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Preface

In Principles of Political Economy, Mill wrote ‘happily, there is nothing in the
laws of Value [economics] which remains for the present writer or any future
writer to clear up; the theory of the subject is complete’. In his view, intuition,
introspection, and pure thought were enough to tackle all the challenges of
economics. Max Plank, though, dropped his involvement with economics as
he thought it was too difficult. To him, physics appeared more tractable.

Whether one views economics as simple or difficult depends on how the
general problem of economics is defined. An emerging literature views the
economy as a society of heterogeneous, and interactive, individuals, who
compete with each other over scarce resources. They learn from their past
experiences, continuously modify their rules of behaviour, and thereby
change the structure of the environment they face. As soon as economics
is defined in this way, the incredible complexity of the issues involved in
modelling the economy begins to emerge. And it immediately becomes
apparent that the subject sits at the crossroads of many interesting and chal-
lenging topics including cognitive science, behavioural psychology, politics,
mathematics, probability theory, statistics, and even biology.

There is currently no grand theory of the economy as an evolving system,
and there may never be. Yet, any step towards establishing such a theory
demands a theory of adaptive behaviour and a careful analysis of the connec-
tion between the individual and the system. This work studies some aspects
of these problems. It views the economy as a society of intuitive statisticians,
who follow the prescriptions of rational choice theory to make decisions. It
uses this framework to study the possible contribution of rational choice the-
ories to economic theory, and examines whether the hypothesis that ‘homo
economicus’ behaves like an intuitive statistician helps explain the dynamics
of the economy. The book then turns to the complexities that behavioural
heterogeneity and interaction create for the connection between the micro-
and macro-levels in the economy. The upshot is a critical understanding of
the current state of theoretical macroeconomics as well as numerous insights
and suggestions essential for constructing a dynamic theory of the economy.

This work has been in the making for many years, and during these years I
have regularly benefited from the magnanimous help of many. I would, most
notably, like to thank Colin Howson and Nancy Cartwright from whom I
learnt enormously during my years at the London School of Economics. Also,
my special thanks go to Cliburn Chan. Though by profession a biologist,
interested in nonlinear dynamics, he was generous enough to read various
parts of this work to teach me how to write and even how to restructure

x
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my arguments. I also owe a great debt to Sebastiano Bavetta, Donald Gillies,
Noosheen Hashemi, Gavin Hinks, Markus Jaeger, Duncan Kelly-Lite, Jamshid
Parvizian, Jochen Runde, Zhand Shakibi, and Rutang Thanawall, who in one
way or another assisted me with this work. Finally I wish to thank Keith
Povey, and Amanda Hamilton and Katie Button of Palgrave Macmillan, for
their help in the final stages of preparing this book. I dedicate this book
to my parents, and my wife Simin, and daughters Bahar and Keemia, for
surrounding me with so much love, support, and aspiration.

REZA SALEHNEJAD
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Introduction

As economics pushes on beyond ‘static’ it becomes less like science, and
more like history. (Hicks, 1979: xi)

Modern economies consist of millions of heterogeneous decision-making
units interacting with each other, facing different choice situations, and
acting according to a multitude of different rules and constraints. The inter-
action of these decision-making units at the micro-level gives rise to certain
regularities at the economy level, which form the subject matter of macroeco-
nomics. The complexity of modern economies makes it impossible to build
an analytic model that represents the behaviour of all the decision-making
units populating the economy. In modelling the economy, it is necessary
to leave many details out, introduce aggregate variables, and focus on the
relations among the aggregates. Macroeconomics is primarily the study of
aggregates.

The study of the economy at the aggregate level presents a number of
difficulties. For practical reasons, economists are not in a position to sub-
ject the economy to controlled experiments, and have to rely on statistical
analysis of aggregate data to establish causal relations true at the aggregate
level. Statistical analysis alone, however, is inadequate for causal inference,
and must always be supported with substantive information regarding the
structure to yield causal conclusions. Also, aggregate economic data are
imprecise, rendering the outcomes of statistical analysis in macroeconomics
even more uncertain. These difficulties raise the question of how it is possible
in macroeconomics to acquire the non-sample information needed for
modelling the economy’s structure.

In response to this question, several approaches to macroeconomics
have emerged. Theoretical macroeconomics, championed by new classical
economists, suggests that these methodological difficulties do not arise at
the individual level. We can start by establishing a theory of individual
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2 Introduction

behaviour which explains how the agent interacts with the economy, defines
his choice situation, and makes a decision. Once we have established a the-
ory of behaviour, we can transform it into a theory of the economy using
aggregation procedures. Since the theory is derived from the rules of individ-
ual behaviour, it correctly specifies the economy’s structure. Aggregate data
can then be used to transform the theory into a quantitative model of the
structure.

The enterprise of deriving the theory of the economy from microeconomic
theory – or the microfoundations project – rests on two grand assumptions.
The first is that it is possible to establish an empirically adequate theory of
individual behaviour. The other is that the theory can be transformed into
a theory of the economy using aggregation procedures, without having to
make any substantive assumption about the economy.

As regards individual behaviour, the basic idea in economics is that ‘homo
economicus’ follows the prescriptions of decision theory, understood in
terms of one or another expected utility theory, in particular the theory of
subjective expected utility. The expected utility theory, in all the variants on
offer, takes the agent’s view of the economy as given, and says nothing about
how he predicts future values of economic variables. To fill this theoretical
vacuum, new classical economists have set forth the rational expectations
hypothesis, which identifies the agent’s beliefs about the economy with the
mathematical expectations implied by the true economic model. This gives
rise to a view of the economy as a society in which everyone, except the
econometricians, knows the structure of the economy. The new classical
paradigm, therefore, defines economics as the enterprise to derive observ-
able economic phenomena from two assumptions: (1) people are expected
utility maximizers; and (2) they maximize their expected utility with respect
to the true economic model.

Theoretical problems with the rational expectations hypothesis have led
to a slow paradigm shift in new classical economics that aims to remove the
information asymmetry existing between the econometricians and people
in a rational expectations economy by suggesting that, like econometricians,
market participants also lack knowledge of the true economic model, and
must learn it from available data. The new paradigm has been dubbed the
bounded rationality paradigm, after Herbert Simon (1955; 1956). Though
the idea of bounded rationality is relatively old, a unanimous interpretation
of the paradigm is yet to emerge. One leading interpretation in new classical
economics conceives of the economy as a society of ‘intuitive statisticians’,
where everyone, like econometricians, theorizes, estimates, and adapts
in attempting to learn about probability distributions that, under ratio-
nal expectations, they already know (Sargent, 1993: 3). So understood,
the paradigm replaces the second principle of new classical economics
with the assumption that agents maximize their utility with respect to mod-
els that they, like econometricians, construct from economic data. We will
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refer to the proposal that homo economicus behaves like an econometrician
as the intuitive statistician hypothesis of bounded rationality.

In light of the abundant experimental evidence on the poor statistical
ability of ordinary people, the intuitive statistician hypothesis may seem
as unrealistic as the assumption of full rationality (information). However,
the proposal incorporates many formal models of human learning in cog-
nitive science and psychology including connectionism, as well as most
proposals on human causal inference. So, by exploring the hypothesis, we
can greatly learn about the possibility of establishing an empirically precise
theory of adaptive behaviour, which is essential for developing a dynamic
theory of the economy. This work studies the intuitive statistician hypothesis
in detail, and thoroughly investigates the complications arising in any
attempt at transforming a theory of individual behaviour into a theory of the
economy.

Chapter 1 begins with defining some key concepts in macroeconomics,
outlines several arguments for the necessity of theory in modelling the
economy, and characterizes the theoretical approach in some detail. The
chapter next reconstructs the so-called atheoretical approach to macroeco-
nomics, which offers an entirely opposing perspective on macroeconomics.
The view rejects both assumptions of theoretical macroeconomics. It argues
that current theories of individual behaviour lack precision and substan-
tial difficulties face any attempt to make them precise. And, because of
individual heterogeneity and interaction among decision-making units in
the economy, there is no simple, and useful, relationship between the
individual and economy levels. The approach confines the scope of macroe-
conomics to establishing models that efficiently summarize data, and are
useful for short-run predictions. In one reading, the approach rejects the very
existence of aggregate relations suitable for a causal account. The contrast
between these views reveals that the issues regarding theories of economic
behaviour and those about the link between the micro- and macro-levels
are the most basic topics in macroeconomics. The conjecture that one
can sensibly talk of structural relations at the economy level is of equal
importance.

Chapter 2 studies the contribution of rational choice theories to economic
theorizing by concentrating on Savage’s theory of subjective expected utility.
Using the general framework of the theory, the chapter distinguishes between
several phases of human decision making which include: (i) modelling the
choice situation; (ii) defining the decision problem; and (iii) solving the prob-
lem. In light of this, we distinguish between two possible types of theories
of behaviour: choice-based theories of behaviour and learning-based theo-
ries of behaviour. Rational choice theories are among choice-based theories
of behaviour; they take for granted how the agent models his choice situ-
ation and defines his decision problem, and explain only how he solves a
well-defined decision problem. In modelling behaviour using these theories,
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a host of substantive assumptions therefore are needed to specify the agent’s
view of his choice situation and the problem he is trying to solve. These
assumptions concern the agent’s view of the causal structure of the economy,
his values, needs and goals.

The chapter demonstrates that the resolution of economic controversies
primarily hinges on how the agent models his choice situation and defines
his decision problem, rather than on the specific method by which he solves
it. In fact, rational choice theories are consistent with all sides of any sub-
stantive controversy in economics, and contribute very little to economic
analysis. Substantial results attributed to these theories are implications of
the assumptions made about how people specify their choice situation, and
how they redefine it when faced with new information. As a consequence,
a theory of economic behaviour cannot take as given the structure of the
choice situation and how the agent defines his decision problem. Economics
requires a learning-based theory of behaviour that explains how the agent
models his choice situation, defines his decision problem, and redefines it
as a result of experience. The rational expectations hypothesis also fails to
eliminate the necessity of a learning-based theory of behaviour in economics.

Chapter 3 begins studying the intuitive statistician hypothesis. The use-
fulness of this hypothesis for modelling and thinking about the economy
depends on whether there exists a ‘tight enough’ theory of statistical infer-
ence. To address this issue, we propose a preliminary conjecture about how
a statistician perceives and models a choice situation: the statistician regards
measurable features of the environment as realizations of some random vari-
ables, with an unknown joint probability distribution. He uses data on these
variables to estimate their joint probability distribution and then uses the esti-
mate of the distribution to infer the causal structure of the variables. If the
model turns out to be inadequate, the initial set of variables is modified and
the two phases of inference are repeated. This setting allows the separation
of probabilistic inference issues from those of causal inference.

Central to learning the joint probability distribution of a set of variables is
model formulation, rather than estimation or hypothesis testing. Whether
there is a ‘tight enough’ theory of statistical learning critically depends
on whether in turn there is a ‘tight enough’ theory of model formulation
(Sargent, 1993: 23). Having said this, to study the issue of model formula-
tion at its most general level, the chapter turns to non-parametric inference,
which theoretically seeks to design algorithms that receive data on a set of
variables and yield the model that, given the data, best approximates the
underlying mechanism. We use the framework to explain why there can-
not be such algorithms. In addition, we highlight intrinsic limitations of
model-free inference, and establish the necessity of probabilistic background
information for building interpretable statistical models. With the data sam-
ples normally available, one must begin with a parametric model to obtain
an interpretable model of the data. As an implication, proposals to model
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homo economicus using tools from the neural networks literature are
doomed to fail. Neural network algorithms are nothing but non-parametric
estimators.

Chapter 4 studies statistical learning from the perspective of the Bayesian
theory, which is said to allow the incorporation of background informa-
tion into inference. We first look at some critical issues at the foundation
of the Bayesian theory to explain why, contrary to the common conception
in economics, it cannot be a theory of learning, and is only concerned with
coherent analysis. As a result, to explain central aspects of inference such as
model specification, empirical model assessment, and re-specification anal-
ysis, one has to go beyond the boundaries of the Bayesian theory. Having
done this, we draw on several important themes in statistics to reconstruct a
broader theory of Bayesian inference. The theory takes some steps in explain-
ing the central aspects of inference traditionally left out in the Bayesian
literature, including model formulation. Reflecting on the broader theory,
we consider the possibility of establishing a ‘tight enough’ theory of para-
metric inference, and bring to the fore some important implications for the
bounded rationality programme.

Chapter 5 studies the second phase of statistical learning relating to infer-
ence about causal structure. The chapter concentrates on the graph-theoretic
approach to causal inference in order to investigate the possibility of a data-
driven approach to causal inference. By ‘data-driven’ we mean any effort to
draw causal conclusions from probabilistic data using only subject-matter-
independent principles supposedly linking causation and probability. A claim
for a data-driven approach to causal inference raises two separate issues.
The first is whether there are universal principles connecting probabilistic
and causal dependencies. The other is whether the principles are sufficient
for inferring from the joint probability distribution of a set of variables the
causal structure generating the distribution. We take up both topics and, by
reflecting on the limits of data-driven causal inference, outline an alternative
account of causal inference from observational data. We also explain precisely
the intricate interplay between subject-matter information and observational
data in causal modelling.

The analysis in these last three chapters helps us judge whether there can
be a ‘tight enough’ theory of statistical learning that accounts for all phases of
inference from data. We draw on our response to provide a partial assessment
of the bounded rationality programme in new classical economics.

Chapter 6 studies the other element of the microfoundations project that
has to do with the move from a theory of individual behaviour to a theory
of the economy. We start with a critique of the representative agent mod-
elling approach to the study of the economy using real examples from the
literature, and explain why understanding large-scale economic phenomena,
such as recession and growth, calls for thinking of the economy as a society
of interactive heterogeneous individuals. Having done so, we investigate the
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problems that individual heterogeneity and interdependencies create for the
study of the economy. In modern economies these fundamentally undercut
the conception of the economy underlying the microfoundations project. In
fact, they sever any simple, direct, and meaningful link between the micro-
and macro-levels, casting doubt on the very existence of stable relations at
the economy level which are suitable for a causal account. This, of course,
makes it extremely difficult for the boundedly rational agent to learn about
the economic structure from observable data.

We conclude by highlighting some of the implications of our analysis
for the bounded rationality programme in particular and for the study of
the economy in general. The marriage of the hypothesis that the agent
behaves like a decision scientist with the one that he behaves like an intu-
itive statistician is not of much help in predicting the course of the economy.
New advances in cognitive science, which view analogical reasoning as the
core of cognition, provide a promising avenue for establishing a dynamic
theory of economic behaviour. But the difficulties in moving from a theory
of behaviour to a theory of the economy as a whole remain insurmountable.
Atheoretical macroeconomics is perhaps closer to the truth.



1
Theoretical versus Atheoretical
Macroeconomics: Concepts and
Controversies

1.1 Introduction

Human beings in society have no properties but those which are derived
from, and may be resolved into, the laws of the nature of the individual
man. In social phenomena the Composition of Causes is the universal law.
(J.S. Mill. 1974 [1874]: 879)

The study of fluctuations in aggregate measures of economic activity and
prices over relatively short periods (business cycle theory) and development
of the economy over the long run (growth theory) constitutes what we call
macroeconomics. The objective is to understand the causes of economic fluc-
tuations and growth, forecast the future of the economy, and aid analysis of
state policies. Following tradition, we may categorize major objectives of
macroeconomics under the headings of explanation, forecasting, and policy
analysis. These objectives require a quantitative model, which for most pur-
poses must represent the causal structure of the economy. A major issue in
macroeconomics is therefore the understanding of the causal structure of the
economy.

An economy consists of millions of individual decision makers, firms
and institutions, each solving different decision problems under diverse cir-
cumstances and subject to distinct social and economic constraints. This
complexity makes it impossible to build a model which represents the
behaviour of all the decision-making units of the economy. In modelling
the economy, we need to leave out many details of the decision-making units,
introduce aggregate variables, and focus on the relations of the aggregates.
For this reason, macroeconomics is primarily the study of aggregates.

The study of the economy at the aggregate level presents a number of
difficulties. To begin with, for social and practical reasons, it is impossi-
ble to subject the economy to controlled experiments in order to establish

7
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causal relations that are true at the economy level. Also, statistical analysis
of aggregate data is inadequate for causal inference, and has to be supported
with domain-specific information. This raises the issue of how we can acquire
the subject-matter information necessary for modelling the structure.

In this chapter, we explore these difficulties in the study of the economy
and review some of the responses to them. We begin by defining some central
notions used throughout the work before discussing some of the limitations
of statistical analysis for causal inference to explain better the need for theory
in modelling the economy. We then reconstruct the current theoretical and
atheoretical approaches to macroeconomics in order to define some basic
issues in the study of the economy.

1.2 Macroeconomics

The variables used to describe an economy originate in the decisions made
by its components – numerous individuals, firms, institutions, and the
government.1 Families make decisions about what to consume and when,
how many hours to work, and what to invest in; firms make decisions
about unemployment, production, pricing, marketing, borrowing, invest-
ment, and so forth. The input and output variables of these decision makers
form the basic variables of the economy. Often, the eventual outcome of
the decisions is not quite what was planned; poor health may disrupt work
or a supply shortage may result in a lower production than expected. It is
sensible to model the decision outputs of an individual or institutional deci-
sion maker as a function of its key input variables plus a stochastic residual
vector. The vector of input and output variables of all participants in the
economy and their linking functions form the microstructure of the econ-
omy. We denote the microstructure by (m, r), where m and r stand for the
vector of micro-variables and micro-relations respectively. In place of (m, r),
the literature often refers to the triple (m, r, p) as the true data-generating
mechanism, where p is the joint probability distribution of the micro-
variables m (Granger, 1990a: 7; Hendry and Ericsson, 1991: 18; Spanos,
1986: 661–72).

The immense number of micro-variables and relations in any modern econ-
omy makes it impossible to consider the behaviours of all decision-making
units in a model. Modelling an economy requires introducing aggregate vari-
ables and focusing on the patterns that emerge at the aggregate level. A
fundamental assumption in economics is that the microstructure (m, r, p)
leads to a unique macrostructure (M, R, P), where M stands for the set of
aggregate input and output variables, R for the relations among the aggre-
gate variables, and P for the joint probability distribution of the variables
(Epstein, 1987: 65). This structure is the subject-matter of macroeconomics.
Macroeconomics is the study of the aggregative relations that emerge from
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decisions and interactions of the basic decision-making units of the econ-
omy. By contrast, microeconomics is the study of the behaviour of the basic
decision-making units of the economy in which no aggregation is involved.
Aggregation is what separates these fields of study from each other (Keynes,
1936: 292–3).2

This view of macroeconomics is consistent with mainstream economics,
which postulates the existence of stable relations at the aggregate level. There
are, nevertheless, several notions of macroeconomic structure and a host
of views on the connection between the micro- and macrostructures. We
continue by defining the notion of structure to be found in the writings of
early econometricians working in the Cowles Commission.3 This will help
us characterize some key controversies in modern macroeconomics.

1.2.1 Structure

Early econometricians usually defined ‘structure’ using the notion of a
structural model. To define this, consider the simple stochastic equation:

Y = α + βX + ε (1.1)

where Y is the response variable, X is the regressor, and ε is the error term
with mean zero.4 This equation is commonly used to represent the regres-
sion of Y on X, giving the mean of the distribution of Y conditional on a
particular value of X, i.e. E(Y/X = x). As a regression equation, (1.1) describes
the association between X and Y in the population from which the data are
sampled. As opposed to this usage, the equation may be used for predict-
ing the effects of (hypothetical) interventions in X on Y . If the equation
correctly predicts how the values of Y change as we intervene to change
the values of X, it is called structural (Hurwicz, 1962: 236–7). A difference
between (1.1) as a regression equation and (1.1) as a structural equation is
that in the former case the equation may cease to hold as soon as changes are
made to X whereas in the latter case the equation is invariant to interven-
tions made to the values of X. Another way to state this notion of structural
equation is the following, which is borrowed with small changes from Pearl
(2000: 160):

Definition: An equation Y = α + βX + ε is said to be structural if in an
ideal experiment where we control X to x and any other set Z of variables
(not containing X or Y) to z, the value of Y would be independent of z
and is given by α + βx + ε.

This notion of structural equation captures the core of the manipulability
account of causation (Woodward, 1999). On this view of causality, variable
X causes variable Y if it is possible at least in a hypothetical experiment to
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change Y by manipulating X. So, the claim that equation (1.1) is structural
means that it expresses a causal relation. In that case, the parameter β in
(1.1) reflects the causal effect of X on Y , contrary to a regression equation in
which β only represents the degree of association between X and Y in the
population. The terms ‘structural’ and ‘causal’ are used interchangeably in
what follows.5

Variables on the right-hand side of a structural equation are referred to
as exogenous: variable X in equation (1.1) is exogenous if intervening to set
X = x gives the same result for Y as observing X = x. Similarly, the variable
on the left-hand side of a structural equation is called endogenous. Exogeneity
is also used to convey weaker meanings. Sometimes, it refers to a variable
whose value is not explained within the model but is supplied to it. And,
sometimes, it refers to a variable which is statistically independent of the
error term in the equation. By exogeneity, we mean an independent variable
in a structural equation (Engle et al., 1983).

The notion of a structural equation is generalized to systems of equations.
An equation system forms a structural model if each equation in the system is
structural and remains invariant to changes that invalidate other equations
in the model. This means each equation in a structural model represents
an autonomous causal mechanism that can be modified without undermin-
ing the mechanisms represented by other equations in the model. As an
illustration, consider a simple model of demand and price determination in
economics, which has been discussed by many authors, including Goldberger
(1992) and Pearl (2000: 27):

Q = α1P + β1I + ε1 (1.2a)

P = α2Q + β2W + ε2 (1.2b)

where Q is the quantity of household demand for product A, P is the unit price
of A, I is household income, W is the wage rate for producing A, and ε1 and
ε2 are error terms, representing unmodelled factors that affect quantity and
price respectively. This model is structural if equation (1.2a) correctly fore-
casts the effects on Q of (hypothetical) interventions in P or I , and equation
(1.2b) correctly predicts the effects on P of interventions in Q or wage W .
Moreover, interventions invalidating (1.2a) must not invalidate (1.2b) and
vice versa.6 If we change the values of the parameters α1 and β1 by inter-
vening in the mechanisms determining the household income I , the change
must not affect α2 and β2. The underlying mechanisms must be unrelated. In
short, what makes this model structural is that each equation characterizes
an autonomous causal mechanism, one equation describing the causal pro-
cess determining the demand for A, and the other the process determining
the price of A.7

This concept of structural model captures the notion of structure implicit
in the writings of the Cowles Commission econometricians. According to
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these researchers, a structure consists of a set of autonomous causal relations
that can be utilized separately for intervening in the state of the economy.
Koopmans, a leading member of the Cowles Commission, recapitulates this
concept of structure:

The study of an equation system derives its sense from the postulate that
there exists one and only one representation in which each equation cor-
responds to a specific law of behaviour (attributed to a specific group of
economic agents) . . . Any discussion of the effects of changes in economic
structure, whether brought about by trends or policies, is best put in terms
of changes in structural equations. For these are the elements that can, at
least in theory, be changed one by one, independently. For this reason it is
important that the system be recognisable as structural equations. (quoted
in Epstein, 1987: 65)

We call this characterization – the study of autonomous causal relations
emerging at the economy level – the received view, and use it as a bench-
mark against which to compare alternative views on the nature and scope of
macroeconomics.

1.2.2 Objectives

A full exposition of the received view also requires an understanding of the
objectives set for macroeconomics. To achieve this, it is useful to describe
the framework within which economic analysis is usually carried out. In its
simplest form, consider an economy whose state at time t can be described
by an endogenous variable Yt and an exogenous variable Xt .8 The dynamics
of the economy is described by a difference equation:

Yt+1 = f (Yt , Xt , θ , εt ) (1.3)

where θ is a parameter vector defining the function f , and the disturbance
term (random shock) εt has probability distribution P(εt ). The description
of the economy is completed by specifying the mechanism generating the
exogenous variable Xt shown by

Xt = g(Zt , λ, et ) (1.4)

where Zt denotes the only variable affecting Xt , λ a parameter vector defining
the function g, and et a disturbance term with probability distribution Q(et ).9

The functions f and g are taken to be fixed but not known or at least not
fully known. Data on Xt , Yt and Zt is used to estimate θ and λ, as well as
the parameters of the distributions P(εt ) and Q(et ). The model is used for
prediction, policy analysis, and explanation.
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1.2.2.1 Prediction

Given an estimate of the model’s parameters, the task in prediction is to
calculate the expected value of Yt+1 when the values of Yt and Xt are given.
Depending on how the value of Xt is given, three types of prediction can be
defined. The first is the ex post prediction, where the model is used to predict
the future value of Yt based on a known value of Xt . The second is the ex ante
prediction, where the value of Xt is not known and instead one uses guessed
values of Xt to forecast future values of Yt . Ex ante and ex post predictions
involve no intervention in the system. If the model closely approximates the
associations in the population during the periods for which the forecasts are
made, it will correctly predict future values of Yt , regardless of whether it is
structural or not. No knowledge of the structure is needed for ex ante and ex
post predictions.

The third type is the conditional prediction, where the value of Xt is set
through intervention. In conditional prediction, the aim is to forecast the
value yt+1 that would arise if Xt could be set at a value different from its actual
value. The model must therefore be structural or, in other words, invariant
to the intervention to yield a correct prediction. A regression (non-causal)
model will not be adequate.10

1.2.2.2 Policy analysis

Policy analysis aims to design changes in the economy that take it to a desired
state. In its simplest form, a policy consists of a change in the value of a
policy variable, say Xt , to alter the value of the target variable Yt+1. Policy
analysis, then, involves predicting values of Yt+1 that would arise if Xt were
set at values differing from its actual value. If such predictions were possible,
future values of Yt could be estimated for different values of Xt to find a value
that would most likely yield the desired result.

More often, a policy is defined as a change in the process that determines
a policy variable. In the context of our simple economy, this amounts to a
change in the mechanism:

Xt = g(Zt , λ, et ) (1.4)

The idea is that each set of possible values for parameters λ defines a possible
mechanism (rule) for Xt . A policy change, then, consists of a change in these
parameters to influence the course of the economy (Tinbergen, 1939: vol.2,
18). For selecting a policy, the analyst considers different sets of values for
λ to define alternative mechanisms for Xt . The rules are used to generate
sequences of values {xt }, which are recursively inserted in model (1.3) to
simulate the future of the economy under each rule.The rule that generates
the desired result is chosen as the optimal policy.

A key requirement of this exercise is that equation (1.3) be invariant to
changes in the policy rule (1.4). If a change in the mechanism generating Xt
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undermines the relation (1.3) that determines Yt , then an estimated version
of equation (1.3) will not correctly predict the economy under alternative
policy rules.

In either sense, policy analysis involves conditional predictions and, for
that reason, the model must be structural to yield correct predictions.

1.2.2.3 Explanation

Another related goal of economics is to understand why certain particular
facts are as they are. It is of utmost importance for policy analysis to under-
stand, for example, why the inflation rate was at 2.5 per cent in the UK
last year, why the rise in the interest rate by 1 per cent did not have
the expected effect on the housing market, or why there has been a stark
increase in inequality within the United States over the last few decades.
These queries fall under the heading of explanation, which is a major topic
in the philosophy of science.

According to an early theory of scientific explanation by Hempel and
Oppenheim (1965 [1948]), an explanation of a particular fact is an argument
to the effect that the phenomenon to be explained was to be expected by
virtue of certain explanatory facts (Hempel, 1965: 336). The premises of the
argument constitute the explanans (that which does the explaining), and the
conclusion is the explanandum (that which is explained). The theory requires
the explanans to include at least one lawful generalization. Schematically, an
explanation in this approach takes the form:

True statements of initial conditions

Laws

}
Explanans

Statement of what is to be explained Explanandum

Thus, one can explain the length of the shadow cast by a flagpole from the
height of the pole, the angle of the sun above the horizon, and the laws about
the rectilinear propagation of light.

Universal laws are hard to find outside physical sciences. In many fields,
if there are any generalizations, they are statistical. For these fields, Hempel
replaces the requirement of a universal law with a statistical law. For him,
then, a statistical argument forms a satisfactory explanation if its premises
are true, include at least one statistical regularity, and confer a high prob-
ability on the conclusion. As an illustration, if one asks why John rapidly
recovered from his streptococcus infection, an explanation is that he took
a dose of penicillin, and almost all strep infections clear up quickly upon
administration of penicillin. Hempel takes this to be a satisfactory explana-
tion if the explanans are all true, and confer a high probability on John’s
recovery.
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A problem with Hempel’s theory is that it takes the explanatory relation
to be symmetrical. The theory equally allows one to explain the height of a
flagpole by deducing it from the length of its shadow, the angle of elevation
of the sun, and the laws about the rectilinear propagation of light. Or, given
a statistical association between Gaussian random variables X and Y , which
have no common cause, the view suggests that X can be explained by Y and
Y by X, even if X causes Y . This goes against a sound intuition that while
causes explain their effects, effects do not explain their causes. Moreover, an
objective in understanding a system, such as the economy or nature, is to
control it. Knowledge of causes is relevant to control but knowledge of effects
is not. So, the search for explanation, at least in practice, is driven by a need
for information on causes.

Also, many statistical associations are spurious. A sudden drop in barom-
eter reading is usually followed by the coming of a storm. Yet even if a
drop in the barometer increases the probability of a storm, it cannot explain
the occurrence of a storm. Again, the reason is that an intervention on the
barometer reading, say by placing the barometer in a vacuum chamber and
setting its value by some random process, can neither create nor avert the bad
weather. The association between a drop in the barometer reading and the
occurrence of a storm is the result of a common cause – the drop in atmo-
spheric pressure. In general, since by controlling the effect of a cause one
cannot control another effect of the same cause, effects do not explain each
other.

Several theories of scientific explanation have been set forth to overcome
the difficulties besetting Hempel’s theory but an analysis of these theories
falls outside the scope of this work. Nonetheless, reflection on the problems
raised against Hempel’s view shows the difficulty of developing a theory of
explanation of particular facts that makes no reference to causal relations. An
explanation of a particular fact must give information relating to the causal
process that has generated it. As Lewis notes, to explain a particular fact is
to give some information about its causal history (1986: 217). In general,
whenever we try to explain a particular phenomenon, we must show that
(1) the explanatory events are actually true, (2) the events are causes of the
explanandum in the sense that if they were present and there were no pre-
ventive causes, the explanandum would occur too, and (3) the events are
actually the causes of the explanandum in that if they had not been present
in the situation under study the explanandum would not have occurred.11

The reason for this last condition is that for any event there might be several
sets of sufficient causes that could bring it about. In short, a satisfactory expla-
nation of a particular fact calls for information on its causes, and a model
must be structural to play a part in the explanation.

To sum up, according to the received view, there is a structure behind
the aggregate data, consisting of causal relations that can be manipulated
independently of each other. The prime task of macroeconomics is to model
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the structure. In addition, all the objectives traditionally set for macroeco-
nomics, namely ex ante and ex post prediction, conditional prediction, policy
analysis and explanation, are considered achievable.

1.3 The need for theory

A basic methodological query for the received view is how the economy’s
structure can be discovered. Natural and physical sciences appeal to con-
trolled experiments to infer causal relations. Economists are not in a position
to carry out controlled experiments on the economy, and should turn to
statistical analysis of aggregate data to learn about its structure. Statistical
analysis, however, is inadequate for causal inference, and must always be
supported with subject-matter information. There are three lines of argu-
ment in the literature for this inadequacy of statistical methods, and hence
the necessity of theory in macroeconomics. A brief study of these arguments
sheds light on the reasons behind the emergence of competing approaches
to macroeconomics.

1.3.1 Statistical control

A major argument for the necessity of theory in macroeconomics is based on
the inadequacy of the regression method for causal inference (henceforth,
RMCI). The regression method stands at the heart of econometrics and many
controversies in macroeconomics relate to this method. It is therefore worth-
while explaining in some detail how the method is used for causal inference
and why it fails in establishing causation. There are many discussions of
the method as well as its limitations. We draw on Simon (1954), Clogg and
Haritou (1997), Spirtes et al. (1998), Pearl (2000) and Spirtes (1997) to describe
the method and explain why it fails.

We first focus on the simple regression equation (1.1), and then extend
the analysis to cases where there are several regressors involved. Since in the
following the first moment of the variables is of no interest, we assume that
the variables are measured around their mean and drop the intercept from
the equation. Equation (1.1) becomes:

Y = βX + ε (1.5)

Regression analysis is primarily concerned with estimating the parameter
β and the conditions under which an unbiased, efficient (minimum vari-
ance), and consistent estimate can be obtained from the data. To use this as a
method of causal inference, one has to explain the conditions under which
such an estimate of β can be taken as an estimate of the effect of X on Y ,
as well as how the conditions can be established in practice. Accordingly,
there are three issues to address in order to understand the possible role of
regression in causal inference. The first relates to the conditions under which
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an unbiased, efficient, and consistent estimate of β can be obtained from
the data. The second relates to the conditions under which the estimate can
be taken as an estimate of the effect of X on Y . Finally, the third relates to the
possibility of establishing the conditions in practice. We review the answers
given to some of these questions to explain why the regression method fails
to establish causation.

To estimate β, users of the RMCI turn to the theory of ordinary least squares.
This theory makes a number of assumptions about the error term ε to ensure
an efficient, unbiased, and consistent estimation. First, it assumes that the
expected value of εi conditional on observation Xi is zero; that is, E(ε/xi) = 0.
This implies that the unconditional mean, E(ε), is zero. Likewise, the same
condition implies that εi and Xi are uncorrelated; namely, Cov(xi, εi) = 0. This
last implication is known as the orthogonality condition. Given the linearity
of (1.5), the orthogonality condition ensures that a least-squares estimate
of β is unbiased. Secondly, the theory requires that observations on X pro-
vide no information about the variance and covariance of the error term
ε. This means that the errors associated with the observations must have
constant variance σ2, and be uncorrelated with each other. Under these con-
ditions, a least-squares estimator of β is shown to be efficient, unbiased, and
consistent.

Econometricians add one or two requirements to the orthogonality con-
dition to identify an unbiased estimate of β with the effect of X on Y . In
his celebrated article (1954), Herbert Simon requires X to precede Y . By this,
he intends to rule out bidirectional causation between X and Y . Others have
also required that X can indeed be a causal variable to exclude nonsense infer-
ences such as inferring that having nicotine stains on one’s finger causes lung
cancer. According to the RMCI, then, a least squares estimate of the coeffi-
cient of X coincides with the effect of X on Y if X is uncorrelated with ε, X
precedes Y , and X can indeed be a causal variable. The validity of this answer,
Simon (1954) maintains, can be shown in the context of the simple regres-
sion equation (1.5). Suppose β in (1.5) represents the effect of X on Y . If we
multiply the equation through by X and take expectations of both sides, we
will have

Cov(X, Y) = βV(X) + Cov(X, ε) (1.6)

where Cov(X, Y) is the covariance of X and Y , V(X) is the variance of X, and
Cov(X, ε) the covariance of X and ε. If X and ε are uncorrelated, the least
squares estimate β̂XY will be equal Cov(X, Y)/V(X), which is the same as β,
the effect of X on Y . That is

β̂XY = Cov(X, Y)/V(X) = β

If the condition fails, β̂XY and β will not be the same.
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Simon’s analysis assumes that every observed correlation arises from either
a direct causal connection or latent common causes. If one rules out latent
common causes by assuming the orthogonality condition, then, a correla-
tion between X and Y reveals a direct causal connection. Evidently, if the
world contained spurious correlations that were not due to common causes,
the orthogonality condition would not justify inferring from a correlation
between X and Y that either X causes Y or Y causes X. Such a conclusion
requires excluding all possible non-causal explanations.12

Now, we know how the regression method is used to establish causation.
Assuming the conditions, one simply regresses Y on X. If the least-squares
estimate β̂XY differs from zero, X causes Y , and if it is zero, X does not cause
Y . The success of the method depends, on the one hand, on the adequacy
of the conditions and, on the other, on the possibility of establishing them
in practice. An analysis of the adequacy of the conditions falls outside the
scope of this work.13 To keep the analysis short, we confine ourselves to an
examination of the orthogonality condition, as this will suffice to explain
why the RMCI fails.

The RMCI comes with a method for establishing the orthogonality con-
dition. To explain the method, note that this condition differs from other
familiar statistical assumptions underlying a regression model, such as the
linearity of the function linking X and Y or the normality of the distri-
bution of Y . The validity of these assumptions can be checked by using
observations on X and Y . In fact, for arbitrarily large samples, there are
statistical algorithms that correctly discover the functional form of the rela-
tion between X and Y , and estimate the density function of Y . In contrast,
observations on X and Y contain no information on the validity of the
orthogonality condition. This follows from the fact that the true distur-
bances εi are never known. In practice, we can only estimate residuals
ei = (yi − ŷi), with ŷi being the expected value of yi. If we use the least squares
method to estimate β, the residuals ei are automatically uncorrelated with
xi. One cannot, therefore, use the residuals to establish the condition (Clogg
and Haritou, 1997: 94).14 In this sense, the condition is not a statistical
assumption.

Faced with this limitation, econometricians have tried to establish the
orthogonality condition by bringing in variables other than X and Y . To
understand the philosophy behind this attempt, one should note that when
equation (1.5) is taken as a structural relation the error term ε stands for
the effects of omitted variables on Y . Any correlation between X and ε is
therefore said to indicate the presence of latent common causes for X and
Y . Such variables are referred to as confounders. This interpretation suggests
that the correlation between X and ε can be eliminated by including all the
confounders of X and Y in the regression of Y on X. In that case, the error
term ε will be uncorrelated with X, and, if other conditions are in place, an
estimate of β will coincide with the effect of X on Y . Thus, it is suggested
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that the orthogonality condition can be established by searching for all the
confounders of X and Y , and including them in the regression of Y on X.
To estimate the effect of X on Y , it is not enough to estimate the simple
regression equation (1.5). Instead, it is necessary to regress Y on X and all the
confounders of X and Y . An estimate of the regression coefficient of X in this
equation corresponds with the effect of X on Y . The process of controlling
for confounders is often called conditioning or statistical control.

The reasoning behind statistical control can be illustrated by considering
the case where there is only one confounder Z for X and Y .15 Suppose the
process generating Y is given by model (1.7):

X = αZ + ε1 (1.7a)

Y = βX + γ Z + ε2 (1.7b)

where Cov(ε1, ε2) = 0, and α, β, γ are different from zero. In this model, Z is a
common cause of X and Y . If we estimate (1.5) in place of equation (1.7b), X
and ε will be correlated, and a least-squares estimate of the coefficient of X
will differ from β. To see this, we simply need to multiply (1.7b) through by
X and take expectations of both sides to get

Cov(X, Y) = βV(X) + αγ V(Z) (1.8)

We then have

β̂XY = Cov(X, Y)

V(X)
= βV(X) + αγ V(Z)

V(X)
�= β (1.9)

If Z is included in the regression of Y on X, the orthogonality condition is
satisfied, and the least-squares estimate of β can be equated with the effect
of X on Y , as shown below:

β̂XY/z = Cov(X, Y/Z)

V(X/Z)
= Cov(X, Y)V(Z) − Cov(X, Z)Cov(Y , Z)

V(X)V(Z) − Cov(X, Z)2

= β(V(X) − α2V(Z))

(V(X) − α2V(Z))
= β

(1.10)

Regression on a confounder, therefore, can change an otherwise biased
estimate into an unbiased one.

A problem with this reasoning is that the set of confounders of X and Y is
not known. In practice, statisticians replace the set of confounders of X and
Y with a set of potential confounders, namely a set of measured variables that
precede X and Y , and can possibly affect them. It is held that by controlling
for potential confounders one is likely to control for real confounders, and
eliminate possible correlation between X and ε (Black, 1982: 31). One is
then advised to control for as many potential confounders as one can to
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achieve a reliable estimate of the effect of X on Y . The longer the list of
potential confounders in the regression of Y on X, the more reliable the
estimate will be:

One must include in the equation fitted to data every ‘optional’ concomi-
tant [potential confounder] that might reasonably be suspected of either
affecting or merely preceding Y given X – or if the available degrees of
freedom do not permit this, then in at least one of several equations fitted
to the data. (Pratt and Schlaifer, 1988: 44)16

In this way, multivariate regression has come to dominate macroeco-
nomics. To estimate the effect of X on Y , Y is regressed on X and a few other
variables that are thought likely to affect both X and Y . The estimate of β in
the equation with all the potential confounders, whose inclusion affects the
estimate of β, is taken to represent the effect of X on Y . The RMCI is also gen-
eralized to multivariate regression equations. For a causal interpretation of
a multivariate regression equation, all the regressors are required to precede
the response variable and to be uncorrelated with the error term. Similarly,
to establish the orthogonality condition, it is essential to control for all the
confounders of the regressors and the response variable (Clogg and Haritou,
1997: 94).

1.3.1.1 Limitations of statistical control

A limitation of statistical control arises from the small number of variables
that are measured in practice. To be precise, let C be the set of all potential
confounders of X and Y . The plausible idea of statistical control is that if we
could control for all the variables in C, we would be able to control for all the
real confounders of X and Y , and estimate the effect of X on Y . But the set C
is never completely known. In practice, what one measures is a proper subset
of C, which may exclude some or even all of the actual confounders of X and
Y . As a result, conditioning on measured potential confounders can never
guarantee the truth of the orthogonality condition, and a non-zero estimate
of β can always be due to latent common causes. The RMCI, on its own,
fails to distinguish between cases of genuine causal connection and spurious
correlation (Pearl, 2000: 186).

Moreover, conditioning on a measured variable, which is not a real con-
founder, could change a consistent estimate of the effect of X on Y into an
inconsistent estimate. This occurs whenever one controls for a barren proxy;
that is, a variable Z that is correlated with factors that influence X and Y but
itself has no effect on X and Y . As an illustration, consider the following sim-
ple example discussed by Pearl (2000), Spirtes et al. (1998), and Spirtes (1997).
Suppose that our set of measured variables consists of {X, Y , Z}, X precedes
Y , and that Z precedes both X and Y . Also, suppose that the causal structure
of these variables is given by the model below (Figure 1.1), where εx, εz and
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X = U1+ �x

U1

U1= Smoking
U2= Age
Z = Nicotine stains
X = Lung cancer
Y = Death

U2

z

X Y

Z = �U1 + U2 + �z

Y = �X + �U2 + �y

Figure 1.1 A barren proxy

Note: Z is a barren proxy; while Z is associated with both X and Y , X and Y are not confounded
by Z.

εy are independent error terms, U1 is an unmeasured common cause of X
and Z, and U2 is an unmeasured common cause of Y and Z. Further, suppose
that U1 and U2 are uncorrelated with the error terms. In this setting, if Y is
regressed on X alone, the least-squares estimate of β is consistent. However,
if Y is regressed on both X and Z, the estimate of β is no longer consistent,
and normally differs from the effect of X on Y . This can be seen from the
least-squares estimate of β in the regression equation of Y on X and Z. To this
end, first note that Cov(X, Z) = αV(U1) and Cov(Y , Z) = β(αV(U1))+γ V(U2).
Also, let Cov(X, Z) = ρ and γ V(U2) = τ . Then, we have

β̂XY/Z = Cov(X, Y/Z)

V(X/Z)
= Cov(X, Y)V(Z) − Cov(X, Z)Cov(Y , Z)

V(X)V(Z) − Cov(X, Z)2
(1.11)

= βV(X)V(Z) − ρ(ρβ + τ)

V(X)V(Z) − ρ2 = β − ρτ

V(X)V(Z) − ρ2

which generally differs from β. The estimate is consistent only if either ρ or τ

is zero. Otherwise, β might be zero but the estimate β̂XY/Z substantially dif-
ferent from zero. Therefore, ‘there is no sense in which one is “playing safe”
by including rather than excluding “potential confounders” in the condition-
ing set; conditioning on these variables could change a consistent estimate
into an inconsistent estimate’ (Spirtes, 1997: 7). To safely condition on a
measured variable, Z, it must be ensured that Z is not a barren proxy. This, as
the example illustrates, calls for some information about the causal relation
between Z and unmeasured variables affecting X and Y . Clearly, such infor-
mation cannot be obtained from statistical analysis of data on the measured
variables.

Finally, a potential confounder must itself satisfy the orthogonality con-
dition (Clogg and Haritou, 1997: 98). That is, to control for a potential
confounder Z in estimating the effect of X on Y , Z must also be uncorrelated
with the error term. Since this new requirement cannot be taken for granted
a priori, one inevitably needs to bring in new variables to ensure that Z and
ε are uncorrelated. This, of course, requires making further orthogonality
assumptions. As a consequence, it is never possible to establish the condition
by controlling for measured potential confounders (Freedman, 1987: 307).
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To terminate the regression, one must eventually rely on substantive domain-
specific information. This necessity of subject-matter information in estab-
lishing causation is viewed as a key reason for the essential role of theory in
macroeconomics.

1.3.2 The identification problem

A second argument for the necessity of theory draws on the identification
problem. Historically, a common belief in economics has been that the values
of economic variables such as demand and supply for a good are simulta-
neously determined, and for that reason the economy is best represented
by a simultaneous equations model. Because of feedback, the error terms
across the equations in a simultaneous equation model are not uncorrelated.
As a result, applying the ordinary-least-squares method to the model does
not yield a consistent estimate of the parameters. For consistent estimation,
the model must be transformed into a system of regression equations or, in
other words, a reduced form model, where the errors across the equations are
independent. In this context, the identification problem involves inferring
the parameters of the simultaneous equations (structural) model from the
parameters of the regression model (Manski, 1995). It is usually the case that
a large, and often infinite, set of parameter values of the structural model is
consistent with the parameters of the reduced form model, making it impossi-
ble to infer the structural parameters from those of the reduced form model.17

Thus, the identification problem has no statistical solution.
In the context of simultaneous equations models, the identification prob-

lem can be resolved by imposing restrictions on the variables in each
equation. In a linear structural model, if one can exclude from each equation
one variable that enters other equations, none of the model equations can be
written as a linear combination of the others, and the model becomes identi-
fiable (Koopmans, 1971 [1949]: 169). One surely needs to rely on non-sample
(domain-specific) information to decide which variable to exclude from, or
include in, an equation. Similarly, in recursive models, identifiability calls
for the orthogonality condition and the independence of the error terms
across the equations (Boudon, 1968: 208).18 These conditions, as we now
know, are not statistical assumptions, and can be justified only by means of
domain-specific information – another reason for the essential role of theory
in modelling the economy.

The identification problem is not the same as the causal inference problem,
as there could be more than one identifiable causal model consistent with
a data set. Recursive models are always identifiable if the disturbance terms
satisfy the orthogonality condition and are independent across the model
equations. But there are usually many identifiable, recursive causal models
consistent with a data set. This lack of uniqueness leads to a quandary regard-
ing which is the true causal model. A solution to the identification problem
is not, then, a solution to the causal inference problem.
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1.3.3 The Lucas argument

The above arguments establish the need for theory by showing the limita-
tions of statistical analysis for causal inference. The literature also offers a
third argument for the necessity of theory that is based on the inadequacy of
knowledge of the existing structure for policy analysis. Various accounts of the
argument are found in the writings of Haavelmo (1944), Koopmans (1947b),
and Hurwicz (1962). Yet, it was Lucas who most forcefully defended the argu-
ment in his critique of econometric policy evaluation (1976), using numerous
graphic examples. The critique is aimed at the conventional theory of eco-
nomic policy. Recall our simple economy, which had a single endogenous
variable Yt , whose law of motion was given by the difference equation

Yt+1 = f (Yt , Xt , θ , εt ) (1.12a)

and the rule (law) governing the policy (exogenous) variable Xt by

Xt = g(Zt , λ, et ) (1.12b)

The theory interprets a policy as a sequence of values for exogenous variable
Xt . So, in policy evaluation, the analyst considers different sets of values
for parameters λ to define alternative mechanisms for Xt . The rules are used
to generate sequences of values {xt } which are recursively inserted in model
(1.12a) to simulate the course of the economy under each rule. The rule that
generates the desired result is chosen as the optimal policy.

This practice, Lucas argues, is flawed, since it assumes that the structure
(f, θ) prior to the policy change (call it the current structure) and the structure
afterwards (call it the new structure) are the same. But the structure emerges
from the decision rules (supply and demand functions) of the agents. As the
government introduces a new policy regime, it changes the environment
in which they are operating, altering the constraints restricting their choice
behaviour. The agents recognize the change and modify their decision rules,
thereby changing the structure. This invalidates the model fitted to the data
collected prior to the intervention, rendering it useless for predicting the
course of the economy under the new policy rule. To predict the outcomes
of a shift in a policy regime, one needs to know the structure that emerges
after the intervention. By assumption, there is no data available on the new
structure. For this reason, its discovery falls outside the reach of statistics.

As a simple illustration, suppose the demand for investment in the
economy follows

Yt+1 = γ Yt − πXt+1 + εt+1, γ , π ∈ θ (1.13a)

where Yt is the demand for investment at time t , and Xt the tax rate in period
t . Also, let government’s tax policy follow the rule

Xt+1 = λXt (1.13b)
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A change in government’s tax policy rule thus involves a change in the value
of the parameter λ. Equation (1.13a) theoretically depends on the optimal
decisions of investors, who take policy tax rule (1.13b) into account in mak-
ing investment decisions. This means parameter π in (1.13a) depends on
parameter λ, which characterizes the government’s tax policy rule (1.13b).
A shift in the government’s tax policy, i.e. λ, then changes π . So, one can-
not use an estimate of (1.13a), which is by assumption true, to analyse the
effects of alternative policy tax rules on the economy. To predict the out-
comes of a change in rule (1.13b), one first needs to predict the structure
that would emerge after the intervention, i.e. the modified function (1.13a).
Statistical analysis can at best infer (1.13a), which has been true while policy
rule (1.13b) has been in place. It cannot provide any information about the
new structure, for which no data are yet available. To predict the modified
(1.13a), one needs a theory that explains how people respond to a policy,
and how the response affects the structure.

Lucas’ critique, in short, is that causal relations estimated in economet-
rics are not structural. The relations are so interrelated that a change in one
relation could undermine others. One therefore cannot rely on the correct
causal model fitted to the data to analyse the effects of non-trivial polices.
This requires the model that would be true after the intervention. The new
model, though, cannot be known by analysing existing data.

Lucas’ argument has been challenged on several grounds. Notably, Sims
(1982a) argued that the critique applies only to interventions involving a
regime shift but such changes are rare. People are also slow in absorbing
the effects of policy interventions. For these reasons, statistical models that
closely describe the economy can reliably predict the policy outcomes in the
short run, which is of main interest in economics. Sims’ criticism contains an
element of truth but does not weaken the logical force of Lucas’ argument.
The point is that if a policy could shift the structure, one would first have
to predict the emerging structure to be able to trace the effect of the policy
on the economy. Such a prediction cannot be based on the data from the
current structure.

The three arguments outlined here provide a strong reason for the necessity
of theory in modelling the economy. Reflection on these arguments as well
as the difficulty of controlled experiments on the economy has led to rival
approaches to macroeconomics. The remainder of this chapter reconstructs
the theoretical and atheoretical approaches that span the spectrum of views
on the scope and nature of macroeconomics.

1.4 The theoretical approach

The core idea of theoretical macroeconomics is present in the writings of
early members of the Cowles Commission, including Koopmans (1947b) and
Marschack (1953), as well as other early economists such as Jevons (1871) and
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Hicks (1939). A rigorous and systematic defence, though, appeared in the
works of new classical economists, notably Lucas and Sargent (1979), who
were reflecting on the failure of Keynesian macroeconomic models during
the 1970s.

A central assumption underlying the theoretical approach is that none of
the difficulties hindering the study of the economy arises in the study of indi-
vidual behaviour. Early on in the history of economics, economists thought
that intuition, introspection, and interview were reliable means of understand-
ing behaviour. Tjalling Koopmans, for example, held that through these
means it would be possible to establish the motives of consumers, firms and
investors, and understand how they make decisions. The information, he
added, could be turned into a theory of economic behaviour as precise as
the laws of motion of material bodies known to Kepler (Koopmans, 1947b:
166).19 In recent years, more emphasis is placed on experimentation. It has
been argued that even if current theories of behaviour are imprecise, with
adequate experimental research it should be possible to establish a precise
theory of economic behaviour (Lucas, 1981: 288–90). There is nothing to
think that the field of human behaviour is in any intrinsic way distinct from
other areas conquered by experimental research.

Another assumption underlying the approach is that the economy has no
properties except those which are derived from individuals, and hence a the-
ory of the economy can be inferred from a theory of individual behaviour.
In this respect, theoretical economists follow John Stuart Mill, who wrote:

Human beings in the society have no properties but those which are
derived from, and may be resolved into the laws of the nature of the
individual man. In social phenomena the Composition of Causes is the
universal law. (1974 [1874]: 879)

Jevons (1965 [1871] :16) and Hicks (1939: 245) held that the general form of
the laws of economics is the same in the case of a single decision maker and
a nation, and thus the laws of the economic system can be derived from the
laws of a single decision maker, be it a household or a firm. This simplistic
view of the relationship between the individual and the economy, though
still common, has slowly been giving way to a more elaborate view. Most
economists now argue that the economy is characterized by competition
over scarce resources. And to understand the laws of the economy it is vital
to understand how individuals compete against each other. The laws of the
economy therefore are identified with the laws of a group of competitive
agents, not with the laws of a single Robinson Crusoe-type individual living
on an island (Lucas, 1981: 289).

The implication of these assumptions for modelling the economy is clear.
By observation and experimentation, the economist can establish a theory
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of individual behaviour. He can then replace the variables in the micro-
theory with their corresponding aggregate variables to obtain a qualitative
model of the economy, and use aggregate data to estimate the model,
hence transforming it into a quantitative model. Since the model is directly
derived from the laws governing the basic decision-making units of the
economy, it correctly represents the economy’s structure. Accordingly, the
main methodological objective of theoretical economics, at least as under-
stood by the new classicals, has been to incorporate aggregative problems
into the framework of microeconomics, eliminate the distinction between
microeconomic and macroeconomic theory, and speak of economic theory
in general. Robert Lucas lucidly states and defends this tenet in the following
passage:

The most interesting developments in macroeconomic theory seem to me
describable as the reincorporation of aggregative problems such as infla-
tion and the business cycle within the general framework of ‘microeco-
nomic’ theory. If these developments succeed, the term ‘macroeconomic’
will simply disappear from use and the modifier ‘micro’ will be superflu-
ous. We will simply speak, as did Smith, Ricardo, Marshall and Walras, of
economic theory. (1987: 107–8)

The enterprise of inferring the patterns emerging at the economy level from
a theory of individual or group behaviour is known as the microfoundations
project. The project is held to enable the economist to establish a reliable
theory of the economy without having to subject the economy to costly and
prohibitive experiments:

Suppose that we have some ability to predict how individual behaviour
will respond to specified changes. How, if at all, can such knowledge
be translated into knowledge of the way an entire society is likely to
react to changes in its environment? . . .We clearly need to know some-
thing about the way a group of monkeys interacts, in addition to their
individual preferences, in order to have any hope of progress on this
complicated question . . .The ingredient omitted so far is, of course, com-
petition . . . Notice that, having specified the rules by which interaction
occurs in detail, and in a way that introduces no free parameters, the
ability to predict individual behaviour is nonexperimentally transformed
into the ability to predict group behaviour . . . This is exactly why we
care about the ‘microeconomic foundations’ of aggregate theories. (Lucas,
1981: 289–91)20

The derived theory is believed to specify variables relevant for describing
the economy, draw a line between endogenous and exogenous variables,
determine the sign of relevant regression coefficients, and impose constraints
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on the algebraic form of the functions relating the aggregates. This inform-
ation is adequate for modelling the structure and achieving macroeconomics’
objectives.

The microfoundations project is also believed to make it possible to pre-
dict the outcomes of policies that could shift the structure. One begins by
analysing how a policy might affect the way in which basic decision-making
units of the economy interact with each other and make decisions. Knowing
this, one will be able to infer through aggregation the impact of the policy
on the entire economy, and derive the new structure that will prevail after
the policy change. Since the same can be done for any policy, one will be
able to help the state officials to select a policy that drives the economy to a
desirable state. The role of statistical methods is confined to estimating and
testing economic theories, and regression methods play no autonomous role
in causal discovery. If a theoretical model fails to fit the data, the road to
progress is to search for better theories, not to look for more sophisticated
statistical methods of inference.

In the new classical school, one definition of microeconomic theory takes
the basic unit of economic analysis to be a single decision maker. The con-
sumer is modelled as an expected utility maximizer and the firm as an
expected profit maximizer. When there is uncertainty, the individual is said to
act according to the true model of the economy. From this viewpoint, the call
for microfoundations is a call for a model of the economy in which the start-
ing point is an expected utility or profit maximization problem. To model the
relation between aggregate variables of interest, such as aggregate income and
consumption, a utility maximization problem for a single consumer is set up
and solved subject to his or her budget constraint. The solution defines the
relation between the relevant micro-variables, say, individual income and
consumption. The same relation is hypothesized to be true at the aggregate
level, and the corresponding aggregate variables are inserted into the model
to derive a model of the economy. Aggregate data are used to estimate the
model. This method goes by the name of the ‘representative agent’ modelling
approach.

Another definition of microeconomic theory in the new classical school
takes a group of competitive individuals as the unit of analysis. In a com-
petitive group, the outcome of an agent’s decision depends on the actions
of other members of the group, which means the agent must form expecta-
tions about the actions of others, and expectations about the expectations
of others, and so forth. This feature of a competitive group is believed to be
best captured by assuming equilibrium (Chari, 1999: 3). For this reason, new
classical economists have mainly equated microeconomic theory with the
Walrasian general equilibrium theory, or its successor the Arrow–Debreu com-
petitive equilibrium theory, joined with the rational expectations hypothesis.
The laws of the economy therefore are identified with the laws derived from
the general equilibrium theory (Howitt, 1987: 273). In general, a model is
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viewed as structural if it is built on an appropriate microeconomic theory.
Models that lack microeconomic foundations are viewed as non-structural
(Sims, 1991: 923; 1982a: 115–16).

1.5 Atheoretical macroeconomics

Theoretical economics characterizes one extreme view on the scope and
nature of macroeconomics. An alternative view that stands on the other side
of the spectrum challenges all the assumptions of theoretical economics. This
approach was put forward by Christopher Sims, and termed as atheoretical
macroeconomics by Cooley and LeRoy (1985).21

Sims’ atheoretical approach also emerged in response to a general discon-
tent with the performance of macroeconomic models during the 1970s and
1980s. Most economists of the time, including Sims, blamed the failure on
the identifying restrictions underpinning the models, which were supposedly
derived from economic theory. Sims termed the restrictions as ‘incredible’
(Sims, 1980: 1). Contrary to theoretical economists, he did not think, how-
ever, that the key to improving the state of macroeconomics was to search
for better theories. In his view, the problem with macroeconomics was more
profound and, hence, he called for a far-reaching revision of the field and
its objectives. Sims’ revision is open to more than one interpretation. Two
possible interpretations will be discussed here, one methodological and the
other metaphysical.

Our accounts of atheoretical macroeconomics differ from a dominant inter-
pretation criticized in a paper by Cooley and LeRoy (1985). According to
these authors, Sims altogether dispenses with the role of economic theory
or domain-specific information in general and seeks to achieve the goals of
macroeconomics by means of statistical analysis alone.22 A reason put for-
ward for this reading is the use of Granger’s test of causality by Sims and
his followers, which is nothing but a statistical procedure for determining
whether a variable helps predict another variable. Another reason is the
claim by Sims that atheoretical models are useful for policy analysis. Since
only a structural model can be useful for policy evaluation, any claim for
the usefulness of atheoretical models for policy analysis assumes a structural
interpretation of the models. Both reasons can be challenged. Sims rejects
that the Granger test of causality alone can ever establish causality (1977: 29
and 42; 1986: 3). In his view, it is always necessary to rely on non-sample
information to conclude that a relation that passes the test is actually struc-
tural. Moreover, according to Sims, atheoretical models, as long as they
remain uninterrupted, are of no use in policy analysis (1986: 3); Sims simply
challenges the claim that the interpretation derives from a well-founded the-
ory (1982a: 138). We shall rely on Sims’ writings as well as Cooley and LeRoy’s
paper (1985), Leamer (1985), Pagan (1987), and Swanson and Granger (1997)
to give a brief review of formal aspects of Sims’ modelling approach.
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1.5.1 Methodological interpretation

Sims often appears to agree that the relations discernible at the economy level
are suitable for a structural account but challenges the existence of a reliable
method for discovering the structure. He argues that economic theories are
bound to remain imprecise because of the lack of controlled experiments in
economics and the nonstationarity of the economic structure. The structure,
Sims says, continuously shifts through natural, social and political changes,
and more critically through accumulation of experience by people. As people
learn about the economy and discover the outcome of their actions, they
modify their behaviour, and this shifts the structure. As a result, a theory
that is approximately true of the current situation might cease to be true of
a new situation, making it difficult to tell whether the failure of economic
theories is due to changes in the structure or to our mistakes in theorizing
about it:

dynamic economic theories must inherently be incomplete, imprecise,
and therefore subject to variation over time. One reason for this is
that economic cause–effect relations involve a ‘recognition delay’ about
which theory has little to say and may be expected to be variable . . . It is
wrong, then, to expect economic theories to be complete, mechanical,
and divorced from reference to specific historical circumstances. (Sims,
1981: 579)23

This inherent imprecision, Sims argues, renders economic theory necessar-
ily subjective (2004: 282). Thus, uninterpreted statistical models of aggregate
data are the only yardsticks of objectivity in macroeconomics that form a
basis around which economists may come to narrow down their differences
(1987: 53). These models, however, are not suitable for policy analysis. Pol-
icy analysis requires classifying the variables into exogenous and endogenous
categories and deciding whether a variable can be influenced by a policy. In
making such decisions, due to the lack of reliable theories, the analyst must
rely on his or her personal view of the economy. Two economists with dif-
ferent views of the economy can arrive at conflicting interpretations of a
single model of the data, and there is no objective ground to resolve the
disagreement decisively.

Sims discerns three stages in modelling aggregate data. The first is to build
a model that fits the data, which gives one possible account of the structure
that might have generated the data. The second is to search for alternative
models equally fitting the data, which provide different views of the struc-
ture. Finally, the analyst relies on his or her personal view of the economy to
select a model that is most likely to approximate the structure. An appropri-
ate modelling approach, Sims says, should distinguish between those aspects
of a model that are based on the data and those that are based on subjective
judgements about the structure (1982b: 317; 1987: 51). Such a distinction
saves economics from the Lucas critique (1976) and that of Freedman (1981).
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These critiques are solely directed at subjective features of aggregate models
(Sims, 1982b: 317).

1.5.1.1 Vector autoregression

Sims therefore abandons the framework laid down in the Cowles Commission
that requires a theory to specify relevant variables, divide them into exoge-
nous and endogenous variables, and determine the variables in each equation
in the model. As an alternative, he proposes a framework in which there is ini-
tially no division of variables into exogenous and endogenous categories, and
every variable enters in the equation of every other variable (Hendry, 1993:
128).24 The modeller relies on his view of the economy to choose relevant
variables, and uses data as well as subjective and pragmatic considerations to
select a model. To describe Sims’ formal approach, we adopt a simple example
from Swanson and Granger (1997), which models the relations between four
aggregates consisting of money Mt , consumption Ct , investment It and gross
domestic product Yt . Let Yt be the vector of current variables (Mt , Ct , It , Yt )

and Yt−i the vector of lagged variables (Mt−i, Ct−i, It−i, Yt−i). In theory, Sims’
point of departure is a structural model of the following form:

BYt +
p∑

i=1

�iYt−i = εt (1.14)

where B and �is are 4×4 matrices whose terms are polynomial in the lag oper-
ator, p is the lag length, and εt is a column vector of stochastic error processes
with elements εit . The matrices have no zero element and all the variables
are of identical lags. Moreover, the model contains only current or lagged
endogenous variables. This contrasts with a structural model of theoretical
economics in which the theory dictates variables to be either endogenous or
exogenous, and sets some elements of the coefficient matrices to zero.

In practice, Sims works with a vector autoregression (VAR) representation
of (1.14), in which each variable is regressed on its own past values and past
values of other variables under study. The transformation into a VAR model
leads to a model of the form:

Yt =
p∑

i=1

AiYt−i + ut E(utu
′
t ) ≡

∑
(1.15)

where the Ais are 4 × 4 matrices, ut is a 4 × 1 column vector of stochastic
error processes, and  is the contemporaneous covariance matrix, with E(.)
being the expectation operator. Every current variable in (1.15) is a func-
tion of two components: its best linear predictor, based on past values of
all the variables considered, and its unpredictable error ut , which is also
called ‘innovation’ (Darnell and Evans, 1990: 120). The error terms satisfy
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the orthogonality condition, and the least-squares method can be used to
estimate the parameters Ai.25

A VAR model can effectively capture patterns existing in the data and,
so long as the mechanism generating the data remains the same, is useful
for ex ante and ex post prediction. A VAR model, however, sweeps all the
(exogenous) variables that can affect the contemporaneous variables under
the blanket of the disturbance (innovation) terms and is only driven by ran-
dom shocks. As a result, the model is not suitable for policy analysis in the
traditional sense which involves tracing out the effects on the endogenous
variables of changes in the exogenous variables. For this reason, Sims and his
followers redefine a policy as a random shock to a variable in the system, and
interpret policy analysis as the task of tracing out the reaction of the system to
that shock. Even in this narrow sense, a VAR model cannot be used for policy
analysis. In general, the contemporaneous covariance matrix

∑
is not diag-

onal. The non-zero off-diagonal elements entail that one variable, say Yit ,
cannot be shocked through its corresponding error term, uit , without having
simultaneously to deliver a correlated influence on other variables (Demiralp
and Hoover, 2003: 746). Without independence, it will not be possible to
use the model to trace the evolution of the system caused by a shock to a
single variable. Sims and other VAR modellers advocate orthogonalizing the
shocks using a Choleski decomposition to diagonalize the error covariance
matrix

∑
by pre-multiplying (1.15) with the unique triangular matrix T . This

generates a Wold causal chain among the current elements of Yt :26

TYt = T
n∑

i=1

AiYt−i + ηt E(ηtη
′
t ) = D (1.16)

where ηt = Tut and D = TT ′, a diagonal matrix. The errors ηt are termed
as the orthogonalized innovations (Sims, 1987: 52–3).

A problem with this exercise is that the causal ordering is arbitrary, since
for any ordering of the variables in model (1.15) there is a unique triangular
matrix which orthogonalizes the covariance matrix of the errors. In gen-
eral, if we have k endogenous variables in the model, we can order them
in k! ways, resulting in k! different causal chain models equally fitting the
data. These models describe alternative causal relations among the variables,
and if no way can be found to select an ordering, any policy analysis based
on a model like (1.15) will be arbitrary. A crucial matter facing the VAR
methodology is how to transform a VAR model into a causal chain model
in a non-arbitrary way.

Sims thinks ‘[t]here is no unique way to do this’ (1980: 21). Nevertheless,
he suggests that some confidence in an ordering can be gained by checking
the performance of the model against the data. In this line, if we partition the
data containing a shock to a variable into two parts and fit a model to one part,
and the model closely approximates the impact of the shock in the remaining
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data, we gain some confidence in it. If a model is fitted to all the data, and
there are no other data to check the model’s performance outside the sample
period, the reliability of the model remains in doubt.

1.5.1.2 Selecting a causal chain model

Since Sims’ paper (1980), there have been several attempts to reduce the sub-
jectivity involved in transforming a VAR model into a causal chain model.
A proposal is found in Swanson and Granger (1997), who aim to devise a
data-driven method for causally ordering the errors.27 These authors begin
by estimating VAR model (1.15) and use it to compute the residuals associ-
ated with the observations on the variables. The residuals form the data in
their study of the causal relations among the errors. An assumption behind
Swanson and Granger’s method is that the underlying causal ordering of the
errors is recursive such that the error in the first equation in the appropriate
model is exogenous and affects only the errors in the following equations
(although generalization to non-recursive models is possible in principle).
Having said this, a possible ordering of the errors associated with model (1.15)
is the following:

mt = vMt

it = αmt + vIt

ct = γ it + 0mt + vCt

yt = λct + 0it + 0mt + vYt

(1.17)

where the lower-case letters stand for the error terms; mt stands for the error
term in the equation for money Mt , and so forth.28 Swanson and Granger
assume that the errors vit in (1.17) have zero expectations, are contempo-
raneously uncorrelated, and have a non-singular definite covariance matrix.
Given these conditions, they prove that a recursive model like (1.17) entails
certain zero partial correlations (vanishing partials). In particular, if in the
true model mt causes ct and ct causes it , the partial correlation of mt and it
given ct is zero. If partial correlation ρ(mt , it/ct ) is zero or close to zero in
the data, variable ct in the appropriate causal ordering lies between variables
mt and it . The authors exploit this and similar results to specify an ordering
of the errors that is compatible with the data. The method involves using
the estimates of the residuals to compute the correlation matrix of the error
terms, which is used to compute all possible partial correlations among the
errors. The method then searches for a model that is compatible with the
vanishing partials discerned in the data.

There are twelve partial correlations among the error terms associated with
the variables under study here. In the data studied by Swanson and Granger
ρ(yt , mt/ct ), ρ(yt , mt/it ), and ρ(it , mt/ct ) are lowest in absolute value, and
thus the most appropriate candidates for zero partial correlations. The first
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vanishing partial ρ(yt , mt/ct ) ≈ 0 suggests that in the appropriate causal
ordering ct lies between yt and mt , the second ρ(yt , mt/it ) ≈ 0 suggests that
it lies between yt and mt , and the third ρ(it , mt/ct ) ≈ 0 implies that ct lies
between it and mt . Altogether, these vanishing partials suggest that a causal
ordering, as in the model below, is compatible with the data:

mt = vMt

ct = αmt + vCt

it = γ ct + 0mt + vIt

yt = λit + 0ct + 0mt + vYt

(1.18)

The zero partial correlations are not compatible with the causal ordering
expressed by model (1.17).

Swanson and Granger’s method fails to eliminate the arbitrariness involved
in transforming a VAR model into a causal chain model. For one thing, par-
tial correlation is invariant to the reversal of causal directionality in the sense
that it does not matter whether mt causes ct and ct causes it or it causes ct
and ct causes mt . In either case, partial correlation ρ(it , mt/ct ) is zero. There-
fore, besides model (1.18), a recursive model in which the causal influences
proceed from yt through it and ct to mt is also compatible with the vanishing
partials. There is usually more than one causal ordering compatible with any
set of vanishing partials found in the data. This means one must draw on
other considerations to select an ordering. In the present example, Swanson
and Granger favour the ordering in model (1.18) on the grounds that money,
consumption, or investment is a leading indicator for GDP (1997: 363).

Also, a correlation between two variables can be due to latent common
causes. If the correlation of mt and ct given any possible combination of
the rest of the variables is different from zero, it cannot still be concluded
that either variable causes the other. The possibility of latent common causes
widens the class of models compatible with the data, making it impossible
for the present approach to distinguish between cases of causal and spurious
relations. If no outside knowledge is available, the choice of a particular
causal ordering of the innovation terms and hence the choice of a VAR
model remains arbitrary. Empirical evidence alone is inadequate for speci-
fying the privileged transformation that corresponds to the data-generating
structure.

1.5.1.3 Revising the objectives

Sims emphasizes that economists are never in a position to eliminate the need
for personal judgement in selecting a model as a representation of the struc-
ture. Owing to the unreliability of personal judgements, he therefore argues
for revising the conventional objectives of macroeconomics (1982b: 139–40).
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In particular, Sims urges economists to be sceptical of their analysis of policies
that have no historical precedent. If a policy had a precedent in the data and
enough data were available, it would be possible to fit a model to one part
of the data, and then investigate how it performs in predicting the rest of
the data. If the model performed well in mimicking the effect of the policy
in the remaining data, assuming that the economic structure was still the
same, it would also most likely predict the policy outcomes in the new sit-
uation (Sims, 1982a: 122). However, if a policy had no historical precedent,
the choice of a model for evaluating it would be entirely subjective. In that
case, there would be no guarantee that the model would correctly predict the
policy outcomes. The more a policy differs from those that have precedents
in the data, the less reliable the analysis will be. Sims therefore questions
the objective of evaluating novel policies, the task, he claims, falls outside
the domain of macroeconomics (Sims, 1982a: 119). For him, economists are
observers of the economy, not engineers of reform (Lucas, 1987: 8).

Sims is equally sceptical of the reliability of explanations in macroeco-
nomics. In his opinion, ‘economists must accept that a single view of the
causal structure of the record they examine will never emerge’ (1977: 30).
Consequently, explanations of economic phenomena are simply ‘stories’ that
the modellers can envision about what is going on inside their models (2004:
282). The choice of a story is partly a personal matter and must be viewed
with scepticism (1981: 583). Economists can be helpful in ex ante and ex post
predictions over a short period of time. But, analysis of radical policies and
explanation of macroeconomic events falls beyond the boundaries of their
field (1987: 50).

Finally, Sims argues that the lack of controlled experiments and the inad-
equacy of statistical inference are not the only sources of uncertainty in
economic models. Aggregate economic data are also inherently inaccurate,
and this fundamentally adds to the uncertainty of the models. This uncer-
tainty casts doubt even on the choice of a model for ex ante or ex post
prediction. And so he suggests avoiding the choice of a single model, and
instead urges working with a group of models best fitting the data. If the task
at hand is ex ante or ex post prediction, it will be more reliable to average
the models’ predictions and act accordingly. It is, in general, more reason-
able both in prediction and policy analysis to compare the predictions of a
number of plausible models and take a decision that is close to all the mod-
els’ predictions (Sims, 2004: 282). Sims’ view is consistent with the Bayesian
approach to model selection in which the uncertainty concerning the mod-
els is expressed in the form of a probability distribution over the models, and
thus none of the models is accepted as true.

1.5.2 Metaphysical interpretation

According to the above interpretation of atheoretical macroeconomics, it
makes sense to speak of the causal structure of the economy as a web of
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structural relationships true of economic aggregates. But Sims’ early writings
often suggest a more radical view that challenges the very existence of causal
relations at the economy level. He argues, time and again, that economic
variables can be aggregated in many different ways, and all different levels of
aggregation are theoretically arbitrary and hence acceptable:

Almost every kind of data used in economics . . . is an aggregate or index
number of some sort. We deal with accounting data. Household bud-
get studies divide expenditure into a finite number of categories with
somewhat arbitrary bounds. Studies of firms use the firm’s own books to
construct measures of input, output, and prices. This is not just a matter of
aggregation of fine-grained truth in which arbitrary accounting conven-
tions would not be necessary. . . . The degree of arbitrariness in classifying
production into two-digit industries is not convincingly greater than that
in classifying it into four-digit industries. (Sims, 1987: 50)

What is more, as the level of aggregation is varied, quite different and con-
flicting models of the system are achieved. And because there is no natural
or non-arbitrary level of aggregation, it is wrong to attribute any causal inter-
pretation to aggregate models. There is, Sims argues, no truth about price
indices, national income accounts, or the money stock in the way there is
truth about falling objects, electrical currents, or the stars:

The contribution of econometric probability models may be to make the
process of economic data cheaper, more explicit, and more easily respon-
sible. In doing so, it might also succeed in improving decision-making.
But econometricians will not find truth the way physicists do. There is
no truth about price indexes, national income accounts, expenditure of
household j on meat, or the money stock the way there is truth about
falling objects, electrical currents, or the stars. (Sims, 1987: 51)

Therefore, the search for truth in macroeconomics is misguided and, as a
result, structural (causal) modelling tools are irrelevant to the analysis of
aggregate data. Large-scale economic models are efficient summaries of data,
useful for making short-run ex ante and ex post predictions. They are not suit-
able for the kind of policy analysis economists have been after. The emergence
of a pattern at the aggregate level may have an explanation but the explana-
tion is not causal. The pattern is best explained by showing how it emerges
from an attempt to summarize data. On this reading, Sims deprives macroe-
conomics of its traditional subject-matter. Macroeconomics is atheoretical
because there are no truths at the economy level for a theory to repre-
sent. To Sims, economists are closer to accountants than natural scientists
(Sims, 1987).
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The rejection of a causal structure at the aggregate level has precedents in
the history of economics. Notably, Hayek (1979) argued that the ‘wholes’
studied in the social sciences are merely constructs of our mind; they do not
represent anything in the external world, and are not subject to scientific laws
(1979: 96).29 Also, recently, some post-Keynesian economists have empha-
sized the necessity of individual heterogeneity and direct interactions among
market participants in explaining macroeconomic phenomena. Individual
heterogeneity and direct interaction, as will be seen, enormously complicate
the relation between micro- and macro-relations, making it impossible to
attribute any theoretical interpretation to relations emerging at the economy
level. Such considerations have led these economists to favour an atheoretical
view of macroeconomics, similar to Sims’ approach, and to reinterpret empir-
ical macroeconomic models simply as efficient summaries of data (Colander,
1996: 66).

1.6 Conclusion

Theoretical economics and atheoretical macroeconomics present two
squarely opposing views on the nature and scope of macroeconomics. A
fundamental reason for the emergence of these views is the recognition of the
intrinsic limits of statistical inference as well as the difficulty of carefully con-
trolled experiments on the economy. Theoretical economists hold that these
limits can be overcome by adopting a bottom-up approach to the study of
the economy. In contrast, atheoretical macroeconomics holds that the limi-
tations are here to stay, and there is no successful strategy to overcome them.
The central question of macroeconomics is therefore whether there can be an
empirically adequate theory of economic behaviour and whether the theory
can be turned into a theory of the economy through aggregation. Of equal
importance is the view that one can sensibly talk of structural relations at the
economy level.



2
Rational Behaviour and
Economic Theory

2.1 Introduction

Unfortunately, the general hypothesis that economic agents are Bayesian
decision makers has, in many applications, little empirical content: with-
out some way of inferring what an agent’s subjective view of the future is,
this hypothesis is of no help in understanding his behaviour. …To practice
economics, we need some way … of understanding which decision problem
agents are solving. (Lucas, 1981: 223)

The difficulties in atheoretical study of aggregate data have led economists
to propose a bottom-up approach to the study of macroeconomic phenom-
ena. The approach involves establishing a theory of individual behaviour and
transforming it into a theory of the economy using aggregation methods. As
a result, even though macroeconomics is primarily concerned with aggregate
phenomena such as the unemployment level or general price movements,
issues of individual behaviour have come to occupy a central place in the-
oretical economic analysis. The chief conjecture about ‘homo economicus’
is that he behaves rationally. This conjecture is thought to be an ‘engine of
truth’ that helps to discover the laws of economic behaviour. Market forces
are said to eliminate irrational behaviour, and this justifies focusing on the
study of rational behaviour. This chapter studies the contribution of various
rationality hypotheses to theoretical economics.

While the literature provides a host of concepts of rational behaviour, the
leading definition is based on the theory of subjective expected utility, devel-
oped in Savage’s book, The Foundations of Statistics (1972 [1954]). Savage’s
theory identifies behavioural rationality with subjective expected utility
maximization – behaviour is rational if it is the outcome of subjective
expected utility maximization. Since its inception, Savage’s theory has been
criticized on several grounds. It has been argued that the theory’s postu-
lates are empirically wrong, its computational requirements exceed those
of human beings, and people are not only after their own utility. These
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criticisms have initiated an exciting search for alternative theories of
behaviour. Nevertheless, they have not yet shaken the central status of the
theory in economic analysis.

To analyse the contributions of rationality hypotheses to economic theo-
rizing, this chapter distinguishes two entirely different questions about the
role of rational choice theories in economics. The first is whether the theories
closely describe the process of human choice whereas the other is whether the
theories could ever be adequate for predicting economic behaviour, regard-
less of whether they are true or false. While both questions are analysed in
detail, the emphasis will be on the second issue.

We argue that rational choice theories give no explanation of how the
agent models his choice situation, and defines his decision problem. They
only state how he, given a fully specified choice situation, makes a choice
that maximizes his expected utility with respect to the situation. Therefore, in
using the theories to model behaviour, a host of substantive assumptions are
needed to specify the agent’s view of his choice situation and the problem
he is trying to solve. These assumptions relate to the agent’s view of the
structure of the environment, values, needs and goals. It is only then that
the theories become relevant and predict how the agent solves his decision
problem.

A theory of behaviour, however, cannot take as given the agent’s view
of his choice situation and how he defines his decision problem. This is
because the resolution of economic controversies more critically depends on
how the agent models his choice situation and defines his decision problem
than on the specific method by which he solves the problem. Expected util-
ity maximization is consistent with all sides of any economic controversy,
and therefore contributes very little to economic analysis. Substantial results
attributed to the hypothesis are all the implications of the assumptions made
about how people specify their choice situation and re-specify it in the face
of new information. In practice, economists turn to the econometric analy-
sis of aggregate data to settle economic controversies. Yet the success of the
econometric method is very limited.

As an attempt to overcome some of the shortcomings of the rational choice
theories, new classical economists have put forward the rational expectations
hypothesis. The hypothesis identifies the agent’s view of the economy with
the true model of the economy, suggesting that he maximizes his expected
utility with respect to the true model. Therefore, as soon as the structure
of the economy is known, the agent’s view of the economy is also known.
The economist then only needs to discover the agent’s preferences to specify
the decision problem he is trying to solve, and to predict his behaviour. We
will review this hypothesis to further our understanding of the current state
of microeconomic theory. We end the chapter with a brief characterization
of the kind of theory of behaviour that is needed for thinking about the
economy.
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2.2 Rational choice

A rational choice theory of behaviour consists of a characterization of
rational behaviour and a claim that a rational individual chooses only acts
that satisfy the description. The oldest concept of behavioural rational-
ity defines rational behaviour in terms of pursuit of self-interest – rational
behaviour is self-interested behaviour.1 Economists flesh out the idea of pur-
suit of self-interest by stating that a producer prefers more profit to less profit
or a consumer prefers more money to less money. Another notion identifies
behavioural rationality with the requirement that choices from different sub-
sets of the universal set of available options be maximizing solutions from
the respective subsets according to some binary relation R. A person is ratio-
nal if his or her choice from any subset of the set of available options is the
R-maximal element of the subset (Sen, 1987: 69). These definitions do not
take into account the fact that full knowledge of the states of the world is
never available and one always has to make decisions whose outcomes are
uncertain. A theory of rational behaviour should take this ubiquitous feature
of real-life decision-making seriously, and characterize rational behaviour
under uncertainty.

A theory of rational choice under uncertainty demands a formal char-
acterization of uncertainty and a description of how the uncertainty thus
characterized is taken into account in making decisions over alternative
courses of actions (Sen, 1987: 72). The theory used in this context is the
expected utility theory, which weighs the value of each of the outcomes of
an action by the respective probabilities of the different outcomes of the
action. On this theory, behaviour is rational if it is the outcome of expected
utility maximization. Depending on one’s interpretation of probability, two
general classes of expected utility theories can be defined. The objective
interpretation takes probability to be a measure of relative frequency. This
interpretation underpins the Von Neumann–Morgenstern theory of expected
utility. On the other hand, the subjective (personal) interpretation takes
probability to be a measure of the degree of belief that a person has in
the occurrence of an event. This interpretation underlies Savage’s subjec-
tive expected utility theory, which will be the focus of analysis in what
follows.

2.2.1 Savage’s theory of subjective expected utility

As any axiomatic system, Savage’s theory has three parts. The first concerns
the definition of primitive and constructive notions, the second involves
introduction of the axioms and the third involves establishing the main result
of the postulates. We describe the first two parts of the theory in some detail,
as they play a critical part in our understanding of the role of the rationality
hypotheses in economic theorizing.
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2.2.1.1 Small worlds

Savage starts with defining the primitives of his theory, including a choice
set and a formal description of what the decision maker is uncertain about.2

To this end, Savage has a colourful example. Imagine you have just broken
five good eggs into a bowl to make an omelette. A sixth egg, which for some
reason you must either use for the omelette or throw away, lies unbroken
beside the bowl. You are about to decide what to do with this unbroken egg,
which is not known whether is good or rotten. Savage calls the sixth egg, the
object about which you are concerned, the World. A description of the world,
leaving no relevant aspect undescribed, is called a state (of the world), herein
good or rotten. Of these two states one does in fact obtain, called the true state.
A set of states is called an event. The event that has every state of the world as
its element is called the universal event, and is denoted by S. There are at least
three actions available to you: you may break the egg into the bowl contain-
ing the other five good eggs, you may break it into a saucer for inspection,
and you may throw it away without inspection. Depending on the state of
the egg, each of these acts will have some consequences, say, wasting five good
eggs or making a clean saucer dirty. Let Z denote the set of all the conse-
quences about which you are concerned. In deciding on an act, you must
take into account possible states of the world and also the consequences that
may follow from each act under each state of the world. Accordingly, an act
is formally defined as a function that attaches a consequence to each state
of the world, i.e. a mapping from S to Z. Let F denote the set of available
acts. The set F is the choice set. In making a decision you prefer one act to
others. A binary relation ≺ expresses your (strict) preferences over set F; thus
for two acts f and g in F, f ≺ g means g is (strictly) preferred to f . The term
‘world’ is also used to refer to the pair (S, Z). Table 2.1 below gives a schematic
representation of a world corresponding to Savage’s example (Savage, 1972
[1954]: 14).

Table 2.1 Savage’s small world

States

Acts Good Rotten

Break into bowl Six-egg omelette No omelette and five good eggs
destroyed

Break into saucer Six-egg omelette and a saucer
to wash

Five-egg omelette and a saucer
to wash

Throw away Five-egg omelette and one
good egg destroyed

Five-egg omelette
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Although this example illustrates the basic notions of Savage’s theory, it
does not describe a typical situation to which the theory is intended to apply.
To be precise, Savage develops his theory around an ideal agent whose guide
in life is the proverb ‘Look before you leap’ as opposed to ‘You can cross the
bridge when you come to it’ (Savage, 1972 [1954]: 16). That is, in making a
decision, the agent considers not only the consequences of his immediate acts
but also those of the acts that he might need to take given the consequences
of the immediate acts and so forth. The objects about which he contem-
plates are not simple acts but sequences of acts. Savage carries the maxim
‘Look before you leap’ to the extreme, assuming that the agent behaves as
though he has only one decision to make in his entire life. ‘He must … decide
how to live, and this he might in principle do once for all’ (Savage, 1972
[1954]: 83). Consequently, the world (S, Z) that he constructs to represent
his choice situation has an extremely large (infinite) number of states and
an ultimately refined description of the consequences of the acts under each
state. Savage refers to an ultimately refined pair of states and consequences
(S∗, Z∗) as the grand world.

In reality, no matter how refined a world (S, Z) is, it does not include every
conceivable state or consequence. Even if a person is now considering a life-
time decision, she may not bother with the price of oil on 25 June 3500.
Thus, the world (S, Z) she considers to represent her choice situation is, in
Savage’s terms, a small world in the sense that each element in S can still be
partitioned into smaller states and Z can still be replaced with an even more
refined description of the consequences.

2.2.1.2 The postulates

Savage’s theory is based on seven postulates regarding the preference relation
on F. The postulates can be stated in several equivalent ways. We follow
Fishburn’s statement (1970: 191). Savage’s first postulate is that the strict
preference relation ≺ on F is a weak order. That is to say that ≺ is asymmetric
and negatively transitive. The preference relation ≺ is asymmetric just in
case, for every act f and g in F, if f is preferred to g, g is not preferred to f .
And it is negatively transitive just in case, for every act f , g and h in F, if f is
not preferred to g, and g is not preferred to h, then f is not preferred to h:

Postulate 1: For every f, g and h ∈ F
(a) if f ≺ g then not g ≺ f ;
(b) if not f ≺ g and not g ≺ h then not f ≺ h.

Let ‘∼’ denote indifference, which is the absence of strict preference. That
is, for every f and g in F,

f ∼ g if and only if neither f ≺ g nor g ≺ f .
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It follows from the postulate that the relation ≺ is transitive, and ∼ is reflexive,
symmetric and transitive. It also follows that the preference relation is com-
plete in the sense that for every two acts f and g in F exactly one of f ≺ g,
g ≺ f or f ∼ g holds (Fishburn, 1970: 13).

The second postulate says that states with similar consequences do not
affect preferences. If acts f and g have different consequences over event A
but agree over the complementary event Ac, they are ranked only on the
basis of their differences on A. Similarly, if act f ∗ agrees with f and act g∗
agrees with g on A, and further f ∗ and g∗ agree on Ac, f ∗ and g∗ are ranked
in the same way that f and g are ranked. Let f (s) be the consequence that f
assigns to state s in S. The postulate can be stated as follows:

Postulate 2: Suppose acts f , g, f ∗ and g∗ are such that:
(a) f (s) = g(s), f ∗(s) = g∗(s) for all s ∈ Ac

(b) f (s) = f ∗(s), g(s) = g∗(s) for all s ∈ A
then f ≺ g iff f ∗ ≺ g∗.3

The third postulate says that the relative value of consequences is invariant
across the states. Two further notions are needed to make this idea precise -
null event and constant act. An event E is considered as null by a person if he is
indifferent among acts that only differ on E. An act is called constant if it leads
to the same consequence over every state of the world. This contrasts with
concrete acts that yield different consequences over different states. Savage
identifies each consequence z in Z with a constant act, i.e. an act that leads
to z over all the non-null states. The third postulate then says that if a person
prefers y to x given non-null event A, he prefers y to x in general, and if he
prefers y to x in general, he prefers y to x given A:

Postulate 3: If event A is not null, and

f (s) = x, g(s) = y for all s ∈ A, and f (s) = g(s) for all s ∈ Ac, then f ≺ g
iff x ≺ y.

So, the set F not only includes concrete acts but also, for every z in Z, contains
a constant act f that produces z in every state of the world. The postulate
thus extends the preference relation ≺ from acts to consequences Z.

The fourth postulate says that the consequences following from an act
under a state do not affect the belief about the state. Suppose a person prefers
consequence y to x and y∗ to x∗. Then, if he prefers y to x when event A obtains
rather than when event B obtains, he also prefers y∗ to x∗ when A obtains
rather than when B obtains:

Postulate 4: Suppose A, B ⊆ S; x, y, x∗, y∗ ∈ Z; f , g, f ∗, g∗ ∈ F are such
that

(a) x ≺ y and x∗ ≺ y∗
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(b) f (s) = y for all s ∈ A f (s) = x for all s ∈ Ac

g(s) = y for all s ∈ B g(s) = x for all s ∈ Bc

(c) f ∗(s) = y∗ for all s ∈ A f ∗(s) = x∗ for all s ∈ Ac

g∗(s) = y∗ for all s ∈ B g∗(s) = x∗ for all s ∈ Bc

then f ≺ g iff f ∗ ≺ g∗.

This paves the way for defining a qualitative likelihood relation ≺∗ over S.
Suppose y is preferred to x. Further, suppose acts f and g are such that f is
equal to y on A and equal to x on Ac , and g is equal to y on B and equal to x
on Bc . If g is preferred to f , then the only explanation is that B is considered
to be more probable than A:

A ≺∗ B if and only if f ≺ g. (2.1)

Thus, the preference ordering over F induces a likelihood ordering over S.
These four postulates capture all the behavioural content of Savage’s the-
ory. Savage’s three remaining axioms are technical postulates to ensure the
existence of a mathematical representation of preferences and likelihood
judgements (Kreps, 1988: 128). We mention two of these postulates here.
The first is the non-triviality postulate:

Postulate 5: There is at least one pair of acts f and g such that f ≺ g.

The sixth postulate says that for every two non-indifferent acts in F and for
every consequence x in Z, the set S can be partitioned into arbitrarily small
events so that altering either act to equal x on just one of these events does not
reverse the ordering of the acts:

Postulate 6: For all f , g ∈ F such that g ≺ f, and for all x ∈ Z, there is a
finite partition of S such that for every event A in the partition

(a) if f ∗(s) = x for s ∈ A, f ∗(s) = f (s) for s ∈ Ac then g ≺ f ∗
(b) if g∗(s) = x for s ∈ A, g∗(s) = g(s) for s ∈ Ac then g∗ ≺ f .

The postulate, called the continuity axiom, excludes infinitely desirable con-
sequences. It also implies that if event B is less likely than event C, there is
always a partition of S such that the union of each element of the partition
with B is still less likely than C. This means S can endlessly be partitioned
into smaller events. The preference relation ≺, therefore, has a property
corresponding to the Archimedean property of natural numbers.

2.2.1.3 The representation theorem

Savage shows that when preferences among acts in F satisfy the postulates,
there exists a unique finitely additive probability measure P on the set of all
subsets of S such that

A ≺∗B if and only if P(A) < P(B) (2.2)
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and, with P as given, there exists a real valued utility function u on Z such
that for a finite Z

f ≺ g if and only if
∑

P(s)u(f (s)) <
∑

P(s)u(g(s)) (2.3)

According to (2.3), act g is preferred to act f if and only if the subjective
expected utility of g exceeds the subjective expected utility of f . From this
perspective, individual behaviour is rational if it is the outcome of subjective
expected utility maximization.

2.3 Restating the issues

Savage distinguishes between a normative and an empirical interpretation
of his theory. The normative interpretation takes the postulates to be norms
of rationality, providing a standard for actual people to follow. In contrast,
the empirical interpretation suggests that people’s actual preferences among
acts by and large comply with the postulates, and hence agree with a rank-
ing of subjective expected utility. Positive economics assumes the empirical
interpretation.4

Reading Foundations, one gets the impression that, according to Savage,
there are two general phases in human decision making. In the first phase,
the decision maker draws on his view of the causal structure of the world to
specify the acts that are available to him, the states that affect the outcomes
of the acts, and the consequences that follow from each act under each state –
in short, a small world. After that, he evaluates the likelihood of each state
of the world, and assesses the desirability of the consequences. We refer to
a small world, the likelihood ranking of the states of the world, and the
preference ranking of the consequences of the world as a choice situation:

Choice situation =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Small world
Likelihood judgements over the states of the
small world
Preferences over the consequences in the small
world

The choice situation defines the decision problem that the agent is trying
to solve. In the second phase, the decision maker solves the problem by
comparing the acts in the light of the likelihood of the states of the world
and the desirability of their consequences to identify an act that is most likely
to yield that which is desired the most.

This general description of human decision making helps us to define
two different types of theories of behaviour. The first consists of theories
that explain both how a person models his choice situation and defines his
decision problem and how he solves the problem. The second consists of
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theories that take the structure of the choice situation and the definition of
the decision problem as given, and exclusively focus on how a person solves an
already well-defined decision problem. We refer to the former group of theo-
ries as learning-based theories of behaviour and the latter group as choice-based
theories of behaviour.5

Savage’s theory is a choice-based theory of behaviour. The reason for this
classification can be explained by examining the restrictions that the theory
imposes on the various stages of decision making. According to the theory,
the decision making process starts with the construction of a small world.
The postulates of the theory impose two restrictions on the admissibility of a
small world. Postulate 6 requires the set of the states of the world to be such
that they can be partitioned indefinitely into smaller elements. On the other
hand, the second, third and fourth postulates necessitate the description of
the world to be such that preferences among the consequences can be stated
without regard to beliefs about the states, and that likelihood judgements
about the states can be expressed without regard to preferences among the
consequences. These restrictions are non-trivial but leave the specific struc-
ture of the small world undetermined. Formation of a small world lies outside
the theory:

I believe … that decision situations can be usefully structured in terms of
consequences, states, and acts in such a way that the postulates of F. of S.
[The Foundations of Statistics] are satisfied. Just how to do that seems to
be an art for which I can give no prescription and for which it is perhaps
unreasonable to expect one – as we know from other postulate systems for
application. (Savage, 1971: 79)

Also, Savage’s postulates make no reference to anything outside choice, such
as information, experience, goals, needs and motivations. As should be clear
by now, they only require a certain correspondence between different parts
of a choice function (Sen, 1993: 495). Consequently, the theory permits
any internally consistent preference and likelihood ranking, and regards the
content of beliefs and values as exogenous. Savage’s postulates can indeed be
satisfied by both cognitive and moral idiots:

[Savage’s theory] can be satisfied by cognitive and moral idiots. Put another
way, the consistency of computations required by the expected utility
model does not guarantee the exercise of judgement and wisdom in the
traditional sense. (Suppes, 1984: 207-8)

Finally, since the theory is silent about how a rational person models his small
world and forms beliefs and values, it is also silent about how he defines his
decision problem. All in all, then, the theory takes as given the first stage of
decision making, i.e. the construction of a choice situation and definition of
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the decision problem, and only hypothesizes how a person solves an already
well-structured choice problem. The same point applies to other rational
choice theories on offer, including the Von Neumann–Morgenstern theory;
they too concentrate solely on the final stage of decision making, i.e. choice,
and fall into the category of choice-based theories of behaviour.6

In light of these preliminaries, we can distinguish two questions about
Savage’s theory in its capacity as a descriptive theory of behaviour: the first
is whether the theory closely describes the process of human choice, i.e.
the final stage of decision making. The second, but more crucial, issue is
whether a choice-based theory of behaviour is ever adequate for predicting
and explaining behaviour, regardless of being true or false.

2.4 A discussion of the postulates

The first question, which relates to the realism of the postulates, has mostly
been investigated in experimental psychology. The second, which relates to
the adequacy of choice-based theories of behaviour, has mostly been taken
up in economics. Both approaches from psychology and economics are com-
plementary. We first look at some well-known findings from experimental
psychology (Kahneman, 2003). Our objective for such examination here is
not to reiterate that the postulates fail. Our aim is to explain why they fail,
state an alternative view of preferences emerging from the findings, high-
light the implications of the view for economic analysis, and set the stage for
defining the kind of behavioural theory needed in economics.

2.4.1 The constructive nature of preferences

The first postulate implies that the decision maker has a complete preference
ordering among acts in F. To explain what this implication means, note a
distinction between ‘indifference’ and ‘indecision’. Indifference refers to a
case when the decision maker neither prefers f to g nor g to f but is ready to
replace one of the options with the other in his or her preference ordering.
Indecision refers to a case when the decision maker neither prefers f to g, nor
g to f , and is not ready to substitute one for the other in his or her preference
ordering. Thus, completeness means that there are no cases of indecision.
And so the weak order postulate is most consistent with the view that people
have definite and ready-made preferences, and as soon as they need to reveal
them they can do so instantaneously and simultaneously (Thrall, 1954: 183).

This view of preferences is incompatible with a large body of empirical evi-
dence. In an early study, Mosteller and Nogee (1951) observed that subjects
would not always give the same answers on repeated elicitation of prefer-
ences. Similarly, Simonson and Tversky (1992) observed that varying the
choice set could produce different patterns of preferences. In a set of experi-
ments, they presented two groups of subjects with descriptions and pictures
of microwave ovens taken from a catalogue. They invited one group of
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60 individuals to choose between an Emerson microwave priced at $110 and a
Panasonic priced at $180. The subjects were told that both items were on sale,
with one third off the regular price. Of these individuals, 57 per cent chose
the Emerson oven and 43 per cent the Panasonic. In contrast, they presented
the second group of 60 individuals with the same items together with a $200
Panasonic at a 10 per cent discount. Only 13 per cent of the people in the sec-
ond group chose the most expensive Panasonic oven, which was of the same
make as the $180 oven, but its presence among the alternatives increased the
percentage of the subjects who selected the less expensive oven from 43 per
cent to 60 per cent. A similar pattern of preference variation has been found
in a host of other experiments reported in Tversky and Shafir (1992).

If the subjects had definite and ready-made preferences or if they simply
read preferences off ‘some master list’ (Slovic, 1995: 569), the introduction of
the new expensive oven would not alter the percentage of people preferring
the Emerson oven to the cheaper Panasonic one, and the subjects would
exhibit a similar pattern of preferences in both experiments. The observed
variation is therefore most consistent with the view that people do not have
ready-made preferences. Rather, when they need to choose among options,
particularly among complex alternatives, they start in a sense from a state of
indecision. They identify the features of the options relevant to the decision
task at hand, compare the options in accordance with the attributes and
construct pro and con arguments for each option. The pro and con arguments
are then used to construct a preference ranking of the options. From this
perspective, since varying the choice set can make different attributes appear
relevant or provide new information about the attributes already noted, a
change in the choice set can give rise to construction of new pro and con
arguments and hence a different preference ranking. In the above example,
the introduction of the more expensive microwave probably brought with it
new useful clues that were not available before. The subjects, when choosing
among the ovens, most likely looked at the quality and the price of each
brand. Since, in the first scenario, the quality difference between Emerson
and Panasonic ovens appeared less dominant than the price difference, most
subjects opted for Emerson. However, when the third and most expensive
Panasonic was introduced, because of a maintained correlation between price
and quality, the subjects were most likely led to think that the $180 Panasonic
oven was of a much higher quality than previously thought. This additional
clue rendered the quality difference more dominant than the price difference,
driving more subjects to choose the $180 Panasonic oven, thinking that it
was a bargain (McFadden, 1999: 86).

If people do not have ready-made preferences but construct them from
pro and con arguments, it is natural to expect that they sometimes fail to
develop necessary arguments for constructing a definite preference rank-
ing. There may not be enough information available about the options; the
options may be complex, multi-dimensional, or newly invented; or gathering
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information may be very costly. There is therefore every reason to expect that
completeness can fail in practice.

The emphasis on the constructive nature of preferences is the hallmark of
psychologists’ view of preferences. There is, however, more to the claim in the
psychological literature that preferences are constructed than are revealed.
To further our understanding of the constructive view of preferences, let us
look at another body of evidence known as preference reversals. The dis-
covery of the phenomenon goes back to a study by Slovic and Lichtenstein
(1968), in which they noticed that the selling prices of gambles were more
highly correlated with pay-offs than with probabilities of winning but choices
among lotteries were more highly correlated with probabilities of winning
than with the pay-offs. This led the researchers to the conjecture that if sub-
jects were offered two bets with the same expected returns, one featuring
a high probability of winning a modest sum of money (called H for high
chance of winning) and the other featuring a low probability of winning a
relatively large amount of money (called L for low chance of winning), the
subjects would most likely choose the high-probability bet H but price the
low-probability bet L higher. Lichtenstein and Slovic (1971) tested this con-
jecture by confronting a group of subjects with pairs of bets such as the one
depicted in Table 2.2.

Table 2.2 Preference reversal phenomenon

H-bet L-bet

99 % of winning $4 33 % of winning $16
1 % of losing $1 67 % of losing $2

The subjects were asked to state the cash equivalent of the H bet (i.e. the
minimum price at which they would be willing to sell the bet if they owned
it), state the cash equivalent of the L bet and make a choice between the two
bets. Most subjects, as conjectured, chose the H bet but assigned a higher
selling price to the L bet. In an experiment, 127 out of 173 subjects (or
73.4 per cent) assigned a higher selling price to the L bet in every pair in
which they chose the H bet, even though both bets had the same expected
value.

As with any empirical finding, the preference reversal phenomenon is sub-
ject to competing explanations, arising from various assumptions that can
possibly be made about preferences. There are several assumptions relevant to
an explanation of preference reversals. One that has already been mentioned
is that people possess well-defined and stable preferences (Stigler and Becker,
1977). A second is description invariance that says preferences among options
do not depend on the manner in which they are represented or displayed.
A third is procedure invariance that says strategically equivalent methods of
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elicitation give rise to the same preference order; it does not matter whether
choice questions or evaluation enquiries are used to elicit information about
preferences.7 Let CH and CL denote, respectively, the cash equivalent of H
and L. Procedure invariance implies that the decision maker prefers H to a
cash amount X if and only if his cash equivalent for H exceeds X and that he is
indifferent between H and X if and only if CH = X. Finally, a fourth assump-
tion is monetary consistency, which says people prefer more money to less.
If X and Y are sure cash amounts, then X > Y implies X � Y , where > refers
to the ordering of the cash amounts. Given these assumptions, preference
reversal implies a violation of transitivity, as shown below:

1. H � L
2. CL > CH

}
Preference reversal

3. CH ∼ H
4. CL ∼ L

}
Preference invariance

5. CL � CH Monetary consistency

. . . . . . . . . . . . . . . ..

∴ L � CH (4 and 5)

H � CH (1, 4 and 5)

which contradicts CH ∼ H (hence, intransitivity). Economists initially inter-
preted the reversals as violations of transitivity and called for establishing an
expected utility theory that could account for intransitive choices (Machina,
1987). In contrast, psychologists saw more in the phenomenon than intran-
sitivity, and began exploring whether it could have arisen from the failure
of any other assumption, particularly procedure invariance. So, they dis-
tinguished two conjectures about the causes of preference reversals – the
intransitivity and non-invariance hypotheses.

To test these hypotheses, Tversky et al. (1990) extended Lichtenstein and
Slovic’s initial experimental setting by including an option of receiving a
specified sure cash amount X. In this setting, they asked the subjects to state
their preferences between each of the pairs in the triple {H , L, X}, and also
announce their cash equivalent for bets L and H . The researchers then focused
on the preference reversal cases in which X fell between the cash equivalents
CL and CH announced by the subjects; that is, the cases in which the reversals
followed the pattern

H � L and CL > X > CH (PR)

Intransitivity and non-invariance give rise to different testable implications
for preference orderings that satisfy the PR pattern. To spell out some of
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these implications, note that procedure invariance can fail either because of
overpricing of L, underpricing of H , or both overpricing of L and underpricing
of H . Overpricing of L occurs if a person offers cash equivalent CL for L that
is greater than X but in a direct choice between CL and L he prefers CL (i.e.
CL � L). Underpricing of H occurs if a person announces cash equivalent CH
for H that is less than X but in a direct choice between the H and CH he prefers
H to CH (i.e. H � CH ). This distinction suggests there are at least four possible
hypotheses about the causes of the preference reversals. We derive below the
implications of intransitivity, overpricing of L, and underpricing of H :

Hypothesis I: Hypothesis II: Hypothesis III:
intransitivity overpricing of L underpricing of H
1. H � L 1. H � L 1. H � L
2. CL > X > CH 2. CL > X > CH 2. CL > X > CH
3. CL � X � CH 3. CL � X � CH 3. CL � X � CH
4. CL ∼ L 4. CL � L 4. CL ∼ L
5. CH ∼ H 5. CH ∼ H 5. H � CH
…………….. …………….. ……………..
∴ L � X ∴ L � X ∴ L � X

X � H X � H X � H

Tversky et al. (1990) looked at the relative frequencies of these preference
rankings among the subjects’ orderings. Their findings were astounding. In
the study, 40 per cent to 50 per cent of the participants showed preference
reversals consistent with the PR pattern. Of these subjects, only 10 per cent
had preferences consistent with intransitivity while the remaining 90 per cent
had preferences consistent with the non-invariance hypotheses. In particular,
nearly two-thirds of the reversals were consistent with overpricing of the
L bet. The researchers thus concluded that the failure of procedure invariance
(overpricing of the L bet) is the major cause of the reversals.

Several theories have been proposed to explain the failure of procedure
invariance, including the scale compatibility hypothesis, which suggests that
an attribute of an object is given more weight when it is compatible with
the response mode than when it is not. Since the cash equivalence of a bet
is stated in, say, dollars, compatibility implies that pay-offs, which are also
stated in the same units, are weighted more heavily in pricing than in choice.
As a result, the L bet is overpriced relative to the H bet, leading to the observed
preference reversals (Tversky, 1996: 189–90).

The conclusion that preference reversals are to a large extent due to the
failure of procedure invariance fits particularly well with another significant
body of evidence on framing effect which points to the systematic failure
of description invariance (Tversky and Kahneman, 1986). These findings
strongly support the viewpoint that there are no ready-made, well-defined,
and stable preferences; preferences are constructed on demand and are
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endogenous to the decision process. The findings also indicate that prefer-
ence formation is sensitive to the manner in which options are framed and
questions are posed (Fischer et al., 1999: 1074). Consequently, behaviour is
likely to vary sharply across situations considered identical by the rational
choice theory (Tversky and Thaler, 1990: 210).

2.4.2 The entanglement of values and beliefs

Savage’s other behavioural postulates require a small world where preferences
among the consequences of the world and beliefs about the states of the
world are completely disentangled. Consider the third postulate that says
consequence x is preferred to y given a non-null event A if and only if x
is preferred to y in general. Specializing A to a single state, the postulate
says that the relative value of x is invariant across the states. If beliefs about
the states affected the desirability of x, the relative value of x could vary
across the states. In that case, the postulate would no longer hold. Thus,
for the postulate to hold, there must be a small world refined enough to
permit expressing preferences among the consequences of the world without
regard to beliefs about the states and expressing likelihood judgements about
the states of the world without regard to preferences (Shafer, 1986: 743).
Similarly, the second and fourth postulates are predicated on the existence
of a refined small world where beliefs and values are entirely disentangled.

In reality, a person’s preference ordering of the consequences of his actions
may depend on his likelihood ordering of the states of the world, and as
his beliefs about the likelihood of the states change, so does his preference
ranking of the consequences. Savage was aware of this fact. Considering a
person who is about to decide whether to buy a bathing suit or a tennis racket,
Savage acknowledged that whether the person prefers ‘possessing a bathing
suit’ to ‘possessing a tennis racket’ may depend on whether he expects to go
on a picnic at a beach or in a park (1972 [1954]: 25). He took such dependence,
however, as an indication of the inadequacy of the person’s description of
his choice situation. Possessing a bathing suit and a tennis racket, he argued,
should be regarded as acts, not consequences. Appropriate consequences in
this case would be things like ‘having a refreshing swim with friends at a beach
on a sunny day’ and ‘sitting on a shadeless beach twiddling a brand new
tennis racket while one’s friends swim’. Evaluation of these consequences
does not depend on which of the two states ‘picnic at the beach’ or ‘picnic
in the park’ occurs. Savage conjectured that it would generally be possible
to completely disentangle values from beliefs by carrying the refinement of
the consequences to ‘its limits’ (Savage, 1972 [1954]: 25). In an adequately
refined world there would be no link between one’s values and beliefs.

The difficulty with this proposal is that an attempt at refining the conse-
quences in Z can force a refinement of the states in S. This is because the states
S must be detailed enough to determine which element of Z will be achieved
by each act in F (Shafer, 1986: 474). Savage’s suggestion of taking ‘a refreshing
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swim with friends’ rather than ‘possession of a bathing suit’ as the conse-
quence requires refining S to contain states such as whether friends come,
whether the temperature is warm enough for a refreshing swim, whether
the beach is clean, and so forth. These additional states can render one’s
ordering of the refined Z dependent on one’s beliefs about which element in
the refined S is true. Perhaps you would prefer twiddling a brand new tennis
racket while your friends swim if you knew that your friends would bring
along someone who you don’t like. There is a priori no reason to think that,
for any set of acts, there is always an ultimately refined world in which prefer-
ences among the consequences can be completely disentangled from beliefs
about the states. Even if such a world existed, it would not be anything similar
to a description that a typical individual would have of his choice situation.
Later in his life, Savage acknowledged that an ‘ultimate’ analysis might not
after all exist and if it existed it might be quite ‘cumbersome’:

A nickel is itself a lottery ticket, and one objection to getting miserably
drenched is that it seems conducive to illness. If the problem were con-
cerned with illness or the possibility of accidentally buying poisoned food,
then of course the notion of consequences would have to be further anal-
ysed. An ultimate analysis might seem desirable, but probably it does not
exist and certainly threatens to be cumbersome. (Savage, 1971: 79; italics
added)

In the small worlds we construct to represent our choice situations, our evalu-
ation of the consequences of the world depends on our beliefs about the states
of the world. This dependence defines another aspect of the constructive view
of preferences.

Finally, it is important to emphasize the constructive nature of small
worlds; they are also the outcome of our models of the world and evolve
with the evolution of our models. Small worlds, beliefs, and preferences are
not ‘there like the Rocky Mountains’, to use Stigler and Becker’s phrase (1977:
76); they are all constructed.

These remarks, though they may seem self-evident, have a profound impli-
cation for modelling behaviour. Since different constructions of beliefs, small
worlds, and preferences can systematically give rise to different choices, no
theory can accurately predict or explain (dynamic) behaviour without tak-
ing into account the factors affecting formation of beliefs, small worlds and
preferences (Bowles, 1998: 75). Therefore a satisfactory theory of behaviour
should explain how beliefs, small worlds and preferences are formed; it
cannot take them as exogenous. To illustrate the point, let us return to the
preference reversal phenomenon. The phenomenon shows that pay-offs and
probabilities of winning have quite different effects in pricing gambles and
choosing among them. Pay-offs are weighted more heavily in pricing gam-
bles whereas probabilities of winning are weighted more heavily in choosing
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among gambles. This means a theory of behaviour cannot correctly predict or
explain pricing and choice behaviour in such cases without taking into con-
sideration the dominance of pay-offs in pricing and probabilities in choice.
A theory that pays no attention to the different roles of these factors is bound
to yield wrong predictions. The real difficulty with Savage’s theory and indeed
all rational choice theories is not merely that they give a wrong description of
human choice. The real difficulty is that they take things as exogenous that
cannot be taken as exogenous by a theory of behaviour. In general, because
of the constructive nature of beliefs, small worlds and preferences, no choice-
based theory of behaviour can ever explain or accurately predict economic
behaviour.

2.5 The limited role of rational choice theories

In economics, critics of the rational choice theories have until relatively
recently paid less attention to the realism of the postulates, and mainly
disputed the contribution that the theories can make to economic theoriz-
ing, whether they are true or not. In this section, we draw on the works of
economists such as Kenneth Arrow (1986), Arthur Goldberger (1989), Robert
Lucas (1976), Herbert Simon (1984; 1986) and the philosopher Patrick Sup-
pes (1961) to argue why choice-based theories of behaviour are in principle
inadequate for dealing with substantive economic controversies. The analy-
sis complements the central lessons of behavioural psychology. We continue
working within the framework of Savage’s theory but the relevance of the
analysis to other choice-based theories will be evident.

2.5.1 Choice-based theories and economic controversies

Savage’s theory takes the structure of the small world and the content of
beliefs and preferences as given, and only says how an agent solves a well-
structured decision problem. This means, in using the theory for modelling
behaviour, a host of exogenous assumptions is needed to specify the agent’s
choice situation and his decision problem. These assumptions are made by
specifying a utility function, the variables entering the function, the physi-
cal or socio-economic laws determining the variables, their joint probability
distribution, and so forth. Without such assumptions, the theory makes no
concrete prediction about observed behaviour.8

Now, one way to reconstruct the economists’ critique of Savage’s theory is
that these assumptions are not like auxiliary assumptions that are necessary
for a general theory to speak about the actual world. On the contrary, they
assume the solutions to the very same questions that a theory of behaviour
is expected to answer. The reason is that, by varying the exogenous assump-
tions, every conceivable side of any substantive economic controversy can
be derived as the outcome of subjective expected utility maximization. Thus,
the key to settling an economic controversy lies in correctly specifying the
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exogenous assumptions. However, a correct specification of the assumptions
necessary for making Savage’s theory have any implication about a substan-
tive controversy requires nothing less than knowing the correct side of the
controversy. As a result, once the necessary exogenous assumptions in a given
situation are fully specified, nothing essential remains for the theory to pre-
dict; the predictions are already in the assumptions. Savage’s theory simply
repackages them in terms of subjective expected utility maximization. But
a satisfactory theory cannot assume the answer to the very same questions
that it is expected to address. Consequently, regardless of being true or not,
Savage’s theory cannot function as a theory of economic behaviour.

We defend these points by examining a rational choice-based model of
economic behaviour to illustrate how by varying the model’s exogenous
assumptions any side of an economic controversy can be rationalized. We
will then explain why the analysis generally holds.

2.5.1.1 The Effect of compensatory educational programmes

We borrow our model from a paper by Arthur Goldberger (1989), who scru-
tinizes Gary Becker’s claim about the effectiveness of public compensatory
educational programmes. The effectiveness of these programmes is still a mat-
ter of controversy.9 On the one hand, there is the view that such programmes
contribute positively to the well-being of the children participating in them
and improve their future earnings. On the other, there is the view that the
programmes are ineffective, since parents whose children participate in them
reallocate the portion of their income that they would have otherwise spent
on their children. This is known as the offsetting effect. An adequate theory of
behaviour is expected to have some implication for the truth of the offsetting
effect.

Becker (1981) seems to suggest that, by extending expected utility anal-
ysis to parents’ expenditure decision making, he has been able to establish
the offsetting effect. Goldberger is critical of this claim. He argues that the
offsetting effect implied by Becker’s model is not the result of the expected
utility maximization assumption but depends on the exogenous assumptions
introduced to specify, in our terms, the decision problem being solved by the
parent. If the parent’s choice situation were defined differently, a different
conclusion would be derived. The expected utility maximization hypothesis
is consistent with both opposing views on the effect of compensatory edu-
cational programmes. We review Goldberger’s analysis in some detail as it
explains how formal economic modelling proceeds in practice.10

A key to resolving the controversy about the effectiveness of public educa-
tion programmes is to know how parents would respond to a change in the
income of their children. To address this query, Becker assumes a represen-
tative parent, suggesting that all parents whose children participate in the
programmes have the same utility function, live in the same environment,
and receive the same information. He speaks of ‘the parent’ rather than
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parents. Having done so, he introduces several assumptions about the repre-
sentative parent. The first is that she has an interdependent (i.e. non-egoistic)
utility function that allows a concern with the consumption patterns of oth-
ers (Pollak, 2002: 10). In particular, it is assumed that the parent’s utility
derives from her own consumption C and her child’s income Y . Becker’s
second assumption is that the parent has a Cobb-Douglas utility function U :

U = α log Y + (1 − α) log C (2.4)

The parameter α, which lies between 0 and 1, shows relative preference for
child income as against own consumption. The parent’s relative preference
for her child’s income as against her own consumption is independent of
Y and C. The parent receives income X, which is allocated between her
consumption, C, and investment in her child, I :

X = C + I (2.5)

Becker’s third assumption relates to the mechanism generating the child’s
income. The child’s income is taken to be an additive function of the parent’s
investment I and another general component E, called ‘luck’, which repre-
sents natural endowments, social status, government support, luck in the
market, and so forth. The rate of return on investment I is r. Let m = 1 + r.
The child’s income Y is given by

Y = mI + E (2.6)

Since the time unit is a generation, Y and X are technically wealth or per-
manent income. Consequently, the return factor m = 1 + r can be taken to
be larger than unity, say, 1.5 or even more. Finally, Becker’s analysis assumes
that the parent has full knowledge of her child’s luck. She decides by max-
imizing utility function (2.4) subject to constraints (2.5) and (2.6), which
yields the optimal allocation of her income as

I = αX − (1 − α)E/m (2.7)

C = (1 − α)X + (1 − α)E/m (2.8)

Substituting (2.7) back into (2.6) gives the income transmission rule

Y = bX + αE b = αm (2.9)

where the parameter b is the ‘propensity to invest in the child’ and α is the
‘fraction of family income spent on the child’ (Goldberger, 1989: 506).

The income transition rule (2.9) describes how the parent responds to
an increase in the child’s luck. Suppose there is a dollar increase in E.
According to (2.9), the child’s income increases only by the fraction of α

of one dollar; the parent partially offsets the increase in E by increasing her
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own consumption (see (2.7)). Becker takes this result to argue that ‘public
education and other programs to aid the young may not significantly better
them because of compensating decreases in parental expenditures’ (Becker,
1981: 153). This conclusion is not an inevitable implication of the utility
maximization hypothesis. The offsetting result depends on the assumption
that the child’s income is an additive function of parental investment and
child’s luck. If the child’s income were, for instance, a multiplicative func-
tion of parental investment and luck, the result would no longer follow. To
illustrate this, Goldberger replaces (2.6) with the multiplicative function

Y = mIE (2.10)

which says the rate of return to parental investment increases with luck. In
this case, the parent allocates her income according to

I = αX (2.11)

C = (1 − α)X (2.12)

an allocation that is independent of E. And the income transmission rule
becomes

Y = bXE (2.13)

An increase in E no longer affects the parent’s investment decision. If Y
followed (2.10) rather than (2.6), public education programmes could have
strong effects (Goldberger, 1989: 507). This means the utility maximization
assumption implies neither the offsetting effect nor its negation. Becker’s
result is based on his hypothesis (2.6) about the structure of the environment,
which says the child’s income is an additive function of her luck.

Becker’s offsetting result also depends on the choice of a homothetic
utility function.11 Goldberger does not consider this but a non-homothetic
function undermines the result. Consider the simple non-homothetic utility
function

U = Y + ln C (2.14)

while retaining the assumption that the child’s income is an additive func-
tion of parental investment and child’s luck. The optimizing parent will now
allocate her income into

C = m−1 (2.15)

I = X − m−1 (2.16)

which is again independent of E. The new income transmission rule will be

Y = mX − 1 + E (2.17)
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As evident from (2.15) and (2.16), the parent’s optimal consumption and
investment are independent of the child’s luck. And so, the model does not
entail the offsetting effect.

The subjective expected utility maximization assumption is therefore con-
sistent with both opposing views on the effectiveness of compensatory
educational programmes. It is the exogenous assumptions about the shape
of the parent’s utility function, the variables entering it, and the mecha-
nisms generating the variables that make a model entail the offsetting result
or its negation (Pollak, 2002: 9). To predict the effect of the educational
programmes using Savage’s theory, one ought to know, among other things,
whether the parent cares about the child, how she cares, whether her relative
preference for her own consumption and investment in the child vary with
changes in the child’s income, what she thinks of the mechanism generat-
ing the child’s income, how she predicts the effect of her investment on the
future wealth of the child, and so forth. But if we knew the answers to these
queries, we would already know how she would behave in response to a
change in her child’s income; the answer to the question concerning the
effect of the programmes is implicit in the answers to these questions. In
the end, we may need to introduce an optimization principle to infer how
she actually solves her decision problem but the principle would not need to
be the subjective expected utility maximization principle; satisficing would
do equally (Arrow, 1986).12 Nor is the principle an ‘engine of truth’, standing
above all the other assumptions; it is an assumption like other substantive
assumptions entering a model of parent behaviour.

2.5.2 How economic controversies are settled

The resolution of economic controversies depends on the choice of exoge-
nous assumptions, not the expected utility maximization principle. In
practice, economists turn to econometric analysis of aggregate data to select
a rational choice model and thereby settle economic controversies. The
analysis involves trying various combinations of exogenous assumptions to
establish a rational choice model that best fits aggregate data, and using
the model to answer behavioural or policy questions of interest. A crucial
question is whether this approach can fill the theoretical vacuum left by the
rational choice theories. This requires knowing the assumptions underlying
the econometric approach. To bring some of these assumptions to the fore, we
consider a typical application of the method from the history of economics
and, on that basis, explain why it fails.

2.5.2.1 The effect of economic events on votes

An issue of interest in economics concerns the effect of economic events
on votes. The literature contains conflicting views on the matter. Kramer
(1971), for example, concluded from his analysis of US voting behaviour
that economic fluctuations have a major effect on congressional elections,
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whereas Stigler (1973) concluded that they do not. Against this background,
Fair (1978) set himself the task of presenting a model of voting behaviour that
was general enough to incorporate most of the theories of voting behaviour
in the literature and that allowed one to test in a systematic way one theory
against the others. His goal was to use the model to analyse the effect of
economic events on votes. Fair considers a two-party political system such as
in the US, referred to as Democratic and Republican parties, and focuses on
presidential, rather than congressional, elections. Fair’s model is expectedly
a rational choice model of voting behaviour.

According to the rational choice theory, a voter evaluates the past perfor-
mance and current pronouncements of the competing parties, forms from
this assessment an expectation of her future utility under each party, and
votes for the party that offers the maximum expected utility. Let us define
the following notations:

E(Ud
it ) : voter i’s expected utility if the Democratic candidate is elected

at time t .

E(Ur
it ) : voter i’s expected utility if the Republican candidate is elected

at time t .

These expectations are based on the information available up to time t . Also,
let Vit be a variable that is equal to one if voter i votes for the Democratic
candidate at time t and zero if she votes for the Republican candidate at time
t . The theory implies that13

Vit =
{

1 if E(Ud
it ) > E(Ur

it )

0 if E(Ud
it ) < E(Ur

it )
(2.18)

Voter i votes for the candidate that gives the higher expected utility. Further,
let us denote voter i’s utility function as

Uit = fi(Zit ) (2.19)

with Zit being the variables affecting her utility. Fair interprets the differences
in the literature on voting in terms of whether Zit includes economic factors
and, if so, how they affect, votes. If economic factors affect votes, the voter’s
expected future utility if a party were in power will depend on her forecast of
the performance of the economy under the party. Fair, therefore, embarks on
testing whether the voter’s expected future utility under a party depends on
her forecast of the performance of the economy under the party. This raises
several questions about how the voter measures the state of the economy and
how she forecasts the economy’s performance.
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Fair makes two assumptions about the voter’s forecasting procedure:

A1: the forecast reflects accumulated past experience;
A2: the forecast attaches more weight to recent than to remote periods.

According to these assumptions, the voter bases her forecast of the future
performance of a party on the economy’s performance when the party was
recently in power. If economic factors affected voting decisions, then the
voter’s expected future utility under a party would depend on how well the
economy performed when the party was recently in power. Let

tj1 : last election from t back that party j was in power,
tj2 : second-to-last election from t back that party j was in power,

ξ
j
i : a vector of variables specific to voter i, assumed to be independent of

the variables used to measure the performance of the economy,
Mih : some measure of economic performance of the party in power during
the four years prior to election h. Subscript i suggests that each voter may
use different measures.

j takes two values d for the Democratic candidate and r for the Republican.
When party j is in power at time t , tj1 is equal to t .14 The postulates A1 and
A2 can then be formalized as follows:

E(Ud
it ) = ξd

i + βi1
Mitd1

(1 + ρi)
t−td1

+ βi2
Mitd2

(1 + ρi)
t−td2

(2.20)

E(Ur
it ) = ξ r

i + βi3
Mitr1

(1 + ρi)
t−tr1 + βi4

Mitr2

(1 + ρi)
t−tr2 (2.21)

where parameters βi1, βi2, βi3, and βi4 are unknown coefficients and ρi is
an unknown discount rate. Equations (2.20) and (2.21) state that voter i’s
expected future utility under a party is a function of a vector of individual
specific variables and the party’s performance during the last two times that
it was in power. The performance measure is discounted from time t back at
rate ρi. For ρi greater than zero, more weight is attached to recent than to
remote periods. If desired, the equations can be expanded to include more
than just the last two periods each party was in power. Also, Mih can be a
function of several variables describing the economy.

Fair attempts to settle the theoretical disagreements about the effect of
economic events on votes by fitting to aggregate voting data various possible
models that arise from substituting alternative performance measures for Mih
in equations (2.20) and (2.21). His objective is to determine if any of the
models adequately account for the data. Equations (2.20) and (2.21) are about
individual behaviour, and without some justification cannot be estimated by



Rational Behaviour and Economic Theory 59

aggregate data. To justify using aggregate data, Fair introduces four extra
assumptions regarding the voters and the economy. Let

ψi = ξ r
i − ξd

i and (2.22)

qt = βi1
Mitd1

(1 + ρi)
t−td1

+ βi2
Mitd2

(1 + ρi)
t−td2

− βi3
Mitd1

(1 + ρi)
t−tr1 − βi4

Mitr1

(1 + ρi)
t−tr2 . (2.23)

It follows from equations (2.18), (2.20) and (2.21) that voter i votes for the
Democratic candidate if qt > ψi and votes for the Republican candidate if
qt < ψi.15 With this in mind, Fair’s assumptions for linking the individual
and the aggregate levels are as follows:

A3 : all voters use the same measure of performance;
A4 : the coefficients βi1, βi2, βi3, βi4 and ρi in (2.20) and (2.21) are the
same for all voters; index i can be deleted;
A5 : ψi in (2.22) is evenly distributed across voters in each election between
some numbers a+δt and b+δt , where a < 0 and b > 0. a and b are constant
but δt can vary across elections;16

A6 : There are an infinite number of voters in each election.

Let Vt denote the percentage of the two-party vote that goes to the Demo-
cratic candidate in election t . It follows from equations (2.18), (2.20), and
(2.21), and assumptions A3 through A6 that:

Vt = α0 + β∗
1

Mtd1

(1 + ρ)t−td1
+ β∗

2
Mtd2

(1 + ρ)t−td2

− β∗
3

Mtd1
(1 + ρ)t−tr1 − β∗

4
Mtr1

(1 + ρ)t−tr2 + vt (2.24)

which makes no reference to variables ξd
i and ξ r

i (see Appendix 2.C). Given
some restrictions on the error term vt , equation (2.24) can be estimated from
aggregate data. Fair considers several measures of performance to replace for
Mh. They include the growth rate of real GNP per capita in the year of the
election, in the two-year period before the election, in the three-year period
before the election, and over the entire four-year period; the change in the
unemployment rate for the same four periods; and the absolute value of the
growth rate of the GNP deflator for the same four periods. Among the forty-
eight equations considered, the equation with the growth rate of the real GNP
per capita in the year of the election as the measure of performance best fitted
the data. Fair therefore concludes that economic events as measured by the
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change in real economic activity in the year of the election have a significant
effect on votes for president. Voters do not, he also concludes, look back very
far. Nor do they consider the past performance of the non-incumbent party.
Economic factors, after all, enter voters’ utility functions.

2.5.3 Why the econometric method fails

Fair’s study is a typical example of how substantive controversies – such as
what variables affect votes and how – are settled in economics. In practice,
substantive controversies are resolved by searching for a rational choice-based
model that best fits aggregate data. A central question is therefore whether
this approach can fill the theoretical vacuum left by the rational choice
theories. For two reasons, the answer is negative.

First, the econometric approach requires assuming that the laws of the indi-
vidual and the economy coincide; without this assumption aggregate data
cannot be used to select the assumptions entering a rational choice model.
Fair takes this coincidence for granted by assuming that all voters have
the same utility function, use the same measure of economic performance,
employ the same forecasting rules, and that individual characteristics are uni-
formly distributed in the population. These assumptions, which are necessary
for the laws of the individual and the economy to coincide, are incredibly
strong. Yet, they are not adequate to ensure the coincidence. A full justifica-
tion of this point demands a proper understanding of the conditions under
which the laws of the individual and the economy are the same, which
is given in the final chapter. Here, it suffices to note that economic vari-
ables change status when one moves from the micro-level to the aggregate
level. The individual takes, for example, prices, the rate of economic growth,
inflation, and the unemployment level as given but the economy cannot take
them as given. Quite the opposite, it determines them. It is therefore wrong
to assume that models true of the aggregates are also true of the individuals
or vice versa. Contrary to common practice in economics, the fate of ratio-
nal choice models cannot be settled by analysis of aggregate data. A different
type of data is needed.

Second, the exogenous assumptions in a rational choice model convey
information about the agent’s small world, beliefs and preferences. These
are not invariants of human behaviour but are constructed on the basis of
past experiences, goals and needs, and vary with the accumulation of experi-
ences and information. This means even if the aggregation difficulties arising
from the differences between the micro- and macro-levels did not exist, the
econometric method could at best establish the model that was true of the
individuals during the period from which the data were collected. It could not
establish the model that would be true if they received different information,
if a different policy regime were in place, or if the institutional structure of the
economy were different. As a result, the econometric method is unsuitable
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for establishing models useful for predicting the effects of changes in the
economy on individual behaviour. In a nutshell, for the very same rea-
sons underlying the Lucas critique, econometrics fails to fill the theoretical
vacuum left by the rational choice theories.

For these reasons, the marriage of rational choice theory with economet-
rics fails to yield models suitable for predicting the effects of change on
behaviour. The key to achieve this objective is the ability to answer coun-
terfactual queries such as those stated above. Settling such queries demands
a theory of behaviour that endogenizes small worlds, beliefs and preferences.
In other words, it calls for a theory that explains how a person forms beliefs
about the causal structure of the economy, updates his beliefs in light of
new information, adapts preferences on the basis of past experiences, and
accordingly defines his decision problem. If such a theory is established there
remains no essential role for the subjective expected utility theory to play
in predicting and explaining behaviour. The theory, in one sense, becomes
otiose:

The psychologist resists accepting them [subjective probability and utility]
as basic or primitive concepts of behaviour. Ideally, what he desires is a
dynamic theory of the inherent or environmental factors determining the
acquisition of a particular set of beliefs or values. If these factors can be
identified and their theory developed, the concepts of probability and
utility become otiose in one sense. (Suppes, 1961: 614)

Two general implications of our analysis of Savage’s theory are worth
noting. First, the inadequacy of Savage’s theory arises from the fact that
it provides no explanation of how the agent models his choice situation
and defines his decision problem. In this respect, other rational choice the-
ories on offer are the same. They are also solely concerned with the final
stage of decision – choice, and cannot serve as a satisfactory theory of eco-
nomic behaviour. Secondly, but equally importantly, economists have long
argued for the necessity of economic theory to specify explanatory variables
in econometric models, the functional form of the model, the sign of the
model parameters, and even the joint probability distribution of the vari-
ables under study (Fair, 1987: 270). And by economic theory, they mean
a theory of rational choice or a model based on it (Becker, 1976: 5). Our
analysis reveals that rational choice theories do not provide any informa-
tion useful for specification of econometric models; they just take them for
granted. The so-called theoretical information in economics is simply dis-
parate assumptions that are not derived from any theory, certainly not from
rational choice theories (Peltzman, 1991: 206). They are accepted because
they intuitively sound plausible (Sims, 2004: 282) or are part of a model that
fits aggregate data.
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2.6 Expectations

To understand the dynamics of behaviour, it is essential to model both the
process of preference and expectations (beliefs) formation. Notwithstand-
ing this, economists have treated expectations and preferences differently.
Stigler and Becker (1977) famously suggested that economics should take
preferences not only as exogenous but also as homogeneous across indi-
viduals, arguing that differences in actions are best explained in terms of
differences in perceived opportunities (Vriend, 1996: 279). While there have
been some attempts to study preference formation, Stigler and Becker’s view
still strongly dominates economics. In sharp contrast, a central position in
economics has always been that economic theory cannot take expectations
as exogenous (Harsanyi, 1965: 450), and a variety of proposals have been
put forward to model expectations. An influential proposal is the rational
expectations hypothesis. We study some aspects of this hypothesis to further
our understanding of the current state of economic theory.

2.6.1 Adaptive expectations

The rational expectations (RE) hypothesis emerged as a result of reflection
on the shortcomings of the so-called adaptive expectations (AE) hypothesis.
According to this hypothesis, the agent considers only the recent values of
a variable to form expectations of its future values and, when the truth
of his forecasts transpires, he uses his forecasting error to revise his future
forecasts of the variable (Cagan, 1956). The AE hypothesis restricts relevant
information on a variable to its recent history. As a consequence, it implies
that people do not take note of changes in the economy until the effects
of the changes are fed into their forecasting errors and therefore make sys-
tematic mistakes in perceiving the course of the economy (Bicchieri, 1987:
506). Moreover, according to the hypothesis, the effect of interventions on
behaviour begins to bear only after previous expectations badly go wrong.
Because of this strictly backward-looking feature, the hypothesis rules out
any immediate effect of policies on expectations and hence behaviour. These
implications go against a common conviction in economics that people opti-
mally use all available information in making decisions. It is claimed that they
realize the interrelations among economic variables and utilize the infor-
mation on their movements to form expectations. The AE hypothesis has
therefore been viewed as an inadequate conjecture about people.

2.6.2 Rational expectations

The RE hypothesis is an extreme response to the backward-looking feature
of the AE hypothesis. In its strong form, it posits that economic agents know
the true model of the economy and their subjective expectations of the vari-
ables representing the economy are the same as the objective expectations
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entailed by the true model (Pesaran, 1987: 165):

Expectations, since they are informed predictions of future events, are
essentially the same as the predictions of relevant economic theory. At the
risk of confusing this purely descriptive theory…with a pronouncement
as to what firms ought to do, we call such expectations ‘rational’. (Muth,
1961: 316)

The RE hypothesis stands on several assumptions. An assumption is that
the vector of exogenous and endogenous variables of the economy fol-
lows a jointly stationary stochastic process. Another assumption is that the
variables have an objective joint probability distribution in the sense under-
stood in the frequency interpretation of probability. In characterizing this
assumption, following Knight (1964 [1921]), new classical economists divide
uncertainty into ‘reducible’ and ‘irreducible’ components. Reducible uncer-
tainty is defined as risk, which is the uncertainty that is analysable according
to the laws of mathematical probability. Irreducible uncertainty is taken to
be the ‘true’ uncertainty, which falls outside the bounds of numerical prob-
ability. The RE hypothesis is, by definition, restricted to risky situations
(McCann, 1994: 63). However, nothing is said about how it can be known
whether a given situation is risky or truly uncertain, and so in practice the
hypothesis is applied generally. A further assumption is that the agents cor-
rectly know the objective probability distribution of the variables describing
the economy.17 Finally, the agents are also assumed to know the true values
of all the exogenous and endogenous variables through to the end of the
present period.

These assumptions have strong implications for modelling the economy.
Since the agents know the true economic model, their forecasts are always
confirmed by the course of events and their views are always consistent with
each other. They therefore never have an incentive to revise their view of
the economic structure. Moreover, since they maximize their expected util-
ity with respect to the true model, they also never have an incentive to revise
their actions. Their actions are always optimal with respect to the environ-
ment and with respect to the actions of fellow agents in the economy. The
economy is therefore permanently in equilibrium. Disequilibrium, by defini-
tion, becomes a vacuous notion, and all supposed disequilibrium phenomena
are a priori defined out of existence. This last point plays a critical role in solv-
ing rational expectations models. These models are solved by requiring the
collective outcomes of individual decisions to be an equilibrium state.

To understand the hypothesis better, it is useful to look at the way a rational
expectations model is built and solved. To this end, we use a perfect fore-
sight version of the quantity theory about the relation between money supply
and prices.18 Versions of this model are found in Blanchard and Watson
(1982), Sargent (1993) and MacCallum (1983). The account here is based on
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Sargent (1993), who uses it to discuss a theoretical difficulty with rational
expectations models. This is done in three steps.

First, the economy runs in discrete time, and each individual lives for two
periods. The same number of individuals, normalized to one, is born every
period. An individual born at time t is young at time t and old at time t + 1.
Each individual receives an endowment of 2e1 when young and 2e2 when old.
The endowment is non-storable, and can only be saved by holding money.
Let pt be the price level at time t , and E(pt+1) the value of pt+1 expected as
of period t . The individual decides on his or her level of nominal balances
mt to carry from time t to time t + 1 by maximizing the utility function:

ln(2e1 − mt/pt ) + ln(2e2 + mt/E(pt+1)) (2.25)

The function describes how the agent is ready to forfeit mt/pt units of
goods in this period against mt/E(pt+1) units that he expects his real money
balances will offer next period. The agent chooses mt , taking as given the
current price level pt and what he expects the price level will be next period,
E(pt+1). The maximizing choice of mt yields the money demand function

mt/pt = e1 − e2E(pt+1)/pt (2.26)

Second, the laws of the variables entering the model are specified – here the
money supply and the price level. Suppose the government supplies money
according to the rule:

Mt+1 = αMt (2.27)

Because expectations about future price levels affect current prices, E(pt+1)

enters the price function. The RE hypothesis requires the price function to
be a function that ensures equilibrium. A method for finding the function
is to conjecture a price function, and check if it leads to equilibrium, which
here means if it makes the demand for money mt equal to its supply Mt .19

A possible conjecture is the following:

pt = βMt (2.28)

Since the agent, by assumption, knows the economic structure, he knows
(2.27) and (2.28) as well as their parameters. He uses these laws to estimate
E(pt+1). It follows that

E(pt+1) = αβMt (2.29)

Finally, (2.28) and (2.29) are substituted into (2.26) and the demand for
money mt is set equal to the money supply Mt . This yields the equilibrium
price as

pt = (e1 − αe2)−1Mt (2.30)
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The agent holds money if mt/E(pt+1) is greater than mt/pt and stops giving
up his endowment 2e1 if the two ratios are equal.

The RE hypothesis significantly reduces the complexity of predicting
behaviour. A person’s maximization behaviour is considered to be solely a
function of his environment, preferences and budget constraint. That is,
given his preferences and budget constraint, he behaves exactly in the way
that is optimal with respect to the environment. For predicting behaviour,
there is then no need to study the person’s beliefs about the economy or how
he has arrived at those beliefs. We only need to know the person’s preferences,
budget constraint and the economy (Simon, 1990: 6). Issues of human learn-
ing and adaptation can be left entirely to psychologists (Sargent, 1993: 21).
Furthermore, since individual preferences are taken to be homogeneous, the
RE hypothesis leads to the representative agent modelling approach that
enormously simplifies the study of economic phenomena.

2.6.3 Problems with the RE hypothesis

The RE hypothesis has been one of the most influential proposals in
economics, and has influenced the views of economists on many aspects of
policy analysis and inference from aggregate data. At the same time, like any
bold conjecture, it has been the subject of bitter controversies. A full analysis
of these controversies is beyond the scope of this chapter. Here, we only look
at some of the theoretical debates that are directly related to the role of the
hypothesis as a means for specifying people’s view of the economy, a role
Lucas assigned to the hypothesis (1981: 223).

2.6.3.1 The true model

A problem with the RE hypothesis relates to the notion of the ‘true model’.
There are certain situations where it makes sense to speak of a true model. In
computer simulations designed to investigate an estimation procedure, the
modeller writes down a model, uses it to generate data and studies whether
the procedure can uncover the model from the data if the sample size is let
to grow arbitrarily large. Outside such situations, it is not clear what a true
model means, particularly in macroeconomics where model construction
heavily involves aggregation, idealization, and simplification. Aggregation
over interactive heterogeneous units generates relations that are absent at the
individual level. Also, as one varies the aggregation level one encounters quite
different models. What guides a modeller to choose a specific aggregation
level are pragmatic considerations, not correspondence to reality, and this
casts doubt on the notion of a true model. Moreover, even if the notion of
a ‘true model’ were unproblematic, the true model would be so complex in
macroeconomics that it would be of no use for prediction or explanation of
economic phenomena. These quandaries in making sense of a ‘true’ model
and the difficulties in establishing it reduce the RE hypothesis to the idea
that the agent’s model of the economy coincides with whatever model the
economist uses to describe the economy (Bullard, 1994). The question then
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arises as to whose model really reflects the people’s view of the economy. A
possible response is to search for a model that best fits aggregate data. This,
however, takes us back to where we started the search for microfoundations.
Many models can fit the data equally well, and the greatest challenge is to
determine which model best approximates the economy.

2.6.3.2 Multiple equilibria

A step in building a rational expectations model is to conjecture the mech-
anisms or laws determining the variables describing the economy, such as
money supply in the above example. To explain a difficulty with this, it is
crucial to distinguish between two types of variables entering an economic
model. First, there are variables whose values do not depend on their own
expected values. One such variable is weather that often enters agricultural
models. The state of weather over the next few years does not depend on
people’s expectations about future weather. Second, there are variables whose
current values depend on people’s expectations of their future values. Cur-
rent prices, for example, depend on people’s expectations of future prices.
This means the way people form expectations about future prices is part of
the process determining prices. In such cases, the RE hypothesis requires
people’s expectations to be consistent with each other so that the economy
is in equilibrium. In the present example, this means that people’s expecta-
tions of future prices are such that they make the demand for and supply
of money equal (i.e. the market clears). However, this consistency require-
ment is not enough to ensure a unique solution for rational expectations
models with expected endogenous variables. Many expectations formation
rules yield consistent expectations, raising the question of which rule is true
of the economy. An alternative mechanism for the price level in the above
economy is (Sargent, 1993: 11):

pt = βMt + λt c (2.31)

Like the forecasting rule (2.27), this rule also clears the market. In fact, for
every c > 0, there is an equilibrium price.20 Due to this multiplicity, a com-
plete description of the fundamentals of the economy (i.e. tastes, technology,
and initial resources endowments) and the requirement of belief consistency
across individuals are not sufficient for predicting the equilibrium price. It
is also essential to know how people converge on a particular expectation
formation rule. The RE hypothesis falls short of specifying people’s beliefs
about the future of the economy.21

2.6.3.3 A paradox

In addition to the multiple equilibria problem, there are other less known
issues with the RE hypothesis. Recall the hypothesis implies that the vec-
tor of exogenous and endogenous variables of the economy follow a jointly
stationary stochastic process. It also implies that people’s subjective expecta-
tions of the variables coincide with the mathematical expectations implied by
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the variables’ objective probability distribution. Taken together, these impli-
cations exclude the possibility of discretionary policy interventions. For if
there were some free parameters that could be controlled by public officials
there would be, according to the hypothesis, an objective probability dis-
tribution for the parameters that were known to the people. In that case,
people would already know the likelihood of any variation in the parame-
ters, and would have taken the information into account when making their
decisions. And so, the likelihood of any change by a policy maker would
already have been known to the people and would already have been fed
into their behaviour. This means there can be no discretionary policy inter-
vention under the RE hypothesis (Bicchieri, 1987: 510; Vercelli, 1991: 150).
To allow for policy interventions, the assumption that the economy is per-
manently stationary must be relinquished, which requires abandoning the
RE hypothesis.22

2.6.3.4 The peril of redundancy

There is another paradoxical implication of the RE hypothesis that is worth
noting. The hypothesis, as just said, excludes the possibility of policy inter-
ventions by assuming the stationarity of the economic environment. As
a consequence, it excludes all the practical objectives of macroeconomics
except ex ante and ex post predictions. Such predictions do not require a struc-
tural model built on the optimal rules of behaviour. A regression model that
closely represents the relations among relevant aggregate variables is enough.
Therefore, with the impossibility of policy interventions, there is no practical
necessity to model expectations and, for that reason, there remains no direct
role for the hypothesis in economic modelling. The RE hypothesis implies
its own practical redundancy. Sims notes this quandary at the heart of Lucas’
programme (1982a: 115–16). He seems to argue that, having assumed sta-
tionarity, Muth should have excluded expected variables from the realm of
large-scale economic modelling altogether rather than requiring macroeco-
nomic models to be explicitly built on an expectation formation mechanism.
In a stationary environment, a vector autoregression model tracking the past
movements of relevant aggregate variables suffices for the purpose of eco-
nomic analysis (Sims, 1982a: 115–16). In an interesting comparison of Lucas
and Sims’ approaches to macroeconomic modelling, Sargent also acknowl-
edges that the RE hypothesis, taken seriously, can be used equally ‘to support
Sims’ style of more or less uninterpreted vector autoregressive empirical work’
(Sargent, 1984: 408).

2.6.3.5 The no-trade theorems

The RE hypothesis has also contributed to the emergence of a class of no-trade
theorems that are in sharp conflict with observed data (Milgrom and Stokey,
1982). In economics, preferences are taken to be homogeneous across indi-
viduals. This assumption, joined with the RE hypothesis, implies a view of
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the economy as a society of identical individuals. Such an economy provides
no place at all for security markets. Security markets exist because people
have diverse information, think of the economy differently, have heteroge-
neous preferences, and differ in their attitudes towards risk (Arrow, 1986:
212). Even though rejecting homogeneous preferences is enough for elim-
inating the theorems, it is equally plausible to reject the RE hypothesis to
account for the emergence of security markets.

The RE hypothesis is a bold attempt to specify people’s view of their choice
situation by studying the economy. It assumes that people have already learnt
the structure of the economy, adapted their optimal rules of behaviour, and
that the economy is in equilibrium. While these suppositions are incredibly
strong, they are inadequate for predicting economic outcomes, due to the
ubiquitous existence of multiple equilibria. The inadequacy remains even
when the fundamentals of the economy are fully known. Therefore, the
marriage of rational choice theory with the RE hypothesis fails to provide
a predictive theory of the economy. Predicting whether the economy con-
verges to equilibrium after an intervention, and the equilibrium to which it
converges, requires a theory of how people model their choice situation, re-
model it as a result of a policy change, and adapt their behaviour as a result
of subsequent experiences. Until an adequate theory of how people learn
about the economy and adapt is established, macroeconomic theory cannot
hope to produce the policy predictions that are its ultimate goal (Bicchieri,
1987: 512).

2.7 Conclusion

We distinguished two different questions regarding the possible contribu-
tion of rational choice theories to the development of a theory of economic
behaviour. The first was whether the theories closely described the process
of human choice. The second was whether the theories were in principle ade-
quate for explaining and predicting behaviour, i.e. regardless of whether they
were true or false. We analysed both queries using the general framework of
Savage’s theory.

As regards the first issue, we argued that Savage’s postulates were predicated
on two further basic assumptions that preferences are fixed and ready-made,
and that there always exists a description of the world that allows complete
disentanglement of values from beliefs. Drawing on the lessons of experi-
mental psychology, we argued that preferences, beliefs and small worlds are
constructed. Since different constructions of preferences, beliefs and small
worlds lead to different choices, prediction and explanation of behaviour in
a dynamic situation demand a theory that explains the process of preference,
belief and small world formation. We also noted that a description of the
world, allowing complete disentanglement of beliefs and values, was hard to
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find and even if it existed, it would be too cumbersome to be of any use in
guiding decisions.

As regards the second issue, our central point was that rational choice
theories take small worlds, likelihood judgements and preferences as given,
and only state how an ideal agent solves an already well-structured decision
problem. Therefore, in predicting behaviour, a very large list of substantive
assumptions is needed to specify the agent’s view of his choice situation
and the decision problem he is trying to solve. These assumptions implic-
itly assume the answer to the very same question that a theory of behaviour
is expected to answer. In fact, by varying the exogenous assumptions in a
rational choice model all sides of any economic controversy can be rational-
ized. Rational choice models answer no substantive economic question; they
only repackage what has already been stated in the assumptions. In practice,
economists try to select a rational choice model based on econometric analy-
sis of aggregate data. But the econometric approach is unsuitable for settling
queries regarding individual behaviour.

Moreover, evaluating policy interventions requires predicting how the
agents would react to the intervention. This requires predicting how, in
response to the intervention, they modify their view of their choice situa-
tion and redefine their decision problem. These queries fall entirely outside
the scope of rational choice theories, which take the structure of the choice
situation and definition of the decision problem as given. Contrary to com-
mon belief, the critical difficulty with rational choice theories is not that they
are false. It is that they in principle have very little to contribute to economic
theorizing.

The RE hypothesis also fails to overcome the shortcomings of rational
choice theories. Economic decisions involve expectations of endogenous
variables such as prices. In these cases, the hypothesis is reduced to the
requirement of belief consistency across individuals. Yet, there are always
many ways in which beliefs can be consistent across people. And so, the
hypothesis falls short of specifying people’s view of the economy.

These remarks demonstrate that understanding economic behaviour
requires a different type of theory of behaviour. It requires a theory that
explains how people form preferences, learn about the economy, model their
choice situation, define their decision problem, and redefine it as new infor-
mation arrives. In a nutshell, economics needs a learning-based (adaptive)
theory of behaviour, not a choice-based theory.



3
‘Homo Economicus’ as an
Intuitive Statistician (1): Model-Free
Learning

3.1 Introduction

This is our key bounded rationality assumption: we back away from
the rational expectations assumption, replacing it with the assumption
that, in forecasting prices, firms act like econometricians. (Evans and
Honkapohja, 2001: 28)

The subjective expected utility theory is a method for solving an already
well-defined decision problem. But prediction of behaviour in dynamic sit-
uations requires a theory that explains how the agent models his choice
situation and defines his decision problem. The subjective expected utility
theory, even if true, is inadequate as a theory of economic behaviour. New
classical economics have proposed the rational expectations (RE) hypothe-
sis as a way of specifying the agent’s view of the economy. The hypothesis
identifies the agent’s subjective expectations with the mathematical expec-
tations implied by the true economic model, suggesting that he maximizes
his expected utility with respect to the true model. So, the new classical
paradigm defines economics as the enterprise to derive economic phenom-
ena from two hypotheses: (1) people are expected utility maximizers; and
(2) they maximize their expected utility with respect to the true economic
model.

Attempts to overcome the theoretical shortcomings of the RE hypothesis
have resulted in the re-emergence of the bounded rationality project, origi-
nally proposed by Herbert Simon (1955; 1956). While there has been a burst
of interest in the topic over the last two decades or more, there is no consensus
yet on the definition of bounded rationality or what the critical questions of
the project are (Rubinstein, 1998). The general goal of the project is to replace
the behavioural assumptions of economics with more realistic assumptions
and investigate the implications of the changes for our understanding of
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the economy (Conslik, 1996). Depending on what behavioural assumptions
of economics are withdrawn and what assumptions are retained, various
notions of bounded rationality can be defined. Most studies of bounded
rationality in new classical economics retain the subjective expected utility
maximization principle but replace the RE hypothesis with the assumption
that the agent constructs a model from the available economic data, which
may not coincide with the true model. Thus, in new classical economics, the
project of bounded rationality is a programme to derive observable economic
phenomena from the general principles that: (1) the agents are subjective
expected utility maximizers; and (2) they maximize their expected utility
with respect to models constructed from the available economic data.

Thus understood, the primary issue of the bounded rationality programme
is to theorize how the agent learns about the economy and models his
choice situation. Several proposals are on offer. The conjecture that has
received most attention is that the ‘homo economicus’ is an intuitive statisti-
cian; i.e. he intuitively models the economy like a statistician (Arthur et al.,
1997: 4).Thomas Sargent, a leading economist from the new classical camp,
nicely summarizes this view of the programme as follows:

I interpret a proposal to build models with ‘boundedly rational’ agents as
a call to retreat from the second piece of rational expectations (mutual
consistency of perceptions) by expelling rational agents from our model
environments and replacing them with ‘artificially intelligent’ agents who
behave like econometricians. These ‘econometricians’ theorise, estimate,
and adapt in attempting to learn about probability distributions which,
under rational expectations, they already know. (Sargent, 1993: 3)

This conjecture will be called the intuitive statistician (IS) hypothesis of
bounded rationality. A pioneering work on this view of bounded rational-
ity is Bray (1982), who considers an economy in which the agents know
the correct model up to a small number of parameters and use the least-
squares method to estimate the unknown parameters. Letting the agents
live indefinitely, she investigates whether they ever learn the true param-
eters, which is essential for forming rational expectations. The significance
of this question lies in the fact that the learning problem facing the agents
in Bray’s model economy is not identical with ordinary parameter estima-
tion. As the agents learn about the economy, they modify their expectations
and behaviour, which in turn alter the relations being learnt. It is not then
possible to use textbook convergence theorems on the long-run behaviour
of the least-squares estimator to argue that the agents will asymptotically
learn the truth. The question addressed by Bray is different. Her objective
is to examine the conditions under which her model economy converges
to rational expectations equilibrium, even though feedback from learning
can change the relations being learnt. Since Bray’s publication, a sizeable
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number of similar studies have emerged. Bray (1983), Honkapohja (1995),
Marrimon (1997), Williamson (1997), Kirman and Salmon (1995), Evans
and Honkapohja (2001), Sargent (1993), and Sobel (2000) contain original
contributions as well as surveys of the literature on learning in economics.1

The relevance of these theoretical studies is unclear for several reasons.
These studies usually assume that the agents already know the correct unesti-
mated model of the economy, without any explanation of how the model was
learnt in the first place (Sargent, 1993: 166; Sobel, 2000: 256).2 The assump-
tion that the agents know the correct model is crucial, since starting with
a wrong model can make the learning of rational expectations impossible
(Nyarko, 1991). Therefore, the convergence results established are contin-
gent on the model economies being studied; they do not generally hold.
Furthermore, the results are invariably of an asymptotic nature. But what is
needed for evaluating policies are short-run predictions of how agents would
revise their view of the economy in response to a policy change, redefine
their choice situation, and modify their behaviour. As Keynes put it, in the
long run we are all dead. Finally, the dynamics of the economy in these stud-
ies come exclusively from people’s adjustments of their behaviour. However,
the economic structure can change for reasons other than feedback from
learning, entirely altering the inference problem facing the agent.

The possibility of convergence to rational expectations equilibrium is not
an immediate concern here. The goal is to investigate if the IS hypothe-
sis helps us predict how the agent models his choice situation and defines
his decision problem. A positive response to this query presumes that there
is a ‘tight enough’ theory of statistical (scientific) inference, describing
how statisticians learn about the world, turn economic data into a model
of the economy, and revise the model in the face of new information
(Sargent, 1993: 23).3 Otherwise, the IS hypothesis would not be of much
help in predicting how the statistician and thus the agent models their
choice situation. And a fortiori, no general conclusion could be derived from
the hypothesis about the conditions under which an economy converges to
equilibrium.

Therefore, a major aim here is to investigate whether there is a ‘tight
enough’ theory of statistical inference. To clarify this query, it is useful to
begin with a conjecture about how a statistician models a choice situation.
In statistics, the environment is perceived through a collection of measurable
features (quantities), which are conceived as realizations of some random
variables with a joint probability distribution. The statistician first uses the
data on these quantities to estimate their joint probability distribution. He
next uses the estimate of the joint distribution to uncover the causal relations
among the variables. If the resulting model is inadequate, the initial set of
variables is modified, and the two phases of inference repeated.

This description, though imprecise, helps in separating issues relating to
inference about probabilities from issues relating to inference about causes,
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and provides a framework for defining certain important questions about the
possibility of establishing a precise theory of statistical learning. This chapter
and the one following examine some basic issues relating to learning about
the joint probability distribution of a set of variables describing a choice
situation. The fifth chapter investigates if there can be a theory that tells us
how to move from the joint probability distribution of a set of variables to
the causal structure linking the variables.

Several approaches to statistical inference are on offer. The diversity partly
arises from disagreements about the nature of probability and partly from
alternative methodologies that, given an interpretation of probability, can
be adopted to solve inference issues. The debates about the nature of proba-
bility are not crucially related to whether there exists a ‘tight enough’ theory
of statistical inference, and will not be taken up here. Instead, two general
methodological approaches to statistical modelling are studied, based on the
frequency and subjective interpretations of probability. An analysis of these
approaches provides an adequate ground for understanding the possibility of
a ‘tight enough’ theory of statistical inference, which is essential for assessing
the bounded rationality programme.

The current chapter investigates the possibility of a ‘tight enough’ theory
of statistical learning by looking at non-parametric statistics – a branch of
statistics that avoids restrictive non-sample, probabilistic assumptions, and
seeks to leave model discovery to data. We use this framework to investi-
gate two queries. The first is whether it is possible with a reasonably sized
sample to obtain a good approximation of the joint probability distribution
of several variables using non-parametric estimators, or whether substantial
non-sample information is required to achieve this. The second is whether
there exist inferential procedures that receive observations on a set of vari-
ables and yield the ‘best’ estimate of their joint probability distribution,
which is possible given the data. If not, statistical model discovery cannot be
left to data, raising the question of where statistical models come from. Both
issues are clearly important for the bounded rationality programme.

3.2 Statistical model specification

In statistics, the environment is perceived in terms of a collection of measur-
able quantities, some of which are known and some of which are not known.
The quantities are considered as realizations of random variables with some
unknown joint probability distribution. The goal of statistical inference is to
infer the values of the unknown quantities from the known quantities, which
in theory requires modelling the joint distribution of the random variables.
So, an appropriate point of departure for our study is to disentangle prob-
lems that arise in modelling the joint distribution of a set of variables, give a
precise definition of a statistical model, and highlight the basic issues that a
theory of statistical learning has to explain.4
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A problem in model building, which in a sense precedes any statistical
inference, concerns the choice of variables that characterize the environ-
ment. Two forms of variable selection should be separated. Sometimes the
objective in building a model is to generate accurate ex ante and ex post pre-
dictions of a response variable Y . In that case, variable selection requires
specifying some variables that are systematically related to Y , and there is no
need for them to be the causes of Y . Alternatively, if the goal is to use the
model to analyse the effect of changes in the environment on Y , variable
selection requires finding the causes of Y . In either case, variable selection
poses difficult questions that must, at least tentatively, be solved before one
is able to construct a useful model. The problems in mind concern the appro-
priate form of the variables, the right method of measurement, the correct
level of aggregation, and so forth. The emphasis here is on variable selection
in the second sense. A solution to this problem calls for a theory of causal
inference, which is taken up in the fifth chapter. For now, we assume that
the relevant variables are known, and concentrate on issues relating to learn-
ing probabilities. We continue with a description of various issues arising in
modelling the joint distribution of a set of variables.5

Let us proceed with the simplest case where there is only one variable
of interest. Specifically, let Zt denote the variable and D = {z1, z2, ..., zT−1}
the past values of Zt . The task is to predict the future values of Zt from
the known values in D. This requires estimating the joint distribution of
Z = {Z1, Z2, ..., ZT }, which we denote by p(Z1, Z2, ..., ZT , �) or simply p(Z, �),
where � is the parameter space defining the distribution. However, the
problem of inferring p(Z, �) from the sample, D, alone is ill-posed, since
it has no unique solution regardless of the size of the sample. To show
this, note that using sequential conditioning the joint distribution p(Z, �)

can be decomposed into a product of univariate marginal and conditional
distributions:

p(Z, �) = p(Z1/�1)

T∏
t=2

p(Zt/zt−1, . . . , z1, �t ) for all z ∈ RT
Z (3.1)

For each sample size T , the conditional distribution p(ZT /zT−1, . . . , z1, �T )

involves T − 1 conditioning variables. This means, with each increase in the
sample size, the conditional distribution for ZT changes, making it impos-
sible to infer p(Z, �) from the data. Spanos terms this phenomenon the
increasing conditioning set problem (1999: 266).

Furthermore, the notion of conditional density is defined only for specific
values of the conditioning variables. Thus, for each z ∈ RT

Z , estimating p(Z, �)

involves estimating one marginal and T − 1 different conditional distribu-
tions. This is impossible since the number of parameters to be estimated
always exceeds the sample size. Spanos calls this phenomenon the stochastic
conditioning or heterogeneity problem (1999: 267).6 It is therefore necessary to
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introduce certain simplifying assumptions to make any inference about the
target distribution p(Z, �).

To explain the kind of assumptions necessary for inference from data, note
that the increasing conditioning set problem arises because Zt is allowed to
depend on the whole past history of the stochastic process. The problem can
be circumvented by restricting the dependence of Zt on its past. To illustrate,
one possibility is to assume that Zt is completely independent of its past.
Complete independence reduces the joint distribution p(Z, �) into a product
of univariate distributions:

p(Z, �) =
T∏

t=1

p(Zt/�t ) for all z ∈ RT
Z (3.2)

Another possibility is to assume that Zt conditional on its immediate past
Zt−1 is independent of the rest of the history of the process. This assumption,
called the first-order Markov condition, simplifies (3.1) into

p(Z/�) = p(Z1/�1)

T∏
t=2

p(Zt/zt−1, �t ) for all z ∈ RT
Z (3.3)

In any case, inference about p(Z, �) necessarily requires some inde-
pendence restriction to cut the link between conditional distribution
p(ZT /zT−1, . . . , z1, �T ) and the sample size.

The stochastic conditioning problem arises because conditional densities
p(Zt/zt−1, . . . , z1, �t ) are allowed to vary for each possible {zt−1, . . . , z1} ∈
RT−1. The only way to deal with the problem is to impose some homogene-
ity restriction across the conditional densities p(Zt/zt−1, . . . , z1, �t ) defined
over all possible values z ∈ RT

Z . The strongest form of homogeneity is complete
homogeneity, which takes the conditional densities p(Zt/zt−1, . . . , z1, �t )

defined over all z ∈ RT
Z to be the same. Complete homogeneity renders

the indices in �t , which distinguish different densities p(Zt/zt−1, . . . , z1, �t ),
redundant, simplifying (3.2) to

p(Z, �) =
T∏

t=1

p(Zt/�) for all z ∈ RT
Z (3.4)

A set of completely independent and homogeneous random variables
{Z1, Z2, . . . , ZT } forms a random, or an independently and identically dis-
tributed (IID), sample. An alternative concept of homogeneity, which will
be used later, is strict stationarity. The stochastic process {Zt , t ∈ T} is strictly
stationary if

p(Zt1 , Zt2 , . . . , Ztn ; θ) = p(Zt1+τ , Zt2+τ , . . . , Ztn+τ ; θ) for any τ(ti + τ) ∈ T
(3.5)
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i.e. the joint distribution remains unchanged when each point 1, 2, . . . , T is
shifted by a constant τ . When n is equal to 1, strict stationarity is reduced to
complete homogeneity.

These two types of assumptions, though necessary, are not sufficient to
transform the problem of inferring p(Z, �) from data into a well-posed prob-
lem. With a finite sample, it is also necessary to restrict a priori the class of
density functions to which p(Zt , �) may belong to a class F that is smaller
than the class of all possible density functions.7 The proposed distribution
family must be small enough to warrant a unique solution. The distributional
hypothesis allows restating (3.4) as

p(Z, �) =
T∏

t=1

f (Zt/θ) for all z ∈ RT
Z (3.6)

The independence, homogeneity and distributional assumptions reduce
the inference problem to the task of finding a distribution f (Zt/θ) from the
distribution family F that best fits the data. If the non-sample assumptions
are appropriate, and if the sample size is adequately large, then f (Zt/θ) can
be reliably estimated from the data.

In light of this analysis, we may define a statistical model as a set of assump-
tions drawn from the three categories of independence (I), homogeneity (H),
and distribution (D) hypotheses (Spanos, 2000: 239). To make this definition
more precise, several further remarks about the basic assumptions are in order.

First, these assumptions are basic. That is, once we choose the assumptions
for a vector of observables Z, no other assumption is needed to specify the
marginal and conditional distributions of the variables in Z, the regression
function of any of the variables on the others, or the distribution of the
error terms. All these are determined by the three assumptions made about
Z. As an example, consider a bivariate random variable Zt = (Xt , Yt ), with
data being D = {(xt , yt )}Nt=1. Suppose Zt is randomly distributed and has a
bivariate normal distribution. Then we have the following model:

Bivariate normal model

A1: Data distribution:
(

Y
X

)
∼ N

((
μY
μX

)(
σ2

Y σXY
σXY σ2

X

))

A2: Independence: (Z1, Z2, . . . , ZN )is C-Independent

A3: Homogeneity: (Z1, Z2, . . . , ZN ) is C-Homogeneous

The model completely defines the marginal distribution of X, the conditional
distribution of X given Y , the marginal distribution of Y , and the conditional
distribution of Y given X. It also determines the algebraic form of the regres-
sion function of Y on X, and X on Y . If Y is the response variable, the model
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implies (Spanos, 1986, ch.22):

X ∼ N(μx, σ2
x )

(Y/X = x) ∼ N(μ∗, σ2)

μ∗ = E(Y/X = x) = β0 + β1x

β0 = μy − β1μx; β1 = σxy/σ2
x ; σ2 = σ2

y − σ2
xy/σ2

x

Second, these assumptions cannot be combined arbitrarily. An assump-
tion from one of these categories can restrict possible choices from the other
two categories. For example, the choice of a first-order Markov condition
for Z = (Xt , Yt ) and a bivariate normal distribution are not compatible. The
independence assumption necessitates a multivariate distribution. Finally,
all these assumptions are of a probabilistic nature; all have to do with the
distribution of the observables.

We can now more precisely redefine a statistical model as a set of internally
consistent probabilistic assumptions drawn from the three categories of inde-
pendence, homogeneity and distribution hypotheses (Spanos and McGuirk,
2001). From this perspective, statistical model specification involves posit-
ing a priori appropriate independence, homogeneity and distribution
assumptions to make inference from data possible.

To sum up, any inference from data demands three types of assumptions – a
model. In theory, once these assumptions are introduced, the inference prob-
lem is reduced to parameter estimation, for which there are usually routine
procedures. So, the most challenging aspect of inference (learning) from data
consists in model specification. And, as a consequence, the most immediate
task facing a theory of statistical inference (learning) is to explain where the
models come from, and how to go about selecting the three basic assumptions
in any inference problem.

3.3 Non-parametric statistical inference

We find two responses to these queries in theoretical statistics. This chapter
analyses a response found in non-parametric statistics. The concern in this
branch of statistics has mostly been with estimating a density (regression)
function from a random sample, and less attention has been paid to inference
from non-random samples. We begin by assuming a random sample to spell
out the core idea of non-parametric inference, and then explain how it can
be extended to inference from non-random samples. Having done so, we
define the IS hypothesis within the framework of non-parametric statistics,
linking the definition to the economic literature on learning.
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3.3.1 The basic idea

Suppose D = {xi}Ni=1 is a random sample from an unknown distribution with
density function f (x) and that the concern is to use the data to estimate
f (x). This requires restricting a priori the class of density functions to which
f (x) belongs to a class smaller than the class of all possible density func-
tions. In ordinary (parametric) statistics, inference begins by assuming that
f (x) belongs to a particular distribution family defined by a small number
of parameters, e.g. the exponential family. Non-parametric inference avoids
starting with such a restrictive distribution assumption. Instead, it assumes
only that f (x) belongs to the general class of smooth functions. Intuitively,
smoothness means that, for each x in a ‘small’ neighbourhood of point x0,
f (x) is almost the same as f (x0) and therefore a small shift away from x0
to x does not greatly alter f (x0).8 The smoothness restriction allows esti-
mating f (.) at each point x0 by averaging over the observations falling in a
‘small’ neighbourhood around it. The degree (strength) of smoothing is deter-
mined by the size of the neighbourhood over which averaging takes place. A
larger neighbourhood size implies a greater degree of smoothing, and hence
a smaller class of functions to which f (x) is a priori thought to belong.

Non-parametric inference ties the strength of smoothing, or equivalently
the neighbourhood size over which something takes place, to the size N of the
sample. As the sample size grows, the size of the neighbourhood is reduced so
as to enable the data to reveal the details of f (x). In the limit, when the sample
size approaches infinity, the neighbourhood size is forced to zero so that the
shape of the density function is determined by the data alone. In this way,
non-parametric inference aims to do away with the need for specifying the
functional form of the density function, and to base that decision on the data
alone. If successful, non-parametric inference turns model building (here,
finding the right distribution assumption) into an integral part of inference
from data, and evades mis-specification.9

The reason for naming this approach ‘non-parametric’ should be clear now.
It is called non-parametric because it avoids beginning with the assumption
that f (x) belongs to a distribution family defined by a finite number of param-
eters. Since the approach leaves the determination of the functional form of
f (x) to the data, non-parametric procedures are also called ‘model-free’ or
‘distribution-free’ procedures.

3.3.2 The naïve estimator

Non-parametric statistics has flourished over the last three decades, produc-
ing a remarkable list of procedures for model-free inference. Here, to set the
stage for our discussion and to give a brief glimpse of the field, we review a
well-known group of procedures for local averaging that has evolved from
attempts to improve on an estimation method called the simple or naïve
estimator (Silverman, 1986: 12).10
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It follows from the definition of a probability density that if variable X has
density f (x), then

f (x0) = limh→0

[
P(x0 − h < X < x0 + h)

2h

]
(3.7)

For any given h, the naïve estimator estimates f (.) at point x0 by replacing
the probability P(x0−h < X < x0+h) with the proportion of the observations
falling in the interval (x0 − h, x0 + h).10 That is

f̂ (x0) =
∑N

i=1 I[Xi ∈(x0 − h, x0 + h)]
2Nh

(3.8)

where I(.) is the indicator function and parameter h controls the neighbour-
hood size for averaging. When the support of f (x) is densely populated with
data and h is sufficiently small, estimator (3.8) is likely to generate a reliable
estimate of the density function.

The naïve estimator has several drawbacks. To begin with, it assigns equal
weights to all observations in the interval (x0 −h, x0 +h), thus allowing them
to contribute equally to the estimate f̂ (x0). But it is plausible to assume that
f (x) is more similar to f (x0) for points which are closer to x0 than those
further away. A more accurate estimate of f (x) at point x0 can be obtained
by giving greater weights to data points closer to x0. The estimator also takes
the width of the interval (x0 − h, x0 + h) as fixed across the entire sample
space. Consequently, it has the tendency to miss the details of the density
function in the main part of the distribution where the data are plentiful
and create noise in the tail area where the data are sparse. This suggests that
the estimator can be improved by a procedure that adjusts the width of the
smoothing interval to match the local density of the data.

3.3.3 Kernel-based estimators

These considerations have led to the development of numerous estima-
tors that outperform the naïve estimator. Let us restate the naïve estimator
employing a weight function w:

f̂ (x0) = 1
Nh

N∑
i=1

w
(

x0 − Xi
h

)
(3.9)

w(z) = 1
2 if |z| < 1 and 0 otherwise.

It is clear that the naïve estimator assigns equal weight to every point in
(x0 − h, x0 + h). One way to improve on (3.9), as hinted, is to replace w(z)

with a function that assigns weights to points in (x0 −h, x0 +h) so that points
closer to x0 receive higher weights while those further from it receive lower
weights. A convenient class of such functions, termed kernel functions, is the
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family of unimodal functions centred at zero that decline in either direction
at a rate controlled by a scale parameter. A common kernel function is the
normal density function K(z) = (2π)−1/2 exp(2−1z), where z ∈ [−1/2, 1/2].
In general, let K be a bounded function that integrates to one and is symmet-
ric around zero. Substituting K(z) for w(z) in (3.9) yields the general class of
kernel estimators, defined by

f̂ (x0) = 1
Nh

N∑
i=1

K
(

x0 − Xi
h

)
(3.10)

where the scale parameter h is called the bandwidth, smoothing parameter, or
window width. A large h places a greater weight on observations far apart from
x0 whereas a small h allows only observations very close to x0 to influence the
estimate. If kernel function K is a probability density function, the estimate
f̂ (x) is also a probability density function. Estimator (3.10) improves on (3.9)
but still takes the bandwidth as fixed across the x-region. The so-called adap-
tive kernel estimator improves on (3.10) by varying h in accordance with the
local density of the data. To decide on the window width at each data point,
‘an initial (fixed bandwidth) density estimate is computed to get an idea of
the density at the data points’. This pilot estimate is then used to adjust ‘the
size of the bandwidth over the data points when computing a new kernel
estimate’ (Silverman, 1986: 100–10).11

The kernel density estimator (3.10) is generalized to multivariate cases. Let
Z be a vector of variables with p elements. The p-variate kernel estimator with
kernel K and bandwidth h is defined by

f̂ (z) = 1
Nhp

N∑
i=1

K
(

(z0 − Zi)

h

)
(3.11)

K can be any radially symmetric unimodal p-variate probability density func-
tion such as the standard p-variate normal density function. A common
method for multivariate non-parametric density estimation is the product
kernel method that replaces p-dimensional kernel K in (3.11) with a product
of p one-dimensional kernels. In the bivariate case, where Z = (X, Y), the
bivariate product kernel estimator is given by

f̂ (x, y) = 1

Nh2

N∑
i=1

K
(

x − xi
h

)
K
(

y − yi
h

)12
(3.12)

An important aspect of a multivariate probability distribution is the regres-
sion function of each of the variables under study on the remaining variables.
This describes how the mean value of the variable in question, conditioned
on the values of the rest of the variables, varies. The theoretical regression
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function of Y on X is given by

r(x) = E(Y |X = x) =
∫

yf (y|x)dy =
∫

yf (x, y)dy∫
f (x, y)dy

(3.13)

Substituting the density estimate (3.12) into (3.13) yields the kernel regres-
sion estimator:

f̂ (x0) =
1

Nh

N∑
i=1

K(
x0−xi

h )

1
Nh

N∑
i=1

K(
x0−xi

h )

yi (3.14)

Since (3.14) is linear in the observations {yi}, it can simply be written as (Scott,
1992: 220):

f̂ (xi) = W(h)y (3.15)

where W(h) is known as the smoother matrix, and y is the vector of observed
response values. W(h) is an n × n matrix whose elements wij denote the
weight assigned to point xj in estimating the target function at point xi. As
is evident from (3.13), estimating a density function or a regression function
is theoretically the same.

Non-parametric estimator (3.11) (or, 3.14) is consistent. Consistency
means that the estimator approximates the target density function arbitrarily
closely as the sample size approaches infinity, regardless of the form of the
function. A proof for the consistency of (3.14) is found in Yatchew (1998).
Therefore, non-parametric statistics theoretically provides a way of learning
a density (regression) function from random data, without having to posit a
priori a parametric distribution family.

In practice, data is not usually known to be random, making the choice of
independence and homogeneity assumptions as crucial as the choice of a dis-
tribution family. An issue for non-parametric inference is how to generalize
model-free inference to non-random samples. There is no non-parametric
algorithm for selecting independence and homogeneity assumptions. The
only way to use non-parametric inference for selecting these assumptions
is to follow a hypothetic-deductive method. That is, one has to conjec-
ture an independence or homogeneity condition, and non-parametrically
test it against the data. Consider the first-order Markov condition which
implies that p(Zt/zt−1, zt−2) = p(Zt/zt−1). One can proceed by hypotheti-
cally assuming that the vectors (Zt , Zt−1, Zt−2) and (Zt , Zt−1) are randomly
distributed to non-parametrically estimate the probabilities p(Zt/zt−1, zt−2)

and p(Zt/zt−1). The estimates can be used to check if the equality holds. In
theory, this proposal extends model-free inference to non-sample data. But
the manoeuvre, as will be seen, encounters intractable practical problems.
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3.4 The homo economicus as a non-parametric statistician

While the flourishing of non-parametric statistics is relatively recent
compared to ordinary statistics, there have been a good number of attempts
by economists to model the ‘homo economicus’ as a non-parametric statis-
tician. Historically, Bray’s work (1982) can be viewed as an early proposal to
view the agent as a non-parametric statistician. She studies an economy in
which the agents know the supply curve pt = a+bE(pt+1)+ut but must form
expectations E(pt+1) to plug into it. She conjectures that they form expec-
tations E(pt+1) by taking the average of past prices, which is equivalent to
learning with the naïve estimator. Commenting on Bray’s work, Lucas sug-
gests that ‘learning by averaging’ seems to be a plausible conjecture about
human learning (1986: 236). Sargent also considers using histogram and
kernel estimators for modelling learning behaviour (1993: 106–7).

Chen and White (1998) criticize early works on learning in economics
such as Bray and Savin (1986), which assume that the agents already know
the correct unestimated model of the economy without any explanation as
to how the model was learnt in the first place. To eliminate this shortcom-
ing, Chen and White model the agents as non-parametric statisticians who
utilize an online kernel regression estimator to learn about the economy. To
explain what this means, note that the above estimators, including (3.14),
are all defined from the whole data, meaning that the estimate must be
recomputed from the whole sample for every newly arriving observation.
In learning situations of interest in economics, data arrives as an ongoing
sequence {(x1, y1), (x2, y2), . . .}. It is thus more plausible that the agent works
with an estimator that at any time t can be represented as a function of the
estimator at time t −1 and the new pair of observations (xt , yt ). Interestingly,
estimator (3.14) can be reformulated to achieve this (Härdle, 1990: 66):

f̂N+1(x0) = f̂N (x0) + (hN)−1KN+1h(x − xN+1)(yN+1 − f̂N (x0)) (3.16)

which dispenses with the need for re-computing the estimate from the whole
sample each time. With this proposal, the person uses the data available at
time t to obtain f̂N (x) and uses the estimate to make predictions necessary for
his future decisions. As new data comes in, he uses rule (3.16) to update the
estimate.13 Chen and White establish the necessary and sufficient conditions
under which regression estimator (3.16) asymptotically converges to the true
regression function in spite of the fact that feedback from learning may alter
the relation being learnt.14

This chapter follows these economists in viewing the economy as a soci-
ety of non-parametric statisticians, and investigates whether the conjecture
helps shed light on some critical issues in theoretical economics. Specifically,
we investigate whether agents in such a society can learn the probabilistic fea-
tures of their environment from ordinarily available data samples, whether
it is possible to predict what the agents think given the data generated by the
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economy, and finally whether the conjecture helps us understand how the
agents revise their view of the economy in the face of a new policy.

3.5 Intrinsic limitations of model-free inference

Non-parametric estimators are asymptotically consistent, in that they
uncover the target function as the number of observations approaches infin-
ity. The asymptotic results teach us how learning is possible, in principle, and
provide some general insights into the working of non-parametric estimators
and what must be done, as the sample size increases, to obtain an accurate
estimate (White, 1992: 121). In reality, we only have access to a finite and
usually small number of observations, and since the economy changes over
time, remote past data are uninformative. Thus, the relevant question for
economics is not whether there are model-free estimators that can asymptot-
ically discover the truth or whether the opinions in a society of statisticians
asymptotically converge to truth. The relevant question is whether it is pos-
sible with a ‘reasonably sized’ sample to learn a ‘good’ approximation of
a relatively complex target function using non-parametric methods. This
section argues that accurate approximation of ‘complex’ functions using non-
parametric techniques is practically impossible. Even a ‘crude’ model-free
approximation of a function relating several variables requires a gigantically
large sample that is rarely available in practice. The argument is inspired by
a critique of the claims surrounding the theory of neural networks given in
Geman et al. (1992).

3.5.1 The bias–variance decomposition

Essential for investigating the limitations of non-parametric methods with
‘reasonably sized’ samples is a precise definition of what is meant by a
‘good’ or ‘accurate’ estimate. This can be achieved by considering non-
parametric estimation of a simple regression function. Suppose we are given
a random data set {(xi, yi)}Ni=1, and interested in estimating the regression
function f (x) in

y = f (x) + ε (3.17)

where ε has mean zero and is independent of X. An objective in searching
for an estimate of f (x) is to predict the value of Y when only x is known.
A possible way to define the accuracy of an estimate is in terms of the accu-
racy of its predictions. A measure of predictive accuracy is the mean-squared
prediction error (MPE):

MPE = E[y − f̂ (x)]2 (3.18)

which provides a measure of the accuracy of the estimate f̂ (x) when X takes
value x and Y takes value y. The expectation E(.) is taken with respect to the
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joint probability distribution of Y and X. The error (3.18) can be decomposed
into two distinct elements (White, 1992: 97–8):

MPE = E[(y − f (x)]2 + E[f̂ (x) − f (x)]2 (3.19)

The first term on the right-hand side is the variance of Y at point x. It is inde-
pendent of the estimate and hence plays no role in evaluating accuracy. The
second term gives the mean-squared distance between the estimate and the
regression function at point x, providing a natural measure of approximation
accuracy. The term is known as the mean-squared estimation (MSE) error:

MSE = E[f̂ (x) − f (x)]2 (3.20)

where the expectation is taken with respect to p(x). From this viewpoint, a
‘good’ approximation refers to an estimate that yields a ‘negligible’ MSE error.
Since the estimate f̂ (x) depends on the data, it can be viewed as a realization
of a random variable defined over all samples D of fixed size N that can
possibly be drawn from the system. This means we can define the mean and
variance of the estimate. Letting E[f̂ (x)] be the mean of f̂ (x) taken over all
hypothetical samples D of fixed size N, the MSE error can be decomposed
into two distinct components (Geman et al., 1992: 10):

E[(f̂ (x) − f (x))2]
= E{[(f̂ (x) − E[f̂ (x)]) + (E[f̂ (x)] − f (x))]2}
= E[(f̂ (x) − E[f (x)])2] + E[(E[f̂ (x)] − f (x))2]

+ 2E[(f̂ (x) − E[f̂ (x)]) × (E[f̂ (x)] − f (x))]
= E[(f̂ (x) − E[f̂ (x)])2] + (E[f̂ (x)] − f (x))2

+ 2[E[f̂ (x)] − E[f̂ (x)])] × [E[f̂ (x)] − f (x)]
= E[(f̂ (x) − E[f̂ (x)])2] + (E[f̂ (x)] − f (x))2 (3.21)

The first term is the variance of the estimate at point x, measuring the disper-
sion of f̂ (x) around its mean. The second is the squared bias of the estimate at
point x, giving the squared distance between the mean estimate value E[f̂ (x)]
and the regression function at point x. Since both the variance and bias com-
ponents contribute to the MSE error, they must approach to zero for a good
approximation or accurate learning to occur. Therefore, the question posed
earlier is in fact whether it is possible in interesting inference problems to
make both the squared bias and variance ‘small’ with ‘reasonably’ sized sam-
ples, using non-parametric procedures such as kernel regression estimators
(Geman et al., 1992: 44).
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3.5.2 The bias–variance trade-off

The estimate (estimator) f̂ (x) depends on three factors: the estimator family
(say, the kernel family); the smoothing parameter (or parameters); and the
data. By altering any of these elements it is possible to vary the estimate,
and hence control the MSE error. To answer our question, it is enough to
consider the effect of varying the smoothing level and the data. We begin by
examining the effect of varying the smoothing level on the squared bias and
variance components of the MSE error.

Increasing smoothing reduces the variance part of the MSE error. In
the extreme case, if each neighbourhood (bandwidth) is so chosen to cover
the whole x-region, the kernel estimate becomes equivalent to the average
of the response values everywhere. In that case, the variance part of the
MSE error is at its lowest possible value, namely zero. However, when each
bandwidth is so chosen to cover the whole x-region, the estimator always
yields a straight line, which is most likely quite different from the target
function. In that case, the response value y corresponding to each x will be
significantly different from the estimate, leading to a substantial bias (Hastie
and Tibshirani, 1990: 17). An attempt at eliminating variance by increasing
smoothing can cause an increase in the bias component that may be greater
than the reduction in MSE error obtained by reducing the variance. Decreas-
ing variance by increasing smoothing does not necessarily reduce the overall
error; it may in fact increase it.

Conversely, decreasing smoothing reduces the squared bias part of the MSE
error. In the extreme case, if each neighbourhood is so chosen to contain
only one observation the kernel estimator interpolates the data. In that case,
the squared bias term achieves its lowest possible value at the data points
and, if the target function is smooth, is also small in the close neighbour-
hoods of the points. The reduction in the bias term, however, can sharply
increase the variance of the estimator, since the estimate at each point x
would most likely be different from its average value (Bishop, 1995: 336;
Hastie and Tibshirani, 1990: 17). As a general rule, then, for a fixed sample,
an attempt at reducing the squared bias part by decreasing smoothing could
increase the variance part of the error, thus increasing the overall value of the
error.

These considerations about the effect of varying the smoothing level,
which can be made formally precise, point to a trade-off between the squared
bias and variance components of the MSE error. For a fixed sample, the
squared bias component can be reduced at the expense of increasing the
variance factor and the variance factor can be reduced at the expense of
increasing the bias component (Silverman, 1986: 35). Geman et al. (1992)
term this trade-off the bias–variance dilemma.

Given that this dilemma plays a central role in the analysis to follow, it
is worth illustrating it with a simple example, which we adopt from Wahba
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and Wold (1975). Suppose x ∈ [0, 3] and that y is related to x by

y = f (x) + ε (3.22)

where f (x) = 4.26(e−x − 4e−2x + 3e−3x) and ε is distributed as N(0,0.2). We
generate 100 data points from the model to investigate the effect of varying
the smoothing level on the performance of a kernel regressor. If the band-
width is so chosen to cover the whole x-region (e.g. if it is set at 6) as in
Figure 3.1, the estimate is a straight line, significantly different from the true
function. Alternatively, if the bandwidth is reduced to 0.01 as in Figure 3.2,
the estimator interpolates the data, and again the estimate drastically differs
from the true function. When the bandwidth is set to an intermediate value
of 0.7 as in Figure 3.3, the variance and bias of the estimate are reduced, and
the estimator closely approximates the function.

An immediate consequence of the bias and variance dilemma is that, given
a data set, smoothing cannot be reduced arbitrarily. Quite the opposite, for
a fixed sample, there is a unique (set of) smoothing parameter value (values)
that ensures an optimal trade-off between the squared bias and variance
in the sense of minimizing MSE error (Friedman, 1994: 32). The optimal
value fixes the class of functions that the estimator can approximate given
the data, and hence fixes the minimum bias possible. If the optimal neigh-
bourhood size relative to the data is, for instance, the whole x-region, the
estimator will only be able to approximate straight lines. In that case, if the
true function is considerably different from a straight line, the estimator will
produce a highly biased estimate. With a finite sample, there is essentially
no difference between parametric and non-parametric estimators; they both
search through a proper subset of the class of all possible functions (White,
1992: 117).

The bias–variance dilemma can be resolved only by increasing the sam-
ple size. As the sample size increases, and the input variable space (x-region)
is increasingly densely populated with data everywhere, smoothing can be
reduced without increasing variance. And, as smoothing is reduced, the esti-
mator becomes able to search over an increasingly larger class of functions,
thus reducing the chance of bias. To illustrate the point, let us return to the
above example. This time, we hold the level of smoothing fixed but vary the
sample size. If we simulate a sample of 100 observations from the model,
and fit a model using a kernel regressor with bandwidth 0.03, the result
is a highly variable curve significantly different from the target function
(Figure 3.4). If the sample size is increased to 1,000 data points, the same
smoothing level yields a much smoother curve, with lower bias and variance
(Figure 3.5). When the sample size is increased to 10,000 observations, we
get an estimate that closely matches the regression function (Figure 3.6). By
increasing the sample size, it is possible to reduce both bias and variance
simultaneously.
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Figure 3.1 Kernal smoothing (bandwidth = 6.0)
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Figure 3.2 Kernal smoothing (bandwidth = 0.01)
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Figure 3.3 Kernal smoothing (bandwidth = 0.7)

Note: The thick curve shows the true regression function whereas the thin line in Figure 3.1, the
wiggly curve in Figure 3.2, and the thin curve in Figure 3.3 show the estimates.
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Figure 3.4 Kernal regression estimate, h=0.03, N=101
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Figure 3.5 Kernal regression estimate, h=0.03, N=1001
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Figure 3.6 Kernal regression estimate, h=0.03, N=10001

Note: The smooth curve shows the true regression function whereas the wiggly curves show the
estimates.
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The key to driving both the bias and variance components of the MSE error
of local averaging (fitting) estimators towards zero is to populate the input
variable space (x-region) densely with data. If this turns out to be impossible,
because of the bias–variance trade-off, non-parametric estimators can only
search through a proper and most likely small subset of the class of all pos-
sible functions. In that case, they may not be able to produce an accurate
approximation of the target function.

3.5.3 The curse of dimensionality

Although it may be possible to densely populate low-dimensional input vari-
able spaces (i.e. one or two predictors) with ordinarily available samples, this
is impossible in high-dimensional spaces due to the curse of dimensionality
problem (Bellman, 1961). Recall that the basic idea of local averaging (or fit-
ting) is to divide the input variable space (x-region) into a number of cells and
take the average of the responses in each cell as the estimate of the regression
(or density) function in that cell. The curse of dimensionality refers to the fact
that the number of cells increases exponentially with the dimension of the
input variable space (i.e. the number of regressors). In general, if d indicates
the dimension of X, (x ∈ Rd), and each regressor coordinate is divided into M
divisions, the total number of cells will be Md . Since each cell must contain
some data points to make any inference, the number of data points required
for local averaging also grows exponentially with the dimension of the input
variable space. For example, if M is taken to be 10, and ten observations are
required for densely populating each cell, a sample of 10 × 102 observations
will be needed to populate densely a two dimensional input variable space
(two regressors). On the same ground, a sample of 10 × 1010 observations
will be required to equally populate a ten-dimensional input variable space
(ten regressors). Therefore, the curse of dimensionality makes it impossible
to adequately densely populate high-dimensional input variable spaces with
ordinarily available samples.

To provide more insight into the problem, suppose we have 10,000 data
points uniformly distributed over the ten-dimensional unit cube [0, 1]10. A
bandwidth of diameter 0.2 in each regressor coordinate results in a volume
of 0.210 ≈ 1.02 × 10−7 for each cell, and the expected number of observa-
tions in each cell is approximately 1 × 10−3. Obviously, no local averaging
is possible with this number of data points. Alternatively, if we increase the
neighbourhood size to include at least ten observations, the bandwidth must
cover at least 0.5 of each coordinate. In that case, averaging is carried out over
at least half of the range along each coordinate and is no longer local. The
lesson is that in high-dimensional spaces, if the neighbourhood is ‘local’ (i.e.
small), it is almost surely empty, and if the neighbourhood is not empty, it
is not ‘local’.15

Moreover, to drive both elements of the MSE error of a local averag-
ing estimator towards zero, which is necessary for it to arbitrarily closely
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approximate the target function, it is necessary to increasingly divide the
input variable space into smaller and smaller cells, and, in parallel, the num-
ber of data points in each cell must increasingly grow larger and larger. In the
limit, the number of cells M and the number of data points in each cell must
approach infinity to ensure a good approximation. This means that densely
populating an even low-dimensional input variable space (say with four or
five regressors) demands an astronomically large sample, which is impossible
to achieve in practice or at least in situations of interest in economics.

Taken together, the curse of dimensionality and the bias–variance trade-off
imply that an astronomically large sample is required to arbitrarily closely
approximate a target function even for moderate numbers of regressors (say
four or five). Ordinarily available samples in situations of economic interest
do not even allow for a crude approximation of a high-dimensional function
using local averaging techniques. This intrinsic limitation of model-free infer-
ence reveals that even with an unusually large sample the agent is not able
to learn accurately the probabilistic relations characterizing his choice situa-
tion from data alone. Learning the probabilistic relations of a choice situation
calls for substantive probabilistic non-sample information.

3.5.4 Defeating the curse of dimensionality

The impossibility of local averaging (or fitting) in high-dimensional input
spaces has prompted an intensive search for non-parametric inference meth-
ods that build an approximation of a high-dimensional function that takes
the form of expansions in low-dimensional (univariate) functions. If a
complex high-dimensional function could be approximated with a sum or
product of low-dimensional (univariate) functions, non-parametric inference
would only involve estimation of low-dimensional functions. In that case,
the curse of dimensionality would raise no intrinsic issue, and the argument
for the impossibility of model-free learning of high-dimensional functions
would break down at a closer scrutiny. To explain that this is not really the
case, and to draw some further important methodological conclusions about
the boundaries of model-free learning, it is useful to look briefly at the project
pursuit regression method developed by Friedman and Stuelzle (1981). The
method is directly aimed at extending the idea of non-parametric inference
to high-dimensional data.16

In multivariate regression analysis the objective is to model the conditional
expectation of response variable Y given predictor variables X = {X1, . . . Xp}
using a sample {yi, x1i, ..., xpi}N1 . The data are assumed to have come from a
system described by

y = f (x1, . . . , xp) + ε (3.23)

The projection pursuit regression (PPR) estimator models the conditional
expectation of Y given X, f (x), as a sum of functions of linear combinations
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of the predictors, i.e.

f̂ (x) = α0 +
M∑

m=1

gm(zm) zm =
p∑

i=1

αmixi (3.24)

where the univariate variable zm denotes a projection of the vector X onto a
one-dimensional space, and gm is a univariate smooth function, called basis
function. The PPR estimator constructs an approximation f̂ (x) in an itera-
tive manner. It begins by setting α0 equal to y, the average of the observed
responses, and computes the residuals r1i = yi − ȳ. Next, it assigns some
initial values to projection parameters α1i to define a univariate variable
z1 =∑p

i=1 α1ixi and regresses r1i on z1i using some univariate non-parametric
estimator. It updates the parameters α1i by minimizing the squared residuals
sum � = ∑

(r1i−ĝ(z1i))
2 over all possible choices of α1i, inserts the optimal

values of α1i into z1 = ∑p
i=1 α1ixi, and re-estimates ĝ1(z1). Again, it uses the

new estimate to update α1i and repeats the process until no further reduc-
tion of the sum of residuals can be achieved. It then adds the final estimate
ĝ1(z1) to y and computes the new residuals r2i = [yi − (ȳ + ĝ1(z1)]. These
steps are repeated to obtain a second basis function ĝ2(z2), and the process of
constructing new basis functions is continued until no further reduction can
be achieved in the residuals. Diaconis and Shahshahani (1984) show that if
the number of basis functions M in equation (3.24) is let to grow to infinity,
the function can arbitrarily closely approximate any continuous function.
That is, with an arbitrarily large number of basis functions M , the PPR esti-
mator can approximate any continuous target function arbitrarily closely.17

This consistency result is reassuring but is of not much help in practice.
The number of basis functions M in a projection pursuit regression estimator
plays the same role as the smoothing parameter in the kernel estimators. If
M is taken to be small, the estimator can only search through a small subset
of continuous functions, which may neither include the target function nor
a good approximation thereof, and will therefore be biased. If M is taken to
be large, the estimate interpolates the data and will be highly variable. Again,
the bias–variance trade-off restricts the number of basis functions that can
be included in a projection pursuit estimate given a data set, thus limiting
the class of functions that the estimator can approximate in practice. As a
result, the sample size must be adequately large to include an adequately
large number of basis functions so as to ensure a good approximation.

Moreover, as Huber (1985) points out, there are simple functions that can-
not be approximated by a sum of a finite number of additive basis functions.
An example is f (x1, x2) = ex1x2 . Any use of projection pursuit regression in
practice assumes that a good estimation of the target function can be obtained
with a small number of basis functions. There is, however, no a priori reason to
take this for granted. To justify the assumption, some substantive knowledge
about the target function is essential.
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3.5.5 The loss of interpretability

There is another important aspect of non-parametric inference in high-
dimensional data that is worth noting. In practice, as explained, any
extension of non-parametric inference to high-dimensional input spaces
takes the form of expansions in low-dimensional functions (Barron and
Xiangyu 1991: 80). And, a good estimate may require a large number of
basis functions. In that case, the estimate is a model like (3.24) with a large
number of basis functions gm. Such a model gives no clear description of how
each regressor Xi separately relates to the response variable Y ; each regressor
Xi relates to Y in a very complex way (Hastie and Tibshirani 1994: 67). As
a result, even if it were known that X1, . . . , Xp are causes of Y and have no
latent common causes with Y , it would still be impossible to use the model
to trace the distinct effect of each Xi on Y . The model is useful only for ex
ante and ex post predictions; it is not suitable for analysis of actions and poli-
cies or understanding of the system. A similar remark is true of the outcome
of other non-parametric multivariate approximation methods, including the
neural network approach (Warner and Manavendra, 1996). The price to pay
for extending non-parametric inference to high-dimensional data is the loss
of interpretability (Friedman, 1994: 9).

A general lesson learnt from this consideration is that establishing an
interpretable model suitable for evaluating actions and policies requires sub-
stantive probabilistic information. To be precise, one has to begin with a
parametric model to ensure interpretability. If no substantive probabilistic
assumption is made at the outset, the outcome is a black box model that
lacks interpretability, and is useful only for ex ante and ex post predictions.
There is, therefore, a trade-off between a model’s interpretability and the
amount of probabilistic information used to obtain it.

We have so far explained some of the limitations of non-parametric
inference from random data. It is appropriate to close this section by look-
ing again at the possibility of extending non-parametric inference to any
sample, random or not. Any such attempt, as stated earlier, requires tenta-
tively assuming that the data are random, and non-parametrically estimating
the joint distributions of various subsets of the variables to assess alternative
independence and homogeneity assumptions. Since accurate estimation
of the joint distribution of several variables with ordinary samples is not
possible, successful non-parametric evaluation of these assumptions is not
practically possible either. Alternative methods are needed for selecting
independence and homogeneity assumptions.

3.6 Model selection

The analysis of the bias–variance trade-off demonstrates that, for any data
set, there is an optimal smoothing parameter value that minimizes the MSE



Model-Free Learning 93

error. The optimal value fixes the class of functions over which the estima-
tor can search, determining the best possible approximation of the target
function given the data. A crucial issue in non-parametric inference there-
fore concerns the choice of the smoothing parameter value that is optimal
given the data. We refer to this issue as the smoothing parameter or model
selection problem. The assumption in non-parametric statistics is that noth-
ing is known about the target function apart from smoothness. This implies
that one has to look at the data or, more precisely, assess the predictive accu-
racy (error) of possible models to select a model. This is indeed the approach
pursued in non-parametric statistics. Broadly speaking, a number of models
with different smoothing parameters are fitted to the data, the predictive error
of each model is estimated, and the model with minimum prediction error
is chosen (Moody, 1994: 149). A question is whether this approach provides
a unique, and entirely data-driven, method for finding the optimal model.

3.6.1 Alternative model selectors

A model selector is consisted of a discrepancy (distance) function and an esti-
mation strategy. The discrepancy function is to measure the distance between
the predicted value of the response variable and its actual value, i.e. the pre-
diction error. The estimation strategy is to estimate the accuracy of the model
with respect to the population. To explain the basic approaches to prediction
error estimation, we continue working with the squared Euclidean distance
[y∗

i − f̂h(xi)]2, where f̂h(xi) is the response value predicted by the model for
a new observation at xi, and y∗

i is the actual response value. For the purpose
of this section, we propose to measure the prediction error rate of a model
using the average mean-squared prediction error (APE):

APE(h) = N−1
n∑

i=1

E(y∗
i − f̂h(xi))

2 (3.25)

The error depends on the smoothing parameter h. A problem is that future
data are not known, and except for the strategy of ‘wait and see’ any attempt
at estimating error (3.25) involves exploiting exiting data. However, the same
data cannot be used for both obtaining a model and estimating its predictive
accuracy. An attempt to do so amounts to estimating APE using the average
squared residuals (ASR):

ASR(h) = N−1
n∑

i=1

{yi − f̂h(xi)}2 (3.26)

Following a technique explained in Eubank (1988), the expected value of ASR
can be decomposed into (see Appendix 3.B):

E(ASR(h)) = δ2 + f (x)′(I − W(h))2f (x) + N−1δ2tr[W(h)2]
− 2N−1δ2tr[W(h)] (3.27)
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W(h) is the smoother matrix with bandwidth h, f (x) is the regression
function, δ2 is the variance of Y (given x), and tr[W(h)] is the trace
of the smoother matrix.18 Applying the same technique to the average
mean-squared prediction error yields:

APE(h) = δ2 + f (x)′(I − W(h))2f (x) + N−1δ2tr[W(h)2] (3.28)

A comparison of (3.27) and (3.28) shows that ASR on average underesti-
mates the mean prediction error APE by factor 2N−1σ2tr[W(h)]. As a result,
this estimate of prediction error is usually called the apparent rate of error
or the substitution error (Efron, 1983). In fact, substitution error (3.26) can
be reduced arbitrarily by selecting a sufficiently small smoothing parameter
value so that the model interpolates the data. This would not necessarily
lead to a model that minimizes the MSE error, which is essential for mini-
mizing prediction error. The literature provides three avenues for obtaining
an unbiased estimation of prediction error.

A strategy is to split the data into two sets, a training set and a test set. The
training set is used to obtain a model and the test set is used to evaluate its
performance. By using different data for model construction and evaluation,
the data-splitting strategy evades the problem with the apparent rate of error.
Nevertheless, it has several drawbacks. First, by leaving part of the data aside
as a test set, the strategy fails to make optimal use of the data in estimating
a model. In a non-parametric setting, a smaller sample necessitates a greater
degree of smoothing, which reduces the class of functions over which an
estimator can search. Consequently, the procedure is likely to lead to the
choice of a biased model. To be precise, the strategy estimates the predicting
error of a model built from (say) half of the data but the primary concern is to
estimate the predictive accuracy of a model that can be constructed from the
whole data (Zucchini, 2000: 19). Secondly, when the sample size is small, as
is usual in practice, splitting the data leads to a small test set, which may also
be inadequate for a reliable estimate of the model’s prediction error (Faraway,
1998: 335). Finally, the strategy involves an arbitrary decision in dividing the
data into a training set and a test set, which could affect estimation of the
prediction error and hence model selection (Glymour et al., 1996: 37).

Another strategy attempts to overcome the inefficiency of the simple data-
splitting method by utilizing resampling techniques to create a test set. Cross-
validation is the oldest resampling technique used for estimating prediction
error, attributed to Stone (1974). The method, in its most common form,
involves leaving a data point (xi, yi) aside at a time as a test set, fitting a
model to the remaining N − 1 data points, and using the model to predict
the omitted observation. The process is repeated for all the N observations,
and the average of the errors is taken as the estimate of the model’s prediction
error. Let f̂ −i

h (.) be the model estimated from sample D excluding data point

(xi, yi), and f̂ −i
h (xi) the response value predicted by f̂ −i

h (.) at point xi. The
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cross-validation estimate of prediction error is given by

CV(h) = 1
N

∑N

i=1
[yi − f̂ −i

h (xi)]2 (3.29)

This technique is called ‘leave-one-out’ cross-validation, as each time only
one observation is left out. Alternative cross-validation error estimators can
be defined by holding out a different number of observations (say, five) each
time. A cross-validation-based model selector chooses a smoothing parameter
h that minimizes error estimate (3.29) or a similar one.

This resampling strategy yields an unbiased estimate of the mean predic-
tion error. The unbiasedness of an estimator such as (3.29) can intuitively be
understood by noting that

E[yi − f̂ −i
h (xi)]2 = σ2 + E[f (xi) − f̂ −i

h (xi)]2 (3.30)

and

E[y∗
i − f̂h(xi)]2 = σ2 + E[f (xi) − f̂h(xi)]2 (3.31)

As the sample size grows, the estimate f̂ −i
h (xi) becomes closer to the estimate

f̂h(xi), which is based on the full data, i.e. f̂h(xi) ≈ f̂ −i
h (xi). As a result, the

mean value of CV(h) becomes increasingly close to the mean prediction error,
i.e. E(CV(h)) ≈ APE(h). This means that CV(h) is an approximately unbiased
estimator of the mean prediction error (Hastie and Tibshirani, 1990: 43). Hall
(1983) establishes that a sequence of smoothing parameters produced by the
cross-validation procedure (3.29) leads to consistent density estimation. A
sequence of smoothing parameters minimizing CV(h) is therefore expected
to minimize the mean prediction error.

Although cross-validation techniques give a glimpse of the resampling
approach, we also need to mention bootstrap estimators that exploit a dif-
ferent resampling strategy for constructing a test set. Basically, the bootstrap
method takes the original data set in place of the unknown distribution, con-
siders each observation in the set as equally probable, and draws N new
observations from the set with replacement. The new sample is called the
bootstrap sample. It fits the model to the sample and estimates its prediction
error by applying it to the original data set. The technique generates B boot-
strap samples, estimates the model on each, and applies each fitted model
to the original data to obtain B estimates of the model’s prediction error. The
average of these estimates is taken as the model’s prediction error. A boot-
strap model selector chooses the smoothing parameter that minimizes the
average prediction error (Efron and Tibshirani, 1993). Appendix 3.C defines
some bootstrap error estimators which will be mentioned in the text.

There is also a third avenue for obtaining an unbiased estimate of mean
prediction error. The mean average-squared residuals E(ASR), as said, differs
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from the mean prediction error APE by factor 2n−1δ2tr[W(h)]. If this term
could be estimated, it would be possible to transform ASR into an unbiased
estimate of APE by adding an estimate of the term to ASR. In that case, the
expected value of the augmented ASR would be the same as APE, and there
would remain no need for computationally intensive resampling procedures.
One would be able to estimate APE by correcting ASR with a term that cancels
the bias term out. This possibility is the drive behind an ongoing search for
estimates of prediction error that take the form:

E(ASR(h)) + 2N−1δ2tr[W(h)] (3.32)

To further illustrate the variety of ways of estimating prediction error, it is
worth looking at one of the model selectors that proceed by minimizing
an estimate of (3.32). Note that the cross-validation criterion can also be
written as

CV(h) = 1
N

N∑
i=1

{yi − f̂ −i
h (xi)}2 = 1

N

N∑
i=1

{
yi − f̂h(xi)

1 − wii

}2

(3.33)

where wii are the diagonal elements of the smoother matrix W (Eubank,
1988: 30). Thus, the leave-one-out cross-validation estimator corrects the bias
of ASR by multiplying it with function (1−wii)

−2. Craven and Wahba (1979)
suggests an approximation to (3.33) by replacing the diagonal elements wii
with their average, namely tr(W)/N, calling it generalized cross-validation
(GCV). That is, they replace (3.33) with

GCV(h) = 1
N

n∑
i=1

{
yi − f̂h(xi)

1 − tr(W(h))/N

}2

(3.34)

as an estimate of the mean prediction error. While CV corrects the bias of ASR
by multiplying it with function (1 − wii)

2, GCV corrects ASR by multiplying
it with {1 − tr(W(h))/N}−2. If we take a first-order Taylor expansion of this
function and ignore its reminder, we obtain 1 + 2N−1tr(W(h)). Using this
approximation, GCV can be restated as

GCV(h) ≈ ASR(h) + 2N−1tr[W(h)]ASR(h) (3.35)

As shown in Härdle (1990: 155), the expected value of the second term in
(3.35) is approximately the same as the second term in (3.32) and asymp-
totically cancels out the bias term in ASR. Eubank (1988: 35-6) also sketches
an alternative proof for the consistency of GCV as an estimator of APE. Now,
an important point is that there is nothing unique about the correcting func-
tion {(N − tr(W))/N}−2. Any function with the same first-order Taylor
expansion as 1 + 2N−1tr(W(h) can equally correct the bias term in
ASR. This possibility opens the way for producing alternative unbiased
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model selectors and is behind most known selectors such as Akaike’s
information criterion (Akaike, 1974), finite prediction error (Akaike, 1974),
Shibata’s model selector (1981) and Rice’s bandwidth selector (1984). All
these selectors are based on an estimate of prediction error that corrects
ASR by a function whose first-order Taylor expansion is 1 + 2N−1tr(W(h)

(Härdle, 1990: 167).19

These are some of the strategies for estimating prediction error, each leading
to different model selectors. It is also important to bear in mind that the
estimation strategies can be combined with other discrepancy functions than
the squared Euclidean function to generate alternative model selectors. One
can use, for instance, the Kullback-Leibler discrepancy. In general, alternative
model selectors can be invented by varying the discrepancy function or the
estimation strategy (Amemiya, 1980: 325).

3.6.2 Which model selector should be used?

The existence of alternative model selectors raises the question of which selec-
tor to choose in practice. If these methods picked up the same model, one
could arbitrarily select any of the methods. But, since the methods use differ-
ent estimation strategies, when applied to ordinarily available samples, they
often suggest different models. Consider the data set plotted in the figures
below, which consists of 100 observations simulated from the model used
earlier to illustrate the bias–variance trade-off. Two selection criteria have
been applied to find the optimal bandwidth in kernel regression of Y on X –
the leave-one-out cross-validation and generalized cross-validation method.
The former suggests the optimal bandwidth to be 0.25, producing the model
in Figure 3.7 while the latter suggests it to be 0.07, producing the model in
Figure 3.8. These models are different.
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Figure 3.7 Kernel regression with leave-one-out cross-validation
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Figure 3.8 Kernel regression with generalized cross-validation

Similar findings have been observed in numerous extensive studies of
the behaviour of the selectors in small samples.20 So, in small samples
the selectors can lead to different models, raising the question of which
selector to choose in practice. A selector, as seen, consists of a discrepancy
function and an error estimator. The latter influences the selector’s perfor-
mance more critically. An error estimator should be consistent, unbiased
and efficient. Consistency is to ensure that the estimator is asymptotically
able to estimate the error correctly; unbiasedness is to ensure that the esti-
mates, on average, coincide with the object of inference; and efficiency
(i.e. minimum variance) is to ensure that there is no other unbiased con-
sistent estimator yielding a more precise estimate. This means one has to
choose a selector that is based on a consistent, unbiased and efficient error
estimator.

Most error estimators described above have been shown to be consistent
or asymptotically equivalent (Efron, 1983: 328). This means consistency
alone cannot help select an optimal error estimator. It is also necessary
to consider the finite properties of the estimators, i.e. unbiasedness and
efficiency. The problem is that there is no theoretical result as to which
type of error estimator is both unbiased and most efficient. As a result,
statisticians have turned to simulation experiments to study the finite-
sample behaviour of the estimators. However, the studies have revealed that
the estimators are either unbiased but highly variable or biased and less
variable.

In a series of simulation experiments, Efron (1983) investigated the finite
sample behaviour of the leave-one-out cross-validation method, several vari-
ants of the bootstrap method, and some other error rate estimators not
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mentioned here. The studies revealed that the leave-one-out cross-validation
estimator was of low bias but suffered from a high degree of variability across
different samples of fixed size. Other estimators in the study showed either
high bias and less variability or high variability and low bias. Comparing the
bias and variance of the estimators, Efron observed that a bootstrap esti-
mator, called the 0.632 estimator, though biased, was comparatively less
variable.21 He recommended it for model selection. Likewise, Breiman and
Spector (1992) compared the finite sample properties of leave-one-out cross-
validation, k-fold cross-validation, and a variant of the bootstrap method in
a number of subset (variable) selection experiments. The simulations showed
that the leave-one-out cross-validation had low bias but suffered from high
variability while five-fold cross-validation method suffered from a large bias
and less variability. Comparing the results, the authors suggested using the
ten-fold cross-validation method. Finally, Efron and Tibshirani (1997) report
a number of simulation studies that seem to support a bootstrap estimator
different from the 0.632 estimator. If a lesson can be learnt from these stud-
ies, it is that no error estimator outperforms others in all respects. Either they
are unbiased but highly variable or they are biased and less variable. A judge-
ment is needed about the relative importance of unbiasedness and efficiency
to pick out an estimator.

Beside this, the real problem with the use of simulation studies is that
their results cannot be generalized automatically. The fact that an estimator
outperforms others in a series of simulations does not imply that it always
outperforms others. In experiment with different models a different estimator
may outperform the rivals. To give a historically interesting example, as men-
tioned above, in a series of studies Efron (1983) found that the 0.632 bootstrap
estimator outperformed several other methods, and so recommended it for
estimating prediction error. Not long after, Breiman et al. (1984) noted that
the estimator badly fails in predicting the error rate of highly overfit models,
such as a one-nearest-neighbour classifier (estimator), where the apparent
rate of error is zero.22 For example, if Y takes either 0 or 1 with probability
1/2, independently of (useless) predictor vector X, then, the true error rate
for any classifier equals 0.50. Yet, the 0.632 estimator predicts the expected
error rate of a one-nearest-neighbour classifier to be 0.632 × 0.5 = 0.316. In
this case, both the leave-one-out cross-validation estimator and the simple
bootstrap estimator correctly predict the error rate of 1/2. Similar counter-
examples have been found for hold-out error rate estimators. For example, in
a no-information dataset, where the assignment of cases to each class is com-
pletely random (e.g. Fisher’s iris dataset), the best an estimator can predict
is to predict majority.23 But if the number of cases for each class in the data
set happened to be equal, the leave-one-out cross-validation method would
wrongly predict 0 per cent predictive accuracy for a majority prediction rule
(Kohavi, 1995). The hold-out methods including the cross-validation tech-
niques work only if leaving part of the data aside as a test set does not destroy
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the structure of the data. The validity of simulation results is confined to the
type of models (and data) considered and cannot be generalized automati-
cally (White, 1992: 110). All in all, the question of which selector to choose
in practice has no theoretical answer. In the end, the choice of a selector is
to some extent left to the modeller’s judgement (Leamer, 1983: 217):

In this paper I have compared several simple criteria on the basis of which
we can select one regression equation among many other candidates. …
the general picture that has emerged from this paper is that all of the
criteria considered are based on a somewhat arbitrary assumption which
cannot be fully justified, and that by slightly varying the loss function
and the decision strategy one can indefinitely go on inventing new criteria.
This is what one would expect, for there is no simple solution to a complex
problem. (Amemiya, 1980: 352)

The predictive model selectors do not provide an entirely objective (data-
driven) solution to the model selection problem. They only provide an
automatic solution in the sense that, given the choice of a discrepancy func-
tion and an error estimator, the method fixes the model that minimizes the
error, as measured by the estimator (Green and Silverman, 1994: 24). The idea
of designing an inference procedure that receives data and yields the model
that, given the data, best approximates the true model has no foundation.
Any non-parametric inference is founded at a deep level on a decision about
the optimal level of smoothing that cannot be fully justified by the data:

The absence of theoretical guidance on setting the bandwidth, and more
generally on defining nearness, leaves the empirical researchers with enor-
mous discretion. This discretion gives applied nonparametric regression
analysis a subjective flavor. (Manski, 1991: 44)

3.6.3 Extrapolation error

The difficulty in choosing an optimal selector is not the only factor that
limits the power of the model selection strategy available in non-parametric
statistics. Even if an optimal selector could be located, there would still be
no satisfactory, and entirely data-driven, solution to non-parametric model
selection. An explanation of this point requires distinguishing in-sample and
extra-sample prediction error. In-sample prediction error (accuracy) refers to
the predictive performance of a model at the locations in the input variable
space from which the data have been drawn. We refer to these locations
in the input variable space as the sample region. On the other hand, extra-
sample prediction error refers to the predictive performance of a model over
the locations in the input variable space for which no data are available.
Given this distinction, an important point to note is that in-sample predictive
accuracy is not necessarily the evidence for extra-sample predictive accuracy.
The reason is that two models can be exactly alike over the sample region but
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Figure 3.9 Extrapolation

Note: Functions f (x) and g(x) are alike over interval [0,4].

behave considerably differently outside the region. In that case, if the data
produced by one of the models belonged to the points in the input variable
space where the models are alike, the other model would equally predict
the data despite the fact that it yields quite wrong predictions elsewhere.24

Consider the following two models:

(I) y = f (x) + e1 f (x) = 1/2 + 1/2 tanh(x − 2) e1 ∼ N(0, 0.2)

(II) y = g(x) + e2, g(x) = 0.05 − 0.2x + 0.3x2 − 0.002x4 e2 ∼ N(0, 0.2)

where X takes values in interval [0,6.5].25 As shown in Figure 3.9, while these
models are alike over interval [0,4], they fall apart over interval [4,6.5]. Sup-
pose model (I) was true. If the data were drawn from the first interval, model
(II) would also accurately predict the data. But the model’s accurate perfor-
mance over this interval gives a wrong indication of its performance over the
second interval. This means an estimate of in-sample prediction error cannot
be taken as an estimate of extra-sample prediction error. On the same ground,
the fact that a model minimizes in-sample prediction error is not a guarantee
that it also performs well outside the sample region. Extrapolation demands
an estimate of extra-sample accuracy. An estimate of in-sample accuracy is
neither necessary nor sufficient.

Now, any error estimator is an estimator of in-sample prediction error.
Consider cross-validation or bootstrap estimators. These estimators work by
correcting the optimism of the apparent rate of error (Efron and Tibshirani,
1993: 249), which is a measure of how a model predicts the same data used
to obtain it.26 The correction is to remove the effect of noise in the data so
as to enable the estimator to estimate correctly the prediction error of future
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observations drawn at the same locations in the input space where the data
were drawn. For this reason, the resulting selectors are only able to locate a
model that minimizes in-sample prediction error. Put differently, they can
only tell what sort of model will yield accurate prediction if we draw a ‘simi-
lar’ sample, where by ‘similar’ we mean a sample drawn from the same points
in the input space as where the original sample was drawn. The selectors are
silent about the model that is true of the population, and as a result give no
guidance as to how to generalize beyond the sample region (Browne, 2000: 8).

This conclusion has an important implication for non-parametric infer-
ence. In general, if it were possible to densely populate the input region
everywhere with data, every prediction would involve only in-sample pre-
diction and, as a result, a cross-validation estimate of a model’s error, for
instance, would provide an estimate of the predictive accuracy of the model
with respect to the population. In that case, the distinction between in-
sample and extra-sample prediction error would be irrelevant. However, the
discussion of the curse of dimensionality makes it clear that in ‘interest-
ing’ inference situations, the input space is almost everywhere empty, which
means non-parametric prediction in ‘interesting’ inference situations almost
always involves extrapolation (extra-sample prediction). Since the model
selection criteria are silent about the predictive performance of a model
outside the sample region, non-parametric extrapolation is almost always
arbitrary (Geman et al., 1992: 44). As a consequence, in interesting inference
situations, such as modelling a choice situation, that involve a relatively
large number of variables, reliable prediction with ordinary sample sizes nec-
essarily calls for substantive prior background information. That is to say,
one needs to posit a priori a parametric model and be sure that the model is
correctly specified:

One can usually be confident that the regression of interest is continuous.
Hence one can usually trust nonparametric estimates to be consistent.
On the other hand, these estimates are often imprecise in practice.
Moreover, they cannot be extrapolated off the support of x. Parametric
modelling permits more precise estimation and makes extrapolation pos-
sible. The problem, of course, is that an assumed parametric model may
be misspecified. (Manski, 1991: 44)

The difficulty in locating the ‘best’ error rate estimator is not the only
trouble with the predictive approach to model selection in non-parametric
inference. The more serious problem is that in interesting non-parametric
inference settings, such as modelling a complex choice situation, pre-
diction almost always involves extrapolation about which data are silent.
Non-parametric extrapolation is inevitably arbitrary in interesting cases.
Non-parametric models are only reliable for in-sample prediction.
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3.7 Conclusion

Economics needs a theory that explains how the agent learns about the
economy, defines his choice situation, and redefines it in response to pol-
icy interventions. In this regard, a basic unifying hypothesis is that he
behaves like an econometrician. Theoretical economists hope this conjecture
helps them predict the model that the agent builds of his choice situation
based on available data. The aim is to combine the information with infor-
mation about the agent’s preferences and budget constraint to specify the
decision problem he is trying to solve, which is essential for predicting his
behaviour. The success of this hypothesis critically depends on the existence
of a ‘tight enough’ theory of statistical learning that describes how, given
a data set, the statistician constructs a model of the mechanism generating
the data.

Any statistical inference necessitates three types of assumptions that define
a model. The central concern of a theory of statistical inference should
therefore be model specification. To study model specification, we looked
at non-parametric statistics that suggests starting with a very general and
highly flexible model and leaving the data to determine the precise form of
the model. If the goal of non-parametric inference could be accomplished, we
would have inference methods that receive data and yield the best approxi-
mation of the underlying distribution given the data. And there would then
be a ‘tight enough’ theory of learning.

As seen, in order for a non-parametric estimator to deliver a good approx-
imation of a function, both the variance and squared bias component of
the MSE error of the estimator must approach zero. Because of the bias–
variance dilemma, this is only possible through densely populating the
input variable space. But, due to the curse of dimensionality problem, it
is practically impossible to densely populate input variable spaces in inter-
esting inference situations, where the number of input variables considered
exceeds three or four. In such situations, local averaging inference demands
an astronomically large sample that is usually impossible to achieve in
practice. With a reasonably sized sample, a good approximation of the
relations among several variables using local averaging-based techniques is
impossible.

This impossibility also rules out the possibility of extending non-
parametric inference to non-random data. The extension requires estimating
the joint distributions of various subsets of the variables under study in order
to assess the appropriateness of alternative independence and homogeneity
assumptions. Since non-parametric density estimation of high-dimensional
data is practically impossible, the choice of appropriate independence and
homogeneity assumptions cannot be left to non-parametric methods either.
Modelling probabilistic relations among a set of variables characterizing a
choice situation requires substantive probabilistic assumptions. This means
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one has to work within the framework of parametric inference. In that case,
learning will only be possible if the model is correctly specified.

The bias – variance trade-off implies that, given a data set, there is an opti-
mal value for the smoothing parameter of a non-parametric estimator that
fixes the class of functions that it can approximate. The only avenue available
to non-parametric statistics for specifying the optimal smoothing parameter
value is to consider the predictive performance of various models arising from
alternative smoothing parameters. There are competing procedures for non-
parametric model selection. While asymptotically equivalent, the methods
pick up different smoothing parameters in practice, leading to different mod-
els. There is no general theoretical consideration that can help to choose a
model selector. The performance of the methods depends on the target func-
tion. For some functions, cross-validation techniques may work better and,
for some others, other methods may work better. As a consequence, in a
purely non-parametric inference situation, there is an element of arbitrariness
in the choice of a model selector and hence a model.

Even after choosing a model selector, the smoothing parameter selection
problem is not entirely resolved, as these selectors often have local minima.
More importantly, the estimators underlying the selectors only measure in-
sample prediction error. What they tell us at best is how to simplify the
model to avoid overfitting. They do not tell us how to extrapolate beyond
the sample. These considerations rule out the possibility of inventing pro-
cedures that receive data and yield the best possible approximation of the
underlying model given the data. Data only speak in the light of background
information and, as the information differs, they speak differently.

There are also numerous non-parametric estimators. Besides kernel esti-
mators, one may mention nearest-neighbours estimators, spline regression
methods, neural network methods, local polynomials, and many others.
With an arbitrarily large sample, this multiplicity may pose no problem, since
all these methods are consistent. However, when the sample is small, they
often produce different estimates, raising the question of which method to
choose in practice (Breiman and Spector, 1992). Modelling learning demands
some decision about the agent’s choice of an estimator.

Finally, due to the curse of dimensionality, in high-dimensional input
variable spaces, non-parametric models take the form of expansions in low-
dimensional functions. In such models, the relation between the dependent
and independent variables are entirely blurred. This seriously limits the mod-
els’ usefulness in analysing how the dependent variable would vary if the
independent variables were changed by intervention. Consequently, the
models are not suitable for analysis of actions and policies. Analysis of actions
and policies requires an interpretable model, which necessitates working with
a parametric model from the start.

These limitations of non-parametric inference define the boundaries of
any theory of learning that fails to take the role of non-sample information
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seriously. It is a combination of background information and sample data that
enables a person to come up with an intelligible model of a choice situation. A
theory of learning ought to explain how non-sample information is obtained,
how the information interacts with sample data, and how the interaction
leads to a specific model. Some of these issues will be discussed in the next
chapter that concentrates on the theory of Bayesian inference.



4
‘Homo Economicus’ as an Intuitive
Statistician (2): Bayesian Diagnostic
Learning

4.1 Introduction

Learning takes place through Bayesian updating of the individual prior
beliefs . . . However, since the use of Bayesian updating is a consequence
of expected utility maximisation, assumption (2) [Bayesian updating]
is already a consequence of assumption (1) [subjective expected utility
maximisation]. (Kalai and Lehrer, 1993: 102)

… hypothesis and model generation is far more important to problem solv-
ing than is hypothesis testing and that it is very much the statistician’s
business to be involved with model generation and regeneration. (Box,
1994: 218)

The bounded rationality programme views the economy as a society of intu-
itive statisticians. The key for the success of this programme is the existence
of a ‘tight enough’ theory of statistical inference. We have so far shown that
there is no entirely data-driven algorithm that receives a finite sample of
data and yields the model that best approximates the process generating the
data. Learning an interpretable model of a choice situation requires starting
with a parametric probability model. To analyse the programme further, we
now examine the possibility of a ‘tight enough’ theory of learning within
the general framework of the Bayesian theory, which is primarily a theory of
parametric inference.

A sizeable literature on learning has emerged in economics that models the
agent as a Bayesian statistician. These studies consider economies of Bayesian
statisticians, who know the true economic model except for a small number
of parameters, and use Bayes’ theorem to learn the parameters from data gen-
erated by the economy. The papers investigate the conditions under which
the opinions of these intuitive statisticians converge on the true parameter
values. As noted earlier, since feedback from learning can shift the structure,
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the issue in question is not ordinary parameter estimation but involves esti-
mation of shifting parameters. Various convergence theorems of probability
theory have been employed to demonstrate that if the agents do not entertain
extreme priors excluding the true parameter values, they eventually learn the
parameters with probability one. This result is often claimed to justify the
use of the solution concepts of rational expectations equilibria in solving
economic models and Nash equilibria in game theory. Good reviews of, and
original contributions to, Bayesian learning are found in Blume and Easley
(1995), Bray and Kreps (1987), Cyert and DeGroot (1974), Kiefer and Nyarko
(1995), Nyarko (1997) and Nyarko (1998).

The relevance of these studies to the study of the economy is unclear.
The studies assume that the agents know the true model except for a finite
number of parameters, providing no explanation of how the model has
been learnt in the first place. This is a critical issue because starting with
a mis-specified model can make learning of rational expectations impossible
(Nyarko, 1991). Moreover, the results are of an asymptotic nature, and do
not bear on real inference situations where the samples are usually small.
In fact, the economic structure can shift for reasons other than learning,
rendering past data irrelevant. A theory of human learning should first and
foremost explain how a person builds a model of his or her choice situation
from ordinarily available samples. This chapter departs from the domi-
nant trend in the studies of Bayesian learning by focusing on the issue of
parametric model formulation and problems arising in learning from small
samples.

The chapter begins by arguing that the Bayesian theory is solely concerned
with coherent (consistent) analysis of uncertainty regarding a closed set of
specified possibilities (events, hypotheses, models) which are assumed to
be adequate as a description of the (inference) situation at hand. Coherent
analysis constitutes only one phase out of several in the whole process of
statistical learning. A vital activity preceding coherent analysis is the initial
generation of models. Another critical activity following coherent analy-
sis is appraising the empirical adequacy of the models (Smith, 1986: 250).
In practice, these phases of learning are iterated in a cyclical manner. New
data cast doubt on the adequacy of the current models, calling for genera-
tion of new models. Construction of the new models necessitates forming a
new coherent system of beliefs, which raises the question whether the new
models include one that captures the salient features of the data. A satisfac-
tory account of statistical learning should explain how models are built, how
they are assessed and how they are modified. This chapter therefore gener-
alizes the framework of Bayesian inference by introducing some additional
proposals to shed light on those aspects of inference such as model formula-
tion that are usually left unexplained in Bayesian statistics. Having done so,
it spells out the implications of the broader theory of Bayesian inference for
the bounded rationality project.
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4.2 Foundational issues

In economics, a choice situation (the environment) is viewed through the
perspective of a collection of measurable quantities. These quantities are
of two kinds: those whose numerical values are known and those whose
are not. The general problem facing the modeller is to infer the unknown
quantities from the known ones. Knowledge of the known quantities usu-
ally fails to determine uniquely that of the unknown quantities, and, given
the known quantities, there remains uncertainty about the values of the
unknowns. The hallmark of the Bayesian position is that our uncertainty
attitudes towards these unknowns should accord with the laws of probabil-
ity. A foundational question is whether the Bayesian theory prescribes how
these uncertainties should be updated as some of the unknowns become
known. To address this query, it is first essential to understand the reasons
why subjective uncertainties ought to accord with the laws of probability.

Chapter 2 studied some aspects of the decision theoretic approach to prob-
ability theory that took personal probability to be part of a theory of coherent
preferences in the face of uncertainty. Since the concern in this chapter is not
directly with decision making but with learning from data, it is more con-
venient to consider another approach to establishing the probability axioms
that makes no formal reference to preference considerations. We consider
the so-called Dutch book (DB) theorem, which aims to justify the probability
axioms as coherence (rationality) constraints by establishing that partial
beliefs are ‘coherent’ if and only if they conform to the axioms. We study
the assumptions underlying the DB theorem to explore if they impose any
restriction on how learning from experience should take place. Our exposi-
tion is mainly built on Skyrms (1986) and Howson’s various writings.1 The
DB theorem stands on three assumptions.

The first assumption consists of two related components: one is that
you (the agent) have a degree of belief in any hypothesis H you may ever con-
sider. The other is that the strength of your belief in H is reflected in the price
that you are ready to pay in a bet on or against it.2 It is therefore considered
possible to measure your degree of belief in H in terms of the price you are
ready to pay in some appropriate bet on or against it. Several definitions are
required to elaborate on this point. A bet on a statement H is an arrangement
between you (the bettor) and the bookie whereby you pay the bookie amount
$d to receive amount $c if H is true, and receive nothing if H is false.3 The
total amount involved (d + c), is called the stake, the ratio d/c the odds, and
the ratio d/d + c the betting quotient.4 Finally, the price that you are ready to
pay for a bet in which both the stake and whether you bet on or against H is
decided by your opponent is considered to be fair in your eyes. Given these
preliminaries, the first assumption identifies your degree of belief in H with
the betting quotient in a bet on or against H whose price you consider as fair
(Howson, 2000: 126). Following de Finetti (1980), a bet is sometimes defined
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Table 4.1 Equivalent bets (1)

P Q

Bet 1
on P

Bet II
on Q

Sum of
Bet I and II

Bet III
on PVQ

T F (1 − p)s −qr (1 − p)s − qr (1 − p*)s*
F T −ps (1 − q)r (1 − q)r − ps (1 − p*)s*
F F −ps −qr −(ps + qr) −p*s*

differently. Let s stand for the stake in the above bet and p for the betting
quotient. The bet can be restated as an arrangement in which you agree to
pay ps in order to receive (1–p)s if H turns out true and nothing otherwise.
Your fair betting quotient p then represents your degree of belief in H .

A corollary of the definition of a bet, which plays a vital role in the DB
theorem, is that the sum of a collection of bets on some propositions, under
certain conditions, determines a bet on another proposition. Note that a bet
on a statement H admits only two possibilities – H is true or H is false – and
specifies a unique pay-off in each case. The sum of a collection of bets then
equals a new bet if it admits only two possibilities and specifies a unique
pay-off in each case. As a simple illustration, consider the case involving two
mutually exclusive propositions P and Q. Let B1 be a bet on P with stake s and
betting quotient p, and B2 be a bet on Q with stake r and betting quotient q.
If the stakes s and r are equal, then, the sum of these bets is equivalent to a
bet on PvQ with stake s∗ = s = r and betting quotient p∗ = p + q (Skyrms,
1986: 176). Table 4.1 shows this.

The second assumption underlying the DB theorem is that the value of the
sum of a set of bets is the total value of the bets and therefore, if a set of bets
is regarded as individually fair, they are also considered as collectively fair.
Thus, if in the above situation the betting quotients p and q are viewed as fair,
the betting quotient p∗ for the third bet is also viewed as fair. Schick (1986)
was the first to note the significance and independence of this assumption
in establishing the DB theorem, calling it the value additivity assumption.
The principle, he argues, presumes that the value that people assign to a bet
is independent of whether other bets are in effect. But people are usually
risk averse. If they have already committed themselves to a bet, the highest
price that they would pay for a new bet is less than it otherwise would be
(1986: 114). In such cases, people are hedging against the possibility of losing
both bets, and there is nothing irrational about this behaviour. The value
additivity principle cannot, therefore, be taken for granted.

The literature provides several considerations in support of the value addi-
tivity assumption. Skyrms (1986: 179) defines a fair bet as a bet with expected
utility zero, and seeks to derive the assumption from this definition. This
move assumes that your belief distribution obeys the probability calculus,
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which undermines the appeal of the DB theorem as an independent approach
to establishing the probability axioms.5 Howson (2000) defends a view of the
probability calculus as an extension of deductive logic to partial beliefs. In this
setting, he envisages a parallel between the value additivity assumption and
the closure principle applied in deductive logic. Just as the closure principle
is taken for granted in deductive logic to define the truth-value of a com-
pound sentence in terms of the truth-value of its components, it is equally
‘natural’, Howson suggests, to take value additivity for granted to deter-
mine the value of a compound bet from the value of its components (2000:
129).6 This suggestion is plausible but applies only when the concern, as in
deductive logic, is solely with bets that are simultaneously made. The proposal
does not counter Schick’s worries in sequential betting scenarios. The validity
of the principle, if valid at all, is confined to static betting scenarios.

An implication of the value additivity principle plays a crucial role in estab-
lishing the DB theorem. Note that a fair bet can informally be interpreted
as a bet that confers zero advantage to either side. Since any sum of zeros is
zero, the net advantage of a collection of fair bets is also zero. Given the value
additivity assumption, if you consider a collection of bets as individually fair
but the net advantage of the bets is non-zero, then the only explanation is
that you are evaluating a bet (or equivalent bets) at two different rates, regard-
ing both as fair.7 In that case, it is possible for a cunning bookie to invite you
to accept a set of bets that all are individually fair in your eyes but, taken
together, lead you to a sure loss. The trick for the bookie is simply to sell you
the bet at your higher fair price and buy back an equivalent bet or an equiv-
alent set of bets at your lower fair price. A collection of bets that guarantees
a loss no matter what the outcome of the events upon which the wagers are
made is called a Dutch book (Skyrms, 1986: 185).

The third assumption is a coherence (rationality) condition. Some state-
ments of the DB theorem identify the condition with a simple behavioural
criterion – essentially that a rational agent ought to avoid a combination
of decisions that leads to a sure loss (Dawid, 2002: 3). For several reasons,
discussed in Christensen (1991), this criterion fails to support the laws of
probability as rationality constraints on partial beliefs. In a nutshell, there
are situations where a person accepts a combination of bets which leads to
a sure loss but he or she does not actually hold any beliefs violating the
probability axioms. The person might, for example, recognize that a col-
lection of bets offered to him or her by a friend leads to a sure loss but
accepts them to avoid harming the friend’s confidence. Such a decision
is not usually considered as irrational. On the other hand, a person may
have beliefs that breach the laws of probability or even logic but consciously
refuses to participate in any decision which entails a sure loss. In such cases,
even though he or she actually escapes a sure loss, there still seems to be
something amiss about his or her beliefs. If the concern is to establish the
probability axioms as rationality constraints on partial beliefs, the coherence
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condition must do more than point to some dire practical consequences;
it must be directly concerned with relations among beliefs (Christensen,
1991: 238).

Another notion of coherence appears in Ramsey’s brief allusion to the
DB theorem in his seminal work ‘Truth and Probability’ (1926 [1980]). There,
he regards the theory of probability as ‘an extension to partial beliefs of for-
mal logic, the logic of consistency’ (1980: 41).8 From this perspective, the
underlying notion of coherence is logical consistency. This deals directly
with the internal structure of a belief system and can well support a justi-
fication of the probability axioms as rationality constraints on partial beliefs.
In what follows, we therefore build our analysis around this notion of coher-
ence, which has also increasingly been adopted in the recent philosophical
literature on the Bayesian theory.

These assumptions state all that is needed for proving the DB theorem. The
proof starts by establishing that if your fair betting quotients for a collection
of bets violate the probability axioms, a Dutch book can be made against
you; that is, there will exist a finite series of bets that you consider as indi-
vidually fair but collectively lead to a sure loss. The converse of this result is
also shown to be true. If your fair betting quotients conform to the proba-
bility axioms, no Dutch book can ever be made against you. Given the value
additivity assumption, the susceptibility to a Dutch book is the evidence that
you are rating two equivalent bets at two different prices, considering both
as fair. This means you believe in a pair of contradictory propositions that a
bet is simultaneously fair and unfair. Since conformity with the probability
calculus is both necessary and sufficient to avoid a Dutch book, the only way
to avoid such a contradiction is to arrange your fair betting quotients or, in
other words, your partial beliefs, in accordance with the probability axioms.
And finally, since logical consistency is a rational desideratum, the laws of
probability become rationality constraints on partial beliefs.9

The notion of conditional probability plays a key role in understanding
whether the Bayesian theory furnishes a model of learning from experience.
To pave the way for the discussion, it is useful to review the DB argument for
the quotient rule:

P(H/E) = P(H&E)/P(E) (4.1)

which relates conditional probability to non-conditional probabilities. A cen-
tral element in the argument is a definition of conditional bet, rooted in
de Finetti’s writings. He defines a bet on H conditional on E as a bet on H
that proceeds if E turns out to be true and is called off if E is false (1980: 69).
Thus, the conditional probability P(H/E) is taken to stand for the price at
which you will buy or sell a bet that pays $1 if H is true, with the under-
standing that the purchase is called off if E turns out to be false. Another
element is the fact that the sum of a bet on H&E and a bet against E, when
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Table 4.2 Equivalent bets (2)

E H

Bet I
on H&E ¬E

Bet II
against E

Sum of
bets I and II

Bet III
on H given E

T T (1 − q)r F −(1 − r)q r − q (1 − q/r)r
T F −qr F −(1 − r)q −q −(q/r)r
F T −qr T qr 0 0
F F −qr T qr 0 0

the loss of the first bet is the winning of the second bet, is equivalent to a
bet on H conditional on E (Skyrms, 1986: 189). To be precise, let q be your
fair betting quotient for a bet on H&E with stake r, and r be your fair betting
quotient for a bet against E with stake q. The sum of these bets is equivalent
to a bet on H conditional on E with fair betting quotient q/r and stake r, as
shown in Table 4.2.

The ratio q/r corresponds to the ratio of the fair betting quotients for bet
H&E over bet E. This suggests that if your fair betting quotient p for the
conditional bet differed from q/r, there could be a Dutch book made against
you. Since the conditional bet is called off if E turns out false, the trick to
construct such a collection of bets is to introduce an additional bet on E with
a suitable stake. Specifically, consider a bet on H&E and a bet against E with
betting quotients and stakes as given above. Further consider a bet against
H conditional on E with betting quotient p and stake r, as well as a bet on
E with stake q–pr. Taken together, these bets lead to a net loss (gain) of r(pr–q)
regardless of whether H is true or false. Assuming that r is greater than zero,
the net loss (gain) will be zero only if p equals the ratio q/r. This happens only
if the fair betting quotient for the conditional bet is equal to the ratio of the
fair betting quotients of H&E over E. Like the basic probability axioms, the
quotient rule also becomes a theorem of the probability calculus.10

The quotient rule has a number of implications, including Bayes’ theorem:

P(H/E) ∝ P(E/H) P(H) (4.2)

This theorem is usually thought to express a fundamental model of learn-
ing from experience. Savage remarks that by entailing Bayes’ theorem the
theory of coherent preferences gives a natural interpretation, or at least one
important sense, of the phrase ‘learning from experience’. The theorem, he
says, ‘prescribes, presumably compellingly, exactly how a set of beliefs should
change in the light of what is observed’ (1967: 602). A similar view is also held
in economics. Kiefer and Nyarko (1995: 40) argue that economics needs no
assumption beyond the subjective expected utility maximization assumption
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to model learning behaviour, since by implying Bayes’ theorem the assump-
tion yields a rational model of learning. Any additional assumption about
how people learn about the economy is claimed to be ad hoc.

This interpretation of the role of the theorem is unwarranted, as Ian
Hacking argued long ago (1967: 315). The theorem is a consequence of the
quotient rule, which only says how conditional probabilities ought to be
related to non-conditional probabilities where all the probabilities involved
refer to the time before the conditioning event is learnt. So, like the quo-
tient rule, the theorem is just a coherence constraint. In more detail, given
P(E/H), the theorem constrains the compatible pairs of P(H) and P(H/E);
given P(H), it defines the mapping from P(E/H) to P(H/E); given P(H/E)

and P(E/H), it fixes P(H); and given P(./H) and P(H), it defines the mapping
from E to P(H/E) (Smith, 1986: 98). The theorem is silent about where one
has to begin. It is common to begin with P(H) and P(E/H) and use the theo-
rem to infer P(H/E), but one can begin by fixing P(H/E) and use the theorem
to determine a pair of P(H) and P(E/H) that is compatible with it. As far as
the theorem’s justification is concerned, both routes are equally permissible
(Lindley, 1983: 7). The theorem is therefore silent about how a set of beliefs
should be changed in light of what is observed.

Savage’s interpretation of Bayes’ theorem supposes an extra assumption
that the probability of H after having learnt E is the same as the probability of
H on the supposition that E were true (Hacking, 1967: 317). This assumption
is known as the Bayesian conditionalization rule (BCR). The rule states that if
your degree of belief in H conditional on E is P(H/E), and you learn E for sure
and nothing else, your new degree of belief in H , denoted by Q(H), ought to
be the same as P(H/E):

Q(H) = P(H/E) (4.3)

Thus, the question becomes whether the rationality considerations behind
the probability axioms lend any support to the BCR. A response is found in
Teller (1973), who argues that if you violate the rule there will be a finite series
of bets that you consider as individually fair but collectively result in a loss
no matter the outcomes. This has been taken to support the BCR just as the
DB arguments support the probability axioms. We analyse Teller’s argument
to show why it fails and to hint at why there can be no justification for
the rule anyway. We draw on a simple statement of the argument given in
Howson (1997).

Suppose your updating strategy differs from the BCR. This means, upon
learning E, you assign to H either a probability less than P(H/E) or a prob-
ability greater than P(H/E). Consider the first case where Q(H) < P(H/E).
Further, suppose in your opinion P(H/E) = x, P(E) = y and Q(H) = z. In
this case, a bookie can ensure a net gain by adopting the following betting
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strategy. He first sells you a conditional bet on H given E:

B1: [$1 if H , $0 otherwise]

and a bet on E:

B2: [$(x–z) if E, $0 otherwise]

at your fair prices. Later the truth of E becomes known. If E is false, the
conditional bet is called off and you end up losing (x − z)y. If E is true, he
buys from you a third bet on H :

B3: [$1 if H , $0 otherwise]

at your fair price. But, then, regardless of whether H is true or false, you
will end up losing (x − z)y. If your updating strategy were to assign a new
probability to H greater than P(H/E), i.e. Q(H) > P(H/E), the trick for the
bookie would be to buy from you a bet on H given E at your lower fair price
and later sell you back a bet on H at your higher fair price. In either scenario,
your net loss would be zero if your new probability for H were equal to its
old probability conditional on E. It is concluded that a rational person must
update his or her probability function in accordance with the BCR. Since the
bookie needs to be aware of your updating strategy at the outset in order
to be able to devise a collection of bets that guarantees a sure loss, Teller’s
argument is referred to as the Dutch strategy (DS) argument.

Although Teller’s argument prima facie appears similar to the DB argument
for the quotient rule, there are fundamental differences between them that
are detrimental to the justificatory power of the DS argument. First, in the
argument for the quotient rule, assuming that you violate it, the bookie
only has to know your current partial beliefs to make a Dutch book against
you. The susceptibility to a Dutch book originates solely from the internal
structure of your beliefs and, as a consequence, points to an undesirable
feature of your belief system. In contrast, in devising a DS argument, the
bookie needs to know not only your fair betting quotients (partial beliefs)
but also the direction in which you intend to depart from the BCR. If you
do not reveal your updating strategy in advance, he cannot make a Dutch
strategy against you. Thus, the susceptibility to a Dutch strategy arises from
a conjunction of your partial beliefs with a decision to pre-announce your
updating strategy. The susceptibility to the sure loss does not automatically
indicate a defect in your belief system. You can avoid it simply by refusing to
pre-announce your updating strategy. And there is nothing irrational about it.

Secondly, the success of the DB argument for the quotient rule depends on
the validity of the value additivity principle. If the principle is not granted,
susceptibility to a Dutch book will have other explanations including the
failure of value additivity and cannot be taken as an indication of belief
inconsistency. The postulate, as we saw, is not a logical principle. The only
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support for it is that whenever a number of bets are made simultaneously, it
seems plausible to require that the value of a bet equivalent to the sum of
the bets be the sum of the values of the individual bets. Like the DB argu-
ment, the DS argument also requires the assumption of value additivity to
interpret susceptibility to a sure loss as an indication of belief inconsistency.
However, the concern in the DS argument is with decisions made over time.
In a dynamic decision-making scenario, there is no reason why an individual
should not take note of his or her earlier commitments, and for this reason
value additivity cannot be taken for granted. As a result, vulnerability to a
Dutch strategy cannot be taken as an indication of belief inconsistency. The
susceptibility can in fact arise from the failure of value additivity.

Thirdly, the bets involved in the DB argument are made simultaneously;
all the underlying beliefs belong to a single point in time and the coherence
requirement is deemed to be a rational ideal. In contrast, the possibility of
devising a DS argument hinges on the bookie being given the opportunity
to sell to or buy from you bets that are fair in your eyes at different times.
This means that the beliefs underpinning a Dutch strategy belong to different
times. So, even if the value additivity assumption is not challenged, the most
that the possibility of a Dutch strategy can reveal is temporal inconsistency.
But temporal consistency is not a rationality requirement. Otherwise, the
very idea of rational belief updating would be self-contradictory. Therefore,
the DS argument has no implication for how to shift from one belief system
to another in light of new evidence (Christensen, 1991: 264).

These criticisms show why there can be no argument for the BCR similar to
the DB argument. But, they do not establish that there can be no justification
for the rule whatsoever. The Bayesian literature in fact offers several alterna-
tive attempts to justify the rule, as well as a generalization of it by Richard
Jeffrey (1968).11 An analysis of these endeavours is beyond the scope of this
chapter. Some general considerations nevertheless indicate why they are also
bound to fail. Note that the rule applies only when the probability of the con-
ditioning event E shifts to unity.12 The law of total probability then implies
that Q(H) = Q(H/E),13 which means the rule holds if and only if

Q(H/E) = P(H/E) (4.4)

This equality, called the invariance condition, implies that in order for the
rule to hold, the new information must have no effect on the conditional
probabilities in the domain of one’s probability function. That is, having
learnt E, the old and new conditional probabilities must agree with each
other (Diaconis and Zabell, 1985: 36). Any attempt at establishing the BCR as
a general updating rule requires showing that the invariance condition must
hold under any circumstances. There are certain cases where new information
not only shifts the probability of the conditioning event but also justifiably
demands reassessing some of the conditional probabilities in the domain of
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one’s probability function. Howson (1997) provides a case in which by learn-
ing E one is logically forced to change some of the conditional probabilities
in the domain of one’s probability function. Another case, closer to statisti-
cal practice, occurs when new observations cast doubt on the adequacy of
the models considered, calling for constructing new models. When a new
model is added or the existing models are modified, one should inevitably
revise the probability of each model given the conditioning event (proposi-
tion) E. Since such legitimate belief shifts, which arise from introduction of
new models, cannot be ruled out a priori, there can be no prospect for estab-
lishing the invariance condition as a general rationality requirement. And so,
there can never be an argument establishing the BCR as a general rationality
constraint.

Justificatory issues aside, the BCR is subject to some severe limitations.
The rule applies only to situations where the new information shifts the
probability of the conditioning event to unity. In reality, new information is
usually vague, imprecise and fraught with errors, and rarely shifts the prob-
ability of an event to unity ( Jeffrey, 1968: 171). In most real cases, the rule
does not then apply anyway. The rule also requires both p(E) and p(H&E) to
be specified prior to learning E and hence does not apply to unanticipated
information (Diaconis and Zabell, 1985). Finally, the rule does not apply to
situations where a zero probability event occurs. All in all, the circumstances
in which the rule applies are extremely limited.14

With these remarks, we end our study of some of the issues regarding the
Bayesian theory that directly bear on the possibility of establishing a statisti-
cal learning theory. The main issue is whether the rationality considerations
behind the probability axioms impose any constraint on how to shift from a
coherent system of beliefs to a new coherent belief system in the light of new
information. The answer, as seen, is in the negative. The only claim of the
Bayesian theory left standing is that, for the sake of consistency, one’s likeli-
hood judgements at each moment of time ought to accord with the laws of
probability. This requirement, though substantive, does not prescribe how to
shift from a coherent system of beliefs to a new coherent belief system. The
Bayesian theory, in itself, is not a theory of learning from experience. And,
contrary to some economists, the expected utility maximization assumption
does not entail a theory of learning from experience.

4.3 The orthodox view of Bayesian inference

Coherent analysis has a place in a theory of statistical inference but there is
much more to a theory of statistical inference than coherent analysis. As a
step towards explaining the key issues that a theory of parametric inference
must address, and to define some necessary notions, we first give a brief
account of the orthodox theory of Bayesian statistical inference, which views
inference from data solely in terms of prior to posterior analysis. Suppose we



Bayesian Diagnostic Learning 117

want to model the relation of random variable Y with X. According to the
orthodox Bayesian theory, the modeller somehow knows the set of models
W that can be true of the relation of Y with X:

W = {All possible models that could possibly be true of the observables
X and Y}

The assumption that W is known reduces the problem of inference from
data to that of inferring the member of W that is most likely given the data.
The Bayesian approach requires the modeller to express his uncertainty about
the models in terms of a probability distribution that captures the confidence
he has in each model prior to seeing the data. Let D = {xt , yt }Nt=1 denote the
data on X and Y , and let W contain only two models:

M1 : Y ∼ N(β1X, δ2
1) β1, δ2

1 ∈ θ1

M2 : Y ∼ N(α1 + β2X, δ2
2) α1, β2, δ2

2 ∈ θ2

Inferring the model, which is most likely given the data, requires estimating
the parameters in each model. The hallmark of the Bayesian approach is to
regard the parameters as random quantities, requiring the modeller to express
his uncertainty towards them in the form of a (joint) probability distribution.
Thus, a Bayesian model consists of at least two components, a data model
f (./θ) and a (joint) prior density π(θ):

M1 : Y ∼ N(β1X, δ2
1) π(θ1) β1, δ2

1 ∈ θ1

M2 : Y ∼ N(α1 + β2X, δ2
2) π(θ2) α1, β2, δ2

2 ∈ θ2

π(θi) is the prior probability distribution for the parameters in Mi, rep-
resenting the analyst’s belief regarding the parameters prior to seeing the
data.15 The parameters in the prior density π(θi) are called hyperparameters
as opposed to those in the data model f (./θi). Bayes’ theorem combines the
information in the prior density with the data to derive the distribution of
the parameters θi of each model, namely

p(θi/D, Mi)

= p(D/θi, Mi)π(θi/Mi)

/∫
p(D/θi, Mi)π(θi/Mi)dθi

(4.5)

p(θi/D, Mi) stands for the posterior distribution of θi and p(D/θi, Mi) for the
likelihood function under model Mi.

Assuming Mi is true, the posterior distribution p(θi/D, Mi) expresses all the
information required for making inference about θi. A point estimate of θi is
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obtained by computing the posterior mean:

θ̄i = E(θi/D, Mi) =
∫

θip(θi/D, Mi)dθi (4.6)

Prediction is also obtained using posterior distribution p(θi/D, Mi). Suppose
yt+1 is a future observation, independently drawn from the same distribution
that has generated the data. The predictive distribution of yt+1 is given by

p(yt+1/x, D, Mi) =
∫

p(yt+1/θi, Mi)p(θi/D, Mi)dθi (4.7)

This distribution, termed the posterior predictive distribution, summarizes the
information concerning the likely value of a new observation given the infor-
mation in the data model, the prior and the data. If the posterior distribution
p(θi/D, Mi) is replaced with the prior density p(θi/Mi), one obtains the prior
predictive distribution:

p(yt+1/x, Mi) =
∫

p(yt+1/θi, Mi)p(θi/Mi)dθi (4.8)

which summarizes one’s information about an observation yt+1 before
having seen any data.

As in parameter estimation, the orthodox theory treats the model selection
problem within the framework of prior to posterior analysis. It uses Bayes’
theorem to derive the probability of each model given the data:

p(Mi/D) = p(D/Mi)p(Mi)

p(D/M1)p(M1) + p(D/M2)p(M2)
(4.9)

where p(D/Mi) is the marginal probability distribution of the data under
model Mi, obtained by integrating over the model parameter space:

p(D/Mi) =
∫

p(D/θi, Mi)p(θi/Mi)dθ i (4.10)

with p(D/θi, Mi) being the likelihood of θi under model Mi. The theory sug-
gests choosing the model that scores the highest posterior probability. Also,
the degree to which the data confirm M1 over M2 is measured by the poste-
rior odds for M1 against M2, i.e. the ratio of their posterior probabilities. By
equation (4.9), this is

p(M1/D)

p(M2/D)
= p(M1)

p(M2)
× p(D/M1)

p(D/M2)
(4.11)

The first ratio on the right-hand side of (4.11) is the prior odds ratio and the
second is the Bayes factor. The numerator and the denominator of the Bayes
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factor are respectively the marginal likelihood of models M1 and M2. When
the posterior odds ratio is above one, the data is said to support M1 over M2,
and vice versa; when the posterior odds ratio equals unity, the data is said to
equally support the models; and when the models are a priori equally likely,
the posterior odds ratio is reduced to the Bayes factor.16

From the perspective of the orthodox theory, the agent knows the models
that are possibly true of his choice situation or the economy. He uses data to
estimate the models and selects the model with the highest posterior proba-
bility. When new data come in, he re-estimates the models, computes their
probabilities conditional on the data, and again searches for the model with
the highest posterior probability.

4.4 Bayesian statistical inference: a wider view

The orthodox Bayesian theory gives an incomplete description of the pro-
cess of inference. The theory begins with the assumption that the candidate
models are known in advance, and therefore the central inference problem is
to find the model that is most likely given the data. This assumption is the-
oretically and empirically indefensible. Candidate models are never known
in advance, and the most important aspect of inference from data consists of
model specification (formulation).

A number of activities precede model formulation, including initial exam-
ination of the data, choosing appropriate transformations of the data,
producing descriptive statistics, and finding possible outliers (Cox and Snell,
1981; Chatfield, 1995; and Leamer, 1978). This means there are at least two
important phases of inference before the orthodox Bayesian theory, which
interprets inference in terms of prior to posterior analysis, becomes relevant.
The first is initial examination of data and the other is formulation of an
initial model.

The objective in initial model formulation is to specify a model that can
serve as an informed basis for searching for a model that can accurately
account for the data. A Bayesian model is made of at least two components:
a data model and a (joint) prior probability density for the model parameters.
A data model, as explained in the last chapter, consists of a set of internally
consistent hypotheses of independence, homogeneity, and distribution. The
initial specification of a Bayesian model involves postulating appropriate
assumptions of independence, homogeneity, and data distribution, as well
as specifying a joint prior density for the data model parameters. Since
initial specification of the basic assumptions concerns creating the objects
(models) to which uncertainty applies, it is by definition a non-Bayesian mat-
ter. Any attempt at explaining initial model formulation necessitates stepping
out of the framework of prior to posterior analysis (Hill, 1990: 57). Once a
model has been formulated, the next phase of inference is estimation (model
fitting), where coherent analysis begins to become relevant.
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Initial model formulation is a complex activity involving many decisions.
There is no guarantee a model generated in the early stages of research can
adequately account for the data and yield accurate predictions. Before making
any use of the model, an important question is whether it is empirically ade-
quate. As seen, in assessing the merits of candidate models M1, M2, . . . , MK ,
the orthodox Bayesian theory requires specifying a prior probability distribu-
tion over the models, and computing the posterior probability of each model
using Bayes’ theorem:

P(Mi/D) = P(D/Mi)P(Mi)∑
P(D/Mi)P(Mi)

(4.12)

This approach only allows the comparison of relative probabilities (Lindley,
1982: 81), which is not indicative of empirical adequacy. The high probability
of a model can be the result of the choice of a particular prior for the parame-
ters. As in Lindley’s paradox, it is possible by adopting flat priors to arbitrarily
increase the posterior probability of a model, and this can happen even if
the sample size is very large (Gelfand et al., 1992: 151; see Appendix 4.A for
a statement of the paradox). Moreover, the posterior probability of a model
is always conditional on the set of candidate models considered (Box, 1980:
427). When the set of candidate models contains only a single model, by
Bayes’ theorem the model automatically receives posterior probability one,
and as the number of models in the set grows, the probability of the initial
model can decrease and in fact approach zero (Box, 1983: 73). Thus, the high
probability of a model may be due to the analyst’s failure to include among
the candidates the true model or a close approximate thereof, rather than
the adequacy of the model. Only if the set of candidate models is known to
be wide enough to contain an adequate model, can a connection be made
between the high posterior probability of a model and its empirical adequacy.
Any attempt at ensuring this, though, calls for investigating the compatibil-
ity of each model with the data (Anscombe, 1963: 34), which cannot be
done using Bayes’ theorem. Model assessment also necessitates an analysis
different from prior to posterior analysis. To be precise, it requires a method
that directly deals with the relation between a model and the data, not with
apportioning of uncertainty across models (Barnard, 1962: 42-3; Mallow,
1970: 77).

The process of empirical adequacy assessment may reveal the failure of the
initial model, calling for model re-specification. This involves varying the
model assumptions one at a time, monitoring the effect of the variation,
and continuing the process until an adequate model is obtained. Since in
re-specification analysis the concern is with the adequacy of a single model, the
analysis cannot be cast in terms of prior to posterior analysis. Re-specification
analysis is also a non-Bayesian issue.
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The process of initial model formulation, empirical model assessment, and
re-specification analysis may produce several models fitting the data. For
practical purposes, it may be necessary to choose a model from among the
candidates. It is here that coherent analysis can become relevant again.

Finally, the steps from the initial examination of data to model selection
are not a one-off process. In real life, statistical inference is an iterative pro-
cess. The statistician formulates a set of models, estimates them, assesses
their adequacy, modifies them if necessary, chooses a model and derives the
predictions required for decisions. As new data arrive, she reassesses the ade-
quacy of the models, expands or modifies the set of candidate models, derives
new predictions, and waits for future data to disclose the models’ adequacy.
Accordingly, it is plausible to think of parametric statistical inference as a
process with the following key phases:

(a) Data description
(b) Initial model formulation (or specification)
(c) Model fitting (or estimation)
(d) Model assessment (or criticism)
(e) Model re-specification
(f) Model selection
(g) Iteration

The Bayesian theory is only relevant to model estimation and model selec-
tion. It leaves out other central aspects of inference, namely initial model
formulation, empirical model assessment, and re-specification analysis. If
the theory is to be a satisfactory account of statistical inference, it must be
broadened to cover these critical aspects of inference. The rest of this chapter
joins together various pieces from the literature to define a broader view of
Bayesian inference that goes some way towards explaining the inferential
issues left out by the orthodox Bayesian theory.

4.5 Initial Bayesian model formulation

Is there a theory of (initial) model specification? Fisher is said to be the
first to raise the issue of model specification in his seminal paper (1922)
‘On the mathematical foundations of theoretical statistics’. In this paper, he
divides the problems of statistics into three types; (i) problems of specification;
(ii) problems of estimation; and (iii) problems of distribution. Fisher’s discus-
sion of specification problems is confined to a single paragraph, dominated
by the first sentence: ‘As regards problems of specification, these are entirely
a matter for the practical statistician . . . ’ (1922: 314). This suggests ‘that in
his view there can be no theory of modelling, no general modelling strat-
egy, but that instead each problem must be considered entirely on its own
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merits’ (Lehmann, 1990: 160). Fisher’s view of model specification has con-
tinued to dominate the statistics community, and has been endorsed by most
statisticians, including Savage (1971), Mallow (1970), Dawid (1982), and
Poirier (1988). However, a look at the modern statistical literature suggests
that the view of model specification as an art with no general strategies is
unduly pessimistic. Modern statistics provides a great deal of teachings that
are highly relevant to establishing an exploratory theory of statistical model
formulation. This chapter pieces together various elements of an exploratory
theory of Bayesian modelling that takes us some way towards understand-
ing how a statistician proceeds to build a model. The theory addresses three
aspects of the model-building process: ‘initial model formulation’, ‘empir-
ical model assessment’ and ‘re-specification analysis’. The current section
outlines a framework for initial model formulation by drawing on proposals
found in D’Agostino (1986), Lehmann (1990), Rubin (1984), Spanos (1986;
1999) and Spanos and McGuirk (2001).

4.5.1 Initial data model specification

A theory of initial model formulation requires a clear definition of the prob-
lem and a method to solve it. To provide a definition, we can divide the
whole issue of Bayesian model formulation into specification of a data model
and a prior distribution. We first consider the initial specification of a data
model. As argued in the last chapter, when the concern is to establish an
interpretable model of several variables it is necessary to start with a para-
metric model, which raises the question of where the models come from.
An interesting response to this question is found in Lehmann (1990): a line
of research in mathematical statistics has been to define alternative notions
of independence, homogeneity and probability distribution families. The
research has resulted in a rich variety of independence and homogeneity
hypotheses, as well as a large list of univariate, bivariate, and multivariate
probability distribution families. Consistent combination of these indepen-
dence and homogeneity hypotheses with the distribution families produces
a large collection of primitive data models, which can be used as building
blocks to create numerous and, in a sense, countless mixture models. In this
way, theoretical statistics provides a rich reservoir of models, to use Lehmann’s
apt term (1990: 161). Figure 4.1 schematically shows the structure of the
model reservoir.17

So, in response to the question of where the models come from, Lehmann
suggests that they come from the model reservoir of statistics. In light of this
proposal, the issue of initial data model specification can be defined as the
problem of selecting a set of internally consistent hypotheses from the three
categories of known independence, homogeneity, and distributional assump-
tions to form a model that can account for the data (Spanos, 1999: 756). To
provide a theory of initial model formulation, it remains to explain how the
initial selection of these hypotheses can take place.



Bayesian Diagnostic Learning 123

Independence

Dependence

Strict stationarity
First-order stationarity
……………….
M-order stationarity 

Homogeneity

Heterogeneity

Binomial distribution
t distribution
……
Weibull distribution

Markov dependence 

M-dependence
…………
Asymptotic independence

Homogeneity

Heterogeneity

Strict stationarity

………………
M-order stationarity 

Binomial distribution
t distribution
……

Weibull distribution

Binomial distribution
t distribution

……
Weibull distribution

Binomial distribution
t distribution
……
Weibull distribution

Binomial distribution
t distribution
……
Weibull distribution

First-order stationarity.

Figure 4.1 The structure of the model reservoir

Note: The model reservoir grows with advances in theoretical statistics.

4.5.1.1 The theoretical approach to data model specification

Theoretical statistics provides the ingredients for two complementary
methods for initial selection of the basic hypotheses, one drawing on subject-
matter information and the other on data. The first procedure, also cited in
Lehmann (1990), emerges from a class of theorems known as characteriza-
tion theorems. A characterization theorem, roughly speaking, defines a set of
sufficient conditions that if they were true of a variable (or a set of variables),
the probability distribution of the variable (or variables) would belong to a
certain distribution family (Galambos, 1982). A well-known characterization
theorem is the Poisson process theorem that describes the conditions under
which a univariate distribution has a Poisson distribution. In one form, the
theorem goes as follows:

Consider variable Yt and let t stand for time. For each t > 0, if

A1: Yt is an integer-valued random variable
A2: Y0 = 0
A3: Yt and Yt+s − Yt are independently distributed, s > 0
A4: Yt and Yt+s − Yt are identically distributed

A5: limit t → 0 p(Yt=1)
t = λ

A6: limit t → 0 p(Yt>1)
t = 0
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then, Yt has a Poisson distribution (Feller, 1971). That is, for any positive
integer n:

p(Yt = n) = f (n) = e−λt (λt )
n(n!)−1 (4.13)

The theorem suggests a way of deciding whether a variable Yt has a Poisson
distribution by checking if the information about the distribution of Yt war-
rants assumptions A1 to A6. If so, Yt has a Poisson distribution. In this way,
the theorems provide a general procedure for using subject-matter informa-
tion to choose a distribution, which leads to a narrowing of the set of data
models. The approach underlies many specification studies in econometrics.
To highlight the important role of the theorems in model formulation, we
reconstruct a specification study from the econometric literature, and then
state some of the limitations of the method in practice.

The study is adopted from Hausman et al. (1984), who examine the effect
of research and development (R&D) on the innovation activity of a firm. The
authors use patent applications as an indicator of inventive activity and seek
to model its relationship with R&D. Let Yt represent the number of patents
applied for or received during period (0, t) and Xt the expenditure on research
and development during the period. To model the relation of Yt with Xt , the
authors list a number of conceptual and simplifying assumptions that seem
plausible about Yt . Specifically, they propose that

A1: Yt is a discrete random variable taking a finite number of positive
values;

A2: The value of Yt at time zero t = 0 is zero (innovation takes time);
A3: The numbers of patents received during non-overlapping time

intervals are independent of each other (independence assumption);
A4: If Yt is the number of patents received during [0, t] and Zt the number

of patents received during [t1, t1+t ], Yt and Zt have the same
distribution (homogeneity assumption);

A5: The probability of receiving two or more patents in a sufficiently
small interval is negligible; and

A6: The probability of receiving n patents during [t , t + s] is proportional
to the length of [t , t + s], barring extremely large intervals.

These hypotheses match with the conditions of the Poisson process theo-
rem. Accordingly, the authors conclude, as a first conjecture, that Yt has a
Poisson distribution and model the dependence of Yt on Xt using a Poisson
regression model (Hausman et al., 1984: 911):

p(Yt = n/xt ) = e−λt (λt )
n(n!)−1

ln(λt ) = α + βxt
(4.14)
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for any integer n. The authors next consider the effect of weakening the
independence assumption, and investigate the possibility of adopting a more
robust model, such as the negative binomial regression model. A vast number
of phenomena are similar to patent data, including the number of spells of
sickness in a year, the number of records purchased per month, the number
of cars owned, the number of jobs held during a year, and so forth. At one
stroke, the Poisson theorem provides a unified approach to creating an initial
data model for a large number of economic phenomena. Many other specifi-
cation studies in econometrics can easily be interpreted as an application of
a characterization theorem.18

This study illustrates how the theoretical approach, which emerges from
the characterization theorems, enables one to use subject-matter information
to narrow down the class of data models that could possibly be true of a set of
variables. The method is nonetheless subject to some limitations in practice.
A trouble relates to the probabilistic conditions that enter the theorems. As
is explicit in the example, the theorems assume that the data are identically
and independently distributed. In the natural sciences, there may be reliable
subject-matter information to justify these assumptions a priori. In the social
sciences, theories are imprecise, lack adequate empirical support, and the
mechanisms generating the data undergo changes. The fate of these assump-
tions can rarely be decided on subject-matter information alone. If there is
any way of deciding on the appropriateness of the independence or homo-
geneity assumptions, which go into the theorems, it must be by looking at
the data.

Also, the information available about the distribution of a variable is usu-
ally imprecise and, as a result, consistent with more than one distribution
family. In general, if the information is consistent with the assumptions
defining a distribution family (say, exponential), it is also consistent with
any distribution family that is robust with respect to it (say, Weibull). So, the
approach does not usually lead to the choice of a single distribution hypoth-
esis. These reservations aside, the theorems can effectively narrow down the
class of appropriate models in the model reservoir. Even the information that
the variable is continuous, finite, positive, or falls within the unit interval
substantially reduces the space of appropriate data models within which an
exploratory search must take place.

4.5.1.2 The empirical approach to data model specification

The second method, which emerges from theoretical statistics, uses data
for initial selection of the basic probabilistic assumptions. To explain the
method, let us return to the definition of a data model as a set of internally
consistent hypotheses drawn from the three categories of independence,
homogeneity, and distribution assumptions. Each combination of these
hypotheses, which forms a data model, implies a series of consequences that
are true of the model under all its possible parameterizations. We term such
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consequences ex ante or pre-estimation implications, as they can be derived
before estimating the model. Theoretical statistics has a rich literature on the
ex ante consequences of alternative combinations of the basic assumptions
defining the model reservoir. With this in mind, a plausible methodologi-
cal principle is that a model worthy of further consideration must not have
ex ante consequences grossly incompatible with the data. Granting this, the
class of candidate data models, warranted by subject-matter information,
can be substantially narrowed down by investigating the pre-estimation conse-
quences of the models. If the ex ante consequences of a model are compatible
with the data, it is kept as a candidate model. Otherwise, it is excluded. More-
over, each ex ante implication of a data model can be traced to one of its
assumptions. If an ex ante consequence of a model fails to appear in the data,
then the failure can be traced to a particular assumption, and this informa-
tion can be used to search systematically for a model capable of accounting
for the data. The search for a first model need not be entirely blind.

Essential to using data for initial model formulation is a judgement of
whether the ex ante consequences of the model are consistent with the data.
In the frequentist setting, this judgement of consistency is usually made by
computing p-values. An exploratory theory of Bayesian model formulation
can also follow a similar route. But, since most ex ante consequences of a
model are of a graphical nature or can be rephrased graphically, and since at
this stage the objective is simply to make educated guesses about the nature of
the statistical model that might be appropriate for the data, it is sufficient to
work with an informal concept of incompatibility. Later, it will be explained
how the frequentist idea of p-value can justifiably be assimilated within a
broader view of Bayesian inference.

The following three subsections describe in some detail the process of
data-driven initial model specification using a simple data set on the quarterly
US unemployment rate over twenty-five years from 1948 to 1972, given in
Fuller (1976), which we use later to illustrate Bayesian diagnostic learning. An
objective is to emphasize the relevance of classical methods for an exploratory
theory of Bayesian model formulation. Another is to bring to the fore the kind
of heuristic principles that are necessary for using data in initial model speci-
fication. The exposition will also illustrate modes of inference that cannot be
understood in terms of prior to posterior analysis but occupy a central place
in a wider view of statistical inference.

4.5.1.2.1 The independence assumption. The choice of an independence and
homogeneity assumption restricts the choice of a distribution family. This
means the empirical search for an initial data model should begin by looking
for an appropriate independence and homogeneity assumption. The starting-
point in this search is whether the assumptions of complete independence
(C-independence) and complete homogeneity (C-homogeneity) are appro-
priate or, in short, whether the data are random. To focus on one assumption
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at a time, we first take C-homogeneity for granted. Let Y denote the unem-
ployment rate, and N the sample size. Given C-homogeneity, the task of ex
ante assessment of C-independence involves assessing the implications of the
following model:

Unrestricted data model
A1 Distribution: Unrestricted
A1 Independence: (Y1, Y2, ..., YN ) is C-Independent
A1 Homogeneity: (Y1, Y2, ..., YN ) is C-Homogeneous

This model has several consequences that underlie a number of classical
tests of independence, usually named distribution-free tests of random-
ness. Some of these tests are discussed in Bradley (1968) and Lehmann and
D’Abrera (1975). Here, we follow Bradley (1968: 271–8). Let us arrange the N
observations in the order they were obtained. Suppose, for simplicity, none
of the observations are identical so that they constitute N distinct numbers.19

The N numbers can be arranged in N! distinguishable ways, creating a sam-
ple space S with N! elements. If the hypothesized model were true of Y ,
each element in S would a priori be as likely as the actual sequence. In other
words, if one believed that the observations on Y were random, one would
a priori have to consider each element in S as equally likely. An assumption to
the contrary entails the failure of either C-independence or C-homogeneity
(Bradley, 1968: 277). The same conclusion is also true of any sample space
formed from a sub-sequence of the N observations. This consequence leads to
several procedures for ex ante assessment of C-independence. To explain one
possible method, consider the t-plot of the unemployment data given below:

If an increase in the ordered sequence of observations is designated by ‘1’
and a decrease by ‘0’, the first quarter of the sequence of the unemployment
data plotted in Figure 4.2 can be shown as:

0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

An unbroken sequence of increasing observations (ones) or decreasing obser-
vations (zeros) is called a run. There are a total of ten runs in the above
sub-sequence. Let R be the total number of runs of any size in the entire
sequence, AR,N the total number of arrangements of the N observations that
contains R runs, and R(≥m) the number of runs of size m or greater. Given
the equal probability of each element in S, Levene (1952) establishes that

P(R/N) = AR,N

N!
E(R) = (2N − 1)/3 Var(R) = (16N − 29)/90

E(R(≥m)) = 2 + 2(N − m)(m + 1)

(m + 2)! m ≤ (N − 2)

(4.15)
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Figure 4.2 Unemployment data

and that R is asymptotically normally distributed. These consequences are
in the form of expected and probability values, and as such say nothing
about a particular sample. Nonetheless, it is plausible to assume that if the
assumptions of the unrestricted model are appropriate, in an ‘adequately’
large sample, the sample values of these quantities come close to their theo-
retical values. In general, to bridge between theoretical (expected) quantities
and their sample analogues, the following heuristic principle, present in
many areas of statistics, commands plausibility:

Heuristic principle I: If the hypothesized model is appropriate, in an
adequately large sample, the theoretical values implied by the model for
variables defined from the sample and the sample values of the variables
are ‘close’ to each other.

In light of this, the appropriateness of C-independence can be assessed by
comparing, say, the actual values of R and R(≥m) with their expected values
E(R) and E(R≥m). A sharp difference casts doubt on the assumption. The
sample in Figure 4.2 contains 100 observations, with E(R) and E(R≥3) being
66.33 and 6.48 respectively. The actual values of R and R(≥3) are 32 and 14
respectively, which are considerably different from the theoretical values.
The large difference strongly points to dependence in the data, suggesting
the inappropriateness of C-independence.

There is a wealth of techniques that can be used for pre-estimation assess-
ment of alternative independence hypotheses. Notably, one may examine
the sample partial autocorrelation function (SPACF) of various orders to select
an independence assumption tentatively. In general, if a p-order Markov
independence assumption were true of Y , the sample partial autocorrelation
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function would be expected to ‘cut off’ (i.e. be equal to zero) after p lag (Box
and Jenkins, 1976). Figure 4.3 plots the SPACF of the unemployment data.
The plot suggests a second-order Markov independence condition. However,
for illustration purposes, we will work with a first-order Markov condition,
which leads to a simpler data model.

4.5.1.2.2 The homogeneity assumption. The starting-point in the search for
a homogeneity assumption is an assessment of C-homogeneity, which
is the simplest of the homogeneity assumptions. Classical statistics pro-
vides a host of distribution-free tests useful for investigating the pre-
estimation implications of C-homogeneity. A class of such procedures is
developed in Cox and Stuart (1955). For illustration, we look at these
authors’ test of trend in location, described in Bradley (1968: 175). Sup-
pose the sample consists of N different observations, with N being an
even number. If N is an odd number, the middle observation divid-
ing the sequence into two parts is removed. Arrange the observations as
an ordered sequence Y1, Y2, . . . Yi, . . . , Yn, Yn+1, . . . , Yn+i, . . . , Y2n with the
subscripts indicating the order in which they were obtained. Now, for
every i ≤ n form the difference-score Zi = (Yi − Yn+i), and let S be
the number of positive difference-scores. Considering the signs of Zi, the
difference-scores can be viewed as the outcomes of n Bernoulli trials. If
the unrestricted model is true, Zi is as likely to be positive as it is to be
negative, i.e. p(Yi < Yn+i) = p(Yi > Yn+i) = 0.5. In that case, S can
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be regarded as the number of successes in n Bernoulli trials, with proba-
bility p = 0.5 of success on each trial. This results in the binomial data
model:

Binomial data model

A1 Distribution: binomial, S ∼ Bin(n, π); P(S = s) =
(

n
s

)
πs(1 − π)n−s

A2 Independence: (Z1, Z2, . . . , Zn) is C-Independent
A3 Homogeneity: (Z1, Z2, . . . , Zn) is C-Homogeneous

with first and second moments

E(S) = n/2 Var(S) = n/4

Cox and Stuart’s test of trend in location is based on computing p-value of
the observed value of S. As a less formal check, one may assess the appropri-
ateness of C-homogeneity by comparing the expected values E(S) and Var(S)

with their sample analogues. In an adequately large sample, a significant
departure points to the failure of C-homogeneity. In particular, when S is
considerably greater than E(S), the data points to a negative trend in loca-
tion, and when it is considerably less than E(S), it points to a positive trend
in location. Cox and Stuart (1955) also establish analogous procedures for
testing trend in dispersion or cyclical trend.20

As for the unemployment data, the expected values E(S) and Var(S) are 25
and 12.5 respectively, which are close to the sample values of 24 and 11.06.
Similar results are obtained when the data are examined for trend in dis-
persion or cyclical trend. Thus, the data cast no doubt on C-homogeneity.
The choice of the first-order Markov condition, however, necessitates
replacing C-homogeneity with strict stationarity, which is an extension of
C-homogeneity to an independently distributed vector of random variables
(Chapter 3). With this choice, we obtain the following model:

Unrestricted data model

A1 Distribution: Unrestricted
A2 Independence: (Y1, Y2, . . . , YT ) is first-order Markov independent
A3 Homogeneity: (Y1, Y2, . . . , YT ) is strictly stationary

4.5.1.2.3 The distribution assumption. The outcome of a pre-estimation
search among the independence and homogeneity hypotheses is a data
model of the form stated above. Given such a model, the pre-estimation
search for a distribution family involves inserting alternative distributions,
suggested by subject-matter information, into the model, and assessing the
ex ante implications of the model relating to the distribution assumption. In
the current case, since Yt is continuous, the first-order Markov assumption
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restricts the class of plausible distribution families for Yt to bivariate continu-
ous families. To illustrate, we consider the bivariate normal family. This gives
rise to:

Bivariate normal data model

A1 Distribution: X ∼ N(μ, ), bivariate normal, X = (Yt , Yt−1)

A2 Independence: (Y1, Y2, . . . , YT ) is first-order Markov independent
A3 Homogeneity: (Y1, Y2, . . . , YT ) is strictly stationary

The ex ante consequences of a distribution family are mainly defined by
the invariant features of the density curve, or the cumulative distribution
function (cdf ) of the family. These include symmetry and skewness. So, with
a reasonably large sample, the appropriateness of a distribution family can
be assessed by comparing the density curve or the cdf of the family with
their sample analogues. The justification for this practice arises from another
typical exploratory principle, which can be stated as follows:

Heuristic principle II: If the data come from a distribution family, when
the sample is adequately large, an appropriate plot of the data should show,
within sampling error, the invariant features of the density curve or cdf of
the family such as symmetry, positive or negative skewness, kurtosis, and
so forth.

This methodology works well for assessing univariate and bivariate distri-
bution families. However, since graphical features are difficult to investigate
in high-dimensional data, it cannot directly be extended to multivariate
families. Nevertheless, the multivariate families have other types of ex ante
implications that pave the way for their assessment. We briefly refer to three
categories of such implications.

A general feature of the exiting multivariate (bivariate) families is that if
they are true of a set of variables, the marginal distributions of the variables
also belong to the same distribution family. This means an initial assessment
of a multivariate family can be achieved by checking the marginal distribu-
tion families of the variables. The converse of this result is not true though. If
the univariate distributions of a set of variables belong to a distribution fam-
ily, it does not follow that the joint distribution of the variables also belongs
to the same family (Seber, 1984: 141).

In the current case, if the bivariate normal family is true of X = (Yt , Yt−1),
the marginal distribution of Yt is also normal. The density curve of a normal
distribution is symmetric. This means that, with a large sample, a judgement
about normality can be achieved by checking the symmetry of a histogram
or stem and leaf plot of the data. A more informative graph for assessing
symmetry is obtained by plotting the upper half of the ordered observations
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Figure 4.4 Symmetry plot unemployment data

Note: Y stands for Y(N+1−i) and X stands for Y(i).

against the lower half. Let Y(1), Y(2), . . . , Y(N) represent the ordered observa-
tions. If the data arise from a symmetric distribution, a plot of Y(N) versus Y(1),
Y(N−1) versus Y(2), and in general Y(N+1−i) versus Y(i) for i ≤ N/2 should cre-
ate a straight line with a negative unit slope (D’Agostino, 1986: 13). Figure 4.4
plots Y(N+1−i) versus Y(i) for the US unemployment data.

The data points are mostly scattered around a straight line with a negative
slope close to one, suggesting that they could have come from a symmetric
distribution family such as the normal family. To narrow down the class of
symmetric families to the normal family, further assessment of the ex ante
consequences of the family is needed, which can be done, say, by checking
the normal probability plot of the data.

A second type of ex ante consequences of a multivariate distribution con-
sists in restrictions on the form of the regression function of each of the
variables on the rest of the variables. The distribution family determines
whether the functions are linear, non-linear, or how they look. In the present
case, if the bivariate normal distribution is true of X, the regression function
of Yt on Yt−1 is given by the linear function:

E(Yt/Yt−1 = yt−1) = α + βyt−1 (4.16)

Alternatively, if the variables (Yt , Yt−1) have, for instance, a bivariate expo-
nential distribution, the regression of Yt on Yt−1 is given by the non-linear
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Note: Kernel regression of Yt on Yt−1: the optimal level of smoothing was selected using
leave-one-out cross-validation.

function (Mardia, 1970):

E(Yt/Yt−1 = yt−1) = (1 + θ + θyt−1)

(1 + θyt−1)2
(4.17)

The linearity of the regression of Yt on Yt−1 can be assessed by using a
non-parametric regressor to obtain a curve of the dependence of Yt on Yt−1,
and checking if it can be approximated by a linear function. Figure 4.5 shows
the kernel regression curve of Yt on Yt−1.

The curve comes close to a linear function, further confirming the consis-
tency of the data with the normal family. In addition to non-parametric tools,
a Bayesian statistician may also use the numerous classical means developed
for checking linearity and curvature (Cox and Small, 1978; Abrevaya and
Jiang, 2005).

Finally, a third type of ex ante consequences of a multivariate distribution
family consists of the implications for new variables defined from the vari-
ables under study. To give an example, let Xi be the ith point in a sample
of data on X, X the vector of sample means, and S the sample covariance
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Figure 4.6 Bivariate normality test

Note: X stands for d2
i -values and Y for χ2(2) percentiles.

matrix. Further, define a new random variable:

d2
i = (Xi − X)T S−1(Xi − X) (4.18)

It has been shown that when X has a multivariate normal distribution, for
large samples, d2

i -values are approximately distributed as χ2(p), where p
stands for the dimension of X. In that case, a probability plot of the χ2(p)

percentiles against the ordered d2
i -values will generate a straight line from

the origin (Gnanadesikan, 1977: 172–4), allowing direct assessment of joint
normality. Figure 4.6 plots the χ2(2) percentiles against the ordered d2

i -values
for the unemployment data.

Though the data points are fairly closely scattered around a straight line,
the fit is not perfect. The departure could be because the data have come from
another symmetric family, the first-order Markov condition is inappropriate,
or there is noise in the data. All these possibilities can be investigated. Since
the concern here is illustrative, we will not further the analysis, and will
take the bivariate normal model as our initial model. In general, if the ex ante
implications of a distribution family depart from the data, a similar approach
can be pursued to assess the appropriateness of alternative distributions.

The unemployment data is very simple, and so is the above analysis. The
analysis, nevertheless, gives a reasonable description of how a statistician for-
mulates an initial model. Similar methods also give guidance for dealing with
complex data sets. An issue in dealing with complex data sets, for instance,
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is to decide whether to fit a mixture model and, if so, how complex the mix-
ture model should be. Significant insight on this matter can be achieved by
using probability plots. When the data come from different members of a
distribution family, an appropriate probability plot generates several straight
lines, each representing a specific distribution (D’Agostino, 1986: 42–6). The
complexity of the model can be based on the number of inferred distribu-
tions. Initial data model specification is no longer without principles and
procedures.

4.5.2 Prior specification

A Bayesian model also requires a (joint) probability distribution of the model
parameters. While the Bayesian literature provides very little on data model
specification, it offers a substantial body of literature on prior modelling.
O’Hagan (1994), to give an example, devotes a full, long chapter to prior
modelling but says nothing at all about selecting data model assumptions.
This exclusive emphasis on prior modelling is without doubt unbalanced. The
prior assumption is like any other assumption entering a model, if not the
least critical one. If the data model is mis-specified, it is hard to make sense of
a good prior. And, if it is correctly specified, when the sample is adequately
large, the choice of a particular prior is not often critical. In any case, the
central issue in prior modelling is whether there is a method to find a prior
density for the parameters of the data model that enables it to best account
for the data. Our response to this question will come in a later section. Here,
to pave the way, we briefly look at various conventional approaches to prior
modelling, explain the merits and shortcomings of each approach, and show
why the focus of attention in these approaches is mistaken.21

4.5.2.1 The summary-based method

The aim of prior modelling is traditionally defined as specifying a joint den-
sity function that best represents the modeller’s opinion about the parameters
before seeing the data. A prior density that represents substantive infor-
mation is called an informative prior. In the literature we find two general
methodologies for quantifying a person’s qualitative information in terms
of a density function. The summary-based method builds on the idea that a
distribution can be characterized in terms of a number of summaries. A uni-
variate distribution, for instance, can be summarized using location measures
(mean, median, and mode), dispersion measures (variance, standard devi-
ation, and range), skewness, and fractiles. The method requires expressing
certain summaries about the distribution of the parameters and searching for
a probability distribution that best fits the summaries (O’Hagan, 1994: 143).
This strategy underlies several apparently differing prior modelling tech-
niques, whose only difference consists of the type of summaries they require
and the way in which the summaries are used to select a density function.
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As a simple illustration, following Berger (1980: 66), consider the case of a
univariate parameter θ , say, the mean of a normal distribution with a known
variance. Suppose it is thought the median of the distribution π(θ) is close to
zero and the first quartile (1/4 fractile) and the second quartile (3/4 fractile) of
the distribution are respectively −1 and 1.22 These summaries suggest that
π(θ) is symmetric around its median. It may then be concluded that π(θ)

belongs to the family of normal distributions, which are symmetric about
their median. Since the mean and median of a normal distribution is the
same, it follows that π(θ) is a normal distribution with mean zero, i.e. N(0, δ2).
At this point, the normal distribution table can be used to conclude from the
information on the quartiles that the variance δ2 = 2.16.23

The summary-based method is fraught with difficulties. The approach
requires thinking directly about parameters, which is difficult. To appreciate
this point, recall the parameter in the simple exponential regression model
mentioned earlier. The parameter enters the model in various ways, making
it difficult to think directly about its role and distribution. The difficulty is
compounded as more complex non-linear models are considered (Kadane,
1980: 90). Also, the distribution summaries obtainable in practice are usu-
ally consistent with more than one distribution family. The above summaries
about θ are equally consistent with the Cauchy distribution C(0, 1).24 Dis-
tinguishing these two distributions requires accurate summaries that cannot
be easily obtained. What is more, according to a dominant reading of the
Bayesian position rooted in de Finetti’s representation theorem, parameters
have no independent role but to simplify the relations among the observ-
ables (Lindley, 1982: 77; Poirier, 1988: 131).25 Consequently, there is no
guide for formulating a prior density other than the instrumental role of the
parameters in generating an empirically adequate model. Finally, there is no
guarantee that the priors resulting from a person’s distribution summaries
lead to an empirically adequate model. It may be that the data model is cor-
rectly specified but, because of the choice of inappropriate priors, the overall
model is inadequate.

4.5.2.2 The hypothetical prediction-based method

The difficulties in thinking directly about parameters have given rise to an
alternative approach to prior modelling that only demands distribution sum-
maries of observables. Suppose the interest is to model the distribution of X,
with data density f (x/θ). Let π(θ) stand for the (joint) prior density func-
tion of the parameters θ . Further, let Y denote some statistic defined from
(hypothetical) observations {x1, . . . , xN }. The distribution of Y before seeing
the data is given by the prior predictive distribution:

m( y) =
∫
�

f ( y/θ)π(θ)dθ θ ∈ � (4.19)
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which does not depend on the parameters θ , since they are integrated out.
Equation (4.19) contains one known term, which is the data density of the
statistic f ( y/θ), and two unknown terms, which are the predictive distri-
bution of the statistic m( y) and the prior distribution π(θ). Suppose it was
possible to estimate the predictive distribution m( y) for some values of Y ,
or to state some summaries of m( y), such as mean, median, and fractiles,
which were enough to infer the distribution. This would reduce the number
of unknowns in equation (4.19) to one unknown, the prior density π(θ). The
prior specification problem could then be solved by searching for a density
function that renders the two sides of (4.19) equal. There would remain no
need to think directly about parameters to formulate a prior.

A problem with this strategy is that if the search for a prior density is carried
out among the class of all possible densities, it will be difficult to solve the
inference problem analytically. It is not clear where to start the search, and
there can be many different densities equalizing the two sides of (4.19). Any
attempt at solving the inference problem requires restricting a priori the class
of densities to which π(θ) belongs to a class smaller than the class of all
possible densities.

A common restriction is to assume that π(θ) is a member of the distribu-
tion family that is conjugate with respect to the data density f (y/θ).26 This
assumption reduces the search for a prior into the search for a set of hyper-
parameters of the conjugate family that renders the two sides of (4.19) equal
(Winkler, 1980: 99). Thus, an alternative approach to prior modelling is to
begin by restricting the class of distribution functions to which the priors
belong to a class smaller than the class of all possible functions, and pro-
viding certain relevant summaries of the prior predictive distribution of the
observable of interest. One can use the predictive assessments to infer values
of the hyperparameters that equalize the two sides of (4.19). There is then no
need to directly think about parameters.

A simple example, adapted from Winkler (1980: 99), illustrates the method.
Suppose the data come from a Bernoulli process so that each observation can
be considered as either a success (x = 1) or a failure (x = 0). Let Y stand
for the number of successes in N trials. And, suppose the observations are
random. We can describe the process generating Y using a binomial data
model, with a parameter θ representing the probability of success on any
given trial. The conjugate family for a binomial parameter is the beta family,
leading to beta-binomial model:

The beta-binomial model

A1 Data distribution: binomial, p(y/θ) =
(

N
y

)
θy(1−θ)n−y , Y =∑N

i=1 Xi

A2 Independence: (X1, X2, . . . , XN ) is C-Independent
A3 Homogeneity: (X1, X2, . . . , XN ) is C-Homogeneous
A4 Prior distribution: beta, π(θ) = B(α, β)−1θα−1(1 − θ)β−1
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where B(.) is the beta function, 0 ≤ θ ≤ 1, α > 0, and β > 0. The
prior predictive distribution of Y is given by the ‘beta-binomial’ distribution
(N, α, β):

p(y) =
(

N
y

)
�(α + β)

�(α)�(β)

�(α + y)�(N + β − y)

�(α + β + N)
(4.20)

for y = 0, 1, . . . , N, where � is the gamma function. Let yi be the number of
successes in i trials. Thus, y2 = 1 represents one success in two trials. Given
the properties of the gamma function, equation (4.20) entails the following
simple equalities:

p( y1 = 1)

1 − p( y1 = 1)
= α

β

p( y2 = 0)

p( y2 = 2)
= β(β + 1)

α(α + 1)
and

p( y2 = 1)

p( y2 = 2)
= 2αβ

α(α + 1)

(4.21)

These equalities can be used to infer α and β from some estimates of p( yi). For
instance, the estimates p(y1 = 1) = 0.5, p(y2 = 0) = 0.25 and p(y2 = 2) = 0.25
imply that α and β are equal to one.

Over the last two decades or so, the predictive method has been extended
to some common models such as the normal linear regression model
(Kadane et al., 1980; Kadane and Wolfson, 1998). For these models, we know
what prior predictive assessments to obtain, and how to use them to infer a
prior fitting the assessments.

The predictive approach conquers one serious problem with the summary-
based method by relinquishing the need for directly thinking about
parameters. But it has its own limitations. For one thing, the form of the prior
predictive distribution is not known for most interesting models encoun-
tered. This limits the usefulness of the method in practice (Winkler, 1980: 99).
Also, as the complexity of the data model grows, a larger number of predic-
tive estimates are needed for finding necessary priors, making the method
impractical (Kadane, 1980: 91). Above all, the method requires specifying
a distribution family to which the priors belong. This raises the possibility
that none of the members of the family leads to an adequate model. On
this score, the predictive approach offers no improvement on the summary-
based method. Like the older approach, this method is concerned with
eliciting beliefs about parameters rather than with building an empirically
adequate model.

4.5.2.3 Default priors

The analysis of these two major approaches to prior modelling demon-
strates the difficulties in specifying an informative prior. In addition to
these methods, a line of research in Bayesian statistics has been to estab-
lish formal rules for specifying priors that contain no information and let
the data rapidly dominate the posterior distribution. Historically, the origin



Bayesian Diagnostic Learning 139

of these rules is traced to the theory of objective Bayesianism, according to
which, given any information set, there is only one probability distribution
in relation to the information set (Jeffreys, 1973 [1931]: 10). And, when there
is no information about a parameter, there exists a unique prior density rep-
resenting the state of initial knowledge (ignorance). Such priors go by the
name of non-informative, default, reference or invariant priors.

The earliest formal rule for prior specification is the principle of insufficient
reason that assigns equal probabilities to all possible outcomes when there is
no information to the contrary. The rule is subject to a re-parameterization
(partitioning) paradox; applying it simultaneously to all the equivalent
representations (coarsenings and refinings) of the parameter space yields
inconsistent probability assignments (Kass and Wasserman, 1996: 1347).
Consider a single parameter θ and a one-to-one transformation of it such
as φ = θ(1 − θ)−1. If ignorance is claimed about θ , the rule requires choosing
a uniform distribution. The change of variable formula then entails the prior
density for φ to be π∗(φ) = (1+φ)−2, which is not uniform. If one is ignorant
about θ , however, one is also ignorant about φ, and in either case, accord-
ing to the insufficient reason principle, one should select a uniform density.
Since there is no such thing as the ‘correct’ representation of the parameter
space, the principle falls short of identifying a unique representation of the
initial state of knowledge (Leamer, 1978: 61).

What is required is a rule that chooses a prior that is parameterization
invariant. In the context of the above example, this means it should not mat-
ter whether the rule is first applied to θ to obtain π(θ) and π∗(φ) is derived
by means of the change of variable formula or it is first applied to φ to obtain
π∗(φ) and π(θ) is derived by means of the change of variable formula. In
either case the priors should assign equal probabilities to the corresponding
regions under both parameterizations.27 Recognizing this minimal require-
ment, Harold Jeffreys (1946) pioneered an approach to non-informative prior
modelling, known as the invariance approach.

This approach links the choice of a prior to the model chosen for the data.
To be precise, it considers one-to-one differentiable transformations of the
random variables or the model parameters that do not change the model,
and accordingly defines certain invariance requirements. It next searches for
a prior that satisfies the requirements (Seidenfeld, 1979: 419). To elaborate on
this, following Dawid (1983), denote a data model by the triple M = (X, �, P),
where X is a variable, � the parameter space, and P = {f (x, θ), θ ∈ �}
the distribution family to which p(x) belongs. Let Y = g(X) be a one-to-
one differentiable transformation of X (e.g. Y = X + c) and � = h(�) the
parameter space induced by the transformation of X (i.e. � = �+c). Although
the change transforms M = (X, �, P) into a new model M∗ = (Y , �, P), the
distribution families in both cases are still the same; if p(x) belongs to distri-
bution family P (say, the normal family), so does p(y). This means if M is
true of a situation, M∗ is also true of the situation, and the models are
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in this sense equivalent. Moreover, in the state of ignorance it is as likely
that θ ∈ A ⊂ R as φ ∈ A ⊂ R. The prior should then satisfy the invari-
ance condition π(θ ∈ A) = π∗(φ ∈ A), known as the context invariance
condition.

Jeffreys (1961: 181) proposes a rule that fulfils the context invariance condi-
tion and a few others. The rule is to take the prior density to be proportional to
the square root of the expected Fisher information measure. In the univariate
case, it is given by

π(θ) = [I(θ)]1/2 (4.22)

where I(θ) = E[−∂2 log f (x/θ)/∂θ2] is the expected Fisher information for the
parameter θ , with the expectation being taken with respect to the distribu-
tion function f (x/θ). In the multi-parameter case, I(θ) is replaced with the
determinant of the expected Fisher information matrix. This prior is invariant
with respect to one-to-one transformations of the model’s random variables
or parameters. That is

π∗(φ) = [I(θ)]1/2
∣∣∣∣ dθ

dφ

∣∣∣∣ (4.23)

Directly computing Jeffreys’ prior for φ produces the same prior as computing
the prior for θ and subsequently using the change of variable formula to
obtain π∗(φ).

There has been a great deal of debate concerning the use and status of
invariant priors. The debates mainly arise from the fact that invariant priors
are inevitably improper; i.e. they do not integrate to one. As a result, the
context invariance condition is not strictly valid (Dawid, 1983). The most
that can be assumed is that if in the state of initial knowledge it is as likely
that θ ∈ A ⊂ R as φ ∈ A ⊂ R, the priors π(θ) and π∗(φ) must be proportion-
ally related to one another, i.e. π(θ) = h(c)π∗(φ). This weaker condition is
satisfied by many priors other than Jeffreys’ prior, making invariant priors
non-unique. On noting this multiplicity, Jeffreys proposed to select a prior
on the basis of an international agreement (1955: 277).28

This proposal overlooks the possibility that a prior, chosen on the basis
of international agreement, may not give rise to an empirically adequate
model. A more reasonable proposal for selecting from among invariant priors
is to tie the acceptability of the priors to the overall adequacy of the model.
There is no difference between the prior assumption and other assumptions
entering a model, and just as the plausibility of other assumptions are to be
judged by looking at the overall adequacy of the model, the appropriateness
of a prior must also be judged in light of the adequacy of the model. From this
perspective, the insufficient reason principle, Jeffreys’ rule and other possible
formal rules for formulating priors constitute valuable modelling tools. Since
formulating informative priors is difficult, it is sensible to pick out first a
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prior using these rules and assess if it gives rise to an adequate model. If the
model is adequate, the posterior distribution can be used as a prior in future
inferences. If the model turns out to be inadequate, it is necessary to search
for alternative priors. Thus, we regard invariant priors as default priors. This is
not, however, to deny that invariant priors must be used with care, especially
because they can lead to improper posteriors (O’Hagan, 1994: 79).

4.5.3 Some limitations

Mathematical statistics provides a rich reservoir of models, characterizes the
conditions under which a model can be true, and offers valuable information
on the ex ante consequences of the models. These contributions constitute
essential building blocks for a theory of initial model formulation. According
to the theory, initial model formulation begins by investigating qualitative
assumptions about the distribution of the variables under study to narrow
down the class of appropriate data models. It then involves examining the
ex ante consequences of the models to find a model that can account for
the data. Essential for the theory is certain heuristic principles for linking
theoretical concepts with their sample counterparts.

The possibility of a theory of model formulation hinges on the existence of
a model reservoir, and the scope of the theory grows with advances in theoret-
ical statistics. As the list of the independence and homogeneity assumptions
grows, new distributions are characterized and new ex ante consequences are
derived, the scope of the theory expands. While there is a relatively large list
of univariate and bivariate distribution families, to date only a few multivari-
ate distribution families have emerged in statistics. Of the four volumes of the
reference work by Johnson et al. (1994), only the last deals with multivariate
distributions and this is dominated by the multivariate normal distribution.
In addition, all the known multivariate families are based on the restrictive
assumption that the marginal and conditional distributions of the variables
also belong to the same distribution family. This scarcity of multivariate fami-
lies defines the boundary of parametric inference. It also constrains the scope
of the specification approach outlined above, which starts with modelling the
joint distribution of the observables, and uses it to derive the marginal and
conditional distributions, as well as the regression functions of interest. The
scarcity also further renders prior formulation difficult, as none of the few
multivariate families may actually fit one’s prior information.

Due to the scarcity of multivariate distribution families, it has become
common to consider the values of independent variables as constant, and
to concentrate on the univariate distribution of the dependant variable
conditional on the fixed values of the independent variables. The above
exploratory approach assists in selecting the univariate distribution but is
not of much help in specifying the regression function beyond indicating
whether it is linear, convex, or concave. Precise specification of the algebraic
form of the function becomes a matter for trial and error.
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In addition, initial model formulation requires subjective judgements as
to whether the sample size is large enough to permit comparison of theoret-
ical and sample values, whether the discrepancies between the theoretical
and actual values are large enough to call for searching for an alterna-
tive model, and whether an incompatibility between the model’s ex ante
consequences and the data is due to chance or inappropriateness of the
model. Because of the necessity of such judgements, an assessment of ex ante
consequences should be used solely for finding a model capable of accounting
for the data, not for rejecting a model as false.

A final word may be needed on the compatibility of the Bayesian theory
with the exploratory methods outlined here. Bayesian theory is applica-
ble only after having formulated a model or a set of models, and is silent
about the steps preceding specification of a model. Since the theory and the
exploratory methods operate at two different levels, there is no incompatibil-
ity between them. Savage’s last papers also reveal a high regard for ‘puttering
about with the data’ (Savage, 1977: 5), which can be construed as learning
by means other than Bayes’ theorem (Draper et al., 1993: 25).

4.6 Bayesian empirical model assessment

Our analysis exposes the complexity of initial model formulation, the uncer-
tain decisions involved in selecting basic hypotheses, the difficulties in prior
formulation, and the inconclusiveness of data and subject-matter informa-
tion in locating a single model. There is every reason to expect that the initial
model may fail to account for important features of the data, and yield poor
predictions. An important aspect of data modelling, therefore, is to assess the
empirical adequacy of the initial model or models. The concern in empiri-
cal model assessment is with assessing the relation between a single model
and the data, which falls outside the scope of the orthodox Bayesian the-
ory. In this section, we reconstruct and defend a trend in the literature that
seeks to broaden the Bayesian framework by enriching it with a Fisherian
notion of empirical adequacy and a method for assessing adequacy. The trend
began with proposals by Barnard (1962), Anscombe (1963), and Dempster
(1971), and culminated in the works of Box (1980; 1983), Rubin (1984), and
Gelman et al. (1996). Drawing on the works and ideas of these statisticians,
we first define the notion of empirical adequacy of a Bayesian model and
describe various complementary ways to investigate a model’s adequacy. We
then show how the ideas lead to a general procedure for Bayesian specification
searches.

4.6.1 A general framework for model assessment

The key to a theory of Bayesian empirical adequacy is the notion of ex post
consequences and a method for judging their conformity with the data.
Let a Bayesian model be denoted by M(Z, �, π), with Z being the variable
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(or variables) under study, � the parameter space, and π the (joint) prior den-
sity. Further, let Do = {zo

1, . . . , zo
N } be the actual sample, which, in statistics,

is perceived as a realization of a vector of random variables Z = {Z1, . . . , ZN }.
The set of all possible realizations of variables Z1, . . . , ZN is called a sam-
ple space, denoted by S. The actual data {zo

1, . . . , zo
N } is thus a point in the

N-dimensional sample space S. Next, let Ti(.) be a function that maps each
point of S into the real line, and let T = {T1(.), . . . , Tk(.)} be the set of all
such functions of interest. We refer to Ti(.) as a diagnostic or checking func-
tion. Each Ti(.) takes the points in S into a new sample space Si, leading
to a collection of sample spaces S∗ = {Si, . . . , Sk}, defined by the checking
functions in T . Any fully specified model for Z implies a probability distri-
bution for the points in S, and through Ti(.) a distribution p(Si) over Si. By ex
post consequences of a model, we mean the set of probability distributions
C = {p(Si), . . . , p(Sk)} that the model implies for the sample spaces in S∗.

In this setting, the issue of consistency of a model’s ex post consequences
with the data boils down to the consistency of the induced probability dis-
tribution p(Si) with the actual value Ti(Do), for every checking function Ti(.)
of interest. Now the core of the Fisherian theory of goodness-of-fit test is
that the consistency in question has to do with the location of Ti(Do) in
the distribution p(Si), which is termed the reference distribution, following
Box (1980). If Ti(Do) falls in the central part of p(Si), the distribution is con-
sistent with the data. If it falls in the (extreme) tail area of the distribution, it is
inconsistent with the data, since in that case the actual value Ti(Do) receives
a lower probability as compared to the most points in the sample space
Si (Anscombe, 1963). Having said this, a model M(Z, �, π) may be defined as
empirically adequate if, for each relevant diagnostic function Ti(.) in T , the
reference distribution p(Si) confers a ‘high’ probability on the realized value
Ti(Do) as compared with other possible points Ti(D) in the sample space Si.

The distribution of the observables under a Bayesian model is given by the
predictive distribution or, in other words, the marginal distribution of the
data. In view of this, Guttman (1967), Dempster (1971), Box (1980), and
Rubin (1984) have suggested taking the predictive distribution as the basis
from which to derive the distributions of the statistics Ti(.). From this perspec-
tive, a Bayesian model is empirically adequate if the predictive distribution
p(Si) for each diagnostic function Ti(.) of interest confers a high probability
on the realized value Ti(Do) as compared with other points Ti(D) in Si. The
adequacy of a Bayesian model, thus, goes hand in hand with the predictive
accuracy of the model; they are in fact the same thing.

In light of this, the adequacy of a Bayesian model can be assessed by
(i) selecting appropriate diagnostic functions Ti(.) to capture relevant fea-
tures of the data; (ii) deriving the predictive (reference) distributions of the
functions p(Ti(.)) under the model; (iii) computing the realized values of
the functions, i.e. Ti(Do); and (iv) determining the location of Ti(Do) in the
distribution p(Ti(.)). This may be done in more than one way. It may be done
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by computing the probability Pr{p(Ti(D)) ≥ p(Ti(Do))} or p(Ti(D) ≥ Ti(Do)).
If these probabilities are not extreme, the model is consistent with the data
in respect of the statistic in question (Anscombe, 1963: 84).

The justification of this approach lies in two uncontroversial facts. The first
is that any assessment of the empirical adequacy of a single model necessar-
ily involves looking at the compatibility of the model’s consequences with
data. The other is that statistical models have no deductive consequences; a
statistical model is logically consistent with any observed data (Dawid, 2002).
Therefore, either we abandon the idea of assessing the empirical adequacy
of a single model, in which case the process of model formulation remains a
mystery, or we admit it. In the latter case, we are naturally led to the Fisherian
idea of goodness-of-fit test. The only way to decide on the compatibility of
a statistical model with data is by looking at the location of the data in the
distribution of the observables under the model.

4.6.1.1 The variety of predictive distributions

Two types of predictive distributions were defined earlier, prior and posterior
predictive distributions. The prior predictive distribution describes the distri-
bution of the observable given the information in the data model and prior
density; it takes no account of the data. In contrast, the posterior predictive
distribution describes the distribution of future data given the information
in the data model, prior density, and the data. These distributions give rise
to different approaches to model assessment.

4.6.1.2 Prior predictive checks

Suppose our assumptions A regarding the process-generating data D lead us
to a density function p(D/θ , A) and prior p(θ/A). The joint distribution of
D and θ is given by

p(D, θ/A) = p(D/θ , A)p(θ/A) (4.24)

and the prior predictive distribution of D by

p(D/A) =
∫

p(D/θ , A)p(θ/A)dθ (4.25)

which gives the distribution of the totality of all possible samples D that
could occur if the assumptions A were true. The belief in the appro-
priateness of p(D, θ/A) implies that the outcome of a contemplated
data acquisition experiment would be calibrated with adequate approxi-
mation by a simulation involving appropriate random sampling from dis-
tributions p(D/θ , A) and p(θ/A). This means if the model were correct,
actual data Do would fall well within the support of the predictive dis-
tribution p(D/A) (Box, 1983: 59). One can therefore assess the model’s
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adequacy by investigating the location of Do in the prior predictive
distribution p(D/A) or by checking the location of some relevant diagnos-
tic function T(Do) in prior predictive distribution p(T(D)/A). The following
examples, adapted from Box (1983) and (1980), illustrate the approach.

The first example concerns modelling the number of successes in a
sequence of random Bernoulli trials X1, X2, . . . , XN , with Xi being either 0
(failure) or 1 (success). The distribution of the number of successes Y in a
sequence of random Bernoulli trials is given by the binomial distribution,
with parameter θ standing for the probability of success on each trial. Suppose
a member of the beta distribution family with E(θ) = 0.2, and Var(θ) = 0.01
represents our belief about θ . As seen earlier, with a beta prior, the prior pre-
dictive distribution of Y in N Bernoulli trials is given by the ‘beta-binomial’
distribution (n, α, β):

p(y/A) =
(

N
y

)
�(α + β)

�(α)�(β)

�(α + y)�(N + β − y)

�(α + β + N)
(4.26)

where A represents the model assumptions.29 It can be shown, using the for-
mula for the mean and variance of a beta distribution, that our belief about
the distribution of θ implies that α = 3 and β = 12. The prior predictive
approach involves assessing the adequacy of the model by locating the prob-
ability of the observed data p(yo/A) in the distribution (4.26) by computing
the probability:

Pr(p(y/A) ≤ p(yo/A)). (4.27)

Consider two scenarios. In the first scenario, the experiment is carried out
ten times and three successes are observed. The prior predictive probability
p(3/A) is 0.16, which is not unusually small. In fact

Pr(p(y/A) ≤ p(3/A)) = 0.33

The data provides no reason to doubt the model. In the second scenario,
suppose there are eight successes. The prior predictive probability p(8/A) is
0.0018, and

Pr(p(y/A) ≤ p(8/A)) = 0.0021

which is quite small. The data casts doubt on the model, calling for a revision
of the underlying assumptions.

As a different illustration, consider modelling the distribution of a contin-
uous random variable X for which we have data set Do = (34, 32, 38, 35, 39).
Suppose we think a normal distribution with unknown θ and variance σ2 = 1
fits the data. Also, suppose a normal prior with mean θ0 = 30 and variance
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τ2 = 3 captures our belief about the location parameter θ . These assumptions
suggest the following model:

Simple Bayesian normal model

A1 Distribution: normal, X ∼ N(θ , σ2), σ2 = 1
A2 Independence: (X1, X2, . . . , Xn) is C-independent
A3 Homogeneity: (X1, X2, . . . , Xn) is C-homogenous
A4 Prior distribution: normal, θ ∼ N(θ0, τ2), θ0 = 30, τ2 = 3.

The posterior distribution of θ is given by

θ ∼ N(ϕ, φ), φ = (τ−2 + nδ−2)−1, ϕ = φ(θ0τ−2 + δ−2
∑

xi)

θ ∼ N(36, 0.19)

Let s2 = ∑n
i=1 (xi − x̄)2. The prior predictive distribution of X is given by

(Berger, 1980: 93–4):

p(x/A) =(2π)−n/2σ−n(σ2τ2/σ2 + nτ2)−1/2

exp

{
−1
2

[
s2

σ2 + (x̄ − θ0)2

n−1σ2 + τ2

]}
(4.28)

A possible checking function for the model is the quantity in the bracket,
namely

T(X) =
[

s2

σ2 + (x̄ − θ0)2

n−1σ2 + τ2

]
(4.29)

The adequacy of the model may be assessed by computing the prior predictive
probability:

Pr(p(T(X)/A) ≤ p(T(xo)/A)) (4.30)

Given the assumptions about X, the quantity T(X) has a χ2
n distribution.30

Since T(X) is inversely related to p(x/A), for computing (4.30) it is sufficient
to calculate:

p = P(χ2
n ≥ T(xo)). (4.31)

The diagnostic function:

T(xo) = 5 × 6.64
1

+ (35.6 − 30)2

3.2
= 43



Bayesian Diagnostic Learning 147

and

p(χ2
5 > 43) < 0.001

This low predictive probability reveals that the occurrence of the data is quite
unlikely under model N(36, 0.19).

These simple examples illustrate how prior predictive checks can be used to
assess the empirical adequacy of a model. The success of the approach rests on
the ability to derive necessary predictive distributions. In most useful models,
obtaining the full predictive distribution is intractable, and approximation
must be made via sampling. Modern sampling-based methods allow for
obtaining accurate approximations to the predictive distribution of almost
any Bayesian model. This opens the way to extend the predictive method
beyond simple models studied in textbooks.

A limitation of the prior predictive approach is that it applies only to
models with proper priors. When the prior is improper, the prior predictive
distribution is also improper and, as a result, prior predictive p-values are not
defined (Bayarri and Berger, 1999). More importantly, prior predictive checks
are sensitive to the choice of priors. A choice of inappropriate priors can lead
to wrongly questioning a well-specified data model. The approach is primar-
ily suitable for exploring the effect of alternative priors within a model, and
should not be used to question a data model unless the appropriateness of
the priors has already been ascertained (Hodges, 1987: 264).31

4.6.1.3 Posterior predictive checks

Another possible approach to Bayesian model assessment is to use posterior
predictive distributions (Rubin, 1984; Gelman et al., 1996). Let Do be the
observed data on random variable Y , and A the assumptions forming a can-
didate model, with parameter vector θ . The posterior predictive distribution
of Y is given by

P(yf /A, Do) =
∫

P(yf/A, θ)π(θ/Do)dθ (4.32)

with yf standing for a future observation. If the model assumptions are appro-
priate, we could think of actual data Do as a random sample from predictive
distribution (4.32). In that case, if we could simulate random samples of size
N (the size of Do) from the distribution, we would expect the samples to be on
average ‘similar’ in ‘relevant ways’ to the actual sample (Rubin, 1984: 116).
This means useful information on the adequacy of the model can be obtained
by randomly simulating samples of size N from (4.32), and examining their
similarity with the realized sample Do.

To elaborate on the process, consider checking if a normal model fits data
Do = {x1, . . . , xn). Suppose a pair of conjugate priors well capture our beliefs
about the location and scale parameters of the data distribution. Assuming
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the data are random, the task involves assessing the adequacy of the following
model (Lee, 1997):

Bayesian normal/chi-squared model
A1 Distribution: normal, X ∼ N(θ , φ)

A2 Independence: (X1, X2, . . . , XN ) is C-Independent
A3 Homogeneity: (X1, X2, . . . , XN ) is C-Homogeneous
A4 Prior distribution: normal/chi-squared distribution

The posterior distribution for φ is given by inverse chi-squared distribution
φ ∼ S1χ−2

v1
and for θ given φ by normal distribution θ | φ ∼ N(θ1, φ/N),

where S1, θ1, and v1 are defined in Appendix 4.B. The posterior predictive
distribution of X is given by

P(x/A, D) =
∫ ∫

N(x/A, θ , φ)N(θ1, φ/n)S1χ−2
v1

(φ)dθdφ. (4.33)

To simulate samples from (4.33), a value φ∗ is drawn from the posterior dis-
tribution S1χ−2

v1
, say by means of Markov chain Monto Carlo simulation,

and then, given φ∗, a value θ∗ is drawn from N(θ1, φ∗/N). Next, using the
simulated parameter values, a sample Drepi = {x1, . . . , xN } is drawn from
X ∼ N(θ∗, φ∗). These steps are repeated k times (say, 10,000) to obtain
k random samples.32

Assessing the model’s adequacy, as said, involves checking the similarity of
these samples with the actual sample, Do. This requires some statistics Ti(.)
to define salient features of the data. Given some relevant diagnostic func-
tions, we can decide on the similarity of the hypothetical samples with the
actual sample by computing the percentage of cases where hypothetical val-
ues Ti(Drepi) exceed (or are less than) the realized value Ti(Do). This is known
as posterior predictive p-value (Gelman et al., 1996):

Posterior predictive p-value = α = 1
k

k∑
i=1

IT(Drep
i , θi)>T(Do

i , θi)
(4.34)

where I is the indicator function. If α for the diagnostic functions of interest
are close to 0 or 1, the model is suspect. The posterior predictive approach is
consistent with the main thrust of Bayesian reasoning, which is conditioning
on the whole data (Rubin, 1984: 1166).

The posterior predictive approach evades the difficulties of prior predic-
tive diagnostics. Since posterior distributions are usually proper regardless of
whether the priors are proper or not, the use of posterior predictive diag-
nostics is not limited to models with proper priors. Also, when the sample
is adequately large, posterior predictive distributions are not sensitive to
the choice of priors. This makes posterior predictive diagnostics suitable for
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assessing data model assumptions. These successes come at a price, however.
Posterior predictive checks use the data twice, once to derive the posterior
predictive distribution of the observables under the model and once to assess
the model. This makes the checks prone to overestimating the model’s ade-
quacy (O’Hagan, 2003: 7). Even so, it is true that if a model fails to generate
data similar to the data used to obtain it, there is something amiss about
it. So, posterior predictive checks of the type proposed by Rubin and others
provide valuable exploratory tools for specification searches.

4.6.1.4 Cross-validated posterior predictive checks

Box’s prior predictive approach leaves the whole data out as a test set whereas
Rubin’s posterior predictive approach takes the whole data as a training set.
There are many alternatives between these extremes, arising from various
ways in which the data can be split into a training and a test set. Of these alter-
natives, as noted in the last chapter, resampling methods are more promising.
Gelfand et al. (1992) and Bernardo and Smith (1994) suggest using cross-
validation for model selection. But the technique can equally be utilized
for adequacy assessment. In its simplest form, cross-validation holds the ith
observation yi out, and fits the model to the remaining data D−i to derive
the posterior predictive distribution of the deleted observation yi:

p(yi/D−i) =
∫

f (yi/θ)π(θ/D−i)dθ for all i = 1, . . . , N (4.35)

This gives the probability distribution of yi conditional on f (yi/θ), π(θ), and
data D−i. So, when f (yi/θ) and π(θ) are appropriate, hypothetical samples
randomly drawn from p(yi/D−i) should on average be ‘similar’ to actual
sample Do. As in the previous approach, we can judge the adequacy of the
model by sampling k observations from distribution (4.35) for each observa-
tion yi to form k hypothetical samples, and using the samples to derive the
posterior predictive distributions of diagnostic functions Ti(.) of interest. The
model is empirically adequate if these distributions confer a high probability
on the actual value of the functions.

Distributions (4.35) can also be used to define other important types of
ex post consequences of a Bayesian model. A number of these implications
are listed in Gelfand et al. (1992), of which the following two are the simplest:

(i) Let e1i = yi−ŷi measure the difference between the realized value yi and its
predicted value ŷi (i.e. E(Yi/D−i)), and σ2

i be Var(Yi/D−i). Standardizing
e1i yields d1i = e1i/σi. If the errors e1i are approximately normally dis-
tributed, d1i approximately has a standard normal distribution.33 In that
case, 95 per cent of the standardized errors d1i must fall within the inter-
val −2 to +2. If this is not the case, the model fails to capture systematic
information fully in the data. Also, the squared sum of the standardized
errors D2i =∑ d2

1i can be taken as an overall index of adequacy.
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(ii) Let e2i = 1 if ŷi ≤ yi, otherwise 0. The expected value d2i = E(e2i) is equal
to P(Yi ≤ yi/D−i). Viewing yi as a random draw from the predictive dis-
tribution p(Yi/D−i) implies that d2i is uniformly distributed over the unit
interval, i.e. d2i ∼ U(0, 1). If the model is correctly specified, the average
A(e2i) =∑ e2i/N is expected to be close to 0.5. Extreme values for A(e2i),
i.e. values close to 0 or 1, point to inadequacy.

In addition, the predictive errors e1i can be used for graphical residual
analysis to investigate different aspects of the model. The variance homo-
geneity of the errors e1i can be checked by plotting them against the
predictive values ŷi; the independence of the errors can be assessed by plot-
ting them against time; and the normality of the errors can be checked by
plotting them as a histogram (Gilchrist, 1984: 138–44).

Resampling techniques such as cross-validation overcome double use of
the data. Yet, as explained in the last chapter, they are not free of limitation.
Holding part of the data out as a test set can destroy important features of the
data such as dependence, which can lead to a wrong estimate of the model’s
accuracy. Resampling techniques are suited only for unstructured data. The
remarks about the strengths and weaknesses of the predictive approaches to
adequacy assessment reveal that none of the methods outperforms others in
all respects. Their applicability depends on the kind of data under study and
the aspect of the model being considered.

4.6.2 Bayesian specification searches

The notion of ex post consequences of a Bayesian model combined with the
Fisherian approach to assessing the compatibility of a model’s consequences
with data leads to a powerful procedure for searching the space of data
models. The method involves choosing a data model, adopting a (joint) prior
distribution for the model parameters, and assessing the compatibility of the
model’s ex post consequences with the data. If the model is inadequate, its
assumptions are varied one at a time, the effect of the variation on the model’s
adequacy is assessed, and the process is repeated until a model that accounts
for the data is found. In practice, when a data model assumption is var-
ied, it is also often essential to modify other model assumptions to preserve
consistency among the basic hypotheses. This learning procedure, which cap-
tures the way in which a serious (Bayesian) statistician builds a model, might
be named Bayesian diagnostic model searching. This section illustrates the
procedure by further analysing the example discussed in Section 4.5.

4.6.2.1 Exploring prior distributions

The traditional approaches to informative prior modelling require arbitrary
choices about the distribution families to which the priors belong. They also
require distributional summaries or predictions that are hard to obtain. There
is then the possibility that the priors may not enable the data model to
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account for the data, even if it is correctly specified. Consequently, when
the data model is the outcome of a careful initial exploratory analysis, the
first step in ex post assessment of the model should be to find priors that
enable the model to best account for the data. Only after this, is it possible to
judge the adequacy of the data model. The objective of modelling is to spec-
ify a model capable of accounting for the data. For this reason, the choice of
priors should be linked directly to the adequacy of the model. As an alter-
native to the traditional methods, we therefore propose to choose a prior by
looking at the compatibility of the ex post consequences of the model with
the data. Specifically, following Box (1980), Hill (1990), and Geweke (1999),
we propose a two-stage method for prior specification. Subject-matter con-
siderations are first brought in to limit the class of candidate priors tentatively.
Next, the effect of the candidate priors on the model’s adequacy is investi-
gated, while holding the data model fixed. A set of priors that enables the
model to best account for the data is selected.

To illustrate the process, let us return to the US unemployment data. Ini-
tial examination of the data suggested a bivariate normal data model. This
implies that Yt follows a first-order normal autoregression model (Spanos,
1986: ch. 22 app.):

Normal AR (1) data model

Yt | yt−1 ∼ N(π , σ2)

π = α + βyt−1

with parameters α, β and σ2. The search for priors needs a tentative decision
about the distribution families to which they might belong. Suppose we start
with the following conjugate prior densities:

Bayesian normal AR (1) model I

Yt | yt−1 ∼ N(π , σ2)

π = α + βyt−1

α ∼ N(0, 0.001), β ∼ N(0, 0.001), τ ∼ Gamma(1, 30), τ ∼ 1/σ2

Assessing empirical adequacy also requires choosing some statistics to char-
acterize salient features of the data. In general, any summary statistics may be
chosen, such as minimum sample value, maximum sample value, standard
deviation, skewness, and so forth. However, when the concern is to check a
specific assumption, it is vital to adopt statistics that capture those aspects
of the data that relate to the assumption. The unemployment data shows
strong positive dependence. A critical modelling concern is thus to select
an appropriate independence hypothesis. This demands using statistics that
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Table 4.3 Definition of vector of interest

Preliminary statistics:

yT =
T∑

t=1
yt/T sT =

T∑
t=1

(yt − yT )2/T

y(2)
T =

T∑
t=1

y2
t /T

T1(.) Minimum sample value ymin

T2(.) Maximum sample value ymax

T3(.) Standard deviation (sT )1/2

T4(.) Skewness
∑T

t=1(yi − y)3/T(ST )3/2

T5(.) Excess kurtosis
(∑T

t=1(yi − y)4/T(ST )2
)

− 3

T6(.) 1st order autocorrelation
∑T−1

t=1 (yt − yT )(yt+1 − yT )/
∑T

t=1(yt − yT )2

T7(.) 2nd order autocorrelation
∑T−2

t=1 (yt − yT )(yt+2 − yT )/
∑T

t=1(yt − yT )2

T8(.) 3rd order autocorrelation
∑T−3

t=1 (yt − yT )(yt+3 − yT )/
∑T

t=1(yt − yT )2

capture the dependence feature of the data.34 To this end, we may include
among our diagnostic statistics autocorrelation functions of different order.
Table 4.3 defines the statistics used here.

In principle, any of the predictive approaches can be used to search for
priors. However, since in the current case the data shows strong dependence,
cross-validation techniques are not appropriate; they destroy the dependence
feature of the data. For simplicity, we adopt Rubin’s approach both for prior
modelling and data model assessment. To derive the posterior predictive
distributions of the statistics, 10,000 samples are simulated from the pos-
terior predictive distribution of the observable under the model (with 5,000
burnt in), and the values of the statistics for each sample is calculated. The
values are used to calculate the quantiles of the predictive distributions of
the statistics. Table 4.4 gives the quantiles as well as the predictive p-values
for the observed values of the statistics.35

The observed value of the skewness and maximum value statistics are
within the support of their distributions. But the observed values of the rest
of the statistics either fall outside the support of their distributions or lie in
their extreme tail areas. Notably, none of the realized values of the autocor-
relation functions falls within the interval (2.5%, 97.5%) of the predictive
distributions; the simulated values of the functions are invariably smaller
than their observed values. The model strikingly fails to account for most
aspects of the data, and is empirically inadequate.
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Table 4.4 Posterior predictive distribution of vector of interest

Normal AR (1) model I

Data Median (2.5%, 97.5%) p-value

T1(.) Minimum value 2.57 1.557 (032, 2.37) 0.9937
T2(.) Maximum value 7.37 8.189 (7.306, 9.449) 0.0365
T3(.) Standard deviation 1.172 1.412 (1.197, 1.648) 0.0152
T4(.) Skewness 0.2068 0.077 (−0.292, 0.441) 0.757
T5(.) Excess kurtosis −0.9009 −0.386 (−0.876, 0.46) 0.0185
T6(.) 1st order autocorrelation 0.919 0.541 (0.358, 0.680) 1
T7(.) 2nd order autocorrelation 0.743 0.4402 (0.2608, 0.5746) 1
T8(.) 3rd order autocorrelation 0.534 0.3192 (0.151, 0.460) 0.9997
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Figure 4.7 Model AR(1) I

Note: Posterior predictive distributions and the observed values for the sample minimum value
and sample standard deviation statistics.

Another way of assessing the compatibility of the model with the data,
suggested in Gelman et al. (1996), is to plot the simulated values of each
statistic in the form of a histogram to obtain a non-parametric estimate of the
distribution of the statistic. The consistency of the distribution with the data
is determined by locating the observed value of the statistic in the histogram.
The following histograms show the distributions of the minimum value and
standard deviation statistics under the model.

The lines indicate the position of the actual values of the statistics in their
distributions, showing that the simulated samples Drep almost invariably
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Table 4.5 Posterior predictive distribution of vector of interest

Normal AR (1) model II

Data Median (2.5%, 97.5%) p-value

T1(.) Minimum value 2.57 2.343 (1.672, 2.824) 0.799
T2(.) Maximum value 7.37 7.524 (6.973, 8.245) 0.302
T3(.) Standard deviation 1.172 1.176 (1.056, 1.303) 0.4741
T4(.) Skewness 0.2068 0.149 (−0.083, 0.377) 0.687
T5(.) Excess kurtosis −0.9009 −0.685 (−1.02, −0.201) 0.122
T6(.) 1st order autocorrelation 0.919 0.785 (0.707, 0.840) 1
T7(.) 2nd order autocorrelation 0.743 0.6391 (0.5572, 0.701) 0.9993
T8(.) 3rd order autocorrelation 0.534 0.4638 (0.3709, 0.520) 0.9581

differ from the actual sample D. The failure of the model demands searching
for alternative priors.

Experiments with alternative hyperparameter values reveal that the empir-
ical adequacy of the model is not sensitive to the choice of hyperparameter
values for the densities of α and β but is highly sensitive to those for
the distribution of τ . A relatively extensive experiment with alternative
hyperparameter values suggests the following priors:

Normal AR (1) model II

Yt | yt−1 ∼ N(π , σ2)

π = α + βyt−1
α ∼ N(0, 0.001), β ∼ N(0, 0.001), τ ∼ Gamma(0.1, 0.1), τ ∼ 1/σ2

The posterior predictive distributions implied by these new priors are given
in Table 4.5 above.

As the quantiles in the table show, the new priors enable the model to
better account for the features of the data captured by the statistics. Unlike
the previous model, the actual values of the statistics minimum sample value,
standard deviation, excess kurtosis, and the third-order autocorrelation fall
within the support of the distributions, i.e. the (2.5%, 97.5%) predictive
interval. The model still fails to account for the first-order and second-order
autocorrelation functions. Experiments with alternative priors for τ do not
improve on the adequacy of the model, and the performance of the model
is not sensitive to the choice of priors for α and β. There is therefore every
reason to think that the data model is not correctly specified.

In general, if experiment with a wide range of hyperparameters fails
to produce good priors, other distribution families consistent with the
subject-matter information should be considered. If, after an adequate search
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among alternative distribution families, a model still fails to account for the
data, a revision of the data model assumptions becomes necessary (Geweke
and McCausland, 2001: 7). As the analysis shows, the diagnostic approach to
adequacy assessment presents a powerful alternative to the traditional prior
modelling methods. The approach forgoes the need for qualitative distribu-
tion summaries or hypothetical predictions. More importantly, it overcomes
the risk of rejecting a correctly specified data model because of the choice
of inappropriate priors. The approach ties the choice of priors to the model
adequacy.

4.6.2.2 Exploring data model assumptions

When a model fails to account for the data regardless of the choice of priors,
the focus of investigation must be turned towards alternative data models.
The exploration involves varying the data model assumptions one at a time,
searching for a set of priors that best enables the model to account for the
data, and checking the model’s adequacy. While the failure of the above
model may be due to any of the basic assumptions, because of its specific
failure in accounting for the dependence feature of the data, it is more plau-
sible to explore first the effect of varying the first-order Markov condition.
We proceed by replacing it with the second-order Markov condition. Mod-
ifying the distribution assumption appropriately, this hypothesis leads to a
second-order normal autoregression model:

Normal AR (2) model

Yt | yt−1, yt−2 ∼ N(π , σ2)

π = α + βyt−1 + γ yt−2

Experiments with alternative priors suggest that the following set of priors
enables the model to best account for the data:

α ∼ N(0, 0.01), β ∼ N(0, 0.01), γ ∼ N(0, 0.01), τ ∼ Gamma(1, 3), τ ∼ 1/σ2

Table 4.6 gives the (2.5%, 97.5%) predictive intervals of the posterior pre-
dictive distributions of the statistics, which result from these priors. The
predictive intervals are computed from 10,000 samples simulated from the
posterior predictive distribution of the observable under the model (with
5,000 burnt in).

These quantiles are not improved by considering alternative hyperparame-
ter values or prior distribution families. The parameterization seems to enable
the model to best fit the data. The model does not, then, improve on the
second AR(1) model. Contrary to the latter, it neither accounts for the excess
kurtosis nor for the third autocorrelation statistic.

Replacing the first-order Markov condition with higher-order Markov con-
ditions does not create a more adequate model. Nor do the data show
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Table 4.6 Predictive distribution of vector of interest

Normal AR (2) model

Data Median (2.5%, 97.5%) p-value

T1(.) Minimum value 2.57 2.21 (1.265, 2.771) 0.876
T2(.) Maximum value 7.37 7.668 (7.081, 8.442) 0.1836
T3(.) Standard deviation 1.172 1.172 (1.055, 1.296) 0.5
T4(.) Skewness 0.2068 0.1872 (−0.088, 0.448) 0.558
T5(.) Excess kurtosis −0.9009 −0.46 (−0.854, 0.158) 0.0127
T6(.) 1st order autocorrelation 0.919 0.688 (0.573, 0.768) 1
T7(.) 2nd order autocorrelation 0.743 0.576 (0.482, 0.6503) 1
T8(.) 3rd order autocorrelation 0.534 0.376 (0.272, 0.4666) 0.9999

any heterogeneity to consider alternative homogeneity assumptions. Experi-
ments with alternative distributions such as student t-distribution also fail to
yield a better model. In all these cases, the residual autocorrelation function
has some large spikes at low lags, indicating that the errors are correlated.
This suggests using an autoregressive moving average (ARMA) model.36 To
continue, consider an ARMA (1,1) model:

Normal ARMA(1,1) model

Yt | yt−1, yt−2 ∼ N(π , σ2)

π = α + βyt−1 + γ εt−1

Experiments with alternative priors soon lead to the following densities,

α ∼ N(0, 0.3), β ∼ N(0.1, 0.1), γ ∼ N(0.1, 0.1),

τ ∼ Gamma(0.01, 0.01), τ ∼ 1/σ2

Table 4.7 gives the (2.5%, 97.5%) posterior predictive intervals for the
statistics under the model. The intervals are computed from 10,000 sam-
ples simulated from Yt ’s posterior predictive distribution (with 5,000
burnt in).

The normal ARMA (1,1) model accounts for all the aspects of the data
captured by the diagnostic functions. In particular, it accounts for the depen-
dence features of the data. Moreover, the performance of the model is not
sensitive to particular hyperparameter values, as a very wide range of values
preserves the ability of the model to account for the data. We at last have a
candidate model fitting the data.
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Table 4.7 Predictive distribution of vector of interest

Normal ARMA (1,1) model

Data Median (2.5%, 97.5%) p-value

T1(.) Minimum value 2.57 2.538 (2.315, 2.538) 0.624
T2(.) Maximum value 7.37 7.399 (7.189, 7.629) 0.398
T3(.) Standard deviation 1.172 1.177 (1.149, 1.204) 0.39
T4(.) Skewness 0.2068 0.1576 (0.085, 0.229) 0.413
T5(.) Excess kurtosis −0.9009 −0.886 (−1, −0.755) 0.91
T6(.) 1st order autocorrelation 0.919 0.914 (0.906, 0.921) 0.909
T7(.) 2nd order autocorrelation 0.743 0.741 (0.724, 0.757) 0.598
T8(.) 3rd order autocorrelation 0.534 0.5395 (0.514, 0.564) 0.355

The analysis of the unemployment data illustrates the essence of the
Bayesian diagnostic approach to model specification. The approach offers
a very powerful tool for searching the space of candidate models to find a
model that adequately fits the data. Joined with the procedures introduced
for initial model formulation, it furnishes the key elements of a theory of
exploratory Bayesian model formulation.

4.7 Model selection

Exploratory searches may generate several models equally fitting the data,
raising the issue of how a model should be chosen from among the can-
didates. We earlier described the Bayesian solution to this problem, and
now return to it to discuss some controversies surrounding it and highlight
some complexities in establishing a theory of statistical learning. Follow-
ing Bernardo and Smith (1994), it is important to distinguish between two
possible views that can be held with respect to a set of candidate models:

Closed view: the set of candidate models {M1, . . . , Mk} is complete in the
sense that it includes the true model.
Open view: the set of candidate models {M1, . . . , Mk} is incomplete in the
sense that it excludes the true model, either because the model is not
among the candidates or because there is no true model anyway.

The closed view stands on two assumptions: a metaphysical assumption
that there exists a true model and an epistemological assumption that the
true model is actually among the candidate models. The model selection
problem is therefore defined as that of finding the true model from among
the candidates. The open view emerges from the rejection of at least one



158 Rationality, Bounded Rationality and Microfoundations

of these assumptions, and can be interpreted in two ways. One interpreta-
tion takes the existence of a true model for granted but acknowledges that
it may not be among the candidates. In this case, the model selection issue
involves selecting the model that best approximates the true model. The
other interpretation rejects the reality of a true model outright, considering
the candidate models simply as a set of models contending to account for
the data. In this case, the model selection issue is basically to find a simple
model that best fits the data and yields accurate predictions.

The Bayesian theory of model selection takes the closed view for granted.
The theory interprets the probability of a model as the probability that it
is true (Hill, 1990: 61), and requires the probabilities over the candidate mod-
els to add up to one, meaning that the true model is among the candidates
(Wasserman, 2000: 103). Accordingly, it recommends selecting the model
that scores the highest probability in light of the data. Both assumptions
underpinning the closed view are flawed.

The assumption of a true model encounters problems of interpretation.
From the Bayesian perspective, probability is the product of thinking con-
sistently about the universe, with no external counterpart (Dawid, 2002: 8),
and there is no true probability model involving parameters that attain an
objective existence (Poirier, 1988: 122; Leamer, 1990: 188). As a result, the
truth of a model can be defined only in terms of the observables. To elabo-
rate on this, suppose it was possible to observe endlessly a socio-economic
or physical process generating data sets of size N. Suppose it was possible
also to simulate endlessly samples of the same size from a candidate model
purporting to describe the system. The model could be said to be true if the
stylized features of the simulated samples (such as sample mean, median,
minimum value, maximum value, covariance, and so forth) arbitrarily closely
resembled those of the actual samples. This seems to be the only way to define
a true model in the subjectivist framework. If so, the question arises about
the rationale for supposing a unique model generating samples most closely
resembling the actual samples. To define ‘arbitrarily closely’, it is necessary
to introduce some distance function. There are, however, many possible dis-
tance functions, and depending on the choice of metric, different models
may turn out to be true. There is no natural choice of a distance function.
All in all, even in the abstract it is not clear how to defend the existence of a
true Bayesian model.

The epistemological assumption that the true model is among the candi-
date models is also indefensible for several reasons. The number of models
that can be considered in practice is restricted by the finiteness of the reservoir
of known models. None of the models may approximate the ‘true’ model.
More importantly, in empirical modelling, due to the possibility of overfit-
ting, the complexity of the models considered must always be tied to the
sample size. With small samples, only simple models can be considered,
since highly parameterized models are prone to overfitting. This restriction
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arising from the smallness of actual samples constrains the set of models
that can be considered in practice, giving rise to the possibility that the
allowed set may include neither the true model nor even a good approxi-
mation thereof (Spiegelhalter, 1995: 72). Also, constructing models is costly,
time-consuming, and severely constrained by computational capabilities of
the day. The cost of developing a complex model with a better chance of
approximating the reality may outweigh the practical benefit that may ensue.
Such real pragmatic considerations compel the analyst to consider only a
handful of models that may be very different from the true model. Thus, even
if the metaphysical quandaries surrounding the existence of a true model are
ignored, there are still serious reasons to doubt that the model is among the
candidates considered.

Some supporters of the Bayesian position have argued that these objec-
tions do not undermine the heuristic role played by the closed view in the
advancement of science. Scientists usually proceed by assuming that one of
their models is true in order to analyse the merits of the models and conduct
further research. This tentative assumption allows viewing the models as a
closed set and assigning to them probabilities that add up to one (Wasserman,
2000: 103). But, to consider the merits of alternative models, there is no need
to think of them as an exhaustive set containing the true model. Models can
be compared in respect of their predictive accuracy, simplicity, broadness,
computability, and so forth. For comparing the performance of two models,
there is no need to think one model is true and the other false.

Another attempt to retain the closed view involves adding to the candidate
models {M1, . . . , Mk} a ‘catchall’ model MC to represent ‘all unspecified mod-
els’. This formally transforms the candidate models into an exhaustive set but
raises two difficult questions. First, it is not clear how to assess the probability
of the catchall model, p(MC). What is the probability that the ‘true’ model is
not among the candidate models (Winkler, 1994: 109)? Equally important,
Bayesian model selection requires specifying the probability of the data given
the model, i.e. P(D/Mc). How can the probability of the data conditional on
a totally unknown model or set of models be estimated (Anscombe, 1963)?
The proposal to use a catchall model makes no headway in addressing the
problems facing the closed view.

A satisfactory account of model selection should take into account the
fact that the candidate models might exclude the ‘true’ model. A depar-
ture from the closed view requires reinterpreting the probability of a model,
redefining the goal of inference, specifying the features a model must have
to be conducive to the goal, and describing methods for selecting a model
with the requisite features. Interestingly, the Bayesian literature provides the
elements of an alternative account of model selection that takes some steps
in these directions. The account, defended by Geisser and Eddy (1979), Lane
(1986), and Bernardo and Smith (1994) has its roots in de Finetti’s representa-
tion theorem. On this theorem, as said earlier, statistical inference is primarily
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concerned with observables, and parameters enter the model just to simplify
the relations among the observables, and have no independent meaning
(Lindley, 1982: 77). Since the distribution of the observables under a Bayesian
model is given by the predictive distribution, the probability assigned to a
model is best understood as the confidence that one has in the model’s ability
to yield accurate predictions. This permits comparing the relative probabil-
ity of any set of models, regardless of whether the set is exhaustive or not
(Lane, 1986: 256). From this perspective, the primary objective of inference
is to generate an accurate predictive distribution (Lane, 1986: 254; Poirier,
1988: 132), and a highly desirable feature of a Bayesian model is its ability to
generate accurate predictions.

What is more, constructing accurate models and hence accurate predictive
distributions is always costly, time-consuming, and subject to computational
and tractability constraints. A satisfactory account of model selection should
also take these features of the real-life inference situations into account. All
in all, these considerations demand redefining the Bayesian model selec-
tion issue as the problem of selecting a model that is likely to produce the
most accurate predictions, subject to computational, time, cost, and other
pragmatic constraints faced by the analyst.

Turning these remarks into a formal theory of model selection may require
introducing a preference function weighting the competing goals of predic-
tive accuracy, tractability, and affordability, and treating the whole model
selection problem within the framework of the expected utility theory.
The call for establishing such a theory of model selection is by now old
(Anscombe, 1963: 89; Lindley, 1968) and still being insisted on (Draper,
1996: 763; Hodges, 1987: 262). Yet, no serious contender has yet emerged.
This is partly because pragmatic considerations are very difficult to quantify
(Poirier, 1988: 137). In the end, a fully formal theory of model selection may
be as elusive as a ‘true model’ (Pesaran and Smith, 1985).

4.8 Objections revisited

The theory of diagnostic searches characterized here is founded on the core
idea of the Fisherian concept of the goodness-of-fit test, which has been
criticized by both Bayesian and non-Bayesian statisticians. To complete the
discussion, we review some of the criticisms levelled against the use of
p-values and data-driven model-building in general.

A central objection to the use of p-values is that they imply an abrogation
of the likelihood principle (LP), which follows from two basic principles: the
conditionality principle (CP) and the sufficiency principle (SP). Consider a
parameter θ standing for the proportion of successes in a sequence of indepen-
dent Bernoulli trials, say, the proportion of non-defective items produced by a
machine. Further, consider two scenarios for collecting data to estimate θ . In
the first scenario, E1, N items are collected and the number of non-defectives
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k is counted, with N being predetermined. In the second scenario, E2, sam-
pling from the machine continues until k non-defective items are obtained,
where k > 0 is a predetermined integer, and the sample size happens to be N.
The first experiment leads to the choice of a binomial distribution and the
second to a negative binomial.

The CP states that if we decide which of the experiments E1 and E2 to do
by the flip of a coin, the final inference must be the same as if the experiment
had been chosen without flipping the coin (Cox, 1958). The SP, on the other
hand, says when there exists a sufficient statistic for θ , two samples that
yield the same value for the statistic provide the same evidence for θ .37 These
principles, as shown by Brinbaum (1962), necessitate the LP, which for the
current purpose, can be stated as:

The likelihood principle: Consider two experiments E1 = {Y1, θ , f1(y1| θ)}
and E2 = {Y2, θ , f2(y2|θ)} involving the same parameter θ . Suppose that
for particular realizations y1 and y2 of the data, L1(θ , y1) = cL2(θ , y2)

for some constant c not depending on θ . Then, Ev[E1, y1] = Ev[E2, y2],
where Ev[Ej, yj] denotes the evidence about θ arising from experiment Ej
and realized data yj.

The principle ‘states that two experiments providing evidence about the same
parameter θ which give rise to data realisations yielding likelihoods which
are proportional, must provide the same evidence regarding θ ’ (Poirier, 1988:
125). Since both CP and SP seem plausible, the LP has become for many statis-
ticians the yardstick against which to gauge the acceptability of a statistical
procedure. Agreement with the LP is argued to be a minimal requirement
that no statistical procedure can fail to fulfil.

Some simple examples reveal that frequentist-based hypothesis-testing pro-
cedures, which are based on assessments of p-values, abrogate the LP. A simple
example, due to Lindley and Phillips (1976), is concerned with estimating θ in
experiments similar to those described above. Suppose in the first experiment
twelve items are collected and nine non-defective items are found while in the
second it has taken sampling twelve items to collect nine non-defectives. The
likelihoods are given respectively by

L1(θ , k) = 12!
9!3!

[
θ9(1 − θ)3

]
= 220

[
θ9(1 − θ)3

]
(4.36)

and

L2(θ , k) = 11!
2!9!

[
θ9(1 − θ)3

]
= 55

[
θ9(1 − θ)3

]
(4.37)

These likelihoods are proportional to each other, i.e. L1(θ , k) = 4L2(θ , k).
According to the LP, both experiments provide the same information about
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θ and must lead to the same inferences about it. However, consider testing
the null hypothesis:

H0 ≡ θ = 1/2

The p-value pθ=0.5(Y ≥ 9) is 0.075 under E1 and 0.0325 under E2. If the sig-
nificance level is set at 0.05, the first experiment suggests accepting the null
hypothesis but the second suggests rejecting it. Thus, the frequentist-based
hypothesis-testing procedures, which require calculating p-values, violate
the LP. To see the cause of the conflict, note that even though the observed
data are the same in E1 and E2, the sample spaces are different. In E1 the sam-
ple space is given by {0, 1, . . . , N} and in E2 by {m, m+1, . . .}, with m being the
number of defectives. Since in computing p-values the whole sample space
is considered, not the realized data alone, the difference leads to conflicting
inferences (Poirier, 1988: 126).

Accordingly, Lindley and Phillips (1976) and others have criticized
the frequentist-testing methods, arguing that inferences about statistical
hypotheses must be conditioned only on the observed data, which requires
abandoning p-values.38 And when Box (1980) proposed prior predictive
p-values for adequacy assessment, Lindley repeated the criticism that they
would lead to an abrogation of the LP (Lindley, 1980: 423). This critique is
misplaced. The LP conditions upon the choice of a model, and is only rel-
evant to the estimation phase of inference, where the truth of the model is
taken for granted. When the concern is to construct a model that fits the
data and no decision has yet been made about whether the model is true or
not, the principle has no regulative force at all (Box, 1983: 74). The conflict
between the LP and p-values can be resolved by recognizing that the former
belongs to the estimation phase of inference while the latter to the model
formulation phase (McCullagh, 1995: 178). There is, then, no inconsistency
between the LP and the use of p-values. As a final point, the LP also loses its
regulative force if one takes the role of parameters to be solely instrumental
(Lane, 1986: 257).

A second critique of p-values is that in large samples they lead to the
rejection of any model by locating minor deficiencies that are otherwise
unimportant (Pratt, 1965). This is not really a deficiency at all. In practice, all
models are imperfect, and it is highly desirable to have exploratory methods
that can reveal deficiencies in currently held models as the sample grows
(Hodges, 1990: 87–8). The deficiencies with a model might be ignored for
various practical reasons but it is still useful to discover them with an eye to
ultimately improving it (Gelman et al., 1996: 800).

Thirdly, it has been objected that there is no guidance to decide when a
p-value is extreme enough to warrant rejecting a model. This criticism fails
to appreciate that Bayesian p-values are not for testing or rejecting models.
They are just to show whether a model fits the data and, if not, help searching
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for a model with a better goodness of fit (Dempster, 1983: 124). The right
question to ask is when a p-value is extreme enough to justify the search
for an alternative model. There is no purely epistemic response to such a
question. The decision whether to take a discrepancy between a model and
the data seriously and search for an alternative model is to a large extent
driven by pragmatic considerations, which are by no means unique to the use
of p-values (Anscombe, 1963: 89); they are needed at every stage of modelling.

Finally, a serious matter about any exploratory procedure concerns the
borderline between model-searching and data-mining. It is always possible to
find a model with a better goodness of fit by exploring increasingly more com-
plex models but such a model may not necessarily perform better over future
data. Why should one then search for a model that best fits the data? Several
things can be done to meet this concern. First of all, predictive searches must
be carried out within the class of models warranted by the existing subject-
matter information. Secondly, having found a model fitting the data, an
essential aspect of modelling is to assess the sensitivity of the model to the
underlying assumptions that are in doubt. In the end, the only way to gain
serious confidence in a model is to try it over new and diverse data. There
is never a substitute for new data. Model-building is a complex problem and
there is rarely a simple solution to a complex problem.

4.9 Conclusion

According to the Bayesian learning theory presented here, model speci-
fication starts with examining the ex ante consequences of known basic
hypotheses to construct a set of initial candidate models that are capable of
accounting for the data. The process next involves assessing the ex post con-
sequences of the models to locate a model that accurately accounts for the
data. There is also a pragmatic side to statistical inference. Model construction
is costly, time-consuming, constrained by computational capabilities, and
influenced by the intended use of the model. If the objective is to explain how
a statistician models a choice situation or constructs a model for a data set,
the entire modelling process should be thought of as a constrained optimiza-
tion problem. This account of the model-formulation process has significant
implications for establishing a theory of statistical learning, and hence the
bounded rationality project, some of which are stated below.

First, in the above theory of model-formulation background information
enters inference in many forms: most notably, in the form of a reservoir of
models (Arthur, 2000), knowledge of the conditions under which the mod-
els are appropriate, and knowledge of the ex ante implications of the models.
An extremely significant point is that a theory of parametric learning takes
such information as given, which means there can be no general theory of
parametric inference that can also explain where the models or, more pre-
cisely, basic probabilistic hypotheses come from in the first place. Only after
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a reservoir of models is given is it possible to speak of a theory of paramet-
ric learning. The necessity of a model reservoir, whose generation cannot
be explained by a theory of parametric learning, might have been the prin-
cipal reason for Fisher and other statisticians’ negative feeling concerning
the possibility of a theory of model specification (Lehmann, 1990: 161). The
search for a theory of statistical learning therefore encounters a dilemma. If a
non-parametric approach to learning is pursued, it would be impossible to
build an interpretable model of several variables with ordinarily available
samples. If, on the other hand, a parametric approach is taken, the question
arises as to where the models come from in the first place.

Second, the scope of a theory of parametric learning is defined by the
scope of the model reservoir. So far, only a few multivariate distribution
families have emerged and, because of this scarcity, any set of models
in practice is likely to exclude the ‘true’ model or a good approximation
thereof. It therefore seems fair to question the relevance of the convergence
results established in the learning literature; all these results are based on
the presumption that the true model is among the candidate models.39 The
relevance of the results becomes even more suspect when we realize the
necessity of subjective and pragmatic considerations in modelling data.

Third, since pragmatic considerations influence decisions about the ade-
quacy of a model, the hypothesis that the agent behaves like a Bayesian
statistician, even if true, would not be adequate for predicting his model of
the economy. To this end, it is also necessary to know his goals, preferences,
and constraints. This makes it even more difficult to establish a precise and
informative theory of how he actually models the economy.

All in all, the claim that by modelling people as intuitive statisticians one
can predict the models that they construct of the economy should be treated
with scepticism. The most that can be predicted on the basis of this hypoth-
esis, the history of the observables, and the expected utility maximization
principle, is that the agent takes an action that is optimal with respect to
his utility function and view of the environment. The serious issue with the
IS hypothesis is not that people are not perfect statisticians but that, even
if they were, the hypothesis would still fall short of producing informative
predictions. More will be said on this in the next chapter.



5
‘Homo Economicus’ as an
Intuitive Statistician (3): Data-Driven
Causal Inference

5.1 Introduction

‘I would rather discover a single causal relationship than be king of Persia.’
(Democritus)1

The bounded rationality programme, as understood in new classical eco-
nomics, views the economy as a society of intuitive statisticians – the intuitive
statistician hypothesis. This hypothesis raises the question of whether there is
a ‘tight enough’ theory of statistical inference. Without a tight enough theory
of statistical inference we will not learn much about the economy by studying
the dynamics of an economy of intuitive statisticians. As a general framework
for studying this question, we conjectured that the agent (statistician) first
seeks to learn the probability distribution of the variables representing his
or her choice situation and next uses the probabilistic information to learn
about the causal structure of the situation. The last two chapters studied some
of the issues relating to learning the probability distribution of a set of vari-
ables. This chapter studies in detail the second general stage of inference that
is concerned with inferring the causal structure of a set of variables from their
joint distribution.

We earlier studied the regression method of causal inference. According to
this method, to infer whether X causes Y , one has to include in the regres-
sion equation of Y on X various combinations of potential confounders of
X and Y . If the coefficient of X differs from zero regardless of the potential
confounders included in the equation, X is said to cause Y . This method fails
to establish whether an association between X and Y is due to a direct causal
link or latent common causes. Conditioning on potential confounders can
also turn an otherwise consistent estimate of the effect of X on Y into an
inconsistent estimate. And, controlling for the effects of the response vari-
able Y can lead to wrong causal conclusions. A common belief is that these
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problems can only be overcome by relying on subject-matter information
about the underlying system.

An approach pioneered by Spirtes et al. (1993) and Judea Pearl is claimed to
evade the difficulties facing the traditional methods of causal inference. These
authors hold that the reason for the failure of the traditional methods lies
in their lack of an efficient language for representing causal structures and in
their lack of a precise characterization of the connection between probability
and causation. Once an adequate language for representing causal structures
is developed and the principles connecting causation and probability are
precisely defined, reliable causal conclusions can be derived from data alone.
The claim for the necessity of subject-matter information in casual inference
is exaggerated:

In the social sciences there is a great deal of talk about the importance of
‘theory’ in constructing causal explanations …In many of these cases the
necessity of theory is badly exaggerated. (Spirtes et al., 1993: 133)

In the absence of very strong prior causal knowledge, multiple regression
should not be used to select the variables that influence an outcome or
criterion variable in data from uncontrolled studies. So far as we can tell,
the popular automatic regression search procedures [like stepwise regres-
sion] should not be used at all in contexts where causal inferences are at
stake. Such contexts require improved versions of algorithms like those
described here to select those variables whose influence on an outcome
can be reliably estimated by regression. (Spirtes et al., 1993: 257)2

The approach proposed by these authors, termed as the graph theoret-
ical (GT) or Bayes net approach, has been the source of many significant
advances. The approach has led to the development of an efficient language
for representing causal structures, a precise formulation of the principles
underpinning the causal inference methods, and to a variety of algorithms
for causal inference. The approach has also advanced our understanding of
the key issue of statistical indistinguishability of causal models. We use the
approach to study the intrinsic limits of data-driven causal inference. By
data-driven causal inference, we mean any effort to draw causal conclusions
from probabilistic data using only general subject-matter-independent prin-
ciples supposedly linking causation and probability. A claim for a data-driven
method of causal inference raises two queries. The first is whether there
are any universal principles linking probabilistic and causal dependencies.
The second is whether the principles are sufficient for inferring the causal
structure of a set of variables from their joint probability distribution.

We investigate both topics by focusing on the principles underlying the
GT approach, which are the most general principles that can be true of the
connection between probability and causation. After defining some basic
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concepts and a brief description of the approach, we take up the issue of
model equivalence. We argue that for every causal model consistent with
the data there are simple rules that allow generating a class of statistically
equivalent causal models with very little or nothing in common. Even if
the GT principles were valid, very little could be learnt from data alone.
We next examine the validity of the principles. We argue that none of the
defences put forward for the principles justifies their universal validity. In
addition, we show how the possibility of selection bias undermines the claim
that the GT approach outperforms other methods by being able to establish
whether a correlation is definitely due to latent common causes. Moreover, we
show why, because of the possibility of mistaking the concomitant of a cause
for the cause, the GT approach cannot establish the existence or absence
of a direct causal link either. In the end, by reflecting on the limitations of
the GT approach, we sketch out an alternative account of causal inference
from observational data, explain the role that the GT techniques play in
the account and spell out some implications of the analysis for the bounded
rationality project.

5.2 Preliminaries and principles

This section begins by defining the notions of causation, causal structure, and
causal model used here. Next, it briefly describes the path analysis method
which will later be used to introduce some graph theoretic concepts. The
section also characterizes the class of candidate causal models for every set
of variables, the data used for causal inference in the GT approach, and the
principles proposed to link the data with the models.

5.2.1 Causal structure

Central to an analysis of actions and polices is a manipulative account of cau-
sation defended in the writings of philosophers such as Collingwood (1948),
Gasking (1955) and von Wright (1971). On this account, a causal relationship
primarily obtains between single events. An event x is a cause of an event y
if it is in principle possible to alter y by wiggling x. Or in Collingwood’s terms,
‘that which is “caused” is an event in nature, and its “cause” is an event or
state of things by producing or preventing which we can produce or prevent
that whose cause it is said to be’ ([1940], 1948: 285). If it were not even
hypothetically possible to alter y by wiggling x, x would not be a cause of y.

The relation ‘event x causes event y’ is transitive, irreflexive and anti-
symmetric. Particular events can be grouped into types of events and event
types can be coupled with their complementary event types to form vari-
ables. Consider the rise in the Dow-Jones Industrial Average last Monday. We
may classify this event into event type of ‘rises in the Dow-Jones Industrial
Average’; call it D. And, we may further put together this event type with its
complementary event type ‘declines in the Dow-Jones Industrial Average’
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to define the random variable ‘the Dow-Jones Industrial Average’; call it
X ≡ (D, Dc).3 Similarly, we may join together the event types ‘rises in the
FTSE 100’ and ‘declines in the FTSE 100’ to define the random variable ‘the
FTSE 100; call it Y ≡ (C, Cc). We say that variable X causes variable Y if
and only if at least one member of types (D, Dc) causes at least one member
of types (C, Cc)(Sobel, 1995: 8). Having said this, we will not make further
mention of particular events in the rest of this work.

Let V = {X1, . . . , Xn} be the set of variables necessary for describing a choice
situation or a certain aspect of the economy. A proper subset of V , X, is a full
cause of Xm (Xm /∈ X)with respect to V if (i), there is a set of values x for
X and a value xm for Xm such that were it possible to set X at value x, Xm
would take on value xm regardless of the value of other variables in V and
(ii), no proper subset of X satisfies condition (i). In line with Spirtes et al.
(1993: 44), variable Xi is a direct cause of Xm relative to V if Xi is a member
of a full cause X of Xm in V . Similarly, Xi is an indirect cause of Xm relative
to V if there is an ordered sequence of variables in V starting with Xi and
ending at Xm such that each variable in the sequence is a direct cause of the
next variable in the sequence, provided that m is greater than two. Also, Xi
is a common cause of Xm and Xn in V if Xi is a direct or indirect cause of both
Xm and Xn.

We define a causal structure over variables V as an ordered pair 〈V, E〉, where
E is a set of ordered pairs of V such that 〈X, Y〉 is in E if and only if X is a direct
cause of Y with respect to V . The variables in V that have no direct cause in V
are called exogenous, and the rest endogenous. A structure 〈V, E〉 is deterministic
if the value of each endogenous variable in V is uniquely determined by
its direct causes in V . A structure that is not deterministic but forms part
of a deterministic structure is called pseudo-indeterministic. Each variable Xi
in a pseudo-deterministic structure 〈V, E〉 is a deterministic function of its
direct causes in V and a disturbance term εi, which represents the net effects
of variables outside V on Xi. A particular causal structure, called a causally
sufficient structure, plays a special role in the GT literature:

Causal sufficiency: A set of variables V is called causally sufficient for a
population if and only if in the population every common cause of any
of two or more variables in V is in V , or has the same value for all units
in the population.4

An extra assumption in the GT literature is that the disturbance terms
associated with the variables in a causally sufficient structure are indepen-
dently distributed. For the time being, when we refer to a causally sufficient
structure, we also assume the independence of the errors. Finally, in a pseudo-
deterministic structure, once the functions linking the endogenous variables
to the exogenous variables are defined, a specification of a joint probabil-
ity distribution for the disturbance terms generates a unique probability
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distribution for V . With this remark, a causal model can be defined as:

Causal model: Let S be a causal structure defined over variables V , F a
distribution family over V and � a parameter space compatible with S. The
triple M = 〈S, F, �〉 forms a causal model. Each particular parameterization
of M defines a causal hypothesis.

5.2.2 Path models

The causal structure is unknown but the presumption is that if enough data
become available, the joint probability distribution of the variables under
study can be estimated. The issue of data-driven causal inference involves
using the estimate of the distribution to learn about the structure. To explain
how this problem is solved by the GT approach, it is useful to begin with a
description of the more familiar field of path analysis, which also addresses
a similar inference issue. In a nutshell, path analysis starts with a conjecture
about the causal structure of the variables under study, translates the struc-
ture into a system of equations, introduces certain causal principles to derive
the implications of the model, and tests them against the data.5 Consider
variables V = {X1, . . . , X5}. Model I describes a possible structure that can be
true of these variables:

X1
X2 = αX1 + ε2
X3 = βX1 + ε3
X4 = γ X2 + φX3 + ε4
X5 = ϕX4 + ε5

Model I

where the term εi in each equation represents the effect of unrecorded vari-
ables on Xi. According to this model, X1 is a direct cause of X2 and X3 but
an indirect cause of X4 and X5. X2 and X3 are direct causes of X4, and X4 is
a direct cause of X5. Since there is no reciprocal causal influence among the
variables, the model is called a recursive model.

For estimation, path analysis assumes that: (i) the disturbance term εi
is uncorrelated with the exogenous variables in the equation for Xi; (ii)
the disturbance terms across the equations are uncorrelated; (iii) the errors
are normally distributed with mean zero; and (iv) the endogenous variable
in each equation linearly depends on the exogenous variables in the equation.
A recursive model satisfying these conditions is called a path model. In addi-
tion, path analysis assumes that (v), the existence of a direct causal con-
nection between two variables appears as a non-zero coefficient and (vi) the
absence of a direct causal connection always appears as a zero coefficient
(Goldberger, 1971: 35). These assumptions lead to two principles that allow
deriving the implications of a path model for the data (see Appendix 5.A
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for a proof):

(i) The screening-off principle: If in a path model X causes Z only
through the mediate of a set of variables Y , X and Z are statistically inde-
pendent conditional on Y . In short, direct causes screen off their remote
causes. Given the linearity assumption, this means that partial correlation
ρXZ.Y is zero.
(ii) The common cause principle: If in a path model Z is a common
cause of X and Y and neither X is a cause of Y nor Y is a cause of X, then
ρXY .Z = 0.

Assuming that Model I satisfies the path-analytic conditions, the model
entails the following zero partial correlations:

ρX2X3.X1 = 0; ρx4x1 · x2x3 = 0; ρX5X2.X4 = 0; ρX5X3.X4 = 0; ρX5X1.X4 = 0

The practice in path analysis is to derive the zero partial correlations of the
model and test them against the data. If the vanishing partials are approx-
imately zero in the data, the data is said to confirm the model. If they are
significantly different from zero, the model is considered as incompatible
with the data. Path analysis solves the causal inference problem by finding
a model whose vanishing partials are consistent with the data. A limitation
of this approach is that conflicting models can imply the same vanishing
partials, making it impossible to infer the true model by testing its zero restric-
tions. Path analysis can at best eliminate models whose zero restrictions are
inconsistent with the data. It cannot establish the model that has actually
generated the data.

5.2.3 Graphical representation

The GT approach seeks to improve on path analysis. To this end, it replaces
the language of equations with the language of graphs to represent causal
structures. A graph consists of two parts - a set of variables (vertices or nodes)
V and a set of edges (or links) E. Each edge in E is between two distinct variables
in V . There are two kinds of edges in E, directed edges X → Y and bidirected
edges X ↔ Y . In either case, X and Y are called endpoints and when there is
an edge between X and Y , X and Y are said to be adjacent. If there is an edge
between X and Y and towards Y , X is called a parent of Y and Y a child of X.
A directed edge between X and Y (i.e. X → Y) in graph G stands for the claim
that X is a direct cause of Y relative to G. The absence of an edge means that
neither X causes Y nor Y causes X. The error terms are not represented in a
graph. So, Model I can be expressed as Figure 5.1.

This graph depicts a directed acyclic graph (DAG). It is directed because the
arrows lead from one variable into another and acyclic because one cannot
return to any of the variables by following the arrows leading away from it. A
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Figure 5.1 A graphical representation of Model I

sequence of consecutive edges in a directed graph G is called a path. A directed
path P from X to Y is a sequence of vertices starting with X and ending with Y
such that for every pair of variables A and B that are adjacent in the sequence
in that order, the edge A → B occurs in G, and no vertex occurs more than
once in P. Likewise, an undirected path U from X to Y is a sequence of variables
starting with X and ending with Y such that for every pair of variables A and
B that are adjacent in the sequence, A and B are adjacent in G, and no vertex
occurs more than once in U . Y is a collider on an undirected path U if and
only if there exist edges X → Y and Z → Y in U . And Y is an unshielded collider
on U if and only if there exist edges X → Y and Z → Y in U and, in addition,
Z and X are not adjacent in G. When there is a directed acyclic path from X
to Y or X = Y , then X is said to be an ancestor of Y , and Y a descendant of X. A
DAG is another way of representing a causally sufficient recursive structure.
If the possibility of feedback is ruled out, the class of DAGs that can be built
from a set of variables V constitutes the class of all causal models that can be
true of V . For now, we restrict our analysis to recursive structures and denote
the class of DAGs that can be built from V by �.

5.2.4 Conditional independence data

The GT approach takes the independencies true in the joint distribution of
V , i.e. P(V), as the evidence for making inference about the causal structure
true of V . Let X and Y be two variables in V . X and Y are independent if their
joint probability density P(x, y) equals the product of the marginal densities
P(x) and P(y), for all values x and y such that P(y) > 0. The independence of
X and Y is usually shown by X⊥Y :

X⊥Y if and only if P(x/y) = P(x) whenever P(y) > 0 (5.1)
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Similarly X and Y are independent conditional on Z if P(x/y, z) equals the
product of P(x/z) and P(y/z), for all values x, y, and z such that P(y, z) is
greater than zero:

X⊥Y/Z if and only if P(x/y, z) = P(x/z) whenever P(y, z) > 0 (5.2)

These definitions can be extended to disjoint sets of variables.6 The con-
ditional independence relation possesses several important properties that
allow deriving new independencies from an existing set of independen-
cies. Appendix 5.B lists some of these properties. We denote the set of
independencies true in the distribution P(V) over variables V by IndP .

5.2.5 Assumptions relating probability to causal relations

The GT approach introduces two principles to link independence data to
a causal structure (DAG). The first is the causal Markov condition, which
generalizes the two principles of path analysis. In its simplest form, the con-
dition says that in a recursive causal structure every variable, conditional on
its direct causes, is probabilistically independent of all other variables in the
structure except its effects:

Markov condition: A DAG G over a set of variables V and a probability
distribution P(V) satisfy the Markov condition if and only if for every X
in V and every set Z of variables in V such that no member of Z is a
descendant nor a parent of X, X and Z are independent conditional on
the parents of X. (Spirtes et al., 1993: 35)7

The Markov condition characterizes how a DAG represents independence
relations. It says a variable X in DAG G, conditional on its parents, is inde-
pendent of all its non-descendants in G. Applying the condition to Figure 5.1
yields the following independencies:

X2⊥X3/X1

X4⊥X1/(X2, X3)

X5⊥(X1, X2, X3)/X4

These independencies entail additional independencies that are not immedi-
ately obtained by applying the Markov condition to the graph. An example
is X5⊥X3/{X2, X4}.8 Pearl (1988) proposes a graph theoretic criterion, called
d-separation, which allows reading from a DAG the entire list of independen-
cies entailed by applying the Markov condition to the DAG. The criterion
reads as follows:

Definition: Let X and Y be two variables among the vertices in graph
G, and Z a subset of the vertices in G. A path p is said to be d-separated
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(or blocked) by Z if and only if (i) it contains a chain X → W → Y
or a fork X ← W → Y such that the middle variable W is in Z, or (ii) it
contains an unshielded collider X → W ← Y such that neither the middle
variable W nor any of its descendants in G are in Z. Z is then said to d-
separate X from Y if and only if Z blocks every path from X to Y . (Pearl,
1998: 238)

Geiger et al. (1990) show that there is a one-to-one correspondence between
the independence relations entailed by applying the Markov condition to a
DAG G and the triples (X,Z,Y) that satisfy the d-separation criterion in G. In
Figure 5.1, X2 and X3 are d-separated by X1. But X2 and X3 are not d-separated
by X4, since X4 is an unshielded collider on the path X2 → X4 ← X3.
Nor are X2 and X3 d-separated by {X1, X5}, since X5 is a descendant of the
unshielded collider X4. Applying the d-separation criterion to every DAG G
in � yields all the independencies implied by G. We use IndG to denote the
set of independencies implied by DAG G over V in order to distinguish it
from IndP that denotes the set of independencies true in P(V).

Using the d-separation criterion, Appendix 5.C shows that the Markov con-
dition applied to a DAG over variables V = {X1, . . . , Xn} implies the following
variant of the common cause principle: if Xi and Xj are correlated and neither
Xi is a cause of Xj nor Xj is a cause of Xi, there are common causes of Xi and Xj
in V conditional on which Xi and Xj are independent. The Markov condition
therefore implies that every correlation among a causally sufficient recursive
set of variables with independent errors has a causal explanation. The GT
approach generalizes this implication to every correlation in the world by
making the following metaphysical assumption:

The completeness hypothesis: For every set of recorded variables O, either
the set forms a causally sufficient set with uncorrelated errors or it can be
embedded in a larger set of variables V that is causally sufficient with
uncorrelated errors. (Scheines, 1997: 197; Spirtes et al., 1993: 51)

Joined with this hypothesis, the Markov condition entails that every proba-
bilistic dependency in the world reflects either a direct causal connection or
the presence of latent common causes.9

The other assumption about the link between probability and causation is
the faithfulness condition, which says that every independency true in the
joint distribution of a set of observables represents the absence of a direct
causal connection. Put differently, no two directly causally related variables
are ever independent. Formally,

Faithfulness condition: Let G be a causal graph over variables V and P(V)

a probability distribution generated by G. 〈G, P〉 satisfies the faithfulness
condition if and only if every conditional independence relation true in
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P(V) is entailed by the Causal Markov condition applied to G. (Spirtes et
al., 1993: 56)

Faithfulness excludes independencies that are not implied by the topology
of a DAG. For a possible case of such independency, consider the graph in
Figure 5.2 below, which describes a conjecture about the relations among
minimum wage, the economy and individual income.

Minimum
wage

Economy
Individual

income

ab

c

Figure 5.2 An unfaithful structure

Suppose the effect of minimum wage through the economy on individual
income was such that it exactly offset its direct effect on individual income,
i.e. a = −(bc). In that case, the structure would generate an independency
that did not follow from applying the Markov condition to it. If the world
contained such structures, it would be wrong to infer the absence of causa-
tion from independence data. In the current example, one would wrongly
conclude that minimum wage does not affect income, even though it does.
Faithfulness excludes such structures from the world. It says all independen-
cies are structural in the sense that they follow from the topology of the true
graph, not from the particular parameter values attached to the links among
the variables. Appendix 5.D shows how faithfulness underlies other methods
of causal inference.

5.3 Causal inference

Causal inference in the GT approach proceeds by: (i) estimating the joint
probability distribution of the variables of interest, V ; (ii) deriving the inde-
pendencies true in P(V); and (iii) constructing a graph (or graphs) that, given
the Markov condition and faithfulness, is consistent with the independen-
cies. The concern, here, is with the final stage, which has to do with the move
from the independencies true in P(V) to a graph that could have generated
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the joint distribution. We describe this stage of inference in some detail to
prepare the ground for a critical appraisal of the GT approach in section 3.5.

5.3.1 Inference with causal sufficiency

We begin our exposition by assuming that the variables under study are
causally sufficient, and then describe graph-theoretic causal inference in gen-
eral. Specifically, we work with variables V = {X1, . . . , X5}, assuming that V
is causally sufficient. And, we hypothesize that

IndP = {X2⊥X3/X1
X4⊥X1/(X2, X3)

X5⊥(X1, X2, X3)/X4}

Causal sufficiency implies that the set of DAGs, �, that can be true of vari-
ables V is finite. Thus, the solution to the causal inference problem involves
finding a DAG G from � that is consistent with the independencies in IndP .
To explain how such a DAG can be found, note that, given the Markov con-
dition, if a DAG G generated the data, G would not imply any independency
that is not in IndP . As a result, for any DAG G in �, if IndG contains an
independency that is not in IndP , the DAG does not satisfy the Markov con-
dition. The Markov condition excludes all those DAGs in � that entail at
least one independency that is not in IndP . On the other hand, according
to the faithfulness condition, the distribution P(V) is faithful to a DAG G
in � if every independency in IndP follows from the d-separation criterion
applied to G. This means that if a DAG G in � fails to imply all the inde-
pendencies in IndP , the DAG is not faithful to P(V). Faithfulness excludes all
those DAGs in � that fail to imply all the independencies in IndP . Altogether,
these conditions imply that a DAG G in � with independencies IndG is con-
sistent with the independencies in IndP if and only if there is a one-to-one
correspondence between IndP and IndG. The inference problem can then be
solved by deriving the set of independencies IndG implied by each DAG G
in � and investigating whether they have a one-to-one correspondence with
the independencies in IndP .

The above description gives all that there is in the GT approach under the
causal sufficiency assumption. Nevertheless, the above implications of the
Markov condition and faithfulness lead to a basic theorem that simplifies
the procedure for constructing a DAG consistent with IndP . The theorem,
proved by Verma and Pearl (1990), says:

Theorem: Distribution P(V) satisfies the Markov and faithfulness condi-
tions for DAG G if and only if (i) any two vertices X and Y are adjacent
in G if and only if they are statistically dependent conditional on every
subset of vertices in G not containing them, and (ii) X → Y ← Z is an
unshielded collider in G, then X, Z are not independent conditional on Y .
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Figure 5.3 A partially connected skeleton

The procedure begins with a complete skeleton; that is, a graph in which every
variable is connected by an undirected edge to every other variable. In the
first phase, the procedure tests every pair of variables X and Y and removes
the edge between them if X⊥Y is in IndP . Next, for every pair X and Y , it
tests whether there is a subset Z of variables that does not contain X and Y
but renders them independent. If so, the edge between X and Y is removed.
The process creates an undirected graph from which some of the edges are
removed. In our example, the process results in a partially connected skeleton
given in Figure 5.3.

In the second phase, the procedure considers every triple of vertices X, Y ,
and Z in V . If there is an edge between X and Y , and an edge between Z and
Y , but no edge between X and Z, and X and Z are not independent given Y ,
the edges are directed towards Y . In Figure 5.3, there is an edge between X2
and X4, an edge between X3 and X4, but no edge between X2 and X3. The
edges are thus directed towards X4. Or else, the resulting DAG will not entail
X4⊥X1

/
(X2, X3), violating faithfulness. Similarly, the edge between X4 and

X5 is directed towards X5 to avoid violating faithfulness. The edges between
X1 and X2, and X1 and X3 cannot both be directed towards X1. Any such ori-
entation makes X2 and X3 dependent conditional on X1, which contradicts
faithfulness. The independencies IndP impose no further restrictions on the
edges. The graph in Figure 5.1 is consistent with the independencies in IndP .

5.3.2 Inference without causal sufficiency

Causal sufficiency is hardly true, and even if it were true it would not a priori
be known. To claim any success, a data-driven method of causal inference
should deal with the causal inference problem regardless of whether the
recorded variables are causally sufficient or not. In the absence of causal suf-
ficiency, a correlation between measured variables X and Y no longer implies
that either X causes Y or Y causes X. The correlation might be due to latent
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common causes. Thus, the general problem of statistical causal inference is
to determine when and how it is possible by analysis of a set of measured
variables containing X and Y to conclude whether X causes Y , or Y causes
X, or whether the correlation between X and Y is due to latent common
causes.

In the GT approach, the burden of generalizing the solution to the infer-
ence problem under causal sufficiency to cases where the truth of the
condition is not known is on the completeness hypothesis (Scheines, 1997:
197). According to this hypothesis, for every set of measured variables O,
which is not causally sufficient, there is in reality a DAG G(O, L) with inde-
pendent errors that is responsible for the dependencies among the observed
variables O, with L = V\O being the latent common causes of O. Thus,
the joint probability distribution of the recorded variables P(O) is regarded
as the marginal of an unknown distribution P∗(V) that satisfies both the
Markov and faithfulness conditions. From this perspective, statistical causal
inference involves learning about the true DAG G(O, L) from the marginal
distribution P(O).

With causal sufficiency, the object of inference is a DAG in which every
adjacency between X and Y is represented by an arrow, meaning that either
X causes Y or Y causes X. As causal sufficiency is withdrawn, a different
graphical object is needed to state that an adjacency is due to latent com-
mon causes. Several objects suitable for representing latent common causes
are available. We use the so-called hybrid graph, which in addition to one-
directional edges → contains bidirectional edges ↔ to denote latent common
causes.10 To illustrate the simplest hybrid graph, let X ← Z → Y be the
DAG true of X, Y and Z. When Z is unknown, the hybrid graph for this
DAG is given by X ↔ Y ; the bidirected link represents the latent common
cause Z.

Learning about the true DAG G(O, L) from the independencies true in P(O)

requires knowing the independencies that would occur among the recorded
variables O if G(O, L) were the DAG generating the data. An answer to this
question is given in Pearl and Verma (1991). To explain the answer, we need to
introduce a further graph-theoretic notion – an inducing path. An undirected
path U between X and Y is an inducing path over O in G(O, L) if and only
if (i) every member of O on U (except the endpoints) is a collider on U , and
(ii) from every collider on U there is a directed path to X or Y . Figure 5.4
shows an inducing path between X and Y over O = {X, Z, Y}.

Pearl and Verma (1991) have shown that there is an inducing path between
recorded variables X and Y in G(O, L) over O if and only if X and Y are
not independent conditional on any subset of O\{X, Y}. This means that
if there is a directed path in the hybrid graph between X and Y that is
into Y , then X is a (possibly indirect) cause of Y . If the path is into X,
then Y is a (possibly indirect) cause of X. And, if the path is both into X
and into Y , then there is a common cause (or causes) in G(O, L) affecting
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Figure 5.4 Inducing path graph

both X and Y . Accordingly, given the conditions, one can learn about the
true structure G(O, L) by investigating the hybrid graph consistent with the
independence data.

The intuitions behind these results can be explained by analysing some
simple examples. As a first example, we withdraw the causal sufficiency
assumption about the variables {X1, . . . , X5} studied earlier while retaining
the same set of independence relations:

IndP = {X2⊥X3/X1, X4⊥X1/(X2, X3), X5⊥(X1, X2, X3)/X4}

Starting from a skeleton over O, these independencies lead to the same
graph as in Figure 5.3. Faithfulness requires directing the edges between X2
and X4, and X3 and X4 towards X4, and the edge between X4 and X5 towards
X5. No DAG G(O, L), containing variables that d-separate X4 and X5, can be
true of the data. Any such DAG fails to entail X5⊥X2/X4 and is unfaith-
ful to P(O). The true DAG G(O, L) thus contains an inducing path between
X4 and X5 that is into X5, meaning that X4 causes X5. Since cycles have
been ruled out, X5 is not a cause of X4. Also, no DAG that renders both
dependencies between X1 and X2 and X1 and X3 spurious can be faithful
to P(O). In any such DAG, X1 is a collider incapable of d-separating X2
from X3. Finally, only one of the edges in X2 → X4 ← X3 can be due
to latent common causes. A DAG that renders both edges spurious fails to
entail X5⊥X1/(X2, X3). Figure 5.5 shows two hybrid graphs consistent with
the independencies:

This example shows how the Markov condition and faithfulness are
used to conclude whether a variable causes another variable. To set the
stage for our later discussion, let us also consider an example from Gly-
mour (1997a: 218), intended to demonstrate a case where the conditions
entail that an association is definitely due to latent common causes. Let
O = {X1, . . . , X4} and

IndP = {X1⊥X2, X1⊥X3, X2⊥X4}
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Figure 5.5 Equivalent hybrid graphs
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Figure 5.6 Latent common causes: the bidirected edge in (b) stands for unmeasured
common causes

Starting from a skeleton over O, these independencies lead to undirected
graph (a) in Figure 5.6. Faithfulness requires directing the edges between X2
and X3 and between X4 and X3 towards X3, and the edges between X1 and X4
and between X3 and X4 towards X4. These create a bidirected edge between
X3 and X4, as shown in Figure 5.6(b) below. The bidirected edge reveals an
inducing path in G(O, L) that is into both X3 and X4, revealing the existence
of a common cause for the variables.

This conclusion is based on the consideration that any DAG G(L, O) not
containing some variables responsible for the correlation between X3 and X4
violates either the Markov condition or faithfulness. Consider, for example,
a DAG G(L, O) in which X3 causes X4. Such a DAG does not entail X2⊥X4
which is in IndP , and hence violates faithfulness. Since there is by assumption
no feedback among the variables, the correlation between X3 and X4 must
be due to latent common causes. Given the completeness hypothesis, the
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Markov condition and faithfulness allow inferring the causal influence of a
variable on another, as well as the existence of latent common causes.

5.4 Intrinsic limitations of data-driven causal inference

The Markov condition and faithfulness are the most general principles that
can possibly be true of the connection between probability and causation.
As before, we continue to assume the universal validity of these principles
to study more precisely the kinds of conclusions that they warrant us to
draw from statistical data. This requires investigating the statistical indis-
tinguishability (equivalence) of causal models, the key to understanding
intrinsic limitations of any data-driven method of causal inference. We will
show that, given any causal model fitting the data, there is always a simple
rule that allows generating a class of statistically equivalent causal models.
These models usually have very little or nothing in common, particularly
because the sign and significance of the coefficient estimates can vary from
one model to another. Therefore, even if the Markov and faithfulness prin-
ciples were universally true, we would not still be able to learn very much
from data alone.

A notion of model equivalence is the so-called Markovian (or d-separation)
model equivalence that reads as follows:

Markovian model equivalence: Let Si be a causal structure defined
on variables V , Fi a multivariate distribution family over V and �i a
parameter space compatible with Si. Two models M1 = 〈S1, F1, �1〉 and
M2 = 〈S2, F2, �2〉 are Markovian-equivalent if and only if they imply the
same Markovian independencies; i.e. if and only if IndP1 = Indp2.

Another stronger concept of model equivalence is the so-called distribu-
tional model equivalence:

Distributional model equivalence: Two models M1 = 〈S1, F1, �1〉 and
M2 = 〈S2, F2, �2〉 are distributionally equivalent if and only if for every
parameterization of M1 generating distribution f1 there is a parameteriza-
tion of M2 generating distribution f2 such that f1 and f2 are the same.

These notions coincide in the case of causally sufficient recursive models
(Pearl, 2000: 146). Outside this category, there are Markovian-equivalent
models that are not distributionally equivalent (Sprites et al., 1996; Raykov
and Penev, 1999). Nevertheless, the generality of our argument is preserved
even by focusing on the Markovian model equivalence. So we will not discuss
distributional model equivalence.11 We first consider recursive causal models
and then turn to non-recursive models.
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5.4.1 Recursive equivalent models

Recursive causal models can be divided into causally sufficient and causally
insufficient models. An original contribution to the study of statistical indis-
tinguishability of causally sufficient recursive models (DAGs) is due to Stelzl
(1986), who studied the statistical equivalence of path models. Other early
contributions are Frydenberg (1990), Lee and Hershberger (1990), and Verma
and Pearl (1990).12 In path analysis, data are characterized by sample covari-
ance matrices and the implications of a model are defined, as seen, in terms
of its zero partial correlations. A path model is compatible with the data if its
vanishing partials are compatible with the sample covariance matrix of the
variables being modelled. So, if path models M1 and M2 entail the same van-
ishing partials, and if M1 is compatible with the data, M2 is also compatible
with the data and vice versa. On the other hand, if either M1 or M2 entails a
zero partial correlation that is not implied by the other, the models are not
equivalent. This suggests the following definition of path model equivalence:

Path model equivalence: Two path models M1 and M2 are equivalent if
and only if they constrain the same set of partial correlations to zero.

Stelzl (1986) noted that the zero partial correlations implied by a path
model were invariant with respect to certain changes in the ordering of the
variables in the model. He located several invariant properties of vanishing
partials and used them to define four rules for transforming a path model
into another statistically equivalent model. The invariant properties under-
pinning Stelzl’s rules can be reduced to two very simple properties. Consider
a path model over variables {X, Y , Z}, with path diagram (i) in Figure 5.7.

Graph (i) implies ρXY .Z = 0 but no other zero restriction. Inverting arrow
X → Z or both arrows yields graph (ii) or (iii) that have the same zero restric-
tions as (i). Inverting arrow Z → Y in (i) or X → Z in (iii), however, creates
unshielded collider (iv) that does not imply ρXY .Z = 0; the only zero restric-
tion it implies is ρXY = 0. Alternatively, consider inverting one or both of the
arrows in (iv). This yields one of the models (i) through (iii). These models
fail to entail model (iv)’s zero restriction but entail a vanishing partial that is

(i) 

(iv)

(iii)

(ii) 

ZX Y

ZX Y

ZX Y

ZX Y

X Z Y

X Z  Y
 (vi)

(v)

Figure 5.7 Equivalent path models
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not implied by the model. This suggests that any arrow inversion in a path
diagram that creates or destroys an unshielded collider destroys or creates a
zero restriction, which yields a statistically different path model.

Now, consider graph (v), which is a complete graph in the sense that there
is a link between every two variables in it. A complete graph implies no zero
partial correlation (Wermuth, 1980). Therefore, any change in the graph that
turns it into another (non-cyclic) complete graph yields an equivalent path
model. Redirecting arrow Z → Y , for instance, gives rise to graph (vi) which
is equivalent to graph (v). On the other hand, removing an arrow from these
two models yields a model with a new zero restriction.

This analysis points to two types of changes in a path diagram that alter
its zero restrictions: (i) deletion or creation of a new link; and (ii) creation
or destruction of an unshielded collider. In general, Verma and Pearl (1990)
and Frydenberg (1990) show that:

Theorem 4.1: Two DAGs G and G* are Markovian- (covariance) equivalent
if and only if they have (i) the same links and (ii) the same unshielded
colliders.13

In light of this, an edge X → Y in a DAG G can be inverted to form an
equivalent DAG G∗ as long as the inversion neither destroys nor creates an
unshielded collider. This happens only if every parent of X is a parent of Y
and every parent of Y (except X) is a parent of X (Chickering, 1995; and
Meek, 1995). The result leads to the following rule for converting a DAG G
into another equivalent DAG G* (Appendix 5.E outlines a proof):

The DAG inversion rule: An arrow X → Y in a DAG G can be inverted to
form an equivalent DAG G* only if every parent of X is a parent of Y and
every parent of Y (except X) is a parent of X.

Since equivalence relation is reflexive, symmetric and transitive, by repeat-
edly applying the rule one can generate all possible models equivalent to a
DAG. Applying the rule to the path model described in Section 5.2 yields
two more equivalent models. The original model corresponds to graph (a) in
Figure 5.8, with the zero partial correlations:

ρX2X3.X1 = 0; ρX4X1.X2X3 = 0; ρX5X2.X4 = 0; ρX5X3.X4 = 0; ρX5X1.X4 = 0

Under the causal sufficiency assumption, no other arrow in DAG (a) can be
inverted. Take arrow X4 → X5. X4 has two parents X2 and X3 which are
not parents of X5. Inverting the arrow creates new unshielded colliders that
destroy zero restrictions:

ρX5X2.X4 = 0; ρX5X3.X4 = 0; ρX5X1.X4 = 0
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Figure 5.8 Markovian equivalent DAGs

This analysis shows that once a DAG is fitted to the data, there is a simple
rule to transform it into another statistically equivalent DAG. Thus, even with
the causal sufficiency assumption, the ‘true’ structure cannot be discovered
from independence data alone. If causal sufficiency is not assumed, however,
a graph (model) over measured variables O can be changed into another
equivalent graph not only by inverting some of the directed edges but also
by replacing them with bidirected edges ↔, which represent latent common
causes. In discussing Markovian equivalence of causally insufficient models,
we continue to assume the completeness hypothesis. The equivalence of two
DAGs over observed variables O can then be defined as follows:

Markovian equivalence over O: Two DAGs G(O, L) and G∗(O, L∗) are
Markovian-equivalent over O if they imply the same set of d-seperation
triples over O.14

Building on Stelzl’s (1986), Lee and Hershberger (1990) establish a simple
condition for replacing an arrow X → Y in the graph of a covariance struc-
tural model with a bidirected edge X ↔ Y that suggests that the correlation
between X and Y is due to correlation among errors. Based on the com-
pleteness hypothesis, a correlation among errors represents latent common
causes. Lee and Hershberger’s condition can, therefore, be viewed as a con-
dition for converting a hybrid graph into another equivalent hybrid graph.
We restate Lee and Hershberger’s result in theorem 4.2 and outline a proof
for it in Appendix 5.F:

Theorem 4.2: Let G(O, L) be a DAG, X and Y in O, and X → Y hold in
G(O, L). Let G∗(O, L∗) be the same as G(O, L)except that X → Y is replaced
with X ↔ Y . G(O, L) and G∗(O, L∗) are Markovian-equivalent over O if for
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Figure 5.9 Graph (b) represents a legitimate edge replacement

every variable Z in O that is a parent of X in G, Z is also a parent of Y . Also,
if X ↔ Y is in G(O, L), the bidirected edge can be replaced with X → Y if
every parent of X is a parent of Y .

Pearl (2000: 146) notes that, when the requirement of the DAG inversion rule
holds of an arrow X → Y in a hybrid graph, replacing it with a bidirected
edge neither generates nor destroys an unshielded collider, and yields an
equivalent hybrid graph. The rule, he argues, can be used to transform a
hybrid graph into another equivalent hybrid graph. However, unlike the
condition in Theorem 4.2, the DAG inversion rule requires every parent of X
or Y (except X) to be a parent of both, which is unnecessarily strong. Consider
graph (a) in Figure 5.9. Here, X has a direct cause, W , which is not a cause of
Z. But replacing the arrow Z → X with a bidirected edge neither destroys nor
creates an independence relation among the recorded variables. Both graphs
(a) and (b) imply the same independencies over O = {X, Y , Z, W}.

As required by theorem 4.2, in order to replace an arrow X → Y with
a bidirected arrow X ↔ Y without destroying or creating an unshielded
collider it is sufficient that every parent of X is a parent of Y . The theo-
rem, however, does not exhaustively characterize the class of DAGs that are
Markovian-equivalent to G(O, L) over O. This is because creation of a new
unshielded collider in certain situations leaves the independencies implied by
G(O, L) over O unchanged. An example is given by graph (a) in Figure 5.10.15

Theorem 4.2 permits replacing Z → Y with a bidirected edge to create equiv-
alent graph (b) but does not allow replacing X → Y in (b) with a bidirected
edge, since X has a parent that is no longer a parent of Y . Nevertheless,
such a replacement neither destroys nor creates an independency. Even
though graph (c) contains an extra unshielded collider, all three graphs are
Markovian-equivalent over O.

Due to such cases, establishing a rule that defines necessary and suffi-
cient conditions for transforming a hybrid graph into another equivalent
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Figure 5.10 Equivalent graphs with different unshielded colliders
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Figure 5.11 Semi-Markovian equivalent DAGs

hybrid graph demands specifying the conditions under which creating a new
unshielded collider does not alter the independencies. Pearl (2000: 147) takes
some steps towards this aim but acknowledges that his requirements are not
sufficient. All the same, theorem 4.2 gives way to the following rule for the
creation of a partial set of equivalent hybrid acyclic graphs:

The bi-directed edge replacement rule: An arrow X → Y in a hybrid
graph G(O, L) can be replaced with a bidirected edge X ↔ Y to form an
equivalent hybrid graph G∗(O, L∗) if the parents of Y in G(O, L) include
the parents of X. Conversely, under the same condition, a bidirected edge
X ↔ Y can be replaced with a directed edge X → Y .

Applying this rule to the example used throughout the chapter adds four
more models to the equivalent models listed in Figure 5.8. The new models
are shown in Figure 5.11. Graph (b) is obtained by applying the DAG inver-
sion rule to arrow X1 → X2 and replacing it with a bidirected edge. Similarly,
graph (d) is obtained by applying the DAG inversion rule to arrow X1 → X3
and replacing it with a bidirected edge.

The rule does not permit replacing arrow X4 → X5 with a bidirected edge,
since X4 has parents which are not parents of X5. Given the Markov and
faithfulness conditions, the only conclusion that can be inferred from the
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independence data is that X4 is a (possibly indirect) cause of X5, and X5 has
no causal influence over X4.

5.4.2 Non-recursive equivalent models

Allowing feedback increases the complexity of causal modelling. Notably,
the Markov condition, as defined earlier, does not hold for non-recursive
(cyclic) models and must be replaced with a more general one.16 Feedback
also adds to the complexity of the conditions under which two cyclic models
are d-separation-equivalent. This in turn makes it even more difficult to char-
acterize the necessary and sufficient conditions under which a cyclic model
can be transformed into another equivalent model. For the sake of brevity,
instead of considering the equivalence of cyclic models in general, building
on the works of Frydenberg (1990), Lee and Hershberger (1990) and Raykov
and Penev (1999), we discuss a specific class of non-recursive models, known
as block-recursive models, which has been of some interest in econometrics
(Kmenta, 1986). A block-recursive equation system corresponds to a directed
graph that can be partitioned into several subgraphs (blocks) such that there
is no feedback across the blocks but the relations among the variables within
each block can be either recursive or non-recursive. Graph (a) in Figure 5.12
represents a block-recursive equation system. There is no feedback across
the blocks separated by the line. If, in addition, the graph (equation sys-
tem) contains an acyclic subgraph (block), the graph is said to be a limited
block-recursive graph (system) (Lee and Hershberger, 1990: 317). Following
Lee and Hershberger (1990), we name an acyclic subgraph a focal subgraph.

X

(a) (b)

(c) (d)

2

X3

X4X1 X5

X2

X3

X4X1 X5

X2

X3

X4X1 X5

X2

X3

X4X1 X5

Figure 5.12 Equivalent limited block-recursive graphs: X1 and X2 form a focal block
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Theorem 4.3 captures the result available about the d-separation equivalence
of limited block-recursive models. Appendix 5.G outlines a proof, based on
a theorem due to Raykov and Penev (1999):

Theorem 4.3: Let G∗(O, L∗) be the same limited block-recursive graph
as G(O, L) over O except that X ↔ Y is in G∗(O, L∗) instead of X → Y .
Then, G(O, L) and G∗(O, L∗) are d-separation-equivalent over O if for every
variable Z in O that is a parent of X in G(O, L), Z is also a parent of Y .
Furthermore, if X ↔ Y is in G(O, L), the edge can be replaced with X → Y
if every parent of X is a parent of Y .

This theorem makes it possible to establish a rule similar to the bidirected
edge replacement rule that allows transforming a limited block-recursive
graph into another equivalent limited block-recursive graph.17 Figure 5.12
depicts four equivalent models. The set {X1, X2} in graph (a) forms a focal
block. Using the theorem, we can replace the arrow X1 → X2 to obtain the
equivalent graph (b) or replace it with a bidirected edge to obtain graph (c).18

The set {X1, X3} also forms a focal block. The arrow X1 → X3 can be replaced
with a bidirected edge to obtain graph (d).

Although the discussion of non-recursive models has been confined to
limited block-recursive models, the scope of the result is not that limited.
It is usually possible to locate a focal block in most non-recursive models.
Theorem 4.3 applies to most cyclic models.

The above rules permit generating a class of equivalent models for a large
class of structural models. The outcome of the GT algorithms, as stressed by
the founders of the GT approach, is not therefore the true graph but a class
of equivalent graphs that could have generated the data. More precisely, the
outcome of the GT algorithms is a pattern – a graphical object that represents
the directed edges common to all the members of the equivalent class but
leaves the direction of other edges unspecified. These common edges define
what can be learnt from the data using the GT techniques.

5.4.3 Causal inference in practice

A proposal to curb the multiplicity of equivalent models is to consider the
temporal order of the variables. A cause is said to temporally precede the
effect, which means if X precedes Y , Y cannot be a cause of X. This suggestion
is of some help but falls short of narrowing the class of equivalent models
to a single model. The suggestion does not apply to feedback models, and it
is often difficult to ascertain whether a variable precedes another. Moreover,
even if the temporal order of the variables were known and only recursive
models were permitted, there would still be many models fitting the data. As
a simple example, suppose that O = {X, Y , Z} is the set of recorded variables,
X temporally precedes Y, Y temporally precedes Z and that X⊥Z/Y is true
in P(O). The only conclusion that can be derived from this information is
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Figure 5.13 Time ordering and Markovian model equivalence

that Y causes Z. Both graphs (a) and (b) in Figure 5.13 are consistent with the
data. In fact, L stands for all the temporally precedent variables that can affect
both X and Y . This means infinitely many models could have generated the
independence data. Even with the imposition of temporal order, the class of
equivalent models may be large.

Table 5.1 Contrived covariance data

X Y Z

X 1 0.26 0.30
Y 0.26 1 0.22
Y 0.30 0.22 1

X

Y

(a) (b) (c)

Z X

Y

Z X

Y

Z

0.25

0.34
0.22

0.30

0.21 0.15

0.26

0.26 0.15

Figure 5.14 Markovian equivalent models with varying coefficient estimates

Now, a very important point, which often goes unnoticed, is that in practice
the class of models (graphs) equivalent with a causal model fitting the data
usually have little or even nothing in common. The reason is that coefficient
estimates do not remain invariant across various members of an equiva-
lence class; they vary as we move from one member of the class to another.
Consider the covariance matrix shown in Table 5.1. Figure 5.14 depicts three
equivalent graphs consistent with these data.
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As these graphs illustrate, the parameter estimate for a link between two
variables does not remain invariant across the members of the equivalent
class. A coefficient estimate may be significant in some members of the class
but not in others. Or it may be positive in some members of the class but nega-
tive in others. Moreover, the change in the sign and significance of coefficient
estimates is by no means confined to the coefficients of the edges varying
across the equivalent models. The sign and significance of the coefficients
of common edges can also vary from one model to another (Williams et al.,
1996: 286). The coefficient estimate associated with a common edge may be
significant in some members of the equivalent class but not in others. Or
it may be positive in some equivalent models but in others negative. Mac-
Callum et al. (1993) contains several real examples vividly illustrating this
phenomenon.

Since probabilities are unknown and one has to rely on their estimates,
and since coefficient estimates vary across equivalent models, in practice
the members of an equivalent class usually have little in common. As a
result, even by granting the Markov and faithfulness conditions, little can
be learnt from data alone. The claim that one can infer substantive causal
conclusions by inspecting the edges common among equivalent models is
contingent on the invariance of coefficient estimates, which is not always
the case. Substantive conclusions from data demand subject-matter informa-
tion in order to narrow down the class of equivalent models fitting the data.
One, in particular, needs information on the sign and significance of the
coefficients.

5.5 Assumptions revisited

The claim that the GT approach can discover the class of statistically equiv-
alent causal models that includes the true model hinges on the universal
validity of the Markov and faithfulness conditions. That is, it hinges on the
presumption that the conditions can be applied to any correlation or inde-
pendency found in the data. In this section, we examine justifications usually
set forth for the conditions. We also examine some of the objections raised
against them, and put forward some new criticisms. It will be seen that the
conditions are by no means generally valid. Reliable causal inference calls for
reliable causal subject-matter information.

5.5.1 The causal Markov condition

The advocates of the GT approach have set forth several justifications for the
Markov condition. Glymour argues that variants of the principle underlie
other methods of causal inference, and in this respect the GT approach is
the same as other causal inference methods (1997a: 203–5). This claim means
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that the conclusions obtained using the GT techniques are as valid as those
obtained using other methods. This in itself offers no justification for the
condition. Also, it has sometimes been argued that if one does not assume
the universal validity of the Markov condition, some correlations remain
unexplained. Implicit in this defence is that if a correlation does not have
a causal explanation it has no explanation. But this is the very claim that
one must defend for establishing the validity of the condition; one cannot
simply take it for granted.

The central justification for the Markov condition is said to come from the
fact that it is provably true of recursive, pseudo-indeterministic, causally suf-
ficient structures, with independently distributed disturbance terms (Kiiveri
and Speed, 1982).19 Koster (1999) and Spirtes et al. (1998) have shown that
a more general property, called the global Markov condition, is true of both
recursive and non-recursive causally sufficient, homogeneous and pseudo-
indeterministic linear structures, with independently distributed errors.20 In
what follows, the focus of analysis will be on the Markov condition defined
in Section 5.2, even though the analysis is also relevant to the global Markov
condition.

The proof of the Markov condition is a piece of mathematics. To relate it
to the world, it is necessary to show that the underlying requirements are
true of the world. Of these conditions, recursiveness is not a critical issue (at
least in the case of linear models), as the global Markov condition is true of
both recursive and non-recursive (linear) structures that satisfy the remaining
conditions. The pseudo-indeterminism requirement has come under attack
by critics concerned with the outcomes of quantum mechanical experiments
that seem to point to indeterminism. At the quantum level, the world is said
to be genuinely indeterministic, and the Markov condition does not apply.
Since the universal validity of the condition can successfully be challenged
without taking sides on indeterminism, we take pseudo-indeterminism for
granted, and focus on the causal sufficiency and independence of the error
requirements. These conditions are not usually true of variables under study.
To apply the conditions in general, as we saw, the founders of the GT
approach introduced:

The completeness assumption: For every set of recorded variables O,
either the set forms a causally sufficient set with uncorrelated errors or
it can be embedded in a larger set of variables V that is causally sufficient
with uncorrelated errors. (Scheines, 1997: 197)

On this basis, the Markov condition is generalized to every set of variables,
at least at the level of description with which social scientists, economists
and biologists are concerned. As a consequence, the universal validity of the
Markov condition depends on the validity of the completeness hypothesis.
We concentrate our analysis on this hypothesis.
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Before proceeding, we should again stress that exact independencies are
not known. We have access to only an estimate of the joint probability dis-
tribution of the variables, obtained from a finite sample, and need to take
approximately zero correlations as exact independencies. This means that
to make any causal inference we need to replace the (population) Markov
condition with the sample Markov condition:

The sample Markov condition: Let P̂(V) be a joint probability distribu-
tion estimated from a finite sample of observations on variables V . The pair
〈G, P̂〉 satisfies the sample Markov condition if and only if every variable
X in V conditional on its parents is almost independent of every variable Y
in V that is not a descendant of X.

5.5.1.1 Aggregation over heterogeneous units

We consider several circumstances in which completeness can fail. An impor-
tant case was pointed out by G. Udny Yule in his seminal paper (1903) on
the theory of association of attributes in statistics where he noted that mix-
ing heterogeneous units could lead to creation of spurious correlations at
the population level that did not exist at the level of sub-populations. An
illustration of such a phenomenon is presented in Table 5.2.

In both female and male sub-populations treatment and recovery as well
as non-treatment and non-recovery are uncorrelated. When the two sub-
populations are mixed together, however, recovery becomes statistically
related to treatment and non-recovery to non-treatment. Such examples
show that mixing populations, which either have different causal structures
or have the same causal structure but different probability distributions, can
create associations that do not exist at the sub-population level. Since such
associations are by-products of mixing, the mixed population violates the
Markov condition.

Spirtes et al. (1993: 57) describe in some detail Yule’s example, which is sim-
ilar to the above example, to explain why it presents no real problem for the
Markov condition. The variables in Yule’s example, they argue, exclude a vari-
able that is the cause of membership in a sub-population. Once the omitted
variable is included and the measured variables are conditioned on it, the

Table 5.2 Aggregation over heterogeneous units

Male population Female population Mixed population

Treated Untreated Treated Untreated Treated Untreated

Alive 4/99 16/99 20/99 10/99 24/99 26/99
Dead 8/99 32/99 6/99 3/99 14/99 35/99
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spurious correlations disappear. In the above example, the measured variables
exclude gender. Once we include gender and condition treatment and recov-
ery and non-treatment and non-recovery on it, the spurious correlations will
disappear and the population will satisfy the Markov condition.21

It may be possible in simple situations like the current case to locate classi-
fying variables that can be considered as common causes. In more complex
cases of aggregation over heterogeneous units, ubiquitous in the social sci-
ences, there exists no small set of classifying variables capable of explaining
away spurious correlations that can be considered as common causes of the
recorded variables. In social contexts, what is required to explain away a spu-
rious correlation at the aggregate level is a full description of the system at the
micro-level, including the laws governing the behaviour of the individuals,
their interactions with each other, and, more critically, the socio-economic
processes determining variables that affect behaviour. A description of the
system at the micro-level cannot be considered as a common cause of the vari-
ables at the aggregate level. To highlight this point, we borrow an example
from the next chapter that studies the complexities arising from aggregating
over heterogeneous units. The example revolves around a simple economy
studied in Lippi (1988: 174). The economy has two consumers, each having a
slightly different demand function. The demand function for each individual
follows the static routine:

Yit = �iXit i = 1, 2 (5.3)

which has no stochastic term. Yit and Xit are respectively consumption and
income of the ith individual in period t , and the parameter �i for each
individual is different. Each consumer operates in a slightly different environ-
ment in the sense that the independent micro-variable Xit for each individual
follows a different autoregressive routine:

Xit = aiXit−1 + vit 0 < ai < 1 (5.4)

where the parameter ai for each individual is different and the vit are orthog-
onal white-noise processes.22 As shown in Appendix 5.E of the next chapter,
the function relating aggregate consumption Yt = Y1t + Y2t to aggregate
income Xt = X1t + X2t is given by

Yt = αYt−1 + βXt + γ Xt−1 + ut (5.5)

with ut being a white-noise process. The function has among its arguments
lagged aggregate consumption Yt−1 and income Xt−1. Furthermore, as the
number of consumers increases, the function will contain an increasingly
larger number of lagged predictors. Now, since the last period individual
consumption Yit−1 does not appear in the individual demand function, set-
ting Yt−1 by intervention at certain value would not affect Yt . Therefore,
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the dependence of Yt on Yt−1in (5.5) cannot be causal; the function simply
represents a statistical connection.

To explain the spurious correlation, one needs a description of the economy
at the micro-level, including a description of the choice situation faced by
each individual. In real-life situations, providing such a description is impos-
sible. What is more, the description would involve a tremendously large num-
ber of classificatory variables (e.g. ‘being a farmer’, ‘being a banker’), which
cannot be considered as the common causes of the aggregate variables, say,
Yt and Yt−1. As this example shows, in social contexts, where decision mak-
ers are different and operate in different choice situations, aggregation over
heterogeneous units produces variables that neither stand in a causal relation
with each other nor are part of a larger causally sufficient set of variables. In
such situations, completeness and hence the Markov condition fail.

5.5.1.2 Selection bias

Aggregation over heterogeneous units is only one of the situations in which
completeness fails. Another situation in which completeness fails is when
there is ‘selection bias’; that is, when a population is defined by conditioning
on some variable Z that is a common effect of two or more of the variables
under study (or their causes) that have no mutual influence on each other
(Glymour, 1997a: 208). There has been a growing interest in studying the
implications of selection bias for causal inference.23 Here, we concentrate
on a problem that selection bias creates for the completeness hypothesis,
examine a proposal that some GT theorists have put forward to deal with it,
and argue why, because of the possibility of selection bias, an important claim
of the GT approach must be abandoned. We first consider an illustration
discussed in Spirtes et al. (1996). Suppose a survey of college students is done
to determine whether there is a link between Intelligence (I) and Sex drive
(D). Let Student status (S) be a binary variable that takes value 1 when one is
studying in a college and zero otherwise. Also, as in graph (a) in Figure 5.15,
suppose Age (A) causes sex drive, and age and intelligence cause student status
(here, age is taken to be a proxy for a combination of biological and mental
states associated with age).

D I

S

A

(a) (b) (c)

I

D S

D I

Figure 5.15 An example of selection bias
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Since the sample is gathered from college students, the variables under
study or their causes, i.e. I and A, influence whether one is in the sample,
and this can create a correlation among the recorded variables, i.e. I and D. If
the graph in Figure 5.15(a) is an accurate description of the causal relations
among V = {A, D, I , S}, the correlation between I and D is spurious, as there
is no causal connection among them (see graph Figure 5.15(b)). Moreover, V
contains no common cause of I and D that can screen off the correlation. The
Markov condition is not true of the recorded variables I and D. Nor is there
a larger DAG with the common causes of I and D satisfying the condition –
hence a failure of completeness.

A number of proposals have been set forth to counter the danger of
selection bias, calling for the use of domain-specific information and sensi-
tivity analysis (Scharfstein et al., 2003). Against these approaches, following
Wermuth et al. (1994), Cooper (1995) argues that selecting a unit to include
in the sample is a causal event. It can be represented by a variable and treated
as a genuine part of the causal structure.24 He thus proposes to incorpo-
rate the process of unit (case) selection into the structure, adding an extra
assumption to the arsenal of the assumptions underlying the GT approach:

Selection bias assumption: Case selection is a causal event that can be
modelled within a causal directed graph that has a variable representing
whether a case was selected or not. (Cooper, 2000)

A similar assumption underlies an attempt by Spirtes et al. (1996) to extend
the GT techniques to data that might be affected by selection bias. On
this proposal, the set {I , D} does not exhaust all the recorded variables. The
recorded variables are {I , D, S}, where S is a selection variable taking value 1 for
the students and zero for non-students. Therefore, the dependence ¬(D⊥I)
appearing in the sample should be interpreted as ¬(D⊥I/(S = 1)), which
means the graph in Figure 5.15(b) ought to be replaced with the graph in
Figure 5.15(c) (the small ovals indicate that each arrow can be replaced with
a bidirected edge ↔). There are many ways to embed graph (c) into a DAG
to make it consistent with the Markov condition. Figure 5.16 depicts two
possibilities.

Although there may be nothing theoretically wrong with this proposal,
it comes with a high price. The inclusion of selection variables adds to the
complexity of the structure. This enlarges the class of models that, given the
Markov and faithfulness conditions, could have generated the independence
data. In that case, the models will have less in common and much less can
be learnt about the structure from the data. Specifically, the increase in the
class of graphs consistent with the independence data undermines the claim
that the GT techniques are able to establish whether or not a correlation
is definitely due to latent common causes. Recall when the orientation of an
undirected graph leads to a bidirected edge, the edge is taken as evidence that
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Figure 5.16 Equivalent DAGs with a case-selection variable
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Figure 5.17 Causal inference in the presence of selection bias

the correlation is definitely due to a latent common cause. In the analysis of
the second example in Section 5.3, faithfulness required placing a bidirected
edge between X2 and X3 and we concluded that the correlation was due to
latent common causes. When the possibility of selection bias is acknowl-
edged, this inference is no longer warranted, because the bidirected edge can
be due to selection bias. An example of such an explanation is given in the
graph in Figure 5.17b above, which is also found in Spirtes et al. (1996).

Graph (b) implies all the independencies over the recorded variables in
graph (a). Yet it contains no variable affecting both X2 and X3. If structures
like graph (b) are permitted, a bidirected edge can no longer be taken as
the evidence for a common cause. Such an interpretation demands ensuring
that the bidirected edge is not the result of selection bias. The GT approach
provides no formal guidance how to decide whether a data set is affected
by selection bias or not. It too must rely on domain-specific information or
sensitivity analysis to counter the threat of selection bias. Finally, allowing
selection-variables in a causal structure demands revising the main theorem
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of the GT approach given in Glymour (1997a: 219). The theorem assumes
the absence of selection bias.

5.5.1.3 Concomitants

Mistaking a cause with a concomitant of the cause creates another situation
where completeness can fail (Sobel, 1995: 29). In such cases it is wrong to
admit the outcome of the GT techniques that a variable causes another. As an
illustration, suppose we are given data on four variables: Mother’s Genotype
(G), Mother’s childhood nutrition (N), Mother’s occupation (O) and Children’s
intelligence (I). It is plausible to assume that the following independencies are
approximately true in the sample:

Indp = {G⊥N, G⊥I/O, N⊥I/O}

These independencies lead to the graph in Figure 5.18(a), where the ovals
at the end of the arrows between G and O, and N and O indicate that each
arrow can be replaced with a bidirected edge ↔.

According to graph (a) mother’s occupation causes (possibly indirectly)
child’s intelligence. Such a claim is not taken seriously at present. The graph
suggests a causal connection from O to I that does not exist. Assuming com-
pleteness, the strategy of the defenders of the Markov condition would be to
embed the graph into a DAG G(O, L) with a common cause L that screens
off the correlation between O and I . But if the Markov and faithfulness
assumptions are taken for granted, no such DAG can exist. The graph in
Figure 5.18(b) shows a typical DAG capable of explaining away the correla-
tion between O and I . Any such graph entails neither G⊥I/O nor N⊥I/O, and
is not faithful to the distribution of the recorded variables. In the present
example, completeness can be restored only at the expense of faithfulness
and faithfulness can be retained only at the expense of completeness. In
either case, the immediate conclusion is that an irremovable arrow, such as

NG

O

I

O

I

L1

G N

(a) (b)

Figure 5.18 Concomitants and completeness
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the one from O to I , cannot automatically be taken as evidence of a causal
connection; the correlation may have arisen from mistaking a concomitant
of a cause with the cause. Like other approaches to causal inference, the GT
method cannot establish that a variable causes another variable.

The solution to the problem created by concomitants is not to search for a
larger set of variables that includes the original ones but to search for the right
variables. Spirtes et al. (1993: 63) come close to a similar conclusion when
dealing with a counter-example to the common cause principle put forward
by Wesley Salmon, termed interactive forks.25 The apparent counter-example,
they argue, arises because one has failed to pick up the right variables to
describe the situation in hand. This simply means that the Markov condition
generates sensible results only when applied to the right variables. Moreover,
one cannot rely on formal principles to decide on the right set of variables
to describe a situation. One needs domain-specific information.26

The analysis has so far dealt with the aspect of the completeness conjecture
that says for every causally insufficient set of variables O there is a causally
sufficient set V that embeds O. It remains to investigate the claim that the
disturbance terms associated with variables in a causally sufficient set are
independently distributed. Pearl argues that this condition is not an extra
assumption but follows from the causal sufficiency assumption and the com-
mon cause principle, which is basic for linking probability with causation
(2000: 30). Other GT theorists have also taken a similar line (Richard-
son and Spirtes, 1999). These principles, however, do not entail the inde-
pendence of the errors. A disturbance term u associated with an exogenous
variable X in V represents the aggregate effect of all the variables outside
V that influence X. Aggregation can make independently distributed micro-
variables dependent. Therefore, even if all the variables affecting those in
V are pairwise independent, when they are aggregated, they might become
correlated (Cartwright, 2001). The independence requirement is an addi-
tional assumption that lacks a justification. Altogether, these analyses reveal
why the completeness hypothesis cannot be taken for granted and why, as a
result, the Markov condition cannot be applied universally.

5.5.2 The faithfulness condition

Faithfulness rules out any structure that fails to entail all independencies in
the data. Several considerations are usually set forth to support an a priori
exclusion of such structures. Glymour (1997a: 210) begins his defence of
faithfulness by showing that it underlies other approaches to causal inference.
This provides no justification for conclusions based on the GT techniques.
Scheines defends faithfulness by arguing that it increases our inferential
power and without it nothing can be learnt from data about causal direc-
tionality (1997: 194). Again, the increase in inferential power is no evidence
for the soundness of the conclusions, and as such provides no support for
faithfulness.
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5.5.2.1 The measure theoretic argument

The main justification of faithfulness is of a Bayesian nature. Spirtes et al. have
argued that, for any linear structural model, the set of parameterizations of
the model that lead to violations of faithfulness is of Lebesgue measure zero.
Therefore, any Bayesian whose prior over the model’s parameters is absolutely
continuous with the Lebesgue measure assigns a zero prior probability to the
violations of faithfulness (Spirtes et al., 1993: 68–9).27 A quick challenge to
this argument, also noted by Scheines et al. (1998: 82), is to ask why one has
to have a prior that is absolutely continuous with respect to the Lebesgue
measure. If one adopts a prior that lacks this feature, the measure theoretic
argument has no force. This criticism is sufficient to challenge the argument.
Nevertheless, more can be learnt by analysing what is involved in having a
prior that assigns zero probability to violations of faithfulness. To explain this,
we follow Robins and Wasserman (1999) and Robins (2003). Consider a nor-
mally distributed, causally sufficient set of variables V = {X, Y , Z, U , V , W},
and let O = {X, Y , Z} be the recorded variables. Suppose X precedes Y , and
Y precedes Z. Also assume we have an extremely large sample of data on X,
Y and Z so that estimation problems can be left aside. Finally, suppose the
following dependencies and independencies are true in the data:28

ρXY = 0.5; ρYZ = 0.5; ρXZ = 0.25; ρXZ.Y = 0

Explanation (1): A possible explanation of these data is given by the graph
in Figure 5.19(a). According to this graph, X causes Y , Y causes Z, and they
have no common causes in V .

Another representation of the same causal facts is given by the graph in
Figure 5.19(b), where the lower-case letters denote path coefficients. Thus
represented, the explanation implies that

u1u2 = 0, v1v2 = 0, w1w2 = 0 but a �= 0 and b �= 0

X Y

(a) (b)

Z

a 

X Y Z

u2 u1U

VW

b

w1 v2
w20.5 0.5 v1

Figure 5.19 A faithful explanation
Note: Graphs (a) and (b) provide a faithful explanation of the independence data.
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Figure 5.20 An unfaithful explanation
Note: Graphs (a) and (b) provide an unfaithful explanation of the independence data.

Explanation (2): A second possible explanation is offered by the graph in
Figure 5.20(a) above. According to this graph, neither X causes Y nor Y causes
Z. The dependencies and vanishing partial ρXZ.Y = 0 are due to particular
residual correlations between X and Z, X and Y , and Y and Z – as shown by
the numbers on the bidirected edges linking the variables.

If we explain residual correlation in terms of latent common causes, the
graph in Figure 5.20(b) above provides an alternative representation of the
causal facts in Figure 5.20(a). On this graph, U, V, and W are confounders.
This means

u1u2 �= 0, v1v2 �= 0, w1w2 �= 0 but a = 0 and b = 0

Both explanations are possible. The measure theoretic argument draws on
the fact that the subset of values for the coefficients {u1, u2, v1, v2, w1, w2}
that yields the vanishing partial ρXZ.Y = 0, when u1u2 �= 0, v1v2 �= 0, and
w1w2 �= 0, has Lebesgue measure zero in R6. If one has a prior over the
parameter space that is absolutely continuous with the Lebesgue measure of
the space, one has to regard explanation (2) as a prior unlikely, and accept
explanation (1), which is faithful to the data. The difficulty with this argu-
ment is that the move from the claim that explanation (2) is a priori unlikely
to the acceptance of explanation (1) is not warranted. Explanation (1) implies
that u1u2 = 0, v1v2 = 0, and w1w2 = 0. Now, the Lebesgue measure of each
of these events is also zero in two-dimensional parameter space R2. If one
has a prior over the parameter space that is absolutely continuous with the
Lebesgue measure, one also has to consider these events as a priori unlikely.
Therefore, as far as the measure theoretic considerations are concerned, both
explanations are equally unlikely. The only way the balance can be tilted in
favour of explanation (1) is to rule out a priori any latent common cause for
the recorded variables.29 If the existence of common causes is not a priori
ruled out, both explanations are a priori equally likely, and no causal conclu-
sion can be inferred from the data. This means, to believe that violations of
faithfulness are a priori unlikely, one must believe that X and Y , and Y and
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Z have no latent common causes. Such an a priori belief, though, does not
seem plausible.

The above analysis was based on the existence of an extremely large sample.
So we assumed that the true independencies were known. In practice, we
have access to only a finite sample and we should take approximately zero
dependencies in lieu of exact independencies. This requires substituting the
population faithfulness condition, which is defined for true independencies,
with the so-called sample faithfulness condition:

The sample faithfulness assumption: In a large sample if X and Y are
almost independent conditional on Z, that is evidence that X and Y are not
directly causally connected except through Z. (Glymour et al., 1999: 345)

In light of this, what is needed to be excluded a priori is the set of parameter
values that nearly cancel each other out. Such a set always has a non-zero
Lebesgue measure and cannot be excluded on measure theoretic grounds.
The Bayesian argument applies, if at all, only when the true independencies
are known. It has no force in practice where almost-zero partial correlations
should be taken in place of exact independencies.

5.5.2.2 Stable unfaithfulness

Another line of defence of faithfulness has been pursued in Pearl’s writ-
ings. Pearl’s concept of a causal model is influenced by the views of early
econometricians, who define a structural model as a system of equations
each representing an autonomous causal mechanism that can be manipulated
without affecting other equations in the model. Autonomy, the early econo-
metricians argued, is an essential feature that a model must have to be useful
for evaluating actions and policies. Influenced by this tradition, Pearl argues
that the reason we search for causal models is the need for evaluating actions
and policies, and a key feature that a model ought to have to be useful for
analysis of actions and policies is the autonomy of the model equations. Since
the equations of unfaithful models break down with a slight change in the
conditions sustaining one of the equations, the models lack autonomy, and
are not useful for evaluating actions and policies. They should not therefore
be taken seriously (Pearl, 2000: 63).30

A number of authors have rightly challenged this claim. Cartwright (1999:
118) and Hoover (2001: 170) point out that one of the ways that we minimize
damages in our social and medical regimes is by arranging the system so that
conflicting causal forces counterbalance the effect of each other. Unfaith-
ful structures can be of significant interest in designing efficient social and
medical regimes. Moreover, what is really at issue here is whether faithful-
ness is a reliable guide to discovery of autonomous relations. A definition of
autonomy and a recommendation to avoid using unstable relations in policy
analysis cannot serve as a guide in searching for structural relations.
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Figure 5.21 Stable spurious independence data (graph (b))

Pearl may also be taken as arguing that because unfaithful structures are
unstable they do not last long enough to generate data for a reliable esti-
mate of the distribution. Any independencies embedded in a distribution
estimated from an adequately large homogeneous sample arise from a faithful
structure. It is therefore a sound practice to rely on faithfulness to infer cau-
sation from reliably estimated independencies. This reasoning assumes that
there can be no ‘stable’ unfaithful independencies. This is wrong, however.
Mistaking concomitants for causes can easily produce stable independencies
that do not represent absence of causation. Consider the structure depicted
in the graph in Figure 5.21(a), which represents a possible causal structure
between Genotype (G), Family background (F), Heavy smoking (H), and Lung
cancer (L).

According to this structure, conditional on H , L is independent of G and
F, which means there is no direct causal link from genotype and family
background to lung cancer; they cause lung cancer through causing heavy
smoking. Now suppose H is replaced with one of the concomitants of heavy
smoking such as ‘Having yellowed teeth’ (P). Assuming that the conditional
independence relation L⊥{G, F}/H is true in the data, the conditional inde-
pendency L⊥{G, F}/P is also most likely true, and if one picks up variables
{G, F, P, L} instead of {G, F, H , L}, one ends up with the graph in Figure 5.21(b).
The graph entails that, conditional on having yellowed teeth, lung cancer
is independent of genotype and family background. Based on our current
state of knowledge, independence relations L⊥G/P and L⊥F/P do not gen-
uinely represent absence of causal connections. Assuming Figure 5.21(a) is
true, when ‘heavy smoking’ is dropped from the graph, there will be causal
links from G and F to L, as shown in Figure 5.21(c). Moreover, the spurious
independencies L⊥G/P and L⊥F/P are stable; they are true as long as the
structure (a) is true. Such examples, which are by no means rare, illustrate
cases of stable unfaithfulness that are neither generated by exact cancellation



202 Rationality, Bounded Rationality and Microfoundations

of parameter values nor by mixing of heterogeneous units, the Simpson
Paradox.31 Pearl’s stability argument may be useful for excluding violations of
faithfulness arising from exact cancellation of parameter values. But it has no
force in ruling out stable unfaithful independencies arising from mistaking
concomitants with genuine causes. Like the Markov condition, faithfulness
cannot be applied universally either.

5.6 Conclusion

The strongest possible assumptions about the link between causation and
probability are the Markov condition, i.e. every probabilistic dependency has
a causal explanation, and faithfulness, i.e. every probabilistic independency
reflects the lack of a causal connection. These hypotheses are false. A correla-
tion or independency can arise for reasons other than causal reasons. Hence,
the class of explanations possible for a correlation or independency is larger
than the class of possible causal explanations. As a result, there can never be
an entirely data-driven causal inference method. Causal inference first and
foremost involves eliminating non-causal explanations that could possibly
be responsible for a dependency or independency. This requires some subject-
matter information about the system. In the simple economy described in
the text, it is essential to know the rules governing the behaviour of the indi-
viduals as well as the character of the environment in which they operate
to determine whether the correlation between the aggregates reflect a causal
connection or is an artefact of aggregation. The Markov and faithfulness con-
ditions become relevant only after non-causal candidate explanations are
eliminated.

Even after excluding non-causal explanations, the Markov and faithfulness
conditions are not sufficient to pin down a single causal model, due to the
ubiquitous existence of statistically equivalent causal models. There is always
a simple rule to generate a class of equivalent causal models for every model
fitting the data. Because the coefficient estimates of the common edges vary
across the models, and their sign and significance usually differ from one
model to another, very little can be learnt from data alone. Extra subject-
matter information is particularly necessary to reduce the class of statistically
equivalent models by excluding unlikely but possible causal models.

The reliability of the GT algorithms and indeed any data-driven method
of causal inference depends on the sample size and the joint probability
distribution of the variables under study. The GT algorithms proceed by
assuming that the data comes from a multivariate normal distribution. When
the sample is large, this assumption may be justified, and one can reliably
test independence hypotheses. In practice, where the samples are small,
the normality assumption can lead to wrong conclusions. As a general rule,
since the number of known multivariate distribution families is very limited
and they make the restrictive assumption that the marginal distributions of



Data-Driven Causal Inference 203

the variables belong to the same distribution family, testing independence
hypotheses needs great care in practice.

Also, for analysis of actions and policies, one needs to know not only
whether an equation represents a causal relation but also the circumstances
under which it remains invariant. Recall Haavelmo’s famous remark about
the relation between pressure on the throttle and acceleration of the car
(1944). To predict the effect of taking a car to an unexplored territory, we
need to know not only whether putting pressure on the throttle makes the
car accelerate but also the circumstances under which the relation remains
invariant. The GT methods are at best suited for discovering a causal structure,
defined as a complex of type-level causal connections. They are not suitable
for understanding the circumstances under which the structure continues
to operate. This needs knowledge of the chance set-up, to use Cartwright’s
phrase (1997: 357), which has given rise to and sustains the causal relations.

These analyses have major implications for modelling bounded rationality.
Most notably, understanding how people are able to make causal inferences
from usually small samples necessitates an approach that emphasizes the
interaction between domain-specific causal knowledge and statistical learn-
ing (Griffiths et al., 2004). The causal information is to restrict plausible causal
relations, their functional form, and strength. This limits the space of plausi-
ble models, making it possible to infer causal conclusions from small samples.
We again encounter the basic question of where the domain-specific infor-
mation comes from. One thing is certainly clear about this question. The
information does not come from a purely statistical analysis of data. The IS
hypothesis does not provide a full account of human causal learning.



6
The Economy as an Interactive
System: An Appraisal of the
Microfoundations Project

6.1 Introduction

In order to have a useful theory of relations among aggregate, it is necessary
that they be defined in a manner derived from the theory of individ-
ual behaviour. In other words, even the definition of such magnitudes
as national income cannot be undertaken without a previous theoretical
understanding of the underlying individual phenomena. (Arrow, 1968)

Several difficulties stand in the way of establishing a structural model of the
economy. Notably, for social and practical reasons, the economy cannot be
subjected to controlled experiments to establish causal relations true at the
economy level. And, because of the theoretical difference between a causal
and statistical relation, atheoretical analysis of aggregate data is inadequate
for establishing causation. What is more, aggregate data are inherently impre-
cise, a fact that further aggravates the difficulties in making causal inferences
from economic data. The key to the success of macroeconomics is to over-
come these difficulties, which make the establishment of causal relations at
the economy level problematic.

According to mainstream economists, these difficulties can be evaded by
starting with a model of individual behaviour. It is argued that we often
know intuitively how human beings make decisions, and even if intui-
tion fails to lead us to the laws of behaviour, we can experimentally study
human behaviour to establish an accurate theory of economic behaviour.
Having established a theory of behaviour, we can transform it into a theory
of the economy using aggregation procedures. Aggregate data can then be
used to estimate the model and obtain a quantitative model of the economy.
Since the structure is determined by the laws of behaviour and the model is
based on behavioural laws, it correctly describes the economy. Specifically,
it describes how aggregate variables relate to each other, classifies them into

204
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exogenous and endogenous categories, defines the conditions under which
the aggregate equations remain invariant, and fixes the interpretation of
the aggregate model parameters. So, the model provides all the information
necessary for policy analysis.

The enterprise of deriving the theory of the economy as a whole from
microeconomic theory – the microfoundations project – is the hallmark of
modern theoretical macroeconomics. Two assumptions underlie the project.
The first is that it is possible to establish an empirically adequate theory
of economic behaviour. The second is that the theory of behaviour can be
turned into a theory of the economy using aggregation procedures, with-
out having to introduce any substantive assumption about the economy.
The previous four chapters studied some of the commonly accepted tenets
in economics about individual behaviour. This chapter takes up the sec-
ond hypothesis which has to do with the move from the micro- to the
macro-level.

The search for microfoundations is the concern of all those who view
macroeconomics as something more than the art of summarizing data and
who aim at establishing models suitable for policy analysis. Both new
classical and Keynesian economists have searched for microfoundations.
Nevertheless, most systematic attempts to derive models of macroeconomic
phenomena from assumptions about individual behaviour have taken place
in new classical economics. For this reason, this chapter confines itself to an
analysis of the efforts made in new classical economics. Even so, since the
analysis deals with the general issue of moving from individualistic assump-
tions to a theory of the economy, it equally applies to any attempt at deriving
a theory of the economy from a microeconomic theory.

New classical economics sometimes takes microeconomic theory to be the
analysis of a single decision maker, either a consumer or a firm; the con-
sumer is modelled as an expected utility maximizer, the firm as an expected
profit optimizer. On this account, a call for microfoundations is a call for
a model in which the starting-point is an expected utility or profit maxi-
mization problem. To model some aspect of the economy, a utility or profit
maximization problem is set up for an individual and solved subject to his
or her budget constraint to derive a model of the micro-variables of interest.
The model is then elevated to the economy level. We termed this approach
to macroeconomics the ‘representative agent’ modelling approach.

An alternative view of microeconomic theory is presented by the Walrasian
general equilibrium theory in which the decision problems of various sectors
of the economy, each represented by a representative agent, are simulta-
neously solved. To account for uncertainty about the future, the theory is
supplemented by the rational expectations hypothesis. From this perspective,
the microfoundations project is an attempt to derive the laws of the economy
from the Walrasian theory and the rational expectations hypothesis. Since
the Walrasian theory makes minimal assumptions about the structure of the
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economy, this account of the microfoundations project is known as the strict
microfoundations thesis (Rizvi, 1994: 357).

This chapter criticizes both interpretations of the microfoundations thesis.
In a nutshell, the representative agent modelling approach conceives of the
economy as a society of identical isolated individuals. The strict microfoun-
dations thesis, on the other hand, conceives of the economy as a collection
of few sectors, each being populated by identical decision makers, who only
interact with each other through equilibrium prices. Most macroeconomic
phenomena, however, arise from informational differences, behavioural
heterogeneities, coordination failures and interactions among market partic-
ipants. A satisfactory explanation of macroeconomic phenomena therefore
calls for thinking of the economy as a society of heterogeneous interactive
individuals. In such a society, the relations true of the aggregates are funda-
mentally different from those true of the micro-variables, and there is no way
that the former can be derived from the latter alone. Besides the microeco-
nomic relations, one also needs to know a great deal about the structure of
the society in order to derive the correct form of the aggregate relations.

6.2 The representative agent modelling approach

Modern economies consist of millions of decision makers, either as individ-
uals or organized groups, each pursuing their own disparate interest in a
limited part of the economy. These individual and group activities are some-
how coordinated, leading to certain regularities at the economy level, which
form the subject-matter of macroeconomics. If we were in a position to simul-
taneously study the behaviour of every decision-making unit in the economy
and model its interaction with other decision-making units, we would be able
to predict the emergence of macroeconomic regularities by simulating the
evolution of the economy. However, we are not omniscient and this avenue
is closed to us. All the same, many individuals or groups often encounter sim-
ilar choice situations, have similar tastes and demographic characteristics,
and behave similarly. Moreover, individual idiosyncratic differences some-
times neutralize each other in real life. A satisfactory understanding of the
economy does not necessarily require simulating the whole system includ-
ing the details of each decision-making unit. It is sufficient to work with an
idealized, smaller, model economy in which the behaviour of each group
of ‘similar’ decision-making units is represented by an average unit (agent).
Some economists, like Jevons, have taken this consideration to an extreme.
According to Jevons, ‘accidental and disturbing causes will operate, in the
long run, as often in one direction as the other, so as to neutralize each
other.’ Thus, ‘the general forms of the laws of economics are the same in the
case of individuals and the nations’ (Jevons, 1965 [1871]: 16–17).1 Hicks has
even gone further to suggest that microeconomic theory has greater relevance
for aggregate data, arguing that the variations in circumstances of individual
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households are averaged out to negligible proportions in the aggregate, leav-
ing only systematic effects of variation in prices and budgets (Hicks, 1956).2

Such thoughts have led to the emergence of a modelling approach that views
the economy as a single average individual, implying that whatever is true
of the individual is also true of the economy, hence the nomenclature of
representative agent modelling.

6.2.1 The structure of the representative agent approach

New classical economics makes two assumptions about individual behaviour:
the expected utility optimization principle and the rational expectations
hypothesis. The point of departure in building a representative agent model,
then, is to specify the optimization problem of an agent (a household or a
firm) and solve it subject to his or her budget constraint and rational expec-
tations. The solution yields the relationships among the individual variables.
The well-defined individual model is taken to be exactly true at the aggregate
level. And aggregate variables are substituted for the individual variables to
obtain a model of the economy. If the model fits aggregate data, the con-
formity is taken as evidence for the truth of the microeconomic model. If it
does not fit the data, the blame is placed on the individual assumptions built
into the model. The representative-agent methodology seeks to meet all the
challenges of macroeconomic modelling. It aims to specify the form of the
relations among aggregate variables, the conditions under which the model
equations remain invariant, and the proper interpretation of the macro-
model parameters. On this interpretation of the microfoundations thesis,
only those macro-models that are grounded on utility optimization subject
to rational expectations are regarded as acceptable for policy evaluation.

6.2.2 A historical example

Before examining the requirements of the representative-agent methodology,
we study a typical representative-agent model that has been the subject of
many debates in macroeconomics. The study helps bring to the fore various
assumptions underpinning such a model.3 An issue in economics concerns
the relation between aggregate consumption and aggregate income. Several
empirical studies during the third quarter of the last century implied that
aggregate income was a good predictor of aggregate consumption (Blanchard
and Fisher, 1989). This seemed to contradict the belief that people form
expectations rationally, and make their consumption decisions according
to the permanent income hypothesis. In a classic paper, Robert Hall (1978)
set out to shed light on this issue by testing the hypothesis. He did this by
following the representative-agent modelling method.4

The permanent income hypothesis suggests that a household decides on
his or her expenditure at time t as part of a plan that takes into account
future uncertainty in income by optimizing over time with regard to avail-
able wealth. To be precise, let r be the real rate, T the length of economic life
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and ui(.) a strictly concave one-period utility function. Also, let Cit be con-
sumption by consumer i in period t , Yit income in period t , Ait assets apart
from human capital, and δ the consumer’s rate of subjective time preference
so that £1 now and £(1 + δ)1 next period are equally valued. The perma-
nent income hypothesis says that, in each period t , family i decides on its
consumption plan by maximizing the expected lifetime utility:

Et

T−t∑
τ=0

(1 + δ)−τ ui(Cit+τ ) (6.1)

subject to the amount of available wealth:

T−τ∑
τ=0

(1 + r)−τ (Cit+τ − Yit+τ ) = Ait (6.2)

Et in (6.1) denotes mathematical expectation conditional on all information
available at t including Cit−τ , Yit−τ and Ait−τ , for τ = 0, 1, 2, . . .. Hall also
assumes that the real rate of interest r is constant, the subjective rate of time
preference δ is equal or less than r, incomes Yit are stochastic and are the
only source of uncertainty, and lets T go to infinity. The first-order necessary
condition for maximization of equation (6.1) subject to constraint (6.2) is
the well-known Euler equation:

Etu
′
i(Cit+1) = [(1 + δ)/(1 + r)]u′

i(Cit ) (6.3)

where u
′
(C) = du(C)/dC. Equation (6.3) says that the expected marginal util-

ity next period is the same as the marginal utility this period, except for a
trend associated with the rate of time preference δ and the real rate of interest
r. Another way to express the same idea is

u′
i(Cit+1) = γ u′

i(Cit ) + εit+1 (6.4)

where γ = (1 + δ)/(1 + r) and εit+1 is the difference between the marginal
utility next period and its current expected value. Assuming that expectations
are rational, εt+1 is a random variable with expected value zero at time t ,
when consumption Cit is decided. So, no information available at time t
apart from Cit helps predict Cit+1. Once Cit is taken into account, individual
income and assets at time t or earlier, and past consumptions, Cit−j, for j > 0,
are irrelevant for predicting the next period marginal utility.

Hall further simplifies matters by taking the utility function to be quadratic;
that is, ui(Cit ) = −(Ci − Cit )

2/2, where C is the bliss level of consumption.5

This leads to the individual consumption function:

Cit+1 = λCit + εit+1 (6.5)
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Thus, the change in individual consumption is the amount warranted by
innovations in expectations about future labour income. Formally, this
means that individual consumption obeys a random walk.6As a consequence,
no other variable observed in period t or earlier has a non-zero coefficient
when included in equation (6.5).

Hall next assumes that if individual consumption exhibits random walk
behaviour, aggregate consumption also by and large mimics random walk
behaviour. Therefore, if the above assumptions are approximately true of a
typical household, the equation

Ct+1 = λCt + εt+1 (6.6)

provides a good approximation of the behaviour of aggregate consumption
Ct . Accordingly, the permanent income hypothesis, in Hall’s view, rules out
the systematic influence of any variable on future aggregate consumption
other than current aggregate consumption. Hall tested equation (6.6) by
regressing aggregate consumption changes on lags of aggregate consumption,
income, and stock prices. In the data, aggregate income did not help predict
aggregate consumption but stock prices were highly correlated with aggre-
gate consumption changes.7 Hall concluded that while the data on income
confirmed the hypothesis, the data on stock prices disconfirmed it (1989:
157). Flavin (1981) also studied the relation between aggregate income and
consumption in a similar setting, but found enough predictive power for
aggregate income to reject the permanent income hypothesis.

6.2.3 The requirements of the representative-agent approach

Hall’s analysis is a typical example of the representative-agent methodology.
An analysis of this approach requires examining: (i) the conditions under
which a collection of individuals can be modelled as a single individual; (ii)
the plausibility of the conditions; and (iii) the usefulness of representative-
agent models for understanding macroeconomic phenomena. We begin with
the first issue.

Consider an economy of n consumers and m goods. Each individual i
has utility function ui(.), income (expenditure) Xit at time t , and demands
Yit = (Yit1, . . . , Yitm) for m goods at time t . Further, suppose everyone in
the economy faces the common price vector Pt = (Pt1, . . . , Ptm).8 Each agent
i maximizes his or her utility subject to budget constraint, arriving at the
individual consumption function:

Yit = fi(Xit , Pt ) (6.7)

The aggregate demand of m goods will be

Yt =
∑

i

fi(Xit , Pt ) = G(X1t , . . . , Xnt , Pt ) (6.8)
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where Yt = ∑
i Yit . Finally, let Xt = ∑

i Xit denote aggregate expenditure.
The question about the conditions under which a representative agent exists
has two parts. The first concerns the conditions under which there exists an
aggregate function F(Xt , Pt ) such that

Yt = G(X1t , . . . , Xnt , Pt ) = F(Xt , Pt ) (6.9)

The second relates to the conditions under which F(Xt , Pt ) can be derived
from maximization of a utility function subject to total income Xt and price
vector Pt . Note that this setting is general in the sense that individual func-
tion fi can take any form and Xit and Yit can be interpreted in different ways.
For instance, as in Hall’s model, Yit can be current consumption and Xit
lagged consumption. To preserve consistency, for the time being, we take Yit
to be consumption and Xit income.

Gorman (1953) establishes the necessary and sufficient conditions for the
existence of macro-function F(Xt , Pt ) in a static setting. Theorem 2.1 states
these conditions:

Theorem 2.1 : Aggregate consumption function (6.9) exists if and only
if the individual demand functions (6.7) take the form:

Yit = ai(Pt ) + b(Pt )Xit (6.10)

that is, if and only if the individual demand functions are (i) linear in
income and (ii) are identical up to the addition of a term that depends
only on the common price vector. (Gorman, 1953)9

Individual demand function (6.10), known as the Gorman polar form, restricts
individual differences to the intercept term ai(P), requiring the slope term to
be common to all the consumers.10 If the adding up condition, Yit .Pt = Xit ,
is imposed, it follows that ai(Pt ).Pt = 0 and b(Pt ).Pt = 1. When individual
demand equations take the Gorman polar form (6.10), the aggregate demand
function can be derived as

Yt =
∑

i

ai(Pt ) + b(Pt )
∑

i

Xit (6.11)

Gorman’s theorem requires individual demand functions to be linear in
income. This means the proportion of income spent by a person on con-
sumption is independent of the size of his or her income; he or she spends
the same portion of income on goods regardless of how large that income
grows. Also, the theorem demands identical marginal propensities to con-
sume. That is, the income proportion spent by Bill Gates on a good should
be same as the income proportion spent by a poor person. These requirements
entail that aggregate consumption equation (6.9) exists if and only if total
consumption is independent of the income distribution. If there were two
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groups of households with different marginal reactions to income changes,
a transfer of income from one group to the other would alter total consump-
tion. In that case, there would be distributional effects that are not accounted
for by total income.

As an illustration, consider an economy consisting of one rich family and
three poor families. The rich household receives £50 per month and spends
5 per cent of its income on food. Each poor family receives £10 per month
and spends 25 per cent of its income on food. Aggregate monthly expenditure
on food in the economy is £10. A transfer of £5 from each poor household to
the rich reduces total food expenditure to £7. However, if the same amount,
i.e. £15, is taken from the rich and evenly distributed among the poor house-
holds, aggregate expenditure rises to £13, even though aggregate income in
either case is the same. What effect does an increase of £10 in total income
have on total expenditure? Again, it all depends on who gets the income.
If the rich household receives the extra income, total expenditure changes
by 50 pence. If any of the poor families receives the extra income, aggregate
expenditure rises by £2.5. The point is that, with different marginal responses,
knowledge of total income is not sufficient to determine total consumption.

Gorman (1953; 1961) also established the conditions under which aggre-
gate equation F(Xt , Pt ) is integrable or, in other words, can be derived from
maximization of a utility function subject to a budget constraint. The result
draws on the notion of homotheticity. A monotone preference relation ≥
on a choice set X ⊆ RL+ is called homothetic just in case x ≥ y ⇔ αx ≥ αy
for all α > 0.11 Homothetic preferences can be represented by a monotonic
transformation of a homogeneous of degree 1 function. Having said this,
Gorman’s conditions can be stated as follows:

Theorem 2.2: (Gorman 1953; Nataf, 1948): Suppose the individual
demand function (6.10) is integrable; that is, it can be derived from max-
imization of a utility function u(.). Then, aggregate demand function
F(Xt , Pt ) exists and is integrable if and only if u(.) is a homothetic utility
function. (See Shafer and Sonnenschein, 1982, for a proof)12

The market demand function can be interpreted as a consumer demand func-
tion if and only if each individual demand function fi is derived from a
homothetic utility function u(.) common to all consumers. In that case, for
all i, F = fi.13 Non-homotheticity makes the marginal propensity to consume
dependent on the income level, which renders total consumption dependent
on the income distribution in the society. As an illustration, following Shafer
and Sonnenschein (1982), consider an economy with two goods and two
consumers who have identical but non-homothetic preferences represented
by u(x, y) = xy + y. Let the price vector be (1,1). An income distribution of
m1 = £1 and m2 = £1 leads to a different demand than an income distribu-
tion of m1 = 2 and m2 = 0 does. In the first case, total demand for y is £2 and
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for x is zero, whereas in the second case total demand for y is £3/2 and for
x is £0.5. With strictly non-negative incomes, the homotheticity condition
can be replaced with quasi-homotheticity, which is a weaker condition.14

6.2.3.1 Identical marginal propensity throughout time

Theorems 2.1 and 2.2 give the conditions for the existence of a representative
agent in a static setting. As one moves to a dynamic setting, the existence of a
representative agent calls for further conditions. To explore these conditions,
note that theorem 2.1 requires the slope function b(p) to be independent
of the level of individual income. This requirement necessitates identical
marginal propensity to consume over time regardless of whether one is
young, employed, or retired. Hall implicitly introduces this condition into
his model economy by assuming that people live an infinite life. They do not
then need to worry about their future income.

Clarida (1991) replaced the infinite lifespan assumption of Hall’s model
with the assumption that people live for a finite period and, as a result,
their propensity to consume declines monotonically with age. In this setting,
aggregation can generate an aggregate consumption function quite different
from the individual function, and the assumption of a finite lifespan, as
noted by Clarida, can shed light on several stylized facts discernible in aggre-
gate economic data. Specifically, Clarida considered a simple economy in
which each consumer lives for n periods, earns income Yt during m (m < n)
working periods, and receives nothing during the retirement periods (n−m).
Consumption during retirement is financed by saving a portion of labour
income. Individual income Yt follows a random walk with drift g:

Yt = g + Yt−1 + εt (6.12)

Further, the interest rate is zero and, as in Hall’s economy, everyone acts
according to the life-cycle permanent income hypothesis. In this economy,
even though individual consumption is a random walk, aggregate consump-
tion is not a random walk. In fact, if n is taken to be three and m two, average
consumption change follows:

�Ct = g + αεt + βεt−1 + γ εt−2, (6.13)

where the sign ‘−’ denotes average (Deaton, 1992: 169). Appendix 6.A
explains the steps from (6.12) to (6.13).

Therefore, when people have a finite lifespan, and face different levels
of income during their life, average (aggregate) consumption is not orthog-
onal to lagged innovations; both parameters β and γ are non-zero. Nor
does average consumption respond one-for-one to innovations in current
income. The economy exhibits a correlation between consumption change
and past income (known as ‘excess sensitivity’), and the variance of con-
sumption changes is much less than the variance of income changes (known
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as ‘excess smoothness’).15 In a dynamic setting, the representative-agent
methodology not only requires the households to have identical marginal
propensity to consume at any time but also requires them to have identi-
cal marginal propensity to consume over time. Otherwise, aggregation can
produce relations that are not representative of relations at the individual
level.

6.2.3.2 Identical aggregate and individual income processes

Another requirement for a representative consumer in a dynamic setting
is that individual income and aggregate income follow the same stochas-
tic process. If different processes generate the individual and aggregate
income, and consumers lack full knowledge of the aggregate income pro-
cess, aggregation over individual consumption functions can easily create a
macro-consumption function that is entirely different from the individual
functions. Pischke (1995) was the first to note this requirement. He consid-
ers an economy similar to Hall’s economy but supposes that individual and
aggregate income follow different processes.16 Specifically, he assumes that
the average income in the economy follows a random walk with drift, i.e.

Yt = g + Yt−1 + εt (6.14)

He, however, takes individual income to be the average income plus an
idiosyncratic component that is purely transitory, represented by a white
noise:

Yit = Yt + uit (6.15)

with innovations εt and uit being uncorrelated. The first difference of indi-
vidual income is the first difference of the random walk, including the drift
term, plus the first difference of the white noise term:

�Yit = g + εt + uit − uit−1 (6.16)

The households, Pischke notes, are not in a position to infer the contem-
poraneous aggregate shock εt . As a consequence, they cannot separate the
macro-shock from the idiosyncratic component (private shock), uit . Each
individual can at best estimate the sum of these terms, which amounts to
estimating the moving average process:

�Yit = g + ηit − ληit−1 (6.17)

With this result and Hall’s conditions, the change in individual consump-
tion follows �Cit = (1 − λ/1 + r)ηit , and individual consumption obeys a
random walk:

Cit = Cit−1 + (1 − λ/1 + r)ηit (6.18)
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Aggregate consumption is not a random walk. It follows a second-order
autoregressive process (see Appendix 6.B):

Ct = (λ + 1)Ct−1 − λCt−2 + ςt , (6.19)

where ςt = (1 − λ/1 + r)εt . The difference would disappear if households
knew the history of aggregate income including Yt and were able to infer
the aggregate income process correctly. This would enable the households
to separate the common contemporaneous shock εt from the private shock
uit . In that case, the aggregate and individual consumption function would
coincide (Pischke, 1995: 809).

In a dynamic setting, for a representative consumer to exist, the processes
generating individual and aggregate income should be the same. Or individu-
als should have complete knowledge of the aggregate income history to infer
the aggregate income process. In fact, full knowledge of the aggregate income
history is not enough. It must also be assumed that individuals with the
same information always make the same inferences (Grossman and Shiller,
1982). Otherwise, they may infer different processes from the full history of
aggregate income, which could result in a difference between the individual
and aggregate functions. Thus, in a dynamic setting, the representative-agent
methodology necessitates a variant of the Harsanyi doctrine that people with
the same information always form the same probabilistic beliefs. Critical
analysis of objective Bayesianism has shown critical flows in the Harsanyi
doctrine, partly because there is no unique prior representing the state of
ignorance.17 Also, information on the current values of aggregate variables
is hardly available. Even the interested econometricians receive such infor-
mation with a delay of a quarter or more. What is more, there seems to be no
rationale for people to obtain such information. Gathering such information
is often costly.

6.2.3.3 Absence of interaction among economic agents

Gorman’s result requires the parameters in the individual consumption func-
tions to be independent of the explanatory variables that vary across the
individuals. Since the aggregate consumption function is derived by sum-
ming over the individual functions, the same condition must hold for
the aggregate parameters. This requirement necessitates the absence of any
interaction among decision makers in the economy. Whenever there are
interdependencies among decision makers, the parameters of the aggregate
function depend on the explanatory variables that vary across the individ-
uals. In that case, the aggregate function will no longer be the same as the
individual functions. To see this, consider Hall’s model again. In setting up
his model, Hall regards the real rate of interest r as constant, thus assuming
that it is independent of the (current) consumption level. The assumption is
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reflected in the individual consumption function (6.5), restated here as

Cit+1 =
[

(1 + δ)

(1 + r)

]
Cit + εit+1 (6.20)

In this setting, the agent takes the interest rate as given in deciding how
to allocate his income between consumption and saving. This is reasonable.
If he saves a little bit more or less, his action won’t affect the real interest
rate. But if everyone makes a similar decision, the real interest rate moves. If
everybody saves less, the real interest rate rises, pushing asset prices down.
Alternatively, if everybody saves more, the real interest rate falls, pushing
asset prices up.18 Contrary to Hall’s assumption, aggregate consumption
and the real interest rate do not move independently. The real interest rate
depends on the consumption level and vice versa; one cannot hold one of
these as constant and let the other vary. So, although in modelling individ-
ual consumption the real interest rate r can be considered as independent of
the individual consumption level Cit , in modelling aggregate consumption
the real interest rate r cannot be considered as independent of the aggregate
consumption level Ct . It would be conceptually wrong to write the aggregate
function as

Ct+1 =
[

(1 + δ)

(1 + r)

]
Ct + εt+1 (6.21)

Since the interest rate depends on aggregate consumption, the relation
between the current and future aggregate consumption is non-linear (Hartley,
1997: 156).

In fact, with interaction, the differences between the micro- and macro-
functions do not end here. If everyone decides to save less, the decision
increases the real interest rate, lowering the asset prices. This increases
the opportunity cost of current consumption, moderating the increase in the
current consumption actually achieved. Alternatively, if everyone decides
to save more, the decision lowers the real interest rate, pushing the asset
prices up. This lowers the opportunity cost of current consumption, mod-
erating the reduction in the current consumption actually achieved. Such
endogenous fluctuations in the interest rate and asset prices restrain intertem-
poral arrangement of consumption. The inhibition can create a tighter
link between future consumption and current income than is predicted by
Hall’s model, which abstracts from fluctuations in the interest rate and asset
prices. So, even if (6.20) were true of the individual, the aggregate con-
sumption function might still include variables other than current aggregate
consumption.

As a consequence, in an interactive system the behaviour of an aggregate
variable cannot be modelled in isolation from the mechanisms generating
the (independent) variables affecting the variable. In the above setting, this
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means that one cannot establish an adequate theoretical model of consump-
tion without simultaneously modelling the mechanisms generating income,
asset prices, and interest rate. Since aggregate consumption also influences
these variables, the interdependencies necessitate a non-recursive model to
account for the feedback. In an interactive system, even though a recur-
sive model may accurately describe individual consumption behaviour, to
describe the aggregate consumption behaviour, one may have to adopt a
non-recursive model.19

To sum up, the existence of a representative individual requires that the
dependent variable in the micro-functions be linear in the explanatory vari-
ables, the coefficient in the micro-functions (except the intercept) be the same
across the individuals, the coefficients be constant over time, the mechanisms
generating the individual and aggregate explanatory variables be the same or
the agents have full knowledge of the mechanisms generating the aggregate
explanatory variables, and there be no interaction among the individuals.
These assumptions are incredibly strong, and, even as gross approximation,
are hardly true of modern economies.

6.2.4 Problems with the representative-agent approach

The requirements of the representative-agent methodology are extremely
stringent, and cannot be true of real economies, even as remote approxima-
tions. This is not, however, the most critical difficulty with the methodology.
For many reasons, the approach is, in principle, unsuitable for studying the
economy, and can lead to fallacious results.

To begin with, the approach views the economy as a society of identical
individuals, operating in isolated homogeneous choice situations. In such a
society, there is no room for money, which is a means of exchange among
agents with different needs, preferences, beliefs, and attitudes towards risk
(Friedman and Hahn, 1990: xii). Nor does such a society provide a room
for monetary institutions. These institutions are for coordinating among dif-
ferently situated agents with different needs and beliefs, who do not exist
in a society of identical individuals (Colander, 1996: 62). Also, if people
had identical preferences, had access to identical information, held the same
beliefs, and faced identical choice situations, there would be no trade in
securities. There is no room for security markets in a society of identical
agents. These markets arise because people have access to different infor-
mation, make different inferences from the same data, and have different
attitudes towards risk. Any attempt at explaining security markets, their
effects on the economy, and the role of related institutions, demands taking
individual heterogeneities seriously (Arrow, 1986: 212). The difficulty with
the representative-agent approach, as these considerations reveal, is not that
it abstracts away certain aspects of the economy; any modelling methodology
proceeds with abstraction and idealization. The fundamental difficulty is that
it abstracts away the very same features that are necessary for understanding
basic economic phenomena.20
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Also, the representative-agent methodology implies that every proposition
true of the individual is true of the economy, and every proposition true of
the economy is true of the individual. This is wrong. In general, when one
moves from the individual level to the economy level, the causal status of the
variables affected by individual decisions changes. Coffee scarcity is exoge-
nous to one’s decision but it is the people who altogether cause coffee scarcity
(Schelling, 1978: 78); economic growth is exogenous to one’s decision but it
is the external effects of individuals’ capital accumulation that causes growth
(Romer, 1994); asset prices are exogenous to one’s decision but it is the indi-
viduals’ saving, consumption and investment decisions that determine the
prices (Lucas, 1978); and the interest rate is exogenous to one’s decision but
it is the individuals’ saving decisions that determine it. Coffee scarcity, the
interest rate, asset prices, unemployment level, economic growth, and popu-
lation density should be regarded as exogenous in modelling behaviour. But,
it is the individual decisions that should be considered as exogenous in mod-
elling the economy. It is wrong to think that if a variable is exogenous to the
agent it is also exogenous to the economy, or if a variable is endogenous to
the economy it is also endogenous to the individual. Failure to recognize this
point results in fallacious conclusions about the economy.

Theoretical differences between the individual and the economy do not
end here. There is also a multitude of other types of propositions that apply
to the individual but not the economy or apply to the economy but not the
individual. Consider an example from Schelling (1998) that concerns the pat-
tern of sales of best-seller novels, fictions and biographies by new unknown
authors. Sales data show that the sales of such works in a society follow a logis-
tic path, growing exponentially at first, then passing an inflection point, and
finally declining exponentially until the left-over copies are remaindered. A
possible explanation for this pattern, Schelling says, is the following. ‘People
who read the book, if they like it, they talk about it, some people more than
others; the more people who read the book, the more people there are to
talk about it. Some of the people they talk to buy the book; if they like it,
they talk about it. Talk is proportionate to the number of people who have
read the book; if all talk is equally effective, the number talking about it
grows exponentially. But there is a limit to the number of people likely to
be recruited; eventually most of those who would be interested have already
heard of the book, maybe bought it, and when they want to talk about it find
that there’s hardly anybody left who hasn’t already heard about it. If there
were initially L potentially interested readers, and N have now read it and
want to talk about it, and everybody who has read it meets and talks about it
with n out of the L per week, there will be N × n × L contacts per week, with
N × n × (L − N) of them potentially productive, and N will grow logistically’
(Schelling, 1998: 34). The logistic curve found in the data on the sale of best-
sellers by unknown authors cannot be attributed to a single individual. The
curve emerges as a consequence of the finiteness of the number of readers
in a society, and does not depend on the specific decision-making process
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driving one to buy the book.21 Similar patterns are likely to emerge in sales
data for newly invented durable goods.

Finally, a further problem relates to the suitability of the representative-
agent models for policy analysis. Policies are usually designed to work by
changing certain distributional aspects of the economy. Monetary policies,
for instance, operate by reducing or increasing the consumption of those
who are facing liquidity constraints, and their effects depend on the distri-
bution of assets in the economy (Stiglitz, 1991: 26). But this goes against the
assumption of the representative-agent models that the value of an aggre-
gate dependent variable (here, aggregate consumption) is independent of
the distribution of the explanatory micro-variables (here, income and assets).
On these models, as long as the effect of a policy shift is limited to a change
in the distribution of independent micro-variables, the policy has no impact
on the dependent variable. If the possibility of influencing the economy
through distributional channels is granted, then one has to search for models
that are sensitive to the distributional features of the economy (Martel, 1996:
140). In general, an analysis of economic policies calls for some information
about the joint distribution of the micro-variables that affect decisions. In
addition, it requires predicting how a policy changes the distribution, and
how the distributional change affects the economy’s structure. None of these
issues can be settled within the representative-agent modelling framework.

6.3 Modelling heterogeneous behaviour

It is essential for understanding large-scale economic phenomena to think of
the economy as a system of interactive heterogeneous individuals. Individual
heterogeneity and interaction generate difficult aggregation issues, making
the relation between micro- and macro-models extremely complicated. The
interest in aggregation over interactive heterogeneous agents is relatively
recent (Hansen, 1998: 240–1). The remainder of this chapter studies some
of the issues directly relevant to the question of whether, in the presence of
heterogeneity and interaction, the correct form of the aggregate model can
be derived from the micro-models alone, or whether inferring the correct
form of the macro-model necessitates a substantial amount of information
concerning the economy.

This section concentrates on aggregation problems arising from individual
heterogeneity. It discusses the fundamental theorem of exact aggregation, due
to Lau (1982). The theorem specifies the conditions that are necessary in
the presence of heterogeneity for the micro-models alone to determine the
aggregate model. An analysis of these conditions enables us to understand
precisely the circumstances under which the microfoundations programme
may succeed.
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6.3.1 The fundamental theorem of exact aggregation

Individuals differ in many respects that are relevant to economic decisions.
They differ in their tastes, opinions, information, incomes, demographic
attributes, and environment. Such differences usually give rise to differences
in preferences, making people with identical income exhibit different pat-
terns of consumption behaviour, and thus affect aggregate consumption. Of
all possible individual heterogeneities, Lau (1982) considers demographic
attributes, such as age and number of children. To explain Lau’s result, we
need to extend the framework used earlier to state Gorman’s theorems. In par-
ticular, we need to extend the micro-functions to include arguments referring
to individual demographic attributes.22 That is

Yit = fi(Xit , Ait , Pt ) i = 1, . . . , N (6.22)

where Yit is the individual consumption vector at time t , Xit is individual
income, Ait is the vector of individual attributes, Pt is the vector of prices at
time t , and N is the number of households. Aggregate demand Yt is given by
the sum of the individual demands:

Yt =
N∑
i

fi(Xit , Ait , Pt ) (6.23)

Evidently, calculating total consumption using equation (6.23) requires
knowing, besides the individual demand functions, the distribution of
income and attributes in the economy. The search for an aggregate func-
tion involves finding a function that reduces the information needed for
calculating total consumption. To achieve this, the function should dispense
with the need for full knowledge of the distribution, and make it possible
to compute total consumption using a small number of statistics (indices)
summarizing it. The macro-function should take the form:

Yt =
∑

i

fi(Xit , Ait , Pt ) (6.24)

= F(g1(X1t , . . . , XNt , A1t , . . . , ANt ), . . . ,

gL(X1t , . . . , XNt , A1t , . . . , ANt ), Pt )

where each function gl, l = 1, . . . , L, is an index of the joint distribution of
income and attributes, such as

∑N
i Xit and

∑N
i XitAit .

Equation (6.24) must satisfy several conditions to reduce the information
necessary for computing total consumption:

1. The number of statistics gl must be smaller than the number of the micro-
functions (i.e. L < N) for any reduction to occur in the information needed
for calculating aggregate consumption.
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2. The value of a statistic is invariant with respect to the ordering of the units
in the population. This means each function gl(Xit , . . . , Xnt , A1t . . . , Ant )

must be invariant with respect to whether individual i possesses attributes
A∗ and income x or individual j possesses attributes A∗ and income
x. Swapping the income and attributes of two individuals should not
affect the value of the statistic. In consequence, each index function gl
must be symmetric with respect to subscript i through N. As shown in
Appendix 6.C, this requires the individual demand functions to be iden-
tical up to the addition of a term that is independent of the individual
attributes and expenditure (Jorgenson et al., 1982: 113). Formally

fi(Xit , Ait , Pt ) = f (Xit , Ait , Pt ) + ki(Pt ). (6.25)

Consequently, in order for aggregate function (6.24) to exist, all individual
demand functions for the same commodity must be identical up to the
addition of a function that is independent of variables that vary across
individuals (Lau, 1982: 122).

3. Index functions gl, l = 1, . . . , L, must be functionally independent. Or else,
some of the indices play no genuine role in reducing the distributional
information necessary for calculating aggregate consumption, and can be
omitted without harm.

4. Aggregate function F(g1, g2, . . . , gL, Pt ) must also be invertible in the
indices g1, . . . , gL. Specifically, there must be a price vector Pt such that
F(g1, g2, . . . , gL, Pt ) is invertible in g1, . . . , gL. To see the necessity of this
condition, consider function F(G(g1, g2), g3, . . . , gL, Pt ). There is no price
vector Pt such that F(G(g1, g2), g3, . . . , gL, Pt ) is invertible in g1, . . . , gL. The
difficulty is with g1 and g2, which are effectively a single function, namely
G (Lau, 1982: 126). Taken together, functional independence and invert-
ibility ensure that the aggregate function is represented by a minimal
number of index functions gl’s.
Individual demand functions that can be aggregated into an aggregate
function of the form (6.24) are said to be exactly aggregable. The rea-
son for this nomenclature is that, when there is an aggregate function like
(6.24), masking some aspects of the income-attribute distribution through
aggregation does not jeopardize the ability to correctly compute aggregate
consumption (Heineke and Shefrin, 1988). Lau (1982) establishes a theo-
rem that defines the conditions under which individual functions (6.22)
can be exactly aggregated:

The fundamental theorem of exact aggregation: Aggregate function
(6.24) exists, is continuously differentiable, and satisfies conditions (1)
through (4) if and only if the individual functions (6.22) can be written as

fi(Xit , Ait , Pt ) = b1(Pt )g
∗
1(Xit , Ait ) + . . . + bq(Pt )g

∗
L(Xit , Ait ) + ai(Pt ),

i = 1, . . . , N, (6.26)
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that is, if and only if the individual demand functions can be represented
as sums of products of separate functions of prices and individual income
and attributes. (Jorgenson et al., 1982: 104)

Equation (6.26) imposes several restrictions on individual demand func-
tions. It requires the functions to be identical up to an additive term that
is independent of the variables varying across individuals. In this respect,
Lau’s theorem does not depart from Gorman’s result. Secondly, equation
(6.26) excludes heterogeneity in marginal responses only when income and
attributes are identical. The theorem is, therefore, a significant generalization
of Gorman’s result, which excludes heterogeneity in marginal responses with
identical incomes. Thirdly, equation (6.26) requires individual functions to
be linear in a number of functions of individual income and attributes. Unlike
in Gorman’s polar form, these functions are permitted to depend non-linearly
on the individual income and attributes.

When individual functions can be stated as (6.26), each index gl in
aggregate equation (6.24) corresponds to the sum of individual functions
g∗
l (Xit , Ait ), i.e. gl = ∑

i g∗
l (Xit , Ait ), (l = 1, . . . , L). Therefore, a corollary of

the exact aggregation theorem is that the indices in the aggregate function
are expressible as sums of some functions, each depending only on xit or
Ait (Jorgenson et al., 1982: 106). The aggregate function can then be derived
from the individual equations by substituting the sum of g∗

l (Xit , Ait ) for index
function gl.

Exactly aggregable functions defined by equation (6.26) are the only class
of functions where individual functions alone determine the aggregate func-
tion, and the meaning of the individual parameters fixes the meaning of the
aggregate parameters. But this does not imply that if individual functions are
integrable, the aggregate function is also integrable. It is only when individ-
ual functions can be stated in terms of two terms g∗

l (Xit , Ait ), l = 1, 2, that
the integrability of the functions guarantees the integrability of the aggre-
gate function, and hence the existence of a representative agent (Muellbauer,
1975; 1976).

While Lau’s theorem takes a major step in making room for individual het-
erogeneity, it does not yield much support for the microfoundations project.
In fact, by reflecting on Lau’s requirements, one begins to see enormous
complications that individual heterogeneity creates even when individual
functions are exactly aggregable. Recall when Gorman’s conditions are in
place, computing total consumption requires no information about the
income distribution. As soon as one moves away from this unrealistic sit-
uation to a situation where the conditions for exact aggregation hold, one
requires quite a good deal of information about the income distribution to
calculate aggregate consumption. As an illustration, consider a simple exam-
ple adapted from Stoker (1993). Suppose there are two small and two large
families, with different marginal propensities to consume. Let the demand
function for the small families be Yit = b0(Pt )Xit and for the large families be
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Yit = b1(Pt )Xit . Let attribute vector Ait be a qualitative variable, with Ait=1
denoting a small family and Ait = 0 a large family. The demand function for
each household can be written as

Yit = b0(Pt )AitXit + b1(Pt )(1 − Ait )Xit (6.27)

which is of the form (6.26). The aggregate demand model can be written as

Yt = b1(Pt )
∑

i

Xit + [b0(Pt ) − b1(Pt )]
∑

i

AitXit (6.28)

Now, suppose each small family currently receives £40 as income and
spends a fourth of its income on goods and each large family receives £60
as income and spends half of its income on food. The aggregate equation
(6.28) predicts total food consumption to be £80. If total income is doubled,
depending on who receives the additional income the aggregate model yields
different results. If all the income goes to the small families, the model fore-
casts total consumption to be £130. If all the income goes to the large families,
the model forecasts total consumption to be less then £180. Other income dis-
tributions lead to different predictions of total consumption. Predicting total
consumption using equation (6.28) demands information on the amount
of total income going to the small or large families. In real economies, the
micro-parameters bl(Pt ) are not known, and econometricians turn to aggre-
gate data to estimate them. This practice yields useful results if the relevant
aspects of the distribution of the individual explanatory variables are not
masked in the data. In the present case, the data should not be so aggregated
that the total income going into the small families cannot be distinguished
from the total income going into the large families; the income of these fam-
ily groups should be kept separate (Stoker, 1993: 1836). As we consider real
economies, the diversity of market participants turns out to be much richer
and more complex and more disaggregated information is needed for esti-
mating the correct aggregate model. The problem is that such information is
difficult to obtain.

There is also no guarantee that exactly aggregable functions can always be
stated as equation (6.26) using a small number of terms g∗

l (Xit , Ait ). The effort
to state individual functions in the form necessary for exact aggregation may
require a large number of terms g∗

l (Xit , Ait ), which results in an aggregate
function with a large number of indices gl(.), again making it difficult to
estimate the function reliably from normally available samples. In practice,
to counter this complexity, the analyst may need to work with a simplified
aggregate function that is substantially different from the exact aggregate
equation. The existence of a true aggregate function is one thing and the
practicality or usefulness of the function is another. The microfoundations
thesis wrongly implies that not only does a true aggregate function exist but
it is also simple enough to be estimated and used in practice.
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6.3.2 The effect of non-linearity

The requirements of exact aggregation are not appropriate in modelling many
economic phenomena. In reality, a household’s income must reach a certain
level to be able to afford a car, purchase a house, save, go on a holiday, send
its children to private schools, move house, buy a luxury car, and so forth.
The demand for such commodities is not linearly dependent on income. And
this necessitates working with a non-linear individual consumption model.
When behaviours follow a non-linear pattern, the aggregate function cannot
be inferred from the individual functions alone. To derive the function, it
is also necessary to know the joint distribution of the explanatory variables
(income and attributes) in the economy (Cameron, 1990: 207). This neces-
sity would in fact remain even if there were no heterogeneity in individual
functions. A simple example best illustrates the point.

Following Stoker (1993), suppose that the concern is to study the purchase
of a single unit of a product such as a car, and that we only observe whether
it is bought (Yit = 1) or not (Yit = 0). Suppose the value to family i of
buying the product depends on the product’s price Pt and family’s income
Xit . Specifically, suppose the utility of the product for family i is given by
1 + β1 ln Pt + β2Xit . A model of family i’s decision to purchase the product
could, then, be the discrete model:

Yit = f (Xit , Pt )

= 1 if 1 + β1 ln Pt + β2Xit ≥ 0

= 0 otherwise.

(6.29)

The objective is to model the average demand Yt = N−1
t
∑

Yit , i.e. the
proportion of families buying the product. This requires estimating the proba-
bility that family i buys the product, p(1+β1 ln Pt +β2Xit ≥ 0), which depends
on the distribution of income Xt in the economy. When the income distri-
bution is known, the probability that a purchase is made can be calculated,
and the derivation of the aggregate model will be straightforward. If the dis-
tribution of Xt is, say, lognormal with ln Xt having mean μt and variance υ2

t ,
the model will be

Et (y) = �

[
1

β2υt
(1 + β1 ln Pt + β2Et (x) − β2

υ2
t
2

)

]
(6.30)

where Et (y) denotes the expected number of families purchasing the product,
and �(.) is the univariate normal cumulative distribution function. If there
were behavioural heterogeneity, that is, if the parameters β1 and β2 varied
across the families, further information about the probability distribution of
households would be needed to compute aggregate demand correctly, and the
aggregate consumption model would depart even further from the individual
consumption models.23
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This example points to some significant differences between aggregating
over linear and non-linear models. In the former case, when the exact
aggregation requirements hold, the individual models alone determine the
correct macro-model. In the case of non-linear models, even when the same
model is precisely true of every individual, the correct form of the aggre-
gate model depends on the distribution of the explanatory micro-variables,
and cannot be inferred from the micro-models alone. An assumption about
the distribution of the micro-explanatory variables is an assumption about
the configuration of the society. In the case of non-linear models there-
fore the microfoundations thesis, which only permits macro-models that
can be derived solely from purely individualistic assumptions, falters. More-
over, and quite importantly, it is difficult to see how the distribution of
the explanatory variables can be estimated in a large economy. Economic
data are hardly disaggregated enough to permit estimation of the distri-
butions required for aggregating over non-linear choice models (Cameron,
1990: 212).

6.3.3 The effect of dynamics

Lau laid down the requirements for exact aggregation in a static setting. But
the agent lives in an uncertain environment and, to make decisions, needs
to rely on his or her expectations of future values of variables affecting his or
her decisions. Ideally, he or she estimates the required expectations on the
basis of some observable variables, whose values are already known. In that
case, as in Hall’s (1978) study, the appropriate model of individual behaviour
is a dynamic model, which, in the presence of heterogeneity, further
complicates aggregation issues. In fact, aggregation over extremely simple
heterogeneous dynamic models can produce a complex macro-model that is
different from the individual models, and cannot be given the behavioural
interpretation available for the micro-models. The simplest instance of this
phenomenon occurs in the case of aggregating over heterogeneous first-order
autoregressive processes, AR(1). Consider the aggregation of the two AR(1)

processes:

Xit = αiXit−1 + εit i = 1, 2 (6.31)

where ε1t and ε2t are a pair of independent, zero-mean, white-noise series.24

A simple calculation shows that aggregate variable Xt = X1t + X2t follows
the autoregressive moving average (2,1) process:

Xt = αXt−1 + βXt−2 + ηt−1 + ηt (6.32)

In general, Box and Jenkins (1976) and Granger and Morris (1976) have
shown that if N time series each following an AR(1) model with differ-
ent parameter values are added, their sum follows an ARMA(N, N − 1)
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(Appendix 6.D).25 As a result, if the number of heterogeneous decision
makers is large as in real economies, the true aggregate function contains
an extremely large number of parameters, making it impossible to estimate
the function from ordinarily available samples. Also, due to the high number
of parameters, the model is not practically useful (Granger, 1980a: 230–1).
The relation between the micro- and macro-parameters is also so complicated
that it makes it problematic to ascribe much behavioural interpretation to the
aggregate model’s parameters (Stoker, 1993: 1861).

6.3.4 The effect of heterogeneous environments

Lau’s theory is solely concerned with the conditions where individual func-
tions alone determine the aggregate equation. The theory pays no attention
to environmental heterogeneities that ubiquitously exist in the economy. To
give an example, the processes generating incomes in various sectors of the
economy are by no means the same. A banker and a farmer, for instance,
may not only have different preferences and demographic attributes but
may also face quite different income-generating mechanisms. When there
is no behavioural heterogeneity, such differences are immaterial. But when
people behave differently, environmental differences affect the shape of the
regularities that emerge at the economy level, and enormously aggravate
the disparities between the micro- and macro-levels. We return to Lippi’s
example (1988) discussed in the last chapter to bring to the fore some of the
complications that environmental heterogeneities create for modelling the
economy.

The example concerns an economy consisting of two consumers with
demands following static routines:

Yit = �iXit i = 1, 2 (6.33)

Yit and Xit are respectively the consumption and income of the ith agent
at time t , and �i are different, i.e. �1 �= �2. Moreover, Xit follow the
autoregressive process:

Xit = aiXit−1 + vit 0 < ai < 1 (6.34)

with ai being different for each individual, and vit being orthogonal white-
noise processes. The variables representing the state of the economy are
aggregate demand Yt = Y1t + Y2t and aggregate income Xt = X1t + X2t .
The consumption function for this economy, as established in Lippi (1988),
follows (see Appendix 6.E):

Yt = αYt−1 + βXt + γ Xt−1 + ut (6.35)
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The error term ut is a white-noise process, and the parameters are
defined as

α = (�1 − k)a1 + (k − �2)a2
(�1 − �2)

(6.36a)

β = k = Cov(�1t v1t + �2v2t , v1t + v2t )

Var(v1t + v2t )
(6.36b)

γ = (�1 − k)�2a1 + (k − �2)�1a2
(�1 − �2)

(6.36c)

Aggregate demand equation (6.35) markedly differs from micro-demand
functions (6.33); it contains variables that are absent in the micro-
consumption functions. Moreover, the equation’s parameters depend in a
highly complex manner on both the parameters of micro-consumption func-
tions (6.33) and those of the environmental functions (6.34), which represent
the processes that generate individual incomes.

This example is simple but teaches us several key lessons about the con-
nection between the micro- and macro-levels in a real economy. To begin
with, when agents encounter heterogeneous choice situations and behave
differently, the correct aggregate model is partly defined by the mechanisms
that generate explanatory micro-variables. To derive the model, then, some
knowledge of the structure of the economy, such as the causal process gen-
erating income in the banking sector, is needed. Secondly, as the number
of heterogeneous decision makers in the economy increases, the complexity
of the aggregate function also increases beyond control. In fact, even when
the number of decision makers does not exceed a single digit, the aggregate
equation is more complex than most aggregate equations used in practice.
Consequently, the true aggregate model, even if it were known, would not be
of any practical use. Thirdly, in the presence of behavioural and environmen-
tal heterogeneity, the parameters of the aggregate model depend in a highly
complex manner on both the parameters of the behavioural equations and
those of the environmental functions, which describe the mechanisms gen-
erating explanatory micro-variables. This makes it impossible to ascribe any
behavioural meaning to the aggregate model. Indeed, inspecting equalities
(6.36a) through (6.36c), one wonders what interpretation can be given to the
parameters in (6.35) except that they are by-products of aggregation. Even in
this simple case, the very existence of an aggregate (demand) function, which
meaningfully relates to the behavioural functions, is in doubt. Economists
have rarely come to grip with the issues arising from aggregation over het-
erogeneous individuals operating in different situations. But those who have
come to realize the severity of the complications have felt bound to aban-
don the nomenclature of a true aggregate function. Referring to Theil (1954)’s
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seminal work on aggregation, Zellner (1969) writes:

His [Theil] main result that the mathematical expectation of macro-
coefficient estimators will in general depend on a complicated combina-
tion of corresponding and noncorresponding micro-coefficients was so
disturbing to him that he seriously considered the following question in
his concluding chapter (1954: 180) ‘Should not we abolish these [macro]
models altogether?’ (Zellner, 1969: 365)

6.3.5 Heterogeneity and policy evaluation

The dependence of aggregate models on processes generating micro-
independent variables also suggests the sensitivity of the models to changes
in policy regimes. Economic policies are often designed to work by
modifying the mechanisms that determine micro-independent variables
such as income. In the presence of heterogeneity, policies that lead to
different income-generating mechanisms, for instance, could give rise
to different aggregate models. In that case, it would not be appro-
priate to use an aggregate model valid under one policy regime to
predict the effects of an alternative policy regime. This could poten-
tially lead to very wrong predictions about the effects of the new pol-
icy. Several authors have noted the sensitivity of aggregate models to
changes in policy regimes, and have emphasized its implications for the
microfoundations project. To highlight the matter, we discuss a sim-
ple example from Geweke (1985), who uses it for a slightly different
purpose.

Geweke considers an industry in a small country that produces a single
output, Yt , ultimately sold competitively in a world market. The production
technology is the same for all the firms in the industry. To be specific, for the
ith firm at time t :

Yit = aXit + dX2
it a > 0, d < 0 (6.37)

where Xit is an input factor used to produce Yt . Firms are distributed through-
out the country and, as a consequence, the price for the output of each firm
Pit varys, say, with access to deep-water ports. Output price varies through
time but relative output prices across firms never vary.26 The output price for
the ith firm may be stated as

Pit = PtPi (6.38)

Input price rt is the same across the country. Equation (6.37) is exactly aggre-
gable, and can be estimated using time-series data on aggregate (average)
input factor Xt and aggregate (average) output Yt . Equations (6.37) and (6.38)
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lead to average supply function:

Yt = −a2

4d
+ r2

t

4dP2
t E(P2

i )
(6.39)

where E(.) stands for average. Suppose the aim is to predict the effect on
production of an ad rem subsidy that amounts to substituting (6.38) with a
new price regime:

Pit = PtPi + u u > 0. (6.40)

Supply function (6.39) predicts the effect of the subsidy on average sup-
ply to be

(r2
t /4dP2

t E(P2
i )){(1 + (u/Pt )]−2 − 1} (6.41)

However, when new price regime (6.40) is in place, the actual average supply
function is

Yt = −a2

4d
+ r2

t

4dP2
t

E
(

Pi + u
Pt

)−2
(6.42)

and the actual effect of the subsidy on average supply is

(r2
t /4dP2

t )E{[Pi + (u/Pt )]−2 − P−2
i } (6.43)

which is different from the predicted change. The change in the individual
price functions invalidates the aggregate production function. The func-
tion can no longer be used to predict the policy outcome.27 New classical
economists argue for establishing economic models on features of human
behaviour such as tastes that, unlike expectations, are invariant to policy
shifts. Geweke’s example reveals that the perils of ignoring aggregation may
not be less than those of ignoring expectations.

The analysis of aggregation over heterogeneous individuals shows how
individual heterogeneity limits the circumstances where the microfounda-
tions project can succeed. It is only when micro-functions are identical and
(intrinsically) linear, and identical processes generate micro-explanatory vari-
ables, that the individual functions alone determine the macro-model.28 If
any of these conditions fails, substantial information regarding the structural
features of the economy, including the processes generating the micro-
explanatory variables, is needed to derive the aggregate model. This necessity
of relying on macroeconomic phenomena (i.e. the processes generating
micro-explanatory variables) to model other macroeconomic phenomena
undermines the central thesis of the microfoundations project that ‘the
economist should start at the level of isolated individual’ (Kirman, 1989:
138; Rizvi, 1994: 372). Modelling the economy always requires making
substantive assumptions about the economy’s structure.
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6.4 Modelling interaction

The analysis of the representative-agent modelling approach showed that in
studying the economy one could not take a single individual as the unit of
analysis. Explaining macroeconomic phenomena requires viewing the econ-
omy as an interactive system of heterogeneous decision making units. This
means one has to take ‘a collection of interactive heterogeneous individuals’
as the unit of analysis. We have studied some of the implications of indi-
vidual heterogeneity for the microfoundations project. It is now time to
investigate some of the issues that arise from the presence of interactions
(or, interdependencies) in the economy.

6.4.1 Market interactions

The earliest model of economic interaction is the theory of Walrasian
general equilibrium, which is still a basic model of the market in economics
(Ackerman, 1999). New classical economists often interpret the call for micro-
foundations as a call for deducing the laws of aggregates from the theory of
general equilibrium joined with the rational expectations hypothesis (Lucas
and Sargent, 1979). The basic idea of the general equilibrium theory is that
one cannot model a sector of the economy such as the consumption sec-
tor while treating the influences impinging on the sector by the rest of the
economy as constant. Various sectors of the economy are interdependent
and must be modelled simultaneously. The nuts and bolts of the Walrasian
theory can be explained by considering an economy that, in addition to
the consumption sector, has a single production sector. Specifically, con-
sider an economy consisting of n consumers who own non-negative initial
endowments of capital goods and labour and consume q goods, and m firms
producing the q goods using as input labour and capital services provided by
the consumers. The Walrasian theory introduces several basic assumptions
about the consumers and firms of the economy. I rely on Leigh Tesfatsion’s
notes on macroeconomics (2003: 2) to state these assumptions, while adding
to her list the assumption of rational expectations:29

A1: Consumers are (subjective) expected utility maximizers.

A2: Firms are (subjective) expected profit optimizers.

A3: ‘The preferences of each consumer are exogenously given.’

A4: ‘The income of consumers comes from dividends and from the sale of
capital services and labour services.’

A5: ‘Market for services and consumption goods are complete. That is, for
each valued service and consumption good, there is a market price at
which it can be bought or sold.’
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A6: ‘Consumers, taking expected good prices, wages, rental rates and
dividends as given, choose demand for consumption goods and sup-
plies of capital and labour services to maximize their utility subject to a
budget constraint and physical feasibility conditions (non-negativity and
endowment constraints).’

A7: ‘Firms, taking expected good prices, wages and rental rates as given,
choose supplies of goods and demands for capital and labour services to
maximize expected profits subject to technological feasibility conditions.’
A8: ‘All purchase and sale agreements are costlessly enforced.’
A9: Expectations are rational.

In addition to these assumptions, the theory introduces certain technical
restrictions regarding the utility functions as well as production functions
including continuity, convexity, and monotonicity of preferences. These are
to ensure the existence of a Walrasian equilibrium, which is a set of rela-
tive prices and corresponding demand and supply quantities at which all
consumers are maximizing their utility conditional on their expected prices
and dividends, all producers are optimizing their profits conditional on their
expected prices, and markets for all goods clear. Altogether, these assump-
tions entail that the economy is in equilibrium, prices fully reflect all the
relevant information and there is no conflict across business plans. In a Wal-
rasian world, a decision maker has no need to communicate with others or
adjust his or her decisions to those of others in the market. He or she only
needs to consider prices to decide on the optimal course of action. Since
in such a world all interactions take place through prices, the Walrasian
economic model is referred to as a model of market or indirect interaction.

The call to establish the laws of the aggregates on the general equi-
librium theory is an attempt to derive the laws of the economy from
the assumptions about individual behaviour, firm behaviour, tastes,
technologies, and endowments as well as the postulates necessary for
the existence of an equilibrium (Rizvi, 1994). A question taken up
by Sonnenschein (1972), Mantel (1976) and Debreu (1974) (hence-
forth, SMD) is whether the Walrasian assumptions impose any restric-
tions on the regularities emerging at the economy level. To be precise,
these theorists have enquired if the conditions imply any restrictions
for the excess demand curve of the economy. The authors have found
that, given the Walrasian assumptions, only three properties carry over
from the individual’s excess demand curves to the aggregate excess demand
curve. They are: ‘(i) continuity; (ii) that the value of total excess demand
must equal zero at all positive prices, i.e. that the budget constraint for the
economy as a whole be satisfied (Walras’ law); and (iii) the excess demand
is homogeneous of degree zero (only relative prices count)’ (Kirman, 1992:
122).30 A Walrasian economy can exhibit any aggregate excess demand
curve that satisfies these three requirements (Appendix 6.F states the SMD
theorem).
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The SMD theorem can be traced to the analysis of the subjective expected
utility theory in Chapter 2. The theory, as seen, is a method for solving a
decision problem. Almost any observed behaviour can be rationalized by
re-specifying the problem the agent is trying to solve. Substantive impli-
cations attributed to the theory originate from the exogenous assumptions
introduced to specify the agent’s model of his or her choice situation and defi-
nition of the decision problem. The assumption that consumers (or firms) are
subjective expected utility maximizers imposes little restriction on behaviour.
The other assumption in the Walrasian theory, possibly restricting behaviour,
is the market-clearing condition. Yet, as explained in Chapter 2, when expec-
tations of endogenous variables are involved, which is almost always the
case in economics, the condition falls short of pinning down any particular
behaviour. Infinitely many price vectors usually clear the market.

Also, in the presence of behavioural heterogeneity, aggregate functions can
take unlimited forms, regardless of the form of the individual functions. It is
therefore never possible to derive the relations emerging in an economy from
the assumptions of the Walrasian theory, which entirely overlooks hetero-
geneities, and pays no attention to how people model their choice situations,
define their decision problems, and interact with each other (Kirman, 1989:
128). The issue, again, is not whether the Walrasian assumptions are true.
The problem is that, even if they were true, they would not be adequate to
fix aggregate regularities. It is wrong to think that ‘significant results could
be obtained by starting from very general hypotheses about the behaviour of
economic agents’ (Ingrao and Israel, 1990: 316).

The Walrasian theory also provides no explanation of who sets the equilib-
rium prices. It simply assumes that the economy is in equilibrium, suggesting
that prices are exogenous to the economy. Moreover, by supposing that all
business plans are costlessly enforced, the theory rules out the existence of
transaction costs, and, hence, money, which is a means for facilitating the
coordination of the entire economy, finds no room in the theory (Debreu,
1959). Finally, by supposing that prices convey all information relevant for
making decisions, and thus ruling out any direct interaction among market
participants, the theory excludes the possibility of coordination failures. As
a result, it fails to make room for central macroeconomic phenomena that
arise from the inability of market participants in a decentralized economy
to coordinate their actions. An understanding of the process of price forma-
tion, market crashes, depressions, convergence to equilibrium, the role of
money and economic institutions calls for questioning the Walrasian view
and allowing direct interaction into economic models.

6.4.2 Non-market interactions

Attempts at modelling economic phenomena not explainable within the
Walrasian setting have given rise to a view of the economy as a society of
directly interacting heterogeneous individuals. This change of view has in turn
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led to the development of formal models of the economy that allow for the
state of each person (i.e. strategies, preferences, and expectations) to depend
on the states (i.e. strategies, preferences, and expectations) of other partici-
pants in the economy (Glaeser and Scheinkman, 2001). These models are still
simple, and based on competing assumptions. They can nevertheless serve us
to explain some basic lessons about the relation between the individual and
aggregate levels in an economy of interactive heterogeneous individuals. For
simplicity, we use the modelling approach provided by game theory, which
views the economy as a many-person game or as a collection of interdepen-
dent teams. Specifically, we consider the stag hunt production (or coordina-
tion) game, studied in Bryant (1994), Cooper (1999) and Tesfatsion (2003).31

Consider an economy of N agents indexed i = 1, 2, . . . , N, who live on N
separate locations. Each agent is endowed with L units of leisure and likes
to consume two goods, leisure C1 and bread C2. Each agent has a strictly
increasing and concave differentiable utility function u(C1, C2). The agents
work to produce grains, and grains are carried out to a location to produce
bread. N different types of grains are needed to produce bread, each produced
by a different individual. Also, one unit of leisure produces one unit of grain,
and one unit of bread is produced by N units of grain – one unit for each
type of grain. Bread production follows the relation:

Q(g1, . . . , gN ) = N. min{g1, . . . , gN } (6.44)

where gi is the amount of grain produced by the ith agent, and a surplus of
any of the grains is discarded as waste. The bread is equally distributed among
all individuals:

Q(g1, . . . , gN )

N
= min{g1, . . . , gN } (6.45)

Each agent knows the common leisure endowment L, the common util-
ity function u(C1, C2), the production function (6.44), and the distribution
rule (6.45). He also knows that everyone is rational, that everyone knows
that everyone is rational, and that everyone knows that everyone knows the
structure of the game, and so forth.

Each individual decides how many hours of leisure to sacrifice for produc-
ing grain. A player’s optimal decision depends on other players’ strategies or,
more precisely, on what she thinks of other players’ strategies. Let ei be the
effort made by agent i to produce grain gi, and ē be the vector of all other
agents’ efforts. Output gi, then, depends on ē, i.e., gi = f (ei, ē). Let �(ei, e)
denote the pay-off of agent i from action ei when other agents take action
e and êi(ē) denote the optimal response of agent i when other agents take
action e. Since any effort made by agent i above the minimum effort made
by some other agent j is wasted, if other agents are choosing action e, it is in
the interest of agent i to select e. That is, êi(e) = e. Also, suppose the more
leisure is sacrificed the less pleasant it is but if all individuals equally sacrifice
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leisure to produce grain, the additional output produced by the increased
effort more than compensates for the added pain of the sacrifice. This means
all individuals are better off if all exert the maximum effort possible. The
game, then, has a continuum of (symmetric) Nash equilibria defined by

S = {e ∈ [0, L]|�1(e, e) = 0} (6.46)

where the subscript in �1 denotes a partial derivative. S includes an optimal
equilibrium corresponding to the case when everyone devotes maximal effort
level to production. Let s∗ denote the optimal equilibrium. The continuum
of Nash equilibria in S is Pareto ranked as

0 ≤ s ≤ s∗ (6.47)

Any Nash equilibrium s below s∗ is a coordination failure, representing a sit-
uation where ‘mutual gains, potentially attainable from a feasible all-around
change in agent behaviour (strategies) are not realised because no individual
agent has an incentive to deviate from his [sic] current behaviour.’32 This is
in sharp contrast to general equilibrium models where all possible equilibria
are efficient.33

While this model abstracts away complexities of the real world, it success-
fully captures the important notion of strategic uncertainty (i.e. uncertainty
about expectations and strategies of others), which can lead to coordination
failures. The model thereby offers a general framework for thinking about
many subjects central to economics. To see how, for example, a recession may
occur, suppose there is a fall in the money supply. In that case, firms need to
cut their prices to maximize their profit. But each firm’s profit depends not
only on its pricing decision but also on the decisions made by other firms. If
no firm cuts its price, the amount of real money is low, a recession ensues,
and the firm makes a low profit. If all firms cut their prices, real money bal-
ances are high, a recession is avoided, and each firm makes a high profit.
Although all firms prefer to avoid a recession, none can do by its own action.
Whether a firm cuts its price or not may depend on its expectations of other
firms’ decisions. If every firm expects other firms to cut their price, it cuts its
price. If every firm expects other firms to keep their price, it may not cut its
price, and a recession may follow – a typical coordination failure (Mankiw,
1993). Similar considerations play a vital part in explaining business cycles,
involuntary unemployment, stock market crashes, and even financial insti-
tutions. Any theory aiming to deal with these phenomena should view the
economy as an interactive system, place strategic uncertainty at the centre
of its analysis, and exploit the notion of coordination failure (Bryant, 1996).

The production game allows investigating two general aggregation issues
arising in any interactive economy. The first relates to the existence of
a production function Q = G(L) that maps aggregate leisure L to aggre-
gate production Q such that G(L) = N. min{gi, . . . , gN }. The second relates
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to the connection between the aggregate production function and the
micro-production functions gi = f (ei, ē).

As for the first query, an important thing to note is that the game has many
solutions. Even when the players’ beliefs are consistent with each other, and
the structure of the game is common knowledge, there is a continuum of
Nash equilibria, each giving rise to a different output. This means aggregate
output is not solely a function of aggregate inputs in the economy – here,
total leisure. Depending on what everyone thinks of everyone else’s strategy,
almost any aggregate output is possible. There is therefore no function G(L)

that correctly predicts aggregate output Q from aggregate input L. If there
is an aggregate production function, the function should contain variables
referring to equilibrium conditions, or more generally, the interdependencies
among the players in the game. Now if we agree that strategic uncertainty
is a central feature of modern societies, a similar conclusion also applies to
the economy. The prevalence of strategic uncertainty, and hence multiple
equilibria, call into question the existence of aggregate production functions
that correctly predict aggregate output from physical and human factors
of production in the economy (Bryant, 1996: 168). An aggregate produc-
tion function describing an economy, if one exists at all, certainly contains
variables representing the level of coordination in the economy.

The point just raised about the aggregate production function first appeared
in a criticism of Klein’s treatment of the aggregation problem. Klein
argued that

there are certain equations in microeconomics that are independent of
the equilibrium conditions and we should expect the corresponding
equations of macroeconomics will also be independent of the equilibrium
conditions. The principal equations that have this independence
property . . . are the technological production functions. The aggregate pro-
duction function should not depend upon profit maximisation, but purely
on technological factors. (1946b: 303)

He therefore rejected using the entire micro-model with the profit maximiza-
tion assumption to derive the production function of the economy. May
(1947) rightly criticized Klein’s position by arguing that even the production
function of a firm results from a decision-making process, and is not solely a
technical relationship. Nor is there any global decision maker who allocates
resources optimally in the economy. For these reasons, aggregate production
functions are also entirely fictitious:

The aggregate production function is dependent on all the functions
of the micromodel, including the behaviour equations such as profit-
maximisation conditions, as well as upon all exogenous variables and
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parameters. This is the mathematical expression of the fact that the pro-
ductive possibilities of an economy are dependent not only upon the
productive possibilities of the individual firms (reflected in production
functions) but on the manner in which these technological possibilities
are utilized, as determined by the socio-economic framework (reflected in
behaviour equations and institutional parameters). Thus the fact that our
aggregate production function is not purely technological corresponds to
the social character of aggregate production. (May, 1947: 63)

Led by similar thoughts, Colander (1986) also rejected the conventional
aggregate function Q = f (K, L), which takes aggregate output Q to be a func-
tion of total labour supply L and total capital K.34 Instead, he proposed an
aggregate function that takes the form Q = f (K, L, C), where C refers to the
degree of coordination in the economy. The level of coordination in the econ-
omy depends to a large extent on the institutional character of the society.
This means aggregate output depends not only on capital, labour, land and
other factors of production but also on the society’s institutional structure.
Two economies may be identical with respect to the production factors but
due to their institutional structures generate different levels of outputs. A sim-
ilar consideration applies to the consumption sector, as what one consumes
can depend on what other people consume.

Now, let us return to the question concerning the relation between the
aggregate and individual functions in an interactive economy. A necessary
condition for deriving an aggregate function from individual functions is that
every variable in the function can somehow be defined by aggregating over
the individual variables. Variable C, which refers to the level of coordination
or perceived interdependencies in the economy, cannot be derived by aggre-
gating over individual variables. The variable is not, in fact, an aggregate.
This means the functions describing an interactive system cannot be derived
by aggregating over the individual functions. Indeed, to describe individual
behaviour in an interactive system, the individual models, as in the stag hunt
production game, should contain variables referring to the state of the econ-
omy. Thus, to be precise, the individual models are not individualistic; they
are of a social character.

As a final point, it may make sense to introduce in the aggregate production
function variables such as C that refer to the coordination level of the econ-
omy. But it is difficult to envision how such variables can be operationalized.
The difficulties in accepting the existence of an aggregate production func-
tion and those in operationalizing variables such as C yield strong support for
a view of macroeconomics akin to the position set forth in Basmann (1972)
and Sims (1980) (Colander, 1996: 66). Sims, as we learnt earlier, regards mod-
els of economic aggregates as efficient summaries of data with no clear link
to the processes at the individual level.



236 Rationality, Bounded Rationality and Microfoundations

6.5 Conclusion

Although the representative-agent approach is prevalent in theoretical eco-
nomic modelling, particularly in economic dynamics, the requirements for
the existence of a representative agent are extremely stringent. In fact, they
cannot be true of the economy even as remote approximations. More impor-
tant, representative-agent models lead to fallacious conclusions. Variables
such as prices, economic growth, the interest rate, unemployment level and
inflation, which should be taken as exogenous in individual models, are
determined within the economy. It is thus wrong to apply causal statements
implied by individual models to the economy. What is more, representative-
agent models consider individual differences as entirely irrelevant. They are
not therefore suitable for evaluating economic policies, which usually work
by affecting some distributional features of the economy.

An understanding of most large-scale economic phenomena demands
thinking of the economy as a society of interactive, heterogeneous indi-
viduals. This necessity leads to complications that fundamentally blur the
connection between the micro- and macro-levels in the economy. In a society
of heterogeneous individuals, aggregate models depend on not only individ-
ual models but also the distribution of micro-explanatory variables, such as
income and the mechanisms generating them. As a consequence, assump-
tions about the structure of the economy become an integral part of the
aggregate models, and there remains no resemblance between the laws of
the individual and the economy. Also, the parameters of the aggregate mod-
els depend on the parameters of the processes generating micro-explanatory
variables. This makes it inappropriate to ascribe a behavioural interpretation
to the models.

Moreover, in the presence of individual heterogeneity, the aggregate model
is sensitive to changes in the distributional configuration of the economy,
and the mechanisms generating micro-explanatory variables. This means a
policy shift, which affects the distributional feature of the economy, can
invalidate the true aggregate model. As a result, correctly specified aggregate
models are not adequate for policy analysis. Policy analysis requires knowing
how a policy will affect the distributional configuration of the economy, and
how the distributional change affects the fitted model. Information on the
distribution of micro-explanatory variables or the mechanisms generating
them is normally hard to obtain. This makes the task of establishing models
useful for policy analysis enormously difficult.

The difficulties arising from individual and environmental heterogeneities
undermine the aim of deriving a macroeconomic model from individual
models alone. Yet, complications arising from direct interaction among
market participants are even more detrimental to the microfoundations
project. Modelling the behaviour of an individual in an interactive environ-
ment requires introducing variables referring to preferences, expectations,
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and strategies of other decision makers. Such variables cannot be aggre-
gated. More important, the ubiquitous existence of multiple equilibria in
models of interactive markets excludes the very existence of a true aggre-
gate ‘function’ linking explanatory aggregate variables (e.g. capital and
labour) to the aggregate dependent variable (e.g. output). If there is a true
model of the aggregates, it must involve a variable or variables referring
to the interdependencies in the economy. It is, though, difficult to see
how such variables could be operationalized. Nor are they aggregate of any
micro-variables.

These reflections on the connection between the micro- and macro-levels
do not rule out the emergence of regular patterns at the economy level that
can be modelled statistically. What they reject is that the emerging pat-
terns are in any simple manner related to the processes at the individual
level. The analysis of aggregation issues, particularly those relating to the
effects of interaction, supports the view of macroeconomics put forward by
econometricians, such as Sims (1980), who regard large-scale economic
models as efficient summaries of data, not as representations of a structure.

Finally, the existence of multiple equilibria in models of interactive mar-
kets casts doubts on the existence of causal relations among economic aggre-
gates. And so there seems to be no point in applying structural modelling
tools to aggregate economic data. There are no causal relations among the
aggregates to be discovered.



Finale

‘The moral … is this: if you put very little in, you get very little out.’
(Sonnenschein, 1973: 405)

This book has studied some general issues at the heart of the theoretical
approach to macroeconomics. The issues relate to the possibility of establish-
ing an explanatory and predictive microeconomic theory and transforming
it into a theory of the economy as a whole using aggregation methods. It is
now time to bring together the results of the analysis.

Early in the book, we showed that the proposal that ‘homo economicus’
behaves like a decision scientist, understood in terms of one or another
expected utility theory, contributes very little to the understanding of
behavioural matters and hence economic phenomena. The expected util-
ity theories take as given how the agent specifies his choice situation and
defines his decision problem. They only state how the agent solves an already
well-structured decision problem. But accurate prediction and explanation
of behaviour depend critically on how the agent models his choice situation
and defines his decision problem than on the specific method by which he
solves the problem. To predict how an agent models his choice situation, and
defines the decision problem, we need a theory which tells us how the agent
processes information, models the causal structure of his choice situation,
adapts goals, forms preferences, and modifies them as a result of subsequent
experiences or information. Without such a theory, there is no prospect for
accurately predicting or explaining behaviour in a dynamic and changing
environment; we can only rationalize actions ex post.

The proposal to model ‘homo economicus’ as an intuitive econometri-
cian is an intriguing and substantive step towards understanding how the
agent models his or her choice situation and modifies it in response to new
information. The trouble is that there is no ‘tight enough’ theory of statis-
tical learning capable of fully, and accurately, explaining the central phases
of learning from data – in particular model formulation and re-specification.
Reflection on non-parametric inference reveals that there can be no algorithm
that receives an ordinarily sized sample and yields the model that, given
the data, best approximates the underlying data-generating mechanism. The
choice of a model at a deep level requires various subjective judgements. With
ordinarily sized samples, even non-parametric learning of an interpretable
model of few variables, representing a simple choice situation, is theoreti-
cally impossible. In real-life inference situations, learning of an interpretable
model of several variables calls for starting with a parametric model.
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However, any statistical theory of parametric learning necessarily presup-
poses a reservoir of models or, more precisely, a reservoir of basic probabilistic
assumptions that can be used for creating models. It also requires information
on the pre-estimation implications of the models, and methods for exploring
their post-estimation consequences. None of these can be explained within a
statistical theory of parametric inference. Therefore, within the framework of
the intuitive statistician hypothesis, any explanation of how the agent comes
to model his or her choice situation is necessarily bound to be incomplete.

Statistical theories of causal inference are also of limited power. Because of
the possibility of selection bias, mistaking concomitants for genuine causes,
taking barren proxies for real causes, aggregation over heterogeneous units,
and so on, the class of explanations possible in general for a statistical depen-
dency or independency is larger than the class of causal explanations. As
a result, an essential step in drawing causal inferences from observational
data is to first exclude non-causal explanations. Only then do statistical tools
become relevant for inferring causal conclusions. Even at this stage, statisti-
cal analysis can at best infer a class of statistically indistinguishable models,
which in practice usually have little or nothing in common. Selecting a causal
model calls for substantive causal background information at every level.
However, for the reasons mentioned above, this information cannot come
from a theory of statistical learning.

One outcome of this analysis is that the description level at which the
econometrician (statistician) works is inappropriate for establishing a pre-
dictive model of human learning. To specify how a person processes data,
conceptualizes the environment, models the choice situation, defines the
decision problem, and learns from experience, it is necessary to work at a
far deeper, and more refined, level of description. One, in particular, needs
to establish a theory of cognition, object representation, pattern recogni-
tion, and even preference formation, as well as a detailed history of the
person’s experiences (Arthur, 1994). A precise theory of human cognition
and decision making may eventually arise. However, because of the level
of description the theory is defined for, the theory may not be of much use
for economic analysis. The basic problem in establishing a predictive the-
ory of economic behaviour is of mismatched levels – an empirically rich
theory of behaviour may require working at a description level useless to
economics.

The connection between the individual and aggregate levels is also highly
complex. To explain large-scale economic phenomena it is necessary to view
the economy as a society of interactive, and heterogeneous, agents. How-
ever, the regularities that emerge at the aggregate level in an interactive and
heterogeneous economy are not directly related to the laws operating at the
micro-level. The regularities are the joint outcome of individual interactions
and the processes characterizing the physical and institutional environment.
In light of this, modelling the emergent regularities requires starting with a
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great deal of information about the structure of the economy. It is therefore
wrong to attribute any purely behavioural interpretation to the regularities.
Moreover, due to the ubiquitous existence of multiple equilibria in models
of interactions, the relations that emerge among economic aggregates are
simply statistical. They are not causal.

These considerations yield strong support to atheoretical macroeconomics.
The position views aggregate models as efficient summaries of data with no
direct link to behavioural mechanisms driving individual decision makers.
The models are useful for short-run ex post and ex ante predictions. Beyond
this, any claim of macroeconomics is fraught with a multitude of uncertain
personal decisions concerning the structural model of the economy. In fact,
because of the inherent imprecision of aggregate economic data one even has
to be cautious about ex ante and ex post predictions of large-scale economic
models.
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2 Rational behaviour and economic theory

Appendix A: homothetic utility function

A monotone preference relation ≥ on a choice set X ⊆ RL+ is called homothetic
just in case x ≥ y ⇔ αx ≥ αy for all α > 0. Homothetic preferences can be
represented by a monotonic transformation of a homogeneous of degree 1
utility function. Informally, homothetic preferences mean that the agent
always spends a fixed proportion of his or her income on each good.

Appendix B: satisficing

Satisficing is a choice procedure. Following Rubinstein (1998:12), let A be
some ‘grand’ set of options (or the set of all possible options), O an ordering
of the set A, and S ⊆ A the set of satisfactory alternatives. For any choice
problem C, satisficing involves sequentially examining the alternatives in A
according to the ordering O, until an alternative s is found such that s ∈ S.

Appendix C: Fair’s voting equation

As in the text, let Vit be a variable that is equal to one if voter i votes for
the Democratic candidate in period t and zero if he votes for the Republican
candidate. Also, let

ψi = ξ r
i − ξd

i (A2.1)

qt = β1
Mtd1

(1 + ρ)t−td1
+ β2

Mtd2

(1 + ρ)t−td2
− β3

Mtd1
(1 + ρ)t−tr1 (A2.2)

− β4
Mtr1

(1 + ρ)t−tr2

The expected utility theory implies that:

Vit =
{

1 if qt > ψi
0 if qt < ψi

which means the voter votes for the Democratic candidate if ψi < qt . Now,
recall the aggregation assumptions (A5) and (A6), restated here as:

A5: ψi is evenly distributed across voters in each election between some
numbers a + δt and b + δt , where a < 0 and b > 0. a and b are constant
but δt can vary across elections.

A6: There are an infinite number of voters in each election.
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These assumptions imply that ψ is uniformly distributed between a+δt and
b+δt , where the subscription is now dropped from ψi. The probability-density
function for ψ , denoted by ft (ψ) is

ft (ψ) =
{

1
b−a for a + δt < ψ < b + δt
0 otherwise

(A2.3)

and the cumulative distribution function for ψ , denoted as Ft (ψ), is

Ft (ψ) =

⎧⎪⎨
⎪⎩

0 ψ < a + δt
ψ−a−δt

b−a a + δt < ψ < b + δt
1 ψ > b + δt

(A2.4)

Because of δt , the probability density and distribution functions are different
for each election. Let Vt denote the percentage of the vote that goes to the
Democratic candidate in election t . Since a person votes for the Democrat
candidate if ψi < qt , the probability that he votes for the Democrat candidate
is p(ψ < qt ). The proportion of voters voting for the Democrat candidate in
election t is np(ψ < qt )/n = p(ψ < qt ), which means Vt is equal to the
probability that ψ is less than or equal to qt . Since the probability density
function of ψ is given by (A2.3), Vt is equal to Ft (qt ). Using (A2.4), Vt can be
stated as

Vt = −a
b − a

+ qt
b − a

− δt
b − a

(A2.5)

Substituting qt in (A2.5) yields:

Vt = α0 + β∗
1

Mtd1

(1 + ρ)t−td1
+ β∗

2
Mtd2

(1 + ρ)t−td2

− β∗
3

Mtd1
(1 + ρ)t−tr1 − β∗

4
Mtr1

(1 + ρ)t−tr2 + vt (A2.6)

where

α0 = −a/(b − a) β∗
3 = β3/(b − a)

β∗
1 = β1/(b − a) β∗

4 = β4/(b − a)

β∗
2 = β2/(b − a) vt = −δt/(b − a)

3 ‘Homo economicus’ as an intuitive statisfician (1)

Appendix A: product kernel independence

Notice that although the estimator

f̂ (x, y) = 1

Nh2

N∑
i=1

K
(

x − xi
h

)
K
(

y − yi
h

)
(A3.1)
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uses kernel independence, this does not imply that the variables X and Y
are independently distributed. If the variables were independent, the kernel
estimator would have the form:

f̂ (x, y) =
⎛
⎝ 1

Nhx

N∑
i=1

K
(

x − xi
hx

)⎞⎠×
⎛
⎝ 1

Nhy

N∑
i=1

K
(

y − yi
hy

)⎞⎠ (A3.2)

Appendix B: decomposition (Eubank, 1988)

This result is based on a lemma established in Searle (1971, ch. 2) and men-
tioned in Eubank (1988: 402). Let Z be an n × 1 vector with mean m and
variance-covariance matrix . Suppose W is a symmetric n × n matrix. Then

E(Z′WZ) = m′Wm + tr(W) (A3.3)

where tr(W) is the trace of W.
Now let {(yi, xi), . . . , (yn, xn)} be a vector of observations from

y = f (x) + ε

where y is the vector of responses, f (x) the vector of unknown means, and ε

the vector of zero mean, uncorrelated random errors with common variance
σ2. Further let f̂h(x) be a linear estimator of f (x). The mean average squared
residuals for f̂h(x) is given by

E(ASR(h)) = n−1
n∑

i=1

E{yi − f̂h(xi)}2 (A3.4)

which can be rewritten as

E(ASR(h)) =n−1E(y − W(h)y)2

=n−1E[(y − W(h)y)(y − W(h)y)]
=n−1E[y′(I − W(h))(I − W(h))y]
=n−1E[y′(I − W(h))2y] (A3.5)

where W(h) is the smoother matrix and y the vector of responses. Let
 = σ2I, and note that W(h) is symmetric. Applying (A3.3) to (A3.5) yields
the result:

E(ASR(h)) = n−1f (x)′(I − W(h))2f (x) + n−1σ2tr[(I − W(h))2]
= n−1f (x)′(I − W(h))2f (x) + σ2 + n−1σ2tr[(W(h))2]

− 2n−1σ2tr[W(h)] (A3.6)



244 Appendices

Now consider applying the technique to average mean prediction error:

APE(h) = n−1
n∑

i=1

E(y∗
i − f̂h(xi))

2 (A3.7)

which can be restated as

= σ2 + n−1
∑n

i=1
E(f (xi) − f̂h(xi))

2

= σ2 + n−1E[f (x) − f̂h(x))′(f (x) − f̂h(x))]
= σ2 + n−1E[f (x) − W(h)y)′(f (x) − W(h)y)]
= σ2 + n−1E[f (x) − W(h)(f (x) + ε))′(f (x) − W(h)(f (x) + ε)]
= σ2 + n−1f (x)(I − W(h))2(f (x) + n−1σ2tr[(I − W(h))2] (A3.8)

which is the same as equation (3.28) in the text.

Appendix C: bootstrap estimates of prediction error

Without any loss of generality, let D = {(xi, yi)}Ni=1 be an IID sample from

bivariate distribution π , f̂ be an estimate of the regression function f , and
f̂ (xi), the predicted value of Y at point xi.

Let � = [yi, f̂ (xi)] denote a measure of the distance (error) between the
response yi and prediction f̂ (xi). In regression, � = [yi, f̂ (xi)] is often chosen
to be [yi − f̂ (xi)]2.

Let denote the prediction error for f̂ by

Perr(D, f ) = E∗
π {�[y∗, f̂ (x∗)]} (A3.9)

where the expectation is taken over a new observation (x∗, y∗) from distribu-
tion π . The apparent error rate is

Aerr(D, f̂ ) = 1
N

N∑
i=1

�[yi, f̂ (xi)] (A3.10)

Let Db = {(xb
j , yb

j )}Nj=1 be a bootstrap sample. The simplest bootstrap error
estimator generates B bootstrap samples, estimates the model on each, and
then applies it to the original sample to give B estimates of prediction error:

err(Db, f̂ ) = 1
N

N∑
i=1

�[yi, f̂b(xi)] (A3.11)

In this expression, f̂b(xi) is the predicted outcome at xi based on model f̂b
estimated from bootstrap data set Db. The overall prediction error estimate
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is the average of these B estimates:

Perrboot = 1
B

B∑
b=1

N∑
i=1

�[yi, f̂b(xi)]/N (A3.12)

Perrboot is not a good estimate, since the training and test samples overlap,
causing an underestimation of prediction error Perr(D, f̂ ).

A second way to employ the bootstrap technique is to estimate the bias (or
optimism) of the apparent error rate Aerr(D, f̂ ) as an estimate of prediction
error Perr(D, f̂ ), and obtain an estimate of the error by adding the bias term
to Aerr(D, f̂ ). Let us denote the bias by

ω(f̂ ) = Perr(D, f̂ ) − Aerr(D, f̂ ) (A3.13)

The bootstrap estimate of ω(f̂ ) is given by

ω̂(f̂ ) = 1
B.N

⎧⎨
⎩

B∑
b=1

N∑
i=1

�
[
yi, f̂b(xi)

]
−

B∑
b=1

N∑
i=1

�
[
ybi, f̂b(xbi)

]⎫⎬
⎭ (A3.14)

An alternative bootstrap estimate of the prediction error is then
given by

Perrboot2(D, f̂ ) = Aerr(D, f̂ ) + ω̂(f̂ ) (A3.15)

For each data point (xi, yi) the bootstrap samples can be divided into those
that contain (xi, yi) and those that do not. The prediction error for (xi, yi)

will likely be smaller for a bootstrap sample containing it. It can be shown
that the percentage of points belonging to both the original sample and the
bootstrap sample is approximately 63.2%. A possible way to construct a better
error estimator is to take as test samples only those data points that are not
in Db. That is

Perrboot3(D, f̂ ) = 1
N

N∑
i=1

1
Bi

∑
i∈Ii

�[yi − f̂ (xi)] (A3.16)

where Ii is the set of indices of the bootstrap sample Db that do not contain
(xi, yi), and Bi is the number of such bootstrap samples. Since the samples
used to obtain Perrboot3 have no common elements with the test samples,
they are likely to give rise to a pessimistic estimate of the error. In contrast,
63.2% of the bootstrap samples contain (xi, yi). These samples are likely to
lead to an optimistic estimate of the error. The 0.632 bootstrap estimator is
defined by the weighted average of the apparent error estimate Aerr(D, f̂ ) and
the error estimate Perrboot3:

Perr.632 = 0.368 × Aerr(D, f̂ ) + 0.632 × Perrboot3 (A3.17)
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4 ‘Homo economicus’ as an intuitive statistician (2)

Appendix A: Lindley’s paradox

Lindley’s paradox shows a disagreement between sampling theory and
Bayesian methods, first noted by Jeffreys (1961 [1939]). The paradox illus-
trates that a ‘sharp null hypothesis may be strongly rejected by a standard
sampling … theory test of significance and yet be awarded a high odds by a
Bayesian analysis based on a small prior probability for the null hypothesis
and a diffuse distribution of one’s remaining probability over the alterna-
tives’ (Shafer, 1998: 2257). As an illustration, following Bernardo and Smith
(1994: 394), suppose for data D = {x1, . . . , xn} the set of candidate models are
M1 and M2. The models correspond to the simple and composite hypotheses
about θ in N(xi | θ , φ):

M1 : p1(D) =
n∏

i=1

N(xi | θ0, φ), θ0, φ known;

M2 : p2(D) =
∫ n∏

i=1

N(xi | θ , φ)N(θ |ϕ, η)dθ , φ, ϕ, η known.

Here, φ is taken to be precision, defined as 1/σ2. Since x = N−1∑N
i=1 xi under

both models is a sufficient statistic, the Bayes factor in favour of M1 against
M2 is given by

B12 = N(x | θ0, nφ)∫
N(x | θ , nφ)N(θ | ϕ, η)dθ

=
(

η + nφ

η

)1/2 exp
{
2−1(η−1 + (nφ)−1)−1(x − ϕ)2

}
exp

{
2−1nφ(x − θ0)2

}
For any fixed sample D, B12 → ∞ as the prior precision η in M2 approaches

zero. This drives the posterior probability p(M1 | D) towards unity, regardless
of the data. In many cases, however, the null hypothesis is rejected by the
sampling significance tests. See Lee (1997: 128) for an example.

The general lesson learnt from the paradox is that, in any Bayesian model
comparison, the Bayes factor can depend on the prior distributions specified
for the parameters of each model (Bernardo and Smith, 1994: 394), and the
effect of the priors on the Bayes factor remains even when the sample size
grows (Kass, 1993: 555).

Appendix B: Bayesian normal/chi-squared model

Following Lee (1997: 65–71), consider the case where we have a set of obser-
vations D = {x1, . . . , xn} thought to come from distribution N(θ , φ), with θ
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and φ both unknown. So,

p(x/θ , φ) = (2πφ)−1/2 exp

{
− (x − θ)2

2φ

}
(A4.1)

The likelihood function is given by

�(θ , φ/x) ∝ p(x/θ , φ) ∝ φ−n/2 exp

{
−
∑

(xi − θ)2

2φ

}

= φ−n/2 exp

⎡
⎢⎢⎣−

{∑
(xi − x̄)2 + n(x̄ − θ)2

}
2φ

⎤
⎥⎥⎦

= φ−n/2 exp

[
−{S + n(x̄ − θ)2}

2φ

]
(A4.2)

where

S =
∑

(xi−x)2 (A4.3)

The conjugate prior distribution of φ is (a multiple of) an inverse chi-
squared on v0 degrees of freedom. That is

p(φ) ∝ φ−v0/2−1 exp(−S0/2φ) (A4.4)

The conjugate prior distribution of θ conditional on φ is normal with mean
θ0 and variance φ/n0. Then

p(θ/φ) = (2πφ/n0)−1/2 exp

{
− (θ − θ0)2

2(φ/n0)

}
(A4.5)

The joint prior distribution is thus a normal /chi-squared distribution with
density function:

p(θ , φ) = p(φ)p(θ/φ) ∝ φ−(v0+1)/2−1 exp
[
−1

2
{S0 + n0(θ − θ0)2}/φ

]

= φ−(v0+1)/2−1 exp
{

− 1
2

{Q0(θ)/φ

}
(A4.6)

where

Q0(θ) = n0θ2 − 2(n0θ0)θ + (n0θ2
0 + S0) (A4.7)
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The posterior is

p(θ , φ/D) ∝ p(θ , φ)�(θ , φ/D)

∝ φ−(v0+n+1)/2−1 × exp
[
−1

2
{(S0 + S) + n0(θ − θ0)2 + n(θ − x̄)2}/φ

]

= φ−(v1+1)/2−1 × exp
{
−1

2
{Q1(θ)/φ}

}
(A4.8)

where

v1 = v0 + n (A4.9)

and

Q1(θ) = (S0 + S) + n0(θ − θ0)2 + n(θ − x̄)2

= (n0 + n)θ2 − 2(n0θ0 + nx̄)θ + (n0θ2
0 + nx̄2 + S0 + S)

= S1 + n1(θ − θ1)2

= n1θ2 − 2(n1θ1)θ + (n1θ2
1 + S1) (A4.10)

where

n1 = n0 + n;

θ1 = (n0θ0 + nx̄)/n1; and

S1 = S0 + S + n0θ2
0 + nx̄2 − n1θ2

1

= S0 + S + (n−1
0 + n−1)−1(θ0 − x̄)2 (A4.11)

The posterior for φ is

φ ∼ S1χ−2
v1

(A4.12)

and that for θ given φ is

θ/φ ∼ N(θ1, φ/n) (A4.13)

5 ‘Homo economicus’ as an intuitive statistician (3)

Appendix A: path analysis principles

We state the proofs of the two principles for the case where there are only
three variables X, Y and Z under study. Extension to more general cases is
straightforward. Since for the current purpose there is no interest in the first
moments, each variable is expressed as a deviation from its mean.
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Proof of the first principle:
Let

X = ux

Z = αxzX + uz

Y = αyzZ + uy

(A5.1)

Assumption (i): ux, uz, and uy are uncorrelated.
Assumption (ii): uz and X, and uy and Y are uncorrelated.

Given these assumptions, the objective is to establish that ρxy.z = 0. Mul-
tiply both sides of the equation for Z with X. Taking expectations of both
sides of the equation gives

E(XZ)/E(X2) = ρxz = αxz (A5.2)

Also multiply both sides of the equation for Y with Z. Taking expectations
of both sides of the equation yields

E(YZ)/E(Z2) = ρyz = αyz (A5.3)

Multiplying both sides of the equation for Y with X and taking expectations
of both sides of the equation leads to

E(YZ)/E(X2) = ρxy = αxzαyz (A5.4)

Therefore

ρxy = ρxzρyz

Finally, recall the expression for partial correlation:

ρxy.z = (ρxy − ρxzρyz)/(1 − ρ2
xz)1/2(1 − σ2

yz
)1/2 (A5.5)

Since the numerator is zero (because ρxy = ρxzρyz), ρxy.z = 0.
The proof for the second principle is similar. We replace (A5.1) with

Z = uz

X = αxzZ + ux (A5.6)

Y = αyzZ + uy

and compute ρxz, ρyz, and ρxy .
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Appendix B: the conditional independence properties

Some of the properties of conditional independence, studied by Dawid
(1979), include:

(1) Symmetry: (X⊥Y/Z) ⇒ (Y⊥X/Z);
(2) Decomposition: (X⊥YW/Z) ⇒ (X⊥Y/Z);
(3) Weak union: (X⊥YW/Z) ⇒ (X⊥Y/ZW);
(4) Contraction: (X⊥Y/Z)&(X⊥W/ZY) ⇒ (X⊥YW/Z);
(5) Intersection: (X⊥W/ZY)&(X⊥WY/ZW) ⇒ (X⊥YW/Z).

For a detailed discussion of these properties see Pearl (1988: 82–3).

Appendix C: The common cause principle

Consider a DAG G true of variables V = {X1, . . . , Xn}. Define Xc as a common
cause of Xa and Xb in V just in case there is a directed path from Xc to Xa
and a directed path from Xc to Xb. Let C denote the set of common causes
of Xa and Xb in the V (the proof to follow is based on Arntzenius, 1999).

Claim: Suppose Xa and Xb are conditionalized on C. If Xa is not a cause
of Xb and Xb is not a cause of Xa, then every path between Xa and Xb in
G is d-separated (inactive or blocked).

For any path P between Xa and Xb, either (i) P departs from Xa (i.e. is out
of Xa) or (ii) it arrives at Xa (i.e. is into Xa).

Case (i): Suppose P is a path out of Xa. Since Xa is not a cause of Xb, the path
cannot be a directed path, and therefore along the way to Xb it must reach
a collider Xd . Since neither Xd nor any of its descendent is in C, Xd blocks
(d-separates) the path between Xa and Xb.

Case (ii): Suppose P is a path into Xa. Since Xb is not a cause of Xa, the path
cannot be a directed path, and therefore somewhere along the way it must
change direction. Starting from Xa and moving along the path towards Xb,
there are two general possibilities:
(a): P changes direction at a variable Xc from which there is a directed path

into Xb. In that case, Xc is a common cause of Xa and Xb and in C,
d-separating the path between Xa and Xb.

(b): Suppose the path from Xc to Xb is not a directed path. In that case, it
must contain a collider Xd , as in Figure A5.1

Xa Xc Xd Xb

Figure A5.1
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Xa Xc Xd Xi Xb

Figure A5.2

Xa Xj Xd XiXc Xb

Figure A5.3

To take up this possibility, it is enough to concentrate on path P∗ between
Xd and Xb. As before, these paths can be of two types. Either they are into
Xd or they are out of Xd .

For any path P∗ that is into Xd , the whole path between Xa and Xb, created
by joining the sub-paths between Xa and Xd , and Xd and Xb, is inactive, as
neither Xd is in C nor a descendant of it.

For any path P∗ between Xd and Xb which is out of Xd there are also two
possibilities. Either it changes direction at some points between Xd and Xb or
it forms a directed path towards Xb. If it forms a directed path and intersects
with no node between Xc and Xa as shown in Figure A5.2, node Xc will be
a common cause and is included in C. The whole path between Xa and Xb
will be d-separated.

On the other hand, if the directed path has a common node Xj with the
path between Xa and Xc , there will then be a directed path from Xj to Xd . In
that case, Xj will be a common cause of Xa and Xb, as shown in Figure A5.3.

Since Xj is in C, the whole path between Xa and Xb, formed by joining
the (sub) path from Xa to Xj with the path from Xj to Xb, is d-separated.
This exhausts all the possibilities that matter, and therefore the desired
conclusion.

Appendix D: the use of faithfulness in traditional methods

Variants of the faithfulness condition underlie traditional approaches to
causal inference. Suppes (1970) defines an event C∗

t to be a prima facie cause
of event Et if and only if (i) t∗ refers to a time point prior to t , (ii) C∗

t has
positive probability, and (iii) and C∗

t is positively relevant to Et , that is,
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P(Et/C∗
t ) > P(Et ). He then gives several conditions to distinguish genuine

causes of Et from those events spuriously related to Et . On this account, the
events that could be causes of Et are those that are correlated with it; an
event C∗

t cannot be a cause of Et if it is statistically unrelated with Et . This is
nothing but the faithfulness condition.

As another example, consider Granger’s theory of causation (Granger,
1980b). Let �t denote the complete history of the world up to and including
discrete time t , excluding deterministic relations among the components of
this history. Granger suggests that variable Xt causes Yt+1 if

P(Yt+1 ∈ A/�t ) �= P(Yt+1 ∈ A/�t − Xt )

for some set A. He operationalizes this definition by replacing �t with a
limited information set It that includes information on the history of the
variables considered, i.e. It = (Xt , Yt , Zt , . . .), and relativizes the definition of
causation with respect to It . Thus, he takes a confirmation of the hypothesis

P(Yt+1 ∈ A/It ) = P(Yt+1 ∈ A/It − Xt )

by the data as the evidence that Xt does not causes Yt+1. The inference from
the independence of Yt+1 and Xt conditional on the information set It − Xt
to the denial of a causal link from Xt to Yt+1 is a special case of faithfulness
(Robins, 2003: 89).

Appendix E: the DAG inversion rule

Let G be any DAG containing edge X → Y , and G∗ be a graph the same
as G except that edge X → Y is replaced with X ← Y . Then, G∗ is a DAG
equivalent to G if and only if every parent of X is a parent of Y , and every
parent of Y , except X, is a parent of Y (Chickering, 1995).

Part I (if part): Suppose G∗ is not a DAG (i.e. contains a cycle). Since the
only difference between G and G∗ is that X → Y is replaced with X ← Y ,
and since G is a DAG, there has to be a directed path from X to a variable Z
which is a parent of Y . This means Y has a parent in G which is not a parent
of X, contrary to the assumption. So, G∗ is a DAG.

Now suppose G and G∗ are not equivalent. By theorem 4.1 in the text, either
G or G∗contains an unshielded collider that is not present in the other. Since
the only difference between G and G∗ is that X → Y in G∗ is replaced with
X ← Y , the unshielded collider ought to be formed from X ← Y and X ← Z,
while Z is not a parent of Y . This implies that X in G has a parent that is not
a parent of Y , contradicting the assumption. The same argument applies if G
contains an unshielded collider that is not in G∗.

Part II (only if): Suppose X has a parent in G that is not a parent of Y .
Substituting X → Y with X ← Y creates an unshielded collider in G∗. Alter-
natively, suppose Y has a parent that is not a parent of X. Substituting X → Y
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with X ← Y destroys an unshielded collider which is in G. In either case, G
and G∗ are not equivalent.

Appendix F: the semi-Markovian model equivalence theorem

Theorem 4.2: Let G(O, L) be a DAG, X and Y in O, and edge X → Y hold in
G(O, L). Let G∗(O, L∗) be the same as G(O, L) except that X → Y is replaced
in G∗(O, L∗) with bidirected edge X ↔ Y . (i) G(O, L) and G∗(O, L∗) are
Markovian-equivalent over O if for every variable Z in O that is a parent
of X in G, Z is also a parent of Y . (ii) If X ↔ Y is in G(O, L), the bidirected
edge can be replaced with X → Y when every parent of X in G∗(O, L∗) is
also a parent of Y .

The proof of this theorem follows from a theorem established in Spirtes
and Verma (1992). Several graph-theoretic notions are needed to introduce
the theorem:

Inducing path relative to O: If G(O, L) is a DAG over variables V , O is a
recorded subset of V containing X and Y , where X �= Y , then an undirected
path U between X and Y is an inducing path relative to O if and only if every
member of O on U except the end points (i.e. X and Y) is a collider on U ,
and every collider on U is an ancestor of either X or Y .
Inducing path graph over O: G∗ is an inducing path graph over O for DAG
G(O, L) if and only if there is an edge between variables X and Y with an
arrow directed at Y if and only if X and Y are in O and there is an inducing
path in G(O, L) between X and Y relative to O that is into Y .
Partially oriented inducing path graph over O: Recall when causal suf-
ficiency is not assumed, the process of inference starts by constructing a
skeleton over O. For every pair X and Y in O, it is checked whether X and Y
are independent. If so, the edge between them is removed. It is then searched
if there is any subset Z of O\{X, Y} such that conditional on Z, X and Y
are independent. If so, the edge between X and Y is removed. The process
is repeated for every pair of variables in O. The outcome is an undirected
graph. Every endpoint between X −Y admits two possibilities, i.e. ‘-’ and ‘>’.
To make these possibilities explicit, let us represent the undirected edge X−Y
between every connected pair X and Y by Xo − oY .

Next, we check every triple (X, Y , Z). If there is an edge between X and
Y , an edge between Y and Z, and no edge between X and Z, we replace
Xo − oYo − oZ with Xo → Y ← oZ.

Then, for every −oYo−, it is checked if there can be a graph consistent
with the data such that both ‘o’ are replaced with arrows, i.e. → Y ←. If no
such graph is consistent with the data, −oYo−, is replaced with −oYo−. The
resulting graphical object represents all that can be learnt from the indepen-
dence data about the underlying causal structure. The graph is referred to as
a partially oriented inducing path graph over O.
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Using these preliminaries, Spirtes and Verma establish the following:

Theorem (Spirtes and Verma, 1992): If G is a DAG over V , G∗ is a DAG
over V*, O is a subset of V and of V*, then G and G∗ have the same
d-separation relations among the variables in O if and only if they have
the same partially oriented inducing path graph over O.

Given this theorem, the proof of theorem 4.2 is straightforward:
(i) Suppose G(O, L) and G∗(O, L∗) are defined as in the first part of

theorem 4.2 but are not Markovian-equivalent over O. By the above theo-
rem, G∗(O, L∗) has a partially oriented inducing path graph over O different
from that of G(O, L). This can only happen if in G(O, L) X has a parent Z
in O that is not a parent of Y , and Z and Y are d-separated conditional on
X. In that case, G∗(O, L∗) includes subgraph Z → X ← L → Y that makes
Z and Y dependent conditional on X. But, every parent of X in O is by
assumption a parent of Y in G(O, L). Therefore, both DAGs have the same
partially oriented inducing path graph over O, and are Markovian-equivalent
over O.

(ii) Suppose G(O, L) and G∗(O, L∗) are as defined in the second part of the
theorem. That is, they just differ in that X ↔ Y is in G(O, L) but X → Y in
G∗(O, L∗). If G(O, L) and G∗(O, L∗) are not Markovian-equivalent, it follows
that G(O, L) and G∗(O, L∗) produce different partially oriented inducing path
graphs over O. Again, this can only happen if X in G∗(O, L∗) has a parent Z
in O that is not a parent of Y , and Z and Y conditional on X are independent
(d-separated). By assumption, every parent of X in O is also a parent of Y in
G∗(O, L∗). Both DAGs therefore generate the same partially oriented inducing
path graph over O and are Markovian-equivalent over O.

In either case, the condition given in the lemma is sufficient for the
equivalence of G(O, L) and G∗(O, L∗).

Appendix G: the limited block-recursive theorem

A proof of theorem 4.3 follows from a proposition established in Raykov and
Penev (1999: 238–43). We outline the proof to explain how it can be checked
whether two models are equivalent. Several technical notions are needed to
state the proposition:

Let M1 and M2 stand for two models, with parameter spaces � and �∗
respectively. Call g : � → �∗ a parameter transformation (mapping) if for
each θ ∈ � there is an θ∗ ∈ �∗ such that θ is mapped into θ∗ by g; that is,
θ∗ = g(θ).

The mapping g : � → �∗ is called surjective if for each θ∗ ∈ �∗ there exists
an θ ∈ � such that θ∗ is mapped into θ by g. A surjective transformation is
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an ‘onto’ mapping. And, M1 and M2 are said to satisfy
∑

-condition if, for all
θ ∈ �, there is a g such that

∑
1

(θ) =
∑

2
[g(θ)] (A5.7)

where
∑

1 (θ) is the covariance matrix implied by the parameter vector θ for
model M1 and

∑
2 [g(θ)] is the derived covariance matrix for model M2.

Raykov and Penev’s proposition (1999: 206) can now be stated as follows:

General Model Equivalence Proposition: Two models M1 and M2 are
equivalent if and only if they fulfil the

∑
-condition with a surjective

transformation g : � → �∗ relating their parameters. (Raykov and Penev,
1999: 206)

Informally, two models are equivalent if a transformation of the parameters
of one of the models can be found that preserves the model’s covariance
matrix, and covers the whole parameter space of the other.

The proof of theorem 4.3 involves establishing that there is a transforma-
tion g such that: (i) the model before applying the theorem, denoted by M1,
and the model obtained by applying the theorem, denoted by M2, satisfy
the

∑
-condition; and (ii) g is surjective. To state the proof, some further

notations and preliminaries are needed:

1. Notations:
M1: the model before the replacement of X → Y with bidirected edge X ↔ Y ;
M2: the model after the replacement of X ↔ Y for X → Y ;
P = (P1, . . . , Pm)′: the vector of common explanatory variables (parents) of X
and Y ;
Q = (Q1, . . . , Qn)′: the vector of additional explanatory variables (parents) of
Y (m, n ≥ 0).

Every limited block-recursive model can in principle be decomposed into
three blocks. They are the preceding block, focal block, and succeeding block.
So, M1 can be decomposed into a preceding block (PB) with variables Vp,
a focal block (FB) with Vf (≡ (X, Y)), and a succeeding block (SB) with Vs.
Several assumptions are made about M1:

(i) The relations across Vp, Vf and Vs are recursive.
(ii) The relations within the focal block Vf are only recursive.
(iii) M1 is identified.
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Thus, M1 can be stated as

Vp = AppVp + Ep

X = a′P + u,

Y = b′P + c′Q + λX + v

= (b′ + λ.a′)P + c′Q + (λu + v), λ �= 0

Vs = ApsVp + KVf + LVs + Es

(A5.8)

where

• App is a p × p matrix containing all regression coefficients in the PB;
• a and b are m × 1 vectors containing the partial regression coefficients of

X and Y upon the common explanatory variables of X and Y ;
• c is an n × 1 vector containing the partial regression coefficients of Y on

its additional explanatory variables;
• Aps is the coefficient matrix relating the SB-variables to the PB variables;
• K contains two columns, representing the coefficients of X and Y , relating

the variables in the succeeding block to X and Y ;
• L is a coefficient matrix relating the SB-variables to each other; and
• u and v are uncorrelated.

Model M2, obtained by replacing X ↔ Y for X → Y , is defined as

Vp = AppVp + Ep,

X = a′P + u,

Y = B′P + c′Q + w

Vs = ApsVp + KVf + LVs + Es

(A5.9)

u and w are no longer assumed to be uncorrelated. Note that the replacement
leaves all the equations except the one for Y unchanged, and in this equation
nothing has changed regarding the variables in Q, which do not enter into
the equation for X. Before showing that M1 and M2 are equivalent, it is useful
to state some rules for calculating the required covariance matrices.

2. Simple rules of covariance algebra (Bollen, 1989):

(I) For any random variable X with finite second-order moment,

Cov(X, X) = Var(X)
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(II) For any random variables X, Y , Z and U with finite second-order
moments, and any real numbers a, b, c, and d:

Cov(aX + bY , cZ + dU) = acCov(X, Z) + adCov(X, U) + bcCov(Y , Z)

+ bdCov(Y , U)

To establish that M1 and M2 are equivalent it must be shown that there is
a surjective transformation vector function g, mapping every element of �

onto �∗, and it satisfies the
∑

-condition. The replacement of X → Y with
X ↔ Y leaves all the elements of the parameter vector θ for M1 unchanged,
except (b1, . . . , bm), λ, and σvv , where σvv is the variance of v. One then only
needs to find a surjective mapping g for these parameters. For the rest of
the elements in θ , the required mappings g are simply identity functions. To
define the transformation g for the parameters changed by the replacement,
the parameters of M1 are held as fixed to define the corresponding parameters
of M2 as

B1 = b1 + λa1

B2 = b2 + λa2

. . .

Bm = bm + λam

σuw = λσuu

σww = λ2σuu + σvv

(A5.10)

With g thus defined, it remains to show that M1 and M2 satisfy the∑
-condition and that g is surjective. For model M1, let

∑1
pp the covariance matrix of the preceding block;∑1
ff the covariance matrix of the focal block;∑1
ss the covariance matrix of the succeeding block;∑1
pf the covariance matrix of the variables in preceding and focal

block;∑1
ps the covariance matrix of the variables in preceding and succeeding

block;∑1
fs the covariance matrix of the variables in the focal and succeeding

block.
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Table A5.1 Model 1

Vp Vf Vs

Vp
∑1

pp(θ)

Vf
∑1

fp(θ)
∑1

ff (θ)

Vs
∑1

sp(θ)
∑1

sf (θ)
∑1

ss(θ)

The covariance matrix implied by model M1 for parameter vector θ can be
partitioned as in Table A5.1:

Similarly, the covariance matrix implied by model M2 for θ∗ = g(θ) can be
partitioned as in Table A5.2:

Table A5.2 Model 2

Vp Vf Vs

Vp
∑2

pp[g(θ)]
Vf

∑2
fp[g(θ)] ∑1

ff [g(θ)]
Vs

∑2
sp[g(θ)] ∑2

sf [g(θ)] ∑2
ss[g(θ)]

To establish the
∑

-condition, it must be shown that

∑1

ij
(θ) =

∑2

ij
[g(θ)], (i, j = s, f , p) (A5.11)

The transformation g : � → �∗, defined by equation (A5.10) leaves
∑1

pp,∑1
ss,
∑1

fs, and
∑1

ps unchanged. For these matrices, equation (A5.11) is trivially
true. It remains to show that

(i)
∑1

ff (θ) =∑2
ff [g(θ)]

(ii)
∑1

fp(θ) =∑2
fp[g(θ)]

The process of establishing (i) and (ii) is similar. So, we describe the steps in
establishing (ii). Let Vpi be any variable from the preceding block Vp. Since
the equation for X in both models is the same, the covariance of X with Vpi
remains unchanged by g. To establish (ii), it is therefore enough to show that
the covariance of Y with each Vpi in Vp satisfies the

∑
-condition.

Let App(i) be the row of coefficients in the coefficient matrix App relating
Vpi to its predictors. Using the covariance rules (I) and (II), for any Vpi in VP
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in model M1 we have

Cov(Y , Vpi) = App(i)Cov(Vp, P)(b′ + λ.a′) + App(i)Cov(Vp, Q)c (A5.12)

Applying transformation g, defined by (A5.10), to the right-hand side of this
equation yields:

App(i)Cov(Vp, P)B + App(i)Cov(Vp, Q)c (A5.13)

Applying the covariance rules (I) and (II) to model M2 to compute the
covariance of Y with any variable Vpi in VP yields:

App(i)Cov(Vp, P)B + App(i)Cov(Vp, Q)c (A5.14)

which is identical with (A5.13). So, condition (ii) holds. A similar reason-
ing can be used to establish (i). The two models satisfy the

∑
-condition. It

remains to show that g is surjective.
Recall in equation (A5.10), we hold the parameters of M1 fixed to define

the parameters of M2. To establish the surjectivity of g, the parameters of M2
are held fixed in order to define the parameters of M1, which yields:

b1 = B1 − (σuw/σuu)a1

b2 = B2 − (σuw/σuu)a2

. . .

bm = Bm − (σuw/σuu)am

σvv = σww − (σuw/σuu)2σuu

λ = σuw/σuu

(A5.15)

The surjectivity of g is established by deriving the covariance Cov(Y , Vpi)

of each variable Vpi in VP of M2 using rules (I) and (II), restating the result
using equation (A5.15), and checking that the result is the same as the one
obtained by applying the rules to M1 to compute Cov(Y , Vpi) for each Vpi in
VP . This will show that the two models are equivalent.

The proof of the second part of the theorem follows a similar path, with the
difference that we start with M2. To define g, the parameters of M2 are held
fixed and the parameters of M1 are accordingly derived (as done in (A5.15)). It
is then shown that the implied covariance matrices are the same. Raykov and
Penev’s method is quite general. It can be used for checking the Markovian
equivalence of any two structural models.

6 The economy as an interactive system

Appendix A: Clarida’s life-cycle model

As in the text, we state the simplest possible case of Clarida’s model, which
is also discussed in Deaton (1992). The case is built around an economy with
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the following features:
Assumption 1: Each worker lives for three periods, working in the first two
periods of his or her life and retiring in the third. It is assumed that only one
person is born in each period.
Assumption 2: In period t , each person receives an identical amount of
labour income Yt while working, but zero during retirement. Consumption
during retirement is financed from assets accumulated during the working
periods.
Assumptions 3: Yt follows a random walk with drift

Yt = g + Yt−1 + εt (A6.1)

The per capita labour income also follows a random walk:

2Yt
3

= 2g
3

+ 2Yt−1
3

+ 2εt
3

Assumption 4: Interest rate is zero, and each person decides to leave no asset
behind.
Assumption 5: Everyone is a pure permanent income life-cycler.

Note that labour income received by each individual does not follow a ran-
dom walk; by assumption labour income is zero with probability one during
retirement. Assuming rational expectations, each individual best forecast of
labour income during the next working period is the current labour income
plus the cumulative drift, i.e. g + Y1.

Thus, a person who is born in period t consumes 2Yt + g/3 during his first
working period and 2Yt +g/3+εt+1/2 during the second working period and
retirement period.

Table A6.1 below shows the individual consumptions during the first five
periods of the life of the economy.

Now consider total consumption change between periods 4 and 3:

�C4 = C4 − C3 = 2Y4 + g
3

+ ε4
2

− 2Y1 + g
3

− ε2
2

(A6.2)

Table A6.1

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

2Y1+g
3

2Y1+g
3 + ε2

2
2Y1+g

3 + ε2
2 Dead

2Y2+g
3

2Y2+g
3 + ε3

2
2Y2+g

3 + ε3
2 Dead

2Y3+g
3

2Y3+g
3 + ε4

2
2Y3+g

3 + ε4
2 Dead

2Y4+g
3

2Y4+g
3 + ε5

2 …
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Writing Y4 in terms of Y1 yields:

Y4 = 3g + Y1 + ε2 + ε3 + ε4 (A6.3)

Substituting (A6.3) for Y4 in (A6.2) yields:

�C4 = 2g + 7ε4
6

+ 2ε3
3

+ ε2
6

(A6.4)

If we consider total consumption change at time t in general, rather than at
period 4, total consumption change for the economy is given by

�Ct = 2g + 7εt
6

+ 2εt−1
3

+ εt−2
6

(A6.5)

which is of the same form as the result stated in the text. Average consump-
tion change follows:

�Ct = 2
3

g + 7
18

εt + 2
9

εt−1 + εt−2
18

(A6.6)

Appendix B: Pischke’s incomplete information model

The following assumptions define Pischke’s economy.
Assumption I: Average income follows a random walk with drift.

Let Yt stand for average income and g for the drift term. Then, average
income is given by

Yt = g + Yt−1 + εt (A6.7)

Assumption II: Each consumer income is the average income plus an
idiosyncratic component that is purely transitory, represented by a white
noise:

Yit = Yt + uit (A6.8)

The first difference of individual income is given by

�Yit = Yt + uit − Yt−1 − uit−1

�Yit = g + Yt−1 + εt + uit − Yt−1 − uit−1 (A6.9)

�Yit = g + εt + uit − uit−1

Assumption III: Each person only observes the sum of the contemporaneous
macro- and private shocks and cannot separate them. He only estimates the
moving average process:

�Yit = g + ηit − ληit−1 (A6.10)
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Assumption IV: Every household satisfies the infinite-life permanent income
model (Hall’s model).

Individual consumption, therefore, follows a random walk:

�Cit =
(

1 − λ

1 + r

)
ηit (A6.11)

The change in average consumption Ct is obtained by averaging over
(A6.11):

�Ct =
(

1 − λ

1 + r

)
ηt (A6.12)

Now, since the real first difference of individual income is

�Yit = g + εt + uit + uit−1

and

�Yt =
∑

�Yit + g + εt +
∑

uit/N +
∑

uit−1/N

we have

�Yt = g + εt (A6.13)

(because uit is a white noise,
∑

uit/N and
∑

uit−1/N are equal to zero; in
other words, the idiosyncratic components by assumption have zero means
over the population).

On the other hand, since the derived first difference of individual
income is

�Yit = g + ηit + ληit−1

and

�Yt =
∑

�Yit + g +
∑

ηit +
∑

ληit−1/N

we have

�Yt = g + ηt − ληt−1 (A6.14)

From (A6.13) and (A6.14) we have

εt = ηt − ληt−1

and

ηt = εt + ληt−1 (A6.15)
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Combining (A6.12) and (A6.15) yields:

�Ct =
(

1 − λ

1 + r

)
(εt + ληt−1)

�Ct =
(

1 − λ

1 + r

)
εt +

(
1 − λ

1 + r

)
ληt−1

�Ct =
(

1 − λ

1 + r

)
ληt−1 +

(
1 − λ

1 + r

)
εt

From (A6.12) we have

�Ct = λ�Ct−1 +
(

1 − λ

1 + r

)
εt

which yields the average consumption function as

Ct = (λ + 1)Ct−1 − λCt−2 +
(

1 + λ

1 + r

)
εt (A6.16)

Appendix C: Lau’s theorem (1982)

The individual functions fi(Xit , Ait , Pt ) are of the form:

fi(Xit , Ait , Pt ) = f (Xit , Ait , Pt ) + ki(Pt ) (A6.17)

only if the index functions gl(.) are symmetric.
Suppose gl(.) are not symmetric. In that case, exchanging the income Xrt

and attributes Art of agent r with those of agent s changes the value of gl(.).
Hence∑

fi(Xit , Ait , Pt ) �=
∑

i �=s,i �=r

fi(Xit , Ait , Pt ) + fs(Xrt , Art , Pt )

+ fr (Xst , Ast , Pt ) (A6.18)

After eliminating the identical terms and reordering, we obtain:

fs(Xrt , Art , Pt ) − fr (Xrt , Art , Pt )

�= fr (Xst , Ast , Pt ) − fs(Xst , Ast , Pt ) (A6.19)

which only holds if the individual functions cannot be stated as (A6.17).
Therefore, the index functions gl(.) must be symmetric for (A6.17) to hold.

Appendix D: aggregation over heterogeneous time series

Suppose that X1t and X2t are a pair of series generated by

X1t = α1X1t−1 + ε1t (A6.20a)

X2t = α2X2t−1 + ε2t (A6.20b)
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where ε1t and ε2t are a pair of independent, zero-mean white-noise series.
Equation system (A6.20) can be written as

(1 − α1L)X1t = ε1t (A6.21a)

(1 − α2L)X2t = ε2t (A6.21b)

Or

X1t = ε1t/(1 − α1L) (A6.22a)

X2t = ε2t/(1 − α2L) (A6.22b)

The polynomials are usually written as αi(L) but for the sake of simplicity is
written here as αiL. Let Xt = X1t + X2t . It follows that

(1 − α1L)Xt = (1 − α1L)X1t + (1 − α1L)X2t

(1 − α2L)(1 − α1L)Xt = (1 − α2L)(1 − α1L)X1t

+ (1 − α2L)(1 − α1L)X2t (A6.23)

Using (A6.22a) and (A6.22b), aggregate equation (A6.23) can be restated as

(1 − α2L)(1 − α1L)Xt = (1 − α2L)ε1t + (1 − α1L)ε2t (A6.24)

Based on the definition of ε1t and ε2t , the right-hand side of (A6.24) is
equivalent to

(1 − αL)εt = (1 − α2L)ε1t + (1 − α1L)ε2t (A6.25)

Combining (A6.24) and (A6.25) gives the desired result:

(1 − α2L)(1 − α1L)Xt = (1 − αL)εt (A6.26)

which is an ARMA (2,1). This exercise is an example of a general theorem
proved by Granger and Morris (1976) and Box and Jenkins (1976).

Appendix E: Lippi’s simple economy

As in Lippi (1988), we work with the two-consumer economy. Let Yit denote
the consumption of the ith agent and Xit the income of the ith agent, where
i = 1, 2. Suppose individual consumptions follow the static rules:{

Y1t = �1X1t
Y2t = �2X2t

�1 �= �2 (A6.27)

while the process-generating individual incomes are given by{
X1t = α1X1t−1 + v1t
X2t = α2X2t−1 + v2t

α1 �= α2 (A6.28)
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vit s are white-noise process. Also, for the sake of simplicity, assume that v1t
and v2t are independent. Aggregate consumption Yt and aggregate income
Xt are defined as{

Yt = Y1t + Y2t
Xt = X1t + X2t

(A6.29)

The concern is to infer aggregate consumption function Yt = f (Xt ).
Equation (A6.28) can be restated as

{
(1 − α1L)X1t = v1t
(1 − α2L)X2t = v2t

(A6.30)

where αiL s are polynomials in the lag operator L and αi(0) = 1. Then

(
X1t
X2t

)
=
( 1

1−α1L 0

0 1
1−α2L

) (
v1t
v2t

)
(A6.31)

From (A6.27) and (A6.29), for vector (Yt , Xt ) we have(
Yt
Xt

)
=
(

�1 �2
1 1

) (
X1t
X2t

)
(A6.32)

Combining (A6.31) and (A6.32) yields

(
Yt
Xt

)
=
(

�1 �2
1 1

) ( 1
1−α1L 0

0 1
1−α2L

) (
v1t
v2t

)
(A6.33)

Represent (A6.33) as

(
Yt
Xt

)
=
(

�1 �2
1 1

) ( 1
1−α1L 0

0 1
1−α2L

)

×
(

�1 �2
1 1

)−1 (
�1 �2
1 1

) (
v1t
v2t

)
(A6.34)

And let

(
W1t
W2t

)
=
(

�1 �2
1 1

) (
v1t
v2t

)

Like vit , Wit are also white-noise processes. Then, we have

(
Yt
Xt

)
=
(

�1
1−α1L

�2
1−α2L

1
1−α1L

1
1−α2L

) (
1

�1−�2

−�2
�1−�2−1

�1−�2
1

�1−�2

) (
W1t
W2t

)
(A6.35)
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To simplify matters, let

A = (1 − α1L)

B = (1 − α2L)

(A6.36)C = �1 − �2

E = ABC.

Equation system (A6.35) can be written as

(
Yt
Xt

)
=
(

�1B−�2A
E

(A−B)�1�2
E

B−A
E

A�1−B�2
E

) (
W1t
W2t

)
(A6.37)

Still to simplify further the necessary calculations, let the first matrix on the
right-hand side of (A6.37) be rewritten as

(
F G
H I

)

and call it M . Multiplying both sides of (A6.37) by the adjoint of M yields:

(
I −G

−H F

) (
Yt
Xt

)
=
(

FI − GH 0
0 FI − GH

) (
W1t
W2t

)
(A6.38)

From (A6.38) we have

{−IYt − GXt = (FI − GH)W1t
−HYt + FXt = (FI − GH)W2t

(A6.39)

Multiply the second equation in (A6.39) by a scalar k and subtract it from the
first one. This yields:

(I + kH)Yt = (G + kF)Xt + (FI − GH)(W1t − kW2t ) (A6.40)

After substituting the definitions of F, G, H, and I into (A6.40), we need only
some elementary algebra to derive the equation:

(
1 − �1α1L + �2α2L

�1 − �2

)
Yt =

(
k − �1�2α1L + �2�1α2L

�1 − �2

)
Xt + ut

(A6.41)
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where

�1 = �1 − k

�2 = k − �2

ut = W1t − kW2t

k = Cov(W1t , W2t )

Var(W2t )
= Cov(�1t v1t + �2v2t , v1t + v2t )

Var(v1t + v2t )

The aggregate consumption function of the economy is given by

Yt =
(

�1α1L + �2α2L
�1 − �2

)
Yt−1 + kXt −

(
�1�2α1L + �2�1α2L

�1 − �2

)
Xt−1 + ut

(A6.42)

Appendix F: the SMD theorem

There are several variants of the SMD theorem available. For a simple state-
ment, consider an exchange economy with a finite number l of goods and N
consumers. Define the following notations:

e(a): a positive bundle of initial endowment of all goods for individual a;
φ(a, p): a demand function for individual a derived from a strictly convex

monotone utility function, with P being the price vector;
Z(a, p) = φ(a, p) − e(a) : the excess demand for individual a;
Z(p) =∑Z(a, p) : the aggregate excess demand function of the economy

obtained by summing over the excess demands of the N individ-
uals.

For this economy, the SMD theorem reads as follows (Kirman, 1989: 129):

Theorem: Given a continuous function f : p → Rl satisfying Walras’ Law,
i.e. pf (p) = 0 for all p in P, then for any positive ε there is an economy ε

with consumers with strictly convex monotone preferences such that

f (p) = Zε(p), for all p in �ε

Here Zε(.) is the excess demand of the economy ε and �ε is the price simplex
with prices above ε, i.e.{

p|
∑

i
pi = 1 and pi ≤ 0 for all i

}

In other words, for any arbitrary function f : �ε → Rl satisfying the Walras
Law, there is an economy with N consumers with strictly convex monotone
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preferences whose excess demand function for prices in �ε coincides with
the arbitrary function. Thus the aggregate excess demand function of an
economy of N consumers with strictly convex monotone preferences can be
any arbitrary continuous function satisfying the Walras Law. The standard
restrictions on preferences do not restrict the class of functions to which the
excess demand function belongs.



Notes

1 Theoretical versus Atheoretical Macroeconomics
1. The following view of the economy is borrowed from Granger (1990b).
2. See Janssen (1993: ch. 1) for various notions of macroeconomics.
3. For the history of the Cowles Commission Foundation see Darnell and Evans

(1990), and Epstein (1987).
4. We adopt the usual convention of denoting random variables by upper-case let-

ters, and their values by the corresponding lower-case letters. Likewise, we denote
random vectors by bold upper-case letters and their values by the corresponding
bold lower-case letters.

5. See Hurwicz (1962) for the connection between causal and structural relations.
6. A necessary requirement for this exercise is that ε1 be independent of P, ε2

independent of Q, and ε1 independent of ε2.
7. For further discussion see Goldberger (1992), Pearl (2000), and Woodward (2003).
8. The description to follow draws on Lucas (1976) and Cooley and LeRoy (1984).
9. Zt may be the same as Yt .

10. Fair (1987: 271) defines various notions of predictions.
11. This is true if no other sufficient set of causes is present.
12. See Cartwright (1989) for a full discussion.
13. Woodward (2003) and Pearl (2000) argue that the orthogonality condition is

neither necessary nor sufficient for the causal interpretation of a regression
equation.

14. The ordinary least squares regression coefficient of X is given by E(YX)/E(XX). If
we define β as equal to E(YX)/E(XX), we have

ε = Y − βX

Xε = XY − β(XX)

E(Xε) = E(YX) − βE(XX) = 0

15. This example is borrowed with some changes from Spirtes et al. (1998).
16. The phrase inside the bracket is added.
17. See Koopmans (1971 [1949]: 169) for an example.
18. A thorough analysis of the identification problem is given in Manski (1995).
19. A similar view regarding the obviousness of the laws of economic behaviour is

explicit in Mill’s Principles of Political Economy, where he writes, ‘Happily, there is
nothing in the laws of Value which remains for the present writer or any future
writer to clear up; the theory of the subject is complete’ (1990 [1848]:420).

20. Italics are added. See also the same article, footnote 11.
21. For a history of atheoretical macroeconomics see Simkins (1999).
22. Cartwright (1989), Epstein (1987) and Leamer (1985) suggest a similar inter-

pretation.
23. Similar remarks are found in Sims (1996: 113).
24. Before Sims, Liu (1960) had argued that no variable could be regarded as exogenous

in macroeconomics.

269
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25. This follows from the assumption that the present does not influence the past, and
the fact that all the variables on the right-hand side of (1.15) are lagged except for
ut .

26. A Wold causal chain is a system of equations in which the shock to Y1 contempo-
raneously affects Y2, Y3, . . . , Yn while the shock to Y2 contemporaneously affects
Y3, Y4, . . . , Yn but influences Y1 with a lag, and so on.

27. Swanson and Granger’s approach has been extended by Demiralp and Hoover
(2003).

28. In (1.17), each error, except for mt , is a linear function of the innovation terms
appearing earlier in the model and a stochastic component.

29. See Hoover (2001: ch. 5) for a discussion of Hayek’s position.

2 Rational Behaviour and Economic Theory
1. See Sen (1987) for different notions of behavioural rationality, and historical

references.
2. For a discussion of Savage’s theory see Fishburn (1970: ch. 14) and (1981).
3. ‘iff’ stands for ‘if and only if’.
4. Savage favours the normative interpretation (1972 [1954]: 20).
5. A similar classification is found in Lane et al. (1996).
6. Kreps (1988) offers a thorough review of rational choice theories.
7. A principle of economic thinking is that opportunity costs and out-of-pocket

costs should be treated alike. This implies that preferences should depend on
only relevant differences between options, not on how they are represented.

8. This is not to deny conditional restrictions that Savage’s postulates impose on
observed behaviour, such as those tested in Allais’ paradox (Allais, 1953).

9. Simon (1986) and Conslik (1996) also mention this example. Another example,
relating to Becker’s work on the marriage market, is given in Lam (1988).

10. Our account of Becker’s work is based on Goldberger (1989).
11. For a definition of homotheticity see Appendix 2.A.
12. See Appendix 2.B for a definition of satisficing.
13. For simplicity, the case when the voter is indifferent is not considered here.
14. t is a time trend that takes, for instance, a value 8 in 1916, 9 in 1920, and so on.
15. ψi is voter’s ‘expected utility bias’ in favour of the Republican candidate; it is

voter i’s expected utility difference between the Republican and Democratic parties
before any consideration is given to their past performances.

16. The key assumption is that this difference differs across voters in a uniform way
(Fair, 1987: 162).

17. The RE hypothesis and subjective expected utility can be reconciled through de
Finetti’s (1937) exchangeability result. Suppose there are repeated trials of some
random process; and that individuals are indifferent between receiving a dollar
conditional on some sequence of outcomes and receiving a dollar conditional on
any other sequence of outcomes of each type; if there exist limiting frequencies
of different types of outcomes, and individuals put strictly positive probability on
the truth, then each individual’s conditional beliefs converge to these limiting
relative frequencies (Morris, 1995: 232–3).

18. Agents in a multi-agent economy is said to have perfect foresight if the following
two conditions hold: (a) people’s beliefs are correct; and (b) there are no exoge-
nous shock terms impinging on the economy, so that all expectations are correct
without error, i.e. (Et (Vt+k) = Vt+k).
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19. This method is known as the method of undetermined coefficients. See Pesaran
(1987: 80–81) for alternative methods.

20. The equilibrium price is now pt = (e1 − αe2)−1Mt + (e1/e2)t c.
21. Economists have introduced extra principles to select a unique equilibrium. A

proposal is due to MacCallum (1983: 144) that blocks introduction of ‘extraneous’
terms such as c. Such suggestions are inadequate. They also lack a behavioural
justification (Lucas, 1986).

22. New classical economists have often realized the tension between the RE hypoth-
esis and policy intervention. Sargent writes: ‘In formal work, this contradiction
is evaded by regarding analyses of policy interventions as descriptions of differ-
ent economies, defined on different probability spaces. The mental comparison is
among economies identical with respect to private agents’ preferences and tech-
nologies, but differing in government policy regime’ (1984: 413). This move raises
more questions than it solves. It is not clear how the agents in the economy gov-
erned by the existing policy regime come to know the joint distribution of the
variables of the economy governed by the new regime.

3 ‘Homo Economicus’ as an Intuitive Statistician (1)
1. The IS hypothesis has a long history in cognitive psychology. An interesting

discussion of the proposal is found in Cheng and Holyoak (1995), who focus
on how people, like statisticians, learn about the causal structure of their environ-
ment. The hypothesis also occupies a central place in Shanks (1995)’s monograph
on the psychology of learning.

2. In Bray (1982), agents know the supply curve and must only form price
expectations to plug into it.

3. Sargent (1993) raises this question, assuming that it has a positive answer.
4. This section builds on the works of Granger (1990b; 1999), Lindley (1982), Spanos

(1986; 1999) and Spanos and McGuirk (2001).
5. Granger (1999: ch. 1) touches on some of the difficulties at this stage of

specification analysis.
6. See Spanos (1999: 263–7) for a concrete example.
7. This is because even estimating a univariate distribution from a random sample

involves estimating infinitely many parameters, which is impossible with a finite
sample.

8. Although the intuitive notion of smoothness is adequate for our purpose, there
is not yet a complete understanding of the abstract idea of ‘smoothness’, usually
defined in terms of ‘the number of derivatives’. For a critical discussion see Marron
(1996).

9. Yatchew (1998) offers a readable review of non-parametric inference, aimed at
economists.

10. Our exposition draws on Härdle (1990; 1993), Silverman (1986), and Scott (1992).
11. See Silverman (1986: 100–10) for the adaptive kernel estimator.
12. Although the expression (3.6) uses kernel independence, this does not imply the

independence of the variables (See Appendix 3.A).
13. N stands for the sample size at time t .
14. A sizeable number of studies of learning in economics utilize neural network infer-

ence procedures (e.g. Salmon, 1995). Neural Networks were initially viewed as an
independent field aiming to tackle complex learning tasks that were not usually
considered in statistics. It soon emerged that the procedures were nothing but
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variants of non-parametric methods and are subject to similar strengths and lim-
its (Friedman, 1994; Cheng and Titterington, 1994; Ripley, 1993). The methods
cannot solve any learning problem that theoretically falls beyond the reach of
non-parametric inference.

15. This example is from Härdle (1990: 258). For further discussion of the curse of
dimensionality see Bellman (1961: 94); Friedman (1991; 1994), Friedman and
Stuelzle (1981: 817), Scott (1992), Bishop (1995), Härdle (1990), and Silverman
(1986: 129).

16. Friedman (1994) and Hastie and Tibshirani (1994) review some of the non-
parametric multivariate approximation methods.

17. See Ripley (1996) for the proof.
18. The prime in f (x)

′
stands for transpose.

19. These selectors are discussed in Härdle (1990: ch. 5).
20. See Breiman (1992), Breiman and Spector (1992), Efron (1983; 1986), and Efron

and Tibshirani (1993; 1997).
21. For a definition of this error estimator see Appendix 3.C.
22. A K-nearest neighbour classifier considers K-nearest neighbours and assigns the

class by majority vote.
23. Fisher’s iris dataset contains three classes of fifty instances each, where each class

refers to a type of iris plant (Fisher, 1936).
24. This is another way of stating Goodman’s riddle of induction (Goodman, 1955).

See Howson (2000) for an exposition.
25. This model has been constructed based on a similar example in Forster (2000).
26. This point is evident from the reformulation of the leave-one-out cross-validation

given in (6.9).

4 ‘Homo Economicus’ as an Intuitive Statistician (2)
1. Classic sources for the DB theorem are F.P. Ramsey (1926 [1980]) and B. de Finetti,

(1980 [1937]).
2. This assumption can be weakened. All that is needed is that if you have a degree of

belief in H , it is reflected in the price you are ready to pay for a bet on or against H .
3. The dollar sign is omitted in what follows.
4. ‘[B]etting quotients are … just odds normalized so that they lie within the half-

open interval [0,1); this is extended to the closed-unit interval [0,1] by allowing
the odds to take the “value” ∞’ (Howson, 2000: 125).

5. For a further discussion of this point see Howson (1995: 4–5).
6. In a new manuscript, Howson (2004) substantially reformulates the argument for

the probability axioms as consistency constraints on partial beliefs, effectively
rejecting the traditional formulation embodied in the DB theorem. In this new
setting the value additivity assumption is introduced ‘as a constraint on the solu-
tion assignment of fair betting quotients’ (2004: 18). The formulation more vividly
supports the conclusions drawn in the text about the scope of the Bayesian theory.

7. Here it is assumed that the sum of the bets is equivalent to an additional bet,
which is not generally the case.

8. As Howson points out, Ramsey set forth this view of the laws of probability within
the theoretical framework of axiomatic utility, not the theory of logic. Recent
defenders of epistemic probability have made every effort to disentangle entirely
the proof of the probability axioms from formal utility considerations (Howson,
2004: 5–6).



Notes 273

9. Classic statements of the DB theorem only establish finite additivity. Williamson
(1999) has extended the theorem to countable additivity.

10. This argument for the quotient rule is adapted from Howson and Urbach (1993).
11. Williams (1980) derives the BCR from the minimum information principle.
12. This can be seen by applying the rule to E itself.
13. Q(H) = Q(E)Q(H/E) + Q(¬E)Q(H/¬E).
14. A lucid discussion of these issues is found in Diaconis and Zabell (1985).
15. Hierarchical models have further distributional assumptions relating to the

distribution of hyperparameters.
16. A review of Bayesian model selection is found in Kass and Raftery (1995).
17. See Spanos (1999) for definitions of the notions used in the graph.
18. Another interesting use of the theorems in modelling the duration of unemploy-

ment is found in Kiefer (1988).
19. For how to deal with identical observations see Bradley (1968: 48–56).
20. Kendall (1955) and Mann (1945) provide similar distribution-free tests of random-

ness. See Bradley (1968: 287–8) for an exposition.
21. Kadane and Wolfson (1998) review the literature on prior elicitation.
22. An ‘a-fractile of a continuous distribution is a point z(a) such that a random vari-

able with this distribution has probability a of being less than or equal to z(a)’
(Berger, 1985: 79).

23. When Z is a standard normal variable p(Z < −1/
√

2.16) = 1/4.
24. The median is zero, and it can be checked that

∫−1
−∞ 1/π([1 + θ2])dθ = 1/4.

25. De Finetti’s representation theorem implies that coherent like-minded individuals
who share symmetries (like exchangeability) in their beliefs are led to common
likelihoods. These data models are simplified in terms of mental constructs called
parameters (Poirier, 1988: 131). A proof of the theorem is given in Bernardo and
Smith (1994: 172–80).

26. Let F denote the class of data-density functions f (x/θ), defined by θ . A class P of
prior distributions is said to be a conjugate family for F if π(θ/x) is also in the class
P for all f ∈ F and π ∈ P (Berger, 1980: 96).

27. The priors must be related according to π(θ)dθ = π∗(φ)dφ.
28. Seidenfeld (1979) offers an appraisal of the invariance approach.
29. The Beta function can be stated in terms of the Gamma function as B[α, β] =

�[α]�[B]/�[α + β].
30. If X1, X2, . . . Xn are NIID (standard normal) Y =∑X2

i ∼ χ2(n).
31. See Bayarri and Berger (1999) for other objections to the prior predictive approach.
32. Gilks et al. (1996) contains a collection of articles on Markov Chain Monte Carlo

techniques.
33. A well-fitted model will produce residuals that are approximately independent

random variables with zero mean, constant variance, and, possibly, a normal
distribution (Gilchrist, 1984: 138).

34. See Rubin (1984: 1168) on how a statistic may be defined to tell whether the
data come from a normal or a Cauchy distribution. Geweke and McCausland
(2001: 5-6) contains a discussion on the choice of diagnostic statistics for assessing
models of financial returns.

35. The simulations discussed in this section were performed using Bugs software,
available on [http://www.mrc-bsu.cam.ac.uk/bugs].

36. An ARMA model can be interpreted as an approximation to an autoregression
model of some order p (Spanos, 1999: 452).
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37. A sufficient statistic for θ is a function of the data which summarizes all avail-
able sample information concerning θ . For example, if an independent sample
X1, . . . , XN for N(μ, σ2) distribution is to be taken, it is known that T(X, S2) is
a sufficient statistic for θ = (μ, σ2), where X stands for the sample mean and
S2 = ∑

(Xi − X)2/N − 1 (Berger,1985: 35). This definition, which underlies the
sufficiency principle, assumes that the model is true. Otherwise, a different def-
inition of sufficiency is needed, and the sufficiency principle will no longer be
valid (Hill, 1986: 217).

38. See Barnett (1999: 181-3).
39. When the issue is the structural specification of how known and unknown quan-

tities are related, one cannot count on ‘the data to swamp the priors’ (Draper,
1995).

5 ‘Homo Economicus’ as an Intuitive Statistician (3)
1. Quoted from Whittaker (1990).
2. Similar remarks are found in Pearl and Verma (1991).
3. We may intuitively think of event x as a value of (random) variable X.
4. The definitions to follow are adapted from Spirtes (1994).
5. Path analysis was developed by Sewell Wright (1934) and advanced by others

including Simon (1954) and Blalock (1972). Blalock (1964) gives an introduction
to the field. Irzik and Meyer (1987) contains a philosophically oriented discussion
of path analysis.

6. See Pearl (1988: 82–3).
7. Glymour (1997a: 203–6) explains how traditional approaches to causal inference

rely on variants of the Markov condition. Hans Reichenbach (1956) was the first
philosopher to discuss the Markov properties of causal systems. Variants of the
principle have also been discussed by Cartwright (1989), Salmon (1984), Skyrms
(1980) and Suppes (1970).

8. This follows by first applying the weak union and then decomposition properties
of independence relations to X5⊥(X1, X2, X3)/X4. See Appendix 5.B.

9. To deal with feedback systems, the GT theorists have introduced the so-called
Global Markov Condition, which reads as follows: for a directed (cyclic or acyclic)
graph G over vertices V and a probability distribution P over V , the distribution
satisfies the global Markov condition if and only if for any three disjoint sets of
X, Y , and Z in V if X is d-separated from Y given Z in G, then, X is independent
of Y given Z in P (Koster, 1999). Joined with the completeness hypothesis, this
implies that every correlation has a causal explanation.

10. The term ‘hybrid graph’ is from Pearl and Verma (1991). They define a hybrid
graph slightly differently as a graph in which links may be undirected, unidirected,
or bidirected.

11. Appendix 5.G shows how it is in general possible to check whether two models
are distributionally equivalent.

12. Further contributions include: Bollen (1989), Breckler (1990), Hershberger, (1994),
Jöreskog and Sörborm (1993), Luijben (1991), MacCallum et al. (1993), and
Raykov and Penev (1999).

13. This theorem also follows from proposition I in Raykov and Penev (1999: 206).
14. A necessary and sufficient criterion for testing the d-separation equivalence of two

semi-Markovian models is given in Spirtes and Verma (1992).
15. A different example is found in Pearl (2000: 147).
16. Glymour (1997a: 208) describes a feedback model that does not satisfy the Markov

condition.
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17. Richardson (1996) defines the necessary and sufficient conditions under which
two non-recursive models, limited block-recursive or not, are d-separation
equivalent.

18. Graph (b) is obtained by first replacing X1 → X2 with X1 ↔ X2 and then replacing
it with X1 ← X2.

19. Kiiveri and Speed (1982) provided the first proof of the result. A simple proof also
appears in Cartwright (2002: 451-42).

20. For a definition of the global Markov condition see note 9. The proofs by Koster
(1999) and Spirtes et al. (1998) assume linearity of the structural model.

21. For further discussion of how correlations due to mixing heterogeneous units are
dealt with, see Glymour (1997a: 207) and Meek and Glymour (1994: 1012).

22. The stochastic process {Zt , t = 1, 2, . . .} is a white-noise process if E(Zt ) = 0 and
Cov(Zt , Zs) = δ2 if t = s and Cov(Zt , Zs) = 0 if t �= s.

23. See Cooper (1995, 2000) and Spirtes et al. (1996).
24. In other words, it can be treated as a variable in a higher-dimensional probability

space.
25. Consider variables X, Y , and Z. Suppose Z causes X and Y but there is no causal link

between X and Y . Salmon calls such a case an interactive fork if P(X/Z)<P(X/Z&Y).
For some examples see Salmon (1984: 168–74).

26. Another case where completeness may fail is raised in Sober (1987), discussed
under the nomenclature of ‘Co-evolving Processes’. Hoover (2003) offers an
interesting analysis of Sober’s counter-examples.

27. Lebesgue measure is the uniform distribution in Euclidean space, e.g. length, area,
volume.

28. This example, originally from Sewell Wright (1934), is described in Irzik and Meyer
(1987: 508–9).

29. In other words, one has to assign a priori non-zero probabilities to events u1u2 = 0,
v1v2 = 0 and w1w2 = 0.

30. Autonomy or invariance is defined with respect to a specific set of changes. See
Woodward (2003).

31. Simpson’s Paradox (Simpson, 1951) has been taken up by many authors in detail
including Cartwright (1997) and Hausman (1998).

6 The Economy as an Interactive System
1. See also Marshall (1890 [1961]:174).
2. See Deaton and Muellbauer (1980: 149).
3. Hartley (1997) gives a thorough analysis of the representative-agent modelling

approach.
4. Granger (1999: 42–8) provides a brief discussion of Hall’s methodology.
5. A bliss utility level is a level beyond which the marginal utility of consumption is

negative (Deaton, 1992: 179). Note that equation (6.5) is based on the assumption
that δ equals r; otherwise, the equation includes an intercept.

6. A random walk sequence is an example of a martingale sequence. A sequence
Zt is a martingale if E[Zt/Zt−1, Zt−2, . . .] = Zt−1. Zt is then a random walk if
Zt = Zt−1 + ut where Cov(ut , us) = 0 for all t �= s.

7. Hall’s exercise is an example of testing for non-Granger causality (Sargent,
1987: 94).

8. A weighted sum of the individual demand functions with each function mul-
tiplied by the price of the corresponding commodity is equal to expenditure∑

pmfmi = xi.
9. For a simple statement of Gorman’s proof see Brighi and Forni (1989: 5).
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10. There is a vast literature on the requirements of a representative agent. It includes
Antonelli (1886), Deaton and Muellbauer (1980), Gorman (1953), Green (1964);
Heineke and Schefrin (1990), Jorgenson, et al. (1982); Lau (1977; 1982), Lewbel
(1989), Muellbauer (1975; 1976), Nataf (1948), and Stoker (1984; 1993).

11. Here, homothetic preferences mean that the agent always spends a fixed propor-
tion of his or her income on each good (Kirman, 1989: 132).

12. Also see Brighi and Forni (1989: app. 1).
13. An assumption underlying Gorman’s result is the restriction of zero expenditure

at zero income.
14. Quasi-homothetic preferences generalize homothetic preferences. Homothetic

preferences imply Engle curves that are linear and pass through the origin.
Quasi-homothetic preferences allow vertical non-zero intercepts, leading to Engle
curves that do not necessarily pass through the origin. A utility function creating
such Engle curves is called quasi-homothetic. Engle curves describe demand as a
function of income.

15. Since α is less than 1. See Appendix 6.A.
16. The statement here draws on Deaton’s (1992) discussion of Pischke’s paper.
17. Goodfriend (1992) assumes that agents observe aggregate income with one lag

period and use this information to guess about contemporaneous income shock.
Consumption change is then shown to follow an AR(1) process.

18. A similar discussion is found in Dow (1988: 8), Leijonhufvud (1968: 210–11) and
Snowdon et al. (1994: 370).

19. Aware of the interdependencies between consumption, income, and the interest
rate, Michener (1984) adopted a general equilibrium approach to study aggregate
consumption. In a general equilibrium setting, the permanent income hypothesis
did not imply that aggregate consumption follows a random walk process. Quite
the opposite, aggregate consumption change turned out to be a constant function
of aggregate current income.

20. For a list of other phenomena that cannot occur in a society of identical, entirely
isolated, individuals, see Stiglitz (1991).

21. See Schelling (1978: 49) for other propositions that are true of a closed interactive
system but not true of the behaviour of each person, nor even of any groups
smaller than the whole system. Also see Hartley (1997: 148-9) for an example
from monetary economics, due to Laidler (1982).

22. For the theory of exact aggregation see Jorgenson et al. (1982), Lau (1977, 1982),
and Heineke and Shefrin (1988).

23. Stoker (1984; 1986; 1993) and Cameron (1990) study aggregation of non-linear
models.

24. The stochastic process {Zt , t = 1, 2, 3, . . .} is said to be a white-noise process
provided that (i) E(Zt ) = 0 and (ii) Cov(Zt , Zs) = σ2 for t = s and 0 for t �= s.

25. See Granger (1999: 42–48) for a brief discussion.
26. This would be the case if price differentials were due to different transportation

costs and the relative prices of output and transportation were unchanging.
27. Kupiec and Sharpe (1991) provide another example.
28. A relation that can be made linear by taking the logarithm of each side of the

equation is called intrinsically linear.
29. Exact quotations are placed inside commas.
30. Rizvi (1994), Kirman (1989; 1992) offer accessible discussions of the SMD result.
31. Non-market interactions ‘are interactions between individuals, which are not reg-

ulated by the price mechanism’ (Glaeser and Schinkman 2001: 1). For a survey of
the topic see Glaeser and Schinkman (2001), sec. 2.
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32. Tesfatsion (1994), quoted in Bryant (1996: 157).
33. The game theoretic assumption that the state of every individual depends on the

state of every other individual is not necessary for multiple solutions. For multiple
solutions, it is enough that the states of some of the decision makers depend on
the states of some others (Glaeser and Schinkman, 2001).

34. This function is quoted in Bryant (1996), where he refers to Colander (1986)
but does not mention the reference. The underlying idea, though, is explicit in
Colander (1996).
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