag. This is a drag force that occurs when an object moves at
the interface of two fluids with different densities. A good example is the wave
created in front of a swimmer, as their body moves at the interface of the water and
air. The wave applies an opposing force to the swimmer, as you can see in Figure
13.6, and the turbulence created takes energy away from the swimmer. Wave drag
has a significant effect on the overall drag in swimming, so we will examine it in
more depth (sorry, no pun intended) in Chapter 14.

Measuring the effects of drag
We now know there are three main forms of drag and that form drag (as opposed
to surface and wave drag, which aren’t a consideration here) will have the greatest
effect. We know that form drag is affected by the frontal surface area and the shape
of an object and that its effects are increased dramatically as speed increases. We
therefore have to use a ‘tapered’ shape on the bike to reduce it but how can we
measure the effects of changing body position to reduce drag?
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The best way to measure drag is to use a wind tunnel. In a wind tunnel, air of a
known velocity is passed over a cyclist sitting on their bike. The bike is attached to
a load cell that measures the force exerted by the wind on the bike and rider combi-
nation. You will remember that Fd = kAv2, so we can calculate k (the coefficient of
drag) if we measure the surface area of the bike and rider combination after rear-
ranging the equation to be k = Fd/Av2 (or we just measure the drag force, Fd, which
is the most important factor). Unfortunately, unless you have a wind tunnel at your
disposal, we need another way to measure the drag force.

Fortunately, we can re-use an equation we first saw in Chapter 5: Ft = ∆mv. By
dividing both sides of the equation by t, the formula can be rearranged to find F =
∆mv/t. The mass of the bike and rider is unchanging and can be measured on stan-
dard scales, so if we measure the change in velocity of our rider over a known time
we can calculate the force that must have caused the change: F = m∆v/t.

The two main factors that will cause this change in velocity are drag (form and
surface drag) and the friction between the tyres and the road and in the ball bear-
ings of the wheels. So, if on a completely windless day we measure the change in
speed of a bike and rider over a given time period, we can work out the effects of
friction and drag. If we change the rider’s position on the bike, drag will change but
friction will remain the same, so any difference in the velocity change must be due
to the change in drag!

This is a reasonably easy concept. We can use a standard bicycle computer to
measure the time it takes to roll 100 m after the rider accelerates to a known speed;
the faster the better, because velocity greatly affects drag; small changes in drag will
be amplified if we ride at fast speeds, say 60 km·h-1. We can look at the speed of the
bike at the 0 m and 100 m points and use these speeds to determine the change in
velocity of the bike. An example might look like this:

Mass of rider + bike = 100 kg
Velocity at 0 m = 60 km·h-1 (16.67 m·s-1)
Velocity at 100 m = 41 km·h-1 (11.39 m·s-1)
Change in velocity = 5.28 m·s-1

Measured average velocity over 100 m = 50.5 km·h-1 = 14.028 m·s-1 (you could
use (60+41)/2 as a good estimate if you haven’t measured it precisely)

So the time taken = d/t = 100/14.028 = 7.129 s.
Ft = m∆v (remember, m won’t change)
F = m∆v/t
= 100 kg × 5.28 m·s-1/7.129 s
= 74.06 N

So the force of drag plus friction = 74.06 N when rolling at this average velocity.
You should re-read the maths slowly if you didn’t quite follow it the first time.

But how much of this force can be attributed to friction? You can read box 13.1
to find out.
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BOX 13.1 FINDING THE SMALL EFFECT OF FRICTION
There are a few questions to be answered. First, how much of this force results from
friction and how much from drag? Drag will change as the velocity changes but
friction will remain relatively constant. If we measure the rider a few times at
different velocities, we might obtain a graph that looks something like this:

By putting a line of best fit, or regression line, over the data (an ‘exponential’ curve
was the best to use – as opposed, for example, to a straight line) it becomes apparent
that there would still have been a small force present if we had been able to test at
zero velocity. This force is due only to friction, since drag is zero at zero velocity. 

An equation to the line was also calculated. We don’t have time for a full
discussion on regression lines and equations but you can find out about them on
many websites or in basic maths textbooks. Any graph-creating programme can also
give you this information. The equation y = 2.7821e0.0645x tells us that we can find
any value of y (that is, a number on the vertical axis; Force in this case) if we know
a value for x (that is, a value on the horizontal axis; Velocity in this case). The e
symbol is an abbreviation for ‘exponential’, which means ‘raise to the power of’. 

For example, if we wanted to know the force at an average velocity of 35 km·h-1

(9.72 m·s-1), we would use the equation in this way:

y = 2.7821 e0.0645x

y = 2.7821 e0.0645x × 35
y = 2.7821 e2.2575

y = 26.59 N

At 35 km·h-1, our cyclist, sitting in his specific riding position, would have
experienced friction and drag forces totalling 26.59 N. You might realise that many
scientific calculators can’t be used to enter exponentials that have decimal places in
them. I used Excel to do the calculation by typing the following formula into a cell
in a spreadsheet:

=2.7821*exp(2.2575)
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You can use this formula as well but change it depending on the exact numbers you
need. We can also use this formula to find the force when velocity is zero by
changing the equation to: 

=2.7821*exp(0)

This gives us 2.7821 N. So, at zero velocity, there is a force due to friction of 2.7821
N. If we now subtract that number from any of the values calculated above we can
obtain the force that is solely attributable to drag. Remember that these numbers
were obtained under experimental conditions, so you can’t use them as a common
rule. You’ll have to do an experiment yourself for your own rider in their positions
and with their bike. 

THE ANSWER
So, we can now find out how much drag there is while riding in one position at any
velocity and we can find out how much of the force is explained by friction and
how much by drag alone. This brings me to another question. How much of an
effect will a change in riding position, for example from one where the rider adopts
a standard cycling position to one in the tuck position (see Figure 13.7), have on
drag? We can do this by measuring the rider in the two positions. We’ve already
tested one position – the standard position – so we can now test the other one. Here
are the results placed side-by-side:

Standard Forward lean with arms stretched

Mass of rider + bike = 100 kg Mass of rider + bike = 100 kg
Velocity at 0 m = 60 km·h-1 (16.67 m·s-1) Velocity at 0 m = 60 km·h-1 (16.67 m·s-1)
Velocity at 100 m = 41 km·h-1 (11.39 m·s-1) Velocity at 100 m = 45 km·h-1 (12.5 m·s-1)
Change in velocity = 5.28 m·s-1 Change in velocity = 4.17 m·s-1

Measured average velocity over Measured average velocity over 
100 m = 50.5 km·h-1 = 14.028 m·s-1 100 m = 53.5 km·h-1 = 14.86 m·s-1

Time taken = d/t = 100/14.028 = 7.129 s Time taken = d/t = 100/14.86 = 6.729 s
Ft = m∆v Ft = m∆v
F = m∆v/t F = m∆v/t
= 100 kg × 5.28 m·s-1 / 7.129 = 100 kg × 4.166 m·s-1 / 6.729 s
= 74.06 N = 61.91 N
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FIG. 13.7 We can compare the drag forces when cycling in two positions, A: standard cycling position,
and B: ‘tuck’ aerodynamic position.

So, the force exerted on the rider was less in the tuck position. We could of course
subtract 2.7821 N from these scores to remove the effect of friction, as calculated in
Box 13.1, but this will make only a small difference. Clearly, adopting the tuck posi-
tion reduced the force considerably and this is reflected in the slightly higher
average velocity over the 100 m.

However, I’d like to know how much difference this might make to competitive
performance. One way to determine this is to examine how different the times
would be in a race of a known distance if there was no wind (that is, no drag). We
can do it as shown below for a 1000 m time trial with a flying start taking 60 s at an
average velocity of 60 km·h-1 (16.7 m·s-1):

Step description Standard Forward lean with
arms stretched

Force of drag (or drag + friction) 74.06 N 61.91 N
Time 60 s 60 s
Mass 100 kg 100 kg
Velocity reduction if force acted v = Ft/m = 74.06 × 60 / 61.91 × 60 / 100 = 
over 60 s: 100 = 44.44 m·s-1 37.15 m·s-1

Without wind, the final speed 16.7 + 44.43 = 16.7 + 37.15 = 
would have been (actual final 61.14 m·s-1 53.85 m·s-1

speed 16.7m·s-1 plus speed 
without wind) 

Average speed would be (assuming (16.7 + 61.14)/2 (16.7 + 37.15)/2 
a linear speed decline: (start = 38.92 = 35.27
speed + end speed)/2) 

Time with no wind (t = d/v) 1000 m / 38.92 m·s-1 1000 m / 35.27 m·s-1

= 25.70 s = 28.35 s
Time lost attributable to drag 60 s - 25.70 s 60 s – 28.35 s 

= 34.30 s = 31.65 s
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So we can see that 34.30 s of the 60 s time was attributable to the effects of drag for
the standard riding position but for the more aerodynamic position it was only
31.65 s. The aerodynamic position is essentially 2.65 s faster! To obtain the same 60
s time, the rider in the aerodynamic position could produce less power, so they
would be more efficient. This assumes that using the better aerodynamic position
doesn’t then compromise force generation or endurance potential. You could test a
number of positions in this way to find the best.

HOW ELSE CAN WE USE THIS INFORMATION?
We now understand a lot about drag in fluids and can do tests to determine the
effects of changing body positions or clothing materials but where else can we use
this? Aero- and hydro-dynamic drag is important in any sport where we, or our
implements, move at high velocities. One good example is rugby, where players
often use a ‘torpedo’ pass or kick to achieve a greater distance. (A torpedo pass is
one where the ball flies with its long axis pointing in the direction of flight, as
shown in Figure 13.8.) In this position, the ball has the best aerodynamic shape, so
form drag is reduced. It is also important that javelin and discus fly in an appropri-
ate plane (you will learn more about this in Chapter 15). We normally spin such
objects to keep them oriented correctly; see Box 13.2. Ultimately, performance
enhancement can be made in most sports where individuals or machines move at
reasonable speeds, as long as you use this knowledge to minimise drag.

FIG. 13.8 A rugby ball is most aerodynamic when it travels with its axis parallel to the direction of
travel (and therefore of the oncoming air flow) as shown in A. In order to keep the ball stable in flight 
a good player will spin the ball to create a torque vector through the axis of the ball as shown in B.
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BOX 13.2 THE OPTIMUM FLIGHT OF A RUGBY BALL, JAVELIN OR DISCUS
Figure 13.8 shows that the best flight position of these objects is with the long axis
aligned with the direction of travel. The question is how can we keep them in this
plane? A very slight rotational force or a slight change in the angle of the oncoming
wind could affect the flight position and stop the object travelling with its axis
aligned with the direction of flight. Yet we very rarely see this happen, because
good athletes spin the objects to keep them in the correct plane. 

Spinning the object gives it an angular momentum, which doesn’t change unless
it is acted on by a force. If the object has little (or no) spin, a small force can cause
a large change in its rotation but if it has a larger angular momentum, a large force
is required to affect its rotation significantly. 

The alternative wording for this explanation is that every spinning object creates
its own torque vector directed perpendicular to the axis of rotation. This torque
vector stabilises the object. While it is beyond the scope of this book to go into
detail with respect to the mathematics of these explanations, they are basically 
the same. 

You can see this phenomenon in action: you will have noticed that it is relatively
easy to ride a bicycle without your hands on the handlebars when it is moving (that
is, when the rotating wheels have angular momentum) but it is nearly impossible to
balance on a stationary bicycle, even with your hands on the handlebars. You will
have also seen this effect when you throw a Frisbee. The spinning of the Frisbee
allows it to keep a horizontal plane and to let its shape keep it flying. Since the
stability is affected both by the object’s speed of rotation and its mass (and its
distribution), there is less need to spin heavy objects as quickly to create stability.

This is the same principle behind rifling of gun barrels. This practice was first
used in the cannon barrels of French naval ships many centuries ago and is used in
nearly all guns today. The spherical bullets of cannons (and early guns) didn’t travel
in a straight line, because slight imperfections affected the air flow around them and
caused pressure differences. Pointed bullets are more aerodynamic, so they travel
further, faster and in a straight line (as long as they are aligned in the direction of
travel). Rifling is the engraving of spiral grooves on the inside surface of the barrel
of a gun or cannon that imparts spin on the bullet. A spinning bullet is very stable
and therefore it remains a highly aerodynamic projectile as it travels.

When rugby players, javelin or discus throwers release their implements, they
impart spin on them, to keep them stable in the air and flying with optimum
aerodynamic position. The task for the coach or biomechanist is to discover the
optimum amount of spin, because the more force we use to spin the object, the less
force we are able to apply to project it. 
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SPECIAL TOPIC: UNDERSTANDING TEST VARIABILITY … 
WAS THERE REALLY AN EFFECT? 
How confident are we that the change wasn’t caused by something else?

One theme of this book is to help you understand how you can test for the effects of
changes in certain parameters. That is, does making a biomechanical change according to
our theories actually make a change in practice? So, it is probably good to remind you of
some of the problems of data collection. 

We rarely get identical results in different tests. Results are always affected by numerous
factors, most of which we don’t have much control over. For example, what if a small gust of
wind came up in one of our trials? We might have seen a difference between two riding posi-
tions but only because a slight wind was blowing in one trial.

One way to see how repeatable or ‘reliable’ results are is to calculate another coefficient,
the coefficient of variation (CV). This is the standard deviation of the results divided by the
mean result. To calculate it, we need to make at least three trials of each of our conditions
(for example three for each of the standard and aerodynamic positions) and then use a calcu-
lator or spreadsheet programme to calculate mean and standard deviations. 

In Excel, you can use the formula ‘=stdev(n1, n2, n3…)’ to calculate a standard deviation
(where n1, n2, n3… are your results) and for the mean use ‘=average(n1,n2,n3…)’. You
might end up with numbers like these:

Step description Standard Forward lean with arms stretched

Results for three trials 74.06, 72.66, 75.90 N 61.91, 64.32, 60.11 N
Standard deviation (SD) 1.62 2.11
Mean (M) 74.21 62.11
Coefficient of Variation 2.2% 3.4%
(CV) = SD/M × 100%

In this experiment, there was little variability (2.2% and 3.4%). You can see that the
change in the mean value ((74.21 – 62.11)/74.21 × 100%) was 16.3%, which is much
greater than our CVs. The variability within each condition is much smaller than the
variability between them and we can be confident that this is a real result. 

There are a few other, very useful, statistical tests that you can do but these are
beyond the scope of the book. I’d suggest you visit a basic statistics website (search for
terms such as ‘t-test’, ‘ANOVA’ and ‘regression’ for starters; they might not mean anything
to you now but they will once you read about them) or get a standard statistics textbook
to help you learn a little about statistics.

It can be difficult to see very small changes in drag using the technique presented
above. You should remember that drag increases greatly with velocity, so you can see the
effects of small differences in drag if the velocity is high. Also, the longer the time over
which you take your measurements, the greater the likelihood that you’ll see a difference.
If you were a sprint runner and wanted to examine the effect of one Lycra suit against
another, where the difference is likely to be small, you might find a long hill that allows
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high speeds to be maintained for long periods on a bicycle and adopt a position where you
are as upright as possible (or standing on your pedals to mimic a standing position more
similar to running). You can time from the top to the bottom of the hill to see if there is
any (small) difference in drag when you are moving with your running suit on.

Useful Equations
speed = ∆d/∆t
velocity (v) = ∆s/∆t (rw for a spinning object)
acceleration (a) = ∆v/∆t
force of drag (form) (Fd) = kAv2

momentum (M) = m × v
conservation of momentum, m1v1 = m2v2

impulse (Ft) = F × t or Dmv
coefficient of variation (CV) = SD/mean × 100%
m·s-1 to km·h-1 = x m·s-1 /1000×3600
km·h-1 to m·s-1 = x km·h-1 ×1000/3600 

Related websites
Principles of Aeronautics, Aerodynamics in sports equipment, Aeronautics internet

textbook (www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/
Sports/instructor/). Website detailing the importance of aerodynamics in sports.

Aerodynamics of cycling, Cervelo.com (www.cervelo.com/content.aspx?m=
Engineering&i=Aerodynamics). Advanced website describing the use of aerody-
namics in bicycling.

Cycling Aerodynamics, Exploratorium.com (www.exploratorium.edu/cycling/
aerodynamics1.html). Description of the use of aerodynamics in cycling, includ-
ing drag calculators.

Aerodynamics and Hydrodynamics of the Human Body, Birds and Boeing, The
world think tank (www.worldthinktank.net/art124.shtml). Interesting observa-
tions on aerodynamics in humans and animals with links to several websites
examining aerodynamics in sports.

Understanding the Least-Squares Regression Line with a Visual Model: Measuring
Error in a Linear Model, Principles and Standards for School Mathematics
(http://standards.nctm.org/document/eexamples/chap7/7.4/ index.htm). Basic
explanation of regression equations, with an example allowing the user to
explore three methods for measuring how well a linear regression equation can
fit a set of data points.

SPORTS BIOMECHANICS148

Sports Biomechanics (AC Black)  6/6/07  13:01  Page 148

http://www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/Sports/instructor
http://www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/Sports/instructor
http://www.cervelo.com/content.aspx?m=Engineering&i=Aerodynamics
http://www.cervelo.com/content.aspx?m=Engineering&i=Aerodynamics
http://www.exploratorium.edu/cycling/aerodynamics1.html
http://www.exploratorium.edu/cycling/aerodynamics1.html
http://www.worldthinktank.net/art124.shtml
http://standards.nctm.org/document/eexamples/chap7/7.4/index.htm


COACH’S PERSPECTIVE

Andrew Walshe
Coach: 
Name: Andrew Walshe
Nationality: Australian

Athlete Biography:
Name: US Alpine Ski Team
Nationality: American

Major Achievements:
• USA achieved historical

best team results in 2005
World Championships in
Bormio, Italy; third overall
with two gold, one silver
and three bronze medals.

Among the world’s top three teams for past four years.

When and how did you use biomechanical analyses or theories to optimise the
skiers’ training? 
Fundamental sports technical assessments commenced in 2000 in preparation for
the 2002 Olympic Winter Games (OWG). Base level analysis included extensive
qualitative and quantitative video analysis of the athletes’ technical and tactical
performances on all World Cup and OWG venues. This has since been enhanced
with high speed video analysis linked to optical sensors attached to the skis (see
photo below). This adds performance feedback – by increasing the pitch of sound
in the skier’s ears as velocity increases – as well as high level technical analysis of the
course/skier in terms displacement on the snow, velocity acceleration, ski angles,
slip (sliding) and numerous other parameters.

How did you change your training/techniques based on this? 
Training has been modified in several ways:

• The manner in which tactical choices are relayed back to the athlete; course
analysis gives athlete feedback as to the ‘optimum’ line to ski so that performance
is maximised.

• Technical feedback as to body position that allows the athletes to modify timing
and distribution of pressure on the ski during a turn to increase velocity and
hence performance.
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Andrew Walshe and Per Ludstam use high-speed video and
optical sensor systems to analyse ski performance, Chile 2006.
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How do these analyses influence the chances of success of the skiers?
Video/velocity analysis has become an integral part of World Cup performance –
no teams that are not using these techniques have been successful in recent years.
However, in a sport with as many influencing variables as skiing, it’s very hard to
isolate the impact of one intervention/technique over the others.

What were the strong points (both personally and intellectually) of the best
biomechanists you worked with?
The success of the programme has been largely the result of the integration of new
technologies and ideas into the practical setting. This level of analysis needs to be
rigorously tested and evaluated prior to application. Once a successful test has been
achieved, extensive education with the coaching staff as to potential strengths and
weaknesses of the system needs to be completed. At this point, a carefully managed
programme that provides the coaches/athletes with feedback suitable to their level
of skill, experience, progression, and is part of a long-term strategic plan, needs to
be followed. “Too much information too soon” can severely impact the success of
any biomechanical evaluation if it’s to be incorporated into the programme at an
elite level.

The staff need to be well educated, but more importantly they must have the
personal and practical skills to introduce the information in such a way that it
supports the existing programme. Some of the most successful applied biomech-
anists are not the smartest, but are able to relate their findings in a simple and
productive manner to the coaches. Great personal and communication skills are
critical in this regard.

Overall, how important do you feel a good understanding of biomechanics is to a
coach or sport scientist?
It is very important. A programme’s success is typically a function of the coach’s
ability to both understand the potential of the programme as well as incorporate
the testing results into their coaching plan in a practical and effective manner.
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CHAPTER 14

HYDRODYNAMICS – DRAG 
We have performed a race analysis on a 400 m freestyle

(front crawl) swimmer and found that their swim time –

the time spent swimming during the race, rather than

starting or turning – was slower than their competitors.

How might we improve their movement through the

water to increase their swim speed?

By the end of this chapter you should be able to:

• Define the term ‘drag’ and explain how different forms of drag (form, surface
and wave) might affect sporting performance

• Describe the factors that influence drag in aquatic environments

• Describe the technique parameters that influence form, surface and wave drag
during swimming
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The first thing that we should understand is that the word hydrodynamics refers to
our movement in water-based environments, from the Greek word for water: hydor
(or hudor). Fluid dynamics encapsulates movement through all media, including
air and other fluids. In this chapter, we are concerned with how to propel ourselves
through water.

The second thing we should understand is what a race analysis is. If we want to
improve an athlete’s performance, it is very helpful first to determine their
strengths and weaknesses. In this example, we may have timed the turns during the
race (time from 5 m out from the wall, through the turn, to 5 m away from the
wall), then subtracted these from the total race time to obtain the actual swimming
time. We would also have measured the time from the ‘starter’s gun’ to the 5 m
point, to account for the start time, or omitted the first lap from the analysis. We
might thus have found that the swimmer had turn times as good as, or better than,
their competitors but that their swimming time was longer and so their swimming
stroke possibly requires improvement. From a biomechanical perspective, we need
to consider the factors that influence swimming speed and efficiency and work to
improve those, before re-testing to see if our interventions were effective. (Of
course, we should be mindful that the slow swim times could be due to psycholog-
ical or physiological reasons, or that perhaps any deficiencies in technique might
have resulted from poor strength or flexibility conditioning.)

Influence of drag
The forward speed of the swimmer will be dictated by two factors: (1) forces resist-
ing motion – drag; and (2) forces causing motion – propulsion. Since humans
manage maximum swimming speeds of just over 2 m·s-1 (compared to running
speeds of around 12 m·s-1 and swimming speeds of some fish of over 25 m·s-1), we
can see there is a real need to understand the impact of both these properties to
improve swimming performance. The total average drag force on a male swimmer
moving at 2 m·s-1 is a considerable 110 N; compare this to the drag values we
obtained in Chapter 13 when considering moving on a bicycle at over 16 m·s-1. In
this chapter, we will focus on the forces that resist motion.

Wave drag
You will remember that there are three main types of drag: form, surface and wave.
Wave drag is present at the interface of the water and the air, as the swimmer
pushes through the water. The wave in front of the swimmer pushes back against
them, thus slowing their speed or increasing the energy required to swim at a given
speed (Figure 14.1). Other waves that form around the body due to pressure differ-
ences also take energy away. In swimming, wave drag has a very significant effect.
In fact, in ‘arms-only’ front crawl swimming, wave drag has been estimated to
account for up to 50% of the total drag of the body (Toussaint & Truijens, 2005).
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These waves are similar to those that form around ships (much of what we know
about the effects of wave drag comes from our knowledge of ships). Wave length
and wave height both increase as the speed of a ship, or a swimmer, increases. The
faster we go the greater the wave drag. The wave system that surrounds a swimmer
will travel at the same speed as they do; we ‘carry’ the waves with us, but as we swim
more quickly the distance between the first wave (called the bow wave, as in the
bow of a ship) and the second wave will increase. At some point, the distance
between the waves will be the same as the length of our body and we will effectively
be swimming in a hollow (see Figure 14.2). Nearing this point, any attempt to
increase speed becomes very costly of energy. If we had a longer body, we could
swim faster before this occurred, so in some respects taller swimmers might have a
slight advantage. However, the wave-to-wave distance equals the body length at a
swim speed of just below 1.8 m·s-1 for a 2 m tall person; competitive swimmers
normally swim faster than this anyway, so, at least for this reason, there may not be
much of a benefit to being tall. This explains why wave drag makes up such a large
proportion of our total drag regardless of body size.
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FIG. 14.1 Waves build up at the front of the body during swimming. These waves oppose the forward
movement of the swimmer. Other waves also build up around the swimmer according to pressure
differentials.

FIG. 14.2 Waves form at consistent intervals along a ship (A). As the boat moves from a slow speed (B)
to a fast speed (C) the waves become higher (i.e., greater amplitude) and are spaced further apart. As
shown in C, at some point the distance between the bow and stern waves will be the same as the length
of the ship. In that case, the ship (or swimmer) will be moving in a ‘hollow’.
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At certain speeds, the bow wave can interfere with a second wave, the stern wave,
which is at the back end, or stern, of a ship or swimmer. Although the physics of
wave interference is beyond the scope of this book, the phenomenon is shown in
Figure 14.3. At some swimming speeds, the stern wave is cancelled or becomes
smaller, while at other speeds it is reinforced or becomes bigger (also called ‘wave
summation’). As swimming speed increases, there should theoretically be speeds at
which there is a slight drop in wave resistance and others where wave drag
increases, as shown in Figure 14.4. It is intriguing then to consider that at these
speeds we could optimise the efficiency of swimming. However, measurements of
active drag during swimming (Toussaint et al., 1988) show that the total drag
continues to increase with velocity and is always smaller or equal to the drag aris-
ing from the body being pulled passively through the water. This leads to the
conclusions that there is no particular speed at which swimmers swim with less
wave, or total, drag, that changes in velocity during the stroke will amplify drag, and
that swimming technique – possibly including the arm action and body roll –
might reduce wave build-up and thus minimise drag.

FIG. 14.3 A: At slower speeds, wave formation might look like this. B: At faster speeds, the wave distance
increases (solid line) but the first wave would still move backwards similar to the dotted line. C: In this
example, the waves cancel where the stern wave would normally have been. This is called cancellation.
Wave summation can also occur.

FIG. 14.4 At some speeds during passive swimming (i.e., where the body is dragged through the water),
wave cancellation and summation affect wave height and thus wave drag. As such, wave drag does not
increase constantly. However, active drag measured during swimming is always lower than, or equal to,
drag recorded under passive conditions. It has been suggested therefore that arm action and body roll
(i.e., good swimming technique) reduce wave drag.
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FIG. 14.5 Well-trained swimmers exhibit significantly less wave formation. Therefore, resistance due to
wave drag is reduced when compared to lesser-trained swimmers (compare to Figure 14.1). Therefore,
swimming technique likely has a significant effect on wave drag.

FIG. 14.6 Wave build-up at the nose of a ship increases drag (A). Bulbous front ends reduce wave
formation. While there is some contention as to the mechanisms by which they work, the most
common theory states that they produce waves that are ‘out of phase’ with the larger bow wave (B).
That is, the trough that normally occurs at the back end of a wave coincides with the peak of the bow
wave when the ship is at the appropriate speed. In that case, the trough and wave cancel each other 
(see Figure 14.3), so a bow wave does not form. Such a mechanism has been variously reported to
increase efficiency by 5%–25%.

It has been demonstrated that highly-trained swimmers create smaller waves
compared to less-skilled swimmers (Takamoto et al., 1985), which strongly suggests
that swimming technique might be an important factor influencing wave drag (see
Figure 14.5). While it is not clear exactly what techniques influence wave drag the
most, one hypothesis is that increasing the effective body length, by stretching the
arm in front of the body at the end of the recovery phase (before propulsion), will
reduce wave drag, since wave drag is greatest when the wave distance equals the body
length. The arm might also cause earlier separation of the oncoming flow, reducing
the pressure at the front of the head, and therefore minimise wave build up, a bit like
the bulbous front end of a ship minimises wave formation (see Figure 14.6).
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Nonetheless, the position of the body in the water is probably very significant. It
is likely that reducing the up-and-down movement of the body through the water
is an important factor, since wave drag is increased with the up-and-down motion
of a swimmer. Swimming with the head down and the chin closer to the chest,
rather than with the head up and eyes forward, allows the head to remain further
underwater. It has been hypothesised that the lower head position reduces the pres-
sure at the front of the head to minimise wave formation. Finally, body roll reduces
the effective surface area of the body that is perpendicular to the bow wave, so a
smaller wave is likely created and the swimmer is more likely to ‘pierce’ the wave
that does form. Surf lifesavers at your local beach often use a side-on diving tech-
nique through oncoming waves for this reason.

One notable way to reduce wave drag is to swim as much as possible underwa-
ter. ‘Submarining’ techniques, where swimmers stay well below the water line so
that waves are not created, have been used very effectively to propel the body
through water even though a relatively weak ‘dolphin’ kick (wave-like motion of the
body) is the only means of propulsion. The International Swimming Federation
(FINA) has placed strict limits on the distances that can be swum underwater in
most forms of racing but if a swimmer fails to swim underwater to the limits of
these rules, they might be surrendering a competitive advantage.

Form drag
Form drag – drag that is associated with the surface area and shape of the swimmer
– is also very significant. To reduce it, we need to minimise the front-facing area of
the swimmer as much as possible. This can be done by keeping the head down
(which will also reduce wave drag, as discussed above).

The frontal surface area is also increased by the swinging of the legs during flut-
ter-type kicking. At the extreme ranges of the kick (Figure 14.7), the frontal surface
area of the body is large. We might therefore choose to keep the amplitude of kicks
to a minimum, while making them as powerful as possible. The ideal size of the
kick will differ between swimmers with different leg size and length, so we need to
test this in training. Having said that, a small leg kick seems to reduce the pressure
differential around the leg area of the body, which minimises wave formation and
considerably reduces wave drag (van den Hout, 2003). Since the reduction in wave
drag is greater than any increase in form drag, a small, continuous kick reduces
drag during swimming. Indeed, given the poor capability of swimmers to produce
propulsion through the standard flutter kick in crawl swimming, its greatest bene-
fit might be that it reduces drag!

Finally, reducing frontal surface area can also be accomplished by aligning the
body as much as possible in the swim direction (see Figure 14.8). Any deviation
from this line will increase the frontal surface area of the body. While the body roll
that occurs commonly during swimming does not increase frontal surface area,
both pitch (rotation about the mediolateral axis) and yaw (rotation about the
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anteroposterior axis) do. These whole body rotations are therefore detrimental to
swimming speed and efficiency.

Surface drag
You will remember from Chapter 13 that surface drag is caused by the friction of
the water on the surface of an object. While smaller in magnitude than wave and
form drag, the surface drag on a swimmer can significantly affect performance,
especially when we consider that races can be decided by differences as small as
one-hundredth of a second. Traditional practices aimed at reducing surface drag
include minimising the size of swim suits (skin has a lower friction coefficient than
Lycra or cotton in water) and shaving the body to remove hair.

More recently, swimmers have used specially-designed suits reported to have
much lower drag coefficients. These suits increase surface drag, so that water
remains attached to the swimmer as a boundary layer, much like the golf ball and
flat-fronted truck examples from Chapter 13. The hypothesis is that the attached
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FIG. 14.7 Since form drag is proportional to the frontal cross-sectional area of the swimmer (remember
Fd = kAv2; Chapter 14), kicks with greater amplitude (A) will increase form drag.

FIG. 14.8 To reduce form drag, an object (e.g. our body) should remain aligned with the direction of
travel. In some swimmers, the legs fall below the level of the head (pitch; top diagram), which increases
the frontal surface area of the body. Sideways movement of the body can also occur (yaw; bottom
diagram), which also increases surface area. Both technical flaws increase form drag and thus reduce
swimming performance.
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layer reduces pressure differences around the body to minimise both form and
wave drag. Published research has yet to show a significant benefit of these suits
during active swimming; one study estimates a 2% improvement (Toussaint et al.,
2002). However, some researchers have shown significant (up to 10%) reductions
in drag compared to normal swimwear when swimmers are towed through the
water at racing speeds (Mollendorf et al., 2004). It is very likely that the hydrody-
namic improvements seen during tests of passive swimming (that is, when the
swimmers are dragged through the water) far exceed those improvements during
active swimming. However, any improvement in swimming performance might be
beneficial when a race can be won or lost by 0.01 s.

THE ANSWER
Hydrodynamically, how can we improve swimming time? First, it is important to
note that there is no ideal body position that can be used for everyone, so individ-
ual testing will be needed to determine each swimmer’s optimum. However, we can
point to several technique parameters that could be manipulated to improve swim-
ming time:

• The lead arm (recovery arm) should stretch in front of the head of the swimmer
as the propulsion arm pushes backwards. This should reduce wave formation by
increasing the effective body length and reducing pressures at the head that
might cause a bow wave build-up. It will also reduce form drag, by allowing
water to separate earlier and travel around the body with less impedance, thus
reducing turbulence and energy loss.

• The head should be slightly tucked face down in the water, to minimise wave and
form drag by keeping more of the body under water and increasing the stream-
lined shape of the body.

• The amplitude of the leg kick should be as small as possible for a given power
requirement, since increasing kick amplitude increases frontal surface area and,
therefore, form drag. However, a small kick reduces wave (and total) drag and so
should be maintained at all times.

• The body must maintain good alignment with the direction of swim; any pitch
or yaw of the body will increase the frontal surface area and increase form drag
(the effects of body roll are complicated and beyond the scope of this chapter).

• The use of appropriate swimwear might reduce form and wave drag.

The cosmopolitan sailfish (Istiophorus platypterus) is thought to be the fastest fish
over short distances. It is very difficult accurately to measure its top speed because it
rarely moves in a straight line, but in trials completed at the Long Key Fishing Camp,
Florida, USA, a cosmopolitan sailfish took out 91 m of fishing line in just three
seconds and so must have been travelling at over 30 m·s-1 or nearly 109 km·h-1!
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Although the sailfish has a huge propulsive potential, such speeds can only be
achieved because of its fantastically low drag. Humans have a long way to go before
we fully understand how to minimise hydrodynamic drag to this extent but as
biomechanists discover new ways to reduce drag, you can expect swimming world
records to continue to fall.

HOW ELSE CAN WE USE THIS INFORMATION?
This information is important when developing techniques to optimise other
swimming strokes. Breaststroke swimmers commonly propel themselves under
water, only surfacing at the end of each stroke to breathe (as the rules state they
must); at this point, wave drag is significant (see Figure 14.9) so breaststrokers keep
their hands in front of the chest to reduce drag. Butterfly stroke swimmers use
similar hydrodynamic techniques for the underwater phase (as well as maximising
their use of submarining at each turn). Our increased understanding of hydrody-
namic principles has also led to great increases in the speeds of water-based sports
craft including speed boats, yachts, Olympic class boats and jet skis.

Useful Equations
force (F) = m × a
force of drag (form) (Fd) = kAv2
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CHAPTER 15

HYDRODYNAMICS – 
PROPULSION
If, after making the changes shown in Chapter 14, we find

that swimming time improves but is still not as good as

those of other swimmers, what else might we do?

By the end of this chapter you should be able to:

• Explain the importance of drag and lift forces in swimming propulsion

• Describe the theoretically-optimum propulsive technique with respect to the
production of drag and lift

• Explain how lift is generated in swimming (and on other objects in sport) with
reference to Newton’s laws and the Bernoulli effect
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Swimming performance is dictated both by the forces resisting motion (drag) and
those assisting motion (propulsion). In this chapter, we will learn about the forces
assisting motion to see if we can further improve swimming technique.

Force production in swimming
According to Newton’s Third Law (action–reaction), to move forward in the water
we need to apply a backward force to it, so we could describe swimming in terms
of an action force and a reaction force. However, as the aim of swimming is to move
through the water more quickly, it is actually the amount of force per unit of time
– power – that is important, so we should probably discuss swimming in terms of
an action power and a reaction power. Unfortunately, the ‘reaction power’ is not
quite the equal and opposite of the ‘action power’ in swimming. Why? Water is not
a solid, so it moves when we apply a force against it. Therefore, some of the power
is used to induce movement in the water rather than to propel a swimmer forward.
The trick to swimming propulsion is to increase the amount of reaction power for
a given action power; this is called ‘propulsive efficiency’. In good human swim-
mers, propulsive efficiency is about 80%; that is, 80% of the power or energy goes
into moving the swimmer and 20% to moving the water. There are several ways we
can manipulate a swimmer’s stroke to improve propulsive efficiency but first we
have to understand how we propel ourselves.

Drag effects
Half a century ago, swimmers were taught to keep their arms straight during the
propulsion phase in front crawl swimming. The predominant theory of the 1960s
was that an opposing drag force acting on the hand and arm was the major force of
propulsion. The drag on the hand and arm opposed their movement through the
water and provided the swimmer with a force on which to pull (Figure 15.1). Thus,
the drag force acted like a handle on which the swimmer could pull.
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FIG. 15.1 A drag force acts on the hand in the direction opposite to the arm movement.
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To increase drag, swimmers need to increase the surface area of their hand and
arm. This is accomplished partly through the use of a relatively straight hand and
arm path and is improved by slightly spreading the fingers. As fast-moving water
flows into the hand, some will pass around it, while some will attempt to pass
between the slightly spaced fingers. When the volume of water moving through the
fingers reaches a critical level, its flow is impeded. (Imagine a large number of
people trying to get through a door at the same time.) Since the water is effectively
‘stuck’ between the fingers, the total surface area of the ‘fluid-stopping’ hand is
increased. The greater surface area causes an increase in drag and improves propul-
sion. Taller swimmers, who might also have longer arms and larger hands, would
be able to create greater drag forces, which perhaps is of benefit to them.

Lift effects
There is little debate that a significant drag force acts on the hand and arm but
visual inspection of the hand and arm paths of top swimmers of the 1960s revealed
a significant ‘S-’ (or ‘sigmoidal’) shape, as shown in Figure 15.2 (Brown &
Counsilman, 1971; Counsilman, 1971). Such a movement is called ‘sculling’. While
the benefit of sculling was difficult to explain at first, it was eventually hypothesised
that this propulsion method allowed the generation of a lift force that could
improve swimming propulsion. Essentially, as the hand moves laterally through the
water, its slight tilt or pitch towards the oncoming water causes it to act like an aero-
foil or aeroplane wing (Figure 15.2). The lateral movement of the hand creates lift
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FIG. 15.2 The hand moving laterally through the water acts much like an aerofoil, creating a lift force
directed upward into the hand (A). The lateral movement of the hand occurs when a swimmer uses a
sigmoidal hand path (B). This is done as the outstretched propulsion arm is brought first towards the
midline of the body (medial movement) as the hand and arm swings down through the stroke, and is
then brought away from the midline (lateral movement) later in the stroke.
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on the palm of the hand, on which the hand can ‘pull’. Coaches now teach swim-
mers to use a more curved hand path. The amount of lift is increased as the size of
the hand increases, so swimmers with larger hands (usually taller swimmers) and
those who use a slight spacing of the fingers are able to produce greater lift forces.

To understand how lift is generated, read ‘Special Topic: The development of lift
in fluid environments’ at the end of this chapter. Since many explanations of lift are
wrong, this section is worthy of a close read. Understanding lift could help you
improve performance in a variety of other sports. However, for now, we will move
on and consider more theories of swimming propulsion.

A recent theory: the Bernoulli effect
The hypothesis that both lift and drag forces produced through a curved hand path
accounted for the propulsive power in swimming was prominent until relatively
recently. However, there seemed to be a discrepancy between the impulses
predicted from models of lift and drag and those measured during swimming.
Complicated biomechanical analyses of the top swimmers in the early 1990s (e.g.
Cappaert, 1993) also seemed to show that they adopted a straighter hand path than
expected. A very simple experiment, performed by Toussaint and colleagues
(2002), demonstrated the potential for the lift force to be increased through the
Bernoulli effect. Daniel Bernoulli was born in Groningen, Holland in 1700. He was
the first scientist to describe the relationship between fluid pressure and velocity.
Bernoulli discovered that areas of high speed fluid flow were associated with lower
fluid pressure. The understandable assumption that faster-moving fluids develop
higher pressure is not the case.
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FIG. 15.3 Since the same quantity of water must flow at each point in the pipe, water flow at point A 
is slower than at point B. This allows the particles to interact with the pipe and thus create a pressure.
When the water moves faster, more of the speed of the water is directed along the pipe, so less
interaction is possible and pressure is lower.
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Think of a pipe with water flowing through it (Figure 15.3). As a volume of water
particles (that is, a mass) moves through the pipe at slow speed, the moving parti-
cles interact with the pipe’s surface. This interaction creates a pressure (that is, a
force over a given area), because each particle exerts a force when it collides with
the pipe. As the pipe narrows, the water speeds up, because the same volume of
water must flow through this section of the pipe but less water can fit in at any
one time (through conservation of momentum). The molecules therefore flow
more in the direction of the pipe, so there is less chance to make contact with the
pipe itself. Since there are fewer interactions, the particles apply less force to the
pipe wall. You could also visualise children running about in a large room, bump-
ing their shoulders on the walls, and then running down a narrow hall; they will
have less chance to bump into walls if they are concentrating on running quickly
down the hall.

Bernoulli’s theory is based on the idea that the energy of a fluid is non-changing;
its total energy is proportional to its kinetic energy, its potential energy and its pres-
sure (see equation above). If its kinetic energy is increased (that is, its velocity
increases) then its pressure must decrease (unless its potential energy is reduced,
for example by the fluid running downhill). Bernoulli never stated that the faster
flow causes the lower pressure, only that they tend to co-exist. For example, a drop
in pressure at one end of the pipe would cause the water to speed up; either factor
can cause the other.

The Bernoulli effect and swimming performance
As the hand moves through water, there is a collision of the water with the palm
(ventral side) of the hand and therefore a force is directed into the hand; the pres-
sure on the ventral side is thus relatively high. A ‘hole’, or area of lower pressure,
would normally form behind the hand. Since fluids will always flow from a region
of high pressure to one of low pressure, there should be a circulation of water from
the ventral (palm) to the dorsal (back) side of the hand. In this case, there would
be relatively high pressure on the ventral side of the hand and relatively low pres-
sure on the dorsal side (see Figure 15.5).
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FIG. 15.4 Bernoulli effect

Sports Biomechanics (AC Black)  6/6/07  13:01  Page 165



The same circulation of water should also occur around the arm but because the
proximal part of the arm moves relatively more slowly (remember v = rw; see
Chapter 2) the water moves around the arm more slowly and the pressure differ-
ence wouldn’t be as great. Therefore, there should be higher pressure on the dorsal
side proximally at the arm, compared to distally at the hand and the water will flow
towards the hand along the pressure gradient (see Figure 15.6). This mass of faster-
moving water should further reduce the dorsal pressure and allow greater lift (and
drag) forces to be produced. So, the Bernoulli effect should theoretically aid swim-
ming propulsion. Does this really happen?
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FIG. 15.5 A: As the hand moves through the water, a region of high pressure is created as water collides
with the ventral (palm) side of the hand and arm while a region of low pressure forms on the dorsal
(back) side. B: Water therefore flows rapidly to the back of the hand along the pressure gradient,
although the rapid movement is associated with a further reduction in pressure, as predicted by
Bernoulli’s theorem.

FIG. 15.6 As the pressure on the dorsal surface of the hand decreases more than that at the upper arm,
water will flow from the top of the arm towards the hand along the pressure gradient. This further
reduces dorsal pressures, increases water flow, and increases the lift force.
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The first, ingenious, way this was shown to occur was to place tufts of string on
the arm of a swimmer and record the motion of the string (Toussaint et al., 2002).
As the arm moves through the water – and the water therefore moves past the arm
– the string on the back of the arm might be expected to stream away from the arm,
as shown in Figure 15.7 (A). However, Toussaint found that the string was actually
forced down on to the arm, as water flowed proximo-distally (from upper to lower)
along the arm (Figure 15.7 (B))! 

Follow-up experiments corroborated these findings and revealed the magnitude
of the pressure changes. They showed that, even though the peak pressures of the
ventral and dorsal sides of the arm decreased as swimming speed increased (this is
to be expected, because water flows across both surfaces, so pressure will decrease
as it flows faster), the ventral–dorsal pressure differential became greater as a result
of the faster-moving water (Figure 15.8). This meant that there was relatively more
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FIG. 15.7 As the arm moves through the water, string attached to the dorsal side might be expected to
stream away from the arm, as it would if a wind rushed past the arm (A). However, because of water
flow down the dorsal aspect of the arm, the string is forced down onto the arm (B).

FIG. 15.8 Pressures measured on the ventral (palm) and dorsal (back) surfaces of the hand decrease as
swimming speed increases from a slow speed (left) to maximal sprinting (right). However, the difference
in pressure between ventral and dorsal surfaces (solid line) increases substantially as swimming speed
increases. The resultant force is therefore directed into the ventral surface of the hand, effectively creating
a ‘handle’ on which the swimmer can pull.
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pressure on the ventral than the dorsal side, even though the pressure on each
surface decreased. The swimmers weren’t swimming faster by applying more force
with the front of their hands but by reducing the force produced at the back of
them! The slightly straighter hand path, which maximises the velocity difference
between the upper and lower arms, perhaps allows greater water shifts down the
arm and ultimately greater lift (and drag) forces to be produced. So while swim-
mers continue to use a slightly curved hand path, many coaches teach the use of a
straighter hand path than they did from the 1970s to the 1990s.

Use of other knowledge to improve swimming propulsion
Principles we learn in one context can often be applied in others. We have seen that
minimising drag and improving propulsion can be achieved through modification
of swimming technique but do we know how we can apply the propulsive forces
more appropriately? 

Swimming efficiency will be improved if the forces are applied more in line with
the direction in which we’re swimming.

In swimming, we want to make sure that most of the force of propulsion is
directed backwards, since we want to swim forwards, although some will be
directed downwards to help keep the body floating. A good swimmer will flex their
hand at the beginning of the propulsive phase, so that the palm is facing backwards,
rather than keeping it in a neutral position where the initial force direction would
be downward (see Figure 15.9). For the duration of the stroke, they should main-
tain this alignment with the water reasonably constantly. Some less-efficient
swimmers produce a greater downward path of the hand. This increases the verti-
cal force and helps keep the body afloat but reduces the horizontal forces that are
required for higher swimming speeds.

The swimmer will always produce some downward force, so we should consider
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FIG. 15.9 The recovering arm is inserted into the water with the hand outstretched to reduce drag 
(A and B). However, some efficient swimmers flex the wrist (dotted arrow; A) at the beginning of the
propulsion phase and use a relatively horizontal pull through the water. This ensures that horizontal
forces are optimised. Some less efficient swimmers do not flex the wrist, but use an arced hand path
where vertical forces are greater and horizontal forces are reduced (B); this technique helps to stop the
body sinking, but reduces swimming speed.
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that every time we apply a downward force to the side of the midline, the body will
tend to roll in the opposite direction. This is because we apply that downward force
at a distance from the rotation axis of our body, creating torque. Body roll is useful
(see Chapter 14) but our ability to generate propulsion is lessened as we roll away
from the hand. How can we apply an opposing force to minimise the rotation?
Probably the easiest way is to kick downwards, with an amplitude slightly greater
than normal with the opposite (or the contralateral) leg, just as the arm begins its
propulsive phase. The downward movement of the leg will tend to rotate the body
in the opposite direction to the propulsion arm and minimise body roll. Then,
instead of the propulsion force causing body roll, it can be used to accelerate the
body upwards and forwards. A kick of larger amplitude will affect the drag force, as
you learned in Chapter 14, so only the kick that is executed at the onset of the
propulsive phase should have such a greater amplitude. The technique is probably
most useful in sprint events, where small energy losses are a reasonable trade-off
for greater propulsive power, although it could also be used at the end (sprint
phase) of longer events such as the 400, 800 and 1500 m.

One final point is that the forward acceleration of the body is proportional to
the impulse provided, not the peak forces achieved. Longer strokes, which increase
the time of force application, might thus be beneficial (∆Ft = ∆mv; see Chapter 5).
In this sense, taller swimmers with longer arms might have an advantage but stroke
length can be improved by ensuring that the propulsive stroke begins with the arm
well outstretched and ends with the hand leaving the water close to the hip.
Swimmers of all sizes should adopt this strategy.

THE ANSWER
From a propulsion point of view, how can we improve the swimming time of a swim-
mer? It is important to note that there is no ideal swimming stroke that can be used
for everyone; individual testing is needed to determine each swimmer’s optimum
technique. However, there are several techniques that could improve swim time:

• The fingers of the hand should be slightly spaced, to increase the effective surface
area of the hand and thus increase both drag and lift forces during propulsion.

• The arm path should be slightly curved, to allow the generation of lift forces to
aid propulsion. However, there is a trade off: if the speed of the arm through the
water is reduced by excessive lateral movement there will be a smaller velocity
difference between the upper and lower arm. This will reduce the pressure
differential between the ventral and dorsal surfaces of the arm and allow less lift
and drag to be produced. There will therefore be less of a ‘handle’ on which the
swimmer can pull.

• At the start of the propulsive phase, the wrist should be flexed, to allow greater
horizontal force production with less vertical force throughout the stroke.
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• During high-speed swimming, it might be useful to use a large single kick of the
contralateral leg just after the start of the propulsive phase (before continuing
the normal kick for the rest of the stroke) to prevent excessive body roll and
allow effective force production.

• The stroke length of the swimmer is important, since the acceleration of the
body in the water is proportional to the impulse provided. A longer stroke allows
a greater time of force application and therefore greater impulse.

Optimising these techniques, along with those discussed in Chapter 14, should
ensure significant improvements in swimming time.

HOW ELSE CAN WE USE THIS INFORMATION?
Much of what you’ve learned in this chapter can be applied to the butterfly, breast-
stroke and backstroke. It can also be used to develop better methods for treading
water in sports such as water polo, or to improve treading ability in lifesavers. The
principles are widely used in the design of water craft; the keels of yachts and the
underbellies of boats are designed for optimum lift and minimal drag.
Furthermore, the principles of lift described in the Special Topic are applied to all
manner of racing vehicles that use upside-down aerofoils to create a downwards
force and stability at high speeds and around corners (did you know that a Formula
1 racing car could drive upside-down at 160 km·h-1?).

Once you’ve read the Special Topic you’ll also understand better why there is an
optimum tilt angle for implements such as the discus. Because the discus is essen-
tially a flat plate, lift can be generated if it flies appropriately into oncoming air. You
might think you should throw it so that it is inclined at an angle to the oncoming
wind, at a positive angle of attack but this is not the case. Remember, if you spin
the discus about its longitudinal axis (like spinning it while it sits on a table) it will
be more likely to remain stable in flight (see Chapter 13). We therefore project it
into the oncoming air at an angle that will be maintained through the duration of
the flight, so we choose a specific optimum angle.* With a positive angle of attack,
the discus will create lift early in the flight but by mid-flight there will be a great
deal of drag, which will reduce horizontal velocity (and, therefore, lift) and the
discus will stall; that is, the lift force will tend to push the discus back towards you.
This can be seen in Figure 15.10. If we orient the discus perfectly with the oncom-
ing air, it will fly with little drag but also little lift until it reaches the top of its
trajectory, at which time it will encounter significant drag.

* The spin can also tilt the discus because one side of the discus is spinning into the oncoming air while the
other side of the discus is spinning away. Therefore, the relative speed of the air is greater on one side that the
other and lift is therefore greater. This imbalance of lift causes the discus to tilt, although the consequences of
this tilt are not as significant as the benefits to the discus’ stability.
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FIG. 15.10 Effect of angle of attack on discus flight distance. The discus with a negative angle of attack
(dark line) travels the greatest distance because this orientation maximises lift and decreases drag
through the entire trajectory. Throws with a positive angle of attack (lightest line) may ‘stall’ as the drag
force increases significantly in the downward phase of the trajectory.

The final option is to throw the discus with a negative angle of attack. Early in the
flight there is some negative lift and a small amount of drag. However, the discus will
then create lift as it approaches the top of its trajectory. On its way down, drag forces
are smaller than in the other two conditions and some lift is still generated. Given
that throwers propel the discus with a positive height of release, the object spends
more time in the downward phase, so optimising this phase is more important. The
idea that a negative angle of attack is best is corroborated by biomechanical analy-
ses showing that elite throwers often use a negative angle of attack of between 10°
and 20° (Terauds, 1978).

SPECIAL TOPIC: THE DEVELOPMENT OF LIFT IN FLUID ENVIRONMENTS
The principle of lift is used in many sports. It is important in swimming and other aquatic
sports but also in the flight of projectiles such as the javelin, discus and rugby/American
footballs. 

How is lift created? There are generally two ways to understand it: (1) by considering
Newton’s Third Law (action–reaction) and (2) by considering Bernoulli’s principle. Let’s
start with Newton.

Newton did not describe the lift generated by an aerofoil, but his mathematics have
been used to explain it. As air passes over an object capable of generating lift, such as the
aerofoil (aeroplane wing) in Figure 15.11, the direction of the air is changed: it is said to
be ‘turned’. Essentially, the angled aerofoil forces a mass of air downwards. The air has
changed velocity – is accelerated. (Remember, velocity change occurs when either the
speed or direction of an object is changed; in this case both the velocity and direction are
changed). The movement of air downwards indicates that a downward force must have
been acting, since F = ma. So, according to Newton’s Third Law, there must be an equal
and opposite force simultaneously created. This is lift. 
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FIG. 15.11 An aerofoil ‘turns’ the air. Since a mass of air is accelerated downwards by the wing (i.e. a
force acts: F = ma) there must be an equal and opposite force acting upwards on the aerofoil, according
to Newton’s Third Law.

Advocates of this theory point to the existence of a large downwash of air seen behind the
wings of aircraft in flight. The phenomenon can be described also from a conservation of
momentum point of view; a mass of air is moved downwards so another mass must also be
moved upwards to conserve momentum.

Bernoulli didn’t try to explain lift either but we can use his theories of pressure and
velocity to explain the lift created by an aerofoil. As the air passes over the aerofoil, the
air on the top surface accelerates, while the air on the bottom travels at a relatively
slower speed (Figure 15.12). Since the area of fast-moving flow is associated with lower
pressure, the region on the top of the aerofoil has lower pressure than the region on the
bottom. The resultant pressure pushes the aerofoil upwards, i.e. a lift force is generated.
Measurements of both the velocity of air and pressure distributions across a wing are in
good agreement with this theory. However, some scientists warn that it is the low pressure
caused by the turning of the air or the formation of vortices at the rear side of the wing
(see below) that accelerates the air on top of the wing and not that an increased velocity
causes a drop in pressure.

FIG. 15.12 Acceleration of the air on the top surface of the wing is associated with a lower pressure than
the slower-moving air under the bottom surface; dots on the airflow lines show the paths of two particles
that meet the aerofoil simultaneously. The pressure difference causes a resultant upward pressure, or
force, called lift.

One question remains: how does the air on the top of the wing accelerate? There is still a
lot that we don’t know about lift but one theory, well backed by experimental data, is that
the tail (sharp) edge of the wing would normally hold a vortex or spinning mass of air as

SPORTS BIOMECHANICS172

Sports Biomechanics (AC Black)  6/6/07  13:01  Page 172



the air is turned by the wing (Figure 15.13). At the centre of the vortex is a region of low
pressure into which air accelerates. Once the airspeed increases, the vortex is shed off the
back of the wing and air flow becomes relatively stable. Of course, according to Newton, if
there is a mass of air spinning in one direction there must be another mass of air spinning
in the opposite direction. This is seen when air flow is measured around a wing.

FIG. 15.13 As air starts to flow over an aerofoil, a vortex forms at the trailing edge. Air is accelerated 
to its centre, which is of lower pressure. The vortex is subsequently shed as the air rushes towards it.
An opposite flow of air forms at the leading edge of the aerofoil to conserve angular momentum.
The acceleration of air on the top surface is associated with lower pressure, which creates lift.

Both theories of lift are correct, because both explanations are essentially the same. Using
Newton’s theories, an upward force is created when the wing turns the air downwards (i.e.
a downward force is applied). Using Bernoulli’s theories, the wing turns the air to change
its velocity to create regions of varying pressure resulting in an upward force. Both rely 
on changes in air velocity or a ‘turning’ of the air, either causing, or being caused by, 
a change in pressure. Essentially, lift is created when the air (or any fluid) is turned.

You may have seen or heard other explanations for the generation of lift and are
wondering how those theories differ from the explanations above. There are three theories
that are not completely correct (or not correct at all).

Incorrect Theory 1: Skipping stone theory.
One theory is that the air touching the under-surface of an aerofoil creates an upward
force creating lift (Figure 15.14). Since this is much like the force exerted by the water
surface on the underside of a flat rock that is skipped across it, it is often called the
‘skipping stone’ theory. 

Unfortunately, this theory neglects the fact that the air moving over the top surface
contributes significantly to lift. It predicts that the shape of the top surface wouldn’t
affect lift at all, which is incorrect; many aeroplane wings use spoilers to disrupt the air
flow over the top surface of the wing to help manoeuvre the aircraft. It also doesn’t
predict the lift encountered by symmetrical objects such as spinning cylinders or balls that
encounter an airflow equally on both top and bottom sides (as we’ll see in Chapter 16).
While there might be some additional upward force provided by this mechanism, it is
incorrect to assume that it explains the majority of the lift force.
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FIG. 15.14 It is incorrect that the main cause of lift is the Newtonian force generated by air hitting the
underside of an aerofoil.

Incorrect Theory 2: Air accelerates over the top of the wing as the area for flow
decreases.
In this theory, movement of air well above an aerofoil is thought to act as a lid or
immovable layer (Figure 15.15). Air passing just over the wing is forced through an area 
with a smaller diameter and must therefore speed up so that the same volume of air can
pass. The increase in speed results in a decrease of pressure on top of the wing to create lift.

This theory is wrong on several counts. It neglects the fact that the underside of the
wing contributes significantly to lift. If it were true, we could make the underside of the
wing any shape we like without affecting lift. However, the shape of the underside
significantly affects lift. It is also not true that air flow well above the aerofoil acts like a
lid. If it did, then lift would be created if we oriented the aerofoil with a negative angle of
attack, since this too would force air to move through a smaller area (Figure 15.15). If we
did this we would create negative lift; that is, the wing would be forced down. Finally, it
requires that the top side of the aerofoil is curved to decrease the area available for flow;
however, lift can be generated well with a flat plate or with the flat wings of a paper
aeroplane!

FIG. 15.15 It is incorrect that an upper air flow acts as a lid to reduce the area for flow over the aerofoil,
which would increase its velocity and reduce its pressure (A). The easiest way to disprove it is to invert
the aerofoil (B); there would still be a constriction that would increase the air velocity and create lift
(dotted arrow) but in fact this orientation creates negative lift (solid arrow). In either of these two
diagrams, the air could theoretically have formed a lid on the opposite surface of the aerofoil.
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Incorrect Theory 3: Air accelerates as it takes a longer path across the top of the
aerofoil.
This theory is similar to Theory 2, except that the only requirement is that two particles
starting at the front edge of the aerofoil, but travelling along different paths, have to
reach the back edge simultaneously (Figure 15.16). Since the particle travelling over the
wing travels a greater distance when the top surface is curved, it must travel faster and
pressure must decrease, according to Bernoulli’s principle.

This theory again neglects the importance of the under-surface and requires that the
top surface is longer than the bottom surface. These are clearly false. As you saw in Figure
15.12, the air travelling over the top surface actually reaches the trailing edge earlier.
While the theory does explain that air moving faster over the top surface would generate
lift, the mechanism by which it is proposed to occur is incorrect.

FIG. 15.16 It is incorrect to assume that two air particles that part at the front edge of an aerofoil travel
to the trailing edge in the same time. As shown previously in Figure 15.11, air on the top surface reaches
the trailing edge earlier.

Useful Equations
force of drag (form) (Fd): kAv2

impulse (Ft) = F × t or ∆mv
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Related websites
‘Propulsion in Swimming’ by Carla McCabe and Ross Saunders, Coaches’

InfoService: Sports science information for coaches (http://coachesinfo.com/
category/swimming/323/). Provides an historical overview of the theories on
swimming propulsion.

‘Propulsion Mechanics: Swimming the Front Crawl’, Swimming Research Center
Amsterdam (http://web.mac.com/htoussaint/iWeb/SwimSite/Welcome.html).
Highlights the research performed by a leading team of swimming biomechan-
ics researchers and provides a synopsis of the mechanics of swimming
propulsion.

‘Lift or Drag? Let’s Get Skeptical About Freestyle Propulsion’, BioMech (http://
sportsci.org/news/biomech/skeptic.html). Overview of the arguments surround-
ing lift versus drag as the predominant forces in swimming propulsion.

Principles of Aeronautics, Aerodynamics in sports equipment, Aeronautics internet
textbook (www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/
Sports/instructor/). Website detailing the importance of aerodynamics in sports

National Aeronautics and Space Administration (www.grc.nasa.gov/WWW/K-
12/airplane/bga.html). Well-written introduction to aerodynamics.

NASA Advanced Supercomputing Division, Aerodynamics of car racing
(www.nas.nasa.gov/About/Education/Racecar/). Complete website exploring
the aerodynamics of car racing.
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CHAPTER 16

THE MAGNUS EFFECT 
After you hit it, a golf ball starts off travelling straight but

eventually curves to the right. How does it do this? How

can you get the ball to travel straight?

By the end of this chapter you should be able to:

• Describe how a lift force is produced by a spinning object with reference to
Newton’s laws and the Bernoulli effect

• Explain the effects of relative wind speed and object spin speed on the magni-
tude of the Magnus Force

• Give examples of how the Magnus effect can negatively affect sporting
performance

• Give examples of how the Magnus effect can be used to improve sporting
performance
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If a ball flies off to one side after being hit, the first thought might be that you
applied a force to the ball that wasn’t in the desired direction; that is, you hit the
ball at an angle. However, in the example above the ball started off straight then
started to swerve or swing. So it’s probably not that you’re hitting the ball in 
the wrong direction. Another force must be acting to make the ball swing after
you’ve hit it.

To understand what is going on and how to fix this problem, you may need to
remind yourself of the concept of lift described in Chapter 15. If an object, such as
a golf ball, is moving in a straight line but then one side of the ball encounters a
higher pressure than the other side (akin to the pressures around an aerofoil) it will
start to swerve or swing. How are these unequal pressures generated?

There has been long debate over the exact mechanism responsible for the devel-
opment of the lift force on spherical objects such as the golf ball. In 1672, Newton
first noted how a tennis ball’s flight was affected by spin (this was real, or royal,
tennis, not modern lawn tennis). Eighty years later, Robins showed that a rotating
sphere, such as a ball, was associated with a sideways (transverse) force. The first
explanation of the lateral movement of a spinning ball is attributed to H.G.
Magnus who, in 1852, showed that the sideways force was proportional to the speed
of the air over the ball and the speed of the spin of the ball.

The most common explanation is that a spinning ball ‘grabs’ the air that flows
past it because of the friction between the air and the ball, so these air particles start
to spin with the ball. Other air particles that touch those particles also start to spin.
As you can see in Figure 16.1, the collision between the oncoming air and the ball
or air spinning with it causes air on one side of the ball to slow down. On the other
side of the ball, the air moves past relatively unimpeded. The speed of air on one
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FIG. 16.1 The spinning ball drags a boundary layer of air with it. On the left side of the ball the air
spinning with the ball collides with oncoming air and slows down (left diagram). The slower velocity air
is associated with high relative pressure (right diagram). The opposite occurs on the right side of the ball
creating a ‘pressure differential’ directed from left to right. Hence the ball starts to swing to the right
(curved arrow).
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side of the ball is thus less than the speed on the other side. As you know (from
Chapter 15), slow-moving air is associated with higher pressure, whereas faster-
moving air is associated with lower pressure. Thus, we have a pressure differential.

If you’ve hit the ball such that your force is directed in the correct line but you’ve
drawn, or pulled, the clubface across the ball slightly, then you have probably spun
the ball. You can see this in Figure 16.2. (Re-read Chapter 3 if you’re unsure of how
to calculate resultant forces.) The spin you put on it will eventually cause a pressure
differential and the ball will start to swerve. This is the Magnus effect (after H.G.
Magnus) and the force that is created by the unequal pressures is the Magnus Force.

Life is never quite that simple. More recent studies have shown that only the air
that is very close to the ball is dragged around by its spin, so the layer of air trapped
against the ball and moving with it (the boundary layer), is also very small; so
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FIG. 16.2 In A, the club hits the ball straight with an appropriately oriented club face. The ball is hit
without side-spin and travels straight off the clubface. In B, the clubface is angled slightly, which puts
spin on the ball. Because the angle at which the ball was struck was also altered slightly, the ball started
straight, but then swerved in the air due to the Magnus effect.

FIG. 16.3 The spin of the ball causes the boundary layer on the top surface to separate earlier and move
away from the ball. At the bottom, the boundary layer separates later and air is dragged up the back of
the ball. Thus, there is a mass of air with velocity moving upwards behind the ball. That is, the air has
momentum (mvair, where m = mass and v = velocity). The upward air movement causes a force in the
opposite direction as air above the ball moves down to conserve momentum (Fball).
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many believe that the explanations based on the Bernoulli effect are not accurate.
However, the collision between the slow-moving air on one side of the ball and the
oncoming air causes the air to deflect off the ball sooner, as shown in Figure 16.3.
That is, ‘boundary layer separation’, or the separation of the boundary layer from
the ball, occurs earlier. The air on the other side of the ball deflects much later and
rushes towards the lower pressure area behind the ball. According to Newton’s
Third Law, since these masses of air changed their velocities (both magnitude and
direction) a force must have been applied. There must therefore be an equal and
opposite force, which pushes the ball in the opposite direction (i.e. downwards in
Figure 16.3). So the lift force on a spinning ball can be well explained using
Newton’s laws.

We could also say that the air has a mass and velocity and therefore a momen-
tum. The law of conservation of momentum means there must be a momentum in
the other direction; in other words, the ball has to move in the other direction.
These arguments are very similar to those on lift force generation, discussed in
Chapter 15. In the end, both the ‘Bernoulli’ and ‘Newton’ explanations are essen-
tially the same, although you should be able to understand both of them. You don’t
need to be able to calculate these forces (and the maths is complicated) but you
should read Box 16.1.

BOX 16.1 THE MATHEMATICS OF THE MAGNUS EFFECT
The mechanisms contributing to the Magnus effect are complex and it would take a
massive mathematical effort to predict the effects of changes in ball speed, wind
speed or rotation speed on the amount of curve of a ball. 

Broadly, the faster a ball travels or spins, the greater will be the swerve. So if the
ball is travelling into the wind (so the relative speed of ball and air is greater), the
ball will swerve more for less imparted spin. So, in tennis, it might be good to hit
into the wind because you can hit with greater horizontal speed and need worry less
about trying to apply topspin. But if you were a beginning soccer player trying to
kick the ball straight, it might be better to kick with the wind, since even a small
amount of rotation on the ball will cause it to swerve and miss its target.

THE ANSWER
Regardless of the explanation for the forces created around a spinning object, the
problem facing golfers is that spin is imparted to the ball by the club, even though
the ball was hit in the right direction. The ball starts off straight but spin creates
sideways lift forces that take the ball off-line. Golfers have to understand how to
manipulate their technique to ensure that spin is not imparted to the ball.
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HOW ELSE CAN WE USE THIS INFORMATION?
As Newton first noted the effect on a tennis ball, we’ll follow his great example. Let’s
assume that you wanted to hit the ball as fast as you could from your side of the
tennis court to the other. If you hit the ball very hard in an upward direction, to get
it over the net, it would travel a long way before gravity finally pulled it down to
Earth: it would go well over the baseline and you’d lose the point. For gravity to
bring the ball down inside the baseline, you could hit the ball with less horizontal
force and thus with less horizontal velocity but then your opponent might have
time to get to it.

According to the Magnus effect, you know that if you put spin on the ball, where
the top of the ball spins over the bottom of the ball (i.e. topspin), the air on top
would slow down and the air underneath would move relatively quicker (as in
Figure 16.1). Therefore, the pressure on top of the ball would be higher; a Magnus
Force would be directed down towards the ground and the ball would dip.

The alternative explanation is that the boundary layer would separate earlier on
the top of the ball, because of the collision of the air travelling around the ball with
the oncoming air, whereas on the bottom it would separate later, so some of the air
from the underside of the ball would be dragged upwards behind the ball.
Therefore, the air above the ball, and the ball itself, would be forced down in accor-
dance with Newton’s Third Law (and conservation of momentum). Either way,
putting topspin on the ball allows us to hit the ball with a high horizontal velocity
and still get it to land inside the baseline.

By understanding the benefits of spin, performance in numerous other sports can
also be improved. Soccer players kick across the ball to put spin on it to curve it
around a wall of players at a free kick and goalkeepers hoping to kick the ball a long
way kick the ball with backspin, so that they can apply a large horizontal force (and
therefore velocity) while the lift created increases the ball’s flight time. Golf drivers
are designed with a backward-angled club face, to impart a backward spin to the ball
to increase hitting distance. Also, longer hits in baseball tend to occur when the ball
has been pitched with topspin, so it rebounds off the bat with backspin, rather than
when the ball is pitched at maximum speed but without topspin (see Rex, 1985). In
cricket, if a spin bowler puts a lot of spin on the ball, it will swerve in the air as it
drops. The more it swerves, the more spin must be on it. The bowler might try to
trick a batsman by spinning the ball in the other direction, in which case the swerve
will also be in the opposite direction. In fielding, a ball hit in the air will often curve
on its way down to the ground, according to the spin put on it. If the fielder knows
what spin was placed on the ball, he or she will be better able to predict its flight in
the air. Alternatively, by watching its movement in the air, the fielder might also be
able to predict which way the ball might spin after it hits the ground.
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Useful Equations
Bernoulli’s equation, p + 1⁄2 ρv2 + ρgh = constant  
conservation of momentum, m1v1 = m2v2

Reference
Rex, A.F. (1985). ‘The effect of spin on the flight of batted baseballs’. American

Journal of Physics, 53: 1073–75.

Related websites
Principles of Aeronautics, Aerodynamics in sports equipment, Aeronautics internet

textbook (www.fi.edu/wright/again/wings.avkids.com/wings.avkids.com/Book/
Sports/instructor/). Website detailing the importance of aerodynamics in sports.

The Magnus Effect (www.geocities.com/k_achutarao/MAGNUS/magnus.html).
Comprehensive description of the flight of cricket and other balls.

All Experts (http://experts.about.com/e/m/ma/Magnus_effect.htm). Explanation of
the Magnus effect with links to descriptions of other fluid dynamics principles.
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CHAPTER 17

THE KINETIC CHAIN 
A two-handed ‘chest pass’ is commonly used in sports

such as netball and basketball. While it is accurate, the

speeds attained are low, relative to one-handed throws.

Why is this and what techniques might we employ to

increase ball speed?

By the end of this chapter you should be able to:

• Explain the distinguishing characteristics of push- and throw-like movement
patterns and open and closed kinetic chain movements

• Determine whether a given sporting movement is optimised by the adoption of
a push-like or throw-like pattern

• Describe how sporting performance might be improved by altering the predom-
inant pattern of movement
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In this book, we have discovered that we can use a variety of different techniques to
accomplish sporting tasks in different situations, but are there more generalised
movement patterns that we might refine for specific situations? As you’re already
aware, human motion involves the complex co-ordination of individual move-
ments about several joints at the same time. We effectively have a moving chain of
body parts; the kinetic (moving) chain. There are two main categories of kinetic
chain patterns: push-like and throw-like.

Push-like movement patterns
A push-like movement pattern is exactly what you would expect it to be: we move
as if we are pushing something. That is, we tend to extend all the joints in our
kinetic chain simultaneously in a single movement. Good examples of the use of a
push-like pattern include the bench press, leg press and squat lift exercises that we
perform in weight training (Figure 17.1), the basketball free-throw, a dart throw
and more common movements such as standing from a seated position.

The fact that this movement pattern is so common suggests that it has impor-
tant benefits. The first is that because they are acting simultaneously, the
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FIG. 17.1 The leg press (left) and squat lift (right) exercises are examples of tasks accomplished using a
push-like movement pattern.

FIG. 17.2 Rugby players use a push-like pattern in order to generate enough force to push their
opponents backwards in a scrum.
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cumulative forces (or torques) generated about each joint result in a high overall
force. This is why we use a push-like pattern to move things that are very heavy,
such as the opposing scrum in rugby (Figure 17.2). It is a useful pattern to use even
when performing actions such as standing from a seated position, where relatively
small forces are required (for most of us), because we can perform the movement
using only a small portion of the force we could possibly produce. In this sense,
push-like movements are very efficient.

A second important benefit is that simultaneous joint rotations often result in a
straight-line movement of the end point of the chain (i.e. the hand or foot). By
moving in a straight line, we can achieve highly accurate movements. The dart
throw is a good example of the adoption of a push-like pattern to give high accu-
racy (see Figure 17.3) and can be compared to the movement of a mechanical fist
that is often used in comedy.

A push-like pattern can be used to improve force production and accuracy but is
it ideal for a chest pass? It needs to meet a few criteria. Luckily, such a movement
pattern can be used effectively in each of two subcategories of movement: first, it can
be used in movements where both ends of the chain are fixed; closed kinetic chain
movements. The leg press and bench press exercises are good examples in which the
ends of the chain are fixed. In the leg press, the hip is fixed to the upper body and
the feet are fixed to the footplate of the machine. Likewise, in a bench press, the
shoulder is fixed to the torso and the hands are fixed to the bar. The push-like
pattern can also be effectively used when one end of the chain is free to move: open
kinetic chain movements. The darts and basketball free-throws are good examples
of these so it seems viable to use a push-like pattern to perform the chest pass. The
movement pattern would allow high accuracy as well as a high force production
(this is likely to help those, such as young children, who have lower strength).

There is a significant drawback to the push-like pattern: slow movement speed.
Because the speed of the movement is limited by the shortening speed of our
muscles, we will never accomplish very high movement speeds during a chest pass
using a push-like pattern.
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FIG. 17.3 A: The use of a push-like pattern, in which the joints of the kinetic chain extend simultaneously,
allows the end point of the chain to travel in a straight line. The result is a high accuracy of the end
point, or of a projectile such as a dart released from it. B: This principle can be compared to the
extension of a comedic fist used in skits.
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Throw-like movement pattern
Throw-like movements differ from push-like movements in that the joints of the
kinetic chain extend sequentially, one after another. The best example is the over-
arm throw, as shown in the stick figure in Figure 17.4. In this movement, the
shoulder extends before the elbow and wrist; the shoulder actually begins to extend
while the elbow is still flexing, during the wind-up, or cocking, phase. Later in the
throw, the extension velocity of the hand and fingers increases significantly, result-
ing in a high ball release velocity. The fastest throw of a sports ball ever recorded is
attributed to Mark Wohlers, who pitched a baseball at 165 km·h-1 or about 46 m·s-1!

Mechanics of the throw-like pattern
How is it that the distal segments can attain higher velocities than they do using a
push-like pattern? One theory is that momentum generated in the proximal
segments through the generation of large muscle forces is transferred to the distal
segments much like the transfer that occurs in a fishing rod. When you cast a fish-
ing rod, you impart an angular momentum in the rod at its base. When you then
stop the rotation of the rod, the top continues to move at a very high velocity. In case
you were wondering, the longest fishing rod cast made in competition is 88.4 m, by
the American Steve Rajeff.

To understand this, we can return to the maths of Chapter 7. Remember that as
you throw the rod, you give it angular momentum (H). Angular momentum is the
product of moment of inertia (I) and angular velocity (ω), just as linear momen-
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FIG. 17.4 An over-arm throw is performed with a sequential movement pattern where the proximal
joints increase their velocity first (left diagram) and the more distal segments increase their velocity later
(right diagram). The graphs below each stick figure illustrate the changing velocities of each segment;
the grey bar indicates the segment with the highest velocity.
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tum is the product of mass and linear velocity. So, H = Iω. This angular momen-
tum must be maintained unless another force acts to change it (remember
conservation of momentum). If we halt the proximal segments of our fishing rod
or arm, the angular momentum must be transferred to the more distal segments.

Remember that the moment of inertia is a function of the mass of a body
segment (m) and its radius of gyration (k) squared; where k tells us how far the
mass is distributed from the joint. The greater is k, the further away it is distributed:
I = mk2. So if we give our fishing rod or arm an angular momentum, we produce a
given angular velocity but more distal segments of both the rod and our arm are
lighter, so for the same angular momentum they would have a greater angular
velocity; that is, if H = Iω, and H stays the same while I decreases, then ω must
increase. Therefore, if we rotate the base of the rod or the proximal segments of the
arm and then halt them, the momentum is transferred to these lighter segments
and so their velocity must increase. Additionally, the distance from the axis of rota-
tion (which was the base of the rod or the shoulder of the arm) to the effective
centre of mass will be lower. It will now be the distance from the point on the rod
where movement still exists or from the joint in the arm (possibly the elbow or
hand) which is still moving. Since I = mk2, a small decrease in k will significantly
reduce I and therefore ω will increase substantially.

In mathematical terms, by accelerating the proximal segments of our arm and
then stopping them, we get a transfer of momentum along the arm that results in
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FIG. 17.5 During kicking, the thigh is accelerated (1) before the lower leg (2). This results in a high end-
point (i.e. foot and ball) velocity.
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a high velocity of the end point (that is, the hand). We also use this technique when
we kick. Muscles around the hip accelerate the thigh segment before the leg and
foot swing through later in the kick cycle, as shown in Figure 17.5. So kicking is
actually a good example of the use of a throw-like pattern!

Does this really explain why we develop such high speeds when we use a throw-
like pattern? Probably not quite. During kicking we don’t stop the thigh swinging
before the lower leg comes through (Luhtanen, 1984). When this occurs, the veloc-
ity of the foot is reduced. So the idea that momentum is transferred in this way
can’t be completely true. A second explanation is that the throw-like pattern makes
best use of the tissues that have the fastest shortening speeds: the tendons (see Box
17.1). It is true that the muscles produce the forces that move the limbs but they
attach to the bones via elastic tendons. When the tendon is stretched, it stores elas-
tic energy. When the tendon is released, it recoils at a very high speed, i.e. it has a
high kinetic energy. The recoil speed of elastic elements such as tendons is much
higher than the shortening speed of a muscle. This is why you use an elastic sling-
shot to propel rocks and other objects rather than trying to throw them! 

The method by which our tendons are used is quite simple. During a kick, we
draw the leg backwards rapidly before we swing it forwards (see Figure 17.6). At the
start of the forward phase, the large muscles around the hip accelerate the thigh.
However, the lower leg and foot have inertia; they tend to continue to move back-
wards. The assumption that the muscles that cross the knee must be lengthening is
not necessarily true. The flexion occurring at the knee is a result of the elastic knee
(patellar) tendon stretching under the load. When the force in the tendon is high
enough, the tendon will begin to recoil at very high speed. We simultaneously
contract the muscles that extend the knee (the quadriceps (thigh) muscles) force-
fully to provide extra force; the combination of these results in a very fast extension
of the knee and a very high foot speed.

A similar mechanism allows the fishing rod to work spectacularly. As the base is
rotated forwards, the top of the rod will tend to lag behind, because of its inertia. The
rod is made of an elastic material that stores energy that is released as the rod whips
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FIG. 17.6 A kick is initiated by first drawing the leg backwards (A – C) before swinging first at the hip
(D; thigh swing) and then at the knee (E; lower leg swing) to complete the kick with a high foot speed
(F). The movement from A to D stretches the knee (patellar) tendon, which then recoils to produce a
high speed movement.
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BOX 17.1 MUSCLE–TENDON ELASTICITY IN HIGH-SPEED MOVEMENTS
Animal movements result from the action of muscles working on bones but the
tendons that connect the two cannot be forgotten. Tendons are highly elastic, which
means they store energy (elastic energy) when they are stretched by a force and can
then recoil rapidly. Because limbs have inertia, the force developed by the muscles
tends to stretch the tendons until the force is transferred effectively enough for the
inertia of the limbs to be overcome. 

In particular, the tendons of muscles in the distal regions of limbs are long and
capable of storing a significant amount of elastic energy. This makes them ideal for
performing energy-efficient and high-speed movements; tendons, like a rubber band,
can recoil at speeds significantly higher than the speed of muscle shortening.
However, higher-speed muscle contractions are best for storing energy in the
tendons, since their stretch is increased as the speed of muscle shortening increases.
In high-speed movements, much of the limb movement occurs when the tendons are
shortening rapidly but the muscles have already performed their shortening and are
nearly isometric (that is, there is little length change).

A good example of this is shown in Figure 1 (data from Kurokawa et al., 2003).
Because it is a high-speed movement, a vertical jump (even when there is no
counter-movement, or dipping, phase) is performed using a throw-like pattern. 
The jumper first extends the hip and then sequentially extends the knees and ankles.
To conserve momentum, the rapid upward movement of the hip is coupled with a
compression (downward movement) of the legs. This compression, coupled with rapid
muscle shortening, stretches the tendons of the leg. The long Achilles tendon is
lengthened early in the jump phase and therefore recoils rapidly towards the end.
The calf muscles shorten rapidly while the hip is extending (that is, early in the
jump) and therefore only exhibit a small shortening later in the jump. Thus, the
highest velocity phase of the vertical jump is performed with the tendon recoiling at
high speed while the muscles are barely shortening! This high-speed movement is
therefore largely accomplished by tendon recoil.

FIG. 1 During the throw-like vertical jump (without countermovement) the Achilles tendon
extends during the early phase when the hip and knee extend rapidly. Later in the movement, the
tendon recoils rapidly resulting in an overall shortening of the muscle–tendon unit; at this point,
the muscle has nearly completed its shortening and is contracting almost isometrically (i.e. with
little length change). Redrawn after Kurokawa et al., 2003.
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forwards at high speed. The mechanism also explains why we can throw so far. The
tendons that cross the wrist and fingers are very long and capable of storing a signif-
icant amount of elastic energy, so they are also very good at recoiling to allow the
propulsion of objects. The flick of the wrist and fingers at the end of an over-arm
throw contribute a great deal to the overall release speed of a ball or other object. It
is much easier for elastic materials to recoil when there is only a small load to recoil
against, so the decrease in mass and radius of gyration in the distal segments of the
arm and leg (or fishing rod) are still of great importance. A combination of these two
mechanisms probably explains the effectiveness of the throw-like pattern.

THE ANSWER
What does all this have to do with our chest pass? We know that we can achieve
high accuracy with the push-like movement but we can’t move at high speeds. To
push the ball quickly, we need to use a throw-like pattern and, particularly, use the
tendons that cross the wrist and fingers (see Figure 17.7). The optimum solution is
to initiate the pass by stepping forwards first (to give momentum to our body),
then push the shoulders forwards rapidly, simultaneous with the elbows moving
outwards and forwards while the hands remain close to the chest. This does two
things: a large momentum is given to the system (that is, the upper body and arms)
and there is some forward velocity, and the hands and fingers are squashed on to
the ball so that their tendons are stretched rapidly while the elbows are flexed
quickly so their tendons are also stretched. The second part of the throw requires a
forceful extension of the elbows. In this part of the throw there is significant recoil
of the tendons of the elbows, hands and fingers. It is this recoil that increases the
speed of the throw.

Luckily, we have two hands producing symmetrical forward-directed move-
ments and the ball moves in a straight line through the throw. So the thrower
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FIG. 17.7 The chest pass in netball is best accomplished by first stepping forwards (A), then pushing the
shoulders and elbows forwards (B) to stretch the finger and hand muscle–tendon units (C) before finally
using a rapid hand and finger extension (D) to make best use of the elastic recoil of the tendons of the
distal arm. This action results in the use of a throw-like pattern in a movement typically performed with
a push-like pattern.

A B C D
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should still be able to attain a high accuracy. Other skills, such as using an over-arm
throw to propel a ball, will be less accurate compared to those that use a push-like
pattern, because the end points of the chain (the hand and ball) follow a curved
path. Therefore, a small alteration in the time of release of the ball will cause a
significant alteration in the direction of ball release (Figure 17.8).

HOW ELSE CAN WE USE THIS INFORMATION?
This information is probably the most important in this book from a coaching
perspective. For example, the weight of a shot in the shot put can appear heavy to
one participant and light to another, depending on their strength. If the shot is rela-
tively heavy, it would be best to adopt a push-like movement pattern in order to
produce enough force to accelerate it (remember, F = ma). However, in stronger
athletes, a throw-like pattern, analogous to a one-arm chest pass, could be used. So
different patterns, for example, might be taught to children compared to adults or
to strength-trained athletes compared to non-strength-trained. Such coaching
differences would also exist for other skills such as basketball shooting and passing
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FIG. 17.8 The over-arm throw, starting at (1), begins with a downswing of the arm (2) before it is
drawn backwards and raised to head level (3), and ultimately thrown forwards (4). The direction of
release changes significantly as the point of release changes slightly (arrows). This reduces the accuracy
of the over-arm throw.

1 2 3 4
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and discus and javelin throwing (remember the kinetic chain can include rotations
of the torso, which would precede accelerations of the arm).

The progression in the learning of skills that require both speed and accuracy
also tends to progress from push- to throw-like. For example, beginner tennis 
players often use a short arm jab to execute an over-arm serve. The movement pattern
is essentially push-like and improves the accuracy of projection of the ball. As shown
in Figure 17.9, elite players use an extreme throw-like pattern to increase ball speed,
while still managing exceptional accuracy. Swinging motions, such as the baseball bat
swing (Figure 17.10), also progress towards a throw-like pattern with learning; in this
skill, the rotation of the body precedes arm swing and wrist rotation.
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FIG. 17.9 Tennis players learn to ‘throw’ the racquet while still achieving a high level of accuracy.

FIG. 17.10 The baseball bat swing is a good example of a throw-like pattern where the kinetic chain
incorporates most segments of the body; rotation of the body (A to B) precedes the rapid arm swing (C).

A B C
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Useful Equations
sum of moments or sum of torques (ΣM or Στ) τt = τ1 + τ2 + τ3…
angular momentum (H or L) = Iω or mk2ω
moment of inertia (I) = Σmr2 or mk2

References
Kurokawa, S., Fukunaga, T., Nagano, A. & Fukashiro, S. (2003). ‘Interaction

between fascicles and tendinous structures during counter-movement jumping
investigated in vivo’. Journal of Applied Physiology, 95: 2306–14.

Luhtanen, P. (1984). ‘Development of biomechanical model of in-step kicking in
football players (Finnish)’. Report of the Finnish F.A. 1/1984. Helsinki, Finland.

Related websites
A Review of Open and Closed Kinetic Chain Exercise Following Anterior Cruciate

Ligament Reconstruction, by Anthony C. Miller, Sports Coach (www.brianmac.
demon.co.uk/kneeinj.htm). Interesting article showing how knowledge of the
kinetic chain can support practice.

Knee Tutor, Guided learning (www.kneeguru.co.uk/KNEEtutor/doku.php/
cruciate/hall_cruciate_rehab05). Explanation of open- and closed-kinetic chain
exercises and their importance in knee rehabilitation.
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APPENDIX A

UNITS OF MEASUREMENT

It is important to quote scientific quantities in the correct units. Here are some of
the more common units of measurement that you might use. Equations that can
be used to calculate these variables are presented in Appendix D.

Variable Unit name Unit abbreviation

Distance millimetre (millimeter in US) mm
metre (meter) m
kilometre (kilometer) km

Speed metres per second m·s-1

Velocity metres per second in a given direction m·s-1

Acceleration metres per second per second m·s-2

Mass kilogram kg
Force Newton N
Impulse Newton-seconds N·s
Linear momentum kilogram-metres per second kg·m·s-1

Angular momentum kilogram-metres squared per second kg·m2·s-1

Moment of Inertia kilogram-metres squared kg·m2

Torque Newton-metres N·m
Work Joules J
Power Watts W
Energy Joules J
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APPENDIX B

BASIC SKILLS 
AND MATHEMATICS

Angles
Angles are defined as the angular variation between two lines or axes, where one
line or measurement is designated as the primary. In example A below, the angle
(θ) is defined as positive from 1 to 2 in a clockwise direction (‘1’ is the primary line,
so the angle is measured from here), whereas in example B the angle is defined as
positive from 2 to 1.

FIG B.1.

Calculation of the reverse angle is indicated with a negative sign. For example, the
reverse angle in B is equal to -1.22 rad or -70°. There are 6.28 (2π) radians or 360°
in a complete circle.

Angular velocity and angular acceleration are also measured in the same way but
are the time integrals of angle. For example, angular velocity is measured in rad·s-1

or °·s-1 and angular acceleration in rad·s-2 or °·s-2. The frequency with which an object
spins is measured as ‘cycles per second’ or Hertz (Hz). If an object spins through 6.28
(2π) radians (360°) in one second, it is spinning with a frequency of 1 Hz.

Working with numbers
When trying to solve or understand biomechanics problems, you will often have to
work with quantities measured in both the positive and negative directions. So it is
important to understand how to do this. Here are the basics:
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Adding a negative number is the same as subtracting that number:
8 + -2 = 6
-5 + -3 = -8
2 + -6 = -4

Subtracting a negative number is the same as adding that number:
3 - -5 = 8
-2 - -6 = 4
-9 - -3 = -6

Multiplying or dividing a number of the same sign always gives a positive answer:
5 × 2 = 10
-5 × -2 = 10
15 ÷ 3 = 5
-15 ÷ -3 = 5

Multiplying or dividing a number of the opposite sign always gives a negative
answer:

5 × -2 = -10
-5 × 2 = -10
15 ÷ -3 = -5
-15 ÷ 3 = -5

Order of Operations
When you have to calculate an answer to a mathematical problem that has more
than one step, you follow a specific set of rules:

Multiply or divide before you add or subtract, unless there are brackets.
2 + 4 × 3 = 14
(2 + 4) × 3 = 18
12 - 4 ÷ 2 = 10
(12 - 4) ÷ 2 = 4
6 ÷ 2 + 4 × 6 = 27
(that is, 6 ÷ 2 = 3 and 4 × 6 = 24, 3 + 24 = 27)
6 ÷ (2 + 4) × 6 = 0
(that is, 2 + 4 = 6 and 6 ÷ 0 × 6 = 0)

Percentages
A percentage is the number of times something would occur if there were 100 possi-
bilities. For example, if a coin if tossed, it is likely to land on ‘heads’ about 1 in every
two times or 50 times in a hundred. So, the likelihood is 50% (that is, 50 / 100).

To calculate percentages, divide the number of times an event occurs by 
the number of times it could possibly occur, then multiply by 100. For example,
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if you were asked to do 40 push-ups but you only made 28, then you can say 
you did:

28/40 × 100 = 70% of your push-ups.
If you came back after some training and did all 40 push-ups (that is, 100%)

then, by comparison, you’ve done:
(40 - 28)/28 × 100 = 42.9% more push-ups than last time.

Solving Equations (basic algebra)
As you’ve seen throughout this book, we often use equations to calculate quantities
that we can’t measure (or haven’t measured). To find a quantity when we have meas-
ured other things, we often need to re-arrange an equation. The key to this is that:

Whatever you do to one side of an equation, you must do to the other.
If you remember this advice you can’t go wrong, even if it takes a while to get the

answer. To prove this, you can see that writing ‘7 + 2’ is the same as writing 
‘5 + 4’, because the answer to both of these is ‘9’. We could also say:

7 + 2 = 5 + 4
You’ll also notice that if I subtract ‘4’ from the right hand side of the equation

(so I’m left only with the ‘5’), the equation would no longer be correct but if I
subtract ‘4’ also from the left side of the equation, it becomes correct again:

7 + 2 = 5 + 4 Start with the equation
7 + 2 - 4 = 5 - 4 Subtract ‘4’ from both sides
9 - 4 = 5 Write the answers
5 = 5 So here is the proof

This works for all equations and can be used to solve equations for which no
numbers have been used. For example, if I want to find vi in the equation vf = vi +
at, I would do this:

vf = vi + at Start with the equation
vf - at = vi + at - at Subtract ‘at’ from both sides
vf - at = vi Write the answers

All other manipulations of equations are done the same way but it might take
several steps. It is important to do these steps one at a time unless you are a good
mathematician. Another tip is that if you are re-arranging an equation to do a
mathematical calculation, you should re-arrange the equation before you put the
numbers in. Once the numbers are in, you might find it much more difficult to
keep track of what you are doing.
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APPENDIX C

BASIC TRIGONOMETRY

Right-angled triangles
Trigonometry is the branch of mathematics that uses the known relationships
between angles and sides of triangles to solve problems. The most commonly used
functions involve the right-angled triangle. One useful relationship to know is the
Pythagorean theorem, which expresses the relationship between the hypotenuse
(longest side) and the other two sides of a right-angled triangle:

The square of the length of the hypotenuse is equal to the sum of the squares of
the other two sides

Or, C2 = A2 + B2

FIG C.1.

So you can calculate the length of side C if you know the lengths of sides A and B.
If side A = 4 m and side B = 5 m, then side C is equal to:

C2 = A2+ B2

C2= 42 + 52

C2= 16 + 25
C2 = 41
C = √41
C = 6.4 m

If you knew the length of the hypotenuse (C) and one of the sides, you could
calculate the length of the unknown side by re-arranging the equation as you
learned above.

There are also three relationships involving the ratios of the lengths and angles
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of a triangle. They are known as the sine (sin), cosine (cos) and tangent (tan) rules.
They can be summarised:

For any angle (θ), sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / hypotenuse

For the triangle above, for example, these could be used to find the angle α:
sin α = A / C
cos α = B / C
tan α = A / C

If you know the length of one side of the triangle and one angle in the triangle you
can work out the other sides and angles (you might have to re-arrange these 
equations or calculate a certain side or angle until you get the one you want). A
calculator can supply values for the sin, cos and tan of a number. If you re-arrange
an equation and end up with a number divided by sin, cos or tan (called the
‘inverse’ or ‘arc’) you can use the inverse function on the calculator.

An example of a sin/cos/tan calculation might be:
If we knew that the angle α was 0.35 rad (20°) and length B was 5 m, we could

calculate the length of the hypotenuse of the triangle thus:

cos α = B / C Write down the appropriate equation 
1/cos α = C / B Re-arrange the equation; but we are trying to move ‘C’ to 

the other side, which we can’t do. Here is one final trick: 
dividing by a number is the same as multiplying by its 
reciprocal (that is, for the number x, the reciprocal is 
1/x). You should memorise this but do it to both sides! 

1/cos α × B = C / B × B Multiply each side by ‘B’ 
1/cos α × B = C Dividing by B and then multiplying it brings ‘C’ back to 

its original size, so we might as well get rid of the ‘B’ 
1/0.94 × 5 = C Put in your numbers. Make sure your calculator is set to 

‘rad’ if you work in radians or ‘deg’ to work with degrees
5.32 = C Complete your answer
C = 5.32 m Or this, which is more correct.
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Non-right angled triangles
Sometimes we encounter a triangle that doesn’t have a right angle in it. For these
triangles, it can be helpful to remember (or remember they are printed here) these
two groups of relationships:

The Law of Sines
A/sin α = B/sin β = C/sin γ (notice that the side is associated with its oppo-
site angle)

The Law of Cosines
A2 = B2 + C2 - 2BCcos α
B2 = A2 + C2 - 2ACcos β
C2 = A2 + B2 - 2ABcos γ

You can use these and re-arrange them, just as you have for the equations above.
You might not memorise them but you should be able to play around with them.
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APPENDIX D

EQUATIONS

speed ∆d/∆t 
velocity (v) ∆s/∆t (rω for a spinning object) 
acceleration (a) ∆v/∆t 
angular velocity (ω) ∆θ/∆t 
angular acceleration (α) ∆ω/∆t or τ/I  
degrees-to-radians (rad) xº/(180/π) or xº/57.3 
radians-to-degrees (deg, º) xº×(180/π) or xº×57.3  
projectile motion equations (1) vf = vi + at

(2) vf
2 = vi

2 + 2as
(3) s = vit + 1⁄2 at2

force (F) m × a 
force of gravity (Fg) Gm1m2/r2, where G = 6.67 × 1011 
force of drag (form) (Fd) kAv2

Bernoulli’s equation p + 1⁄2 ρv2 + ρgh = constant  
torque (moment of force) (τ) F × d, where d is the moment arm of force,

or τ = Iα
sum of moments or sum of
torques (ΣM or Στ) τt = τ1 + τ2 + τ3…  

momentum (M) m × v 
angular momentum (H or L) Iω or mk2ω
conservation of momentum m1v1 = m2v2

angular impulse–momentum 
relationship τ·t = Iω

impulse (Ft) F × t or ∆mv  
inertia m 
moment of inertia (I) Σmr2 or mk2

total moment of inertia 
(parallel axes theorem) (Itot) ICM + md2

work (W) F × d
power (P) F × v or W/t
kinetic energy (KE) 1⁄2 mv2

potential energy (PE) m × g × h 
total energy (Etot) KE + PE
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coefficient of restitution (e) (vi1 – vi2)/(vf1-vf2) or √(hb/hd)
friction (Ff) µR
coefficient of variation (CV) SD/mean × 100%
sine rule sin θ = opposite side/hypotenuse 
cosine rule cos θ = adjacent side/hypotenuse 
tan rule tan θ = opposite side/adjacent side  
m·s-1 to km·h-1 x m·s-1 /1000×3600 
km·h-1 to m·s-1 x km·h-1 ×1000/3600  
time per frame (video) 1/Frame rate 
scaling factor measured length/true length in real-world 

units
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GLOSSARY

aerofoil an object with a shape that generates lift in a moving fluid
angle of attack angle between the longitudinal axis of an object and the relative

direction of fluid flow
angle of incidence angle between the path of an object and a line drawn perpendi-

cular from the surface with which it is presently in contact (i.e. the normal line)
angle of reflection angle between the path of an object and a line drawn perpendi-

cular from the surface from which it has rebounded (i.e. the normal line)
angular concerned with rotation about a line or point
angular acceleration rate of change of angular velocity; equal to angular velocity

per unit time
angular displacement change in angular position or the orientation of a straight

segment
angular impulse product of torque and time (torque produced over a period of

time); equal to the change in angular momentum of an object
angular momentum product of the moment of inertia and angular velocity; angu-

lar analogue of linear momentum
angular velocity rate of change in angular displacement; equal to angular displace-

ment per unit time
anteroposterior axis imaginary line projecting from the front to the back of an

object, about which frontal plane motion occurs
axis of rotation imaginary line passing through the centre of rotation; perpendicu-

lar to the plane of rotation
biomechanics field of science devoted to understanding mechanical principles in

relation to biological organisms
boundary layer layer of fluid immediately surrounding an object
braking impulse product of the applied force and the time over which it is applied

acting to slow an object (often occurs at foot-strike in running)
centre of gravity point about which the sum of torques of all point weights (that is,

mass × gravity) of a body equals zero; the body can balance at this point
centre of mass point about which the sum of torques of all point weights of a body

would be zero if oriented perpendicular to the line of gravity
coefficient of drag numerical index of the resistance generated when a body moves
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through a fluid (values greater than 0)
coefficient of friction numerical index of the likelihood that two surfaces in contact

will not slide past each other (values greater than 0)
coefficient of restitution numerical index of elasticity (energy retained) after a

collision of two bodies (values 0–1)
coefficient of variation standard deviation (variability) of a series of measurements

relative to the mean of the measurements
curvilinear curved path
displacement quantity describing the change in position of an object from a begin-

ning to end point, without concern for the total length of the path travelled
distance sum total of all displacements of an object without reference to resultant

direction
dynamics area of mechanics associated with systems subject to acceleration
efficiency ratio of the input to output of a system; often refers to ratio of energy in

to energy out
field of view total area seen by a camera with a given zoom specification
fluid substance that flows when a force is applied; molecules can move past each

other
force product of mass and acceleration; induces a change in the mobile state of an

object
form drag (profile/pressure drag) retarding resistance caused by a difference in

pressure between the front and back of an object; proportional to the frontal
surface area and shape (coefficient of drag) of an object and to the square of the
velocity difference between the object and fluid

friction force opposing motion at the interface of two surfaces
frontal plane imaginary plane in which lateral movement of parts of a body, or the

body itself, occurs
general motion motion where translation and rotation occur simultaneously
gravitational force force exerted by one object on another that accelerates the mass

at a rate proportional to the combined masses but is inversely proportional to
the distance between them

heart rate reserve (HRR) difference between resting and maximum heart rates
impulse product of applied force and the time over which it is applied
impulse–momentum relationship relationship between impulse and momentum;

the momentum of an object will change in proportion to the sum of applied
impulses

inertia tendency for a body to remain in its present state of motion
initial velocity a description of the speed and direction of an object at a pre-defined

starting point
instantaneous occurring immediately, at a single, discrete point in time
kinematics describing how an object moves with respect to time; its pattern or

sequencing of movement
kinetic chain linked segments of a body that move together
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kinetic energy the energy associated with motion; equal to the product of half an
object’s mass and the square of its velocity

laminar flow fluid flow characterised by parallel layers of fluid
lift a force acting on a body perpendicular to its movement through a fluid; created

by a ‘turning’ of fluid flow
linear straight or curved but not circular (rotational) path
linear acceleration rate of change of linear velocity; equal to angular velocity per

unit time
linear displacement change in linear position or the orientation of a straight segment
linear momentum product of the mass and linear velocity of an object; attained

proportional to the impulse applied to an object
linear velocity rate of change in linear displacement; equal to linear displacement

per unit time
longitudinal axis imaginary line projecting from the top to the bottom of an object

about which transverse plane motion occurs
Magnus effect changing of trajectory of an object towards the direction of spin;

results from Magnus Force
Magnus Force lift force acting on a spinning object
mass quantity of matter in an object
mechanics area of physics exploring the effects of forces on particles and systems
mechanical energy sum of an object’s kinetic and potential energies
mediolateral axis imaginary line projecting sideways across (or through) an object

about which sagittal plane motion occurs
metabolic energy energy liberated through cellular processes; can be used to do

mechanical work
moment pertaining to an action at a distance, for example moment of inertia,

moment of force
moment arm perpendicular distance between a centre of rotation of an object and

the line of action of a force acting on the object
moment of inertia tendency for a rotating body to remain in its present state of

motion; equal to the product of the mass of an object and its radius of gyration
moment of force (torque) the result of a force acting at a distance from a centre of

rotation; rotational action of a force
normal reaction force force acting perpendicular to a surface
parabolic flight curved flight path of a projectile occurring in zero-drag conditions;

upward and downward paths are of identical shape
parallax error error of size or distance (and its time derivatives) associated with an

object’s movement across the field of view or that of a camera
parallel axes theorem theorem allowing the calculation of the total moment of

inertia of a rotating object, incorporating inertia about its remote (that is, by an
end point) and local (that is, about its own rotational centre) axes

perspective error error of size or distance (and its time derivatives) associated with
an object’s distance from the eyes or a camera
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potential energy energy associated with an object’s position in a gravitational field;
it is defined as the product of an object’s mass, the gravitational force and its
height above a defined surface, but other forms of potential energy exist (e.g.
elastic, magnetic)

power rate of doing work; work per unit time or the product of force and velocity
pressure force per unit area
principle axes three imaginary perpendicular axes passing through a body’s centre

of mass
projectile (motion) object in free motion subjected only to the forces of gravity and

air resistance
projection angle angle relative to a defined surface (usually the ground) at which

an object is projected
projection height vertical difference between the projection and landing heights
projection speed initial speed of a projectile
projection velocity initial speed and direction of a projectile
propulsive efficiency ratio of the amount of force (power) that results in overcom-

ing drag relative to the total force (power) production of a body moving in a
fluid environment; the remaining force (power) accelerates the fluid

propulsive impulse product of the applied force and the time over which it is
applied acting to accelerate an object

push-like movement pattern pattern of movement whereby the joints of linked
segments extend (or flex) simultaneously; optimum pattern for high forces and
accuracy

qualitative non-numeric description 
quantitative numeric description
radian unit of angular displacement equal to the angle covered when a line joining

the centre of a circle to the perimeter is rotated by the length of one radius; equal
to 57.3°

radius of gyration distance from the axis of rotation to a point where the centre of
mass of the object could be located without altering its rotational characteristics

range horizontal displacement of an object from projection to landing
rectilinear straight path
recovery phase period during which an appendage is repositioned from the back to

the front of the body in preparation for the swing phase
relative velocity difference in velocities of two objects or media (for example,

object and fluid)
rotation circular (non-linear) motion or motion about an axis of rotation
sagittal plane imaginary plane in which anteroposterior (front-to-back) movement

of parts of a body, or the body itself, occurs
scaling factor relationship between arbitrary units and real-world units; arbitrary

per real-world unit
shear force directed parallel to a surface
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sliding friction (kinetic friction) force opposing motion between two surfaces that
are in contact and in motion relative to each other

speed rate of change of distance, without reference to direction
static friction force opposing motion between two surfaces that are in contact but

are not moving relative to each other
statics branch of mechanics examining systems, either at rest or in motion, in

which balanced forces are acting
surface drag (skin friction, viscous drag) retarding resistance caused by a friction

between an object’s surface and a fluid moving relative to it
swing phase period during which an appendage is repositioned from the front to

the back of the body; usually associated with the application of propulsive force
throw-like movement pattern pattern of movement whereby the joints of linked

segments extend (or flex) in a sequential order, usually proximo-distally; opti-
mum pattern for the attainment of high movement speeds

trajectory flight path of a projectile
translation linear motion
transverse plane imaginary plane in which horizontal rotational movement of

parts of a body, or the body itself, occurs
vector physical quantity described by both magnitude and direction
wave drag retarding resistance caused by pressure differences around an object

moving at the interface of two fluids (for example, air and water) that results in
wave formation in the more dense fluid 

work product of force and displacement; force provided over a range of object
movement
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A
acceleration 1, 2, 5, 6–10, 12, 25, 46, 105
action force 162
air resistance 24, 42, 53 see also drag
angle of attack 171, 172, 174
angle of incidence 120, 121, 137, 138
angle of projection see projection angle
angular displacement 17, 18 
angular impulse 77, 80, 85, 86, 87 see

also impulse–momentum
relationship

angular momentum 71, 77–8, 80, 82, 83,
84, 85, 86, 87, 89–96, 146, 173, 186,
187, 193 see also
impulse–momentum relationship

angular velocity 15, 16, 17, 18, 20, 21,
22, 72, 75, 76, 77, 78, 79, 80, 81, 83,
85, 91, 92, 93, 94, 186, 187

anterior 16, 19
anteroposterior axis 16, 17, 157
Aristotle 42
Australian Rules football 95

B
ballet 131
baseball 22, 24, 36, 48, 56, 72, 115, 119,

121,181, 182, 186, 192
basketball 12, 36, 65, 66, 90, 105, 117,

183, 184, 185, 191
Bernoulli, Daniel 164 see also Bernoulli

effect
Bernoulli effect 161, 164–6, 171–5, 179,

180, 182 
boundary layer 137, 138, 157, 178, 179,

180, 181

braking force 53, 54, 95
braking impulse 53, 54, 55, 56

C
caudal 19
centre of gravity 62, 64, 65
centre of mass 29, 61–70, 73, 79, 80, 81,

83, 84, 91, 92, 93, 94, 98, 99, 187
closed-kinetic chain 183, 185
coefficient of drag 139, 141
coefficient of friction 124–7, 128, 129,

130, 131
coefficient of restitution 115–22, 125,

137  
coefficient of sliding friction 125, 127,

129 
coefficient of static friction 125, 127,

128, 131
coefficient of variation 133, 147, 148
collision 109–13
conservation of momentum 133, 148,

165, 172, 180, 181, 182, 187
cranial 19
cricket 36, 48, 72, 75, 95, 115, 117, 119,

181, 182
curvilinear 2, 3

D
deceleration 11, 20
discus 15, 16, 17, 20, 21, 22, 36, 86, 145,

146, 170, 171, 192 
displacement 2, 3, 4, 5, 7, 17, 18, 25, 27,

35, 38
dorsal 169
drag 135–60
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E
efficiency 102, 104, 105
elastic energy 188, 189, 190
Equations of Constant Acceleration 26

F
fluid dynamics 135–50 
football see Australian Rules football,

soccer
form drag 156–7 
Fosbury flop 62, 64, 66
friction 123–33
frontal plane 16, 17

G
Galileo 26, 27, 42
golf 47, 48, 119, 138, 157, 177, 178, 181
gravity 24, 25, 26, 27, 33, 43, 45, 46, 62,

64, 65, 66, 99, 101, 118, 124, 125, 129,
181

gymnastics 66, 70, 86

H
heart rate reserve (HRR) 104 
hockey 48, 56, 117
Hooke, Robert 44
horizontal velocity 24, 25, 26, 27, 28, 29,

30, 31, 32, 53
hydrodynamics 155–76 

I
impulse–momentum relationship

49–59, 77, 85, 87, 96, 115
inertia 42, 43, 44, 48, 50, 51, 57, 72–83,

85, 86, 87, 89, 91, 92, 96
inferior 19
initial velocity 27, 28, 33, 34, 35, 118

J
javelin 36, 95, 107, 145, 146, 171, 192

K
kinetic energy 101, 102, 103, 104, 105,

106, 136, 165, 188

L
laminar flow 136, 137, 138, 139 
lift 161, 163–4, 165, 166, 168, 169, 170,

171, 172, 173, 174, 175, 176, 177, 178,
180, 181, 184

linear motion 2, 29
linear velocity 17, 20, 78, 83, 92, 187
long jump 36, 94, 95 
longitudinal axis 17, 170

M
Magnus Effect 177–82 
Magnus Force 177, 179, 181 
mass  41, 42, 43, 44, 45, 46, 47, 50, 51,

61–70
mechanical energy 101 
mediolateral axis 17, 156
metabolic energy 101, 102, 103 
modelling 11, 20, 21, 23
moment arm 63, 70, 76, 85
moment of force see torque
moment of inertia 71, 72–5, 77, 78, 79,

80, 81, 82, 83, 85, 91, 92, 186, 187
negative direction 7, 8, 112

N
netball 12, 36, 65, 66, 183, 190
Newton, Sir Isaac 42
Newton’s Laws 41–9
non-laminar flow 136 
normal reaction force 125, 126, 127–9 

O
open kinetic chain 185
optimum angle 23, 25, 26, 33, 34, 36,

39, 170
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P
parallax error 37
parallel axes theorem 71, 79, 80, 81
perspective error 37
positive direction 7, 8, 25
posterior 16, 19
potential energy 101, 102, 165
power 97, 99–100, 101, 102
pressure 136, 138, 146, 152, 153, 155,

156, 158, 164, 165, 166, 167, 168, 169,
172, 173, 174, 175, 178, 179, 180, 181

projectile motion 23–40
projection angle 24, 25, 26, 32, 33, 36,

39, 46
projection speed 24, 36
projection velocity 30, 33, 39
propulsion 152, 155, 156, 158, 161–76,

190
propulsive efficiency 162
propulsive impulse 53, 54, 55 
Push-like movement pattern 183,

184–6, 190, 191, 192
Pythagoras’ Theorem 4
Pythagorean Theorem see Pythagoras’

Theorem

Q
quadratic formula 35

R
radian(s) 18, 20, 22, 32, 34, 39, 130
radius of gyration 71, 73, 74, 75, 78,

86, 91, 187, 190 
range 20, 21, 23, 24, 25, 29, 30, 31, 56,

78, 84, 85
reaction force 43, 44, 45, 46, 50, 53,

54, 63, 91, 92, 93, 94, 95, 125, 126,
127, 128, 129, 130, 131, 162,

recovery phase 79, 80, 82, 84, 85,
155 

rectilinear 2, 3

relative height of projection 24, 25, 30
39

relative height of release 30, 36
relative projection height see relative

height of projection
release angle 26, 30, 33, 34, 39
release speed 15, 16, 20, 33, 39, 190 
release velocity 21, 33, 34, 35, 186
restitution see coefficient of restitution
rotation 48, 62, 63, 64, 72, 73, 74, 75,

76, 77, 78, 79, 86, 89, 90, 91, 92, 93,
95, 108, 132, 146, 156, 169, 180, 186,
187, 192

rowing 56
rugby 12, 17, 36, 8, 56, 86, 95, 98, 109,

123, 124, 127, 129, 145, 146, 171, 184,
185

running 1, 2, 3, 5, 10, 11, 12, 22, 43, 46,
50, 53, 54, 55, 56, 58, 71, 72, 76, 78,
80, 83, 85, 86, 89, 92, 93, 94, 104, 105,
109, 110, 112, 122, 148, 152, 165

S
sagittal plane 16, 17, 93, 94
scalar 1, 2, 5, 7
scientific notation 5, 41, 44, 47
segmentation method 66–7
shot put 191
sliding friction 124, 126, 131 see also

coefficient of sliding friction
soccer 86, 136
softball 20, 22, 36, 48, 56, 72, 73, 115,

117, 121
sprint hurdles 95
static friction 124, 125 see also

coefficient of static friction
surface drag 157–8
swimming 12, 48, 56, 86, 140, 151, 152,

153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168,
169, 170
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swing phase 72, 78, 79
Système International (SI) 18

T
tennis 22, 24, 42, 48, 56, 86, 117, 122,

132, 178, 180, 181, 192 
throw-like movement pattern 183, 184,

186, 188, 189, 190, 191, 192
torque 61–70, 76, 77, 78, 80, 82, 85, 93,

94, 95, 98, 100, 105, 145, 146, 169
trajectory 23, 24, 27, 28, 30, 36, 48, 64,

131, 170, 171 see also angle of
trajectory

translation 2 
transverse plane 16, 17
turbulence 136, 138, 140, 158

V
vector 1, 2, 3–4, 5, 6, 7, 62, 112, 145, 146 
ventral 19, 165, 166, 167, 168, 169
vertical velocity 25, 26, 27, 28, 29, 30,

31, 64
video analysis 33, 37, 81, 121, 149
volleyball 65, 99, 117

W
wave drag 140, 151, 152, 153, 154, 155,

156, 157, 158
weightlifting 99
work 97, 98–9
Work–energy relationship 103
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