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Preface 

1. Facts: 

A leisure term with an unbounded value function, when added to utility in 
the Lucas (1988) 'mechanics of economic development', expands enormously 
the range of data covered by the theory. To explain this we have to ask two 
questions. First: why leisure would be so much desired? Perhaps because 
leisure is one's own time and such a leisure term means an unbounded value 
of individual freedom. But why leisure is economically productive, as implied 
by the results obtained in this study? Perhaps because cognitive innovations 
often occur during the time which in economics is registered as leisure? Then 
an unbounded leisure term would also make room for an unbounded creation 
of knowledge, as distinguished from the mere transmission of knowledge in 
education and training. In any case the leisure term seems to act as if it 
where the'hole' through which strong nonmaterial values affect economics. 

The ensuing 'extended mechanics' is derived in Chapters 4-6 and proves 
to involve an extension of growth theory as well as a theory of the causal 
part of business cycles. Their empirical verification is given by showing 

(i) that the existence of the two Basic Growth Paths derived from this 
theory, defining its Growth Type 1 and Growth Type 2, respectively, is 
verified already by the statistics collected by Solow (1957) but ignored so far 
(see Chapter 5 of the present study); one of them, viz. that of Growth Type 
1, is the familiar balanced-growth path that exists in other growth theories 
as well; the other one, that of Growth Type 2, is new and shows a logistically 
increasing level in real interest rate (or in output/capital ratio); 

(ii) that the nonstochastic Basic Business Cycles derived from this the
ory predict the correlations, autocorrelations, and standard deviations of 
principal real economic variables over detrended 'ordinary' business cycles 
better than do the existing other real cycle models (of Kydland and Prescott, 
Hansen and Rogerson, or Danthine and Donaldson; see Chapter 7). The or
dinary business cycles correspond to cycles appearing in Growth Type 1 
around the balanced-growth path. It will be also shown 

(iii) that the anomalous correlations over detrended business cycles, ob
served in the U.S. economy in the period 1914-50, are well predicted by this 
theory, which accordingly gives their first (roughly) quantitative explanation 
(see Chapter 9). They correspond to cycles in Growth Type 2 around its 
cycle center that moves along the path mentioned above. 

Since the correlations and variances of such economic variables over a 
detrended cycle are the essential available data concerning business cycles, 
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the results (ii) and (iii) imply a challenge to the modern methodology in 
macroeconomics based on stochastic optimization. According to the method 
of stochastic optimization, the technological or other shocks are introduced 
and coupled with economic variables before the optimization. The method 
implies that the economic agents are able to react rationally (as expected by 
theory) to the shocks. This hypothesis is obviously involved in an optimiza
tion of an utility including the shocks. But there is the other possibility that 
the agents in general react to trends, observable over some longer interval 
of time, rather than to the shocks. The results (ii) and (iii) suggest that in 
general they indeed do so: this possibility is realized by the Basic Business 
Cycles, which according to these results predict the essential data better 
than do .the models based on stochastic optimization. 

To test this conclusion technological shocks, of the size usually applied, 
were superposed (see Chapter 12) upon the Basic Business Cycles (BBC) 
of the ordinary type, i.e. upon those of Growth Type 1. This means that 
the shocks are introduced after the optimization of utility, as perturbations 
on the strictly causal Basic Cycles given by the foregoing optimization. The 
results tell (see Chapter 13) that the effect of shocks on correlations and 
variances over a detrended cycle is small but not negligible. Of the empirical 
variance of output the BBC account for 90 % and the shocks for 10 %. What 
is more they tell (ibid.) that the BBC with and without shocks predict far 
better the correlations and variances over a detrended cycle than do the 
models based on stochastic optimization. This final result is illustrated by 
Figures 9 and 10 (p. 96-97) and in Table 12 (p.95). They show 

(iv) that the BBC approaches with and without shocks both follow the 
patterns of empirical values of correlations and standard deviation propor
tions, respectively, while those models, marked as K-P, H-R and D-D, follow 
each other but stray together off from the empirical values. This suggests a 
common methodical error in those models: stochastic optimization. 

2. Conclusions: 

The usual stochastic approach to development in the short run, where 
material values prevail, is not necessarily affected by the above criticism 
provided that some dominant economic agents exist, which are able to react 
quickly, as assumed, to shocks. Material values and value functions are of 
course finite: you can increase your welfare by consumption but only up to 
a finite limit. However in view of the above results even the elegant Lucas 
(1987) macroeconomic formalism, more general than the "Keynesian" ones 
but involving (finite) stochastic optimization, is a short-term approach. 
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In the business cycles already nonmaterial values are involved, according 
to the above results (ii)-(iv). Nonmaterial values, such as individual free
dom or the pursuit of objective knowledge, have as a matter of principle no 
upper limit. Their growth may continue, with many historical setbacks and 
however slowly, but without any finite limit. The inclusion of nonmaterial 
values in this study, by means of the unbounded value of leisure, explains the 
results (i)-(iv) and suggests a superposition of stochastic shocks, after the 
optimization of the extended utility, upon the strictly causal Basic Business 
Cycles. The Basic Cycles in this theory are caused by a mutual interference 
of material and nonmaterial values, which is not reducible to microeconomics. 

The trend of economic development in the long run, i.e. over many 
business cycles, is in this theory represented by the Basic Growth Paths 
mentioned above. The development of real economic variables along these 
paths is determined by three functions of time indicating the development of 
human capital, the strength of the wish of greater individual freedom, and 
the natural talents in population, respectively (see Chapter 10). 

Less trivial is a result concerning the mutual relations of certain constant 
parameters, necessary for the existence of solutions in this theory. The same 
parametric relations are necessary also for the existence of solutions in the 
Solow and Lucas growth models (but ignored so far). These relations imply 
that, counter to those authors (Solow, 1956; Lucas,1988, p.12), savings rate 
has growth effects, and also a stability effect (see Chapter 11). 

A further unorthodoxy is the use of differential instead of differ~nce equa
tions so that economic variables get their usual meaning when integrated 
over a finite interval of time. This choice was made for convenience (and 
better tools of analysis). The concept of invariance group (see Chapter 6) is 
an important new tool of interpretation: The differential equations of Basic 
Business Cycles are invariant in a group of linear transformations including 
time. This gives a new degree of freedom in operations with finite times. 

3. Is this economics? 

Economics is still more a profession than a science. Practising economists 
have to advise politicians, just like astrologists used to advise kings, about 
the nearest future. Only part of their predictions can be based on their 
science. The rest is based on thumb rules and routines established in prac
tice. The practical routines, kind of professional fashions of the day, oftEln 
petrify into strong convictions about what is "economics" and what is not. 
Medicine is another example of a practical science, where fashionable meth
ods playa certain role. It follows that the definition of what is "economics" , 
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or " medicine" , not to speak of " sociology" , will still be subject to many 
changes in the future, much more so than is the case in exact natural sci
ences. Can one hope that economics, in a not too distant future, could cope 
also with nonmaterial values? 

Such an extension of scope would not harm economics as a science. Let 
me give an example, in fact the reason why this study was started. The 
collapse of the East-European economic and political system in 1989 and 
the disintegration of the Soviet Union in 1991 took by surprise a great ma
jority of economists as well as general public. In textbooks of economics 
the 'great experiment' of socialism was mostly given the treatment of a be
nign observer. In the eve of the fall of East-European socialism the leading 
textbook of mainstream economics stated: "... several points about Soviet 
communism should be clear from the outset. First, contrary to ·what its 
early critics believed, the Soviet economy has grown rapidly, has expanded 
its influence, and has won many allies... From the point of view of eco
nomics, perhaps the most significant lesson is that a command economy can 
function." (Samuelson and Nordhaus, 1985, p.771). 

Many reasons for this glaring example of mistaken economic prediction 
by an outstanding economist authority are easy to give, afterwards. But one 
fundamental reason undoubtedly is the traditional emphasis in economics on 
labour and physical capital as the main factors of production - a point that 
has been lately criticized (I am referring here to P. Romer, 1986, 1987, and 
to Lucas, 1988). In the long run human capital, i.e. knowledge and skills, is 
the decisive factor. But this observation leads us inevitably to the domain 
of nonmaterial values in the end. 

We have to ask wherefrom come new knowledge and skills. My favourite 
answer is that they come mainly from the free wanderings and experiments of 
thought during the leisure time of people. But if this is true, the leisure that 
allows creative faculties to bloom is the most important factor of all kinds 
of production in the long run. If the economic relevance of the unbounded 
human pursuits of larger individual freedom (i.e. leisure) and deeper ob
jective knowledge would have been in some form incorporated in economic 
theory, there would have been nothing to surprise one in the break-down 
of the Soviet Union. As to the general relevance of nonmaterial values in 
economic development, this of course is the Leitmotiv of the present work. 

Arvid Aulin 
Professor of Mathematics and Methodology 
The Finnish Academy of Science and Letters 
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I 

THE MATHEMATICAL TOOLS 

In the present work the classical theory of mathematical dynamics un
derlying dynamic economics will be appiied paying special attention to the 
parameter conditions of existence of solutions in the applications of dynamics 
to economic theory. This has not been always done in economic applications, 
which suggests that a detailled introduction to the mathematical tools as ap
plied here may be useful. It will be given in the present Part I. 

1. The Hamilton-Jacobi Theory 

1. The Hamiltonian function. Assuming all the necessary properties 
of existence and continuity we write the Hamiltonian equations as usually, 

(1.1) (II = 1,2, ... , r) 

for the position co-ordinates q" and the momentum components p". The 
Hamiltonian function H (q", p,,) does not depend explicitly on time. It follows 
that it is a constant of motion: 

r 

(1.2) if = E (Hq"ti" + Hp"p,,) = O. 
,,=1 

A formal solution of (1) can be written, obviously, as 

tD () _ tD () e q" 0, p" - e p" 0 , (II = 1,2, ... , r), 
r 

D E (HpJlq" - Hq"op,,)' 
,,=1 

The differential operator D gives the time derivative of any function z(q", p,,): 
i = D z. The total state of the Hamiltonian system is defined by the totality 
of the components q" and p". 

A system of n mass points, moving in the 3-dimensional physical (Eu
clidean) space according to the laws of Newtonian mechanics, is the proto
type of a Hamiltonian system. Each of the mass points, consisting of matter 
concentrated at a point, has three position co-ordinates and three momen
tum components, thus r = 3n. The momentum components of each mass 
point are defined as the product of its mass and its respective component of 
velocity, and can be accordingly written as 

(1.3) (11= 1,2, ... ,r) 
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where the same mass m v , of course, appears three times. Then the equations 
of motion are given by (1), with the Hamiltonian function 

(1.4) 
r 1 

H = T+ V, T = L 2m p~, V = V(qv). 
v=l v 

Here T, V and H are the kinetic, potential and total energy, respectively, of 
the system. 

2. The Lagrangian function. Because of (3) the laws of motion of a 
system of mass points can also be expressed in terms of the qv and qv instead 
of the qv and Pv' Instead of the Hamiltonian equations (1) we then have the 
Euler equations of motion, 

(1.5) (II = 1,2, ... , r). 

The Lagrangian function L gives the difference between the kinetic and po-
tential energies, i.e. , 

(1.6) L(qv,qv) = ~ t m,A; - V(qv). 
v=l 

The formulae (1) and (5) of course are mutually equivalent expressions of the 
equations of motion of the mass point system. The transformations H ~ L 
and L ~ H, or from the variables (qv, Pv) to the variables (qv, qv) and vice 
versa, can be given the following symmetric form: 

r 

(1. 7) L(qv, qv) + H(qv,Pv) = L qvPv, 
v=l 

(1.8) 

The latter equations obviously follow from (1) and (5), while (7) has the 
double kinetic energy on both sides. From (7) we immediately obtain the 
further relation 

3. The action principle. We now consider an r + I-dimensional space 
of the variables U v and the time t. Let the U v be functions of time, continuous 
and continuously differentiable. Let A and B be two points of this space, 
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defined by A = (UI/(O), 0) and B = (UI/(t1), t1), t1 > O. We let B move freely 
on the surface T(ul/(tt},t1) = O. 

For any function L(ul/,ul/,t), continuous and at least twice differentiable 
with respect to its variables, and satisfying the condition 

where the expression I· 1 means determinant, the geodetic distance from A 
to B is defined as the smallest value of the integral 

(1.9) 

A necessary condition of an extremal value of J is obtained by variation 
of the path UI/(t) from A to B and requiring that oj = J~l oLdt = O. But 

r 

oL = L (Lulloul/ + LUl/oulI ) , 
1/=1 

where, by partial differentiation, we have 

LUl/fJul/ = ! (Lul/oul/) - !LuI/Oul/. 

This gives, since OUI/(O) = 0: 

Since this must hold good for any points on the path and since OUI/(tt} is 
different from zero at least for some value of v, the first term gives the Euler 
equations now written for the function L with an explicit time-dependence, 

!LulI(UI/,ul/,t) = LUI/(ulI,ulI,t), (v = 1,2, ... , r) 

while the second term defines what is called the natural boundary conditions:· 

(1.10) (v = 1,2, ... , r) 

If we drop the explicit time-dependence of the action function L, and if we 
put 'Ill/ = ql/, we can identify L with the Lagrange function of a system of 
mass points. Thus interpreted the proof given in this section has shown that 
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the motion of particles in such a system takes place along the "least action" 
path. 

4. The Legendre function. In imitation of the equations (7) and (8) 
holding good for a mass point system, we can define for any given action 
function L(u",u",t) now the canonical momentum v,,, associated with the 
function u", by writing 

(1.11) (v= 1,2, ... ,r) 

and the Legendre function G by the formula 

r 

(1.12) G(u", v", t) + L(u", u", t) d;J L U"v". 
,,=1 

In the imitation, the rest of the transformation (7)-(8) gives 

(1.13) (v= 1,2, ... ,r) 

By derivation, (12) immediately gives 

(1.14) 

It follows that the Euler equations of the action principle are equivalent 
to the equations 

(1.15) (v=1,2, ... ,r) 

called the canonical equations of motion. 
It is to be emphasized that in these equations both functions G and L 

in the general case depend explicitly on time. 
Thus the canonical dynamical system is in the general case not a H amil

tonian system and it has necessarily no constant of motion.1 

However, just like in a Hamiltonian system to every Lagrangian function 
there corresponds a Hamiltonian function and vice versa, in a canonical 
system to every variational integrand or the action function L( u", U", t) there 
corresponds a Legendre function G(u", v", t) and vice versa. 

1 In dynamic economics the dynamical systems usually are canonical systems, not Hamil
tonian ones. Therefore no constant of motion is necessary. This has been sometimes forgot
ten, for instance when P.Mirowski (1990,p.302) regrets that the economists "have never 
made up their minds about what precisely it is that should be conserved in their theoretical 
system". 



THE HAMILTON-JACOBI THEORY 5 

5. Transversality conditions. For a small time-dIsplacement Otl in 
(9) we get, in view of (12): 

Otl J = L(h)Otl = [1; Uv(tl)Vv(tt} - G(h)] Otl. 

Similarly, for a small displacement of the path uv(t) we first get by applying 
(12): 

It 1 r 
o,J = 10 L [VvOUv + UvOVv - Guvouv - Gvvovv] dt. 

o v=l 

Here the canonical equations (15) can be applied to give 

r It 1 d r 
ouJ = L 10 dt (Vvouv)dt = L Vv(h)OUv(tl). 

v=l 0 v=l 
(1.16) 

(Note that oUv = 0 for t = 0.) 
Written for a variable time t instead of the fixed time tl the variational 

formulae give: 

dJ r 
dt = L Juvuv - G, thus od = -G. 

v=l 

Hence we get the Hamilton-Jacobi equation 

(1.17) 

It defines the geodetic distance from A to B as a function of the moving end 
point B = (uv(t), t). 

On the other hand, the surface of equivalence of the geodetic dis~ance J 
from the fixed initial point A to the point B is given by 

J( uv(tl), tt} = Constant, 

or, written for the variation 0 J : 
r 

(1.18) oJ(tt} = L (JUV )tl oUv(tt) + (OtJ)tl Otl = O. 
v=l 

In order for the extremal path uv(t) to be transverse with respect to a 
given boundary surface T(Uv(tl),tl) = 0 through the point B, the equation 
of the surface T, in a differential form 

r 

oT(tt) = L (TUV )tl OUv(tl) + (OtT )tl = 0, 
v=l 
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must be equivalent to (18) in a neighbourhood of B, i.e. there must be a 
proportionality of the coefficients: 

(v=I,2, ... ,r) 

These relations are called the conditions of transversa/ity of the extremal 
path u,,(t) with respect to the given surface T = O. In view of (16) and (17) 
they can be written in the form 

(1.19) (v=I,2, ... ,r) 

They too are, of course, only necessary but not sufficient conditions of the 
attainment of the minimal distance from A to B. 

A further necessary but not sufficient condition of the minimal distance 
is the Legendre condition 

r 

(1.20) E it"ILuvul'lit/-l ~ 0 for 0 ~ t < t1· 
",/-1=1 

For the derivation of this condition a consultation of the well-known ad
vanced textbook of Courant-Hilbert, Methods of Mathematical Physics I-II 
(in its English translation first printed by Interscience Publishers, New York, 
in 1953) is suggested. 

6. The "principle of the largest action". If instead of a minimum 
J a maximum of J is wanted, we simply have to replace the variational 
integrand L by -L in all the above formulae. The Legendre transformation 
(11)-(13) then reads: 

(1.21) 

(1.22) 

Thus we have now 

(1.23) 

(v=I,2, ... ,r) 

r 

G(u", v", t) = L(u", it", t) + E it"v". 
,,=1 

(v=I,2, ... ,r) 

and the canonical equations of motion retain their form (15). 
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The transversality conditions (19) and the natural boundary conditions 
(10) are unchanged, while the Legendre condition (20) obviously is changed 
to 

r 

(1.24) L uvILuvu!,lu!, ~ 0 for 0 ~ t < t1' 
v,!,=1 

It is in the form of the "principle of the largest action" that the Hamilton
Jacobi theory is applied to growth theory. 

2. Maximization of Accumulating Utility 

1. Canonical equations for discounted utilities. Suppose we have 
to maximize the function 

where U is a current-time utility depending on a number of/actors of pro
duction uv , their time derivatives and the time t, p being the discount rate. 

The problem is one of the action principle applied to discounted utility 

(2.1) 

For L the Legendre transformation (1.21)-(1.22) is valid: the canonical mo
mentum vv is now defined by 

(2.2) V - L· - e-ptU' v - - uv - - uv ' (v=I,2, ... ,r) 

the Legendre function G by 

r 

(2.3) G(uv, vv, t) = e-ptU(uv, uv , t) + L uvvv, 
v=1 

and the canonical equations are given by 

(2.4) 

Let us introduce, with Kurz (1968), the variables 

(2.5) 

(2.6) 

d:J U pt 
1rv - Uv = e VV, 

G* d:J eptG(uv, VV, t). 

(v = 1,2, ... , r) 
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In terms of these variables the canonical equations (1.15) become 

(2.7) 

(2.8) 

e-ptG~v = G;'v' (v = 1,2, ... , r) 

p1rv - G~v' (v = 1,2, ... , r) 

These equations are in economics often called the "modified Hamilto
nian equations", which is misleading in two ways: first, it misleads one to 
believing that the function G* is a Hamiltonian function, which it is not; 
secondly, it wrongly suggests that the system considered is a Hamiltonian 
system, which it is not. The system is a non-Hamiltonian canonical system, 
and the function G* of course belongs to the category of Legendre functions. 
Let us call it the current-time Legendre function. 

The transversality conditions retain their for~{l.I9), only the definitions 
of the variable Vv and the function G have changed to the forms (2) and 
(3), respectively. When expressed in terms of the Kurz momentum 1rv the 
conditions are: 

(2.9) (v=I,2, ... ,r) 

The Legendre condition is that of the "principle of the largest action", 
i.e. (1.24). The natural boundary conditions (1.10) too are unchanged but 
can be now written in the form 

(2.10) (v= I,2, ... ,r) 

Mostly in applications to growth theory tl = 00. 

2. The Solow growth model revisited. We have a single factor 
of production, the physical capital K, together with a given labour force 
N = N(O)e nt , n > 0, to produce the output Y and the consum'ption per 
capita c by means of the following production function and growth equation: 

(2.11) 

(2.12) 

Y = AKf3 N I - f3, 1< = sY = Y - cN, A/A = 9 > 0, 
_I( f3 I-f3 .)_ . c - N AK N - K - c(K,K,t), 0 < f3 < 1. 

We maximize 

J(K, tt} = Iotl e-pt NV(c(K, 1<, t»dt = N(O) Iotl e(n - p)tV(c)dt, tl = 00, 

(2.13) 
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where current-time utility per capita V will be determined so that the Leg
endre condition and the natural boundary condition are satisfied. 

The canonical Kurz momentum p associated with the variable K, ac
cording to (2),(5) and (11), is 

(2.14) 

By imposing on V(c) the further assumption that it is a bijection, we have 

(2.15) 

which expresses the consumption per capita in terms of the Kurz momentum 
p. 

The current-time Legendre function G* is then, according to (3), (6),(13) 
and (14), given by 

(2.16) G*(K,p, t) = NV(c(p» + pK(K,p, t), 

where, in view of (11), 

K(K,p, t) = Y(K, t) - c(p)N(t). 

It follows that the canonical equations of motion, (7) and (8), now have 
the form 

(2.17) K 

(2.18) p 

Y(K, t) - c(p)N(t), (growth equation of capital) 

pp - {3pY / K. (Euler equation) 

The natural boundary condition and the Legendre condition now become 

(2.19) 

(2.20) 

respectively .. 

lim e-ptVe = 0, 
t-+oo 

Vee < 0 for finite times t ~ 0, 

The" balanced-growth" substitutions 

Y -+ Y* = Y*(O)e At , K _ K* = K*(O)eAt , 

where 
(2.21) A = s*b* = n+ -g-, 

1-{3 
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s* and b* being positive constants, viz. the balanced-growth net savings rate 
and the balanced-growth net output/capital ratio, respectively, obviously 
satisfy the growth equation in (11), equivalent to (17). This gives 

c -+ c* = b*(1 - s*)[K*(O)/N(O)]eP - n)t -+ 00 with t -+ 00 

since, because of (21), 
(2.22) ,\ > n. 

It follows that the choice 

(2.23) V(c) = _1_ (c1 - (J' _ 1) 
1- (J' 

for the function V satisfies (19) and (20) for any positive (J'. (For (J' = 1 it 
gives log c.) Here the positive constant (J' can be interpreted as the coefficient 
of risk aversion (Lucas,1988). With this choice for the function V( c) we have, 
in view of (14), 
(2.24) p = c-(J'. 

To satisfy also the Euler equation (18) on the balanced-growth path we 
must have, along with (24), the further parameter condition 

(2.25) p + (J'P - n) = (3b*. 

When solved for (J' this gives 

(2.26) 
(3b* - p 

(J' = *b* . s -n 

Thus the risk aversion coefficient is not an independent parameter but is de
termined by (3, b*, s*, p and n. In (26) both the nominator and denominator 
are positive, because of (21) and (22). 

3. The parameter conditions of transversality in the Solow 
model. Let us study under which conditions the balanced-growth solution 
satisfies the transversality condition. It is natural to choose the surfaces of 
equivalence of output, Y(K, t) = Constant, as the boundary surfaces T = O. 
This gives, in view of (9) and (11), the following transversality condition: 

(2.27) ( -G ) [9 + n(1 - (3)] 
e-ptp tl = (3 K(td, for tl = 00. 
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In this form the condition is not valid in the Solow model, since for tl = 00 

the left-hand side gives negative infinity, while the right-hand side gives the 
positive one. By rewriting it as 

(2.28) 

which for a finite tl is equivalent to (27) this problem is avoided. 
First we shall study under what conditions, to be imposed on parameters, 

the transversality condition (28) of the Solow model can be given in its usual 
"textbook form" 
(2.29) e-ptp(t)K(t) -> 0 with t -> 00. 

By applying (6),(16) and (23) we get 

(2.30) G = N(O)e(n - p)t (c1 - (1' - 1) + e-ptpK. 
1-(1' 

There are two alternative cases: 
Case (i). On the condition that 

(2.31) (1'>1 

we have 
c1 - (1' _ 1 

1 -> Constant with t -> 00. 
-(1' 

On this condition the first term in (30) approaches zero with time, provided 
that the further condition 
(2.32) p > n 

is also satisfied. From (31) and (32) it follows, in view of (26), that also the 
following parameter relation holds good: 

(2.33) s" < fl. 

But this is just the condition under which the second term in (30) vanishes 
in the limit t -> 00. Thus (31) and (32) express the necessary and sufficient 
conditions under with the transversality condition ofthe Solow growth model 
assumes the "textbook form" (29). 

Case (ii). If (31) is not valid, the maximal utility per capital function 
will be obtained for (1' = 0, in which case 

c1 - (1' _ 1 
--:---- -> C - 1. 

1-(1' 
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This approaches infinity on the balanced-growth path like the exponential 
function exp( A - n)t. It follows that the first term in (30) will approach zero 
with increasing time on the condition that we have now, instead of (31), 

(2.34) P > A. 

This is a very strong condition, stronger than (32) and, in view of empirical 
evidence, also stronger than (31). In order that the "textbook form" would 
express the transversality condition in the Case (ii), both parameter relations 
(33) and (34) must hold good. 

We have so far studied under which conditions the transversality relation 
of the Solow model can be given its "textbook form" (29). But the same 
conditions already certify the validity of this relation on the balanced-growth 
path. This is because the parameter condition (33) is also sufficient to make 
the expression e-Ptp* K* to approach to zero asymptotically. This evokes 
the queston: why to write at all the "textbook version" of the transversality 
condition, since its validity is already guaranteed when writing it down? 

A potential objection to the above question could be that the conditions 
of convergence might be different in the cases, where the initial state K(O) 
is not on the balanced-growth path. But this is not true. On the contrary, 
it has been proved by D.Cass that for any initial capital K(O) > 0 the 
general solution of the Solow model will converge to the balanced-growth 
path asymptotically. 

The importance of the parameter relations (22),(25),(26),(31) and (32) 
has been emphasized above, since the same relations will appear also in the 
Lucas growth model and in its generalization later on. A further relation 
of considerable interest is obtained when solving the balanced-growth Euler 
equation (25) for the parameter b*: 

(2.35) b* _ n - plu 
- s* - {Jlu· 

We shall have reason to return also to this formula later. 
Comparison with empirics. Lucas (1988) used estimates based on the 

Denison (1961) numbers calculated from the U.S. economy in the period 
1909-57. These numbers are in accordance with the theoretical parameter 
conditions obtained in Case (i). The relevant empirical estimates are: 

(2.36) {Jb* ~ .0675 > A ~ .027 > n ~ .013, s* ~ .1 < {J ~ .25. 

For the discount rate p a value between .02 and .04 is regarded reasonable. 
This would give for the risk aversion coefficient the limits 3.96 and 1.39, 
respectively, in accord with Case (i) above. 
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There are five independent parameters in the Solow model. They can be 
chosen in several ways, for instance: n, p, p, s* and b*. 

4. The Arrow-Kurz generalization. From (16),(17) and (24) we get: 

G~ = N(Ve - p) = 0 for p = Ve, 

G~e = NVee < O. 

Thus the Legendre function G* attains a maximum with respect to e at the 
point, where Vc is equal to the Kurz momentum p. 

If we forget now the origin of this Legendre function, and define a surro
gate function H* by writing 

(2.37) 
• de! . . 

H (K,p, t; e) = NV(e) + pK(K, t, e), K = Y(K, t) - eN, 

we can perform the maximization of the accumulated utility 

(tt 
J = Jo e-pt NV(e)dt 

in the following simple way. 
First choose e = c, where c solves H; = 0 and H;e < 0, to get a function 

HO of the variables K,p and t: 

(2.38) HO(K,p, t) = NV(c) + pK(K, t, c). 

Then, obviously, 
(2.39) 

Consider then the Euler equation 

which is a necessary condition of the maximization of the accumulated utility 
J, provided that 
(2.40) L(K, K, t) = e-pt NV(e). 

Hence we get successively: 

d 
-L' dt K 

:!..~e-pt NV(e) 
dt oK 
Pe-ptV;e - e-pt:!..V; 

dt e, 

e-pt NVceK = e-ptVeYK. 
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For c = c this gives 
(2.41) 

THE MATHEMATICAL TOOLS 

p = pp - H'k-
Thus we can maximize the accumulated utility also by 1) maximizing HO 

with respect to the control parameter c and 2) writing down the "modified 
Hamiltonian equations" for the surrogate function HO, in this connection 
often called the" current-time Hamiltonian". 

Arrow and Kurz (1970) showed that this shorthand method can be as 
well used in a many-factor and many-parameter case, to maximize 

(2.42) 

subject to the growth equations 

(2.43) . t(v)( ) Uv = u,t;a~ , (ll = 1,2, ... , r; J.l = 1,2, ... , m), 

where u = (Ul,U2, ... ,Ur ). Thus one must first write down the equations 
aHo / aa~ = 0, and then add to the list of equations the" modified Hamilto
nian equations" for each pair of the canonical variables (u v , 7rv ). The three 
kinds of necessary conditions, viz. the natural boundary conditions, the 
Legendre condition and the transversality conditions must of course been 
finally added to the list. This generalized method will be applied in the next 
Chapter. 



II 

THE LUCAS GROWTH THEORY AND ITS 
GENERALIZATION TO BUSINESS CYCLES 

3. The Lucas Growth Theory 

The Lucas growth theory (Lucas (1988) has a particular structure that 
reflects the idea of rational expectations. First there is a situation, in which 
the households and firms react to what is generally expected to be common 
knowledge, i.e. a sort of average level of human capital in society. In the 
theory this level is exogeneously given, just as the exogeneous factor of tech
nological progress in the Solow model. The fundamental equations of the 
theory are constructed in this situation, which will be here called the "re
action of the market to common knowledge". Then market clearing creates 
a second situation, in which the exogeneously given and the endogeneously 
produced average levels of human capital coincide. The solution of the fun
damental equations has to take place in the second phase, to be called here 
the" market clearing" . 

1. The reaction of the market to common knowledge. We maxi
mize 

(3.1) J = [= Ldt = [00 e-pt N (c1 - u -1) dt, N(t) = N(O)e nt , k k l-u 

subject to 

(3.2) 

(3.3) 

(3.4) 

K 

Y 

h 

sY = Y(K, h, t; u) - cN, 

AKP(huN)I- Ph:, 

k(l - u)h, 

where n, A, K, k and P are positive constants there being P < 1 as usual. 
What is new when compared to the Solow model is the human capital as 
a new factor of production. It appears in two versions, viz. as the human 
capital h to be endogeneously determined by the theory, and as the exoge
neously given 'common knowledge' ha . The factor h represents the actual 
average level of knowledge and skills per worker in society, while ha stands 
for the generally expected average level. 

A new control parameter also appears, viz.u, which is the share of the 
total working time N(t) used in production in the period of production (i.e. 
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the year) t. The remaining part (1- u)N of the total working time is spent in 
education and thus devoted to the accumulation of human capital. Learning 
by doing is not included in this Lucas theory, but it will be included in 
the generalization to be given in Chapter 4. The factor of production huN 
represents the labour input to production, where the impact of knowledge 
and skills is taken into account. 

The surrogate H* for the Legendre function G*, which appears in the 
Arrow-Kurz generalization, is now given by 

(
c1 - u _ 1). . 

H*(K, h,p, q, t;c, u) = N 1- u + pK(K, h, t; c, u) + qh(h, t; u), 

where p and q are the Kurz momentums associated with K and h, respec
tively. The equations of motion accordingly include the following ones: 

(3.5) 

(3.6) 

H* e 

H* u 

0, i.e. p = c-u , 

0, i.e. u = (1 - {J)pY /kqh. 

The" modified Hamiltonian equations" can then be written for the" current
time Hamiltonian" HO. They add to the growth equations (2) and (4) the 
Euler equations 

(3.7) 

(3.8) 

pip 
rj/q 

p - (1/p)HK = p - {JY/ K 

p - (1/q)Hh = p - k. 

The latter is obtained immediately from (6) and from the fact that HO is 
equal to H*, where c and u solve the equations (5) and (6), respectively. 

We can see at once that the Legendre condition is satisfied, since in view 
of (1),(2),(3) and (4) we have: 

Thus the quadratic form (1.24) of Chapter 1 now reduces to 

The natural boundary conditions are 

Lk = _e-ptc-u - 0, LA - 0 with t - 00. 
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The first one is satisfied, if c - 00, which is the case again, at least on the 
balanced-growth path, of which we are interested. The latter .condition is 
fulfilled, because Lh = O. 

_. 

2. The market clearing. The markets now adjust the exogeneously 
given and the endogeneously produced levels of human capital to coincide: 

(3.9) h(t) = ha(t) 'tit. 

Thus instead of (3) we now have 

(3.10) 

The transversality conditions in their original form, of course, are the 
following: 

(e=~p) tl = (~;)tl' ( -G ) (8tY) e-ptq tl = Yh tl' 
with tl = 00. Here 

But again, as in the Solow model, this original form of transversality 
conditions would give -00 = +00, and it has to be replaced by the form 

(3.11) 

(3.12) 

To see on which conditions they are valid we have to study the solution of 
the defining equations of motion (2)-(8) of the Lucas growth theory. 

Again the balanced-growth path will be the most interesting part of the 
solution of the equations (2),(4)-(8) and (10), in fact the only part ofsolution 
which can be actually worked out. It is defined by 

Y* = Y*(O)e'\t, K* = K*(O)e'\t, h* = h*(O)evt . 

This together with (2) gives again 

c* = c*(O)e(.\ - n)t, 
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but for v and ~ we now get, from (4) and (10), respectively, the conditions 

v k(1 - u*), thus u* = Constant, 

~ P~ + (1- p)n + (1 - P + K)V. 

Hence three new parameter conditions emerge: first 

(3.13) 
k-v 

u* = -k-' * v 1- u =-, 
k 

then, because we must have 1 < u* < 1, 

(3.14) 

and finally: 

(3.15) 

k > v > 0, 

( I- P+K) 
~ - n = 1 _ P v > O. 

With (10)and (13)-(15) the above balanced-growth substitutions solve the 
growth equations (2) and (4). The balanced-growth equation (2) of physical 
capital again gives the further relation 

(3.16) ~ = s*b*. 

Turning to the Euler equations (7) and (8), the former one together with 
(5) gives on the balanced-growth path the important parameter condition 

(3.17) p+O"(~-n)=Pb*, 

met in the Solow model already. From this together with (16) we have again: 

pb*-p * n-p/O" 
0" = *b* ,b = * R/' s -n S-fJO" 

(3.18) 

As to the equation (8) it of course is already a general solution and holds 
good on the balanced-growth path as well. 

Of the two conditions (5) and (6) to be imposed on the respective control 
parameters c and u, the equation (6) gives, as a consequence of a constant 
balanced-growth share u* and (17): 

(3.19) k = Pb* - (~ - v). 

It remains to consider the transversality conditions (11) and (12). Now 
the Legendre function G comprises three terms: 

(3.20) 
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We again have, just like in the Solow model, two possible ways of satisfying 
the transversality conditions:. 

Case (i). Here we have the parameter conditions 

(3.21) u> 1 and p> n, 

from which, in view of (16) and (18), 

(3.22) s* < (3 

follows. The conditions (21) make the first term in G to approach asymp
totically zero and the condition (22) makes the second term to do so. In 
order for the third term in G to approach zero asymptotically we need the 
further parameter condition (14), which of course must be valid for other 
reasons too. On the conditions (14),(21) and (22) we can thus write the 
transversality relations in their "textbook form" 

(3.23) 

Actually, just like in the Solow model, there is no reason to do so, since these 
relations are already satisfied on the same conditions under which they could 
be written down. 

Case (ii). If we reject the condition that u> 1, we have to impose on p 
the. very strong condition that 

(3.24) p >).. 

This together with (14) and (22) will in this case allow us to write down the 
transversality relations in the "textbook form" (23). And again the same 
conditions already suffice to satisfy them. 

Comparison with empirics. The Denison estimates (US 1909-57) can 
again be used to check the order of magnitudes. As an addition to the Solow 
model we can now make use also of the average annual rate of growth of ed
ucation, which in the U.S. in that period gives v :::::: .009. This together with 
the earlier mentioned numbers (3 :::::: .25,). :::::: .027 and n :::::: .013 gives, in view 
of(15), ,.:::::: .417. Lucas (1988) chose k = .05, which by (13) gives u* :::::: .82 
and 1 - u* :::::: .18, which are not too bad numbers for approximating the 
percentage of American grown-ups in production and in education, respec
tively. But the coefficient k is not an independent parameter but depends, 
as shown by (19), on the values of (3b*,). and v. This gives k = .0635, which 
indeed is not far from the value .05 suggested by the Lucas intuition. The 
value .0635 of k gives for the share of the people in education the value .14. 
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Lucas (1988) also considered the values of p between .02 and .04 as reson
able. They give, by (18), for the risk aversion coefficient u the corresponding 
limits of variation, between 3.39 and 1.96, respectively. Here the numbers 
s* ~ .1 and b* ~ .27, calculated from the Denison estimates, were used in 
addition to the already mentioned numbers. Again the empirical estimates 
suggest that Case (i) has to be preferred to Case (ii) as the source of the 
parameter conditions to be applied. 

There are six independent parameters in the Lucas theory, for instance 
n,p,/3,K"s* and b*. 

4. Generalization to Include Business Cycles 

1. The first axiom of generalization. If N(t) is the grand total 
of the living times of all grown-up people in society during the period of 
production, i.e. the year, t, we write 

(4.1) N(t) = v(t)N(t) + [1- v(t)])N(t) = Noe nt , n > 0, No> 0 

(4.2) v(t)N(t) = u(t)v(t)N(t) + [1 - u(t)]v(t)N(t) 

Here v(t)N(t) is the grand total of working times of all those people during 
the year t, [1- v(t)]N(t) being the grand total of their leisure times in that 
year. The coefficient vet) thus is the share of working time of the grand total 
of their living times in that year. The coefficient u(t) tells the share of the 
time spent in technical or manual kind of work in the total working time 
vN. The rest of the total working time, [1- u(t)]v(t)N(t) has been devoted 
to the accumulation of human capital, i.e. of knowledge and skills. 

Here a difference when compared with the concepts of Lucas is evident: 
now both the time spent in school or in listening to some teachings, that is, 
in education and the time at work during which learning-by-doing has taken 
place are included in the time devoted to the accumulation of human capital. 
Lucas exluded the latter part of it, since it cannot be measured. We shall 
include it because of its importance in the learning process. Thus the share 
u is here accepted as a hidden variable, which cannot itself be observed but 
which affects observable variables. 

The total human time N(t) is an important economic variable, because 
it necessarily appears in the economic process both as an input and as an 
output. Here, however, its production by the economic process is only im
plicitly involved, while its effects on economic development will be explicitly 
analysed. This implies that, in addition to the total working time vN, we 
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shall study also the economic effects of the leisure time (I - v)N. 
The effects of leisure time upon economic development are here assumed 

to be so remarkable that leisure is represented by a term in the current-time 
utility function. Thus our Axiom No.1 is the following value function: 

where e is a weight coefficient of leisure, to be endogeneously determined. 
This weight thus measures the strength of wish for leisure in population, 

that is, the wish for the control of one's own time, or the wish for individual 
freedom if you like. Thus the second term introduces a nonmaterial value to 
the economic utility function, in addition to the material value as expressed 
by the consumption term. 

The idea behind the inclusion of the second term is that people do not 
use leisure only for being lazy. Or, if they are lazy, their thoughts may 
fruitfully wander and search new domains they would never find in their 
routine work. In fact the thesis can be promoted that people are at their 
most innovative just during the time, which in economic statistics must 
be registered as leisure. Innovations, on the other hand, are essential for 
scientific, technological and economic progress alike. 

2. The fundamental equations. In accordance with the two-phase 
process of the Lucas theory we shall first maximize the accumulated utility 
given above subject to 

(4.3) I< sY = Y(I<, h,-tj e, u, v) - eN, 

( 4.4) Y AI<P(huvN)I- Ph:, 

(4.5) h k(1 - u)vNh, 

(4.6) k = koemt , ko > 0, m>O, 

the factor ha being exogeneously given. Here the growth equation (5) of 
human capital differs essentially from the corresponding Lucas equation. 
This Axiom No.2 will be explained in the next paragraph. 

The maximization can again be done by means of the Kurz-Arrow method, 
starting with the "current-time Hamiltonian" 

(
el -U - I) . . 

H*(I<, h,p, q, t; e, u, v) = N + e(l - v)N + pI< + qh. 
I-u 
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It gives first: 

(4.7) 

(4.8) 

(4.9) 

H* c 

H* u 

H* v = 
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0, i.e. p = c-u , 

0, I.e. 
(1 - {J)pY 

u= , 
kqhvN 

0, 
(1 - {J)pY 

I.e. v= . 
N[e - kqh(1 - u)] 

The growth equations of both factors of production having been given 
already, by (3) and (5), respectively, we still have to write the Euler equa
tions, in which the function HO is equal to the function H* in which the 
control parameters satisfy their equations (7)-(9). Thus we get: 

(4.10) pip p - (l/p)H'k = p - {JY/K, 

(4.11) 4/q p - (l/q)Hh = p - (1 - {J)pY/qh - k(1 - u)vN. 

Finally, before the solution of the equations (3)-(11), we have to indicate 
the market clearing by making 

h(t) = ha(t) 'Vi, 

thus replacing (4) by the ex post production function 

(4.12) 

The formulae (1 )-(3) and (5)-(12) together with the natural boundary 
conditions, the Legendre condition and the transversality relations define 
the generalized dynamics to be studied in the rest of this book. 

3. The second axiom of generalization. Let us stop for a while to 
consider the second essential deviation from the Lucas theory, viz. the new 
growth equation (5) of human capital. 

The main reason for introducing the formula (5) is the wish to emphasize 
the character of the accumulation of knowledge as a social activity. Lucas 
himself was far from denying this, as he wrote: "human capital accumulation 
is a social activity, involving groups of people in a way that has no coun
terpart in the accumulation of physical capital" (Lucas, 1988, p.19). But 
this property of human capital accumulation is better represented by (5),not 
reducible to microeconomics, than by the Lucas formula. The latter, when 
expressed in our variables, would be 

(4.13) h = k'(1 - u)vh. 
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It is impossible to find any direct evidence or observation to support the 
form (5) rather than (13), because of the impossibility to observe directly, 
at least with the presently available scientific means, the processes, social 
or individual, in which knowledge is accumulated. However, it is possible to 
reject an objection that the formula (5) may easily evoke. The idea, involved 
in (5), that the growth of human capital also depends on the magnitude of 
the "population" N or, more exactly, on the grand total of time spent by 
all individuals in society to the accumulation of knowledge and skills, is by 
no means unrealistic. Consider for instance the contribution to scientific 
civilization of advanced nations, such as the Americans, British, Germans 
and French. If we study the national distribution of great innovations among 
these nations, we can see the advantages of a large civilized population quan
titatively confirmed. In the period 1840-1971 studied by van Duijn (1981), 
the U.S. led by 49 innovations (56%), before Germany's 20 or 23%, Britain's 
10 (11%) and France's 9 (10%). But important innovations contribute to 
the growth of common knowledge, i.e. the average human capital h. 

The numbers evidently are much higher than the shares of the corre
sponding populations in the world, which suggests some necessary distribu
tion of education or wealth, or both, before we can speak of a systematic 
accumulation of average human capital in a given society. It is also under
stood that the innovations on the highest level of some Einstein or Newton 
or Galilei or Hamilton are done by individuals. What is suggested here is 
that a large and dense civilized community creates an intellectually activat
ing environment, where those rare individuals capable of real innovations 
find stimulation and incentive. Just like cities t;lften are more intellectually 
activating than the countryside. 

There is also a formal argument favouring the 'mass effect' formula (5), 
and thus the idea that in human capital formation indeed "the effect of a 
whole may be greater than the sum of the effects of the parts", if you like. 
One can show that, while the differential equations of the Basic Business 
Cycles (paragraph 4 below) can be derived with both (5) or (13), the exis
tence of solutions requires the form (5). Indeed, if (13) is used, the existence 
of acceptable solutions demands that k' = kN, which returns (13) to (5). 

4. The derivation of a general solution algorithm. Let us use the 
short notations 

(4.14) 

( 4.15) 

tP d!l p+m-i.le, 
ell d!l (i.le) + (~/tP) 



24 LUCAS THEORY AND ITS GENERALIZATION 

We can then write the following equations: 

(4.16) 

( 4.17) 

(4.18) 

qh 

uvN 

pY 

elk, 
,plk, 
e,pI(1 - (3)k. 

The first of them is obtained by dividing the left and right side of (8) by 
the corresponding side of (9). The next is then obtained from (8) and (11), 
when using the notation (14). The last equation is given by (8),(16) and 
(17). 

From (18), by using (1),(3),(6),(7) and (15), we get successively: 

(4.19) 

( 4.20) 

Y 

Y 

Y 

1 u 
[(1- (3)k] u=-r [~] u=-r , 

e,p 1 - s 

(u: 1) (n + m ~ ~ + 1 ~ s) . 
By inserting Y from (18) into (10) we have first: 

(4.21) 

By derivation with respect to time and equating the result with (3) this 
gives: 

y Y ft(t+p+m-~) 
--s- = . . 
Y K Y 

y+p+m-~ 

By inserting here Y IY from (20) and Y I K from (21) we get for the net 
savings rate s the foiiowing t;t:wml-0.,:l.<::. diff~!'e!'!t!~! "'lll::lt.inn: 

(4.22) ~ log (a 1 ~ s + b) = «(3 - s) (a 1 ~ s + b) - a, 

where 

( 4.23) 

( 4.24) 

( 4.25) 

a 

b 

u 
(3(u - 1)' 
a(a+n-plu), 
p+m-~. 
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The variable whose logarithm is taken in (22) will be denoted by w. It 
represents the net output/capital ratio and satisfies, obviously, the following 
identities: 

S 1 (Y ) Y (4.26) w = a-- + b = - - + p + m - ~ =-- l-s -{3 Y -K· 

In terms of the variables sand w we can rewrite (22) in the form of two 
mutually coupled first-order differential equations: 

(4.27) s = .!.(1- s)(w - b), wjw = ({3 - s)w - lk. 
a 

The time functions Nand k having been given by (1) and (6), respec
tively, a general solution algorithm of the fundamental equations can now 
be given in terms of the time functions e and tP and the constants of this 
dynamics: 

(1) Solve the savings rate s from (22), choose the parameters a, band lk 

to satisfy the conditions (23)-(25). 
(2) Choose the (because of (16)-(18» positive-valued functions tP and e 

in accordance with (24) and (25). 
(3) Find the (net) output Y from (19). 
(4) Compute the physical capital K from (21). 
(5) Get the human capital h from (12), after inserting there uvN from 

(17). 
(6) Find the total working time vN and its share v in the total life time 

N from (5), after inserting uvN from (17) into (5), 
(7) Compute the other allocation function u then from (17). 

Of the remaining two fundamental variables p and q the price function p, 
related to the expected future values of physical capital, can be found imme
diately after the third step of the above algorithm, by using (18). The price 
q telling about the expected future values of human capital can be computed 
after the fifth step from (16). 

The dependent economic variables, such as the total consumption C = 
(1 - s)Y, investment sY, employment i.e. the labour input E = huvN = 
hw jk to the production function, and the productivity of labour i.e. the 
real wage level W = Y j E etc. can be of course then easily computed on the 
basis of the known fundamental variables. 

5. The natural boundary conditions. In the generalized dynamics 
they obtain the form of the following conditions: 

(4.28) Lj( = -eptp-+O, 
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( 4.29) 

with t -+ 00. The former one is the same as in the Lucas theory. The latter 
needs some attention since now, otherwise than in the Lucas case, we have 
Lh 1= O. 

Now also the control parameter v, and not only c, is included in the 
utility function. But this parameter is a function of h, since in view of (5) 
the equation (9) can be written as 

(1 - {J)pY 
v = .. 

~N - qh/v 

Solved for v we get 

( 4.30) 
(1 - {J)pY + qh 

v = ~N ,thus vh = q/~N, 

which gives (29). 

6. The Legendre condition. We have again, as in the Lucas theory, 

( 4.31) L (1 -pt -(1 - 1 
kk = --e c . 

N 

Obviously Lkh = 0 and Lhk = 0, since c and thus p does not depend on h, 
and q does not depend on 1<. But, in view of (5) and (16) we have: 

( 4.32) q = (v - uv)~N/h. 

Here uv according to (17) is equal to t/J/kN and does not depend on h. Thus 
we get, by applying (30): 

qh = ~'! vh - ~N2(1- u)v = (l/h)[q - ~N(I- u)v/h]. 
h (h) 

rnl" _____ .: __ L ______ • __ ~_ •• : ........ ,....t"Ie::.\ ..... -....J Ila\ ;.., .......... .., ... 1 f_ 17.0 ... _ Thll~ 

~UJ~ ICA}Jlt::I!)I:)JUI1 1JVYY':;Y~J., .lJ.l Yn",n v.&. \v/ Uouu. \ .... v/, ... ~ .... '1 ............................ a. ..... . 

Lhh = 0 and the quadratic form in the Legendre condition is determined by 
the same 4x4 matrix as in the Lucas theory. Hence this condition is satisfied 
in the generalized dynamics as well. 

7. Transversality conditions. It follows from (6),(12) and (17) that 
we have now, as a deviation from the Lucas theory, 

OtY = (1 - {J) (~ - m) , 
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while the derivatives YK and Yh are the same as in the Lucas case. It will be 
shown in the next Part that there will be either "p/t/J = 0 or then "p/t/J -+ 0 
with t -+ 00. Thus the transversality conditions of the generalized dynamics 
will assume the form 

(4.33) 1· (-G) [mel - (3)] 1· K 1m -- =- 1m , 
t-+oo e - pt p (3 t-+oo 

( 4.34) r (-G) [m(1- (3)] r h 
t!~ e - pt q = - 1 - (3 + II: t!~ . 

It can be seen from these expressions that the generalized dynamics indeed 
differs very much from the Lucas or Solow theories, which in this respect 
were close to each other. The ultimate reason for this great difference is 
the appearance of nonmaterial values in the generalized dynamics. Such 
values are implied by the introduction of the leisure term into the current
time utility. This affects the character of economic theory in an essential 
way, as we shall see in Part 3 and especially in Part 4 of this study. It also 
improves the way in which the transversality conditions are satisfied: in the 
generalized dynamics they will be fulfilled in their above original form. 

Note (The mutual interference of material and nonmaterial values as 
the cause of the business cycles). We have seen that the introduction to the 
current-time utility of the leisure term ~(l - v)N, standing for individual 
freedom and thus for nonmaterial values in general (as assumed), produced 
the second-order differential equation (4.22) or, equivalently, the two mutu':' 
ally coupled first-order differential equations (4.27). Such equations did not 
appear in the Lucas growth theory and they disappear, if we eliminate the 
leisure term in utility by putting ~ = O. Thus the mentioned differential 
equations are produced by the mutual interaction of the material and the 
nonmaterial parts of utility, the former being of course represented by the 
consumption term in the value function J. It will be seen in the next chapter 
that these differential equations define what we shall.call the Basic Business 
Cycles. Thus these cycles are produced by the continuous mutual interfer
ence between material and non-material values, just like the electromagnetic 
waves are produced by the continuous mutual interference of electricity and 
magnetism. Thus, in the present theory, the economic boom and recession 
have the same reason, not different ones. 
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THE GENERAL THEORY OF ECONOMIC 
GROWTH AND BUSINESS CYCLES 

5. The Basic Growth Paths 

1. The balanced-growth path: Growth Type 1. Following the 
algorithm it is easily verified that a special solution of the equations of 
motion (4.3),(4.5)-(4.12), and of the relations (4.14)-(4.15) and (4.23)-(4.25) 
associated with them,is given by 

(5.1) 1 > s = s* = Constant> 0, thus w = b, 

(5.2) a > ° i.e. u> 1, b = b* = Constant> 0, tP = Constant, 

(5.3) a = a* = «(3 - s*)b* = Constant> ° i.e. s* < (3, 

(5.4) tP = a*, ~ = ~oe(p + m - a*)t, ~o > 0, 

(5.5) 

(5.6) 

(5.7) v = v* = v~e-(m + n)t, v~ = (a* + v)/koNo < 1, 

(5.8) 1 > u = u* = a* /(a* + v) = Constant> 0, 

(5.9) p = p* = p~e(p - (3b*)t, 

(5.10) q = q* = q~e(p - a* - v)t. 

After the choices (1) and (2) the choices (3)-(10) are uniquely determined. 
Again the Euler equation for the "price" p gives the important parametric 

relation 
(5.11) p + u(~ - n) = (3b*, 

met already in both the Solow and Lucas growth theories. Solved for u or 
for b* this gives, in view of (6), 

(5.12) 

respectively. 

(3b* - p 
u = *b* , s - n 

b*= n-p/u, 
s* - (3/u 

The natural boundary conditions (4.28)-(4.29) are satisfied because of 
(9) and (10). It follows from (5) and from (4.1) that 

c = c* = (1 - s*)(Yo* /No)e(~ - n)t --+ 00 with t --+ 00, 
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provided that 
(5.13) ~ > n. 

Coming to the transversality conditions (4.33)-(4.34) we see at once that 
the right-hand sides go on the balanced-growth path to negative infinity with 
t --+ 00. Consider then the left-hand sides 

(5.14) 

(5.15) 

where 

-G/e-ptp* = -G* /p* and 

-G/e-ptq* = -G*/q*, 

G* = NV +e(1- v)N + p*j(* + q*h* 

We shall study the behaviour of each term when t --+ 00 in detail. There 
is now, because of (2), u > 1, in which case the function V(c) approaches 
asymptotically a positive constant. The absolute values of the two first terms 
in (14) go to infinity with t --+ 00 as follows: 

the first term because of (9) and (13), the second one because of (3), (4), 
(7), (9) and (11). The absolute values of the third and fourth terms go to 
infinity in a similar way as shown by the formulae 

the former one because of (5) and the latter one because of (5),(9) and (9)
(11). Thus also the left-hand side ofthe transversality condition (4.33) goes 
to negative infinity with t --+ 00, which that this condition is satisfied in its 
original form discussed in Part 1. 

Consider then the left-hand side (15) of the transversality condition on 
human capital. The absolute value NV/q* of the first term behaves asymp
totically as shown by 

NV/q* '" e(a* + v + n - p)t, 

because of (10). For p < a* + v + n this goes to infinity, otherwise it 
approaches asymptotically a constant, possibly zero. Its behaviour is not 
important for the validity of transversalitu conditions. This is because the 
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absolute values of the other terms in (15) always rise to infinity, as shown 
by 

{(l_v)N/q*""e(m+n+v)t, p*K/q*""evt , h*""evt , 

the first ofthem because of (4),(7) and (10), the second one because of (5),(9) 
and (10), and the third one because of (5). 

It follows that also the second transversality condition (4.34) is fulfilled 
on this path of the generalized dynamics. Both transversality conditions are 
now satisfied in their original forms studied in Part I. 

Let it be remarked that also the formulae 

are valid in the generalized dynamics too, the first one because of (3)-(5) 
and (9), the second one because of the above formula (4) and the formulae 
(4.6) and (4.16). This time, however, these formulae do not guarantee the 
validity of the transversality conditions. 

2. The path of logistically rising productivity of capital: Growth 
Type 2. Again we follow the algorithm by choosing first: 

(5.16) 

(5.17) 

1 > s = s* = Constant> 0, thus w = b, 

a > 0 i.e. 0" > 1, b"l Constant, tP"I Constant. 

From (4.27) we see that the parameter b has now to obey the equation 

bib = (f3 - s*)b - 0:. 

In view of (4.24) this is equivalent to 

bib = (n - O"/p) - (s* - f3/O")b. 

Here we can express n - p/O" in terms of the solution b* the Growth Type 1, 
obeying the equation (12) above, to get: 

(5.18) bib = (s* - f3/O")(b* - b). 

This is solved by 

(5.19) b - b* where "I = n _ p/O", B = b* - b(O) 
- 1 + Be-"It ' b(O) . 
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This is a logistic function with two branches. For 'Y < 0 it would give a 
downward curve approaching asymptotically zero, which predicts an eco
nomic catastrophe but is not an interesting solution from the point of view 
of growth theory. The other option 'Y > 0 is more interesting and gives 
the branch of the logistic function rising asymptotically toward the Growth 
Type 1 solution b*. Choosing this solution we thus have in Growth Type 2, 
in addition to the b-equations (18) and (19), also the conditions 

(5.20) b> 0, 'Y > 0 i.e. s* - {3/u > O. 

The lcist condition of course is in view of (12) equivalent to the second one, 
since b* is positive. 

Next consider the parameter cr. By applying (4.23) and (4.24), and for 
'Y again (12), we obtain 

(5.21) cr = ({3 - {3/u)b - 'Y = cr* - ({3 - (3/u)(b* - b), 

which expresses the relation between the Growth Type 2 parameter cr and 
the corresponding Growth Type 1 parameter cr*. 

For the auxiliary t/J we now get, with the help of (4.14),(4.15) and (4.25), 
the differential equation 
(5.22) ,(p/t/J = t/J - cr. 

This is solved, in view of (18) and (21), by 

(5.23) t/J = ({3 - s*)b > 0 \It. 

This gives, in view of (4.14): 

(5.24) 

Thus we have settled the two first steps in the general solution algorithm. 
For the next steps we first get from (4.20), by applying s = 0, (4.25) and 
the above formulae (21) and (6) in this order, 

(5.25) yt /yt = ..\ - ({3/u)(b* - b), 

where ..\ is the growth rate of output in Growth Type 1. This gives 

(5.26) 

which settles the third and fourth steps of the algorithm. 



32 THE GENERAL THEORY 

To do the fifth step we first calculate, with the help of the ex post pro
duction function (4.12) and the above formulae (18),(21),(23) and (25), 

. t 
~t == v + C _; + ,J (s* - .8/u)(b* - b), (5.27) 

where v is the growth rate of human capital in Growth Type 1. This gives: 

(5.28) h t = h! exp { vt + (1 _ ; + ,J ["It - ("1/ b*) lot b dt] } . 

To get the sixth step done we can write, by inserting (4.17) into (4.5) 
and solving for the share v, the generally valid equation 

(5.29) 

It can of course be developed further by inserting h/h from (27) and t/J from 
(23), but this is left to the reader, as they say. The other share parameter tI 
is then in view of (4.17) given by the generally valid equation 

(5.30) t/J 
tI = --:....,.-

t/J + h/h 

It remains to study the Euler equations (4.10) and (4.11). They give: 

(5.31 ) 

Here b is to be taken from (19), t/J from (23) and h t / hf from (27), after which 
the function qt(t) can be calculated in a way similar to the calculations of 
yt in (26) and ht in (28). 

After the choices (16), (17) and (20) have been made, the above Growth 
Type 2 solution for the basic growth path is uniquely determined. 

The natural boundary conditions (4.28) and (4.29) are satisfied without 
further conditions, since it follows from (31) that e-Ptpt and e-ptqt both 
approach asymptotically zero. The Legendre condition was proved to hold 
good generally in the generalized dynamics (see Part 2). 

Since it has been already proved that the transversality conditions (4.33) 
and (4.34) are satisfied on the balanced-growth path, i.e. in Growth Type 
1 of the generalized dynamics, the case of Growth Type 2 is trivial. This is 
because the basic growth path of Growth Type 2, studied in this para
graph, asymptotically approaches that of Growth Type 1, as is evident 
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from (19),(21), (23),(24),(25),(27),(29),(30) and (31). Thus we have already 
proved the validity of the. transversality conditions also in the case of the 
basic growth path of Growth Type 2. . 

The remark at the end of paragraph 1 can be repeated here: the functions 
e-PtpK and e~Ptqh vanish asymptotically also on the basic growth path of 
Growth Type 2, but this does not guarantee the validity ofthe transversality 
conditions, which are now valid in their original form derived in Part 1. 

3. Verification by the Solow (1957) material. At the very begin
ning of the modern era of growth theory, in Solow's seminal works in the 
1950s already, an empirical material was published which leaves no doubt 
about the existence of the two Growth Types just described. This material 
in Solow's 1957 paper was then, of course, published to serve another pur
pose, viz. that of supporting Solow's representation of technological progress 
by the exponential function A(t) in the production function (2.11). 

Finding statistical materials useful for the verification of a theory was 
then, and still is, a demanding task if only because economic statistics nor
mally has been collected mainly for variable practical uses and keeps rarely 
the same standards and units over any longer period. "The capital time series 
is the one that will really drive a purist mad. For present purposes, 'capital' 
includes land, mineral deposits, etc. Naturally I have used .Goldsmith's es
timates (with government, agricultural, and consumer durables eliminated). 
Ideally what one would like to measure is the annual flow of capital services. 
Instead one must be content with a less utopian estimate of the stock of 
capital goods in existence... Lacking any reliable year-to-year measure of 
the utilization of capital I have simply reduced the Goldsmith figures by the 
fraction of the labor force unemployed in each year, thus assuming that labor 
and capital always suffer unemployment to the same percentage." (Solow, 
1957, p.314) 

The first and second columns of Table 1 were composed and published as 
the fifth and sixth column, respectively, in the corresponding Table of Solow 
(ibid., p.315). By dividing the numbers in the column of " Private nonfarm 
GNP per manhour" by the corresponding numbers in the column " Employed 
capital per manhour" (the titles used by Solow), one gets the third column 
of our Table 1. It gives estimates of the annual output/capital ratios Y / K 
in the U.S. economy from 1909 to 1949, and their graphical illustration is 
given in Fig.1. 

The business cycles in employment are seen as the oscillations of the 
variable Y / K in the picture. What is interesting for the present purpose, 
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TABLE 1. - THE SOLOW DATA FOR CALCULATION OF OUTPUT PER CAPITAL· 

Priv.no ann utput riv.nonfann utput 
GNP per per GNP per per 
manhour capital manhour capital 

Year (1) (3) Year (1) (3) 
1909 .623 .302 1930 .880 .288 
1910 .616 2.10 .293 1931 .904 3.33 .271 
1911 .647 2.17 .298 1932 .897 3.28 .273 
1912 .652 2.21 .295 1933 .869 3.10 .280 
1913 .680 2.23 .305 1934 .921 3.00 .307 
1914 .682 2.20 .310 1935 .943 2.87 .329 
1915 .669 2.26 .296 1936 .982 2.72 .361 
1916 .700 2.34 .299 1937 .971 2.71 .358 
1917 .679 2.21 .307 1938 1.000 2.78 .360 
1918 .729 2.22 .328 1939 1.034 2.66 .389 
1919 .767 2.47 .311 1940 1.082 2.63 .411 
1920 .721 2.58 .279 1941 1.122 2.58 .435 
1921 .770 2.55 .302 1942 1.136 2.64 .430 
1922 .788 2.49 .316 1943 1.180 2.62 .450 
1923 .809 2.61 .310 1944 1.265 2.63 .481 
1924 .836 2.74 .305 1945 1.296 2.66 .487 
1925 .872 2.81 .310 1946 1.215 2.50 .486 
1926 .869 2.87 .303 1947 1.194 2.50 .478 
1927 .871 2.93 .297 1948 1.221 2.55 .479 
1928 .874 3.02 .289 1949 1.275 2.70 .472 
1929 .895 3.06 .292 

.. Numbers in columns (1) and (2) are given in 1939 dollars. 

however, is the, behaviour of the level of Y/K, which is to be compared 
with the theoretical level as represented by the variable b in the generalized 
dynamics. The numbers and the picture suggest that there was indeed a 
clear-cut balanced-growth path, i.e. a constant b = b* from 1909 until the 
Great Depression of 1929-33. But after that there was an equally clear-cut 
rise of the logistic type in the level of the output/capital ratio that lasted 
some twenty years, approaching again a constant but higher value toward 
the 1950s. 

Thus the qualitative behaviour of the U.S. economy in the period 1909-
30 in terms of the present theory corresponds to Growth Type 1, while 
the period 1930-50 was that of Growth Type 2, with its logistic rise of the 
level of the output/capital ratio. The lines drawn in Fig.1 approximately 
represent the constancy of b prevailing before the Great Depression and the 
approximately logistic rise during 1930-50, respectively. 

The appearance in the above statistics of the two different kinds of 
Growth Types predicted by the present unified theory of growth and busi
ness cycles is an important fact in favour of this theory: The Solow growth 
model and the Lucas 1988 growth mechanics are both of them of the Growth 
Type 1, with a balanced-growth path as the basic growth path. 
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FIGURE 1. - GROWTH TYPES 1 AND 2 VERIFIED BY SOLOW DATA 

If the data support the existence of the both Growth Types 1 and 2 so 
clearly, as it seems to the present author, the question may arise: Why this 
evidence has been ignored ever since 1957 when they were first published? 
The answer, to draw from the experience in physics, is simply that the data 
have been ignored since no theory has been there to explain them. Even 
scientists are prone to look elsewhere, if they encounter phenomena that are 
not explicable by the wisdom of the day. 

6. The Basic Business Cycles 

1. The state-plane and the cycle center. The equations (4.27), 
where w obeys (4.26), are equivalent with the equations (4.22) and thus start 
the general solution algorithm of generalized dynanmics given in Chapter 4. 
Obviously we can accept only the values of sand w such that 

(6.1) s(t) < 1, w(t) > 0 \It. 
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Under these conditions (4.27) gives: 

{ 
> 0 for s < 1 and w > b, 

(6.2) S = 0 for s = 1 or w = b, 
< 0 for s < 1 and w < b. 

{ 
> 0 for w > {J ~ s' 

tV = = 0 for w = {J ~ s' 

<0 forw<~. 
jJ-S 

This tells that the state (s,t) revolves clockwise around the cycle center 
P = (s*, b) on the plane (s, w). For the Growth Type 1, in which case 
P is a fixed point, the situation is schematically illustrated in Fig.2. The 
boundaries r 1 and r 2 of the state space, 

r1 = {(s,w); s = l,w > O}, r2 = {(s,w); s < l,w = O}, 

are also indicated. 

2. The decreasing relative size of the cycles. It follows from the 
negative Bendixson criterion that the oscillations of the state (s, t) obeying 
(4.27) do not approach any limit cycle asymptotically. As the equations 
(4.27) cannot be solved, they cannot tell more about the asymptotic be
haviour of the the state (s, w). But since the Growth Type 2 approaches 
asymptotically the Growth Type 1 the linearized equations (4.27), 

(6.3) S = ({3 - (3/u)(w - b*), tV = - (b*)2 (s - s*) + a*(w - b*), 

valid in a neighbourhood of the fixed cycle center P, can help us one step 
further in this question. The solution of (3) can be written as 

(6.4) s - s* = ea*t/2 (coswt - ;~ sinwt) [s(O) - s*] 

* /2 (1 - s*) + ea t a*w sinwt [w(O) - b*], 

(6.5) w - b* = _ea*t/2 [ a ] [(a*)2 + w2]sinwt [s(O) _ s*] 
(1 - s*)w 4 

+ ea*t/2 (coswt + ;~ sinwt) [w(O) - b*]. 

We can see that the cycles expand and that the size of the parameter a* 
determines how much. The smaller is a* the less they expand, and in the 
limit a* = 0 we get closed cycles and stability in the Liapunov sense. This 
value of a is however denied because of the conditions s* < {3 and b* > 0 
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valid in generalized dynamics. For a small a we can speak of an approximate 
Liapunov stability. 

What is important from the point of view of economics, however, is 
not the behaviour of the cycles as separated from the rest of the economic 
dynamics. The relevant thing is the expansion of the cycles in proportion to 
the expansion of economy. The development of this proportion is indicated 
by the coefficient 

(6.6) A(t) '" ea*tl2 Ie At , 

where the nominator indicates the growth of the cycles and the denominator 
that of the output of economy. This gives 

A(t) '" e(P - 35*)(b* 12)t --+ 0 for s* > P/3., 

when t --+ 00. The condition is satisfied in all advanced economies. 
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Thus the relative significance and size of the cycles in proportion to the 
growth of economy decreases indicating an increasing relative stability of the 
economic system. It follows that for instance the needs of monetary theory 
are satisfied. 

3. The existence of well-behaving general solutions. So far only 
the existence of the two special solutions that defined the basic growth paths 
in the respective Growth Types 1 and 2 has been proved, by means of a de
tailled construction. Now we have to see to it that the general solution 
algorithm given in Chapter 4 leads to well-behaving general solutions, i.e 
solutions of the fundamental equations that retain their properties as mean
ingful economic variables also over the cycles. (The reader may have ex
pected this at an earlier stage, however, we could not give it before studying 
the expansion of the cycles in Section 2 above.) 

The first of these properties concerned the limits of the savings rate s 
and the output-capital ratio w imposed on them by the formula (1). Next we 
have to check that the second step of the algorithm gives an output variable 
that retains its positivity through all the cycles, i.e. that (cf. (4.19)) 

1 (T 

(6.7) Y(t) = [(1 - {3)k(t)] r=o: [ N(t) ] u-=-r 0 Vt. 
~(t)1j>(t) 1 - s(t) > 

Here the positivity of k is ascertained by (4.6), that of ~ by (5.4) and (5.24), 
that of 1j> by (5.23), that of N by (4.1) and that of 1- s by the above formula 
(1). The positivity of the physical capital K, 

(6.8) K(t) = Y(t)/w(t) > 0 Vt, 

is guaranteed over all the cycles by the formulae (1) and (7). 
The positivity of the human capital h, as defined by (4.12) and (4.17) in 

the fourth step of the algorithm, i.e. 

1- {3 1 

h(t) = (k(t»)1-8+11: ( Y(t) )1- 8 +11: >0 't/t, 
1j>(t) AK(t){3 

(6.9) 

is confirmed through the cycles by the positivity of Y, K and N, if the share 
variables u and v are well-defined i.e. with values between 0 and 1. 

We shall first prove that the values of u as given by the general algorithm, 
obey 

(6.10) o < u(t) = 1j>.(t) < 1 
1j>(t) + h(t)/h(t) 
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over the cycles. Since tP is a positive function without cycles, the values of 
u are between 0 and 1, provided that it/h > 0 always holds good, i.e. that 
human capital grows all the time even over the cycles. From (9), in view of 
(4.6) and (5.23), we get first: 

h ... 
(1 - {3 + ")h = (1 - (3)(m - bIb) + (Y /Y - (3K /K). 

In view of(4.20) and (4.25)-(4.27) we have here 

Y /Y + {3K/K = {3(1 - s)w - a, 

and, since bIb can be written as ({3 - s*)b - a, we get: 

(6.11) (1 - {3 + ,.)h/h = (1 - (3)[m - ({3 - s*)b + a)] 

-a + {3(1 - s)w > 0 'It 

on the condition that 

(6.12) (1 - (3)m > Max[(1 - (3)({3 - s*)b + (3a] = a*. 

The positivity of u guarantees in view of (4.17) also the positivity of the 
other share parameter v. It remains to show that the values of v too, as 
given by the general algorithm, are also smaller than one, i.e. that 

(6.13) vet) = k(t)~(t) [~~!~ + tP(t)] < 1 Vi. 

From (11) we get, in view of (13) and (5.23): 

v = k~ {{3(1 - s)w + (1- (3)m - {3[(a + ({3 - s*)b]). 

The other terms within the braces are finite, while (1 - s)w has no upper 
limit. What we have to prove, accordingly, is that the function (1- s)w/kN 
remains finite, after which a suitable choice of ko and No always keeps the 
values of v below one. 

The cycle equations (4.27) together with (4.23) and (5.21) give: 

(6.14) ~(1- s)w = (1- s)w [( n -~) - (8 -~) w] . 
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It follows that the relative maximums (1- 8)W ofthe function (1- s)w during 
the cycles are on the curve 

(6.15) 
n - piG' 

w= . 
S - (JIG' 

The fixed cycle center (s*, b*) of course is on this curve. For s* > (JIG', 
which in view of (5.20) is valid in generalized dynamics, the curve runs 
entirely between the straight lines s = (JIG' and s = 1. It follows that the 
values 1 - 8 are smaller or equal to 1 - (JIG' and thus finite. The value W 
approaches infinity when 8 approaches the value (JIG'. We accordingly have 
to study the behaviour of the function (1 - 8)W when 8 approaches that 
value. 

Let the points of intersection ofthe cycle trajectories on the (s,w)-plane 
with the straight line s = (JIG' be denoted by (8", w). Since these points, 
because of the diverging nature of the cycle, rise along the curve (15), which 
approaches asymptotically the straight line s = (JIG' along which the relative 
maximum points (8, w) rise, we have (Fig.3) 

(6.16) lim W = lim w. 
t-oo t-oo 

But at the points (8", w), which are on the straight line s = (JIG', (14) gives 

d p d 
-d log[(1 - 8")w = n - - < n + m = -d log(kN). 

t G' t 
( 6.17) 

It follows from (16) and (17) that the function kN grows faster than the 
relative maximums (1- 8)W of the function (1- s )w, and we have the result: 

(1 - 8)W . 
kN -+ 0 WIth t -+ 00. 

From this and from the finiteness of (1 - s)w for finite times it follows 
that also this cycle term in the function v keeps finite for all points of time. 
By a suitable chose of ko and No we can then always guarantee the validity 
of (13). 

This completes the proof that the cycles do not destroy the properties of 
the dynamical variables of generalized dynamics as well-behaving economic 
variables. This is because the positivity, over the cycles, of the "imputed 
prices" p and q is immediately clear from the equations (4.18) and (4.16), 
respectively, in which all the variables have only positive values. 
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4. The invariance group and the time scale. As soon as continu
ous growth models are tried to be applied to problems involving finite time 
intervals, problem~ flPpear because the periods of production are themselves 
indicated by points"of zero extension in such models. The solution of this 
problem, inherent iIi all economic theories with continuous time, seems to 
imply the existence of what in physics is called an invariance group involving 
time. This however presupposes that the fundamental equations of the the
ory are invariant with respect to the transformations of such a group. The 
condition is fulfilled in the case of the Basic Business Cycles defined by the 
equations (3.27), i.e. 

(6.18) s = (fJ - fJ/u)(1 - s)(w - b), w/ w = (fJ - s)w - a. 

An invariance group is a commonplace in theoretical physics but has to 
my knowledge not appeared in economic theory so far. Since its significance 
is essential for the understanding of the theory of Basic Business Cycles 
(BBC), it will be here studied in detail. It is easy to see that the equations 
(18) are invariant with respect to the transformations 

(6.19) s - S' = s, w - w' = gw, t - t' = t/g, g > 0 
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of the (s, w, i)-space. These transformations can be interpreted as changes 
of the time scale. 

For instance, in a transformation with g > 1 the real number i, represent
ing in the theory of the BBC a certain interval of time, obviously becomes 
smaller. This is equivalent to the introduction of a larger time unit [TU] 
in this theory. It follows that the output Y', obtained during the new and 
larger time unit [TU] from a given capital K tied up to production, and 
thus the new output/capital ratio y' / K are both of them larger than those 
obtained from this capital during the old and shorter time unit [TU], in the 
way expressed by the formulae 

(6.20) y' = gY > Y, w' = Y'/K = gw > w = Y/K, 

respectively. 
The parameter b is an output/capital variable and accordingly transforms 

like w. But so does also the paramneter a, since it in view of (5.12) (the 
second equation in this formula) and (5.21) can be expressed as 

(6.21) a = ({3 - {3/u)b - (s* - {3/u)b*. 

Note that the parameter u, in view of (5.12) (the first equation of this 
formula), is invariant since in this transformation of time scale we of course 
have p - gp and n - gn. The parameters (3 and s are share variables and 
accordingly invariant. 

It follows that the variables in the differential equations (18) transform 
as follows: 
(6.22) s - gs, w - g2w, b _ gb, a _ gao 

This leaves the form of the equations (18) invariant. 
From the existence of an invariance group involving a transformation 

of time scale it follows that there is a new degree of freedom to cope with 
problems of time in the theory in question. We can choose freely the real 
time interval equivalent to the theoretical time unit [TU]. If the real time in 
years is indicated by r, the scale constant go determined by the equation 

(6.23) T(i)/go = T(r) [years] 

must then be used in calculations to be compared with empirical data in
volving a finit time interval T( r). 

For instance if, in an application to business cycles, the observed length 
of period of a cycle is four years, and the length of period obtained from the 
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theory is T(t) = 21r/w, where W is the angular velocity of the cycle as seen 
from the cycle center, we have to compute go from the equation go = 1r/2w. 
This scale constant must then be used consequently in the application of the 
theoretical business cycles to that case. 

5. The cycle functions. The theory of the Basic Business Cycles will 
be verified in Part 4 by comparing the correlations and variances of some of 
the most important real economic variables over detrended cycles, calculated 
from the theory, with the corresponding empirical correlations and variances. 
For this purpose the cycle functions Qx of those variables X, defined by 

(6.24) ; = (;) p +Qx(s,w), 

are needed. Here (X / X)p is the growth rate of the variable X on the basic 
growth path through the cycle center P. It may thus represent either the 
growth rate on the balanced-growth path or on the path of a logistically 
rising output/capital ratio, depending on the Growth Type. 

For the fundamental growth variables Y (output), K (physical capital), 
h (human capital), p (imputed future price of physical capital) and q (im
puted future price of human capital) the cycle functions are obtained by 
direct calculation from the defining equations of these variables in the gen
eral solution algorithm (Chapter 4) and from the differential equations of 
the Basic Business Cycles. We then get successively: 

(6.25) 

(6.26) 

(6.27) 

{J(w-b), QK=sw-s*b, 

C _; + ,J [(1 - s)w - (1 - s*)b], 

-Qx, Qq = -Qk. 

Derived variables that play important roles in empirical comparisons are 
the total consumption C = (1 - s)Y, the total (net) investment I = sY, 
the employment or the employed labour force E = huvN = h1f;/k and the 
productivity of labour W = Y / E. Their cycle functions are readily obtained 
from the above cycle functions and from the differential equations of the 
Basic Business Cycles: 

(6.28) Qc 

(6.29) 
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(6.30) 

(6.31) 

THE GENERAL THEORY 

c ~; + ,J [(1- s)w - (1 - s*)b] = Qh, 

Qy -QE. 

The cycle functions of employment and human capital are identical, of 
course, since the working time uvN = tfJ/k, devoted to work of purely manual 
or physical character, in view of (4.17) has no Basic Business Cycles. 



IV 

THE BASIC BUSINESS CYCLES AS THE 
CAUSAL PART OF BUSINESS CYCLES 

7. The Predictive Power of the Basic Cycles Compared With 
That of the Stochastic Models: Ordinary Business Cycles 

1. The linear approximation of the Basic Business Cycles. The 
linear approximation (6.4)-(6.5) of the Basic Business Cycles, valid in a 
neighbourhood of the balanced-growth point P = (s*, b*), can be written in 
the form 

(7.1) s - s* Lin 
Ceut + Ceut , C = (~+ ~) [s(O) - s*], 

(7.2) w- b* Lin D e ut + jj e ut , D = [i~~~2_+s~:)] [s(O) - s*]. 

Here u = 0:/2 + iw and u = 0:/2 - iw, 

and the state of the system at time 0 has been taken, for convenience, to be 
such that w(O) = b*. 

Direct calculation gives the 'basis integrals': 

Is 

Iw 

Iss 

(7.4) 

Isw 

(7.5) 

J(s - s*) = (w2 +0:0:2/4) . (eO:1r/ w -1) [s(O) - s*], 

J (w - b*) = (1 ~ s* ) . (eO:1r /w - 1) [s(O) - s*], 

J(s - s*)2 = Fss(o:,w)· (e20:1r/ W -1) [s(O) - s*]2, 

_ [0:2 + 4w2 (~_ 0:2/8w2)] 
Fss - 2 + 0: 2 2 ' 

80:w 0: + 4w 

J (s - 8*)( W - b*) = Fsw(a, s*) . (e20:1r/ W - 1) [s(O) - s*]2, 

Fsw = [2(1 : s*)] , 
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All the integrals are over the cycle, i.e. from t = 0 to t = T = 27r Iw. 
The linear approximation will be used also for the cycle functions (6.25) 

and (6.28)-(6.31), by expressing each of them in terms of the powers of s - s* 
and w - b* and accepting only the linear terms. This gives a linear function 

Qx L.J:.n Lx(s - s*, w - b*) = Ax(s - s*) + Bx(w - b*) 

for each variable X, with the coefficients 

(7.7) Ay = 0, By = (3, Ae = 0, Be = (3lu, 

(7.8) AI = 0, BI = (3[1+(U ~ 1)C ~*s*) ],AE =-C _; + IJb~ 

(7.9) BE =C _ ;+IJ(1-S*), Aw=Ay-AE, Bw=By-BE' 

The mean values, variances, covariances and correlations of our variables 
over the detrended cycle are defined by the formulae 

E(s - s*) = ~Is = ms, E(w - b*) = ~Iw = mw, 

E(Qx) L.J:.n Lx(ms, mw) = mx, 

2 Lin 1 fT 2 2 2 
E[Qx - mx)] = T 10 Lx dt - mx = Ux, 

L' 1 fT 
E[Qx - mx)][Qy - my)] ~n T 10 LxLy dt - mXmy = cov(Qx,Qy), 

r Xy = cov (Q x, Qy ) lux uy . 

The relevant functions in comparisons with data and with other models 
are the ux luy and the correlations rXy. The following formulae are suitable 
for calculations: 

(7.lO) 
2 

(:;) 
(7.11) rXy 

L.in (w/27r) [AiIss + BiIww + 2AxBx Isw] - mi 
(w/27r)B~Iww - m~ 

Lin (w/27r) [AXByIsw + BXByIww] - mXmy 
= 
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The shortcut formulae obtained for mx = my = 0, i.e. 

( AX)2 Fss + (2AXBX) Fsw + (Bx)2, 
By Fww B~ Fww By 

(7.13) rXy R:: [(~;) ::: + :;] (uxuy)-I, 

with the coefficients A and B from (7)-(9) and the F-functions from (4)-(6), 
do very well. A busy reader can use (12)-(13) to check roughly the numericai 
calculations. Let it be mentioned that the unknown initial state s(O) - s* 
cancels out in the formulae (10)-(13). 

2. Comparisons with empirical correlations and variances. The 
prediction formulae, both the (10)-(11) and (12)-(13), include ten parame
ters. Only six of them are independent of each other. They will be chosen to 
be the parameters {3, K, p, n, b* and s*, mainly because they can be given real
istic numerical values in advance, obtained either from empirical experience 
or earlier theoretical usage. Thus the estimates 

{3 = .25, K = .417, p = 2%, n = 1.5%, b* = .3 

are chosen, since these values of {3, nand b* are either identical or very 
close to the Denison (1961) estimates (as reported by Lucas,1988) based on 
the averages in the U.S. economy in the period 1909-57, while the number 
representing K is exactly the one used by Lucas (ibid.), who also accepted 
the above value of p to be a realistic one. As to the numerical value of the 
balanced-growth net savings rate s*, several possibilities are left open. The 
Denison value .1 is too small for the present comparisons, since the latter 
concern a period after the second world war, when the level of the savings 
rate has risen (cf. Mankiw et al.,1990, but note that their numbers are those 
of the gross savings rate). Thus three numerical values of s* will be here 
experimented with, viz .. 13, .15 and .17. 

The remaining four parameters are determined by the above six, a and 
w as indicated in (3), where the parameter a was given as a function of {3 
and u. It remains to give the dependence of the risk aversion coefficient u 
on the independent parameters: 

(7.14) 
{3b* - p 

u = *6* . s -n 
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This dependence is a consequence of the balanced-growth Euler equation 
p + 0'(,\ - n) = f3b* and the balanced-growth equation of the growth of 
physical capital, ,\ = s*b*. Thus it is valid in the Lucas (1988) model as well 
and even in his modification of the Solow model (Lucas,ibid.). 

Table 2 gives the numerical predictions of the Basic Business Cycles 
(BBC) as far as the correlations (with output) and the variances of con
sumption (C), investment (I), employment (E) and the real wage level (W) 
are concerned. These predictions have been calculated from (10)-(11). To 
facilitate the reader's checking of the calculations, the numerical values of 

TABLE 2. - THE NUMERICAL CALCULATION OF CORRELATIONS 

AND STANDARD DEVIATIONS! 

s* = .13 a = .036 w = .1035 0' = 2.2917 
a = 7.0968 Fss = 15.5204 Fsw = 4.0786 Fww = 10.1061 
my = .0666 Iss = 122.5726 Isw = 32.2108 Iww = 80.5236 
me = .. 0291 mI = .3178 mE = .0428 mw = .0238 
Ae =0 Al = 0 AE = -.0643 Aw = .0643 
Be = .1091 BI = 1.1930 BE = .1864 Bw = .0636 
rey = 1.00 rIY = 1.00 rEV = .9060 rWY = .7654 
O'e /O'Y = .4364 O'I/uy = 4.7720 O'E/UY = .7094 O'W / uy = .4668 
s* = .11,i a = .03 w = .0920 0' = 1.8333 
a = 8.8 Fss = 18.3922 Fsw = 5.1765 Fww = 15.5290 
my = .0677 Iss = 124.2441 Isw = 34.9685 Iww = 104.9027 
me = .0369 mI = .2419 mE = .0435 mw = .0242 
Ae =0 Al = 0 AE = -.0643 Aw = .0643 
Be = .1364 BI = .6439 BE = .1821 Bw = .0679 
rey = 1.00 rIY = 1.00 rEV = .9205 Bw = .0679 
O'e /uy = .5455 O'I/O'y = 3.5758 O'E/UY = .6982 O'w/O'y = .4496 
s* = .17 a = .024 w = .0794 0' = 1.5278 
a = 11.5789 Fss = 22.6934 Fsw = 6.9753 Fww = 26.1567 
my = .0698 Iss = 128.8443 Isw = 39.6028 Iww = 148.5073 
me = .0457 mI = .1876 mE = .0449 mw = .0249 
Ae =0 Al = 0 AE = -.0643 Aw = .0643 
Be = .1636 BI = .4217 BE = .1778 Bw = .0722 
rey = 1.00 rIY = 1.00 rEV = .9395 rWY = .8124 
O'e /O'y = .6545 O'I/O'y = 2.6867 O'E/O'Y = .6841 O'W / uy = .4208 

lThe initial state factor [s(O) - s·] has been omitted in the mean values m, as well as 
its square in the I-integrals. 
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the dependent parameters, of the mean values and the A- and B-coefficients 
of the mentioned variables, as well as of the F- and I-functions, such as 
they have been obtained and used in my calculations, are mentioned for the 
purpose of comparison. 

Table 3 compares these predictions with the U.S. data and with the 
predictions of three models based on stochastic shocks, viz. that of Danthine 
and Donaldson (1990-1993), that of Hansen and Rogerson (1985), and that 
of Kydland and Prescott (their later, 1986 version). The success of each 
model is expressed by the sum of error squares in each case. This sum is for 
the versions of the Basic Business Cycles included in this table, viz. BBC 
s* = .13 and BBC s* = .15, smaller than in the models based on stochastic 
shocks. The greater though not perfect success of the BBC is obvious both 
in the prediction of standard deviations and in that of correlations. 

TABLE 3. - COMPARISONS OF THE PREDICTIONS OF 

FIVE MODELS WITH U.S.DATA2 

Standard deviations: 

The U.s. BBC 1 BBC 2 Danthine- Hansen- Kydland-
X: economy: s* = .13 : s* = .15 : Donaldson: Rogerson: Prescott: 
Y 1.00 1.00 1.00 1.00 1.00 1.00 
C .73 .44 .55 .19 .29 .25 
I 4.89 4.77 3.58 3.45 3.24 3.07 
E .94 .71 .70 .72 .77 .68 
W .67 .47 .45 .35 .28 .40 

E~ .1961 1.8645 2.5185 3.1071 3.6933 

Correlations with output: 

The U.s. BBC 1 BBC 2 Kydland- Hansen- Danthine-
X: economy: s* = .13 : s* = .15 : Prescott : Rogerson: Donaldson :> 

C .85 1.00 1.00 .85 .87 .69 
I .92 1.00 1.00 .88 .99 .99 
E .76 .91 .92 .95 .98 .98 
W .42 .77 .80 .86 .87 .91 

E~ .1739 .1989 .2313 .2562 .3190 

2The numbers other than those in the BBC columns are taken or computed from those 
given by Danthine and Donaldson (1993) who, for Hansen-Rogerson and Kydland-Prescott 
models, quoted Prescott (1986). The last row indicates the sum of error squares for each 
model. 
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Figures 4 and 5, which illustrate the numbers shown in Table 3, confirm 
the impression given by the numbers and indeed addsomething to it: what 
makes the difference is that the BBC predictions follow the pattern of em
pirical correlations and standard deviations better than do the predictions 
derived from the stochastic models. 

Table 4 on page 52 shows a similar comparison of two BBC versions, viz. 
one with s· = .15 and one with s· = .17, with the original Kydland-Prescott 
model and with the data they used (Kydland and Prescott, 1982). Again the 
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nonstochastic BBC models are better in their predictions, even though they 
are not perfect either. 

Taken together Tables 3 and 4 show that the BBC version with s· = .15 
is the best when both comparisons are considered. The version with s· = .13 
takes best into account the peculiarities in the U.S. economy as displayed 
by the material in Table 3, while the version with s· = .17 brings home the 
victory in the Table 4 game. 

Scarce though the material is in these comparisons, I have deliberately 
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TABLE 4. - COMPARISONS WITH THE KYDLAND-PRESCOTT (1982) 
MODEL AND WITH THE U.S. ECONOMY IN THE PERIOD 1950-793 

Standard deviations: 

The U.S. BBC 3 BBC 2 Kydland-
X: economy: s* = .17: s* = .15 : Prescott: 
Y 1.00 1.00 1.00 1.00 
C .33 .65 .55 .50 
I 2.83 2.69 3.58 3.58 
E 1.11 .68 .70 .58 
W .55 .42 .45 .50 

L:~ .3238 .7890 .8748 

Correlations with output: 

The U.S. BBC 2 BBC 3 Kydland-
X: economy: s* = .15 : s* = .17 : Prescott: 
C .94 1.00 1.00 .66 
I .71 1.00 1.00 .80 
E .85 .92 .94 .93 
W .10 80 .84 .90 

L:~ .5826 .6434 .7329 

made it even scarcer by leaving out capital (Lucas,1987, also discarded it in 
his Kydland-Prescott Table). The problem with quantitative comparisons 
involving the dynamics of capital still comes from the fact that the capital 
stock, which can be measured, is not the same thing as the capital input to 
production, i.e. the capital services, which is relevant in dynamics. One can 
easily understand that capital stock does not vary much during a cycle, and 
that it has almost a zero correlation with output over a cycle. But 'capital' 
in growth theory is a different thing, whose measurement is difficult. 

3. Comparisons with empirical autocorrelations. The autocorre
lation of output Y with its value Y' delayed by a time D is given by 

ryy' = cov (Y, Y')/ uf, cov (Y, Y') = lyy, - mymy 

1 IT 
Iyy' = T 10 Qy(t)Qy(t - D) dt, 

3The data and the predictions of the Kydland-Prescott model as given in Kydland and 
Prescott (1982). The last row indicates the sum of error squares in each model. 
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, 1 (T 2 , 
my = T 10 Qy(t - D) dt, lTy = COV (Y, Y) for D = O. 

Here m~ :I my because of the divergence of the cycles defined by (1) and 
(2), which we shall use. Direct calculation gives, by applying (6.25) and (2): 

Iy,y, ~ [fJa (0:2 + 4W2)] 2 (e27r0:/w _ 1) e -o:D /2 . 
32 (1 - s*)w 

(7.15) [
COSWD _ o:coswD - 2wsinWD] [s(O) _ s*]2, 

0: 0:2 + 4w2 

(7.16) 
e(27r/w - D)0:/2 (coswD + 0: sinwD) - 1 

, / 2W my my = / . 
e7r O: w _ 1 

Again the unknown initials state s(O) - s* cancels out in the final formulae. 
In a comparison of the predictions of the BBC with those of the Kydland

Prescott (1982) model, which is so far the only case where a comparison of a 
shock model with autocorrelation data has been performed, the theoretical 
equivalent of a quarter of a year is needed. By taking the average length of 

TABLE 5. - COMPARISONS OF PREDICTED AUTOCORRELATIONS WITH 

THOSE OF THE KYDLAND-PRESCOTT MODEL AND WITH DATA 4 

The U.S. BEC 2 BBC 4 BBC 0 Kydland-
j: economy: s* = .15 : s* = .18 : s* = .11 : Prescott : 
1 .84 .90 .92 .93 .71 
2 .57 .71 .72 .73 .45 
3 .27 .44 .45 .46 .28 
4 -.01 .15 .14 .16 .19 
5 -.20 -.13 -.19 -.11 .02 
6 -.30 -.35 -.39 -.33 -.13 
Ell .0851 .0951 .1077 .1487 

4The data and the Kydland-Prescott predictions are those reported in Kydland and 
Prescott, 1982, and again in Lucas, 1987. The last row indicates the sum of error squares 
for e~h model. 
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FIGURE 6. 

period of the business cycles in the U.S. economy in the period 1950-79, 
studied by Kydland and Prescott, to be 4 years, we have 90 = T/4, where 
T = 211" /w is the length of period in terms of the theoretical unit of time [TU] 
(for the time scales, see Chapter 6, Section 4). Thus Dl = T/16 = 1I"/8w is 
the theoretical equivalent of a quarter of a year. 

The comparison with the Kydland-Prescott (1982) model and with the 
data from the U.S. economy in the period 1950-79, which they used, are 
given in Table 5. Three versions of the Basic Business Cycles were again 
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TABLE 6. - THE NUMERICAL CALCULATION OF AUTOCORRELATIONS5 

s* = .11 j=1 j=2 j=3 j=4 j=5 j=6 
D=jD1 3.4563 6.9126 10.3690 13.8253 17.2816 20.7379 
e-OtD/ 2 .9300 .8649 .8043 .7480 .6959 .6469 
coswD .9239 .7071 .3826 0 -.3826 -.7071 
sinwD .3826 .7071 .9239 1 .9239 .7071 
mymy .0040 .0027 .0009 -.0011 -.0030 -.0045 
cov (yy') .0652 .0515 .0324 .0115 -.0080 -.0234 
ryy' .9272 .7326 .4612 .1632 -.1142 -.3331 

s* - .lll j - 1 j-2 j-3 j-4 j-5 j-6 
D=jD1 4.2674 8.5348 12.8023 17.0697 21.3371 25.6045 
e-OtD/ 2 .9380 .8798 .8253 .7741 .7261 .6811 
coswD .9239 .7071 .3826 0 -.3826 -.7071 
sinwD .3826 .7071 .9239 1 .9239 .7071 
mymy .0040 .0026 .0006 -.0017 -.0038 -.0054 
cov (YY') .0848 .0669 .0417 .0138 -.0124 -.0333 
ryy, .8957 .7065 .4403 .1456 -.1311 -.3514 

s* = .18 j = 1 j=2 j=3 j=4 j=5 j=6 
D=jD1 5.4162 10.8323 16.2485 21.6647 27.0808 32.4970 
e-OtD/ 2 .9447 .8925 .8432 .7965 .7525 .7110 
coswD .9239 .7071 .3826 0 -.3826 -.7071 
sinwD .3826 .7071 .9239 1 .9239 .7071 
my my .0054 .0035 .0007 -.0024 -.0053 -.0076 
cov (YY') .1185 .0933 .0576 .0178 -.0198 -.0500 
ryY' .9197 .7241 .4471 .1386 -.1537 -.3879 

experimented with, this time determined by the values .11, .15 and .18 ofthe 
balanced-growth net savings rate s*. As shown by the sums of error squares 
reported in Table 5 the value s* = .15 gives again the best prediction of 
data. But also the other versions of the BBC predict the data better than 
does the model based on stochastic shocks. And again it is the pattern that 
singles out the BBC predictions from the predictions of the shock model: 
the former ones reproduce the pattern of data better (Fig.6). 

To facilitate the reader's checking of the results, some phases of the 
numerical calculation are again indicated (Table 6). 

5The initial state factor [s(O) - SO]2 has been deleted in mymy and in COy (YY'). It is 
canceled out in ryy,. Note that wD = (j/16)360o. 
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8. Conclusions and Challenges 

1. Is the Lucas-Bellman formalism too narrow? The linear ap
proximation certainly does not full justice to the theory of the Basic Busi
ness Cycles, neither to the differential equations (4.27) nor to the detrended 
cycle functions (6.25)-(6.31). Still its predictions are better than those of 
the stochastic shock models in all the comparisons performed so far. This 
non-stochastic simple theory also gives correctly all the patterns of data in 
Figures 4-6, which cannot be said of any of the considered stochastic models. 

The conclusion is near that the dynamics of the Basic Business Cycles 
reflects some fundamental characteristics of the real dynamics of business 
cycles, fundamental enough to be taken into account in macroeconomic the
ory. 

On the other hand, we know that stochastic shocks do exist and affect 
human life in most of its aspects, and certainly they influence economic de
velopment and the business cycles. But the success of the BBC, if repeatedly 
observed, suggests that 

the effects of technological and other shocks upon business 
cycles should be considered as disturbances to be superposed 
upon the Basic Business Cycles due to the mutual interference 
of material and nonmaterial values. 
If this reformulation of the problem of business cycles is accepted, it 

necessitates a reinterpretation of the elegant Lucas 1987 vision of macroe
conomic theory (Lucas, 1987). This vision, based on finite values of welfare 
functions as determined by the Bellman equation, was formulated for ma
terial values. They are of course the main subject of economic theory. But 
economic development in the long run seems to be affected by nonmaterial 
values too. Two of them are involved in the theory of the Basic Business 
Cycles. 

One of them is expressed by the 'mass effect principle' underlying the 
growth equation (4.5) of human capital in the present unified theory of eco
nomic growth and business cycles. The appearance in this growth equation of 
the total time [(1- u(t)]v(t)N(t)] devoted to the accumulation of knowledge 
and skills in society during the period of production t, instead of its share 
in total working time (the Lucas assumption (3.4», means that a mass-scale 
social interaction between a great number of intelligent people is necessary to 
produce the accumulation of true and exact knowledge. The truth of course is 
a fundamental nonmaterial value.The mass effect principle underlying (4.5) 
of course makes our theory nonreducible to microeconomics (cf.p.22). 
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The other one is the inexhaustable pursuit of individual freedom, as ex
pressed by the leisure term in the current-time utility in the present unified 
theory. The inclusion of the freedom aspect makes it impossible to apply 
the finite Bellman formalism, since there is no finite measure of the value of 
freedom, which is infinite. This differs greatly from the situation met if only 
material values, such as consumption, are taken into account. 

Indeed, the need for consumption per capita as expressed by the first 
term divided by N in the current-time utility, 

c(t)1 - u - 1 

l-u 

is bounded for u > 1, which is strictly true in the unified theory. (In fact 
it is in the normal case true also in the Lucas theory and the Solow model 
because of parametric transversality conditions: see pages 11 and 19.) This 
is realistic: no one can consume food or other commodities more than up 
to some limit, after which further consumption does no more increase one's 
welfare. In an infinite horizon the (discounted) value of consumption goes 
to zero. This indeed takes place in all the three mentioned growth theories 
under the condition that p > n, which on the other hand is true because of 
parametric transversality conditions. 

On the other hand the wish for freedom expressed in the unified theory 
by the endogeneously determined weight e ofthe second term of current-time 
utility, 

e(t) [1 - v(t)] N(t), 

is because of (5.4) and (5.24) unbounded in a way that even the discounted 
utility never becomes zero. I think this is realistic. One's material needs are 

. limited, but the wish for freedom is not: whatever practical limits econom
ical and other factors may impose on the actual freedom as realized at any 
particular time, the value of freedom does not have any upper limit. 

It follows that a macroeconomic theory, where the Basic Business Cy
cles have a role to play, has two levels: one, reducible t,o microeconomics 
by means of the Bellman-Lucas formalism, on which the economic game is 
played according to, the rules of that formalism, and another one, where 
the long-term human pursuit of ever greater individual freedom and deeper 
objective knowledge set the tone. The theory of the Basic Business Cycles 
can be understood only within the framework of such a wider conception of 
mathematical economics as sketched in the present study. 
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2. Economic stability. Another general consequence of the present 
unified theory of economic growth and business cycles concerns the prospects 
of economic stability. In a world where the Basic Business Cycles are true, 
economic development does not automatically lead to a stable economic 
system in the end. The negative Bendixson criterion denies it. Thus there 
is no free lunch, but people have to earn it by hard saving, risky investment 
- and by having patience to wait. This is because an approximately stable 
economic system, stable in the sense of Liapunov, can be reached only by 
such paths in the parameter space along which pin (always larger than one), 
u (always larger than one) and s* 1/3 (always smaller than one) approach very 
close to one in the end. 

However, 
the relative significance of the business cycles with 

respect to output approaches asymptotically zero, 
as shown in Chapter 6, Section 2. The relative asymptotic stability defined 
by 

uylY* oc e(o:/2 - A)t ---> 0 for s* > P/3. 

holds good in advanced economies, since the parameter condition is fulfilled 
in all of them. This indeed is sufficient, as far as I can see, for the existing 
monetary theory to make sense. 

3. Are real business cycle theories outdated? Quite recently 
serious doubts about real business cycle theories were expressed by Hairault 
and Portier (1993), who suggest that "the typical modern business cycle 
cannot be reduced to the real business cycle archetype." They showed that 
"a monopolistic competition model with price adjustment costs, affected by 
technological and monetary shocks, better mimics the economic fluctuations 
in two countries with very different cyclical properties, namely France and 
the United States." It is interesting to test the goodness of predictions of the 
entirely non-stochastic theory of Basic Business Cycles by comparing them 
with the predictions of the Hairault-Portier model. 

TABLE 7. - THE BASIC BUSINESS CYCLES AND 

THE HAIRAULT-PORTIER MODEL COMPARED. 

Prediction of: BBC: 
U.S. economy .2057 
French economy 1.511 

H-P: 
.2013 

3.4929 

If we compare (cf. Table 7) the predictions of these two theories con
cerning the correlations with output over detrended cycles and the standard 
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deviations in proportion to the standard deviation of output, we find that 
the Hairault-Portier and the BBC do on the average equally well in the case 
of the U.S. economy (1959-90, the period of Hairault and Portier), while the 
BBC do better than the Hairault-Portier model in the case of the French 
economy (the same period). The sum of error squares, as a grand total of 
all those items, is .2013 for the Hairault-Portier and .2057 for the BBC in 
the prediction of the U.S. economy. In the case of the French economy there 
is, however, a clear difference in favour of the BBC predictions, their sum of 
error squares being 1.1511, to be compared with the number 3.4929 of the 
Hairault-Portier model. . 

In these comparisons the numbers of Table 3 for the BBC 1 (s* = .13) 
were used. Thus the parameter values were kept fixed. The data were 
those reported by Hairault and Portier (ibid.). Their (benchmark) model, 
used in the above comparison, had been separately calibrated for the U.S. 
and French economies, while no such thing was done with the BBC model. 
This shows in the better achievement of the Hairault-Portier model, if only 
correlations are taken into account. However, the numbers just quoted tell 
that the theory of Basic Business Cycles, formally deduced from two axioms 
imposed on the Lucas theory, still explains the whole pool of data somewhat 
better than does what seems to be a very sophisticated shock model. Ergo: 
conclusions as above. 
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9. The Dynamics of Anomalous Basic Business Cycles 
and Its Quantitative Verification 

1. Fundamental theory vs model construction in economics. In 
this chapter the anomalous cycles observed in the period 1914-50 in the U.S. 
and U.K. economies will be studied. Characteristic of this period in these 
countries was 

- that the normally highly procyclical consumption and investment lost 
their procyclicality; 

- that the fall in the procyclicality of investment was still larger than 
that in the procyclicality of consumption, the correlation with output over 
detrended business cycles being reduced in the case of investment to .16 
(U,S.) or to -.41 (U.K.), and in the case of consumption to .51 (U.S.) or to 
-.33 (U.K.); 

- that as a contrast to these anomalous phenomena employment retained 
its usual high procyclicality, its correlation with output over detrended cycles 
being .78 in the U.S. economy and .92 in the U.K. economy; and 

- that in the U.K. economy the real wage level, usually moderately pro
cyclical or neutral, turned into a highly anticyclical variable, with the cor
relation -.61 with output over de trended cycles. 

All the mentioned numbers come from Correia, Neves and Rebelo (1992). 
In this paper a causal explanation of these phenomena is given in terms of the 
Growth Type 2 of Basic Business Cycles. A more specific quantitative model 
is constructed for their study in the U.S. economy, the numbers derived from 
this model being close to the empirical values. 

There is an aspect of the theory of the Basic Business Cycles that makes 
it more suitable for discussions of anomalous phenomena than are the usual 
methods applied in current economics. In the construction of an economic 
model usually a great number of specific hypotheses pertaining to different 
fields of economics are brought together. The result is a sophisticated and 
more or less balanced combination of various aspects of current economic 
thinking: often a sort of compendium of the economic wisdom of the day. 
But this implies, methodologically, that only what is average and ordinary 
- according to the common reason - may be covered by the models thus 
constructed. 

What is exceptional and anomalous is easily ignored in this kind of model 
approach, which involves numerous hypotheses, each of which must sound 
reasonable enough to satisfy common sense. Still the anomalous too may 
be methodical - it only follows a logic different from the obvious one. Such 
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anomalous cases indeed play a remarkable role for instance in the selection 
of correct physical theories from the wrong ones. One can even say that they 
offer the essential arguments for or against any general theory. The history 
of science knows many examples of this. The small deviations from perfect 
circular symmetry in the orbits of planets settled the dispute in favour of the 
Keplerian theory and against the Ptolemaian one. The small anomalies in 
the perlhelic motion of Mercurius testified for the general theory of relativity, 
etc. 

The present unified theory of economic growth and business cycles was 
constructed by following the methodology of generalization of earlier theo
ries, much applied in theoretical physics. What is considered as a fundamen
tal theory, is generalized by means of the least possible number of hypotheses. 
The general idea behind this method is to derive as much as possible from 
as little as possible. This is somewhat quite contrary to what is involved in 
the typical construction of an economic model: there many hypotheses are 
used to derive often not so many consequences. 

In saying so the current practice of dynamical model construction in 
economics was meant. This leaves out the wast literature on mathematical 
economic theory concerning competitive equilibrium, which of course is gen
eral and fundamental. But this theory is static in character. Compared with 
it any attempt to generalize economic dynamics must be tentative. 

The critical issue in the methodology of generalization in economic dy
namics is the choice of the fundamental theory to be generalized. In physics 
the choice tends to be too evident to evoke discussion. In economics the situ
ation is different. The economic litterature knows many attempts at general 
theories, but until quite recently they were mostly verbal and ambiguous. 
Hence, the first criterion of a fundamental theory is its exact mathematical 
nature. Or, as expressed by Robert Lucas: "1 prefer to use the term 'theory' 
in a very narrow sense, to refer to an explicit dynamic system, something 
that can be put on a computer and run." (Lucas, 1988, p.5). 

As a matter of fact the mentioned first criterion leaves very little to 
choose about in economic theory. As a mathematical science using explicit 
dynamical systems as its theoretical foundation economics is very. young. 
If this criterion is combined with the required generality of the theoretical 
ideas expressed, only a few candidates for a fundamental theory are left. In 
the present study the Lucas 1988 'mechanics of economic development' was 
chosen as the starting point of generalization, since the pursuit of a general 
dynamical theory in economics is characteristic of Lucas himself - and his 
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'mechanics' can be considered to be already a generalization itself, viz. a 
generalization of the seminal Solow growth model. 

The generalization of the Lucas 1988 mechanics is quite essential for the 
present theoretical discussion of the anomalous business cycles. This gener
alization produced the Growth Type 2, in terms of which such a discussion 
becomes possible. The Solow model and also the Lucas 1988 mechanics are 
both of them examples of the Growth Type 1, where the basic growth path 
is the balanced-growth path. Only the Growth Type 2 gives the method 
and logic obeyed by the observed anomalous cycles. The difference from 
Growth Type 1 is that now the cycle center P is not a fixed point on the 
(s, w)-plane but moves slowly upwards in the positive w-direction. The 
cycles are changed accordingly, and this produces the observed anomalous 
correlations over detrended cycles. 

We shall first, in Section 2 below, construct a method of calculation use
ful in the applications of Growth Type 2. After that a specific model for the 
present purpose will be chosen within the general framework of the theory, 
and the fall in procyclicality of consumption and investment will be consid
ered by means of this model (Section 3). The retaining high procyclicality of 
employment and the plunge in procyclicality of the real wage level are then 
considered in terms of the same model (Section 4). Finally, a brief appraisal 
of the results is given (Section 5). 

2. The method of calculation. We can again start with the solutions 
of the linearized equations of the Basic Business Cycles, valid in a neihg
bourhood of the fixed cycle center P and expressible in the form (7.1)-(7.2). 
This is because we can reduce the detrended cycle functions of Growth Type 
2 to those in Growth Type 1 plus a change variable. 

2.1. The detrended cycle functions in Growth Type 2. By writing b = 
b* - (b* - b) and introducing the symbol ~ = b* - b we can reduce each cycle 
function Vx of Growth Type 2, detrended over a loglinear trend, to a sum 

(9.1) Vx = Qx+~x. 

Here the first term is the cycle function of Growth Type 1. The second term 
is a change variable that describes how the moving cycle center P2 of Growth 
Type 2 affects the cycle. The change variable is obviously given by 



ANOMALOUS BUSINESS CYCLES 63 

For Vy and Va we get at once: 

(9.3) Vy Qy + ~y, where 

Qy = ,8(w - b*) and ~y = (,8 - ,8lu)~, 

(9.4) Va = Qc = (1/u)Qy, ~a = O. 

To get VI we first expand (1 - s)/s in a series by the Cauchy rule: 

s 
1 - s* - (s - s*) _ [1 - s* _ s - s*] [ s - s* ] 
s* [1 + s -:;.s*] - s* s* 1 -~ + ... 

l-s 

1 - s* s - s* -- -~ + higher terms. 
s* (s*) 

(9.5) 

The infinite series in s-s* converges strongly for very small values of s(O)-s*. 
As we shall be interested only in such initial states very near to the point 
PI, the above two first terms will be sufficient for the present purposes. The 
resulting detrended cycle function VI of investment in Growth Type 2 is now 
easily constructed according to the rules (1) and (2). It can be expressed, 
after some calculation, in the following useful form: 

(9.6) VI (F - G)Qy - F2(,8 - ,8lu)(s - s*)(w - b*) + F~y 

(9.7) 2 * [ 1 1 1 (1 - s*) F (s - s )~y, F = --2 ,G = - -*- . 
(s*) u s 

Finding the detrended cycle function VE of employment in Growth Type 
2 offers no problems. First we write w = (w - b*) + b* and 1 - s = 1 - s* -
(s - s*) in QE. The rules (1) and (2) then give, after some calculation: 

The corresponding function of the productivity is Vw = Vy - VE. 

2.2. Parameters. I suppose it is a good methodological advise to keep the 
parameter values fixed as much as possible when applying to empirical data 
many-parameter models, such as necessarily appear in growth theory. Other
wise the accusation is near that one has used the available many parameters 
to justify "theoretical predictions" of whatever data. To avoid this criticism 
in advance a policy of fixed parameter values, following closely the estimates 
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calculated by or from Denison (1961), has been followed in the applications 
of the unified theory: strictly in Aulin, 1992, while allowing an experimen
tation with three different values of the net savings rate s* in Aulin, 1993a, 
and in Chapter 7 of the present study. In this chapter like in Aulin, 1993b, 
all the parameter values are fixed from the very beginning: 

11 = .015, e. = .02, f!.. = .25 ~ sup s* = .1875, infO' = 1.3333, 

b* = .5, s* = .13 ~ 0' = 2.1, a* = .06, W = .1660786, 

T = 27r/w = 37.832599, 'Y = .0054761, !i = .417, B = .75. 

The independent parameters have been underlined. The other indepen
dent parameter values have appeared in earlier applications too, except for 
the value chosen above for the balanced-growth output/c~pital ratio b*. The 
value .5 of this parameter, as well as the value .75 of B, will be explained in 
the next Section. The length of period of a cycle, T, is indicated in theoret
ical time units and corresponds to 4 years in real time (for time scales see 
Chapter 6, Section 4). This length of period in real time has been chosen 
in earlier applications too. The numerical value of K has been taken from 
Lucas (1988). 

2.9. Integrations over the period of a cycle. To get correlations we have to 
integrate, over the period of a cycle, products of powers of (w - b*), (s - s*) 
and A, all of which are time functions. Products of the two first factors 
have already been taken care of in Chapter 7: we have the solution (7.1)
(7.2) of the cycle equations, which makes integrations over time easy. As to 
the last factor we expand it for those integrations in an infinite series with 
exponential terms, i.e. 

00 

(9.9) A = b* - b = b*L')-I(+ 1 Bre-qt . 
r=l 

The functional expressions and numerical values of the 'basis integrals' over 
a cycle, needed in the application to the anomalous cycles, can now be easily 
computed by using the formulae (7.1) and (7.2). In the following formulae 
a = ({J - {J/O')-l and x = s(O) - s*. First we need the following integrals 
over the first cycle including the first and second degree in the Growth Type 
1 basic variables (w - b*) and (s - s*): 

1 loT (ea*T/2 1) ( a ) - (w - b*) dt = --* x = (.489791) x, 
ToT l-s 
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( eOl*T/2 - 1) ( 40l* ) 
. T 2 2 z = (.11755)z, 

(Ol*) + 4w 
1 lT - (s - s*) dt = 
T 0 

( eOl*~ - 1) 21DI2 (~* _ (0l*)20l: 4w2) z2 = (4.194957); .!..IT (w - b*)2 dt = T 0 

( eOl*T - 1) [(0l*)2 + 4w2 + Ol* (1.5 - (0l*)2/8w2 )] z2 
T 80l*W2 (0l*)2 + 4w2 

1 lT 2 - (s-s*) dt = 
T 0 

= (2.1533352) z2,. 

~loT(W-b*)(s-s*)dt= (eOl*~ -1) [2(I~S*)] z2=(1.0067913)z2. 

Then we have to calculate the integrals over the first cycle of the following 
functions, in which also the first or second degree of the change variable ~ 
appear: 

1 lT T 0 (w - b*)~ dt = ( b*) 2wIDI E( _1)r + 1 Br [e(Ol* /2 - r-y)T - 1] 
T r=l (Ol* /2 - r-y)2 + w2 

= (.0875566) z, here E = 26.5, 

1 lT T 0 (s - s*)~dt = (~) ~(-lt+ IBr(Ol* - r-y)[·]o 

= (.0198241) z, here E = 1.50, 

.!..IT (s - s*)2~2 dt = 
T 0 

SI + S2 + S3 = (.0827938) z2, where 

here E = .565, 

o 
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b*IDI{O'* (f:) (_1)r+1 B r['h 
T 2w r=l a 

+ (~) b (-1) r + 1 B r [2W - ;~ (0'* - q)] [ . 12 } 

(.2043341)x 2, here Ea = 62.9, Eb = 9.18, 

1 IT 
T Jo (s - s*)A2 dt (b*,)2 f:( _l)r Br(r - 1)(0'* - q) [ . ]0 

r=2 

1 IT 
T Jo Adt 

~ IT A2dt 
T Jo 

= (.0032643) x, here E = .494, 

b* ( 1 + B ) -T log T = (.2017471), 
, 1 + Be-' 

(b*)2 [ ( 1 + B) 1 . 1 ] -- log + -- - ---~ 
,T 1 + Be-,T 1 + B 1 + Be-,T 

= (.0407535). 

In the computation of integrals, where the integrand includes an infinite 
series, 20 first terms of the series were used, except for the two first such 
integrals in the above list, in which cases 12 first terms were considered to 
be sufficient. 

3. The fall III procyclicality of consumption and investment. 
The general theory tells nothing specific concerning the period 1914-50, in 
which the anomalous phenomena appeared. To be specific we have to choose 
a model for this particular period, to be constructed on the basis of the 
general theory of the Basic Business Cycles. 

3.1. The choice of model for the anomalous period. The modern level of 
output/capital ratio in advanced countries has been reported to be generally 
about 1/3 (Mankiw, Romer and Weil, 1990). In the period 1909-30 it was 
approximately .3 in the U.S. economy, as is evident from Fig.1 (on page 35), 
based on the numbers Solow (1957) gives. Therefore in previous applications 
ofthe theory of Basic Business Cycles, where Growth Type 1 was applied, the 
value b* = .3 was chosen. The so obtained predictions, concerning output
correlations and variances over detrended business cycles (see Chapter 7, or 
Aulin, 1993a), as well as autocorrelations of output (ibid.), were rather well 
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in agreement with available empirical data. The empirical results concerning 
periods before the first and after the second world wars (Correia et al.,1992; 
Danthine and Girardin.1989) all show the high procyclicality of C, I and E, 
and thus the ordinary cycles of Growth Type 1. 

Now the period 1914-50 is in question. We can see from Fig.l that now 
the value b* = .5 must be adopted: this is the level to which the approxi
mately logistic rise in b leads in the U.S. economy during the period between 
the Great Depression and 1950. Secondly, this logistic rise suggests Growth 
Type 2. Thirdly, we can choose,in the exactly logistic growth function b of 
Growth Type 2, the value B = (b* - b(O»/b(O) = .75. This implies, with 
b* = .5, the value b(O) R:: .28, which in turn locates the start of Growth Type 
2 (see Fig.l) in the middle of the Great Depression in the U.S. 

It follows from the form of the logistic function b, roughly represented by 
the rising line in Fig.l, that the characteristic phenomena of Growth Type 
2 are most outstanding during the first business cycle after the start of this 
Growth Type: the movement of the cycle center P2 is fastest there. Thus a 
model with a time span from t = 0 to t = T, i.e. over the period of the first 
cycle after the change, is most revealing. This will accordingly be the model 
in terms of which we shall quantitatively analyse the anomalous phenomena 
encountered in the period 1914-50 in the U.s. economy. 

3.2. The fall in procyclicality of consumption. Using for the integrals the 
numerical values given above we first calculate, denoting the unknown initial 
state s(O) - s*, as before, by x, the expectation values 

m*(Y) 

m(6.y) 

f3:" {T(w - b*)dt = (.1224477) x, 
T Jo 

1 iT (f3 - f3/u)- 6.dt = (.0264192) x, 
T 0 

then the variances and the mutual covariance of Qy and 6.y: 

(uy)2 = f32 ~ iT (w - b*)2 dt _ [m*(y)]2 = (.2471914) x2, 

U~y = (f3 - f3/u)2~ iT 6.2 dt - [m(6.y)]2 = .00000089, 

cov( Qy, 6.y) f3(f3 - f3/u)!:.. (T(w - b*)6.dt - m*(Y)m(6.y) 
T Jo 

= (-.00036857)x. 
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Hence we get the expressions 

D"~ (D"y)2 + D"~y + 2cov (Qy, ~y) 

('2471914 + .0000:g8900 _ 2 .000:6857) x 2, 

( *)2 (* ) ( .00036857) 2 D"y + cov Qy, ~y = .2471914 - x x . 

What we want is the correlation 

cov(C, Y) (D"y)2 + cov(Qy, ~y) 
rCy = = * . 

D"CD"y D"yD"Y 

But this correlation obviously has different values for different initial 
states x. Table 8 shows these values for a number of magnitudes of x. The 
function rCy (x) is illustrated in Fig.7. A curious new phenomenon appears. 
While in normal situations, to which in this theory there corresponds Growth 
Type 1, the correlations over detrended business cycles are (at least to the 
second degree) entirely independent of the initial state x (see Chapter 7), 
they now heavily depend on it. 

TABLE 8. - THEORETICAL CORRELATIONS WITH OUTPUT OVER 

DETRENDED CYCLES IN GROWTH TYPE 21 

x rCy rIY rEV rWy 

.000 -.78 1.00 1.00 1.00 

.0005 -- -- .99 .40 

.001 -.38 .78 .96 -.01 

.0011 -.32 -- .95 --

.0015 .01 .58 .89 .08 

.002 .40 .37 .77 .32 

.0023 -- .28 -- --

.0025 .65 .24 .76 .45 

.003 .79 .20 .76 .55 

.004 -- .21 .78 .64 

.005 .95 .26 .81 .68 

.0075 -- .36 .85 .72 

.01 .99 .41 .86 .73 

IThese correlations are illustrated by points in Figures 7 or 8. 
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We can see that the fall in the procyclicality of consumption is the larger 
the smaller is the difference x, i.e. the closer to the fixed cycle center PI 
of Growth Type 1 start the cycles of Growth Type 2. This suggests the 
following interpretation of the anomalous correlations: 1) they are due to a 
change from the ordinary cycles of Growth Type 1, with its fixed cycle center 
PI, to the cycles of Growth Type 2 with a moving center, and 2) the change 
takes place when the ordinary cycles have collapsed, as a consequence of 
which the state (s, w) has come to the immediate vicinity of the fixed cycle 
center Pl. The decline in procyclicality of consumption is (cf. Fig.7) the 
larger, the larger is the collapse of ordinary cycles, i.e. the closer to the 
point PI is the initial state of the resulting Growth Type 2 cycles. 

What, then, may have caused the assumed collapse of the ordinary busi
ness cycles? In the case of the U.S. economy, the collapse must have taken 
place as a consequence of the Great Depression, since according to Fig.l (on 
page 35) the transformation of Growth Type in the U.S. economy has taken 
place at that time. On the other· hand, the numbers, given by Solomou 
(1990) concerning the British economy, suggest that a change from Growth 
Type 1 to Growth Type 2 started in Britain earlier, as a consequence of 
world war one already. 

3.3. The still larger observed fall in procyclicality of investment. The form 
of the detrended cycle function VI of investment, (6), gives immediately the 
variance and covariance we need: 

(F _ G)2 (u* )2 + F 2u 2 + F 4u 2 
y ~y s~ 

+ 2F(F - G)cov(Qy, ~y) - 2F2(F - G)cov(Qy, s~y) 
2F3cov(s~y, ~y) - 2F3({3 - {3/u)cov(sw, ~y), 

cov(I, Y) (F - G) (uy)2 + FUly + (2F - G)cov(Qy, ~y) 

F 2cov(Qy, s~y) - F2cov(s~y, ~y), 
F2({3 - {3/u)cov(sw, ~y). 

In both expressions the terms of third and higher orders in x have been 
omitted, and the short notations (s-s*)~y = s~y and (s-s*)(w-b*) = sw 
have been used. 

The expectation value, variance and covariances, not encountered before 
but needed in these formulae, are easily computed from the numerical values 
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of basis integrals given in Section 2 above: 

1 fT 
m(s~y) (f3 - f3/u)T 10 (s - s*)~ dt 

(.00259600) x, 

u:~y (f3 - f3/U)2~ loT (s - S*)2 ~2 dt _ [m(s~y )]2 

(.001412961) x 2, 
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cov(Qy, s~y) f3(f3 - f3/U)-f loT (w - b*)(s - s*)~ dt - m*(Y)m(s~y) 
(.0063716) x 2, 

cov(s~y, ~y) (f3 - f3/u)2 ~ loT (s - S*)~2 dt - m(s~y )m(~y) 
(-.000012607) x, 

cov(sw, ~y) (f3 - f3/U)~ loT (s - S*)(W - b*)~ dt - m(sw)m(~y) 
(.000159400) x 2. 

By combining the above results we get the following numerical expres-
slOns: u; = (6.548721 + .000~;7336 _ .014~7100) x2, 

cov(I, Y) = ('7354666 + .0000:~1538 _ .003;506) x2. 

This gives for the correlation of investment with output over a detrended 
cycle, rI,y = cov(I, Y)/UyUI, the numerical values listed in Table 8 for a 
number of values of the initial state x. These results are illustrated in Fig. 7. 
Again we can see the fall in procyclicality depending heavily on x. By 
comparing the curves with the dashed lines indicating the empirical values 
of re,y and rI,y in the U.S. economy, as calculated by Correia, Neves and 
Rebelo (ibid.) from the period 1914-50, we can make a couple of interesting 
observations: 1) the fall in procyclicality of investment is indeed larger than 
that of consumption as soon as x > .0022, and 2) the closest fit with the 
empirical values re,Y = .51 and rJ,Y = .16 is obtained for the distance .0025 
of the initial state from the cycle center of Growth Type 1. 

The conclusion to be drawn from the result accordingly is that the theory 
suggests a collapse in the U.S. of ordinary business cycles, in which the state 
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(s, w) in the Great Depression reached as small a distance as .25 percentage 
units (on the scale of net savings rate) from the fixed center Pl. 

4. The retained high procyclicality of employment. As a contrast 
to the fall in procyclicality of the usually highly pro cyclical consumption and 
investment, employment retained its high procyclicality even in the anoma
lous period 1914-50 in the U.S. (and also in the U.K). This result too is 
predicted correctly by the present model. 

{i. The nearly perfect fit of theory and the U.S. data. We first compute, 
using the numerical values of the basis integrals given in Section 2 above, 
the here needed magnitudes of the expectation value, the variance and the 
covariance with output of employment in the ordinary detrended cycles of 
Growth Type 1: 

mE = C _; + ,J {(1- s*)~ iT(w - b*) dt 

-b*~ iT (s - s*) dt} = (.0786939) x, 

(CTE)2 (f3)2 {(1- s*)22. fT (w _ b*)2 dt + 
1- f3 + Ii T Jo 

2(1 - s*)b* 2. rT (s - s*)( w - b*) dt 
T Jo 

+ (b*)2~ iT(s - s*)2 dt} - (mE)2 = (.1240301) x2, 

cov(E,Y)* (j2 ) {(l-S*)2. fT(w_b*)2 dt 
1- + Ii T Jo 

b* ~ iT (s - s*)( w - b*) dt} - mEmy = (.1588632) x2. 

Here again the terms of higher than second order in x have been omitted. 
We need also the magnitude 

cov(QE,l1y) = C_;+Ii){C~s*)cov(Qy,l1Y) 

b* [(f3 - f3/CT)~ iT(s - s*)l1dt - m(s)m(l1Y )]} 

(- .000220195) x. 
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This completes the preliminary work necessary for the calculation of the 
following functions of Growth Type 2: 

cov(E, Y) = cov(E, Y)* + cov(Q'E, 6.y) + C _ ~ + ,.) . 

[1 + K~*_-~~U)] [uXy + cov(QY,6.y)] 

[ f3 2] [1 + K~* -f3j/~)] cov(sw, 6.y) 
(l-f3+K) - U 

('1588329 + .00000~;89237 _ .0005:70367) x2, 

and 

The resulting correlations over a detrended cycle in Growth Type 2, i.e. 
rEV = cov(E,Y)/UEUY, are given in Table 8 and illustrated in Fig.7 and 
Fig.8 for certain values of the initial state x. What strikes one when looking 
at these correlations, after having studied the corresponding correlations of 
consumption and investment, is their continuously high values. Never do 
they fall below the value .76 obtained for x =.002, .0025 and 003. This is in 
harmony with the empirical value .78 reported by Correia, Neves and Rebelo 
(1992) for the period 1914-50 in the U.S. economy. 

We can complete the present analysis by constructing also the function 
rWY (x) of the correlations of real wage level (or labour productivity) with 
output. By using the formulae 

ua, 
cov(W, Y) 

U~ + u~ - 2cov(E, Y) and 

u~ - cov(E, Y) 

we get for the mentioned function the values shown in Table 8 and illustrated 
in Fig.8. The value obtained at the point x = .0025 is .45. Unfortunately 



74 THE CAUSAL PART OF BUSINESS CYCLES 

this result cannot be compared with an empirical correlation, since the real 
wage level was not included in the U.S. material analysed by Correia, Neves 
and Rebelo (ibid.). 

TABLE 9. - COMPARISON OF MODEL CORRELATIONS 

WITH THE EMPIRICAL ONES2 

Variable Model The U.S. Model The U.K. 
(0025) economy (0011) economy 

Consumption .65 .51 -.32 -.33 
Investment .24 .16 !! -.41 
Employment .76 .78 .95 .92 
Productivity .45 - !! -.61 

The fit of theory and the available empirics of anomalous correlations shown 
in Table 9 is good in the case of the U.S. economy. Quite obviously the 
strange phenomena encountered in the period 1914-50 in the U.S. economy 
can be explained in terms of Growth Type 2 of the Basic Business Cycles. 

4.2. The empirical evidence about the birth of anomalous cycles. The result 
also agrees with the earlier result obtained from the analysis of consumption 
and investment, according to which the change from the ordinary business 
cycles (of Growth Type 1) to the anomalous business cycles (of Growth 
Type 2) in the aftermath of the Great Depression took place at the distance 
x = .0025 from the fixed cycle center Pl. 

On the other hand Fig.7 suggests that, as far as consumption and em
ployment are concerned, the fit is good also in the case of the U.K. economy 
of that period, but for a smaller value of x. The distance x = .0011 gives 
for the value of the correlation of consumption with output over detrended 
business cycles the number -.32 and for the value of the corresponding cor
relation of employment the number .95. Both are close to the empirical 
correlations, which are -.33 and .92, respectively, as reported by Cotreia 
et. al.. Such a fit can hardly be a product of chance, but suggests that the 
anomalies in these correlations also in the U.K. are due to the same cause 
as in the case of the U.S. If this is to be believed, the collapse of ordinary 
business cycles in Britain, as a consequence of the first world war, must 
have been still more drastic as it was in the U.S. in connection of the Great 
Depression. 

2The empirical correlations are those reported by Correia, Neves and Rebelo (1992). 
The points where the present model is unfit for the U.K. economy are denoted by !! 
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The evidence, given by the appearance of the (nearly) correct values of 
the correlations with output of consumption, investment and employment (in 
the U.S. economy) at the same initial distance x = .0025 from the fixed cycle 
center, is of course indirect. The same holds for the evidence given by the 
appearance of the (nearly) correct values of the correlations with output of 
consumption and employment at the same distance x = .0011 from the fixed 
cycle center. Direct evidence about the collapse of the ordinary business 
cycles at those distances from the their center point in the U.S. and U.K. 
economies is of course hard to get: the present econometric analysis is still 
insufficient to make such sophisticated distinctions. 

Why should the business cycles collapse in those cases? The answer in 
view of the present theory is simple. During a long duress, such as the 
Great Depression in the U.S. and the first world war in the case of Britain, 
the importance of leisure is naturally diminished while people are focused 
on the major material value of survival. In such a situation accordingly the 
current-time utility function approaches unidimensionality, as a consequence 
of which the business cycles collapse. 

5. An appraisal of the results. 

5.1. Why the fit of theory with the U.K. data is only 50%? We have seen 
(Table 9) that in the case of the U.K. economy there is 

1) a perfect fit of theory and data as far as the anomalous correlations 
with output of consumption and employment are concerned - the errors are 
only .01 and .03, 

2) a perfect failure of the present theory to cope with the anomalous 
output correlation of investment, while 

3) only a qualitative explanation is given by this theory of the anomalous 
output correlation of the productivity of labour. 

The empirical correlations of investment and productivity with output 
over detrended cycles, as reported by Correia et al. in the case of the U.K. 
economy in the anomalous period 1914-50, were as low as -.41 and -.61, 
respectively. These numbers are very far indeed below the curves in Fig.7 
and Fig.8 illustrating the functions rIY(x) and rwy(x) given by the present 
model. 

However the predicted qualitative behaviour of the dependence of the 
correlation from the distance x is correct in the cas~ of real wages. We can 
see from Fig.8 how the curve of this correlation indeed plunges deep down at 
the correct value x = .001. One may ask whether the quantitative prediction 
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would be better, say, for some other value of the parameter s*. However, 
there is no gain to be obtained in this way: the values s* = .11 and s" = .15 
do not improve the quantitative predictions given by the value s" = .13 (see 
Appendix). Nevertheless the same deep plunge down in the curve of the 
output correlation of productivity (of labour) is equally clear in these other 
cases, with about the same depth as in the present model. 

The conclusion is that for the anomalous value -.41 of the output corre
lation of investment over detrended cycles in the U.K. economy in the period 
1914-50 a totally different explanation must be looked for. The present the
ory, which assumes perfect markets, cannot explain the behaviour of invest
ment in the U.K. economy in that period, not even qualitatively. An obvious 
other explanation would be the command economy during the world wars: it 
must have dominated the smaller British economy much more than it could 
dominate the U.S. economy. 

As to the anomalous value -.61 of the output correlation of the produc
tivity of labour, only qualitative explanation is offered by the present theory. 
It follows that something has to be added to get the whole story. Maybe 
the wartime economy can again be invoked, as the military efforts had to be 
supported by a steady productivity of labour at home. Again Britain as a 
smaller country felt the impact more than the United States. 
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5.2 Conclusions. When judging the results obtained in this chapter, it 
is good to notice that, even in the case of the U.S. economy, neither the 
model used in Sections 3 and 4 nor the reported empirical correlations do 
concern exactly the period (1930-50 in the U.S.), which should be the object 
of study of the anomalous correlations. The model is based on the first 
theoretical cycle of that period, since the anomalities can be expected to 
be most outstanding in the first cycle of Growth Type 2. The empirical 
correlations reported by Correia, Neves and Rebelo (ibid.) on the other 
hand have been calculated from the period 1914-50. But nearly one half 
of this period, from 1914 to about 1930, was a time with quite ordinary 
business cycles according to the testimony of Fig.l on page 35, based on the 
Solow (1957) data over the years 1909-49. According to this testimony the 
anomalities started about 1930 and ended about 1950. 

Therefore an exact quantitative agreement between the model and the 
empirical correlations should not be expected even in the U.S. case. Against 
this background an approximate agreement with the empirical correlations 
in the U.S. economy, such as shown by Table 9, must be considered very 
good. The data from the U.S. economy are in a better agreement with 
the present model than are the data from the U.K. economy. In the latter 
economy investment and wages pose in the period 1914-50 problems that are 
not solved by the present model, but they are just two cases of seven. There 
can be hardly any doubt, that the theory of Basic Business gives an essential 
part of the causal explanation of anomalous correlations. This explanation is 
quantitative and covering in the case of the U.S. economy. In the case of the 
U.K. economy its coverage is only 50 %, if a quantitative fit with empirics is 
required, while a qualitative fit can be said to cover 75 % of the (admittedly 
scarce) data. 

What is the cause we are speaking about? Can it be explained in any less 
formal way than by the mathematical formulae constructed in Sections 3 and 
4? I think that one can illustrate the cause of the anomalous correlations, 
embedded in the formulae, by a visual image. The ultimate cause, in terms 
of the theory of Basic Business Cycles, of course is the moving cycle center 
P2 of Growth Type 2. It rises along a straight line, viz. the line s = 
s· on the plane (s, w), where the cycles are originated. The cycles "leave 
behind" in this movement of their center, and thus produce a phenomenon 
of retardation similar to that we meet in autocorrelations: the correlations 
fall. But this concerns only such economic variables whose cycle function 
has a strong component in the direction of the w-axis, i.e. in the direction 
of the movement of the cycle center. 
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THE EFFECTS OF NONMATERIAL VALUES AND OTHER 
IGNORED FACTORS UPON ECONOMIC GROWTH 

10. Primary Causal Factors of Economic Growth 

1. The reduction to human capital. The output (Y)p of an economy 
on a basic growth path P, whether in Growth Type 1 or 2, can be expressed 
in terms of the average human capital (h)p of population on that growth 
path: 
(10.1) (Y)p = A1/(1-(3)b-(3/(1-(3)(t/J/k) (h)~-(3+")/(l-(3). 

Here the formulae (4.12),(4.17) and (4.26) were used, together with the equa
tion w = b holding good on the basic growth paths. 

Similar reductions to human capital are easily given for each of the ag
gregate growth variables C (total consumption), I (total net investment), K 
(physical capital), E (employment, i.e. labour input) and W (the produc
tivity of labour= real wage level divided by 1 - 13), as well as for the costate 
price variables p and q, since we have: 

(C)p = s*(Y)p, (I)p = (I - s*) (Y)p, (K)p = b-1(y)p, 

(E)p = (t/J/k) (h)p, (W)p = A1/(1-(3)b-(3/(1-(3) (h)';!(l-(3), 

(p)p = [~t/J/(I - f3)k) (Y)pl, (q)p = C</k) (h)pl. 

Here the expressions of consumption and investment of course follow from 
the constancy of the net savings rate, s = s* on the basic growth paths. The 
formula (4.26) and the equation w = b were used for K, the formula (4.17) 
for E == huvN, and the definition formula W == Y/E for W. 

A little different kind of reduction to human capital is obtained for the 
time allocation variables v and u directly from their defining equations on 
the basic growth paths, (5.29) and (5.30), respectively: 

(v)p = (l/kN)[t/J + (h)p/(h)p], (u)p = t/J/[t/J + (h)p/(h)p). 

This of course gives for the total working time vN and the leisure time 
(I - v)N the corresponding reductions. 
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Thus all the essential real economic variables have been given a reduction 
to one of them, viz. human capital, on the basic growth paths. Of course we 
could have singled out some other of those variables, and express the rest of 
them in terms of that one. The reason why human capital was chosen as the 
"reference variable" is that it comes naturally to consider human capital as 
the prerequisite of all economic development in any human society. 

2. The freedom factor. What is most interesting in the above reduc
tions is the coefficient of human capital for each growth variable. In these 
coefficients, obviously, further reductions can be made. First of all, tP is not 
an independent variable but was in (4.14) introduced as a short notation of 
the variable p + m - f./{. Thus it is a function of { and { 

It follows that tP, thus the other auxiliary function ell defined by the formula 
(4.15) as w~.n as the function a defined by the formula (4.25), are functions 
of {,{ and {: 

But the parameter b, defined by the formula (4.24), then is also defined as 
a function of these three time functions: 

(10.2) 

We can accordingly rewrite (1) as 

(10.3) (Y)p = f(Y)(k,{,f.i) (h)~-P+/C)/(l-P), with 

feY) = A1/(1-P) b({,i.,t)-P/(l-P) [tP({,f.)/k]. 

Similar coefficients f(X) are easily obtained, by using the formulae given in 
Section 1, for each growth variable or price variable X: 

Here the exponents a(X) can be functions of only the constants (3 and ,.., as 
indicated. In the functions f(X) also the constants A, p, u, m, nand s* may 
appear. 

But because of tP = tP({,f.) we can include also the time allocation vari
ables u and v in the reduction of real economic variables to the time functions 



80 IGNORED FACTORS OF ECONOMIC GROWTH 

k,e and (h)p by constructing, for each Z of our economic variables, the for
mula 
(10.4) 

(Z) . .. . 
(Z)p = F (k,e,e,e, (h)p, (h)p). 

Thus the development of each real economic variable on the basic growth 
paths is determined, as soon as the time functions k,e and (h)p (and the 
constants) are given. Here the function e, i.e. the weight of leisure term 
in the current-time utility, is important as it together with human capital 
appears in the reduction formulae of all our variables. It can be called the 
freedom factor of economic development, since it indicates the strength of 
the pursuit of one's own time and thus that of individual freedom. 

3. The three ultimate determinants of the level of national 
economy. The reduction just completed tells that, according to the present 
theory, the level of economic achievement of a national economy is in the 
last analysis determined 

1) by the level of average knowledge and skills in society, as represented 
by the human capital (h)p on the basic growth path, 

2) by the level of natural talents in population, as represented by the 
average efficiency k of learning new things, and 

3) by the level of the pursuit of individual freedom in society, as repre
sented by the strength e of the pursuit of leisure time. 

4. The form of the function b(e,i,{). To be more specific let us find 
out the function b(e,i,e), even though this does not add anything to the 
general result just stated in Section 3 above. 

Beginning with the equation (4.24) we can write: 

b(e,i,{) = a[a(e,i,{) + n - p/o']. 
By applying (4.25),(4.15) and (4.14) in this order we then get: 

b(e,i,e) = a [p + m - ~ - ije - (i/~)2 + n - P/o'] . 
" p+ m -e/e 

Here we can substitute for the constants a and n - p/o' their values obtained 
from (4.23) and from the parametric Euler equations (5.12), respectively, to 
get the final form: 

(10.5) b(e,i,{) = 

«(3 - /1/0')-1 {(P + m - i/e)2 - ~/e + (i/e)2 + (s* _ (3/O')b*} . 
p+m-e/e 
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Check. It is easy to verify, after some calculation, that for the Growth 
Type 1 substitution 

elf. = p + m - Q*, with Q* = (P - 8*)b*, 

the formula (10.5) gives the correct result b = b*. 
With a little longer but still trivial calculation one can also verify that 

for the Growth Type 2 substitution 

elf. = p +.m - tP, with tP = (P - 8*)b, 

the same formula leads to the equation 

bib = (8* - P/u)(b* - b) 

and thus to the correct logistic time function b of the form (5.19). 

11. The Growth Effects of Savings Rate 

1. Which is the causal order of parameters? Of the eight para
metric constants p, u, P, K, m, n, A and 8* involved in the functions F(Z) 

of the formula (10.4), five are connected with the balanced-growth net out
put/capital ratio b* by the balanced-growth Euler equation 

(11.1) p + u(8*b* - n) = pb*. 

In this form of the Euler equation the balanced-growth equation of the 
growth of physical capital, A = 8*b*, has been already used. Both of these 
balanced-gr?wth equations and accordingly the relation (1) are valid also in 
the Solow model and in the Lucas 1988 growth theory, as was indicated in 
Chapters 2 and 3, respectively. 

The relation (1) tells that each one of the parameters involved depends 
on the other ones. As far as pure mathematics is concerned, anyone of those 
constant parameters can be chosen as the dependent one. We have used this 
freedom of choice in Chapters 7 and 8 especially, by choosing the dependent 
parameter in a way that best helps the calculations. 

But as soon as a causal dependence is meant, the choice is not free. In 
this case we have to think about the real process and try to guess which 
parameter in that process is determined after all the other ones. It cannot 
be any of the parametric constants included in the utility function, neither 
the current-time utility nor the discounted utility, since utility expresses the 



82 IGNORED FACTORS OF ECONOMIC GROWTH 

aims to be pursued by the economic process, and the aims of course precede 
the attempts at their achievement. This excludes the discount rate p, the 
risk aversion coefficient u and the growth rate n of population in all the 
mentioned growth theories including the present one. The capital's share 13 
must be also excluded, since it is one of the dominating constant parameters 
in the production function, which must be there before we can think of 
any economic process. Only two parameters of (1) remain, viz. the net 
savings rate s* determining the basic growth paths and the balanced-growth 
net output/capital ratio b*. Of these two the former must be thought of 
as preceding causally the latter one, since investment (=saving) decisions 
must precede the production process which has to take place before the 
productivity of capital can get any definite value, for instance b*. 

It follows that the relation 

(11.2) b* = n - p/u , 
s* - 13/u 

obtained by solving (1) for b*, can be interpreted as a causal relation, the 
causes being on the right-hand side and the effect on the left-hand side. 
In the present theory both the nominator and the denominator have to be 
positive (cf.(5.20»: 

(11.3) n - p/u > 0, s* - 13/u > O. 

2. The existence of the growth effects of savings rate. From (2) 
and (3) it follows that, against common belief, the savings rate has growth 
effects, viz. negative ones: 

(11.4) 

Here the balanced-growth equation for the growth of capital, A = s*b* has 
been again used. 

For the growth rate e* of the employment E = ht/;/k and the growth 
rate g* = A - e* of the productivity of labour W = Y / E we get similarly, in 
view of (5.6) and (4): 

(11.5) ~:: = C~P!K) ;~ < 0, ~!: = C-;+K) ;~ < O. 

Thus the following theorems are valid in the present theory: 
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Theorem 1. In a period during which the economy follows the ordinary 
Growth Type 1 an increase in the level of the net savings rate causes a 
decrease in the level of the productivity of capital and in the levels of growth 
rates of output, employment and the productivity of labour. 

Theorem 2. In a period during whicp the economy follows the ordinary 
Growth Type 1 an increase in the level of the net consumption rate causes 
an increase in the level of productivity of capital and in the levels of growth 
rates of output, employment and the productivity of labour. 

Thus by increasing the net consumption rate one can raise the growth 
rate of those economic variables. This is the good news. The bad news is 
that simultaneously the stability of the economic system falls. 

Stability of the system decreases when the parameter n* increases, as 
was shown in Chapter 6. But this takes place when the net savings rate 
decreases, that is, when the net consumption rate increases, since we get: 

(11.6) 
on* ob* 
os* = ({J - s*) os* - b* < O. 

It follows that we have to choose between 1) raising the growth rates 
of output, employment and the productivity of labour while decreasing the 
stability of the economic system and 2) reducing the mentioned growth rates 
while increasing the economic stability. In economic policy this means that a 
good balance, suitable for each economic situation, has to be found between 
the good and bad consequences in each case by means of trade-off between 
growth and stability. Let it be remarked that stability cannot be neglected 
in this equation, since increasing instability means loosing the governability 
of the economic process. 

3. An empirical test. The study of the Solow material in Chapter 
5 left us to a situation in the V.S. economy toward the end of the 1940s, 
in which the observed level of output/capital ratio had risen to the anoma
lous height of 1/2 (see Fig.l on p.35). According to the OECD statistics 
published in 1985 (Patel and Soete,1985), the average annual growth rate 
of output/capital ratio (= productivity of capital) in the V.S. economy was 
-1.9 % in the period 1955-82. This gives 

(1 - .019)27(.50) = .298 ~ .30. (period 1955-82) 

Thus the normal level of the productivity of capital (cf. Fig.l) was back in 
1982. 
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According to the same source (Patel and Soete, ibid.) the periods 1955-
73 and 1973-82 show drastically different behaviour of the productivity of 
capital, its average annuel growth rates being 

(11.7) 

av (i) 
av (i) 

-.01 % (period 1955-73), 

-5.7 % (period 1973-82), 

respectively. This gives: 

b1973 (1 - .0001)18(.50) = .499, 

bl982 (1- .057)9(.499) = .295 ~ .30. 

Thus the level of output/capital ratio did not fall from 1955 to 1973 but 
started then to decline, falling between 1973 and 1982 to its normal value 
.30. 

Following the suggestions made in Section 2 above, we can search for 
an explanation of the fall observed in the period 1973-82 in terms of an 
increasing level of savings rate in the U.S. economy. For this purpose we 
need some statistics about the behaviour of the growth rate of output in 
the U.S. economy during this period, given by the OECD 1990 statistics 
(OECD,1990) reported in Table 10. 

TABLE 10. - GROWTH RATES OF OUTPUT IN U.S. ECONOMY 1973-82. 

Year 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 
A % 5.2 -.5 -1.3 4.9 4.7 5.3 2.5 -.2 1.9 -2.5 

Hence we calculate the average annual rate of decline in the growth rate of 
output in the period 1973-82: 

(11.8) ( 
. ) 1981 (\ 

av ~ = ~ L "n+~ - An) = -1.8%. 
n=1973 n 

The numbers -5.7% and -1.8 % in the equations (7) and (8), respectively, 
are the empirical observations to be compared with theory. 

The period 1973-82 will be taken to be one of Growth Type 1. Hence 
there must be, according to the present theory, b = b*, where b* is the 
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balanced-growth output/capital ratio. For the average annual rise in the 
level of the net savings rate, now represented by the balanced-growth net 
savings rate s*, we get from (7) and (8): 

(11.9) av(!:) =av(i) -av(!:) =-1.8%+5.7%=+3.9%. 

This value, derived from the observed values -1.8 % and -5.7%, can also 
be considered as empirically given. The question is: can the two empirical 
values (7) and (8), and accordingly the value (9) deduced from them, be 
derived from the present theory, i.e. from the theoretical equations (4)? 

The equations (4) first give: 

(11.10) 
b* 1 (Ob*) . * (s*) s* 
b* b* os* s = - s* - {3/ u s* , 

(11.11) 
A 1 (OA ) .* ({3/U) s* 
A A os* s = - s* - {3/u s*' 

Since 1.8 is roughly half of 3.9 and 5.7 is roughly equal to 1.5 times 3.9, the 
theoretical equations (10) and (11) give correctly the orders of magnitude of 
the observed values, if the conditions 

(11.12) 
{3/U s* 

A= * {3/ ~1/2 and B= * {3/ ~3/2, s - U S - U 

can be satisfied by some values sand 0-, which when inserted for s* and u in 
(12) give the annual averages av (A) and av (B). To satisfy (12) these values 
must obey the equation 
(11.13) sO- = 3{3. 

Which can be those values? Taking into account that the value s* from 
1973 to 1982 increases according to the law 

si982 = (1.039)9 (si973) = (1.411)si973' 

the value si973 = .13 for instance gives si982 = .18. Taking the value s ::::: .15 
near the average between .13 and .18, and the value 0- = 5, the condition 
(13) is satisfied with the usual capital's share {3 = .25.· These values of 
parameters are realistic enough. 

It then follows from (10),(11) and (12) that the theoretical predictions 
for the annual averages of ~/ A and bib are the following: 

(11.14) ( i) = -1.95% .and 
theor 

( ::) = -5.85%. 
theor 
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Compared with the observed values -1.8% and -5.7%, respectively, the 
predictions are not too bad. Thus the present theory of the growth effects of 
savings rate can give a causal explanation of the observed decreases in the 
level of output and in the level of the productivity of capital, at least as far 
as the orders of magnitude are concerned. 

Let it be remarked that the inverse proportionality of savings rate and 
the risk aversion coefficient in the condition (13) is natural indeed: the higher 
the rate of investment (=savings rate), the lower the aversion to risk taking 
tends to be. 



VI 

AN ALTERNATIVE VISION OF THE STOCHASTIC 
ELEMENT IN BUSINESS CYCLES 

12. Stochastic Shocks as Perturbations Superposed 
Upon the Basic Business Cycles 

1. Are the business cycles purely stochastic processes? Stochas
tic shocks do not essentially influence the long-term economic development. 
This is an accomplished fact in current growth theories (of Solow and Lucas, 
for instance). But ever since an important paper of the Russian mathe
matician Eugen Slutsky from the year 1927 was translated and published 
in English in a completed form (Slutsky, 1937), the economists have been 
fascinated by the idea that the business cycles may be purely stochastic pro
cesses. This would surely account for the ragged outlook of most economic 
time series. What Slutsky showed, however, was something more, viz. that 
random series are capable of forming cyclic phenomena. In fact this follows 
already from the symmetry of the Gauss curve around the mean of the series, 
and the effect can be made more visible by summations of certain sequences 
in a random series. 

The idea is today applied in economics typically by multiplying the pro
duction function by a random variable, which undergoes, say, a Markov pro
cess. The values of this variable form a random series, each member of which 
is called a "technological shock". Such a stochastic production function is 
then treated just like a deterministic production function in the optimization 
process described in Chapter 2. It is this kind of treatment that underlies 
each of the stochastic shock models of business cycles mentioned in Chapter 
7 above. The so produced oscillations of output and other economic vari
ables around a trend, a usually loglinear one, are then considered as models 
of the business cycles, with the results quoted in Chapter 7. 

What seems questionable to the present author in the -method just de
scribed is that economic agents are supposed to react to the shocks: this idea 
is of course involved in the maximization of utilities which already include 
the stochastic shock variables. So far as the business cycles are thought to 
be produced mainly by the shocks, no other method of constructing the cy
cles seems to be available. However, isn't it too much to expect that all the 
economic agents are capable of reacting rationally to the shocks? Wouldn't 
it be more natural to assume that the agents react to the trends, observable 
over a certain interval of time, rather than to the irregular shocks? 
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In the theory of the Basic Business Cycles, which is nonstochastic, we 
can easily realize the latter situation. We already have the" cycles". What 
we need is to complete the theory by superposing upon the Basic Cycles the 
technological (or other) shocks, since the latter too surely appear in the real 
world. This is a problem different from that met with in the usual stochastic 
models of the business cycles. In the theory of the BBC the shocks have a 
minor function: they appear only as perturbations on the nonstochastic 
Basic Cycles. How much do such shocks affect the correlations and standard 
deviations of economic variables over detrended cycles: this is the problem 
that will be illuminated here by means of an example. 

In this purpose technological shocks of the usually applied size will be 
superposed upon the Basic Business Cycles in order to see how great is their 
influence on correlations and standard deviations. In the example given 
in Chapter 13 such shocks give only a minor contribution to the results 
obtained in Chapter 7 by means of the nonstochastic BBC. For instance, the 
technological shocks account only 5 % of the standard deviation of output 
over detrended business cycles, while the theory of the Basic Business Cycles 
accounts for the rest 95 %. But first we have to construct the shocks. 

2. The production of random series with a definite mean and 
standard deviation. We can construct a random series in many ways. 
Here the following method is used. Take the seven first decimals of two 
irrational numbers, say 7r - 3 and J3 - 1. Multiply each of the so obtained 
two numbers from the interval [0,1] by a prime number, say 317. Take only 
the decimal part of each product. Multiply them again by 317 and take the 
decimal parts. Go on until you have in both series 305 numbers belonging 
to the interval [0,1]. We can name them: let they represent the two random 
variables Ul and U2, with a constant distribution in the interval [0,1]. 

Hence we can proceed by constructing the new random variables 

Xl V210g(1/ud sin 27r U2, 

X2 V210g(1/ut} COS27rU2· 

The number series constructed in this way give two variables with the normal 
distriburtion N(O, 1). Random variables having a normal distributiuon with 
any desired means P,i and standard deviations (]'i are then given by 

Zl = P,l + (]'lXl, Z2 = P,2 + (]'2 X 2· 

This is a quick method of getting two random series with given means 
and standard deviations. Here we shall need only one of them, say Zl. The 
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random series Ui and Zi, each of them including 305 numbers, are given in 
Appendix 2. Also the value of the ordinary cycle function Qy = {J( w - b*) 
at the points of time tn = (.2)n for n = Q, 1,2, ... , 304 are given there. These 
times correspond to an approximate division of the full cycle of the function 
w - b* in equal intervals having the length of .02 in terms of the theoretical 
time unit [TU] (for this time units see Chapter 7, Section 4). 

3. How the technological ,shocks affect each economic variable? 
It is usual in current shock models of business cycles to assume a technolog
ical shock variable with a lognormal distribution having the mean one. The 
multiplication of a given output Y by such a stochastic factor is equivalent 
to adding to the growth rate of Y a random variable of the type z, with the 
mean zero. Let us call it zy and identify it with the variable Zl constructed 
above. This gives 

(12.1) zy = 0"1X1, 

with a standard deviation 0"1 to be chosen later. 
To consider the effects of technological shocks on the consumption C and 

the investment I we have to study the expressions indicating the relations 
of their growth rates with that of output: 

ft(l - s) y i i; Y 
C- l-s +Y' ]=:;+y' 

The shock variables of these economic variables must obey the same equa
tions: 

ZC = Zl-s + zy, Zl = Zs + zy. 

With the approximation 

~ == _ 1 - s (ft(l- S») ~ _ l-*s* (ft(l- S») 
s s l-s s l-s 

and assuming no consumption shocks, zc = 0, this gives: 

( 1 - s*) 
Zs = - ---;;-- Zl-s· 

Accordingly we have: 

(12.2) Zc = 0, 
1- s* 0"1 

Zl = --* -zy + zy = -;;X1. 
s s 
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To find the influence of shocks upon the employment E and the produc
tivity of labour W we have to discuss the production function (4.12) when 
written for the growth rates. In view of (4.17) this reads: 

.. . 
Y K h 
Y = fJ K + (1 - fJ + K)h - (1 - fJ)m. 

It follows that we have to put: 

zy = fJzK + (1 - fJ + K)Zh - (1 - fJ)m. 

Here we have to decide to which extent we shall now assume the tech
nological shocks to be caused by shocks in physical capital (e.g. new oil 
fields found, or old ones closed, or oil price changed) and to which extent 
we suppose they are due to shocks in human capital (e.g. new methods of 
production discovered). For the sake simplicity we can make the assumption 
that 

O"IXI (l-fJ)m 
(12.3) ZK = 0, thus Zh = 1 fJ + 1 fJ . - +K - +K 
This gives, since E = ha* / k (in the Growth Type 1) and W = Y / E: 

(12.4) 
0"1 Xl Km 

Z E = fJ - fJ ,ZW = zy - Z E· 
1- +K 1- +K 

The stochastic shock variables (1)-(4) have to be added to the corre
sponding cycle functions Qx. This gives the stochastic economic variables 
we need: 

(12.5) Yst 

(12.6) Est 

1 0"1 Xl 
Qy + 0"1 Xl , Cst = Qc = -Qy, 1st = QI + -*-, 

0" S 
0"1 Xl Km 

= QE + 1 _ fJ + K 1 _ fJ + K' W st = Y st - Est· 

We can call these functions X st the stochastic cycle functions. Note that 
in the expression for Cst the symbol 0" of course means the risk aversion 
coefficient, not a standard deviation (to make the distinction clear the latter 
are always equipped with a subscript). 
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13. Final Result: Both the Stochastic and Nonstochastic BBC 
Versions Predict Better Than Any of the Models Based 
On Stochastic Optimization 

1. Correlations and variances of stochastic cycle functions over 
a cycle: the formulae. By inserting the ordinary cycle functions given by 
the equations (6.25), (6.28)-(6.31) in the stochastic cycle functions (12.5)
(12.6) we can easily deduct the following formulae for the variances of these 
stochastic variables over a detrended cycle: 

(13.1) 2 2 O'y + 20'1 ~ov( xl, Qy) + 0'1 , 

(13.2) O'~ = (u;) 2 

(13.3) 

(13.4) 

(13.5) 

For their covariances with output we get likewise: 

(13.6) cov(Ist, Yst ) 

(13.7) cov(Est , Yst} 

(13.8) cov(Wst , Yst} 

cov(l, Y) + (B + I/S*)O'l COV(X1, Qy) 

2/ * + 0'1 S , 

cov(E, Y) + (0'1(2(3- S*») COV(X1,Qy) 
1- +,. 

( O'l(3b* ) * O'~ 
(3 cov(Xl, S - S ) + 1 (3 , 1- +,. - +,. 

2 O'Y.t - cov(Est , Yst). 

For the consumption C, to which no shock variable is attached, we get 
directly the correlation: 

(13.9) 
O'y cov( Xl , Qy ) 

rC.t,Y.t = - + 0'1 . 
O'y.t O'y O'yst 

2. Preliminary steps of calculation. (i). The first term in each of 
the equations (1)-(4) and (6)-(7) is the variance or covariance, respectively, 
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of the corresponding nonstochastic variable in Growth Type 1. We can take 
their numerical values directly from the calculations made in Chapter 7. 

(ii).In the same way we get the numerical values of the constants 

U' = 2.2916666, B = 4.7702278, s* = .13, 1-11+11: = 1.167, 11 = .25, b* = .3. 

(iii). The computation of cov( Xl, Qy). Here we must first of course 
construct the random series Xl as well as the corresponding series of the 
values ofthe cycle function Qy = l1(w-b*). The lattercan be constructed on 
the basis of the equation (6.5). When written for the initial value w(O) = b* 
of the output/capital variable, this equation reads: 

(13.10) Q _ 0:*t/2 [l1a(0:2 + 4W2)] ( . ) 
y - -e (1 *) Slllwt Xo· 4 - s w 

Here the unknown initial state s(O) - s* has been denoted by X o , and the 
constants, again obtained directly from Chapter 7, have the values: 

0:* = .036, 11 = .25, w = .1034851, a = 7.0967745. 

To match the values of Qy with the series Xl the length T = 271' /w of a 
period of its cycle (in theoretical time units) must be divided in 304 equal 
intervals. Since T = 60.715844 this gives the following series of time points: 

(13.11) tn = (.2)n with n = 0,1,2, ... ,304. 

The values of Qy at these points of time are easily computed by means of 
the formula obtained by inserting (11) and the above values of constants in 
the equation (10), which gives: 

(13.12) Qy (n) = (-.217421) e(.0036)n sin(1.1858519n txo. 

Here the angle has been already transformed to degrees. Both series Qy ( n) 
and Xl (n) are given in Appendix 2. The series of Xl (n) is long enough to 
bring the mean very close to its expectation value zero, and we can compute 
the covariance by using the formula 

(13.13) 
1 304 

cov(Xl, Qy) = 305 L xl(n)Qy(n) = -(.0242242) Xo' 
n=O 
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(ivy. The computation of cov(Xl, s - s*). Here we can shorten the calcu
lation by using the formula 

(13.14) s - s* = C;~A) Qy + Rxo, 

A = .8696843, R = ecr.*t/2 coswt, 

obtained from (6.4) and (6.5). Appendix 2 gives also the series R(n) for 
n = 0,1,2, ... ,304 needed in this computation. We compute first: 

1 304 

COV(X1, Rxo) = - L x1(n)R(n)xo = (-.0107423) Xo· 
305 n=O 

(13.15) 

Combining the results (13)-(15) we then get: 

(13.16) cov(Xl, s - s*) = (-.0301217) Xo. 

3. Calibration. To tell what there is to be calibrated we need to know 
how far can take us the numerical knowledge we already have. After the 
above preliminary calculations we can give the numerical expressions, where 
only two unknown constants appear, viz. the standard deviation lT1 of the 
random variable Xl and the initial state Xo of the cycle function Qy(s, w): 

(13.17) 

(13.18) 

(13.19) 

( 13.20) 

(13.21) 

222 lTy,. = (.0784541) x 0 - (.0484484) lT1 Xo + IT 1 , 

lTC 
- = (6.944552) Xo, rc,. y., = (15.914585) Xo 
lTV ' 

-( 4.9139279) lT1, 

lTt •• = (1.7865789) x; - (1.7784393)lT1Xo + (59.171597)lTf, 
222 lTEst = (.0398651) Xo - (.027632) lT1Xo + (.7342742) lT1 , 
2 2 (2 lTWst = (.017479)xo - (.0023186)lT1Xo + .8773762)lT1· 

The remaining expressions of covariances are: 

(13.22) 

(13.23) 

(13.24) 

(.3743856) x; - (.3019385) lT1Xo 

+(7.6923076) lTf, 

(.0504201) x; - (.0368809) lT1Xo 
2 +(.856898) lT1' 

(.028034) x; - (.0115675) lT1Xo 
2 +(.143102) lT1 . 
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To calibrate as close to empirical values as possible, we first of course 
choose the standard deviation of the stochastic output variable Yst to be 
equal to the observed standard deviation, which in the U.S. economy used 
as empirical comparison in the stochastic optimization models is .0176. The 
same calibration was of course used in those stochastic optimization models 
(of Kydland and Prescott, Hansen and Rogerson, and Danthine and Don
aldson). 

According to Hansen (1985, p.320), " A data analysis suggests that [the 
standard deviation of the technological shock] could reasonably be expected 
to lie in the interval [.007,.010]." To keep as close as possible to the choices 
made in the stochastic optimization models, with whose results the outcome 
of the BBC approach will be compared here, the exact Hansen-Rogerson 
value 0"1 = .00712 is chosen here for the constant 0"1. Thus the technological 
shocks here applied are exactly of the size of the Hansen shocks. 

Thus we have the following calibration: 

(13.25) OY'I = .0176, 0"1 = .00712. 

These values give, in view of (17): 

( 13.26) Xo = .0597035. 

4. The small but not negligible effect of shocks. After this cali
bration we can first find out which proportions of the standard deviation of 
output are explained by the nonstochastic and stochastic BBC approaches, 
respectively. We get: 

(13.27) OY = (.2800967) Xo = .0167227 = 95% of.0176, 

leaving only 5% of the empirical value .0176 to be explained by the techno
logical shocks. 

By inserting the values (25) and (26) in the expressions (18)-(24) we 
get the other numerical predictions given by the stochastic BBC-approach. 
They are compared in Table 11 with the numerical predictions of the non
stochatic BBC approach given in Chapter 7. We can see that the shocks 
have contributed little to the predictions of the BBC approach, with the 
exception perhaps of the standard deviation of investment. But even the 
change in this case is in terms of precentages only 10% (see the next page). 
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TABLE II.STANDARD DEVIATIONS AND CORRRELATIONS OVER A CYCLE 

PREDICTED ,BY THE NONSTOCHASTIC AND STOCHASTIC BBC. 

Standard deviation Correlations I 
proportions : with output: 

Variable BBG BBGst ~% BBG BBGst ~% 
Output 1.00 1.00 - 1.00 1.00 -
Investment 4.77 5.27 10% 1.00 .98 2% 
Gonsumption .44 .41 7% 1.00 .92 8% 
Employment .71 .73 3% .91 .91 0% 
Productivity .47 .45 4% .77 .74 4% 

5. The final result in numbers: Table 12. The sums of error squares 
show that both BBC versions, with or without shocks, do far better than 
the Danthine-Donaldson,Hansen-Rogerson or Kydland-Prescott models in 
standard deviations and clearly better also in correlations. 

TABLE 12. THE PREDICTION SUCCESS OF THE BBC VERSIONS As 
COMPARED WITH THAT OF STOCHASTIC OPTIMIZATION MODELS. 

Standard deviation proportions: 

Variable BBG BBGst D-D H-R K-P empirical 
Investment 4.77 5.27 3.45 3.24 3.07 ~ 
Gonsumption .44 .41 .19 .29 .25 .n. 
Employment .71 .73 .72 .77 .68 .94 
Productivity .47 .45 .35 .28 .40 &1 
L:~:l .1961 .3393 2.5185 3.1071 3.6933 

Correlations with output: 

Variable BBGst BBG K-P H-R D-D empirical 
Investment .98 1.00 .86 .99 .99 ~ 
Gonsumption .92 1.00 .85 .87 .69 ~ 
Employment .91 .91 .95 .98 .98 .:lli 
Productivity .74 .77 .86 .87 .91 .42 
L:~:l .1334 .1739 .2333 .2562 .3190 

6. The final result illustrated: Figures 9 and 10. The lines of the 
predictions ofthe BBC versions follow - at a certain distance - the empirical 
line, those of the other models together stray off that line (p.96-97). 
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FIGURE 9: STANDARD DEVIATION PROPORTIONS. 

Two DISTINCT PATTERNS ApPEAR: THE PREDICTIONS OF THE BBC, 

BOTH STOCHASTIC (BBCst) AND NONSTOCHASTIC (BBC), FOLLOW THE 

PATTERN OF EMPIRICAL VALUES, WHILE THOSE OF THE STOCHASTIC 

OPTIMIZATION MODELS TOGETHER STRAY OFF FROM THOSE VALUES. 
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AGAIN Two PATTERNS ApPEAR: THE PREDICTIONS OF BASIC BUSINESS 

CYCLES, BOTH STOCHASTIC (BBC3t ) AND NONSTOCHASTIC (BBC), FOL

LOW - AT A CERTAIN DISTANCE - THE PATTERN OF EMPIRICAL VALUES, 

WHILE THOSE OF THE STOCHASTIC OPTIMIZATION MODELS TOGETHER 

STRAY OFF FROM THOSE VALUES. 
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7. Final comments. There are three of them: 
l. There can be no doubt about the testimony given by Figures 9 and 10 

and, in a numerical form, by Table 12. They confirm the success of the theory 
of Basic Business Cycles in the prediction of what is generally considered 
as the essential available data on business cycles, viz. standard deviations 
and correlations with output of economic variables over a detrended cycle. 
In particular, these Figures and that Table add to the evidence given in 
Chapters 7 and 9 the important point that the BBC theories , both the 
stochastic and nonstochastic versions, predict clearly better than the current 
models constructed by the method of stochastic optimization. 

2. These results thus give the strongest evidence, possible with the so 
far available data, for the decisive influence of nonmaterial values also upon 
the business cycles, and not only upon economic growth. The decisive effect 
of the pursuit of cognitive innovations, also without any material rewards 
(e.g. in science), upon economic growth is obvious and widely recognized. 
But the most important nonmaterial values, like individual freedom and 
the pursuit of knowledge, can be represented only by unbounded utility 
functions, of which the general theory constructed in Chapters 4,5 and 6 
gives an example. It follows that in macroeconomic theory we must have 
two levels. First of them operates with the (always finite) material values 
and bounded utility functions. This level of macroeconomics is reducible 
to microeconomics, and represents the level on which the economic game 
is played in the short run. This, in other words, is the macroeconomics as 
understood in economics today. The long-term development, however, is 
dominated by nonmaterial values expressing the long-term human pursuits 
of ever larger individual freedom and ever greater objective konwledge of 
the world we are living in. This accordingly is the suggested new level of 
macroeconomics on which nonmaterial values are the decisive ones. 

3. The gap that still remains between the empirical estimates and the 
values predicted by the BBC theory may be just a result of the use of linear 
approximation of the nonlinear equations (4.27) in calculations, and also 
of the corresponding linear approximations of the cycle functions. Only a 
numerical computer solutions of the nonlinear equations and nonlinear cycle 
functions could settle this question. But no theory ever invented can explain 
everything. Even supposing that the true nonlinear solutions of the BBC 
equations and cycle functions will bring the predictions still closer to the 
empirical data, there will always be plenty of room for other and better 
future theories to come. 
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Appendix 1: The Dependence of Predicted 
Anomalous Correlations on Savings Rate 

TABLE 13. 
THE PREDICTED ANOMALOUS OUTPUT CORRELATIONS 

OF CONSUMPTION AND INVESTMENT.1 

x rCy rIY 

.11 .13 .15 .11 .13 .15 
.0000 -.784 -.786 -.785 1.000 1.000 1.000 
.0005 -.701 -.456 
.0006 -.680 -.340 +.886 +.911 
.0010 -.575 -.386 +.946 +.786 +.654 
.0011 -.316 
.00125 -.490 +.527 +.486 
.0013 -.471 +.571 +.460 
.0014 +.641 +.417 
.0015 -.389 +.008 +.706 +.584 +.384 
.0020 -.141 +.398 +.868 +.754 +.372 +.338 
.0023 +.284 
.0025 +.652 +.929 +.245 +.375 
.0030 +.382 +.789 +.956 +.476 +.200 +.425 
.0033 +.501 
.0035 +.572 +.369 
.0040 +.699 +.979 +.298 +.216 +.507 
.0050 +.838 +.948 +.987 +.230 +.265 +.560 
.0060 +.903 
.0075 +.947 +.995 +.219 +.362 +.630 
.0100 +.974 +.990 1.000 +.247 +.417 +.662 

lOnly the C- and I -points marked in Figures 11 and 12, respectively, are indicated in 
Table 13. The numbers .11,.13 and .15 are the chosen values for the savings rate parameter 
s·. 
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TABLE 14. 
THE PREDICTED ANOMALOUS OUTPUT CORRELATIONS 

OF EMPLOYMENT AND PRODUCTIVITy.2 

x rEY rWY 

.11 .13 .15 .11 .13 .15 
.0000 1.000 1.000 1.000 1.000 1.000 1.000 
.0005 +.997 +.994 +.978 +.675 +.404 +.067 
.0006 +.963 +.025 
.0008 +.278 +.085 
.0010 +.986 +.963 +.863 +.108 -.009 +.229 
.0011 +.952 
.0012 +.939 
.00125 +.810 -.003 
.0013 +.804 
.0014 +.795 
.0015 +.891 +.791 -.043 +.086 +.523 
.00175 +.938 -.037 
.0020 +.912 +.769 +.806 -.000 +.323 +.645 
.0025 +.850 +.763 +.831 +.451 
.0030 +.757 +.547 
.0035 +.750 +.864 +.370 +.743 
.0040 +.732 +.783 +.874 +.454 +.639 
.0045 +.728 
.0050 +.733 +.810 +.887 +.555 +.680 +.744 
.0075 +.779 +.848 +.894 +.649 +.720 +.775 
.0100 +.810 +.865 +.910 +.681 +.735 +.789 

20nly the E- and W -points marked in Figures 13 and 14, respectively, are indicated in 
Table 14. The numbers .11,.13 and .15 are the chosen values for the savings rate parameter . s . 
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FIGURE 11. 
AN ILLUSTRATION OF THE DEPENDENCE OF THE ANOMALOUS OUTPUT 

CORRELATION OF CONSUMPTION ON THE SAVINGS RATE PARAMETER. 
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FIGURE 12. 
AN ILLUSTRATION OF THE DEPENDENCE OF THE ANOMALOUS OUTPUT 

CORRELATION OF INVESTMENT ON THE SAVINGS RATE PARAMETER. 
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FIGURE 13. 
AN ILLUSTRATION OF THE DEPENDENCE OF THE ANOMALOUS OUTPUT 

CORRELATION OF EMPLOYMENT ON THE SAVINGS RATE PARAMETER. 
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FIGURE 14. 
AN ILLUSTRATION OF THE DEPENDENCE OF THE ANOMALOUS OUTPUT 

CORRELATION OF THE PRODUCTIVITY OF LABOUR ON THE SAVINGS 

RATE PARAMETER. 



Appendix 2: Numerical Tables 

TABLE 15. 
THE RANDOM SERIES Ui(n) AND Xt(n), AND THE CORRESPONDING 

VALUES OF THE FUNCTIONS Qy fX o AND R.t 

n Ut(n) U2(n) Xt(n) Qy(n)fxo R(n) 
0 .1415926 .7320508 -1.9647102 .0000000 1.0000000 
1 .8848542 .0601036 .1823869 -.0045158 1.0033915 
2 .4987814 .0528412 .3844457 -.0090623 1.0063630 
3 .1137038 .7506604 -2.0852436 -.0136377 1.0089105 
4 .0441046 .9593468 -.6312724 -.0182400 1.0110295 
5 .9811582 .1129356 .1270773 -.0228676 1.0127159 
6 .0271494 .8005852 -2.5511509 -.0275184 1.0139661 
7 .6063598 .7855084 -.9754896 -.0321907 1.0147761 
8 .2160566 .0061628 .0677678 -.0368825 1.0151426 
9 .4899422 .9536076 -.3432899 -.0415918 1.0150621 

10 .3116774 .2936092 1.1266953 -.0463168 1.0145315 
11 .8017358 .0741164 .2985173 -.0510554 1.0135476 
12 .1502486 .4948988 .0623949 -.0558056 1.0121079 
13 .6288062 .8829196 -.6464034 -.0605654 1.0102093 
14 .3315654 .8855132 -.9790354 -.0653328 1.0078497 
15 .1062318 .7076844 -2.0432002 -.0701057 1.0050266 
16 .6754806 .3359548 .7597361 -.0748820 1.0017381 
17 .1273502 .4976716 .0296999 -.0796597 .9979820 
18 .3700134 .7618972 -1.4061796 -.0844366 .9937568 
19 .2942478 .5214124 -.2098076 -.0892107 .9890610 
20 .2765526 .2877308 1.5584978 -.0939797 .9838931 
21 .6671742 .2106636 .8723315 -.0987416 .9782521 
22 .4942214 .7803612 -1.1657046 -.1034941 .. 9721372 
23 .6681838 .3745004 .6369640 -.1082352 .9655475 
24 .8142646 .7166268 -.6270039 -.1129625 .9584825 
25 .1218782 .1706956 1.8022195 -.1176740 .9509419 

IFor the construction of the random series see Chapter 12, Section 2; for the functional 
expressions of Qy and R see the equations (13.10) and (13.14), respectively. 
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n UI (n) U2(n) Xl (n) Qy(n)fxo R(n) 
26 .6353894 .1105052 .6093982 -.1223675 .9429256 
27 .4184398 .0301484 .2485553 -.1270407 .9344338 
28 .6454166 .5570428 -.3282650 -.1316913 .9254668 
29 .5970622 .5825676 -.5035684 -.1363172 .9160251 
30 .2687174 .6739292 -1.4394879 -.1409162 .9061096 
31 .1834158 .6355564 -1.3857575 -.1454860 .8957209 
32 .1428086 .4713788 .3528892 -.1500244 .8848606 
33 .2703262 .4270796 .7154284 -.1545291 .8735298 
34 .6934054 .3842332 .5689930 -.1589979 .8617303 
35 .8095118 .8019244 -.6158205 -.1634286 .8494639 
36 .6152406 .2100348 .9547266 -.1678190 .8367325 
37 .0312702 .5810316 -1.2831537 -.1721668 .8235386 
38 .9126534 .1870172 .3945056 -.1764696 .8098847 
39 .3111278 .2844524 1.4924406 -.1807255 .7957732 
40 .6275126 .1714108 .8500693 -.1849320 .7812074 
41 .9214942 .3372236 .3451510 -.1890871 .7661905 
42 .1136614 .8998812 -1.2270501 -.1931884 .7507256 
43 .0306638 .2623404 2.6320198 -.1972337 .7348164 
44 .7204246 .1619068 .6889139 -.2012211 .7184669 
45 .3745982 .3244556 1.2507874 -.2051480 .7017345 
46 .7476294 .8524252 -.6101264 -.2090125 .6844630 
47 .9985198 .2187884 .0533864 -.2128123 .6668175 
48 .5307766 .3559228 .8853319 -.2165453 .6487490 
49 .2561822 .8275276 -1.4584093 -.2202095 .6302628 
50 .2097574 .3262492 1.5683945 -.2238024 .6113638 
51 .4930958 .4209964 .5663474 -.2273223 .5920575 
52 .3113686 .4558588 .4182644 -.2307670 .5723494 
53 .7038462 .5072396 -.0381095 -.2341342 .5522454 
54 .1192454 .7949532 -1.9805970 -.2374222 .5317515 
55 .8007918 .0001644 .0006885 -.2406288 .5108740 
56 .8510006 .0521148 .1827011 -.2437519 .4896195 
57 .7671902 .5203916 -.0930239 -.2467897 .4679945 
58 .1992934 .9641372 -.4013022 -.2497401 .4460059 
59 .1760078 .6314924 -1.4452538 -.2526012 .4236610 
60 .7944726 .1830908 .6192787 -.2553711 .4009669 
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n Ul(n) U2(n) Xl(n) Qy(n)fxo R(n) 
61 .8478142 .0397836 .1421450 -.2580479 .3779312 
62 .7571014 .6114012 -.4805603 -.2606297 .3545617 
63 .0011438 .8141804 -3.3853679 -.2631149 .3309236 
64 .3625846 .0951868 .8020293 -.2655014 .3068532 
65 .9393182 .1742156 .3144772 -.2677875 .2825306 
66 .7638694 .2263452 .7258813 -.2699717 .2579071 
67 .1465998 .7514284 -1.9595377 -.2720519 .2329914 
68 .4721366 .2028028 1.1716657 -.2740268 .2077926 
69 .6673022 .2884876 .8732286 -.2758945 .1823197 
70 .5347974 .4505692 .3419233 -.2776535 .1565818 
71 .5307758 .8304364 -.9848241 -.2793023 .1305886 
72 .2559286 .2483388 1.6508835 -.2808393 .1043499 
73 .1293662 .7233996 -1.9942463 -.2822630 .0778753 
74 .0090854 .3176732 2.7932558 -.2835719 .0511748 
75 .8800718 .7024044 -.4830387 -.2847648 .0242588 
76 .9827606 .6621948 -.1588238 -.2858402 -.0028622 
77 .5351102 .9157516 -.5647015 -.2867967 -.0301782 
78 .6299334 .2932572 .9261041 -.2876331 -.0576782 
79 .6888878 .9625324 -.2013715 -.2883481 -.0853514 
80 .3774326 .1227708 .9731757 -.2889407 -.1131866 
81 .6461342 .9183436 -.4587510 -.2894094 -.1411729 
82 .8245414 .1149212 .4105582 -.2897535 -.1692990 
83 .3796238 .4300204 .5924445 -.2899716 -.1975532 
84 .3407446 .3164668 1.3412791 -.2900630 -.2259242 
85 .0160382 .3199756 2.6015556 -.2900265 -.2544001 
86 .0841094 .4322652 .9186701 -.2898614 -.2829691 
87 .6626798 .0280684 .1591564 -.2895665 -.3116192 
88 .0694966 .8976828 -1.3844398 -.2891413 -.3403383 
89 .0304222 .5654476 -1.0564577 -.2885851 -.3691142 
90 .6438374 .2468892 .9382331 -.2878970 -.3979346 
91 .0964558 .2683764 2.1545009 -.2870764 -.4267868 
92 .5764886 .6488188 -.8445187 -.2861227 -.4556587 
93 .7468862 .6755596 -.6819377 -.2850354 -.4845374 
94 .7629254 .1523932 .6015928 -.2838140 -.5134100 
95 .8473518 .3086444 .5369349 -.2824580 -.5422640 
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n Ul(n) U2(n) Xl(n) Qy(n)fxo R(n) 
96 .6105206 .8402748 -.8378531 -.2809672 -.5710863 
97 .5350302 .3671116 .8290528 -.2793412 -.5998639 
98 .6045734 .3743772 .7121589 -.2775796 -.6285838 
99 .6497678 .6775724 -.8340856 -.2756825 -.6572328 

100 .9763926 .7904508 -.2115664 -.2736495 -.6857976 
101 .5164542 .5729036 -.5083620 -.2714806 -.7142653 
102 .7159814 .6104412 -.5227975 -.2691758 -.7426222 
103 .9661038 .5098604 -.0162599 -.2667352 -.7708552 
104 .2549046 .6257468 -1.1746033 -.2641587 -.7989508 
105 .8047582 .3617356 .5032416 -.2614466 -.8268954 
106 .1083494 .6701852 -1.8486685 -.2585992 -.8546758 
107 .3467598 .4487084 .4609675 -.2556167 -.8822784 
108 .9228566 .2405628 .3999986 -.2524993 -.9096898 
109 .5455422 .2584076 1.0993503 -.2492476 -.9368962 
110 .9368774 .9152092 -.1834148 -.2458620 -.9638843 
111 .9901358 .1213164 .0972340 -.2423432 -.9906405 
112 .8730486 .4572988 .1381351 -.2386915 -1.0171513 
113 .7564062 .9637196 -.1688646 -.2349077 -1.0434032 
114 .7807654 .4991132 .0039199 -.2309925 -1.0693825 
115 .5026318 .2188844 1.1505976 -.2269467 -1.0950761 
116 .3342806 .3863548 .9695100 -.2227711 -1.1204703 
117 .9669502 .4744716 .0414073 -.2184668 -1.1455516 
118 .5232134 .4074972 .6249222 -.2140346 -1.1703070 
119 .8586478 .1766124 .4944212 -.2094755 -1.1947227 
120 .1913526 .9861308 -.1582765 -.2047908 -1.2187860 
121 .6587742 .6034636 -.5529849 -.1999814 -1.2424830 
122 .8314214 .2979612 .5802661 -.1950488 -1.2658008 
123 .5605838 .4537004 .3085919 -.1899941 -1.2810977 
124 .7050646 .8230268 -.7495486 -.1848187 -1.3112481 
125 .5054782 .8994956 -.6895942 -.1795242 -1.3333509 
126 .2365894 .1401052 1.3089680 -.1741117 -1.3550230 
127 .9988398 .4133484 .0249569 -.1685831 -1.3762514 
128 .6322166 .0314428 .1879610 -.1629399 -1.3970237 
129 .4126622 .9673676 -.2708938 -.1571837 -1.4173272 
130 .8139174 .6555292 -.5319428 -.1513164 -1.4371500 
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n ut(n) U2(n) Xt(n) Qy(n)/xo R(n) 
131 .0118158 .8027564 -2.8171779 -.1453396 -1.4564793 
132 .7456086 .4737788 .1256681 -.1392552 -1.4753034 
133 .3579262 .1878796 1.3256648 -.1330653 -1.4936100 
134 .4626054 .5578332 -.4413322 -.1267716 -1.5113877 
135 .6459118 .8331244 -.8103280 -.1203763 -1.5286238 
136 .7540406 .1004348 .4433272 -.1138815 -1.5453078 
137 .0308702 .8378316 -2.2458848 -.1072893 -1.5614277 
138 .7858534 .5926172 -.3815810 -.1006020 -1.5769728 
139 .1155278 .8596524 -1.6037189 -.0938218 -1.5919316 
140 .6223126 .5098108 -.0600006 -.0869510 -1.6062935 
141 .2730942 .6100236 -1.0271840 -.0799921 -1.6200477 
142 .5708614 .3774812 .7369748 -.0729475 -1.6331838 
143 .9630638 .6615404 -.2330583 -.0658196 -1.6456914 
144 .2912246 .7083068 -1.5171801 -.0586111 -1.6575605 
145 .3181982 .5332556 -.3139155 -.0513246 -1.6687814 
146 .8688294 .0420252 .1384049 -.0439626 -1.6793442 
147 .4189198 .3219884 1.1864906 -.0365280 -1.6892394 
148 .7975766 .0703228 .2876013 -.0290235 -1.6984581 
149 .8317822 .2923276 .5855960 -.0214519 -1.7069912 
150 .6749574 .6678492 -.7711650 -.0138161 -1.7148298 
151 .9614958 .7081964 -.2706210 -.0061190 -1.7219655 
152 .7941686 .4982588 .0074272 .0016363 -1.7283902 
153 .7514462 .9480396 -.2424499 .0094470 -1.7340958 
154 .2084454 .5285532 -.3160103 .0173100 -1.7390746 
155 .0771918 .5513644 -.7178531 .0252222 -1.7433191 
156 .4698006 .7825148 -1.2036219 .0331803 -1.7468220 
157 .9267902 .0571916 .1371281 .0411813 -1.7495768 
158 .7924934 .1297372 .4963946 .0492218 -1.7515765 
159 .2204078 .1266924 1.2427530 .0572987 -1.7528150 
160 .8692726 .1614908 .4495705 .0654085 -1.7532860 
161 .5594142 .1925836 1.0084550 .0735479 -1.7529839 
162 .3343014 .0490012 .4486076 .0817136 -1.7519021 
163 .9735438 .5333804 -.0482130 .0899021 -1.7500387 
164 .6133846 .0815868 .4849238 .0981100 -1.7473857 
165 .4429182 .8630156 -.9677559 .1063337 -1.7439396 
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n Ut(n) U2(n) Zt(n) Qy(n)/zo R(n) 
166 .4050694 .5759452 -.6174449 .1145698 -1.7396961 
167 .4069998 .5746284 -.6059431 .1228146 -1.7346516 
168 .0189366 .1572028 2.3512551 .1310646 -1.7288022 
169 .0029022 .8332876 -2.9607997 .1393161 -1.7221451 
170 .9199974 .1521692 .3336217 .1475656 -1.7146768 
171 .6391758 .2376364 .9432710 .1558094 -1.7063954 
172 .6187286 .3307388 .8564802 .1640436 -1.6972982 
173 .1369662 .8441996 -1.6548154 .1722648 -1.6873836 
174 .4182854 .6112732 -.8496997 .1804690 -1.6766499 
175 .5964718 .7736044 -1.0054256 .1886526 -1.6650962 
176 .0815606 .2325948 2.2255571 .1968118 -1.6527214 
177 .8547102 .7325516 -.5569801 .2049428 -1.6395255 
178 .9431334 .2188572 .3356612 .2130418 -1.6255077 
179 .9732878 .3777324 .1616970 .2211049 -1.6106688 
180 .5322326 .7411708 -1.1213703 .2291284 -1.5950095 
181 .7177342 .9511436 -.2461035 .2371084 -1.5785304 
182 .5217414 .5125212 -.0896486 .2450409 -1.5612331 
183 .3920238 .4692204 .2630179 .2529223 -1.5431194 
184 .2715446 .7428668 -1.6130788 .2607486 -1.5241901 
185 .0796382 .4887756 .1585186 .2685160 -1.5044513 
186 .2453094 .9418652 -.5988315 .2762207 -1.4839026 
187 .7630798 .5712684 -.3184028 .2838586 -1.4625473 
188 .8962966 .0920828 .2558835 .2914260 -1.4403913 
189 .1260222 .1902476 1.8935711 .2989190 -1.4174366 
190 .9490374 .3084892 .3018445 .3063337 -1.3936882 
191 .8448558 .7910764 -.5614384 .3136664 -1.3691509 
192 .8192886 .7712188 -.6257746 .3209132 -1.3438299 
193 .7144862 .4763596 .1213514 .3280701 -1.3177307 
194 .4921254 .0059932 .0448311 .3351335 -1.2908594 
195 .0037518 .8998444 -1.9672033 .3420994 -1.2632223 
196 .1893206 .2506748 1.8244359 .3489642 -1.2348259 
197 .0146302 .4639116 .6534775 .3557241 -1.2056774 
198 .6377734 .0599772 .3490188 .3623752 -1.1757840 
199 .1741678 .0127724 .1498783 .3689139 -1.1451542 
200 .8765046 .5585468 -.1846452 .3753365 -1.1137957 
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~ ut(n) U2(n) Xt(n) Qy(n)fxo R(n) 
201 .2111926 .0488508 .5328300 .3816392 -1.0817174 

202 .9480542 .4857036 .0293007 .3878185 -1.0489282 

203 .5331814 .9680412 -.2236924 .3938706 -1.0154374 
204 .0185038 .8690604 -2.0705787 .3997920 -.9812549 
205 .8657046 .4921468 .0264889 .4055792 -.9463910 
206 .4283582 .0105356 .0861354 .4112285 -.9108557 
207 .7895494 .3397852 .5809287 .4167365 -.8746604 

208 .2871598 .7119084 -1.5346653 .4220997 -.8378161 
209 .0296566 .6749628 -2.3631776 .4273147 -.8003344 
210 .4011422 .9632076 -.3096823 .4323782 -.7622276 
211 .1620774 .3368092 1.6309022 .4372868 -.7235076 
212 .3785358 .7685164 -1.3844528 .4420371 -.6841876 
213 .9958486 .6196988 -.0623146 .4466259 -.6442802 
214 .6840062 .4445196 .2976963 .4510503 -.6037993 
215 .8299654 .9127132 -.3183015 .4553067 -.5627583 
216 .0990318 .3300844 1.8839432 .4593922 -.5211716 
217 .3930806 .6367548 -1.0349719 .4633038 -.4790536 
218 .6065502 .8512716 -.8042689 .4670384 -.4364189 
219 .2764134 .8530972 -1.2787976 .4705932 -.3932831 
220 .6230478 .4318124 .4041316 .4739653 -.3496610 
221 .5061526 .8845308 -.7743125 .4771518 -.3055693 
222 .4503742 .3962636 .7761981 .4801499 -.2610233 
223 .7686214 .6155612 -.4816808 .4829571 -.2160399 
224 .6529838 .1329004 .6844315 .4855707 -.1706358 
225 .9958646 .1294268 .0661390 .4879882 -.1248281 
226 .6890782 .0282956 .1526259 .4902069 -.0786340 
227 .4377894 .9697052 -.2431820 .4922246 -.0320714 
228 .7792398 .3965484 .4274518 .4940388 .0148416 
229 .0190166 .7058428 -2.7074605 .4956474 .0620873 
230 .0282622 .7521676 -2.6704187 .4970480 .1096469 
231 .9591174 .4371292 .1111923 .4982385 .1575019 
232 .0402158 .5699564 -1.0787863 .4992171 .2056326 

233 .7484086 .6761788 -.6808847 .4999816 .2531074 
234 .2455262 .3486796 1.3639723 .5005301 .3026449 

235 .8318054 .5314332 -.1190830 .5008610 .3514867 
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n ut(n) U2(n) Xt(n) Qy(n)/xo R(n) 
236 .6823118 .4643244 .1943601 .5009725 .4005260 

237 .2928406 .1908348 1.4601925 .5008528 .4497422 

238 .8304702 .4946316 .0205559 .5005305 .4991147 

239 .2590534 .7982172 -1.5687536 .4999742 .5486232 
240 .1199278 .0348524 .4474116 .4991923 .5982464 
241 .0171126 .0482108 .8508720 .4981838 .6479629 
242 .4246942 .2828236 1.2809949 .4969472 .6977519 
243 .6280614 .6550812 -.7979846 .4954817 .7475916 
244 .0954638 .6607404 -1.8354558 .4937861 .7974606 
245 .2620246 .4547068 .4595062 .4918596 .8473365 
246 .0617982 .1420556 1.8373850 .4897013 .8971974 
247 .5900294 .0316252 .2027737 .4873105 .9470213 
248 .0393198 .0251884 .4009469 .4846866 .9967858 
249 .4643766 .9847228 -.1187095 .4818291 1.0464685 
250 .2073822 .1571276 1.4802762 .4787375 1.0960468 
251 .7401574 .8094492 -.7222561 .4754116 1.1454976 
252 .6298958 .5953964 -.5423985 .4718510 1.1947986 
253 .6769686 .7406588 -.8818026 .4680557 1.2439266 
254 .5990462 .7888396 -.9823453 .4640257 1.2928587 
255 .8976454 .0621532 .1769028 .4597611 1.3415719 
256 .5535918 .7025644 -1.0395538 .4552621 1.3900428 
257 .4886006 .7129148 -1.1644928 .4505288 1.4382483 
258 .8863902 .9939916 -.0185361 .4455619 1.4861650 

259 .9856934 .0953372 .0957188 .4403617 1.5337699 
260 .4648078 .2218924 1.2185920 .4349288 1.5810393 
261 .3440726 .3398908 1.2338928 .4292642 1.6279502 
262 .0710142 .7453836 -2.2989782 .4233684 1.6744789 

263 .5115014 .2866012 1.1274481 .4172426 1.7206023 
264 .1459438 .8525804 -1.5683091 .4108877 1.7662969 

265 .2641846 .2679868 1.6212204 .4043048 1.8115393 
266 .7465182 .9518156 -.2279749 .3974953 1.8563063 

267 .6462694 .7255452 -.9233776 .3904606 1.9005749 
268 .8673998 .9978284 -.0072776 .3832021 1.9443215 

269 .9657366 .3116028 .2445264 .3757214 1.9875229 

270 .1385022 .7780876 -1.9575166 .3680203 2.0301561 
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n ut(n) U2(n) Xt(n) Qy(n)/xo R(n) 
271 .9051974 .6537692 -.3671941 .3601005 2.0721985 

272 .9475758 .2448364 .3279989 .3519640 2.1136268 

273 .3815286 .6131388 -.9058025 .3436129 2.1544181 

274 .9445662 .3649996 .2533327 .3350492 2.1945502 

275 .4274854 .7048732 -1.2516581 .3262752 2.2340004 

276 .5128718 .4448044 .3927883 .3172933 2.2727462 

277 .5803606 .0029948 .0196280 .3081060 2.3107652 

278 ,9743102 .9493516 -.0713846 .2987158 2.3480356 

279 .8563334 .9444572 -.1904454 .2891255 2.3845352 

280 .4576878 .3929324 .7790584 .2793379 2.4202427 

281 .0870326 .5595708 -.8079153 .2693557 2.4551361 

282 .5893342 .3839436 .6851714 .2591822 2.4891944 

283 .8189414 .7101212 -.6123111 .2488203 2.5223960 

284 .6044238 .1084204 .6319328 .2382733 2.5547207 

285 .6023446 .3692668 .7371672 .2275447 2.5861473 

286 .9432382 .0575756 .1209931 .2166377 2.6166555 

287 .0065094 .2514652 3.1730366 .2055559 2.6462253 

288 .0634798 .7144684 -2.2899286 .1943031 2.6748370 

289 .1230966 .4864828 .1736317 .1828828 2.7024706 

290 .0216222 .2150476 2.7026187 .1712991 2.7291067 

291 .8542374 .1700892 .4920493 .1595558 2.7547269 

292 .7932558 .9182764 -.3343220 .1476569 2.7793120 

293 .4620886 .0936188 .6894867 .1356067 2.8028438 

294 .4820862 .6771596 -1.0836782 .1234093 2.8253043 

295 .8213254 .6595932 -.5288978 .1110691 2.8466756 

296 .3601518 .0910444 .7736766 .0985906 2.8669406 

297 .1681206 .8610748 -1.4468938 .0859782 2.8860823 

298 .2942302 .9607116 -.3822277 .0732366 2.9040840 

299 .2709734 .5455772 -.4564757 .0603705 2.9209295 

300 .8985678 .9479724 -.1485123 .0473847 2.9366031 

301 .8459926 .5072508 -.0263394 .0342841 2.9510896 

302 .1796542 .7985036 -1.7675705 .0210736 2.9643733 

303 .9503814 .1256412 .2264993 .0077584 2.9764404 

304 .2709038 .8282604 -1.4246798 -.0082690 2.9862545 
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TABLE 16. 
CALCULATION OF THE SUMS OVER n OF THE 

PRODUCTS Xt(n)Qy(n)/x o AND xt(n)R(n). 

N L~-O Xt(n)Qy(n)/x o N L~-o Xt (n )R( n) 
10 .0939377 10 -6.7214615 
20 .2532940 20 -9.3297653 
30 .2830836 30 -9.1443151 
40 -.1044807 40 -7.5678072 
50 -.9524426 50 -4.6857731 
60 -.4131410 60 -5.6820003 
70 -.0507954 70 -6.3972300 
80 -.6131496 80 -6.5065263 
90 -1.7920221 90 -7.4149483 

100 -2.2029405 100 -7.9924522 
110 -1.7108395 110 -6.7500003 
120 -2.4196728 120 -10.3377010 
130 -2.3582360 130 -9.8003370 
140 -1.6046544 140 .1159521 
150 -1.5155529 150 1.5962746 
160 -1.4489933 160 2.2974635 
170 -1.5980787 170 3.2557601 
180 -1.7645042 180 4.3010455 
190 -1.7715406 190 4.5247972 
200 -1.7850229 200 4.9845704 
210 -3.9894607 210 9.4378826 
220 -4.3266594 220 9.4712318 
230 -6.6992265 230 9.0280998 
240 -6.6217173 240 9.1742093 
250 -4.7925534 250 12.686858 
260 -6.6131011 260 8.0079055 
270 -7.6577445 270 2.5933738 
280 -8.0373681 290 .5358483 
290 -7.1832264 290 12.6671250 
300 -7.3637752 300 5.6213579 
304 -7.3883893 304 -3.2764056 
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