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About the cover

The cover contains images that together represent the broad scope of modern

biomechanics. The figures are as follows:

� Main image: A fluorescent immunohistochemical image of an endothelial cell

isolated from the surface of a pig aortic heart valve and grown in culture. Within

the cell, the nucleus is stained blue and vimentin filaments are stained green.

Vimentin is an intermediate filament protein of the cellular cytoskeleton that

plays an important role in cellular mechanics.
� Left top: An intermediate stage from a simulation of the forced unfolding of

repeats 4 and 5 of chain A of the protein filamin. Filamin is an actin cross-linking

protein and therefore plays a role in the biomechanics of the cytoskeleton. The

simulation was based on the crystal structure of part of filamin [1], and was

carried out in NAMD [2] and visualized using the VMD package [3]. (Image

courtesy of Mr. Blake Charlebois.)
� Left middle: A sketch by the Swiss anatomist Hermann von Meyer of the

orientation of trabecular bone in the proximal human femur. This sketch was

accompanied in the original article by a sketch of the principal stress trajectories

in a crane having a shape similar to the femur. Together these sketches are

believed to have inspired “Wolff’s Law” of bone remodelling. From [4].
� Left lower: The distribution of mass transfer rates from flowing blood to cultured

vascular endothelial cells. The contoured quantity (the Sherwood number) was

computed by first measuring the topography of the endothelial cells using atomic

force microscopy and then solving the convection-diffusion equation in the

blood flowing over the cells. Mass transfer from blood to endothelial cells is

important in cell-cell signalling. (Image courtesy of Mr. Ji Zhang.)
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Preface

For some years, we have taught an introductory course in biomechanics within

the Department of Mechanical and Industrial Engineering at the University of

Toronto. We have been unable to find a textbook suitable for the purpose of intro-

ducing engineers and others having a “hard science” background to the field of

biomechanics. That is not to say that excellent books on biomechanics do not exist;

in fact, there are many. However, they are typically at a level that is too advanced

for an introductory course, or they cover too limited a subset of topics for purposes

of an introductory course.

This book represents an attempt to fill this void. It is not meant to be an extensive

treatise on any particular branch of biomechanics, but rather to be an introduction

to a wide selection of biomechanics-related topics. Our hope is that it will aid the

student in his or her introduction to the fascinating world of bioengineering, and

will lead some to pursue the topic in greater detail.

In writing this book, we have assumed that the reader has a background in

engineering and mathematics, which includes introductory courses in dynamics,

statics, fluid mechanics, thermodynamics, and solid mechanics. No prior knowl-

edge of biology, anatomy, or physiology is assumed, and in fact every section begins

with a review of the relevant biological background. Each chapter then emphasizes

identification and description of the essential aspects of the related biomechanics

problems. Because of the introductory nature of this book, this has led in some

cases to a great deal of simplification, but in all instances, we have tried to maintain

a firm link to “biological reality.”

We wish to thank Professor David F. James, of the Department of Mechanical

and Industrial Engineering, University of Toronto. He first developed the introduc-

tory course in biomechanical engineering at the University and his course notes

provided the inspiration for parts of this book. Professors James E. Moore Jr.

and Takami Yamaguchi provided important material for Ch. 1. We have benefited

greatly from interactions with our students, who sometimes are the best teachers,

and our colleagues and mentors.

We shall be most grateful to students who, upon discovering errors in the text,

bring them to our attention.





1 Introduction

Biomechanics is a branch of the field of bioengineering, which we define as the
application of engineering principles to biological systems. Most bioengineering
is applied to humans, and in this book the primary emphasis will be on Homo
sapiens. The bioengineer seeks to understand basic physiological processes, to
improve human health via applied problem solving, or both. This is a difficult task,
since the workings of the body are formidably complex. Despite this difficulty,
the bioengineer’s contribution can be substantial, and the rewards for success far
outweigh the difficulties of the task.

Biomechanics is the study of how physical forces interact with living systems. If
you are not familiar with biomechanics, this might strike you as a somewhat esoteric
topic, and you may even ask yourself the question: Why does biomechanics matter?
It turns out that biomechanics is far from esoteric and plays an important role in
diverse areas of growth, development, tissue remodeling and homeostasis. Further,
biomechanics plays a central role in the pathogenesis of some diseases, and in the
treatment of these diseases. Let us give a few specific examples:

� How do your bones “know” how big and strong to be so that they can support
your weight and deal with the loads imposed on them? Evidence shows that
the growth of bone is driven by mechanical stimuli [1]. More specifically,
mechanical stresses and strains induce bone cells (osteoblasts and osteoclasts)
to add or remove bone just where it is needed. Because of the obvious mechanical
function played by bone, it makes good sense to use mechanical stress as the
feedback signal for bone growth and remodeling. But biomechanics also plays
a “hidden” regulatory role in other growth processes, as the next example will
show.

� How do our arteries “know” how big to be so that they can deliver just the right
amount of blood to their distal capillary beds? There is good evidence that this
is determined in large part by the mechanical stress exerted on the artery wall by
flowing blood. Endothelial cells lining the inner arterial surface sense this shear
stress and send signals to cells deeper in the artery wall to direct the remodeling
of the artery so as to enlarge or reduce its caliber [2].
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� What about biomechanics in everyday life? Probably the most obvious appli-
cation of biomechanics is in locomotion (walking, running, jumping), where
our muscles generate forces that are transferred to the ground by bones and soft
connective tissue. This is so commonplace that we rarely think about it, yet the
biomechanics of locomotion is remarkably complex (watch a baby learning to
walk!) and still incompletely understood.

� Locomotion happens on many scales, from whole organisms all the way down
to individual cells. Unicellular organisms must be able to move so as to gather
nutrients, and they have evolved a variety of clever strategies to accomplish
this task [3]. In multicellular organisms, the ability of single cells to move is
essential in processes such as repair of wounds, capture of foreign pathogens,
and tissue differentiation. Force generation at the cellular level is a fascinating
topic that is the subject of much active research.

� Cells can generate forces, but just as importantly, they can sense and respond
to forces. We alluded to this above in the examples of bone remodeling and
arterial caliber adjustment, but it is not only endothelial and bone cells that
can sense forces. In fact, the ability of mechanical stress to elicit a biological
response in cells seems to be the rule rather than the exception, and some cells
are exquisitely specialized for just this task. One remarkable example is the
hair cells in the ear. These cells have bundles of thin fibers (the stereocilia)
that protrude from the apical cell surface and act as sensitive accelerometers;
as a result, the hair cells are excited by sound-induced vibrations in the inner
ear. This excitation produces electrochemical signals that are conducted by the
auditory nerve to the auditory centers in the brain in a process that we call
hearing [4,5].1

� The examples above show that biomechanics is important in homeostasis and
normal function. Unfortunately, biomechanics also plays a role in some dis-
eases. One example is glaucoma, an ocular disease that affects about 65 million
people worldwide [6]. Normally the human eye is internally pressurized, a fact
that you can verify by gently touching your eye through the closed eyelid. In
most forms of glaucoma, the pressure in the eye becomes elevated to patholog-
ical levels, and the resulting extra biomechanical load somehow damages the
optic nerve, eventually leading to blindness [7]. A second example is atheroscle-
rosis, a common arterial disease in which non-physiological stress distributions
on endothelial cells promote the disease process [8].

� What about biomechanics in the treatment of disease and dysfunction? There
are obvious roles in the design of implants that have a mechanical function,

1 Actually, the function of the hair cells is even more amazing than it first appears. The outer hair cells are active
amplifiers, changing their shape in response to mechanical stimulation and thus generating sounds. The net effect is to
apply a frequency-selective boost to incoming sounds and hence improve the sensitivity of the ear.
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such as total artificial hips [9], dental implants [10], and mechanical heart
valves [11]. In the longer term, we expect to treat many diseases by implanting
engineered replacement tissue into patients. For tissues that have a mechanical
function (e.g., heart valves, cartilage), there is now convincing evidence that
application of mechanical load to the tissue while it is being grown is essential
for proper function after implantation. For example, heart valves grown in a
bioreactor incorporating flow through the valve showed good mechanical prop-
erties and function when implanted [12]. Cartilage subjected to cyclic shearing
during growth was stiffer and could bear more load than cartilage grown with-
out mechanical stimulation [13]. We expect that biomechanics will become
increasingly important in tissue engineering, along the way leading to better
fundamental understanding of how cells respond to stresses.

The above examples should give a flavor of the important role that biomechanics
plays in health and disease. One of the central characteristics of the field is that
it is highly interdisciplinary: to be called biomechanics, there must be elements
of both mechanics and biology (or medicine). Advances in the field occur when
people can work at the frontier of these two areas, and accordingly we will try to
give both the “bio” and the “mechanics” due consideration in this book.

Another characteristic feature of biomechanics is that the topic is fairly broad. We
can get a sense of just how broad it is by looking at some of the professional societies
that fall under the heading of biomechanics. For example, in Japan alone, at least
six different professional societies cover the field of biomechanics.2 Obviously we
cannot, in a single book, go into detail in every topic area within such a broad field.
Therefore, we have given an introduction to a variety of topics, with the hope of
whetting readers’ appetites.

1.1 A brief history of biomechanics

We can learn more about the field of biomechanics by looking at its history. In
one sense, biomechanics is a fairly young discipline, having been recognized as an
independent subject of enquiry with its own body of knowledge, societies, journals,
and conferences for only around 30–40 years. For example, the “Biomechanics and
Human Factors Division” (later to become the “Bioengineering Division”) of the
American Society of Mechanical Engineering was established in late 1966. The
International Society of Biomechanics was founded August 30, 1973; the European

2 These are the Japanese Society of Biomechanics, the Bioengineering Division of the Japan Society of Mechanical
Engineers, the Japan Society of Medical Electronics and Biological Engineering, the Association of Oromaxillofacial
Biomechanics, the Japanese Society for Clinical Biomechanics and the Japanese Society of Biorheology.
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Society of Biomechanics was established May 21, 1976, and the Japanese Society
of Biomechanics was founded December 1, 1984. On the other hand, people have
been interested in biomechanics for hundreds of years, although it may not have
been called “biomechanics” when they were doing it. Here we take a quick look
back through history and identify some of the real pioneers in the field. Note that
the summary below is far from exhaustive but serves to give an overview of the
history of the field; the interested reader may also refer to Chapter 1 of Fung [14]
or Chapter 1 of Mow and Huiskes [15].

Galileo Galilei (1564–1642) was a Pisan who began his university training in
medicine but quickly became attracted to mathematics and physics. Galileo was a
giant in science, who, among other accomplishments, was the first to use a tele-
scope to observe the night sky (thus making important contributions in astronomy)
and whose synthesis of observation, mathematics, and deductive reasoning firmly
established the science that we now call mechanics.3 Galileo, as part of his studies
on the mechanics of cantilevered beams, deduced some basic principles of how
bone dimensions must scale with the size of the animal. For example, he realized
that the cross-sectional dimensions of the long bones would have to increase more
quickly than the length of the bone to support the weight of a larger animal [17].
He also looked into the biomechanics of jumping, and the way in which loads are
distributed in large aquatic animals, such as whales. However, Galileo was really
only a “dabbler” in biomechanics; to meet someone who tackled the topic more
directly, we must head north and cross the English Channel.

William Harvey (1578–1657) was an English physician who made fundamen-
tal contributions to our understanding of the physiology of the cardiovascular
system, and who can be rightly thought of as one of the first biomechanicians
(Fig. 1.1). Before Harvey, the state of knowledge about the cardiovascular system
was primitive at best, being based primarily on the texts of the Roman physician
Galen (129–199?). Galen believed that the veins distributed blood to the body, while
arteries contained pneuma, a mixture of “vital spirits,” air, and a small amount of
blood. It was thought that the venous and arterial systems were not in communi-
cation except through tiny perforations in the interventricular septum separating
the two halves of the heart, so the circulatory system did not form a closed loop.
Venous blood was thought to be produced by the liver from food, after which it
flowed outward to the tissues and was then consumed as fuel by the body.4

Harvey was dissatisfied with Galen’s theories, and by a clever combination of
arguments and experimentation proved that blood must travel in a closed circuit

3 Charles Murray, in his remarkable survey of human accomplishment through the ages [16], ranks Galileo as the
second-most accomplished scientist of all time, behind (who else?) Newton.

4 It is easy to look back and ask: How could Galen have been so wrong? The answer is that he was influenced by his
predecessors; prior to Galen it was thought that arteries were filled with air and that the veins originated in the brain, for
example. The lesson to be learned: question dogma!
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Figure 1.1

Portraits of Drs. William Harvey (left) and Stephen Hales (right). Both were early biomechanicians; Harvey was a noted
English physician, while Hales was a Reverend and “amateur” scientist. Both portraits, courtesy of the Clendening
History of Medicine Library and Museum, University of Kansas Medical Center [18].

in the cardiovascular system. For example, he carried out careful dissections and
correctly noted that all the valves in veins acted to prevent flow away from the
heart, strongly suggesting that the function of the veins was to return blood to the
heart. For our purposes, his most intriguing argument was based on a simple mass
balance: Harvey reasoned that the volumetric flow of blood was far too large to be
supplied by ingestion of food. How did he do this? Using a sheep’s heart, he first
estimated the volume of blood pumped per heart beat (the stroke volume) as two
ounces of blood. Knowing the heart rate, he then computed that the heart must be
pumping more than 8600 ounces of blood per hour, which far exceeds the mass of
food any sheep would be expected to eat! In his words (italics added) [19]:

Since all things, both argument and ocular demonstration, show that the blood passes
through the lungs and heart by the force of the ventricles, and is sent for distribution to all
parts of the body, where it makes its way into the veins and porosities of the flesh, and then
flows by the veins from the circumference on every side to the center, from the lesser to the
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greater veins, and is by them finally discharged into the vena cava and right auricle of the
heart, and this in such a quantity or in such a flux and reflux thither by the arteries, hither
by the veins, as cannot possibly be supplied by the ingesta, and is much greater than can
be required for mere purposes of nutrition; it is absolutely necessary to conclude that the
blood in the animal body is impelled in a circle, and is in a state of ceaseless motion.

By these and additional arguments [20], Harvey deduced the closed nature of the
cardiovascular system (although he was unable to visualize the capillaries). For
our purposes, Harvey is notable because he was one of the first physicians to
use a combination of quantification, deductive reasoning, and experimentation to
understand a clinically important medical topic. Such approaches are commonplace
today but were revolutionary in Harvey’s time and even caused him to be strongly
criticized by many prominent physicians.

Giovanni Alfonso Borelli (1608–1679) is variously described as a mathemati-
cian, physicist, and physiologist, which is surely a testament to the breadth of
his interests. He worked at various universities throughout Italy, coming in con-
tact with Galileo. Notably, he spent 10 years in Pisa, where he worked with the
famous anatomist Malpighi (responsible for the discovery of the capillaries). Later
in his career, Borelli became interested in the mechanics of animal motion, and is
best known for his two-volume work on this topic, On the Movement of Animals
(De Motu Animalium), published posthumously in 1680 (Volume I) and 1681
(Volume II). In addition to the novelty of the material in these books, they are
notable for their wonderfully detailed figures illustrating biomechanical concepts
such as locomotion, lifting, and joint equilibrium (Fig. 1.2). Borelli used the princi-
ples of levers and other concepts from mechanics to analyze muscle action. He also
determined the location of the center of gravity of the human body and formulated
the theory that forward motion involved the displacement of the center of gravity
beyond the area of support and that the swinging of the limbs saved the body from
losing balance [21]. Further, he considered the motor force involved in walking and
the location of body support during walking. Borelli was also interested in respira-
tory mechanics: he calculated and measured inspired and expired air volumes. He
was able to show that inspiration is driven by muscles, while expiration is a passive
process resulting from tissue elasticity. In honor of his seminal contributions in the
field of biomechanics, the career accomplishment award of the American Society
of Biomechanics is known as the Borelli Award.

Another early biomechanician was the Reverend Stephen Hales (1677–1761),
who made contributions to both plant and animal physiology (Fig. 1.1). He is best
known for being the first to measure arterial blood pressure, now a staple of all
clinical examinations. He did this by direct arterial cannulation of his horse (in his
back yard, no less)! In his words [22,23]:
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Figure 1.2

Figure from Borelli’s classic work, De Motu Animalium (On the Movement of Animals). Panels 1–4 show how elastic
bands (representing muscles) can interact with two pivoting levers (representing bones) in a variety of geometric
configurations. Panels 5 and 6 demonstrate how the muscle and bone configurations act in humans carrying loads.
Panels 7 and 8 show various pulley arrangements, while panels 9 and 10 show how muscle action in the human arm
supports a weight R. (We will revisit this subject in Ch. 8.) The concepts may not seem advanced to modern students,
but to put things into context, it should be remembered that the first volume of De Motu Animalium was published seven
years before the appearance of Newton’s Principia.



8 Introduction

I caused a mare to be tied down alive on her back . . . having laid open the left crural
[femoral] artery about 3 inches from her belly, I inserted into it a brass pipe whose bore was
1/6 of an inch in diameter; and to that, by means of another brass pipe . . . I fixed a glass
tube of nearly the same diameter, which was 9 feet in length; then untying the ligature on
the artery, the blood rose in the tube 8 feet 3 inches perpendicular above the level of the
left ventricle of the heart . . . when it was at its full height, it would rise and fall at and after
each pulse 2, 3, or 4 inches.

Hales also improved Harvey’s estimate of cardiac stroke volume by pouring wax
at controlled pressure into the heart’s main pumping chamber (the left ventricle)
to make a casting. He then measured the volume of the wax cast by immersing it
in water, and measured its surface area by carefully covering it with small pieces
of paper covered with a measuring grid. Together with his measurements of blood
pressure, Hales then used these results to provide the first estimate of left ventric-
ular systolic (pumping) pressure, and a remarkably accurate estimate of the blood
velocity in the aorta (0.5 m/s).

Jean Léonard Marie Poiseuille (1797–1869; Fig. 1.3) was a French engineer
and physiologist who was also interested in blood flow [25]. In his thesis [27], he
described how he simplified and improved the measurement of blood pressure. His
contributions were two-fold: first, he developed the U-tube mercury manometer,
which did away with the need for an unwieldy 9 foot-long tube. Second, he used
potassium carbonate as an anticoagulant [28]. He was surprised to discover that
the pressure drop from the aorta to arteries with diameters as small as 2 mm was
negligible [29]; we know now that most of the pressure drop in the circulatory
system occurs in vessels with diameter smaller than 2 mm. Poiseuille then became
interested in laminar flow in small tubes and carried out experiments on the flow
of water through artificial glass capillaries with diameters as small as 30 μm. His
results allowed him to deduce the relationship between flow, tube dimensions, and
pressure drop, which we know today as the Hagen–Poiseuille law [30]. We will
explore the implications of this law for blood flow in Ch. 3.

Thomas Young (1773–1829) was an English physician and physicist (Fig. 1.3).
He was remarkably prodigious as a child, having learned to read “with considerable
fluency” at the age of two, and demonstrating a knack for languages, such that he
had knowledge of English, Greek, Latin, French, Italian, and Hebrew by the age
of 13 [26]. He studied medicine and practiced in London while developing and
maintaining expertise in a staggering range of areas. For example, he demonstrated
the wave theory of light, deciphered some of the first Egyptian hieroglyphics by
analysis of the Rosetta stone, helped to establish actuarial science, and lectured on
the theory of tides, surface tension, etc. In the biomedical area, he established, with
von Helmholtz, the theory of color, discovered and measured astigmatism in the
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Figure 1.3

Portraits of Drs. Jean Poiseuille (left) and Thomas Young (right). Both men did important work in physiology and
medicine, yet are familiar to engineering students: Poiseuille for his work on steady laminar incompressible flow in a
tube of uniform circular cross-section (Hagen–Poiseuille flow) and Young from his work on the elasticity of bodies
(Young’s modulus of elasticity). Poiseuille portrait reproduced with permission from [24] as modified by Sutera [25];
Young portrait by Sir Thomas Lawrence, engraved by G. R. Ward, as shown in Wood [26].

eye, and deduced that the focussing power of the eye resulted from changes in the
shape of the lens. He devised a device for measuring the size of a red blood cell, with
his measurements showing a size of 7.2 μm [26], a value that is remarkably accurate
(see Ch. 3). He also studied fluid flow in pipes and bends, and the propagation of
impulses in elastic vessels, and then applied this to analysis of blood flow in the
arteries. He correctly deduced that peristaltic motion of the artery wall did not
contribute to the circulation of blood, and instead that the motive power must
come from the heart [31]. He is most familiar to engineering students for defining
the modulus of elasticity, now known as Young’s modulus in his honor.

Julius Wolff (1836–1902) and Wilhelm Roux (1850–1924) were German physi-
cians (Fig. 1.4). Of the two, Wolff is better known to biomedical engineers because
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Figure 1.4

Portraits of Drs. Julius Wolff (left) and Wilhelm Roux (right). Both were German physicians who were interested in how
mechanical forces could influence the structure and development of bone. Both portraits, courtesy of the Clendening
History of Medicine Library and Museum, University of Kansas Medical Center [18].

of his formulation of “Wolff’s law” of bone remodeling. Legend has it [32] that the
structural engineer Karl Culmann saw a presentation by the anatomist Hermann
von Meyer, in which von Meyer described the internal architecture of the bone in
the head of the femur. Culmann was struck by the similarity between the pattern
of solid elements in the cancellous (“spongy”) bone of the femur and the stress
trajectories5 in a similarly shaped crane that he was designing (Fig. 1.5).6 Based
on von Meyer’s paper describing this similarity [33], as well as other data avail-
able at the time, Wolff hypothesized that bone was optimized to provide maximum
strength for a minimum mass. He then went on to formulate his “law” of bone

5 A stress trajectory is an imaginary line drawn on a surface that is everywhere tangent to the principal stress directions on
the surface. Stress trajectories help to visualize how the stress is carried by an object, and they can be used as the basis
of a graphical procedure for determining stress distributions in bodies. This graphical solution method is now obsolete,
having been replaced by computational methods.

6 This certainly emphasizes the importance of interdisciplinary interaction in biomedical engineering!
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Figure 1.5

Comparison of internal architecture of cancellous bone in the head of a femur (large drawing at right) and the stress
trajectories in the head of a crane (large drawing at left). The smaller drawings provide details of the mechanics of the
crane and the stress distributions in various structures. This picture originally appeared in the article by von Meyer [33],
as reproduced in [32].

remodeling [34,35]:7 “Every change in the form and the function of a bone or of
their function alone is followed by certain definite changes in their internal archi-
tecture, and equally definite secondary alterations in their external confirmation,
in accordance with mathematical laws.” In simpler terms, Wolff stated that bone
will adapt its internal architecture in response to external constraints and loads.
Wolff went on to claim a rigorous similarity between cancellous bone architecture
and stress trajectories. Cowin has shown that this is based on a false comparison of
apples and oranges (i.e., a continuous material vs. a porous one) [32] and argued
persuasively that Wolff gets rather too much credit for his remodeling law, possi-
bly because he was a more prolific writer on this topic. Cowin [32] suggested that
the anatomist Roux should get at least as much credit as Wolff for this “law” of

7 Wolff’s original book was in German [34], but an English translation exists [35].
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remodeling, and we are inclined to agree. Roux was very interested in developmen-
tal biology and physiology, carrying out his doctoral work on the factors governing
the bifurcation of blood vessels [36]. He was convinced that mechanical and phys-
ical principles played important roles in development (e.g., [37]) and carried out
seminal experimental studies in this area. In 1894, he also founded a journal enti-
tled Archiv für Entwicklungsmechanik (Archives of Developmental Mechanics) and
served as its editor for many years, stirring up his fair share of controversy along the
way [38]. He may be rightly thought of as the first developmental biomechanician.

In the years since Wolff and Roux, there have been many advances in biome-
chanics. This is not the place to try to provide a complete history of biomechanics,
and we will not list all of the outstanding investigators who have worked (or are
working) in this fast-growing field. However, it is worth mentioning one other
investigator. An important event in the maturation of the field of biomechanics
was the publication, in 1981, of the book Biomechanics: Mechanical Properties
of Living Tissues, by Yuan-Cheng Fung (Fig. 1.6). Fung was born in 1919 and
was trained as an aeronautical engineer, a field in which he made many techni-
cal contributions in the early years of his career. However, in the late 1950s, he
became interested in biomechanics and consequently changed his research focus
away from aeronautics. In addition to his 1981 book, Fung has also written sev-
eral other books in biomechanics [40,41]. Y.-C. Fung is generally regarded as the
“father” of modern biomechanics and has the rare distinction of being a member
of the US National Academy of Engineering, the US Institute of Medicine, and
the US National Academy of Sciences. Membership in all three of these learned
societies is surely a testament to the abilities of Dr. Fung, but it is also a reflection of
the highly interdisciplinary nature of biomechanics, which (when done properly)
should tightly integrate engineering, medicine, and biology.

1.2 An outline of this book

Western science is traditionally reductionist: we tend to conceptually break down
complex systems into smaller functional units, and try to analyze those units and
their interconnectivity (although see the aside on systems biology below). We will
follow this approach in this book because we believe that this is the best way for
the student to be introduced to a topic.

The basic unit of life is the cell, and an understanding of cellular behavior
is a cornerstone of modern bioengineering. In Chapter 2, we describe the basic
components of the cell, with special emphasis on molecules that play a role
in the biomechanical behavior of the cell. We then attempt to synthesize our
understanding of these molecular components to answer basic questions about
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Figure 1.6

Portrait of Y.-C. Fung, who has played an important role in the establishment of biomechanics as a modern, rigorous
discipline, primarily through the publication of an influential series of books on biomechanics. Reproduced with
permission from [39].

cellular biomechanics. How stiff is a cell, and how do we measure this parameter?
How does the cell anchor itself to substrates and to neighbors? How does the
cell respond to external forces, and what implications does this have for tissue
organization?

At a higher level, physiologists subdivide the body into organs, which are tissues
specialized for a specific purpose, and systems, which are collections of organs
working in concert. In this book, we will also consider the biomechanics of some
of the body’s systems. There are many such systems; here is a partial list and
description of their functions, with emphasis on the biomechanical aspects.

Circulatory system. This system delivers nutrients and picks up waste products
from the cells, as well as delivering signaling molecules, such as hormones, between
different organs. The flow of blood will be studied in Ch. 3; other biomechanical
aspects of the circulatory system are discussed in Ch. 4.
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Lymphatic system. Excess fluid is passively collected from tissues and returned
to the heart via a network of ducts and channels that make up the lymphatic system.
The lymphatic system is also an important locus for immune function. We will
not examine the lymphatic system in detail, although it is briefly touched upon
in Ch. 5.
Nervous and sensory systems. The nervous system consists of the nerves and
brain and is responsible for signaling and control within the body. Its operation
is highly complex and will not be considered in this book. The sensory organs
provide input to the nervous system; we will briefly consider ocular biomechanics
in Ch. 6.
Respiratory system. In order to oxidize foodstuffs, O2 must be delivered to the
blood and CO2 must be removed from it. This is accomplished by exposing the
blood to the air through a very thin membrane of enormous surface area. This
membrane is convoluted and folded to form a large number of small sacs within
the lung. The respiratory system consists of the lungs, plus structures that assist
air passage in and out of the lungs. It will be considered in Ch. 7.
Urinary system. The urinary system consists of the kidneys, ureters, urinary
bladder, and urethra. The kidneys are responsible for removing waste products
from blood and for the production of urine, which is then stored in the bladder and
excreted through the urethra. The biomechanics of the urinary system is fascinating
and complex [42–45]. Unfortunately, consideration of the urinary system is beyond
the scope of this book.
Muscular system. Muscles are specialized tissues that generate force upon
appropriate stimulation. Muscular action is required for locomotion (movement
of the body), motion of individual body parts, and bulk transport of materials
within the body (e.g., pumping of blood by the heart). Muscles, and how they
effect motion, will be discussed in Chs. 8 and 10.
Skeletal system. This framework of bones and soft connective tissues (cartilage,
ligaments, and tendons) provides a rigid, supportive, and protective structure for the
body. The bony skeleton also provides attachments for muscles, serves as a system
of levers for movement and locomotion, and has important metabolic functions.
Bones, cartilage, ligaments, and tendons will be discussed in greater detail in
Ch. 9.
Digestive system. The digestive system comprises the gastrointestinal tract
(mouth to anus) plus the liver, gall bladder, and pancreas. The digestive system
is responsible for ingestion and breakdown of food, delivery of foodstuffs to the
blood, and waste excretion. We will not consider the digestive system in this book.
Immune system. This system consists of specialized cells and molecules dis-
tributed throughout the body (in organs such as the spleen and as cells in the blood-
stream and interstitial fluid). It is responsible for identification and destruction of
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foreign entities, including viruses and bacteria. Consideration of the immune sys-
tem is beyond the scope of this book.

Box 1.1 Systems biology and the integration of information

The reductionist trend in biology has begun to change recently, with the
emergence of several high-profile initiatives in systems biology. The goal
here is to integrate information at the genomic, protein, and higher levels to
understand how biological systems work as functional units. A wonderful
example of a systems biology approach is the work of Davidson and
coworkers [46], who are mapping the genetic regulatory network in the
sea urchin (Strongylocentrotus purpuratus) embryo. By using a variety
of techniques, including perturbing the function of regulatory genes and
observing their effects on embryo development, they have produced maps
of genetic regulatory networks that convey a taste of the complexity of life
(Fig. 1.7 [color plate]; note this represents the development of only part of the
sea urchin embryo, for a small fraction of the developmental period). Readers
will note that there are no biomechanical stimuli listed in this diagram; these
have yet to be elucidated.
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2 Cellular biomechanics

The cell is the building block of higher organisms. Individual cells themselves

are highly complex living entities.1 There are two general cell types: eukaryotic
cells, found in higher organisms such as mammals, and prokaryotic cells, such as

bacteria. In this chapter, we will examine the biomechanics of eukaryotic cells only.

We will begin by briefly reviewing some of the key components of a eukaryotic cell.

Readers unfamiliar with this material may wish to do some background reading

(e.g., from Alberts et al. [1] or Lodish et al. [2]).

2.1 Introduction to eukaryotic cellular architecture

Eukaryotic cells contain a number of specialized subsystems, or organelles, that

cooperate to allow the cell to function. Here is a partial list of these subsystems.

Walls (the membranes). These barriers are primarily made up of lipids in a bilayer

arrangement, augmented by specialized proteins. They serve to enclose the cell,

the nucleus, and individual organelles (with the exception of the cytoskeleton,

which is distributed throughout the cell). The function of membranes is to create

compartments whose internal materials can be segregated from their surroundings.

For example, the cell membrane allows the cell’s interior to remain at optimum

levels of pH, ionic conditions, etc., despite variations in the environment outside

the cell. The importance of the cell membrane is shown by the fact that cell death

almost invariably ensues if the cell membrane is ruptured to allow extracellular

materials into the cell.

A framework (the cytoskeleton). This organelle consists of long rod-shaped

molecules attached to one another and to other organelles by connecting molecules.

1 What defines a living system? A living system must satisfy the following five characteristics:
� it must show complex organization (specialization)
� it must be able to metabolize (assimilate “food,” transform it, and excrete it)
� it must show responsiveness, including the ability to adapt to differing conditions
� it must be able to reproduce
� it must have evolutionary capability.

Individual cells exhibit each of these characteristics.
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The cytoskeleton gives the cell form, allows it to move, helps to anchor the cell to its

substrate and neighbors, and speeds the transport of materials within certain types

of cells. We will consider the cytoskeleton in greater detail later in this chapter.

Engines (the mitochondria). These organelles produce most of the basic energy-

containing molecules from certain substrates such as glucose. Then these energy-

containing molecules are used by other subsystems within the cell.

A command center (the nucleus). The genetic material which codes for

molecules synthesized by the cell is mostly contained in the nucleus, although

there is a small amount of mitochondrial DNA. The synthesis of proteins and other

important biomolecules is initiated by transcription of genetic information coded

in DNA into messenger RNA (mRNA). These mRNA coding sequences leave the

nucleus where they are eventually turned into proteins by . . .

Factories (the endoplasmic reticulum). These production centers synthesize

biomolecules needed by the cell. They take their “orders” from the nucleus in

the form of mRNA.

Packaging plants (the Golgi apparatus). Proteins produced by the endoplasmic

reticulum are not “ready for prime time.” They typically must undergo a series

of folding steps and post-translational modifications before they have biologi-

cal activity. This very important task is handled by the Golgi apparatus, which

takes the protein output of the endoplasmic reticulum and trims, modifies, and

packages it in membrane-delimeted structures (the vesicles) that are sent to var-

ious locations within or outside the cell. Misfolded and otherwise defective pro-

teins must be disposed of immediately since they are potentially harmful to the

cell.

A disposal system (the lysozomes). This system of vesicles contains enzymes
(catalytic proteins) which act to break down metabolic by-products, misfolded

proteins, ingested extracellular material, and other unwanted substances.

Clearly a single cell is a remarkable assortment of complex subsystems (Figs. 2.1

and 2.2). It is also a miracle of miniaturization: all of the above systems fit into a

neat package having a typical mass of 2 × 10−8 g, and a typical diameter of order

15 μm!

Now that we have a basic overview of the components of a eukaryotic cell, let

us look in more detail at cellular biomechanics and mechanobiology. We will start

(Section 2.2) with some basic ideas about how the cell uses energy, which we will

see resembles energy flow in a thermal energy-generating station in some ways.

Then we will delve into more detail about the cytoskeleton of the cell, focussing

on its mechanical properties and how it helps to anchor the cell to its surroundings

(Sections 2.3 and 2.4). The main focus here will be to give the reader enough

biological background to understand Sections 2.5 and onwards.
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Figure 2.1

Structures and organelles found in most human cells. This diagram is highly schematized but serves to indicate the
major features of the cellular organelles. From Vander et al. [3]. Reproduced with kind permission of the McGraw-Hill
Companies.

When engineers talk about the mechanics of conventional engineering materials,

they can refer to handbooks that tabulate the properties of, for example, different

types of stainless steel, and describe the internal structure of these steels. Can

we do that for cells? Not quite, but a body of data is slowly being accumulated

about the “mechanical properties of cells.” In Section 2.5, we will tackle the tricky

question of how one measures the mechanical properties of a single cell, while in

Section 2.6 we will introduce some engineering models that, in combination with

experimental data, teach us something about the cell’s internal mechanics.
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Figure 2.2

Transmission electron micrograph of an insulin-producing pancreatic cell, showing several of the structures depicted
schematically in Fig. 2.1. A prominent nucleus delimited by the nuclear envelope (membrane) is present, as are several
organelles in the cytoplasm: mitochondria, Golgi complex, and endoplasmic reticulum with associated ribosomes. A
second cell is visible at the top left of the image. Sample stained with uranyl acetate and lead citrate. Micrograph
courtesy of Mr. Steven Doyle, University of Toronto.

One of the remarkable things about most cells is how good they are at sens-

ing relatively small levels of mechanical stimulation, while living in a constantly

changing biomechanical environment. How do they do this? Many details of this

process, known as mechanotransduction, are unknown, but in Section 2.7 we will

discuss, in general terms, current thinking on how adherent cells are able to sense

and respond to mechanical stimulation.
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Finally, we consider the consequences of the response of cells to mechanical

stimulation. In Section 2.8, we describe some of the experimental tools that are

used to apply mechanical stimuli to tissues or small groups of cells in culture.

Using these devices, the effects of mechanical stimulation on several cell types

have been determined. In Section 2.9, we present some of the effects on cells from

three specific tissues (vascular tissue, cartilage, and bone) and we consider the

implications for the whole tissue. Let’s get started!

2.2 The cell’s energy system

Life requires energy. At the cellular level, energy-consuming tasks include:

� motion, including both cellular shape changes and locomotion of the cell on its

substrate
� synthesis of compounds
� transport of ions and other molecules, both within the cell and between the cell

and its surroundings

How does the cell utilize food energy? When we eat a meal, the constituent food-

stuffs are acted upon by the digestive enzymes and broken down into simpler

compounds, transferred into the bloodstream across the intestinal walls, and then

transported throughout the body.

Individual cells are therefore presented with a complex mixture of compounds

from which they must obtain energy. The cell solves this problem by having spe-

cialized “energy plants” (mitochondria), which are able to use compounds such

as glucose and fatty acids to produce a common energy-containing molecule that

all cellular organelles can use. This common molecule is adenosine triphosphate
(ATP), formed from adenosine diphosphate (ADP) and phosphate (PO2−

3 ) in the

following reaction:

ADP + PO2−
3 + energy + 2H+ → ATP

Energy is stored in the chemical bond between ADP and PO2−
3 (Fig. 2.3). A mechan-

ical analogue is a spring, which starts in an uncompressed state (ADP) and is then

compressed and held in place by a catch (PO2−
3 ). The organelles can “release the

catch” to produce energy, with by-products ADP and PO2−
3 . We say, therefore, that

ATP is the common currency of energy within the cell.
It is important to note that ADP and phosphate are recycled, to be once more

combined in the mitochondria to yield ATP. This is similar to the movement of

primary loop cooling water in a thermal generating station, and it emphasizes that

ATP is merely a transient carrier of energy within the cell (Fig. 2.4).
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Structure of ADP and ATP. The breakdown of ATP to ADP and inorganic phosphate yields 7 kcal/mole energy. From
Vander et al. [3]. Reproduced with kind permission of the McGraw-Hill Companies.

2.3 Overview of the cytoskeleton

Just as an understanding of a cell’s architecture and its energy system is critical to

understanding cellular biology, the characteristics of the cytoskeleton are central to

understanding a cell’s biomechanical behavior. Here we will only give an overview

of this fascinating topic. Students are encouraged to consult the references if they

wish to learn more about the cytoskeleton.

The cytoskeleton is an elaborate network of fibrous proteins that can adopt a

remarkable range of configurations (Figs. 2.5 and 2.6). It:

� establishes and maintains the shape of the cell
� allows the cell to move (the process of locomotion)
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Energy flow in a thermal generating station (top) and a cell (bottom). Note that primary loop cooling water is analogous
to ATP in that it is a transient vehicle for energy storage which is recycled.

� provides mechanical strength and integrity to the cell
� is central to the intracellular transport of organelles, especially in large cells

such as axons
� is essential during cell division, where it plays a key role in many processes,

including chromosome separation in mitosis and meiosis.

The cytoskeleton consists of three types of filament, each with a specialized pro-

tein composition: actin filaments (7–9 nm in diameter), intermediate filaments
(10 nm in diameter), and microtubules (approximately 24 nm in diameter). Actin

filaments are also called microfilaments or – in skeletal muscle cells – thin fila-

ments. The interaction between all three filament types helps to determine the cell’s

mechanical behavior. We will briefly review the function of each of these filament

types.
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Figure 2.5

Scanning electron micrograph of the actin component of the cytoskeleton within a rat fibroblast adhering to an
N-cadherin-coated glass cover slip (A). A high-magnification inset of the boxed region is shown in (B). The rich, highly
interconnected actin network is clearly visible. Cells were extracted with a detergent solution, fixed in glutaraldehyde,
post-fixed, and gold sputter coated before visualization. Images courtesy of Dr. Tarek El Sayegh, Faculty of Dentistry,
University of Toronto.

2.3.1 Actin filaments

Actin exists within the cell in two forms, as a globular protein (G-actin) and as

a filamentous protein (F-actin). G-actin has a molecular weight of approximately

43 kDa, and consists of a single polypeptide chain. Monomeric G-actin binds one

Ca2+ and one molecule of ATP. F-actin is formed by the polymerization of G-actin,

which causes the bound ATP to be hydrolyzed to ADP and a phosphate ion (Fig. 2.7,

color plate). The ADP remains bound to the actin subunit within the F-actin chain.

F-actin chains are dynamic structures that grow and break down according to

their position within the cell and the activities of the cell at any given instant. F-actin

filaments are polarized, having an end where G-actin monomers are preferentially

added (the fast-growing “barbed” or “+” end) and an end where the filament is

either slowly growing or disassembled (the “pointed” or “–” end). Thus, individ-

ual actin monomers move along filaments, tending to be added at the + end and
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Figure 2.6

Cytoskeleton of the brush border of intestinal epithelial cells. Tight actin filaments are evident in the microvilli, the
finger-like structures in the top half of the image. The actin extends from microvilli into the cytoplasm of the cell, where it
connects with a network of actin, intermediate filaments, myosin, and other cytoskeletal proteins. The scale bar in the
lower left corner is 0.1 μm. Reproduced with permission from Bershadsky and Vasiliev [4] and from the Journal of Cell
Biology, 1982, 94, 425–443 by copyright permission of the Rockefeller University Press.
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Table 2.1. Summary of Young’s modulus values for F-actin measured
by various methods. Modified with permission from Janmey et al. [13].

Authors Method Estimated Young’s
modulus (N/m2)

Kojima et al. [9] Micro-needle/single filament 1.8 × 109

Huxley et al. [10] X-ray diffraction frog/muscle 2.5 × 109

Higuchi et al. [11] Optical diffraction/rabbit
skeletal muscle fiber

Not in paper, by
comparison: ∼2 × 109

Wakabayashi
et al. [12]

X-ray diffraction/frog muscle Not in paper, by
comparison: ∼2 × 109

moving to the – end, in a process known as treadmilling (Fig. 2.8, color plate).

The polymerization and breakdown of F-actin are regulated by several proteins,

including actin depolymerizing factor/cofilin, members of the gelsolin/villin pro-

tein family, and CapZ. The lifetime of actin filaments, the length of the filaments,

the percentage of actin in polymeric form, and the number of barbed ends change

as a function of the cell’s activity. For example, in confluent bovine aortic endothe-

lial cells, the mean filament lifetime is approximately 40 min and about 70% of

the cell’s total actin is present as F-actin [8]. Confluent cells tend to be relatively

quiescent, exhibiting only modest amounts of cellular movement. In contrast, in

subconfluent endothelial cells, which are more active, the mean filament lifetime

is only approximately 8 min and only approximately 40% of the cell’s actin is

present in polymerized form [8].

F-actin exists within the cell in several different forms. In all cells, it is present

in a thin layer adjacent to the cell membrane, in the so-called cortical actin layer.

This layer helps to anchor transmembrane proteins to cytoplasmic proteins (see

Section 2.4) and generally provides mechanical strength to the cell. It also anchors

the centrosomes at opposite ends of the cell during mitosis, and helps the cell to split

into two parts during cytokinesis. In many cells, actin is also present in long bundles

that criss-cross the cell, known as stress fibers. Stress fibers presumably reinforce

the cortical actin layer and are also important for the transport of organelles and

cellular locomotion. Finally, in skeletal muscle cells, actin is highly abundant

and interacts with myosin filaments (thick filaments) to create the actin–myosin

complex, responsible for muscle contraction.

Because of its biomechanical importance, a number of authors have experimen-

tally estimated the Young’s modulus of F-actin filaments. Some of these measure-

ments are summarized in Table 2.1, which shows a fairly tight range of values of

order 2 GPa, approximately 100 times less than the modulus for steel.
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2.3.2 Intermediate filaments

There are currently six known classes of intermediate filament protein. Each class

contains multiple members, so that the intermediate filaments together make up

a very diverse group of molecules whose expression is cell-type specific [2]. For

example, the keratins are expressed in epithelial cells, while glial cells express

glial fibrillary acid protein (GFAP), neurons express various neurofilaments, and

endothelial cells express vimentin.

The biology and biomechanics of intermediate filaments are not as well

understood as those of microfilaments and microtubules [14,15]. We know that

intermediate filaments are more stable than other components of the cytoskeleton,

although they can and do alter their configuration under the right circumstances

(e.g., during cell division). Because of this stability, they provide a supporting net-

work for the cell; for example, the nucleus is stabilized by a network of intermediate

filaments made up of lamin. Intermediate filaments interact with other cytoskeletal

elements, and dysfunction of intermediate filaments leads to the inability of the

cell to withstand mechanical forces [16].

2.3.3 Microtubules

Microtubules are hollow cylindrical structures assembled from dimers of the pro-

teins α-tubulin and β-tubulin (Fig. 2.9, color plate). They are dynamic structures,

with the potential to grow or shrink at each end by the addition/removal of dimers.

Like F-actin, microtubules are polarized: the + end is always more active than the

other end. In vitro under appropriate conditions, tubulin monomers spontaneously

polymerize to form a network of filaments (Fig. 2.10). Similar networks are present

in cells.

Microtubules play a key role in the structure of cilia and flagella, where they

provide structural rigidity and assist in generating motion. Microtubules are often

associated with molecular motors, which are proteins designed to travel along

the microtubule, usually to help to transport something. These molecular motors

include:

� the kinesins, which move towards the + end of the tubule
� the dyneins, which move towards the – end of the tubule.

Molecular motors can be used for more than just transporting materials along the

microtubules. Figure 2.11 shows a micrograph of a cilium, demonstrating the char-

acteristic distribution of nine bundles of two microtubules around the periphery of
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Figure 2.10

Micrograph of fluorescently labeled tubulin polymerized in vitro to show network formation. Tetramethylrhodamine-
labeled tubulin was copolymerized with unlabeled tubulin, fixed, and photographed. It is clear that under the right
conditions, microtubule formation can happen spontaneously. Image copied with permission from the Molecular Probes
image gallery, http://probes.invitrogen.com/. Copyright Molecular Probes, Inc.

the cilium and two central microtubules. This micrograph also shows interconnect-

ing filaments between the central and peripheral microtubules. These connecting

filaments are motor proteins. Forces generated by these motor proteins, in con-

junction with the structural integrity of the microtubules, produce the characteristic

back-and-forth motion of the cilium.

Microtubules also play a major role during cell division, where they form a

basket-like network called the mitotic apparatus (Fig. 2.12). To accomplish this

task, the microtubules organize themselves around a pair of organelles called the

centrosomes (also known as the microtubule organizing centers). Each centrosome

contains two microtubule aggregates oriented at right angles to one another, called

the centrioles (Fig. 2.1). In a remarkable process, the microtubules in this apparatus

attach to and orient the chromosomes containing the previously duplicated genetic

material of the cell, and then pull the two halves of each chromosome apart to form

two complete daughter sets of genetic material. It is hard to think of a process in

which mechanics is more central to life.

2.4 Cell–matrix interactions

To function properly, cells must stay attached to their substrates and to their neigh-

bors. (The exceptions are circulating cells, such as formed elements in the blood.)

This is not as straightforward as it sounds. Think about a vascular endothelial cell

in a large artery: it lives on a continuously deforming substrate to which it must



Figure 2.11

(A) Electron micrograph of the longitudinal cross-section of a cilium from a human bronchus epithelial lining cell. (B)
Electron micrograph of the transverse cross-section of a flagellum of a green alga cell showing the characteristic “9 + 2”
arrangement of microtubules. This microtubule arrangement is found in almost all flagella and cilia from single cell
organisms to humans. (C) Diagram of the cross-section of a flagellum, showing the complex internal structure, which is
very similar to that of a cilium. (A) reproduced with permission from Cormack [18]; (B) from Alberts et al. [1]; (C) from
Lodish et al. [2], with permission of W. H. Freeman.
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Figure 2.12

Schematic drawing of a mitotic apparatus. Microtubules emanate from two centrosomes, forming a basket-like network
around cellular DNA within the duplicated chromosomes (dark objects in center of picture). Other microtubules will
attach to each duplicated chromosome; these microtubules pull apart the chromosomes and produce two daughter sets
of identical genetic material. From DuPraw [19], with permission from Elsevier.

adhere, while maintaining close contact with its neighboring endothelial cells. Fur-

thermore, it must be able to detach locally from its substrate, for example to crawl to

cover a denuded region of the artery wall following injury or to allow a circulating

macrophage to enter the artery wall. In addition, there is now much evidence that

the cell senses some aspects of its biomechanical environment through deforma-

tions of its substrate, and that interaction with its substrate influences cytoskeletal

structure, phagocytosis (ingestion of foreign material), and signal transduction.

There are two kinds of attachment that cells make: to neighboring cells and to

their substrates. Here we will concentrate on the latter. To understand such interac-

tions better we must first learn a little about the extracellular materials that form the

cell’s substrate. This extracellular material is a complex mixture of biopolymers

that is collectively known as the extracellular matrix (ECM). Immediately adja-

cent to some cells (e.g., endothelial cells, epithelial cells, muscle cells, fat cells,

Schwann cells of the nervous system), there is a specialized layer known as the

basal lamina, or basement membrane, which is a specialized region of the ECM.

In general, the ECM is very complex and consists of a large number of highly

specialized macromolecules. Some of the important components are:
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Collagens. Collagen is a fibrous protein that imparts structure and rigidity to

tissue. It occurs in many different types2, and is the most abundant protein in

higher vertebrates; for example, Lehninger [21] states that collagen makes up one

third or more of total body protein. We will consider the structure of collagen

in detail in Section 9.8; here we provide a brief overview of several of the more

important types of collagen:

� collagen type I: forms large structural bundles that are present in tendons, lig-

aments, and other tissues subject to significant mechanical loading; has high

tensile strength (tangent Young’s modulus ∼1 × 109 Pa)
� collagen type IV: forms X-shaped complexes that associate together to create a

highly interconnected fibrous network; is abundant in basement membrane
� collagen type VI: widely distributed throughout the ECM, this collagen type

seems to play an intermediate role between the interstitial collagens (types I–III)

and cells, helping cells to form attachments to the surrounding matrix [22].

Elastin. This fibrous elastic protein acts to impart elasticity and resilience to

tissue. It is much more compliant than collagen (Young’s modulus ∼3 × 104 Pa)

and is present in significant amounts in the walls of large arteries, lungs and skin.

Proteoglycans. Proteoglycan is a generic term denoting a protein that has one or

more glycosaminoglycan (GAG) side chains. The physicochemical properties of

the proteoglycans are in large part determined by the GAGs, which are themselves

large biopolymers made up of negatively charged carbohydrate repeat units. The

GAGs are avidly hydrophilic and will imbibe and retain very large volumes of

water. Common proteoglycans are aggrecan (found in large amounts in cartilage),

heparin sulfate (found in basal lamina), and chondroitin sulfate.

Hyaluronan. Hyaluronan (also called hyaluronate and hyaluronic acid) is an

extracellular GAG that is unusual in not being covalently linked to a protein,

although it associates non-covalently with proteins in the extracellular matrix. Its

large size and strong negative charge means that it is very effective at taking up

water and keeping tissue hydrated.

Adhesion proteins. Laminins and fibronectin are adhesion proteins:

� laminin: there are 11 known isoforms of laminin [23], all of which are cross-

shaped proteins that are abundant in basal lamina and bind collagen type IV and

other matrix molecules; they are key components of the basement membrane
� fibronectin: this large protein has binding domains for collagen, cell-surface

binding molecules (integrins; see below) and heparin sulfate; it is the

“all-purpose glue” of the ECM.

When these components are put together, a composite structure results (Fig. 2.13).

In this composite material, collagen and elastin act together to provide mechanical

2 In October 2002 the 26th type of collagen was reported [20].



Figure 2.13

A highly schematic diagram showing some of the major components of the extracellular matrix, with a flow pathway from
a vascular capillary (upper portion of figure) to a lymphatic capillary (lower portion of figure). 1, an endothelial cell in a
capillary wall; 2, capillary endothelial basement membrane; 3, interstitial matrix; 4, interstitial cell; 5, lymphatic capillary
endothelial cell; 6, lymphatic fluid; 7, elastic fiber; 8, plasma proteins in lymphatic fluid. Reproduced with permission
from Bert and Pearce [24].
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Figure 2.14

Schematic description of how actin interacts with transmembrane proteins (integrins). Integrins are responsible for
binding to extracellular molecules, primarily extracellular matrix components. To ensure the mechanical integrity of this
attachment, it is necessary that the integrins be somehow connected to the cytoskeleton of the cell. As can be seen, this
actin–integrin binding is effected through a complex set of proteins, including vinculin, talin, tensin, and α-actinin. CRK,
Crk protein; CSK, Csk protein; CAS, Crk-associated substrate; FAK, Focal adhesion kinase; PY, phosphotyrosine; PM,
plasma membrane. See Fig. 2.15 for a more complete summary of the proteins participating in cell–matrix adhesion.
Reproduced with permission from Vuori [26].

integrity and tissue structure, and to provide mechanical “scaffolding” for the

resident cells, while hyaluronan and the proteoglycans fill the empty spaces and

hold water in the tissue. The role of the bound water in the tissue is crucial, since

this provides the pathway whereby nutrients and other species are transported to

and from the cells. The entire structure can be thought of as a biological “sponge”

loaded with water [25].

Cells express transmembrane proteins called integrins that are responsible for

binding to specific components in the matrix and attaching the cell to its sub-

strate. The integrins are heterodimers (formed by two dissimilar subunits, an α

chain and a β chain) that have an extracellular binding domain, a transmembrane

domain, and a cytosolic domain. There are at least 22 different integrins in mam-

mals, each of which specifically recognizes binding domains on collagen, laminin,

fibronectin, and/or other matrix proteins [17,26]. The cytosolic domain of the inte-

grin associates with a large protein grouping called a focal adhesion complex,

which in turn attaches to F-actin filaments (Figs. 2.14 and 2.15 [color plate]). In

this way, the actin filaments of the cytoskeleton are ultimately connected to the
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Table 2.2. Typical magnitudes of quantities measured on the cellular scale
(last column)

Quantity SI units “Micro SI” units (suitable for cells)

Distance m μm

Force N pN (= 10−12 N) to nN (= 10−9 N)
a

Pressure,
stress

Pa (= N/m2) pN/μm2 (= 1 Pa) to nN/μm2 (= 1 kPa)

a Forces of molecular bonds and those exerted by “soft” cells are in the picoNewton range. “Stiff” cells
can exert forces in the nanoNewton range.

fibrous matrix outside the cell. We will consider the important role integrins play in

cellular biomechanics and the sensing of mechanical signals later in this chapter.

2.5 Methods to measure the mechanical properties
of cells and biomolecules

To help in understanding cellular biomechanics we need experimental data on

the mechanical properties of individual cells, such as Young’s modulus, shear

modulus, etc. It is also useful to have measurements of the mechanical strength of

individual molecules (e.g., actin filaments) and of bonds between molecules, e.g.

between a receptor and its ligand. How does one measure Young’s modulus for a

cell or a molecule? As you may imagine, it is not trivial. Consider, for instance, the

magnitudes we are dealing with at the cellular level. These are discussed very nicely

by Hochmuth in a review article [28] and are summarized in Table 2.2. It can be

seen that the forces are pretty small! Nonetheless, there are a number of techniques

for measuring the mechanical properties of single cells and molecules. Some of

these techniques are summarized schematically in Fig. 2.16. Each technique is

suited to a different force range and length scale. Below we review some of them.

2.5.1 Atomic force microscopy

The atomic force microscope (AFM) is a powerful tool for measurement of forces

and displacements on both molecular and cellular scales [30,31]. The key ele-

ment of the microscope is a tapered probe, typically made from silicon or silicon

nitride, which is attached to a cantilever arm. When the probe tip interacts with

a sample, the arm is deflected. This deflection can be measured by sensing the

position of a laser beam that reflects off the cantilever arm (Fig. 2.17). By suitable

placement of the laser and detector to take advantage of the “optical level arm”

effect, displacements of less than 1 nm can be measured. The arm is attached to a



36 Cellular biomechanics

A

C

D

B
Cantilever

Spring

Surface force
apparatus
10 nN–1 μN

AFM
0.01 nN–100 nN

Micropipette aspiration
0.01–1000 nN

Optical tweezers
0–200 pN

Figure 2.16

Schematic diagrams of force probes used to measure the mechanical properties of single cells and protein interaction
forces. (A) An atomic force microscope (AFM) shows the probe tip, attached to the cantilever force transducer, coming in
contact with a substrate. (B) A surface force apparatus, showing the crossed cylinders of the apparatus and the
force-transducing spring. (C) The bioforce probe, consisting of a cell partially aspirated into a micropipette. A bead
(center black sphere) is attached to one cell (left), and a force between the bead and a second cell or glass bead (right)
is exerted by aspirating the (left) cell into the pipette. (D) Optical tweezers. A bead is held in the optical trap, such that
radiation pressure exerted on the bead applies force to adhesive contacts between materials on the bead surface and the
substrate. Modified with permission from Leckband [29].

piezoelectric element that can move in the vertical and transverse (lateral) direc-

tions. In biological applications, the AFM is typically used in conjunction with

an optical microscope that can be used for real-time visualization, for example, to

help to localize the AFM probe over a target cell. One of the great advantages of

the AFM is that imaging can be carried out on living cells or intact molecules in

an aqueous environment. This is in contrast to other high-resolution microscopy

techniques (e.g., scanning electron microscopy) that require that the samples be

fixed and imaged in a near-vacuum.
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Figure 2.17

Schematic description of the tip of the atomic force microscope contacting a cell, showing the path of the laser beam.
Deflection of the laser beam is sensed and related to tip deflection by the known geometry of the optical pathway. Tip
deflection is then related to applied force by knowledge of the mechanical characteristics of the cantilever arm
supporting the tip.

To understand the operation of the AFM it is important to delve into the operation

of the cantilever arm in more detail. If the arm undergoes only small deflection in

the vertical direction, then it can be treated as a linear spring with stiffness kc. In

this case, the force F needed to create a vertical deflection z can be written as

F = kcz. (2.1)

Typical values for kc are about 0.02 to 5 Newton per meter (N/m), which is pretty

soft! This has interesting consequences for the minimum force that can be resolved

by the AFM [32]. Remember that the probe tip will typically be in an aqueous envi-

ronment and will, therefore, be subject to random collisions from water molecules

undergoing thermal motion. The average energy of a molecule at absolute temper-

ature T is given by 1/2kB T , where kB is Boltzmann’s constant, 1.3807 × 10−23 J/K.

We know that the energy stored in a spring of stiffness kc as it deflects by an amount

z is 1/2kcz2. Equating these two energies allows us to solve for the fluctuations, z,

that will occur as a result of random collisions with water molecules as:

z =
√

kB T

kc
. (2.2)

By Equation (2.1) this corresponds to a force

F =
√

kckB T , (2.3)

which represents the thermal “noise” that will be continually measured by the

AFM tip. Forces appreciably smaller than this are not resolvable. For a sample at

37 ◦C (310 K), and an arm stiffness of 0.05 N/m, this corresponds to approximately

15 pN.

How is the AFM used to obtain information about biological specimens?

Although the AFM can be used to image many types of specimen, here we will
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focus on measurements made on adherent cells. Consider first the “simple” prob-

lem of mapping out the topography of the cell. There are a number of ways, or

modes, in which the AFM can be used in such an application. The simplest of these

modes is the so-called contact mode, in which the probe tip is scanned over the sur-

face of the cell in a raster-like pattern. At each raster location, the deflection of the

cantilever arm is measured (based on the reflected laser beam’s position) and the

arm’s vertical position is adjusted by the piezoelectric element in a feedback loop

so that the cantilever arm experiences a constant deflection. From Equation (2.1),

this implies that a constant force is being applied to the cell’s surface by the probe

tip. Since the vertical position applied by the piezoelectric element is known, this

produces a “map” of cell topography, or more specifically, a set of height values

at which the cell exerts a constant reaction force on the probe tip (Fig. 2.18, color

plate). Unfortunately, this method of measuring cellular topography has a signif-

icant drawback: the probe tip often applies large lateral forces to the cell. These

lateral forces can deform or even damage unfixed cells or other “soft” specimens.

This has led to the development of more sophisticated scanning modes. For exam-

ple, in “tapping mode,” the cantilever arm is acoustically or magnetically driven

so that it vibrates at or near its resonant frequency, and it is then moved verti-

cally so that it approaches the cell surface. Far from the cell, the arm undergoes

oscillations whose amplitude is determined by the magnitude of the driving signal.

However, as the probe tip approaches the cell it begins to interact with the cell,

which changes the magnitude of the arm’s vibrations. The position where this

change in magnitude occurs is a measure of the topography of the cell at that

lateral location. Because the probe tip just taps the specimen, rather than being

dragged along it, this produces smaller lateral forces on the cell and less potential

for damage.

Other interesting measurements can be made with the AFM on cells. For exam-

ple, the probe tip can be vertically traversed towards the sample while the cantilever

arm deflection is measured.3 This is known as “force mapping mode” and produces

a curve of applied force versus surface deflection (a “force curve;” Fig. 2.19). To

understand this curve, we must remember that the probe tip is much harder than

the relatively soft biological specimens, so that we effectively have a rigid cone

penetrating into the cell, which we will treat as being locally planar and linearly

elastic. This is a classical problem in contact mechanics, which was treated by

Hertz in 1882. The key result is that the deflection of the cell at the center of the

probe tip, δ, due to an applied force F is

δ2 = π

2

F(1 − ν2)

E tan α
, (2.4)

3 An early version of an apparatus that functioned in a similar fashion was known as a “cell poker.”
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Figure 2.19

Example force curve for measurement of cellular stiffness of an activated human platelet using the atomic force
microscope. The vertical axis is proportional to the force applied to the cell by the probe tip. The horizontal axis is the
vertical offset of the base of the cantilever arm applied by the piezoelectric actuator, which we denoted by z − z0 in
Equation (2.5). The thin line is the measured deflection, while the thick line is the fit of a modified form of Equation (2.5)
to the data. Notice the variations in the measured deflections from thermal noise. From Radmacher [32], reprinted with
permission from the IEEE.

where E and ν are the modulus and Poisson ratio for the cell and α is the known

cone half-angle.4 A generalization of this solution that is useful for our purposes

is [35]:

z − z0 = F

kc
+

√
π

2

F(1 − ν2)

E tan α
. (2.5)

Here z0 is the probe height at which the applied force becomes non-zero, and the

first term on the right-hand side accounts for the deflection of cantilever arm. By

assuming a value for ν (usually 0.5), the measured force–displacement data can

4 The reader should be aware that the coefficient π/2 in Equation (2.4) and under the radical sign in Equation (2.5) is

often erroneously given as 2/π in the AFM literature. The form shown here is correct, as can be confirmed by

consulting the original solutions of the Hertz contact problem for a conical indenter (e.g., [33]) or any textbook on

contact mechanics (e.g., [34]).
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Figure 2.20

Elasticity map (A) and corresponding topography map (B) of a living NIH3T3 fibroblast. The nuclear portion (N) is the
softest, with a stiffness of approximately 4 kPa. A small softer “island” was observed in the perinuclear region (marked by
arrow). (C,D) Immunofluorescence images of actin filaments (C) and microtubules (D) for the same cell shown in A and
B. A bi-lobed nucleus is visible in the microtubule image. The small open area observed in the actin image (arrow in C)
corresponds to the soft “island” observed in the elasticity map. Part of the cell with low actin density and high density of
microtubules shows a low Young’s modulus (marked P in A and D). Each image size is 80 μm square. Reprinted from
Haga et al. [35], with permission from Elsevier.
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Laser “trap”

Laser beam movement

Figure 2.21

Schematic description of the “optical tweezers” manipulating a bead that is attached to a cultured cell. Bead position is
monitored by microscopy and so the relative position of the bead and the optical trap center are known.

be fit by Equation (2.5) to obtain z0 and E. It will be appreciated that the value of

E so obtained reflects a local Young’s modulus and can be expected to vary over

the surface of the cell. For example, the local stiffness has been related to the local

cytoskeletal structure in fibroblasts (Fig. 2.20).

What sort of maximum spatial resolution can we expect with the AFM? A

typical probe tip radius is 10–50 nm, but unfortunately this lateral resolution is not

achievable when measuring cellular stiffness. That is because the probe sinks into

the relatively soft cell and consequently measures over a larger area than just the

tip. The magnitude of this effect depends on the applied force and the cell stiffness;

typical values for lateral resolution are in the range of tens to several hundreds of

nanometers [32]. This is small enough to give reasonable resolution when mapping

stiffness over a cell.

2.5.2 Optical trapping (“optical tweezers”)

Photons carry momentum; consequently when light shines on a surface there is an

effective force exerted on that surface. Usually this effect is very small and can

be neglected. However, for intense light shining on a small particle, forces in the

range of 1 to 200 pN can be generated. An extension of this concept is to create

a specially focussed light beam that creates a potential “well” that traps a bead or

small particle, typically 1–2 μm in diameter.

This principle can be used for biological measurements by coating the bead with

fibronectin (or some other molecule that will bind to receptors on the cell surface)

so that the bead adheres to a given location on the cell. The beam is then moved

laterally, and the motion of the bead is observed microscopically (Fig. 2.21). From

knowledge about the characteristics of the light trap, the force exerted on the bead

by the moving light beam can be determined from the bead position relative to
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Sample
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Cover glass

Figure 2.22

Schematic description of the central measuring unit of a magnetic bead microrheometer based on an electromagnet. The
electromagnet is attached to a microscope stage and consists of a coil (1200 turns of 0.7 mm copper wire) and a soft
iron core. This core extends beyond the windings, forming a pole piece that penetrates the sample chamber. The tip of
the pole piece can be positioned at distances of (r) of 10 to 100 μm from a magnetic bead attached to a cell. This
produces maximal forces of 10 000 pN on a paramagnetic bead of 4.5 μm diameter. From Bausch et al. [42] with kind
permission of the authors and the Biophysical Society.

the center of the optical trap. Since the displacement of the bead is simultaneously

monitored, this information can be used to determine the local stiffness of the

cell. Essentially the same technique can be used to measure the force exerted

by individual molecules. Optical trap techniques have been used for a variety of

biomechanical measurements; for reviews see [36–38].

2.5.3 Magnetic bead microrheometry

In the magnetic bead microrheometry technique, a paramagnetic bead, typically

4–5 μm in diameter, is coated with fibronectin or some other suitable molecule. The

fibronectin binds to integrins on the cell surface, providing a direct link between

the bead and the actin cytoskeleton of the cell (Fig. 2.14). The paramagnetic bead is

then subjected to a magnetic field that either twists it (magnetic twisting cytometry
[39–41]) or displaces it (magnetic bead microrheometry; Fig. 2.22). Here we will

concentrate on magnetic bead microrheometry, where the magnetically induced

motion of the bead is visualized by light microscopy. Information about bead

displacement and applied force is used to estimate local mechanical properties

of the cell. One advantage of this approach is that it can produce forces in the

100–10,000 pN range, which is relatively large. An extension of this approach

involves “seeding” the surface of the cell with latex microspheres and watching their

displacement in the neighborhood of the magnetic bead. This gives information

about the length scale over which displacements are coupled within the cell.
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Figure 2.23

An example of force calibration data for the microrheometer shown in Fig. 2.22. (A) Force versus distance for a bead of
diameter 4.5 μm, plotted for coil currents between 250 and 2500 mA. (B) The same data replotted as force versus
current for distances between 10 and 100 μm. A linear relationship between the coil current and force on the
paramagnetic bead is evident. From Bausch et al. [42] with kind permission of the authors and the Biophysical Society.

An important issue is how the system will be calibrated. This is accomplished

by suspending a bead in a liquid of known viscosity and applying a magnetic field

to the bead. The resulting displacement of the bead can be tracked optically as a

function of time, and then Stokes’ law can be used to estimate the force on the

bead.5 From this, the force profile as a function of applied current and distance

from the magnet’s pole piece can be determined (Fig. 2.23).

Figure 2.24 shows some of the data gathered using this method. It is clear that

when a force is applied to the bead, there is a nearly immediate displacement of

the bead (phase I in Fig. 2.24), followed by a gradual creep (phases II and III).

This is consistent with the cytoskeleton and cytoplasm demonstrating viscoelastic

behavior. In Section 2.6.1 we show how construction of suitable models allows us

to determine stiffness and damping coefficients for the elastic and viscous elements

in the cell from data such as those shown in Fig. 2.24. An example of how this

technique can be used to image the strain field around a single paramagnetic bead

bound to a cell is shown in Fig. 2.25.

2.5.4 Micropipette aspiration

The final methodology that we will consider is micropipette aspiration. This is one

of the oldest techniques for measuring cellular (and subcellular) biomechanical

5 Stokes’ law states that the terminal velocity experienced by a spherical particle of radius a acted upon by a force F as it

translates in a fluid of viscosity μ is given by U = F/(6πμa), so long as the particle Reynolds number, Rea = Uaρ/μ,

is much less than one.
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Figure 2.24

Typical creep response and relaxation curves measured for a 4.5 μm diameter bead bound to the membrane of a 3T3
fibroblast. The bead was coated with fibronectin and is therefore presumed to be bound to an integrin receptor. Force
pulses of amplitude F = 2000 pN and duration �t = 2.5 s were applied, as shown in the lower portion of the graph. A
rapid (elastic) displacement is evident in phase I, followed by creep in phases II and III. From Bausch et al. [42] with kind
permission of the authors and the Biophysical Society.

properties, dating back to the middle of the twentieth century [43]. There are differ-

ent ways in which micropipette aspiration can be used, but all approaches employ

a very fine glass micropipette, typically having internal diameter of 1–10 μm

and with a tip that can be moved about by a micromanipulator. A small, known

pressure can be applied to the pipette through a fluid-filled reservoir attached to

the pipette. By controlling the reservoir height, this pressure can be altered during

the course of an experiment (Fig. 2.26).

In the simplest form of micropipette aspiration, the pipette tip is brought into

contact with a cell and a small suction (aspiration) pressure is generated by the

reservoir. Direct microscopic observation reveals the cell’s deformation and motion

in real-time as it is acted upon by the micropipette. From knowledge of the reservoir

height and the pipette tip cross-sectional area, the force applied to the cell can

be determined. This apparatus can generate forces ranging from 10 pN to about

104 nN, which is sufficient to cause appreciable cellular deformation (Fig. 2.27).

The smallest resolvable force in this technique depends on the precision with which

the reservoir can be positioned; typical vertical positioning accuracy is several μm,

which translates into a force of order 1–10 pN for a 10 μm diameter pipette.

Biomechanical measurements using this technique have been made on sev-

eral cell types, including neutrophils [28,44,46–50], red cells [28,51–58] and

outer hair cells [45,59–61]. Micropipette aspiration is particularly well suited for

measurement of mechanical properties of the mammalian red cell, since erythro-

cytes are one of the mechanically “simplest” cell types. Let us consider red cell



45 2.5 Measurement of mechanical properties

A

C

1

3

MM

1 2
2

3
44 55

66
77

88

9
9

2 μm2 μm

0.20
Magnetic

bead

4

5

9

8

3
6

7 2

0.15

0.10

0.05

0.00

0 2 4

Radius (μm)

6 8 10

1

Latex beads

B
ea

d 
de

fle
ct

io
n 

(μ
m

)

B

Figure 2.25

Sample data showing how the displacement field induced by a paramagnetic bead is mapped on the plasma membrane
of a fibroblast. (A) Microphotograph showing one magnetic bead (M, radius 2.25 μm) and several non-magnetic
particles (1–9, radius 0.5 μm) attached to a region of the cell membrane. Notice that there are several non-numbered
particles. These are ignored, since their deflection amplitude could not be accurately measured due to technical
problems. (B) Scale drawing of the corresponding displacement field after a 1 second duration force pulse. The bead
deflections are enlarged by a factor of 10. (C) Plot of the bead deflection (ur/cos θ ) versus distance between the center
of the paramagnetic bead and the latex beads, r. Here ur is the displacement of a latex bead in the direction of the
magnetic bead and θ is the angle between the r-vector and the magnetic field vector. The dotted line is the results of a
model of cellular deformation. It can be seen that the deflections ur (r) show a lot of scatter about the theoretical result.
This might be caused by structural cytoskeletal components within the cell altering the local deformation field, by
variations in the strength of attachment of the small beads to the integrin receptors, or by differences in the strength of
the coupling between the integrin receptors and the cytoskeleton. From Bausch et al. [42] with kind permission of the
authors and the Biophysical Society.
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Figure 2.26

Schematic overview of apparatus used for micropipette aspiration of a living cell (not to scale). Adapted from Shao and
Hochmuth [44] with kind permission of the authors and the Biophysical Society.

A B

PM PM

pipette

Figure 2.27

Micropipette aspiration studies of guinea pig outer hair cells. The outer hair cell resides within the cochlea and is
responsible for several biomechanical functions, most importantly in the amplification of incoming sounds through
active remodeling. It is one of the most intriguing cell types from a biomechanical viewpoint. In this set of images, the
plasma membrane of the hair cell has been labeled with a fluorescent dye (Di-8-ANEPPS). (A) A conventional
transmitted light image of a hair cell undergoing micropipette aspiration at a suction pressure of −11 cmH2O. (B)
Corresponding fluorescent image, where the aspiration of the cell’s plasma membrane (PM) into the pipette lumen is
clearly visible. From Oghalai et al. [45]. Copyright 1998 by the Society of Neuroscience.
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biomechanics in more detail, which requires a small detour to describe the structure

of the erythrocyte.

Formation of a human erythrocyte begins when stem cells within the bone mar-

row differentiate to create an erythroblast. This cell expels its nucleus to produce a

reticulocyte, which then enters the circulation and loses its organelles to become an

erythrocyte. The erythrocyte has only a membrane-associated (cortical) cytoskele-

ton, with no cytoskeletal network extending into the interior of the cell. The major

component of this cortical cytoskeleton is a fibrous protein called spectrin, which

forms tetramers that then cross-link to other tetramers to form a “hub-and-spoke”

network. The cross-linking is provided by a protein complex that contains short

actin filaments and a variety of other proteins (Fig. 2.28, color plate). The entire

network is attached to integral membrane proteins by a protein called ankyrin, so

that the membrane is reinforced by, and tightly bound to, the cortical cytoskeleton.

This architecture means that the red cell is very flexible (and hence able to fit

through small capillaries throughout the circulatory system). Biomechanically, the

absence of any significant internal structure means that the cell can be treated as a

reinforced “bag of hemoglobin.”

When red cells are aspirated by a micropipette, a portion of the red cell is drawn

inside the lumen of the pipette and is elongated (Fig. 2.29). If the applied suction

pressure is low enough to avoid red cell rupture, an equilibrium is established in

which the applied suction pressure is balanced by mechanical stresses within the

cortical cytoskeleton of the red cell. One measure of the cell’s elastic properties is

the distance that this aspirated segment extends into the pipette, L. Experimental

measurements of this distance as a function of the applied pressure are shown in

Fig. 2.30, where we see that there is an approximately linear relationship between

L and applied pressure, at least over the range of pressures plotted.

Another useful property that can be measured in an aspiration experiment is the

density of spectrin as a function of position on the cell’s surface. The deformed

red cell has a non-uniform spectrin density because the strain field over the red

cell surface is non-uniform: in some areas the spectrin network is highly extended,

while in others it is less extended or even compressed. This can be quantified by

fluorescently labeling components of the cortical cytoskeleton and then measuring

the fluorescence distribution before and after micropipette aspiration. Discher and

colleagues [64] presented such measurements by plotting the mass of spectrin per

unit area of membrane, normalized to the value far from the pipette, for different

aspirated segment lengths. Figure 2.31 shows that the density of spectrin near the

tip of the aspirated segment can fall to approximately 30% of its normal value,

while the spectrin density near the entrance to the pipette can nearly double. It is

clear that the strain magnitudes within the red cell cytoskeleton are huge compared

with “traditional” engineering applications.
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Figure 2.29

Simulation of a flaccid red cell being aspirated by a micropipette. The spectrin network within the cell is modeled as a
network of non-Hookean springs, shown in this image as white segments. There are 6110 vertex nodes, each of which is
connected to six neighbors by spectrin strands. From Discher et al. [62] with kind permission of the authors and the
Biophysical Society.

Can we use data of the type shown in Figs. 2.30 and 2.31 to deduce mechani-

cal properties of the cortical cytoskeleton? The answer is yes. However, because

of the complexity of the cytoskeletal deformation, this is far from trivial (even

for the “simple” erythrocyte), and requires a model of cytoskeletal deforma-

tion during aspiration. Interested readers are referred to the excellent summary

provided by Boal [65] for further details; here we simply summarize the main

results. It is fairly easy to show that bending stresses contribute a relatively small

amount to the mechanical behavior of the cell, at least for typical pipette diameters

[65]. Therefore, the most important modes of deformation of the cell membrane/

cytoskeleton during pipette aspiration are an in-plane shear and an in-plane dila-

tion (area change).6 Because everything is happening in the local plane of the

6 A shearing deformation is one that preserves the area of a small element of membrane, but changes internal angles. A

dilatational deformation changes the area of the membrane element without changing internal angles. See Boal [65] for

a more complete discussion of this point.
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Length of the aspirated segment, L, as a function of aspiration pressure
for micropipette aspiration of a flaccid human red cell. The aspirated
segment length has been non-dimensionalized by inner pipette radius
R p. The quantity 
 is defined to be 2PRp, where P is the aspiration
pressure (taken to be < 0 for suction). This implies that 
 values < 0
correspond to tension in the cortical cytoskeleton/membrane. The grey
triangles are experimental data from Waugh and Evans [63]; other
symbols are simulation results from Discher et al. [62] using the model
shown in Fig. 2.29. From Discher et al. [62] with kind permission of the
authors and the Biophysical Society.
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Relative density of cortical cytoskeleton as a function of aspirated
segment length for the tip region of the aspirated segment (“cap”) and
near the entrance to the pipette (“entrance”). The relative density is the
amount of cytoskeleton per unit membrane area normalized by the value
far from the pipette. Grey symbols are experimental measurements based
on fluorescence (see text) from Discher et al. [64]; other symbols are
simulation results from Discher et al. [62] using the model shown in Fig.
2.29. From Discher et al. [62] with kind permission of the authors and the
Biophysical Society.

membrane/cytoskeleton, it makes sense to work with stresses defined as forces per

unit length, rather than the more familiar force per unit area. In this approach, we

draw a small line segment on the cell membrane and express the in-plane stress as

the force acting across that line segment divided by the length of the segment. This

implies that elastic moduli will also have units of force per unit length (or energy

per unit membrane area), rather than the more familiar force per unit area we use for

bulk materials. For a planar isotropic material, there are two such constants: an area

deformation modulus, KA, and a shear modulus, KS. Experimental measurements

indicate that the area modulus is twice the value of the shear modulus and that the

shear modulus is 6 × 10−6 to 9 × 10−6 J/m2 (see summary in Boal [65]). This is
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approximately three to four orders of magnitude smaller than values measured in

some other cell types (outer hair cells, fibroblast), consistent with the idea of the

erythrocyte being a highly deformable cell.

Extensions of the micropipette aspiration technique
The micropipette aspiration technique described above is a powerful experimental

tool. It can be made more powerful by using a second pipette, which is employed

to manipulate a second cell or a microsphere coated with specific molecules. Here

we will consider the case in which one of the pipettes manipulates a microsphere,

while the other pipette manipulates a cell. By holding the microsphere fixed, allow-

ing the cell and the microsphere to contact one another, and then measuring the

force needed to pull the microsphere away from the cell, the strength of specific

ligand–receptor bonds can be measured. For example, Shao and Hochmuth [44]

used microspheres coated with antibodies directed against cell-surface molecules

present on neutrophils, specifically CD18 (β2-integrins), CD62L (also known as

L-selectin), or CD45. They then brought one of these coated microspheres into

contact with a human neutrophil, immobilized the microsphere with one pipette,

and aspirated the neutrophil into a second pipette with a diameter that was very

slightly greater than the neutrophil diameter. They observed that if the aspiration

force was less than approximately 45 pN, the cell and bead remained attached and

essentially motionless for several seconds before moving apart. However, if the

applied force was greater than this, the neutrophil and the bead began to move

apart from each other, but at a slower rate than would be expected if they were

uncoupled. How is this possible? The answer is that the neutrophil extends a thin

process, called a membrane tether, which acts like an elastic string connecting

the bead and the cell. This allows the neutrophil to be aspirated into one of the

pipettes, but at a speed less than would occur if the neutrophil were moving freely.

Eventually the tether detaches from the bead, and then the neutrophil moves freely

once again.

In order to characterize the aspiration force acting on the aspirated neutrophil

in this case, it is necessary to consider the case of a non-stationary cell within the

lumen of the pipette. Suppose that Ut is the observed velocity of the cell moving

within the pipette and U∞ is the velocity that the cell would have if there was no

tethering force applied to the cell, for the same suction pressure. Then the force

exerted on the cell in a micropipette of internal radius Rp by an imposed suction

pressure �p is given by

F = �p π R2
p

(
1 − Ut

U∞

)
(2.6)
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Results of experiments in which human neutrophils were pulled away from coated microspheres. It can be seen that there
is a linear relationship between the force applied to the neutrophil (f) and the resulting neutrophil speed, U t . Different
symbols represent different antibodies immobilized on the surface of the microsphere, as described in the text. Also
shown are results for tethers created by aspiration of red blood cells (RBC; from Waugh and Bauserman [66]) and from
neuronal growth cones (NGC; from Dai and Sheetz [67] and Hochmuth et al. [68]). From Shao and Hochmuth [44] with
kind permission of the authors and the Biophysical Society.

This formula assumes that the cell diameter is only slightly less than the

micropipette internal diameter, and it neglects several effects, including the small

pressure drop along the length of the pipette and the detailed fluid mechanics in

the thin region between the cell and the micropipette wall. However, for typical

sized micropipettes, this leads to an error of less than 5% (see Appendix D of Shao

and Hochmuth [44]) and therefore we can use Equation (2.6) directly. Note that if

the cell is fixed in place (Ut = 0) then the applied force is just the cell’s projected

area, π R2
p, times the aspiration pressure drop.

Figure 2.32 shows a plot of applied force (calculated from Equation [2.6]) versus

neutrophil velocity for experiments in which tethers were observed. It is interest-

ing that data obtained from three different antibodies against neutrophil surface

molecules lie on the same line, suggesting that the slope of the fitted line is repre-

sentative of the inherent stiffness of the tether. Is tether formation just a laboratory
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Figure 2.33

Photographs showing an extension of the two pipette aspiration technique for studying cellular and molecular
biomechanical properties. (A) A neutrophil is immobilized by the pipette at right while a second pipette at left forces a
coated microsphere towards the neutrophil. (B) The microsphere and cell are in contact. (C) The microsphere has
adhered to the cell, which is moved slightly away from the left pipette. An aspiration pressure is then applied to the
left-hand pipette to draw fluid into it. The white arrows show the direction of fluid flow in the left pipette. Reproduced with
permission from Shao [48].
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curiosity? No, it is not. One of the important functions that neutrophils have is to

enter the vessel wall at sites of inflammation, especially in the postcapillary venules.

They do this by adhering to specific molecules on the endothelium (primarily

P-selectin glycoprotein ligand-1, which binds the neutrophil surface molecule P-

selectin) and rolling along the endothelium until they are activated and increase

the affinity of their binding to the endothelium [69]. This causes them to come

to arrest (stop rolling), whereupon they can enter the vessel wall and participate

in mediating the immune response. The process of rolling along the vessel wall

and then arresting seems to depend critically on tether formation, and the forces

measured in Fig. 2.32 are consistent with observed neutrophil rolling velocities

[44]. The interaction between neutrophils and platelets also involves tethers [70].

One of the limitations of the above approach is that the force resolution may be

too coarse to resolve molecular binding events adequately. Shao and co-workers

[48,49] have proposed a further extension of the two pipette technique: a coated

bead is once again manipulated by a second micropipette and allowed to come in

contact with, and bind to, an immobilized cell. However, after binding, the bead

is not aspirated into the second pipette but instead is positioned outside, but in

the vicinity of the tip of, the second micropipette (Fig. 2.33). Suction pressure is

then applied to the second micropipette, inducing fluid inflow into the mouth of

the second pipette. This fluid flow exerts a net hydrodynamic force on the bead,

and by modulating the magnitude of the suction pressure (and hence the flow and

hydrodynamic force) and observing when the bead detaches from the cell, the

magnitude of the cell–bead binding force can be deduced.

The magnitude of the force exerted by the flowing fluid on the bead cannot

be calculated by a simple closed-form expression of the form of Equation (2.6).

However, these forces can be computed, for example, by finite element modeling,

which shows that the magnitude of the forces is in the range of tens to hundreds of

femtonewtons (1 femtonewton = 10−15 N).

2.6 Models of cellular biomechanical behavior

Experimental data are clearly necessary for characterizing the mechanical behavior

of cells. However, it is often desirable (and sometimes even essential) to develop

models of the mechanical behavior of cells. Such mechanical models help us

to understand and interpret experimental observations. They are also useful for

predicting the response of a cell to a variety of inputs and for comparing responses

of different cells.

In the following sections, we consider four models of the mechanical behavior

of cells. The first model considers the cell as a viscoelastic body essentially made
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up of viscous protoplasm surrounded by a cell membrane. This approach considers

the mechanics of the whole cell, without considering the contribution of individ-

ual cellular components, such as the cytoskeleton. The second and third models

focus on how the mechanical properties of a cell are determined by the structure

and composition of its cytoskeleton. Each of the first three models considers the

behavior of the cell in isolation. In reality, cells reside within an extracellular matrix

(as discussed in Section 2.4) and the properties of the matrix and its interaction

with the cell will affect the mechanical behavior of the cell in response to force

applied to a tissue. The fourth model we present demonstrates this point using

experimental data and finite element analyses.

2.6.1 Lumped parameter viscoelastic model of the cell

The data from the magnetic bead rheometry experiments indicate that the cell’s

response to a step application of force is viscoelastic, with an immediate elastic

response (phase I in Fig. 2.24) followed by gradual creep (phases II and III). The

viscoelastic behavior of materials (including cells and many biological tissues) can

be modeled using lumped parameter models constructed from arrangements of two

simple elements: the linear spring and the dashpot. In this section, we construct

a viscoelastic model of the cell and compare its predictions with those obtained

experimentally (Fig. 2.24). It is important to understand that the elements in these

models cannot be unambiguously associated with specific cellular components;

instead, we represent the action of all elastic components of the cell by a linear

spring (or springs) and the action of all viscous components by a dashpot (or

dashpots). This “lumping” of the response of a complex biomechanical system

into a small number of elements is obviously a simplification. Nonetheless, such

lumped parameter models are easy to work with and represent a good first approach

to quantifying cellular biomechanics.

The two basic elements used in lumped parameter viscoelastic models (also

know as equivalent circuits) are the linear spring and the dashpot. When a force,

F(t), is applied to a linear spring, it responds instantaneously with a deformation,

x, that is proportional to the load:

Fspring(t) = k0xspring(t), (2.7)

where k0 is the spring constant. The reader is reminded that xspring is the spring

length, measured from the equilibrium (or resting) length of the spring, which is

the length that the spring takes when no forces are applied to it. A dashpot is a

viscous element, similar to a shock absorber. When a force is applied to a dashpot,
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Lumped parameter model (or equivalent circuit) of a Maxwell body and the corresponding creep response to a step
change in the applied force, F, from zero to F 0 at t = 0.

the rate of deformation is linearly related to the force:

Fdashpot(t) = η0 ẋdashpot(t), (2.8)

where the dot represents differentiation with respect to time and η0 is a constant

of the dashpot called the damping coefficient. Notice the sign convention implied

by the above equations: the direction for positive force must coincide with the

direction of positive displacement.

These elements are obviously idealized, but their force–displacement charac-

teristics are able to describe essential features of linear viscoelastic behavior, par-

ticularly when combined in specific arrangements. One common arrangement is a

series combination of a spring and dashpot, known as the Maxwell body (Fig. 2.34).

The total deformation of the Maxwell body, x(t), is the sum of the deformation of

the spring and that of the dashpot:

x(t) = xspring(t) + xdashpot(t). (2.9)

By differentiating Equation (2.9) with respect to time, it is clear that the veloc-

ity of deformation is the sum of the velocities of the two elements. Further-

more, since the elements are in series, the force in the spring, F(t), is transmitted

to the dashpot, i.e., F(t) = Fspring(t) = Fdashpot(t). By substituting the force–

displacement relationships from Equations (2.7) and (2.8) into the time derivative of

Equation (2.9), we can get a force–displacement relationship for the Maxwell

body:

ẋ(t) = 1

η0

F(t) + 1

k0

Ḟ(t). (2.10)

This represents a differential equation that can be solved for the displacement, x(t),
if the force history, F(t), is known.

Before we can integrate this equation, we need an initial condition, which is

obtained by thinking about how the Maxwell body responds to the applied force.
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Lumped parameter model of a Kelvin body and its creep response in response to a step change in force F from zero to F 0

at time t = 0.

A common force history is to impose a step change in force, for example an increase

in force from zero to a constant value F0. In this case, the resulting response of the

viscoelastic body is called its creep response. When a force is applied in this way, the

spring element will deform instantaneously according to Equation (2.7). However,

the dashpot will not deform immediately; it acquires a finite velocity immediately,

but the displacement at time t = 0 is zero because a finite velocity acting over an

infinitesimal duration produces no displacement. Therefore, if the force is applied at

time zero, the initial condition for Equation (2.10) is x(0+) = F(0+)/k0 = F0/k0.7

If we restrict attention to times t > 0 then F(t) = F0 and Ḟ = 0 in Equation (2.10),

so that the differential equation is trivially solved to obtain the displacement of the

Maxwell body per unit applied force as:

x(t)

F0

= 1

k0

+ 1

η0

t. (2.11)

The contributions of the spring and the dashpot are evident from this response

(Fig. 2.34), with an immediate elastic response from the spring followed by linear

deformation of the dashpot with time. Unfortunately, the Maxwell body clearly

does not accurately represent the cell response shown in Fig. 2.24, indicating that

this simple model is insufficient.

A slightly more complex model is the Kelvin body, which consists of a Maxwell

body in parallel with a spring (Fig. 2.35). In this case, because the elements are

in parallel, the deformation of the entire Kelvin body is equal to the deformation

of each of the two parallel paths. Therefore, the deformation of the Kelvin body

is equivalent to that of the Maxwell body and is also given by Equation (2.10),

with the understanding that F(t) in Equation (2.10) should now be interpreted

not as the total applied force, but just the force supported by the Maxwell body,

7 The notation t = 0+ means that we should take the limit as t tends towards zero from positive times. In other words, this

is the time immediately after application of the force at time t = 0.
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FMaxwell (t). FMaxwell (t) can be computed from

F(t) = FMaxwell(t) + Fspring(t), (2.12)

where Fspring is the force across the spring with stiffness k1 and F(t) is the total

force applied to the Kelvin body.

By rearranging Equation (2.12) and substituting a suitably modified form of

Equation (2.7) for Fspring(t), the analogue to Equation (2.10) for a Kelvin body is:

ẋ(t) = 1

η0

(F(t) − k1x(t)) + 1

k0

(Ḟ(t) − k1 ẋ(t)) (2.13)

or, after some rearranging,

F(t) + η0

k0

Ḟ(t) = k1

(
x(t) + η0

k1

(
1 + k1

k0

)
ẋ(t)

)
, (2.14)

where x(t) is the total displacement of the body.

As for the Maxwell body, we solve for the creep response by imposing a step

force and considering times t > 0, in which case F(t) = F0 and Ḟ = 0. For this

case, Equation (2.14) simplifies to:

F0 = k1

(
x(t) + τ ẋ(t)

)
, (2.15)

where we have defined τ , the relaxation time, as:

τ = η0

k0 + k1

k0k1

. (2.16)

To solve the differential Equation (2.15) for x(t), we need an initial condition. Once

again we recognize that the displacement of the dashpot is zero at time t = 0+, so

that the force must be carried by the springs only, i.e., F0 = k0x(0+) + k1x(0+).

In this case the solution of Equation (2.15) is:

x(t)

F0

= 1

k1

(
1 − k0

k0 + k1

e−t/τ

)
. (2.17)

The Kelvin body does a much better job of representing the creep behavior of the

cell subjected to magnetic bead traction than does the Maxwell body (compare

Figs. 2.24 and 2.35). However, there is still a discrepancy between the model

predictions and the experimental data for cellular deformation during phase III

(Fig. 2.24).

The model predictions can be further improved by adding a dashpot in series

with the Kelvin body (Fig. 2.36), giving a total of four components: two dashpots

and two springs. The creep response for this model is simply the superposition

of the response of the Kelvin body and the series dashpot, and therefore is given
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Figure 2.36

Lumped parameter model proposed by Bausch et al. [42] for the viscoelastic creep response of a cell subjected to a
sudden force by magnetic bead rheometry. This model is used to interpret the data shown in Fig. 2.24.

by:

x(t)

F0

= 1

k1

(
1 − k0

k0 + k1

e−t/τ

)
+ t

η1

. (2.18)

As can be seen in Fig. 2.37, the model provides an excellent fit to the experi-

mental data obtained by Bausch et al. [42]. The quality of the fit suggests that there

must be (at least) two components of the cell that are responsible for generating

viscous responses and (at least) two components that generate an elastic response.

Of course, this model tells us nothing about what those components might be. It is

even possible that all of the viscous behavior could come from a single component

that relaxes with two different time scales.

From such fits, viscoelastic constants that describe the creep response of a cell

can be estimated and used to compare the response of one cell with that of another

cell, or to determine the response of a cell to a variety of inputs. Bausch et al. [42]

did these comparisons and found that while the viscoelastic constants measured at

different sites on an individual fibroblast cell are approximately equal (for forces

up to 2000 pN), the constants can vary by up to an order of magnitude from cell to

cell. Why such a variation from cell to cell? The viscoelastic constants estimated

by the lumped parameter model are indicative of the properties of the whole cell,

but those properties are determined in part by the properties of the cell membrane,

in part by the properties of the cell cytoplasm, and in part by the structure of

the cytoskeleton. As we discussed in Section 2.3, the cytoskeleton is a dynamic

structure that is constantly changing its composition and organization, meaning the

cytoskeletal architecture in one cell can differ substantially from that in another.

We will show in the next two sections that these structural differences can have

profound effects on the mechanical properties of the whole cell, explaining some

of the variations seen in the viscoelastic properties from one cell to another.

Up to this point we have considered only step increases in force. An alternate

way of forcing magnetic beads attached to a cell is to subject them to an oscillating
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Comparison of experimentally obtained creep data (similar to that of Fig. 2.24) with model predictions from the lumped
parameter model in Fig. 2.36. The applied force (F) was 1100 pN. The dashed line represents the instantaneous
elongation of the body (1/(k0 + k1)) and the solid line is fit to the data using Equation (2.18). From Bausch et al.
[42] with kind permission of the authors and the Biophysical Society.

force of the form

F(t) = F0(1 + sin ωt). (2.19)

For a Kelvin body, the initial condition is still x(0+) = F0/(k0 + k1), but the res-
ponse of the bead is slightly more complex. It can be shown that the displacement

has both exponential and harmonic components, being given by

x(t) = F0

k1

⎛
⎜⎜⎜⎝1 − k0

k0 + k1

e−t/τ

+
τω

(
1 − η0

k0τ

)
(e−t/τ − cos ωt) +

(
1 + η0τω2

k0

)
sin ωt

1 + (τω)2

⎞
⎟⎟⎟⎠

(2.20)

where the constant τ is given by Equation (2.16).
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2.6.2 Tensegrity model of the cytoskeleton

In this section, we consider an alternative model to describe the mechanical prop-

erties of a cell. It is based on the somewhat controversial theory of tensegrity and is

largely a mechanical theory. (We will discuss some of the biological implications

of tensegrity when we consider mechanotransduction in Section 2.7.) We start by

defining the term tensegrity, which is a contraction of tensional integrity. This is a

building technique in which the mechanical integrity of a structure is maintained

by internal members, some of which are under tension and others of which are

under compression. More formally, “tensegrity structures can be defined as the

interaction of a set of isolated compression elements with a set of continuous ten-

sion elements [with] the aim of providing a stable form in space” [71]. Examples

of tensegrity structures include geodesic domes and our bodies, where the muscles

play the role of the tension elements and the bones are in compression.

At the level of the cell, it has been proposed by Ingber and co-workers [72]

that actin microfilaments play the role of tension elements and microtubules are

the compression elements. There is some experimental evidence that supports this

general idea [72]:

� actin microfilaments can generate tension
� there are interconnections between actin microfilaments and microtubules
� microtubules may be under compression.

One difficulty in evaluating the implications of the tensegrity model is that the

topology of the interconnected filaments within the cell is very complex. However,

insight into the tensegrity mechanism can be obtained if we consider a very simple

model, first introduced by Stamenovic and Coughlin [71]. In this approach, the cell

is assumed to have only six compression elements (struts), oriented as shown in

Fig. 2.38. Why six? This is the smallest number of struts that can provide a non-

trivial tensegrity system that is spatially isotropic. These six compression elements

are joined by 24 tension elements, as shown in Fig. 2.38.

Using this model, we ask a simple question. If the cell is placed under tension,

what effective modulus does it have? To answer this question, we apply a tension

T/2 to each end of the compression members A–A in the x direction (Fig. 2.38).

We will assume that the compression members are perfectly rigid and of equal

length L0. Further, we will assume that the tension elements act as linear springs,

so that the tension force that they generate can be written as

F = k(l − lr ), (2.21)
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Figure 2.38

Simple tensegrity model of a cell, consisting of six compressive
elements (struts) and 24 tension elements. Note the X, Y, and Z
coordinate directions. From Stamenovic and Coughlin [71]. Reproduced
with kind permission of ASME.

where lr is the relaxed length of the element, l is its actual length, and k is a constant.

We will assume that the length of the tension elements is l0 (for all elements) when

the cell is at rest. Note that even when the cell is at rest, there is tension in the actin

filaments; that is, the tension elements are not relaxed when the cell is at rest. This

implies that l0 > lr .

If we define coordinate axes as shown, then everything is symmetric about

the origin. We can therefore characterize the strut positions by sx (total distance

between the two struts A–A), sy (total distance between the two struts B–B) and

sz (total distance between the two struts C–C). From the geometry of the problem,

we can express the lengths of the tension elements A–B as:

l2
AB =

(
LBB − sx

2

)2

︸ ︷︷ ︸
�x2

+
(sy

2

)2

︸ ︷︷ ︸
�y2

+
(

LAA

2

)2

. (2.22)

It follows that

lAB = 1

2

√
(LBB − sx )2 + s2

y + L2
AA. (2.23)

Similar expressions can be written for the lengths of the tension elements A–C
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and B–C:

lAC = 1

2

√
(LAA − sz)2 + s2

x + L2
CC (2.24)

lBC = 1

2

√
(LCC − sy)2 + s2

z + L2
BB. (2.25)

Now we consider a force balance (at equilibrium) for each of struts A–A, B–B,

and C–C. Balancing forces in the x direction for strut A–A we write:

+−→ � Fx = m ax = 0.

T + 4FAB︸ ︷︷ ︸
4 tension
elements
AB

[
LBB − sx

2

1

lAB

]
︸ ︷︷ ︸
Projection of tension
in A–B onto the
x-axis

– 4FAC︸ ︷︷ ︸
4 tension
elements
AC

[
sx

2

1

lAC

]
︸ ︷︷ ︸
Projection of
tension
in A–C
onto the x-axis

= 0.
(2.26)

This equation can be simplified, and when Equation (2.21) is substituted into the

simplified form we obtain:

T

2k
+

(
1 − lr

lAB

)
(LBB − sx ) −

(
1 − lr

lAC

)
sx = 0. (2.27)

Similar expressions can be written in the y and z directions for struts B–B and C–C,

respectively, yielding:

0 +
(

1 − lr

lBC

)
(LCC − sy) −

(
1 − lr

lAB

)
sy = 0 (2.28)

0 +
(

1 − lr

lAC

)
(LAA − sz) −

(
1 − lr

lBC

)
sz = 0. (2.29)

Together Equations (2.23) to (2.25) and (2.27) to (2.29) represent six equations for

seven unknowns: lAC, lAB, lBC, sx , sy, sz and T. If we specify T, we can then solve

the system for the displacements and lengths of the tension elements, although it

is algebraically messy.

Special case: T = 0
If T = 0, then by isotropy we have sx = sy = sz . Call this length s0. Also, the

lengths of the tension elements are all the same, lAB = lBC = lAC. Call this length

l0. If we put all of this information into Equations (2.27) to (2.29) we get LBB =
2sx , LCC = 2sy and LAA = 2sz . Therefore, we obtain s0 = L0/2. If we now substi-

tute this into Equations (2.23) to (2.25), we obtain 4l2
0 = 2(L2

0/4) + L2
0 = 3L2

0/2,

so that l0 = √
3/8L0. This represents the resting (unloaded) state of the cell. We

will look for perturbations away from this base state.
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Small strain case
We want to compute Young’s modulus, E, for the cell. More specifically, we want

to compute Young’s modulus for the case of infinitesimally small values of the

strain; in this case the modulus is denoted as E0. How can we do this? The easiest

way is to consider the energy stored in the cell owing to an incremental extension

δsx caused by a small applied tension T acting in the x direction.

When an object experiences elongation from length s0 to length sx caused by a

uniaxial force T acting in the x direction, then the work done on that object may

be written as
∫ sx

s0
T dx . We introduce the strain energy per unit mass, W, which

represents the amount of energy stored in the body (per unit mass) owing to defor-

mation. If the undeformed density of the body is ρ0 and the undeformed volume is

V0, then the product ρ0W V0 is the total elastic energy stored in the body, and we

can write for a non-dissipative system:

V0ρ0W =
∫ sx

s0

T dx . (2.30)

Differentiation of Equation (2.30) with respect to sx shows that

d(ρ0W )

dsx
= T

V0

. (2.31)

Now, for infinitesimal displacements, the stress acting on a body is given in terms

of the strain energy function [73] by:

σi j = ∂ (ρ0W )

∂εi j
(2.32)

where σi j and εi j are the ijth components of the stress and strain tensors respectively.

It is now convenient to use the fact that εxx = (sx − s0)/s0 for the special case of

uniaxial tension to rewrite Equation (2.32) as:

σxx = s0

d(ρ0W )

dsx
. (2.33)

By combining Equations (2.31), (2.33) and Hooke’s law for a body under uniaxial

tension in the x direction, we can write

Eεxx = s0T

V0

. (2.34)

We once again use εxx = (sx − s0)/s0 to rewrite Equation (2.34) as:

E = s2
0

V0

T

sx − s0

. (2.35)

Finally, for the case of small displacements (and correspondingly small forces T),

we can replace E by the incremental Young’s modulus E0, and the ratio T/(sx − s0)
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by the derivative dT/dsx to obtain:

E0 = s2
0

V0

dT

dsx

∣∣∣∣
0

(2.36)

where the subscript 0 reminds us that we are considering the small deformation

case.

We will now apply this result to the tensegrity model of the cell. The resting cell

volume (at T = 0) can be computed as V0 = 5L3
0/16, and the reference length is

s0 = L0/2. Treating the cell as a continuum, we can then express the incremental

Young’s modulus as

E0 = 4

5L0

dT

dsx

∣∣∣∣
0

(2.37)

Alternatively, recalling that the resting lengths of the tension and compression

elements are related by l0 = √
3/8L0, we have

E0 = 2
√

3

5
√

2 l0

dT

dsx

∣∣∣∣
0

. (2.38)

The last task is to compute the derivative appearing in Equation (2.38), which is

algebraically messy and will not be presented in detail here. Briefly, it involves

differentiation of Equations (2.23) to (2.25) and (2.27) to (2.29) with respect to sx ,

followed by algebraic manipulation. The net result is that the incremental Young’s

modulus is

E0 = 5.85
F0

l2
0

1 + 4ε0

1 + 12ε0

, (2.39)

where ε0 = l0/ lr − 1 is the initial strain in the tension elements (under resting

conditions) and F0 = k(l0 − lr ) is the corresponding force.

One of the essential features of the tensegrity model is the existence of a non-zero

force in the cytoskeletal tension elements, even when the cell is in the resting state.

This generates an effective stress within the cell, which we call the prestress.8 The

prestress, P, is defined as the net tensile force transmitted by the actin filaments

(tension members) across a cross-sectional area of the cell, divided by that area. In

computing the prestress, we only consider the component of force in the direction

perpendicular to the cross-sectional area. If all the actin filaments in the cell were

aligned and under uniform tension F0, then the prestress in the direction of the

actin filaments would be

P = nF0

A
(2.40)

8 Note that at equilibrium the prestress is balanced by other forces, e.g., compressive forces in other cytoskeletal elements

(microtubules), forces from extracellular attachments, etc., as discussed in more detail below.
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where n is the number of actin filaments crossing the area A. In the more realistic

case of randomly oriented actin filaments, the right-hand side of the above equation

has to be divided by a factor of three to account for the component of the force F0

that is normal to the area A [74]. Furthermore, it is convenient to write F0 as aσc,

where a is the cross-sectional area of a tension member and σc is the stress in that

member, to obtain

P = naσc

3A
. (2.41)

Finally, na/A is recognized as the fractional area occupied by actin filaments, or,

for a randomly oriented collection of filaments, the volume fraction of tension

members, ϕ. Therefore the prestress can be written as

P = ϕσc

3
. (2.42)

Now, for the model shown in Fig. 2.38, ϕ = 24al0/V0, and the resting volume V0

can be expressed in terms of l0 as V0 = 5
√

2

3
√

3
l3
0 . Substituting these expressions into

Equation (2.42), we obtain an expression for the prestress, as P = 5.85 F0/ l2
0 [74].

If we assume that ε0 � 1 (which is likely the case for small applied strain since

actin yields at 0.9% strain), then Equation (2.39) shows that an estimate for the

incremental Young’s modulus is simply

E0 = P. (2.43)

Thus, this tensegrity analysis predicts that the Young’s modulus of a cell varies

linearly with prestress, with an approximate 1:1 correspondence. How do these

predictions agree with what is actually observed in living cells?

To answer this question, we first need an estimate of prestress. We could cal-

culate an upper bound on P from an estimate of the yield stress of actin for F0

and assumptions on the characteristic lengths of the actin filaments (l0). However,

this estimate would be rather crude because of uncertainty in these quantities.

Recently, experimental estimates of the prestress in human airway smooth muscle

cells cultured on flexible substrates have been made [75,76] and compared with

experimentally measured stiffnesses in these cells (Fig. 2.39). From Fig. 2.39, we

immediately note that the linear relationship between E0 and P predicted by the

tensegrity model is observed experimentally. However, the slope of the experi-

mental E0 versus P curve (∼0.4) is less than that predicted analytically (1.0 from

Equation [2.43]), and therefore the values for the modulus, in this case measured

by magnetic twisting cytometry, are less than those predicted by the tensegrity

model. What about modulus measurements from other cell systems and with other

devices? Data from several experiments show a high degree of scatter in measured

Young’s moduli (over five orders of magnitude!), with strong dependence on the
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Figure 2.39

Plot of Young’s modulus, E0, versus prestress, P, for human airway smooth muscle cells cultured on flexible substrates.
Shear modulus values (G) from the original paper were converted to Young’s modulus values by assuming the cell is
isotropic and incompressible and therefore, E = 3G. Graph adapted from Wang et al. [75]. Copyright 2001 National
Academy of Sciences, U.S.A.

experimental method used (Fig. 2.40). So what does all this mean, and what are

the implications for the tensegrity model?

First, the linear relationship between E0 and P observed experimentally agrees

with that predicted by the analytical model, suggesting that the tensegrity model

correctly describes at least some of the physics of the small stress response of the

cytoskeleton.

Second, the analytical predictions for the value of Young’s modulus (based on

measured values of the prestress, P) are in rough agreement with the moduli mea-

sured by certain techniques, although the moduli measured by AFM and magnetic

bead rheometry are up to two orders of magnitude larger. Unfortunately, it is diffi-

cult to assess further the tensegrity model predictions because of at least two major

sources of uncertainty:

1. The model predicts that the Young’s modulus is equivalent to the prestress in

the cell. As can been seen from the wide standard error bars in Fig. 2.39, there

is a large degree of uncertainty in the measured values of P and therefore a

significant degree of uncertainty in the absolute value of the predicted mod-

ulus. This raises the question: What dictates the prestress in the cell? More

specifically, can the range of values for experimentally measured Young’s

modulus be caused in part by variability in prestress? The answer seems to

be that it can: prestress in a cell is the net result of forces generated by active

contractile forces in the actinomyosin apparatus, and it is balanced by forces
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Figure 2.40

Young’s moduli measured by various experimental techniques compared with the range predicted by the tensegrity
model (shaded region). The range predicted analytically is based on the simple tensegrity model and experimental
measurements of prestress [75,76]. Measurements were made by magnetic twisting cytometry (MTC) of endothelial
cells, epithelial cells, fibroblasts, and smooth muscle cells; micropipette aspiration (MA) of endothelial cells;
micromanipulation (MM, a compression method) of fibroblasts; cell poking (CP) of fibroblasts; atomic force microscopy
(AFM) of myocytes, endothelial cells, and cardiocytes; or magnetic bead rheometry (MBR) of fibroblasts. The higher
value of Young’s modulus measured by MTC is likely more accurate than the lower values, as it was based on an
improved technique that minimized experimental artefacts in earlier MTC measurements. Reprinted from Stamenovic and
Coughlin [77], with permission from Elsevier.

from adhesion of the cell to its substrate, contact with other cells, internal cell

elements under compression (e.g., microtubules), and possibly intracellular

cytoplasmic pressure [76]. Changing any of these parameters will change the

prestress, and it is likely that these parameters varied significantly between

experiments performed by different investigators using different substrates,

cell types, cell densities, and experimental conditions. Comparisons of exper-

imental data from different sources are further complicated by the fact that the

measured stiffness of a cell depends on the applied stress or strain because cells

exhibit prestress-dependent strain stiffening (Fig. 2.41). Again, these parame-

ters typically vary between experiments.

2. The mechanical loading applied to a cell during an experiment depends

rather strongly on the measurement technique used. The tensegrity analysis
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Figure 2.41

Schematic diagram of stress versus strain plots at different levels of prestress based on magnetic twisting measurements
on endothelial cells. Note that for a given prestress, the cell stiffness (slope of the stress–strain curve) increases with
increasing strain (strain stiffening). Also, for a given strain, cell stiffness increases with increasing prestress
(prestress-induced stiffening). Reprinted with permission from Stamenovic and Wang [78].

presented here does not account for some cellular components and phenom-

ena that may make important contributions to the cell’s mechanical behavior

under certain loading conditions. For instance, under large applied compres-

sive stresses, actin filaments may actually bend; this feature is not taken into

account in the tensegrity model, although it is in the foam model presented

in the next section. The tensegrity model also does not include intermediate

filaments as load-bearing structures, although we know they must bear forces

since they deform in response to fluid shear stress [79]. The cell membrane

and the cytosol may also provide mechanical resistance to deformation under

certain loading conditions, such as large compressive loading, and these com-

ponents of the cell are not included in the simple tensegrity model. Therefore,

the lack of agreement between the tensegrity model and the measured prop-

erties using certain techniques indicates that while tensegrity can reasonably

predict cell properties for certain loading conditions, it may not be appropriate

for all loading conditions [77]. This is consistent with the observation that

the measured moduli seem to depend on the experimental method; that is,

each technique is measuring slightly different aspects of the cell’s mechanical

behavior.

Finally, it is important to realize that the tensegrity model is only one analytical

model of cell behavior. As our understanding of the cytoskeleton and cell mechanics

improves, we expect that so too will our abilities to model cellular biomechanics

and predict the cell’s biomechanical behavior analytically.



69 2.6 Models of cellular biomechanical behavior

A B

Cell edge

Cell edge
bending

Open cell face

F
F

t
t

F
F

d

�

�

�

�

�

�

Figure 2.42

Simplified “unit cell” model of fibrous cross-linked material. (A) The undeformed unit cell has side length l and fiber
thickness t. (B) The deformation of the same unit cell in response to an imposed loading F that acts to produce a
deformation δ in the fibers. From Gibson and Ashby [80], reproduced with permission of the authors and publisher.

2.6.3 Modeling actin filaments as a foam

The tensegrity model that we have presented above represents one possible model

of how the cytoskeleton works, but it is certainly not the only one. Here we present

a different approach to analyzing the biomechanics of the cytoskeleton, in which

the cross-linked actin filament network is treated as a porous random solid matrix

with open pores (an open-celled foam). The theory of the mechanical behavior

of open and closed cell foams is summarized in an excellent book by Gibson and

Ashby [80], and most of the following derivation is ultimately based on that source.

It is clear that the cytoskeleton consists of a large number of filaments that

are connected to one another with a complex topology (Fig. 2.5). Many naturally

occurring and synthetic materials have a similar cross-linked fibrous microstruc-

ture, such as paper, felt, cotton wool, and trabecular bone (see Section 9.2). The

mechanical behavior of such materials can be described by a simplified model in

which connections between fibers are idealized to the form shown in Fig. 2.42.

When the material is mechanically loaded, the fibers transmit forces and undergo

deformation, as shown in Fig. 2.42B.

Unit cell model of the cytoskeleton
We will use this model to make estimates of the effective Young’s modulus and

shear modulus of the cytoskeleton based on mechanical properties of individual

fibers. We first define the density of the solid fibers as ρs and the average density
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of the entire network as ρ∗. Note that in defining ρ∗ we do not consider the density

of cytoplasm filling the interstices between the fibers. The ratio ρ∗/ρs is known as

the relative density, and from the geometry of the unit cell it can be seen that this

ratio is given by

ρ∗

ρs

∝
(

t

l

)2

. (2.44)

If we think of each fiber as a small beam mechanically loaded by a force F, then the

deflection, δ, that the beam undergoes is given by elementary strength of materials

as

δ ∝ F l3

Es I
, (2.45)

where Es is Young’s modulus for the fiber material and I is the moment of inertia

for the beam. Here we have assumed that the fibers are homogeneous materials

undergoing small deformation.

From the geometry of the unit cell, the force F is proportional to the externally

imposed stress, σ , multiplied by cross-sectional area of a unit cell, l2: F ∝ σ l2.

Similarly, the strain, ε, is proportional to δ/l. We can now compute the Young’s

modulus for the entire cytoskeletal network, E*, as

E∗ = σ

ε
∝ F

lδ
. (2.46)

Substituting Equation (2.45) into Equation (2.46) then allows us to write

E∗ ∝ Es I/ l4. Using the fact that I is proportional to the fiber thickness to the

fourth power, t4, we can use Equation (2.44) to write

E∗

Es

= C1

(
ρ∗

ρs

)2

, (2.47)

where C1 is a constant of proportionality. Obviously, there were many assumptions

made in deriving this equation, especially with regard to the geometry of the unit

cell. This makes it very difficult to know a suitable value for the constant C1.

Fortunately, experimental data gathered on a wide variety of different fibrous porous

solids show that Equation (2.47) fits the data rather well if C1 = 1 (Fig. 2.43).

This gives us some confidence in using this model to study the cytoskeleton.

A similar development can be used to obtain the shear modulus of the network.

It is assumed that a shear stress τ is externally applied to the network, causing a

global shearing strain γ . Once again, there will be a force F transmitted by the

fibers of the network, but it will now act to shear the fibers. From the geometry of

the unit cell, we once again have that τ ∝ F/ l2; the microscopic deformation of
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Figure 2.43

Plot of relative Young’s modulus (E ∗/E s ) versus relative density (ρ∗/ρs ) for a wide variety of fibrous porous networks
(foams). The heavy solid line is a plot of Equation (2.47) for the case of C 1 = 1. From Gibson and Ashby [80] in which
the original references can be found. Reproduced with permission of the authors and publisher.
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individual fibers, δ, is related to the strain by γ ∝ δ/ l, where δ is once again given

by Equation (2.45). We compute the network shear modulus, G*, by

G∗ = τ

γ
∝ F

lδ
. (2.48)

Substitution and some algebraic simplification give

G∗

Es

= C2

(
ρ∗

ρs

)2

(2.49)

where C2 is a constant, which is empirically equal to 3/8.

Predictions of actin network modulus
The above results can be used to estimate the mechanical properties of the actin

network within a cell. The density of pure F-actin (ρs) is 730–850 mg/ml [81] and

the density of the F-actin network in an endothelial cell is estimated as ρ∗ = 10–

20 mg/ml. The relative actin density is, therefore, about 1%. Young’s modulus for

pure actin is estimated to be about 2 GPa (Table 2.1; note that Satcher and Dewey

used a value about 10-fold smaller than this in their original paper [81]). Plugging

these values into Equations (2.47) and (2.49) gives estimates for E∗ and G∗ of

order 105 Pa each. These values are significantly larger than most measurements

of cytoplasmic elasticity for whole cells (Fig. 2.40), and even if smaller values for

ρ∗ are used, the resulting modulus values are at the very upper end of the measured

ranges [74]. It is somewhat surprising that the foam model seems to markedly

overpredict cellular stiffness, since the ultrastructural architecture of the amorphous

actin network within many cells looks like it should be well suited to being treated

as a foam. Compounding this difficulty is the fact that the modulus derived from this

model should be a lower bound for the measured Young’s modulus, since the actin

foam model does not include other cytoskeletal elements that can carry stresses,

such as microtubules and actin stress fibers. We will not go into the details here,

but Satcher and Dewey [81] presented a model that included these other elements,

the net effect of which is to increase the effective modulus by a factor of 2–10.

The foam model, as currently formulated, also suffers from the drawback that it

does not include the effects of prestress [74], although this could be conceivably

included as an extension to the basic model.

2.6.4 Computational model of a chondrocyte in its matrix

The preceding three models consider the mechanical behavior of the cell in isola-

tion. As we discussed in Section 2.4, most cells reside in an extracellular matrix
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Figure 2.44

Viscoelastic behavior of chondrocytes determined by micropipette aspiration. A step pressure was applied to an isolated
chondrocyte using a glass micropipette (left) and measurements of the length of the cell aspirated into the pipette over
time were made. Based on a non-linear regression of the aspirated length versus time curve (right) and a lumped
parameter viscoelastic model (similar to those in Section 2.6.1), estimates of the instantaneous and equilibrium Young’s
moduli and the apparent viscosity of the cell were made. Courtesy of Professor Farshid Guilak. Reprinted from Guilak
[83], with permission from IOS Press.

(ECM), a composite of biopolymers that determine in large part the mechanical

properties of a tissue. When determining how a cell responds when a force is

applied to the entire tissue, the properties of the ECM and how it interacts with the

cell are important. This is demonstrated in the following example of a chondrocyte

in articular cartilage.

Chondrocytes are the cells responsible for synthesizing and maintaining carti-

lage. They are embedded in an extensive ECM. Chondrocytes experience appre-

ciable strains resulting from the sizeable loads applied to articular cartilage during

day-to-day activities. Articular cartilage in the hip, for instance, is cyclically loaded

with peak pressures up to 20 MPa during stair climbing [82]. The chondrocytes

are surrounded by an “envelope” of specialized connective tissue; together, the cell

and this envelope are called the chondron. Force transmission from bulk tissue to

the cell is “filtered” through the surrounding tissue envelope.

Direct mechanical testing of chondrocytes using a micropipette technique shows

that chondrocytes have viscoelastic properties (Fig. 2.44). From these measure-

ments, it is possible to estimate an initial Young’s modulus for the cell (E0), a final

steady-state Young’s modulus (E∞), and a cellular viscosity (μ). If the same test is

carried out with isolated nuclei, it is seen that the nuclei are much stiffer than entire

cells (Fig. 2.45). This implies that the cell will differentially deform in response

to an imposed load. Presumably this differential deformation is taken up by the

cytoskeleton.
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Figure 2.45

Viscoelastic properties of the chondrocyte nucleus. Nuclei from chondrocytes were isolated from the cells by either
mechanical (Mech.) or chemical (Chem.) means. Isolated nuclei (shown by [A] differential interference contrast
microscopy and [B] fluorescent confocal microscopy) were tested by micropipette aspiration. (C) A step pressure was
applied to the resting nucleus at time t = 0 resulting in (D) deformation of the nucleus, which reached an equilibrium
state 300 s after application of pressure. (E) Summary of the instantaneous (E 0) and equilibrium (E∞) Young’s moduli
and the apparent viscosity of properties of the nucleus, which were two to four times greater than those of whole intact
chondrocytes. This difference was statistically significant. There were also significant differences in the properties of
mechanically and chemically isolated nuclei. Asterisk indicates significance at P < 0.05. Courtesy of Prof. Farshid
Guilak. Reprinted from Guilak [83] with permission from IOS Press.

These data can then be used as input into a finite element model that predicts

how a cell will respond when the entire tissue undergoes a defined compression.

Figure 2.46 shows a finite element mesh describing the geometry of interest, and

Fig. 2.47 shows some results of the calculations. These data demonstrate that

the strain experienced by the chondrocyte depends very strongly on the ratio of

cell modulus to tissue modulus, H∗
A. The point is that the mechanical behavior

of the cell must be considered in the context of the surrounding extracellular

material.

Now that we know a little about the mechanical properties of individual cells

in isolation and in their native ECM, let’s proceed in Section 2.7 to discuss how

cells sense and respond biologically to the forces they experience. We will see that

most cells are very sensitive to mechanical forces and respond in a variety of ways,

often culminating in modification of their function and changes in the composition,

structure, and function of the surrounding tissue. Not surprisingly, the interactions

between cells, their ECM, and the forces applied to them are very complex and

difficult to study in vivo. This has motivated researchers interested in the effects of

forces on cells to develop several devices to mechanically stimulate cells in vitro,
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Figure 2.46

The mechanical environment of a single chondrocyte within a cartilage extracellular matrix was predicted using a
biphasic multi-scale finite element method. First, a macro-scale model of a piece of cartilage under unconfined
compression was analyzed (left). This yielded kinematic boundary conditions within a microscopic region around the
cell. These boundary conditions were then applied to a micro-scale finite element model of the cell in its pericellular and
extracellular matrices (right) to predict the deformation of the cell resulting from the compressive force applied at the
macro-level. Reprinted from Guilak [83], with permission from IOS Press.
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Figure 2.47

Predictions of axial strain in the chondrocyte with compression of the extracellular matrix (ECM). Using the model in
Fig. 2.46, the mechanical behavior of a chondrocyte during compression of a cartilage explant was predicted. In these
plots, the axial strain in the cell is normalized to the far-field strain in the ECM and the elasticity of the cell is
characterized by H ∗

A , the normalized aggregate modulus, where H ∗
A = HA ,cell/HA ,ECM. The aggregate modulus, HA, is

an equilibrium modulus determined from a compression test, as described in Section 9.10.4. (A) The strain experienced
by the cell is significantly dependent on its elastic properties relative to those of the matrix. (B) If the chondrocyte is
assumed to be less stiff than the surrounding ECM (H ∗

A < 1), the cell experiences strains up to twice those of the matrix.
(C) In contrast, if the cell is stiffer than its matrix (H ∗

A > 1) (as may be the case for cells embedded in the soft synthetic
materials used for tissue engineering), the model predicts the strain of the cell will be significantly less than that of the
extracellular matrix. Courtesy of Professor Farshid Guilak. Reprinted from Guilak [83], with permission from IOS Press.

allowing for better control over the experimental conditions. In Section 2.8, we

will review some of these devices. We will then conclude this chapter with a brief

summary of some of the effects of mechanical stimuli on cells from the vascular

system, cartilage, and bone, three tissues that are constantly exposed to mechanical

loading during normal functioning.
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2.7 Mechanotransduction: how do cells sense and respond
to mechanical events?

Up to this point, we have focussed on the mechanical properties of cells, describing

how a cell deforms when a mechanical force is applied to it. However, that is only

part of the story. In living cells, application of a mechanical stimulus causes not only

a mechanical response but also a biological response. Using complex networks of

sensors, transducers and actuating mechanisms, cells are able to respond and adapt

to their mechanical environment. As we will discuss later in the text, these effects

can be profound and critical to normal physiology and, in some cases, pathology.

Here we consider some of the general principles of mechanotransduction. Because

this is such a voluminous and complex topic, we have focussed here on the gen-

eralities, rather than details of how a specific cell type responds to mechanical

stimulation. The reader is encouraged to consult the references provided and text-

books in cellular and molecular biology (e.g., [1,2]), which cover the biological

aspects of this material in greater detail than is possible here.

To begin, it is useful to consider what components a cell needs to respond to a

mechanical stimulus.

Mechanoreception. First, a cell must detect the stimulus and relay the message

from outside the cell (where the stimulus acts) to inside the cell (where a response

will ultimately be generated). To do so, cells use mechanoreceptors.

Signal transmission. Once sensed, the mechanical signal then needs to be

relayed within the cell to various targets throughout the cell; cells appear to use

both biochemical pathways and the cytoskeleton to transmit this signal.

Target activation. When the signal reaches its target (usually a protein), the

target is activated. This causes alterations in cell behavior through a variety of

molecular mechanisms.

In the following sections, we will discuss each of these components: how cells

sense mechanical stimuli, how mechanical signals are transmitted intracellularly,

and what effects those signals have on cell function. We focus our discussion

on anchorage-dependent cells, although similar mechanisms are utilized by all

mechanoresponsive cells.

2.7.1 Mechanoreceptors

Since mechanoreceptors must respond to extracellular signals and relay the signals

from outside the cell to inside the cell, it makes sense that mechanoreceptors are
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physically located in the plasma membrane, at the junction of extracellular and

intracellular spaces. Several mechanoreceptors have been identified in this location,

including integrins, stretch-activated ion channels, and other cell-surface receptor

proteins (Fig. 2.48, color plate).

Integrins
As discussed in Section 2.4, integrins are transmembrane proteins that link the

ECM to the cytoskeleton via focal adhesion proteins in the cytoplasm (Fig. 2.14).

Because of the physical connection between the ECM and cytosolic compo-

nents, a mechanical stimulus applied to integrins can alter the structure of

the cytoskeleton directly. Deformation of the cytoskeleton can have numerous

consequences:

� the physical properties of the cell will change, as predicted by the analytical

models presented in Section 2.6
� other receptors in the cell, including ion channels and other cell-surface recep-

tors, can be activated (as discussed below)
� biochemical and molecular events within the cell may be regulated directly, as

discussed in Section 2.7.2.

Stretch-activated ion channels
Ion channels are proteins that span the plasma membrane, connecting the cytosol

to the cell exterior. Unlike other membrane pores, which are relatively large and

permissive, ion channels are highly selective, allowing diffusion of specific inor-

ganic ions across the lipid bilayer [2]. These ions, which include Na+, K+, Ca2+,

and Cl−, are involved in a multitude of cellular activities, including intracellular

signaling, gene expression, transcription, translation, and protein synthesis. Ion

channels are further specialized in that they are not always open – instead they are

gated, meaning a specific stimulus can cause them to open briefly, thereby allow-

ing the flow of ions either into or out of the cell depending on the electrochemical

gradients. Opening of ion channels typically involves an alteration in the chan-

nel’s physical configuration. In the case of mechanically gated channels, it is not

entirely clear how this occurs. One possibility is that physical deformation of the

plasma membrane causes conformational changes in the embedded channel pro-

tein, leading to its activation. Also likely, however, is that cytoplasmic extensions

of stretch-activated ion channels are attached to the cytoskeleton, and therefore

deformation of the actin cytoskeleton can regulate gating of the channel. Interest-

ingly, while certain channels are activated by stretch, others are actually inactivated

by stretch.
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Cell-surface receptor proteins
In order to respond to cues from their environment, cells rely on cell-surface

receptors that bind signaling molecules to initiate an intracellular response. These

cell-surface receptors are broadly classified as either G protein-linked or enzyme-

linked (see for instance, Alberts et al. [1]). Typically, receptors respond to soluble

extracellular signal molecules, such as proteins, small peptides, steroids, or dis-

solved gases. However, there is evidence that certain cell-surface receptors are

responsive to, or are at least involved in, the sensing of mechanical signals. Again,

the mechanisms are not clear, but like stretch-activated ion channels, the conforma-

tion of cell-surface receptors may be altered by membrane deformation, switching

them from an inactive to an active state. Additionally, the cytoskeleton and focal

adhesions may play roles in activation of these receptors. For instance, subunits

of G proteins have been shown to be localized to sites of focal adhesions, in

close proximity to integrins and the cytoskeleton [84]. When G protein-linked and

enzyme-linked receptors are activated, they initiate several intracellular signal-

ing pathways that distribute the signal throughout the cell, ultimately altering its

behavior. These biochemical transduction mechanisms are discussed below.

2.7.2 Intracellular signal transduction

Once a mechanical stimulus is sensed and transferred from outside the cell, the

signal needs to be transmitted to other points within the cell where a molecular

response can be generated. It appears that cells rely on both physical and biochem-

ical mechanisms to transmit mechanical signals (Figs. 2.49 and 2.50, both color

plates).

Cytoskeleton-mediated signal transduction
Transmission of mechanical signals via integrins can lead to deformation of the

cytoskeleton, which, in turn, can affect the biochemical state of the cell. For

instance, because the cytoskeleton is a continuous, dynamic network that pro-

vides mechanical connections between intracellular structures, deformation of the

cytoskeleton at one location may lead to deformations of connected structures at

remote locations (Fig. 2.49A, color plate). This “hard-wiring” within the cell means

a perturbation applied locally to an integrin can lead to movement of organelles [75]

and distortion of the nucleus [86], possibly influencing gene expression. As dis-

cussed previously, cytoskeletal deformation can also activate other receptors, such

as ion channels and G protein-linked receptors. This “decentralization” mechanism,

by which a locally applied stimulus results in mechanotransduction at multiple,

mechanically coupled sites, allows for greater diversity in the cellular response
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than is possible with a single uncoupled receptor, since different receptors will

have different sensitivities and response times and will thus respond to different

local environmental cues [85].

Another possible role for the cytoskeleton in mechanotransduction is based on

the observation that many proteins and enzymes involved in protein synthesis and

biochemical signal transduction appear to be immobilized on the cytoskeleton

[72]. It has been proposed that these regulatory molecules will experience the

mechanical load imposed on the cytoskeleton as a consequence of their binding

to it. The imposed load could alter the conformation of the regulatory molecules,

which, in turn, would change their kinetic behavior and biochemical activity (Fig.

2.49B, color plate). Thus, the cytoskeleton and its associated regulatory molecules

might serve as a scaffold for the transduction of mechanical signals to biochemical

signals within the cell.

Biochemically mediated signal transduction
The general principle behind biochemically mediated signal transduction is that

activation of a receptor initiates a cascade of events mediated by a series of signaling

molecules (Fig. 2.50, color plate). Ultimately these molecules interact with target

proteins, altering the target proteins so they elicit changes in the behavior of the

cell. These signaling pathways are utilized by the cell to respond to a variety

of extracellular stimuli, including soluble signals (e.g., growth factors), cell–cell

contact, and mechanical signals.

The signaling molecules involved in relaying the signal intracellularly are a

combination of small intracellular mediator molecules (also known as second mes-

sengers) and a network of intracellular signaling proteins. Second messengers are

generated in large numbers in response to activation of a receptor. Owing to their

small size, they are able to diffuse rapidly throughout the cytosol and, in some

cases, along the plasma membrane. By binding to and altering the behavior of

selected signaling proteins or target proteins, second messengers propagate the

signal “downstream” from the receptor. Similarly, intracellular signaling proteins

relay the signal downstream by activating another protein in the chain or by generat-

ing additional small-molecule mediators (which will, in turn, propagate the signal).

These are the primary mechanisms by which signals received by G protein-linked

and enzyme-linked receptors are transmitted.

Interestingly, in addition to their mechanical transmission role, integrins are also

able to induce biochemical responses. For instance, clustering of integrins at focal

adhesion sites leads to recruitment and activation of signaling molecules (e.g.,

focal adhesion kinase or FAK), thereby initiating biochemical signal transduction

[87]. Ultimately, the biochemical signaling pathways interact with target proteins,
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which are responsible for altering the behavior of the cell. Potential targets are

discussed in the next section.

2.7.3 Cellular response to mechanical signals

Mechanical signals, like other extracellular signals, can influence cellular function

at multiple levels, depending on the targets of the signaling pathways initiated by

the stimulus (Fig. 2.51, color plate). For instance, a signaling pathway activated

by a mechanical stimulus might target proteins that regulate gene expression and

the transcription of mRNA from DNA (e.g., transcription factors). Additionally,

the signaling targets might be molecules involved in protein production, so that

alteration of those molecules will affect translation of mRNA to proteins or post-

transcriptional assembly or secretion of proteins. Because cell shape and motility

are dependent on the cytoskeleton, its deformation by a mechanical stimulus can

alter these cytoskeleton-dependent processes. Finally, the production of proteins

and their secretion from a cell can affect the function of neighboring cells (or even

the secreting cell itself), thereby propagating the effect of the mechanical signal

from one cell to several.

It is important to realize that the cellular response to a single type of stimu-

lus can be quite complex, since activation of a single type of receptor usually

activates multiple parallel signaling pathways and therefore can influence mul-

tiple aspects of cell behavior. Furthermore, at any one time, cells are receiv-

ing hundreds of different signals from their environment and their response is

determined by integration of all the information they receive. Clearly, this makes

things rather complicated, particularly if one wants to understand the response

of a cell to a particular mechanical stimulus. As a result, efforts to understand

the response of cells to mechanical stimuli often rely on experiments performed

under controlled conditions in the laboratory. In the next section, we present some

devices used to mechanically stimulate groups of cells in culture and briefly review

what has been learned about the response of certain cell types from these sorts of

experiments.

2.8 Techniques for mechanical stimulation of cells

It is often the case that we know that cells within a tissue respond to mechanical

stimulation, yet we are not interested in the biomechanical properties of the resident

cells per se. Instead we want to know what effect mechanical stimulation has on the

biology of the resident cells and, by extension, on the biology of the whole tissue.
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Figure 2.52

Devices for compressive loading of cultured cells and tissues. In the device on the left, hydrostatic compression of cells
is achieved by pressurizing the gas phase above the culture medium. In the device on the right, three-dimensional
specimens are compressed by direct loading using a platen. The specimens can be intact tissue samples or extracellular
matrices (e.g., collagen or a polymer sponge) seeded with cells of interest. The specimen compressed by direct platen
loading will be strained not only in the direction of loading but also in the lateral direction because of Poisson’s effect
(see text).

Because of the complexity of cellular biomechanics, it is not possible to predict this

information from theoretical models or measurements of the properties of single

cells. Therefore, we culture the tissue (or its resident cells) and mechanically

stimulate the cells, observing their ensuing behavior. Here we describe some of the

techniques used to stimulate cells in this way.

A wide variety of devices have been developed to apply mechanical stimuli to

cells (and tissues) in culture. The choice of device and the mechanical stimulus it

applies is dependent on which cells are being studied. For instance, chondrocytes,

the cells in cartilage, are typically compressed within their ECM because cartilage

tissue is primarily subjected to compressive loads in vivo. Smooth muscle cells

are usually stretched, since these cells normally experience tensile forces in vivo,

while endothelial cells, which line the inner surface of blood vessels, are typically

subjected to fluid flow. These three loading modes – compression, stretching, and

fluid flow – are the most common and are reviewed below. Reviews that provide

more details of the advantages and disadvantages of various devices are available

in Brown [88] and Frangos [89].

2.8.1 Compressive loading

Hydrostatic compression
One method to compress cultured cells is to increase the gas pressure in the culture

system (Fig. 2.52, left). This results in a hydrostatic pressure being applied to cells

within the liquid medium below the gas phase. Unfortunately, according to Henry’s
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law [90], the solubility of a gas in liquid increases as its pressure increases, and since

cells are sensitive to the concentrations of dissolved gases in the culture medium

(particularly O2 and CO2), it is difficult to determine whether the effects observed

result from the mechanical or chemical stimulus. Furthermore, it is unlikely that

most cells experience a pure hydrostatic pressure in vivo at the pressure magnitudes

shown to invoke a biological response in vitro.

It is important to understand that if cells are being cultured on a rigid sub-

strate they will not experience a net deformation from such a hydrostatic pressure

increase, since this increased isotropic stress will presumably be transmitted into

the cytoplasm, resulting in zero net force change on molecular components. It is

therefore difficult to see how hydrostatic pressure variations alone (in the absence

of associated deformation, e.g., of a flexible substrate) can be sensed by the cell. It

has been proposed that various components of the cell could differentially compress

in response to hydrostatic pressure variations, but this has yet to be unequivocally

demonstrated. Therefore, the physiological relevance of pure hydrostatic compres-

sion is presently unclear.

Platen compression
A common alternative for compressive loading is direct compression by a platform

or platen. This method is normally used with tissue specimens or with cells that have

been seeded into a natural or synthetic ECM, yielding a three-dimensional specimen

that can be compressed (Fig. 2.52, right). Although this method is conceptually

simple, the resulting tissue (and therefore cellular) strains can be quite complex

because of Poisson’s effect,9 viscoelasticity of the matrix, the internal architecture

of the matrix, and fluid flow that results from compression (much like how fluid

exudes from a sponge when it is squeezed). Nonetheless, the similarity of this mode

of loading with that which occurs in vivo for cartilage make it a useful method to

study the response of chondrocytes to compressive forces.

2.8.2 Stretching

The most common approach to stretch cells is to grow them on a flexible surface and

to deform the surface once the cells are adhered to it. This technique has been used

in various configurations to apply uniaxial and biaxial strain to cells in culture

(Figs. 2.53–2.55). Both static and cyclic straining can be applied using these

devices. Of course, care must be taken in selecting a surface that is biocompatible

9 Poisson’s effect describes the strain that is generated in the direction perpendicular to the direction of loading. The strain

in the direction of loading (εx ) and the strain in the perpendicular direction (εy ) are related by Poisson’s ratio, ν, where

ν = −εy/εx for a linearly elastic material. For most materials, ν is between 0 and 0.5.
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Figure 2.53

Uniaxial cell stretching devices. On the left, cells are attached to a membrane that is stretched longitudinally. On the
right, cells are attached to a substrate that is deformed in a four-point bending configuration. In both cases, the substrate
is strained both in the longitudinal direction and the lateral direction (see text).

Figure 2.54

(A) The strain in a circular membrane can be described in cylindrical coordinates where r is the radial direction and θ is
the circumferential direction. (B) Schematics of three actual devices that have been used to apply biaxial strain to a
membrane to which cells are attached. These methods all produce non-uniform strain profiles, meaning cells attached to
the membrane in different locations experience different strains. The unusual radial strain profile for the vacuum-driven
device on the right is caused by the thick membrane used in this device, and therefore compressive bending strains
contributed to the net strain on the surface of the membrane [91]. The membranes used in the fluid and piston-driven
devices were thin, and therefore bending strains were negligible. A vacuum-driven device with a thinner membrane would
produce strain profiles similar to those of the fluid-driven device (left). For details on the theoretical derivation of these
strain profiles, refer to [89]. Adapted from Schaffer et al. [92]. Reprinted with permission of John Wiley & Sons, Inc.
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Figure 2.55

Cell-stretching devices that produce an equi-biaxial strain. Both
the radial and circumferential components of the membrane
strain are constant across the culture surface and are of equal
magnitude.

with the cells and allows them to attach and adhere firmly. The ability to select the

surface for adhesion can be an advantage, however, allowing for greater experi-

mental control. For instance, by coating the surface with defined matrix molecules

(e.g., collagen or fibronectin), one can investigate whether specific cell–matrix

interactions are important for mechanotransduction in a particular type of cell.

Uniaxial stretch
One method to stretch cells uniaxially (or longitudinally) is to grow them on a

flexible membrane, grip the membrane at either end, and elongate the membrane

(Fig. 2.53A). Another approach is to grow the cells on a substrate that is then bent

or flexed in a four-point bending configuration (Fig. 2.53B). The latter method

results in a tensile strain on the convex surface. The longitudinal strain, ε, in this

case is:

ε = 6Fa

bh2 E
(2.50)

where F is the applied force, a is the distance between the support and point of

force application, E is the elastic modulus of the substrate, and b and h are the width

and thickness of the substrate, respectively. In both the membrane elongation and

substrate flexion cases, there is not only longitudinal deformation of the substrate

but also deformation in the lateral direction owing to Poisson’s effects.
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Biaxial stretch
Rather than pull the membrane in one direction only, the outer edges of a circular

membrane can be fixed and the membrane can be deformed to produce a biaxial

deformation, meaning a circular membrane is strained in both the radial and cir-

cumferential directions (Fig. 2.54A). This mode of loading has been implemented

with several devices that either push the membrane up from the bottom (using a

piston or fluid) or pull the membrane down using vacuum pressure. Schematics of

these devices and their theoretical strain profiles are show in Fig. 2.54B. From the

strain profiles, it is apparent that the strain experienced by cells depends strongly

upon their location on the membrane. In some cases, this can be an advantage

since a range of strains can be studied in a single experiment. In practice, how-

ever, the strain input is often not well characterized, biological assays are difficult

to perform on cells from an isolated area of the membrane, and communication

between cells might mask any differences resulting from strain variations from

one area to another. Therefore, the inhomogeneity of the strain stimulus can make

interpretation of experimental results difficult and is a fundamental limitation of

these devices.

To address the strain inhomogeneity, devices that apply uniform biaxial strain

have been developed. Examples of two devices and their strain profiles are shown

schematically in Fig. 2.55. For these cases, in which the membrane is confined

on its periphery and is stretched so that the membrane remains “in-plane,” the

theoretical strain profile can be computed by first realizing that the stresses will

be two dimensional or planar for a thin membrane. For an isotropic linear elastic

material in a state of plane stress, the strains (ε) and stresses (σ ) are related by:

εr = (σr − νσθ )

E
(2.51)

εθ = (σθ − νσr )

E
(2.52)

where r and θ refer to the radial and circumferential components,10 respectively,

and E and ν are the Young’s modulus and Poisson’s ratio of the membrane material,

respectively.

10 Formal notation of stress components requires two subscripts, where the first subscript identifies the surface on which

the stress acts and the second subscript specifies the force component from which the stress component is derived.

Thus, a normal stress that acts on the x surface in the x direction is τxx and a shear stress that acts on the x surface in the

y direction is τxy , where it is understood that the orientation of a surface is defined by its normal. However, because the

two subscripts for normal stresses are always the same, it is common practice to denote normal stresses by σ and use

only one subscript, e.g., σx for τxx and σr for τrr . Since the reader may encounter both notations in the literature, we

have used them interchangeably throughout this text.
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For a circular membrane such as those used in the devices shown in Fig.

2.55, the stress distribution is symmetrical about an axis that passes through the

center of the membrane (i.e., axisymmetric) and it can be shown that σr = σθ

(see Box 2.1 for a proof). Rearranging Equations (2.51) and (2.52) and equating

the two stress components gives εr = εθ . In other words, the majority of the mem-

brane (the part that stays “in-plane”), and presumably the cells attached to it, expe-

rience a strain that is spatially constant (not a function of position) and isotropic

(equal in all directions). This theoretical derivation assumes the membrane slides

without friction over the underlying piston or post; to approximate this in a stretch-

ing device, a lubricant is applied to the bottom of the membrane and to the top of

the post it slides over.

Although the primary stimulus applied to the cells in any stretch device is defor-

mation of the substrate, it is important to realize that movement of the membrane

can cause motion of the liquid medium within the culture dish. Therefore, the cells

might not only respond to the stretch but also to the shear and pressure forces gen-

erated by the moving liquid [88]. The same is true for platen compression devices:

during compression of a three-dimensional specimen containing cells, fluid can

be expelled from the matrix and the fluid flows that are generated by this process

might affect the cells within the matrix.

2.8.3 Fluid flow

Because there are a number of circumstances in which cells are subjected to shear

stresses in vivo (e.g., endothelial cells in blood vessels and osteocytes in bone

tissue), mechanical stimulation of cells using fluid flow is an important approach

and one that is used frequently. The devices that have been developed to apply well-

characterized shear stresses to cultured cells fall into two categories: viscometers

and flow chambers (Fig. 2.56).

Viscometers
Viscometer systems for mechanical stimulation of cells were adapted from systems

originally used to study the rheological properties of fluids. Two configurations

have been used: the cone-and-plate viscometer and the parallel disk viscometer.

In the cone-and-plate viscometer, cells are either attached to a stationary plate

or suspended in the medium between the plate and a rotating disc (Fig. 2.56A). A

second plate, the cone, rotates causing the fluid between the two plates to move

in the circumferential direction with a velocity vθ . The cone is not parallel to the

stationary plate, but instead makes a small angle, α, with the stationary plate;

therefore, the distance between the plates, h, varies as a function of the radial
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Box 2.1 Proof that the stress is equi-biaxial for the circular
membranes in the devices shown in Fig. 2.55

For a membrane in a state of plane stress, the equilibrium equations (assuming

no body forces) are given in cylindrical coordinates as [93]:

∂σr

∂r
+ 1

r

∂τrθ

∂θ
+ σr − σθ

r
= 0 (2.53)

1

r

∂σθ

∂θ
+ ∂τrθ

∂r
+ 2τrθ

r
= 0. (2.54)

Here we have used the same nomenclature as in Equations (2.51) and (2.52),

with the addition of the shear stress component, τrθ .

To show that the membrane stress field is equi-biaxial, we will introduce a

stress function, �, which is a function of r and θ . We define � by setting:

σr = 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2
, (2.55)

σθ = ∂2�

∂r2
, (2.56)

τrθ = 1

r2

∂�

∂θ
− 1

r

∂2�

∂r∂θ
= − ∂

∂r

(
1

r

∂�

∂θ

)
(2.57)

You can verify that this definition for � satisfies the equilibrium equations by

direct substitution into (2.53) and (2.54). Using the stress function, we can

write a single partial differential equation (the equation of compatibility) that

can be used to solve the two-dimensional stress field for various boundary

conditions. The compatibility equation in cylindrical coordinates is [93]:

∇4� =
(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2�

∂r2
+ 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2

)
= 0.

(2.58)

In the axisymmetric case, where the stress is dependent on r only, the

compatibility Equation (2.58) becomes:

(
∂2

∂r2
+ 1

r

∂

∂r

) (
∂2�

∂r2
+ 1

r

∂�

∂r

)
= ∂4�
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+ 2

r

∂3�

∂r3
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r2

∂2�

∂r2
+ 1

r3

∂�

∂r
= 0.

(2.59)
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This is now an ordinary differential equation with a general solution of the

form:

� = A log r + Br2 log r + Cr2 + D. (2.60)

With this general solution, the axisymmetric stress components (Equations

(2.55) to (2.57)) are

σr = 1

r

∂�

∂r
= A

r2
+ B(1 + 2 log r ) + 2C, (2.61)

σθ = ∂2�

∂r2
= − A

r2
+ B(3 + 2 log r ) + 2C, (2.62)

τrθ = 0. (2.63)

You will notice that Equations (2.61) and (2.62) predict infinite stresses at the

center of the membrane where r = 0. Since this is physically impossible, the

constants A and B must be zero. Therefore, σr = σθ = 2C = constant and the

membrane is in a condition of uniform tension in all directions in its plane.

distance from the center, r, according to h = r sin α. For laminar flow in a thin gap,

the fluid velocity in the gap depends on the angular velocity of the rotating plate,

ω, the separation of the plates, h, the distance from the axis of rotation, r, and the

distance from the stationary plate, z, according to:

vθ = ω r z

h
= ω z

sin α
≈ ω z

α
, (2.64)

where we have approximated sin α by α, which is valid for small angles when

α is expressed in radians. Because the circumferential velocity is independent of

radial position, the shear stress in a cone-and-plate viscometer is independent of

position:

τ = μ
dvθ

dz
= μ

ω

α
, (2.65)

where μ is the viscosity of the fluid. This calculation of the shear stress assumes the

fluid is an incompressible Newtonian fluid, which is valid for many fluids (including

cell culture medium) but not entirely accurate for some biological fluids, such as

blood (see Section 3.1 for a discussion of blood rheology).

The parallel disk viscometer differs from the cone-and-plate viscometer in that

the two plates are parallel to one another, separated by a constant distance, h
(Fig. 2.56B). The circumferential velocity in this case is given by:

vθ = ω r z

h
, (2.66)
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Figure 2.56

Devices used to apply fluid shear forces to cultured cells. The cone-and-plate (A) and parallel plate (B) viscometers
generate circumferential fluid flow by rotation of the top plate relative to the fixed lower disc, creating shear stresses on
cells either suspended in the culture medium between the discs or on cells attached to the bottom disc (as shown in the
figure). In the parallel plate (C) and radial (D) flow chambers, flow of the culture medium is generated by a pressure
gradient (by either hydrostatic head or a pump) and cells adherent to the bottom surface are sheared.

and the shear stress, τ , exerted by the fluid is a function of the radial position, r:

τ = μ
ω r

h
. (2.67)

From Equation (2.67), it is apparent that the shear stress varies from zero at the

center of the plate to a maximum at the edge. As with the stretching devices

that have inhomogeneous strain fields, the inhomogeneity in shear stresses with

parallel disk viscometers can complicate interpretation of experimental results in

many instances. In some cases, however, such as investigations of the effect of

shear stress on cell shape, a range of shear stresses might be desirable.

Flow chambers
The other class of fluid shear devices, flow chambers, differs from the viscometers

in that fluid motion is caused not by movement of one surface of the device but by

imposing a pressure gradient. Flow chambers come in two configurations: parallel

plate and radial.
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The most commonly used device is the parallel plate flow chamber, in which

fluid is driven by a pump or hydrostatic head through a rectangular channel

(Fig. 2.56C). The chamber is designed such that the flow is fully developed and

laminar (approximating plane Poiseuille flow). The shear stress on cells adhered

to the bottom plate can be approximated by:

τ = 6Qμ

bh2
(2.68)

where Q is the volumetric flow rate through the chamber, b and h are the width

and height of the chamber, respectively, and μ is the viscosity of the fluid. This

approximation is valid if b � h. Therefore, the shear stress is constant for a given

flow rate. The constant shear stimulus, plus the ease of use of this system – the

equipment is relatively simple and the cells can be attached to a microscope slide

and viewed while being sheared – make the parallel plate flow chamber an attractive

option for flow studies.

An alternative configuration for a flow chamber is the radial flow chamber, in

which fluid flows from an inlet in the center and moves out between two plates in

the radial direction, exiting at the edge (Fig. 2.56D). In this case, the shear stress

on cells adhered to the bottom plate is not constant but is a function of the radial

position, r:

τ = 6Qμ

2πrh2
. (2.69)

Again, the inhomogeneous stimulus must be considered carefully when designing

an experiment and interpreting results from a radial flow chamber.

In all these devices, the flow is steady, fully developed and laminar. In the body,

however, fluid flow is often unsteady and in some cases, such as at branch points

in large arteries, the flow pattern will be complicated, with flow reversals and

separation. Investigators have therefore introduced modifications to the devices

described above, such as pulsatile flow in parallel plate flow chambers [94] and

flow chamber geometries that cause flow disturbances [95].

2.9 Summary of mechanobiological effects on cells in selected tissues

In this final section, we consider how cells from selected tissues respond biolog-

ically to mechanical forces. Much of what is known in this area has come from

experiments using the devices covered in Section 2.8, and we present some of these

data in this section. Observations from animal models have also contributed to our

understanding of how mechanical forces regulate cell and tissue function, and some
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Figure 2.57

Schematic diagram of the wall of a muscular artery. From this figure the multilayered structure of the artery wall –
consisting of the tunica (t) intima, media, and adventitia – can be appreciated. Circumferentially oriented smooth muscle
cells within the media can be seen. Compare also with Fig. 4.15, color plate. From Ross and Reith [96]. Reprinted with
permission of Lippincott Williams & Wilkins.

of those results are presented here too. We will limit our discussion to vascular

tissue, cartilage, and bone; these tissues are particularly interesting to biomechan-

ical engineers because they are constantly subjected to mechanical loading, and

mechanical factors are associated with growth, maintenance, and pathology in

these tissues.

2.9.1 Endothelial cells in the vascular system

Endothelial cells line all blood-contacting surfaces in the body (Fig. 2.57). They

have a number of functions, including regulating the passage of water and solutes

across the vessel wall. They are also sensitive transducers of the mechanical forces

imposed on them. To make this more concrete, consider cells lining a large artery.

These cells are subjected to a shear stress from the passage of blood adjacent to

their surfaces. They are also subjected to a cyclic distension from the pulsation of

the artery during the cardiac cycle. This combination of shear stress and stretch

affects the endothelium in several ways.
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Figure 2.58

Fluorescent micrographs of F-actin in cultured vascular endothelial cells. (A) Endothelial cells 2 days after they had
grown to confluence, at which time dense peripheral bands of F-actin assemble primarily at the cell–cell junctions.
(B) Endothelial cells 2 days post-confluence were exposed to a shear stress of 15 dynes/cm2 for 16 h. The shear stress
caused the cells to reorganize in order to elongate and align with the direction of flow (left to right), with associated
partial loss of the junctional actin and enhancement of basal actin stress fibers. (C) After 48 h of shear stress in these
2-day postconfluent cells, alignment of the actin filaments with the flow direction and changes in cell shape are
complete. Scale bar (B) is in micrometers. Adapted from [97], with permission from the American Society for
Investigative Pathology and the authors.

1. Endothelial cells rearrange their cytoskeleton and change their shape in

response to elevated levels of shear stress (Fig. 2.58). Specifically, the stress

fibers of the actin cytoskeleton at the base of the cell extend and align with

the direction of flow. This occurs by regulated actin polymerization at the

ends of the fibers, which drives protrusion of the cell membrane in the flow

direction [97]. This presumably acts to stabilize the cell and improves resis-

tance to shear forces (although see also comments in Satcher and Dewey

[81]).

2. Arteries change their caliber in response to long-term changes in blood flow

brought about by alterations in the distal vascular beds. This process, known

as arterial remodeling, is a physiological response that ensures that the artery

is the “right” caliber to deliver the required blood flow rate. It is known that the

endothelium is required for this remodeling to take place [98]. Further, a given

artery will remodel itself so as to maintain a target value of shear stress, equal to

15 dynes/cm2 for many (but not all) arteries [99]. Presumably this remodeling

process is driven by the endothelium sensing a local time-averaged shear stress

and then inducing the artery wall to remodel itself to maintain a “target” value

of this long-term shear stress.

3. In cell culture, vascular endothelial cells will alter their production of many sub-

stances (prostacyclins, nitric oxide, etc.) in response to imposed shear stress.

This effect can also be elicited by cyclic stretch, and in fact these two stimuli

seem to be synergistic in some cases. Secretion of such molecules is almost
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certainly how the endothelium signals the artery wall to remodel in response

to changes in time-averaged shear stress.

2.9.2 Smooth muscle cells in vascular tissue

Smooth muscle cells are found in several tissues in the body including the geni-

tourinary, respiratory, and digestive tracts, and in blood vessels (which are the focus

of this section). Vascular smooth muscle cells make up the cellular component of

the medial layer of blood vessels (Figs. 2.57 and 4.15). The cells are aligned cir-

cumferentially around the blood vessel, an orientation that allows them to control

the diameter of the vessel by contracting or relaxing. Like endothelial cells lining

a large artery, smooth muscle cells are also subjected to cyclic stretching as the

artery distends during the cardiac cycle. This stretching can affect smooth muscle

cells in a variety of ways.

1. Mills et al. [100] used the biaxial stretch device shown on the right in Fig.

2.54 to cyclically stretch smooth muscle cells isolated from the aortas of cows.

They used the non-uniform strain profile to their advantage in these experi-

ments by seeding cells only in the center or on the periphery of the membrane

to determine the effect of different levels of strain magnitude. The cells in the

center of the membrane (where the strains were 0–7%) grew more quickly than

did smooth muscle cells on the periphery of the membrane or cells that were

grown under static conditions. The cells on the periphery of the membrane,

which experienced much higher strain levels (up to 24% higher), also grew

more quickly than cells grown statically. Additionally, the cells on the periph-

ery aligned themselves circumferentially in response to the strain stimulus,

assuming an orientation similar to that observed in blood vessels.

2. Cyclic stretch also increases the production of extracellular matrix proteins

(such as collagen and elastin) and makes the smooth muscles more “contrac-

tile” [101].

Kim et al. [102] took advantage of the responsiveness of smooth muscle cells

to mechanical signals to engineer smooth muscle tissue. They seeded vascular

smooth muscle cells into three-dimensional collagen sponges and stretched them

longitudinally (using a principle similar to that shown on the left in Fig. 2.53) at

7% strain (1 Hz) for several weeks. They found that the strain stimulus increased

the proliferation of the smooth muscle cells, increased the production of collagen

and elastin, and in the long term led to organization of the tissue matrix. Most

importantly, the ultimate tensile strength and elastic modulus of the resulting tissue
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were increased 12- and 34-fold, respectively, over those for tissues grown without

mechanical stimulation.

2.9.3 Chondrocytes in articular cartilage

In Section 2.6.4, we examined how chondrocytes (cartilage cells) deform in their

matrix. This is important because articular cartilage is subjected to a wide range of

static and dynamic loads, with peak stresses as high as 20 MPa and compressive

strains of up to 45% [103]. Those loads can have profound effects not only on the

mechanical integrity of the tissue matrix but also on the biological response of the

chondrocytes; some of those responses are summarized here. Interested readers

are also encouraged to read the review by Grodzinsky et al. [103], which makes

reference to many original studies in this area.

As with many cells, it is difficult to study the response of chondrocytes to

mechanical stimuli in vivo. Instead, in vitro testing is performed and a platen

compression device (similar to that shown on the right in Fig. 2.52) is often used.

The test samples are usually either small cartilage explants (e.g., cylinders cored out

from articular cartilage of the knee) or synthetic systems comprising chondrocytes

embedded in three-dimensional hydrogels. These types of samples are used because

they emulate the native cell–ECM structure.

Chondrocytes respond very differently to compressive forces, depending on the

nature of the stimulus.

1. Static compression of as little as 15% significantly inhibits the synthesis of

cartilage matrix components, such as proteoglycans and proteins [104]. After

the static compression is released, biosynthetic levels can return to normal,

with the time to recovery dependent on the duration and amplitude of the

original static compression.

2. Dynamic (cyclic) compression can stimulate matrix production considerably.

However, the response to dynamic compression is very dependent on the fre-

quency and amplitude of the compression. For instance, low-amplitude com-

pression (< 5%) at a low frequency (< 0.001 Hz) had no effect on proteoglycan

or protein synthesis by chondrocytes in articular cartilage implants from calf

knee joints [104]. At higher frequencies of stimulation (0.01–1 Hz), however,

low-amplitude compression resulted in up to a 40% increase in proteoglycan

and protein synthesis.

3. The rate at which compressive strain is applied is also an important parameter.

For instance, Kurz et al. [105] showed that a 50% strain applied to cartilage

explants at a rate of 0.01 s−1 had no effect on chondrocyte activity or matrix

properties, whereas higher rates of 0.1–1 s−1 caused significant decreases in

proteoglycan and protein synthesis and increased cell death. Interestingly, the
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cells that survived the injurious compression of high strain rates were no longer

able to respond normally to low-amplitude cyclic compression (as described

above).

On first glance, uniaxial compression seems like a relatively simple loading condi-

tion. However, compression not only causes deformation of the chondrocytes and

matrix (Section 2.6.4) but also leads to hydrostatic pressure gradients, fluid flow,

electrical streaming potentials (from movement of ions), and other physicochemi-

cal changes. Each of these mechanical, chemical, and electrical stimuli likely plays

some role in affecting the biological response of chondrocytes. In an attempt to

determine which stimuli are most important, several researchers have developed

theoretical models to predict these various signals. By correlating spatial patterns

of matrix synthesis observed in cartilage explants during compression with pat-

terns of mechanical, chemical, or electrical stimuli predicted by theoretical models,

conclusions regarding the most important stimuli can be made (Fig. 2.59). Studies

like these suggest that fluid flow within the tissue and deformation of the ECM are

critically important at regulating ECM synthesis by chondrocytes in response to

dynamic compression [103,106].

In addition to experiencing compression, cartilage in many joints is subjected to

shear deformation. Devices similar to the compression device shown on the right

in Fig. 2.52 have been built to apply shear forces to cartilage explants [107]. This

type of loading also affects chondrocyte function; for instance, a dynamic shear

deformation of 1% at 0.1 Hz for 24 h increases proteoglycan and protein synthesis

by 41% and 25%, respectively [103].

Many of the studies on the effects of mechanical forces on cartilage have been

motivated by a desire to understand the role of biomechanics in cartilage deteri-

oration, such as occurs in osteoarthritis. However, the understanding gained from

these basic studies might also have application for the repair and replacement

of damaged cartilage tissue. Several researchers are currently investigating how

mechanical stimulation might be used in the laboratory to grow or “engineer”

better replacement cartilage tissue. Initial studies with this approach indicate that

significant improvements in the mechanical properties and composition of engi-

neered cartilage can be obtained with dynamic compression [108]. This mixture

of biomechanics and the relatively new field of tissue engineering is exciting and

might be critical to obtaining functional engineered tissues that are useful clinically.

2.9.4 Osteoblasts and osteocytes in bone

As we will discuss in Chapter 9, bone is an amazingly dynamic tissue that responds

to its mechanical environment. This adaptive behavior allows bones to withstand

repeated loading and alterations in loading without breaking or sustaining extensive
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Figure 2.59

Finite element analysis of a cartilage explant subjected to dynamic compression. (A) The cartilage disc was modeled
with an axisymmetric finite element model that considered the coupled mechanical, electrical, and chemical/osmotic
phenomena resulting from compression. The model predicted the resulting intra-tissue profiles of fluid velocity (B)
current density (C), and axial strain (not shown). These spatial profiles can be compared with patterns of biosynthetic
activity in the cartilage tissue to determine which stimuli might be the most important in regulating chondrocyte function.
From Levenston et al. [106] with permission of the ASME.
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damage. The mechanisms by which bone senses and responds to mechanical loads

is an area of active research with many unresolved questions. A review by Burr

et al. [109] summarized some of what is known about bone adaptation to mechan-

ical stimulation, with focus on the tissue level responses. Here we focus on in vitro

studies of bone cells, with particular attention to osteoblasts and osteocytes, two

types of bone cell that are believed to play important roles in maintaining bone

tissue.

Osteoblasts are responsible for making new bone. Osteocytes are cells that were

formerly osteoblasts but have stopped synthesizing bone tissue and are now embed-

ded directly in the mineralized matrix of bone in pores called lacunae. Osteocytes

are not completely isolated from other cells, however; they are connected to other

osteocytes and to osteoblasts on the surface of the bone matrix through cell pro-

cesses that travel through channels (canaliculi) in the bone matrix (Fig. 9.3). These

intercellular connections will be important to our discussion later on.

As with cartilage, the loads applied to bones at the tissue level are experienced by

the cells residing in the bone matrix. One consequence of the mechanical loading of

bones is that the bone matrix deforms. This type of mechanical stimulation (defor-

mation of the substrate to which the bone cells are attached) has been emulated in

vitro with a variety of devices, including the uniaxial and biaxial stretch devices

presented in Section 2.8.2. The general conclusions from these studies are that

substrate deformations of approximately 1–10% influence a variety of measures

of bone cell function, including DNA synthesis, enzyme production, synthesis of

collagen and non-collagenous proteins, and mineral production. The molecular

mechanisms for these effects are also being investigated. For instance, Ziros et al.
[110] found that mechanical stimulation of human osteoblasts causes an increase

in the expression and DNA-binding activity of a transcription factor known to be

critical to osteoblast differentiation. In this study, the osteoblasts were stretched

with an average strain of 2.5% using a device similar to the one illustrated in the

middle panel of Fig. 2.54B.

It turns out, however, that because of the relative stiffness of mineralized bone

tissue, peak strains on the surface of most bones do not usually exceed 0.3% [111]. It

is possible that in certain circumstances matrix deformations might exceed 0.5%,

for example, in pre-mineralized bone tissue during fracture repair or in regions

where the microstructure of the bone results in local strain concentrations. In

general, however, the physiological relevance of the in vitro studies that apply

strains in excess of 1% is unclear.

More recent studies have focussed on the response of bone cells to fluid flow

rather than substrate deformation. Mechanical loads applied to bones not only

deform the matrix, but also cause movement of extracellular fluid through the
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lacunae and canaliculi in the bone matrix. This movement of fluid is hypothesized

to stimulate osteocytes and osteoblasts through fluid shear stress effects, streaming

potentials, or chemical transport mechanisms [112]. Osteocytes, owing to their

location with the lacunae, may therefore act as mechanosensors, sensing fluid

flows and signaling to osteoblasts (through their cell processes, for instance) to

cause alterations in bone formation. Consistent with this theory, bone cells are

more sensitive to physiological levels of fluid flow than they are to physiological

levels of stretching, as shown in two studies.

1. Smalt et al. [113] measured the biological response of a variety of types of

osteoblast to stretch and shear stress by monitoring the production of nitric

oxide and prostaglandins, two cellular products known to be mechanically

responsive in vivo. Using the device shown on the left in Fig. 2.53, they showed

that the osteoblasts did not respond to uniaxial strains of 0.05–0.5% but did

produce nitric oxide and prostaglandins when subjected to a period of steady

shear stress of 148 dynes/cm2 (applied using a parallel plate flow chamber;

Fig. 2.56C).

2. You et al. [114] reached the same conclusion but used more physiologically

relevant fluid flows. Theoretical models of fluid flow in the lacunar–canalicular

network predict the flow will be oscillatory (i.e., reversing), with wall shear

stress of the order of 8–30 dynes/cm2 [115]. Uniaxial stretching of 0.5% strain

at 1 Hz had no effect on the expression of osteopontin mRNA by the bone

cells. (Osteopontin is a non-collagenous protein important in bone forma-

tion and shown to be modulated by mechanical stimulation.) When they sub-

jected the cells to oscillatory (1 Hz) fluid flow in a parallel plate flow chamber,

with shear stresses of 20 dynes/cm2, osteopontin mRNA expression went up

significantly.

As with cartilage biomechanical research, the motivating factors for understanding

how bone responds to its mechanical environment are bone diseases and failures.

And as with cartilage, recent developments in tissue engineering have spurred

interest in using mechanical stimulation to engineer replacement bone tissue. Initial

studies have shown promising results. Using three-dimensional titanium mesh

matrices seeded with osteoblast precursor cells, Bancroft et al. [116] showed that

mineralized bone tissue formed more rapidly in matrices perfused with cell culture

media than in matrices not subjected to fluid flow. Interestingly, this effect occurred

with flow rates as low as 0.3 ml/min (corresponding to an estimated shear stress

of 1 dyne/cm2). Although it is not clear from these experiments how a stimulus

of such low magnitude could cause an increase in bone formation, the results do

suggest that mechanical stimulation will be valuable for bone tissue engineering.
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2.10 Problems

2.1 Write a short essay (about 300–500 words) on a eukaryotic cellular organelle

of your choice, describing its structure, function, etc. (This may require a

quick trip to the library; a good place to look would be under cell biology in

the QH 581 section of your Science and Medicine library).

2.2 A 75 kg person doing light work requires about 3000 kcal of food energy per

day, 40% of which is actually used by the body’s cells. (The other 60% is lost

as heat and in waste products.) Before being used by the cells, effectively all

of this energy is stored in ATP, which is then cleaved into ADP and PO−2
3 ,

with the release of 12.5 kcal per mole of ATP.

(a) How many moles of ATP are turned over per day in this fashion? What

mass of ATP does this correspond to? (The molecular weight of ATP is

507 g/mol.)

(b) The body actually contains approximately 5 g ATP. Estimate the average

recycle time for an ATP molecule. You see that it is much more efficient

to reuse ADP rather than to synthesize it de novo (from scratch).

2.3 We have discussed how ATP is produced by the mitochondria and used by

the other organelles within the cell. Transport of ATP to these organelles is

passive (i.e., by diffusion), and the purpose of this question is to find out how

rapidly that transport can occur.

(a) Consider a small cube of sides δx by δy by δz. The cube is filled with

a solution of concentration c(x, y, z). The fluid is quiescent, so that

solute transport occurs by diffusion only. Fick’s law (which is analo-

gous to Fourier’s law for heat transfer) states that the flux of solute is

proportional to D∇c, where D is a constant known as the diffusivity.

By referring to Fig. 2.60, show that the accumulation of solute within

the cube must be proportional to ∇ · (D∇c) δx δy δz. Hence deduce

that the differential equation describing the solute distribution must be:

∂c

∂t
= ∇ · (D∇c) . (2.70)

(b) Now consider a simple one-dimensional system where c = c(x, t). This

is an acceptable model for treating diffusion between a row of mitochon-

dria and a contractile set of actin–myosin fibers, such as is typically

found in muscle cells (see Fig. 2.60). Call the distance between the

fibers and the mitochondria L and assume that initially the concentra-

tion of ATP is uniformly 5 mM within the cell. At t = 0 the muscle con-

tracts, causing the concentration of ATP in the cytoplasm immediately
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Figure 2.60

For Problem 2.3.

adjacent to the fibers to fall rapidly to zero (or at least approximately

to zero.) The concentration of ATP in the surrounding cytoplasm then

falls in an unsteady fashion; to a good approximation you can assume

that the mitochondria act to maintain the local ATP concentration at

5 mM. Write down the boundary and initial conditions implied by this

scenario.

Next, show that the function

c(x, t)

cinit

= 1 − x

L

+
∞∑

n=1

[an sin (2πnx/L) + bn cos (2πnx/L)] e−(2πn)2 Dt/L2

(2.71)

satisfies Equation (2.70) and the boundary and initial conditions, for

appropriate choice of an and bn. cinit is the initial concentration of ATP

in the cytoplasm. Note: do not solve for an and bn.

(c) The second term in equation (2.71) is obviously the unsteady term,

while the expression 1 − x/L is the steady-state solution. Express the

slowest decaying mode in the unsteady solution as et/τ , and identify

τ . If D = 4.5 × 10−10 m2/s for ATP, and L = 0.5 μm, what is τ? This

represents the “lag time” needed for diffusion to begin transporting ATP

to the organelles efficiently.
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Figure 2.61

For Problem 2.5.

(d) One way of overcoming the lag mentioned above is to store a small

amount of ATP in the organelle that uses it. Muscle can produce approx-

imately 40 W/kg at high exertion, and cleaving 1 mole ATP (which has

a mass of 507 g) yields 104 J. How much ATP should be stored (per

kilogram of muscle) to be safe?

Note: This problem assumes that the synthesis and uptake of ATP by mito-

chondria and organelles is instantaneous, which is not true.

2.4 Consider a cell that has a magnetic bead attached to it. We will treat the cell

as a Kelvin body. Suppose that the magnetic field has been turned on for

a very long time and is producing a constant force on the bead F0. At time

t = 0, the force is suddenly switched off. Derive an expression for the resulting

displacement of the bead as a function of time, x(t). Note that you do not

need to re-derive any formulae given in the text.

2.5 Consider a neutrophil in a micropipette that is being pulled away from a

stationary bead by a suction force (Fig. 2.61). The neutrophil is attached to

the bead by an elastic tether that lengthens over time, so that the separation

between bead and cell obeys the relationship:

x(t) = xfinal(1 − e−t/τ ) (2.72)

where t is time and τ is a constant.

(a) Show that the initial velocity of the neutrophil is xfinal/τ .

(b) Using Equation (2.6) for the suction force, compute the force in the

tether as a function of time, Fe(t). Note that U∞ in Equation (2.6) is the

same as the initial velocity computed in (a).

(c) Show that a condition to neglect the inertia of the cell in this analysis is

that the ratio π R2
p�pτ 2/mxfinal be � 1, where m is the mass of the cell.
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Figure 2.62

For Problem 2.7.

(d) When the cell’s inertia is small, what is the effective spring constant of

the tether?

2.6 Consider the actin network described in Section 2.6.3.

(a) If a uniaxial force F is applied to the network, show that the energy

stored in the network per unit volume is proportional to F2/Es I , where

Es is the modulus of the actin filaments and I is the area moment of

inertia of a single actin filament.

(b) For a linearly elastic material subjected to uniaxial stress, the energy per

unit volume stored in the material is given by 1/2E∗ε2, where E∗ is the

effective modulus of the material and ε is the strain. Derive Equation

(2.47) using this fact, as well as the results of part (a) and Equation

(2.44). You do not need to derive the value of the coefficient C1. Do not

repeat the derivation in the text; instead, formulate a derivation based

on energy considerations.

2.7 In the text we described how the actin cytoskeleton can be modeled as a three-

dimensional foam. However, in many cells, the actin forms a very thin layer

adjacent to the cell’s membrane. In such a case, it may be more appropriate

to model the actin network as essentially two dimensional.

(a) Suppose that the actin forms a two-dimensional “sheet” that is only one

fiber thick (see Fig. 2.62). Draw the two-dimensional version of Fig.

2.42A and clearly label all dimensions.

(b) Following a derivation similar to that given in the text, compute the

dependence of relative elastic modulus E∗/Es on relative network

actin density, ρ∗/ρs . Here ρ∗ is the actin density within the actin

sheet.

2.8 The density of actin filaments (and other cytoskeletal elements) is not spatially

uniform within a cell (e.g., Helmke et al. [117]). Assume that the density of

actin varies with position in a cell according to

ρ∗(x) = ρ0e−kx (2.73)
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Figure 2.63

For Problem 2.8

with ρ0 = 25 mg/ml and k = 0.1 μm−1. Further, assume that the cross-

sectional area of the cell (measured normal to the x axis); varies as

A(x) = A0e−cx (2.74)

with A0 = 350 μm2 and c = 0.05 μm−1. Neglecting the nucleus, calculate

the vertical extension of a 4 μm tall cell as a result of a 700 nN force being

applied to its top, assuming the bottom of the cell is anchored to a sub-

strate (Fig. 2.63). Use values given in the text as appropriate. Note that

1 dyne/cm2 = 0.1 Pa.

2.9 A magnetic bead microrheometry system will be used to measure the mechan-

ical properties of adherent cells.

(a) The first step is to calibrate the system by observing how quickly

beads are dragged through a glycerol solution by the magnet. For this

particular magnet, we expect the magnetic force on a bead, Fmag, will be

given by an expression of the form Fmag = β/z, where β is a constant

and z is the distance between the magnet pole piece tip and the bead.

Knowing that the fluid drag force on a bead of diameter D moving at

velocity V is given by Stokes’ law, FDrag = 3πμDV , and neglecting

the mass of the bead, derive an expression for the constant β. Your

expression will involve the starting position of the bead, z0, as well as

the bead position z(t) and time t.
(b) The magnet was designed to have a coefficient β = 200 nN μm. Cali-

bration data in Table 2.3 were gathered to test magnet performance

using 4.5 μm diameter beads immersed in glycerol with viscosity

μ = 1.2 g/(cm s); distance from the magnet to the bead was measured

as a function of time. Are these data compatible with the design



104 Cellular biomechanics

Table 2.3. For Problem 2.9

Time (s) z (μm)

0.000 100

0.095 80

0.158 60

0.214 40

0.246 20

Bead
displacement
(μm)

Large arrow indicates when
magnet is moved close to bead

Displacement = 0.85 μm

time (s)

Figure 2.64

For Problem 2.9.

specifications? There is some noise in the data, so you should con-

sider all the data points somehow.

(c) Assume that the cell can be modeled as a Kelvin body plus an extra

dashpot (Fig. 2.36). If the magnet pole piece tip is suddenly moved to

within 50 μm of the bead and the bead moves 0.85 μm (see Fig. 2.64),

use Equation (2.18) to determine the value of k0 + k1. For purposes of

this question take β = 200 nN μm.

(d) Can you think of any experimental difficulties with this approach, mak-

ing reference to the graph in Fig. 2.64?

(e) Cells are treated with an agent called Latrunculin-B. Here is a descrip-

tion of this agent from the Calbiochem catalogue: “A structurally

unique marine toxin. Inhibits actin polymerization in vitro and dis-

rupts microfilament organization as well as microfilament-mediated

processes.” What do you think will happen to the magnitude of k0 + k1

in cells treated with Latrunculin-B? Briefly justify your answer.

2.10 A cartilage sample consists of cells (chondrocytes, with effective Young’s

modulus Ecell) and ECM (effective Young’s modulus EECM), as shown in the

left panel of Fig. 2.65. The volume fraction of cells (cell volume/total tissue

volume) is φ. The tissue sample is subjected to a uniaxial tension, T, and has

unstretched length L and cross-sectional area A. We wish to determine the

effective Young’s modulus for the tissue sample, Etissue. In general, this is a

complicated problem; however, we can get bounds for Etissue by considering

two special cases. In the first case, we replace the real tissue configuration by

a “series” configuration where a cell-containing volume is in series with an

ECM-containing volume (see middle panel of Fig. 2.65). In the second case,

we replace the real configuration by a “parallel” arrangement. In both cases,

we require the total tension, T, applied to the tissue to match that for the real

case, and the total elongation to also match that occurring in the real case.
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Figure 2.65

For Problem 2.10.

(a) Considering the work done by the tension force T, show that the energy

stored in the real tissue sample is AL Etissueε
2/2.

(b) Consider the series configuration. You should first convince yourself

that in this configuration, the stress σ is the same for both tissue com-

ponents and is equal to the true stress in the tissue, but the strain ε is

different for the two components. Thinking about the energy stored in

each of the two tissue components, show that the overall tissue modulus

can be written as 1/Etissue = φ/Ecell + (1 − φ)/EECM.

(c) Using a similar approach as for the series configuration, show that

Etissue = φEcell + (1 − φ)EECM for the parallel configuration. Hint:

What is the same for the two components? (It is not the stress.)

2.11 A cilium of length L = 2 μm and diameter 0.4 μm sweeps through extra-

cellular fluid (μ = 1 cP) with constant angular velocity, ω. You can model

this motion as rotation of the cilium about its base, assuming that the cilium

has the form of a rigid cylinder.

(a) The drag force exerted per unit length on a cylinder is f = k1μU ,

where k1 is a constant and U is the local fluid velocity passing over the

cylinder. Show that the torque, M0, exerted on the base of the cilium

by the cell body must therefore be k1μωL3/3.

(b) Assume that the nine tubulin dimers (Fig. 2.66) are evenly spaced

around the periphery of the cilium. Further assume that the perimeter to

the left of the solid line is the trailing edge and the perimeter to the right

is the leading edge (see cross-sectional view in Fig. 2.66). All dimers to

the right of this line are under maximum tension (tension = Fmax); all

to the left are under maximum compression (compression = −Fmax).

Compute the value of Fmax at the base of the cilium, assuming that the

dimers transfer the entire torque M0 from the cell body to the cilium.

Take k1 = 2 and ω = 0.2 rad/s. Make and state other assumptions as

needed.
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Longitudinal view
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Figure 2.66

For Problem 2.11. Modified from Cormack [18] (with permission of Lippincott Williams & Wilkins) and Alberts et al. [1].

2.12 The flexural rigidity of a rod-like structure like a microtubule is a mea-

sure of its bending stiffness. Flexural rigidity is given by EI, where E is

the Young’s modulus and I is the geometrical moment of inertia of the

rod cross-section. For a hollow cylindrical cylinder with outer diameter,

Do, and inner diameter, Di, the moment of inertia about an axis through

the middle of its cross-section is Iz = π (D4
o − D4

i )/64. The flexural rigid-

ity of microtubules can be measured in several ways. For example, Kurachi

et al. [118] determined the flexural rigidity of microtubules grown in solution
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For Problem 2.12.

and stabilized by microtubule-associated proteins by applying compressive

forces to both ends of the microtubule and determining the force at which

the microtubule buckled. To apply the compressive end forces, microspheres

were attached to either end of the microtubule, one microsphere was fixed

to the surface, and the other microsphere was moved using optical tweez-

ers to compress the microtubule until it buckled (i.e., initially deflected)

(Fig. 2.67). Assuming the microtubule behaves like a slender rod of length

L, the critical force, Pcr, at which buckling occurs is given by Euler’s

formula:

Pcr = π2 E I

L2
(2.75)

Applying this equation, the flexural rigidity, EI, is estimated by measuring

the force at which a microtubule of known length is observed to buckle.

(a) Critical loads for 10 microtubules are shown in Table 2.4. Calculate the

flexural rigidity for each microtubule and determine the mean flexural

rigidity for all the microtubules tested.

(b) Several other studies (e.g., Felgner et al. [119]) have shown that flexural

rigidity is constant for microtubules of different lengths. Show that the

data presented here do not agree with those findings and speculate on

potential sources of error in the microsphere/optical tweezer method.

(c) Use the mean flexural rigidity you calculated in (b) to estimate the

Young’s modulus of a microtubule. State your assumptions about the

geometry of a microtubule.
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Table 2.4. Critical buckling loads for 10 microtubules stabilized
by microtubule-associated protein. Data approximated from
graphical data presented in Kurachi et al. [118].

Microtubule Length (μm) Critical load (pN)

1 7.5 2.6

2 10.5 2.9

3 22.0 2.1

4 20.0 2.0

5 10.0 3.8

6 30.5 1.1

7 18.0 1.7

8 19.0 1.1

9 9.0 3.7

10 28.0 1.4

(d) It is believed that microtubules in the cell are loaded primarily in

compression or bending, whereas actin is primarily loaded in tension.

Demonstrate that microtubules are designed to withstand much higher

bending loads than are actin filaments.

2.13 Recall that AFM can be used in force mapping mode to determine the local

modulus of a cell. By rastering the AFM probe across the surface of the

cell, an elasticity map can be obtained. As described in Section 2.5.1, if we

model the AFM as a rigid, conical tip penetrating the soft, locally planar

and linearly elastic cell, then the Hertz contact solution applies. For this

situation, the penetration depth of the probe, uz, is related to the contact

radius, a, by:

uz =
(π

2
− r

a

)
a cot α r � a (2.76)

where r is the radial coordinate, α is the cone half angle, and uz is measured

relative to the undeformed surface (Fig. 2.68).

(a) Determine an expression for the contact radius in terms of the pene-

tration depth at the end of the probe tip, δ, and the cone half angle.

(b) Express the contact radius, a, as a function of the cone half angle, the

material properties of the cell, and the applied force.

(c) Plot the contact diameter (i.e., twice the radius) versus the modu-

lus of the cell for 1, 10, 100, and 1000 pN, the range of forces that

are typically applied to cells with AFM. Assume that the cone half
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For Problem 2.13.

angle for an AFM probe tip is 30◦ and that the cell is incompressible

(i.e., the cell volume does not change when it is deformed by the AFM

probe tip). You will find it clearer to use a log–log plot for this question.

(d) Show on your plot the typical range of cell moduli and applied forces

and use this to determine how large an area is indented by the AFM

probe tip. This defines the lateral resolution that can be expected for

an elasticity map. Is this resolution adequate? Why or why not?

2.14 We derived a relationship in Section 2.6.2 between the incremental modulus,

E0, of a six-strut tensegrity model of the cell and the resting force in the actin

filaments, F0, the resting length of the actin filaments, l0, and the resting

strain of the cell, ε0 (Equation [2.39]). Recalling that the length of the actin

filaments is related to the length of the microtubules, L0, by l0 = √
3/8L0,

we can express E0 in terms of L0 as

E0 = 15.6
F0

L2
0

1 + 4ε0

1 + 12ε0

(2.77)

In this question, you will use this equation to estimate the upper and lower

bounds of E0 as predicted by the tensegrity model.

(a) The upper bound of the prediction can be determined by assuming

the actin filaments are on the verge of breaking in the resting posi-

tion. Assume that actin filaments have an effective radius of 2.8 nm, a

Young’s modulus of 1.8 GPa, and break at an average force of approx-

imately 400 pN. Use these values to estimate the strain at which an

actin filament will break.

(b) Plot E0 versus L0 for L0 = 1–6 μm, taking into account the estimate

for resting strain you calculated in (a). You will find it clearer to use a
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Table 2.5. Young’s moduli for a variety of cell types and measurement techniques. Data after
Stamenovic and Coughlin [71].

Cell type Measurement technique L0 (μm)a E0 (dyne/cm2)

Spread fibroblast Atomic force microscopy 2 16 000

Sheared endothelial cell Micropipette aspiration 3 1575

Round endothelial cell Micropipette aspiration 3 750

Spread epithelial cell Magnetic bead rheometry 4 75

Spread smooth muscle cell Magnetic bead rheometry 5.5 115

Spread endothelial cell Magnetic bead rheometry 5.5 45

Round endothelial cell Magnetic bead rheometry 5.5 22

a Assumed to be the probe diameter.

log axis for the modulus. This curve represents the upper bound of the

tensegrity prediction.

(c) Based on force balances on the struts, it can be shown that the force in

a strut in the resting position, P0, is related to the resting force in the

actin filament by P0 = √
6F0. The lower bound can be determined by

assuming the microtubules are on the verge of buckling in the resting

position. Express E0 in terms of the microtubule flexural rigidity, initial

actin filament strain, and L0 assuming the microtubules are on the verge

of buckling in the resting position.

(d) When the microtubules are on the verge of buckling as described in

(c), the actin filament strains are relatively small (i.e., ε0 � 1) and

contribute negligibly to the estimate of E0. On the same graph as you

produced in part (b), plot E0 versus L0 for L0 = 1–6 μm for the case of

small strain and the microtubules on the verge of buckling. You may

assume the flexural rigidity of a microtubule is 21.5 pN μm2. This

curve represents the lower bound of the tensegrity prediction.

(e) Cell stiffnesses for various cell types and measured with a variety of

techniques are listed in Table 2.5. If we assume that the six-strut tenseg-

rity model describes the local deformation of the cytoskeleton around

the point at which the cell is probed, then L0 can be approximated as

the diameter of the probe. These values are also listed in Table 2.5.

Plot the experimental data in Table 2.5 on your graph of the upper and

lower bounds for E0 predicted by the tensegrity model.

(f) Comment briefly on the comparison between the model predictions

for E0 and the experimentally observed values from Table 2.5.
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Figure 1.7
Genetic network regulating the development of endoderm and mesoderm in the sea urchin embryo. Regulated genes are
shown names in black type, e.g., FoxA, Notch, Ets, etc. The short horizontal lines above these names from which bent arrows
extend represent regulatory elements in the genome that influence expression of the genes named beneath the line. Lines
with arrows represent an activation of the regulatory element, while lines ending in bars represent repression. Reprinted with
permission from Davidson et al. [46]. Copyright 2002 AAAS. For an updated version of this figure, see
http://sugp.caltech.edu/endomes/.

Figure 2.7
Three-dimensional structure of a single G-actin

monomer (right) and an F-actin strand (left).
Amino acids on the actin monomer are color
coded to indicate interactions with adjacent
monomers in the F-actin filament. Colored

elements in the central portion of the monomer
are bound ADP and Ca2+. Reproduced with

permission from the University of Illinois [5],
based on Lorenz et al. [6] and Kabsch et al. [7].



Figure 2.8
Schematic summary of actin polymerization. (A) G-actin monomers (bound to ATP) nucleate to form small stable filaments
that are then elongated by addition of monomers to both ends of the filament. After being incorporated into the filament, the
ATP of the G-actin subunits is hydrolyzed to become stable ADP–F-actin. After elongation, the ends of the actin filament are
in steady state with the G-actin monomers. (B) In the presence of a capping protein (such as CapG), the ends are capped and
elongation is markedly slowed or halted. Most of the regulation of F-actin dynamics is mediated through capping proteins.
Adapted from Lodish et al. [2]. Reproduced with kind permission of W. H. Freeman.

Figure 2.9
Schematic diagram of the assembly

of tubulin dimers into a microtubule.
Note that there are two types of

tubulin monomers: α and β. These
associate to form short protofilaments

(1). The protofilaments assemble
together to form a sheet that bends

(2) and eventually wraps on itself to
form a hollow microtubule made up of

13 protofilaments (3). Once the
microtubule is formed, tubulin dimers

can exchange at both the + and –
ends, although they tend to do so
preferentially at the + end. From

Lodish et al. [17]. Reproduced with
kind permission of W. H. Freeman.



Figure 2.15
A schematic diagram summarizing known interactions between the various constituents of cell–matrix adhesion complexes
(as of 2001). Components within the central green box are associated with cell–matrix adhesion sites, while the outer blue
region contains additional selected proteins that affect cell–matrix adhesion but are not known to stably associate with the
cell–matrix adhesion complex. The general property of each component is indicated by the color of its box, and the type of
interaction between the components is indicated by the style and color of the interconnecting lines (see legend). This
schematic illustrates the overwhelming complexity of cell–matrix adhesion. From Zamir and Geiger [27]. Reproduced with
permission of the Company of Biologists, Ltd.
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Figure 2.18
Atomic force microscopic map of cellular topography for confluent porcine aortic endothelial cells. The vertical scale has
been exaggerated. Data courtesy of Dr. Shigeo Wada (Sendai University, Japan), and Mr. James Shaw and Dr. Chris Yip
(University of Toronto).



Figure 2.28
Schematic view of the erythrocyte cortical cytoskeleton, showing cross-linked spectrin fibers (green). Note the connections
between spectrin and integral membrane proteins provided by ankyrin (purple). From Lodish et al. [2]. Reproduced with kind
permission of W. H. Freeman.



Figure 2.48
Candidate mechanoreceptors for relaying extracellular mechanical signals to the cell’s interior to activate intracellular
signaling pathways. Connections between receptors probably exist; for example, forces received by integrins cause
deformation of the cytoskeleton (dark blue line), which “tugs” on the ion channel (as indicated by the red dotted arrow),
causing the channel to open permitting flow of ions. Refer to the text for further details.
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Figure 2.49
Possible roles for the

cytoskeleton in mediating
mechanical signals through

physical means.
(A) Mechanical coupling via

the cytoskeleton
hypothetically allows for
mechanotransduction at

multiple sites (After Davies
[85]). (B) Transduction of

mechanical signals into
biochemical signals by

integrins and the
cytoskeleton, on which
regulatory proteins and
enzymes are physically

immobilized. In the scheme
shown, the chemical

conversion of substrate 1 into
product 2 is regulated by the

middle protein immobilized to
the microtubule. In response

to a mechanical stimulus, the
force balance in the

cytoskeleton is altered,
leading to deformation of the

immobilized proteins and
changes in protein kinetics

(more of product 2 converted
in this case). In contrast,
pulling a transmembrane

protein that is not physically
connected to the cytoskeleton

(red oval protein in cell
membrane) has no effect.

From Ingber [72] with
permission of the Company of

Bioligists Ltd.



Stimulus

Cell-surface
receptor

Second
messengers

Intracellular
signaling
proteins

Target
protein

Figure 2.50
Schematic of simple intracellular signaling pathways using biochemical mediators.

Figure 2.51
Mechanical signals transduced intracellularly can affect several cellular processes, including: (1) cytoskeletal organization;
(2) transcription of mRNA from DNA (gene expression); (3) translation of proteins from mRNA; (4) assembly and
post-translational modification of proteins; and (5) secretion of proteins into the extracellular space, where they can regulate
the function of the stimulated cell or its neighbors through signaling by soluble factors (6). Note that secreted proteins are
always enclosed in vesicles for transport from the Golgi apparatus to the cell membrane; this detail is not shown in this
simplified scheme.



Figure 4.2
A schematic overview of the systemic vascular tree. The values of diameter etc. are for humans and are approximate. Note the
large blood volume contained in the veins, and the large aggregate cross-sectional area exhibited by the capillaries. From
Despopoulos and Silbernagl [3]. Reproduced with kind permission of Thieme.



Figure 4.5
Major vessels of the trunk (left) and schematic overview of the major arteries in humans (right). In the left panel, the position of the heart is indicated
by the white dashed line; arteries are colored red, while veins are colored blue.
1, internal jugular vein; 2, common carotid artery; 3, vertebral artery; 4, ascending aorta; 5, descending aorta; 6, inferior vena cava; 7, celiac trunk;
8, superior mesenteric artery; 9, renal vein; 10, common iliac artery; 11, larynx; 12, trachea; 13, left subclavian artery; 14, left axillary vein;
15, pulmonary veins; 16, diaphragm; 17, suprarenal gland; 18, kidney; 19, ureter; 20, inferior mesenteric artery; 21, femoral vein; 22, facial artery;
23, axillary artery; 24, brachial artery; 25, radial artery; 26, ulnar artery; 27, deep palmar arch; 28, superficial palmar arch; 29, common palmar digital
arteries; 30, profunda femoris artery; 31, femoral artery; 32, popliteal artery; 33, anterior tibial artery; 34, posterior tibial artery; 35, plantar arch. From
Rohen et al. [7]. Reproduced with permission from Lippincott Williams & Wilkins.
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Figure 4.7
Gross anatomy of the heart. On the left, the heart is shown in section (AV, atrioventricular). Major structures are labeled and arrows represent blood
flow directions. The right panel shows a human heart partially dissected. Note the thickness of the left ventricular wall and the extensive network of
chordae tendineae.
1, brachiocephalic trunk; 2, superior vena cava; 3, sulcus terminalis; 4, right auricle; 5, right atrium; 6, aortic valve; 7, conus arteriosus
(interventricular septum); 8, right atrioventricular (tricuspid) valve; 9, anterior papillary muscle; 10, myocardium of right ventricle; 11, left common
carotid artery; 12, left subclavian artery; 13, aortic arch; 14, ligamentum arteriosum (remnant of ductus arteriosus); 15, thoracic aorta (descending
aorta); 16, ascending aorta; 17, left pulmonary vein; 18, pulmonary trunk; 19, left auricle; 20, pulmonary valve; 21, anterior papillary muscle with
chordae tendineae; 22, myocardium of left ventricle; 23, posterior papillary muscle; 24, interventricular septum. Left panel from Vander et al. [10]
with kind permission of McGraw-Hill Education; right panel from Rohen et al. [7] with kind permission of Lippincott Williams & Wilkins.



Figure 4.15
Cross-section through the wall of an artery, demonstrating the tunicas intima, media, and adventitia, as well as elastic
lamellae within the media. The elastin appears black in this preparation, which has been stained with Verhoeff’s stain and
lightly counter-stained to make the collagen appear blue. IEL, internal elastic lamina. Modified from Vaughan [19] by
permission of Oxford University Press, Inc.



Figure 6.1
Overview of the eye, with several key structures labeled. RPE, retinal pigment epithelium. Modified from Krey and Br̈auer [1]
with kind permission of Chibret Medical Service.



Figure 6.7
View of anterior segment of a human eye. Aqueous humor is produced by the ciliary processes and travels along the routes
shown by the red arrows. The white arrows in the anterior chamber show thermal convection patterns. The lower left inset is a
scanning electron micrograph of the zonular apparatus (CM, ciliary muscle). The inset at upper right shows Schlemm’s canal
(green) as seen face-on. Green vessels anastomosing with Schlemm’scanal are collector channels; blue vessels are aqueous
veins; red vessels are arterioles. Modified from Krey and Br̈auer [1] with kind permission of Chibret Medical Service.



Figure 6.15
Blood supply to the eye and orbit in the human. The ophthalmic artery derives from the internal carotid artery, and
supplies blood to the orbit of the eye (the cavity in which the eye sits), the lacrimal (tear) gland, the extraocular muscles
and the eye globe proper. Reprinted wth permission from Gray’s Anatomy [71].



Figure 6.16
Image of a human retina, showing the retinal vasculature. The central retinal artery enters the eye through the center of the
optic nerve, branching to form retinal arteries running along the surface of the retina. After passing through the retinal
capillaries, blood drains back to the central retinal vein, which exits the eye through the optic nerve. This image is taken from
the outside of the eye, through the cornea. The fovea is the specialized part of the retina where we do most of our seeing; it
contains an especially high density of photoreceptors and has no overlying retinal circulation. From Kolb et al. [72] with kind
permission of Dr. Helga Kolb.
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Figure 7.1
Organization of the respiratory system. (A) The structures that conduct ambient air to the lungs. (B) The large airways and main vascular structures of
the left human lung and the heart. In this panel the tissue of the lungs is shown as transparent so that the internal airways and blood vessels can be
better seen. From Vander et al. [1]. Reproduced with kind permission of The McGraw-Hill Companies.
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Figure 7.15
Two conceptual models of mass transfer in the
acinus, showing oxygen concentration (red dots),
oxygen mass transfer into pulmonary capillaries
(black arrows), pulmonary artery blood flow (blue
arrows,) and pulmonary vein blood flow (red
arrows). (A) A “parallel ventilation/ parallel
perfusion” model, where all alveoli reside at the end
of airway and are effectively equivalent from an
air-side mass transfer viewpoint. (B) The actual
situation (“series ventilation/ parallel perfusion”),
where alveoli reside in multiple airway generations
so that distal alveoli see lower oxygen
concentrations. From Sapoval et al. [11]. Copyright
2002 National Academy of Sciences, U.S.A.



Figure 8.5
Description of sliding filament model, showing some of the molecular mechanisms involved in the sliding of actin and
myosin filaments (isotonic contraction). See text for discussion of specific features. ICS, intracellular stores. From
Despopoulos and Silbernagl [4]. Reproduced with kind permission of Thieme.



3 Hemodynamics

The term hemodynamics comes from the Greek words haima (blood) and dunamis
(power) and refers to the movement and deformation (i.e., flow) of blood, and the

forces that produce that flow. In this chapter we will examine this fascinating (and

complex) topic.

Everyone is familiar with blood’s role as a transport medium: it carries oxygen

and nutrients to metabolically active tissues, returns carbon dioxide to the lungs,

delivers metabolic end-products to the kidneys, etc. However, the reader should be

aware that blood does much more than simply deliver substances to target tissues.

For example, it:

� provides a buffering reservoir to control the pH of bodily fluids
� serves as an important locus of the immune system
� transports heat, usually from centrally located tissues to distal ones, in order to

help maintain a suitable temperature distribution throughout the body.

Unfortunately, in this book we will not be able to examine all of these roles,

and to a large extent we will simply view blood as a passive carrier, a fluid that

transports physiologically important compounds within the body. However, within

this context, it will soon become clear that something so “simple” as an analysis of

blood flow as a transport mechanism is non-trivial. We begin by examining blood

rheology.

3.1 Blood rheology

Rheology is the study of how materials deform and/or flow in response to applied

forces. The applied forces are quantified by a quantity known as the stress, defined

as the applied force per unit area. Students know that the applied force is a vector,

meaning that its orientation is important; what may be less clear is that the surface to

which the force is applied has an orientation too. This surface orientation is charac-

terized by its normal vector. The orientations of both the force and the surface must

be accounted for when computing the stress, and therefore the resulting quantity



120 Hemodynamics

y

u(y)

du

dy
g =

Figure 3.1

Velocity profile near a solid surface showing the definition of the velocity gradient for a simple flow with one non-zero
velocity component.

is a second-order tensor whose diagonal elements are normal stresses and whose

off-diagonal elements are shear stresses, as discussed in more detail in the footnote

on p. 85. To simplify the problem, we consider below only one entry of this tensor,

which allows us to treat the stress as a scalar.

For a solid, the deformation is quantified in terms of the fractional change in the

dimensions of a small material element of the solid. This quantity, known as the

strain, depends on both the direction of the deformation and the orientation of

the material element that is being deformed, and it is therefore also a second-order

tensor. For a fluid, a similar situation obtains, except that we replace the deformation

by the rate of deformation to obtain a rate-of-strain tensor. Once again, we will

consider only one element of these tensors and talk simply about a scalar strain (or

rate of strain).

Rheological knowledge of a material can be expressed (in part) by a constitutive
relationship between the applied stress and the resulting strain or rate-of-strain.

Simple constitutive relationships are well known and frequently used in engi-

neering. For example, for a Hookean solid under uniaxial stress, the constitutive

relationship relating applied normal stress, σ , to normal strain, ε, is σ = Eε, where

E is a material constant known as Young’s modulus. Similarly, for a Newtonian

fluid we may write

τ = μγ̇ , (3.1)

where τ is the applied shear stress, γ̇ is the rate of strain, and μ is a material

constant known as the dynamic viscosity. For a simple unidirectional flow in which

the velocity u varies only with the transverse coordinate y, γ̇ is just equal to the

velocity gradient du/dy (Fig. 3.1).
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Fluids that obey Equation (3.1) for constant μ are called Newtonian. Many fluids

of engineering importance, such as gases and water, are Newtonian. However, as

we shall see, blood is quite strongly non-Newtonian, at least in certain flow regimes.

A detailed discussion of non-Newtonian rheology is beyond the scope of this book;

however, several points are worth noting. First, we can fit the shear stress versus

strain rate behavior of any fluid by using an equation of the form (3.1), so long as

we replace μ by an effective viscosity μeff:

τ = μeffγ̇ . (3.2)

Note that μeff is no longer constant but will in general depend on γ̇ and numerous

other factors. Nonetheless, to give an indication of fluid viscous behavior under

a specified set of conditions, Equation (3.2) is useful. We can further classify the

type of fluid by examining the dependence of μeff on γ̇ : if the effective viscosity

decreases as γ̇ increases, the fluid is said to be shear thinning, while if μeff increases

with increasing γ̇ the fluid is shear thickening.

It should be noted that many biological materials have rheological behavior

that is a combination of fluid and solid; such materials are known as viscoelastic

(simple models for viscoelastic materials were introduced in Section 2.6.1 and will

be discussed further in Section 9.10.5). For example, there are fluids for which μeff

depends not only on γ̇ but also on the history of γ̇ . Strictly speaking, blood falls

into this category. However, as a first approximation, we will ignore the elastic

nature of blood and treat it as a purely viscous non-Newtonian fluid.

3.1.1 Blood composition

To understand why blood is a non-Newtonian fluid, we consider blood composition.

There are approximately 5 liters of blood in an average human being. This complex

fluid is essentially a suspension of particles (the formed elements) floating in an

aqueous medium (the plasma). More specifically, blood composition can be broken

down grossly as shown in Fig. 3.2, and in more detail in Table 3.1 (for plasma) and

Table 3.2 (for the formed elements).

Although all blood constituents are important physiologically, for rheological

purposes we can make some simplifications. For example, white cells (leukocytes)

and platelets play a major role in the immune response and in blood clotting,

respectively. However, as Table 3.2 shows, there are relatively few white cells

and platelets compared with the number of red cells (erythrocytes); consequently,

the mechanical behavior of the formed elements is usually dominated by the red

cells.1 In fact, the volume fraction of red cells is so important to the rheological and

1 An exception to this rule occurs for flow in very small vessels, where the somewhat larger and much stiffer white cells

can temporarily “plug” the vessel and markedly affect flow behavior [3].



122 Hemodynamics

Figure 3.2

Overall composition of human blood. The light-colored pie slices (water, ions, proteins, and other) collectively make up
the plasma. The composition of the formed elements is shown on the right. Numbers in brackets represent approximate
volume fractions for males; the volume fraction of red cells is approximately 4% lower in females.

physiological characteristics of blood that a specific term, known as the hematocrit,
H, is commonly used, defined by:

H = volume of red blood cells

total blood volume
. (3.3)

In addition, measurements have shown that although plasma itself has numer-

ous constituents, it is a Newtonian fluid with a viscosity of approximately

μplasma = 1.2 cP at 37 ◦C.2 Therefore, plasma viscosity slightly exceeds that of

water, as might be expected from the presence of proteins and other macromolecules

in the plasma. Based on the above discussion, we approximate blood as a suspen-

sion of red cells in a Newtonian fluid and focus on the behavior of the red cells to

explain blood’s non-Newtonian rheology.

Individual red cells are shaped like “biconcave disks,” with a diameter of approx-

imately 8 μm and a maximal thickness of approximately 3 μm (Table 3.3). There

are approximately 5 billion red cells per milliliter of blood, so the total red cell

surface area in a normal human adult is approximately 3000 m2. The cytoplasm

contains large amounts of the iron-containing protein hemoglobin (Table 3.4).

Hemoglobin is highly efficient at binding oxygen; hence, the presence of large

amounts of hemoglobin sequestered inside red cells greatly increases the oxygen

transport capacity of blood (see Section 7.5). For example, the oxygen-carrying

capacity of whole blood is approximately 65 times that of plasma alone (∼ 21 ml

O2 per 100 ml blood versus 0.3 ml O2 per 100 ml plasma, at 1 atmosphere).

2 The cgs unit of viscosity is the Poise (abbreviation: P), equal to 1 g/(cm s). For reference, the viscosity of water at 20 ◦C

is approximately 1 centiPoise (1 cP).



Table 3.1. Constituents of arterial plasma. From Vander et al. [1]. Reproduced with kind permission of
the McGraw-Hill companies.

Constituent Amount/concentration Major functions

Water 93% of plasma weight Medium for carrying all other constituents

Electrolytes (inorganic) Total <1% of plasma weight Keep H2O in extracellular compartment;
act as buffers; function in
membrane excitability

Na+ 142 mM

K+ 4 mM

Ca2+ 2.5 mM

Mg2+ 1.5 mM

Cl− 103 mM

HCO−
3 27 mM

Phosphate (mostly HPO4
2−) 1 mM

SO4
2− 0.5 mM

Proteins

Albumins
Globulins
Fibrinogen

Total = 7.3 g/100 mL
(2.5 mM)
4.5 g/100 mL
2.5 g/100 mL
0.3 g/100 mL

Provide non-penetrating solutes of plasma;
act as buffers; bind other plasma
constituents (lipids, hormones, vitamins,
metals, etc.); clotting factors; enzymes;
enzyme precursors; antibodies
(immunoglobulins); hormones

Gases

CO2 2 mL/100 mL plasma

O2 0.2 mL/100 mL

N2 0.9 mL/100 mL

Nutrients

Glucose and other 100 mg/100 mL (5.6 mM)

Total amino acids 40 mg/100 mL (2 mM)

Total lipids 500 mg/100 mL (7.5 mM)

Cholesterol 150–250 mg/100 mL
(4–7 mM)

Individual vitamins 0.0001–2.5 mg/100 mL

Individual trace elements 0.001–0.3 mg/100 mL

Waste products

Urea 34 mg/100 mL (5.7 mM)

Creatinine 1 mg/100 mL (0.09 mM)

Uric acid 5 mg/100 mL (0.3 mM)

Bilirubin 0.2–1.2 mg/100 mL
(0.003–0.018 mM)

Individual hormones 0.000001–0.05 mg/100 mL
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Table 3.2. Formed elements in blood: erythrocytes (red cells) are responsible for oxygen and carbon
dioxide transport; leukocytes (white cells) are responsible in part for immune function; and platelets are
responsible in part for blood coagulation. From Caro et al. [2]. Reproduced with kind permission of
Oxford University Press.

Cell Number per mm3 Unstressed shape and
dimensions (μm)

Volume concentration
in blood (%)

Erythrocyte 4−6 × 106 Biconcave disc; 8 × 1−3 45

Leukocytes

Total 4−11 × 103

Granulocytes

Neutrophils 1.5−7.5 × 103

Eosinophil 0−4 × 102 Roughly spherical; 7−22 1

Basophil 0−2 × 102

Lymphocytes 1−4.5 × 103

Monocytes 0−8 × 102

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Platelets 250−500 × 103 Rounded or oval; 2−4

The red cell is somewhat unusual from a biomechanical viewpoint, being more

readily deformable than other cell types. This is important since red cells must often

pass through very narrow openings. This large deformability can be explained by

several structural features. First, the major cytoskeletal protein in erythrocytes,

spectrin, is closely associated with the cell membrane, rather than traversing the

cytoplasm (Section 2.5.4). This confers strength to the membrane without unduly

constraining the cell’s deformability. Second, red cells lack most organelles (includ-

ing, in mammals, a nucleus).

3.1.2 Relationship between blood composition and rheology

Rheologically, there are two major effects from the presence of red cells.

1. Rouleaux formation. If blood is allowed to sit for several seconds, stacks

of red cells (rouleaux) begin to form. If allowed to grow, these rouleaux

can become quite large and will eventually form an interconnected network

extending throughout the blood (Fig. 3.3). Rouleaux provide mechanical cou-

pling between different fluid regions, and thereby increase the resistance to
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Table 3.3. Geometric parameters of normal human red cells. Statistics are from pooled data on 1581
cells taken from 14 subjects; cells were suspended in 300 mOsm buffer. From Tsang [4] as shown in
Fung [5] with kind permission of Professor Y. C. Fung.

Diameter = 7.65 μm

Surface area = 130 μm2

Volume = 98 μm3

Diameter
(μm)

Minimum
thickness
(μm)

Maximum
thickness
(μm)

Surface
Area
(μm2)

Volume
(μm3)

Sphericity
index

Mean 7.65 1.44 2.84 129.95 97.91 0.792

Standard error of mean ±0.02 ±0.01 ±0.01 ±0.40 ±0.41 ±0.001

Standard deviation (σ ) 0.67 0.47 0.46 15.86 16.16 0.055

Minimum value 5.77 0.01 1.49 86.32 47.82 0.505

Maximum value 10.09 3.89 4.54 205.42 167.69 0.909

Skewness (G 1) 0.26 0.46 0.52 0.53 0.30 −1.13

Kurtosis (G 2) 1.95 1.26 0.24 0.90 0.30 3.27

Table 3.4. Composition of red cells: as a first approximation, the red cell is
essentially hemoglobin and water enclosed in a membrane. From Caro et al. [2].
Reproduced with kind permission of Oxford University Press.

Component Percentage of mass

Water 65

Membrane components (protein, phospholipid,
cholesterol)

3

Hemoglobin 32

Inorganic

Potassium 0.420 g per 100 ml

Sodium 0.025 g per 100 ml

Magnesium 0.006 g per 100 ml

Calcium Small amount
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Figure 3.3

Rouleaux forming in stagnant blood. (A) Rouleaux formation under stagnant conditions. (B) Normal erythrocytes,
showing the classical “biconcave disk” shape characterized by a thick rim and a central depression. (C) Under certain
conditions, erythrocytes can adopt a spiny configuration, in which case they are known as echinocytes. This process,
known as crenation, indicates red cell pathology or artefacts during specimen preparation. From Fawcett [6] with kind
permission of Hodder Education and Springer Science and Business Media.

deformation of fluid elements. This implies that the effective viscosity μeff is

increased by the presence of rouleaux.

Rouleaux are broken up by imposed shearing of the blood. Based on the

above discussion, we expect that this will cause a relative decrease in μeff.

Thus, the action of rouleaux formation is to make blood a shear-thinning

fluid.

2. Red cell alignment. Because individual red cells are disc shaped, their hydro-

dynamic influence depends on their orientation. There are two forces that

compete in orienting red cells. First, Brownian motion, always present, tries to

randomize the orientation of red cells. Second, fluid shearing forces cause red

cells to align their long axes with streamlines. These forces lead to two possible

extrema, as shown in Fig. 3.4. When red cells are randomly or near-randomly

oriented, then individual cells will “bridge” between different streamlines,

thereby providing mechanical coupling between two different fluid regions

having potentially different velocities. This will tend to increase μeff. The

magnitude of this effect will decrease as red cells become progressively more

oriented, that is, as γ̇ increases.
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Figure 3.4

Two limiting orientations for red cells. On the left, the fluid shear rate is very low so Brownian forces predominate and the
red cells are randomly oriented. On the right, the fluid shear rate is large, causing the red cells to line up along
streamlines with very little randomization of orientation.

Table 3.5. Summary of red cell interaction effects on blood rheology

Characteristic Low shear rate High shear rate

Rouleaux behavior Rouleaux formation enhanced;
effective viscosity μeff is increased

Rouleaux break up; effective viscosity μeff

is decreased

Individual red cell
orientation

Red cells are randomly oriented;
μeff is increased

Red cells are aligned with streamlines;
μeff is decreased

The above effects are summarized in Table 3.5, from which we conclude that

we expect blood to have shear-thinning behavior. We expect that the magnitude

of the effects in Table 3.5 will depend on how many red cells are present, i.e.,

on the value of H. Since plasma is Newtonian, we expect Newtonian behavior for

H = 0 (pure plasma), with increasing non-Newtonian rheology as the value of H

increases.

How does this theoretical argument compare with reality? Quite well, as shown

in Fig. 3.5. We see Newtonian behavior for H = 0, and increasing non-Newtonian

(shear-thinning) rheology as the value of H increases. Closer examination of

Fig. 3.5 reveals several additional interesting features. For example, note that red

cells in Ringer’s solution (essentially, in saline) are less non-Newtonian than is

whole blood. This is because rouleaux formation is promoted by macromolecules in

plasma; when these macromolecules are removed by replacing plasma by Ringer’s

solution, rouleaux formation and non-Newtonian effects are markedly reduced. The

clotting protein fibrinogen is especially important in this regard, which explains

the large fall in μeff caused by fibrinogen removal shown in Fig. 3.5. It can also

be observed that for very large shear rates (γ̇ > 100 s−1), μeff asymptotes to a
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Figure 3.5

Plot of effective viscosity versus shear rate for blood of differing
hematocrits (H). Note the Newtonian behavior of the fluid at zero
hematocrit, and the logarithmic vertical scale. •, whole blood;
×, defibrinated blood (i.e., blood from which the clotting protein
fibrinogen has been removed); ◦, washed cells in Ringer’s
solution. The points are determined from a fifth-order polynomial
curve fit to experimental data. Modified with permission of the
American Physiological Society from Chien et al. [7].

constant. Therefore, we may say that for γ̇ > 100 s−1 blood acts like a Newtonian

fluid with viscosity μeff. This limiting viscosity is dependent on the value of H.

For normal values of hematocrit (45%), μeff is 3 to 4 cP. At the other extreme (very

low γ̇ ), μeff becomes very large.

Further information about blood rheology is contained in Fig. 3.6, which plots

the relative viscosity, ηr, as a function of particle volume fraction for a number

of different suspensions, including blood. The relative viscosity of a suspension is

defined as

ηr = μeff

μfluid

, (3.4)

where μfluid is the viscosity of the fluid in which the particles are suspended, in

this case, plasma. Clearly, ηr is a relative measure of how addition of particles has

increased suspension viscosity. Figure 3.6 is restricted to very high shear rates, so

that blood is effectively Newtonian. It can be seen that a red cell suspension flows

much more easily than does a suspension of rigid spheres at the same particle

volume fraction (hematocrit). This is because at high particle volume fraction,

particles are in direct mechanical contact as the suspension flows. Red cells can

accommodate by deforming in order to pass by one another, while solid particles

cannot deform and so act to impede each other’s motion. This makes the suspension

harder to deform, that is, increases the value of ηr. Figure 3.6 also confirms how

flexible red cells are; for example, the relative viscosity of a red cell suspension is

less than that of a suspension of deformable oil droplets in water. Finally, note the

curve labeled “sickle cell anemia” in Fig. 3.6. This refers to a red cell suspension

obtained from patients with sickle cell anemia, a disease characterized by red cells
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Figure 3.6

Plot of relative viscosity versus particle volume fraction for various suspensions, including red blood cells (RBC) in
saline. Data for this graph were taken at high shear rates (γ̇ > 100 s−1), so that the effective viscosity was independent
of shear rate. Note that for a suspension of red cells, the particle volume fraction is equal to the hematocrit. Note also that
the vertical scale is logarithmic. Relative viscosity is defined in Equation (3.4). From Goldsmith [8]. Reproduced with
kind permission of Springer Science and Business Media.

that are much less deformable than normal. It is difficult to force such red cells

through the smallest vessels (the capillaries), and, consequently, patients with this

disease typically have a number of circulatory system disorders.3

3.1.3 Constitutive equation for blood

For the remainder of this section, we will assume that the hematocrit is fixed

at its physiological value, so that the effective viscosity μeff is a function of

γ̇ only. Recalling Equation (3.1) and the fact that blood is shear-thinning, we

expect that a plot of shear stress τ versus strain rate γ̇ will be concave downward.

3 It is interesting to note that the most common form of sickle cell anemia is caused by a single mutation in the genes for

the hemoglobin molecule. From an evolutionary viewpoint, it would seem that such a mutation would be unfavorable.

However, the sickle cell trait seems to confer added resistance to malaria, which is why it probably remains in the

general population.
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Expected qualitative behavior of shear stress vs. strain rate for blood. Note the concave downward (shear-thinning) nature
of the curve, as well as the non-zero intercept at τy (yield stress).

Experimentally, this is observed to be the case. Interestingly, it is also observed

that blood exhibits a yield stress: that is, there is a critical applied shear stress τy

below which blood will not flow. Therefore, in the range 0 < τ < τy , blood acts

like a solid, while for τ � τy , blood acts like a fluid. This is a result of extensive

rouleaux formation, which is able to form a stress-supporting network at low shear

stresses. When the value of τ exceeds the critical shear stress τy , the rouleaux

break up and the blood begins to flow.

Qualitatively, we expect the τ versus γ̇ behavior shown in Fig. 3.7. Quantita-

tively, it is found that shear stress strain rate data can be fit by using the Casson
relationship, originally derived to model the rheology of printer’s ink

√
τ = √

τy + √
μγ̇ for τ � τy (3.5)

γ̇ = 0 for τ < τy . (3.6)

This behavior is confirmed by Fig. 3.8, which shows a linear relationship between√
τ and

√
γ̇ , with intercept

√
τy . The slope is

√
μ, where μ is a constant having

the same dimensions as dynamic viscosity. The Casson relationship asymptotes to

Newtonian behavior at high values of γ̇ . This can be seen by examining Equation

(3.5) for γ̇ � τy/μ , in which case the constitutive relationship becomes τ = μγ̇ .

3.2 Large artery hemodynamics

3.2.1 Physical characteristics of blood flow patterns in vivo

In vivo blood flow patterns are complex. Factors influencing fluid mechanics in

large arteries include the following, arranged approximately in order of overall

importance.
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Figure 3.8

Casson plot for human blood at 25 ◦C and very low shear rates for hematocrit values indicated above each line. Note that
plasma (hematocrit of 0, lower curve) intersects the vertical axis at the origin, confirming its Newtonian behavior. From
Cokelet [9]. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

1. Arteries have complex three-dimensional geometries that include one or more

of the following features: bifurcation, significant changes in caliber, and com-

pound curvature.

2. In the large arteries, flow is classified as moderately to highly unsteady. The

combination of unsteadiness and highly three-dimensional geometry leads

to many interesting flow features (e.g., Ku et al. [10], Ojha et al. [11], Ethier

et al. [12]).

3. Artery walls are distensible, moving in response to the local time-varying

blood pressure. However, this compliant nature is generally thought to be of

only modest importance [13]. For example, it seems to have only a 10–15%

effect on wall shear stress magnitudes [13,14].

4. Some arteries undergo large motions, particularly the coronary arteries

(because of their position on the surface of the beating heart) and arteries

that cross articulating joints. Surprisingly, this effect seems to be smaller than

one would think a priori [15,16].

Typical mean Reynolds numbers in the human arterial system range from order

several hundred to several thousand (Tables 3.6 and 3.7). Generally speaking,

arterial flow in healthy humans is laminar, with the exception of flow in the proximal

aorta and the aortic arch [2,25]. In diseased arteries, transition to turbulence occurs
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Table 3.6. Typical hemodynamic parameters for selected vessels in a 20 kg dog and a 70 kg human
(surface area 1.8 m2). α is the Womersley parameter (Section 3.2.3); ReD is the Reynolds number
(based on vessel diameter) given as mean with peak value in parentheses. Values collated from a
variety of sources by Milnor [17]. Reproduced with kind permission of Lippincott Williams & Wilkins.

Dog Human

Velocity Velocity
α (cm/s)a ReD α (cm/s)a ReD

Systemic vessels

Ascending aorta 16 15.8 (89/0) 870 (4900) 21 18 (112/0) 1500 (9400)

Abdominal aorta 9 12 (60.0) 370 (1870) 12 14 (75/0) 640 (3600)

Renal artery 3 41 (74/26) 440 (800) 4 40 (73/26) 700 (1300)

Femoral artery 4 10 (42/1) 130 (580) 4 12 (52/2) 200 (860)

Femoral vein 5 5 92 7 4 104

Superior vena cava 10 8 (20/0) 320 (790) 15 9 (23/0) 550 (1400)

Inferior vena cava 11 19 (40/0) 800 (1800) 17 21 (46/0) 1400 (3000)

Pulmonary vessels

Main artery 14 18 (72/0) 900 (3700) 20 19 (96/0) 1600 (7800)

Main veinb 7 18 (30/9) 270 (800) 10 19 (38/10) 800 (2200)

a Velocities are temporal means with systolic/diastolic extremes in parentheses.
b One of the usually four terminal pulmonary veins.

downstream of severe stenoses [26]. The values in Table 3.6 are averages; it can be

appreciated from the range of reported values in Table 3.7 that significant variation

from one person to the next is typical.

Notably absent from the above list is the non-Newtonian nature of blood. How

important are the non-Newtonian characteristics of blood? Based on our discussion

above, it seems reasonable to treat blood like a Newtonian fluid so long as the

shear rate is greater than 100 s−1. The question then becomes whether this shear

rate is ever reached in the cardiovascular system. If it is, then we can, as a first

approximation, ignore the non-Newtonian effects of blood.

From the characteristic parameters for blood flow in several clinically important

large arteries, shown in Tables 3.6 and 3.7, we conclude that typical wall shear

stresses are in the range 1–15 dynes/cm2 for most arteries in humans. This cor-

responds to wall shear rates γ̇ from approximately 30 to 450 s−1. So the answer

to the question as to whether we can treat blood like a Newtonian fluid is: “most

of the time.” In other words, for most of the large arteries, we can ignore the

non-Newtonian nature of blood. More detailed analyses have confirmed that a
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Table 3.7. Comparison of hemodynamic parameters in selected arteries in humans. Q, mean
(cycle-averaged) flow rate in ml/s; D, cycle-averaged diameter in mm; U0, mean (cycle-averaged)
velocity in cm/s; ReD, Reynolds number based on D, U0 and an assumed blood kinematic viscosity of
3.5 cStokes; τ , mean wall shear stress determined from τ = 8μU0/D = 32 μQ/π D2, in dyne/cm2 (this
formula for shear stress ignores approximately 10% error from mean flow–pulsatile interactions).
Reproduced from Ethier et al. [12] with permission from WIT Press, Southampton, UK.

Artery Q D U 0 ReD τ Comment and source

Common
carotida

6.0 6.3 19.3 347 8.6 Ultrasonography on young healthy
volunteers (D. Holdsworth,
unpublished communication, 1996)

8.7 7.3 20.7 432 7.9 Ultrasonography on 47 healthy
volunteers [18]

7.5 7.3 17.9 373 6.9 Doppler (flow) [18] and 2
transducer (diameter) [19]
ultrasonography on 35 normals

8.2 Milnor, Table 4.3 [17]

Superficial
femoralb

2.2 6.5 6.6 125 2.9 Color and B-mode ultrasonography,
scaled to match graft flow rates [20]

2.2 6.6 6.4 121 2.7 Ultrasonography on 4 healthy
volunteers [18]

5.2 6.5c 15.7 291 6.8 Doppler ultrasonography after
balloon angioplasty [21]

3.6 6.2 12.0 212 5.4 Catheter tip velocity probe (Milnor
[17], Tables 4.3 and 6.3)

Thoracic
aorta

45–93 23–28 8.9–18.4 640–1330 1.0–2.0 Biplanar angiography & cadaver
specimens [22,23]d

a Ignores flow entrance effects, but entrance length = 0.06 ReD = 24 diameters, so this is a small effect. Compare with mean wall
shear stress of 7 dyne/cm2 quoted in Ku et al. [10]
b First flow rate is suitable for diseased patients so is a lower bound for normals.
c Assumed value.
d Compare with mean wall shear stress of 1.3 dyne/cm2 quoted in Ku and Zhu [24].

Newtonian approximation is valid at the shear rates seen in medium-sized and

larger arteries [27, 28].

3.2.2 Steady blood flow at low flow rates

Although the non-Newtonian rheology of blood is not of primary importance in

most arteries, it is important at lower shear rates, for example such as might occur

at low flow rates in veins or in extracorporeal blood-handling systems. Here we
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Figure 3.9

Schematic of red cells in large and small vessels. Note the relative size of red cells and control volumes (dotted lines).

consider this low shear case, and use the Casson constitutive relationship to derive

the velocity profile for steady flow of blood in a large vessel or tube. It is recognized

that blood flow is unsteady within the cardiovascular system, and the question may

then be asked: What is the utility of studying steady flow of blood? The answer

is threefold. First, steady blood flow can occur in extracorporeal blood-handling

systems. Second, study of steady flow gives further insight into the importance of

non-Newtonian rheology without involving a great deal of mathematical compli-

cation. Finally, pulsatile blood flow can be decomposed into a steady component

and a zero mean-flow oscillatory component, and the following analysis addresses

the steady component.

A second question may be posed. Why restrict attention to flow in a large vessel

or tube? Implicit in the use of Casson rheology to model blood is the assumption that

the fluid is a homogeneous continuum. This is true to a very good approximation

in large vessels, since the red cells are very much smaller than the vessel diameter.

In other words, on the scale of the vessel, the blood “looks” homogeneous, and we

can therefore average red cell effects over a control volume (Fig. 3.9), much as is

done in considering the continuum assumption in basic fluid mechanics. However,

this is not true in, for example, capillaries, where red cells occupy a substantial

fraction of the vessel.4 We see from the above discussion that a “large” vessel in

this context means a vessel with diameter “many times the size of a red cell,” for

example 100 times larger than a red cell.

In vivo, vessels have complex shapes, exhibiting branching and curvature. How-

ever, their essential nature is that they are tubes; consequently, as a crude first

approximation, it is acceptable to treat a vessel as a uniform cylinder. Hence, we

will restrict our attention to the steady laminar flow of blood in a long straight tube,

and ask: What is the velocity profile in such a flow? Mathematically, we denote the

4 This is another bizarre aspect of suspension rheology: flow patterns can be dependent on the particle volume fraction,

shear rate, and vessel size.
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Figure 3.10

Forces acting on a small element of fluid for steady, fully developed flow in a tube of radius R.

axial velocity by u and the radial position by r, and seek an explicit representation

of u(r).

At this point it is worth recalling the shear stress distribution for steady, fully

developed flow in a long straight tube of radius R. Considering a fluid element of

length δx and radius r, we identify the following forces acting on that element: a

pressure force pπr2 on the left face, a pressure force (p + δp)πr2 on the right face,

and a shearing force τ (r )2πrδx on the outer face (Fig. 3.10). Taking account of

directions, and noting that for steady fully-developed flow all fluid elements must

experience zero acceleration and, thus by Newton’s second law, zero net force, we

may write

pπr2 + τ (r )2πr δx − (p + δp)πr2 = 0. (3.7)

Taking the limit as δx goes to zero, in which case δp/δx becomes the axial pressure

gradient, we obtain:

τ (r ) = r

2

dp

dx
. (3.8)

Note that this result is valid for all types of fluid, since it is based on a simple force

balance without any assumptions about fluid rheology (see Box 3.1).

Since the axial pressure gradient is a constant for steady, fully developed flow

in a tube, Equation (3.8) shows that the shear stress distribution within our model

vessel must take the form shown in Fig. 3.11. Evidently, τ = 0 at the center line

r = 0, and therefore, there must be a small region near the center line for which

τ < τy . If we call Rc the radial location at which τ = τy , the flow can then be

divided into two regions:

� r > Rc: fluid flows
� r � Rc: no flow, fluid travels as a plug.5

5 It must be remembered that the definition of flow is “continuous deformation in response to an applied shear stress.”

Therefore, a lump of fluid travelling as a solid mass is not flowing, even though it is moving. For this reason, the term

“plug flow ” to describe such motion is somewhat of a misnomer, but since it is in common use, we will adopt it here.



Figure 3.11

Shear stress distribution, and regime of plug flow, for flow of a Casson fluid in a long straight tube.

Box 3.1 Using Equation (3.8) to derive Poiseuille’s law for a
Newtonian fluid

Since Equation (3.8) is valid for any type of fluid undergoing steady,

fully-developed flow, it can be used to derive Poiseuille’s law for a Newtonian

fluid. For such a fluid, τ = μ(du/dr ) and Equation (3.8) becomes

1

r

du

dr
= 1

2μ

dp

dx
. (3.9)

Now notice that the right-hand side of Equation (3.9) can only be a function

of x (the pressure must be uniform on cross-sections of the tube or a non-

axial component of the velocity would be generated), while for a fully

developed flow the left-hand side can only be a function of r. The only way

that a function of r can equal a function of x is if the function is a constant: that

is, the two sides of Equation (3.9) must be constant. This means that the

pressure gradient is a constant. Integrating Equation (3.9) once with respect to

r and requiring the velocity to be zero at the wall and to be symmetric about

the center line, we obtain the well-known parabolic velocity profile:

u(r ) = −dp

dx

R2

4μ

[
1 − r2

R2

]
. (3.10)

The last step is to compute the flow rate (Q) by integrating Equation (3.10)

Q = −π R4

8μ

dp

dx
. (3.11)

This is Poiseuille’s law. Recognizing that the pressure gradient is constant and

negative (for flow in the positive x direction), we can write −dp/dx = 
p/L ,

where 
p is the pressure drop over the tube length L.



137 3.2 Large artery hemodynamics

We first search for the velocity profile in the region r > Rc, where we may write:

√
τ =

√
r

2

dp

dx
= √

τy + √
μγ̇ (3.12)

where dp/dx is a constant, and the strain rate γ̇ = du/dr . By using Equation

(3.12), as well as the fact that γ̇ = 0 at r = Rc, the yield stress τy may be written

in terms of Rc as

√
τy =

√
Rc

2

dp

dx
. (3.13)

Inserting Equation (3.13) into (3.12), rearranging, and squaring both sides we

obtain:

μ
du

dr
= 1

2

dp

dx
[r − 2

√
r Rc + Rc]. (3.14)

This is a linear first-order differential equation for u(r), which can be directly inte-

grated. The resulting expression contains one unknown constant, which is specified

by imposing the no-slip boundary condition, u = 0 at r = R. The final expression

for u(r), valid for Rc � r � R, is

u(r ) = − 1

4μ

dp

dx

[
(R2 − r2) − 8

3

√
Rc(R3/2 − r3/2) + 2Rc(R − r )

]
. (3.15)

Once the above velocity profile has been determined, it is a simple matter to

determine the plug velocity in the center of the tube. Since the plug velocity must

match the velocity at the inner edge of the flowing region, we set r = Rc in Equation

(3.15) to obtain the plug (core) velocity

uplug = u(Rc) = − 1

4μ

dp

dx

[
R2 − 8

3

√
R3 Rc + 2R Rc − 1

3
R2

c

]
. (3.16)

The overall velocity profile is sketched on the right side of Fig. 3.11.

The final step is to obtain the total flow rate in the tube, Q, obtained by integration

of u(r) across the tube cross-section:

Q =
R∫

0

u(r )2πr dr

=
Rc∫

0

uplug2πr dr +
R∫

Rc

u(r )2πr dr

= −π R4

8μ

dp

dx
F(ξ ), (3.17)
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Figure 3.12

Plot of F (ξ ) versus ξ for a Casson fluid (Equation [3.18]). See text for the physical interpretation of F (ξ ) and ξ .

where the function F(ξ ) is given by

F(ξ ) = 1 − 16

7

√
ξ + 4

3
ξ − 1

21
ξ 4 (3.18)

and ξ is given by

ξ = 2τy

R |dp/dx | = Rc

R
. (3.19)

The function F(ξ ) measures the reduction in flow rate (relative to a Newtonian

fluid) experienced by the Casson fluid for a given pressure gradient and is plotted

in Fig. 3.12. The parameter ξ gives an indication of what fraction of the tube is

filled with plug flow. There are two limiting cases.

1. A Newtonian fluid, for which τy = 0; therefore ξ = 0. In this case, F(ξ ) is 1,

the velocity profile is the familiar parabolic shape, and Equation (3.17) reduces

to Poiseuille’s law. This case can be approximated by a Casson fluid with a very

small yield stress τy , where “small” in this case means that τy � R|dp/dx |.6
2. A Casson fluid with τy sufficiently large that the entire tube is filled with a

plug. In this case Rc = R, ξ = 1, and F(ξ ) = 0. No fluid moves down the

tube.

3.2.3 Unsteady flow in large vessels

We now turn to the more physiologically relevant problem of unsteady flow in large

vessels. Unfortunately, there is no closed-form (analytic) solution for unsteady flow

6 Note that the definition of small τy depends on both the imposed pressure gradient and the tube radius. Consequently, the

same Casson fluid may flow in a nearly Newtonian fashion or a very non-Newtonian fashion depending on R and dp/dx .
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Figure 3.13

Definition sketch for analysis of unsteady flow in a two-dimensional channel. The small shaded region represents a fluid
element of dimensions δx by δy by 1 unit deep into the page.

that takes account of realistic non-Newtonian blood rheology; instead, numerical

solutions are required. However, as we have seen above, for most large arteries

it is acceptable to treat the blood as Newtonian, and in what follows we will

make this assumption. Then, the blood’s motion is described by the well-known

Womersley solution for oscillatory flow.7 Derivation of the Womersley solution is

slightly beyond the scope of this work, since it requires extensive use of Bessel

functions. However, an analogous solution having a much simpler mathematical

form can be derived for the case of a long two-dimensional channel of half-height

R, for which transverse location y is directly analogous to radial location in a tube

(Fig. 3.13).

Some thought will reveal that fluid particles in either a long straight tube or a long

straight two-dimensional channel will travel along straight lines, never changing

their radial position. Of course, they may move axially in one direction along the

channel for one part of the flow cycle, then reverse direction during another part, but

their paths are always straight lines. Since the fluid is incompressible, this implies

that all fluid along an axial line must be moving at the same speed at each instant;

otherwise fluid would be accumulating or being depleted somewhere along the line.

Therefore, there can be no dependence of velocity on axial position, and the axial

velocity u is a function of transverse position and time only, u = u(y, t). Further,

there can be no transverse pressure gradients within the channel: the pressure is

uniform across the channel cross-section at every axial location. (If there were

transverse pressure gradients, the fluid particles would travel in curved paths.)

Considering a small chunk of fluid of thickness δy and axial length δx , we see

that this slice is acted upon by pressure forces and viscous (shearing) forces. With

7 Interestingly, even though this solution is known as Womersley flow, Womersley was not the first to derive it. This was

done much earlier by Sexl [29].
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reference to Fig. 3.13, and considering a unit depth of fluid into the page, we may

write Newton’s second law for the fluid chunk as:

−→+ ∑
Fx = max (3.20)

p δy + (τ + δτ )δx − (p + δp)δy − τ δx = ρ δx δy ∂u
∂t . (3.21)

Since for this simple flow the shear stress τ is given by μ(∂u/∂y), we obtain the

following partial differential equation for u(y, t) governing the fluid motion:

ρ
∂u

∂t
= −∂p

∂x
+ μ

∂2u

∂y2
. (3.22)

Because the pumping action of the heart is periodic, or nearly so, it is sufficient to

consider oscillatory (periodic) blood flow. This can be accomplished by imposing

an oscillatory pressure gradient of magnitude �:

−∂p

∂x
= � cos(ωt) = �{�eiωt}, (3.23)

where � means “take the real part of.” Now, since Equation (3.22) is linear in u
and ∂p/∂x , we expect that imposition of a sinusoidally shaped pressure gradient

waveform will result in a velocity that also varies sinusoidally in time, with perhaps

some phase shift between the pressure gradient and velocity. We therefore write

the velocity as

u(y, t) = �

ρω
�{û(y) eiωt}, (3.24)

where û is a complex-valued function that depends only on transverse position y
and �/ρω is a scaling factor having dimensions of velocity inserted to simplify

later algebra.8 Substituting Equations (3.23) and (3.24) into Equation (3.22), and

converting the resulting equation into one in the complex domain, we obtain the

following ordinary differential equation for û(y)

i û(y) = μ

ρω

d2û(y)

dy2
+ 1. (3.25)

Before obtaining the solution to this equation, it is useful to non-dimensionalize

the transverse position y so that, instead of ranging from −R to R, it ranges from

−1 to 1. This is done by introducing the scaled coordinate ŷ = y/R, in which case

Equation (3.25) becomes

1

α2

d2û(y)

dŷ2
− i û(y) = −1. (3.26)

8 Equation (3.24) is nothing more than a good guess at a separation of variables solution for u(y, t).
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The parameter α in Equation (3.26) is called the Womersley parameter and is

defined by

α = R

√
ωρ

μ
. (3.27)

The solution to Equation (3.26) that satisfies the no-slip boundary conditions û = 0

at ŷ = ±1 is

û(y) = i

[
cosh(α ŷ

√
i)

cosh(α
√

i)
− 1

]
. (3.28)

This expression, when combined with Equation (3.24), yields the final expression

for u(y, t)

u(y, t) = �
{

i�

ρω

[
cosh(α ŷ

√
i)

cosh(α
√

i)
− 1

]
eiωt

}
. (3.29)

In order to interpret this equation, it is useful to introduce the concept of the

Stokes layer. As the fluid oscillates back and forth, the action of the wall is to damp

the resulting motion. However, the wall can only damp motion in its immediate

vicinity, in the so-called Stokes layer. The thickness of this layer depends on

the fluid viscosity, density, and the frequency of the oscillations. Dimensional

analysis shows that the Stokes layer thickness δstokes is proportional to μ/ρω, so

the Womersley parameter is simply the ratio of channel half-height to Stokes layer

thickness, R/δStokes. The shape of the velocity profiles generated by Equation (3.29)

is governed by the value of the Womersley parameter α. Large values of α mean

that the channel is large compared with the Stokes layer, and, consequently, the

velocity profile is blunt except in a thin region near the wall. In this case, the

fluid essentially sloshes back and forth in the channel. The other extreme, small

values of α, means that the entire channel is filled with the Stokes layer. In the

limit of vanishing α, a parabolic profile that is sinusoidally modulated in time is

obtained.

This solution can be generalized to cylindrical tubes of radius R; see, for example,

White [30] for details. The resulting expression for the velocity profile is

u(r, t) = �
{

i�

ρω

[
J0(αr̂ i3/2)

J0(α i3/2)
− 1

]
eiωt

}
(3.30)

where r̂ = r/R is the dimensionless radial position, and J0 is the Bessel function

of the first kind of order zero [3]. Although the mathematical details are more

complex than those of the planar case, the physics are identical. In particular, the

Womersley parameter plays the same central role in determining velocity profile

shape.
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Application of this solution to the physiological situation is complicated by three

factors.

First, the pressure gradient does not vary with time in a sinusoidal manner in the

arteries. However, this difficulty can be overcome by noting the linear nature of the

governing equation, (3.22), which implies that a sum of solutions is also a solution.

In particular, a pressure gradient waveform can be broken down into its Fourier

components, each of which produces a corresponding velocity profile. These veloc-

ity profiles can then be linearly combined to produce a net velocity profile for a

given pressure gradient waveform. Usually, only the first several harmonics of

the waveform are important, and therefore to get a qualitative idea about the shape

of the velocity profile it is sufficient to compute the Womersley parameter for the

fundamental harmonic. At rest, the range of values for α in the arteries of the

human body is approximately 4 to 20, depending on location (Table 3.6 and Caro

et al. [2]). Thus, flow can properly be described as moderately to highly unsteady

throughout the arterial tree.

Second, the artery walls are elastic and deform under the action of the local pres-

sure, which is time varying. This greatly complicates the mathematical treatment

of the problem and will only be considered in a qualitative way below. However, in

practice, this effect usually yields only modest perturbations on the velocity profile

predicted by Equation (3.30).

Third, blood is assumed to be Newtonian in the above derivation, even though

we have previously stated that it is not. However, it can be shown that for the

large arteries under most flow conditions the blood acts in a Newtonian fashion.

Specifically, within the Stokes layer (which is the only region where viscous effects

are important), the values of γ̇ are usually so high that the blood is effectively

Newtonian.9

3.3 Blood flow in small vessels

At the opposite end of the size spectrum from the large arteries are the vessels that

collectively make up the microcirculation: arterioles, capillaries, and venules. They

range in diameter from 6 μm (smallest capillaries) to approximately 50 μm. In such

small vessels, it is no longer possible to treat blood as a continuum with average

properties such as density and viscosity. In fact, for the smallest capillaries, the red

cells fit rather “tightly” within the vessel, with only a thin plasma layer between the

red cell and the wall of the vessel. Therefore, the particulate nature of blood must

be considered in any bioengineering treatment of the problem. This fact makes

simple analytic treatment of the problem beyond the scope of this book. However,

9 Caution must be taken in extending this result to more complex geometries.
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Figure 3.14

Schematic of experimental apparatus used by Fahraeus and Lindqvist in their study of blood flow in fine bore capillaries.
The upper figure shows the original Fahraeus and Lindqvist apparatus; the lower figure shows a modified version used by
Barbee and Cokelet [32,33]. Redrawn from Fung [5] with kind permission of Professor Y. C. Fung.

a great deal can be learned from qualitative considerations and examination of

experimental data. We consider several such interesting flow phenomena.

3.3.1 Fahraeus–Lindqvist effect

In 1931, Fahraeus and Lindqvist published the results of an intriguing series of

experiments [5]. They forced blood through fine glass capillary tubes connecting

two reservoirs (Fig. 3.14). Capillary diameters were less than 250 μm, and experi-

ments were conducted at sufficiently high shear rates (γ̇ � 100 s−1) so that a similar

flow in a large tube would be effectively Newtonian. After correcting for entrance

effects, they presented their data in terms of an effective viscosity, derived from

fitting measured pressure drop and volume flow rate to Poiseuille’s law for a tube

of radius R

Q = π R4

8μeff


p

L
(3.31)

where Q is the flow rate, 
p is the pressure drop across the capillary, and L is the

length of the capillary.

Although Poiseuille’s law is only valid for a Newtonian fluid, fitting experimen-

tal data to Equation (3.31) provides a convenient method of characterizing flow

resistance by a single number, namely μeff. In general, μeff will depend on the fluid

being tested, the capillary diameter, and the flow rate (or pressure drop). How-

ever, for a given fluid and a fixed pressure drop, data can be compared between

capillaries of differing diameter.

Fahraeus and Lindqvist noticed two unusual features of their data. First, μeff

decreased with decreasing capillary radius, R. This decrease was most pronounced

for capillary diameters < 0.5 mm (Fig. 3.15). Second, the “tube hematocrit” (i.e.,
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Figure 3.15

Plot of effective viscosity versus capillary tube radius for flow of ox blood. The dashed line shows the effective viscosity
in a tube of very large diameter. Effective viscosity is defined in Equation (3.31); the relative viscosity can be computed
from Equation (3.4) knowing that the viscosity of the suspending plasma solution was 1.3 cP. Modified from Haynes [34]
with kind permission of the American Physiologial Society.

the average hematocrit in the capillary) was always less than the hematocrit in the

feed reservoir. The ratio of these two hematocrits, the tube relative hematocrit, HR,

is defined as

HR = tube hematocrit

feed reservoir hematocrit
(3.32)

and was found to depend strongly on capillary radius and to depend weakly on

feed reservoir hematocrit (Fig. 3.16).

These initially confusing results can be explained by the concept of a plasma
skimming layer, a thin layer adjacent to the capillary wall that is depleted of red

cells. Because the skimming layer is red cell-poor, its effective viscosity is lower

than that of whole blood. This layer therefore acts to reduce flow resistance within

the capillary, with the net effect that the effective viscosity is less than that for whole

blood. Because the skimming layer is very thin (approximately 3 μm) this effect

is insignificant in capillaries whose diameter is large. This explains the behavior

observed in Fig. 3.15. The relative hematocrit decrease of Fig. 3.16 is also caused

by the skimming layer: the central region of the tube is at hematocrit equal to that

in the feed reservoir, while the skimming layer is at lower hematocrit. The average
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Figure 3.16

Tube relative hematocrit, for capillaries of different sizes. See the text for the definition of tube relative hematocrit. The
numbers to the left of the lines are the tube diameters (μ = μm). The existence of a relative hematocrit <1 in a capillary
tube is known as the Fahraeus effect. Reprinted from Barbee and Cokelet [33], with permission from Elsevier.

of these two yields the tube hematocrit, which must be less than the feed reservoir

hematocrit. This effect is more pronounced for smaller capillaries, simply because

the skimming layer occupies a greater fraction of the tube cross-section for such

capillaries.

This explanation, while accurate, is ultimately unsatisfying, since it fails to

answer the fundamental question of why a plasma skimming layer exists. There

are actually two factors which promote skimming layer formation.

1. For deformable particles (such as red cells) flowing in a tube, there is a net

hydrodynamic force that tends to force the particles towards the center of the

tube. This is known as the Segre–Silberberg effect.
2. It is clear that red cells cannot pass through the capillary wall, which implies

that the centers of red cells must lie at least one red cell half-thickness away

from the wall. This means that, on average, there will be more red cells near

the center of the tube than very near the wall.10

10 To understand this concept fully, it is convenient to think of the location of a red cell as being defined by the location of

the center of the cell. Then it is clear that red cells can sample locations everywhere within the tube except close to the
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Figure 3.17

Graph demonstrating the “inverse” Fahraeus–Lindqvist effect. Human and toad blood was forced through small gaps
(gap half-width R) and the effective relative viscosity, ηr, was deduced from measurements of the resulting flow rates.
Note the marked increase in effective viscosity at around R = 6 μm. Note that the vertical scale is logarithmic and
broken between 103 and 105. Numbers next to data points are the nominal wall shear rates in units of s−1. Reprinted
from Dintenfass [35], by permission of Macmillan Publishers Ltd.

3.3.2 “Inverse” Fahraeus–Lindqvist effect

For very small capillaries (diameters of 6–8 μm), a somewhat different behavior

is noted: the effective blood viscosity increases rapidly as the capillary diameter

decreases (Fig. 3.17). These very small capillaries are almost the same size as the

diameter of a single red cell, and thus the fit of a red cell in such a capillary is a

very tight one. (In fact, video analysis of red cells passing through such capillaries

shows that red cells are forced to pass through the vessel in single file.) The thin

gap between the edge of the red cell and the vessel wall is filled with plasma,

which experiences very high shear stresses. These high shear stresses act to retard

the motion of the red cell, thus increasing the effective viscosity.

tube wall. This means that red cell concentration will be reduced near the tube wall, even though it is possible for the

edge of a red cell to be very close to the wall.
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Figure 3.18

For Problem 3.2.

3.4 Problems

3.1 In the nineteenth century, Poiseuille’s law was experimentally deduced by

J. L. M. Poiseuille, who was interested in understanding the flow of blood in

horses’ arteries. We now know that Poiseuille’s law is a poor way of modeling

blood flow in arteries. In your own words, give at least three reasons why

Poiseuille’s law is not appropriate for arterial blood flow modeling, and briefly

discuss why this is the case.

3.2 The red blood cell is very oddly shaped, and it is natural to wonder why it

is not spherical. This question should tell you the answer. Since the body

requires a certain minimum amount of hemoglobin in the blood (and hence a

certain minimum red cell volume), let us consider the red cell volume to be

fixed at 98 μm3.

(a) If the red blood cell were spherical, what is the smallest pore that it could

fit through? Assume that the red blood cell membrane will rupture if

stretched (a very good approximation) and remember that a sphere is the

geometrical object having minimum surface area for a given volume.

(b) Now consider the real shape of a red blood cell and allow the cell to

deform as it passes through a pore of radius R (Fig. 3.18). Assume that

the red blood cell is cylindrical with hemispherical ends. Taking cell

membrane area as 130 μm2, what is the minimum R value? You will get

a cubic equation for R; solve it numerically.

(c) Why is it advantageous to have non-spherical red blood cells?

3.3 At very large values of hematocrit, red cells interact with one another strongly.

One model of such an interaction is shown in Fig. 3.19, in which red cells

form “lines” separated by gaps. (This is an appropriate model for high shear

rate flow in a planar channel.) Assume that the red cells pack together in each

“line” so that the space between cells in a given “line” can be neglected. For

a hematocrit of 0.75, calculate μeff for such a system in a Couette flow cell.

Assume that all red cells have the same thickness (w), that red cells have
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For Problem 3.3.

the shape shown in Fig. 3.19, that all fluid gaps between lines have uniform

thickness (t), and that the plasma viscosity is 1.2 cP. State other assumptions.

(Note that the red cells in the figure are not to scale. In a real channel there

would be many such red cell “lines.”) Question courtesy of Dr M. K. Sharp,

based on a paper by Thurston [36].

3.4 A normal human contains 5 liters of blood, approximately 2% of which is

resident in the systemic (i.e., non-pulmonary) capillaries at any given time.

(a) Assuming that the capillaries are 8 μm in diameter, estimate the total

length of capillaries in the body (excluding the lungs).

(b) If an average capillary length is 1 mm, how many capillaries are there

in the body?

(c) Cardiac output is 5 l/min. Assuming that this is evenly distributed

throughout a parallel network consisting of the capillaries found in (b),

estimate the pressure drop across the capillary bed. Assume Newtonian,

laminar flow in the capillaries with μeff of 3.5 cP. What percentage of

the total 85 mmHg systemic pressure drop is this?

3.5 The continually branching circulatory system can be modeled as a branching

network in which each junction contains a parent tube and two daughter tubes

of equal diameter. This model can be used to give a rough estimate of pressure

drop as a function of position within the arterial tree. Properties of the vessels

in generation n (i.e., after n branchings) are designated by the subscript n.

The aorta is considered to be generation zero. Assume that Poiseuille’s law

holds in each generation with a (high shear) value for μeff of 3.5 cP. You may

also assume that the length to diameter ratio Ln/Dn is constant and equal to
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16 in all generations (i.e., for all n). The bifurcations are characterized by the

area ratio α, defined by

α = area of daughter tubes

area of parent tube
. (3.33)

You may assume that α is the same for each generation.

(a) Show that Dn = (α/2)n/2D0.

(b) Show that 
pn = 
p0(2/α3)n/2, and hence that the total pressure drop

from the root of the aorta to the end of the Nth generation pipe, 
p0−N ,

is


p0−N = 
p0

[
(2/α3)N+1)/2 − 1

(2/α3)1/2 − 1

]
. (3.34)

(c) Show that the total volume of the system from the root of the aorta to

the end of the Nth generation V0−N , is

V0−N = V0

[
1 − (α3/2)(N+1)/2

1 − (α3/2)1/2

]
. (3.35)

(d) The aortic volume V0 is 100 ml, and the total volume V is approximately

1200 ml. Use these facts to show that α = 1.189 when N is very large.

(e) Our assumption of Poiseuille flow will break down in the smaller arteri-

oles, when the diameter is approximately 20 μm. Knowing that average

aortic diameter is 2 cm, estimate the number of generations N up to

which the formula in part (b) is valid.

(f) Make a table showing n, the total number of vessels in the nth generation;

the length from the root of the aorta to the end of the nth generation; and

the pressure at the beginning of the nth generation. Take Q = 5 l/min

and assume a pressure at the aortic root of 100 mmHg. In your table,

include values of n from zero (the aorta) to the number of generations

which you found above, in steps of 3; i.e., you will have entries for

n = 0, 3, 6, . . .

Hint: in the above you will need to use the formula for summation of

a geometric series:

n∑
i=0

r i = 1 − rn+1

1 − r
. (3.36)

3.6 Use the bifurcating model for the arterial system described in the previous

question, and take Q0 = 5 l/min, μeff = 3.5 cP, D0 = 2 cm, Ln/Dn = 16 and

α = 1.19 to answer the following questions.
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Table 3.8. For Problems 3.7 and 3.9

Vessel Mean velocity (cm/s) Radius (cm)

Ascending aorta 20 0.75

Abdominal artery 15 0.45

Femoral artery 10 0.2

Arteriole 0.3 0.0025

Inferior vena cava 12 0.5

(a) What is Tn , the time taken for a fluid particle to flow through generation

n (also known as the average transit time for generation n)?

(b) Using (a), develop a formula for T0−N , the total transit time from the

start of the bifurcating system to the end of generation N.

(c) Calculate T0−N using data given above for N = 27.

3.7 Consider laminar Newtonian flow in a tube of radius R.

(a) Show that the wall shear stress τw can be written in terms of the mean

velocity V by:

τw = 4μV

R
. (3.37)

(b) Assuming Newtonian flow, with viscosity 3 cP, estimate τw for the ves-

sels shown in Table 3.8.

(c) For blood at a normal hematocrit of 45%, the yield shear stress is approx-

imately 0.05 dynes/cm2. For each of the above vessels, can the flow of

blood be approximated as Newtonian? Why or why not?

3.8 The binding strength of a single αIIbβ3 integrin complex to fibrinogen has

been measured to be 60 to 150 pN [37]. Suppose that a value of 100 pN is

typical for all integrins. How many integrin complexes would be required

to maintain adherence of a vascular endothelial cell to the wall of a 8 mm

diameter artery carrying 1.4 l/min of blood? You may treat the blood flow as

steady, take blood viscosity as 3.5 cP, and assume that the apical surface area

of a single endothelial cell is 550 μm2.

3.9 The purpose of this question is to estimate the importance of non-Newtonian

effects on blood flow in large vessels. To do this, we will look only at the

steady case (realizing all the while that blood flow is pulsatile).

(a) Starting from the expression for Q for a Casson fluid (Equation [3.17]),

show that to a very good approximation this expression can be rewritten
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as:

Q = π R3τy

4μ
G(ξ ) (3.38)

where

G(ξ ) = 1

ξ
− 16

7
√

ξ
(3.39)

valid for ξ � 1.

(b) Prepare a table showing numerical values for ξ and the ratio

dp/dxblood : dp/dxN for each of the vessels in Table 3.8. Take

τy = 0.05 dynes/cm2 and μ = 3.5 cP for blood. In the above, dp/dxN

is the pressure gradient that a Newtonian fluid of viscosity 3.5 cP would

have.

3.10 A 35 cm long tube (internal diameter, 1 mm) is filled with blood, which has

been citrated to prevent it from clotting. (Assume that the citration process

does not alter the rheological properties of the blood.) Use property values

for blood: μ = 3.5 cP, τy = 0.05 dynes/cm2, ρ = 1.06 g/cm3.

(a) At what pressure difference between the tube ends (
p) does the blood

begin to flow?

(b) What is Q when 
p = 10 Pa?

3.11 We have introduced the concept of a Casson fluid, which has a non-zero yield

stress. A Bingham fluid also has a non-zero yield stress, but its constitutive

relation is slightly different:

τ = τy + μγ̇ (3.40)

where τy and μ are constants (the yield shear stress and the “viscosity”).

(a) Following the presentation for a Casson fluid (Section 3.2.2), derive

the velocity profile in a tube of radius R in terms of τy , μ, and dp/dx .

Integrate this to get the flow rate Q.

(b) Will this be greater or larger than the flow rate that a Newtonian fluid

of viscosity μ would have?

3.12 Blood flows in a tube of radius 1 cm because of a pressure gradient of

0.4 dynes/cm3. Treating the blood as a Casson fluid with yield stress

0.06 dynes/cm2, what percentage of the total volume flow rate is from blood

traveling in the central non-flowing “core” of the flow?

3.13 A Casson fluid fills the space between two parallel large plates. A pressure

gradient dp/dx forces the fluid from left to right. Derive an expression for
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Table 3.9. For Problem 3.14

Shear rate (s−1) Shear stress (dynes/cm2)

1 1.14

2 1.24

3 1.28

4 1.32

5 1.34

6 1.35

7 1.42

8 1.46

9 1.50

the velocity of the plug flow region in this flow. Specifically, show that:

uplug = − 1

2μ

dp

dx

[
R2 − y2

c

3
− 8

3

√
yc R3 + 2 yc R

]
(3.41)

where R is the half-width between the plates, μ is the Casson “viscosity,”

and yc is the location of the plug edge. Hint: this is obviously a lot like

the derivation in the text, but you will have to think a little about the basic

physics at the beginning.

3.14 When a Casson fluid is tested in a viscometer, the data shown in Table 3.9 are

obtained. What flow rate do you expect if a pressure drop of 50 dynes/cm2

forces this same fluid through a tube 10 cm long with radius 2 cm? Assume

laminar flow. You may find that making a graph is useful as an intermediate

step; before getting out your calculator, think carefully about what you want

to plot.

3.15 Blood from two different patients is to be tested by having it flow through a

long straight tube of length 10 cm and internal diameter 6 mm. A pressure

drop of 50 dynes/cm2 is imposed from one end of the tube to the other, and

the resulting blood flow rate Q is measured. If the blood from patient A has

a yield shear stress of 0.08 dynes/cm2 and the blood from patient B has a

yield shear stress of 0.12 dynes/cm2, predict the ratio QA/QB. Assume that

the blood from both patients follows identical Casson rheology, with the

exception of the difference in yield stresses.

3.16 A Casson fluid is contained between two large parallel plates, each of area

A (Fig. 3.20). The bottom plate is fixed, and the top plate has a constant
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Figure 3.20

For Problem 3.16.

Figure 3.21

For Problem 3.17.

shearing force F applied to it. The gap between the plates is h. Assume the

resulting flow is steady.

(a) Show that the shear stress at any location y is equal to F/A.

(b) Derive a relationship between the velocity of the top plate, V, and the

applied force, F. Include the cases when shear stress is less than the

yield stress, τy , and when it is greater than τy .

3.17 Nitric oxide (NO) is a naturally occurring vasodilator (a substance that

relaxes the artery wall). Its effects are to be tested in the apparatus shown in

Fig. 3.21, where NO is injected across the entire tube cross-section at station

A and its effects will be measured at station B. One of the characteristics of

NO is that it decays rapidly in blood, according to the relationship

a(t) = a0e−t/τ (3.42)

where a(t) is its activity at time t, a0 is its initial activity, and τ is its decay

time constant, equal to 7 s.
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(a) Qualitatively sketch how the activity will vary with radial position at

the measuring site. Justify your sketch, using a maximum of three

sentences.

(b) If the maximum activity at the measuring site is to be 54% of

the injected activity, what should the volumetric flow rate of blood

be? Treat blood as a Casson fluid with τy = 0.05 dynes/cm2 and

μ = 0.035 g/(cm s). Hint: To answer this question you must numeri-

cally solve a (slightly nasty) polynomial equation. It is useful to know

that the solution of this equation is in the range 0.10 � ξ � 0.11. You

should get the solution to three significant digits.

3.18 An elephant has an aorta that is approximately 8 cm in diameter and a resting

heart beat of 35 beats/min. Over the cardiac cycle, do you think that velocity

profiles in the aorta will be:
� fairly flat, oscillating back and forth, or
� more parabolic, oscillating back and forth?

Make and state necessary assumptions.

3.19 Consider unsteady flow of a Newtonian fluid in long two-dimensional chan-

nel of half-height R, as shown in Fig. 3.13. Suppose that the pressure gradient

varies in time according to Equation (3.23). Using existing results from this

chapter, derive an expression for the time-varying wall shear stress exerted

by the fluid on the upper wall.

3.20 We know that the flow of blood is pulsatile, and so the velocity profile in

an artery will be a function of time. This question is designed to identify

the qualitative nature of this unsteady velocity profile. Consider laminar,

unsteady, incompressible flow of a Newtonian fluid in a rigid infinitely

long tube (Womersley flow). Suppose that the pressure gradient in the tube

oscillates according to

∂p

∂x
= constant sin(ωt). (3.43)

As ∂p/∂x changes sign, it will tend to drive the fluid in the tube back and

forth in an oscillatory fashion. However, the fluid in the tube will not respond

to a change in sign of ∂p/∂x immediately, since it has first to slow down

before it can reverse its direction. The time it takes a fluid particle to slow

down depends, of course, upon its momentum.

(a) Consider two fluid “chunks” of identical mass, one near the pipe wall

and one near the pipe center line. Which chunk has the greatest momen-

tum (on average)? Why?

(b) As ∂p/∂x changes sign, which fluid chunk changes direction first?
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Figure 3.22

For Problem 3.20. Each panel shows velocity profiles for one value of α. Profiles within each panel are taken at 12
equally spaced times during half of an oscillatory flow cycle. From Nichols and O’Rourke [25]. Reprinted by permission
of Edward Arnold.

(c) One measure of the unsteadiness of the flow is provided by the Wom-

ersley parameter

α = D

2

√
ω

ν
(3.44)

where D is the tube diameter and ν is the fluid kinematic viscosity,

equal to the ratio of dynamic viscosity, μ, over fluid density, ρ. Show

that α is dimensionless.

(d) Rank the four sets of velocity profiles in Fig. 3.22 in terms of increasing

α. Explain your reasoning. Hint: compare fluid near the wall with fluid

near the tube center line.

3.21 Using the expression for the pulsatile velocity profile in a two-dimensional

channel of half-height R (Equation [3.29]), show that in the limit of small

Womersley parameter, α, the pulsatile velocity profile simply becomes a

parabola modulated harmonically in time, i.e.,

u(y, t) =
∏ R2

2μ

[
1 −

( y

R

)2
]

cos(ωt). (3.45)
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You will need to remember that cosh(z) → 1 + 1
2
z2 as z → 0. (This is known

as the quasi-steady limit.) For bonus marks, derive the corresponding lim-

iting form of the velocity profile for flow in a cylindrical tube by taking the

appropriate limit of Equation (3.30), using the fact [31] that J0(z) → 1 − 1
4
z2

as z → 0.

3.22 To compute the pulsatile velocity profile in a two-dimensional channel using

Equation (3.29), we need to know the amplitude of the pressure gradient

waveform. In practice, this is hard to measure and therefore Equation (3.29)

is not very convenient. Instead, it is usually easier to measure the volumetric

flow rate, Q(t), and it is more convenient to derive a form of Equation (3.29)

that involves the amplitude of the flow rate waveform.

(a) Integrate Equation (3.29) to show that the volumetric flow rate in a

two-dimensional channel of half-height R can be expressed as

Q(t) = �
{

2i�R

ρω

[
tanh(α

√
i)

α
√

i
− 1

]
eiωt

}
. (3.46)

(b) By eliminating � between Equations (3.29) and (3.46), show that

the unsteady velocity profile in a two-dimensional channel can be

expressed in terms of the volumetric flow rate as

u(y, t) = �
{

α
√

i �

2R

[
cosh(α ŷ

√
i) − cosh(α

√
i)

sinh(α
√

i) − α
√

i cosh(α
√

i)

]
eiωt

}
(3.47)

where � is the amplitude of the flow rate waveform expressed per unit

depth of the channel, i.e., Q(t) = �{� eiωt}.
(c) For the truly brave, show that the analogue of Equation (3.47) for the

case of a cylindrical vessel is

u(r, t) = �
{

αi3/2 �

π R2

[
J0(αi3/2r̂ ) − J0(αi3/2)

2J1(αi3/2) − αi3/2 J0(αi3/2)

]
eiωt

}
(3.48)

where J1(z) is the Bessel function of the first kind of order one, which

satisfies the relationship
∫

J0(z) z dz = z J1(z) and � is the 3D version

of that defined in part (a).

3.23 From the text, you know that the Fahraeus–Lindqvist effect occurs when

a cell-free layer forms next to the wall in a thin tube. In this question you

are asked to investigate the Fahraeus–Lindqvist effect in planar channels of

gap width H (see Fig. 3.23). Assume that there is a thin cell-free layer of

thickness δ next to the solid wall, and that the viscosity of this thin layer is

μ1. The viscosity of the fluid in the center layer is μ2. Look at the lower

half of the channel only; the situation is the same in the upper half.
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Figure 3.23

For Problem 3.23.

(a) Show by using a force balance that the shear stress in the fluid for

steady flow varies according to:

dτ

dy
= ∂p

∂x
. (3.49)

Hence show that τ is given by τ (y) = (y − H/2) (∂p/∂x), by using

the fact that ∂p/∂x is constant and dτ/dy is zero at y = H/2 (from

symmetry). Hint: consider the small fluid chunk sketched in Fig. 3.23.

(b) Assuming that the fluid in each of the two regions is Newtonian with

viscosities μ1, μ2, show that the velocity profile in regions 1 and 2 is

given by:

ui(y) = − 1

2μi

∂p

∂x
[y(H − y) + Ai] (3.50)

where Ai is an undetermined coefficient, and i can be 1 or 2, corre-

sponding to regions 1 and 2.

(c) By requiring no slip at y = 0, and velocity matching at y = δ, show

that A1 = 0 and that

A2 = δ(H − δ)

[
μ2

μ1

− 1

]
. (3.51)

(d) Integrate the velocity profile from y = 0 to y = H/2 to get the flow

rate (per unit width into the page) in the lower half channel. Then,

retaining only terms of first or zeroth order in δ, show that the effective

viscosity of the fluid in the gap is:

μeff = μ2

1 + 6 δ(μ2/μ1 − 1)/H
. (3.52)
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Compare your results with the data of Fig. 3.15. Hint: the flow rate for

a fluid of viscosity μeff is:

Q = − H 3

24μeff

∂p

∂x
. (3.53)

3.24 The purpose of this question is to investigate the implications of Fig. 3.16.

Specifically, we wish to determine how the feed reservoir hematocrit changes

as a function of time in the experiment shown in Fig. 3.14. Suppose that at

time zero the total blood volume in the feed reservoir is V0, and that the feed

reservoir hematocrit is HF,0. Further, suppose that blood is pumped from the

feed reservoir through a capillary at a constant volumetric flow rate Q.

(a) Show that the feed reservoir hematocrit changes with time, t, according

to the equation

dHF

dt
= Q HF

V0 − Qt
(1 − HR) (3.54)

where HR is the tube relative hematocrit. Hint: start from the statement

HF = VRBC

VRBC + Vp

(3.55)

where VRBC is the volume of red cells in the feed reservoir, and Vp is

the volume of plasma in the reservoir.

(b) Integration of the above equation shows that the hematocrit eventually

approaches 100% in the feed reservoir. Why does this not occur in the

circulatory system: that is, why does the red cell count not increase

to something close to 100% at the entrance to the capillaries? You do

not need to use any mathematics; a description in words (plus a simple

sketch if you prefer) will do the job.

3.25 Consider blood flowing in a fine capillary of radius R = 50 μm. Because of

the Fahraeus–Lindqvist effect you may assume that the 10 μm thick region

next to the wall contains no red cells. Assume that the velocity profile has the

shape sketched in Fig. 3.24, that the red blood cells travel at the same speed

as the fluid in the core, and that the hematocrit in the core (0 < r < 40 μm)

is 45%. If the blood flowing in this capillary is collected in a beaker, what

will the average hematocrit in the beaker be? Compare your result with

Fig. 3.16. You may assume that the parabolic portion of the velocity profile

joins smoothly with the blunt part; that is, that there is no slope discontinuity

at the interface between the two regions. (This is not quite correct if the

effective viscosity of the fluid in the two regions is different, but is an

acceptable first approximation.)
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Figure 3.24

For Problem 3.25.

3.26 We have described how the effective viscosity of blood in very small capillar-

ies increases as the capillary radius decreases (“inverse Fahraeus–Lindqvist

effect”). This occurs because the red cell becomes “tight fitting” in the capil-

lary: the red cell nearly fills the capillary and leaves only a thin plasma-filled

gap between the red cell and the capillary wall. We will analyze the passage

of red cells through a capillary in this case.

(a) Consider first the flow of plasma in the thin gap between the red cell and

the capillary wall. To an excellent approximation, this can be treated

as flow between two parallel planes separated by a gap of thickness

2h, in which the lower plane (the red cell) travels at velocity VRBC. It

can be shown that the velocity profile in the gap, u(y), satisfies:

u(y) = VRBC

2
(1 − y/h) − h2

2 μp

dp

dx
[1 − (y/h )2] (3.56)

where μp is the plasma viscosity, dp/dx is the axial pressure gradient

in the capillary, and y is defined in Fig. 3.25.

Using this result, calculate the total shear stress acting on the surface

of a red cell of length L. For the steady case, use this to derive a formula

for red cell velocity, VRBC. Hint: do a force balance on the red cell.

(b) If the capillary is completely filled with red cells as shown, and neglect-

ing the small volume flow rate of fluid in the thin gaps, derive an

expression for the effective viscosity of the red cell suspension based

on matching the red cell velocity with the mean velocity for Poiseuille

flow in a tube of radius R:

Vavg = −dp

dx
R2

8 μeff

. (3.57)

3.27 Blood flows from a beaker through a 99 μm diameter glass capillary that is

0.1 cm long (Fig. 3.26). The pressure difference across the capillary tube is
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Figure 3.25

For Problem 3.26.

Figure 3.26

For Problem 3.27.

maintained at 60 000 dynes/cm2, and the effective viscosity of the flowing

blood is 2.3 cP.

(a) Show that the flow rate Q = 6.15 × 10−3 cm3/s.

(b) If the volume of blood in the feed reservoir at time zero is V0 and

the feed reservoir hematocrit at time zero is HF,0, show that the feed

reservoir hematocrit, HF(t), obeys the relationship.

HF (t)

HF,0

=
(

V0

V0 − Qt

)1−HR

(3.58)

You may assume that the relative hematocrit, HR, and the flow rate, Q,

are both constant. To obtain full credit for this part you must derive the

above expression without making any numerical substitutions.

(c) Using the data given above, suitable information from this chapter,

and values HF,0 = 30% and V0 = 5 ml, compute the feed reservoir

hematocrit at time 3 min.

(d) For really small capillaries HR is not constant, so the formula in part

(b) is wrong. Assuming that the relationship between HR and HF can

be expressed as HR = aHF + b, where a and b are constants, derive

an expression for HF(t) analogous to that given in part (b).
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4 The circulatory system

We now turn our attention to the system that transports the blood: the heart and

blood vessels. From an engineering viewpoint, the circulatory system consists

of a remarkably complex branching network of tubes that convey the blood (the
vasculature; Fig. 4.1), and two pulsatile pumps in series to force the blood through

the tubes (the heart). The vasculature consists of arteries, arterioles, capillaries,
venules, and veins. On average, no cell in the body is more than approximately

40 μm away from a capillary, and almost every tissue is thoroughly invested with

a capillary network. A typical human contains approximately 5 liters of blood, and

at rest the heart pumps approximately 6 l/min; consequently, on average, blood

circulates throughout the body about once per minute. In this chapter, we emphasize

the operation of the components of the circulatory system, how they interact with

one another, and how they work in concert to deliver blood to target tissues.

4.1 Anatomy of the vasculature

For reasons to be described below, it is conventional to divide the vasculature into

two parts: the pulmonary and systemic circulations. The loop from the right heart,

through the lungs, and back to the left heart is known as the pulmonary circulation;

the loop from the left heart to the body and back to the right heart is the systemic

circulation. Both the pulmonary and systemic vasculature have a similar topology.

Blood is supplied in large vessels (arteries), which branch to form smaller arteries,

and finally arterioles and capillaries (Fig. 4.2, color plate). The capillaries then

join together to form the venules, which in turn form to join larger and larger veins

which eventually return the blood to the heart (Fig. 4.2). Typical vessel sizes for

the vasculature are shown in Fig. 4.2 for humans and Table 4.1 for dogs. It is handy

to remember that in humans the diameter of the largest artery, the aorta, is a little

larger than one inch (2.54 cm). The student should keep in mind that the values

in Fig. 4.2 are population averages, and, as might be expected, the sizes of the

large vessels can vary appreciably from one person to another. For example, aortic



Figure 4.1

Woodcut engraving of the major veins in a human, from De Humnai Corporis Fabrica Libri Septum by Andreas Vesalius,
published in Basel in 1543. There are a number of inaccuracies in this image (see discussion in Saunders and O’Malley
[1]), but it does serve to illustrate the fantastic geometric complexity of the human vascular tree. This is reinforced when
we realize that less than 0.0001% of all the vessels in the body are depicted in this image. A modern edition of this work
is available [2].
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Figure 4.3

Aortic root size as a function of age and mean arterial pressure (MAP) in men and women. The upper two lines represent
plots of aortic root size for men in the lower and upper quartiles of MAP, while the lower two lines are comparable plots
for women. Triangles and squares represent observed values of aortic root size in men and women, respectively. These
values were measured using echocardiography from approximately 4000 ostensibly normal men and women enrolled in
the Framingham Heart Study. From Vasan, Larson and Levy [5]. Reproduced with kind permission of Lippincott Williams
& Wilkins.

root diameter depends on age, height, weight, sex, and mean arterial pressure, and

can vary from about 2.6 to 3.4 cm in healthy individuals [5] (Fig. 4.3).

It is of interest to note how physiological functionality is distributed throughout

the vascular system. From an engineering viewpoint, the vasculature must fulfill

several functions:

Enable mass transfer between blood and the surrounding tissue. This is

accomplished by the capillaries and, to a much lesser extent, by the venules and

arterioles. The capillaries are efficient for mass transfer because of their very large

wall surface area,1 and in some locations, because of the very permeable structure

of the capillary wall.

Be able to regulate blood distribution, in response to the metabolic needs of
perfused tissues. From values given in Fig. 4.2, one can compute that most

1 The area of capillary walls in the adult human is approximately 300 m2, which is approximately 1.5 times the surface

area of a single’s tennis court.
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Figure 4.4

Scanning electron micrograph of smooth muscle cells (pericytes) surrounding a precapillary arteriole of diameter
approximately 6 μm. When these pericytes relax or contract they alter the caliber of the arteriole and hence regulate flow
resistance and blood distribution to the distal capillary beds. A nerve fiber can be seen running along the capillary (N).
From Fujiwara and Uehara [6]. Reprinted with permission of John Wiley & Sons, Inc.

flow resistance is generated in the arterioles and capillaries. Moreover, the flow

resistance of a given arteriole is regulated through the action of smooth muscle

cells, which surround the arteriole and which can contract or relax in response to

various stimuli (Fig. 4.4). By controlling vessel caliber in this way, blood flow can

be shunted away from tissues where it is not needed and enhanced in tissues with

a greater circulatory demand. Thus, a major function of the arterioles is to control

flow distribution.

Maintain a reservoir of blood in case of loss. This role is played by the veins,

which contain approximately two thirds of the 5 liters of blood in an adult human.

Figures 4.5 (color plate) and 4.6 show the anatomy of some of the major arteries

and veins. The student should know that the major systemic artery leaving the heart

is the aorta, and that the two major systemic veins returning to the heart are the

superior vena cava and the inferior vena cava.

4.2 The heart

The heart, although a single organ, is functionally two closely coupled positive-

displacement pumps in series. Each pump makes up half of the heart, and the pumps

share a common wall and common electrical system for stimulation and control.
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Figure 4.6

An overview of the anatomy of the major arteries in the dog. The drawing is to scale, except that the scale for the arterial
diameter is twice that for arterial length. From Nichols and O’Rourke [8]. Reprinted by permission of Edward Arnold.

The right heart accepts oxygen-depleted blood, and pumps this blood through the

lungs to deliver it to the left heart. The left heart accepts the oxygenated blood and

pumps it to the remainder of the body.

It is of interest to ask why the heart has two sides, rather than being com-

posed of a single large pump. The reason can be understood by comparing the

pressure–flow characteristics of the pulmonary and systemic circulatory systems.
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The pulmonary capillary beds, consisting of numerous small vessels distributed

throughout the lungs, are the site of gaseous exchange between blood and air in

the lungs. Efficient blood gas transfer requires that the pulmonary capillary walls

be extremely thin. This, in turn, implies that the pulmonary capillaries can be

easily ruptured, and so the blood pressure in the pulmonary circulation must be

low. As a result, the pulmonary circulation is a low-pressure, low-resistance flow

loop, with inlet pressure approximately equal to 15 mmHg and outlet (return)

pressure of approximately 5 mmHg. In contrast, the flow resistance of the systemic

circulation is much higher than that of the pulmonary circulation, and the pressure

drop in the systemic loop is large. This necessitates a large inlet pressure on the

systemic side in order to maintain an adequate systemic flow rate. Fortunately,

the systemic vessels are much more robust than the pulmonary capillaries and

can, therefore, tolerate higher pressures. In short, the systemic circulation is best

described as a high-pressure, high-resistance flow loop. The use of two pumps

in series is, therefore, an excellent design that satisfies the constraints of low

pulmonary pressure and higher systemic pressures.

Of course, the presence of two pumps rather than a single pump introduces a

number of complications. Most importantly, the output of the two halves of the heart

must be very closely matched over a wide range of conditions (resting to vigorous

exercise). If not, blood would accumulate or be depleted from the pulmonary

circulation, with serious consequences. Output matching is in part accomplished

by the two half-hearts sharing a common “wiring system” used to control heart

rate. Additionally, each half of the heart is able to adjust its output, within certain

limits, so that it delivers whatever amount of blood it receives. This ability, known

as the Frank–Starling mechanism, is sufficient to guarantee that fluid will not

accumulate in either the pulmonary or the systemic circulations. Fundamentally,

the Frank–Starling mechanism relies on the fact that the contractile force generated

by the cardiac muscle increases if the cardiac muscle is stretched before it begins

to contract, this stretching being greater in a heart that has received more blood

during the filling phase [9].

4.2.1 Gross anatomy of the heart

The main mass of the heart is a specialized muscle type known as cardiac muscle.

Pumping is achieved by rhythmic contraction and relaxation of the cardiac muscle.

More specifically, on each side of the heart there is:

� a main pumping chamber (the ventricle)
� a holding chamber for each ventricle (the atrium)
� two check valves, one each for the ventricle and the atrium.
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The chambers and major structures of the heart are shown in Fig. 4.7 (color plate).2

Most of the mass of the heart is contained in the ventricles, since these are the major

pumping chambers.

The valves are made up of thin tissue leaflets that seal together to prevent back-

flow when closed (Fig. 4.8). The valves between the ventricles and the atria are

the left and right atrioventricular (AV) valves.3 The AV valves are prevented from

being everted (“driven backwards”) by thin tissue strands (the chordae tendineae)

connected to muscles (Fig. 4.7, color plate). The valve between the left ventricle

and the aorta is the aortic valve, and that between the right ventricle and the

pulmonary artery is the pulmonary valve. The aortic and pulmonary valves do

not have chordae tendineae to prevent eversion. Instead, the aortic and pulmonary

valves have three leaflets that, when in the closed position, lean up against one

another (called coaptation), thereby sealing the valve and preventing the leaflets

from being everted.

4.2.2 Qualitative description of cardiac pumping

To describe the pumping sequence of the heart, two special terms are used, dias-
tole and systole. The technical definitions are given below, but as a rule of thumb,

systole corresponds approximately to the period of ventricular contraction, while

diastole corresponds approximately to the period of ventricular dilation, or relax-

ation. Below is the sequence of events for a single beat of the left heart (numbers

refer to the lower portion of Fig. 4.9).4

1. Atrial filling (mid to late diastole) Blood flows into the atria. The AV valves

are open, so there is communication between the atria and the ventricles. The

pulmonary and aortic valves are closed, so no blood can get out of the ventricles.

In response to an electrical stimulus, both atria begin to contract, forcing blood

into the ventricles. The atria then stop contracting.

2. and 3. Ventricular contraction (systole) The ventricles are now stimulated

to contract. As they do so, ventricular pressure increases and the AV valves snap

shut. This produces a sound that can be detected with a stethoscope, known as the

first heart sound. The ventricles are now sealed shut, and the ventricular muscle

tenses, increasing the ventricular pressure. Since blood is incompressible, ventricu-

lar volume is unchanged (hence, isovolumetric contraction). Eventually ventricular

2 In discussing the anatomy of the heart, it is important to know that “left” and “right” refer to the owner’s viewpoint.

However, by convention, the heart is always drawn as seen by the surgeon in the chest. Hence, left and right are

transposed in diagrams of the heart.
3 The right AV valve is also called the tricuspid valve, since it consists of three tissue leaflets. The left AV valve is also

known as the mitral valve.
4 The sequence for the right heart is very similar, with valve names modified as appropriate.
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Right AV
(tricuspid) valve

Left AV (mitral) valve

Pulmonary
valve

Aortic
valve

Figure 4.8

Diagram of valve motion during the cardiac cycle. The situation during ventricular filling is shown at left, while the
situation during ventricular ejection (systole) is shown at right. The aortic and the pulmonary valves move passively in
response to the ambient pressure field and rely on their geometry to prevent leakage/backflow (regurgitation).
Specifically, their leaflets fit together when closed (coapt) so as to be able to resist the retrograde pressure gradient and
provide a blood-tight seal. The situation for the tricuspid (right atrioventricular [AV]) and mitral (left atrioventricular)
valves is different: they have chordae tendineae and papillary muscles (Fig. 4.7). The papillary muscles contract during
systole to prevent the atrioventricular valves from bulging back into the atria (prolapsing). Modified from Vander et al.
[10]. With kind permission of The McGraw-Hill Companies.

pressure exceeds aortic pressure, and the aortic valve pops open. Blood is ejected

from the ventricle and aortic pressure increases. However, the ventricle is already

stopping its contraction, so that ventricular pressure reaches a maximum and then

starts to decline. Once it falls below aortic pressure, the aortic valve snaps shut (the

second heart sound). This ends systole.

4. Ventricular relaxation (early diastole) Once again the ventricle is sealed

off. It relaxes at constant volume and ventricular pressure rapidly falls until it is

below atrial pressure. At this point the AV valve opens and ventricular filling begins

again.

The sequence then repeats . . .

With reference to Fig. 4.9, the following more precise definitions of systole and

diastole can be made:
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Summary of events in the left heart during a cardiac cycle. The electrocardiogram (ECG), heart sounds, aortic and left
ventricular pressures, and left ventricular volume are shown in the upper portion of the figure. The lower portion of the
figure shows the contracting portions of the heart in black. Readers unfamiliar with the ECG should consult the Appendix.
Modified from Vander et al. [10]. With kind permission of the McGraw-Hill Companies.
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� systole is the period starting at AV valve closure and ending when the aortic

valve closes
� diastole is the remainder of the cardiac cycle, beginning when the aortic valve

closes and ending when the AV valve closes.

As mentioned above, there are two heart sounds per cardiac cycle, occurring at the

beginning of systole and at the beginning of diastole. These produce the character-

istic “heartbeat,” which can be detected with a stethoscope. Normal heart sounds

should not be confused with a heart murmur, which can indicate cardiac pathol-

ogy. For example, heart murmurs can be caused by valvular insufficiency (“leaky”

valves) or a septal defect (a small hole between the left and right hearts). Blood

leaking through such defects creates turbulence and associated sound, which can

be stethoscopically detected.

4.2.3 Cardiac pumping power and ventricular function

A very useful view of cardiac function can be obtained if we plot left ventricular

volume against left ventricular pressure to create a pressure–volume loop. (We

can also make such a plot for the right ventricle, but since the left side of the heart

does most of the work, it is usually the left ventricular pressure–volume loop that is

more relevant.) Such a loop is shown in Fig. 4.10A, from which we can identify the

ventricular filling, isovolumetric contraction, ejection and isovolumetric relaxation

phases of the cardiac cycle, as well as times when the various valves open and close.

The shape of the pressure–volume loop for the left ventricle, and specifically

the end-diastolic and end-systolic volumes, depend on a number of factors. On the

one hand, if the right heart delivers more blood (a condition known as increased

preload), then the loops are displaced to the right, as shown in Fig. 4.10B. A line

drawn along the isovolumetric filling phase of the loops is called the end-diastolic

pressure–volume relationship. It depends on the passive elastic properties of the

left ventricle wall and the geometry of the ventricle. On the other hand, if mean

arterial pressure is increased (a condition known as increased afterload), different

end-systolic points will be obtained. A curve drawn through these points is called

the end-systolic pressure–volume relationship. Empirically, it is found that this

curve is approximately linear and independent of ventricular contraction history.

A great deal of work has been done to relate the shape of the pressure–volume

curve to the elastic and contractile properties of cardiac muscle, see for example

the review by McCulloch [11].

It is natural to ask how much energy is transmitted to the blood by the heart with

each heart beat. This is known as the external work of the heart. The reader will
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a

Figure 4.10

Relationship of pressure and volume in the heart. (A) Schematic plot of variation of left ventricular pressure as a function
of left ventricular volume during a cardiac cycle. This is known as the work diagram of the left ventricle. a: Passive filling
phase, in which work is done by the blood on the left ventricle; b: Isovolumetric contraction, in which no work is done on
the blood, but elastic energy is stored in the heart muscle; c: Ejection phase, in which work is done on the blood by the
ventricle; d: Isovolumetric relaxation, in which no work is done on the blood but some stored elastic energy is dissipated.
The dashed line shows the replacement of the actual pressure–volume loops by a simplified approximate shape
(rectangle) having the same enclosed area. ESV and EDV are end-systolic and end-diastolic volume, respectively, and
the difference between the two is the stroke volume. (B) A series of pressure–volume loops, showing the end-diastolic
pressure–volume relationship (EDPVR) and the end-systolic pressure–volume relationship (ESPVR). These loops are not
quantitatively correct; see Fig. 4.11 for actual loops in human left ventricles.

recall that all pumps impart energy to the fluid. It is conventional to represent the

useful energy content of an incompressible fluid by its “head,” defined as:

h = p

ρg
+ V 2

2g
+ z, (4.1)



177 4.2 The heart

where p is fluid pressure, ρ is fluid density, V is local fluid velocity, and z is elevation

above some datum. From the above definition, it is clear that head is made up of

pressure head (p/ρg), kinetic head (V 2/2g), and potential head (z).

The net head added by a pump, hp, is given by

hp = h2 − h1, (4.2)

where h2 is the total fluid head at the outlet of the pump and h1 is the total fluid

head at the pump inlet. In the case of the heart, the elevation difference is small and

can be neglected. The difference in kinetic head is also small, representing only

2–6% of the total head gain across the heart in humans at rest [4]. That means that

the head increase is mainly caused by an increase in pressure across the heart.

Let us return to the pressure–volume curve for the left ventricle (Fig. 4.10). In

any process where work is done on the system by pressure, the net work over a

cycle, W, is given by the integral

W =
∮

pdV , (4.3)

where
∮

represents an integral over one cycle and dV is an incremental change in

volume. Neglecting the small amount of energy present as kinetic energy in the

blood, the external work done on the blood by the left ventricle is proportional to

the area enclosed by the heavy loop in Fig. 4.10A. Because this area has a rather

complex shape, it is convenient to replace the pressure–volume contour in Fig.

4.10A by a simple rectangular region of width �V and height �p, where �V and

�p are chosen so that the area inside the dashed line matches the shaded area: that

is, so that W = �p�V .

Based on values from the literature appropriate for adult humans at rest (aver-

aged over men and women, Fig. 4.11) we choose �V to be 90 ml and �p to be

110 mmHg. Then, for the left heart we calculate

W = (90 × 10−6 m3) (110 mmHg)

(
133 N/m2

mmHg

)
= 1.32 J. (4.4)

A similar calculation for the right heart using the values �V = 90 ml and

�p = 10 mmHg gives W = 0.12 J. Therefore, the total energy imparted to the

blood over a single cardiac cycle by the entire heart is 1.44 J. This is easily con-

verted into a rate of energy transfer, or external pumping power, by noting that the

resting heart rate in the adult human is approximately 70 beats/min; therefore

Power = work × frequency

= (1.44 J) (70 beats/min)

(
min

60 s

)
= 1.68 watt, (4.5)
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Figure 4.11

Averaged left ventricular pressure–volume loops in males and females showing loops based on volume (A) and on
volume divided by the body surface area, or indexed volume (B). The dark line is the average, over which are shown
ellipses representing the standard errors in volume and pressure at each point. These data were obtained by making
simultaneous left ventricular pressure versus time and left ventricular volume versus time measurements in 14 males
and 16 females (average age 60 years) and averaging in time. Because of differences in cardiac period, the averaging
procedure truncated each trace to the time of the shortest cardiac period, which explains the “gap” in the average loops.
Each individual pressure–volume trace was closed. Reprinted from Hayward et al. [12], with permission from the
European Society of Cardiology.

which is approximately equal to 0.002 horsepower. This rather crude calculation

can be compared with more careful ones reported by Milnor [4], where the external

power of the right and left ventricles in humans were 0.24 W and 1.72 W, respec-

tively, for a total external pumping power of 1.96 W. These values pertain to rather

large men and so are expected to be a little larger than our averaged values.

It is also interesting to compare the external power produced by the heart with

that which would be required to produce the same flow rate against the same

circulatory resistance if the flow were steady rather than pulsatile. This latter value

is about 85% of the actual external power. What happens to the other 15%? It must

be used to create phenomena that are not associated with steady flow. In fact, we

will see in Section 4.3 that this remaining 15% generates a pressure pulse wave

that propagates throughout much of the vascular system.

Although the rate of power transfer to the blood is small, it occurs continuously

over an entire lifetime. For fun, let us calculate how much energy is transferred to

the blood over an idealized 75 year lifespan.5 During this period, the heart would

5 We say that this calculation is for an “idealized” lifespan because we do not account for the effect of exercise on cardiac

pumping power, nor for the fact that cardiac pumping power for a child is different than that for an adult.
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beat approximately 2.76 billion times, assuming a rate of 70 beats/min. Therefore,

the total energy imparted to the blood during this period is nominally

Total energy = 2.76 × 109 beats
1.44 J

beat
= 3.96 × 109 J. (4.6)

This is sufficient to lift a 50 ton weight from sea level to the top of Mount Everest!

4.3 Arterial pulse propagation

Because of the manner in which the heart pumps, flow in the systemic and pul-

monary circulations is pulsatile i.e., unsteady.6 Since the capillary beds tend to

damp pulsatility, flow and pressure pulsations are most pronounced on the arterial

side of the circulatory tree and are significantly weaker in the veins.

The effect of pulsatility, in conjunction with the fact that the arteries and other

vessels are elastic (distensible), greatly complicates the analysis of blood flow in

the circulatory system. For example, if the pressure is elevated locally at some point

in an artery, two effects will occur. First, fluid will accelerate so as to move from a

region of high pressure to a region of lower pressure, just as would occur in a rigid

vessel. Second, the vessel will locally distend, thereby “storing” fluid. In practice, a

balance between these two effects causes distension waves to propagate throughout

the arteries. Before discussing these effects in greater detail, it is necessary to

introduce some terminology describing pressure variations over a cardiac cycle.

4.3.1 Systolic and diastolic pressure

In light of the above discussion, we expect pressure at a given site in an artery

to vary during the course of one cardiac cycle. It is conventional to characterize

the pressure history at a given location by measuring the maximum (systolic) and

minimum (diastolic) pressures over a single cardiac cycle. They are reported as

systolic pressure/diastolic pressure, with units of millimeters of mercury assumed;

for example, blood pressure of 120/80 means a systolic pressure of 120 mmHg and

a diastolic pressure of 80 mmHg.

Non-invasive blood pressure measurement is accomplished by using the sphyg-
momanometer (from the Latin sphyg, meaning pulse). The main element of the

sphygmomanometer is an inflatable cuff with a pressure gauge attached. The cuff

is placed on the upper arm and inflated until the cuff pressure, pcuff, exceeds the

6 In fact, it is hard to imagine designing a heart from biological material that would produce a steady output.
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Figure 4.12

Schematic representation of arterial and cuff pressures during sphygmomanometry. The thin solid line is local arterial
pressure, while the heavy line represents pressure in the sphygmomanometer cuff. A is the systolic pressure where the
artery is just opening. This produces a ticking noise. B is the diastolic pressure, where flow is fully laminar and no noise
can be detected. Between A and B, the artery is partially open. “Swooshing” and ticking noises can be heard between A
and B because of turbulence and the artery opening and closing.

pressure in the brachial artery,7 pbrachial. The cuff pressure is transmitted through

surrounding tissue to the artery, causing the artery to collapse and thereby occlude

flow. The pressure in the cuff is then slowly lowered until pcuff equals the systolic

pressure, at which point the artery just opens at peak systole. The opening and

closing of the artery produces a ticking noise that can be heard with a stethoscope.

Continued reduction of pcuff allows the artery to stay open for a greater and greater

fraction of the cardiac cycle. While in the partially open state, blood flow in the

region of the constriction becomes turbulent, producing characteristic “whooshing”

noises, which can be heard with the stethoscope. As pcuff falls further, the artery

remains open for a greater fraction of the cardiac cycle, and the “whooshing” noises

diminish. Finally, when pcuff equals the diastolic pressure, the artery is fully open

and no noises can be heard. This procedure is summarized diagrammatically in

Fig. 4.12.

4.3.2 Windkessel model

We now turn to the effects of pulsatility on flow in the vasculature. The simplest

model of such effects is the Windkessel model, developed by Otto Frank in 1899 [13]

7 The brachial artery is the major artery in the upper arm. It runs near the center of the arm.
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Figure 4.13

The top panel shows the Windkessel model of the circulatory tree. The heart is represented as a variable current source,
the distensible arteries as a compliant chamber, and the peripheral vessels as a resistor. The bottom panel shows the
equivalent electrical circuit. Note that this is not the only possible “lumped parameter” circuit representation of the
circulation; see for example [8]. More sophisticated models include three or four elements; see for example [15] and
[16].

(for a translation of the original German paper, see Sagawa et al. [14]). Although

it is rather crude in a number of ways, and in general does not give very accurate

predictions, it is useful for providing qualitative understanding of the physical

processes involved. The key feature of the model is that it accounts for the ability of

the vessels to store blood by distension. Physically, blood storage occurs primarily

(but not exclusively) in the larger central vessels, which in the model are lumped

together into a single chamber (Windkessel) that experiences a spatially uniform,

but time-varying, arterial pressure, part(t). The peripheral circulation (arterioles,

capillaries, and venules) are represented as a pure flow resistance. The outflow

from the heart is represented as a time-varying flow rate QH(t), and the flow rate

entering the peripheral circulation is Q(t) (see Fig. 4.13).

We assume that an incremental change in volume of the compliant vessels, dV,

is proportional to an incremental change in arterial pressure, dpart

C = dV

dpart

. (4.7)
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The proportionality coefficient, C, is the effective arterial compliance, which will

be assumed to be constant. We will take the flow resistance of the peripheral

circulation to be R, which is also assumed to be constant. Therefore, if we neglect

the small back pressure in the veins, the arterial pressure at any given instant can

be expressed as

part(t) = Q(t)R. (4.8)

With reference to Fig. 4.13, the instantaneous difference between the input from

the heart (QH) and the blood delivery rate to the peripheral circulation (Q) must be

from blood that is accumulating in the compliant arteries. Since blood is effectively

incompressible, this accumulation/loss of blood must correspond to a change in

arterial volume. Conservation of mass then yields

dV

dt
= QH − Q. (4.9)

Combining Equations (4.7), (4.8), and (4.9), we obtain a single ordinary differential

equation for Q(t)

RC
dQ

dt
+ Q = QH. (4.10)

The forcing term, QH is determined by the cardiac output. Suppose that we

approximate this term by a constant flow output, Q0, plus a simple sinusoid, i.e.,

QH(t) = Q0 + Q1 sin(ωt), where Q0 and Q1 are constants. Then Q(t) is readily

determined to be (see Box 4.1)

Q(t) = Q1√
1 + (RCω)2

sin(ωt − φ) + Q0. (4.11)

It is clear that the presence of the chamber produces a phase shift between Q and

QH. This results from the storage of fluid in the complaint arteries during high

rates of inflow from the heart, with subsequent release during low rates of inflow.

Several other aspects of this model deserve comment. First, the cardiac output

is not sinusoidal. However, the same physical process occurs with more complex

cardiac output waveforms: blood is stored in the arteries during systole and is

released during diastole. Mathematically, a more complex cardiac output waveform

can be treated by Fourier decomposition.

Second, in practice, the volume flow waveforms predicted by this model are

incorrect. This is because of an important fact overlooked by the Windkessel model:

different parts of the arterial tree distend at different times during the cardiac cycle.

This is partly because the pressure pulse travels at a finite speed down the arteries,

so that distal sites distend later than do proximal sites, and partly because of the
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Box 4.1 Solution of Equation (4.10)

Here we present some of the mathematical details of the solution of Equation

(4.10), with QH = Q1 sin(ωt). Since the system is linear, and the forcing term

QH is periodic in ωt , we expect that the solution will also be periodic in ωt ,
and therefore write

Q = Q1[A1 sin(ωt) + A2 cos(ωt)], (4.12)

with A1 and A2 to be determined. Substitution of Equation (4.12) into

Equation (4.10) yields two linear equations for A1 and A2

RCωA1 = −A2

−RCωA2 = 1 − A1. (4.13)

Solution of Equations (4.13) and substitution into Equation (4.12) yields

Q(t) = Q1

1 + (RCω)2
[sin(ωt) − RCω cos(ωt)]

= Q1

1 + (RCω)2

[
cos φ sin(ωt) − sin φ cos(ωt)

cos φ

]
(4.14)

where φ = tan−1(RCω). This can be rewritten slightly by using standard

trigonometric identities to yield the unsteady term in Equation (4.11).

effects of reflection. It is observed that pressure pulses are reflected and altered at

bends and junctions throughout the arterial tree; consequently, the exact form of the

arterial distension versus time waveform is different at each site in the arterial tree

(Fig. 4.14). To analyze such effects, we need to consider the propagation of elastic

waves within the artery wall. To understand this phenomenon, we must first learn

a little bit about the elastic properties of the arteries, to which we now turn.

4.3.3 Arterial wall structure and elasticity

The artery wall is a three-layered structure (Figs. 2.57 and 4.15 [color plate]).

The innermost (blood-contacting) layer is known as the tunica intima, and in a

young, healthy artery is only a few micrometers thick. It consists of endothelial

cells and their basal lamina, containing type IV collagen, fibronectin, and laminin.

The endothelial cells have an important barrier function, acting as the interface

between blood components and the remainder of the artery wall. The middle layer

is the tunica media, which is separated from the intima by a thin elastin-rich
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Figure 4.14

Simultaneous pressure and blood velocity waveforms at selected points in the human arterial tree. All waveforms were
measured in the same patient except for those from the right renal artery and the right common iliac artery. Changes in
the instantaneous pressure are approximate indicators of changes in arterial caliber, and thus of local blood storage.
From Caro et al. [17], based on data reported in Mills et al. [18]. Reproduced with kind permission of Oxford University
Press and the European Society of Cardiology.

ring known as the internal elastic lamina. The outermost layer is known as the

tunica adventitia, which is separated from the media by the outer elastic lamina.

The adventitia is a loose connective tissue that contains type I collagen, nerves,

fibroblasts, and some elastin fibers. In some arteries, the adventitia also contains

a vascular network called the vasa vasorum, which provides nutritional support to

the outer regions of the artery wall. Biomechanically, the adventitia helps to tether

the artery to the surrounding connective tissue.
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Figure 4.16

Pressure–radius relationship for the carotid arteries of normotensive and hypertensive rats measured under static
conditions. The symbols are experimental measurements averaged over six or more rats, the error bars represent
standard deviation, and the lines are the fit of a constitutive model to the experimental data. Each graph has three
datasets with different vascular smooth muscle (VSM) tone: fully relaxed VSM (©), normal VSM tone (∗), and
maximally contracted VSM (�). It can be seen that the state of the vascular smooth muscle has a profound effect on the
mechanical properties of the artery wall, and that the contribution of vascular smooth muscle is different in normotensive
and hypertensive arteries. Reproduced from Zulliger et al. [20] with permission of the American Physiological Society.

The media is the most important layer for determining the biomechanical prop-

erties of the artery wall. It contains smooth muscle cells, elastin, types I, III, and V

collagen, and proteoglycans. Smooth muscle cells are oriented circumferentially

and, as can be seen from Fig. 4.16, have an important influence on arterial stiffness,

especially in the smaller arteries. They also provide control of arterial caliber. The

collagen is oriented largely circumferentially [21] with a slight helical pattern. The

relative proportion of elastin to collagen changes with position in the vascular tree:

in the dog, the proportion of elastin in the thoracic aorta is about 60%, but this

value decreases significantly near the diaphragm and then gradually falls to about

20% for the peripheral arteries [8]. As elastin content falls, smooth muscle content

increases, and arteries are, therefore, classified as being either elastic (the large

central arteries) or muscular (the smaller peripheral arteries).

As we will see in Chapter 9, most biological materials demonstrate highly non-

linear stress–strain behavior, and the artery wall is no exception. Figure 4.16 shows

pressure–radius data gathered from static inflation tests on excised rat carotid

arteries. In these tests, a segment of artery is excised and mounted on a test apparatus

that allows the artery lumen to be pressurized while the artery is bathed in a

physiological saline solution. The outer arterial diameter is then measured as the

lumenal pressure is increased. For a linearly elastic, thin-walled artery undergoing
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small deformations, a linear pressure–radius relationship is expected. It can be seen

from the data in Fig. 4.16 that a linear relationship is not present, with the artery

experiencing significant stiffening as the lumenal pressure exceeds approximately

15 kPa (110 mmHg) in the relaxed state. This reflects the strain-stiffening behavior

of the collagen and elastin in the artery wall.

In addition to its non-linearity, the artery wall is anisotropic (stiffness is different

in different directions) and viscoelastic. Therefore, it is not possible to characterize

the stiffness of a given artery wall completely by a single number, such as a Young’s

modulus. Nonetheless, it is possible to make operational measurements of the

stiffness of the artery by observing the change in outer radius, �Ro, as the lumenal

pressure is varied. This leads to a quantity called the “pressure–strain” modulus,

E p, defined by [22]

E p = Ro

�p

�Ro

, (4.15)

where Ro is the average outer radius of the artery as the pressure is changed by �p.

Measured values of this quantity for arteries in humans are shown in Table 4.2.

Based on work by Bergel for the distension of an isotropic, thick-walled elastic

tube (see summary in Milnor [4]), Gow and Taylor [29] related E p to the incre-

mental Young’s modulus for the artery wall, Einc, by the expression

Einc = E p

2(1 − ν2)

(
1 − t

Ro

)2

1 −
(

1 − t

Ro

)2
(4.16)

where t is artery wall thickness and ν is Poisson’s ratio. This should be interpreted

as a circumferential elastic modulus: Eθθ . The value of the ratio t/Ro depends on

age and increases with distance from the heart, but a typical value for humans aged

36–52 years is approximately 0.15 [8]. Using this value, as well as a Poisson’s

ratio of 0.5, we compute from Equation (4.16) that Einc ≈ 4E p. Using this, as

well as the values in Table 4.2, we see that incremental Young’s modulus values

range from about 3 × 106 to 20 × 106 dynes/cm2 for the systemic arteries. A more

careful analysis, accounting for variations in wall thickness with position, gives

elastic modulus values between 8 × 106 and 25 × 106 dynes/cm2 [8]. Numerous

constitutive relationships for vessel walls have been developed and have been

summarized by Vito and Dixon [30].

4.3.4 Elastic waves

We now turn to the important question of how pressure pulses are propagated

throughout the arterial tree. As will be seen, they travel as transverse elastic waves
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Table 4.2. Values of the “pressure–strain modulus”, Ep, and other arterial parameters in humans. From
more complete listings in Milnor [4] and Nichols and O’ Rourke [8], except the values for aortic root.

Artery No.a R0 (cm)b Pressure Radial Ep (dyn/cm2)d Source
(mmHg) pulsation
(mmHg) (%)c

Aortic roote 1 1.6 – ±4.7 – Jin et al. [23]

Ascending
aorta

10 1.42 79–111 ±2.9 0.76 × 106 Patel and Fry [24]

Thoracic
aorta

12 1.17 98–174 ±2.6 1.26 × 106 Luchsinger et al. [25]

Femoral 6 0.31 85–113 ±0.6 4.33 × 106 Patel et al. [24]

Carotid 11 0.44 126–138 ±0.5 6.08 × 106 Patel et al. [24]

Carotid 16 0.40 96 ±7.4 0.49 × 106 Arndt [26]

Carotid 109 – – – 0.63 × 106 Riley et al. [27]

Pulmonary
(main)

8 1.35 16 ±5.6 0.16 × 106 Greenfield and
Griggs [28]

Pulmonary
(left)

5 1.07 25 ±6.2 0.17 × 106 Luchsinger et al. [25]

Pulmonary
(right)

13 1.13 27 ±5.8 0.16 × 106 Luchsinger et al. [25]

Pulmonary
(main)

8 1.43 18–22 ±5.4 0.16 × 106 Patel et al. [24]

a Number of arteries studied.
b Mean outer radius.
c Pulsation about the mean radius from normal pulse pressures (i.e., 100 × one-half the total radial excursion in each cardiac
cycle (systolic–diastolic) divided by the average radius).
d Calculated from Equation (4.15) using total excursion of pressure and radius during natural pulsations; therefore represents a
dynamic modulus.
e Measured using MRI.

within the walls of the artery. The physics is similar to the water hammer phe-

nomenon, except that essentially all the elastic energy is stored in the artery walls

rather than in compression of the blood.

To analyze elastic wave propagation in greater detail, we consider the simplest

possible case of a long straight tube with constant radius and a linearly elastic wall

material. We will suppose that the tube is filled with an incompressible inviscid

fluid. For the initial stages of the discussion, we will also suppose that the fluid

in the tube is (on average) at rest. In other words, there is no net flow in the tube,

although, as we will see, the fluid can oscillate back and forth. We also assume

that the pressure at one end of the tube is varied periodically, corresponding to the

heart pumping at the root of the aorta. As we show below, this periodic variation
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C0

1 2 3

Figure 4.17

Schematic showing fluid movement in a distensible artery in response to a locally elevated pressure. Fluid elements are
represented by squares. See text for definitions of locations 1©, 2©, and 3©. Note that pressure is maximum at 1©. c0 is
the elastic wave speed. Note that this figure is not to scale: wavelengths are much longer in the arterial system, and
distensions are less severe than shown here.

in the pressure produces an elastic distension wave within the tube wall. We will

denote the velocity of this wave by c.

Why is there a distension wave? Suppose that at some location (e.g., site 1, in

Fig. 4.17) the pressure is locally elevated so that the wall is locally distended. Then

fluid will be displaced from regions of high pressure to those of low pressure (e.g.,

from just to the right of site 1 to site 2 in Fig. 4.17). If the tube were rigid, this would

cause fluid to be displaced all the way down the tube, which would be resisted by

the inertia of the fluid filling the tube. In the case of a distensible tube, inertia still

resists axial fluid displacement, but an additional physical mechanism exists: fluid

can move to site 2 by locally distending the tube at this location. In so doing, the

pressure is reduced at site 1 and elevated at site 2, and the distension wave shifts

to the right. The same process is then repeated from site 2 to site 3 and so on, with

the net result that a pressure wave is propagated down the artery.

Some notes on this phenomenon are in order:

1. We re-emphasize that fluid is not moving along the tube. Fluid just to the right

of site 1 moves slightly to the right in the above scenario, but only enough to

cause fluid displacement at site 2. When the next bulge travels down the tube

to cause distension at point 1, the displaced fluid packet moves back towards

site 1. Thus, fluid particles execute back-and-forth oscillatory motions but

never go anywhere in the sense that their mean (cycle-averaged) velocity is

zero.

2. A fluid packet just to the left of site 1 moves to the left in the above discussion

and so contributes to the next “bulge” traveling down the tube.

3. The entire process depends critically on a balance between fluid inertia and

wall distension. If fluid inertia is large, then relatively more wall distension

will occur. On the other hand, if the wall is very stiff, then less distension
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will occur and fluid particles will oscillate back and forth over a greater

distance.

4. The same process will occur if an oscillatory flow (with zero mean) is imposed

at one end of the tube, rather than an oscillatory pressure.

We wish to estimate the wave speed c. Based on the above discussion, we expect

that this will depend on the elastic properties of the tube, as well as on the inertia

of the fluid. We characterize the tube’s elastic properties by its distensibility β

β = 1

A

dA

dp
= 2

D

dD

dp
≈ 2

D

�D

�p
, (4.17)

where A is the tube cross-sectional area, D is the tube diameter, p is the transmural

pressure, and we have assumed that the tube cross-section remains circular. Equa-

tion (4.17) simply indicates that β is proportional to the fractional change in tube

diameter induced by a unit change in transmural pressure.

It is simplest to estimate c by dimensional analysis. In addition to β, we expect

that the wave speed will depend on the fluid inertia, which is characterized by the

fluid density, ρ. The relevant parameters have dimensions of8

[c] ∼ LT −1 (4.18)

[β] ∼ M−1LT 2 (4.19)

[ρ] ∼ M L−3. (4.20)

From these three parameters, one 	-group can be formed, namely 	 = ρβc2.

Since there is only one dimensionless group, 	 must be a constant, and

thus

c2 = constant

ρβ
. (4.21)

A more detailed analysis (presented in Box 4.3, below) shows that the constant

in Equation (4.21) is equal to 1, so we may write

c2 = 1

ρβ
. (4.22)

Equation (4.22) describes how the pulse wave speed c depends on artery disten-

sibility and fluid density. For practical application of this result, it is convenient

to relate arterial distensibility β to the material and geometric properties of the

8 The syntax [·] ˜ means “has dimensions of”, where M represents mass, L represents length, and T represents time.
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Figure 4.18

Schematic showing forces acting on a half-section of artery wall. The internal diameter of the artery is D and p is the
transmural pressure. The wall tension T is per unit depth into the page.

artery wall, as follows. We consider a section of artery of internal diameter D and

wall thickness t and assume that the thickness is small, i.e., that t � D. The artery

is pressurized, with a transmural (internal minus external) pressure p, as shown

in Fig. 4.18. This transmural pressure is supported by stresses in the artery wall,

which, by virtue of the assumption t � D, are hoop stresses.

Denoting the hoop stresses by σ , we may express the tension within the wall

per unit depth into the page, T, as T = σ t . A static force balance in the vertical

direction yields pD = 2T , so the hoop stress may be written as

σ = p
D

2t
. (4.23)

Assuming that the wall material acts as a Hookean solid with modulus E, we may

write the circumferential strain in the arterial wall, ε, as

ε = p

[
D

2Et

]
. (4.24)

If we now consider only small deformations, then the diameter and wall thickness

will not change substantially, and to first order, we may treat the bracketed term in

Equation (4.24) as a constant. The increase in strain �ε resulting from an increment

in transmural pressure �p is, therefore, approximated by

�ε = �p

[
D

2Et

]
. (4.25)

However, the change in circumferential strain is equal to �D/D, so we may

combine Equations (4.17) and (4.25) to write

β = 2�ε

�p
= D

Et
. (4.26)
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From this, the wave speed can be written as:

c0 =
√

Et

ρD
. (4.27)

The wave speed given in Equation (4.27) is known as the Korteweg–Moens wave

speed, and is related to the water hammer wave speed (see Box 4.3). Note that a

subscript 0 has been added to c in this expression, since the Korteweg–Moens wave

speed represents an idealized wave speed that is only strictly true under a number

of simplifying assumptions:

� The artery can be treated as thin walled. In practice this is not the case, since

arterial wall thicknesses are usually 4 to 10% of arterial diameter [5]. Problem

4.4 at the end of this chapter considers the effects of finite wall thickness on

wave speed.
� The deformations of the artery wall are small. In vivo, this is a reasonable

assumption, as most measurements indicate that arterial diameter varies by

approximately ±4% in the systemic arteries (Table 4.2).
� The artery wall can be treated as a Hookean solid. This is definitely not true,

since artery walls exhibit both elastic non-linearity and viscoelastic behavior.

If the constant E in Equation (4.27) is interpreted as an incremental Young’s

modulus (tangent modulus), then non-linear effects are not too important in

view of the relatively small deformations typically experienced in vivo.

Despite the limitations of the Korteweg–Moens wave speed formula, it is approxi-

mately correct and is useful for first-order treatment of problems involving elastic

wave propagation in artery walls.

It is of interest to calculate c0 for a normal artery. We will assume typical property

values shown below, based on measured data.9

ρ = 1.06 g/cm3 (blood)

t/D = 0.07 (typical value)

E = 8 × 105 to 20 × 105 Pa (typical value)

For purposes of calculation, we will assume a Young’s modulus of

E = 10 × 105 Pa = 10 × 106 dynes/cm2. The Korteweg–Moens wave speed is

9 As discussed above, values of t/D and E depend on the artery, age and health of the subject.
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Box 4.2 A more complete derivation of Equation (4.22)

We will model the artery as a long, straight cylindrical tube of radius R(x, t)
filled with an incompressible, inviscid fluid (Fig. 4.19). We seek to derive an

equation describing the propagation of a transverse elastic wave along the

artery, that is, an equation describing the dependence of R on axial position x
and time t. To accomplish this, we will apply conservation of fluid mass, a

fluid momentum balance (unsteady Bernoulli equation), and a constitutive

relationship for the tube wall. Assumptions made at each step in the derivation

will be pointed out.

Fluid in, u Fluid out, u + du

 dx

 R

Figure 4.19

Definition sketch showing an arterial segment. The radius of the artery is R, which depends on axial position x and time t.
Average fluid velocity entering the segment is u, exit velocity is u + du, and length of segment is dx.

First, we apply conservation of mass (fluid continuity). We then consider a

small pillbox-shaped control volume of radius R and length dx (Fig. 4.19).

Next, observe that the pressure pulse travels as a wave whose wavelength is

much longer than the arterial radius. This implies that on the length scale of

the control volume, the dependence of R on axial position can be neglected.

Denoting the cross-sectionally averaged axial velocity by u, we see that fluid

accumulation in the control volume is balanced by net fluid influx. For an

incompressible fluid, this can be expressed as

∂

∂t
[π R2 dx] + π R2 du = 0. (4.28)

In the limit as dx approaches 0, this can be rewritten as

∂u

∂x
+ 2

R

∂ R

∂t
= 0. (4.29)

Next, we apply a momentum balance, embodied in the unsteady Bernoulli

equation [31]. Because the fluid is inviscid, the loss terms can be neglected.

Applying this equation between two points 1 and 2, located a distance dx apart,
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and neglecting elevation differences between points 1 and 2, we obtain

u2
1

2g
+ p1

ρg
= u2

2

2g
+ p2

ρg
+ 1

g

∫ 2

1

∂u

∂t
ds. (4.30)

Note that in writing Bernoulli’s equation in this way, we have assumed that

the velocity profile is uniform across the tube, which is acceptable for an

inviscid fluid when wall deformations are small. We now use the fact that

points 1 and 2 are very close, and thus in view of the long wavelength of the

pressure pulse, we can assume that ∂u/∂t is constant over dx, so that the above

integral equals ∂u/∂t dx . Similarly, for small wall deformations and a long

pressure pulse, u2
1 − u2

2 can be neglected. Finally, in the limit as dx becomes

small, (p2 − p1)/dx equals the axial pressure gradient, dp/dx. Thus, the

momentum equation simply reduces to a balance between fluid inertia and the

axial pressure gradient,

ρ
∂u

∂t
= −∂p

∂x
. (4.31)

Finally, we write the constitutive equation for the tube wall, which is simply

Equation (4.17) modified to account for infinitesimal changes in pressure and

tube radius:

β = 2

R

dR

dp
. (4.32)

If the inertia of the wall and surrounding tissue can be neglected, and if the

wall is purely elastic, then variations in pressure will be in phase with

variations in radius. In this case β will be a real number, otherwise it will be

complex.

If we combine Equations (4.31) and (4.32), and define c2 = 1/(ρβ), we

obtain

R
∂u

∂t
+ 2c2 ∂ R

∂x
= 0. (4.33)

Differentiating this equation with respect to x, and Equation (4.29) with

respect to t, combining the results, and assuming small deformations (i.e.,

neglecting first-order variations in R), yields

∂2 R

∂t2
− c2 ∂2 R

∂x2
= 0. (4.34)

This is a hyperbolic equation for R(x, t), which admits traveling wave

solutions of the form R(x, t) = f (x ± ct), where f is an arbitrary function.

This proves that, under the stated assumptions, transverse elastic waves travel

at speed 1/
√

ρβ.
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Box 4.3 Derivation of the Korteweg–Moens wave speed

The Korteweg–Moens wave speed can also be derived from the formula for

water hammer wave speed

c =
√√√√ K/ρ

1 + K D

Et

(4.35)

where K is the bulk modulus of compressibility of the fluid in the tube. In the

case of an artery filled with blood Et � KD, and in this limit Equation (4.35)

reduces to Equation (4.27).

then given by Equation (4.27) as

c0 =
√

(10 × 106)( 0.07)

1.06

cm3

g

g

cm s2
= 812 cm/s. (4.36)

In an adult human, the distance from the heart to the wrist is approximately 90 cm.

Therefore, it takes about (90 cm)/(812 cm/s) = 0.11 s for the pressure wave to

reach the wrist from the heart. (When we palpate this pressure wave we feel “the

pulse.”) More generally, it is evident that arteries at different distances from the

heart will distend at different times during the cardiac cycle. This important fact

invalidates the Windkessel model.

Based on the expression for the Korteweg–Moens wave speed, it can be seen

that c0 will increase if either E or t increases. This occurs naturally in aging: the

arteries of elderly people are stiffer and have thicker walls than those of young

people. Hence, we expect wave speed (c0) to increase with age, which is confirmed

by data from Caro et al. [17], who quote values of c0 of 520 and 860 cm/s at ages

5 and 84 years, respectively.

4.3.5 Pressure–flow relationships: purely oscillatory flow

In the previous section it was pointed out that the Windkessel model is invalid

because different parts of the arterial tree distend at different times. A second

problem with the Windkessel model is that even if the peak arterial pressure

occurred simultaneously for all arteries throughout the body, the detailed shape

of the pressure–time waveform is different at different arterial locations, as shown

by Fig. 4.14. This is because of the presence of bifurcations (branches), bends, and
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arterial taper, all of which act to modify the shape of the pressure pulse. In order

to quantify these effects, it is necessary to develop relationships between pressure

and flow in oscillatory systems, to which we now turn.

To recap, the combination of distensible artery walls and a time-varying (peri-

odic) pressure input from the heart causes elastic waves (pressure pulses) to travel

along the arteries. Mathematically, the pressure, therefore, depends on time t as

well as on axial location in the arterial tree, x. If we assume the simplest possible

case, in which the pressure varies harmonically in time with zero mean at a given

location, we can express the pressure as10

p(x, t) = p0 cos

[
2π

λ
(ct − x)

]

= p0 cos

[
ωt − 2πx

λ

]
. (4.37)

Here p0 and λ are the amplitude and wavelength of the pressure pulse, respectively,

while ω is its circular frequency,

ω = 2πc

λ
. (4.38)

We can differentiate Equation (4.37) to obtain the pressure gradient

∂p

∂x
= 2π

λ
p0 sin

[
ωt − 2πx

λ

]
, (4.39)

which is responsible for forcing the oscillatory fluid motion.

The pressure gradient ∂p/∂x can be related to blood velocity by using Newton’s

second law. It is assumed that the blood is inviscid (no shear stresses are present)

and that fluid motion is purely axial, i.e., that vessel wall displacement is small.

If we then consider a thin fluid element with cross-sectional area A and volume V
(Fig. 4.20) we may write

+−→
∑

Fx = ρ V
∂u

∂t

−dp A = ρ dx A
∂u

∂t
, (4.40)

which yields the equation

ρ
∂u

∂t
= −∂p

∂x
. (4.41)

10 To convince yourself that this is the correct form of p(x, t), note that p is constant if ct − x = constant, i.e., if x = ct +
constant. This, therefore, represents a wave propagating in the positive x-direction at velocity c.
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 dx

u(t )

p + dpp

x

Figure 4.20

Force balance on a fluid element of length dx and cross-sectional area A in unsteady flow. The fluid is assumed to be
inviscid.

Using Equation (4.39) for the pressure gradient, we can integrate Equation (4.41)

to obtain

u(x, t) = 2π

ρωλ
p0 cos

[
ωt − 2πx

λ

]
= 2π

ρωλ
p(x, t). (4.42)

Thus, using Equation (4.38), the axial fluid velocity can be related to the pressure

by

u(x, t) = p(x, t)

ρc
. (4.43)

Note that Equation (4.42) implies that the magnitude of u will be small if ρ

or ω is large. The former case corresponds to fluid with a great deal of inertia,

which resists motion driven by the oscillatory pressure gradient ∂p/∂x . The latter

case corresponds to frequencies so high that fluid elements only just get started

moving in one direction before the pressure gradient changes sign; as a result, the

net motion and velocity are never allowed to become large.

In an inviscid flow, the velocity profile is uniform across the tube. Consequently,

the instantaneous flow rate Q(x, t) is simply the tube cross-sectional area A mul-

tiplied by u(x, t), i.e.,

Q(x, t) = A

ρc
p(x, t). (4.44)

We have previously used the analogy between fluid flow and current flow to define

a flow resistance for steady flow (ratio of pressure drop to flow rate; see Box 4.4).

By similar analogy, we define the characteristic impedance, Z0, as the ratio of

pressure to flow in an oscillatory system

Z0 = p

Q
. (4.45)
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Box 4.4 The electrical/fluid flow analogy

The electrical/fluid flow analogy can be made more precise by considering

which physical features contribute to characteristic impedance, as tabulated

below.

Physical effect Name Electrical analogue

Viscous flow resistance Resistance Resistance

Elastic vessel walls Compliance Capacitance

Fluid inertia Inertance Inductance

The analogy between electrical capacitance and fluid compliance is a little bit

tricky; an electrical capacitor has an inlet and an outlet, and the current in must

equal the current out. A fluid compliance chamber often has only one inlet,

and flow rate in does not have to equal flow rate out. This can be handled by

suitable placement of the elements in the electrical and fluid circuits (e.g.,

Fig. 4.13).

From the above discussion, we can write

Z0 = ρc

A
(4.46)

for an inviscid fluid. Note that Z0 is a real number (but see Section 4.3.7).

It is important to understand the meanings of p and Q in the above derivation:

p is the oscillatory pressure (measured about some mean value), while Q is the

corresponding oscillatory flow. For flow with zero mean, as considered above, that

means that Q can be thought of as a “sloshing” flow, in which fluid oscillates back

and forth but (on average) never goes anywhere.

4.3.6 Pressure–flow relationships: mean flow effects

To this point, we have considered only the case of a purely oscillatory pressure

gradient, which leads to a purely oscillatory flow (i.e., one in which the flow

averaged over a single cardiac cycle is zero). Evidently this is not the situation

in vivo, since the cycle-averaged flow rate in the cardiovascular system is non-

zero. This can be accounted for by adding a steady mean flow (and corresponding

pressure gradient) to the above description. In this case, the motion of a fluid
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particle consists of a steady translation with a sinusoidal oscillation superimposed

on it. The steady component of the flow does not affect the pulse propagation.

4.3.7 Pressure–flow relationships: deviations from ideality

The model that we have developed is quite idealized, corresponding to an infinitely

long straight tube filled with an inviscid fluid. This situation does not occur physi-

ologically, and we must, therefore, examine what effect relaxing each of the above

assumptions has on pulse wave propagation and flow dynamics. The most impor-

tant effects are described below.

Viscous losses
In the analysis above, no account has been taken of viscous losses, which will

arise from the action of fluid viscosity and arterial wall viscoelasticity. Generally

speaking, viscosity dissipates energy and, therefore, diminishes the amplitude of

the pressure pulse. It also decreases c0, since it tends to impede fluid motion.

More specifically, inclusion of fluid viscosity affects the above analysis in two

ways. First, the amplitude of Q(x, t) is reduced compared with that predicted by

Equation (4.44). Second, the flow rate waveform lags the pressure waveform. These

effects can be summarized by [8]

Q(x, t) = AM ′
10

ρc
p(x, t − φ) (4.47)

where φ = ε10/ω (compare Equation [4.44]). The coefficients M ′
10 and ε10 have

been computed as a function of flow parameters [8]; M ′
10 is <1. Because of phase

differences between p and Q in this case, Z0 becomes complex.

Variation of arterial properties
Moving distally (i.e., away from the heart), arteries typically become stiffer and

smaller in caliber. Examination of Equation (4.27) implies that the pulse wave speed

c0 will, therefore, increase distally. This causes the amplitude of the pressure pulse

to increase distally, and the amplitude of the flow waveform to decrease distally,

as the following qualitative argument shows.

Consider fluid moving from point 1 to point 2 in Fig. 4.17, where motion from

left to right is away from the heart. If the artery is smaller and stiffer at point 2,

a given fluid displacement will cause a proportionally larger pressure increase at

point 2 than would occur if arterial properties were uniform. In other words, if the

amplitude of the flow waveform is kept constant, the amplitude of the pressure

waveform will increase distally. If, however, the pressure wave amplitude is kept
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Figure 4.21

Matched records of pressure and blood velocity at different sites in dog arteries. Note the increase in the pressure wave
amplitude and the decrease in the flow wave amplitude with distance from the heart. Asc., ascending; Abd., abdominal;
Fem., femoral; Sap., saphenous. From Nichols and O’Rourke [8]. Reprinted by permission of Edward Arnold.

constant, then the amount of arterial “stretch” (and hence the oscillatory component

of the flow) will be smaller at point 2 than at point 1 (i.e., the amplitude of the flow

waveform will decrease distally).

In practice, neither the pressure nor the flow waveforms have constant ampli-

tude. Instead, the amplitude of the flow waveform decreases somewhat, while the

amplitude of the pressure pulse increases somewhat, moving distally in the arterial

tree (Fig. 4.21). This represents a compromise between the two scenarios outlined

in the previous paragraph.

Effects of branching and taper
The arteries are not infinitely long and straight, but rather are tapered, curved,

and typically delimited by branches (bifurcations) both upstream and down-

stream. These effects, particularly branching, have a major effect on pulse wave
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Figure 4.22

Sketch of an arterial bifurcation, showing the parent artery and two daughter arteries. The incident pressure pulse travels
from left to right; the reflected and transmitted pressure waves are also shown. The control volume used in the analysis is
shown by the dashed lines.

propagation. Here we analyze in some detail the behavior of the pressure wave at

a single bifurcation.

Consider an incident pressure pulse arriving at the bifurcation shown in

Fig. 4.22. The characteristic impedance of the daughter arteries will in general

be different from that of the parent artery, since c and A will differ from daughter to

parent. This means that the ratio of the pressure pulse amplitude to the flow pulse

amplitude must change as the pulse wave passes through the junction. In other

words, the impedance mismatch across the junction will force the amplitude of

the pressure pulse passing through the junction to be different from the amplitude

of the incident pressure pulse. Since the pressure pulse carries energy with it, and

there are no losses in the system, some energy must be reflected back into the

parent artery in the form of a reflected pressure wave. Hence, the junction gives

rise to both a transmitted and a reflected pressure pulse. We seek to characterize

the amplitude of these pulses in terms of arterial properties.

To develop such a characterization, the arteries and junction are treated as a one-

dimensional system in which pressure is uniform across the artery at each axial

station, while pressure and flow rate vary axially. The daughter tubes are assumed

to be identical. Consider a very thin control volume (thickness dx) positioned at

the junction (Fig. 4.22). Since the control volume is very thin, the mass within

it can be considered negligible. Consequently, the forces acting on fluid within

this control volume must sum to zero at every instant; if not, a finite force would

act on an infinitesimal mass, thereby producing an infinite acceleration. Since the



201 4.3 Arterial pulse propagation

Sum of incident
and reflected

Pressure

Incident

Transmitted

Junction

Reflected

x

Figure 4.23

Graph showing pressure as a function of axial distance x around the junction of Fig. 4.22 at a given instant. Note that the
dependence of pressure on x is harmonic, and that the sum of pressures upstream of the junction equals the pressure
downstream of the junction.

cross-sectional area of the control volume is identical on the upstream and down-

stream faces, and since pressure forces are the only forces acting, this implies that

the pressure on the upstream face of the control volume must balance the pressure

on the downstream face at every instant. The pressure on the upstream face has

two contributions, namely the incident and reflected pulse waves. Therefore, we

may state: the sum of the incident and reflected pressure pulses must equal the
transmitted pressure pulse (Fig. 4.23). Referring to Equation (4.37), we can write

the pressures at the junction as

pi(xjunction, t) = p0,i cos(ωt + θ ), (4.48)

pr(xjunction, t) = p0,r cos(ωt + θ ), (4.49)

pt(xjunction, t) = p0,t cos(ωt + θ ), (4.50)

where the subscripts i, r, and t refer to the incident, reflected, and transmitted waves,

respectively, and p0 refers to the amplitude of a pressure pulse. The force balance

can then be written as

[p0,i + p0,r] cos(ωt + θ ) = p0,t cos(ωt + θ ) (4.51)

which implies that the pressure pulse amplitudes must satisfy

p0,i + p0,r = p0,t. (4.52)
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In Equations (4.48) to (4.50), θ is a constant that depends on the location of

the junction, xjunction. The important fact is that ω and θ are the same for all three

pressure waves. This implies that the three pressure pulses are in phase, which

Equation (4.51) shows must be the case if the pressures are to balance at every

instant.11

The next step is to consider the volume flow rates entering the junction. Before

doing so, we must make a brief detour to discuss sign conventions. Although we

did not explicitly say so previously, our convention is that positive oscillatory flow

corresponds to the direction of propagation of the pressure wave.12 This means

that the reflected wave is producing a left-going “slosh” at the junction at the same

time as the incident and transmitted waves are producing a right-going “slosh.”

This will be important when we balance fluid mass, a task to which we now return.

As dx approaches zero, no fluid can be stored in the control volume, and thus the

volume flow rate entering the control volume must balance the volume flow rate

leaving at every instant. Adopting notation similar to that describing the pressure

waves, we write

Qi(xjunction, t) = Q0,i cos(ωt + θ ) (4.53)

Qr(xjunction, t) = −Q0,r cos(ωt + θ ) (4.54)

Qt(xjunction, t) = Q0,t cos(ωt + θ ) (4.55)

Note the sign conventions in these equations, where for positive Q0,r we must

add a negative sign on the right-hand side of equation (4.54) since it represents a

left-going “slosh.”

After accounting for the fact that there are two daughter vessels and for the sign

of Qr, setting the net flow into the control volume equal to zero yields

Q0,i − Q0,r = 2Q0,t (4.56)

We now use the definitions of characteristic impedance in the parent (subscript p)

and daughter (subscript d) tubes

Z0,p = p0,i

Q0,i

= p0,r

Q0,r

(4.57)

Z0,d = p0,t

Q0,t

(4.58)

11 The reader will note that there is another possibility: two of the pressure waves could be 180 degrees out of phase. But

this is the same as them being in phase but with one wave having a negative amplitude, so we need not consider this

case any further.
12 To convince yourself of this fact, examine Equation (4.44) and the subsequent derivation. It shows that for a

right-propagating wave, the oscillatory flow was taken as positive in the x-direction, i.e., rightwards. The situation is

different for a left-propagating wave: Equation (4.37) must be modified so that the minus sign in the bracketed term

becomes a plus sign. To maintain a positive impedance in this case, oscillatory flow must be taken as positive when it is

propagating leftward.
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to rewrite Equation (4.52) as

Z0,p

Z0,d

[Q0,i + Q0,r] = Q0,t (4.59)

A quantitative measure of the fraction of the incident pressure pulse transmitted

through the junction is the transmission ratio T, defined by

T = p0,t

p0,i

= Z0,d

Z0,p

Q0,t

Q0,i

(4.60)

Eliminating Q0,r between Equations (4.56) and (4.59) allows us to write T as

T = 2Z0,d

2Z0,p + Z0,d

(4.61)

Similarly, the reflected pulse ratio R is

R = p0,r

p0,i

= Z0,d − 2Z0,p

Z0,d + 2Z0,p

(4.62)

Several notes on these results are in order.

1. T is always positive, as Equation (4.61) shows. However, R can be positive,

negative, or zero. If R is zero, or nearly zero, the junction is said to be matched,

since all, or nearly all, of the pulse energy passes through the junction.

2. The maximum positive value of R is 1, which occurs when Z0,d 
 Z0,p.

This corresponds to the daughter tubes having a very high impedance, which

can occur, for example, if Ad � Ap. This situation is therefore called a

closed end reflection, analogous to what would occur if the end of the

artery was completely blocked. In this situation, Q0,t is close to zero, and

equation (4.56) shows that Q0,i ≈ Q0,r. The net pressure at the junction is

therefore

pnet(xjunction, t) = 2p0,i cos(ωt + θ ) (4.63)

since p0,i ≈ p0,r in this case. An entry to a capillary bed approximates this con-

dition. At such sites, the incident and reflected pressure waves are in phase,

while the incident and reflected flow waves are 180◦ out of phase. The mini-

mum value of R is −1, which occurs when Z0,d � Z0,p. This corresponds to

replacing the daughter tube with a reservoir and is called an open end reflec-

tion. In such a system, the pressure is effectively constant at the end of the tube,

and Equation (4.52) shows that p0,i = −p0,r. Thus, the incident and reflected

pressure waves are 180◦ out of phase, while the incident and reflected flow

waves are in phase. This case does not normally occur in vivo.
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3. Wave reflection occurs primarily at distal capillary beds in humans. Most other

junctions are fairly well matched.

4. Since the arterial tree is actually a complex branching network, with each

artery having its own reflection characteristics, the relationship between flow

and pressure at any given location is very complex, depending on the multiple

reflection sites throughout the artery. This in large part explains why the shape

of the flow and pressure waveforms changes throughout the arterial tree. At

any location, it is useful to characterize the net impedance of all downstream

elements by a lumped quantity called the input impedance. Most measurements

in humans have been done for the input impedance at the root of the aorta,

that being the impedance seen by the heart (or by an artificial heart). This is

particularly important since to obtain maximum effectiveness and output from

an artificial heart, the heart’s output should be tuned to the input impedance of

the aorta.

5. Real pulse waveforms are not simple sinusoids but have more complex shapes.

Therefore, it is necessary to decompose the waveforms into individual Fourier

modes, and to know the impedance for each mode. This leads to plots such as

that shown in Fig. 4.24.

From the above discussion, it should be clear that some reflection will occur when-

ever the characteristic impedance changes with location in an artery. Therefore,

arterial taper, stiffening, and bifurcations can all be considered as special cases of

a general change in Z0 with location.

4.4 The capillaries

The capillaries are the “business end” of the circulatory system where mass

is exchanged between the blood and surrounding tissue. More precisely, fluid

and dissolved species are exchanged between the blood and the extracellular

fluid that bathes the cells in the tissue surrounding the capillary. There is then

an exchange of dissolved species between the cells and the extracellular fluid.

This can be envisioned as mass exchange between three fluid compartments:

the blood, the extracellular fluid, and the intracellular fluid. From the above

discussion, it is clear that a necessary step in blood–cellular fluid exchange is

fluid transport across the capillary wall. In this section we examine this fluid

transport.

The structure of the endothelium controls the ease with which fluid and dissolved

species can cross the capillary wall. Three types of endothelium are recognized:
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Figure 4.24

Model used to estimate the input impedance of the human arterial tree. (A) The major arterial segments used in the
model. (B) The measured and calculated values of the ascending aortic input impedance for different harmonics.
(Because of viscous effects, the impedance is a complex number, and, therefore, phase and magnitude must be
displayed to characterize the impedance.) Experimental data are gathered from seven human subjects (symbols), and the
calculated values (thick line) are obtained from the model shown in (A). From Nichols and O’Rourke [8]. Reprinted by
permission of Edward Arnold.

Continuous endothelium. Adjacent endothelial cells are tightly joined, and little

fluid passes across the endothelium. In such capillaries, solute movement across

the capillary wall occurs by active cellular transport in a controlled fashion. This

type of capillary is typical in tissues where the composition of the extravascular

environment is rigidly controlled (e.g., the brain).

Fenestrated endothelium. Similar to continuous endothelium, except that there

are isolated locations where the endothelium becomes extremely thin enabling

opposite surfaces of the membrane to join to form fenestrae (Fig. 4.25). This type

of endothelium is more permeable than continuous endothelium.



Figure 4.25

Transmission electron micrograph of a fenestrated capillary within the mucosa of the guinea-pig ileum (third section
of intestine). The fenestrae are shown at higher magnification in the lower panel. a, epithelial absorbtive cells;
b, basement membrane; c, collagen fibrils; e, endothelial cell; f, fibroblast; L, lumen; m, smooth muscle cell; n, nerve;
p, fenestrations. From Caro et al. [17]. Reproduced with kind permission of Oxford University Press and Dr. G. Gabella,
University College, London.



207 4.4 The capillaries

Pressure
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Occluding
probe

Figure 4.26

Diagram showing Landis’ experiment, in which a capillary is occluded at its upstream end, and red cell motion is
observed. After occlusion, the red cells pack slowly towards the probe, moving a distance L – L′ in a time t. The vessel
internal diameter is d. Modified from Caro et al. [17]. Reproduced with kind permission of Oxford University Press.

Discontinuous endothelium. There are frank intercellular gaps, allowing rela-

tively free passage of fluid and solutes across the endothelial layer.

4.4.1 Capillary filtration: the experiments of Landis

Now that the nature of the capillary endothelium is better understood, we proceed to

a qualitative description of fluid flow patterns across the capillary walls. A crucial

set of experiments in this area was conducted by Landis in 1927 [32]. Using in vivo

microscopy, he was able to examine the motion of red cells in a capillary in a living

animal, while manipulating this capillary. More specifically, he first occluded a

capillary at the arteriolar (upstream) end so that the capillary was connected to

the rest of the vascular tree through its venular (downstream) end. This caused the

pressure in the capillary to be equal to venular pressure and prevented net flow

of blood along the capillary (Fig. 4.26). Landis noted that the red cells within the

occluded capillary oscillated back and forth, as might be expected since the venular

pressure was changing somewhat during each cardiac cycle. More interestingly,

however, the red cells slowly moved apart from one another. When the experiment

was repeated with the venular end of the capillary occluded, so that capillary

pressure equaled local arteriolar pressure, the finding was reversed: the red cells

in the occluded capillary packed closer together.

In order to interpret these data, it must be realized that under normal circum-

stances red cells cannot cross the capillary walls, but (for the capillaries that Landis

used) fluid is quite highly permeable across the capillary wall. Therefore, a gradual

spreading apart of red cells implies that fluid is flowing into the capillary from the

surrounding tissue. Conversely, a packing together of red cells means that fluid

is leaving the capillary and flowing into the surrounding tissue. Landis, therefore,

concluded that:
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Figure 4.27

Diagram of fluid motion between capillary and surrounding tissue, showing fluid leaving the blood at the arteriolar end
and re-entering the blood at the venular end of the capillary. There is also some fluid resorption from tissue into the
postcapillary venule (not shown).

� when capillary pressure equals arteriolar pressure, there is net fluid leakage out

of the capillary
� when capillary pressure equals venular pressure, there is net fluid leakage into

the capillary.

Since pressure normally varies from arteriolar pressure to venular pressure over

the length of a capillary, in the normal course of events, fluid must leave the

blood for the surrounding tissues at the arteriolar end and re-enter the blood at

the venular end (Fig. 4.27). Some thought will indicate that this is, in fact, a very

efficient mechanism for solute exchange between blood and surrounding tissue.

These experiments confirmed a postulate first advanced by the British physiologist

Starling, and so this pattern of filtration and resorption, or more specifically, the

forces that drive this pattern (see below), is called Starling’s hypothesis.
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All seems to make sense, until measurements are made of the pressures within

the capillary and in the surrounding tissue. These show that capillary pressure at

the venular end exceeds surrounding tissue pressure, which indicates that fluid

re-entering the capillary is flowing from a region of low pressure to one of high

pressure. For slow flows such as are present in tissue, this appears to violate the

laws of motion. This paradox is resolved when it is realized that in addition to a

fluid pressure difference across the capillary wall, there is a second force driving

the fluid, namely the osmotic pressure. To understand this effect, it is necessary to

make a slight diversion into the world of osmotic pressure.

4.4.2 Osmotic pressure

Osmotic pressure is a thermodynamically generated net force on solvent molecules

that requires three things:

� solvent
� one (or more) solutes
� a semipermeable membrane.13

Consider a two-chambered vessel divided by a semipermeable membrane. We

fill both chambers with solvent and dissolve different amounts of solute in each

chamber, so that the concentrations of the resulting two solutions are different

(Fig. 4.28). There is then a net effective force causing solvent molecules to cross

the membrane from the low concentration solution to the higher concentration

solution. This driving force can be interpreted as an equivalent driving pressure,

known as the osmotic pressure (symbol: π ).

As a specific example, consider a vessel with two chambers separated by a

membrane that is permeable to water but not to sodium (Na+) or chloride (Cl−)

ions. On one side of the barrier is pure water, while the other side contains a NaCl

solution. The pressure and osmotic pressure on side 1 are p1 and π1, respectively;

on side 2 they are p2 and π2.

It can be shown both experimentally and theoretically that the driving force for

solvent flow across the membrane is not the fluid pressure p, but instead is the

fluid pressure minus the osmotic pressure, p − π . Thus, the flux of solvent from

chamber 1 to chamber 2, Q12, is written as

Q12 = constant [(p1 − π1) − (p2 − π2)] . (4.64)

13 A semipermeable membrane or barrier is a device that allows solvent molecules to pass freely, while preventing or

impeding the passage of solute molecules. In the context of the present discussion, the solutes are plasma proteins,

while the barrier is the capillary wall. Physiologists sometimes call an osmotic pressure generated by proteins oncotic
pressure.
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Figure 4.28

A semipermeable membrane separating two chambers, one of which contains pure water and the other of which contains
a NaCl solution. The presence of salt generates an osmotic pressure in chamber 2, leading to a net solvent flow Q12

when p1 = p2.

In other words, the system in Fig. 4.28 is at equilibrium (no fluid crossing the

membrane) when p1 = p2 + π1 − π2. Thus, if π1 �= π2, the pressures on the two

sides of the membrane will not be equal at equilibrium.

We are used to the conventional pressure p. What about π? We cannot measure

it directly; however, empirically and theoretically, π is a function of the molar

concentration of solute, c, and the temperature of the solution. For an ideal solution,

π is given by van’t Hoff’s law

π = RT
∑

j

cj (4.65)

where R is the universal gas constant (8.314 J/mol K), T is the absolute tempera-

ture of the solution, and cj is the molar concentration of species j in solution. This

equation holds if the solution is sufficiently dilute that interactions between sol-

vent molecules can be neglected.14 As an example, consider the system shown in

Fig. 4.28, taking the NaCl concentration as 1 molar (1 M or 1 mol/l) and the tem-

perature as 300 K. What is π?

To answer this question, we note that there is no salt on side 1, so π1 equals zero.

One side 2, NaCl dissociates into two species, Na+ and Cl−. This dissociation is

nearly complete, so that to a very good approximation, each of Na+ and Cl− has

a concentration in solution of 1 molar. Assuming ideal behavior, we, therefore,

14 In real life, solutions are not ideal, and van’t Hoff’s law must be modified by adding an empirical activity coefficient γj ,

such that π = RT �γjcj .
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calculate that

π2 =
(

8.314
J

mol K

)
(300 K)

(
2

mol

liter

) (
liter

10−3 m3

)
= 4.99 × 106 Pa (4.66)

This is a pressure of 49.2 atmospheres, or 724 psi, equivalent to a column of water

497 metres high! Thus, at equilibrium in the above system, the transmembrane

pressure difference p2 − p1 is 724 psi.15 This shows that very substantial osmotic

pressures can be generated by modestly concentrated solutions.

When dealing with mixtures of ions, each ionic species contributes to π . The

total ionic concentration is, therefore, of interest and is expressed in units of osmo-
lars (abbreviation: Osm). The osmolarity of a solution is simply the sum of the

molar concentrations of each ionic species. In the above example, we, therefore,

have a 2 osmolar solution. Nearly all physiological fluids have an osmolarity of

approximately 285 milliosmolar (mOsm).

4.4.3 Quantitative analysis of capillary leakage

With this background, it is possible to return to the capillary filtration problem

and to estimate the net potential that drives fluid across the capillary wall. Treating

the capillary as chamber 2 and the surrounding tissue as chamber 1, the driving

potential for fluid to leave the capillary can be written as

driving potential ∼ (p − π )capillary − (p − π )tissue = �p − �π (4.67)

where �p = pcapillary − ptissue and �π = πcapillary − πtissue. For dogs and humans,

the relevant numbers are:

(p − π )tissue = −5 cmH2O

πcapillary = 25 cmH2O

pcapillary = 40 to 10 cmH2O (arteriolar to venular).

It is difficult to measure p or π alone for the surrounding tissue, but a reasonable

estimate is πtissue ≈ 10 cmH2O and ptissue ≈ 5 cmH2O. We then obtain

�p ≈ 35 to 10 cmH2O (arteriolar to venular)

�π = 15 cmH2O.

In other words, the fluid pressure difference is always such as to force fluid out of

the capillary, but on the venular end, this difference is overcome by the osmotic

pressure difference, which draws fluid from the tissue into the blood (Fig. 4.29).

15 In order to remember the direction in which the osmotic pressure acts, it is convenient to think that the solvent “wants”

to dilute the solution by flowing from chamber 1 to chamber 2. In order to counteract this tendency and prevent solvent

flow, a higher pressure in chamber 2 is needed.
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Figure 4.29

Filtration and resorption across a capillary wall, using data given in the text. Note that for purposes of this diagram, the
fluid pressure is assumed to vary linearly within the capillary, while tissue pressure, osmotic pressures, and capillary wall
permeability are assumed to be constant.

Although the above calculation is only approximate, it suggests that there is more

filtration out of the capillaries than there is fluid resorption into the capillaries. This

is partly offset by two effects:

� capillary wall permeabilities are higher at the venular end than at the arteriolar

end, which means that resorption is faster than filtration, for a given driving

potential
� resorption takes place to some extent in the venules as well as in the capillaries.

Even after accounting for these effects, there is still an excess of filtration over

resorption. Somewhere between 20 and 30 liters of fluid are filtered out of the

non-renal capillaries per day. Of this, 85–90% is resorbed, leaving 2 to 4 liters of

fluid per day “behind.” This fluid is taken up by the lymphatic system, principally

by the lymphatic capillaries. The lymphatic collecting system is equipped with a

series of one-way valves oriented so that collected fluid drains towards the thoracic
duct, eventually returning to the bloodstream via the right heart. Thus, there is a

net flow of fluid out of the capillaries through the surrounding tissue.

4.5 The veins

Because most of the systemic pressure drop occurs across the arterioles and cap-

illaries, and because much of the flow pulsatility is damped out in the capillaries,

flow in the veins is at a much lower pressure and is less pulsatile than flow in
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the arteries. Also, because the volume of blood in the veins is greater than that in

the arteries (implying larger lumen cross-sections), flow velocities in the veins are

smaller than those in the arteries. Veins are much less prone to the formation of

mural disease, such as atherosclerosis, than are arteries.

Because pressure in the veins is less than in the arteries, vein walls are sig-

nificantly thinner than artery walls. However, the composition of the vein wall is

fairly similar to that of the arterial wall, and the vein wall shows strain stiffening

as does the arterial wall. Typical values for the elastic modulus of the vein wall

in humans are of order 1 × 106 to 10 × 106 dynes/cm2. For example, the human

saphenous vein has an incremental elastic modulus in the circumferential direction

of 0.27 × 106 to 25.1 × 106 dynes/cm2 as the lumenal pressure increases from 10

to 150 mmHg [33].

One interesting feature of the veins, particularly those in the leg, is their sys-

tem of one-way valves. These valves consist of passively moving tissue leaflets,

similar in operation to those in the heart (Fig. 4.30). They are oriented so as to

direct blood towards the heart. Venous return is dependent on the action of these

valves, in concert with the rhythmic pumping of the veins from the contraction and

relaxation of muscles in the surrounding tissue. This is particularly true in the case

of the veins in the lower legs, where the pumping is accomplished by contraction

and relaxation of the calf muscles. For this reason, people who are sedentary for

extended periods experience blood pooling in the veins in the calf. This promotes

thrombus formation, which can be dangerous if the thrombi break loose and travel

into the cerebral or pulmonary circulations. For this reason, it is inadvisable to

keep the legs motionless for extended periods of time. (Travellers on long-haul

flights, for example, are advised to occasionally walk about or at least flex the calf

muscles from time to time to avoid “economy class syndrome.”)

4.6 Scaling of hemodynamic variables

It has long been recognized that many physiological variables depend on body size.

This is true both within a species (children have a more rapid heart rate than adults)

and between species (the heart rate in mice is greater than that in elephants). The

standard way of expressing such a relationship is through a scaling law:

y = aMb (4.68)

where y is any measurable quantity of interest, M is body mass, and a and b
are coefficients. Although the notation in the literature is somewhat inconsistent,

this is sometimes referred to as the allometric equation, and if the variable y
obeys Equation (4.68) with constant exponent b �= 1, then the scaling is said to be

allometric, with allometric power b. If b = 1, the scaling is said to be isometric.
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Figure 4.30

Cross-sectional view through a venous valve in the closed (left) and open (right) positions. Blood flow, shown by the
large arrows, is from bottom to top when the valve is open. The inset at right shows a histological cross-section through a
valve in the open position. After Gottlob and May [34].

An example of an important physiological quantity that is proportional to body

mass is basal metabolic rate (BMR), which represents the rate of energy expendi-

ture in an adult organism at rest. This energy is expended for all of the “housekeep-

ing” tasks that are essential for homeostasis: pumping ions across cell membranes,

synthesizing proteins, circulating the blood, etc. The BMR can be expressed in

terms of O2 consumption per unit time. There has been considerable controversy

in the literature as to whether the allometric exponent for BMR in mammals is 3/4

or 2/3, and the generally accepted value has been 3/4. However, a recent meta-

analysis [35] suggested that if suitable corrections are made for body temperature,

the exponent should actually be 2/3. Figure 4.31 shows how the available data fall

onto a single line on a log–log plot; the correlation is quite remarkable when it
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Figure 4.31

Relationship between basal metabolic rate (BMR) and body mass in mammals. (A) All data (n = 619, r 2 = 0.94) is
shown; (B) the same data corrected to a common body temperature of 36.2 ◦C (n = 507, r 2 = 0.96); (C) data from (B)
excluding several species whose unusual digestive processes might affect BMR (n = 469, r 2 = 0.96). Exponents are
shown with 95% confidence intervals. From White and Seymour [35]. Copyright 2003 National Academy of Sciences,
U.S.A.
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is noted that body mass spans almost five orders of magnitude in this graph. This

suggests that there must be some fundamental principle that governs metabolic

rate across all mammals; for example, it has been suggested that BMR is governed

by the need to reject heat through the skin to the surroundings. This raises the

tantalizing possibility of being able to discover fundamental physiological design

constraints from looking at how physiological quantities of interest vary with body

mass. Here we will look at some scaling relationships that pertain specifically to

the cardiovascular system.

A physiological variable that would be expected to correlate very closely with

body mass is body surface area. Readers familiar with the concept of geometrical

similarity will recognize that body volume is directly proportional to body mass

for organisms with similar densities, and body surface area is proportional to (body

volume)2/3 for similarly shaped organisms. Such animals should obey an allometric

relationship of the form:

body surface area [m2] = a M [ kg]2/3, (4.69)

which is indeed what is found, with coefficient a ≈ 0.1 for a wide variety of

species. For humans, a = 0.11; for species-specific values of the coefficient a for

other mammals, the reader is referred to Guyton et al. [36]. For humans specifically,

a number of relationships have been proposed that are somewhat more accurate

than Equation (4.69). The best known of these is the formula due to DuBois, dating

from 1916, but a more accurate form [37] is that of Mosteller [38]

body surface area [m2] = 1

60
M[kg]1/2 H [cm]1/2 (4.70)

where H is body height. Since H is expected to be proportional to M1/3, the form

of Equation (4.70) is consistent with Equation (4.69).

The relationship between body surface area and body mass is presented here

because, for historical reasons, the literature contains many instances where car-

diovascular parameters are correlated with surface area rather than body mass.

Further, the surface area–body mass relationship is important in deciding dosage

for some drugs and patient groups, e.g. children. For example, cardiac output is

often divided by body surface area to give a quantity called the cardiac index. Stroke

volume is also sometimes normalized in this way (e.g., Fig. 4.11B). In humans, the

mean cardiac index is 3.59 l/min per m2 (standard deviation, 0.55 l/min per m2),

corresponding to a mean cardiac output of 6.5 l/min [39]. (The surface area of an

“average” human is approximately 1.8 m2.)

When multiple species are considered, Milnor suggests correlating cardiac out-

put against body mass, rather than using cardiac index [4]. He obtained an exponent

of 0.98 when considering 12 species spanning three orders of magnitude in body
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Table 4.3. Allometric scaling relationships for selected cardiovascular parameters. a and b are
coefficients in the equation y = aMb, where M is body mass in kg; LV, left ventricle; RV, right ventricle;
ECG, electrocardiogram.

Parameter a b Source

Heart rate (s−1) 3.60 −0.27 Adolph [41]

4.02 −0.25 Stahl [42]

2.36 −0.25 Holt et al. [43]

Stroke volume (LV) (ml) 0.74 1.03 Juznic and Klensch [44]

0.66 1.05 Holt et al. [43]

Cardiac output (ml/min) 108 0.98 Milnor [4]

100 0.97 Patterson et al. [45]

187 0.81 Stahl [42]

225 0.79 Lindstedt and Schaeffer [40]

166 0.79 Holt et al. [43]

200 0.75 Juznic and Klensch [44]

Arterial pressure (mmHg) 87.8 0.033 Gunther and Guerra [46]

Pulse velocity (cm/s) 446.0 0.0 Li [47]

Diameter of aorta (cm) 0.41 0.36 Holt et al. [48]

Length of aorta (cm) 17.5 0.31 Li [47]

16.4 0.32 Holt et al. [48]

Aortic area (cm2) 0.00179 0.67 Stated in Li [49]a

0.074 0.94 Milnor [4]

Blood density (g/cm3) 1.05 0 Stated in Li [49]a

Duration ECG (P) (s) 0.0139 0.168 Stated in Li [49]a

Duration ECG (QRS) (s) 0.0111 0.165 Stated in Li [49]a

End systolic volume (LV) (ml) 0.59 0.99 Holt et al. [43]

End systolic volume (RV) (ml) 0.62 0.99 Holt et al. [43]

End diastolic volume (LV) (ml) 1.76 1.02 Holt et al. [43]

End diastolic volume (RV) (ml) 2.02 1.02 Holt et al. [43]

Total peripheral resistance
(dynes/s per cm5)

3.35 ×106 −0.68 Li [49]

Ventricular weight (LV) (g) 1.65 1.11 Holt et al. [43]

Ventricular weight (RV) (g) 0.74 1.06 Stated in Li [49]a

Blood viscosity (Poise) 0.03 0 Stated in Li [49]a

a“Stated in Li” means that a result is given in Li [49] that is unreferenced; see caveats in text about use of these values.
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mass. Others have obtained exponents ranging from 0.74 to 0.79 (see reviews by

Milnor [4] and Lindstedt and Schaeffer [40] and Table 4.3). Cardiac output is a

hard thing to measure, which may explain some of the scatter in the data and the

resulting range of allometric exponents.

There have been many studies of scaling in the cardiovascular system, and results

from some of these studies are shown in Table 4.3. It can be seen that heart rate scales

approximately as body mass to the −1/4 power, a finding that seems to be consis-

tent over several studies. Furthermore, left ventricular stroke volume seems to be

approximately proportional to body mass, a result that is intuitively appealing if we

believe that stroke volume is a constant fraction of left ventricle volume and that left

ventricle volume is proportional to body volume. Since cardiac output is the prod-

uct of heart rate and stroke volume, we therefore expect cardiac output to scale with

body mass to the 3/4 power. As can be seen from Table 4.3, a fairly wide range of

scaling exponents for cardiac output have been reported, some of which are quite a

bit different from the expected 3/4. This highlights an important caveat: if the input

data span only a small range of body masses, or if only a modest number of data

points are included in the dataset, there can be significant uncertainty in the allo-

metric exponent b. It is best if the authors specify a confidence interval for b, as was

done in Fig. 4.31. In light of this comment, it is suggested that readers refer to the

primary sources to judge the reliability of the data before using values in

Table 4.3.

Bearing this caveat in mind, it is interesting that there are two variables in

Table 4.3 that are essentially independent of body mass, namely systemic pressure

and pulse velocity. The constancy of these quantities over mammals of differing

sizes has long been noted by others (e.g., discussion in Milnor [4]) and suggests

that some fundamental physiological constraints control these parameters. In the

case of blood pressure, it has been suggested that a similar mean arterial pressure

is obtained in mammals because a minimum pressure is required to ensure brain

perfusion, renal filtration, and perfusion of other capillary beds, while similar dias-

tolic pressures are needed to provide sufficient subendocardial coronary perfusion

[50]. It is also interesting that, in addition to similarity in pressure magnitudes, car-

diac flow waveform and pressure waveform shapes are comparable across different

sizes of mammals. Perhaps this is a consequence of constraints on heart design,

constraints on arterial elasticity, or (most likely) both.

4.7 Problems

4.1 In Section 4.2.3 we concluded that the pumping power of the human heart

is approximately 2 W (assuming a normal cardiac output of 5 liters/min).
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Like any pump, however, the heart is not 100% efficient, and, therefore,

the power that is supplied to the heart muscle will actually exceed 2 W. In

this question we will estimate the heart’s pumping efficiency η by calcu-

lating how much energy is supplied to the heart muscle from the blood.

(Note that the heart muscle has its own vasculature, called the coronary

circulation.)

(a) When we calculated the pumping power of the heart, we only consid-

ered the head gain across the heart from the pressure increase. In gen-

eral, there could also be changes in elevation (very small) and in kinetic

energy. Estimate the ratio of kinetic energy head to pressure head at peak

systole, when pressure is 120 mmHg and blood velocity is 100 cm/s.

Can we safely neglect kinetic energy gains in calculating pumping

power?

(b) At rest, the coronary blood flow is 225 ml/min, and 65% of the O2 is

removed from the blood as it passes through the coronary vasculature.

The oxygen capacity of blood is 19.4 ml O2/100 ml blood, and in a

normal diet 4.83 kcal of food energy is released for every liter of O2

consumed. From this data, estimate η for the heart. State assumptions.

(c) The basal metabolic rate of a normal individual is 72 kcal/h. What frac-

tion of this is consumed by the heart?

4.2 In the Windkessel model (see Equations [4.10] or [4.11]), the product RC
has units of time and can be thought of as a characteristic response time for

the cardiovascular system. The purpose of this question is to estimate the

magnitude of RC.

(a) Starting from the definition of C given in Equation (4.7) show that

C = VD/Et , where V is the volume of the compliant arteries, D is arte-

rial diameter, t is arterial wall thickness, and E is the Young’s modulus

of the artery wall. To derive this formula, it is useful to first relate C to

the arterial distensibility, β, as defined by Equation (4.17).

(b) Taking the volume of the compliant arteries as 700 ml and cardiac output

as 5 l/min, estimate RC. You can use numerical values given in the text,

supplemented by any assumptions you feel are necessary. For full credit,

you must clearly state each assumption that you make.

4.3 Consider steady flow of blood in a tube whose thin walls are made of a

linearly elastic Hookean material, so that changes in hoop stress are directly

proportional to changes in hoop strain. You may treat the blood as Newtonian,

with viscosity μ.

(a) When blood is flowing, it is observed that tube diameter decreases with

axial position along the tube, x (Fig. 4.32). Why is this?
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For Problem 4.3.

(b) Show that a change in internal pressure dp causes a change in radius

dR given by:

dR = R2

Eh
dp (4.71)

where h is the tube wall thickness.

(c) If the tapering of the tube is not too severe, then the flow is “nearly”

Poiseuille and can be described by:

Q = −π R4

8μ

dp

dx
. (4.72)

Using this expression, as well as the results of part (b) above, derive an

expression for R in terms of the inlet radius (Ro), μ, the flow rate (Q),
E, h, and the axial position within the tube, x.

(d) Blood (effective Newtonian viscosity 3.5 cP) flows in such a tube with

E = 100 dynes/cm2 and h = 1 mm. If Q is 100 ml/min and the radius

at the inlet is 1 cm, determine the tube radius at 20 cm from the inlet.

4.4 In deriving the Korteweg–Moens equation for elastic wave speed we assumed

that there was no longitudinal tension in the vessel and that the vessels were

thin walled. In fact, these assumptions are not true, and the wave speed

predicted by the Korteweg–Moens equation is slightly incorrect. From the

theory of elasticity it can be shown [8] that the incremental Young’s modulus,

E, of an isotropic thick-walled cylinder with closed ends and constant length

is

E = 2�p R2
i (1 − ν2)

R2
o − R2

i

Ro

� Ro

(4.73)
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For Problem 4.5.

where Ro and Ri are the outer and inner radii of the cylinder, �Ro is the

change in external radius due to a change �p in internal pressure, and ν is

Poisson’s ratio for the cylinder wall material.

(a) Using this equation, extend the Korteweg–Moens equation to the case

of a thick-walled vessel with closed ends and constant length. In your

derivation, you may assume that the diameter in Equation (4.17) refers

to the outer diameter.

(b) What limiting form is obtained if the vessel wall thickness (t) is small?

In particular, for a Poisson ratio of 0.5, what is the percentage difference

in the wave speed predicted by the wave speed from part (a) versus that

predicted by the Korteweg–Moens equation?

4.5 The propagation of elastic pulse waves in arteries is analogous to a wave

travelling down an elastic string that has been “flicked.” Consider a string

under tension T that has mass per unit length M (Fig. 4.33).

(a) Call the speed of an elastic wave c0. Show dimensionally that

c0 = constant
√

T/M .

(b) Consider a small piece of the string (of length dl) that has been dis-

placed a distance h(x, t) from equilibrium. From a force balance show

that

−T sin θ + T sin(θ + dθ ) = M dl
∂2h

∂t2
. (4.74)
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(c) Using the approximations (valid for small deflections):

sin(θ + dθ )
.= sin θ + dθ

dl
.= dx

θ
.= ∂h

∂x
, (4.75)

show that:

∂2h

∂x2
− M

T

∂2h

∂t2
= 0. (4.76)

(d) Prove that the above equation has solutions of the form

h(x, t) = f (x ± c0t), where f is any function. Hint: use the chain rule.

Note that f (x − c0t) describes a wave propagating to the right while

f (x + c0t) describes a wave going to the left.

4.6 In this problem, we will look more carefully at the propagation of an elastic

wave inside the arterial tree. We will consider an infinitely long artery of

radius R(x, t), filled with an incompressible, inviscid fluid.

(a) Consider a cylindrical shaped control volume of length dx and radius

R(t), i.e., one which fills up the vessel’s cross-section and extends a

distance dx along the vessel. If the blood’s axial velocity is u(x, t),
show that from conservation of mass we must have:

R
∂u

∂x
+ 2

∂ R

∂t
= 0. (4.77)

(b) The momentum balance for an inviscid fluid can be written as:

ρ
∂u

∂t
= −∂p

∂x
. (4.78)

This assumes that the blood only flows axially, which is only approxi-

mately correct. Combine this with the constitutive relation for the tube

wall:

β dp = 2

R
dR (4.79)

to show that

R
∂u

∂t
+ 2c2

0

∂ R

∂x
= 0. (4.80)

(c) Combine the results of (a) and (b) to get the equation:

∂2 R

∂t2
− c2

0

∂2 R

∂x2
= 0 (4.81)
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You will need to assume that ∂ R/∂t and ∂ R/∂x are small compared

with second derivatives of R.

(d) Prove that the above equation has solutions of the form

R(x, t) = f (x ± c0t), where f is any function. Hint: use the chain rule.

Note that f (x − c0t) describes a wave propagating to the right while

f (x + c0t) describes a wave going to the left.

4.7 Expanding the artery wall requires energy. Therefore, when a pressure wave

propagates in an artery, it carries energy with it. This question explores this

effect. Note: in answering this question you do not have to re-derive any
formulae shown in the text.
(a) Starting from the expression � = σ 2V/(2E), show that the energy

stored in the artery wall per unit wall volume is p2 D2/(8Et2).

Here � is the energy stored in an elastic solid of modulus E and

volume V owing to a stress σ ; t is the thickness of the artery

wall; D is the arterial diameter, and p is the local pressure in the

artery.

(b) Show that the energy stored in the artery wall per unit wavelength

from a traveling pressure wave is πλp2
0 D3/(16Et), where p0 is the

amplitude of the pressure wave and λ is its wavelength. You may

assume that the distention of the artery from the pressure wave is very

small. Hint:
∫ λ

0
cos2(2πx/λ + φ) dx = λ/2.

(c) Show that the rate at which energy is transported along the artery with

the pressure wave is p2
0/(4Z0).

(d) Based on conservation of energy, as well as the results of part (c),

shown that the reflection and transmission coefficients at a junction

such as discussed in Section 4.3.7 must satisfy the expression

R2 + 2
Z0,p

Z0,d

T 2 = 1.

In deriving this result you may not use Equations (4.61) and (4.62).

4.8 A patient who has normal blood pressure (systolic and diastolic) also has

hardening of the arteries, including the brachial artery in the upper arm.

Will this patient’s measured blood pressure be larger than the actual value,

and why or why not?

4.9 In Section 4.3.7, we derived an expression for the ratio of pressure pulses

at a junction when the two daughter tubes were identical. Perform the same

calculation assuming that the two daughter tubes have different character-

istic impedances. Specifically, what are the ratios R and T? To simplify the



224 The circulatory system

140

120

100

80

60

40

20

0

140

120

100

80

60

40

20

0

0 0.020.01 0.03

Time (sec)

0.04 0.05

0 0.020.01 0.03

Time (sec)

0.04 0.05

P
re

ss
u

re
 (

m
m

 H
g

)
P

re
ss

u
re

 (
m

m
 H

g
)

Distal Pressure Tap

Proximal Pressure Tap

Figure 4.34

For Problem 4.10.

notation, call Z0 the impedance of the parent tube, and Z1, Z2 the

impedances of the two daughter tubes.

4.10 A dual-port catheter can simultaneously measure pressure in an artery at

two different locations, or “taps.” Idealized measurements from one such

catheter are shown in Fig. 4.34. It is known that there is a bifurcation distal

to the measurement locations.

(a) If the two ports are 4 cm apart, estimate the wave speed in the artery

containing the catheter. Explain your logic.
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For Problem 4.11.

Figure 4.36

For Problem 4.12.

Table 4.4. For Problem 4.12. Data from Tai et al. [51].

Measured quantity Artery ePTFEa

Average diameter (mm) 6·8 5·4
Average compliance (mmHg−1) 8·0 × 10−4 1·2 × 10−4

a Teflon, a graft material.

(b) If the ratio of parent:daughter artery cross-sections at the distal bifur-

cation is 3:1, estimate the wave speed in the daughter arteries. Hint:

first estimate the reflection coefficient at the bifurcation.

4.11 A graft (impedance Zg) is joined to an artery (impedance Za) in the end-to-

end anastomosis shown in Fig. 4.35. What is the transmission coefficient

T? In three sentences (or less), describe the physics of why T is not equal to

one.

4.12 A common surgical procedure is bypass graft implantation, in which a

natural or synthetic arterial substitute (“the graft”) is used to carry blood

around an obstructed portion of an artery (Fig. 4.36). Data suggest that these

grafts perform best if their compliance matches that of the native artery that

they are attached to. Compliance is a measure of the elasticity of the vessel

walls; here it is defined as C = (Ds/Dd − 1)/(Ps − Pd) where Ds and Dd

are systolic and diastolic diameter, and Ps and Pd are systolic and diastolic

pressure, respectively.
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For Problem 4.13.

(a) One material used for synthetic grafts is ePTFE (Teflon), which is very

stiff compared with native arteries. Knowing that Young’s modulus for

ePTFE is 40 times larger than that for an artery, and given the properties

in Table 4.4 measured from actual grafts, estimate the ratio of graft

wall thickness to artery wall thickness.

(b) One design approach is to make the wall of the graft thin enough

so that the graft compliance matches that of the artery. Discuss the

“pros and cons” of doing this from a biomedical engineering design

viewpoint.

(c) Why might compliance mismatch promote redevelopment of disease?

It will be useful to think about what endothelial cells can “sense” and

to know that there is a postoperative healing response that includes the

growth of endothelial cells onto the new graft surface.

4.13 An aneurysm is a dilatation (or ballooning out) of the artery wall, causing

inner arterial diameter to increase from D1 to D2 (Fig. 4.37). If artery wall

elastic modulus (E) and artery wall cross-sectional area do not change in

the aneurysm, what is the net pulse transmission coefficient between points

1© and 3©? Do not consider multiple reflections within the aneurysm. You

may use the fact that the pulse transmission coefficient at a single junction

is given by:

T = 2

1 + Z0,u/Z0,d

(4.82)

where Z0,u and Z0,d are the characteristic impedances upstream and down-

stream of the junction, respectively. Dimensions are D1 = D3 = 2 cm and

D2 = 4 cm. The wall thickness at points 1© and 3© is h = 2 mm. Take blood

density as 1.05 g/cm3.
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Figure 4.38

For Problem 4.14.

Table 4.5. For Problem 4.14

i Ci (Pascals) ωi (rad/s)

1 45 6.2

2 16 12.4

3 9 18.6

4.14 An incident pressure waveform approaching a bifurcation was measured

by a pressure probe (see Fig. 4.38). Analysis showed that the unsteady

portion of the incident waveform, p(t), could be written as the sum of three

harmonics:

p(t) =
3∑

i=1

Ci cos(ωit) (4.83)

where amplitudes Ci and frequencies ωi are shown in Table 4.5.

At time t = 0.6 s, compute the magnitude of the reflected and transmitted

pressure waves. You may assume that the wave speed is the same in the parent

and daughter arteries, and that each daughter artery has a cross-sectional

area equal to 40% of the parent cross-sectional area. Be careful to use radians

(not degrees).

4.15 Consider pressure pulse propagation in an artery that gradually tapers, such

that the diameter decreases linearly with x according to the relationship

D(x) = D1 − αx , where α is some positive number and D1 is the diameter

at x = 0. The wall thickness and Young’s modulus of the wall material do

not change with position.

(a) Show that this implies that the characteristic impedance changes

according to

dZ

dx
= 5αZ

2D
. (4.84)
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(b) The transmission coefficient for a junction with a single parent and

a single daughter is T = 2Zd/(Zp + Zd). Consider each segment of

length dx of the tapering artery to be such a junction, with the “par-

ent” having impedance Z(x) and the “daughter” having impedance

Z (x) + dZ . Show that in this case, the transmission coefficient for this

“junction” is

T (x) = 1 + 1

2

dZ

Z (x)
(4.85)

(c) At location x, suppose the incident pressure waveform ampli-

tude is p0(x) and the transmitted pressure waveform amplitude is

p0(x) + dp0. Using results from parts (a) and (b), show that the pres-

sure waveform amplitude must be proportional to (D1 − αx)−5/4.

4.16 Consider a water wave of wavelength λ propagating in otherwise still water

of depth h. If h � λ, it is known that such a wave propagates at speed

c = √
gh, where g is the acceleration due to gravity. In this case, the eleva-

tion of the free surface, η, can be described by [52]:

η = ηmax sin[2π (x − ct)/λ] (4.86)

while the volume flow rate passing any cross-section can be written as

Q = cηmax sin[2π (x − ct)/λ] (4.87)

(a) Develop an analogy between the propagation of pressure waves in the

arteries and the propagation of water waves. In particular, identify the

characteristic impedance of a channel of depth h to the propagation of

water waves.

(b) What is the amplitude of the transmitted wave if an incident wave of

maximum height 10 cm passes over the step shown in the right panel of

Fig. 4.39? In answering this question, you will find it useful to examine

Equation (4.82).

4.17 In 1926, C. D. Murray published a paper [53] where he showed that there

is an optimal parent:daughter diameter ratio in branching arterial networks.

This optimal ratio is based on minimizing the rate of energy expenditure of

the body, which consists of two parts:
� the power (rate of energy expenditure) required to synthesize blood and

its formed elements; this is assumed to be proportional to the volume of

blood in the arterial network
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For Problem 4.16.
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For Problem 4.17.

� the power required to overcome viscous losses while pumping blood

around the vascular tree.

Consider a branching network with N + 1 levels, where level 0 is the largest

artery, level 1 is the next largest, and so on. Suppose that the radius of the

arteries in level k is Rk, the length is Lk, and the number of branches is nk.

(See Fig. 4.40, where n0 = 1, n1 = 3, n2 = 9, etc.)

(a) Show that the power required to pump the blood through this network,

under the assumption of steady, Newtonian flow, is

Q2
N∑

k=0

8μLk

πnk R4
k

, (4.88)
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Figure 4.41

For Problem 4.18.

where Q is the flow rate in level 0, assumed constant. Hint: the power

to pump fluid through a tube in Poiseuille flow is q�p, where q
is the flow in the tube and �p is the total pressure drop along the

tube.

(b) Show that minimizing the rate of energy expenditure with respect to

the radius of a given level, Rj, leads to the conclusion that nj R3
j must

be a constant. This is known as Murray’s law. Mathematical hint:

d

dR j

N∑
k=0

fk (Rk) = d fj

dRj

, (4.89)

where fk is any function that depends only on level k quantities.

(c) Show that this same conclusion could also have been reached by requir-

ing the shear stress on the artery walls to be constant throughout the

entire branching network.

(d) What is the reflection coefficient for a bifurcation that obeys Mur-

ray’s law? Assume that the ratio of wall thickness to diameter and the

Young’s modulus are constants throughout the network. Hint: Mur-

ray’s law holds for every level j in the network.

4.18 A membrane of hydraulic permeability L p and area Am separates two cham-

bers, each of volume V. At time t = 0, m1 moles of solute are added to

chamber 1 and m2 moles are added to chamber 2, where m2 > m1. You may

assume that the solute mixes and dissolves in each chamber very rapidly,

that the membrane is impermeable to the solute, and that the densities of

the resulting two solutions are approximately equal to ρ. Attached to each

chamber is a riser tube (see Fig. 4.41) of cross-sectional area A1 (chamber 1)
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or A2 (chamber 2), where A2 � A1. At t = 0, the fluid levels in the two

tubes are equal, as shown.

What is the height of solution in tube 2 as a function of time, i.e., what is

h2(t)? Take the h2 = 0 reference point as shown in Fig. 4.41. State relevant

assumptions. Hint: JH = L p Am(�p − �π ).

4.19 When considering the effects of osmotic pressure, we assumed that the mem-

brane was completely impermeable to the solute. In real life, membranes

can be partially permeable to a solute. This situation can be described by a

slightly modified form of Equation (4.64)

Q12 = AL p(�p − σ�π ) (4.90)

where Q12 is the fluid flow rate across the membrane, A is the membrane

area, L p is the membrane permeability, �p is the pressure difference across

the membrane, σ is the osmotic reflection coefficient for the solute, and �π

is the osmotic pressure difference across the membrane.16 The new feature

here is the reflection coefficient, σ , which depends on the molecular weight

(size) of the solute. Note that σ = 1 for a perfectly rejected solute and σ = 0
for a freely permeable solute.

(a) Suppose that the solute is spherical. Show by a simple proportionality

argument that the effective radius of the solute, rs, should vary as

rs ∼ (MW)1/3, where MW is the molecular weight of the solute.

(b) Consider L p, A, and �p to be constants, and suppose a fixed mass

of solute is added to the water on the right side of the membrane in

Fig. 4.42. Argue that there must be a certain solute size, rs, that max-

imizes Q12. You do not need any mathematics for this part of the

question; a written argument is sufficient. Hint: consider two limiting

cases: a very small solute particle and a very large one. Think about

what happens to the molar concentration as the MW gets large for a

fixed mass of solute.

(c) When the solute radius is close to the membrane pore radius,

rp, Ferry [56] showed that the reflection coefficient varies as

σ = 1 −2(1 − η)2 − (1 − η)4, where η = rs/rp, for η � 1. Show

that in this case, the maximum Q12 occurs for a solute radius

rs/rp = 2 − (5/2)1/2. You may assume van’t Hoff’s law holds for the

solute and neglect the fourth-order term in the expression for σ .

16 Equation (4.90) is one half of a set of equations known as the Kedem–Katchalsky equations , which describe the

coupled transport of solvent and a solute through a membrane [54,55]. Equation (4.90) is for solvent transport; the

solute transport equation is Js = Q12(1 − σ f ) C + P A�c, where Js is the rate of solute transport across the

membrane, σ f is the filtration rejection coefficient, C is the mean solute concentration in the membrane, P is the

membrane permeability coefficient, and �c is the solute concentration difference across the membrane.
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Figure 4.42

For Problem 4.19.

4.20 Red blood cells are normally in osmotic equilibrium with the surround-

ing plasma. However, if they are placed in a hypotonic solution (one hav-

ing lower than physiological osmotic pressure), they will swell, since the

cell membrane is effectively impermeable to ions but allows the water

to pass through. Consider a cell of initial internal volume Vi having ini-

tial internal total ionic concentration ci, which at time zero is placed

in a very large hypotonic bathing solution having total ionic concentra-

tion co �= ci (o, outside). The red cell membrane allows no ions to pass

and has a water permeability L p (flow rate per unit membrane area per

unit transmembrane pressure difference). Assume van’t Hoff’s law holds,

π = ∑
j RT cj.

(a) Derive a relationship between the cell’s volume V and elapsed time t.
State relevant assumptions that you have made.

(b) If Vi = 98 μm3, ci = 300 mM, and the red cell surface is 130 μm2,

predict the lowest value of co that the cell can tolerate without bursting.

4.21 The graph shown in Fig. 4.43 is based on data from a classic 1927 paper [32]

in which Landis proved the existence of Starling’s hypothesis by occluding

capillaries, as discussed in the text. The ordinate is the rate at which fluid

leaks out (or re-enters) the capillary per unit capillary wall area, JH . (These

experiments were done in frogs, so the numbers for osmotic pressure etc.

do not exactly match those given in the text for humans.)

(a) Assuming that p − π for the interstitium is −5 cmH2O, estimate

plasma oncotic pressure from Fig. 4.43.
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Figure 4.43

For Problem 4.21. The graph shows transmural flow rate as a function of capillary pressure. From [17], redrawn from the
original data of Landis [32]. Reproduced with kind permission of Oxford University Press and the American Physiological
Society.

(b) Estimate the filtration coefficient L p for this capillary, defined as:

L p = JH

�p − �π
(4.91)

(c) Consider a capillary 0.05 cm long of diameter 8 μm, for which arteri-

olar and venular luminal pressure are 25 and 5 cmH2O, respectively.

Assume that Lp and π are constant and that the pressure drop varies
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linearly along the capillary. What is the net rate of fluid loss (gain)

from the capillary?

4.22 In analyzing capillary leakage in the previous question, we assumed that

capillary plasma protein osmotic pressure did not change with axial position

within the capillary, x. Strictly speaking, this is not true, since leakage of

water from the capillary increases the effective protein concentration in the

capillary, and hence increases osmotic pressure.

(a) Using the data given in the previous question, find the balance point

for the capillary, i.e., the location where the leakage rate JH = 0. Note

that answering parts (a) and (b) of this problem requires you to first

solve the previous problem.

(b) How much fluid is lost per unit time from the capillary between the

inlet and the balance point, assuming π cap = constant?
(c) The total flow rate entering the capillary is 4.2 × 104 μm3/s, consisting

of 42% red cells, 4% plasma proteins, and 54% water (by volume).

The protein concentration at any location x is proportional to

protein volume flow rate at x

(water + protein) volume flow rate at x
. (4.92)

What is the percentage change in protein osmotic pressure at the bal-

ance point (referenced to protein osmotic pressure at the inlet)? Assume

van’t Hoff’s law holds, and no protein or red cell leakage through the

capillary wall. Is our assumption of approximately constant π cap a

valid one?

4.23 When blood flows in a capillary of radius R, some plasma leaks out into the

surrounding tissue. This causes the volumetric flow rate Q and the pressure

gradient dp/dx within the capillary to be a function of x. The leakage rate

JH (volume of fluid leaked per unit area per unit time) through the wall is

given by

JH = constant (p − pex − �π ) (4.93)

where pex is the external pressure and �π is the osmotic pressure difference

across the wall. Both pex and �π may be assumed constant. Assuming that

JH is small, derive an expression for the pressure in the capillary. It will

involve two constants, which you do not need to determine. Hint: assume

the flow is everywhere locally Poiseuille.

4.24 The composition of major components in intracellular fluid is listed in

Table 4.6, column 2. Assume that a neutrophil having this intracellular

fluid composition is placed in a solution having the composition shown in

column 3.
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Table 4.6. For Problem 4.24. From Vander et al. [10]. Reproduced
with kind permission of The McGraw-Hill Companies.

Component Intracellular fluid
concentration (mM)

Extracellular fluid
concentration (mM)

Na+ 15 90

K+ 150 4

Ca2+ 1.5 1

Mg2+ 12 1.5

Cl− 10 110

HCO−
3 10 30

Pi 40 2

Amino acids 8 2

Glucose 1 5.6

ATP 4 0

Protein 4.0 0.2

(a) Estimate the osmotic pressure difference across the cell membrane

arising from the concentration differences listed in Table 4.6. Assume

the cell membrane is impermeable to all of the listed components, and

that the cell is at body temperature (37 ◦C).

(b) Knowing that the pressure in the cell equals the pressure outside the

cell, and that an osmotic pressure creates a stress across the mem-

brane in the same way that pressure does, compute the stress acting in

the cell membrane from osmotic effects. Assume that the thickness

of the membrane is 0.1 μm, that the cell is a perfect sphere of radius

12 μm, and that all transmembrane stresses are carried by the cell

membrane (i.e., ignore the cytoskeleton).

(c) If Young’s modulus for the neutrophil’s membrane is 300 pN/μm2,

compute the resulting strain in the membrane. Note that

1 pN = 10−12 N.

(d) Does this strain seem reasonable? Can you think of factors that we

have neglected that will change this calculation?
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5 The interstitium

The interstitium surrounds the capillaries. It consists of cells that are embedded

in a matrix of extracellular biomacromolecules known as the extracellular matrix

(ECM1; see Section 2.4). Depending on the tissue, the cells can account for a large

fraction of interstitial volume or can be relatively few in number. An important

task of the resident cells, or at least of some subpopulation of the resident cells, is

to synthesize and secrete the extracellular biopolymers that make up the ECM.

5.1 Interstitial fluid flow

We have seen in Section 4.4 that there is a continuous transport of fluid from

capillary blood into the lymphatic system, via the interstitium. The net flow rate

from capillaries to lymphatics is determined by the driving potential (the difference

in p − π between the capillaries and the lymphatics), as well as the hydrodynamic

resistance of the intervening interstitium. Interstitial flow resistance is therefore

very important in fluid homeostasis, or maintaining proper tissue hydration.

Intuition suggests that interstitial flow resistance should depend on tissue struc-

ture, or more specifically on:

� the local concentrations of ECM components
� the local number of cells per unit tissue volume
� the manner in which cells and ECM components are packed together.

Cells and ECM components are packed together in a random manner. Because

of this random character, it is challenging to describe detailed flow patterns on

a cellular or subcellular length scale. However, it is possible to characterize and

quantify tissue composition if a statistical approach is used, in which larger tissue

regions containing many cells are considered. In this case, the average flow rate

through the interstitium can be related to average interstitial composition by using

1 The interstitium is but one member of a class of tissues called connective tissues having similar properties and structure.

Other members of this class include cartilage, tendons, sclera, cornea, and dermis. We will consider some of these

connective tissues in Ch. 9.
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porous media theory. Since it is usually the average flow through a tissue area that

is of practical interest, this approach is entirely adequate. These flow patterns are

important in fluid clearance but can also have important biological effects. For

example, flow-induced gradients of vascular endothelial growth factor, a potent

angiogenic factor, have been shown to drive capillary formation [1].

5.1.1 Darcy’s law

At this point, it is necessary to take a small diversion to describe the essentials of

porous media theory. A porous material consists of a solid matrix permeated by a

network of pores, usually having a very complex topology. Porous media theory

is typically used to describe flow through the material when it is too complex or

difficult to describe the flow through each pore on an individual basis.

The basic law describing average flow through the tissue is due to Darcy [2]2.

In a series of experiments, Darcy forced fluid through porous bodies having cross-

sectional area A and flow-wise length L. The pressure difference driving flow

was �p, the working fluid had viscosity μ, and the resulting flow rate Q was

measured (Fig. 5.1). Empirically, Darcy found that his data were correlated by the

relationship

Q

A
= K

μ

�p

L
. (5.1)

In Equation (5.1), K is a material property called the permeability (or hydraulic
permeability), having dimensions of length squared. The permeability is a purely

local property of the porous material: that is, it does not depend on the overall size

of the sample being considered. It characterizes the ease with which fluid can pass

through the porous material.

We now know that Darcy’s law is valid only for slow (low Reynolds number)

single-phase flow of a Newtonian fluid through a porous matrix. However, that is

precisely the situation that occurs when fluid flows through the interstitium, and we

therefore take Equation (5.1) as the starting point of a quantitative description of

flow in tissue. Noting that Q/A is the average (or superficial) velocity of the fluid

in the porous material, and that �p/L is the pressure gradient in the flow-wise (x)

direction, Equation (5.1) can be written as

u = − K

μ

dp

dx
(5.2)

2 An English translation of Darcy’s original work is available [3].
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Figure 5.1

Apparatus used to deduce Darcy’s law. Porous material fills the cylinder of length L and cross-sectional area A. The
driving head is equivalent to a pressure �p, and results in a flow rate Q.

where u is the superficial velocity in the x direction.3 Equation (5.2) can be gen-

eralized to three-dimensional flows by replacing (scalar) u and dp/dx with the

superficial velocity vector u and the pressure gradient �p, respectively, to obtain

u = − K

μ
∇ p (5.3)

Equation (5.3) states that the mean fluid transport rate (u) is proportional to the

driving potential �p, with proportionality constant K/μ. This is Darcy’s law.

5.1.2 Clearance of edema

We will apply Darcy’s law to estimate the clearance time of edematous (swollen)

tissue, such as a bruise. Everyone is familiar with the concept of bruising: after

sustaining blunt trauma, localized swelling and discoloration results, which is

cleared over the course of several days. Physiologically, the trauma causes a series

of events leading to a loss of capillary endothelial integrity. This allows fluid, plasma

proteins, and formed elements to enter the interstitium. The excess fluid produces

3 The superficial velocity needs to be distinguished from the interstitial velocity, the fluid velocity in the pores of the

porous media. Because the superficial velocity is determined by averaging over the total cross-sectional area of the

porous body (including solid portions), it is less than the interstitial velocity.
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Figure 5.2

A single lymphatic capillary (inner dashed cylinder) surrounded by the interstitium that it is assumed to drain. The
drainage region is a long cylinder of radius R.

local swelling (edema). Once the capillary endothelium heals, the surrounding

tissue is left in an overhydrated state. Because significant amounts of plasma protein

are present in the edematous tissue, the oncotic pressure in the interstitium is close

to that in the capillary, so little fluid drainage occurs into the capillaries. Rather,

fluid leaves the edematous tissue by draining into the lymphatic capillaries. We seek

to estimate how long it will take the tissue to drain as a function of the properties

of the interstitium.

Evidently a given tissue region will contain many lymphatic capillaries, and,

all other things being equal, fluid will drain into the closest lymphatic capillary.

Assuming that all capillaries are similar, it is therefore sufficient to consider a

single lymphatic capillary, which we assume is responsible for draining fluid from

a cylindrically shaped region (or domain) of radius R, as shown in Fig. 5.2. The

entire tissue can be conceptually broken up into such regions, each one draining

into its central capillary. The radius of each region will be a function of the number

of capillaries per unit volume: more capillaries mean that each capillary must drain

a smaller region (smaller R) and mutatis mutandis.

To analyze this problem, it is necessary to understand the driving force that causes

fluid to leave the tissue. All tissues have an equilibrium or homeostatic level of

hydration. In the case of edema, the tissue is overhydrated, which causes the ECM

components (particularly the proteoglycans) to swell beyond their equilibrium

value. Thermodynamically, it is favorable for the proteoglycans to contract and

return to their equilibrium configuration; in so doing, fluid must be driven out of

the tissue. This thermodynamic effect is manifested as an excess tissue pressure

(tissue swelling pressure), which drives fluid out of the tissue whenever the tissue

is overhydrated.4 The closest analogy is a sponge that has had water injected into it

4 The converse also occurs: if tissue is under-hydrated and exposed to water, there is a negative effective pressure within

the tissue, which tends to draw water in.
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under pressure, causing it to swell excessively. In this case the elastic fibers making

up the solid matrix of the sponge have been stretched beyond their equilibrium

lengths. These fibers try to contract elastically, which is manifested as a tendency

of the sponge to expel water, and which can be quantified through the concept of

an excess pressure within the sponge.

In order to characterize this effect, we denote the tissue swelling pressure by

pswell, and note that this quantity will depend on how much water is in the tissue.

The hydration of the tissue can be characterized by the tissue porosity, ε, defined

as

ε = fluid volume in tissue

total tissue volume
. (5.4)

It is expected that the swelling pressure will increase with increasing tissue poros-

ity, and we denote this rate of increase by the parameter γ (the effective tissue

elasticity)

γ = dpswell

dε
(5.5)

For present purposes, we will assume that γ is a constant, which depends on tissue

composition but which can be taken as known.

Returning to the edema clearance problem, the physics of the process can now

be clearly understood. The problem is fundamentally unsteady, with the rate of

fluid clearance from the tissue being proportional to the changing tissue hydration.

Fluid drainage is driven by the swelling pressure within the tissue, which forces

the water out of the interstitium and into the capillary. However, fluid drainage is

opposed by the flow resistance of the interstitium, such that the net rate at which

the tissue drains results from a balance between tissue swelling and interstitial

hydrodynamic resistance.

Although it is possible to analyze this problem in a detailed quantitative manner

(see below), it is simpler to use dimensional analysis to obtain the time scale for

edema clearance, τ . The value of τ is expected to depend on the size of the region

to be drained (characterized by domain radius R), the effective tissue elasticity γ ,

and the flow resistance of the interstitium, characterized by μ/K.5 Its value will

also depend on the radius of the capillary, δ, but we assume that this dependence

is not a strong one. Recalling the notation from Section 4.3.4, the quantities τ , R,

γ , and μ/K have the following dimensions:

[τ ] ∼ T

[R] ∼ L

[γ ] ∼ ML−1T−2

[μ/K ] ∼ ML−3T−1

5 The ratio μ/K appears, rather than μ and K independently, since these two quantities appear only in Darcy’s law, and

appear there as a ratio: μ/K represents an effective tissue flow resistance (pressure gradient per unit fluid velocity).
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From these parameters one �-group can be formed, namely

�1 = τ
K

μ

γ

R2
(5.6)

Since there is only one �-group, it must be constant, which indicates that

τ ∼ μR2

γ K
(5.7)

This makes physical sense: the clearance time increases if a larger region must be

drained or if fluid viscosity increases, and the clearance time decreases if tissue

permeability increases or if tissue elasticity is large.

It is of interest to estimate the value of τ based on this analysis. Making the

assumption that the proportionality constant implied by Equation (5.7) is one, and

using the following values

μ = 0.007 g/(cm s)

R = 5.5 × 10−2 cm

K = 8 × 10−14 cm2

γ = 4540 dynes/cm2

we obtain a value for τ of 5.83 × 104 s, or approximately 16 h. This accords with

practical experience: if we raise a bruise it persists for a day or so.

Detailed parameter derivation
Here we justify some of the parameter values selected in the above calculation, as

well as deriving the form of the equation that governs tissue swelling. We begin

with the governing equation.

Consider a small tissue-containing region of volume V. The void volume within

the region is
∫

V ε dV , and the fluid mass within the region is
∫

V ρε dV , where ρ is

fluid density. Recalling that u is the superficial velocity, the mass flux of fluid out

of the cube is
∫

S ρ u · n̂ dS, where n̂ is the outward normal to the region’s surface

S. Conservation of mass written in integral form then states∫
V

ρε dV +
∫
S

ρ u · n̂ dS = 0. (5.8)

Assuming that ρ is constant, using Gauss’ theorem, and taking the volume V
as arbitrary gives an unsteady differential equation representing conservation of

mass

∂ε

∂t
+ ∇ · u = 0. (5.9)
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Combining Equations (5.9) and (5.3) yields

∂ε

∂t
+ K

μ
∇2 ptissue = 0. (5.10)

Finally, we use the definition of the effective tissue elasticity γ to write

dε = dptissue/γ , which when combined with Equation (5.10), yields

∂ptissue

∂t
+ Kγ

μ
∇2 ptissue = 0. (5.11)

It is convenient to non-dimensionalize the above equation by defining a non-

dimensional pressure, time, and radial position by

p̂tissue = ptissue − po

pi − po

(5.12)

t̂ = t

τ
(5.13)

r̂ = r

R
(5.14)

where po is the equilibrium (homeostatic) pressure in the tissue, pi is the initial

tissue pressure (when the tissue is in the swollen state and fluid begins to drain),

and τ is a time scale given by

τ = μR2

γ K
. (5.15)

With this set of non-dimensional parameters, the governing equation for the

tissue pressure becomes

∂ p̂tissue

∂ t̂
= ∇̂2 p̂tissue. (5.16)

If we make the (admittedly simplistic) assumption that tissue pressure is uniform

within the circular domain at t = 0, then the initial condition is p̂tissue = 1 at t = 0

for all δ/R < r̂ < 1. By virtue of the fact that we divided the entire tissue into

cylindrical domains, with one capillary per domain, there is little fluid drainage

across the outer surface of a cylindrical domain. This can be expressed by a no-flux

boundary condition

∂ p̂tissue

∂ r̂
= 0 at r̂ = 1 (5.17)

A second boundary condition is required, which is obtained from the reasonable

assumption that the lymphatic capillary is freely draining (i.e., that the capillary

walls have little flow resistance), in which case the tissue pressure immediately

adjacent to the capillary is homeostatic. Mathematically, this is expressed as

p̂tissue = 0 at r̂ = δ/R.
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Equation (5.16) has a separable solution in terms of Bessel functions of order zero

and decaying exponentials, with time scale τ . This confirms that τ = μR2/(Kγ )

is the relevant time scale for tissue drainage.

We now turn attention to estimating the radius of the cylindrical region R and

the effective tissue elasticity γ . Estimation of R is somewhat difficult, since there

are few quantitative data on lymphatic capillary distribution. Casely-Smith [4]

estimated that there is 0.4 ml of lymph in the heart, which has a mass of approxi-

mately 300 g. Therefore, the volume fraction of lymphatics in the heart is roughly

0.4/300 = 0.0013, assuming that the density of heart tissue is approximately

1 g/cm3. Taking a typical lymphatic capillary diameter of 20 μm, this gives

R = 20 μm/
√

0.0013, or R = 550 μm. It is unclear as to whether data for the

heart can be applied to the interstitium, but since there is little information on

capillary distribution in the latter tissue, we will assume that it can.

Estimation of γ is somewhat more complex and requires further examination of

the physics behind tissue elasticity. Recall that ptissue arises because the interstitium

has become “overhydrated” and the proteoglycans have become overstretched.6 We

ignore the contribution to γ from physical extension of collagen and elastin and

assume that the proteoglycans are entangled with other tissue components. This

implies that proteoglycans become hydrated at the same rate as the entire tissue,

which seems reasonable.

By analogy with the theory of rubber elasticity, the quantity ptissue − po is equal

to πo − πtissue, where πtissue refers to the osmotic pressure generated by tissue

proteoglycans and πo is the equilibrium (homeostatic) value of πtissue. Defining the

solid tissue volume fraction φtot = 1 − ε allows us to write

γ = dptissue

dε
= dπtissue

dφtot

. (5.18)

It seems reasonable to assume that the ratio of proteoglycans to total solid tissue,

φPG/φtot, is constant. Therefore, we can write

γ = φPG

φtot

dπtissue

dφPG

= cPG

φtot

dπtissue

dcPG

(5.19)

where cPG is the concentration of proteoglycans in the tissue. The major con-

tribution to proteoglycan osmotic pressure comes from their glycosaminoglycan

components. Johnson [6] stated that the osmotic pressure of the most common

glycosaminoglycan, hyaluronan, is given by

π = A2c2 (5.20)

A2 = 7M−0.1S−0.5 (5.21)

6 This is the rubber elasticity phenomenon described in classical texts on polymer physics [5].
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Figure 5.3

For Problem 5.1.

where A2 is expressed in mmHg/(g/100 ml). We assume a molecular weight

M of 500 kDa and physiologic salinity S of 150 mM, to compute γ as

4500 dynes/cm2.

5.2 Problems

5.1 When analyzing porous materials, it is handy to have a way of estimating the

permeability of a material without actually having to force fluid through it.

Intuition tells us that the material’s permeability should somehow be related

to the number and size of the pores within the material. A simple relationship

that allows us to estimate permeability from these variables is the Carman–

Kozeny equation.

(a) Consider a block of cross-sectional area A and flow-wise length L,

which is permeated by N pores, each of length l ( � L) and radius R
(Fig. 5.3). (Here we allow l to exceed L to account for the tortuosity of

the pores; that is, the fact that they are not perfectly straight.) Assuming

that Poiseuille’s law holds in each pore, show that the total flow rate

passing through the block, Q, is given by:

Q = Nπ R4

8μ

�p

l
(5.22)

where �p is the pressure drop from front to back.
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(b) Compare this result with Darcy’s law to show that the permeability, K,

can be given by:

K = ε3

2τ 2S2
(5.23)

where τ , ε, and S are the tortuosity, porosity, and specific surface, respec-

tively, defined by

τ = l

L
, (5.24)

ε = total pore volume

total block volume
, (5.25)

S = total pore wall area

total block volume
. (5.26)

Equation [5.23] is the Carman–Kozeny equation. It works very well for

most porous materials, even though it makes a lot of simplifying assump-

tions. To generalize this equation it is conventional to replace the factor

2τ 2 in the denominator of Equation (5.23) with a parameter k, called the

Kozeny constant. Empirical data shows that for real porous materials

with complex pore shapes, the Carman–Kozeny equation works well

if the Kozeny constant is assigned a value of 4 or 4.5, so long as the

porosity of the porous material is less than approximately 60%.
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6 Ocular biomechanics

At first, it may seem like biomechanics play little or no role in the eye, but nothing

could be further from the truth. In fact, the eye is a pressurized, thick-walled shell

with dedicated fluid production and drainage tissues, whose shape is controlled

by biomechanical factors. It has internal and external musculature, a remarkably

complex internal vascular system, and a variety of specialized fluid and solute

transport systems. Biomechanics play a central role in accommodation (focussing

near and far), as well as in common disorders such as glaucoma, macular degen-
eration, myopia (near-sightedness), and presbyopia (inability to focus on nearby

objects). To appreciate the role of biomechanics in these processes we must first

briefly review ocular anatomy.

6.1 Ocular anatomy

The eye is a remarkable organ. It functions like a camera, with an adjustable

compound lens, an adjustable aperture (the pupil), and a light-sensitive medium

(the retina) that converts photons into electrochemical signals (Fig. 6.1, color plate).

The eye automatically adjusts pupil size and lens shape so that images are clear

under a wide variety of lighting conditions and over a wide range of distances from

the observer.

The outer coat of the eye is formed by the cornea and sclera, two tough con-

nective tissues that together make up the corneoscleral shell. This shell is pierced

at the back of the eye by the scleral canal and at other discrete locations by small

vessels and nerves. The “output” from the retina is carried to the visual cortex in

the brain by retinal ganglion cell axons,1 which group together to form the optic
nerve. The clinically visible portion of the optic nerve is known as the optic nerve
head and consists of the unmyelinated nerve fibers that converge, turn, and exit

the eye. The optic nerve proper, which is 3.5 to 4 mm in diameter external to the

eye [2], leaves the eye through the scleral canal. Six extraocular muscles attach to

1 As will be discussed in greater detail in Section 8.1, axons are elongated processes of neural cells along which

information is transmitted by traveling electrochemical waves known as action potentials.
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the outer surface of the sclera and work together with a clever system of active

pulleys to rotate the eye [3].

Light enters the eye by passing through the cornea, after which it traverses the

anterior chamber, pupil, lens, and vitreous body before striking the retina. The lens

is suspended by ligaments (the zonules) that attach to the inner fibers of the ciliary
muscle; alterations in tone of these muscle fibers cause the zonules to tug on the

lens so that the lens changes shape to accommodate (i.e., to alter the effective focal

length of the eye).

To ensure good optical performance, it is essential that the distance from the

retina to the lens be stable. This implies the need for rigidity in the overall structure

of the eye. In most other organs, rigidity is conferred by bones. However, no bones

are present in the mammalian eye; instead, the eye is maintained at a small positive

pressure (the intraocular pressure [IOP]) with respect to its surroundings. This

causes the eye to be inflated and hence somewhat rigid, just as an inflated soccer

ball is fairly rigid.

A closely related issue is how to supply nutrients to the lens and cornea. Both

tissues contain cells, and thus have metabolic needs, but must also remain optically

transparent. The latter requirement implies that these tissues cannot be perfused

with blood, which is the usual way of delivering metabolites and removing catabo-

lites. To solve this problem, the eye secretes a clear, colorless fluid (the aqueous
humor), which carries nutrients, etc. This fluid is produced by a highly folded and

vascularized inner layer of the ciliary body known as the ciliary processes [4].

The secreted aqueous humor flows radially inward, bathing the lens, then flows

anteriorly through the pupil to fill the anterior chamber, before draining out of the

eye through specialized tissues in the angle formed by the iris and cornea, known

as the angle of the anterior chamber. These outflow pathways have appreciable

flow resistance, which together with active production of the aqueous humor by the

ciliary processes creates the IOP. In other words, the flow of aqueous humor serves

both to nourish the lens and cornea and to “inflate” the eye. The normal mean value

of IOP is 15.5 mmHg (standard deviation, 2.6 mmHg) [5]. The vitreous body is a

relatively inert and quite porous connective tissue, so it transmits the pressure from

the anterior chamber throughout the interior of the eye.

6.2 Biomechanics of glaucoma

Unfortunately, not all eyes are normal. For example, it is estimated that about 65

million people worldwide [6] suffer from some form of glaucoma, making it the

second most common cause of blindness in western countries. In the vast major-

ity of such cases, the flow resistance of the outflow tissues is elevated, causing
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the IOP to be higher than normal. By a mechanism that is not well understood,

chronic elevation of IOP causes progressive irreversible damage to the optic nerve,

with blindness as the end result. A major aspect of glaucoma research is there-

fore to try to understand how and why the flow resistance of the outflow tis-

sues is elevated in the glaucomatous eye. We will discuss this in greater detail in

Section 6.2.2.

First we concern ourselves with a related clinical problem: how does the prac-

ticing ophthalmologist determine if a patient has glaucoma? This is a particularly

important question, since people with glaucoma are often not aware of their con-

dition until very significant irreversible optic nerve damage has occurred. Early

detection of the disease is therefore crucial. The definitive diagnosis relies on the

experience of the ophthalmologist, who judges the appearance of the optic nerve

head and measures the patient’s visual field, a map of how well each part of the

retina is working and transmitting its signals to the brain. Unfortunately, such

tests are expensive and time consuming, and therefore are not suitable for rou-

tine screening. Since the majority of patients with glaucoma have elevated IOP, a

measurement of IOP is a valuable screening tool.2

What is required, therefore, is a quick, safe, and reliable method of measuring

IOP. The most accurate method is to cannulate the eye (introduce a needle into the

eye) and attach a tubing line to a pressure sensor. This is obviously not practical

for routine screening, and so a more indirect method must be used. This leads to a

discussion of tonometry.

6.2.1 Tonometry

Tonometry exploits the fact that the eye is essentially an elastic-walled inflated

spherical shell. Consequently, by pushing on the surface of the eye it is possible

to effect a deformation (indentation) of the eye. The higher the IOP, the more

difficult it is to accomplish this maneuver. In practice, there are several possible

approaches [5].

Fixed area applanation tonometry. The force required to flatten a known region

of the cornea is measured. The most common type of fixed applanation tonometry

is Goldmann tonometry, which we will discuss below.

Fixed force applanation tonometry. The amount of corneal flattening caused

by application of a known force is measured. This is the basis of pneumotonometry

(air-puff tonometry), where a small puff of air is used to deform the cornea, avoiding

2 More generally, it seems that each person has a level of IOP that they can tolerate without damage to their optic nerve

[7]. This level varies from person to person: in some people, a normal level of IOP causes damage, in which case the

disease is known as low-tension glaucoma. Others are lucky: they can tolerate high pressure with no optic nerve

damage. Therefore, measurement of IOP is not 100% specific as a screening tool, but it is still valuable.
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Figure 6.2

A Schiøtz tonometer. The plunger at the lower portion of the tonometer is placed on the cornea, and weights (bottom of
figure) are put onto the device. The resulting corneal deflection is measured on the upper scale, and can be related to
intraocular pressure. Reprinted from Gloster [8], with kind permission from Elsevier.

mechanical contact with the eye. Unfortunately, pneumotonometry is less accurate

than Goldmann tonometry.

Schiøtz (indentation) tonometry. The indentation of the cornea caused by a

predetermined force applied to the eye is measured (Fig. 6.2).

We will restrict attention to Goldmann tonometry, since it is in common clinical

use and is considered to be the “gold standard” for tonometry. The cornea is lightly

anaesthetized, and the applanation head is placed on the cornea. The flattened

corneal area is denoted by A, and the force applied to the applanation head is

denoted as W (Fig. 6.3). Then, in the ideal situation, the IOP is given by the

Imbert–Fick law

IOP = W

A
(6.1)

However, there are two important non-idealities.



254 Ocular biomechanics
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Figure 6.3

The forces acting during applanation tonometry, as seen in a cross-sectional view through the cornea and applanation
head. See text for definition of symbols, except for A i , which represents applanation area. IOP, intraocular pressure. The
shaded area represents the tear film. Redrawn, based on Gloster [8], with kind permission from Elsevier.

The cornea is not a thin-walled shell. Therefore, there are bending stresses in

the cornea that resist corneal deformation. We denote the net force acting on the

applanation head due to these stresses as b.

A tear film is present on the corneal surface. When the applanation device

contacts the cornea, a meniscus forms along the contact line. The effect of surface

tension forces is to pull the tonometer head towards the cornea. We denote the net

force acting on the applanation head due to these stresses as s.

A more accurate force balance on the applanation head is therefore (Fig. 6.3):

W + s = A IOP + b (6.2)

In general, determination of s and b would be very difficult. Luckily, experimental

evidence indicates that if A is chosen correctly, s and b are equal in magnitude and

thus cancel each other, so the Imbert–Fick law becomes valid. For normal human

corneas, this cancellation occurs when the contact area is 7.35 mm2 (Fig. 6.4). It

is therefore sufficient to ensure that A = 7.35 mm2 when measuring IOP. How is

this done in practice? A drop of fluorescein dye is placed on the cornea, which

mixes with the tear film and causes the tear film to appear green when viewed

under blue light. Tear fluid accumulates in the meniscus that forms along the edge

of the contact surface between the cornea and tonometer head. To an observer, this

line appears as a green circle, and to ensure A = 7.35 mm2, the circle’s diameter

D must equal

D =
√

4A

π
= 3.06 mm (6.3)
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Figure 6.4

Relationship between applied force, applanation area and intraocular pressure (IOP) for human corneas of thickness
550 μm. The dashed line shows the relationship expected from the Imbert–Fick law (Equation [6.1]); the solid line is the
regression to the data, A = 0.67 + 63.1 (W/IOP), where A is in square millimeters, W is the applanation force in grams
weight, and IOP is in millimeters of mercury. Note 1 gram weight is the weight on earth of a 1 gram mass, i.e.,
981 dynes. Modified from Gloster [8], with kind permission from Elsevier.

The tonometer head is transparent and has built-in optics such that the top half

of the image seen through the head is laterally displaced by 3.06 mm (Fig. 6.5).

As seen by the ophthalmologist through the applanation head, the upper half of

the fluorescein circle is displaced, as shown in Fig. 6.6. It is therefore sufficient to

adjust the tonometer head position until points A and B in Fig. 6.6 touch, in which

case the applanation contact area is 7.35 mm2. The force required to cause this

applanation area is recorded, and by the Imbert–Fick law, is directly proportional

to IOP.

Of course, all of the above does not work if the cornea is stiffer or more compliant

than normal, which occurs if corneal thickness is abnormal. Luckily, corneal thick-

ness can be easily measured using a device called a corneal pachymeter, which

employs ultrasound to find the positions of the anterior and posterior boundaries

of the cornea. The normal mean thickness of the central cornea as measured by
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Figure 6.5

Goldmann applanation tonometer (arrow in left panel), mounted on a slit-lamp. The patient places his/her chin and
forehead on the rests at left, and the tonometer head (center of figure) is advanced by the ophthalmologist using a
joystick until the correct applanation contact area is obtained. The right panel shows the light path as the ophthalmologist
looks through the tonometer head at the contact surface between cornea and applanation head. Modified from
Gloster [8], with kind permission from Elsevier.
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Figure 6.6

Fluorescein contact line as seen through the head of a Goldmann applanation tonometer. The top row shows the contact
line as seen without optics. The bottom row shows the contact line as seen through the tonometer head’s optics, which
displace the upper half of the image laterally by 3.06 mm. When points A and B touch (middle), the actual image is a
circle of diameter 3.06 mm (Area = 7.35 mm2).
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this technique is 544 μm (standard deviation, 34 μm) [9], and an IOP correction

of 2.5–3.5 mmHg needs to be made for each 50 μm deviation of thickness away

from this normal value [9,10]. A second problem occurs if the cornea contains

significant scar tissue, for example from prior trauma. In such cases, other types

of tonometry must be used to get a truer reading of IOP [5,11].

6.2.2 Drainage of aqueous humor in normal and glaucomatous eyes

In Section 6.1 we learned that the eye is pressurized by the continual production

and drainage of aqueous humor. The flow of aqueous humor is slow indeed: it

is produced at only 2.4 ± 0.6 μl/min (mean ± standard deviation; daytime mea-

surements in adults aged 20–83 years) [12]. This corresponds to a turnover rate of

about 1% of the anterior chamber volume per minute.3 However, this slow flow

is enough to keep the avascular tissues at the front of the eye alive and maintain

a positive IOP of approximately 15 mmHg. This leads to several questions. How

can such a slow flow generate so much pressure? What controls the pressure in

healthy eyes so that it stays in a fairly narrow range? And most importantly, what

goes wrong in glaucoma so that the pressure is elevated? The last question is a very

important one: we know that elevated IOP is the main risk factor for glaucoma, and

that lowering IOP helps to preserve vision [13]. In the vast majority of glaucomas,

the elevation in IOP results from too much aqueous humor drainage resistance,

typically owing to changes in the conventional drainage tissues. Let us therefore

look more closely at the biomechanics of aqueous humor drainage from the eye.

Aqueous humor can exit the eye by two routes: the so-called conventional route

and the uveo-scleral (or unconventional) route (Fig. 6.7, color plate). Uveo-scleral

outflow normally carries only about 10% of total aqueous outflow [14] and is not

thought to be the primary site of flow resistance in glaucoma, although it can act

as a “safety valve” under the right conditions [15]. We will not consider it further.

Most aqueous humor drains through the conventional route, consisting of spe-

cialized tissues situated in the angle of the anterior chamber, which is located

at the conjunction of the iris, cornea, and sclera (Fig. 6.8). Beginning at the

anterior chamber and moving exteriorly, these tissues are the trabecular mesh-
work, a porous connective tissue; Schlemm’s canal, a collecting duct lined by a

vascular-like endothelium; and the collector channels/aqueous veins. After leaving

the aqueous veins, the aqueous humor mixes with blood in the episcleral veins,

eventually draining back to the right heart.

3 To put this into context, the volume of a typical drop of water is approximately 20 μl, so it takes approximately 8–9

minutes to form one drop of aqueous humor.
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Figure 6.8

Overview of ocular anatomy, showing the position of the conventional aqueous humor drainage route (including
Schlemm’s canal) in the human eye. Most aqueous humor drains from the eye by passing through the trabecular
meshwork. Not shown in this figure are collector channels, which emanate from Schlemm’s canal and carry the aqueous
humor to mix with blood in the scleral venous circulation. TM, trabecular meshwork: JCT, juxtacanalicular tissue; SC,
Schlemm’s canal, IW, inner wall, OW, outer wall; large arrow: direction of aqueous humor flow. Middle panel modified
from Hogan et al. [16]; top panel is a scanning electron micrograph of a human sample cut in cross-section. Reprinted
from Ethier et al. [17], with permission from Elsevier.

Direct pressure measurements [18,19] and circumstantial evidence [20] indicate

that most of the flow resistance is in the trabecular meshwork or the endothelial

lining of Schlemm’s canal. Since the episcleral venous pressure is approximately

8–10 mmHg [21,22], the resistance of the conventional aqueous drainage tissues

is approximately 3–4 mmHg/μl/min in normal eyes, and can reach triple this value



259 6.2 Biomechanics of glaucoma

x = 0

Intraocular pressure (IOP)

Schlemm's 
     Canal

Outer wall

TM

x = s

Collector 
channel

Inner wall

Figure 6.9

Simplified model of Schlemm’s canal as a compliant channel. The trabecular meshwork (TM) is treated as a porous
elastic body, as shown by the springs. Aqueous humor drains through the trabecular meshwork and the porous inner wall
of Schlemm’s canal, flows circumferentially in Schlemm’s canal, and then leaves the canal by collector channels, here
located at x = ±s. From Johnson and Kamm [23]. This work is protected by copyright and is being used with the
permission of Access Copyright. Any alteration of its content or further copying in any form whatsoever is strictly
prohibited.

(or more) in glaucoma. Unfortunately, we do not understand how this resistance is

generated, either in normal eyes or in glaucoma.

An early hypothesis about generation of resistance in glaucoma was that

Schlemm’s canal could collapse, choking off outflow. This possibility was con-

sidered in detail by Johnson and Kamm [23], who modeled Schlemm’s canal as a

compliant channel with a porous, elastic wall. Because the canal is highly elon-

gated in cross-section, they treated the channel as two dimensional, that is as being

formed by two parallel plates (Fig. 6.9). The upper plate, representing the side of

Schlemm’s canal that is bounded by the relatively rigid sclera, or outer wall, is

immovable. The lower plate, representing the side of Schlemm’s canal adjacent

to the trabecular meshwork, or inner wall, is permeable and can deform as the

trabecular meshwork stretches. This means that the local “height” of the canal is a

function of position, x, and IOP.

The question is whether Schlemm’s canal can collapse enough to create signif-

icant flow resistance. The answer to this question depends on a balance between

two effects. The stiffness (elasticity) of the trabecular meshwork tends to keep

the canal open, while the pressure drop across the trabecular meshwork and inner

wall of Schlemm’s canal tends to force the canal to close. Any analysis of this

process must take these two effects into account. The first step in the analysis is to

conserve mass. In the present case, that means that any fluid that enters the canal
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by crossing the inner wall must increase the local flow rate in the canal, Q(x). The

amount of fluid entering the canal depends on the IOP, the local pressure within

the canal, p(x), and the flow resistance of the trabecular meshwork and inner wall.

More specifically:

dQ

dx
= IOP − p(x)

Riw

(6.4)

where IOP is intraocular pressure (assumed constant) and 1/Riw is the hydraulic

conductivity of the trabecular meshwork and inner wall, per unit length of inner

wall, assumed to be constant. The right-hand side of Equation (6.4) represents

the rate at which aqueous humor enters Schlemm’s canal per unit length of the

canal. For convenience, we take x = 0 as the midway point between two collec-

tor channels, and x = ±s as the locations of the nearest collector channel ostia

(Fig. 6.9).

The next step is to relate the pressure in Schlemm’s canal to the flow in the canal.

Because the Reynolds number for flow in Schlemm’s canal is � 1, we can assume

the flow is everywhere unidirectional, so the pressure gradient in the canal can be

obtained from the solution for laminar flow between parallel plates [24]:

dp

dx
= 12

μQ(x)

wh3(x)
(6.5)

where μ is aqueous humor viscosity, w is the depth of the canal into the plane of

the page of Fig. 6.9, and h(x) is the local “height” of the canal (i.e., the spacing

between the inner and outer walls of the canal). The last step is to account for the

elasticity of the trabecular meshwork. Johnson and Kamm [23] assumed that the

trabecular meshwork acted like a linear spring, where local deformation was pro-

portional to the pressure drop across the trabecular meshwork, IOP − p(x). More

specifically:

h0 − h(x)

h0

= IOP − p(x)

E
(6.6)

where E is the spring stiffness and h0 is the undeformed canal height, corresponding

to the case where IOP equals the pressure in the collector channels.

Equations (6.4), (6.5), and (6.6) represent three equations for the unknowns

h(x), p(x), and Q(x). They can be combined to give a second-order non-linear

differential equation (see Problem 6.4). We have to specify two pieces of boundary

data to close the problem. They are that Q(x) = 0 at x = 0 and that p(x) = pcc at

x = ±s, where pcc is the pressure in a collector channel. The resulting system is

non-linear and a closed form solution is not known; therefore, Johnson and Kamm

solved it numerically [23]. The result is that for reasonable values of the input
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parameters, it is predicted that there would be negligible flow resistance within the

canal itself, except at extreme pressures (> 50 mmHg) when the canal collapses.

Furthermore, the model predicts that if Schlemm’s canal were nearly collapsed,

the resistance of the outflow system would be a very non-linear function of IOP,

which is not observed experimentally [25]. The conclusion is that Schlemm’s canal

collapse does not seem to be important in the normal eye. Even when Schlemm’s

canal is largely collapsed at 50 mmHg, the outflow resistance is less than that seen

in glaucomatous eyes, suggesting the glaucoma cannot be explained by collapse

of Schlemm’s canal.

Let us turn now to a more fundamental question. How does Schlemm’s canal

“know” how big to be? We learned in Section 2.9.1 that large arteries adjust their

caliber in response to the amount of blood flowing in them or, more specifically, to

the shear stress acting on their lining endothelial cells. Perhaps such a mechanism

is also operating in Schlemm’s canal. The difficulty with this hypothesis is that

the flow rate of aqueous humor is so low that it seems likely that shear stresses on

Schlemm’s canal endothelial cells would be very small.

We can investigate this further by modifying the collapsible Schlemm’s canal

model presented above. Since we know that canal collapse only occurs at very

high IOP, let us treat the canal as rigid (non-collapsible) but provide a more real-

istic representation of its geometry in order to improve the estimate of the shear

stress on the endothelial cells lining the canal. In particular, instead of modeling

the walls of Schlemm’s canal as consisting of two parallel plates, we can treat

the canal as having an elliptical cross-section, with semi-minor axis a and semi-

major axis b (see inset, Fig. 6.10). In this case, Equation (6.5) is replaced by

[26]:

−dp

dx
= 4μQ(x)(1 + ε2)

πab3
(6.7)

where ε is the eccentricity of the canal cross-section, ε = a/b. The governing

equations are now (6.4) and (6.7), which we can combine to obtain a second-order

equation for Q(x). To this we add the boundary conditions Q = 0 at x = 0 and

Q(x) = Qtot/2N at x = ±s, where Qtot is the total aqueous outflow rate and N is

the number of collector channels. The solution is

Q(x) = Qtot

2N

sinh(kx)

sinh(ks)
with k2 = 4μ

(
1 + (a/

b
)2)

πab3 Riw

(6.8)

From knowledge of the local flow rate and a relationship between wall shear

stress and pressure gradient [17] we can compute the average shear stress in the

canal as a function of canal dimensions (Fig. 6.10). Allingham et al. [27] measured
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Figure 6.10

Plot of predicted shear stress acting on Schlemm’s canal endothelial cells from flowing aqueous humor vs. Schlemm’s
canal “height”, 2b (see inset). The vertical axis is the circumferentially averaged shear stress computed from the model
described in the text. The insets at the top of the graph show the assumed cross-sectional shape of the canal and the
terminology for computing the flow rate as a function of position in the canal, Q (x ). TM, trabecular meshwork; SC,
Schlemm’s canal; CC, collector channel; WSS, wall shear stress. Modified from Ethier et al. [17], with kind permission of
the authors and the Biophysical Society.

the size and cross-sectional area of Schlemm’s canal, and from their data we can

compute that the average inner–outer wall spacing is about 8 μm in normal eyes and

6 μm in glaucomatous eyes. The surprising conclusion is then that the shear stress is

in the range 2–8 dynes/cm2, not too dissimilar from that seen in large arteries. This

suggests that shear stresses may have a biological effect on endothelial cells, which

is supported by experimental findings that show that Schlemm’s canal endothelial

cells show preferential alignment [17]. It therefore seems probable that wall shear

stress helps to regulate the size of Schlemm’s canal, and likely has an effect on

endothelial cell physiology. It is appealing to think that the cellular machinery

for mechanotransduction and mechanosensing that work so well in the vascular

system have simply been adapted by Schlemm’s canal endothelial cells to control

Schlemm’s canal calibre.

What then can explain the relatively large flow resistance associated with the

drainage of aqueous humor from the eye? There are two hypotheses.
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1. It is known that the trabecular meshwork (or more specifically, the region adja-

cent to Schlemm’s canal) contains high concentrations of proteoglycan-rich

gels (see Section 2.4). Modeling [28] has shown that these gels could generate

significant flow resistance, and recent data suggest that the turnover of these gel

components is modulated by stretch-induced matrix metalloproteinase activity

within the trabecular meshwork [29–31]. The hydraulic permeability of many

other soft connective tissues with the body is controlled by the concentration

of such proteoglycan gels [32].

2. The endothelial lining of Schlemm’s canal may offer a significant barrier to

flow. This cellular layer is unusual; for example, it has the highest permeabil-

ity of any endothelium in the body [33], with L p � 4 × 10−8 cm2 s/g, yet it is

non-fenestrated. The cells are joined by tight junctions that become more per-

meable as IOP increases [34] and are permeated by membrane-lined openings

(“pores”) that, although poorly understood, are almost certainly involved in

aqueous humor transport [20].

Which of the above possibilities is correct is not yet known (see review by Ethier

[20]), but the reality may lie somewhere in between. A model of the pores in the

endothelial lining modulating the flow through a porous trabecular meshwork tissue

[35] suggests that overall flow resistance may depend on an interaction between

the endothelial pores and extracellular matrix.

6.2.3 Aqueous humor circulation in the anterior chamber

Before the aqueous humor drains out of the eye it passes through the pupil, trav-

eling from the posterior to the anterior chamber, and then circulates in the ante-

rior chamber. Aqueous circulation in the anterior chamber is the result of several

stimuli, including blinking, accommodation (changing lens shape to alter focal

length), and thermally induced natural convection. Natural convection is interest-

ing and can have clinical implications. It occurs because the cornea is normally

exposed to ambient air; consequently, the temperature at the posterior corneal sur-

face is slightly less than body temperature. This creates a temperature gradient

across the anterior chamber, so that cooler aqueous humor near the corneal sur-

face falls and warmer aqueous humor near the iris rises. These convection patterns

[36,37] tend to transport particles in vertical paths along the mid-peripheral cornea

(Fig. 6.11). This phenomenon can be observed clinically in patients whose irises

release abnormal amounts of pigment. Some of these pigment particles adhere to

the posterior surface of the cornea, forming vertical “stripes” near the pupil known

as Krukenberg spindles.
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Figure 6.11

Aqueous humor circulation. (A) Computational modeling of aqueous humor circulation patterns in the anterior chamber
shows fluid falling with gravity near the cornea and rising near the warmer iris. (B) This motion, together with net
drainage of aqueous humor through the trabecular meshwork, leads to spiral particle paths. (C) Particles tend to travel in
vertical stripes near the posterior corneal surface; here the residence times near the posterior surface of the cornea are
shown. Modified from Heys and Barocas [37], with kind permission of Springer Science and Business Media.

There are several forms of glaucoma in which the elevated IOP is not a result of

changes in the drainage system of the eye per se. These come under the heading

of angle-closure glaucoma, a condition that occurs when the iris pivots forward

and blocks access to the drainage structures in the angle of the anterior cham-

ber. There appears to be an anatomic predisposition to this situation. The iris is

extremely pliable [38], and modeling has shown interesting interactions between

iris deformation and aqueous flow through the pupil and between the lens and the

iris, especially when the eye is perturbed by blinking [39,40].

6.2.4 Optic nerve head biomechanics

Now that we understand IOP, and the fact that it is elevated in most forms of

glaucoma, we turn our attention to the optic nerve. Recall that the retinal ganglion

cell axons, responsible for carrying visual information from the retina to the brain,
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Figure 6.12

A scanning electron micrographic view of the lamina cribrosa from a normal human eye. The neural tissue has been
digested away, leaving only the porous connective tissue of the laminar plates and the solid connective tissue of the
sclera. After digestion, the sample was embedded and sectioned through the scleral optic nerve head. Adventitial tissue
surrounding the central retinal vessels can also be seen in the center of the lamina. S, superior; T, temporal. Reprinted
from Minckler [41], with permission from Elsevier.

converge from all over the retina to form the optic nerve. How does elevated IOP

damage these retinal ganglion cell axons in glaucoma? We do not know the answer

to this question, but there is strong evidence that a specialized tissue known as

the lamina cribrosa plays an important role in the damage process. The lamina

cribrosa is a porous connective tissue that spans the scleral canal (Fig. 6.12),

mechanically supporting the retinal ganglion cells of the optic nerve as they leave

the eye.

Why do we think the lamina cribrosa is important in glaucoma? To answer this

question we need to know a little bit about the cellular physiology of neurons. These

specialized cells can be subdivided into morphologically and functionally distinct

regions, including the cell body and one or more elongated processes known as

axons. The cell body contains the nucleus and is the site of protein and membrane

synthesis, while the axons do not produce proteins [42]. How then can the cell



266 Ocular biomechanics

supply its axons, which can be up to several meters in length, with proteins and

other substances? As discussed briefly in Section 2.3, proteins and other materials

are transported along axons in vesicles attached to motor proteins that “crawl” along

the microtubules running within the axons. This process of axoplasmic transport is

essential to maintaining the health of the axon. Early studies [43–46] demonstrated

that blockage of this transport process (“axoplasmic blockade”) occurs when IOP

is chronically elevated, and furthermore that this blockade occurs at the level of

the lamina cribrosa. Moreover, it is known that lamina cribrosa morphology is

distorted in glaucoma, and that such changes can pre-date the development of

vision loss [47,48]. Finally, the pattern of axon loss correlates with the density of

connective tissue in the lamina cribrosa [7]. Such observations have led to much

attention being focused on biomechanics of the lamina cribrosa, with the goal of

understanding how elevated IOP leads to retinal ganglion cell damage.

Biomechanically, the lamina cribrosa and scleral canal are very interesting struc-

tures. The lamina cribrosa typically consists of approximately 10 cribiform plates,

or lamellae, which contain collagen type IV, laminin, and elastin. Each plate is

perforated by between 150 and 600 pores [49], through which the axonal bundles

run. If we think of the eye as a pressurized spherical shell, then the scleral canal,

which is no more than a hole in this vessel, is a site of local stress concentration.

The lamina cribrosa, because it is a fairly compliant tissue spanning this canal,

is expected to undergo large deformations and strains as the surrounding sclera

deforms. These observations have led to the mechanical theory of glaucomatous
optic neuropathy, which postulates that elevated mechanical stresses acting within

the lamina cribrosa lead to axonal damage. Interestingly, this damage to axons may

not be direct, but instead may be mediated through activation of type 1B astrocytes

in the lamina cribrosa [50]. Astrocytes are a type of glial cell that function to pro-

vide support and guidance to neural cells. When glial cells become activated they

proliferate, leading to a glial scar in a process known as gliosis. As this occurs,

the activated astrocytes fail to provide trophic (i.e., nutritional and appropriate

stimulatory) support to their surrounding neurons, triggering neuronal death.

There is a second theory about how retinal ganglion cells are damaged in glau-

coma, called the vasogenic theory. It proposes that the glaucomatous insult results

from insufficient vascular perfusion at the level of the lamina cribrosa, resulting in

insufficient oxygen delivery (ischemic injury). Inadequate autoregulatory function

in the branches of the short posterior ciliary arteries supplying the laminar region

and complications in the hemodynamics of the surrounding vasculature could play

a role in this process [51–54]. There is experimental evidence supporting both the

mechanical and the vasogenic theories of glaucomatous damage, and it is probably

the case that optic neuropathy results from a combination of both mechanisms. It is

also possible that such effects could interact; for example, mechanical deformation
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of the lamina cribrosa could lead to ischemia via distortion of capillary beds. In any

case, it should be clear from the above discussion that we need to better understand

the biomechanics of optic nerve head tissues, and in particular the biomechanics

of the lamina cribrosa, in order to gain insight into how glaucoma leads to visual

function loss.

How can we evaluate the biomechanical environment within the lamina cribrosa?

Unfortunately, the lamina cribrosa is small, relatively inaccessible, soft, and sur-

rounded by a much stiffer tissue (sclera). This means that measurement of stress and

strain in this tissue is challenging, to say the least! Most experiments have therefore

just measured the deformation of the lamina in post mortem specimens, either by

histological examination [55,56] or by other indirect techniques [57–59]. To deter-

mine mechanical strains, it is natural in such a situation to turn to modeling. This

is not straightforward either, since the lamina is a porous, anisotropic, non-linear

material with a complex geometry. However, you have to start somewhere, and it

is sensible to begin by treating the lamina as a homogeneous, isotropic, linearly

elastic circular plate of finite thickness subjected to a uniform pressure. Unlike

the derivation presented in Section 2.8.2 for a thin elastic membrane subjected to

pressure, bending stresses within the lamina cribrosa are important in supporting

the pressure load and must be taken into account. Towards this end, He and Ren

[60] considered the case of small deflections of a circular plate subject to tension

from the surrounding sclera. Edwards and Good [61] followed a similar approach,

allowing for large deflections but neglecting the tension applied by the peripheral

sclera. Here we will briefly outline the approach of Edwards and Good, which is

based on an energy argument arising from the classical mechanics of shells [62].

Throughout this derivation, we will exploit the fact that the thickness of the lamina

cribrosa (120 to 450 μm, depending on the eye [56]) is small compared with the

diameter of the lamina (typically 1.9 mm [63]).

The starting point is to write an expression for the strain energy stored in the

circular disc representing the lamina cribrosa, for which there are two contributions:

the strain energy of bending, Vbending, and the strain energy from stretching of the

disc as it bows backwards, Vstretching. It can be shown [62] that for a symmetrically

loaded disc of radius a, thickness h and Young’s modulus E

Vbending = π D

a∫
0

[(
d2w

dr2

)2

+ 1

r2

(
dw

dr

)2

+ 2ν

r

dw

dr

d2w

dr2

]
r dr (6.9)

where w(r ) is the lateral deflection of the disc from the applied pressure (Fig. 6.13),

ν is Poisson’s ratio, and D is the flexural rigidity of the disc, given by

D = Eh2

12(1 − ν2)
. (6.10)
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Definition sketch for thin disc acted upon by a pressure on its upper face. The directions of the displacements u(r) and
w(r) are shown. Note that the thickness of the disc, h, is exaggerated in this figure.

Equation (6.9) is not trivial to derive; in brief, it comes from considering a

small element of the disc having dimensions dr by dθ , and noting that the strain

energy of bending of this small element is proportional to the local curvature of

the element multiplied by the internal bending moments acting on the element.

For an elastic material, the internal bending moments are proportional to the local

curvatures, so that the strain energy is proportional to quadratic terms involving

the local curvature of the element. For a symmetrically loaded circular disc, there

are two principal radii of curvature given by (d2w/dr2)−1 and [(1/r )(dw/dr )]−1,

which appear in Equation (6.9).

The strain energy from stretching of this same small element is proportional to

the product of the forces acting along the midplane of the disc and the strains in the

disc. Again, for an elastic disc, the forces acting on the midplane are proportional

to the strains, so that the quantity Vstretching is quadratic in the strains [62]

Vstretching = π Eh

1 − ν2

∫ a

0

[
ε3

r + ε2
θ + 2νεrεθ

]
r dr (6.11)

where the two strain components εr and εθ are given by

εr = 1

2

(
dw

dr

)2

+ du

dr
(6.12)

and

εθ = u

r
(6.13)

where u(r) is the radial displacement of an element of the disc (Fig. 6.13).



269 6.2 Biomechanics of glaucoma

If we knew w(r ) and u(r ) we could insert them into Equations (6.9) and (6.11) to

compute the strain energy, but we do not. However, there is a creative approximate

way to solve this problem, which is to make educated guesses for w(r ) and u(r ).

Timoshenko [62] recommended expressions of the form:

w(r ) = w0

(
1 − r2

a2

)2

(6.14)

u(r ) = r (a − r ) (C1 + C2r ) (6.15)

where C1, C2, and w0 are constants, with w0 representing the maximum deflection

of the disc at its center. Notice that these expressions satisfy the requirements of

no deflection at the edge of the disc and zero radial deflection at the center of the

disc. How to determine C1 and C2? We can use the fact that at equilibrium the

strain energy of the disc must be a minimum to write:

∂

∂C1

(Vbending + Vstretching) = ∂

∂C1

(Vstretching) = 0 (6.16)

∂

∂C2

(Vbending + Vstretching) = ∂

∂C2

(Vstretching) = 0 (6.17)

which gives expressions for C1 and C2 in terms of w0 and disc properties.

The last step is to use the principle of virtual work to compute w0 It is eas-

iest to understand this principle by first considering a single particle, which we

suppose is acted on by a set of forces F1, F2, . . . FN . We further suppose that the

particle is at equilibrium, and then assume that the particle undergoes a small

movement (a virtual displacement), δu. The virtual work done during this virtual

displacement is

δu •
N∑

i=1

Fi (6.18)

where the virtual displacement is assumed to be small enough so that the forces are

unaffected. Now it can be seen that the virtual work associated with an arbitrary

displacement δu will be zero if and only if
∑N

i=1 Fi = 0, which is the condition

for the particle to be at equilibrium. In other words, requiring that the virtual work

done on the particle be zero yields an equilibrium condition for the particle. For a

collection of particles (e.g., an elastic solid) the virtual work done can be divided

into that due to the external forces and that due to internal forces. The work done

by internal forces is simply converted in stored elastic energy, and therefore the

latter quantity is just the negative of the strain energy; consequently, in the absence
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of body forces, the equilibrium condition can be expressed as [64]

−δV +
∫
�

N∑
i=1

Fi • δu d� = 0 (6.19)

where the integral is taken over the bounding surface of the elastic solid, �, the Fi

represent the external forces acting on the solid, and δV is the change in the strain

energy owing to the virtual displacement δu.

We can use this to compute the equilibrium configuration of a solid disc acted

on by a uniform pressure q by noting that δV = (∂V /∂w0)δw0 and

∫
�

N∑
i=1

Fi • δu d� = 2π

a∫
0

q δw r dr = 2π

a∫
0

q

(
1 − r2

a2

)2

δw0 r dr

to write

∂

∂w0

(Vstretching + Vbending) = 2π

a∫
0

q

(
1 − r2

a2

)2

r dr . (6.20)

The details are messy, but the net result is that an equation for w0 as a function

of the applied pressure is obtained. Edwards and Good [61] fitted the deflections

of the lamina cribrosa predicted by this approach to the experimental data of Yan

et al. [56], using the Young’s modulus as a fitting parameter. Strain components

throughout the lamina cribrosa can then be computed, for example by using Equa-

tions (6.12) and (6.13) for the normal strains. Edwards and Good estimated normal

strains of approximately 11% and shearing strains of approximately 8% when IOP

reached an elevated level of 50 mmHg [61].

The use of an analytic model for lamina cribrosa biomechanics is elegant but

unfortunately requires us to make some rather restrictive assumptions, such as treat-

ing the lamina as a flat disc with no lateral tension imposed from the surrounding

sclera. We can relax some of these assumptions by employing finite element mod-

eling to study the mechanical behavior of the optic nerve head. Sigal et al. [65] used

this approach with a variety of optic nerve head geometries (Fig. 6.14) to conclude

that peak values of maximum principal strain at an IOP of 50 mmHg ranged from

5 to 8%, slightly less than but comparable to those predicted by Edwards and Good

[61]. It is interesting that in in vitro experiments, strains of 5–8% induced a wide

range of biological effects in neuronal cells [66–68], particularly if the strain was

time varying [69]. This suggests that strains in the lamina cribrosa from elevated

IOP could be damaging to the resident neural cells.

It is also noteworthy that the structure of the lamina cribrosa, where relatively

stiff connective tissue elements are surrounded by fragile neural tissue, may act to

effectively “amplify” strains above those computed here. For example, Bellezza
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Figure 6.14

Finite element models used to study optic nerve head biomechanics in glaucoma. On the left are details of the optic nerve
head region and a typical finite element mesh formed by eight-node quadrilaterals for three different optic nerve head
region geometries. On the right is the full model, consisting of the eye globe with the optic nerve head tissues embedded
in the sclera. From Sigal et al. [65]. This work is protected by copyright and it is being used with the permission of
Access Copyright. Any alteration of its content or further copying in any form whatsoever is strictly prohibited.

et al. [70], by considering a simplified model of the lamina cribrosa consisting of a

regular network of connective tissue “bridges” spanning an elliptical scleral canal,

showed remarkable stress elevations in the lamina cribrosa bridges, in some cases

more than 100 times the applied IOP.

6.3 Ocular blood flow

The anatomy of the circulatory system in the eye is complex to say the least. All

blood is supplied to the eye globe, the lids, and the extraocular muscles by the

ophthalmic artery, which is a branch of the internal carotid artery (Fig. 6.15, color
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plate). The eye globe itself has two main vascular systems: the retinal and uveal.
The retinal circulation is a closed loop (arteries, arterioles, capillaries, venules, and

veins) lying on the anterior surface of the retina (Fig. 6.16, color plate). The uveal

circulation can be subdivided into two regions:

� the anterior uveal circulation supplies the iris, ciliary body (where it helps to

form the aqueous humor), and the peripheral cornea
� the posterior uveal circulation feeds a specialized and quite remarkable vascular

network called the choroid, which lies on the exterior surface of the retina (i.e.,

between the retina and the sclera; Fig. 6.1 color plate).

The net effect is that the retina is sandwiched between two vascular beds, receiving

nourishment from both sides. Why should this complicated system be needed?

It turns out that the body’s scheme for detecting photons is very metabolically

expensive; consequently, if there were capillary beds on only one side of the retina,

the other side would be starved of oxygen. In fact, to supply the retina the choroid

has the highest blood flow per perfused volume of any tissue in the body [73], with

about 85% of total ocular blood flow passing through the choroid [74]. Even with

this high perfusion rate, the oxygen tension in the retina falls drastically within the

photoreceptor layer with distance from the choroid (Fig. 6.17).

Ensuring that enough oxygen gets to the retina is tricky: in addition to the

normal difficulties of having a target tissue with time-varying oxygen needs, the

entire blood supply system is in a container (the eye globe) whose internal pressure

changes over time. This makes the physiology of blood flow in the eye somewhat

unusual. In most of the circulatory system, flow through the capillary beds depends

on vascular resistance and the pressure difference between the arterial and venous

pressures, known as the perfusion pressure. However, in the eye, the effective

perfusion pressure is the difference between the arterial pressure and IOP.

This behavior can be understood by introducing the concept of a Starling resis-
tor, where fluid flows in a collapsible tube that is subject to an external pressure

[76,77]. When the external pressure exceeds the pressure in the tube, the tube par-

tially collapses until the stresses in the collapsed tube wall can support the transmu-

ral pressure difference. This collapse occurs first at the distal end of the tube, where

the pressure is lowest. (Remember that the pressure decreases as we move along

the tube because of viscous losses from flow in the tube.) The collapse process is

very non-linear, so that a large change in vessel cross-sectional area occurs over

a short distance and the pressure in the tube falls precipitously in the collapsed

region. Upstream of the collapsed region, the tube pressure exceeds the external

pressure, while downstream it is less than the external pressure. The collapsed

region is a point of flow limitation, similar to what occurs at the throat of a nozzle

in supersonic flow, or at a waterfall [77]. (When the collapsed tube is a blood vessel
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Figure 6.17

Intraretinal oxygen profiles measured across a cat retina using an oxygen electrode. The retina is shown schematically at
the top, with the left edge of the figure corresponding to the outer retina and the right edge to the inner retina. The choroid
lies immediately to the left of the schematic, and has an oxygen tension of approximately 70 mmHg. Notice the very
steep oxygen gradient across the photoreceptor layer. Consumption of oxygen in the photoreceptors is actually higher in
the dark, because of the so-called dark current, which explains the differences in the curves labeled “Light” and “Dark.”
Modified from Wangsa-Wirawan and Linsenmeier [75].

this is known as a “vascular waterfall.”) In all of these flows, the flow is insensitive

to the downstream (distal venous) pressure over a wide range of pressures; there-

fore, the effective driving pressure difference is the upstream pressure minus the

external pressure.

In the eye, vessel collapse occurs in the veins as they pass from the pressurized

interior of the eye into the sclera. Inside the ocular globe, venous pressure is greater

than or equal to IOP, while in the sclera it is equal to episcleral venous pressure,

typically 8–10 mmHg [21,22]. Therefore, even though the arterial pressure in the

eye is somewhat lower than in the rest of the body (in the uvea, 75 mmHg sys-

tolic and 35 mmHg diastolic [78]), venous pressure in the interior of the eye is

always above IOP. In fact, pressures in the capillaries of the choroid are typically

5–10 mmHg higher than IOP [79], and flow rate depends sensitively on IOP.

Since the effective perfusion pressure depends on IOP, the only way the perfusion

to the retina can be kept constant as IOP changes is if the flow resistance of the
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retinal circulation changes. This process is known as autoregulation; as expected,

the retinal circulation is autoregulated [74,80] so that it provides a nearly constant

blood flow rate even as IOP increases up to 30 mmHg. If IOP exceeds this value,

then the autoregulatory process can no longer compensate, and retinal blood supply

is reduced.

It is worth remarking that collapsible tubes occur in other physiological situa-

tions. For example, collapse of the upper conducting airways as air flows through

them plays a role in sleep apnea [81], snoring [82], and wheezing [83]. Veins above

the heart can collapse, with the extreme case being flow in the giraffe jugular vein

[84]. Blood flow through a severe stenosis, because of the Bernoulli effect, creates

a very low pressure that can cause cyclic vessel collapse, which can contribute to

fatigue failure of the stenotic plaque [85]. The urethra can collapse during urina-

tion, and the penetrating branches of the coronary arteries collapse during systole,

when the cardiac muscle is contracting and intramuscular pressure is high.

6.4 Problems

6.1 The eye can be treated, to a first approximation, as a thin-walled elastic

pressure vessel of diameter D and wall thickness t. Calculate the distensibility

of the eye, β = (1/V )(dV /dp), (compare with Equation [4.17]) as a function

of D, t, and the Young’s modulus of the sclera/cornea, E.

6.2 The aqueous humor circulates within the eye, flowing in at a constant

rate Qin = 2 μl/min, and draining from the eye at Qout. At steady state,

Qout = Qin. The eye also acts like an elastic vessel, in that its volume increases

if the intraocular pressure p increases. This is expressed by

V = Cp (6.21)

where V is the volume of the eye (normally about 4 cm3) and C is the com-
pliance of the eye (approximately 3 μl/mmHg). Finally, the outflow rate Qout

equals p/R, where R is the (effectively constant) resistance to outflow (about

4 mmHg min/μl).

(a) Balancing mass, show that:

dp

dt
+ p − pss

RC
= 0 (6.22)

where pss is the steady-state pressure in the eye, equal to RQin.

(b) If you poke your eye and increase the pressure by an amount

δp = 10 mmHg, how long does it take the pressure to return to within

5% of its steady-state value?



275 6.4 Problems

Figure 6.18

For Problem 6.3.

6.3 The cornea is a water-filled connective tissue that we will treat as being flat

and of thickness h (Fig. 6.18). Because of the composition of the cornea, it

traps positive ions, so that there are “excess” positive ions in the interior of

the cornea compared with the surrounding fluid contacting the cornea. This is

equivalent to the surface of the cornea acting like a semipermeable membrane

that blocks the passage of positive ions.

(a) When the cornea is completely dehydrated, its thickness is

hdry = 220 μm, and the “excess” concentration of positive ions is

0.8 mM, compared with physiological saline. Assuming that no positive

ions leave the tissue when it becomes hydrated, write an expression for

the “excess” positive ion concentration as a function of corneal thick-

ness, h.

(b) As the cornea becomes more hydrated, it thickens and fibers in the cornea

become stretched. This creates an effective positive pressure within the

cornea, p = k(h − ho), with ho = 345 μm and k = 5.5 Pa/μm. Com-

pute the equilibrium thickness of the cornea when it is exposed to physi-

ological saline at 37 ◦C and zero pressure (gauge). Note that the universal

gas constant R = 8.314 J/(mol K ). Be careful about units here: 1 mM

is 10−3 mol/l.

6.4 In Section 6.2.1 we presented a model of Schlemm’s canal as a compliant

channel, as originally developed by Johnson and Kamm [23]. Show that

the non-dimensional height of Schlemm’s canal h̃(x) = h(x)/h0, obeys the

following equation:

γ 2(1 − h̃) = h̃3 d2h̃

dx̃2
+ 3h̃2

(
dh̃

dx̃

)2

(6.23)
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where the parameter γ is given by:

γ 2 = 12μs2

wh3
0 Riw

(6.24)

and x̃ = x/s is the non-dimensional position in the canal. Physically, what

does γ 2 represent? When γ is �1 show that the above equation has a solution

of the form h3(dh/dx) = constant.
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7 The respiratory system

The function of the respiratory system is to exchange O2 and CO2 with the blood.

To understand this system from a bioengineering viewpoint, we will first discuss

the gross anatomy of the lungs and their associated structures, and then discuss the

mechanics of breathing.

7.1 Gross anatomy

We divide the respiratory system into two subsystems: the conducting airways and

the associated structures.

7.1.1 The conducting airways and pulmonary vasculature

The conducting airways form a fantastically complex branching tree designed to

transport air efficiently into the alveoli, the smallest air-filled structures in the

lung where blood/gas exchange takes place. Air enters through the mouth or nose

then passes through (in order): the pharynx (the throat), the larynx (the voice

box), and the trachea (the large tube passing down the neck). The trachea splits to

form two bronchi (singular: bronchus), each of which feed air to one of the lungs

(Fig. 7.1, color plate).

Each bronchus splits to form bronchioles, which, in turn, split to form smaller

bronchioles, and so on (Fig. 7.2). After about 16 levels of branching, we reach

the terminal bronchioles, which are the smallest structures that have a purely air-

conducting function, that is, in which essentially no blood/gas exchange takes place

(Fig. 7.3). In adult lungs, the structures distal to the terminal bronchioles consist of

several generations of respiratory bronchioles, alveolar ducts and alveolar sacs,

which collectively are known as the acinus; this is where the gas exchange occurs

(Fig. 7.4). All of the conducting airways are lined by pulmonary epithelial cells,

which we will see play a number of important roles in ensuring the proper function

of the lungs.
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Figure 7.2

A resin cast of the airways of a pair of human lungs shows the fantastically complex geometry of the branching airways,
beginning from the trachea (T) and moving down into the bronchial tree (B). Note the branching of the peripheral airways
in the higher-magnification view in the inset. In the left lung, the arteries (A) and veins (V) have been filled with a slightly
darker resin. Reprinted by permission of the publisher from The Pathway for Oxygen: Structure and Function in the
Mammalian Respiratory System by E. R. Weibel, p. 273, Cambridge, MA: Harvard University Press [2]. Copyright C©
1984 by the President and Fellows of Harvard College.

The alveoli (singular: alveolus) form after birth, by a fascinating process in which

the walls of the smallest air-containing passages in the lungs become scalloped so

as to enlarge their surface area. The number of alveoli gradually increases with

time until about the age of six, after which the lungs are essentially fully formed

(Fig. 7.5). As can be imagined, it is not easy to know exactly how many alveoli

there are. Early estimates [6] suggested that there are about 300 million alveoli,

with radii ranging from 75 to 300 μm, and mean radius of approximately 150 μm.

More recent estimates [7] have suggested that the average number of alveoli is

480 million, with an average radius of about 100 μm. The total surface area of
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Figure 7.3

Schematic diagram of the organization of the airway tree, showing the different functional zones (“conducting zone,”
“transitional zone,” and “respiratory zone”) as a function of generation numbers, z. The diameter (D), cross-sectional
area (A) and number of airways are shown in the colums on the right. The number of airways is actually larger than that
listed here, since the tabulated values are based on a simple bifurcating model of the airways; the reality is more
complex. T refers to the terminal generation, T-1 to the generation immediately preceding the terminal generation, etc.
The dimensions are suitable for a lung that is inflated to three quarters of capacity. The figure at left is from Weibel [3],
supplemented at right by entries from [2]. Reproduced with permission of Lippincott Williams & Wilkins.

the alveolar walls has been quoted to be as large as 140 m2 [2], which is about 75

times the body’s external surface area.

In addition to the conducting airways for air transport, it is necessary to have a

system for delivering the blood to the alveoli so that mass transfer can take place.

The lungs are supplied by the pulmonary arteries and drained by the pulmonary

veins. The smallest units of the pulmonary vasculature are the pulmonary capil-

laries, which run as closely packed units inside the alveolar walls. The net effect

is that a thin “sheet” of blood flows within much of the alveolar wall (Fig. 7.4).

Interposed between the blood and the air is a thin layer of tissue, consisting of

capillary endothelial cells, basement membrane, and airway epithelial cells. The

total thickness of this tissue varies, with an arithmetic mean thickness of 2.22 μm

and a harmonic (geometric) mean thickness of 0.62 μm [2]. The combination of an

enormous alveolar surface area, a comparably large pulmonary capillary surface
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Figure 7.4

Overview of lung microanatomy. (A) Scanning electron micrograph of lung tissue, showing how a peripheral bronchiloe
(BL) branches into terminal bronchioles (T), which, in turn, divide to produce respiratory bronchioles and alveolar ducts
(arrows). This gazelle lung was fixed in such a way as to prevent collapse of the alveoli and terminal segments of the
bronchial tree. (B) A plastic cast of the alveolar capillary network within a small group of alveoli (a), photographed after
the surrounding tissue was dissolved away. The two images are not taken from the same sample or even from the same
species; the white box in (A) approximately corresponds to the field of view in (B) and is simply included to give a sense
of relative scale. Scale bar in panel (B) is 50 μm. (A) is reproduced from Fawcett [4] and Gehr et al. Journal of
Morphology 168:5-15, Copyright C© 1981, and is used with permission of Wiley-Liss, Inc., a subsidiary of John Wiley &
Sons, Inc. (B) is Copyright C© 1990 from Electron Microscopy of the Lung by Schraufnagel [5] and is reproduced by
permission of Routledge/Taylor & Francis Group, LLC.

area, and the very thin tissue layer between blood and air make the lung a very
effective mass transfer device.

7.1.2 Associated structures

As well as the conducting airways, the pulmonary system includes a number of

other tissues (the associated structures) that together are responsible for the inspi-

ration and expiration of air. The lungs are contained within the thoracic cage, con-

sisting of the ribs, intercostal muscles, sternum (breastbone), spine, diaphragm,

and neck and shoulder muscles.1 These together form a deformable “container” for

the lungs. Attached to the exterior surface of the lung and to the interior surface of

the thoracic cage is the pleural membrane. The space enclosed by this membrane

is the pleural space, which is normally filled with the intrapleural fluid (Fig. 7.6).

Each lung has its own pleura.

1 The intercostal muscles are located between the ribs. The diaphragm is the large muscle at the base of the lungs,

familiar to anyone who has been “winded.”
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Increase in the number of alveoli with age in human lungs. There is a gradually increasing trend until about age six, after
which the number of alveoli is essentially constant. The symbols show the results from different studies. The original
data sources can be found in Weibel [2]. Reprinted by permission of the publisher from The Pathway for Oxygen:
Structure and Function in the Mammalian Respiratory System by Ewald R. Weibel, p. 227, Cambridge, MA: Harvard
University Press. Copyright C© 1984 by the President and Fellows of Harvard College.

Figure 7.6

Schematic of the thoracic cage, pleural membrane, intrapleural fluid, and lungs. This is not to scale; the intrapleural fluid
actually forms a very thin layer. Note that there is no communication between the right and left intrapleural fluids. After
Vander et al. [1]. With kind permission of The McGraw-Hill Companies.
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Inspiratory
positions

Diaphragm

Figure 7.7

Chest wall and diaphragm motion during inspiration. The solid and dashed lines indicate expiratory and inspiratory
positions, respectively. From Vander et al. [1]. With kind permission of The McGraw-Hill Companies.

7.2 Biomechanics of breathing

An interesting aspect of the breathing process is the fact that there are no muscles

attached to the lungs to aid with inflation and deflation. Rather, the necessary

forces are transmitted to the lungs through the intrapleural fluid via the mechanisms

described below. This system allows a uniform inflation of the lungs while avoiding

the high stresses and deformations that would result if a muscle inserted into the

soft lung tissue.

Inspiration and expiration proceed by two very different mechanisms, as

described below.

Inspiration. In quiet inspiration, the diaphragm contracts and moves downward,

thereby increasing the volume of the thoracic cavity. In addition, the external

intercostal muscles and the scalene muscles (at the neck) contract to move the rib

cage up and out (Fig. 7.7). This also increases thoracic cavity volume, although

the contribution of the intercostal and scalene muscles is minimal during quiet

inspiration. Since the intrapleural fluid is essentially incompressible, an increase

in thoracic cage volume must be accompanied by an increase in lung volume. The

best analogy is that of a balloon inside a fluid-filled container of variable volume
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(e.g., a piston and cylinder). As the piston moves back and forth, the balloon’s

volume shrinks and grows. In forced inspiration the above description still applies.

However, the contribution of the intercostal and scalene muscles becomes more

pronounced.

Expiration. Quiet expiration is a passive process that relies on the natural

tendency of the lung to collapse (see Section 7.3 for detailed discussion). The

diaphragm, the external intercostal muscles, and the scalene muscles relax, allow-

ing the lung and the thoracic cage to decrease in volume. Forced expiration is an

active process. In addition to the relaxations of quiet expiration, the internal inter-

costal muscles contract to pivot the ribs downward and in. Also, the abdominal

muscles contract, pulling down the rib cage, increasing abdominal pressure, and

thereby forcing the diaphragm upwards. These mechanisms together act to reduce

thoracic cavity volume, which allows a large quantity of air to be quickly expelled

from the lungs.

7.3 Lung elasticity and surface tension effects

It was previously stated that the natural tendency of the lung is to collapse. Before

examining why this is the case, we briefly look at what this fact implies about the

intrapleural pressure.

At rest, when the subject is neither inspiring nor expiring, the pressure within

the conducting airways is essentially atmospheric.2 To counterbalance the lung’s

tendency to collapse, it is clear that the lung must be “blown up”. In other words,

the pressure in the lung must exceed the surrounding pressure, which in this case

is the intrapleural pressure. Therefore, at rest, intrapleural pressure must be slightly

negative. This is confirmed by measurements, with typical intrapleural pressures

of −3 to −4 mmHg (gauge) at rest. During inspiration and expiration, intrapleural

pressures deviate from this resting value. For example, during rapid inspiration,

intrapleural pressure can fall to as low as −100 mmHg, while it can become slightly

positive during forced expiration.

If the pleural cavity is opened to the atmosphere (for example in a puncture

wound), then the pressure difference required to inflate the lung is lost. This causes

lung collapse, or pneumothorax.

We now turn to the question of why the lung tends to collapse. There are two

reasons:

� Lung tissue (or parenchyma) is naturally elastic. It contains a very high propor-

tion of elastin (see Section 2.4). Under normal conditions, the lung is expanded

2 During inspiration, alveolar pressure is slightly negative (about −1.5 mmHg) to draw air into the alveoli, and it is

slightly positive during expiration.
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Stress–strain curve for lung parenchyma under biaxial loading conditions. For constant transverse loads (differing Fy

values in dynes), the stress is plotted as a function of stretch in the x direction. Note the significant increase in tangent
modulus at stretch ratios above approximately 1.5. From Vawter and Humphrey [8]. With kind permission of The
McGraw-Hill Companies.

(inflated) so the lung parenchyma is under tension. The elastic restoring force

from this tension acts to decrease lung volume. It is interesting to note that

lung parenchyma is a strain-stiffening material (i.e., its incremental Young’s

modulus increases with strain, as shown in Fig. 7.8). Such behavior is typical of

connective tissues and reflects the arrangement and orientation of stress-bearing

fibers within the tissue (see Section 9.10.3). At low stresses, the collagen and

elastin within the lung, which are the main stress-bearing materials, are ran-

domly oriented. At high stresses they align along the direction of stretching

(Fig. 7.9). Additionally, at high strain, the individual collagen and elastin fibers

stiffen, because of their molecular structure, which resembles that of a helical

spring (see Section 9.10.1). The net effect is that the lung becomes significantly

stiffer as it is inflated.
� Surface tension acts to collapse the lung. To see why this is the case, consider

a single alveolus filled with air. In order to maintain the viability of cells in

the alveolar wall, the inner surface of the alveolus must be coated with a thin

fluid layer. This creates an air/fluid interface within the alveolus, as shown in

Fig. 7.10. Whenever an interface between two immiscible phases forms,

energy is required to maintain that interface. The system attempts to minimize
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Undeformed state: low strain and low incremental Young’s modulus

Deformed state: large strain and large incremental Young’s modulus

Tension Tension

Figure 7.9

Schematic diagram of collagen and elastin orientation in connective tissue. As fibers align in the direction of stretching,
the tissue stiffens.

Air, pressure p i

Liquid film, pressure po

Alveolar wall (elastic)

Intrapleural pressure ppleural

Figure 7.10

A single alveolus, showing pressures in surrounding tissue, in the air, and within the liquid film lining the alveolar wall
(not to scale). See text for definition of symbols.

this energy by reducing the interfacial area. This gives rise to an effective

force that acts along the interface, called the surface tension. It is characterized

by a surface tension coefficient σ, the value of which depends on the two

contacting phases. In the single alveolus, a reduction in interfacial area can

only be accomplished by collapsing the alveolus. To counteract this tendency,

the pressure of the alveolar air (pi) must exceed the pressure on the other side

of the interface, namely the liquid film pressure po (see Box 7.1).
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Box 7.1 Analogy of an air bubble in liquid

The situation in an alveolus is directly analogous to the case of an air bubble in

an infinite volume of liquid. If the interfacial (surface) tension coefficient for

the air/liquid interface is σ , then at equilibrium Laplace’s law states that, for a

spherical bubble of radius R, the difference between internal air pressure pi

and the pressure in the surrounding fluid, po, is given by

pi − po = 2σ

R
(7.1)

Using Laplace’s law it is trivial to calculate the pressure difference pi − po

in a single alveolus. Using Equation (7.1) with numerical values R = 150 μm =
1.5 × 10−2 cm and σ = 72 dynes/cm (the latter value being appropriate for an

air/water interface) yields pi − po = 9600 dynes/cm2, or 7.2 mmHg. At rest, when

po is atmospheric, this result implies a liquid film pressure of −7.2 mmHg.

These data can be used to make an inference about the intrapleural pres-

sure, ppleural. Because of the elasticity of the lung parenchyma and alveolar wall

tissue, the liquid film pressure must be greater than pleural pressure. Hence,

we predict that ppleural < −7.2 mmHg. However, we have stated that the mea-

sured resting value of ppleural is −3 to −4 mmHg, which contradicts the above

calculation.

The resolution of this apparent contradiction is that we have used the wrong

value of σ in Equation (7.1). The alveoli are in part lined by type II epithelial

cells, which secrete a surfactant that mixes with the alveolar liquid film and greatly

decreases σ for the resulting air/liquid interface. This, in turn, increases ppleural,

effectively making it easier to overcome surface tension and so to breathe. The

value of σ for saline plus surfactant in contact with air has been measured (Figs.

7.11 and 7.12). The data show that the volume of σ depends on the extension

of the air/liquid interface. Specifically, σ is small at low relative interfacial areas

and is large at high relative interfacial areas. This means that σ is lower at the

start of an inspiratory cycle than at the end. Since large values of σ imply that

more negative intrapleural pressures are required for inspiration, it follows that

it is easier to inspire near the beginning of an inspiratory cycle than at the end.

Essentially, surface tension acts in a non-linear fashion to stiffen the lung near the

end of inspiration.

A notable feature of the surface tension data is the hysteresis present: at a given

relative interfacial area, the surface tension is higher when the interfacial area is

increasing than when it is decreasing. This means that surface tension makes it

more difficult to breathe in than to breathe out.
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Figure 7.11

Surface balance apparatus used to measure surface tension by Clements. The shallow tray is filled with saline, and the
fluid to be tested is layered on top of the saline. A thin platinum strip (0.001 inch thick) is then suspended in the fluid
from the arm of a very sensitive strain gauge-based force transducer. The force exerted by the fluid on the platinum strip
is measured, from which the surface tension can be computed. To change the surface area of the tested fluid, a barrier
can be moved along the trough. When this is done cyclically while measuring the surface tension continuously, any
hysteresis effects in the surface tension versus area behavior are readily detected. Modified from Clements [9] with
permission of the American Physiological Society.

The relative contributions of lung parenchymal elasticity and surface tension

can be seen in Fig. 7.13, in which lungs are “inflated” either with physiological

saline or air. A number of comments about these data are in order:

� When the lung is inflated with saline, there are no surface tension effects and

therefore the curve labeled “2” represents the effects of parenchymal elasticity

alone. The stiffening of lung parenchyma at high volumes (high strains) is

evident. Also note that some hysteresis is present, as a result of viscoelastic

effects in the parenchyma.
� The difference between the curves labeled “2” and “1” indicates the importance

of surface tension effects. Significantly greater pressure is required to inflate

the lung when surface tension effects are present. A great deal of hysteresis is

evident, as expected based on the hysteresis in the value of σ shown in Fig. 7.12.

Clinically, surfactant is very important. It makes breathing much easier (less

pressure difference needed to inflate the lung), so that the diaphragm and intercostal

muscles can do less work with every inspiration. Premature infants are often born

with reduced surfactant-producing abilities, since the lungs are one of the last

organs to mature in utero (Fig. 7.14). These infants have a great deal of difficulty

breathing (a condition known as respiratory distress syndrome) and are typically

given synthetic surfactant until their type II epithelial cells mature.
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Surface tension versus interfacial relative area for water, plasma, detergent, and lung extract. The surface tensions of pure
water and detergent are 72 and 22 dynes/cm, respectively, and show no dependence on interfacial area. Plasma and lung
extract, however, have a surface tension that depends on interfacial area and also on whether the interfacial area is
increasing or decreasing (arrows). This effect, leading to hysteresis in the curves, is particularly prominent for lung
extract. Modified from Clements [9] with permission of the American Physiological Society.

7.4 Mass transfer

The lungs are remarkable mass transfer devices that permit blood/gas exchange. It

is of interest to examine the performance of the lungs as mass transfer units, and

towards this end we will consider two points of view: (i) a microscopic one, in

which we focus on gas transport in a single acinus; and (ii) a macroscopic one, in

which we focus on the entire lung.

When considering mass transfer at the level of the acinus, we should keep in

mind that O2 transport from air to blood consists of several steps: O2 in the acinar

air must move until it is adjacent to the thin tissue layer separating blood from

air, must cross this thin tissue layer, and must then move through the blood to
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Pressure–volume relationship for inflation of an excised degassed cat lung with air or saline solution. Loop 1 is an initial
inflation/deflation with air; loop 2 is an inflation/deflation with saline; loop 3 is an inflation/deflation with air after saline;
and loop 4 is an air inflation/deflation after the lung was washed with detergent. Note that in all inflation–deflation cycles
(but particularly when the lung is inflated with air), the deflation path differs from the inflation path. The difference
between loop 1 and 2 results from the absence of surface tension effects in the saline-filled lung. After saline filling,
some airways are collapsed and a significant opening pressure is required to inflate the lung, as can be seen by the
initially horizontal part of the inflation paths for loops 3 and 4. Filling the lung with saline removes surfactant, as does
washing with detergent, producing higher deflation pressures for loops 3 and 4. Modified from Bachofen et al. [10] with
permission of the American Physiological Society.

bind to hemoglobin in red cells. In thinking about these processes, it is convenient

to consider the “air-side” and “blood-side” mass transfer as individual processes

coupled by transport across the blood–air tissue barrier. In a well-designed system,

we expect that the mass transport capacity of these individual processes will be

approximately matched, although we will see that it is not easy to define what

“matched” means in this context.

It is common (and conceptually convenient) to think of the microscopic arrange-

ment of alveoli and pulmonary capillaries as one in which alveoli all reside at the end

of conducting airways and are more or less equivalent from a mass transport view-

point (Fig. 7.15A, color plate). Unfortunately, this “parallel ventilation/parallel
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Figure 7.14

Surface tension measurements made on extracts from infant lungs using the apparatus shown in Fig. 7.11. Comparison
of the measurements in lung from an infant suffering from respiratory distress syndrome (A) with those from an infant
without pulmonary distress (B), and with the data shown in Fig. 7.12, shows that the minimum attainable surface tension
is elevated in the lung extract from the child with respiratory distress. From Clements [9] with permission of the
American Physiological Society.

perfusion” model is incorrect; in mammals, the alveoli within an acinus reside

in the last six to nine generations of airways, so that oxygen is continually being

extracted from acinar air as one moves deeper into the lung (Fig. 7.15B, color plate)

[11]. This means that it is more appropriate to think of the acinus as a “series ven-

tilation/parallel perfusion” system, a distinction that has important consequences

for air-side mass transfer, as we will see. Let us begin our analysis of this system

by considering blood-side mass transfer.

7.4.1 Blood-side acinar mass transfer

Based on the discussion above, we will treat all alveoli as being essentially equiv-

alent from the viewpoint of blood-side mass transfer, with the exception that we

will allow the driving potential (alveolar O2 concentration) to depend on the airway

generation. Some other salient features of mass transfer in a single alveolus are:

� blood flows in a sheet-like network of capillaries [12] that are in direct contact

with the alveolar wall on both sides
� the thin tissue layer intervening between blood and air allows gases (e.g., O2 and

CO2) to cross, but under normal circumstances, prevents blood from entering

the alveolus; it can therefore be thought of as a semipermeable membrane.
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Schematic of mass transfer to an alveolar capillary (not to scale). Blood flows from left to right in the capillary, here
shown as a central channel, where Ro is the radius of a single pulmonary capillary. Alveolar air contacts the upper and
lower boundaries of the channel, which are assumed to be gas permeable. The graph shows how blood gas concentration
changes with axial position in the capillary, in this case approaching but not quite reaching the alveolar gas concentration.

Based on these features, we model the capillaries in contact with the alveoli as a

two-dimensional channel with semipermeable walls. The height of the channel is

2Ro, where Ro is the radius of a single pulmonary capillary. Alveolar air is in direct

contact with the upper and lower semipermeable walls, and blood flows through

the channel with mean velocity U (Fig. 7.16).

We consider the transport of a gas from the alveolar air to the blood. Obviously

this is relevant to the transport of O2, but we will see shortly that the situation for
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O2 is remarkably complex, essentially because the binding of O2 to hemoglobin

depends in a non-linear manner on O2 partial pressure and a number of other

factors. Therefore, to get started, let us simply consider a generic gas whose total

solubility in blood is proportional to its partial pressure. We will denote the local

effective concentration of this gas in the blood by c(x, y, t); it has dimensions of

moles of gas per volume of blood. This gas is able to cross the semipermeable

capillary walls by diffusion. Its mean concentration in the incoming blood stream

is cin, and in the blood leaving the capillary sheet it has mean concentration cout.

We wish to solve for the blood gas concentration, c(x, y, t). A complete analysis

of this problem is rather difficult, since c is in general a function of position

(x and y) and time t. We will therefore simplify the problem by making several

assumptions.

1. We assume that the blood is well mixed in the cross-stream (y) direction. This

implies that c is not a function of y. This is actually a poor approximation,

since it ignores the mass transfer boundary layer that forms along the semiper-

meable walls of the pulmonary capillaries. We will discuss this assumption on

p. 304.

2. We assume steady-state behavior, so that c is not a function of time. This means

that the pulsatile blood flow is replaced by a steady mean flow, and that the

time-varying concentration of gases in the alveolar air is replaced by a steady

mean concentration. This will also be discussed in more detail on p. 305.

We are left with c depending only on axial position, x. This dependence on x is

central to the physics of the problem, since gas is continually leaving the alveolus,

diffusing across the semipermeable membrane, and being taken up by the blood.

The more rapidly the gas can diffuse across the membrane, the more quickly c will

increase with x. An important parameter in this analysis is therefore expected to

be the flux of gas across the walls, J, defined by

J = moles gas diffusing across channel boundaries per unit time

unit wall area
. (7.2)

The driving force for the diffusional gas flux J is the gas concentration difference

between the alveolar air and the blood. Since c depends on x, this difference also

depends on x, and we therefore expect J to depend on x. Consequently, we must

formulate two equations to solve for the two unknowns, c(x) and J (x).

The first step is to perform a mass balance on the gas (not the blood) using a

control volume of length δx, as shown in Fig. 7.17. Here we exploit the symmetry

of the problem and consider a control volume in the upper half of the channel

only. The volume flow rate of blood into this control volume (per unit depth into

the page) is Qblood = U Ro. Since there is no gas transported across the center line
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Figure 7.17

Control volume for analyzing alveolar gas transfer. Blood enters from the left at mean velocity U. Gas concentration in the
incoming blood is c; in the outgoing blood it is c + δc. The control volume is δx long and one unit deep (into the
page). R o is the radius of a single pulmonary capillary.

(symmetry!), a mass balance per unit depth into the page yields

c(x)Qblood + J (x)δx = (c(x) + δc) Qblood. (7.3)

The various terms in Equation (7.3) represent, from left to right, the mass flow

rate of gas entering the left-hand edge of the control volume; the mass flow rate

of gas entering the top of the control volume through the semipermeable upper

channel wall; and the mass flow rate of gas leaving the right-hand edge of the

control volume. Rearranging Equation (7.3) and taking the limit as δx → 0 yields

J = Qblood

dc

dx
= RoU

dc

dx
. (7.4)

The second step is to relate J (x) to c(x) by using Fick’s law, which states that

the diffusional flux, J, of a quantity is proportional to the concentration gradient

of that quantity in the direction of diffusion. The proportionality coefficient is the

diffusivity, D. In the present case, the concentration gradient is the concentration

difference across the upper wall of the channel divided by the thickness of the

upper wall. Taking account of the fact that the flux is in the direction from higher

concentration to lower, we can therefore write the diffusional flux as

J (x) = D
calv − c(x)

�y
(7.5)

where calv is the concentration of gas in the alveolar air adjacent to the upper

channel wall and �y is the thickness of the upper channel wall.

What is the meaning of the term calv? Put another way, the concentration c
is defined in terms of moles of gas per volume of blood, so how can we talk
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about c in the alveolar air, where there is no blood? To resolve this question, we

need to take a detour and discuss the concept of equilibrium between two phases.

Suppose we have a gas mixture containing a gas X and that this gas mixture is

allowed to come to equilibrium with a liquid in which the gas X is soluble. In the

simplest case, the equilibrium concentration of gas X in solution in the liquid, cX,

will be linearly proportional to the partial pressure3 of gas X in the mixture, pX,

i.e.,

cX = βX pX (7.6)

where the constant βX is known as the solubility coefficient for gas X.

For example, the solubility of O2 in water at 37 ◦C is approximately

1.41 × 10−9 mol O2/(cm3 mmHg) [2].4 If Equation (7.6) – which is nothing other

than Henry’s law written in a different way – holds, then it is clear that there is a

linear relationship between the concentration of gas X dissolved in a liquid and the

mole fraction of gas X in the equilibrated gas phase. Hence, if all references to the

gas phase are understood to be at a constant reference pressure and temperature,

cX can be thought of as a surrogate measure of the concentration of X in the gas

phase. It is in this sense that we use calv in Equation (7.5). By the same logic, the

reader will appreciate that we can use the partial pressure, pX, to represent the

concentration of gas X in solution in the liquid. It is common to adopt the second

approach, and we will do so here. Specifically, we will now solve for the partial

gas pressure p(x) in the blood, with alveolar partial pressure palv, etc.

Let us now return to Equation (7.5). In general, palv is a function of position

and time. However, we will assume that the alveolus is large and its contents are

well mixed. Although this assumption is not particularly accurate, it permits us to

approximate palv as a constant; it will be further discussed below.

The third step is to combine Equations (7.4), (7.5), and (7.6) to obtain

the following first-order linear differential equation with constant coefficients

for p(x):

RoU
dp

dx
= D

�y
[palv − p(x)] . (7.7)

3 The reader will recall that in a mixture of ideal gases, the partial pressure of gas X is equal to the mole fraction of gas X

multiplied by the total pressure of the gas mixture.
4 Sometimes solubility coefficients are given in terms of volume of gas rather than moles of gas, in which case the

coefficient is known as the Bunsen solubility coefficient. But one must be careful when using these numbers, since the

volume of gas depends on the temperature and pressure, and it should therefore be clearly stated what reference state is

being used. Even worse, the solubility itself depends on temperature, so there are two temperatures involved. It is

common practice in the literature to report Bunsen solubility coefficients at 37 ◦C with the gas volume referred back to

standard temperature and pressure (i.e., 0 ◦C and 1 atm). It is also interesting that the solubility of gases in blood plasma

is slightly less than in pure water. For O2 at 37 ◦C, the plasma solubility is about 90% of that for water [13]; for CO2 the

serum:water solubility ratio is about 93% [14,15].
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Since Equation (7.7) is first order, it requires one boundary condition, which is that

the inlet blood gas partial pressure must equal pin, i.e.,

p(x = 0) = pin. (7.8)

The fourth step is to solve Equation (7.7). To accomplish this it is convenient to

define a dimensionless partial pressure p̂ by

p̂ = p − pin

palv − pin

. (7.9)

Since p(x) can never be greater than palv, p̂ must always be � 1. Similarly, the

minimum possible value of p(x) is pin, so that p̂ � 0. Finally, p̂ is linearly propor-

tional to p. Therefore, p̂ is a convenient non-dimensional measure of concentration

lying in the range 0 � p̂ � 1 such that:

� p̂ close to 1 means that blood is nearly fully loaded with gas
� p̂ close to 0 means that blood is carrying the minimum amount of gas.

We substitute p̂ into Equation (7.7), and after some algebraic manipulation obtain

d p̂

dx
+

[
D

RoU�y

]
( p̂ − 1) = 0. (7.10)

The boundary condition is p̂ = 0 at x = 0. This system has solution

p̂ = 1 − e−x/Lchar (7.11)

where Lchar is a constant with dimensions of length equal to

Lchar = U Ro�y

D
. (7.12)

Lchar is the e-folding length for mass transfer: that is, it is the length over which

the concentration c will change by a factor of e = 2.718 . . . .

Equation (7.11) indicates that the blood gas partial pressure increases exponen-

tially along the capillary. One property of the exponential function is that it goes

to 0 very quickly for negative arguments, so that p̂ approaches 1 quickly (Table

7.1). In the context of the lung this implies that the gas tension in the pulmonary

capillaries rapidly approaches palv, to within 1% for x/Lchar > 5. Therefore, from
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Table 7.1. Normalized blood gas partial
pressure, p̂, in the alveolar model as a function
of dimensionless axial position, x/Lchar

x/Lchar p̂

1 0.63

2 0.86

3 0.95

5 0.993

10 0.99996

the mass transfer viewpoint, the optimal capillary length is approximately 4Lchar. If

the capillary is shorter, the blood cannot take up the maximum amount of gas, while

a longer capillary gives no mass transfer benefit but has increased flow resistance.

In the above analysis, we have considered a gas that is being transferred from

the alveolar air to the blood. Luckily, the same analysis works for the case of a gas

going in the opposite direction, such as CO2 (although see below for complexities

of CO2 transport). In that case, the definition of p̂ is altered, but the variation of

concentration with length takes the form of a decaying exponential with exactly

the same characteristic length as was derived above.

It is interesting to see what optimal capillary length is predicted by this analysis.

We use the following numbers, suitable for humans at rest:

� Capillary radius Ro has been morphometrically estimated to be about 4 μm =
4 × 10−4 cm [3,16].

� The blood speed, U, is not easy to estimate in humans. In dogs, we can estimate

that the speed is approximately 0.1 cm/s [17,18], and we will assume that a

similar value holds in humans. This is of the same order as blood speed in the

systemic capillaries [19].
� The diffusivity, D, should include hindered diffusion in the alveolar wall, so

diffusion across the alveolar wall will be slightly slower than that in water. For

O2 and CO2, the diffusion coefficients in water at 25 ◦C are 2.10 × 10−5 cm2/s

and 1.92 × 10−5 cm2/s, respectively. Weibel [2] gave a value of 1 × 10−5 cm2/s

for O2 in connective tissue at 37 ◦C, and we will take this as being typical of

the gas species of interest.
� The effective tissue thickness must account for local variations in thickness and

the fact that gas will be transported preferentially across thinner wall regions.

Weibel [2] discussed this in detail and indicated that the appropriate value is

�y ≈ 0.6 μm (i.e., 6 × 10−5 cm).
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These numbers give Lchar = 2.4 × 10−4 cm, or 2.4 μm. The actual capillary

length L is of order several hundred microns [18] to 500 μm [20], which is many

times Lchar. This analysis therefore suggests that there is significant “extra mass

transfer capacity” in the pulmonary capillaries. However, we should be a little

careful about this conclusion, for the following reasons:

� There is a large amount of uncertainty in some of the above parameters, arising

from several sources. First, what does “capillary length” mean in a capillary

network like the pulmonary capillaries, where there are extensive interconnec-

tions between capillary segments? We have taken it to be the distance from the

terminal pulmonary arteriole to the pulmonary venule, but even this is some-

times not easy to define in an unambiguous manner. Second, even if we can

define the relevant quantities, it is very difficult to measure them at the single

capillary level, especially in humans; see [3,16,20,21] for an appreciation of

some of these difficulties.
� The values taken above are averages, but there is a great deal of heterogeneity

in the lung. Because blood flow and gas transport will tend to follow a path

of least resistance, incorporation of such heterogeneity into models is a major

challenge [22].
� We have neglected mass transfer resistances in the plasma and within red cells

and have assumed that the kinetics of gas binding in the red cell are very fast.

This turns out to be not quite right, as will be discussed in more detail below.

The net effect of incorporating these effects would be to significantly increase

Lchar.

Putting this all together, we can say that the value for Lchar derived above almost

certainly underestimates the true value. Nonetheless, even if we were wrong by

a factor of 10, our analysis still predicts that there is “extra capacity.” But this is

not a bad thing! Remember that the calculation above was for the resting state.

During exercise, the mass transfer requirements are more severe, and it is therefore

appropriate to have extra capacity for such times.5

Complexities associated with O2 and CO2 transport
A key assumption in the above analysis was that the partial pressure of the gas was

directly proportional to the blood concentration of the gas. However, for the gas

that we care most about – O2 – this is quite a poor assumption. Even the situation

with CO2 is more complex than we have considered above.

5 Actually, the situation during exercise is somewhat more complicated, since under-perfused pulmonary capillaries are

“recruited” during exercise. Consequently, there is not a one-to-one relationship between cardiac output and U during

exercise. However, the comments made above still hold in a qualitative fashion.
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We will first consider the situation with O2. Here the difficulty arises because

O2 in the blood is carried both by the aqueous phase (plasma) and by hemoglobin

within the red cells. In fact, most O2 is carried bound to hemoglobin, so Equation

(7.6) must be modified to read

cO2
= βO2

pO2
+ 4cHbS(pO2

)pO2
(7.13)

where the second term represents the O2 bound to hemoglobin. The amount of

O2 carried in this manner depends on the hemoglobin concentration, cHb, and

the oxygen saturation of hemoglobin, S(pO2
). The factor of 4 arises because one

molecule of hemoglobin can bind four molecules of oxygen. The oxygen saturation

function equals the fraction of hemoglobin that is bound to oxygen, and is a pure

number between 0 and 1. It can be approximated by the Hill equation

S(pO2
) =

(
pO2

/
p50

)n

1 +
(

pO2

/
p50

)n (7.14)

where empirically n = 2.7 and p50, the partial pressure at which hemoglobin is

50% saturated by O2, is approximately 27.2 mmHg. Equation (7.14) shows that O2

blood concentration depends on O2 partial pressure in a highly non-linear manner

(Fig. 7.18), so it is no longer straightforward to relate gas-phase partial pressures

to blood-phase gas concentrations. Additionally, O2 saturation depends on blood

pH and CO2 concentration (the Bohr effect [2]), both of which vary with position

in the pulmonary capillary. The net effect is that O2 binds hemoglobin much more

avidly near the entrance to the pulmonary capillaries than would be expected by

linear theory, which is helpful in that it facilitates rapid uptake of O2 by blood in

the lungs.

Because of these complications, there is a non-exponential relation between p
and x for O2 (Fig. 7.19A). However, the scaling in the above analysis (i.e., the

dependence of Lchar as given by Equation [7.12]) is still approximately valid. For

a more complete discussion of O2 mass transfer, the reader is referred to the books

by Weibel [2] and Cooney [15].

The situation for CO2 transport is slightly simpler. CO2 is about 24 times more

soluble in the aqueous phase than is O2, and it is carried in the blood in three main

forms: as a dissolved gas in the plasma (7% of the total), bound to hemoglobin

(30%), and in the form of bicarbonate ions in the red cells (63%) [15]. The net effect

is that there is less non-linearity in the relationship between CO2 partial pressure

and CO2 concentration in blood than there is for O2, and hence the partial pressure

distribution more closely approximates an exponential for CO2 (Fig. 7.19B).
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Figure 7.18

Oxygen-binding characteristics of blood. The lower dashed line represents the O2-carrying capacity of plasma (right
scale); it can be seen that at a typical alveolar O2 partial pressure of 100 mmHg, plasma can only carry about 0.24 ml of
O2 at standard temperature and pressure (STP) per 100 ml plasma. The S-shaped solid line shows the carrying capacity
of hemoglobin (right scale) and the O2 saturation function (left scale). The upper dashed line shows the total O2-carrying
capacity of blood (right scale), which is about 20.8 ml O2 at STP per 100 ml blood. It can be appreciated how critical the
O2-carrying function of hemoglobin is, since without it the blood simply could not carry enough O2 to peripheral tissues
without having an enormous cardiac output. From Weibel [2], based on West, Respiratory Physiology. The Essentials,
Williams & Wilkins, 1974, with permission.

Assumptions of the blood-side model, and more sophisticated models
At this point we should revisit our assumptions. There were two main ones.

The first assumption was that the alveolar wall was the major mass transfer

barrier, so we could neglect mass transfer effects in the capillary, thereby neglecting

the dependence of c on y. There are three such capillary-side mass transfer effects

for O2: transfer through the plasma to the red cell surface, transport within the red

cell, and the kinetics of O2 binding to hemoglobin. The latter two are often grouped

together in the literature.

Classical analysis would suggest that we should consider the mass transfer

boundary layer in the blood to estimate the resistance for O2 transport through
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Distributions in a pulmonary capillary of O2 (A) and CO2 (B). Note that the distribution of O2 is not an exponential, for
reasons described in the text. For CO2, there is an exponential decay of partial pressure (pCO2

) with axial distance down
the capillary. In this plot, the gas concentration is expressed in terms of the gas partial pressure for component i, pi ,
given by pi = mole fraction i × total pressure. This can also be written as pi = ptotci/(�jcj), where ptot is the total
pressure, ci is the molar concentration of gas species i, and �j refers to a sum over all species present. From Guyton
[23], based on calculations reported in Milhorn and Pulley [24].

the plasma. However, this is not really appropriate, since red cells are passing

through the capillary in the near vicinity of the wall, hence disturbing this mass

transfer boundary layer. It is more appropriate to think of a simple diffusional

process across the plasma layer between the capillary wall and the red cell. One

can then think of the plasma layer as being an extension of the capillary wall, so

the effective thickness �y becomes the sum of these two layers. Weibel et al. [20]

estimated the thickness of this composite layer to be approximately 1.1 μm, which

approximately doubles the value of Lchar obtained from the above analysis.

More serious is the issue of O2 transport and binding within the red cell. A

detailed analysis of this effect is beyond the scope of this book, but Weibel has

considered these factors in a model of pulmonary capillary mass transfer that

implicitly (but not explicitly) includes the variation of O2 tension along the length of

the capillary [2]. His numbers, while only approximate, suggest that mass transfer

effects in the red cell can actually dominate the overall mass transfer process, and

the effective value of Lchar would be three to five times larger than our computed

value if these effects were taken into account.

The second assumption was that the system could be described as steady, so that

neither c nor calv depended on time. The magnitude of the error introduced by this
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assumption depends on the time scale for mass transport across the alveolar wall

compared with the time scale of changes in alveolar O2 and CO2 concentration. If

the mass transport is fast, then the process is quasi-steady, and the above model

will be approximately correct if all concentrations, fluxes, etc. are taken as time-

averaged quantities. The time scale for transport in our model is the time required

to diffuse across the alveolar wall. The physics of the diffusion process show that

this is �y2/2D, which is about 10−4 s. This is very fast compared with the time

scale of changes in alveolar O2 and CO2 concentration, which is the breathing

period (about 5 s). Therefore, this assumption is acceptable. Furthermore, at least

for the case of O2, the variation in alveolar O2 concentration is rather modest,

ranging from about 100 to 105 mmHg over the breathing cycle [2]. Considering

that the O2 tension in the blood entering the capillaries is only approximately

40 mmHg, it is acceptable to replace the alveolar O2 partial pressure by its mean

value.

We can see that there is room to develop more sophisticated models than the one

described above. For example, it turns out that the hematocrit in the pulmonary

capillaries is important; since most O2 is taken up into red cells, and red cells do

not fill the entire capillary, only part of the capillary wall is effectively “available”

for O2 transport. This can be accounted for by computing an effective capillary

wall area weighted by the presence of red cells [20] or by more complex models

where individual red cells are considered [22,25,26].

In closing, we would like to mention another way to think about mass transfer

at the capillary level. If we consider the entire lung, we expect that the transport

rate of O2 (or any other gas) from air to the blood, QO2
, can be written as

QO2
= DL O2

(p AO2
− p̄CO2

) (7.15)

where p AO2
is the O2 partial pressure in the alveolar air, p̄CO2

is a suitable mean O2

partial pressure in the pulmonary capillaries, and DLO2
is known as the pulmonary

diffusing capacity. In a 70 kg healthy adult human, experimental measurements

show that DLO2
is about 30 ml O2/(min mmHg) at rest and 100 ml O2/(min mmHg)

during heavy exercise [2]. Now, in principle, it should be possible to relate the

pulmonary diffusing capacity to the characteristics of the capillaries in the lung.

The calculation proceeds in a manner similar to that of a single capillary, except

that it is now the entire capillary surface area in the lung that is relevant. The

rate of uptake of O2 by hemoglobin – which we did not account for in our

analysis – can be estimated from measurements on whole blood. The computed

value of DLO2
obtained in this manner is close to, but somewhat larger than, the

measured value. For full details, the reader is referred to the wonderful book by

Weibel [2], and its update [20].
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7.4.2 Air-side acinar mass transfer

Now let us shift our attention to mass transfer on the air side. Thanks to the large

diffusivity of O2 in air (approximately 0.2 cm2/s [27]), diffusion on the length

scale of a single alveolus is relatively rapid, with a diffusion time of only about

0.01 s across a 300 μm alveolus. This would suggest that the air side should con-

tribute little mass transfer resistance to the overall air/blood mass transfer process.

However, the situation is a little more complex than this. We must recall that air

transport in the pulmonary airways occurs by a combination of convection and

diffusion: transport in the larger airways is convection dominated, while diffusion

becomes increasingly important as we progress to the smaller airways. It turns out

that diffusion takes over from convection somewhere around airway generation 17

in humans [11]. That means that O2 has to diffuse all the way from generation 17 to

the terminal alveoli. We will refer to this as a “gas exchange unit;” it corresponds

to one eighth of an acinus. With reference to Fig. 7.15B (color plate), we can see

that the relevant length scale for diffusive O2 transfer is therefore not an alveolar

diameter but rather the size of the gas exchange unit.

To understand air-side mass transfer better, let us consider the fate of an O2

molecule in an acinus. It is transported by convection to the proximal end of

the gas exchange unit (generation 17) and then diffuses deeper into the airways.

Along the way, it has some probability of coming close to the alveolar walls

and entering the blood. If the rate at which O2 is transported along the acinus is

very slow compared with the uptake rate into the blood, it can be seen that the

O2 concentration will significantly decrease as one moves distally towards the

terminal alveoli. This phenomenon is known as screening [11] and is undesirable,

since it means that distal alveoli “see” reduced O2 concentration and therefore

are not working optimally. To understand this phenomenon better, we can define

a screening length �, which can be interpreted as the characteristic size of a gas

exchange unit at which screening begins to occur. The question then becomes what

the ratio of � to the actual size of the gas exchange units is.

Based on the above discussion, we expect that the screening length � will depend

on the diffusivity of O2 in air, DO2
, and on the ease with which O2 can cross the

acinar wall to enter the blood [11]. The latter quantity can be characterized by the

permeability of the acinar wall to O2, WO2
, defined via

NO2
= WO2

A �cO2
(7.16)

where NO2
is the rate at which O2 is transported across the wall of the gas exchange

unit (moles O2 per unit time), A is the surface area of the wall of the gas exchange

unit, and �cO2
is the O2 concentration difference between alveolar air and blood.
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NO2
has dimensions of length/time, and hence dimensional analysis shows that

�WO2
/DO2

is a �-group. Just as in Sections 4.3.4 and 5.1.2, we can then argue that

this single �-group should be constant, which implies that the screening length

can be estimated by

� ∼ DO2

WO2

(7.17)

We can estimate WO2
from the properties of the acinar wall (thickness, diffusivity of

O2 in connective tissue, solubility of O2 in water) just as in Section 7.4.1. Sapoval

et al. [11] reported relevant parameters for several species and derived a value of

� of approximately 28 cm in humans.

We need to compare this value of � with the characteristic size of the gas

exchange unit to determine whether or not screening occurs. The relevant charac-

teristic size turns out not to be the flow pathway length in the gas exchange unit;

instead, we have to take account of the convoluted surface of the acinar wall, and

hence the relevant length scale is [11]

L ∼ A

D
(7.18)

where D is the diameter of a circle that encloses a single gas exchange unit. In

humans, L is approximately 30 cm, which almost exactly equals �. This close

agreement between � and L suggests that the geometry of the acinus is such that

screening is minimal, and hence that air-side O2 transfer is optimized. A more

detailed calculation [11] showed that some screening occurs, but its effects are not

severe.

This is a very satisfying result, but what happens during exercise, when O2 needs

become greater and more O2 crosses the acinar wall per unit area? The above

analysis suggests that screening would occur in such a situation, which would be

very undesirable. However, we must recall that ventilation rate increases under

such conditions, with a corresponding increase in air velocities. The net effect is

that air is convected further into the acinus, so that the point at which diffusion

takes over is pushed deeper into the lung (Fig. 7.20). This means that the effective

length scale of the gas exchange unit L decreases to match the decreased screening

length �. The interested reader is referred to the papers of Sapoval and coworkers

[11,28,29] for more details.

7.4.3 Whole lung mass transfer

We now shift attention from the alveolar level to consider gas transfer for the entire

lung. To do so, we need first to understand a few basic facts about gas volumes

transferred in and out of the lungs during normal breathing.
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A

B C

Figure 7.20

Schematic description of different ways in which the acinar gas exchange unit might function. The arrows symbolize
convection; the end of the arrows is the transition point after which diffusional transport takes over. The dot represents O2

molecules. (A) The diffusivity of O2 is very large and essentially no screening occurs; consequently O2 concentrations in
the terminal alveoli are close to those in the large airways. (B) Here screening is occurring; significant amounts of O2 are
removed from air before it reaches the terminal alveoli. (C) In exercise, increased flow rates shift the convective/diffusive
transition point to more distal airways and screening is minimized. From Sapoval et al. [11]. Copyright 2002 National
Academy of Sciences, U.S.A.

Total lung volume is approximately 6 liters. However, only a small fraction

(500 ml at rest) of this total volume is exchanged with each breath. The volume

exchanged per breath is the tidal volume, and it is exchanged approximately 12

times per minute. In addition to the tidal volume, other relevant terms are listed

below (see also Fig. 7.21).

Residual volume. The volume of air remaining in the lungs after maximal expi-

ration, normally approximately 1200 ml.

Expiratory reserve volume. The volume of air that can be exhaled after normal

exhalation of one tidal volume, normally approximately 1200 ml.

Inspiratory reserve volume. The volume of air that can be inhaled after normal

inhalation of one tidal volume, normally approximately 3100 ml.
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Figure 7.21

Lung volumes and capacities. The left part of the figure shows an idealized spirometer tracing for three normal breathing
cycles, a maximal inspiration and expiration, and two more normal breathing cycles. When the subject inspires, the
spirometer trace moves up; with expiration it moves down. See text for definition of terms on the right side of the figure.
After Vander et al. [1]. Reproduced with kind permission of The McGraw-Hill Companies.

Vital capacity. The sum of tidal volume plus inspiratory reserve volume plus

expiratory reserve volume. It is the lung’s working maximum volume; note that it

is less than the total lung volume.

With this background, we now consider overall gas transfer in a normal lung at rest.

We expect the exhaled air to contain more CO2 and less O2 than the inspired air

and wish to quantify these concentration differences. This requires that we know

the body’s rates of CO2 production and O2 consumption at rest, which are related

to overall metabolic rate:

� at rest, the body’s O2 consumption rate is 250 ml/min at standard temperature

and pressure (STP, or 1 atmosphere and 273 K)
� at rest the CO2 production rate is 200 ml/min at STP.

It is conventional to refer all volumes to body temperature and pressure (BTP),

which is taken as 1 atmosphere and 310 K. At BTP, the O2 consumption and CO2

production rates are 284 and 227 ml/min, respectively.

For purposes of this calculation, we will assume that the ambient air has the

composition shown in Table 7.2, corresponding to a dry day. In all calculations

below we will assume that air is a mixture of perfect gases. For such a mixture, the

molar fraction of component i, ni, is related to the partial pressure (pi) and partial
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Table 7.2. Air composition in inspired and expired tidal volumes. All volumes in
the table are referenced to BTP. The assumed molar fractions are in column two,
corresponding to dry ambient air (trace gases are not shown). The corresponding
partial pressures and partial volumes (in a 500 ml inspired tidal volume) are
shown in columns three and four. The partial volumes in the expired tidal volume
are shown in column 5, calculated as described in the text.

Gas Molar fraction
(%)

Partial pressure
(mmHg)

Partial volume in one:

Inspired tidal
volume (ml)

Expired tidal
volume (ml)

N2 78.62 597 393.1 393.1

O2 20.84 159 104.2 80.5

CO2 0.04 0.3 0.2 19.1

H2O 0.50 3.7 2.5 32.5

Total 100.00 760 500 525.2

volume (Vi) of component i by

ni = pi

ptot

= Vi

Vtot

(7.19)

where ptot and Vtot are the total pressure and total volume (respectively) of the gas

mixture. Note that the total pressure and total volume obey

ptot =
∑

j

pj (7.20)

Vtot =
∑

j

Vj (7.21)

where the sum is over all gases in the mixture.

Given the ambient air composition in column two of Table 7.2, it is straightfor-

ward to use Equation (7.19) to compute the partial pressures and partial volumes

in a 500 ml inspired tidal volume (columns three and four). The partial volumes in

column five are calculated as follows:

� Nitrogen is not metabolized, and so its partial volume does not change.
� Oxygen is consumed at the rate of (284 ml/min)/(12 breaths/min), or

23.7 ml/ breath. Therefore, the expired air contains 104.2 − 23.7 = 80.5 ml O2.
� Carbon dioxide is produced at the rate of (227 ml/min)/(12 breaths/min), or

18.9 ml/breath. Therefore, the expired air contains 0.2 + 18.9 = 19.1 ml CO2.
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Table 7.3. Comparison of calculated and
measured tidal volume compositions. Calculated
compositions are from column five of Table 7.2,
measured values are from Cooney [15]. With kind
permission of Taylor & Francis.

Gas Composition (%)

Calculated Measured

N2 74.8 74.5

O2 15.4 15.7

CO2 3.6 3.6

H2O 6.2 6.2

� The water mass balance is slightly more complex. The essential fact is that the

expired air is, to a very good approximation, fully humidified. Therefore, the

partial pressure of water vapour in expired air equals the saturation pressure of

water at 310 K, which is 47 mmHg. Since partial pressures are directly propor-

tional to partial volumes, we can then write

volume water

volume dry gases
= partial pressure water

partial pressure dry gases
= 47 mmHg

(760 − 47) mmHg
. (7.22)

In Equation (7.22), we use the fact that the total pressure in the expired tidal

volume is 760 mmHg, consistent with the fact that all values in Table 7.2 are ref-

erenced to BTP. Adding the volumes in column five of N2, O2, and CO2 gives a

dry gas volume of 492.7 ml. Hence, Equation (7.22) can be used to compute

volume water = 47

760 − 47
492.7 ml = 32.5 ml, (7.23)

which is entered in Table 7.2 in column five. The total expired volume (at BTP)

is then calculated to be 525.2 ml.

The accuracy of this calculation can be checked by comparing the calculated

expired air composition with measured values. Table 7.3 shows that the agreement

is very good.

It is interesting to note that Table 7.2 indicates that the expired volume exceeds

the total inspired volume.6 At first sight this seems paradoxical, but it can be

explained by the fact that mass is being added to the expired air by the lungs.

6 This volume “discrepancy” is not as large as might be expected from Table 7.2. Recall that all volumes in Table 7.2 are

at BTP. However, the actual pressure during inspiration is slightly less than atmospheric; consequently, the actual

inspired tidal volume within the lungs is slightly greater than 500 ml. Similarly, during expiration the alveolar pressure

is slightly greater than 1 atm so that the actual expired tidal volume within the lungs is slightly less than 525.2 ml.
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(The reader will recall that volume fluxes do not have to balance, but mass fluxes

do.) Inspection of Table 7.2 shows that a great deal of the volume “discrepancy”

between inhaled and exhaled air results from water addition by the lungs, and in

fact the lungs are a major site of water loss. For the ambient air conditions of Table

7.2, 30.0 ml (at BTP) of water are lost per breath. Assuming that the water vapor

is a perfect gas, this corresponds to

n = pV

RT

= 1 atm × 30.0 ml

82.05 × 10−3 liter atm/(mole K) × 310 K

10−3 liter

ml

= 1 .18 × 10−3 mol H2O (7.24)

This corresponds to a loss of 0.0212 g water per breath. Over the course of one

day, breathing at an assumed rate of 12 breaths/min, this produces a net daily loss

of 366 g water, which is approximately 15% of the body’s total daily water loss

from all sources.

7.5 Particle transport in the lung

The air that enters the conducting airways during breathing can carry particles with

it. These particles can be useful, for example when aerosol droplets containing

inflammation-reducing steroids are inhaled by a child to treat his or her asthma.

Unfortunately, they can also be harmful, such as occurs when asbestos fibers (or

other toxic materials) are inhaled by workers. A critical question in relation to

particulate inhalation is where the particles are deposited within the airways. For

example, several systems for the delivery of inhaled insulin to diabetics are now

being tested [30]; in this application, it is important to get as many of the drug-

containing particles as possible down into the small airways so as to exploit the

large surface area available for insulin transfer into the blood.

A number of authors have considered how particles are transported within the

airways; Grotberg has provided a recent review [31]. The most critical issue is

the ability of the particle to follow the curves and bends of the airways as it is

carried into the lung by the air. We can get some insight into this by considering

a small spherical particle of diameter dp, moving at velocity up in a flow with

local velocity U. We will consider the case where the Reynolds number based on

particle diameter is � 1, so that the fluid drag force on the particle is given by

Stokes’ law [32]

drag = 3πμdp(U − up) (7.25)
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where μ is fluid viscosity. In its simplest form, the equation of motion for the

particle is therefore [33]

m
dup

dt
= 3πμdp(U − up) (7.26)

where m is the mass of the particle. The reader can verify that Equation (7.26)

can be cast into the dimensionless form

St
du∗

p

dt∗ = (U∗ − u∗
p) (7.27)

where velocities with asterisks have been made dimensionless with respect to

a reference fluid velocity U ; t∗ has been made dimensionless with respect to a

reference time scale for the flow, τ ; and the Stokes number (St) is given by

St = m

3πμdpτ
= ρpd2

p

18μτ
(7.28)

where ρp is the density of the particle. Equation (7.27) shows that we will obtain two

very different types of limiting behavior depending on the magnitude of the Stokes

number. If St 	 1, it can be seen that the particle’s velocity will not change with

time; consequently, the particle will travel in a straight line and will eventually run

into an airway wall. If, however, St � 1, the particle velocity up will always be very

close to the local fluid velocity U; in this case, the particle will be able to “follow” the

flow very well and will tend not to run into walls. The Stokes number, therefore, tells

us something about the ability of a particle to follow fluid path lines within the flow.

From the definition of the Stokes number (Equation [7.28]), we can see that a

large Stokes number will result if the particle is dense or, more significantly, if it is

large. The prediction is therefore that smaller particles should make it further into

the lungs than larger ones, and that that penetration efficiency should be a non-

linear function of particle diameter. In fact, for larger particles, as many as 45%

of all particles are deposited in the passages of the nose and mouth, depending

on the inhalation conditions [31]. This is usually beneficial, since we prefer to

stop particulate contaminants from entering the lower airways, but it is undesirable

when we are trying to deliver a drug or other therapeutic substance into the lung.

The strategy in such cases is to try to make the particles as small as possible. For

particles that are 2–10 μm in diameter, which typically have Stokes numbers of

the order of 0.005 to 0.5, the particles are able to enter the main bronchi, but even

then significant numbers are trapped after several generations of airway splitting,

with preferential deposition at the airway bifurcations along the carinal ridges

[31].

Despite the filtering function provided by the mouth and nose, the large volumes

of air that move in and out of the lungs mean that significant numbers of airborne
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Figure 7.22

Micrographs showing the epithelial lining of a small bronchus, consisting of three cell types: ciliated (C), goblet (G), and
basal (B). The transmission electron micrograph at left shows macrophages (M) lying on the ciliated cells, as well as
underlying fibroblasts (F) and connective tissue fibers (cf). The scanning electron micrograph at right shows the extensive
cilia (C) and a goblet cell secreting a mucous droplet. Scale markers in both panels: 5 μm. Reprinted by permission of
the publisher from The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System by E. R.
Weibel, p. 237, Cambridge, MA: Harvard University Press, Copyright C© 1984 by the President and Fellows of Harvard
College.

particles enter the airways and adhere to the large area presented by the airway and

acinar walls. Even for “inert” particles, continued normal lung function requires

a mechanism to deal with these materials. What does the body do with these

particles? It has several coping strategies.

1. The conducting airway walls are coated with a thin layer of mucus, which

causes particles to stick to the walls where they impact. Mucus is constantly

being synthesized by goblet cells lining the airways and is then moved upwards
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towards the throat by the action of cilia, small hair-like projections of the

epithelial cells lining the airway walls (Fig. 7.22). These cilia beat back and

forth at a regular frequency to create a “ciliary escalator” that delivers mucus

(with attached and embedded particles) to the pharynx, where it is usually

swallowed with little attention. Only when excessive amounts of mucus are

present in the airways, such as during an upper respiratory tract infection or

during respiration in a dusty environment, do we notice the mucus and have

to assist the cilia by coughing.

2. Some particles (the smallest ones) pass into the alveoli, where they adhere to

the alveolar walls. Cilia are not present at this level in the lung, so the particles

must be dealt with locally. These particles are internalized by macrophages

lying on the pulmonary epithelial surface in a process known as phagocytosis.

Depending on the composition of the particle, it is then broken down to a

greater or lesser extent in the macrophage by lytic enzymes, and the breakdown

products are stored in the cell in membrane-delimited spaces called residual
bodies.

7.6 Problems

7.1 Consider a small spherical bubble of radius R.

(a) Show that the energy required to expand this sphere by a small amount

�R is 2σ�V/R. Here �V is the increase in volume and σ is the inter-

facial tension.

(b) Estimate the time-averaged power required to overcome alveolar surface

tension during normal breathing. Take R = 150 μm, σ = 25 dynes/cm,

and breathing rate = 12 breaths/min.

(c) Repeat this calculation for the cat, where R = 50 μm and the tidal vol-

ume is 20 ml. Compare this calculated value with a rough estimate of the

power obtained from Fig. 7.23. (Take beginning of normal inspiration to

occur at 100 ml.) Is surface tension or lung tissue elasticity the dominant

restoring force in the cat lung?

7.2 This question is concerned with the energy required to inflate the lung. Specif-

ically, we wish to know what fraction of the total inflation energy is used to

overcome alveolar surface tension forces, and what fraction is used to over-

come parenchymal elasticity.

(a) How much energy is required to inflate a spherical bubble from radius

R1 to radius R2? The surface tension coefficient is constant and equal

to σ . Hint: think in terms of a pressure–volume relationship.
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Figure 7.23

For Problem 7.1. A pressure–volume curve for a cat’s lungs as they were inflated and then deflated, first with air and then
with saline. Arrows indicate direction of inflation/deflation. Modified from Radford [34] with permission of the American
Physiological Society.

(b) Considering surface tension effects only, how much energy is required

to inflate all 300 million alveoli in the lungs? Assume that the total

alveolar volume before inspiration is 2.5 liters, that the tidal volume

is 500 ml, that all alveoli are identically sized spheres, and that the

effective surface tension coefficient during inspiration is constant and

equal to 35 dynes/cm.

(c) Idealized data from the air inflation of a pair of lungs are plotted in

Fig. 7.24. Based on your calculations from parts (a) and (b), plot (to

scale) on the same graph the pressure–volume curve expected from

surface tension effects only. What fraction of the total energy required

to inflate the lungs is from surface tension effects?

7.3 A balloon is surrounded by a tank of liquid at negative pressure and is con-

nected to the atmosphere by a tube of length L and cross-sectional area A
(Fig. 7.25). The pressure inside the balloon p oscillates above and below

atmospheric pressure causing small changes in the balloon volume V. The

elasticity of the balloon is characterized by its compliance C, defined by

�p = �V/C
(a) Derive a second-order differential equation for �V (t), assuming that

(i) the pressure differential along the tube accelerates the air in the tube

and is not used to overcome entrance, exit, or tube losses; and (ii) the air

density ρ is constant. From the equation, show that the natural frequency

of the system is
√

A/ρLC .
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Figure 7.24

For Problem 7.2. Note that inflation pressure equals alveolar pressure minus intrapleural pressure.

Atmosphere

Liquid Balloon

Air at
pressure p

Length = L; Cross-sectional area = A

Figure 7.25

For Problem 7.3.

(b) For a 70 kg man, A/L is approximately 0.001 m. The equivalent value

for a 12 kg dog would be approximately [12/70]1/3 of the value, or

5.6 × 10−4 m. The compliance of dog lungs is approximately

0.029 l/cmH2O. Estimate the natural frequency of a dog’s breathing

using the formula developed in (a). Measurements indicate that dogs

with a body mass of 12 kg pant at about 5.3 Hz. Comment briefly on any

differences between your answer and the measured frequency.
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Figure 7.26

For Problem 7.4.

7.4 A lung is inflated with water and then with air. The pressure–volume curves for

these two inflation procedures are shown in Fig. 7.26, with the right-pointing

arrow representing inflation and the left-pointing arrow representing defla-

tion. Assume that the lung has 150 × 106 identical alveoli, and that alveoli

make up a constant 85% fraction of total lung volume. Based on these curves,

graph the relationship between surface tension coefficient (in dynes/cm) and

alveolar radius (in microns). Your graph should be quantitatively correct.

This is best accomplished by choosing some key points from Fig. 7.26, trans-

forming them to suitable values on your graph, and then interpolating by

sketching.

7.5 Figure 7.12 shows that a solution containing lung extract exhibits hysteresis

in its surface tension versus area relationship. In other words, the surface

tension is higher during inflation of the lung than during deflation.

(a) By recalling that mechanical work can be expressed as ∫pdV , show that

the work required to inflate all the alveoli in the lung against the effects

of surface tension can be written as

Work =
∫

σ dA (7.29)

where σ is the surface tension coefficient, A is the aggregate surface

area of all alveoli in the lung, and the integral is carried out from mini-

mum surface area (start of inspiration) to maximum surface area (end of
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Figure 7.27

For Problem 7.5.

inspiration). To show this result, you may assume that the pressure

outside the alveoli is constant and equal to 0 (gauge). You will find

it convenient to recall that the volume and surface area of a sphere

are V = 4πR3/3 and S = 4πR2. This implies that dV = 4π R2dR and

dS = 8π R dR.

(b) Assume that the surface tension versus area curve for the entire lung

over one breathing cycle can be approximated by the shape in Fig. 7.27.

Using this information, determine how much energy is dissipated in

surface tension hysteresis effects during one breathing cycle.

7.6 Consider a fluid layer A surrounded on both sides by a fluid, B. The fluid

layer can be thought of as a membrane. A species S is diffusing across this

membrane, and has concentrations cB
1 and cB

2 (in the fluid B) on the two sides

of the membrane, as shown in Fig. 7.28. It often happens that the solubility of

material S inside the membrane is different than its solubility in bulk solution

B. We therefore define a partition coefficient k as

k = concentration of S in material A (at equilibrium)

concentration of S in material B
. (7.30)

Hence k < 1 means that S is less soluble in the membrane, and k > 1

means S is more soluble. Write down an expression for the flux across the

membrane in terms of cB
1 , cB

2 , DA (diffusion coefficient of S in A) and �yA.

Sketch the concentration profile. What is the effective diffusion coefficient

value with partitioning, Deff?
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Figure 7.28

For Problem 7.6.
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Figure 7.29

For Problem 7.7.

7.7 A membrane oxygenator is designed to supply O2 and to remove CO2 from

blood during surgery. Blood and a gas mixture flow from left to right in two

channels separated by a semipermeable membrane (Fig. 7.29). Blood gives

up CO2 to the gas stream continuously along the channel, so that both the

blood and gas CO2 concentrations are functions of position, x. Assume that

the channel width and average velocities are the same for both blood and gas

streams.

(a) If cg(x) is the CO2 concentration in gas stream; cb(x) is the CO2 concen-

tration in blood; U is the mean velocity of both blood and gas streams;

Deff is the effective diffusion constant of CO2 in the membrane and �y
is the membrane thickness; show that the CO2 concentrations satisfy:

dcb

dx
= −cb − cg

Lchar

(7.31)
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where

cb + cg = constant. (7.32)

Make and state appropriate assumptions.

(b) If the CO2 concentration in the gas is zero at x = 0 and is c0
b in the blood

at x = 0, at what x/Lchar is cb reduced to 60% of c0
b?

7.8 In Section 7.4.1, we modeled gas transfer between blood in a pulmonary

capillary and an alveolus, taking account of the fact that the concentration of

gas in the blood varied with position. However, we did not account for the

time-dependent nature of the mass transfer process, which is the subject of this

question. Suppose that the CO2 concentration everywhere in a capillary can

be expressed as some spatially averaged value ccap. Because blood from the

right heart is continually flowing into the capillary, ccap can be approximated

as being constant in time. Assume that at time zero, fresh air (effective CO2

concentration of 0) enters the alveolus, that at every instant the air in the

alveolus is well mixed and does not communicate with air in the terminal

bronchioles, and that all air in the alveolus is expelled and replaced by fresh

air with every breath (breathing period = T ).

(a) Qualitatively sketch a labeled graph of alveolar CO2 concentration vs.

time for the above assumptions.

(b) If the total surface area for blood/gas exchange associated with one

alveolus is A, and the volume of the alveolus is V, derive an expression

for how the CO2 concentration in the alveolus changes with time. State

assumptions. You will want to start with a mass balance in the alveolus.

7.9 A membrane oxygenator is being designed as part of a heart–lung bypass

machine. It must be able to transfer 200 ml/min of O2 into blood flowing

at 5 l/min. Assume the blood enters the oxygenator with an effective O2

concentration of 0.1 ml O2/ml blood.

(a) With what O2 concentration should the blood leave the oxygenator? You

can solve this question easily by thinking about an overall mass balance.

(b) One design is to make the oxygenator as a “stack” containing many

“units”, as shown Fig. 7.30. Each unit consists of a channel filled with

flowing blood, an O2-filled channel, and flat membranes separating the

channels. The membranes are 10 cm × 10 cm by 5 μm thick, and the

height of each blood-containing channel is 1 cm. The O2-containing

channels are filled with 100% O2, which is equivalent to a blood con-

centration of 0.204 ml O2/ml blood. How many membrane units are

needed to supply the required oxygen? The value for Deff of O2 in the

membranes is measured as 10−6 cm2/s.
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Figure 7.30

For Problem 7.9.
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Figure 7.31

For Problem 7.10.

7.10 A dialyzer is shown in Fig. 7.31. The dialysate solution has glucose added

to it so that it is hypertonic (has an osmotic pressure greater than that of

blood). This causes water to be drawn into the dialysate, even though the

pressures in the blood and dialysate are identical. We wish to determine

how much water will be removed from the blood plasma in this unit. For

purposes of this question, we will denote the volume flow rate of blood per

unit depth into the page by Q(x), the molar concentration of osmotically

active components in the blood by c(x), and the molar concentration of

osmotically active substances in the dialysate by cd. We will assume that

only water can cross the membrane. We will also assume that blood and

dialysate obey van’t Hoff’s law for osmotic pressure.

(a) Briefly state in words why c and Q change with axial location, x.

(b) Show that the blood flow rate per unit depth into the page satisfies

dQ

dx
= L p RT [c(x) − cd] (7.33)
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where L p is the membrane permeability (volume flow of water across

the membrane per unit area per unit osmotic pressure difference).

(c) Show that the product of c(x) and Q(x) is constant. Hint: consider the

mass flow rate of osmotically active components in the blood per unit

depth into the page.

(d) If the flow rate of dialysate is large, the concentration cd can be treated

as a constant. Under this approximation, show that Q(x) satisfies

ln

[
Qr − Q0

Qr −Q(x)

]
+ Q0 −Q(x)

Qr

= L p RT c0 Q0

Q2
r

x (7.34)

where Q0 and c0 are the values of Q(x) and c(x) at the inlet, and Qr is

a constant defined as Q0c0/cd. Hint:

∫
Q

Qr −Q
dQ = −Qr ln

[
Qr −Q

Qr

]
− Q + constant. (7.35)

(e) If the total blood flow rate entering the dialyzer is 250 ml/min, the dia-

lyzer is 10 cm deep into the page, and the maximum allowable water

loss from the blood is 10 ml/min, what length L should the dialyzer

be? The dialysate osmotic concentration, cd, is 0.32 mol/l, the inlet

blood osmotic concentration is 0.285 mol/l, the membrane permeabil-

ity is 1 × 10−8 cm/(s Pa), and the working temperature is 310 K. The

universal gas constant R is 8.314 J/(mol K).

7.11 Consider the transport of oxygen in stagnant blood. More specifically, sup-

pose that a large container filled with deoxygenated whole blood is sud-

denly placed in an atmosphere of pure oxygen at concentration co, where

co is constant (Fig. 7.32). Because of the very non-linear nature with which

hemoglobin binds O2, we will approximate this situation as one in which a

“front” forms and propagates: above this interface the hemoglobin is oxy-

genated and there is free O2 in solution in the plasma, while below this

interface the free O2 concentration is zero and the hemoglobin is deoxy-

genated. The front location, zf, advances with time.

(a) Use Fick’s law for diffusion of the free O2 to argue that the concentra-

tion profile above the front is linear, and that the flux of O2, J, is:

J = D

zf

co (7.36)

where D is the diffusivity of oxygen in whole blood. For purposes of
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Figure 7.32

For Problem 7.11.

this portion of the question, you may assume that the front is slowly

moving compared with the time scale for diffusion.

(b) Assuming that 4 moles of O2 bind rapidly and irreversibly to 1 mole

of hemoglobin at the front, and that the concentration of deoxy-

genated hemoglobin below the front is cHb, show that the front position

satisfies:

zf =
√

2Dcot

4cHb + co/2
(7.37)

Hint: perform an unsteady mass balance on the O2 in the container.

Do not forget to take into account O2 that is bound irreversibly to

hemoglobin.

7.12 Consider mass transfer from pulmonary capillaries to a single alveolus.

Suppose that, in addition to the normal 0.6 μm thick tissue layer between

the blood and the air, scar tissue has formed that is 1μm thick. The effective

diffusivity of CO2 in this scar tissue is 0.7 × 10−6 cm2/s. When CO2 has to

cross both the “normal” tissue and the scar tissue, the mass transfer efficiency

of the alveolus is reduced. Considering the entire alveolus, compute the net

percentage reduction in blood-to-air CO2 transfer due to the scar tissue for

a 50 μm long capillary. Note: you do not need to re-derive equations; you

should be able to make some simple modifications to equations in the text

to get what you need. Remember that when two mass transfer barriers are

in series, their mass transfer resistances add. You may use parameter values

(except for capillary length) given in Section 7.4.1.

7.13 This question is concerned with mass transfer in the whole lung.
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(a) If you switch from breathing air to breathing xenon, what is the min-
imum number of breaths after which the concentration of xenon in

your lungs is 99%, by volume? Assume that no xenon diffuses out of

the lungs, that perfect mixing occurs in the lungs, and that the xenon

environment is so large that the exhaled air does not change the xenon

concentration of 100%.

(b) If you switch back to an air environment and breathe normally, after

how many breaths is the xenon concentration in your lungs reduced to

0.1%, by volume?

7.14 You decide to cure your hiccups by breathing into a paper bag. Assume

that the bag is initially filled with 500 ml air (referenced to BTP) having

the ambient air composition given in Table 7.2. Assume a breathing rate

of 12 breaths/min, a CO2 production rate of 235 ml/min at BTP, and an

O2 consumption rate of 284 ml/min at BTP. You can also assume that you

begin by inhaling all the air in the bag (i.e., tidal volume is 500 ml for the

first breath), and that on each subsequent breath you increase your tidal

volume so as to completely empty the bag on inhalation. Compute the CO2

concentration (as a percentage) in the bag after exhalation on the 10th breath.

Although not particularly realistic, you can assume that the normal amount

of CO2 is transferred from the lungs to the expelled air with every breath,

even though the CO2 concentration in the bag is continually increasing.

7.15 You are standing on the top of Mount Everest (elevation 29 028 ft; 8708 m)

where atmospheric pressure is 235 mmHg and the ambient temperature

is 0 ◦C. The air composition is 78.6% N2, 20.8% O2, 0.04% CO2, and

0.50% H2O. Treat the air as an ideal gas.

(a) If you remove your oxygen set, how many times per minute must you

breathe so as to satisfy your O2 requirements of 284 ml/min at BTP?

(Recall that BTP is 1 atmosphere and 37 ◦C). Assume that you take

in tidal volumes of 1000 ml (at ambient conditions) and that you can

transfer only 30% of the O2 into your blood.

(b) Assuming that you could breathe that fast, what would the composition

of the expired air be? Your CO2 production rate is 227 ml/min at BTP,

and expired air is fully humidified. (Partial pressure of water vapour

at 37 ◦C and 100% relative humidity is 47 mmHg.)

7.16 On a particular day, the air has the composition shown in Table 7.4. You may

assume a 530 ml tidal volume (at BTP), a breathing rate of 12 breaths/min,

an O2 consumption rate of 295 ml/min at BTP, and a CO2 production rate

of 235 ml/min at BTP.
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Table 7.4. For Problem 7.16

Gas Partial pressure (mmHg)

N2 594

O2 156

CO2 0.3

H2O 9.7

Total 760

Table 7.5. For Problem 7.17

Gas Molar fraction in ambient air (%)

N2 75.85

O2 20.11

CO2 0.04

H2O 4.00

Total 100.00

The 530 ml tidal volume can be broken down into two parts: 150 ml of

dead space air, and 380 ml of alveolar air. The dead space refers to the portion

of the conducting airways where no blood/gas exchange takes place, such

as the mouth, trachea, etc. Assume that no CO2 or O2 exchange takes place

in the dead space, but that the expired dead space air is at 100% relative

humidity (at BTP). What is the composition of the expired alveolar air, and

of the expired dead space air, expressed as percentages by volume of N2,

CO2, O2, and H2O?

7.17 During an experiment, a subject breathes in normally from the atmosphere

but breathes out into a special device that collects the water in each exhaled

breath. At the end of the experiment, the collected mass of water is 1.299 g.

During the experiment, the ambient air had the composition shown in Table

7.5. How many breaths did the subject take during the experiment? Make

and state necessary assumptions. You do not need to re-derive any formulae

appearing in the text.

7.18 While a subject was exercising vigorously the measurements in Table 7.6

were made. All measurements are referenced to BTP. Note that tidal volume

was 1000 ml (not 500 ml) and the breathing rate was 25 breaths/min. What

were the subject’s O2 consumption rate and CO2 production rate (ml gas at

STP per minute)?
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Table 7.6. For Problem 7.18

Gas Molar
fraction (%)

Partial pressure
(mmHg)

Partial volume in one:

Inspired tidal
volume (ml)

Expired tidal
volume (ml)

N2 78.62 597 786.2 786.2

O2 20.84 159 208.4 158.4

CO2 0.04 0.3 0.4 37.3

H2O 0.50 3.7 5.0 64.7

Total 100.00 760 1000 1046.6

Table 7.7. For Problem 7.19

Gas Molar fraction (%)

N2 78.62

O2 20.84

CO2 0.04

H2O 0.50

Total 100.00

7.19 An adult mouse has a respiratory rate of ∼163 breaths/min and a tidal volume

of ∼0.15 ml at BTP (37 ◦C) [36]. The average O2 consumption for one strain

of male adult mice is 45.5 ml O2/hour at STP [25]. For the inspired air

composition shown in Table 7.7, compute the expired air composition. You

may assume that the ratio of CO2 production/O2 consumption is the same

for humans and mice.

7.20 In respiratory analysis, it is simplest to assume that both lungs are identical

for purposes of gas exchange. This effectively implies that the air in the two

lungs can be pooled together for purposes of quantitative analysis. However,

in some cases, the volume of air entering each lung and the blood perfusion

to each lung is different. This means that the amount of CO2 added to each

lung (per breath) will be different. For purposes of this question, we will

assume that the number of moles of CO2 added to a lung is proportional to

the blood perfusion to that lung.

(a) Suppose that for a given subject the tidal volume and CO2 concentration

in expired air are measured to be 540 ml and 3.5%, respectively, and

the dead space volume is known to be 160 ml. (See Problem 7.16 for
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definition of dead space volume.) If it is known that the blood perfusion

to the right lung is twice that to the left lung, while the tidal volume

entering the right lung is 1.6 times that of the left, compute the alveolar

CO2 concentrations in each lung.

(b) What criterion ensures that the alveolar CO2 concentration is equal for

both lungs?
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8 Muscles and movement

Together, muscles and bones confer structure and the capacity for motion to the

body. Any analysis of locomotion (Ch. 10) must therefore have as a basis an

understanding of muscle and bone mechanics.

There are three types of muscle, each having particular characteristics.

1. Skeletal muscle. Skeletal muscles comprise 40 to 45% of total body weight.

They are usually attached to bones via tendons, are responsible for locomotion

and body motion, and are usually under voluntary control.

2. Smooth muscle. Smooth muscle is typically found surrounding the lumen

of “tubes” within the body, such as blood vessels, the urinary tract, and the

gastrointestinal tract. Smooth muscle is responsible for controlling the cal-

iber (size) of the lumen and also for generating peristaltic waves (e.g., in the

gastrointestinal tract). Control of smooth muscle is largely involuntary.

3. Cardiac muscle. Cardiac muscle makes up the major bulk of the heart mass

and is sufficiently unique to be considered a different muscle type. It is under

involuntary control.

In this chapter we will concentrate on skeletal muscle only.

There are three types of skeletal muscle, classified according to how the muscles

produce ATP, which is used during the contraction process. The two basic ATP-

production strategies are:

1. Aerobic. In aerobic respiration, ATP is produced by the breakdown of pre-

cursors in the presence of O2. This is a high efficiency pathway but cannot

proceed if O2 is not present.

2. Anaerobic. In anaerobic respiration (also known as glycolysis), ATP is pro-

duced without O2 present. This pathway is less efficient than aerobic respi-

ration and produces the undesirable by-product lactic acid. Accumulation of

lactic acid in muscle tissue produces the characteristic ache that follows too

strenuous a workout.
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Available now. LINEAR MOTOR. Rugged and dependable: design optimized by worldwide field testing
over an extended period. All models offer the economy of “fuel-cell” type energy conversion and will run
on a wide range of commonly available fuels. Low stand-by power, but can be switched within
milliseconds to as much as 1 kW mech/kg (peak, dry). Modular construction, and wide range of available
subunits, permit tailor-made solutions to otherwise intractable mechanical problems.

Choice of two control systems:

1. Externally triggered mode. Versatile, general-purpose units. Digitally controlled by picojoule pulses.
Despite low input energy level, very high signal-to-noise ratio. Energy amplification 106 approx.
Mechanical characteristics: (1 cm modules) max. speed: optional between 0.1 and 100 mm/sec.
Stress generated: 2 to 5 × 105  N/m2.

2. Autonomous mode with integral oscillators. Especially suitable for pumping applications. Modules
available with frequency and mechanical impedance appropriate for:
•  Solids and slurries (0.01–1.0 Hz).
•  Liquids (0.5–5 Hz): lifetime 2−6 × 109 operations (typical) 3− 6 × 109 (maximum) – independent 

of frequency.
•  Gases (50–1,000 Hz).

Many optional extras e.g. built-in servo (length and velocity) where fine control is required. Direct piping
of oxygen. Thermal generation. Etc.

Good to eat.

Figure 8.1

Announcement of a lecture on muscle, presented by Professor D. R. Wilkie to the Institution of Electrical Engineers in
London. Modified from Lehninger [1]. Reproduced with kind permission of W. H. Freeman.

The three skeletal muscle types are

1. Slow oxidative. Also known as slow twitch muscle, these cells produce ATP

by aerobic respiration. These muscle fibers are used for endurance activities.

2. Fast oxidative. These are also known as intermediate twitch fibers. In these

cells, ATP is normally produced aerobically, but production can be fairly easily

switched over to glycolysis. These muscle fibers are used for activities of

moderate duration and moderate strength.

3. Glycolytic. Also known as fast twitch fibers, these cells produce ATP anaer-

obically. They are used for high-intensity, high-strength activities.

In any given muscle, there will be a mixture of the above three types. Depending

on the application, different muscle fibers can be recruited within the muscle.

8.1 Skeletal muscle morphology and physiology

Skeletal muscle is a remarkably efficient and adaptable tissue (see Fig. 8.1). Skeletal

muscles are typically relatively long and thin, often described as spindle shaped. In
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Figure 8.2

Overview of skeletal muscle structure, showing progressively finer levels of organization. From Vander et al. [2].
Reproduced with kind permission of The McGraw-Hill Companies.
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cross-section, skeletal muscle is seen to consist of blood vessels, connective tissues,

and muscle cells, also known as muscle fibers (Fig. 8.2). Individual muscle fibers

are long rod-shaped cells, 10 to 100 μm in diameter, and up to 30 cm in length!

Typically, they are multinucleated and contain many mitochondria.1 However, the

most prominent constituent of the muscle fiber is the myofibril. Myofibrils are

long rod-shaped elements that are responsible for causing muscle cell contraction.

Morphologically, myofibrils have a regular banded structure, the repeat unit of

which is called a sarcomere (Fig. 8.3). This periodicity is a consequence of the

internal structure of the myofibril, which is composed of a definite arrangement of

even smaller filaments:

� thick filaments, or myosin, which have a diameter of 12 to 18 nm
� thin filaments, or actin, which have a diameter of 5 to 8 nm (see Section 2.3.1).

The myosin and actin are arranged as shown in Fig. 8.2. The essential features

of this arrangement are that the myosin and actin filaments interpenetrate, and that

the myosin filaments have cross-bridges which are able to attach temporarily to

the actin filaments (Fig. 8.4).

Knowledge of sarcomere morphology is necessary to understand the sliding
filament model, which describes the details of how sarcomeres effect muscle con-

traction (Fig. 8.5, color plate). It is known that in the presence of ATP, myosin

cross-bridges are able to bind to complementary sites on the actin filaments, thereby

forming the so-called actin–myosin complex. This binding utilizes energy, which

is provided by cleavage of the high-energy bond in ATP to give ADP plus PO2−
3 .

Loss of the phosphate from the complex causes the myosin heads to “tip,” thereby

“dragging” the actin filament along the myosin filament. Once the myosin head has

reached its maximally “tipped” position, it is able to bind another ATP molecule,

which causes the myosin head to detach from the actin and return to its base

configuration.

So long as ATP is available, the net effect is similar to that of a ratchet, in which

myosin heads attach, tip to drag actin, detach, tip again, etc. When repeated many

times, and by myosin heads throughout the muscle, the net effect is to shorten each

sarcomere and thereby cause the muscle to contract. This is a mechanism for the

direct conversion of chemical energy (stored in ATP) into motion.

As for all systems in the body, muscle contraction is controlled, in this case

by troponin and tropomyosin. These are two proteins that normally act together

to cover the cross-bridge binding sites on actin, thereby preventing the formation

of the actin–myosin complex and myofibril contraction. However, when calcium

1 The reader will recall from Section 2.2 that mitochondria are the organelles responsible for energy production in cells.

Since muscle motion requires substantial amounts of ATP, it is logical that muscle fibers should be heavily invested with

mitochondria.
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Figure 8.3

Transmission electron micrograph of skeletal muscle. The sample has been treated to make the sarcomeres more
evident, allowing us to visualize their regular repeat structure. Note the fairly uniform diameter of the myofibrils and the
nucleus located at the edge of the myofibril bundles. Corresponding bands of adjacent myofibrils are usually in register
across the muscle fiber, as shown in the right portion of the image. They are out of alignment in the upper left region; this
is probably a specimen preparation artefact. From Fawcett [3] with permission of Hodder Education.
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Figure 8.4

Electron micrograph of insect flight muscle in cross-section, showing actin filaments (small dashes) interpenetrating
into myosin filaments (circles). Notice the beautifully regular filament architecture. From Fawcett [3] and Prof. Hans Ris,
with kind permission.

Tropomyosin
Troponin

Ca2+ binding site

Cross-bridge
binding sites

Cross-bridge
binding sites

Actin

Figure 8.6

Role of troponin and tropomyosin in exposing actin-binding sites, and thereby controlling myofibril contraction. Binding
of Ca2+ to troponin moves the tropomyosin, exposing binding sites, and allowing myosin cross-bridges to bind to actin.
From Vander et al. [2]. Reproduced with kind permission of The McGraw-Hill Companies.
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ions (Ca2+) bind to troponin, tropomyosin undergoes a conformational change

that exposes the binding sites on actin (Fig. 8.6). The presence of free Ca2+ in

the cell (at concentrations >1 μmol/l) will induce myofibril contraction,2 and

Ca2+ availability is therefore able to provide a control mechanism for muscular

contraction. The above discussion naturally prompts the question of how Ca2+

levels within the myofibrils are controlled. To answer this question, it is necessary to

describe briefly the process of neurotransmission and the anatomy and physiology

of the motor end plate. We will start with neurotransmission.

Nerve cells must communicate with muscle cells and with other nerve cells.

This is accomplished through biochemical means, via the release of compounds

(neurotransmitters) from the signaling nerve cell to the recipient muscle or nerve

cell. The main site of such communication is a specialized junction known as a

synapse. Typically, the process begins with the arrival of an action potential – an

electrochemical signal that propagates as a traveling wave along the axons of neu-

rons – at a synapse.3 This causes neurotransmitters to be released into the space

between the signaling and recipient cells (the synaptic cleft). The neurotransmit-

ters diffuse across the synaptic cleft, are recognized by the recipient cell (in our

case, muscle), and activate processes in the recipient cell. A single nerve fiber

can synapse with as few as several muscle cells, or as many as several thousand

muscle cells; muscles that require fine motor control have fewer muscle fibers per

nerve. A synapse between a nerve and a muscle cell is also known as a motor end

plate, and the collection of all muscle cells controlled by a single nerve fiber is

known as a motor unit (Fig. 8.7). Nerves that control muscles are known as motor
neurons.

The arrival of an action potential at the motor end plate, and subsequent neu-

rotransmitter release and uptake by the muscle cells, causes Ca2+ to be released

from storage vesicles into the cytoplasm of the muscle cell. The release and spread

of Ca2+ is facilitated by the sarcoplasmic reticulum, which is essentially a con-

nected network of channels through which Ca2+ can be distributed within the

cell (Fig. 8.8). There is a delay of approximately 3–10 ms between arrival of the

action potential and the resulting release of Ca2+ in the muscle cell. This is known

as the latency period between stimulation and contraction. Because of its cen-

tral role in signaling within the cell, cytoplasmic Ca2+ concentration is tightly

controlled by the cell. Once Ca2+ is released within the cell to cause muscular

contraction, the cell immediately begins to re-sequester the ions in storage vesi-

cles. As Ca2+ is removed from the cytoplasm by this process, the contraction stops

2 The presence of ATP is also required; normally, however, there is sufficient ATP present that this is not a limiting factor.
3 See Appendix for further discussion of how action potentials are generated and propagated.
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Figure 8.7

Scanning electron micrograph of a motor nerve and two end-plates on adjacent muscle fibers. From Desaki and Uehara
[5]. With kind permission of Springer Science and Business Media.

and the muscle returns to its original length. The net effect is that a single action

potential produces a transient contraction of the motor unit, known as a twitch
(Fig. 8.9).

8.1.1 Isotonic versus isometric contraction

Suppose that we isolate and excise a single muscle and wish to characterize its

behavior. There are two basic types of test that can be performed on it (Fig. 8.10):

� isotonic: in an isotonic test, a known (constant) tension is applied to the muscle

and its length is recorded
� isometric: in an isometric test the muscle is held at a constant length and the

force generated by the muscle during contraction is recorded.

Consider the response of a muscle in an isometric test. In response to a single action

potential, the muscle will develop tension as soon as the latent period has passed.
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Figure 8.8

Schematic diagram of sarcoplasmic reticulum in skeletal muscle. The network of longitudinal sarcotubules, transverse
tubules, terminal cisternae, and sarcoplasmic reticulum permits rapid and efficient distribution of Ca2+ within the
muscle. This schematic is specific for amphibian skeletal muscle; mammalian skeletal muscle has two transverse
tubules per sarcomere, located at the A–I junctions. From Fawcett [3], based on The Journal of Cell Biology, 1965, 25,
pp. 209–231. Reproduced by copyright permission of the Rockefeller University Press.
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Figure 8.9

Twitch of a muscle fiber in response to a single action potential. Note the latent period between action potential arrival
and the development of mechanical contraction. From Vander et al. [2]. Reproduced with kind permission of The
McGraw-Hill Companies.

Intuitively, we expect that the developed tension will reach some maximum value

then decline to the resting state (upper panel of Fig. 8.11).4 The duration of the

twitch is approximately 100 ms.

The situation is somewhat different in the isotonic test. There can be no muscle

motion until sufficient force is developed to overcome the applied tension. Since the

developed tension does not reach its maximal value instantaneously, this implies

that the larger the applied tension, the longer a delay there will be until the muscle

begins to shorten. Thus, in the isotonic case, the latency period increases with load

(applied tension), as shown in the lower panel of Fig. 8.12. By the same reasoning,

the period during which the muscle can shorten during an isotonic experiment

4 The reader may wonder how it is possible for the muscle to “contract” even though it is being held at constant length. It

must be remembered that muscle consists of muscle cells and connective tissue. In response to stimulus, the muscle

cells shorten. Since the muscle length is constant, the connective tissue must extend. This is discussed in more detail in

Section 8.2.
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Figure 8.10

Schematic description of experimental set up used to measure isotonic and isometric muscle contractions.

is shorter when the applied tension is large. Therefore, the distance shortened

decreases with increasing applied load in an isotonic test (Fig. 8.12).

To this point, we have only discussed muscle response to single action poten-

tials. However, in practice a second action potential will usually arrive before the

first twitch has finished. In this case, the two twitches sum together to produce

a greater contraction than could be achieved from a single twitch, a condition

known as unfused tetanus (Fig. 8.13). If a rapid train of action potentials is applied

to the motor unit, the twitches sum together to yield an approximately constant

contraction in a state known as fused tetanus. Increasing the stimulation frequency

beyond this point does not lead to an increase in developed tension in the mus-

cle. The tension developed in a muscle during fused tetanus is known as tetanic
tension.
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Figure 8.11

Latent period in isometric and isotonic twitches. The mechanical response after a single action potential for a skeletal
muscle fiber is shown. From Vander et al. [2]. Reproduced with kind permission of The McGraw-Hill Companies.

8.2 Muscle constitutive modeling

The tension which a muscle fiber can generate depends on a number of factors.

Length. There is found to be an optimal length for muscle fibers; that is, in

an isometric experiment, maximum tetanic tension is generated at some optimal

length l0. When the muscle is stretched to beyond this length, the actin and myosin

filaments overlap less, with the result that less tetanic tension can be developed

at this length. Conversely, when the muscle is shortened to less than its optimal
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Figure 8.12

Tracings of distance shortened (top graph) and developed tension (bottom graph) versus time in frog sartorius muscle
for isotonic twitches against loads of 3, 5 and 9 g. The muscle was stimulated by a single action potential at time zero
(arrow). Notice how the developed tension increases while the muscle length stays unchanged until the tension reaches
the applied load, after which point the muscle begins to shorten. Also shown in the bottom panel is a curve for an
isometric contraction (light line). Isotonic twitch curves are replotted from Jewell and Wilkie [6] with permission of
Blackwell Publishing Ltd; the isometric twitch curve is extrapolated from data in the same article but for a different
muscle and should therefore be considered to be only approximate.

length, the actin and myosin filaments interfere with one another, also reducing

the tetanic tension. This produces a load–length relationship, which is graphed in

Fig. 8.14. In the body, muscles always work in a length range where developed

tension is at least half of maximum.

Load. Suppose that a muscle is subjected to high-frequency stimulation for an

extended period, so that it goes into tetanus. If we hold the muscle isometrically and

then suddenly release it, the velocity of contraction V can be measured for different

loads placed on the muscle, P. For some large load, the muscle will be unable to

move the load, and the contraction velocity will be zero. On the other extreme,

for small loads, it will be able to contract rapidly. This leads to the load–velocity

relationship shown in Fig. 8.15. A. V. Hill [9] showed that this relationship could
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Figure 8.13

Tension developed by a human extensor hallucis brevis muscle versus time for a range of stimulus frequencies. The top
trace shows a twitch in response to a single stimulus under isometric conditions. The twitch contraction time (CT) is the
interval between the beginning of tension development and the peak tension. The lower four traces show the tension
developed under progressively higher stimulation frequencies (3 Hz to 30 Hz), progressing from unfused to fused
tetanus. Note the different scales for the upper trace and the lower four traces. From McComas [7], with kind permission
of the author.

be described by the equation

(a + P)(b + V ) = b(P0 + a) (8.1)

where a, b0 and P0 are constants, with P0 equal to the applied load when V is zero.

Time. We have previously noted that the tension developed during an isometric

twitch is time dependent. This results from several factors. First, the development

of tension by the myofibrils in response to an action potential is time depen-

dent. Second, a whole muscle consists of more than just myofibrils, including

significant amounts of connective tissue, blood vessels, etc. Connective tissue, in

particular, has a significant amount of elasticity and also acts to damp motion;
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Figure 8.14

Load–length relationship for skeletal muscle. The vertical axis in the top panel is isometric tetanic tension in an isolated
frog skeletal muscle, expressed as a percentage of the maximum attainable tension; the horizontal axis is striation
spacing (in micrometers), a measure of sarcomere length. Maximum attainable tension occurs at an optimal sarcomere
length of 2.13 μm. The shaded region represents the range of lengths (approximately 70% to 130% of the optimal
sarcomere length) that occur normally in the body. The diagrams of sarcomere geometry for different sarcomere lengths
at the bottom correspond to labels 1–6 in the graph. The lengths shown on the lower panel are measured from one Z-line
to the next Z-line (see Fig. 8.2). Modified from Gordon et al. [8] with permission of Blackwell Publishing Ltd.
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Figure 8.15

Load–velocity relationship for isotonic tetanized muscle under different loadings. Data are obtained from frog skeletal
muscle (sartorius muscle), and the solid line is a plot of Equation (8.1) with load P expressed in g weight and V
expressed in cm/s. Modified from Hill [9], with permission of the Royal Society; this paper is recommended to the reader
as a wonderful example of experimental ingenuity and problem solving.

consequently, it modifies the force output of the myofibrils (Fig. 8.16). This can be

made more specific by considering a whole muscle to consist of three mechanical

components:

� a contractile, or active, element, consisting of the actin–myosin complex,

which produces a force rapidly after stimulation
� a spring, or elastic component, representing the elasticity of the connective

tissue within the muscle
� a dashpot, representing the effects of frictional dissipation within the muscle;

frictional dissipation occurs as different portions of the muscle slide relative to

one another and as fluid within the muscle is sheared.

The reader will recognize the similarities between this lumped parameter approach

and the lumped parameter modeling of cell biomechanics (Section 2.6.1), and we

will use this model again when we come to connective tissue biomechanics (Section

9.10.5). Here the unique feature is the active element.
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Figure 8.16

The graph shows the measured time course of muscle tension, T(t), during an isometric twitch of a frog gastocnemius
muscle at 24 ◦C (triangles). The curve labeled “computed active state tension” is an estimate of the tension generated
by the active component (the myofibrils) of the muscle, computed using the model in the right panel. This model
incorporates a damping element (dashpot) and two elastic elements, the properties of which were estimated from
independent experiments. Notice the very significant difference between the time course and magnitude of the tension
generated by the force generator and the tension delivered to the surroundings at the ends of the muscle. Adapted from
McMahon, T. A.; Muscles, Reflexes, and Locomotion [10], based on data from [11]. C© 1984 by T. A. McMahon.
Reprinted by permission of Princeton University Press.

To examine the time course of muscle shortening further, consider an idealized

model of muscle consisting of the three components identified above, as shown

schematically in Fig. 8.17. The myofibrils (actin–myosin complex, or active ele-

ment) are idealized as a force generator that produces a constant tension T0 for a

finite duration C upon stimulation (Fig. 8.17).5 The spring is assumed to be linearly

elastic, with spring constant k0. The dashpot is also assumed to be linear, so that

the force produced by the dashpot is given by

Fdash = η0

dx1

dt
(8.2)

5 Examination of Fig. 8.16 shows that this is not strictly the case, but this assumption at least maintains the essential

feature that the active state tension is transient in response to a single stimulus.
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Figure 8.17

Three element model for muscle. x1 is the length of the dashpot portion of the muscle (assumed equal to the length of
the force generator) and x2 is the length of the elastic portion of the muscle. See the text for the description of the
characteristics of the dashpot and spring. Inset shows the force generated by the active element as a function of time
following a single stimulation.

where η0 is the dashpot damping constant and x1 is defined in Fig. 8.17. Note that

the force exerted by the dashpot on the surroundings is such to oppose motion.

As was the case for the lumped parameter models representing cell biomechanics

(Section 2.6.1), the arrangements of components in this three element model is

somewhat arbitrary; for example, there is no reason a priori why the damping

element should be in parallel with the active element, or why the elastic element

should be in series. In fact, alternative models have been used [10]. However, this

model is as valid as any other three element arrangement and yields results that are

qualitatively correct.

The tension T transmitted by the muscle to its surroundings will depend on

T0, C, K0, and η0. We assume that the initial tension on the muscle is zero, and that

the muscle has negligible mass. Using these assumptions, we can ask what T (t) is

for the above arrangement during an isometric contraction. We answer this question

by first noting that if the contraction is isometric, we have x1 + x2 = constant.
Differentiation of this expression yields

dx1

dt
+ dx2

dt
= 0. (8.3)
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Splitting the model at node ©2 , and drawing a free body diagram for the spring

immediately shows that the internal tension Tint between the spring and the remain-

der of the model satisfies:

T − Tint = mspring aspring. (8.4)

However, since we have assumed that the mass of the muscle is small, the right-

hand side of Equation (8.4) can be neglected and the internal tension must equal

T (t). The constitutive equation for the spring can therefore be written as

T = k0

(
x2 − x0

2

)
(8.5)

where x0
2 is the relaxed length of the spring.

A similar argument applied to forces acting on the dashpot/active element com-

bination shows that the sum of forces produced by the dashpot and the active

element must be equal to T (t). Assuming that the active element begins to contract

at time t = 0, and taking proper account of the orientation of forces, this implies

that

T = T0 + η0

dx1

dt
for 0 � t � C. (8.6)

T = η0

dx1

dt
for t > C. (8.7)

Consider first the period 0 � t � C : combining Equations (8.3), (8.5) and (8.6)

yields

T − T0

η0

+ 1

k0

dT

dt
= 0. (8.8)

This is a first-order, linear, ordinary differential equation for T (t). Its solution,

taking account of the assumption that the initial tension in the muscle was zero, is

T (t) = T0

[
1 − e−k0t/η0

]
for 0 � t � C. (8.9)

This shows that the force increases exponentially towards the maximal value of

T0. A similar derivation for the period t > C gives a solution

T (t) = T0

[
1 − e−k0C/η0

]
e−k0(t−C)/η0 for t > C. (8.10)

This produces a force versus time curve as shown in Fig. 8.18. It can be seen that

the output of the active element is modified extensively before being transmitted

to the surroundings.
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Figure 8.18

Force output predicted from the three element model for muscle, as given by Equations (8.9) and (8.10).

8.3 Whole muscle mechanics

We now turn to the study of forces produced by whole muscles in practical situations

within the body. Any study of whole muscle mechanics must examine two main

factors: first, the arrangement of muscle fibers within a particular muscle, and

second, the arrangement of that muscle with respect to the bones it attaches to. We

will consider the first issue in this section; interactions between muscles and bones

will be considered in Section 8.4.

8.3.1 Parallel versus pinnate muscle types

In many muscles, the muscle fibers are simply aligned with the axis of the muscle.

In such cases, the force generated by the muscle during contraction, F, is the force

per unit area generated by muscle fibers, f, multiplied by the cross-sectional area

of the muscle, A. With reference to Fig. 8.19:

Fparallel = f A = 2aw f. (8.11)

There are a number of alternative muscle fiber arrangements. One of these is known

as a pinnate (or pennate) arrangement, in which the muscle fibers are oriented

obliquely with respect to the axis of contraction of the muscle. For example, in

Fig. 8.20, a bipinnate muscle is schematically shown, consisting of two pinnate

groups. An example of a bipinnate muscle that many readers will be familiar with

is in the pincer of a crab or lobster, where the interface between the two muscle

halves is a hard connective tissue. Humans also have pinnate muscles; one example
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Figure 8.19

Portion of a parallel fiber muscle. The muscle fibers are aligned vertically, and the muscle cross-sectional area
A is 2a w . The length of the muscle fibers is l.

Figure 8.20

Schematic drawing of a portion of a bipinnate muscle. This muscle has the same volume as that shown in Fig. 8.19, but
the fibers are inclined at an angle 90◦ − α with respect to the direction in which tension is delivered.
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is the rectus femoris, the major muscle on the front of the femur. As discussed

by Fung [12], it is straightforward to show that the force generated by a bipinnate

muscle, Fpinnate, is given by

Fpinnate = 2w f l cos α sin α. (8.12)

It is of interest to compare the force generated by the bipinnate arrangement with

that generated by the parallel arrangement. To make the comparison meaningful,

we must ensure that the bipinnate and parallel muscles have the same total volume,

which inspection of Figs. 8.19 and Fig. 8.20 will confirm. From Equations (8.11)

and (8.12)

Fpinnate

Fparallel

= l cos α sin α

a
. (8.13)

The term cos α sin α is always < 1, but the ratio l/a can be very large. If this

is the case, then Equation (8.13) shows that the force generated by the bipinnate

arrangement can be larger than that generated by the parallel arrangement, for

a given muscle mass. Further, the bipinnate muscle does not expand laterally as

it contracts, while a parallel muscle arrangement does. Consequently, there are

advantages to a pinnate arrangement. However, there is also a disadvantage: for a

given shortening velocity of the muscle fibers, the bipinnate muscle will shorten

more slowly than the parallel arrangement. These points are discussed in greater

detail by McMahon ([10], pp. 54 ff.).

8.4 Muscle/bone interactions

Skeletal muscle is always attached to bone, and forces developed during muscular

contraction are usually transmitted to the “outside world” via the bone. As an exam-

ple, consider running: muscles attached to bones within the leg contract in such a

way that the feet exert a force on the ground which propels the runner forward. The

specific geometry of the muscle/bone arrangement clearly influences the forces

transmitted to the surroundings, the speed of motion of the bones that the muscles

attach to, and the stresses within the bones involved. We examine these issues below.

8.4.1 Foreleg motion in two species

We begin with an example in which foreleg motion in two different animals is

compared. Specifically, we examine rotation of the humerus, the upper bone in the

foreleg, about the shoulder joint in the armadillo and the horse. Humeral rotation is

primarily accomplished by the teres major muscle, which inserts into the humerus
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Figure 8.21

Anatomy of the bones in the foreleg from the horse (left) and the armadillo (right). The forelegs have been scaled so that
they appear the same size. The point labeled “A” is the center of rotation of the humerus. The distance l is measured
perpendicular to the line of action of the teres major muscle. From Young [13]. Reproduced with kind permission of
Oxford University Press and Prof. J. Maynard Smith.

and the scapula (shoulder blade), as shown in Fig. 8.21. We wish to determine the

mechanical advantage of the teres major muscle in these two species: that is, the

ratio of forces transmitted to the foot for a given amount of force in the muscle.

This will depend on the distance between the foot and the center of rotation, h,

and the normal distance between the center of rotation and the line of action of the

teres major, l. We assume that the knee joint is locked, and call:

Fm = force developed in the teres major muscle

Fg = force exerted on the ground by the foot.

If we further assume that the inertia of the foreleg can be neglected, then the sum

of moments about the center of rotation A must be zero. In this case, it directly

follows that the force transmitted to the ground by the foot, Fg, is given by

Fg = l

h
Fm. (8.14)

Equation (8.14) shows that the mechanical advantage of the teres major muscle

is given by the ratio l/h. The larger this ratio, the greater the force delivered to
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the foot per unit force generated in the teres major muscle. However, the larger

this ratio, the slower the foot will move for a given velocity of contraction of the

teres major. For animals that are specialized for digging and burrowing, such as the

armadillo, large forces must be delivered to the foot. It is expected that such animals

will have a relatively large l/h. By comparison, animals that are specialized for

running, such as the horse, require a foot that moves quickly. This is accomplished

by a small l/h ratio. Measurements show that l/h is approximately 1/4 for an

armadillo and 1/13 for a horse, in agreement with the above discussion.

The armadillo is further specialized to be able to deliver large forces to the foot.

Examination of Fig. 8.21 shows that the armadillo has a proportionately much

larger olecranon process, the bony protrusion behind the “elbow” joint. This is the

point of insertion of the triceps muscle, which is responsible for straightening the

front knee joint. Thus, a large olecranon process provides a large lever arm, which,

in turn, leads to relatively larger forces acting to straighten the front leg.

A corollary of the above discussion is that animals like the armadillo accelerate

to top running speed faster than an animal like a horse. This seems counter-intuitive,

until we recognize that the top speed for the armadillo is also much less than that

for the horse, so that the absolute acceleration of the horse is greater.

8.4.2 Flexion of the elbow

We now examine flexion (bending) of the elbow in humans, with particular empha-

sis on the stress this places on the bones in the forearm. As shown in Fig. 8.22,

there is one bone in the upper arm (the humerus) and two bones in the forearm (the
radius and the ulna). There are numerous bones in the wrist and hand; however, for

the purposes of this analysis we will treat the wrist and hand as a rigid assembly

and primarily concentrate on stresses in the radius and ulna.

We wish to estimate the stresses in the forearm caused by holding a weight W in

place against the force of gravity. We will assume that the forearm is in supination,6

as shown in Fig. 8.22. Analysis of this problem first requires that the geometry of

the relevant musculoskeletal elements be quantified. Hsu et al. [14] defined the

length of the radius bone as the distance from the proximal articulating surface

to the distal “tip” of the styloid process (see Fig. 8.22), and measured a mean

radius bone length of 25.8 cm in eight human arms. Using a similar approach,

Murray et al. [15] report a mean length of 23.9 cm for 10 human arms. We will

take a length of 24 cm as being typical for the radius bone. We will further assume

that the weight acts through a line 6 cm distal to the tip of the styloid process,

corresponding approximately to the middle of the palm. Finally, we will use the

6 When the forearm is in supination, it is rotated so that the palm is facing upwards. The opposite configuration is

pronation, with the palm facing down.
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Figure 8.22

Bones of the upper and lower arm, as seen from the lateral side. In the analysis described in the text, a weight W is
assumed to be supported against the force of gravity as shown. The distal portion of the ulna is hidden behind the radius.

anthropometric data of Murray et al. [15] to take the mean length of the humerus as

32 cm.

The effective axis of rotation of the elbow is not fixed but varies with the degree

of elbow flexion [16]. However, for purposes of this example, we will assume a

fixed axis of rotation that is 1 cm to the left of the proximal articulating surface of

the radius, and 1 cm superior to the distal end of the humerus (Fig. 8.22).

Turning now to the muscles responsible for elbow flexion, we will consider four

major muscles (Fig. 8.23), as listed below.

1. The biceps. This muscle arises from the scapula at two points of origin;

muscle from these two locations fuses to give the biceps. Distally, the biceps

insert primarily into the radius, with a small attachment to the ulna.

2. The brachialis. This muscle arises from the anterior surface of the humerus,

approximately halfway to the elbow. Distally, it attaches to the ulna.

3. The brachioradialis. This muscle arises on the lower lateral portion of the

humerus and inserts into the radius near the wrist. The muscle itself is fairly

short, but the tendon attaching to the radius is quite long.
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Figure 8.23

Selected muscles responsible for motion of the forearm in humans. Not all muscles responsible for elbow flexion are
shown in this image, which also includes muscles responsible for forearm rotation (pronation/supination). From Young
[13]. Reproduced with kind permission of Oxford University Press.

4. The extensor carpi radialis longus (ECRL). This muscle arises from the

lateral aspect of the humerus very near the elbow and inserts on the second

metacarpal (wrist) bone. Since the hand articulates with the radius, this can be

mechanically approximated as an insertion into the radius.

Relevant anatomic characteristics of these muscles are shown in Table 8.1. The

muscle origin and insertion locations are obviously approximate, since the attach-

ment of the muscles is spread over a finite area of bone; to determine a single

value for the origin or insertion locations we have used the centroid of the
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Table 8.1. Origin and insertion points and other characteristics of the four major
muscles participating in elbow flexion. L H is the distance from the effective
center of rotation for the elbow to the muscle origin location on the humerus; L F

is the corresponding measurement for the insertion location on the forearm.
PCSA is the physiologic cross-sectional area of the muscle (see text).
θ = tan−1(L H /L F ) is the angle that the muscle makes with respect to the
horizontal when the forearm is in the position shown in Fig. 8.22. “Inserts into”
refers to which bone the muscle inserts into in the forearm.

Muscle LH (cm) LF (cm) PCSA (cm2) θ(◦) Inserts into

Biceps 31a 8 12.3 76 Radius

Brachialis 10 5 13.0 63 Ulna

Brachioradialis 8 24 2.9 18 Radius

Extensor carpi
radialis longus

3 25b 3.6 7 Radius

a The biceps does not originate from the humerus. Its effective point of origin is taken at the top of the
humerus.
b The ECRL inserts into the wrist; its effective insertion point is taken as the end of the radius.

origin or insertion region as estimated from anatomic drawings. The physiological

cross-sectional area (PCSA), defined as the muscle volume divided by the muscle

fiber length measured normal to the fiber axis, is particularly important for us.

Because it takes into account muscle fiber orientation, it is a measure of the

number of sarcomeres in parallel in the muscle. This area is therefore consid-

ered to be an indirect measure of the muscle’s force-generating capacity [17,18].

Murray et al. [18] reported PCSA values for elbow flexors measured on fixed

cadaver limbs, but if their numbers are used in the calculation below a rather

low value for the supported weight is obtained, possibly because tissue fixa-

tion causes shrinkage and therefore underestimates cross-sectional area. If the

PCSA values of Murray et al. are multiplied by a factor of 2.4 so as to match

the PCSA values reported by Klein et al. [19] obtained from magnetic reso-

nance imaging of the biceps, brachialis, and brachioradialis of young males, then

the values are consistent with other measures; for example, the resulting biceps’

PCSA computed in this manner is 12.3 cm2, which is comparable to the maximum

anatomic cross-sectional area of 16.8 cm2 measured in 585 subjects by Hubal

et al. [20].

Neglecting the mass of the forearm and the moment due to the elbow joint,

we can draw a free body diagram for the forearm (Fig. 8.24). Denoting the force

generated per unit PCSA of muscle by f, and assuming that this quantity is the

same for all muscles (more on this later), we can sum moments about the effective
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Figure 8.24

Free body diagram of lower arm, showing forces resulting from muscle insertions (T i, i = 1 . . . 4), the two components
of the joint reaction forces at the elbow (JRFx and JRFy), and the supported weight (W). The indices 1–4 refer to the
biceps, brachialis, brachioradialis, and extensor carpi radialis longus muscles, respectively.

center of rotation of the elbow to obtain

f
4∑

i=1

L Fi
[PCSA]i sin θi = W L tot (8.15)

where L tot is the distance from the elbow to the line of action of the weight W, and the

subscript i = 1 . . . 4 refers to each of the four muscles in Table 8.1. Here we assume

that the joint reaction force (JRF) acts through the center of rotation for the elbow.

Equation (8.15) can be used to solve for the weight W if f and L tot are spec-

ified. Measurements indicate that f can be as high as 28 N/cm2 (40 lbf/in2) for

short durations.7 However, sustained voluntary force development gives values of

f slightly lower than this. For example, Kent-Braun and Ng [21] measured values of

f between 17.1 and 20.7 N/cm2 for the ankle dorsiflexor muscle in human subjects

of different age. McMahon noted that f is approximately 20 N/cm2 (29 lbf/in2) for

skeletal muscle in a wide range of species, independent of body size [10]. We will

take f as 20 N/cm2. Based on the geometric assumptions that we have made, L tot

is 31 cm, and the supported weight W is computed as W = 120.1 N, equivalent to a

mass of 12.2 kg or a net moment of 37.2 N m about the elbow’s center of rotation.

Recall that this is the weight supported by a single arm and that it neglects the

weight of the forearm itself.

There have been a number of assumptions made in arriving at this result. For

example, the idea that all muscles exert the same force is an oversimplification;

research has shown that the force exerted by muscles cooperating in a single task

differs from muscle to muscle, and it has been argued that the force distribution is

such to minimize the effort [22]. Moreover, the force that can be generated by a

7 Other interesting statistics for muscle: the power density of muscle when doing medium-term repetitive tasks is

approximately 40 W/kg muscle. The corresponding efficiency of energy conversion from foodstuffs is approximately

20%.
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given muscle depends on the length of the muscle (Fig. 8.14), which varies with

elbow flexion angle. This means that the force generated by the muscle is not

just proportional to the PCSA but also depends in a complex way on the degree of

elbow flexion. Murray et al. [18] have considered these effects and have presented a

more complete analysis for elbow flexion, although for a slightly different forearm

orientation than we have used here. The interested reader is referred to Murray

[18] for more details; here we will stick with our simple assumption of a uniform

value for f for all muscles. Finally, our treatment of the elbow as a simple hinge

with reaction forces acting through the center of rotation is somewhat unrealistic,

but a more complete analysis is beyond the scope of this book.

Given all of the above assumptions, how does our computed moment of 37.2 N m

compare with experimental data? Wang and Buchanan [23] measured the moment

generated during elbow flexion with the forearm in the neutral position (halfway

between pronation and supination, as if the subject were holding the handle of a

full coffee mug), obtaining values between 60 and 90 N m, which is about double

the predictions of our calculations. Klein et al. [19] measured the force exerted at

the wrist during elbow flexion with the forearm in supination and 100◦ of flexion,

obtaining a mean value of 331 N in 20 young male subjects. This corresponds to a

moment of roughly 80 N m, again about double what our computation predicts. This

discrepancy may be because we have neglected several smaller muscles that help

to stabilize and flex the elbow joint, because of small postural differences between

our calculation and the experimental conditions, or because of the assumptions

listed in the previous paragraph (including the value for f ). However, the value

that we have computed is not far different from experimental data and agrees with

everyday experience. (Most people could support a 12 kg mass in their hand for

a while.) We see that even something as biomechanically “simple” as computing

the weight that can be supported in a person’s hand is not so straightforward!

Returning to our calculation, we can now ask what joint reaction force this

weight W will generate at the elbow. Referring to Fig. 8.24, we can sum forces in

the vertical direction to obtain the vertical joint reaction force at the elbow, JRFy

as:

JRFy =
4∑

i=1

f [PCSA]i sin θi − W = 377.6 N, (8.16)

which is approximately three times greater than the supported weight. A similar

force balance in the x direction gives JRFx = 304.3 N. Both of these values are

significantly larger than the supported weight, and this is typical of most joints

in the body where the muscles are working at a “mechanical disadvantage,” i.e.,
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through a short lever arm. This means that the muscles must generate significant

forces to support loads, which invariably translates into large joint reaction forces.

What magnitude of bending stress does this force distribution generate in the

bones of the forearm? This turns out to be a very difficult question to answer;

here we present a simplified way to tackle this problem. The first step is to compute

the bending moment distribution in the forearm. The reader will recall that if one

makes an imaginary cut through a loaded beam so as to separate the beam into

two parts, then consideration of equilibrium for each part shows that there must be

internal forces and moments acting on this cutting face (Fig. 8.25; upper panel). The

internal moment is known as the bending moment, while the internal forces consist

of a normal force and (in three dimensions) two shearing forces. The bending

moment and internal forces change with position and can be computed by a static

force and moment balance on either of the two parts of the beam for different

imaginary cutting plane positions. In the case of the forearm, which we have

approximated as being loaded by point forces, the bending moment distribution

consists of linear segments (why?), and is as shown in Fig. 8.25. Inspection of this

diagram shows that the maximum bending moment occurs 8 cm from the elbow and

has magnitude 2323 N cm. Note that this result does not depend on assumptions

about the architecture or shape of the bones in the forearm; rather, it follows directly

from a force and moment balance.

Now we come to the tricky part: if there were only one bone in the forearm, a

reasonable way to proceed would be to assume that this fictitious bone could be

approximated as an Euler–Bernoulli beam.8 In this case, the axial stress due to the

bending moment, M(x), and compressive internal force, Fx (x), is given by

σ (x, y) = M(x)y

Iz
+ Fx (x)

A
(8.17)

where y is the distance from the neutral axis of the bone, A is the cross-sectional

area of the bone, and Iz is the areal moment of inertia for the bone cross-section

about the z-axis,

Iz =
∫
A

y2 dA (8.18)

where the integral in Equation (8.18) is carried out over the beam cross-section.

8 There are six key assumptions underlying Euler–Bernoulli beam theory: (1) the beam is long and slender; (2) the beam

cross-section is constant along its axis; (3) the beam is loaded in its plane of symmetry, i.e., there are no torsional loads

on the beam; (4) deformations remain small; (5) the material is isotropic and (6) plane sections of the beam remain

plane. Problematic in this context are assumptions (2), (3), (5), and, as we will see, (6). The reader is cautioned that the

following material is therefore only approximate.
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Figure 8.25

Bending moment distribution in the forearm. The upper portion of the figure shows a generic beam cut at an arbitrary
location, with the internal bending moment and force components acting on the dark-shaded portion of the beam
superimposed. The middle panel shows the vertical components of forces acting on the forearm, arising from muscles,
joint reaction forces at the elbow, and the supported weight. The bottom panel shows the bending moment distribution in
the forearm, computed as described in the text. Distances are not to scale. ECRL, extensor carpi radialis longus;
brachiorad, brachioradialis.
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It is instructive to use Equation (8.17) to consider what would occur if the

radius bone were the only bone in the forearm and therefore carried the forearm’s

entire load. To work with Equation (8.17) we need geometric information about

the radius bone, which is complicated by the fact that this bone has a non-circular

cross-section that changes with axial position. To keep the problem tractable we will

simply consider one axial location and treat the bone as an equivalent hollow beam

of circular cross-section with inner and outer diameters, Di and Do respectively.

Burr and Martin [24] used a combination of microscopy and calliper measurements

to assess polar moment of inertia, J, and “diameter” in 86 human radius bones at

a cross-section located 37.5% of the length of the radius from the distal end. We

can use their average value for the polar moment of inertia in males (0.35 cm4) to

compute an effective outer diameter for the radius bone, as follows. The medullary
canal (the hollow central core of the bone) has a diameter about half that of

the outer bone diameter, so by using the formula J = π (D4
o − D4

i )/32 with the

ratio of inner to outer diameters Di/Do = 1/2 we obtain Do = 1.40 cm. This

value is surprisingly close to the average outer “diameter” of about 1.4 cm (for

males) measured by callipers in the anterior–posterior direction. We therefore

approximate the equivalent outer diameter as 1.4 cm and the inner diameter as

0.7 cm. Using these values we can compute Iz = π (D4
o − D4

i )/64 = 0.177 cm4

and A = π (D2
o − D2

i )/4 = 1.15 cm2.

Returning to Equation (8.17), the ratio of the maximum value of the first term

to the value of the second term is 8M(x)Do/[(D2
o + D2

i )Fx (x)], where we have

used the fact that that the maximum value of y for a beam of circular cross-section

is Do/2. Since we will ultimately be concerned with extreme values of the

terms in Equation (8.17), we will use this formula for the ratio and plug in the

maximum value of M(x) as 2323 N cm (Fig. 8.25) and the maximum value of

Fx (x) as 304 N. Using Do = 1.4 cm, we then compute that the ratio of the first

to the second term on the right hand side of Equation (8.17) can be as large as

35, which suggests that the maximum stress induced by bending is much larger

than that induced by axial force, at least at the location where M(x) is maximal.

Therefore, it seems reasonable to ignore stresses in the bone owing to axial forces,

and we will henceforth consider the role of bending only.

Of course, there is not just one bone in the forearm, and now we must consider

the role of both the radius and the ulna. Equation (8.17) is based on the assumptions

of Euler–Bernoulli beam theory, which fail for the forearm since it has two bones

in it. (This is an example of a truss beam, for which it is no longer guaranteed that

plane sections remain plane.) What we can say is that the radius and the ulna will

each carry a part of the total bending moment. If we denote by subscripts r and u

the portions carried by the radius and ulna, we can state

M(x) = Mu(x) + Mr(x) (8.19)
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Based on our arguments above, it seems reasonable to neglect the contribution of

Fx to stress in the bone, so that we can write:

σr(x, y) = Mr(x)yr

Iz,r
(8.20)

and

σu(x, y) = Mu(x)yu

Iz,u
= (M(x) − Mr(x))yu

Iz,u
(8.21)

where yr and yu in Equations (8.20) and (8.21) are measured from the neutral axis

of the respective bone.

As formulated, we cannot solve this problem since it is under-determined. How-

ever, as we will see in Section 9.5, bone remodels in response to stress, and it

therefore seems plausible that the radius and ulna might be sized so that the max-

imum stresses predicted by Equations (8.20) and (8.21) would be approximately

equal. Making this assumption, we can write:

max

{
Mr(x)yr

Iz,r

}
= max

{
(M(x) − Mr(x))yu

Iz,u

}
(8.22)

Using the fact that the maximum value of y occurs at Do/2, Equation (8.22) can

be rewritten as

max {Mr(x)} = max {M(x)}
1 +

(
Do,r Iz,u

/
Do,u Iz,r

) (8.23)

At the location where the bending moment is maximum, the ulna has approx-

imately the same diameter as the radius. Assuming that the respective medullary

canal diameters are also the same for the two bones at this location, the area

moments of inertia for the two bones are the same. We can therefore set the

term in parentheses in the denominator of Equation (8.23) to 1, which implies

that the bending moment in the radius is about half of that in the forearm. Using

Equation (8.20) we can then write:

max{σr (x, y)} = 16Do,r

π
(
D4

o,r − D4
i,r

) max{M(x)} (8.24)

Substituting numerical values gives a maximum σr of 4599 N/cm2 (≈ 46 MPa).

As we will see in Section 9.3.1 (Table 9.3), the yield stress for the type of bone found

in the radius (cortical bone) is approximately 130 MPa in tension and 200 MPa

in compression. Therefore, the computed maximum bending stress is about 23–

35% of the yield stress for bone. The Young’s modulus for longitudinal loading

is approximately 17 GPa, so this loading corresponds to a peak surface strain of

approximately 2700 microstrain. In Section 9.5, we will see that peak surface
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strains are typically in the range 2000–3000 microstrain [25], which agrees quite

well with the strain levels we predict with this analysis.

Obviously the analysis that we have presented above has made many simplifi-

cations. A complete treatment would consider how forces are transmitted between

the radius and the ulna, which, in turn, depends on the distribution of bone-on-bone

contact, muscles, and connective tissue between these bones. The radius and ulna

are in direct contact over a small region at their distal ends, and over a region of

1–2 inches near their proximal ends. There is also a connective tissue that lies

between these bones called the interosseous membrane. Studies have shown that

when the forearm is loaded along its long axis there is significant force transmis-

sion through the interosseous membrane [26–28], but it is unclear how much force

transmission there is when the arm is supporting a weight as shown in Fig. 8.22. It

is clear that force transmission at the elbow and in the forearm is complex (see for

example Werner and An [29]); perhaps some brave biomechanics student reading

this book will undertake a more complete analysis as part of a senior year thesis

project?

8.4.3 Biomechanics of the knee

A third example that illustrates the importance of muscle–bone interactions in

force transmission is the knee. The biomechanical loads placed on the knee joint

are severe. This is reflected in the high incidence of knee injuries among athletic

injuries: “Studies indicate that the knee is the most commonly injured area of the

body and possibly accounts for 45% of all sports injuries” [30]. There are three

bones involved in the knee joint proper:

� the femur, the large bone in the upper leg
� the tibia, the larger of the two bones in the lower leg
� the patella, or kneecap.

The strength and stability of the joint depends to a very large degree on the tendons

and ligaments of the knee, in contradistinction to a joint such as the hip, which

depends more on a close fit between the bones.

The femur has two “bulbs,” or condyles, at its distal end, known as the lateral

and medial femoral condyles. These rest in slightly concave portions on the upper

surface of the tibia, known as the tibial condyles. The main structures ensuring

that the femur and tibia remain in contact are the cruciate ligaments, so named

because they appear to cross over one another. The anterior cruciate emanates from

the anterior midplane of the tibia and attaches to the posterior aspect of the lateral

femoral condyle. The posterior cruciate ligament emanates from the posterior tibial
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Figure 8.26

Some of the bones, ligaments, tendons, and cartilage in the human knee. This is a right knee seen from the anterior side.
Note the anterior and posterior cruciate ligaments between the femur and the tibial plateau. Reprinted with permission
from Gray’s Anatomy [31].

midplane and attaches to the anterior aspect of the femoral condyle (Fig. 8.26).

The arrangement of the cruciate ligaments is such that the weight is carried by pro-

gressively superior aspects of the femoral condyle during knee flexion (Fig. 8.27).

There are also numerous muscles and ligaments outside the capsule of the knee

that act to confer stability on the knee.

The superior tibia and the inferior femur have a cartilaginous covering, and a

layer of cartilage known as the meniscus interposes between the femur and the

tibia. The entire knee is enclosed in a fluid-filled capsule. This results in a joint

in which relative motion is supported on a thin fluid film underlain by cartilage.

This arrangement has very low wear and friction, and allows the healthy knee to

be flexed many millions of times over the course of a lifetime.
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Figure 8.27

Bones of the right knee joint in humans, showing motion of bones during three phases of knee flexion. The tracings are
taken from radiographs with the foot firmly fixed on the ground, so that there is no movement of the tibia and fibula and
the full effects of rotation are visible in the femur. The tracings are viewed from the medial side, with the parts hidden by
the more medial structures being shown by broken lines. (A) Position of full extension with the femur fully rotated
medially and the knee joint locked. (B) Slight flexion. Note that there has been considerable lateral rotation of the femur,
so that the outlines of the condyles are nearly superimposed. This movement occurs at the very outset of flexion.
(C) Considerable flexion of the knee with further lateral rotation of the femur on the tibia. From Romanes [32].
Reproduced with kind permission of Oxford University Press.

A second important structural system acts to extend the knee joint and comprises

the patella, patellar ligament (sometimes also called the patellar tendon), and

quadriceps. The quadriceps are the large set of four muscles running along the

anterior surface of the thigh. They extend tendons that anastomose (join) to form

the quadriceps tendon, which, in turn, inserts into the superior aspect of the patella.

Emanating from the inferior patella is the patellar ligament, which attaches to a

small tuberosity on the front of the tibia (Fig. 8.28). The patella itself slides in a

groove on the anterior femoral surface known as the femoral intercondyler groove.

This groove, as well as the posterior surface of the patella, are covered with cartilage

to allow low-friction sliding motion.

On the posterior surface of the knee there are a number of muscles that act to

flex the knee joint. One consequence of this arrangement of flexing and extending

systems is that a large compressive force can be generated between the patella

and the femur. This is particularly true during maneuvers such as standing from a
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Table 8.2. Measured femoro-patellar contact loads during squatting, for physiological joint angles.
Values in the last column are femoro-patellar contact forces, and should be multiplied by three to get in
vivo loads. Values are mean for n = 12 knees (±95% confidence intervals). Reprinted from Huberti and
Hayes [35]. With kind permission of Elsevier.

Knee flexion
angle (◦)

Contact area
(cm2)

Contact area as
percentage of total
articular area (%)

Average contact
pressure (MPa)

Resultant contact
force (N)

20 2.6 ± 0.4 20.5 2.0 ± 0.4 497 ± 90

30 3.1 ± 0.3 24.9 2.4 ± 0.6 573 ± 125

60 3.9 ± 0.5 30.4 4.1 ± 1.4 1411 ± 331

90 4.1 ± 1.1 32.2 4.4 ± 1.0 1555 ± 419

Figure 8.28

Diagram of forces acting in and on the knee during flexion. The left drawing shows an overview, while the middle and
right drawings show close-up views for two different extents of knee flexion. As the lever arms q and k and the angle β

change, the femoro-patellar contact force can vary substantially. In particular, when β is small (for example, during
squatting), this force (R 5) can be very large (see Table 8.2). P is the portion of body weight supported by the leg; Pa is
the force in the patellar tendon; Mv is the force exerted on the patella by the quadriceps; R 4 is the femoro-tibial contact
force; R 5 is the compressive force between the femur and the patella; e is the lever arm of force P; c is the lever arm with
which force Pa acts on the femoro-tibial joint; k is the lever arm with which force Pa acts on the patello-femoral joint; q
is the lever arm with which force Mv acts on the patello-femoral joint. Modified from Maquet [33]. With kind permission
of Springer Science and Business Media.
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Table 8.3. Calculated femoro-patellar contact loads during walking, based on the
model shown in Fig. 8.28. Values in the last column are femoro-patellar contact
forces, and should be multiplied by three to get in vivo loads. Values are mean for
n = 12 knees (±95% confidence intervals). See Fig. 8.28 for explanation of
symbols. From Maquet [33]. With kind permission of Springer Science and
Business Media.

Phases Angle β2,4

of Fischer
Force
R5 (kg)

Patello-femoral
contact area (cm2)

Average compressive
articular stresses
(kg/cm2)

12 23◦ 33′ 219.0 5.56 39.37

13 28◦ 35′ 126.8 6.07 20.92

14 24◦ 45′ 126.6 5.90 21.13

15 18◦ 31′ 33.5 4.88 6.86

squat, when the knee is flexed (Fig. 8.28). For example, Huberti and Hayes [34]

estimated an in vivo contact force of approximately 1500 N at a flexion angle of

20◦, increasing to 4600 N at a flexion angle of 90◦ (Table 8.2). Even during normal

walking the forces can be significant: Maquet [33] estimated femoro-patellar con-

tact forces of between 300 and 2000 N during normal walking (Table 8.3). This

translates into compressive stresses of the order of 2–4 MPa on the femoro-patellar

contact surface. It is clear that the cartilage on the posterior patella and anterior

femur is subject to a great deal of wear and tear.

8.5 Problems

8.1 In your own words, describe the main events occurring between the arrival

of an action potential at a motor neuron end plate and contraction of the

corresponding muscle. Use 250 words or less.

8.2 Shown in Fig. 8.29 is a cross-sectional view through muscle, showing actin

and myosin filaments. Knowing that muscle can generate a maximum force

of 20 N/cm2, determine the maximum force exerted by each myosin filament.

Make and state appropriate assumptions.

8.3 A highly idealized version of part of the tension–length relationship for car-

diac muscle is graphed in the left portion of Fig. 8.30. This relationship

effectively determines the pumping behavior of the left ventricle, as follows.

Increased blood volume within the left ventricle causes stretching of the

ventricular wall muscle fibers, which, in turn, causes the contraction of the

ventricle to be more forceful. In this way, the left ventricular blood ejection
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Figure 8.29

For Problem 8.2. Modified from Fawcett [3] and Prof. Hans Ris, with kind permission.

Figure 8.30

For Problem 8.3.

pressure, and thus also the ejected blood volume, increase in response to

increased presystolic ventricular volume.

Using this information, plot (to scale) the left ventricular blood ejection

pressure as a function of presystolic ventricular volume. (The ejection pres-

sure is the maximum pressure achieved during the isovolumetric phase of

contraction.) For purposes of this question, you may assume that the left
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Figure 8.31

For Problem 8.5.
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Figure 8.32

For Problem 8.6.

ventricle is a thin-walled right circular cylinder with constant wall thickness

of 0.7 cm (see right portion of Fig. 8.30). Valves are located in the top of

the cylinder, and the bottom and top of the cylinder are passive (i.e., do not

participate in active contraction). The internal diameter of the ventricle when

maximum muscle tension occurs is 6 cm. You may assume that tetanic tension

is developed during the isovolumetric phase.

8.4 A certain muscle is known to behave according to the three element model

presented in Section 8.2, with an effective dashpot damping coefficient of

η0 = 2.5 N s/m. When stimulated with a single twitch in an isometric exper-

iment, it produces 80% maximal tension after 40 ms. While keeping the

same muscle length, the muscle is then put in series with a spring having

k0 of 200 N/m. What tension is measured in a new isometric experiment 20 ms

after a twitch?

8.5 A muscle is supported from a fixed point and has a mass M attached to it

(Fig. 8.31). Assume that the muscle can be modeled using a three element

model, noting that the arrangement of elements is different than used in
Section 8.2. Call the muscle length x, and denote the value of x before the

muscle begins to contract by x0. At time t = 0, the active component of the

muscle begins to contract and produces a constant tension T0 for duration C.

This causes the mass to rise, i.e., causes x to decrease with time.

(a) Treating the muscle as massless, show that x(t) is given by

x − x0 = −T0

k0

[
1 + r2 er1 t − r1 er2 t

r1 − r2

]
(8.25)
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where

r1 = − η0

2M

[
1 +

√
1 − 4k0 M/ η0

2
]

r2 = − η0

2M

[
1 −

√
1 − 4k0 M/ η0

2
]
.

(b) If T0 = 15 N, k0 = 500 N/m, M = 1 kg, η0 = 100 N s/m, and C = 0.1 s,

calculate how far the mass M will have risen at the end of the contraction

(i.e., at t = C).

8.6 In Section 8.2 the response of the spring–dashpot–active element model

of muscle to a single stimulus was examined. Here we will look at overall

muscle response to multiple stimuli. Consider the model for muscle shown in

Fig. 8.32, where each of boxes 1 and 2 contains a spring–dashpot–active

element system identical to that discussed in the text.

The muscle is held isometrically. At t = 0, a stimulus arrives and the

active element in box 1 contracts, while the components in box 2 are unaf-

fected. At t = C/2 a second stimulus arrives that causes the active element

in box 2 to contract without affecting the components of box 1. What is the

total developed tension within the muscle at time t = C? Use the values

η0 = 0.06 dyne s/cm, k0 = 0.3 dyne/cm, C = 0.4 s, and T0 = 4 dyne.

8.7 In the text a three element model for muscle was presented, consisting of a

linear spring (constant k0), a dashpot (constant η0), and a contractile element

that generates a tension T0 for a period C after being stimulated (Fig. 8.17).

Predict the muscle length L for all t > 0 in response to a single stimulus

at time t = 0 during an isotonic experiment with imposed tension T1 < T0.

The muscle length before stimulus is L0 and upon relaxation the muscle

cannot stretch past L0. Sketch your predictions on a graph of L versus t.

8.8 Prove that the force generated (per unit depth), F, by a pinnate muscle

arrangement is

F = 2 f l sin α cos α (8.26)

where f is the force generated per unit cross-sectional muscle area, l is the

pinnate segment length, and α is the muscle fiber angle.

8.9 What total axial force can be generated by a pinnate muscle having the form

and dimensions shown in Fig. 8.33? The force, f, developed by muscle per

unit cross-sectional area may be taken as 20 N/cm2.

8.10 Let us revisit the biomechanical differences between the horse and armadillo

forelegs, as discussed in Section 8.4.1. In addition to the interspecies dif-

ference in the l/h ratio, the horse is larger and more massive than the
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Figure 8.33

For Problem 8.9.

armadillo. The purpose of this question is to take these factors into account

when computing the acceleration of these two animals as they start running

from rest. Suppose that a length L characterizes the size of each animal.

This implies that:
� each animal’s body mass is proportional to L3, i.e., body mass = k1L3

� each animal’s teres major muscle has a cross-sectional area proportional

to L2, i.e., muscle cross-sectional area = k2L2

� each animal’s teres major muscle has a contraction velocity proportional

to L, i.e., contraction velocity = k3L .

Further assume that the force generated per unit cross-sectional area, f, and

the constants k1, k2, and k3 are the same for the horse and the armadillo.

(a) Neglecting the mass of the forelegs, and assuming that only the forelegs

generate force on the ground, show that the acceleration, a, of each

animal is proportional to:

a ∼ l

h

f

L
. (8.27)

(b) Show that the top speed of the animal is proportional to Lh
/

l.
(c) Assuming that the acceleration derived in (a) is constant while the

animal accelerates to top speed, derive an expression for the ratio
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Figure 8.34

For Problem 8.11.

�thorse/�tarmadillo, where �t is the time taken to reach top speed. Using

data in the text, plus Lhorse/Larmadillo = 8, numerically compute the

ratio �thorse/�tarmadillo.

(d) Does the value in (c) seem reasonable? If not, what are the shortcomings

of the analysis leading to this answer?

8.11 Compute the magnitude of the weight W that can be supported in the hand

when the forearm is angled downward at 30◦ to the horizontal. You may make

the same assumptions as were made in the text for the situation in which the

forearm was horizontal. Specifically, you may use values given in the text for

f, and for LH, LF, and muscle area (from Table 8.1). You may also assume

that the distance from the center of rotation of the elbow to the weight in the

hand is L tot = 31 cm, and you can neglect the weight of the forearm. Some

handy formulae from the trigonometry of triangles are given in Fig. 8.34.

8.12 Consider a person standing with their legs slightly bent, as shown in Fig.

8.35. Each leg supports a constant load P, effectively applied at point A.

Posture is primarily maintained by a muscle group on the front of the femur

that attaches to the femur and to the tibia just below the knee.

(a) Neglecting the mass of the femur, and considering the knee to be fric-

tionless and to pivot around point B, show that the tension T in the

muscle is:

T = Pl sin θ

r
(8.28)

where l is the distance from A to B and r is the radius of the knee, equal

to half the thickness of the femur. State assumptions that you make.
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For Problem 8.12.
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For Problem 8.13.

(b) Suppose now that the same person squats a little further, so that θ

becomes θ + δθ . This causes a slight stretch in the muscle: initially

it has length L, which becomes L + δL . If L is less than the optimal

length, the stretch will produce an increase δT in steady-state muscle

tension. It is acceptable to assume

δT = β A
δL

L
(8.29)

where A is the muscle cross-sectional area (constant) and β is a pro-

portionality constant. If the leg is to avoid buckling, show that β must

satisfy:

β = Ll P

Ar2
cos θ (8.30)

Hint: relate δL to δθ , and use the results of (a).

8.13 A schematic diagram of the knee joint is shown in Fig. 8.36, where C

denotes the effective center of rotation of the knee and P is the point of
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insertion of the quadriceps tendon to the patella. The distance from C to P is

10 cm. The quadriceps, responsible for extension of the knee, are known to

produce maximum isometric tetanic tension at an effective optimal length of

30 cm. This occurs when the knee flexion angle, θ , is 45◦. Obtaining muscle

performance data from the appropriate figure in this chapter, determine the

range of knee flexion angles for which the quadriceps produce an isometric

tetanic tension at least 80% of maximal. Hint: be careful to use radians

(rather than degrees) in this question when appropriate.
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9 Skeletal biomechanics

The skeletal system is made up of a number of different tissues that are special-

ized forms of connective tissue. The primary skeletal connective tissues are bone,

cartilage, ligaments, and tendons. The role of these tissues is mainly mechani-

cal, and therefore they have been well studied by biomedical engineers. Bones

are probably the most familiar component of the skeletal system, and we will

begin this chapter by considering their function, structure, and biomechanical

behavior.

9.1 Introduction to bone

The human skeleton is a remarkable structure made up of 206 bones in the average

adult (Fig. 9.1). The rigid bones connect at several joints, a design that allows

the skeleton to provide structural support to our bodies, while maintaining the

flexibility required for movement (Table 9.1). Bones serve many functions, both

structural and metabolic, including:

� providing structural support for all other components of the body (remember

that the body is essentially a “bag of gel” that is supported by the skeleton)
� providing a framework for motion, since muscles need to pull on something

rigid to create motion
� offering protection from impacts, falls, and other trauma
� acting as a Ca2+ repository (recall that Ca2+ is used for a variety of purposes,

e.g., as a messenger molecule in cells throughout the body)
� housing the marrow, the tissue that produces blood cells and stem cells.

In the following sections, we focus our discussion on the biomechanical functions

of bone, and to do so we start by describing the composition and structure of bone

tissue.



Figure 9.1

The figure on this page is from a woodcut engraving of the bones of the human body first published in 1543 in De
Humani Corporis Fabrica Libri Septem by Andreas Vesalius. In the text that accompanied this figure, Vesalius enumerated
the bones in the body, adding them up to arrive at a total of 304. His addition was incorrect – his figures actually added
up to 303. In subsequent publications, he revised his count to 246, 40 more than what we now know is the true number
of bones in the adult skeleton. The major bones of the anatomically correct adult skeleton are labeled in the figure on the
following page (from Young [1] reproduced with kind permission of Oxford University Press). A modern edition of
Vesalius’ work is available [2].



Figure 9.1

(cont.)
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Table 9.1. Distribution of bones in the arms and legs: flexibility is
conferred by having more bones (and hence more degrees of freedom)
as one moves distally; an exception is the spine, which has 33 vertebrae

Arms Legs

1 bone in upper arm (humerus) 1 bone in thigh (femur)

2 bones in forearm (radius, ulna) 2 bones in lower leg (tibia, fibula)

8 bones in wrist 7 bones in ankle

20 bones in hand 20 bones in foot

Table 9.2. Approximate composition of the extracellular matrix of
bone tissue based on consensus values from several sources

Component Mass (%)

Mineral phase (hydroxyapatite) 70

Organic matrix (osteoid)

Collagen (mostly type I) 18

Non-collagenous proteins and proteoglycans 2

Water 10

9.2 Composition and structure of bone

Like other connective tissues, bone tissue consists of cells embedded in an extracel-

lular matrix (ECM). Hence, although bone is sometimes considered to be inanimate,

it is actually a living, dynamic tissue that is constantly being renewed. In fact, it

has been estimated [3] that 10–15% of the bone in the whole body is replaced

with new bone every year. Bone is unique, however, in that its matrix contains

not only an organic, collagen-based phase but also a mineral phase that provides

bone with its characteristic rigidity and strength (Table 9.2). This mineral phase is

composed primarily of crystalline hydroxyapatite ([Ca3(PO4)2]3 · Ca(OH)2), with

small amounts of other mineral substances.

The process of bone remodeling is accomplished by specialized cells within

bone tissue, of which there are three types:

� osteoblasts, which are recruited to synthesize bone
� osteoclasts, which are recruited to dissolve bone
� osteocytes and lining cells, which reside permanently in bone tissue.
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Figure 9.2

Overview of bone architecture (including locations of trabecular and cortical bone). The insets show more details of
trabecular and cortical bone structure, from which the reader can appreciate the complex layered architecture of the
different bone regions. The epiphyseal line is a remnant of the growth plate, a region that separates the growing shaft of
the bone from the end of the bone (epiphysis) during childhood. This figure is of the femur, but the other long bones
demonstrate similar features. From Hayes and Bouxsein [4]. With kind permission of Lippincott Williams & Wilkins.

Osteocytes are osteoblasts that became embedded in the bone matrix as it was being

secreted, while lining cells reside on the surface of bone tissue. The lining cells and

embedded osteocytes are connected by small canals and so are able to communicate

with one another. These cells are believed to play a role in the maintenance of bone

tissue by surveying the local microenvironment.

Bone tissue is the basic material from which bones are built. In whole bones, this

material is organized such that two types of bone are apparent when one looks at the

interior of a bone: cortical and trabecular bone (Fig. 9.2). The primary difference

between these two bone types is their porosity, with trabecular bone being the more

porous. We can quantify this difference by first considering the apparent density of a

bone specimen, defined as its mass divided by its bulk volume. The apparent density

of solid cortical bone is approximately 1.8 g/cm3. We then define the relative den-
sity, which is the ratio of the apparent density of a specimen to that of solid cortical
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bone. A bone specimen with a relative density > 0.7 is considered cortical bone,

reflecting the presence of minor amounts of porosity in normal cortical bone, as

explained below. Trabecular bone is defined as bone with a relative density < 0.7,

although typical values are lower, approaching 0.05 (or over 90% porosity) in some

cases. The apparent density of trabecular bone ranges from 0.1 to 1.0 g/cm3 [5].

9.2.1 Cortical bone

Cortical bone (also called compact bone) lines the outer surface of most bones

and is found in the shafts of the long bones. Owing to its low porosity (typically

< 10%), cortical bone is the stronger and heavier of the two types of bone. The

microarchitecture of cortical bone is quite complex and plays an important role in

dictating its mechanical properties. Cortical bone tissue is laid down in lamellae,

or layers, about 5 μm thick. Within a layer, the collagen fibers run parallel to one

another; however, the orientation of fibers is different in neighboring layers. This

is a structure similar to that seen in another important composite, namely plywood.

The lamellae are arranged in different ways in different parts of the bone

(Fig. 9.3). Near the outer and inner surfaces of the bone, the lamellae are circum-

ferentially arranged and parallel to one another; these are known as the circum-
ferential lamellae. Between the outer and inner circumferential lamellae, cortical

bone tissue is primarily made up of osteonal bone, which consists of cylindrically

shaped structures formed from concentric lamellae. These cylindrical structures are

approximately 200 μm in diameter and 1 cm long, and are typically aligned with

the long axis of the bone. This solid bone matrix is permeated by a highly intercon-

nected network of canals and channels. Osteocytes live within this network, where

they are supplied by nutrients dissolved in the extracellular fluid. The canals are

arranged in a characteristic pattern: a blood vessel runs within a Haversian canal,
which is surrounded by concentric lamellae. The lamellae are connected to the

central canal by microscopic channels called canaliculi. A canal plus surrounding

lamellae and intervening bone is called an osteon (Figs. 9.2 and 9.3). The osteons

are packed together to form the bone proper. The space between osteons is called

interstitial lamellar bone, and the junction between osteons and interstitial bone

is the cement line. The cement line is a highly mineralized, collagen-free layer of

< 1μm in thickness. Its importance will become clear when we talk below about

bone fracture.

9.2.2 Trabecular bone

Trabecular bone (also called cancellous or spongy bone) is found in the vertebrae

and the ends of the long bones, such as the femur, tibia, and radius (Fig. 9.4). The
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Microstructure of cortical bone. Although cortical bone appears solid, it is actually permeated with a network of canals,
which house blood vessels and nerves, and canaliculi, through which nutrient-rich fluid flows to osteocytes contained
within lacunae (holes) within the bone tissue. Shear stresses exerted on osteocytes by the flow of fluid within the
canaliculi are believed to play an important role in the biological response of bone to mechanical stimulation, as
discussed in Section 2.9.4. From Ham and Cormack [6] with kind permission of Lippincott Williams & Wilkins.

study of trabecular bone is important because age-related fractures primarily occur

at trabecular bone sites, such as the proximal femur (hip), the distal radius (wrist),

and vertebral bodies (spine).

Like cortical bone, trabecular bone tissue has a lamellar structure, with lamellae

running parallel to the trabeculae (Fig. 9.2). In contrast to cortical bone, how-

ever, the matrix of trabecular bone is organized as a three-dimensional porous
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Figure 9.4

Cross-sections showing the open porous structure of trabecular bone. The large sample on the left is the femoral head
seen in a longitudinal section. Note the transition from cortical bone in the shaft of the femur to trabecular bone at the
head, with only a thin layer of cortical bone on the surface. This photograph is from an 1870 article by the German
anatomist Julius Wolff in which he compared the orientation of the trabeculae in the proximal femur to the predicted
trajectories of the principal stresses [7].
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Figure 9.5

Three-dimensional structure of trabecular bone from the iliac crest of the pelvis of a 37-year-old man with no known
bone disorders (A) and of a 73-year-old woman with osteoporosis (B). Note the dense, plate-like structure of the young
bone, whereas the osteoporotic bone is less dense, and has a more rod-like structure with thinner trabeculae. These
images were obtained by microcomputed tomography of biopsy samples. AP, anterior-posterior; LM, lateral-medial; SI,
superior-inferior. From Muller et al. [8], with permission from Elsevier.

network of interconnected struts called trabeculae. The pores between trabeculae

are filled with bone marrow. Because of its higher porosity, trabecular bone is

somewhat weaker than “solid” cortical bone, but it is also much lighter. (The

bone in birds, for example, is primarily trabecular.) The porosity of the trabecular

network varies with anatomical location, biomechanical function, and age. In dense

trabecular bone, such as is found in the pelvis or femoral condyle at the knee, the

trabeculae are organized as a network of nearly closed cells formed by parallel

plates and interconnecting rods (Fig. 9.5A). In low-density trabecular bone, such

as is found in the vertebrae or in people with osteoporosis, the trabeculae are

organized as a network of open cells formed by interconnected rods (Fig. 9.5B).

In healthy bone, trabeculae are on average about 200 μm thick; in osteoporosis –

a condition characterized by loss of bone mass and increased fracture risk – there

are fewer trabeculae and they become thinner (Fig. 9.5B).

9.3 Biomechanical properties of cortical and trabecular bone

The biomechanical properties of bone are determined by its composition and struc-

ture at multiple length scales. On a length scale of the order of micrometers, bone
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Table 9.3. Summary of mechanical properties of human cortical
bone based on data from Reilly and Burstein, Journal of
Biomechanics, 8(1975), 393–405.

Parameter Value

Modulus (GPa)

Longitudinal 17.0

Transverse 11.5

Shear 3.3

Poisson’s ratio 0.3–0.6

Ultimate strength: longitudinal (MPa)

Tension 133

Compression 193

Shear 68

Ultimate strength: transverse (MPa)

Tension 51

Compression 133

tissue behaves like a fiber-reinforced composite, with the hydroxyapatite mineral

providing stiffness and the collagen fibers providing tensile strength and ductil-

ity to prevent brittle cracking. It is generally thought that the bone tissue making

up an individual trabecular strut is slightly (20–30%) less stiff than cortical bone

tissue owing to subtle differences in mineralization and lamellar microstructural

organization and orientation [9]. The biomechanical properties of cortical and

trabecular bone diverge significantly, however, when the structural organization

of the tissues at length scales of millimeters is taken into account, as discussed

below.

9.3.1 Cortical bone mechanics

The longitudinal alignment of the osteons and the orientation of the lamellae give

cortical bone strongly anisotropic properties. Specifically, stiffness and strength

along the axis of cortical bone (longitudinal direction) are greater than properties

transverse to the bone’s axis (Table 9.3). Further, cortical bone is stronger in com-

pression than in tension. This makes sense when we realize that this “optimizes”

cortical bone for typical loading conditions, in which the bone is usually loaded

along its axis in compression. The stiffness and strength of cortical bone depend
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Table 9.4. Summary of mean compressive properties of human trabecular bone from different anatomic
locations. Values in parentheses are standard deviations. Femur specimens were pooled from both the
proximal and distal femur. The specimens from the tibia, distal femur, and spine were tested in the
longitudinal (inferior-superior) direction. The proximal femur specimens were oriented along the neck of
the femur. Adapted from Keaveny [11]. Copyright 2001 from Bone Mechanics Handbook by Cowin.
Reproduced by permission of Routledge/Taylor & Francis Group, LLC.

Anatomic site Relative density Modulus (MPa) Ultimate
stress (MPa)

Ultimate
strain (%)

Proximal tibia 0.16 (0.056) 445 (257) 5.33 (2.93) 2.02 (0.43)

Femur 0.28 (0.089) 389 (270) 7.36 (4.00) Not reported

Lumbar spine 0.094 (0.022) 291 (113) 2.23 (0.95) 1.45 (0.33)

not only on the orientation but also on the rate at which the bone is strained.

This is a characteristic of viscoelastic materials, which we will examine in more

detail when we consider soft skeletal tissues. For cortical and trabecular bone,

the strain rate dependency is weak: the stiffness and strength are proportional

to the strain rate to the power 0.06 for strain rates in the physiological range of

0.001–0.03 s−1 [10]. Nonetheless, the result is that bone is stiffer and stronger at

higher strain rates. This is desirable, since this is a way to compensate for the higher

loads and stresses imposed by vigorous activity or superphysiological loading.

9.3.2 Trabecular bone mechanics

The mechanical properties of a specimen of trabecular bone, which is made up

of many trabecular struts and has dimensions > 1 mm, are called the apparent
mechanical properties. The apparent properties depend on the material properties

of bone tissue matrix, the amount of tissue, and the structural organization of the

trabeculae (see also the discussion of structural versus material properties in Section

9.9). In particular, the apparent properties are strongly dependent on the relative

density and architecture. Since the relative density and architecture of trabecular

bone vary with anatomic site, age, and disease, there is significant variation in the

stiffness and strength of trabecular bone (Table 9.4).

A typical compressive stress–strain curve for trabecular bone of different relative

densities is shown in Fig. 9.6. At small strains, the bone behaves as a linearly

elastic material. The linear elastic response ends once the trabecular rods and plates

begin to collapse under the increasing stress. The subsequent large anelastic region

corresponds to the progressive collapse of the trabeculae. Once the collapsing

trabeculae contact one another (thereby eliminating the pores within the bone), the
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Figure 9.6

Compressive stress–strain curves for trabecular bone of different relative densities. Relative density is the ratio of the
apparent density (ρ∗ in this figure) to the density of solid cortical bone (ρs). The reader will appreciate from this figure
that the biomechanical behavior of trabecular bone is extremely complex, as described more fully in the text. From
Gibson and Ashby [12], based on data reported in [13]. Reprinted with permission of John Wiley & Sons, Inc.

stress rises steeply. The collapse of trabeculae allows trabecular bone to undergo

large compressive strains at approximately constant stress, so that large amounts

of energy can be absorbed from impacts without high stresses being generated.

Thus, trabecular bone functions similar to foam packaging, providing high energy

absorption with minimal density and weight. As we will see below, the analogy

with engineering foams is a useful one for understanding several aspects of the

mechanical behavior of trabecular bone.

9.3.3 Trabecular bone mechanics: density dependence

The strong dependence of the mechanical properties of trabecular bone on relative

density is evident when Young’s modulus or compressive strength is plotted against

apparent (or relative) density, as is shown in Fig. 9.7. The data points in these plots

come from a variety of studies and include bone samples of unspecified architecture

that were loaded in tension or compression and in unspecified directions over a
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Figure 9.7

Relationship between relative density and Young’s modulus (A) or compressive strength (B) of trabecular bone. The solid
lines are not fits; rather, they indicate linear relationships of the specified slope between the log of the relevant
mechanical property and the log of the relative density. The lines are drawn such that the intercept is defined assuming
a “solid” or non-porous piece of trabecular bone would have the same properties as cortical bone, namely ρs = 1800
kg/m3, Es = 17 GPa, and yield stress σys = 193 MPa. From Gibson and Ashby [12] (see the reference for the original
sources of the data). Reproduced with permission of the authors and publisher.

wide range of strain rates. It is remarkable that, despite the variability in specimen

origin and test conditions, there is clearly a strong dependence of the modulus

and strength of trabecular bone on apparent density alone, even over a range of

mechanical properties spanning three orders of magnitude.

Some of the data in Fig. 9.7 are from a study by Carter and Hayes [10] in

which they tested bovine and human trabecular bone specimens with a wide range

of apparent densities. Based on their data, they concluded that the compressive

elastic modulus, E (in GPa), was correlated with the cube of the apparent density,
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ρ (in g/cm3) by

E = 3790 ε̇0.06ρ3, (9.1)

where ε̇ is in units of s−1. Further, the compressive ultimate strength, σult (in MPa),

was correlated with the square of the apparent density by

σult = 68 ε̇0.06ρ2. (9.2)

Later retrospective statistical analyses of data from several studies on human tra-

becular bone alone [14] confirmed the quadratic relationship of Equation (9.2), but

found that a quadratic relationship for the modulus was slightly more accurate than

the cubic relationship of Equation (9.1), such that

E ∝ ε̇0.06ρ2 for human trabecular bone. (9.3)

The quadratic dependence of stiffness and strength on bone density has important

implications: even a modest loss of bone mass, such as occurs in osteoporosis, can

result in a significant reduction in mechanical properties and therefore increased

fracture risk. The non-linear dependency of mechanical properties on density is

also clear from the data summarized in Table 9.4. Notice that the coefficients
of variation (CV)1 for the moduli and ultimate compressive strengths are quite

large (typically > 50%). Some of this variability between specimens from the

same location is likely to result from variation in the densities of the specimens.

However, the variability in the specimen densities (CV ∼ 30%) was much lower

than the variability in the mechanical properties, suggesting the properties are very

sensitive to the density, as predicted by Equations (9.2) and (9.3).

The observant reader will notice that some of the data in Table 9.4 and Fig. 9.7

are not consistent with the mechanical properties being proportional to the square

of the density. For example, the femoral samples in Table 9.4 are denser than the

tibial samples, but not as stiff. Clearly, bone properties are not solely determined

by the apparent density but depend on other factors, such as the trabecular archi-

tecture. Also note that there is little variability in the ultimate strains in Table 9.4

(CV ∼ 20%), suggesting a weak dependence of failure strain on apparent density.

Several other studies have confirmed that the yield and ultimate strain of trabecular

bone are relatively constant over a wide range of relative densities and architectures

(see Keaveny [11] for a summary). The unit cell or foam model, to which we now

turn, also predicts that yield strain is independent of relative density (see Problem

9.2 [p. 436]).

1 The coefficient of variation is the ratio of the standard deviation to the mean. It is a measure of the variability within the

population.
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Figure 9.8

Idealized models for the microstructure of trabecular bone: (A) low-density equiaxed structure; (B) higher density
equiaxed structure; (C) oriented prismatic structure; (D) oriented parallel plate structure. From Gibson and Ashby [12].
Reproduced with permission of the authors and publisher.

9.3.4 Trabecular bone mechanics: unit cell models

The structure of trabecular bone and its mechanical behavior is similar in many

respects to that of engineering foams and other cellular materials, including wood,

and, as we discussed in Ch. 2, the actin cytoskeleton. Accordingly, we can use the

unit cell approach of Section 2.6.3, where we estimated the Young’s modulus and

shear modulus of the actin cytoskeleton, to estimate the mechanical properties of

trabecular bone based on its relative density. Again, the details of the following

derivations are detailed in Gibson and Ashby [12].

Because of the variability of trabecular bone architecture, several idealized mod-

els have been proposed to represent trabecular bone microstructure (Fig. 9.8). The

model in Fig. 9.8A is appropriate for low-density bone without preferred ori-

entation of the trabeculae (equiaxed, open cell rod-like structure). The bone in

certain regions of the femoral head has this microstructure. Recall we used the
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same model in Section 2.6.3 to represent the filamentous actin cytoskeleton and

derived a relationship between the relative modulus, E∗/Es, and relative density,

ρ∗/ρs, given in equation 2.47 and repeated here:

E∗

Es

= C1

(
ρ∗

ρs

)2

. (9.4)

In this case, E∗ and ρ∗ are the apparent properties of a trabecular specimen,

and Es and ρs are the modulus and density of the bone tissue matrix itself, with

the properties of cortical bone tissue often used for normalization (Es = 17 GPa;

ρs = 1.8 g/cm3). Comparison of the predicted relationship with the relationship

observed empirically (Equation [9.3]) indicates that the equiaxed, open-cell model

is reasonable for human trabecular bone. Analysis of the other models in Fig.

9.8 suggests that the exponent of the density in the modulus–density relationship

should lie between 1 (linear dependence) and 3 (cubic dependence), depending on

the structure. For example, for the prismatic structure (Fig. 9.8C), the modulus is

linearly dependent on the density in the “longitudinal” direction (along the prism

axis), but has cubic dependence in the transverse direction (refer to Gibson and

Ashby [12] for the derivation). Most of the moduli in Fig. 9.7 do fall between the

lines with slopes 1 and 3, broadly consistent with the model predictions.

What about the model predictions for the dependency of compressive strength on

density? For the low-density, rod-like model (Fig. 9.8A), failure occurs primarily

by elastic buckling of the vertical struts. Once the trabeculae buckle and collapse,

the bone is deformed permanently (Fig. 9.6). The compressive strength at which

buckling occurs is the yield strength, which is the stress at which the material

no longer behaves as a linear elastic material. Typically the yield strength is less

than the ultimate strength, which is the maximum stress that can be supported

before catastrophic failure. Although trabecular bone continues to support loads as

it collapses plastically and densifies (Fig. 9.6), we are often interested in the yield

strength because it represents the limit of elastic or non-permanent deformation.

For the low-density, rod-like model, it can be shown that the compressive yield

strength is proportional to the square of the density (see Problem 9.3 [p. 436])

σ ∗

σys

= C2

(
ρ∗

ρs

)2

(9.5)

where σ ∗ is the apparent compressive yield strength of the trabecular bone and

σys is the compressive yield strength of the tissue matrix itself, often assumed to

be that of cortical bone (σys = 193 MPa). Analysis of the other models in Fig.

9.8 suggests that the exponent of the density in the compressive strength–density

relationship should lie between 1 (linear dependence) and 2 (square dependence),

depending on the structure. Again, the model predictions are generally consistent

with experimental evidence (Fig. 9.7 and Equation [9.2]).
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These cellular solid models, while simple and idealized, provide useful insight

into the mechanical behavior of trabecular bone. For example, the models clearly

demonstrate the dependence of the mechanical properties on both the density and

architecture of the bone, and they are useful for predicting the general effects of

changes in either density or structure on the mechanical integrity of bone. They

also provide insight into the mechanisms by which trabecular bone deforms and

ultimately fails. However, the model predictions agree with the experimental data

only in a broad sense, suggesting there are additional material and structural factors

that determine the properties of trabecular bone. Identification of these factors so

as to gain improved understanding of the relationship between the mechanical

properties of bone and its “quality” (i.e., structure, composition, and density) will

help with diagnosis in patients with osteoporosis at risk for fracture and with

efforts to engineer replacement bone tissue. Accordingly, this is an active area of

research utilizing advanced imaging methods, sophisticated approaches to quantify

bone quality, and high-resolution finite element analyses (see, for example, van

Rietbergen and Huiskes [15]).

9.4 Bone fracture and failure mechanics

The interest in bone from a biomechanical perspective is largely motivated by the

fact that bones fracture, with serious medical consequences and significant health-

care costs. An improved understanding of the mechanisms underlying bone fracture

and the ability to predict when fractures will occur may help in the development

of new strategies for fracture prevention and treatment.

Bones can fail in a variety of ways. If a bone is loaded monotonically to a stress

level that exceeds the failure or ultimate stress of the bone tissue, then fracture

will occur. This type of failure can occur with trauma or impact, such as a fall

on the hip. Bone can also fail at stress levels well below the yield stress through

the growth of preexisting cracks. Bone is filled with micro-cracks (Fig. 9.9). In

normal, healthy bone, these micro-cracks are repaired by bone cells. In fact it has

been suggested that micro-fractures might be required to initiate remodeling and

normal turnover of the skeleton [17]. With age and some bone-related diseases,

however, the repair mechanisms may not keep up with the accumulation of damage,

leading to increased fracture risk. Growth of micro-cracks, if unchecked, can lead

to failure and fracture.

We consider in this section two modes of fracture by which cracks can grow,

leading to catastrophic failure. The first is fast fracture in which a crack rapidly

propagates across the material. In the context of bone, this is most commonly asso-

ciated with trauma or impact but can occur at stress levels below the yield stress. The

second fracture mechanism is fatigue, caused by the repeated, cyclic application
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(A)

(C) (D)

(B)

Figure 9.9

Micro-cracks in human metatarsal bones (arrows). Four types of cracks were observed. (A) cracks within the interstitial
lamellar bone matrix, not in contact with osteons; (B) Cracks in the interstitial bone ending at cement lines; (C) Cracks
within osteons; and (D) cracks within trabecular struts. The metatarsal bones are in the distal end of the foot and connect
with the bones in the toes. From Donahue et al. [16], with permission from Elsevier.
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of stresses that eventually lead to failure. This is the type of failure that occurs in

stress fractures suffered by military recruits on long marches, ballet dancers who

repeatedly load their foot bones, basketball players who jump a lot, and recreational

athletes who run a marathon without training properly. Much of our discussion

involves linear fracture mechanics and is based on Ashby and Jones [18].

9.4.1 Fast fracture

Consider an inflated balloon that is pricked with a pin. This causes the fabric of

the balloon to rupture (i.e., to undergo fast fracture). This yielding phenomenon

occurs even through the stress in the balloon wall prior to the pin damaging the

balloon was less than the yield stress. Why is this?

This phenomenon can be best understood by thinking about the system from an

energy viewpoint. It is clear that the pin creates a defect in the balloon wall. The

question is then what controls whether this defect grows or not. The answer is that

the defect will grow so long as there is sufficient energy in the system to allow

the defect to propagate. In the case of the balloon, the air pressure in the balloon

provides the energy by doing work on the material of the balloon wall. This work

can be used to change the elastic energy stored in the balloon fabric, or it can be

used to create a tear surface in the balloon fabric. If we denote:

δU el ≡ the increase in elastic energy of material (in this case, the rubber in the

wall of the balloon),

δW ≡ the incremental work done on the material by external loads (in this

case, by pressure in the balloon), and

δU cr ≡ the energy needed to increase the crack size,

then the crack will propagate if and only if

δW � δU el + δU cr. (9.6)

If this inequality is not satisfied, then there is not sufficient energy available to

“grow” the crack. This corresponds, for example, to the case of a partly inflated

balloon that is pricked with a pin.

To use Equation (9.6), we must be able to quantify each of the terms. Consider

first δU cr. Suppose that we have a sample, chosen for simplicity to be rectangular

with thickness t, containing a preexisting crack of length a (Fig. 9.10). The sample

is subjected to a tensile stress σ . We define the toughness, Gc, to be the energy

absorbed by the material per unit area of new crack surface created.2 To enlarge

the crack from length a to δa therefore requires Gctδa units of energy.

2 Gc is a material property that can be looked up in handbooks. It has units of energy per unit area, e.g., J/m2 in the SI

system. Note that the crack surface is not the area enclosed by the crack that is visible in Fig. 9.10; it is the area of the

actual crack interface.



398 Skeletal biomechanics

da a

Figure 9.10

Schematic drawing of a rectangular plate subjected to a uniaxial tension resulting in a uniaxial stress σ . The plate
contains a crack of length a, and is of thickness t (into the plane of the page). If the crack enlarges from a to a + δa,
then the crack surface area increases by δat .

Now we consider the terms δW and δU el. They depend on the specifics of the

problem (i.e., they are not material properties). We will assume that the edges

of the sample are clamped so they cannot move. (This can be accomplished by

subjecting the plate to the required stress, σ , allowing it to reach equilibrium, and

then clamping the edges.) After clamping, the work done by the externally imposed

stress on the sample, δW , is zero. (Recall that for work to be done, a displacement

is required.) In problems in which the edges of the sample are not clamped then

the external work will be non-zero. For the special case of δW = 0, the condition

for fast fracture (Equation [9.6]) becomes:

δU el + Gct δa � 0 (9.7)

Estimating δU el is slightly trickier. First, we note that δU el will be < 0 if crack

formation releases elastic energy. For the simplest case of uniaxial tension and

perfectly elastic behavior, the energy stored in the sample per unit volume is given

by σ 2/2E , where E is Young’s modulus for the material and σ is the stress resulting

from the applied tension (Box 9.1).

The crack causes a local stress relaxation in the material around the crack

(Fig. 9.11). Of course, the stress decays continuously from zero at the crack inter-

face to its unrelieved value far from the crack, but we will simplify this situation

by saying that the stress is identically zero in some finite region surrounding the

crack, and unrelieved outside this region. For a crack of length a, the “stress relief”

region will have surface area proportional to 1/2πa2. This corresponds to a sample

volume of 1/2πa2t , and a stress energy relief of

U el ≈ − σ 2

4E
πa2t. (9.8)
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Box 9.1 What is the energy stored in the plate per unit volume?

Consider a small element of material acted upon by a uniaxial stress, σ , and

undergoing a deformation in the same direction, producing a strain ε. If the

undeformed surface area of the face that the traction is applied to is A0 and the

undeformed length of the material in the direction of traction is �0, then the

volume of the element is V0 = A0�0. The work done on the element is equal

to the energy stored, so we may write

U el

V0

= Energy stored

Unit volume
=

∫
F · dr

A0�0

= 1

A0�0

∫
σ A0 d� (9.9)

where � is the length of the element in the direction that the traction is

applied. We substitute ε = �/�0 into the above equation to write

U el

V0

=
∫

σ dε = σ 2

2E
(9.10)

where we have assumed linear elastic behavior (σ = Eε) and that there was no

elastic energy stored in the reference state (ε = 0).

As the crack grows by an amount δa, then U el will change by an amount

δU el ≈ − σ 2

2E
πat δa. (9.11)

Therefore, the crack growth condition (9.7) becomes

− σ 2

2E
πat δa + Gct δa � 0. (9.12)

Rearrangement allows us to state that the crack will grow if

πaσ 2

2
� EGc. (9.13)

It turns out that this simplified analysis is wrong by a factor of two (because of

the unrealistic assumption made about how the stress is relieved around the crack).

A more detailed derivation shows that the critical condition for crack propagation

is

πaσ 2 � EGc. (9.14)

Note that the right-hand side of Equation (9.14) involves only material properties

and is itself therefore a material property. We define a new property called the

fracture toughness, or critical stress intensity factor, Kc, by

Kc =
√

EGc (9.15)



400 Skeletal biomechanics

Figure 9.11

Magnified view of the crack tip in the specimen shown in Fig. 9.10. The shaded region is the zone where it is assumed
that the stress has been relieved to zero.

(which has units of MN/m3/2). We also define the stress intensity factor

K = √
πa σ (9.16)

Therefore, the crack propagation condition can be rewritten as

K � Kc (9.17)

Note that the stress intensity factor K depends on both the imposed stress σ and

the crack size a. If the combination is too large, fast fracture occurs.

All of the above analysis assumes fully linear elastic material behavior. This

is not usually the case in practice. The crack tip acts to concentrate stresses, so

σ can exceed σyield locally (Fig. 9.12). This causes local plastic flow, thereby

absorbing more energy and increasing the effective Gc. In the case of bone, classical

plastic behavior is not observed. Instead, energy is absorbed by a slightly different

mechanism. This involves osteons being pulled out of the surrounding interstitial

bone along the cement line, which greatly increases the toughness of bone, since

significant energy is expended in osteon pull-out (Fig. 9.13). A complication is

that osteon pull-out depends on crack-propagation speed: fast-propagating cracks

shear off osteons, rather than pulling them out (Fig. 9.14). This is an example

of a ductile/brittle transition and results in a rather complex relationship between

fracture toughness Kc and the speed of crack propagation, or rate of strain (Fig.

9.15). The implication is that a fast-moving crack will propagate more easily for a

given σ value than will a slow-moving crack. Note also that the value of Kc depends

on factors such as the orientation of the bone, the age of the person (and therefore
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σ

σys

Position

Elastic zone Plastic zone

σlocal = σ(1 + √a/(2r))

Figure 9.12

Plot of local stress, σlocal, versus position in the vicinity of the crack tip. It can be seen that there is a region where the
stress exceeds the yield stress, σys, leading to plastic behavior in the neighborhood of the crack tip.

Figure 9.13

Bone fracture showing osteon pull-out. This mode of bone fracture dissipates significant amounts of energy, as osteons
are pulled out from surrounding interstitial bone. Compare this with a fracture associated with osteon shearing, as shown
in Fig. 9.14. From Piekarski [19]. Copyright 1984 from Natural and Living Biomaterials by Hastings. Reproduced by
permission of Routledge/Taylor & Francis Group, LLC.
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Figure 9.14

Bone fracture showing osteon cleavage. A fracture moving from left to right was originally slowly propagating, causing
pull-out. At the midway point of the photograph it developed into a fast-moving crack. From Piekarski [19]. Copyright
1984 from Natural and Living Biomaterials by Hastings. Reproduced by permission of Routledge/Taylor & Francis Group,
LLC.

Figure 9.15

Schematic of relationship between fracture toughness, Kc, and the rate of strain for bone. At low rates of strain in the
physiological range, osteons are pulled out from the surrounding matrix. It takes more energy to pull out an osteon
rapidly than slowly; therefore, in this range, bone toughens with increasing strain rate. Above a critical rate, osteons
begin to fracture, which requires less energy than being pulled out from the matrix. As more and more osteons fracture
with increasing strain rate, the fracture toughness of the bone decreases.
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Table 9.5. Fracture toughness (Kc) and toughness (Gc) of cortical bone loaded in
the longitudinal and transverse directions. These values are for mode I loading,
as shown in Fig. 9.10. The fracture toughness values for human cortical bone are
comparable to those of a tough ceramic, but an order of magnitude less those for
aluminium and steel. Adapted from Martin et al. [20] with kind permission of
Springer Verlag.

Direction of fracture Bone type Kc (MN/m3/2) Gc (J/m2)

Longitudinal Bovine femur 3.21 1388–2557

Bovine tibia 2.8–6.3 630–2238

Human femur 2.2–5.7 350–900

Transverse Bovine femur 5.49 3100–5500

Bovine tibia 2.2–4.6 780–1120

Human tibia 2.2–5.7 350–900

the relative density), and the water content of the bone. Some representative data

are shown in Table 9.5.

9.4.2 Fatigue fracture

Cracks in bones can propagate at stress levels lower than those that cause fast

fracture, if the stress is applied in a repeated (cyclic) loading and unloading pattern.

Consider again the sample shown in Fig. 9.10 but now suppose that the applied

stress σ varies periodically between σmax and σmin instead of being constant (Fig.

9.16). Since the stress intensity K is equal to σ
√

πa, this implies that K will

vary cyclically with σ . In addition, each time the stress goes through one cycle,

the crack length, a, increases by a small amount. This means that the extreme

values of K will also increase by a small amount each cycle in such a way that the

difference between the maximum and minimum value of K increases over time

(Fig. 9.16B).

For many materials, it is found empirically that cracks grow in a manner shown

in Fig. 9.17. After a rapid initiation phase, they grow at a steady rate (on a log–log

plot), before suddenly causing fracture when they reach a critical size. The rate of

growth during the “steady growth” phase can be expressed by Paris’ law

da

dN
= C(�K )m (9.18)

where N is the number of cycles, and C and m are material constants that are

empirically determined. Note that da/dN is the rate of crack enlargement. Because
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σmax

σmin

t

σ

Kmax
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t

K

ΔK

A B

Figure 9.16

Variation of imposed stress, σ (A), and resulting stress intensity factor, K (B), with time, t. The change in K over one
cycle, �K = K max − K min, is given by �K = �σ

√
πa, where �σ = σmax − σmin. Notice that as the crack length,

a, increases, so too does �K .

Figure 9.17

Crack growth characteristics during cyclical fatigue, where da/dN is the rate of growth (linear enlargement per cycle),
and �K is the variation in the stress intensity factor over one loading cycle. The central linear portion is described by
Paris’ law (Equation (9.18)).

most of the crack’s “lifetime” is spent in this steady growth phase, to a good

approximation we can ignore the other phases. Therefore, if we are told that a

crack has an initial length a0, we can integrate Equation (9.18) to determine the

number of cycles required for the crack to grow to some final size, af. Denoting

this number of cycles by Nf, we can rearrange Equation (9.18) to write:

Nf =
Nf∫

0

dN =
af∫

a0

da

C(�K )m
. (9.19)
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Figure 9.18

Schematic view of tibia with a small defect.

Substituting �K = �σ
√

πa into Equation (9.19), integrating, and rearranging

gives:

Nf = 1

C(�σ )mπm/2

a1−m/2

1 − m/2

∣∣∣∣af

a0

for m �= 2 (9.20)

where we have assumed that the stress variation over one cycle, �σ , is constant

from cycle to cycle.

The concepts of fast versus fatigue fracture are considered in the following

example. During a rather rough hockey game you are slashed in the tibia, creating

a 0.01 mm defect. The cortical bone thickness in the tibia at the slash location is

15 mm, and we can assume that the tibia has the cross-section of a hollow cylinder

at this point (see Fig. 9.18). Tomorrow you plan to run a marathon. Will your tibia

fracture during the marathon?

To answer this question, we need some background data. We will assume that the

stress distribution in the tibia during running is of the form shown in Fig. 9.19, with

peak-to-trough amplitude of 11 MPa. Let us first check to see if fast fracture will

occur (hopefully not). To evaluate this possibility, we need to know the maximum

stress that the tibia is exposed to. We are not given this information, but from

the shape of the curve in Fig. 9.19, it is �11 MPa, so let us take 11 MPa as a

conservative estimate of σmax. Then we can compute the maximum value of the

stress intensity factor, Kmax:

Kmax = σmax

√
πa = (11 × 106 Pa)

√
π(0.01 × 10−3 m) = 0.060 MN/m3/2.

(9.21)
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Figure 9.19

Assumed stress distribution in the tibia at the defect location during running for the example described in the text.

From Table 9.5, this is less than the critical value, Kc, of 2.2–6.3 MN/m3/2, so fast

fracture will not occur. Thought of in another way, if we conservatively estimate

Kc as 2.2 MN/m3/2, the critical crack length at which fast fracture will occur is

12.7 mm, which is obviously longer than the initial crack.

Now let us look at the issue of fatigue fracture. We use Equation (9.20) with

values of m = 2.5 and C = 2.5 × 10−6 m(MN/m3/2)−2.5, which are suitable for

cortical bone. Inserting these and using a0 = 0.01 × 10−3 m and the crack length

at which fast fractures will occur (12.7 mm = 12.7 × 10−3 m) as af, we get

Nf = 1

2.5 × 10−6(11)2.5π1.25

(12.7 × 10−3)−1/4 − (0.01 × 10−3)−1/4

−1/4
= 14 112

(9.22)

where we are careful to use consistent units! If you have a stride length of 2 m while

running (right heel strike to right heel strike), then this number of cycles corresponds

to 28.2 km, which is less than the 42 km length of a marathon. Consequently, it

seems risky to try running the race (not to mention the intense pain that you would

experience in your tibia while running).

Of course, this example is oversimplified. Our analysis ignores the microstruc-

ture of bone, which is similar in many ways to engineered fiber-reinforced com-

posites. In composite materials, the presence of lamellae or fibers limits damage.

In bone, the osteons and collagen fibers play a similar role (we have already dis-

cussed how osteons limit crack propagation in fast fracture). In fatigue, cracks tend
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to propagate to the interface between the osteon and surrounding matrix (i.e., to the

cement line), where they are redirected to travel along fibers. Because the fibers

in bone are oriented longitudinally, the cracks do not progress across the bone,

preventing (in most cases) catastrophic failure. Standard engineering analyses of

fracture also do not account for the ability of bone to limit damage accumulation

by remodeling to repair itself.

Because of the barriers to crack growth inherent in bone tissue, Paris’ law does

not do a great job of predicting crack growth in bone. This is primarily because the

crack growth rate decreases rapidly with increasing length as cracks are arrested,

thus limiting the time spent in the steady growth phase for which Paris’ law is

applicable. A modified Paris law for bone has been developed to account for the

effects of the short distance between osteons by adding a second term that describes

the rate of crack growth when cracks are small [21]. Details on other approaches to

model bone fracture are presented in an excellent book on skeletal tissue mechanics

by Martin et al. [20].

9.5 Functional adaptation and mechanobiology

Bone is a dynamic tissue in which multiple cell types respond to their local microen-

vironment to regulate the growth, maintenance, and repair of the tissue. The cues

that regulate these processes are numerous, and certainly include biochemical and

hormonal signals. As we discussed in Section 2.9.4, bone cells are also exquisitely

sensitive to mechanical stimuli, such as stretch, pressure, and flow. Bone cells

respond to local mechanical factors by making new bone tissue and resorbing old

tissue. Rather than being a random, haphazard process, however, the ultimate struc-

ture of bone is regulated in a way that meets the local mechanical demands of the

skeleton.

As described in Section 1.1, this concept – that bone senses and adapts to its

mechanical environment (i.e., functional adaptation) – is commonly referred to as

Wolff’s law, named after Julius Wolff, a nineteenth century orthopedic surgeon.

It is an interesting historical note that while Wolff is often given credit for this

concept, the idea of functional adaptation was not original, having been observed

and proposed by many before him. It was Wolff, however, who “took charge of the

subject” [22]. As stated by Keith [23]:

. . . the idea which underlies Wolff’s law was abroad in men’s minds before his time, but

he was the first to give that idea a definite expression. He was the first to devote 30 years of

constant work and observation to prove that the shape and structure of growing bones and

adult bones depend on the stress and strains to which they are subjected.
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Parameter

Do (cm) 2.195 2.45

0.975

3.97

1.72

1.10

2.83

1.07

Di (cm)

A (cm2)

Iz (cm4)

Non-playing humerus Playing humerus

Figure 9.20

Comparison of the dimensions of the humerus in the non-playing arm of an active tennis player with those of the playing
arm. Measurements are taken from the long shaft of the bone. Do and Di are outer and inner diameters, respectively; A is
cross-sectional bone area; Iz is moment of inertia. Based on data from Jones et al. [24].

Wolff’s law is now widely recognized by biomechanicians not as a mathematical

law, but rather as the concept of functional adaptation that encompasses ideas that

emerged from the work of several investigators in the nineteenth century. Three core

ideas of functional adaptation that continue to intrigue researchers today are [22]:

� bone structure is optimized for strength with respect to its weight3

� trabeculae are aligned with the principal directions of stress4

� bone adapts its structure through the responsiveness of bone cells to local

mechanical stimuli.

An example of structural optimization and bone mechanobiology is the adaptations

that occur in response to exercise. A nice example of this comes from a study

by Jones et al. [24] in which the dimensions of the humerus (upper arm bone)

of professional male and female tennis players were measured from X-ray films.

The dimensions of the arm the players used to swing the racquet (the playing

arm) were compared with those of the non-playing arm (paired control). Their

findings are summarized in Fig. 9.20. Note that the mechanically loaded bone in

the playing arm has a greater outer diameter and smaller inner diameter than the

non-playing arm bone, resulting in a thicker cortex.

Let us consider the implications of these geometric changes to the mechanical

properties of the whole humerus. To do so, we idealize the humerus as a hollow

3 We will reconsider this point in Section 9.6 on the design of bone.
4 Cowin has noted that principal stresses in a homogeneous isotropic elastic material do not match those in a

discontinuous structure like trabecular bone, and therefore the mathematically perfect correspondence between the two,

as proposed by Wolff, is not valid. However, experimental studies have shown that trabeculae do align with directions of

continuum level principal stresses, i.e., the directions that the principal stresses would be if the bone were homogeneous

[20], confirming the general observations of Wolff and others.
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circular cylinder with a moment of inertia about the z axis, Iz = π

64
(D4

o − D4
i ),

and subject it to a pure bending moment, M. As described in Section 8.4.2, we can

estimate the strain from bending based on Euler–Bernoulli beam theory as:

εx = ± My

E Iz
(9.23)

where εx is the strain in the longitudinal direction at a point in the bone that is a

distance y from the neutral axis (the midline for our idealized bone) and E is the

Young’s modulus of cortical bone. To compare the consequences of the change in

geometry, we will determine the change in moment that can be supported by the

playing humerus versus the non-playing humerus, maintaining the same surface

strain (i.e., εx at y = Do/2) in the two cases. Rearranging Equation (9.23), taking

the ratio of the moment for the playing arm (Mp) to that of the non-playing arm

(Mnp), and substituting the expression for the moment of inertia, we get

Mp

Mnp

= Iz,p

Iz,np

Do,np

Do,p

=
(
D4

o,p − D4
i,p

)(
D4

o,np − D4
i,np

) Do,np

Do,p

(9.24)

where the subscripts p and np indicate playing arm and non-playing arm, respec-

tively. Clearly, the ratio of the moments is strongly dependent on the relative

geometries of the two bones.

Substituting the dimensions measured by Jones et al. [24], we find that a 45%

greater moment can be applied to the playing arm while maintaining the same

surface strain as in the non-playing arm. Thus, the playing arm humerus has adapted

its geometry in response to the extra forces imposed on it. The question of how the

skeleton does this is intriguing but unanswered. Measurements of peak strains on

the periosteal (outer) surface of a variety of bones in a variety of animals (including

humans) are remarkably consistent, ranging between 2000 and 3000 microstrain

(0.2–0.3% strain) [25]. Thus it appears that the skeleton adapts to control strain.

But the mechanisms by which the bone cells responsible for remodeling the tissue

sense and respond to strain are largely unknown.

9.6 The design of bone

It is clear that there are a wide range of design requirements for bone, including:

� strength to resist axial, bending, torsion, and impact loading, but with greater

strength in some directions than others depending on the predominant modes

of loading
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Table 9.6. Incidence of fracture of various bones
in males aged 20–45 years. Bone nomenclature is given
in Fig. 9.1. Adapted from Currey [26] with permission of
the American Society for Bone and Mineral Research.

Bone or structure Incidence per 10 000 at risk

Skull 370

Scapula 22

Vertebrae 57

Pelvis 18

Ribs 192

Clavicle 134

Humerus 118

Radius/ulna 369

Carpal bones 978

Hip 43

Femur 0.4

Patella 28

Tibia/fibula 244

Ankle 243

Foot 378

� stiffness under axial, bending, and torsion loading, but again stiffer in some

directions than others depending on the predominant modes of loading
� low weight
� high fatigue fracture resistance
� able to absorb energy during impact
� able to repair itself
� able to optimize its structure dynamically.

These requirements are clearly mutually inconsistent; for example, our bones could

be much stronger, but then they would be too heavy. Because of this, bone is not

optimally designed for any one function or to meet any single requirement. Instead,

it is optimized to perform acceptably well in many categories over the range of

normally encountered physiological conditions. This is interesting, because one

might assume bones are designed primarily to resist fracture considering the serious

medical consequences associated with fractured bones. Currey [26] considered to

what extent bones are designed to resist fracture by examining the incidences of

fracture of different bones in a large number of young people (Table 9.6). The
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propensity to fracture was quite different in different bones in the body, leading

him to make two interesting observations. First, the fracture incidence of flat bones

that have strong muscle attachments (e.g., scapula, pelvis, and vertebrae) is much

lower than that of other bones. Currey hypothesized that this may be an example

of bones that are designed to be very stiff to resist flexing when pulled on by the

muscle attachments, which they do at the expense of increased mass. The result

is that such bones are stronger than required for normal activities (and therefore

clearly not optimized only to resist fracture).

The second observation from the fracture incidence data was that the more distal

bones in the upper and lower limbs (e.g., foot or hand bones) fractured much more

frequently than did the proximal limb bones (e.g., humerus or femur). Currey

suggested that this is an example of minimizing the mass of the distal bones at the

expense of increased fracture risk. Light distal bones have lower mass moments

of inertia about the joint center (recall the mass moment of inertia increases as the

square of the distance to the center of rotation) and therefore require less muscle

force to accelerate. This is a significant advantage in terms of maximizing speed of

movement with minimal energy expenditure, particularly for fast moving animals

like horses. Thus, the strength of the distal bones is compromised by the need to

make them as light as possible.

These examples support the notion that bone adapts to meet the functional

requirements of multiple normal, everyday activities. Therefore, most bones are

not adapted primarily to resist fracture but adapt to the best compromise for a wide

range of different design constraints. Currey also presented the counter-example

of the skull bone. The top of the human skull, under normal conditions, is loaded

trivially by muscle forces5 and so should be very thin if it adapts to loading as long

bones do. The skull is not thin, however, and so does not appear to be adapted to

the functional loads that occur during ordinary living. Instead, the relatively thick

skull is adapted to the extreme loads that occur with a potentially fatal blow to the

skull and is an example of a bone that is designed primarily to resist fracture.

9.7 Introduction to soft connective tissues

The skeletal system not only contains bones but also soft connective tissues, most

notably ligaments, tendons, and articular cartilage. These tissues are critical for

normal movement, and in the following sections we will consider their structure,

function, and biomechanical behavior.

5 This was tested by Richard Hillam, a graduate student at the University of Bristol, who for his thesis work had strain

gauges implanted on his skull and tibia and then measured strains for a wide range of activities, including smiling,

eating a hamburger, walking, and jumping. The strains in the skull did not exceed 200 microstrain, even when heading a

heavy ball [26].
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Table 9.7. Biochemical constituents of soft connective tissues. The values for
ligament refer to ligaments of the extremities; elastic ligaments (e.g., in the spine)
have substantially more elastin (see the description of ligaments in Section 9.9.1).
Minor non-collagenous proteins are not listed and make up the remainder of the
dry weight.

Tissue % of dry weight Weight %
water in

Collagen Elastin Proteoglycans wet sample

Tendon 75–85 < 3 1–2 65–70

Ligament
(extremity)

75–80 < 5 1–3 55–65

Articular Cartilage 50–75 Trace 20–30 60–80

Fibrocartilage 65–75 Trace 1–3 60–70

Ligaments, tendon, and cartilage are composed primarily of an ECM consisting

of collagen and proteoglycans, interspersed with water and cells (see Section 2.4.

for more information about proteoglycans and ECM). The relative proportions of

these constituents and their biochemical and structural organization differs between

connective tissues (Table 9.7), imparting unique biomechanical properties that are

optimized for the function of the specific tissue. Several other soft fibrous tissues in

the body are based on collagen, including skin, fat, blood vessel walls, heart valves,

and the connective tissues that hold organs in place. While we will not consider

their biomechanical behavior specifically, many of the principles that govern the

relationship between the structure and function of connective tissues of the skeletal

system also apply to other soft tissues.

It is clear from Table 9.7 that collagen is the most abundant component of

the ECM of skeletal connective tissues. As collagen plays an important role in

defining the biomechanical properties of skeletal tissues, we start our discussion

of connective tissue mechanics by considering the structure of collagen.

9.8 Structure of collagen

As discussed in Section 2.4, there are several types of collagen, with type I collagen

being the most common in ligaments, tendons, and bone, and type II being the

primary collagen in cartilage. Collagen is organized in a structural hierarchy that

allows it to provide tensile stiffness and strength to tissues. The basic unit of

collagen is tropocollagen or the “collagen triple helix.” Tropocollagen contains
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Figure 9.21

The structural hierarchy of collagen, showing how progressively larger structures are constructed by collections of
smaller units. Collagen fibers (not shown) are formed by the aggregation of several fibrils. Adapted from Nordin and
Frankel [27] with permission of Lippincott Williams & Wilkins.

three polypeptide chains (α chains) wound around each other to form a single

helical structure approximately 1.5 nm in diameter and 280–300 nm in length

(Fig. 9.21). The three collagen subunits are closely packed and stabilized by

hydrogen bonding. Tropocollagen molecules are then covalently cross-linked to

neighboring tropocollagens to form long strands, with neighboring molecules

staggered at approximately one quarter of their length (∼67 nm, called the

D-period). Collagen microfibrils are formed by the aggregation of five tropocolla-

gens. Microfibrils group to form subfibrils, which, in turn, group to form collagen

fibrils that are 50–500 nm in diameter. Collagen fibers, which are 50–300 μm in

diameter and visible by light microscopy, are made up of aggregations of fibrils.

In connective tissues, the fibers have waviness or crimping (Fig. 9.22) that, as

we will soon find out, plays an important role in determining the biomechanical

properties of the tissue.
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Figure 9.22

A scanning electron micrograph of collagen fibers in a ligament showing their characteristic crimp or waviness. The
straightening of this crimp under tension plays a major role in determining the biomechanical properties of collagen in
tissue. From Nigg and Herzog [28]. Copyright John Wiley & Sons Limited. Reproduced with permission.

9.9 Structure of ligament, tendon, and cartilage

9.9.1 Ligament

Ligaments in the skeletal system attach one bone to another across a joint and there-

fore help to guide joint movement and maintain joint congruency. Two ligaments

you may be familiar with are the anterior cruciate ligament (ACL) and medial

collateral ligament (MCL) of the knee. Ligaments are also found around other

joints and along the spine. Outside the skeletal system, ligaments support internal

organs and structures including the uterus, bladder, liver, breasts, and diaphragm.

Ligaments are even found around teeth, connecting the teeth to the jaw bone.

Ligaments are primarily composed of collagen (mostly type I and some type

III), elastin fibers, and proteoglycans. The collagen in the middle section of the

ligament is arranged in fibers (Fig. 9.23) that aggregate to form fascicles. The fibers

are generally oriented along the long axis of the ligament in order to resist tensile

forces, although some fibers align off-axis. Close to the points where the ligament
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Figure 9.23

Schematic cross-section of the middle section of a ligament, showing how collagen fibers aggregate into fascicles,
which in turn aggregate to form the ligament. From Nigg and Herzog [28]. Copyright John Wiley & Sons Limited.
Reproduced with permission.

inserts into bone, the composition and structure of the ligament changes so that

it is stiffer, which may help to reduce the risk of tearing at the bone–ligament

interface. Ligaments also contain elastin fibers, although only in small amounts in

the ligaments of the extremities. Some ligaments, such as the ligamentum flavum

that connects the vertebrae in the spine, are highly elastic, containing twice as

many elastin fibers as collagen fibers [29]. As discussed in Section 2.4, elastin

is more compliant and more extensible than collagen. In ligament, it acts like a

rubber band to return the ligament to its original length after a stress is removed.

The matrix of ligaments also contains a small amount of proteoglycans, which aid

in the regulation of water movement within the tissue.

Almost two thirds of the wet weight of a ligament is water. Water in ligaments

may provide lubrication and assist in providing nutrients to cells within the liga-

ments. Additionally, the presence of water and its interaction with the proteoglycans

influences the viscoelastic behavior of the tissue, as explained later in this chapter.

Ligament cells (fibroblasts) vary in shape, size, and density throughout the tissue,

but they are relatively sparse and tend to orient with the long axis of the ligament.

Presumably, fibroblasts monitor their environment and in response to local stimuli

produce proteins that help to maintain and repair the ligament tissue.
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Hierarchy of tendon structure and associated size scales. (1Å = 0.1 nm = 0.0001 μm) Copyright 1978 from “The
multicomposite structure of tendon”, Connective Tissue Research 6:11–23 by Kastelic et al. [30]. Reproduced by
permission of Taylor & Francis Group, LLC.

9.9.2 Tendon

Tendons connect muscles to bones and are responsible for transmitting force

between the two. Tendons vary in size and shape throughout the body, depend-

ing on the specific functional requirements for the muscle and bone to which they

are attached. In some cases, tendons pass through bony features or specialized

connective tissue sheaths that guide the tendon across joints to maintain the correct

orientation and efficient force transmission.6 The matrix of tendons is composed

primarily of type I collagen (Table 9.7). In the main body of the tendon, the collagen

is organized in a structural hierarchy with features similar to ligaments, including

fiber crimping. In tendon, collagen fibers aggregate to form fascicles that are sur-

rounded by a connective tissue sheath called the endotenon or fascicular membrane,

which contains blood, lymphatic vessels, and nerves for the tendon (Fig. 9.24).

The fascicles aggregate into fascicle bundles surrounded by epitenons, and several

bundles are surrounded by the outermost tendon sheath called the paratenon. Some

6 The tendons that flex your fingers are one such example. The muscles responsible for flexing your fingers are located in

your forearm. They are attached to the bones of your fingers by long tendons that run through a sheath at the wrist and

then through sheaths along the fingers that guide the tendons past your knuckle joints.
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Alignment of collagen fibers in tendons and ligaments. The different arrangement of collagen fibers in tendons compared
with ligaments has important implications for differences in their biomechanical behavior, as explained in Section 9.10.
From Nordin and Frankel [27] with permission of Lippincott Williams & Wilkins.

tendons are surrounded by an additional sheath that is filled with synovial fluid,

which acts as a lubricant to reduce friction associated with movement of the tendon.

In the regions where the tendon connects with muscle (the myotendinous junction)

or with bone (the osteotendinous junction), the tendon composition and structure

change to help to reduce the risk of tearing and ensure efficient force transfer.

For example, at the osteotendinous junction, the tendon tissue changes to fibro-

cartilage (a tough form of cartilage; see below) and then to calcified fibrocartilage

just prior to inserting into the bone. Because the primary function of tendons

is to transmit muscle force, they must be relatively inextensible; therefore, their

elastin content is less than that of ligaments. Additionally, the collagen fibers in

tendon tend to be aligned in a more parallel fashion than in ligament (Fig. 9.25).

Like ligaments, tendons contain proteoglycans and are highly hydrated. Tendon

fibroblast cells align longitudinally among the fiber bundles; while they are rela-

tively sparse, they play important roles in the maintenance and repair of the tendon

tissue.
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9.9.3 Cartilage

The three main types of cartilage in the body are hyaline cartilage, elastic cartilage,

and fibrocartilage. These cartilages differ in their proportions of collagen, elastin,

and proteoglycans. The most common type of cartilage is hyaline cartilage, which

is found in several places in the body, including the larynx, nasal septum, and

between the ribs and sternum. It is also found as the growth plate in developing

bones. Most commonly, however, hyaline cartilage is found in joints where there is

a lot of motion between opposing bones (such as the ankle, knee, hip, shoulder, or

elbow joints). These joints are called synovial joints or diarthrodial joints, and the

hyaline cartilage in these regions is called articular cartilage. It forms a thin layer

on the ends of the long bones, such as the femur or tibia, and on sesamoid bones,

such as the patella (kneecap). In diarthrodial joints, articular cartilage transmits

and distributes loads from one bone to another. The forces that the thin articular

cartilage layer supports are impressive: in the hip, peak pressures as high as 18 MPa

have been measured [31].7 Articular cartilage also provides a smooth surface to

allow one bone to move relative to another with minimal friction. Synovial fluid, a

clear viscous fluid between opposing cartilage layers, acts as a lubricant and helps

to reduce the kinetic coefficient of friction for cartilage on cartilage to 0.005 to

0.05 [32]. This is similar to the coefficient of friction for ice on ice (0.03) and over

an order of magnitude lower than that for steel on steel (0.5)!

Articular cartilage consists of a porous ECM of type II collagen, proteogly-

cans, and other non-collagenous proteins interspersed with interstitial water and

electrolytes. Mature articular cartilage does not contain nerves, blood vessels, or

lymphatics, and therefore, it is nourished and drained only by diffusion or convec-

tion from the surrounding synovial fluid. Articular cartilage contains cells, called

chondrocytes, which are embedded in the ECM, but are sparse, making up less

than 5–10% of the total volume. Articular cartilage is an anisotropic tissue in that

its composition and the organization of its components vary through its thickness.

Four zones are evident in mature articular cartilage (Fig. 9.26). Near the articulat-

ing surface, the collagen is arranged in dense fibrils that run parallel to the articular

surface. This region is called the superficial zone and makes up 10–20% of the total

thickness of the articular cartilage layer. The organization of the fibers tangent to

the surface is thought to help to resist shear forces generated by joint movement.

This region also is relatively impermeable to fluid flow and therefore helps to retain

fluid within the collagen matrix when it is compressed. The retention of fluid and its

pressurization with compression of the tissue allows cartilage to support large com-

pressive loads, with more than 90% of the load supported by the pressurized fluid

7 To put this in perspective, the pressure applied by a large adult elephant standing on a hockey puck would be

approximately equal to the peak pressure measured in the hip!
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Figure 9.26

Layered microstructure of articular cartilage. The different zones have specialized compositions and structures according
to their function, as discussed in the text. In healthy adult humans, the total thickness of articular cartilage in the knee is
approximately 1.5 to 3 mm, although there is significant variability with location in a joint and between subjects [33].
Osteoarthritic cartilage can be much thinner because of disruption of collagen fibrils and loss of proteoglycans, a process
that starts in the superficial zone but can progress to the deep zone, resulting in complete loss of mechanical strength of
the tissue. Modified from Setton et al. [34], with permission from the OsteoArthritis Research Society International.

within the cartilage [35]. In the next 40–60% of the thickness, called the middle
zone, the collagen content is reduced and the fibrils are more randomly organized.

Water content is also lower in the middle region compared with the superficial

region, but the proportion of proteoglycans (especially aggrecan) is higher. In the

deep zone (the next 20–30% of the tissue), the collagen fibers run perpendicular

to the surface of the underlying bone and the proteoglycan content is the highest.

Between the deep zone and the underlying (subchondral) bone is the calcified zone.

The collagen fibers from the deep zone cross the tide mark into the calcified zone,

where they are mineralized and provide anchorage between the cartilage and bone.

Two other main types of cartilage are elastic cartilage and fibrocartilage. Elastic

cartilage is found in the external ear, auditory canal, and parts of the larynx. It

differs from hyaline cartilage in that it has more elastin in its matrix. Fibrocartilage

is found in the intervertebral discs, the meniscus of the knee, and at transition

regions between bones and ligaments or tendons. Fibrocartilage contains thick

layers of dense collagen fibers between layers of hyaline cartilage and therefore

has features and properties intermediate between cartilage and dense connective

tissues.

9.10 Biomechanical properties of ligament, tendon, and cartilage

Although ligament, tendon, and cartilage are made up of similar components, the

relative proportions of those components and their organization differ substantially
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between the three tissues. Because the biomechanical behavior of a tissue is deter-

mined by its composition and structure, the mechanical properties of ligaments,

tendons, and cartilage are also considerably different. In this section, we will

explore the structure–function relationships for these three tissues. Before doing

so, we should emphasize the important distinction between structural and material
properties.

Structural properties refer to the mechanical properties of an object as a whole

and so will depend not only on the material of which the object is composed,

but also its shape and size. This should be obvious: it is much easier to break

a thin wooden pencil than a wooden hockey stick, although both are made of

the same material. Structural properties are described by the force–deformation

relationship, the stiffness, the ultimate or failure load, and the ultimate elongation.

For tendons and ligaments, structural properties are determined by measuring the

mechanical response of the entire bone–tendon–muscle or bone–ligament–bone

structure to loading. In this case, the structural properties are influenced not only

by the properties and geometry of the tissue but also by the mechanical properties

of the bone–tissue and muscle–tissue junctions.

Material properties, in contrast, describe the intrinsic mechanical behav-

ior of the tissue constituents only, irrespective of the tissue sample’s overall

geometry. In the pencil and hockey stick example, the material properties would be

those of the wood. Tissue material properties are determined by the biomechanical

properties of the tissue’s constituents (i.e., collagen, elastin, proteoglycans) and

their microstructural organization, orientation, and interaction. Material properties

are described by parameters such as the stress–strain relationship, the modulus,

and the ultimate stress and strain. Since stress and strain are normalized by the

cross-sectional area and length of the sample, respectively, material properties are

independent of the geometry of the specimen.

9.10.1 Structural properties

Experimental studies on the structural properties of soft connective tissues in the

skeletal system have focussed on ligament and tendon. Because ligaments and ten-

dons are primarily responsible for transmitting tensile loads, experimental studies

are performed in tension by clamping the bone–tendon–muscle or bone–ligament–

bone complex in a test machine and measuring the force that is generated with

increasing displacement of the two ends of the complex. The resulting load–

deformation curve can be used to define several structural properties, including

the stiffness (the rate of change of force with deformation), the energy absorbed
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Figure 9.27

A typical force–displacement (deformation) curve for a rabbit ligament. The schematics at the top of the figure indicate
the state of the collagen at each stage of the force–displacement curve, as explained in the text. From Nigg and
Herzog [28]. Copyright John Wiley & Sons Limited. Reproduced with permission.

(the area under the force–deformation curve), and the ultimate load and ultimate

deformation (at failure).

The load–deformation curves of all collagen-based tissues have a characteris-

tic upwards concave shape in which the stiffness varies non-linearly with force

(Fig. 9.27). In the initial portion of the curve, called the toe region, the tissue

deforms easily without much tensile force. This is followed by a region in which

the load and deformation are approximately linearly related; the slope of this region

is often used to represent the elastic stiffness of the tissue. The linear region is fol-

lowed by a region in which sharp falls in tensile force are seen, presumably as a

result of sequential microfailure of collagen fibers. Finally, with further loading,

the force reduces to zero as the tissue fails completely. For ligaments and tendons,

the tensile behavior in the toe region permits initial stretching without much resis-

tance. As the force or displacement increases, however, the ligament or tendon

stiffens, providing more resistance to deformation. For ligament, this protects the

joint from excessive relative movement between bones, while for tendon, it ensures

efficient load transfer from muscles to bones.
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Figure 9.28

Simple model to explain how collagen crimp and alignment result in non-linear structural behavior of collagenous
tissues. (A) Collagen fibers, represented by parallel linear springs with stiffness ci , are recruited to resist the applied
force at different displacements, simulating different degrees of crimp and off-axis orientation. (B) As a result of
progressive recruitment, the effective stiffness of the tissue, 
, increases in a step-wise fashion. (C) The step-wise
increase in stiffness results in a non-linear relationship between force, F, and displacement, X. From Frisen
et al. [36], with permission from Elsevier.

The non-linear force–deformation relationship can be explained by consider-

ing the microstructure of the collagen fibers and their organization in connective

tissues. As shown in Fig. 9.22, collagen (the principal component of connective

tissues that provides tensile strength) is crimped. The crimp allows the tissue to be

extended with minimal force; this phenomenon is responsible for the toe region of

the load–deformation curve. As the deformation increases, the crimp flattens out

and the apparent stiffness increases as the force required to deform the tissue is

resisted by the inherent material stiffness of the collagen fibers. A second source

of non-linearity in the force–deformation curves of skeletal connective tissues is

the alignment of the collagen fibers. During tensile loading of tissues like tendon,

little realignment of the fibers occurs because they are already oriented parallel to

the direction of the applied load (Fig. 9.25). As a result, the toe region of the load–

deformation curve is relatively short. In ligament, many of the collagen fibers are

parallel to the long axis, but there are also non-axial fibers that run at a variety of

angles with respect to the long axis (including running perpendicular). As a result,

the toe region for ligament is longer than that of tendon, since some realignment

of collagen fibers must occur during tensile loading to resist deformation.

A simple, but illustrative, model of how the progressive recruitment of indi-

vidual fibers can result in a non-linear force–displacement curve is shown in

Fig. 9.28. In this model, individual collagen fibers are represented by linear elastic

springs arranged in parallel. The fibrils have different degrees of crimp and different

orientations relative to the loading direction; they are therefore recruited to resist

the applied force at different displacements (�1, �2, . . . , �P). The stiffness of the

tissue, 
, at any deformation, X, is given by the slope of the force–deformation
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(F–X) curve and is expressed as:


(X ) = dF/dX. (9.25)

Because of the progressive recruitment of collagen fibers, the stiffness is a sum-

mation of step functions (Fig. 9.28B):


(X ) =
p∑

i=0

ciu(X − �i) (9.26)

where ci are the stiffnesses of the individual springs, and u(ξ ) is the Heaviside

function, u(ξ ) = 0 for ξ < 0 and u(ξ ) = 1 for ξ > 0. As a result, with increasing

deformation, more parallel springs are recruited, resulting in increased stiffness

and a non-linear force–displacement response (Fig. 9.28C).

From an engineering design perspective, the collagen arrangements in tendons

and ligaments make sense. Tendon must provide high tensile strength and stiff-

ness to transmit muscle forces to bone without substantial deformation. The highly

oriented parallel fiber bundles provide the high tensile strength and minimal exten-

sibility but allow flexibility in bending (similar to braided wire ropes). Ligaments

must also provide high tensile strength but, depending on the function of the liga-

ment, may experience off-axis loads and therefore require some strength in off-axis

directions. Ligaments also need to be slightly extensible to allow for proper joint

movement. These features are provided by the nearly parallel arrangement of the

collagen fibers in ligaments of the extremities. Some ligaments such as the lig-

amentum flavum in the spine contain more elastin than collagen; therefore, they

deform substantially before the stiffness increases (long toe region). However, the

ligamentum flavum is “pre-tensed” when the spine is in its neutral position and so

stabilizes the spine to prevent excessive movement between vertebral bodies.

9.10.2 Material properties

The material properties of biological tissues are based on stress–strain relationships

of the tissue substance itself. These properties are more difficult to measure than

structural properties for several reasons: it is difficult to grip the tissue without

damaging it; accurate measurement of tissue cross-sectional area is challenging;

strain is best measured without contacting the tissue; and material properties are

sensitive to external factors such as the source of the tissue and how the tissue

is handled, stored, or prepared prior to testing. Nonetheless, several advances in

test methods and a better understanding of the effects of various external factors

on the measurements have improved characterization of the tensile, compressive,

and time-dependent (viscoelastic) material properties of ligaments, tendons, and

cartilage [37].
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Figure 9.29

Tensile material (stress–strain) curves for the patellar tendon (PT), anterior cruciate ligament (ACL), posterior cruciate
ligament (PCL), and lateral collateral ligament (LCL) of the knee of a young human donor. Note that the tendon has a
shorter toe region and larger failure stress than the ligament. Modified from Butler et al. [38], with permission from
Elsevier.
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Stress-strain curves for tropocollagen (•), collagen fibrils (◦), and a tendon (�). Strain in the tropocollagen was
estimated from measurements of the elongation of the helical pitch of the collagen triple helix. Strain in the collagen
fibril was determined using an X-ray diffraction technique that measured the change in D-period spacing. The moduli of
the collagen fibril (430 MPa) and the tendon (400 MPa in the linear portion) are remarkably similar. The modulus of
tropocollagen is about three times greater than that of the fibril. From Sasaki and Odajima [39], with permission from
Elsevier.

9.10.3 Material properties: tension

The material (stress–strain) behavior of connective tissues under tension is non-

linear, in large part because of the crimping and alignment of collagen fibers

(Fig. 9.29). The linear region after the toe region is believed to represent the

resistance to deformation of the collagen fibers themselves. Consistent with this

theory, stress–strain curves of collagen fibrils are linear and have a slope similar

to that of the linear region for tendon (Fig. 9.30). It is possible, however, that the

non-linear tissue behavior is also partly a result of complex molecular interactions

between the various components of connective tissues, which is a phenomenon

that is not well understood at present.
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Table 9.8. Equilibrium tensile moduli of skeletal connective tissues. Cartilage specimens were
harvested from high-weight-bearing areas (HWA) or low-weight-bearing areas (LWA). The higher tensile
moduli in the LWA correlated with a higher collagen to proteoglycan ratio in these regions.

Tissue Species Location Tensile
modulus (MPa)

Source

Tendon Human Achilles tendon 819 Wren [40]

Human Patellar tendon 643 Butler [38]

Ligament Human Cruciate ligaments 345 Butler [38]

Human, young Ligamentum flavum 98 Nachemson [29]

Human, aged Ligamentum flavum 20 Nachemson [29]

Articular
cartilage

Human HWA of femoral condyle,
superficial zone

5.0 Akizuki [41]

Human HWA of femoral condyle,
middle zone

3.1 Akizuki [41]

Human LWA of femoral condyle,
superficial zone

10.1 Akizuki [41]

Human LWA of femoral condyle,
middle zone

5.4 Akizuki [41]

The tensile material properties of ligament, tendon, and cartilage can be

described by the tensile modulus, E, which is equal to the slope of the linear

portion of the stress–strain curve. When a soft connective tissue is subjected to

an applied force, its length will change with time until it reaches an equilibrium

length. This process is called “creep” and is the result of the viscoelastic

properties of the tissue. Ideally, the tensile modulus should be measured once the

tissue stops deforming and has reached equilibrium. The equilibrium modulus

therefore describes the quasi-static behavior of the tissue and is dependent on the

intrinsic tensile properties of the tissue matrix (mostly collagen). The transient,

time-dependent properties of the tissue must be described with other (viscoelastic)

parameters, which we will consider below. Typical equilibrium tensile moduli

for skeletal connective tissues are listed in Table 9.8. By comparison with the

composition of the tissues shown in Table 9.7, you can see there is a correlation

between collagen content and tensile stiffness.

9.10.4 Material properties: compression

Because articular cartilage is loaded in compression, it makes sense to study its

compressive properties. The compressive properties of cartilage can be measured

using several test configurations, the most popular of which are shown in Fig. 9.31.

A typical compression test for cartilage is a confined compression test, in which
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Figure 9.31

Schematics of three test configurations used to measure the compressive material properties of cartilage: confined
compression (top), unconfined compression (middle), and indentation (bottom). From Mow and Guo [42] with kind
permission of Annual Reviews.
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Figure 9.32

A map of aggregate compressive equilibrium moduli (HA , the number above the line) and cartilage thickness (the
number below the line) measured in the tibial plateau of a normal 21-year-old male. Significant regional differences in
both parameters are evident. The tibial plateau is the surface of the tibia (shin bone) that forms the base of the knee joint.
Ant, anterior; Pos, posterior; Med, medial; Lat, lateral; see text for definition of HA . From Mow et al. [43] with permission
of Lippincott Williams & Wilkins and Dr. Shaw Akizuki.

a small cylindrical plug of cartilage tissue is placed in a cylindrical chamber

(Fig. 9.31, top). The walls of the chamber, which contact the cartilage plug, prevent

the cartilage from expanding laterally, thereby ensuring that deformation occurs

only in the direction of loading. The cartilage is loaded under a constant compres-

sive load applied with a porous filter. The pores in the filter allow fluid from the

cartilage to flow through the filter as the cartilage is compressed. Once equilibrium

is reached (i.e., the fluid stops flowing out of the cartilage), the stress and strain

are recorded and the ratio is defined as the aggregate equilibrium modulus (HA).

Like the tensile equilibrium modulus, the aggregate modulus is a measure of the

stiffness of the solid matrix and is independent of fluid flow (since it is measured

at equilibrium once fluid movement has ceased).

Aggregate compressive equilibrium moduli for human articular cartilage range

from 0.1 to 2 MPa and vary significantly with location, even in a single joint

(Fig. 9.32). Experiments have shown that HA is directly related to cartilage
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proteoglycan content [44], but not collagen content. Hence, proteoglycans, with

their ability to bind water electrochemically, are primarily responsible for provid-

ing the compressive stiffness of cartilage. In osteoarthritis, a degenerative disease

of cartilage, there is often loss of proteoglycans, leading to decreased compressive

stiffness of the tissue [34].

9.10.5 Material properties: viscoelasticity

An important characteristic of the material properties of skeletal connective tissues

is that they display properties of both elastic and viscous materials and so are

known as “viscoelastic.” Some of the viscoelastic characteristics displayed by most

biological tissues are time-dependent responses, hysteresis, and history-dependent

responses.

Time-dependent responses. Such responses include creep, an increase in defor-

mation over time under constant load, and stress relaxation, a decline in stress

over time under constant deformation (Fig. 9.33A,B). The material proper-

ties of viscoelastic tissues are also time-dependent in that they respond dif-

ferently to variations in the rate at which the material is loaded or strained

(Fig. 9.33C).

Hysteresis. During loading and unloading of viscoelastic materials, the force–

displacement curves do not follow the same path but instead follow a hysteresis

loop, indicating that internal energy is dissipated during the loading–unloading

cycle (Fig. 9.33D).

History-dependent responses. If a viscoelastic tissue is subjected to several

different stress paths that arrive at the same stress value, σ0, at time t1, the corre-

sponding strains, ε, at time t1 will differ (Fig. 9.34). In other words, the strain at

time t1 depends on the entire sequence or “history” of stresses up to that time.

The mechanisms responsible for these viscoelastic behaviors in soft connective

tissues likely include the intrinsic viscoelasticity of the solid phase of the tissue

arising from intermolecular friction between the collagen, elastin, and proteoglycan

polymeric chains; deformation of these molecules; and other complex intermolec-

ular interactions. For biological tissues that contain significant amounts of water,

viscoelasticity also results, in part, from the interactions of the water with the pro-

teins, specifically the frictional drag the water creates when it flows through the

porous ECM.

As we demonstrated in Section 2.6.1 for cells, linear viscoelastic behavior can be

modeled by using lumped parameter approaches in which the viscoelastic material

is represented by linear springs and linear dashpots. Consider the model shown

in Fig. 2.35 (p. 56); as we will see below, this “standard linear model” is the simplest
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equivalent lumped parameter representation that predicts many of the characteris-

tics of a viscoelastic solid. As we did for the cell, we can use such models to gener-

ate constitutive relationships that describe the behavior of biological tissues under

various conditions, including creep and stress relaxation. However, because we

are interested in material properties, we need first to reformulate the relationships

between force and displacement in terms of stress, strain, and material parameters.

We will assume linear material behavior, so that the stress, σ , and strain, ε, are

linearly related by Young’s modulus, E (compare with Equation [2.7]):

σ = Eε. (9.27)

Similarly, the stress is related to the time derivative of strain by the viscosity, μ

(compare with Equation [2.8]):

σ = με̇. (9.28)

Additionally, the spring constants and damping coefficients in the model in Fig.

2.35 are replaced with the corresponding material constants; that is, Young’s moduli

E0 and E1 in place of the spring constants k0 and k1, and viscosity μ in place of the

damping coefficient η0. Following the force balance approach outlined in Section

2.6.1, it can be shown that the constitutive equation for the standard linear model

in Fig. 2.35 is (see Problem 9.5):

σ + μ

E0

σ̇ = E1ε + μ

(
1 + E1

E0

)
ε̇. (9.29)

Equation (9.29) can be rewritten as:

σ + τεσ̇ = ER(ε + τσ ε̇) (9.30)

where we have defined the relaxation time for constant strain, τε, as

τε = μ

E0

; (9.31)

the relaxation time for constant stress,τσ , as

τσ = μ

E1

(
1 + E1

E0

)
; (9.32)

and the relaxed elastic modulus ER as E1.

As we did for the cell model in Section 2.6.3, Equation (9.30) can be solved

for the creep and stress relaxation response by imposing step changes in stress or

strain at time t = 0 and considering times t > 0 with appropriate initial conditions.

Consider first the case of a step change in stress at time t = 0, in which an initially

unloaded specimen (σ (t � 0) = 0) is subjected to a constant stress σ0 at time zero,
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i.e., σ (t > 0) = σ0. There will be an immediate elastic response, resulting in a

strain at time t = 0+ of σ0/(E0 + E1). By solving Equation (9.30) subject to this

initial condition, we can then compute the creep response as:

ε(t) = σ0

ER

[
1 −

(
1 − τε

τσ

)
e−t/τσ

]
. (9.33)

A similar approach holds for the response to a step change in strain at t = 0 (i.e.,

ε(t > 0) = ε0), giving the stress relaxation response as:

σ (t) = ε0 ER

[
1 −

(
1 − τσ

τε

)
e−t/τε

]
. (9.34)

The creep and stress relaxation responses are often written in terms of a creep

function, J (t), and a relaxation function, G(t), which are defined as:

J (t) = ε(t)

σ0

, G(t) = σ (t)

ε0

. (9.35)

For the standard linear model, the creep and relaxation functions are determined

simply from the definitions in Equation (9.35) and the expressions in Equations

(9.33) and (9.34). The general shape of the creep and stress relaxation responses

for the standard linear model are shown in Fig. 9.33A and Fig. 9.33B, respec-

tively, if force (F) is replaced by stress and displacement (d) is replaced by strain.

The standard linear model captures many of the features of viscoelastic materi-

als, including an immediate elastic response, non-linear creep that tends towards

non-zero equilibrium strains, and non-linear stress relaxation that tends towards

non-zero equilibrium stresses.

The creep and stress relaxation tests provide measures of viscoelastic response

to a static load. However, tissue is more typically loaded in a time-varying manner,

and hence viscoelastic properties are often measured by dynamically loading the

material over a range of frequencies and measuring the stress–strain response. As

shown below, this approach allows one to determine the degree to which a material

exhibits viscoelastic behavior, ranging from purely elastic to purely viscous.

Here we consider the response of the material to the application of an unsteady

sinusoidal strain, ε(t), of small amplitude, ε0. Recalling Euler’s formula,8 the

periodic applied strain can be written as:

ε(t) = ε0eiωt (9.36)

8 Euler’s formula states that for any number, θ, eiθ = cos θ + i sin θ . This formula allows us to use a complex exponential

function to represent trigonometric functions. In our case, this makes the derivation of the viscoelastic parameter

equations more convenient and their interpretation clearer.
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where i = √−1, ω is the circular frequency (in radians per second9) at which the

periodic strain is applied and it is understood that we are concerned only with the

real part of the strain and corresponding stresses.

For a linear material, we expect that application of a sinusoidal strain will result

in stress that also varies sinusoidally. However, because of viscous flow and the

time-dependent response of viscoelastic materials, we also expect that the stress

will be out of phase with the strain, such that:

σ (t) = σ0ei(ωt+δ) (9.37)

where σ0 is the stress amplitude and δ is the phase lag. As will be shown below,

the degree to which the stress and strain are out of phase is indicative of the degree

of viscosity, with the two being in phase (δ = 0) for a purely elastic material and

completely out of phase (δ = π/2) for a purely viscous material.

The ratio of the stress to the strain is the complex modulus, E∗(ω), defined as:

E∗(ω) = σ

ε
= σ0

ε0

eiδ = σ0

ε0

(cos δ + i sin δ). (9.38)

If we define E ′(ω) and E ′′(ω), which are called (for reasons that will be clear

below) the storage modulus and loss modulus, respectively, as:

E ′(ω) = σ0

ε0

cos δ, E ′′(ω) = σ0

ε0

sin δ, (9.39)

the complex modulus can then be written as:

E∗ = E ′ + iE ′′. (9.40)

The storage modulus, E ′, is the real part of the complex modulus and is proportional

to the portion of the stress that is in phase with the strain. It can be shown that, for

a purely elastic material, the only contribution to E∗ is from the storage modulus,

and that E ′ is proportional to the elastic energy stored in the tissue due to the

applied strain. The imaginary part of the complex modulus, the loss modulus E ′′,
is proportional to the portion of the stress that is 90◦ out of phase with the strain.

For a Newtonian fluid, E∗ = iE ′′, and E ′′ is proportional to the energy dissipated

or lost in the material per cycle.

Viscoelastic materials are often characterized by the magnitude of the complex

modulus and the phase lag, δ, which are related to E ′ and E ′′ by

|E∗| =
√

E ′2 + E ′′2, δ = tan−1

(
E ′′

E ′

)
. (9.41)

9 Recall that for any harmonic phenomenon, the circular frequency ω is related to the frequency in Hertz, f, by ω = 2π f .
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The magnitude of the complex modulus reflects the overall stiffness of the tissue,

whereas the phase lag characterizes the ratio of the energy dissipated to the energy

stored, or “internal friction.” As mentioned above, δ = 0◦ for a purely elastic mate-

rial, whereas δ = 90◦ for a purely viscous material. Tendon and ligament are only

slightly viscoelastic, with δ ∼ 3◦ [43,46]. In contrast, the phase lag for bovine artic-

ular cartilage tested in pure shear under infinitesimal strain (<0.001 rad) ranges

from 9◦ to 20◦ over a frequency range of 0.01 to 20 Hz [43]. When cartilage is

tested in pure shear under very small strain, little water movement occurs and

therefore the viscoelastic properties measured in a pure shear experiment are the

intrinsic viscoelastic properties of the cartilage matrix itself (collagen and proteo-

glycans) and do not describe viscoelastic effects owing to fluid flow. It is likely that

the higher proteoglycan content in cartilage and its interaction with collagen and

other matrix molecules is responsible for the more viscous behavior of cartilage

compared with ligament and tendon.

It must not be forgotten that the dynamic viscoelastic parameters are functions

of the loading frequency, ω, and are dependent on the stress–strain relationship

of the tissue. For the standard linear model, the stress–strain relationship is given

in Equation (9.29). This equation can be solved for the sinusoidal strain input

(Equation [9.36]) to generate expressions for E∗ and δ in terms of the time constants

and relaxed modulus derived from the material constants and the frequency ω:

|E∗| =
(

1 + ω2τ 2
σ

1 + ω2τ 2
ε

)1/2

ER, δ = tan−1

(
ω(τσ − τε)

1 + ω2(τσ τε)

)
. (9.42)

Details regarding the derivation of these equations can be found in Fung [47],

Haddad [48], or any other textbook on viscoelasticity. Here we consider interpre-

tation of these results only in a qualitative manner. The frequency dependence of

the complex modulus and phase lag for the standard linear model are shown in

Fig. 9.35. From this plot, it can be seen that the tissue stiffness (|E∗|) increases

with higher frequencies. This is a typical response for viscoelastic materials

(Fig. 9.33C). Notice that the phase lag or internal friction is sizeable only over

a fairly narrow range of frequencies, centered on the point where ω = (τετσ )−1/2.

For some biological tissues, hysteresis caused by viscous losses is actually rel-

atively insensitive to loading frequency over a wide range [49]. To account for

the insensitivity of viscous losses to strain rate in some tissues, generalized linear

models have been proposed (e.g., Fung [49]). One such model and its implications

for modeling hysteresis in soft connective tissues is considered in Problem 9.7.

The models and equations presented above assume that the material being studied

behaves linearly. While this assumption may be true for oscillations of small ampli-

tude (i.e., infinitesimal strain), we know that most soft tissues exhibit non-linear

stress–strain behavior for the finite deformations that occur during physiological
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Figure 9.35

Dependency of the magnitude of the complex modulus (|E ∗|) and the tangent of the phase lag (δ) on the loading
frequency, ω, for the standard linear model with relaxation times τσ and τε . Adapted from Fung [47], with kind
permission of Springer-Verlag.

loading. In order to improve modeling of biological tissues, Fung [47] proposed

the quasilinear theory of viscoelasticity, in which the non-linear elastic behavior

was accounted for within the framework of linear viscoelasticity. The details of

the theory, which utilizes a relaxation function along the lines of that in Equation

(9.35), are provided in [47]. This theory has been used successfully to model the

viscoelastic properties of many soft tissues, including tendons and ligaments, with

better agreement than can be achieved with linear viscoelastic theory (e.g., Woo

et al. [50]).

9.10.6 Material properties: biphasic mixture theory of cartilage

While viscoelastic models are useful for describing and predicting the mechanical

behavior of biological tissues, they are phenomenological and reveal little about

the actual physical mechanisms responsible for the observed mechanical behavior.

Recognizing that the composition and microstructural organization of cartilage

were responsible for much of its viscoelastic behavior, Mow and colleagues pro-

posed the biphasic theory of cartilage mechanics to account for the solid and fluid
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phases of cartilage and their interaction [51]. The biphasic theory idealizes articular

cartilage as a mixture of a porous, permeable elastic solid matrix phase (collagen

and proteoglycans) swollen with an incompressible interstitial fluid phase (water

that can be bound or unbound to the matrix). In the theory, loads are supported by

both pressurization of water and by elastic support of the solid matrix. Movement

of water through the porous matrix is modeled and governed by frictional drag

at the interface between the fluid and solid matrix. Viscoelastic behavior there-

fore is accounted for through viscous losses owing to solid–fluid interactions (i.e.,

flow-dependent properties of the tissue). More recent improvements to the theory

incorporate viscoelasticity of the matrix component as well (i.e., flow-independent

properties of the tissue). The details of the theory and its solution are beyond our

scope here but are described in detail in the original paper by Mow et al. [51]

and are summarized in Mow et al. [43]. More recent advances in theories of car-

tilage mechanics, including matrix anisotropy and a triphasic mixture theory, that

accounts for the electrolytes (ions) in the interstitial water and their interaction

with the charged proteoglycans, are described by Mow and Guo [42].

9.11 Problems

9.1 Typical compressive stress–strain curves for cortical bone and for trabecular

bone of two different densities are shown in Fig. 9.36. Calculate the approx-

imate strain energy density to failure in each case. Strain energy density, U,

is a measure of the ability of a material to absorb energy up to fracture and is

given by:

U =
∫ εu

0

σ dε, (9.43)

where εu is the ultimate strain at failure. What does your result imply about

the function of trabecular versus cortical bone and the consequences of loss

of trabecular bone density, as occurs in osteoporosis?

9.2 Recall that several experimental studies have demonstrated that the yield

strain of trabecular bone is relatively constant over a wide range of apparent

densities. Demonstrate that this is the case using the density dependency

relationships in Section 9.3 and Hooke’s law, which is valid for trabecular

bone virtually up to the yield strain.

9.3 In this question, we will work through the derivation of Equation (9.5), which

states that the compressive strength of trabecular bone is proportional to the
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For Problem 9.1. Reprinted from Hayes and Gerhart, Biomechanics of bone: applications for assessment of bone
strength, Bone and Mineral Research, 3, 259–294 . Copyright 1985, with permission from Elsevier.

square of the relative density, assuming that the microstructure of trabecular

bone can be represented by a low-density, rod-like model (Fig. 9.8A).

(a) Begin by showing that the ratio of the apparent density to the tissue

density is approximately proportional to (t/ l)2.

(b) When low-density trabecular bone is loaded in compression, failure

occurs when the vertical struts buckle (Fig. 9.37). The critical load,

Fcrit, at which a strut of length l, Young’s modulus Es, and second areal

moment of inertia, I, buckles is given by Euler’s formula:

Fcrit ∝ Es I

l2
. (9.44)

Derive a proportional relationship between the moment of inertia, I, of

a single strut and the dimensions of the strut, assuming it has square

cross-section with dimension t, as shown in Fig. 9.8A. In this case

we are interested in the moment of inertia of the cross-sectional area;

that is with respect to the axis that runs through the middle of a strut

perpendicular to its long axis.
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For Problem 9.2. From Gibson and Ashby [12]. Reproduced with the permission of the authors and publisher.

(c) You should now be able to use Euler’s formula (Equation [9.44]) and

the relationships you derived in (a) and (b) to derive Equation (9.5).

To do so, you will need to relate Fcrit to the compressive strength at

collapse, σ ∗, and the cross-sectional area of the unit cell, l2; that is,

Fcrit ∼ σ ∗l2.

9.4 Recall the example in Section 8.4.2 about the person lifting a weight and the

resulting stresses in the bones of the forearm. Assuming there is a 0.01 mm

defect in the radius bone 8 cm from the elbow, determine how many times

the subject can lift the weight before his/her bone fractures. Does your cal-

culation likely overestimate or underestimate the actual number of lifts?

Why?

9.5 Derive the constitutive Equation (9.29) for the standard linear viscoelastic

model in Fig. 2.35.

9.6 Show mathematically that the phase lag or internal friction for the standard

linear viscoelastic model is a maximum when ω = (τετσ )−1/2, where τε and

τσ are defined in Equations (9.31) and (9.32)

9.7 Consider the load–extension (force–deformation) curves shown in Fig. 9.38.

These data are from tensile tests on relaxed papillary muscles from the ventri-

cle of the rabbit heart. Note that the tissue exhibits hysteresis owing to viscous
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losses, as expected of a viscoelastic material. Also notice, however, that the

amount of hysteresis is essentially insensitive to the applied strain rate over

two orders of magnitude. Is this experimental observation consistent with the

predictions made by the standard linear model? If not, how can the model be

improved to account for insensitivity to loading frequency?
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10 Terrestrial locomotion

In this chapter we examine terrestrial locomotion (walking and running) from both

descriptive and quantitative points of view. The study of locomotion has long been

an important part of the field of biomechanics. Although not strictly “locomotion,”

we also consider the dynamics and kinematics of jumping.

10.1 Jumping

10.1.1 Standing jump

We begin by considering the standing vertical jump, since it is the easiest jump

to analyze. A standing jump can be divided into two phases, defined as follows

(Fig. 10.1).

1. Push-off: starting from a crouch, the jumper pushes against the ground with

his/her legs until the feet leave the ground.

2. Airborne: from the moment that the feet leave the ground until the maximum

elevation of the center of gravity is reached.

Analysis of the standing jump is most easily carried out if we neglect changes in

posture and body orientation while jumping, and consider only the elevation of the

center of gravity. We therefore define:

c = distance the center of gravity is lowered, measured with respect to the

elevation of the center of gravity at the instant the feet leave the ground.

h = maximum elevation of the center of gravity, measured with respect to the

same reference datum.

z = vertical location of the center of gravity, measured positive upwards from the

floor.

v = vertical velocity of the center of gravity, measured positive upwards.
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Figure 10.1

Phases of standing vertical jump: starting from a crouch, pushing off until the feet just touch the ground, and airborne.
The left panel also shows the forces acting during the push-off phase. The subject’s weight is W, and the force exerted by
the legs on the ground is F(t). Note the definitions of z and v as positive upwards. Here the center of mass is shown as
remaining in a fixed anatomical position, but this is not generally true.

During the push-off phase, we recognize that a force F(t) is exerted by the

legs on the ground, with a corresponding reaction force exerted by the ground

on the legs (Fig. 10.1). Application of Newton’s second law to the jumper

yields

+ ↑
∑

Fz = maz (10.1)

F(t) − W = W

g

dv

dt
. (10.2)

Integrating Equation (10.2) with respect to time from 0 to t yields

v(t) = g

W

t∫
0

F(t ′) dt ′ − gt + constant. (10.3)
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Figure 10.2

Kinematic data observed during the crouch and push-off phases of a vertical jump. The position of the center of mass
was measured as a function of time, from which the velocity and acceleration of the center of mass were derived by
numerical differentiation. The ground reaction force was computed from a force balance on the jumper, whose mass was
144 lbm. The crouch phase of the jump ends when the acceleration of the center of mass becomes positive; the push-off
phase ends when the feet leave the ground and the ground reaction force becomes zero. The ground reaction force
corresponding to the body weight is shown for reference. Curves derived from data tabulated by Miller and Nelson [1].

We choose t = 0 to be the beginning of the push-off phase, when v = 0. The

constant in Equation (10.3) is then zero, so that

v(t) = g

W

t∫
0

F(t ′) dt ′ − gt. (10.4)

To proceed further with the analysis we need to know something about the force

history, F(t).1 An example dataset for the position of a jumper’s center of mass

as a function of time during the crouch and push-off phases of a standing jump

is shown in Fig. 10.2. From these data, we can use Equation (10.2) to derive the

1 Actually, we need to know something about the total vertical impulse due to the ground reaction force,
∫ t

0 F
(
t ′) dt ′. Of

course, if we know the behavior of F versus time, then we can calculate the impulse.
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Figure 10.3

Ground reaction force history, F(t), during the push-off phase of the vertical jump. The actual ground reaction
force history has a shape similar to that shown by the heavy solid line (see Fig. 10.2). The equivalent idealized history is
shown by the dashed line.

ground reaction force, which is also shown in Fig. 10.2. The shape of this force

curve makes intuitive sense: during crouching, the reaction force is less than body

weight, but it then increases to greater than body weight as the jumper accelerates

upwards. Therefore, during the push-off phase, the ground reaction force history

has the general shape sketched in Fig. 10.3, where τ is the duration of the push-off

phase. To simplify the analysis we replace the actual reaction force history by a

simplified history, shown by the dotted line in Fig. 10.3. The magnitude of the

applied force in the simplified history, Fequiv, is chosen so that the impulses from

the actual and simplified forces are equal: that is, so that

τ∫
0

F(t ′) dt ′ = Fequivτ . (10.5)

Thus, Fequiv represents the average force exerted by the legs during the push-off

phase. Making the approximation that F(t) equals Fequiv in Equation (10.3), we

obtain

dz

dt
= v(t) = gt

[
Fequiv

W
− 1

]
. (10.6)

This expression can be integrated to yield

z(t) − z0 = 1

2
gt2

[
Fequiv

W
− 1

]
(10.7)
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where z0 is the elevation of the center of gravity at the beginning of the push-off

phase. Eliminating time between Equations (10.6) and (10.7) gives

z(t) − z0 = v(t)2

2g
[ Fequiv

W
− 1

] . (10.8)

At the end of pushoff (at time t = τ ), z(t) − z0 equals c and v(t) equals vpushoff.

Substitution of these values into Equation (10.8) produces

v2
pushoff

2g
= c

[
Fequiv

W
− 1

]
. (10.9)

During the airborne phase, the body is effectively a projectile subject to con-

stant gravitational acceleration. The height attained by the center of gravity (h) is,

therefore, v2
pushoff/2g. Combining this with Equation (10.9) yields

h = c

[
Fequiv

W
− 1

]
. (10.10)

Equation (10.10) shows that greater elevation can be achieved by increasing crouch

depth c or by increasing average push-off force Fequiv. A typical value of Fequiv is

2W, so h ∼ c.

In order to illustrate the above analysis, consider the world record standing

jump.2 According to The Guinness Book of World Records, 14th edn (1976), the

world record was held by Johan Christian Evandt (Norway, 1962) who cleared a bar

5 feet 91/2 inches (1.76 m) off the ground! What average push-off force, Fequiv was

exerted during this jump? To answer this question, it is necessary to make several

assumptions. We will take the jumper’s height to be 6 feet, so that his center of

gravity was 36 inches off the ground at the end of push-off. We will also assume

that during the jump he oriented his body so his center of gravity just cleared the

bar, so the total net elevation of his center of gravity was

h = 69.5 − 36 inches = 33.5 inches. (10.11)

A typical crouch distance for a 6 foot tall person is 20 inches. Using these values,

we obtain Fequiv/W = 2.7, which is about 35% more than a normal person.

10.1.2 Running jumps

Pole vault
The first running jump that we will analyze is the pole vault. This jump essentially

involves an interconversion of energy by the vaulter from kinetic energy (speed

2 The highest standing jump of all time is hard to determine. Ray Ewry (USA) set the Olympic record of 1.655 m in the

1900 Games. The event was discontinued as an Olympic sport shortly after that. Sturle Kalstad (Norway) holds the

Norwegian standing jump record of 1.82 m, set in 1983. This seems to be the highest standing jump ever recorded, as far

as the authors can determine.
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down the runway) to potential energy (elevation over bar). During the intercon-

version, significant amounts of energy are stored in the elastic deformation of the

pole, as examination of Fig. 10.4 shows.

Supposing that the energy conversion process is 100% efficient, we have

1

2
mv2 = mgh (10.12)

where m is the mass of the pole vaulter, v is the vaulter’s speed while running down

the runway, and h is the net maximum elevation of the vaulter’s center of gravity.

Thus, we expect that h = v2/2g. Setting v = 10 m/s gives a value of h = 5.1 m. If

the center of gravity starts 1 m off the ground at the beginning of the vault, then the

maximum elevation of the center of gravity should be approximately 6.1 m. This

is quite close to the men’s indoor world record, which is 6.15 m (set in February

1993 by Sergey Bubka, Ukraine).

Although the above analysis gives approximately the right answer, and thus

captures the essence of the problem, it is clearly simplistic and neglects several

factors:

� We have neglected the mass of the pole, which is approximately 4 kg. This

likely has little effect on the height that the vaulter can obtain.
� We have neglected the force exerted by the vaulter’s arms on the pole while

in the air, specifically the vertical component of this force. This will tend to

increase the vault height.
� We have neglected the force applied by the push-off leg on the runway. This

force can be used to increase upward momentum, for example by supporting

an upward swing of the free leg. It will increase vault height.
� The pole is not 100% efficient in storing energy. This reduced efficiency will

decrease vault height.
� The vaulter’s center of gravity can actually pass under the bar if the vaulter does

all the right contortions (Fig. 10.5). This increases the height of the bar that can

be cleared.

Running high jump
The major difference between the standing and running high jump is that there is

an opportunity in the running high jump to convert kinetic energy into potential

energy. This means that the elevation attained in the running high jump is invariably

greater than that attained during the standing jump. However, it is clear that the

stance leg, responsible for converting kinetic into potential energy, is much less

efficient than the pole vaulting pole, otherwise the world record for the running

high jump would be about 20 feet (6 m).



Figure 10.4

Stop action photograph of a pole vaulter (David Tork) during a track meet at the Boston Garden in 1964, taken by Harold
E. Edgerton using his stroboscopic flash technology. Note the bending of the pole, clearly indicating elastic energy
storage. Reprinted from Stopping Time: the Photographs of Harold Edgerton by G. Kayafas and E. Jussim [2]. Published
by Abrams, a division of Harry N. Abrams, Inc., New York. All Rights reserved.
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Center
of gravity Pole

Bar seen in
cross-section

Figure 10.5

Vaulter clearing the bar in the pole vault. Notice that contortions can cause the vaulter’s center of gravity to pass under
the bar.

There are two general running high jump strategies. Speed jumpers try to convert

as much forward kinetic energy into potential energy as possible, as discussed

above. Power jumpers rely much more on an active push-off from the stance leg and

are less efficient at energy conversion. Clearly, technique is the major determinant

of success in high jumping, and quantitative analysis of this is beyond the scope

of this book.

10.2 Description of walking and running

Walking and running are complex activities about which entire books have been

written. In this section, we will describe the biomechanics of these activities and do

some simple quantitative analyses of them. In Section 10.3 we will quantitatively

analyze the biomechanics of walking in more detail.

10.2.1 Walking

We consider humans walking at constant speed on level terrain. With respect to

Fig. 10.6, we make the following definitions.

Stance phase: This is the portion of the walking cycle when a given leg is in

contact with the ground. The leg (or legs) involved in the stance phase is called the

stance leg.

Swing phase: This is the portion of the walking cycle when a given leg is swinging

free. The leg involved in the swing phase is called the swing leg.
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Figure 10.6

Definitions used in describing walking. From Inman et al. [3]. With kind permission of Lippincott Williams & Wilkins.
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Figure 10.7

Basic (simplified) pelvic motion during the bipedal walking cycle. The pelvis is represented as a bar with a fork on each
end; each fork articulates with a sphere representing the hip joint. The bar carries a small mass in its center to represent
the center of mass of the body. In this simplified representation, the legs are straight members without knee, ankle, or
foot components. Note that the pathway of the center of mass is through a series of intersecting arcs. From Saunders
et al. [4]. Copyright The Journal of Bone and Joint Surgery, Inc.

Heel strike: The instant when the swing leg contacts the ground is the heel

strike.

Toe off: The instant the swing leg leaves the ground is the toe off.

By its very definition, during a portion of the walking cycle there are short periods

when both feet are touching the ground and there are two stance legs. However,

for most of the cycle, there is one stance leg and one swing leg.

Walking is a complex superposition of five separate motions: pelvic rotation,

pelvic list (tilt), knee flexion in the stance leg, ankle flexion, and toe flexion on the

stance foot. The effect of these motions is depicted in Figs. 10.7–10.12. Figure 10.7

shows the path of the center of mass that results from walking without bending of

the knees or rotation of the pelvis. As can be verified directly, this results in a great
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Figure 10.8

Effects of pelvic rotation during walking. When the pelvis rotates in a horizontal plane during each step, the center of
mass does not fall as far during the phase of double weight-bearing as is shown in Fig. 10.7. The solid line at the top
represents the curve shown in Fig. 10.7, while the dashed line represents the dashed curve from the lower part of this
figure, i.e., including pelvis rotation. From Saunders et al. [4]. Copyright The Journal of Bone and Joint Surgery, Inc.

deal of up and down motion of the torso and is rather uncomfortable. Figure 10.8

shows the effect of pelvic rotation, which acts to decrease the vertical excursions

of the center of mass during walking. In addition, the pelvis lists (tilts) from the

horizontal, such that the pelvis drops slightly over the swing leg (Fig. 10.9), which

also acts to reduce vertical excursions of the center of mass. However, to accomplish

pelvic list, it is necessary to bend the swing leg, otherwise the foot of the swing

leg will strike the ground. Fig. 10.10 shows the slight flexion of the knee that

occurs on the stance leg just after heel strike. To these pelvic and knee motions

must be added the flexion of the ankle and toe, which act to smooth the path of

the knee and thus also of the center of mass (Figs. 10.11 and 10.12). The net result
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Figure 10.9

Effects of pelvic list (tilt) during walking. Normally the pelvis drops slightly on the non-weight-bearing side during
walking, an effect known as positive Trendelenburg. The result is that the center of mass is not elevated as much when the
body passes over the weight-bearing leg during mid-stance. However, because of this pelvic list, the knee of the swing
leg must be flexed so that the swinging foot can clear the floor during mid-swing phase. The solid line at the top
represents the curve shown in Fig. 10.8. From Saunders et al. [4]. Copyright The Journal of Bone and Joint Surgery, Inc.

of all these motions is that the center of mass does not move forward in a straight

line during walking, but instead it oscillates left to right and up and down. When

viewed straight ahead, this produces a characteristic “8” pattern, the exact shape

of which is a function of walking speed (Figs. 10.13 and 10.14).The resulting

path of motion of the center of gravity is much “smoother” than that depicted in

Fig. 10.7.

Walking motion is rather complex. However, its essential feature is simply stated:

walking motion is designed to minimize energy expenditure. To see how this comes

about, it is first necessary to understand how energy is used during walking. There

are four main modes of energy use.



456 Terrestrial locomotion

Figure 10.10

Effects of knee flexion during walking. Except at very low walking speed, the knee undergoes approximately 15o of
flexion immediately after heel strike and continues to remain flexed until the center of mass has passed over the
weight-bearing leg. This has two effects: initially, it absorbs part of the impact of the body at heel strike and later it
decreases the amount that the center of mass is elevated as it passes over the weight-bearing leg. The solid line at the top
represents the curve shown in Fig. 10.9. From Saunders et al. [4]. Copyright The Journal of Bone and Joint Surgery, Inc.

1. The center of gravity moves up and down (about 5 cm per step at normal speed).

This can be verified by observing the top of a person’s head from the side as

they walk on level ground.

2. The center of gravity moves from side to side. Again, this can be verified by

direct observation.

3. The center of gravity accelerates and decelerates in the direction of walking

during a step cycle. This can be verified by carrying a large flat pan partially

full of water. The water invariably begins to slosh back and forth, indicating

acceleration and deceleration on the part of the person carrying the pan.

4. The legs accelerate and decelerate.
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Figure 10.11

Knee and hip pathways during walking at moderate speed. Note that there is a slight increase of knee elevation
immediately after heel strike, but for the remainder of stance phase the pathway is relatively straight and shows only a
slight variation from the horizontal. From Inman et al. [3]. With kind permission of Lippincott Williams & Wilkins.

Figure 10.12

The effects of foot and ankle motion on the pathway of the knee during walking. (A) Arc described by the knee when there
is no foot. (B) The effect of a foot with a rigid ankle on knee motion, which now comprises two intersecting arcs.
However, the knee pathway does not fall abruptly at the end of stance and is more similar to the normal pathway. (C) The
effect of a foot with a flail (hyper-flexible) ankle. From Inman et al. [3]. With kind permission of Lippincott Williams &
Wilkins.

Direct observation will show that the variation in potential energy as a result

of the center of gravity moving up and down is largely out of phase with the

variation in kinetic energy from the acceleration and deceleration of the center of

gravity in the forward direction. This suggests that there is an interconversion of

energy between potential and kinetic energy. In practice, after toe off, the weight

moves from behind the stance leg over and up to a maximum elevation directly

over the stance foot, then continues on and moves down until heel strike. As the

center of gravity moves up, forward speed decreases, and as the center of gravity
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Figure 10.13

Displacements of the center of mass in three dimensions during a single stride cycle. Actual displacements have been
greatly exaggerated. From Inman et al. [3]. With kind permission of Lippincott Williams & Wilkins.

Figure 10.14

Paths (in plane c of Fig. 10.13) showing pelvis motion during walking. The pelvic displacement pattern changes with the
speed of walking. From Inman et al. [3]. With kind permission of Lippincott Williams & Wilkins.
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falls, forward speed increases.3 This behavior is confirmed by measurements taken

during normal walking, shown in Fig. 10.15. The upper curve in Fig. 10.15A

shows the temporal variation of kinetic energy associated with forward motion,

while the middle trace shows the variation associated with potential energy and

kinetic energy associated with vertical motion. The lower curve is the sum of the

two upper curves, and clearly displays much less variation than either of the indi-

vidual curves. Figure 10.15C quantifies this effect by defining an energy recovery,

which is seen to be approximately 65% for walking (speeds up to approximately

10 km/h).

Step frequency
A second way in which the body conserves energy during walking is by “tuning”

step frequency. In general, the motion of the swing leg will require energy input,

as the leg is accelerated after toe off and then decelerated just prior to heel strike.

However, there is one condition under which zero energy input is (ideally) required

for this motion. This is ballistic walking, in which the swing leg behaves as a freely

swinging pendulum, and the support leg acts like a rigid “inverted” pendulum.

Although this is clearly a simplified model of walking, it incorporates enough of

the essential physics to be of interest.

It is clear that the step frequency in this model is determined by the time taken

for the swing leg to move from toe off to heel strike. Recall that the frequency of

a pendulum, and hence the step frequency, ω, depends on

l = the pendulum (leg) length, having dimensions of L (length)

g = gravitational acceleration, having dimensions of LT−2 (length per time2).

From dimensional arguments, we deduce that ω should be proportional to

(g/l)1/2. Hence, on earth we expect to observe ω proportional to (g/l)1/2 over a

wide range of values for ω. This prediction can be contrasted with observations

summarized in Fig. 10.16. It can be seen that the simple ballistic walking (resonant)

theory approximates the trend of the data.

10.2.2 Running

Interestingly, in running, energy interconversion does not work well. This is pri-

marily because of large variations in potential energy (when both feet have left the

ground), which cannot be equalized by changes in forward speed. The net result is

a low energy recovery percentage, as shown in Fig. 10.15.

3 Although difficult to observe during normal walking, these effects become obvious if you walk with knees locked.
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Energy interconversion during walking and running, demonstrated by analysis of force-plate records to compute changes
in the kinetic and potential energy of the center of mass of the body. (A) Walking at normal speed (4.5 km/h). The upper
curve shows the kinetic energy associated with forward motion, Ekf = 1

2 mv 2, where v is the forward component of
velocity. The middle tracing is the sum of the gravitational potential energy, Ep, and the (small) kinetic energy associated
with vertical motion, E fv = 1

2 mv 2
v , where v v is the vertical component of velocity. The bottom trace shows total energy,

E tot = Ekf + Ep + Ekv. Arrows identify heel strike (solid) and toe off of the opposite foot (broken). (B) Corresponding
traces for running (5.5 and 11.9 km/h). Unlike walking, E tot experiences large variations. (C) “Recovery” of mechanical
energy in walking (open symbols) and running (closed symbols) versus speed. Here, Wf is the sum of the positive
increments of the curve Ekf in one step, Wv is the sum of the positive increments of Ep, and Wext is the sum of the
positive increments of E tot (increments a plus b in panel [A]). In this figure, an increment is defined as the change from a
local minimum to a local maximum. From McMahon, T. A. Muscles, Reflexes, and Locomotion, C© 1984 by T. A.
McMahon [5], based on Cavagna et al. [6]. Reprinted by permission of Princeton University Press.
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Figure 10.16

Step frequency as a function of leg length, as gathered by the students of the biomechanical engineering class of 1980
(Professor D. F. James, University of Toronto). There is a fair bit of scatter in this data; what happens when your class
gathers data and plots them in this way?

10.3 Gait analysis

To this point, our discussion of walking has been qualitative or semi-quantitative.

However, it is possible to analyze human walking quantitatively using the tech-

niques of gait analysis. This can yield extensive data on a single subject, including

(but not limited to) time-resolved limb locations, velocities, and accelerations, as

well as time-resolved forces acting on and within limbs.
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Why gather such detailed data on walking? There are a variety of reasons:

� Data on walking can be used as a diagnostic tool for patients having muscu-

loskeletal and/or neurological control problems. Data gathered can also be used

as an indicator of disease severity in such patients, although this requires a large

database of normals and individuals with confirmed disease.
� Data on walking can be used to evaluate the effects of treatment, such as surgery,

drugs, and/or assistive devices, on patients having gait pathologies. In the case of

assistive devices, such data can be used to optimize device usage and adjustment.
� Data on walking can be used as a tool for long-term clinical monitoring of

surgical patients (e.g., for patients who have received total artificial knees).

Such data can form part of an assessment about which type of surgery, knee

design, etc. is optimal.

In all of the above applications, a quantitative assessment of walking is more

objective, more documentable, and potentially more sensitive than a qualitative

analysis. Gait analysis has four main components.

1. Electromyography. This measures the electrical signals that cause muscles

to contract. Since the force exerted at joints depends on muscle contraction,

among other things, knowledge of muscle activity is useful for assessing joint

dynamics. Electromyographic data are obtained using electrodes either on

the surface (similar to those used for measuring the electrocardiogram) or

implanted in the muscle. We will not consider this technique in this chapter.

2. Anthropometry. Anthropometry is defined to be the measurement of the

human body. In the context of gait analysis, we are primarily interested in the

lengths, masses, locations of the centers of mass, and mass moments of inertia

of the lower limb segments. Information on sites of attachment of muscles,

muscle cross-sectional areas, line of actions of muscles, and so on are also of

interest. Below, we will briefly discuss how such data are acquired.

3. Kinematics. Kinematics is the study of motion, without regard to the forces

and moments responsible for the motion. In a kinematic analysis, we are typ-

ically concerned with limb segment position and angle, velocity and angular

velocity, and acceleration and angular acceleration. There are a large number

of techniques for gathering kinematic data in gait analysis, some of which will

be discussed below.

4. Kinetics. Kinetics is the study of the forces that produce motion. In the

context of gait analysis, the important forces are a consequence of muscle

contraction, reaction forces acting on the foot from the ground, and reaction

forces acting at joints.
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As will be seen, the combination of kinetics, kinematics, and anthropometry, as well

as basic biomechanical modeling, allows a great deal of quantitative information

about walking to be gathered.

10.3.1 Kinematics

When describing the kinematics of walking, we typically focus on limb segments,

such as the foot, the shank (lower leg from knee to ankle), the thigh (upper leg

from the hip to the knee), etc. A complete description of the three-dimensional

motion of all limb segments is a formidable task because of the large number of

degrees of freedom of the system. For this reason, it is essential that we adopt

a standardized system of notation. Winter [7] proposes the system shown in Fig.

10.17A, which we will adopt throughout this section. The direction of progression

(the anterior–posterior direction) is denoted x. Angles in the x–y plane are mea-

sured counter-clockwise with respect to the x axis; and angles in the y–z plane are

measured counter-clockwise with respect to the y axis. Note that this convention

for measuring angles implies a similar convention for the measurement of angular

velocities and accelerations.

There are a number of ways of gathering kinematic data. We will only touch on

a few here.

Goniometers. These are devices for measuring joint angles. For example, the

knee flexion angle (angle between shank and thigh) is commonly measured with

a goniometer. Most goniometers are potentiometers whose resistance varies with

angle. They are cheap and easy to use but can be difficult to align with the axis of

rotation.

Accelerometers. These devices are mounted onto the surface of the body at con-

venient points and measure the acceleration of that location. Standard accelerom-

eters can only measure one component of the acceleration vector, so interpretation

of complex three-dimensional motions can be difficult.

Imaging. Anatomical markers are placed on key locations, and images of the

subject are acquired during walking. To resolve motion in two dimensions, this

approach is fairly straightforward; however, in three dimensions it becomes much

more complex. In the latter case, at least two cameras must be used, and care

must be taken to register the images and ensure that markers are correctly

identified.

Here we will consider only a simple two-dimensional analysis of gait, focussing

on the motion of the knee joint. We will assume that markers have been placed on

the leg as shown in Fig. 10.18. Note that the placement of markers on the shank

and thigh means that the vectors x21 and x43 are essentially co-linear with the long
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Figure 10.17

(A) A standardized (x, y, z) coordinate system used in gait analysis, as proposed by Winter. (B) Definitions of standard
terms used in anatomical descriptions. CM = center of mass. (A) Modified from Winter [7]. Reprinted with permission
of John Wiley & Sons, Inc. (B) Modified from NASA [8].

axes of the tibia and femur, respectively. Here the convention is that vector xij starts

at marker i and points to marker j, so that in the sagittal plane (constant z), we may

write:

xij = (xj − xi, yj − yi). (10.13)

Furthermore, the angle θij is defined with respect to the x axis, so that from the

definition of the dot product, we may write:

θij = arccos

[
êx • xij

‖xij‖
]

(10.14)
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Thigh angle = q21

Shank angle = q43

5

6 7

4

3

2

1

q21

q76
q65

q43

qknee = q21 − q43
positive for flexion
negative for extension

qankle = q43 − q65 + 90°
positive for plantarflexion
negative for dorsiflexion

Figure 10.18

Marker locations and limb and joint angle definitions for gait analysis in the sagittal plane. This figure also shows
the sign conventions for limb segment angles, consistent with the requirement that all angles be measured
counter-clockwise with respect to the x (horizontal) axis, as discussed in the text. Modified from Winter [9]. Reprinted
with permission of John Wiley & Sons, Inc.

where êx is the unit vector in the x direction. Finally, we define the knee flexion

angle to be θknee = θ21 − θ43, as indicated in Fig. 10.18. Note that this angle is zero

when the knee is straight and is positive when the knee is in flexion.

Table 10.1 shows data gathered in the sagittal plane from gait analysis on a

normal subject. We can compute the knee flexion angle from noting that

x21 • x34 = ‖x12‖ ‖x34‖ cos(θknee). (10.15)

For example, for frame 6, we have the following data: x21 = (−229.2, 409.7) mm,

x43 = (−146.5, 377.7) mm, which when substituted into Equation (10.15) yields

a knee flexion angle of θknee = 8.04◦.

As can be seen, the analysis is fairly straightforward so long as it is restricted to

two-dimensional motion in the sagittal plane. The analysis of three-dimensional

motion is significantly more complex, and we will only touch on it here. First, a

third marker on each limb segment is required, placed so that it is not co-linear

with the first two markers. One way to proceed is as follows. Each limb segment

is described in terms of its own local coordinate system, defined by the three

markers. More specifically, the local y axis is defined to point along the long axis

of the limb segment; the local x axis lies in the plane defined by the three markers
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Table 10.1. Typical kinematic data gathered from gait analysis of normal subject.
Marker locations are as shown in Fig. 10.18. and are measured in the sagittal
plane from a fixed reference location following the convention in Fig. 10.17. The
frequency of measurement was 50 Hz, with each frame corresponding to one
measurement. Data courtesy of Dr. Jennifer A. Moore, University of Toronto.

Marker locations (mm)

Frame (x1, y1) (x2, y2) (x3, y3) (x4, y4)

5 (−294.1, 975.9) (−68.5, 557.3) (−73.8, 492.6) (72.3, 116.8)

6 (−261.4, 970.1) (−32.2, 560.4) (−38.1, 492.1) (108.4, 114.4)

7 (−227.2, 965.0) (5.0, 563.2) (−2.6, 491.1) (137.3, 111.2)

8 (−192.1, 960.9) (42.4, 565.6) (32.0, 489.4) (160.0, 107.7)

and is orthogonal to the local y axis; and the local z axis is orthogonal to the other

two axes. The goal is to quantify the relative orientation of limb segments in a

time-resolved manner.

Typical data from such a three-dimensional kinematic analysis on the motion of

the knee expressed in terms of rotation (Euler) angles are shown in Fig. 10.19. Here

the plotted quantities are the rotation angles between the local coordinate systems

of the shank and the thigh. This method of presenting the data suffers from the

drawback that three-dimensional Euler rotation matrices do not commute. This

means that the magnitude of the computed Euler angles depends on the details of

the orientation of the limb segment axes and the order in which the angles were

extracted. Nonetheless, by using a standardized protocol, useful information can

still be obtained. The reader will note that of the three angles, that associated with

extension/flexion has the greatest amplitude, which accords with our intuition.

This angle is offset from zero by several degrees, which is likely an artefact of how

the markers were placed on the leg. Adduction/abduction refers to the rotation

of the shank with respect to the thigh about a local axis approximately aligned

with the x axis (see Fig. 10.17A). Note that adduction is inward (medial) rotation

of the shank; abduction is outward (lateral) shank rotation. Most of the variation

seen in this quantity is likely indicative of a small artefact associated with minor

misalignment of the marker system. Finally, inward/outward rotation refers to

rotation of the shank about the long axis of the femur. Such rotation is physiological,

owing to the shape of femoral condyles, which causes the knee to rotate as it is

flexed/extended.

A different way of presenting the same data is through the use of helical screw

angles. The reader will recall that the three-dimensional motion of any rigid body

can be expressed as a translation plus a rotation about an instantaneous axis of rota-

tion. A complete description of the motion of the shank with respect to the thigh

therefore requires the time-resolved specification of four degrees of freedom: the
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Figure 10.19

Euler angles defining three-dimensional relative motion of the shank with respect to the thigh (knee motion) for a normal
subject walking. Note that this figure extends over slightly more than one gait cycle (including the swing phase), with
heel strike at between frames 5 and 6, and toe off at approximately frame 45. For extension/flexion, positive values
indicate extension; for adduction/abduction, positive values indicate adduction (i.e., inward or medial rotation of the
shank with respect to the thigh); for inward/outward rotation, positive values indicate inward rotation. The time interval
between frames was 0.02 s. Data courtesy of Dr. Jennifer A. Moore, University of Toronto. These data are from the same
dataset as shown in Table 10.1 and Fig. 10.20.

orientation (in three dimensions) of the unit vector aligned with the instantaneous

axis of rotation (two degrees of freedom), the angular velocity about the instan-

taneous axis (one degree of freedom), and the translation along the instantaneous

axis of rotation (one degree of freedom). An analogy can be drawn to the motion

of a screw; hence the names “helical screw angles” or “helical axis of motion.”

It is convenient to present the orientation of the instantaneous axis of rotation in

terms of the direction cosines of this axis; that is, the values obtained by taking the

dot product between the unit vector aligned with the axis of rotation and the unit

vectors in each of the x, y, and z directions.4 Fig. 10.20 shows time-resolved helical

axis direction cosines for the same dataset shown in Fig. 10.19. Values of the z
direction cosine close to one show that the instantaneous axis is nearly aligned with

the z axis, particularly during the swing phase, in agreement with the data shown in

Fig. 10.19.

4 Note that any two of the direction cosines are sufficient to define the third, since the sum of the squares of the direction

cosines must equal one.
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Helical axis of motion cosines defining three-dimensional relative motion of shank and thigh for a normal subject
walking. The time interval between frames was 0.02 s. Data courtesy of Dr. Jennifer A. Moore, University of Toronto.
These data are from the same dataset as shown in Table 10.1 and Fig. 10.19.

10.3.2 Anthropometry

Anthropometric data on limb segment lengths is relatively easy to obtain, so long

as consistent definitions of limb segments are made (see Fig. 10.21 and Table 10.2

for such definitions). Data on the mass, density, location of the center of gravity,

and radius of gyration of individual segments are more difficult to obtain. There are

indirect ways of obtaining this information (e.g., Winter [7] and Miller and Nelson

[1]), but these are prone to inaccuracies. The most accurate method of gathering

such data is direct measurements on cadaver limb segments, but this suffers from

the drawback of not being patient-specific.

A sense of the inaccuracy in such measurements can be obtained from comparing

reported data for body segment masses given from two different sources, shown

here in Table 10.2 and Table 10.3. For a subject with mass 160 lbm, the correlations

in Table 10.3 give the mass of the upper arms as 10.3 lbm, while the data in Table

10.2 give 9.0 lbm. Considering the variation between one subject and another,

this spread between the two correlations is probably within the interindividual

differences. More detailed anthropometric data, including population distributions,
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Figure 10.21

Anthropometric data on body segment lengths. All body segment lengths are expressed relative to the total height H.
From Winter [7]. Reprinted with permission of John Wiley & Sons, Inc.

are available from a variety of other sources [10,11], including a remarkably com-

plete electronic resource [8]. We will use the data in Table 10.2 for all future calcu-

lations. Readers are cautioned that the y and z axes are interchanged in the standard

coordinate system for gait analysis versus the coordinate system for anthropometry

used by NASA [8].

In using Table 10.2, the reader is reminded that the radius of gyration, k, is

related to the mass moment of inertia, I, by the relationship

I = mk2 (10.16)

where m is the mass of the limb segment. Further, the mass moment of inertia

depends on the center of rotation. The mass moment of inertia for rotation about an

arbitrary point G, IG, is related to the mass moment of inertia for rotation about the
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Table 10.3. Correlations expressing the masses of different
body segments in terms of overall body mass (M, in lbm).
Compare with the first column of Table 10.2. From Miller
and Nelson [1]. With kind permission of Lippincott Williams
& Wilkins.

Segment Segment mass (lbm)

Head 0.028 M + 6.354

Trunk 0.552 M – 6.417

Upper arms 0.059 M + 0.862

Forearms 0.026 M + 0.85

Hands 0.009 M + 0.53

Upper legs 0.239 M – 4.844

Lower legs 0.067 M + 2.846

Feet 0.016 M + 1.826

center of mass, I0, by the parallel axis theorem, which states that IG = I0 + mx2
G,

where xG is the distance between point G and the center of mass. Hence, the radius

of gyration about G, kG, is given by

k2
G = k2

0 + x2
G (10.17)

where k0 is the radius of gyration about the center of mass. It is thus seen that any

two of the radii of gyration listed in each line of Table 10.2 can be derived from

the third radius of gyration as well as from knowledge of the location of the center

of mass of the limb segment.

10.3.3 Kinetics

In the context of gait analysis, kinetics is concerned with the measurement of

forces generated during walking. One of the most important of these is the ground

reaction force (i.e., the force exerted by the ground on the foot during walking).

This is measured using a force plate, a floor-mounted plate instrumented with force

transducers. One common force plate design is shown in Fig. 10.22, where the

plate is supported on an instrumented central column. The horizontal and vertical

reaction forces and the reaction moment acting on the column are measured. From

these data it is possible to determine Fy and Fx , the vertical and horizontal reaction

forces acting on the foot, as well as the center of pressure (i.e., the effective location

through which Fy and Fx act).

Typical data for a normal subject walking are shown in Fig. 10.23. Characteristic

is the double-humped profile of the vertical reaction force, which can be explained

as follows. The vertical reaction force increases from zero at the moment of heel
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Figure 10.22

Schematic diagram of central support type force plate. Fy and Fx are the vertical and horizontal reaction forces acting on
the foot, respectively; xcop and ycop are the x and y locations of the center of pressure, respectively, measured with
respect to some convenient reference point. Modified from Winter [7]. Reprinted with permission of John Wiley & Sons,
Inc.

strike to a maximum value as the stance leg is dynamically loaded. It then dips

slightly below body weight as the stance leg flexes slightly at mid-stride, increases

to greater than body weight as the stance leg extends at push-off, and then decreases

to zero as the foot leaves the floor.

It is also of interest to note the profile of the horizontal reaction force. Immedi-

ately after heel strike it is negative (i.e., the ground is pushing “backwards” on the

foot). As weight moves forward on the foot, the magnitude of this force decreases

slightly, until the ground is pushing “forwards” on the foot just prior to toe off.

Link segment model
It is possible to combine information about limb segment kinematics, external

reaction forces (kinetics), and anthropometry to gain insight into the forces acting

at joints during the walking process. To illustrate this process, we consider a link

segment analysis of forces at the knee. In the link segment model, the following

two assumptions are made:

� joints are considered to be hinge (pin) joints with a single center of rotation at

which a set of reaction forces and a reaction moment act
� the anthropometric properties of each limb segment (i.e., location of the center

of mass and mass moment of inertia) are fixed during the walking process.
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Figure 10.23

Typical ground reaction force and moment data measured with a force plate for a normal subject during walking on level
ground. Horizontal axis is time; 100% B. W. is total body weight. From Winter [7]. Reprinted with permission of John
Wiley & Sons, Inc.

Consider the forces acting on the shank and foot, as shown in Fig. 10.24. It is clear

that the location of the effective center of gravity of the shank plus foot combination,

as well as the mass moment of this combination, will depend on the angle that the

foot makes with respect to the shank. However, this quantity changes throughout

the gait cycle, and inclusion of this effect greatly complicates the analysis. For this

reason, we will ignore this effect and simply approximate the shank plus foot as

a single limb segment having the properties listed in Table 10.2. Consistent with

this approximation, we will treat the center of gravity of the combined segment
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Figure 10.24

Forces acting on the shank and foot during walking. Fy and Fx are reaction forces acting on the foot from the floor; R x ,
R y , and M are the reaction forces and moment acting at the knee joint on the shank. W is the weight of the shank plus
foot, given by W = −mt g êy.

as lying along the axis of the shank. Under these assumptions, and with reference

to Fig. 10.24, we can apply Newton’s second law in the horizontal and vertical

directions to obtain:

Rx + Fx = mt ax (10.18)

and

Ry + Fy − mt g = mt ay, (10.19)

where mt is the mass of the shank plus foot; ax , ay are the linear accelerations

of the center of mass of the combined segment (shank plus foot) in the x and y
directions, respectively; g is the gravitational acceleration constant; and all other

quantities are as shown in Fig. 10.24.

In order to illustrate the use of these equations, we will use the data shown in

Table 10.4 (corresponding to frames 5–8 in Table 10.1). In particular, we wish to

compute the reaction forces and moments acting at the knee for frame 7 of this

dataset. Inspection of Equations (10.18) and (10.19) indicates that this requires

that we know ax and ay , which we can obtain by numerically evaluating d2xCG/dt2

and d2 yCG/dt2, where xCG and yCG are the locations of the center of gravity of

the composite segment (shank plus foot). Using a standard centered difference
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Table 10.4. Typical kinetic (force plate) data gathered from gait analysis
of a normal subject. This data was gathered at the same time as that in
Table 10.1, and frame numbers are identical for the two tables. Fx and Fy

are the horizontal and vertical reaction forces on the foot, following the
sign conventions in Fig. 10.17. xcop and ycop are the center of pressure of
the reaction forces. The frequency of measurement was 50 Hz, and the
mass of the subject was 65 kg. Data courtesy of Dr. Jennifer A. Moore,
University of Toronto.

Frame Fx (N) Fy (N) xcop (mm) ycop (mm)

5 −0.8 −0.9 129.3 0.0

6 −0.8 6.2 128.5 0.0

7 −1.8 94.0 131.2 0.0

8 −16.6 238.7 141.9 0.0

operator in time to approximate the second derivative d2/dt2, we may write:

a7
x = x6

CG − 2x7
CG + x8

CG

�t2
(10.20)

and

a7
y = y6

CG − 2y7
CG + y8

CG

�t2
(10.21)

where the superscripts indicate the frame number and �t is the time increment

between frames, equal to 0.02 s in the sample dataset (50 Hz sampling rate).

From Table 10.2, it is seen that the location of the center of mass for the shank

plus foot segment is at 0.606 of the shank length from the proximal end of the

shank. Therefore, we may write:

xCG = x3 − 0.606 x43 (10.22)

where it is assumed that markers 3 and 4 were placed on the femoral condyles

and medial malleolus, respectively. Use of the data in Table 10.1 allows the values

of xCG = (xCG, yCG) shown in Table 10.5 to be computed. Direct substitution into

Equations (10.20) and (10.21) then yields ax = −10.25 m/s2 and ay = −1.25 m/s2

for frame 7. From Table 10.2, it is seen that the mass of the shank plus foot is 0.061

times total body mass (65 kg), or 3.97 kg. Substitution of numerical values into

Equations (10.18) and (10.19) gives Rx = −38.9 N and Ry = −60.0 N. A similar

procedure can be carried out for each frame of data, yielding a time-resolved

description of the joint reaction forces (Fig. 10.25).

It remains to carry out a moment balance to compute the joint reaction moment,

M (Fig. 10.24). In performing this moment balance, the reader should keep in mind
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Table 10.5. Kinematic data derived from values in Table 10.1.
See text for definition of symbols and derivation of the data.

Frame x43 (mm) xCG (mm) θ43 (rad)

5 (−146.1, 375.8) (14.7, 264.9) 1.942

6 (−146.5, 377.7) (50.7, 263.2) 1.941

7 (−139.9, 379.9) (82.2, 260.9) 1.924

8 (−128.0, 381.7) (109.6, 258.1) 1.894
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Figure 10.25

Time-resolved knee joint reaction forces derived from link segment model. Data courtesy of Dr. Jennifer A. Moore,
University of Toronto. These data are from the same dataset shown in Table 10.1, Table 10.2, and Fig. 10.19.

the fact that we are treating the knee joint as a simple hinge joint, which is not

strictly true. Nonetheless, we will make this approximation, taking the pivot point

as the point of intersection of the long axes of the femur and tibia. This point

is located approximately on the mid-surface of the intercondylar groove, and the

computed moment should be interpreted as an effective moment about this point.

For the purposes of this example, we will make a further simplification, namely
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that the location of marker 3 is coincident with the effective center of rotation. In

practice this is not the case, and a correction should be made for this relatively

small difference in location.

By carrying out a moment balance about the proximal end of the shank (marker

3) we obtain

M − gmt (rt × êy) • êz + (rF × F) • êz = Itα (10.23)

where α is the angular acceleration of the shank plus foot; êy and êz are the unit

vectors in the y and z directions, respectively; It is the mass moment of inertia of

the shank plus foot about the proximal end of the shank; and F is the vector sum of

Fx and Fy . The interpretation of each of the terms on the left-hand side of Equation

(10.23) is as follows: the first term is the joint reaction moment; the second term

is the torque due to the weight of the shank plus foot acting through the combined

center of gravity; and the last term is the moment due to the reaction force at the

floor. The cross products in the second and third terms are dotted with the unit

vector êz so as to obtain a scalar equation.

In order to employ this formula, we must know the angular acceleration of the

shank plus foot, α; the cross products rt × êy and rF × F; and the mass moment

of inertia It . The computation of each of these quantities is illustrated below.

Calculating α. By using Equation (10.14) it is possible to compute the angle θ43

that the shank makes with the horizontal in each frame; this is shown in column four

of Table 10.5. Since α is simply equal to d2θ43/dt2, we can numerically compute α

by using the standard centered difference approximation to the second derivative

as:

α7 = θ6
43 − 2θ7

43 + θ8
43

�t2
(10.24)

where once again the superscripts indicate the frame number. Using the values in

Table 10.5 yields α = −32.5 rad/s2 for frame 7.

Calculating rt × êy. rt is equal to xCG − x3. Direct substitution of values from

Table 10.1 and Table 10.5 gives rt = (84.8 − 230.2) mm. Using êy = (0, 1, 0) and

the definition of the cross product then gives:

rt × êy =

∣∣∣∣∣∣∣
êx êy êz

84.8 mm −230.2 mm 0

0 1 0

∣∣∣∣∣∣∣ (10.25)

which equals 84.8 êz mm.
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Figure 10.26

Time-resolved knee reaction moment derived from a two-dimensional link segment model. Data courtesy of Dr. Jennifer
A. Moore, University of Toronto. These data are from the same dataset shown in Table 10.1, Table 10.2, and Fig. 10.19.

Calculating rF × F. rF is equal to xcop − x3, where xcop is the location of the

center of pressure. Direct substitution of values from Table 10.1 and Table 10.5

yields rp = (133.8 − 491.1) mm. The definition of the cross product then gives:

rF × F =

∣∣∣∣∣∣∣
êx êy êz

133.8 mm −491.1 mm 0

−1.8 N 94.0 N 0

∣∣∣∣∣∣∣ (10.26)

which equals 11.69 êz N m.

Calculating It. Table 10.2 lists the radius of gyration about the proximal end of

the shank plus foot as 0.735 ‖x43‖. Computing x43 from data listed in Table 10.5

as 404.8 mm, we obtain the radius of gyration about the proximal end of the shank

plus foot to be 297.5 mm. Thus, It is mt (297.5 mm)2 = 0.351 kg m2.

Substitution of the above numerical values into Equation (10.23) yields

M = −19.81 N m for frame 7. A similar procedure can be carried out for each

frame of data, yielding a time-resolved description of the joint reaction moment

(see Fig. 10.26).5

5 The alert reader will notice that the moment that we calculated (−19.8 N m) does not exactly match that shown in

Fig. 10.26 for frame 7. This is because the calculation used to obtain the figure does not make some of the simplifying

assumptions that we have used (e.g., assuming that the center of rotation of the knee is coincident with the femoral

condyles).
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Figure 10.27

Illustration of dependence of bone-on-bone forces on joint configuration. The joint reaction force is 600 N in both
cases. On the right, muscle contractile forces are negligible, and the bone-on-bone force is 600 N. On the left the 600 N
force applied by the femur on the tibia acts 24 inches to the left of the assumed center of rotation. To balance this
moment, the quadriceps must develop 2400 N of tension, assumed to act at 6 inches to the right of the assumed center
of rotation. This causes the bone-on-bone force to be 3000 N. From Winter [7]. Reprinted with permission of John Wiley
& Sons, Inc.

Joint reaction forces versus bone-on-bone forces
It is important to understand the interpretation of the forces and moment that we

have computed in the above analysis. They are the effective net force and moment

that act at the presumed center of rotation. Due to muscle contraction, these forces

can differ substantially from the so-called bone-on-bone reaction forces (i.e., the

force exerted by the femur on the tibia through the intervening cartilage). As a

simple example of this effect, consider Fig. 10.27, showing two possible geometric

configurations of the knee. Under conditions of no knee flexion (right), there is

effectively no tension in the quadriceps and other muscles inserting close to the

knee. Therefore, if a vertical joint reaction force of 600 N is computed, the bone-

on-bone force is also approximately 600 N. However, if the knee is flexed (left),

then the same joint reaction force of 600 N translates to a bone-on-bone force of

3000 N because of contraction of the quadriceps. Such factors, in combination

with the dynamic loads placed on the knee during walking and running, can lead

to oscillating bone-on-bone forces of several times body weight. This ultimately

leads to wear of the cartilage in the joint.
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10.4 Problems

10.1 A jumper executes a standing jump from a platform that is moving upwards

with constant speed Vp.

(a) Derive a formula for the maximum elevation of the jumper’s center of

gravity in terms of the crouch depth, c, the equivalent force to weight

ratio, Fequiv/W , the platform speed, Vp, and other relevant parameters.

The elevation of the center of gravity is to be measured with respect to

a stationary frame of reference (i.e., one not attached to the platform).

(b) If the crouch depth is 18 inches, the ratio Fequiv/W is 2, and the platform

speed is 5 ft/s, compute the elevation of the center of gravity.

10.2 Your 160 lbm friend agrees to have his standing jump analyzed. Standing

on a force plate, he crouches to lower his center of gravity, then executes

a jump. The force plate measurement gives a reading that can be described

by the equation

F(t) = 480 sin

(
π t

τ

)
+ 160 (1 − t/τ ) (10.27)

where F(t) is in lbf. Here the push-off duration τ is 180 ms. How high will

your friend’s center of gravity be elevated at the peak of his jump?

10.3 A 75 kg stunt man executes a standing jump with the aid of a harness and

support wire. In addition to the constant 1100 N force his legs exert during

the push-off phase, the wire has a lift mechanism that applies a force given

by 550e−s/L (in Newtons), where L is 0.4 m and s is the distance traveled.

The lift mechanism is engaged at the bottom of the crouch (where s = 0)

and a safety catch detaches the wire when the stuntman leaves the ground.

(a) For a crouch depth of 0.4 m, compute the maximal elevation of his

center of gravity. Hint: it may be easiest to work from first principles,

recalling that a = v dv/dz = 1/2 d(v2)/dz.

(b) If the safety catch fails to disengage, show that his center of gravity is

elevated 0.462 m at the top of the jump. Hint: use an approach similar

to part (a) for the airborne phase.

10.4 Consider the standing high jump, but this time the jumper is on the moon,

where the local gravitational field is one sixth that on earth: gmoon = g/6.

(a) Using an analysis similar to that developed in Section 10.1.1, derive a

formula for the height that a person’s center of gravity can be elevated

in the standing high jump on the moon,
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Figure 10.28

For Problem 10.5. G is the force exerted on the foot by the lower leg, which includes the weight, W.

(b) If J. C. Evandt were to repeat his record-breaking jump on the moon,

what bar height could he clear? To compute this height, you may use

the same data and assumptions as were used in the text.

10.5 A 150 lbm person is able to jump 22 inches (elevation of center of gravity)

if they first crouch so as to lower their center of gravity by 15 inches. What

average tension T is present in their Achilles tendon during the push-off

phase? See Fig. 10.28 for nomenclature.

10.6 Penelope Polevaulter, having read this book, realizes that her optimal pole-

vaulting strategy is to run as fast as possible and push off strongly during

take off.

(a) If her weight is W, her approach speed is Va , and she pushes off with an

effective force Fo over an effective crouch distance c, estimate the net

elevation of her center of gravity, h. Make and state relevant assump-

tions.

(b) Assume her approach speed is 9 m/s and she is able to push off with

an effective force Fo of two times her body weight with an effective

crouch distance of 25 cm. If her center of gravity starts 30 cm from the

ground, estimate the height above the floor which her center of gravity

can clear.

10.7 Derive an expression to estimate the distance L attainable in the long jump, in

terms of the approach velocity V. Neglect air drag and assume that planting

the foot at the beginning of the jump does not generate a vertical force but

rather produces the optimal angle for take off. Find L for V = 10 m/s. (Note:

you will have to determine the optimum angle.)
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Figure 10.29

For Problem 10.8. Reproduced with permission of CP (Paul Chiasson).

10.8 Elvis Stojko (former Canadian and world figure skating champion) is going

to execute a triple axel jump (three full rotations in the air). He spends 0.95 s

in the air for this jump, his mass is 70 kg, and his average radius of gyration

about the vertical axis while airborne is 18 cm (Fig. 10.29). Assume that he

remains vertical throughout the jump (even though the picture shows this

is not quite true). Before starting his set-up for the jump, he is skating in a

straight line. The set-up lasts 0.35 s and at the end of the set-up his skates

leave the ice. What average moment does the ice exert on him during the

set-up? Notice that there is no moment acting on him while he is in the air,

so his angular acceleration while airborne is zero.

10.9 A subject of mass 65 kg has her gait analyzed. Suppose that the x component

of the force measured by a force plate takes the shape shown in Fig. 10.30

(compare with Fig. 10.23).
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For Problem 10.9.

(a) If the forward velocity of the walker is 2 m/s at heel strike, what is it

0.4 s after heel strike?

(b) Estimate the corresponding change in height for the subject’s center of

gravity (i.e., from heel strike to 0.4 s later). For purposes of this ques-

tion you should base your analysis on the walking model described in

Section 10.2.1 and should make and state suitable simplifying assump-

tions.

10.10 Consider the force plate data from a gait experiment shown in Fig. 10.31.

By considering the motion of the total leg, compute the reaction forces at

the hip at the instant shown by the heavy vertical line. The total leg includes

the thigh, shank and foot (see Table 10.2). For purposes of this question,

consider the greater trochanter as the effective center of rotation for the hip

joint. Note that you do not need to compute a reaction moment, only forces,

and that the vertical scales on the two force traces are not the same. Use the

following data: subject’s mass 60 kg and height 1.7 m; acceleration of the

center of gravity for the total leg is ax = −0.25 m/s2 and ay = −0.75 m/s2;

length of the total leg segment is 0.530 times height (see Fig. 10.21).

10.11 Handball is a game in which a small rubber ball is hit with the palm of

the hand. Suppose a 70 kg handball player who is 1.8 m tall swings his
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Figure 10.31

For Problem 10.10. Modified from Winter [7]. Reprinted with permission of John Wiley & Sons, Inc.

arm in a horizontal plane with his hand outstretched so as to hit the ball.

The muscles in his shoulder exert a constant moment of 10 N m on the arm

during this procedure. Assuming his arm starts from rest, that his elbow

is locked during the swing, and that the arm swings through 80◦ before

contacting the ball, what is the speed of the hand at the instant of contact

with the ball? You may use data in Fig. 10.21 and Table 10.2 and should

state assumptions. Hint: in uniformly accelerated rotational motion, the

angular velocity, ω, is related to angular position, θ , by:

ω2 − ω2
0 = 2α(θ − θ0) (10.28)

where ω0 and θ0 are constants.
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10.12 In Section 8.4.2, we computed the weight that could be supported by the

forearm of a hypothetical subject. Suppose that the same subject suddenly

relaxes all the muscles in his arm while holding a 12.2 kg mass in his hand.

As in the text, the line of action of the weight is 31 cm from the elbow axis.

(Note that this is not the length of the forearm.)

(a) Using values given in Section 8.4.2, as well as data from the anthro-

pometric tables (Fig. 10.21 and Table 10.2), calculate the angular

acceleration of the forearm at the instant the muscles are relaxed.

Assume that the subject’s height and body mass are 183 cm and 80 kg,

respectively, and make and state other appropriate assumptions as

needed.

(b) How much of a difference does neglecting forearm and hand weight

make to the computed value of α?

10.13 The photograph in Fig. 10.32 is of a diver doing a back dive, taken using

a stroboscopic flash firing at regular intervals. The images have been num-

bered to correspond to strobe flashes. The centers of mass of the diver in

images 1 and 6 have been shown by a black dot, and the center of mass in

image 14 has been shown by a white dot. The vertical scale bar at lower

right has a total height of 2 m. The horizontal scale markings are part of the

photograph and should not be used for this question.

(a) One difficulty is that we do not know the flash interval. Assuming that

image 6 corresponds to the peak of the diver’s trajectory, show that

the flash interval must have been about 90 ms.

(b) When the diver pushes off the board, the board exerts both a vertical

and horizontal force on the diver. Assuming that a constant horizontal
push-off force is exerted for a duration of 400 ms, compute the magni-

tude of this force. You will need to make some measurements from the

picture. You may assume that the diver is a standard American male,

with mass 82.2 kg, and that the diver is at rest at the beginning of the

push-off phase.

(c) Assuming that the diver’s total rotation from image 1 to 14 was 340◦,

and that the average moment exerted by the diving board on the diver

during push-off was 100 N m, compute the average radius of gyration

of the diver during push-off. You may neglect the changes in the diver’s

posture during the dive.

10.14 A 75 kg soldier is marching with straight, nearly rigid legs (“goose-

stepping”). Analysis of video footage shot at 24 frames/s gives the data

in Table 10.6, where θ is the angle that the swing leg makes with respect

to the vertical (see Fig. 10.33). If the soldier is 1.8 m tall, what is the
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Figure 10.32

For Problem 10.13. Image modified from Edgerton and Killian [12]. C© Harold & Esther Edgerton Foundation, 2006,
courtesy of Palm Press, Inc.

Table 10.6. For Problem 10.14.

Frame number θ(◦)

4 −20

5 −4

6 +7
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Figure 10.33

For Problem 10.14.

moment exerted on the swing leg at the hip at the instant when frame 5

is taken? Make and state necessary assumptions. Hints: be careful to use

radians when appropriate; the greater trochanter can be taken as the center

of rotation of the whole leg; the medial malleolus is the “ankle bone;” be

careful about how you use Table 10.2 and Fig. 10.21.
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Appendix The electrocardiogram

The electrocardiogram (ECG) is important for several reasons. First and foremost,

it provides information about the activity of the heart muscle, and it is therefore an

essential non-invasive clinical tool used to diagnose certain cardiac abnormalities.

From the biomechanical viewpoint, it provides a convenient reference signal for

time-varying quantities in the vascular tree, specifically pulsatile flow, pressure,

and arterial pulsation. Here we briefly describe the main features of the ECG.

The contraction of cardiac muscle is controlled by an intrinsically generated

electrical signal. In other words, the heart is responsible for its own stimulation,

although the rate of stimulation can be modulated by external factors. In order

to understand the behavior of this pacemaker system, we must first study several

basic facts about the propagation of electric signals in excitable cells, a category

that includes nerve and muscle cells. The general aspects of the description that

follows are true for all excitable cells; however, the details are specific to cardiac

muscle cells.

Normally, the cell’s interior is held at a negative electrical potential mea-

sured with respect to the surrounding extracellular fluid. This small poten-

tial difference (the resting potential, equal to approximately −90 mV) exists

because of a difference in ionic composition across the cell’s membrane (Table

A.1). This difference in composition is actively maintained by pumps resid-

ing in the cell’s membrane that transport ions against their concentration gra-

dient. Under the right stimulation, typically the cell’s internal potential reach-

ing a threshold voltage of approximately −60 mV (measured with respect to the

surrounding extracellular fluid), specialized transmembrane channels open and

allow ions to flood across the membrane. Because of the timing with which

these channels open, the net effect is to force the potential within the cell to

become slightly positive (approximately +30 mV). The cell then slowly pumps

out these ions, eventually returning the intracellular potential to its resting value.

Consequently, an electrode inside the cell, measuring the intracellular potential

with respect to the surrounding fluid, records a trace similar to that shown in

Fig. A.1. This process is known as depolarization and repolarization. In the

context of the electrocardiogram, this process is particularly important since
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Table A.1. Ionic concentrations in frog muscle fibers and in plasma.
The ionic composition of plasma is representative of extracellular
fluid composition. Note the substantial differences in ionic
composition across the muscle cell membrane, which is typical of
the situation in all cells. From Aidley [1] with kind permission of the
author.

Ionic species Concentration in
muscle fibers (mM)

Concentration in
plasma (mM)

K+ 124 2.25

Na+ 10.4 109

Cl− 1.5 77.5

Ca2+ 4.9 2.1

Mg2+ 14.0 1.25

HCO−
3 12.4 26.6

Organic anions ∼74 ∼13

Figure A.1

Typical intracellular potential versus time for a cardiac muscle cell. It can be seen that there is a very rapid depolarization
event, during which intracellular potential reaches approximately +30 mV, followed by a slower repolarization to the
resting potential of approximately −90 mV. The shape of the depolarization–repolarization signal is different in cardiac
muscle cells compared with other excitable cells (e.g., nerve cells). This is from a simulation of the polarization–
repolarization process but is very close to that observed experimentally. From Noble [2] with permission from Elsevier.

depolarization of cardiac muscle cells causes them to contract (i.e., causes the heart

to beat).

So far we have considered the potential difference across a single small region

(or patch) of cell membrane. Let us now look at an entire cardiac muscle cell,

which is long and spindly (or fusiform) in shape. Because of electrical coupling
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Figure A.2

Schematic diagram of current (ionic) flow and electrical potential in an excitable cell during action potential propagation.
The flow of ions is denoted by thin arrows, and + and – signs indicate electrical potential. The depolarization wave is
propagating from left to right. The equivalent dipole outside the cell is also shown.

between adjacent regions of membrane, a depolarization event initiated at one end

of the cell will cause the adjacent membrane patch to depolarize (Fig. A.2). This,

in turn, causes the adjacent patch to depolarize, which results in the passage of

a depolarization wave known as the action potential along the axis of the cell.

Furthermore, the cells in the heart are electrically coupled so that action potentials

can jump from cell to cell, and thus propagate throughout an entire tissue mass.

The net effect is that excitable cells within the heart act as a “wiring system” to

allow electrical information, in the form of action potentials, to be communicated

throughout the heart.

The existence of such an electrical signaling system can be exploited for clin-

ical purposes. The fundamental concept is that propagation of electrical signals

causes alterations in the electrical potentials in surrounding tissues. Measure-

ment of these surrounding potentials allows information about the state of the

heart’s electrical signaling system to be determined. The information that results

from a measurement of electrical potential at different locations is known as

the ECG.

In order to understand the ECG more fully, note from Fig. A.2 that the extracellu-

lar fluid in the depolarized area is at a slightly lower potential than the surrounding

extracellular fluid. Thus, there is a transient electrical field within the extracellular

fluid that causes ions to flow in the extracellular space as shown in Fig. A.2.1 Far

1 There is also ionic flow within the cell along the cell’s axis; however, for present purposes this is not of direct interest.
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Equipotential
lines

Electric Axis Vector (EAV)

Figure A.3

Equipotential lines resulting from the presence of an electrical dipole in a conducting medium. The dipole is
characterized by the EAV. Potential differences exist between any two equipotential lines.

from the cell, this combination of a transient electrical field and ion (current) flow

appear to have been generated by an equivalent electrical dipole oriented along the

axis of the cell, as shown in Fig. A.2. The strength and orientation of this dipole

can be characterized by a vector drawn from the negative to the positive terminal

of the dipole, known as the electric axis vector (EAV).

The presence of an electrical dipole in a conducting medium produces a family

of equipotential lines as shown in Fig. A.3. Voltage differences can be measured

between two locations within the surrounding conductor. The magnitude of these

differences will depend on electrode position, EAV orientation, and EAV magni-

tude. By measuring differences between several different (known) sites it is possible

to deduce the instantaneous state of the EAV.

Clinically, the conductor is the fluid within tissue, which enables voltages to be

measured at the surface of the skin. As the mass of cardiac muscle cells depolarize

and repolarize, the EAVs from each cell add vectorially to form a time-varying

effective EAV for the entire heart, which produces potential variations throughout

the body. The measurement of these potential differences at predefined locations

is recorded as the ECG. In the normal heart, electrical activity and muscular con-

traction follow a well-defined sequence. The ECG is therefore clinically useful,

since any deviations from the normal sequence are indicative of abnormalities in

the heart’s operation.

In order for the ECG to be a useful clinical tool, a great deal of standardiza-

tion in the detailed protocol for acquiring an ECG is essential. This is because

all ECGs are interpreted essentially by comparing them with large databases of

normal individuals and patients with known conditions. It is clear that, to make this

comparison, all ECGs in the database and the patient’s ECG must be acquired in a
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Table A.2. Standard (Einthoven) electrocardiogram electrode
placement locations; the limbs act as conductors so that, for example,
an electrode at the left wrist measures a potential at the left shoulder

Electrode Measurement
location

Attachment
location

Symbol

A Left shoulder Left wrist LS

B Right shoulder Right wrist RS

C Left hip Left ankle LH

Table A.3. Voltage differences taken to form
standard (Einthoven) electrocardiogram leads
(see also Fig. A.6 and Table A.2 for abbreviations).

Lead number Definition

I VLS – VRS

II VLH – VRS

III VLH – VLS

consistent fashion. This is accomplished by placing ECG electrodes in standard-

ized, well-defined locations. In fact, there are a number of different electrode

arrangements that are standard, each of which leads to a particular type of ECG.

Here we will consider only the simplest of these, known as Einthoven’s triangle,

or standard limb leads I, II, and III.
Einthoven’s triangle is formed by attaching three electrodes to the patient, as

shown in Table A.2. The lead I, II, and III measurements are formed by subtracting

electrode voltages as shown in Table A.3. For a given EAV, the signal on a particular

lead will be proportional to the projection of the EAV on that lead. In practice,

the signal on lead II is most commonly used, since it best demonstrates the large

depolarization/repolarization associated with ventricular beating. Einthoven lead II

is therefore sometimes called the standard lead.

In order to interpret the major features of an ECG, it is essential to know some-

thing about the sequence of electrical events in the heart. Depolarization is initiated

in a specialized group of cells on the right atrial wall known as the sinoatrial node,

or the pacemaker node. A depolarization wave spreads out over the atria, caus-

ing atrial contraction. Because of to the anatomy of the heart, this depolarization

wave is then forced to “funnel” into the atrioventricular node, located on the junc-

tion line between atria and ventricles. It is then conducted by the bundle of His
down the septum, and out into the ventricular walls by the Purkinje fibers, causing
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Figure A.4

Conduction pathways of the heart. On the left is a heart showing the sinoatrial (pacemaker) node, the atrioventricular
node, the bundle of His, and the Purkinje fibers, comprising the right, left anterior, and left posterior bundle branches.
Numbers on the heart show typical contraction times after the discharge of the sinoatrial node, in milliseconds.
Notice that the impulse is delayed at the atrioventricular node before being conducted down the ventricular septum by
the bundle of His. The typical delay, measured from the onset of the P wave (atrial contraction) to the onset of the
QRS complex (ventricular contraction), is 120 to 200 ms. The delay is necessary to allow the ventricles to fill with
blood during atrial contraction before the ventricles themselves contract. In interpreting the positions of the
conducting fibers in this diagram, it should be remembered that the fibers run in the three-dimensional tissue of the
heart and therefore can only be shown approximately in a two-dimensional cross-section as shown here. On the
right is an Einthoven lead II electrocardiograph (ECG) trace, where lower case letters refer to positions on the diagram
of the heart during the conduction and contraction sequence. See the text for explanation of main features of the ECG.
Timings in the left panel based on data in Guyton and Hall [3]; timings on the ECG based on data in Greenspan [4]; ECG
from Aidley [1] with kind permission of the author.

ventricular contraction. Finally the ventricles repolarize, in preparation for the next

heart beat (Figs. A.4 and A.5).

The following main features of the Einthoven lead II ECG can now be identified

in Figs. A.4 and A.5:

� The most prominent feature of the ECG is the QRS complex, which corresponds

to ventricular depolarization. The prominence of the QRS complex can be

explained by the following argument. The heart’s net EAV is the vectorial sum

of all cardiac cells’ EAVs, and since the ventricles contain the bulk of the tissue

mass in the heart, the EAV is very large during ventricular depolarization.



495 The electrocardiogram

Left atrium

Right atrium

Right ventricle
Left ventricle

Lead II axis

Time

1 sec

T

R

T

SP

R

VDV

SDV

VRV

FV
DV

ADV

Q

p

S
Q

Lead II 
signal

1 mV

Figure A.5

Electric axis vector orientation and magnitudes at various times during the cardiac cycle (left), and relation of the electric
axis vector to specific features of the electrocardiogram (ECG; Einthoven lead II; right). Each electric axis vector (shown
as a solid vector) is decomposed into its component along the lead II axis and the orthogonal component (shown as
dotted lines). P, projection of ADV (atrial depolarization vector) on lead II; Q, projection of SDV (septal depolarization
vector) on lead II; R, projection of VDV (ventricular depolarization vector) on lead II; S, projection of FVDV (final or late
ventricular depolarization vector) on lead II; T, projection of VRV (ventricular repolarization vector) on lead II. Vectors are
not to scale, but show correct signs for lead II projections. Electrocardiogram from Aidley [1] with kind permission of the
author.

� The P wave, which has the same polarity as the QRS complex but is much

smaller in magnitude, corresponds to atrial depolarization.
� Atrial repolarization, although present, occurs at the same time as ventricular

depolarization, and is therefore largely masked by the QRS complex.
� The T wave, which corresponds to ventricular repolarization, has the same sign

as the QRS complex, even though it represents repolarization. This is because the

spatial pattern of ventricular repolarization is different than that of ventricular

depolarization.

It should also be noted that a vector ECG can be created by combining selected

ECG leads and plotting their data against one another (instead of as a function of

time). For example, the frontal vector ECG (or VCG) is obtained by plotting lead I

on the x axis, and the average of leads II and III on the y axis (Fig. A.6). Some

thought will reveal that the resulting vector is the instantaneous projection of the

EAV onto the frontal plane.
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Figure A.6

Projection of the electric axis vector (EAV) onto the Einthoven leads. The electric axis vector is labeled “heart vector.”
The angle that the EAV makes with the horizontal is denoted by α, measured clockwise, with zero meaning that the EAV
points to the patient’s left. In the lower portion of the figure, the procedure for creation of the frontal vector ECG (VCG) is
summarized. Lead I is plotted on the horizontal axis, while leads II and III are combined (averaged) to produce the aVF
lead. This is inverted and plotted on the vertical axis. The result is a point representing the tip of the EAV, which traces
out a path during the cardiac cycle as shown. RA, right arm; LA, left arm; LL, left leg. From Dower et al. [5] with kind
permission of the author.
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abduction, 466
accelerometer, 463
accommodation, 263
acinar mass transfer

air-side, 307
different modes of operation, 309
screening in, 307

acinus
blood perfusion of, 295
definition of, 282

actin, 335
cortical, 27
diameter of filaments, 24
fibrous (F-actin) see also F-actin, 25
globular (G-actin) see also G-actin, 25
myosin complex, 335, 347
polymerization, 25
tension elements in tensegrity model,

60
treadmilling, 27
yield strain, 65
Young’s modulus, 27

actin–myosin complex, 335, 347
action potential, 338

propagation of, 491
active element, 347
activity coefficient, and osmotic pressure,

210
adduction, 466
ADP, adenosine bisphosphate, 22
adventitia, 184
aerobic respiration, 332
aerosol droplets in lung, 313
AFM see atomic force microscopy (AFM)
afterload, cardiac, 175
aggrecan, 32, 419
aggregate equilibrium modulus, 428
air composition, typical in tidal volume, 310,

311
airborne phase of jumping, 444, 448
airway tree

generation numbers of, 284
organization of, 284

allometric scaling, 213
equation, 213
summary of relationships, 217

alveolar ducts, 282

alveolar surface tension, power required to
overcome, 316

alveoli, 282
formation of, 283
increase with age, 286
number of, 283
semipermeable nature of walls, 296
size of, 283
surface area of, 284
wall thickness, 301

wall thickness in humans, 284
American Society of Mechanical Engineering, 3
anaerobic respiration, 332
aneurysm, 226
anisotropy of artery wall, 186
ankyrin, 47
anterior chamber, 251
anterior cruciate ligament, 414
anthropometry, 462

use in gait analysis, 468
aorta, 169

diameter in humans, 168
pressure in, 174

aortic root size, 168
apparent density, 383
aqueous humor, 251

circulation in anterior chamber, 263
conventional drainage route, 257
drainage, 257
flow rate of, 257

aqueous veins, 257
Archiv für Entwicklungsmechanik, 12
Archives of Developmental Mechanics, 12
areal moment of inertia, 361
arterial bifurcation

definition sketch, 200
effects on pressure wave, 200

arterial compliance, definition of, 182
arterial hemodynamics

parameter values, 133
Reynolds numbers, typical, 131, 132
unsteady flow, 138
wall shear stresses, 132
Womersley parameters, typical, 132

arterial pulse propagation, 179
arterial taper, effects on elastic wave propagation,

195
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arterial tree
branching network model of, 148
input impedance of, 204

arteries
caliber of, 1
characteristic impedance of, 196
diameter variations of, 191
major in dog, 170
major in human, 172
pulmonary, 284
remodeling, 92
traveling waves in, 193

arterioles
blood flow in, 142
flow resistance control, 169

artery wall
effects of thickness on wave speed, 191
non-linear elastic behavior of, 191
viscoelastic behavior of, 191
Young’s modulus of, 186

articular cartilage, 418
aggregate equilibrium modulus, 428
biochemical composition, 418
biphasic theory, 435
calcified zone, 419
compression test configurations, 426
deep zone, 419
middle zone, 419
modulus, tensile, 426
stress–strain behavior in compression, 426
structure of, 418
superficial zone, 418
tide mark, 419
viscoelastic properties, 434

asbestos fibers, inhalation of, 313
associated structures of respiratory system, 282,

285
astrocyte, 266
atherosclerosis, 2
atomic force microscopy (AFM), 35

cantilever arm, 37
contact mode, 38
force mapping mode, 38
spatial resolution of, 41
tapping mode, 38

ATP, adenosine trisphosphate, 22
atrioventricular node of heart, 493
atrioventricular valves, 172
atrium, 171
autoregulation

of blood flow in eye, 274
axons, 265
axoplasmic blockade in glaucoma, 266

ballistic walking model, 459
balloon, 397
basal lamina, 31
basal metabolic rate, 214
basement membrane, 31
Batson’s casting compound, xii
bending moment, 361

bends, effects on elastic wave propagation, 194
Bessel function, 139, 141, 156, 247
bicarbonate ions in red cells, 303
biceps, 356
biconcave disk, analogy to red cell shape, 122
bifurcations

arterial, 199
effects on elastic wave propagation, 194

Bingham fluid, 151
bipinnate muscle, 351
blindness

from glaucoma, 2
blood

CO2 carrying capacity of, 303
coagulation, 124
composition, 121
constitutive equation for, 129
continuum approximation for, 142
effective viscosity in small capillaries, 144
elastic nature of, 121
flow in the eye, 271
flow resistance of pulmonary circulation, 171
Newtonian behavior in unsteady flow, 142
O2-binding characteristics of, 304
O2-carrying capacity of, 122
plasma, 121
proof of flow in closed circuit, 4
relative viscosity of, 128
reservoir, 169
rheology

in large arteries, 132
shear-thinning behavior of, 127
transit time, 164

blood flow see also hemodynamics
energy expenditure of, 230
laminar treatment of, 134
steady aspects of, 133
unsteadiness of, 131

blood gas concentration, 297
blood pressure

first measurement of, 6
blood vessel collapse

in eye, 273
blood vessels, distension of, 181
blood volume, normal, 164
BMR see basal metabolic rate
body surface area

correlation with body mass, 216
average value, 216

body temperature and pressure (BTP), 310
Bohr effect, 303
Boltzmann constant, 37
bone, 379

adaptive remodeling, 95
anisotropic properties, 388
apparent density, 383
bending moment, 361
bone-on-bone reaction force, 479
cortical, 383
density dependence of mechanical properties,

390, 393
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bone (cont.)
design requirements, 409
fast fracture, 395
fatigue, 395
fracture, 395
fracture incidence, 411
functional adaptation of, 408
functions of, 379
humerus dimensions in tennis players,

408
mechanical function of, 1
mechanical properties of, 387
mechanobiology, 407
mechanobiology of, 95
medullary canal, 363
micro-cracks, 395
names of, 380
orientation of trabeculae in femur, xii
osteonal, 384
peak periosteal strain, 364, 409
relative density, 383
strain rate dependence of mechanical properties,

389
structure of cortical bone, 384
structure of trabecular bone, 384
tissue composition, 382
tissue mechanical properties, 388
trabecular, 383
viscoelasticity, 389 see also cortical bone;

trabecular bone
bone quality, 395
bone-on-bone reaction force, 479
Borelli award, 6
Borelli, Giovanni Alfonso, xii, 6
brachial artery, use in measuring blood pressure,

180
brachialis, 356
brachioradialis, 356
breathing

biomechanics of, 287
natural frequency of, 317

bronchi, 282
bronchial tree, cast of, 283
bronchioles, 282
bronchus, 282
Brownian motion, effects on red cell orientation,

126
bruising, 242
BTP see body temperature and pressure
buckling of trabeculae, 437
bulk modulus of compressibility, 194
bundle of His, 493
Bunsen solubility coefficient, 299

calcium
role in muscle contraction, 338

canaliculi, 97, 98, 384, 385
cancellous bone see trabecular bone
capillaries

blood flow in, 142
filtration, quantitative analysis, 211

flow distribution in, 1
fluid

leakage, 234
transport, 207

length, optimal for pulmonary mass transfer,
301

lymphatic, 212, 243
pulmonary, 284
role of, 204
surface area, 168

CapZ, 27
carbon dioxide

carrying capacity of blood, 303
production rate in humans, 310
solubility in plasma, 299
transport in lung, 303

cardiac cell, intracellular potential of, 490
cardiac cycle, description of, 172
cardiac index, definition of, 216
cardiac muscle, 171, 332

contractile force, 171
load–length relationship, 369

cardiac output
early estimate of, 8
matching left and right heart, 171
scaling with body mass, 218
qualitative description, 172

cardiac waveform, Fourier decomposition of, 182
cardiovascular system

closed loop nature of, 6
Carman–Kozeny equation, 248
cartilage

articular, 94, 418 see also articular cartilage
biochemical composition, 412
cell–matrix interactions, 73, 104
elastic, 418, 419
fibrocartilage, 418, 419
friction coefficient, 418
hyaline, 418
mechanical function, 3
modulus, tensile, 426
peak compressive strain, 94
peak pressure in hip, 73, 418
structure of, 418
viscoelastic properties, 434
Young’s modulus (theoretical bounds), 104

Casson fluid
definition of, 130
flow rate reduction, 138

Casson relationship for blood, 130
catheter, for pressure measurement, 224
caudal, anatomic definition of, 464
cell division, 24
cell membrane, 18
cell–matrix interactions

cartilage, 72, 104
cell-surface receptors

mechanoreception role, 78
cement line, 384, 407
centrioles, 29
centrosomes, 29
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characteristic impedance of arteries, 196
characteristic length for pulmonary mass transfer,

300
check valves, in heart, 171
chondrocytes, 73 see also cartilage

mechanobiology of, 94
viscoelastic properties of, 73

chondroitin sulfate, 32
chondron, 73
chordae tendineae, 173
choroid, 272
cilia, 28
cilia in lung, 316
ciliary escalator, 316
ciliary muscle, 251
ciliary processes, 251
cilium, 28, 105
circulation

flow resistance of, 169
mass transfer role of, 168
pulmonary, 164
systemic, 164

circulatory system
arrangement of, 164

closed end reflection, 203
coaptation, 172, 173
cofilin, 27
collagen, 32, 412

crimp, 413, 422
D-period, 413
fibers

alignment, 422
dimensions, 413
recruitment, 422

in media of artery wall, 185
orientation change with strain, 290
orientation in artery wall, 185
type I in artery wall, 184
type IV, 183
Young’s modulus of, 32

collapsible tube, 272
in physiological flows, 274

collector channels, 257
compact bone see cortical bone
compliance

arterial, 182
fluid, 197

conducting airways, 282
conducting airways of respiratory system,

282
conduction pathways of the heart, 494
condyles, 365
confined compression test, 426
connective tissue, 379, 411

biochemical composition, 412
load–deformation curve, 421
material properties, 420, 423
modulus, tensile, 426
stress–strain behavior in tension, 425
structural properties, 420

constitutive equation for blood, 129

constitutive relationship, examples of,
120

continuum approximation for blood, 142
continuum assumption for blood, 134
contraction

isometric, 339
isotonic, 339

cornea, 250
effects on tonometry of stresses in, 254
thickness, 255

corneoscleral shell, 250
coronal, anatomic definition of, 464
coronary circulation, 219
cortical bone, 383

peak periosteal strain, 409
Poisson’s ratio, 388
structure, 384
ultimate strength, 388
Young’s modulus, 388

cortical cytoskeleton
erythrocyte, 47

Couette flow, 147
cranial, anatomic definition of, 464
creep, 429

connective tissues, 426
Kelvin body, 57
Maxwell body, 56

creep function, 432
critical shear stress

definition of, 130
critical stress intensity factor, 399
cruciate ligaments, 365
Culmann, Karl, 10
cytoskeleton, 18, 23

unit cell model of, 69, 102

damping coefficient see also viscoelasticity, 55
Darcy’s law, 241
dashpot, 54 see also viscoelasticity
daughter arteries, 200
De motu animalium, xii, 6, 7
dead space air, definition of, 327
density

apparent, 383
relative, 70, 383

depolarization, definition of, 489
developmental biomechanics, 12
dialyzer, 323
diaphragm, 285
diarthrodial joints, 418
diastole

definition of, 175
end-diastolic volume
pressure, diastolic, 179

diffusion coefficient, effective value with
partitioning, 320

diffusion, importance versus convection for
pulmonary transport, 307

diffusivity, 99
gases in lung, 298
gases in tissue, 301
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dimensional analysis
for analysis of edema, 244
use in estimating wave speed, 189

distal, anatomic definition of, 464
distensibility, definition of, 189
distension wave see elastic wave
DNA, 19
dorsal, anatomic definition of, 464
D-period, 413
drag force, 105
DuBois formula for body surface area,

216
dynamic viscosity, definition of, 120
dyneins, 28

ECG see electrocardiogram
echinocyte, 126
ECM see extracellular matrix (ECM)
economy class syndrome, 213
edema, clearance of, 243
effective viscosity, definition of, 121
Einthoven’s triangle

lead locations, 493
use in electrocardiogram, 493

ejection, cardiac, 175, 176
elastic lamellae of artery wall
elastic modulus see Young’s modulus
elastic properties of distensible tube,

189
elastic wave speed

effects of age, 194
of thick-walled vessel, 220
typical values, 191

elastic waves in arteries, 187
elasticity of lung tissue, 288
elastin, 32, 185

of lung, 288
orientation change with strain, 290
Young’s modulus of, 32

elastin:collagen ratio in artery wall, 185
elbow, 355
elbow flexion, 360
electric axis vector

definition of, 492
relation to electrocardiogram features,

495
electrical circuit, analogy with circulatory

system, 181
electrical/flow analogy, 197
electrocardiogram (ECG), 174

clinical importance of, 489
Einthoven’s triangle in, 493
frontal vector in
generation of, 491
P wave in, 495
QRS complex in, 494
standard lead in, 493
standard limb leads for, 493
T wave in, 495

electromyography, 462
endoplasmic reticulum, 19

endotenon, 416
endothelial cells, 53

mechanobiology of, 91
shear sensing, 1

endothelium
continuous, 205
discontinuous, 207
fenestrated, 205

energy
added to blood by heart, 177
interconversion during walking and running,

460
required for lung inflation, 316
stored in artery wall, 223

enzyme-linked receptors see also cell-surface
receptors, 78

epiphyseal line, 383
episcleral veins, 257
epitenons, 416
epithelial lining of airways, 315
equilibrium tensile modulus of connective tissues,

426
equivalent electrical dipole, definition of, 492
erythroblast, 47
erythrocytes see red cells, 44

cortical cytoskeleton, 47
eukaryotic cells, 18
Euler angles, 466
Euler–Bernoulli beam theory, 361, 409
European Society of Biomechanics, 4
excitable cells, definition of, 489
exercise, effects on acinar mass transfer,

308
expiration

forced, 288
quiet, 288

expiratory reserve volume of lung, 309
extensor carpi radialis longus, 357
extracellular matrix (ECM), 31
eye

anatomy of, 250
focussing power of, 9

F-actin see also actin, 25
density of actin network, 72, 102
density of pure fiber, 72
Young’s modulus, 27

Fahraeus–Lindqvist effect, 143, 156
“inverse” in very small capillaries, 146

fascicles, 414
fast fracture, 395
fatigue, 395
femoral condyles, 466, 475
femoral intercondylar groove, 367
femoro-patellar contact force, 369
femur, 365

contact force with patella, 369
intercondylar groove, 367
internal architecture of, 11

femur, orientation of trabecular bone in, xii
fenestrae of vascular endothelium, 205
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fibrinogen
rheological effects of, 127

fibroblasts, 415, 417
fibronectin, 32, 183
fibula
Fick’s law, 99, 298
filamin, xiii
filtration, capillary, 212
finite element model, 74
flagella, 28
flow chambers

parallel plate, 89
radial, 89

flow wave, amplitude versus position, 199
fluid flow, interstitial, 240
fluid inertia, in elastic wave propagation,

188
foam model see unit cell model
focal adhesion kinase, 79
focal adhesions, 34, 78
force plate, 471

typical data, 473
Fourier analysis

for pulse waveform, 204
use in arterial hemodynamics, 142

Fourier decomposition of cardiac waveform, 182
fracture mechanics, 395
fracture toughness, 399
Framingham Heart Study, 168
Frank, Otto, 180
Frank–Starling mechanism, 171
friction

cartilage, 418
cartilage of knee, 367

frontal vector in electrocardiogram, 495
Fung, Yuan-Cheng, 12, 13

G-actin see also actin, 25
gait analysis, 461

anthropometry, 468
Euler angles, 466
force plate in, 471
ground reaction force, 471
helical screw angles, 466
joint reaction force, 475, 479
joint reaction moment, 475
kinematics, 463
kinetics, 471
link segment model, 472

Galen, 4
Galilei, Galileo, 4
gas concentration, in blood, 297
gas flux in alveolus, 297
gas transfer, whole lung, 308
gelsolin, 27
giraffe jugular vein, 274
glaucoma, 250

angle-closure, 264
axoplasmic blockade in, 266
biomechanics of, 251
incidence of, 2, 251

mechanical theory of, 266
vasogenic theory of, 266

glial cell, 266
glial fibrillary acid protein, 28
gliosis, 266
glycolysis see anaerobic respiration
glycosaminoglycans

osmotic pressure of, 247
see also proteoglycans, 32

goblet cells, 315
Golgi apparatus, 19
goniometer, 463
G-protein-linked receptors

see also cell-surface receptors, 78
graft

bypass, 225
vascular, 225

ground reaction force, 471
typical data, 473

Hagen–Poiseuille law, 8
Hales, Stephen, 5, 6
Harvey, William, 4, 5
haversian canal, 384
hearing

mechanics of, 2
heart

anatomy of, 169
atrial filling, 172
atrioventricular node of, 493
bundle of His, 493
conduction pathways of, 494
cycle see cardiac cycle
external pumping power, 178
external work of, 175
isovolumetric contraction, 172
left, 164
murmur, 175

muscle see cardiac muscle
output see cardiac output

pacemaker
node
system, 489

pressure–volume loop
pumping

efficiency 629
power

Purkinje fibers in 493
rate, scaled with body mass
right, 164
septal defect, 175
sino-atrial node of, 493
sounds, 172
stroke volume
tricuspid valve
two-chambered design of, 170
valve

endothelium, xii
mechanical function, 3
motion
sealing
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heart (cont.)
ventricle

contraction
pressure in left
volume of left
work diagram
see also diastole; systole

Heaviside function, 423
heel strike, 453
helical axis of motion see helical screw

angles
helical screw angles, 466
hematocrit

definition of, 122
in capillary tubes, 145
effects on oxygen transport in pulmonary

capillaries, 306
hemodynamic variables, scaling of, 213
hemodynamics

definition of, 119
origin of term, 119

hemoglobin, 122
oxygen binding to, 297, 303, 304

Henry’s law, 82, 299
heparin sulfate, 32
Hertz contact mechanics, 38
heterogeneity in lung, 302
hiccups, curing, 326
high jump, 449
Hill equation, 303
history of biomechanics, 3
hoop strain, in vessel wall, 219
hoop stresses, in artery wall, 190
humerus, 353, 355
humidification of air in lung, 312
hyaluronan, 32

osmotic pressure of, 247
hydraulic permeability, definition of, 241
hydroxyapatite, 382, 388
hypotonic solution, 232
hysteresis, 429

in surface tension, 319

ideal solution, osmotic pressure of, 210
Imbert–Fick law, 253, 255
impedance

complex valued, 198
matching of heart and arterial tree, 204
mismatch, effects on wave propagation, 200
of arteries, definition of, 196

in vivo microscopy, 207
inertance, fluid, 197
inferior vena cava, 169
input impedance of arterial tree, 204
input impedance, human, 205
inspiration

forced, 288
quiet, 287

inspiratory reserve volume of lung, 309
Institute of Medicine, 12
insulin, delivery by inhalation, 313

integrins, 34
binding strength of, 150
mechanoreception role, 77

intercostal muscles, 285
role in inspiration, 287

intermediate filaments, 28
diameter of, 24

internal elastic lamina, 184
International Society of Biomechanics, 3
interosseous membrane, 365
interstitial fluid flow, 240
interstitial velocity, 242
interstitium, definition of, 240
intima, 183
intracellular potential, cardiac cell, 490
intraocular pressure

role in glaucoma, 257
role of, 251

intrapleural fluid, 285
intrapleural pressure, 288, 291
inverted pendulum see ballistic walking model
ion channels, mechanoreception role, 77
ionic composition, in muscle cells, 490
isometric contraction, 339
isometric scaling, 213
isotonic contraction, 339
isovolumetric contraction, 175, 176
isovolumetric relaxation, 175, 176

Japanese Society of Biomechanics, 4
joint angle, definitions of, 465
joint reaction force, 359, 360, 475, 479
joint reaction moment, 475
joints

diarthroidal, 418
reaction force, 359, 360
synovial, 418

JRF see joint reaction force
jumping, 444

airborne phase, 444, 448
ground reaction force in push-off phase, 447
high jump, 449
pole vault, 448
pole vault world record, 449
push-off phase, 444
running high jump, 449
running jump, 448
standing jump, 444
standing jump world record, 448

Kedem–Katchalsky equations, 231
Kelvin body, 56 see also viscoelasticity

creep response, 57
keratins, 28
kinematics

definition of, 462
gait, 463

kinesins, 28
kinetics

definition of, 462
gait, 471
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knee
biomechanics, 365
structure of, 365

Korteweg–Moens wave speed, 191, 220
typical values, 191

Krukenberg spindles, 263

lactic acid, 332
lacunae, 98, 385
lamellae, 384
lamin, 28
lamina cribrosa, 265

composition of, 266
strain energy of, 267
strains in, 270

laminin, 32, 183
Landis, experiments of, 207
Laplace’s law, 291
larynx, 282
latency period, 338
lateral, anatomic definition of, 464
Latrunculin-B, 104
leaflets, heart valve, 172
leukocyte, 121
ligament

biochemical composition, 412, 414
cruciate, 365
fascicles, 414
knee, 365
modulus, tensile, 426
patellar, 367
spine, 423
structure of, 414
viscoelastic properties, 434

ligamentum flavum, 415, 423
ligand–receptor bond strength, 50
linear fracture mechanics, 397
lining cells see osteocytes
link segment model, 472
locomotion, 444

complexity of, 2
cytoskeleton role, 23
unicellular organisms, 2

lumped parameter circuit representation, 181
lung tissue, micrograph of
lungs

arteries, 284
capillaries, 284

blood-flow resistance, 171
blood pressure in, 171
mass transfer capacity
radius
sheet-like arrangement

cilia, 316
diffusing capacity
elasticity of, 288
epithelial cells
energy required to inflate, 316
expiratory reserve volume of, 309
force transmission to, 287
heterogeneity in, 302

inflation and deflation of, 287
inspiratory reserve volume of, 309
mass transfer, 293

air-side
blood-side
characteristic length for

measurements of surface tension effects in, 294
particle transport in, 313
pressure–volume relationship, 294
residual volume of, 309
vital capacity of, 310
volume of, 309

see also inspiration; expiration; pulmonary
lymphatic capillaries, 212, 243
lymphatic system, 240

function of, 14
lysozomes, 19

macular degeneration, 250
magnet pole piece, 103
magnetic bead microrheometry, 42, 101, 103

force range produced, 42
magnetic twisting cytometry see also magnetic

bead microrheometry, 42
Malpighi, work with Borelli, 6
manometer, use in blood pressure measurement, 8
marathon, bone fracture in, 405
marker locations, definitions of for gait analysis,

465
markers for gait analysis, 463
mass moment of inertia, 469
mass transfer see also gas exchange, xii

capacity of pulmonary capillaries, 302
in lung, 293
whole lung, 308

matched junction, 203
matrix metalloproteinase, activity in trabecular

meshwork, 263
Maxwell body see also viscoelasticity, 55

creep response, 56
mean flow, effects on pulse propagation, 197
mechanical signal transduction, 78

biochemical-mediated, 79
cytoskeleton-mediated, 78

mechanical stimulation of cells, 80
biaxial stretch, 85
fluid shear stress, 86
hydrostatic compression, 81
platen compression, 82
uniaxial stretch, 84

mechanobiology
bone, 407
chondrocytes, 94
endothelial cells, 91
osteoblasts and osteoclasts, 97
smooth muscle cells, 93

mechanoreception, 76
cell-surface receptors, 78
integrins, 77
ion channels, 77

mechanoresponse, 80
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mechanotransduction, 21, 76
media, 183

composition of, 185
medial collateral ligament, 414
medial malleolus, 475
medial, anatomic definition of, 464
medullary canal, 363
membrane oxygenator, 321, 322
membrane tether, 50
microcirculation, blood flow in, 142
microcomputed tomography, 387
micro-cracks, 395
microfilaments, 24
micropipette aspiration, 43, 101

force range produced by, 44
microtubules, 28

compression elements in tensegrity model, 60
diameter of, 24

mitochondria, 19, 99
mitotic apparatus, 29
mitral, 173
molecular motors, 28
moment of inertia, 70

areal, 361
mass, 469
polar, 363

motor end plate, 338
motor unit, 338
Mount Everest, 179

air composition on, 326
mouse, respiratory rate and oxygen consumption

of, 328
mRNA see RNA, messenger
mucus, secretion by goblet cells, 315
Murray’s law, 230
muscle

fibers, 335
smooth, 332
types of, 332

see also cardiac muscle; skeletal muscle,
332

myofibril, 335
myopia, 250
myosin, 27, 335
myotendinous junction, 417

National Academy of Engineering, 12
National Academy of Sciences, 12
natural convection, 263
natural frequency of breathing, 317
neurofilaments, 28
neurons, motor, 338
neurotransmitters, 338
neutral axis, 361
neutrophils, 44, 53, 101, 234

rolling, 53
Newtonian fluid

definition of, 121
nitric oxide, 92, 98, 153
normal stresses, definition of, 120
nucleus, 19

ocular anatomy, outflow tract, 258
ocular blood flow, 271
olecranon process, 355
On the Movement of Animals, 6, 7
oncotic pressure
open end reflection, 203
optic nerve, 250

damage to, 2
head, 250

optical trap, 42
optical tweezers, 41
orbit of eye
organ, definition of, 13
organelles, 18
osmolar, definition of, 211
osmolarity of physiological fluids, 211
osmotic pressure, 209

difference across cell membrane, 235
generated by proteins
of extracellular matrix components, 247
of ideal solution, 210

osmotic reflection coefficient, 231
osteoarthritis, 95, 419, 429
osteoblasts, 1, 382

mechanobiology of, 97
response to fluid shear stress, 98
response to stretch, 98

osteoclasts, 1, 382
osteocytes, 382

mechanobiology of, 97
response to fluid shear stress, 98

osteon, 384
osteopontin, 98
osteoporosis, 387, 436
osteotendinous junction, 417
outer elastic lamina, 184
outer hair cells, 46
oxygen

alveolar transport of, 296
binding in blood, data for, 304
consumption rate, 214

in humans, 310
at rest

saturation of hemoglobin, definition of,
303

solubility coefficient, 299
solubility in plasma, 299
transport in red cells, 305

P wave, 495
pacemaker node, 493
pachymeter, 255
papillary muscles, 173, 438
paramagnetic bead, 42
paratenon, 416
parenchyma

lung, 288
non-linear elastic behavior of, 289
stress–strain behavior of, 289

parent artery, 200
Paris’ law, 403, 407
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partial pressure
expression of gas concentrations in terms of, 299
in perfect gas mixture, 310

partial volume in perfect gas mixture, 311
particle transport in lung, 313
partition coefficient, 320
patella, 365
patellar ligament, 367
patellar tendon, 367
PCSA see physiological cross-sectional area
pelvic list, 453
pelvic rotation, 453
pelvic tilt, 453
pennate muscle, 351
pericytes see smooth muscle cells
permeability, definition of, 241
phagocytosis, 31

role in lung, 316
pharynx, 282
physiological cross-sectional area, 358
pinnate muscle, 351
plasma

constituents of, 123
viscosity of, 122

plasma skimming layer, definition of, 144
platelets, role in clotting, 121
platen, 82
pleural fluid, 285
pleural membrane, 285
plug flow, 47
pneuma, role of, 4
pneumothorax, 288
pneumotonometry, 252
Poiseuille, Jean Léonard Marie, 8, 9
Poiseuille’s law, 8, 90, 136
Poisson’s effect, 81
polar moment of inertia, 363
pole vault, 448

world record, 449
porosity, of tissue, 244
porous material

definition of, 241
porous media theory, 241
post-transcriptional assembly of proteins, 80
preload, cardiac, 175
premature infants, lung function in, 292
presbyopia, 250
pressure

hydrostatic, 82
intrapleural, 288

pulse, 198
amplitude of, 195
effects of arterial property variation, 198
propagation of, 186
reflected, 200
transmitted, 200
see also elastic waves

wave, amplitude versus position, 199
pressure, intrapleural, 288, 291
pressure–radius relationship, arterial, 185
pressure–strain modulus, 186, 187

pressure–volume curve
cat lungs, 317
loops of heart, 178

prestress, 64
principle of virtual work, 269
printer’s ink, rheology of, 130
prokaryotic cells, 18
prolapsing, 173
pronation, 355
prostacyclins, 92
prostaglandins, 98
proteoglycans, 32, 185, 412
proximal, anatomic definition of, 464
P-selectin, 53
pulmonary see lungs
pulsatility, in different parts of vasculature,

179
pulse see arterial pulse
pulse velocity, invariance with body mass, 218
pupil, 250
Purkinje fibers of heart, 493
push-off phase of jumping, 444

ground reaction force, 447

QRS complex, 494
quadriceps, 367

radius (bone), 355, 364
radius of gyration, 469
rate-of-strain tensor, 120
red cell

concentration in blood, 122
crenation, 126
deformability, 124
early measurement of size of, 9
effects of Brownian motion on orientation of,

126
reheological effects of, 124
shape of, 122

reflection coefficient, 203
reflection of pressure waves in arteries, 183
reflection ratio

definition of, 203
physical interpretation of, 203

regurgitation, 173
relative density, 383
relative viscosity

definition of, 128
relaxation function, 432
relaxation time

constant strain, 431
constant stress, 431

relaxed elastic modulus, 431
repolarization, definition of, 489
residual bodies in cells, 316
residual volume of lung, 309
respiration

aerobic, 332
anaerobic, 332

respiratory distress syndrome
surfactant effects in, 295
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resting potential
definition of, 489
typical values of, 489

reticulocyte, 47
retina, 250

blood flow to, 272
retinal circulation, 272
retinal ganglion cell, in glaucoma, 265
rheology, definition of, 119
RNA

messenger (mRNA), 19
translation, 80

transcription of mRNA, 80
Rosetta stone, deciphering, 8
rouleaux, 126, 127

definition of, 124
Roux, Wilhelm, 9, 10
rubber elasticity, 247
running, 444, 459

sagittal, anatomic definition of, 464
sarcomere, 335
sarcoplasmic reticulum, 338
sartorius muscle, 347
scalene muscles, role in inspiration, 287
scaling

allometric, 213
isometric, 213
of hemodynamic variables, 213

scapula, 354
Schlemm’s canal, 257

collapse in glaucoma, 259
dimensions of, 262
endothelial permeability, 263
role in glaucoma, 261
shear stresses in, 261

sclera, 250
scleral canal, 250, 265, 271
screening length

definition of, 307
value for mass transfer in human lungs,

308
sea urchin, 15
second messengers, 79
Segre–Silberberg effect, 145
semipermeable membrane, 230

definition of, 209
septal defect, 175
shank, 463

angular acceleration during walking, 477
shear stresses, definition of, 120
shear-thickening fluid, definition of, 121
shear-thinning fluid, definition of, 121
sickle cell anemia, 128
sino atrial node of heart, 493
skeletal muscle, 332

active element, 347
bone interactions, 353
contraction, 339
fast oxidative, 333
fast twitch, 333

glycotic, 333
intermediate twitch, 333
isometric contraction, 339
isotonic contraction, 339
latency period, 338
load–length relationship, 344
load–velocity relationship, 344
lumped parameter model, 347
mechanical advantage, 354
morphology, 333
parallel arrangement of fibers, 351
physiological cross-sectional area, 358
physiology, 333
pinnate fiber arrangement, 351
sliding filament model, 335
slow oxidative, 333
slow twitch, 333
tetanus, 342
twitch, 339
types of, 332
whole muscle mechanics, 351

skeleton 1030, see also bone
sliding filament model, 335
smooth muscle, 332

cells
mechanobiology of, 93
role in arterial tone, 169
surrounding arteriole, 169

solubility coefficient, gas, 299
solubility of gas in blood, 299
spectrin, 47, 124
sphygmomanometry, 180
spirometer, 310
spongy bone see trabecular bone
spring 970, see also viscoelasticity, 54
spring constant see also viscoelasticity, 54
stance phase, 451
standard lead, in electrocardiogram, 493
standard limb leads, for electrocardiogram, 493
standard linear model see also viscoelasticity,

429
creep response, 432
stress relaxation response, 432

standard temperature and pressure, 310
Starling’s hypothesis, 208, 232
Starling resistor, definition of, 272
steady flow, effects on pulse propagation, 197
step frequency, graph of, 461
stereocilia, 2
sternum, 285
Stokes layer, definition of, 141
Stokes number

definition of, 314
role of in particle transport, 314

Stokes’ law, 43, 103
particle transport in lung, 313

strain energy, 63, 267
strain energy density, 436
strain stiffening, 67
strain, inhomogeneity of in cell stretching, 85
strain stiffening of artery wall, 186
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streaming potentials, 95, 98
strength, of engineered vascular smooth muscle

tissue, 93
stress fibers see also actin, 27
stress

definition of, 119
equibiaxial, 87
function, 87
history, 429
hoop, 190
intensity factor, 400
relaxation, 398, 429
trajectories

crane compared to femur, 11
in bone, 10

stroke volume, see heart, stroke volume,
176

styloid process, 355
superficial velocity, 242
superior vena cava, 169
supination, 355
surface tension

effects on tonometry, 254
hysteresis in lung, 291, 319
lung surfactant values, 293
measurement of, 292
role in lung collapse, 290

surfactant, clinical use of, 292
swelling pressure of tissue, 243
swing phase, 451
synapse, 338
synovial fluid, 417, 418
synovial joints, 418
systemic circulation

flow resistance of, 171
pressure in, 171

systemic pressure, invariance with body mass,
218

systems biology, 15
systole

definition of, 175
end-systole volume, 176
pressure

early estimate of, 8
measurement of, 179

T wave, 495
tangent modulus, 191
tear film, 254
Teflon, in vascular grafts, 226
tendon

biochemical composition, 412, 416
modulus, tensile, 426
patellar, 367
structure of, 416
viscoelastic properties, 434

tensegrity, 60
tensional integrity see tensegrity
teres major muscle, 353
terminal bronchioles, 282
tetanic tension, 342

tetanus
fused, 342
unfused, 342

thick-walled elastic tube, artery as,
186

thoracic cage, 285
diagram of, 286

thoracic duct, 212
thrombus, formation in veins, 213
tibia, 365
tidal volume, 309
time scale for O2 transport, 306
tissue

porosity of, 244
swelling pressure of, 243

tissue engineering, 3
bone, 98
cartilage, 95
vascular smooth muscle, 93

toe off, 453
toe region, 421
tonometry, 252

Goldmann, 253
tortuosity, 248
toughness, 397
trabeculae, 387
trabecular bone, 383, 384

anelastic behavior, 389
buckling of trabeculae, 437
density dependence of mechanical properties,

390, 393
ultimate strain, 389
ultimate strength, 389
unit cell model, 393
yield strain, 436
yield strength, 394
Young’s modulus, 389

trabecular meshwork, 257
hydraulic conductivity of, 260

trachea, 282, 283
transcription, 80

factors, 80
translation, 80
transmembrane channels, role in action potentials,

489
transmission coefficient, 203
transmission ratio, definition of, 203
transmural pressure in artery, 190
traveling waves in arteries, 193
Trendelenburg effect, 455
triceps muscle, 355
tricuspid valve, 172
tropocollagen, 412
tropomyosin, 335
troponin, 335
tubulin see also microtubules, 28
tunica adventitia, 184
tunica intima, 183
tunica media, 183
twitch, 339
type II epithelial cells of lung, 291
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ulna, 355, 364
ultimate strength, definition of, 394
unit cell model

cytoskeleton, 69, 102
trabecular bone, 393

unsteady Bernoulli equation, 192
urethra, 274
uveal circulation, 272
uveo-scleral outflow, 257

valve
mitral, 172, 173
tricuspid, 172, 173

valves, venous, 213
valvular insufficiency, 175
van’t Hoff’s law, 210, 231, 232, 323
vasa vasorum, 184
vascular system

characteristics in dog, 166
cross-sectional area of vessels in
number of vessels, 166

vascular tree
overview

vascular waterfall, 273
vein wall

composition of, 213
elastic modulus of, 213

veins
blood flow in, 212
pulmonary, 284

velocity
interstitial in porous media, 242
superficial in porous media, 242

vena cava
inferior, 169
superior, 169

venous pressure
in eye, 273

ventral, anatomic definition of, 464
ventricle see heart, ventricle, 171,

369
venules

blood flow in, 142
Vesalius, Andreas, 165
vesicles, 19
vessels

major in dog, 170
major in human

villin, 27
vimentin, xii, 28
virtual displacement, 269
virtual work, 269
viscoelasticity

bone, 389
cartilage, 434
chondrocyte nucleus, 74
chondrocytes, 73
complex modulus, 433
connective tissues, 429
creep function, 432

hysteresis, 429, 434, 439
Kelvin body, 56
ligament, 434
loss modulus, 433
lumped parameter model of cell, 54
Maxwell body, 55
phase lag, 433
quasilinear theory, 435
relaxation function, 432
relaxation time, 431
relaxed elastic modulus, 431
standard linear model, 429
storage modulus, 433
stress history, 429
tendon, 434

viscoelasticity of artery wall, 186
viscometer, 152

cone-and-plate, 86
parallel disc, 86

viscosity
effective, 143
relative, 128

viscous losses
effects on pulse waves, 198
in blood flow, 229

visual field, 252
vital capacity of lung, 310
vitreous body, 251
von Helmholtz, 8
von Meyer, Hermann, 10

walking see also gait analysis, 444, 451
ballistic walking model, 459
energy expenditure, 455
energy recovery, 459
heel strike, 453
kinetic energy, 459
stance phase, 451
step frequency, 459
swing phase, 451
toe off, 453

water hammer, relationship to elastic waves, 194
water, rate of loss by breathing, 313
wave speed

in arteries, 166, 189
Korteweg–Moens, 191

wavelength, amplitude of, 195
white cells, 121
Windkessel model, 180, 181, 219

limitations of, 182
phase shift predicted by, 182

Wolff, Julius, 9, 10, 407
Wolff’s law, xii, 407

limitations of, 10
origins of, 10

Womersley flow, xiii, 139
quasi-steady limit, 156

Womersley parameter, definition of, 141
work done by heart, 177
wound repair, 2
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yield strength, definition of, 394
yield stress, definition of for fluid, 130
Young, Thomas, 8, 9
Young’s modulus

cartilage (theoretical bounds), 104
cartilage, tensile, 426
cell, 64, 67
collagen, type I, 32
connective tissues, 426
cortical bone, 388

elastin, 32
F-actin, 27
incremental, 63
ligament, tensile, 426
of artery wall, 186
of engineered vascular smooth muscle tissue,

93
origins of, 9
tendon, tensile, 426
trabecular bone, 389
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