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Foreword 

Modem option pricing theory was developed in the late sixties and early 
seventies by F. Black, R. C. Merton and M. Scholes as an analytical tool 
for pricing and hedging option contracts and over-the-counter warrants. 
However, already in the seminal paper by Black and Scholes, the 
applicability of the model was regarded as much broader. In the second 
part of their paper, the authors demonstrated that a levered firm's equity 
can be regarded as an option on the value of the firm, and thus can be 
priced by option valuation techniques. A year later, Merton showed how 
the default risk structure of corporate bonds can be determined by option 
pricing techniques. Option pricing models are now used to price virtually 
the full range of financial instruments and financial guarantees such as 
deposit insurance and collateral, and to quantify the associated risks. Over 
the years, option pricing has evolved from a set of specific models to a 
general analytical framework for analyzing the production process of 
financial contracts and their function in the financial intermediation 
process in a continuous time framework. 

However, virtually no attempt has been made in the literature to integrate 
game theory aspects, i.e. strategic financial decisions of the agents, into 
the continuous time framework. This is the unique contribution of the 
thesis of Dr. Alexandre Ziegler. Benefiting from the analytical tractability 
of continuous time models and the closed form valuation models for 
derivatives, Dr. Ziegler shows how the option pricing framework can be 
applied to situations where economic agents interact strategically. He 
demonstrates, for example, how the valuation of junior debt and capital 
structure decisions are affected if shareholders follow an optimal 
bankruptcy strategy. Other major applications of the study include the 
analysis of credit contracts and collateral, bank runs and deposit insurance. 
The careful reader will notice that the conclusions from this analysis are 
extremely interesting. It is my hope that Dr. Ziegler's work stimulates 
further research in this exciting new field, and accelerates the interaction 
between microeconomics and financial economics to produce new 
interesting insights into the structure and the functioning of the financial 
system. 

Heinz Zimmermann 
Professor of Economics and Finance 
Swiss Institute of Banking and Finance 
University of St. Gallen 
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1. Methodological Issues 

1.1 Introduction 
Game Theory is the study of multiperson decision problems. 1 Since its 
beginnings in the early 20th century and von Neumann's (1928) proof of 
the minimax theorem, it has developed rapidly and is now a major field of 
economic theory. It has become a standard part of major economics 
textbooks and is the main analysis instrument in some important fields of 
economics, such as industrial organization, corporate finance and financial 
intermediation. In spite of this development, in recent years, game theory 
has faced methodological problems in handling uncertainty and timing 
decisions in dynamic models. This constitutes a severe limitation for the 
analysis of strategic issues in financial decision-making, where uncertainty 
and risk are particularly important. 
Option Pricing is devoted to the valuation of options and, by extension, of 
other contingent claims. Since the pioneering work of Black and Scholes 
(1973) and Merton (1973), option pricing has found its way into many 
domains of economics. Some examples are the pricing of corporate 
securities, which are essentially contingent claims on the firm's asset 
value, and the analysis of the value of managerial flexibility and of some 
timing decisions in what has become known as the real options literature. 
Today, option pricing and continuous-time finance have grown to an 
essential part of financial theory. 
This book presents a method, the game theory analysis of options, 
combining these two powerful instruments of economic theory to enable 
or facilitate the analysis of dynamic multiperson decision problems in 
continuous time and under uncertainty. It also demonstrates in an 
exemplary fashion how the method can be used to analyze some stylized 
problems in the theory of financial intermediation. 
The basic intuition of the method, which will be presented below, is to 
separate the problem of the valuation of payoffs from the analysis of 
strategic interactions. Whereas the former is to be handled using option 
pricing, the latter can be addressed by game theory. In the sequel, it is 
demonstrated how both instruments can be combined and how game 
theory can be applied to complex problems of corporate finance and 
financial intermediation. In this respect, the method and the examples 

1 See Gibbons (1992), p. xi. 
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presented below can be understood as an attempt to integrate game theory 
and option pricing. Straightforward applications of the method are: 

• the pricing of contingent claims when strategic behavior on the part of 
economic agents is possible, 

• the analysis of the incentive effects of some common contractual 
financial arrangements, and 

• the design of incentive contracts aiming at resolving conflicts of 
interest between the economic agents. 

Before presenting the method in detail and turning to the examples of the 
following chapters, a few basic concepts of game theory and option 
pricing shall be introduced. 

1.2 Game Theory Basics: Backward Induction and Subgame 
Perfection 

Consider the game pictured in Figure 1.1. In period 1, player I chooses 
either strategy U or strategy D. In period 2, player II chooses either 
strategy L or strategy R. In period 3, payoffs are received, where the 
vector (x;y) states that player I receives x and player II receives y. For 

example, if player I chooses U and player II chooses L, then player I will 
receive 2 and player II gets 1. It is assumed that all the above is common 
knowledge, that is, known to both of the players. 

Player I 

(2;1) (0;0) (-1;1) (3;2) 

Figure 1.1: Example ola game tree (Source: Fudenberg and Tirole (1991), 
p.85). 
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Which strategies are the players going to choose? To answer this question, 
the principle of backward induction can be used. It says that the game 
should be solved beginning with the last decision to be made, which is to 
be replaced by its optimal value. That is, one first solves for player II's 
optimal decision in the last stage, substitutes the resulting payoffs in the 
game tree and then works backward to find player I's optimal choice. At 
the node on the left, player II gets a payoff of 1 if he chooses L, and 0 if he 
chooses R. Therefore, he will choose L. Similarly, at the node on the right, 
his optimal strategy is to choose R, since this enables him to get a payoff 
of 2 instead of 1. Substituting these values into the game tree yields the 
result depicted in Figure 1.2. 

Player I 

(2;1) (3;2) 

Figure 1.2: The game of Figure 1.1 after the subgames have been replaced 
with the optimal decisions in the last stage. 

It is now straightforward to find the solution to this game: in period 1, 
player I can choose between a payoff of 2 (strategy U) and a payoff of 3 
(strategy D). Hence, he will choose D. Actually, substituting player II's 
optimal strategies into the game before solving for player I's optimal 
strategy means that, when making his choice, player I anticipates player 
II's subsequent optimal choice. 
As defined above, backward induction can only be applied to games of 
perfect in/ormation, in which all the information sets are singletons. In a 
game of perfect information, players move one at a time and each player 
knows all previous moves when making his decision.2 This was obviously 
the case of the game described above where player I first made his choice 
between U and D, and then player II chose between Land R, knowing 
what player I had chosen. Now consider the game depicted in Figure 1.3. 
The sub game on the right is a simultaneous-move game. At the time he 

2 See Fudenberg and Tirole (1991), p. 80. 
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has to make his decision, player II does not know what player I chooses. 
Hence, backward induction cannot be used to determine player I's optimal 
choice. The idea of backward induction can, however, be extended to 
handle these kind of games. 

(2;-2) (-2;2) (-2;2) (2;-2) 

Figure 1.3: Example of a game with imperfect information (Source: 
Fudenberg and Tirole (1991), p. 94). 

To see why, consider the subgame on the right. If it is reached, then each 
player will choose each strategy with probability Y2, thus yielding an 
expected payoff of 0.3 The subgame can therefore be replaced with its 
equilibrium payoff (0; 0) , yielding the game in Figure 1.4, which can then 

be solved using backward induction as was done with the game of Figure 
1.1. To do so, note that if the node on the right is reached, Player II will 
choose L, thus obtaining a payoff of 1 instead of 0 if he chooses R. When 
making his own choice in the first stage, Player I will anticipate Player II's 
subsequent choice and the resulting payoff of 3. Since this is greater than 
the payoff of 2 he would get by playing L, he will choose R. In 
equilibrium, Player I chooses R and Player II L; the simultaneous-move 
sub game on the right is not reached. 
The idea that each subgame should be replaced with its equilibrium payoff 
is called subgame perfection. Note that in a finite game of perfect 
information, backward induction and subgame perfection are equivalent.4 

3 This is called a mixed strategy. See Fudenberg and Tirole (1991), p. 5. 
4 See Fudenberg and Tirole (1991), p. 96. 
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(3;1) (0;0) 

Figure 1.4: The game of Figure 1.3 after the subgame on the right has been 
replaced with its equilibrium payoff. 

1.3 Option Pricing Basics: The General Contingent Claim Equation 

Consider a contingent claim that is written on an underlying asset S whose 
value follows a geometric Brownian motion 

dS = pSdt + GSdZ , (1) 

where J.1 is the drift and G the instantaneous standard deviation of the 
process and dZ denotes the increment of a standard Wiener process. 
Throughout this book, it will be assumed that asset values follow such a 
process.5 

Let S denote the current value of the underlying asset, t time, r the risk
free rate of return, a the payout to the holders of the underlying asset per 
unit time, and b be the payout to the holders of the contingent claim per 
unit time. Let F(S,t) denote the value of the contingent claim. Then, as 
Merton (1977) has shown, F must satisfy the following linear partial 
differential equation: 

tG2S2 Fss +{rS -a)Fs + F, -rF +b = 0, (2) 

where subscripts to F denote partial derivatives. At this point, It IS 
important to stress that the value of any contingent claim written on S 
must satisfy (2); different contingent claims only differ by their boundary 
conditions. 
Equation (2) contains a certain number of parameters, and is subject to 
boundary conditions. These factors will provide the basis for the analyses 
conducted in this text. The game theory analysis of options presented 
below is concerned with the economic agents' incentives to influence the 

5 Huang (1985, 1987) supplies sufficient conditions under which eqUilibrium 
prices follow such processes. 
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parameters or the boundary conditions of options embedded in their 
economic activities. 

1.4 The Method of Game Theory Analysis of Options 

The method of game theory analysis of options is an attempt to combine 
game theory and option pricing. Using option pricing, arbitrage-free 
values for the payoffs to the economic agents can be obtained. These 
values are then inserted into the strategic games between the agents, which 
can thus be analyzed more realistically. 
The essence of the method can be summarized as a three-step procedure: 

• First, the game between the players is defined, that is, the players' 
action sets, the sequence of their choices and the resulting payoffs are 
specified. 

• Second, the players' future uncertain payoffs are valued using option 
pricing theory. All the players' possible actions enter the valuation 
formula as parameters. 

• Finally, starting with the last period, the game is solved for the players' 
optimal strategies using backward induction or subgame perfection. 

In effect, the game theory analysis of options replaces the maximization of 
expected utility encountered in classical game theory models with the 
maximization of the value of an option, which gives the arbitrage-free 
value of the payoff to the player and can therefore be considered as a 
proxy for expected utility. Over the expected-utility approach, the option
pricing approach has the advantage that it automatically takes the time 
value of money and the price of risk into account. 
The greatest strength of the method, however, lies in its separating the 
valuation problem (Step 2) from the analysis of the strategic interaction 
between the players (Step 3). This feature is very useful in the analysis, 
because complex decision problems under uncertainty can be solved by 
applying classical optimization procedures (minimization and 
maximization) to the value of the option. The analysis then often boils 
down to finding a first-order condition for a maximum or minimum. 
To better understand how the method works, suppose that the structure of 
the game is the following: First, player I chooses a strategy A. Once this 
choice is made, player II chooses a strategy B. These strategies, together 
with the future value of the state variable S, determine the payoffs to each 
of the players. Let G(A,B,S) and H(A,B,S) denote the current 
arbitrage-free value of the payoffs to player I and II as given by option 
pricing, respectively. As mentioned earlier, this value is obt~ined by 
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solving a differential equation similar to (2) subject to appropriate 
boundary conditions. The players' strategies consist in choosing one of the 
parameters of this differential equation or its boundary conditions so as to 
maximize the value of their payoffs. 
In the last stage of the game, player IT chooses that strategy B which 
maximizes the value of his expected payoff H(A,B,S) , that is, sets 

aH(A,B,S) = 0 (3) 
aB ' 

provided that B is not a boundary solution. This first-order condition can 
be solved to yield an optimal strategy B = B(A,S) , which might depend 

on player I's strategy choice A. Now, at the time he makes his decision, 
player I must anticipate player II's subsequent choice. That is, he sets 

dG(A,B,S) = aG(A,B,S) + aG(A,B,S) dB = 0 
dA aA aB dA ' 

thus yielding an optimal strategy X = XeS) . The term 

aG(A,B,S) dB 

aB dA 

(4) 

(5) 

in expression (4) reflects the indirect effect of player I's strategy choice on 
his expected payoff that results from the influence of his choice on player 
IT's optimal strategy B. It captures the essence of backward induction, i.e. 
that player I must anticipate what player IT will do when making his 
choice. 

1.5 An Example: Determining the Price of a Perpetual Put Option 

Consider a financial intermediary active in a competitive market and 
selling a perpetual put option on an underlying asset S with an exercise 
price of X to an investor. Which price should he ask for? To ans'wer this 
question, the simple method presented above is applied. 

1.5.1 Step 1: Structure of the Game 

The structure of the game, which is depicted in Figure 1.5 below, is the 
following: At initial time, the intermediary sells the option to the investor 
for a certain price P~. The investor then holds the option until he decides 

to exercise it, where S denotes his optimal exercise strategy. At the time 
of exercise, the payoff to the investor equals the (positive) difference 

between the strike price X and the current value of the underlying asset S, 

Max[O; X - S] . 
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Option Sale 
Price P_ 

Optimal Exercise St!ategy 
Choice of a value S 

- Exercise and Payoffs 
Min[O;S-X]..!.o the intennediary (option writer) 

Max[O;X-S] to the investor (option holder) 

Figure 1.5: Structure of the option pricing game. In the first phase, the 
intermediary sells a perpetual put option to the investor at a price P_. The 

investor then chooses his optimal exercise strategy S. Finally, if the 
investor chooses to exercise the option, he receives X - S from the 
intermediary. 

1.5.2 Step 2: Valuing the Option 
The second step in the method is to determine the arbitrage-free value of 
the perpetual put option, P_ (S), given the option holder's exercise 

strategy S. This value is given by the following ordinary differential 
equation: 6 

l.(J2 S2 P" + rSP' - rP = 0 2 00 00 00 , 

subject to the boundary conditions 
P_(oo) = 0, 

P_(S) = X -S. 

The general solution to (6) is 

Poo(S) = a)S +a2S-r , 
where 

6 The analysis of this section follows the line of Merton (1973). 

(6) 

(7) 

(8) 

(9) 
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2r 
Y=~. (10) 

From boundary condition (7), we have a 1 = O. On the other hand, 

boundary condition (8) requires that 
- - --y --y 

P~(S)=X-S=a2S <=> a 2 =(X-S)S . (11) 

Hence, the value of the perpetual put option for a given exercise strategy 

S is given by 

(12) 

1.5.3 Step 3: Solving the Game 

At this point, the investor's exercise strategy S is still unknown. It is a so
calledfree boundary. There are basically two approaches to compute it. 

1.5.3.1 Smooth Pasting 

The first method is to require P~ to satisfy the so-called smooth-pasting 

condition 

ap~(S)1 = dP~ 
as s=s dS' 

(13) 

where P~ denotes the value of the put option upon exercise as specified 

by boundary condition (8): P~ = X - S. Using this methodology, the 

optimal exercise strategy can be computed by setting 

ap ai S) I s=s = ~ (( X - S)(~ ry J _ = (- ~ (X - S)( ~ ry J _ 
s=s s=s (14) 

= - f (X - S) =~ = :S (X - S) = -1, 

thus yielding 

~(X -S)=1 <=> S =-Y-X. 
S l+y 

(15) 

1.5.3.2 Value-Maximizing Exercise Strategy 

An alternative way of finding the free boundary S is to require that it 
maximize the value of the option, that is, that the option holder only 
exercises when it is optimal to do so, thus setting 
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ap~ (s)-r 2r - (s)-r 1 as =- S + C1 2 (X-S) S ·S=O (16) 

and obtaining 

S=+r(X -S) ~ S(I+r)=rX. (17) 

Thus, the underlying asset value S under which exercise is optimal is 
given by 

S=_r_x 
l+r ' 

which is the same solution as that given by smooth-pasting. 

1.5.3.3 Link between the two Approaches 

(18) 

A question that obviously arises is that of the link between the two 
approaches. Are they related? Do they always yield similar results? 
Merton (1973) showed that smooth-pasting is actually implied by value
maximization: Let f(x;x) be a differentiable function for 0:S; x:S; x and 

let a2 f / ax2 < O. Set hex) = f(x;x) , where h is a differentiable function 

of x. 
Let x = x * be the x which maximizes f, i.e. 

a.t(X;X)1 = o. 
ax x=x' 

(19) 

Now consider the total derivative of f with respect to x along the 
boundary x = x * : 

df = g[J dX + a.t dX. 
~x=x ax 

(20) 

From the definition of h, 

:=!Ix=x +~. (21) 

Now, at the point x = x *, a.t / ax = 0 by (19), so 

:=~x=x' (22) 

which is the smooth-pasting condition (13).7 

7 This result is known as the "envelope theorem" in microeconomics. See Simon 
and Blume (1994), pp. 452-457. 
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1.5.3.4 Alternative Behavioral Assumptions 

What is, then, the difference between the two approaches? It clearly lies in 
the different behavioral assumptions on the part of the economic agents. 
Whereas smooth pasting is more a mathematical property (tangency), 
value maximization has a clear intuitive economic basis consisting in the 
"optimal" behavior of economic agents. In the remainder of this book, 
value maximization shall therefore be used, thus stressing that the 
problems analyzed are multiperson games in which the players behave 
optimally. 

1.5.4 The Solution 
The solution to our problem of finding which price the intermediary 
should ask for the option can now be found as follows. The option writer 
can be expected to anticipate the investor to exercise when is optimal to 
do so. Therefore, he would ask for a price equal to the value of the option 
if the holder exercises optimally, that is, a price equal to the value given 
by (12) with the exercise strategy given by (15) and (18), thus yielding 

P~(S)=(X-S)(~)-Y =~(I+r)S)-Y, (23) 
S l+r yX 

which can therefore be expected to be the market price of the perpetual put 
option. This solution was already derived by Merton (1973), who 
implicitly used the method described above. 

1.6 Outline of the Book 
The following chapters illustrate how the game theory analysis of options 
can be applied to some classical problems of corporate finance and 
financial intermediation. While the examples provided in the sequel are of 
great interest as such, the methodological emphasis of this book is equally 
important. 
Chapter 2, Credit and Collateral, analyzes two classical problems of 
financial contracting, namely, the risk-shifting problem and the 
observability problem, and shows that they are very closely related. More 
specifically, it demonstrates that - except in the special case of full 
collateralization - there exists no contract solving both the risk-shifting 
and the observability problem simultaneously and discusses the practical 
implications of this result for corporate financing. 
Chapter 3, Endogenous Bankruptcy and Capital Structure, develops a 
model of the firm with outside (debt) financing and endogenous 
bankruptcy. In analyzing the last stage of the game, namely, the 
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shareholders' bankruptcy decision, it is shown that endogenous bankruptcy 
gives rise to a principal-agent problem. The resulting agency cost of debt 
is measured. Then, the firm's investment decision is addressed. 
Underinvestment and risk-shifting are studied and the role and incentive 
effects of debt covenants discussed. Subsequently, optimal capital 
structure and its properties are described. It is shown that optimal capital 
structure depends on the interest rates charged on the loan given to the 
firm. Some properties of the ex ante optimal capital structure are 
discussed. Moving back through the game, equilibrium on the credit 
market is then presented. Finally, an incentive contract allowing the lender 
to lead the borrower to declare bankruptcy at a pre-specified asset value is 
constructed. 
Chapter 4, Junior Debt, is devoted to the incentive effects of subordinated 
debt. Extending the model of Chapter 3 to the case where there are many 
lenders of different seniority, the analysis presented illustrates how the 
existence of junior debt influences the borrower's bankruptcy decision. 
Then, his incentives to issue junior claims are discussed and it is 
demonstrated that such an issue may result in a wealth transfer between 
security holders, thus leading to a distortion in the borrower's incentive to 
issue junior debt. Consequences for the firm's capital structure are 
explored. 
Chapter 5, Bank Runs, analyzes this important phenomenon and its 
incentive effects. Mter exploring the depositors' decision to run on a bank, 
the bank's equity is valued under the run restriction. The decision of the 
bank's shareholders to recapitalize the bank is analyzed. Finally, the bank's 
optimal investment choice when bank runs are possible is explored and the 
consequences for the funding of banks are discussed. 
Chapter 6, Deposit Insurance, discusses the costs and benefits of deposit 
insurance and its incentive effects. It demonstrates that deposit insurance 
does not result in risk-shifting behavior on the part of banks if the 
guarantor is perfectly informed and can seize the assets immediately. 
Some interesting incentive problems might arise, however, if the guarantor 
cannot observe current asset value or has to wait before he can seize the 
assets. Possible incentive contracts between the bank and the guarantor 
aiming at addressing these issues are presented and discussed. 
Chapter 7, Summary and Conclusions, summarizes the main results of the 
book and discusses the strengths and weaknesses of the game theory 
analysis of options. While the method presented here allows a better 
analysis of strategic interactions under uncertainty in dynamic settings, it 
is subject to some severe limitations, namely, mathematical complexity 
and the fact that continuous-time finance is a mere approximation of 
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reality. By replacing the maximization of expected utility encountered in 
classical game theory models with the maximization of the value of an 
option, the game theory analysis of options allows to solve complex 
decision problems under uncertainty by applying classical optimization 
procedures (minimization and maximization) to the value of the option. 
Over the expected-utility approach, the option-pricing approach has the 
advantage that it automatically takes the time value of money and the price 
of risk into account. Its greatest strength, however, lies in its ability to 
separate valuation from the analysis of strategic behavior - a feature that 
isn't displayed by classical game theory models, where difficulties in 
valuing uncertainty complicate the analysis of strategic interactions. 
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2.1 Introduction 
Moral hazard is a widespread source of inefficiency in economics. In 
financial contracting, both classical forms of moral hazard exi.st, each 
giving rise to specific incentive issues.! In a situation of hidden action, the 
agent takes an action that is not observed by the principal. For example, 
the borrower might try to influence the return distribution of his project to 
increase his expected payoff at the expense of the lender. This is the so
called risk-shifting or asset substitution problem, which was first laid out 
by Jensen and Meckling (1976). In contrast, in a situation of hidden 
information, the agent privately observes the true state of the world prior 
to choosing an observable action. In the context of financial contracting, 
the borrower typically is the only person that can observe project returns 
at no cost. To the extent that his promised payment depends positively on 
realized project return, he might have an incentive to understate project 
return in order to reduce his payment to the lender. This form of 
information asymmetry gives rise to the so-called observability problem, 
which was addressed in the costly state verification literature in the wave 
of Townsend's (1979) pathbreaking paper. The main conclusion of this 
literature is that costly state verification by the principal (lender) makes 
complete risk-sharing suboptimal. 
While these two strands of literature each provide interesting insights into 
the optimal structure of financial contracts, they have not been properly 
integrated. The aim of this chapter is to analyze the risk-shifting and the 
observability problem using the instruments provided by the game theory 
analysis of options and to demonstrate how they are related. The setting 
used is voluntarily simple, with a given contract life and a single terminal 
payment from the borrower to the lender; more complicated situations 
involving interim payments and timing issues will be addressed in 
subsequent chapters. 
The structure of the chapter is as follows: Section 2.2 analyzes the risk
shifting problem using a simple principal-agent framework in which the 
principal lends money to the agent for a finite period of time and cannot 
call the loan back before term. Extending the basic intuition of early 
models that convexity in the agent's payoff is responsible for risk-shifting, 
a contract avoiding risk-shifting is developed. It is shown that, in 

1 See Muller (1997), p. 2 for a general introduction to moral hazard. 
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continuous-time analysis, there exists an infinity of contracts having this 
property. However, only one of these contracts is able to solve the risk
shifting incentive of the agent at any point in time and for any value taken 
by the state variable. The concept of a dynamically stable (or 
renegociation-proot) incentive contract is introduced. This contract is 
expected to be preferred by both principal and agent because it avoids 
costly renegociation. The optimal contract is a linear risk-sharing contract. 
This linearity result has the interesting intuitive interpretation of leading 
the lender to buy equity and generalizes previous results in the literature 
on the optimality of linear contracts. It confirms Lemma 1 of Seward 
(1990), which states that if the firm's return is observable, then the 
appropriate investment incentives can be restored through the use of an 
all-equity financial structure. 
Turning to the observability problem, Section 2.3 shows that the analysis 
of one-period models still holds. Because output cannot be observed by 
the principal, the contractual payment cannot be made contingent upon it. 
Therefore, the optimal contract when output is unobservable is a debt 
contract. Under such a contract, however, the agent has an incentive to 
engage in risk-shifting behavior. This incentive problem can be mitigated 
through the use of collateral. 
Finally, Section 2.4 concludes the chapter and presents practical 
consequences of the general result that there exists no contract solving 
both the risk-shifting and the observability problem simultaneously. 

2.2 The Risk-Shifting Problem 

A classical problem in financial contracting is the so-called risk-shifting 
problem. This term stands for the incentive the borrower has to influence 
the risk of his project in order to increase the value of his payoff at the 
expense of the lender. 
Consider a financial intermediary that provides a firm with capital for 
investment, and assume that the intermediary knows that the firm has an 
incentive to increase the risk of its project. There are three basic 
approaches to solve this problem. The first is for the intermediary to 
simply anticipate the behavior of the agent and ask for a higher interest 
rate on his loan. The second approach calls for the intermediary to closely 
monitor the agent to avoid his taking undue risk. Finally, the intermediary 
can try to design a contract to have the agent behave properly without 
having to monitor him. Because of the resulting savings in interest and 
monitoring costs, this last approach to solving the risk-shifting problem 
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can be expected to prevail in practice.2 In this section, we therefore 
analyze the structure of the risk-shifting problem using the game theory 
analysis of options and show how an incentive contract can be designed 
that ensures that the agent does not engage in undue risk. 

2.2.1 The Model 
Consider a financial intermediary, the principal, that lends money to an 
agent for investment in one of many projects that are available only to the 
agent. Assume that the principal cannot observe the project choice of the 
agent, and therefore cannot assess the risk of the project. At initial time, 
all projects have the same price So' but different risks. The project value 

then evolves according to a geometric Brownian motion. Assume, further, 
that the agent can, at any time, change his mind and switch to another 
project at no cost.3 More specifically, the agent can choose to invest in a 
series of projects whose dynamics are given by 

dSj = fljSjdt + (J'jSjd'l;. (1) 

For simplicity, assume that all projects have a finite life of T and a random 
terminal value "8; observable by both the principal and the agent. Assume 

that the principal and the agent agree on a single, end-of-period contingent 
payment to the principal /("8;).4 Suppose that the principal and the agent 

have no other assets and limited liability. Then, the effective payoff to the 
principal, whatever has been agreed upon, is given by 

Min[8;;f(8;)]. (2) 

The payoff to the agent equals the difference between total project return 
and the amount paid out to the principal: 

"8; - Min["8;;f("8;)] = Max[O;"8; - /("8;)]. (3) 

Figure 2.1 summarizes the structure of this game. In the first stage, the 
financing contract is signed. Then, the agent invests in a project and may, 
if he wishes, switch to a project involving more or less risk. Finally, at 

2 As shown in Stiglitz and Weiss (1981), raising the interest rate might be 
unprofitable for banks because of the resulting adverse selection effects. 
3 Note that this implies that there are no scale effects, i.e. the amount invested in 
the new project can always be chosen to equal the proceeds from liquidating the 
old project. Alternatively, one could think of the model as involving a single 
project, but with many alternative business strategies of different riskiness. 
4 See Chapter 3 for the analysis of a debt contract involving interim interest 
payments and Chapter 4 for the case of several debt contracts. 
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expiration of the contract, the return on the project is observed by both 

principal and agent and the agent pays Min[S;;fCS;)] to the lender. 

Financing Decision 
Choice of a contract f(S) 

~ 
Investment Decision 

Choice of a stochastic process for S 

~ 
Payoffs 

Min[S;f(S)] to the lender 
Max[O;S-f(S)] to the borrower 

Figure ~.l: Structure of the game between lender and borrower. After the 
financing contract is signed, the borrower chooses an investment project. 
At any time during the life of the contract, he can switch to another project 
involving higher or lower risk. At time T, project return is publicly 
observed and payoffs are received. 

2.2.2 Valuing the Players' Payoffs 
From these assumptions, we can easily see that a contract basically is a 
payment by the principal today with an agreement by the agent to pay him 
Min[S;;f(S;)] at time T. The sum of the payoff to the agent and the 

principal at Tis S;. Within this feasibility constraint, the principal and the 

agent can agree on any payment. An example of such a payment scheme is 
depicted in Figure 2.2. 
Any contract between the principal and the agent can be characterized by a 
fixed payment D and a certain number of put and call options, as is 
demonstrated in Figure 2.3. 

2.2.3 Developing an Incentive Contract 
The structure of a contract of the form described in Figure 2.3 that avoids 
strategic risk-taking or risk-avoidance by the agent shall now be 
determined. By assumption, the value of the payment to the principal can 
be calculated as 
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Payoffs 
S 

Share of the agent 
,f(S) 

- - - - .fIII" 

Share of the principal 

~----~------------~------------~S 

Figure 2.2: Example of a feasible profit-sharing rule between the principal 
and the agent. The rule attributes everything to the principal up to an 
amount Xl' plus the half of any amount in excess of X 2. 

Payoffs S 

Share of the agent , f(S) , 
~P 

D -----, 
Share of the principal 

~------~~------~----------~S 

Figure 2.3: A payment of the agent to the principal of a (short) put options 
with an exercise price of Xl' f3 call options with an exercise price X 2 and a 
lump sum of D. 

19 
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n = D + a . p( X I) + p . c( X 2) , (4) 
where P and C stand for the Black-Scholes put and call option values with 
an exercise price of XI and X 2 , respectively: 

p( XI) = Xle- r );( 1- N(d l - CTJr)) - S(I- N(d l )) 

C(X2) = SN(d2)- X2e-r); N(d2 - CTJr), 
(5) 

where 

(6) 

N (-) denotes the cumulative standard normal distribution function, -r the 

remaining life of the loan and r the risk-free interest rate. 
m order to avoid risk-shifting, the contract parameters a, p, D, X I and 

X 2 have to be chosen so that the agent has no incentive to influence the 

risk of the project. This can be achieved by making the arbitrage-free 
value of the borrower's payoff n independent of asset risk CT. Formally, we 
must have 

an = a ap(xl) + p ac(X2) = o. 
aCT aCT aCT 

(7) 

From option pricing theory, we know that5 

ap(xI) = sJr e-d1212 
aCT ..fii ' 

ac(X2) = sJr e-di12 
aCT ..fii 

(8) 

Hence, the incentive compatibility condition (7) becomes 

an = a Jp( X I) + p JC( X 2 ) 
aCT aCT aCT 

r:: ((In( SIXd+(r+0"2 12));f (In(SIX2)+(r+0"2/2));f] 
_ S v -r 20"2); f3e 20"2); - 0 --- ae + - . 

..fii 

(9) 

Examination of equation (9) shows that, with a, p, X I and X 2 free, there 

exists an infinity of incentive compatible profit-sharing contracts. Which 

5 See Hull (1993), p. 315. 
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one should the principal and the agent choose? To answer this question, 
let us introduce the concept of a dynamically stable incentive contract. 

2.2.4 Dynamically Stable (Renegociation-Proof) Incentive Contracts 
Definition: An incentive contract is dynamically stable (renegociation
proof) if it assures proper incentives at any point in time over the life of 
the contract and for any value of the state variable S.6 

This concept is intuitively appealing. If incentive compatibility is not 
satisfied as time passes or when the value of the state variable changes, 
then the principal and the agent can gain mutually by renegociating the 
contract. To the extent that renegociation involves costs, they will be able 
to gain if they can agree on a contract that assures proper incentives over 
its whole life. We should therefore expect dynamically stable incentive 
contracts to prevail in practice. Figure 2.4 gives an example of a contract 
that is not renegociation-proof: for low asset values, the borrower has an 
incentive to increase project risk in order to lower the value of the 
payment to the lender. In other words, for low asset values, an / da < 0 , 
and the risk-shifting incentive is given by - an / da > o. For high asset 
values, the borrower can reduce the value of the lender's claim by 
lowering project risk since an / da > 0 . 

Proposition 1: The only dynamically stable contract of type (4) IS a 
contract for which X I = X 2 and a + f3 = 0 . 

Proof" For the optimality condition (9) 

an _ S",r 20"2~ a - 20"2~ - 0 
c ((10(SIXIHr+0"212)~t (10(SIX2)+(r+O"2/2)~t ] 

---- ae +pe -
da .fii 

to hold for any value of rand S, we must have 

(IO( SI XI )+(r+0"212)~ t (lo(SI x2)+(r+0"212)~ t 
ae 20"2~ + f3e 20"2~ = 0 '\IS, r . (10) 

This condition can be rewritten as 

6 The classical moral hazard literature uses the term renegociation-proofness to 
describe a contract that is never revised. See Muller (1997), p. 13. In this chapter, 
the term dynamical stability is used to stress that renegociation would exclusively 
be triggered by a change in the value of the state variable or the passage of time. 
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Asset Value S 
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~ .... .. 
~ ..... 
tn ..... 
~ .... 
• !Il .. 
D: .•........ 

Figure 2.4: Example of a non-renegociation-proof contract with a positive 
risk-shifting incentive for low project values and a negative risk-shifting 
incentive for high project values. (Parameter values: a = -05, f3 = 05, 

Xl = 25, X2 = 50, r = 0.05, (J = -r = 1.) 

a 
--=e 

f3 
\lS,r. (11) 

For a contract to be dynamically stable, a and f3 must be constant. 
Therefore, the above expression must not depend on Sand -r. Hence, we 
must have 

'¥ = (In(S / Xl) + (r + (12/ 2)rf - (In(S / X2 ) + (r + (12/ 2)-r f 

2(J2r 

_ In(X2 / Xl)(2In(S)-ln(XlX2)+2(r+(12 /2)-r) 

2(121" 

(12) 

constant with respect to S and 1". Taking the partial derivative of the above 
expression with respect to S and setting it equal to zero gives 

o-¥ _ In(X2 / Xl) _ 0 (13) 
as - S·(12-r - , 

that is 
Xl =X2 • 

Substituting this condition back into (11) gives 
a 0 

--=e =1, 
f3 

(14) 

(15) 
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and therefore 
a+fJ=O, (16) 

the desired result. 

2.2.5 The Feasible Dynamically Stable Incentive Contract 

With the conditions Xl = X 2 and a + fJ = 0, the profit-sharing rule 

agreed upon by the principal and the agent to save renegociation costs is 
linear in S. The value of the constant payment D and of the parameters a 
and fJ has now to be determined. This can be easily done using the 
feasibility condition (2). 
Because the agent cannot payout more than S to the principal, a must be 
negative. To see this, suppose a were chosen to be positive. In this case, 
the contract would call for the agent to make a positive payment to the 
principal when the project ends worthless, that is, when S is zero, which 
violates the feasibility constraint (2). So a must be negative and fJ 
positive, so that the variable component of the payment to the principal is 
given by f(S) = {3S, where fJ is a positive constant. 

Consider now the fixed payment D. To be feasible, the contract must call 
for a fixed payment D of zero. To see this, assume first that D were chosen 
to be positive. Then, the agent could not fulfill his contractual obligation 
whenever S < D + fJS , i.e. whenever S < D I (1- fJ) , which would create 

a risk-shifting problem. Similarly, if D were chosen to be negative, a risk
shifting problem would arise as well. These results can be summarized in 
the following proposition: 

Proposition 2: The only feasible, dynamically stable incentive contract is 
linear in S and calls for no fixed payment by the agent. That is, the 
contract is given by 

f(S) = fJS, (17) 

where fJ is a positive constant. 

The result in Proposition 2 has a simple intuitive interpretation: When 
terminal project value is perfectly observable, there is no reason for the 
lender to ask for a fixed payment, because this would only impede risk
sharing and create risk-incentive issues without providing any benefits. 
Therefore, the lender agrees to receive a proportional share of fJ in the 
firm's gross return, i.e. buys equity. This confirms Lemma 1 in Seward 
(1990): If the firm's return is completely observable, then the appropriate 
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investment incentives can be restored through the use of an all-equity 
financial structure. 

2.2.6 The Financing Decision 

With Proposition 2, which gives the structure of the feasible dynamically
stable incentive contract, it is now possible to determine how much the 
lender will be ready to give to the borrower at initial time. If the lender 
lends an amount Do to receive a share f3 of the terminal payoff S, then he 

will at most agree to lend 
(18) 

where So denotes the total initial investment in the project. Accordingly, 

the borrower, which receives a share 1- f3 of the terminal payout, must 

provide a share 1- f3 in equity capital. 

2.2.7 The Effect of Payouts 

An interesting question that arises in the context of project financing is 
that of how the analysis has to be modified if the borrower receives 
payouts from the project before maturity. Intuitively, one would expect the 
lender to ask for more equity capital in this case, since the terminal payoff 
to the lender is reduced by the amount of payouts. To show that this is 
indeed the case, consider the simple case in which the borrower can 
withdraw a continuous proportional dividend of 8 from the project. One 
can show that the value of the project without this right to dividends is 
given by7 

Sex = Se-8J', (19) 
where T is the life of the project. This effect is depicted in Figure 2.5. 
Using (19), the no-expected-Ioss condition (18) becomes: 

Do = f3Soe -8J' , (20) 

and hence the lender will accept to finance at most a share of 

f3' - Do - f3 -8J' --- e 
So 

(21) 

of the project for a right to a share f3 of the terminal payoff. This result has 
an important implication: since the lender can at most receive the whole 
terminal payoff (i.e. f3 is bounded above by 1 because of limited liability), 
some projects with high payout rates or a long life might not be feasible. 
To see this, set f3 = 1 in equation (21). Then, 

7 See Ingersoll (1987), p. 367 f. 
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Figure 2.5: Current value (as a percentage of initial investment) of a one
year project without the right to dividends as a function of the dividend 
payout rate 0. As the dividend payout rate increases, the value of the claim 
on the project without the right to dividends is reduced. 
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fJ' - Do _ -81" ---e , 
So 

(22) 

and the borrower must provide at least an amount 

Eo = (l-fJ')So = (l-e-81")So (23) 

in equity capital. To the extent that he does not have this amount available, 
the project cannot be realized. There might therefore be welfare costs to 
premature payouts. 
One could of course argue that lender and borrower could reach an 
agreement to preclude early payouts by the agent. While such restrictions 
might work for pecuniary payouts, they cannot address the problem of 
fringe benefits. 

2.3 The Observability Problem 

The analysis above assumed that both principal and agent could observe 
the terminal value of the investment at no cost. This assumption, however, 
is not realistic. In many situations, the agent can be expected to be better 
informed about the success of his project than the principal. Our analysis 
has to take into account the possibility of the agent lying to the principal 
when reporting realized project return. Under the incentive contract 
derived above, the agent has a strong incentive to understate the true 
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success of the project, and as a result of this misinformation, having to pay 
less to the principal. 
To see this, assume both parties have agreed on the above contract, calling 
for the agent to pay a share {3 of the gross return of the project to the 
principal. Clearly, if the principal cannot verify the true return of the 
project, the agent will save {3 dollars for each dollar he understates the 
return. Therefore, the return announcement by the agent has no interior 
optimum. The best strategy for the agent is to announce a zero gross return 
and pay nothing to the principal. However, in this case, the principal can 
be expected to anticipate the behavior of the agent and lend. him no 
money. Clearly, this would lead the agent to forgo profitable investment 
opportunities, leading to a socially suboptimal outcome. Both principal 
and agent therefore have an incentive to find a solution to this problem. 

2.3.1 Costly State Verification 

Townsend (1979) analyzes the problem of costly state verification in a 
one-period setting. Townsend assumes that the project return has a 
continuous, strictly positive density function g(S) in an interval [a,{3J, 
a > 0, and that lender and borrower can agree in advance as to when 
verification should take place or not. He then shows that, when only pure 
verification strategies are allowed, the optimal contract has the following 

. 8 propertIes: 
• the payment to the lender is equal to some constant amount D 

whenever verification does not take place, 
• the verification region is a lower interval [a, r), r ~ {3, that is, 

verification will occur whenever the announced project payoff S is 
lower than r 

This contract has properties that are very similar to those of a standard 
debt contract, in which a fixed payment D is specified and verification 
occurs whenever bankruptcy is declared, that is, when S < D . Thus, costly 
state verification makes complete risk-sharing suboptimal. 
Interpreting state verification as bankruptcy, Gale and Hellwig (1985) 
show that the optimal (debt) contract, by leading to a maximal repayment 
in bankruptcy states, allows the fixed repayment in non-bankruptcy states 
to be minimized, thus minimizing the probability of bankruptcy and hence 
the costs. 

8 Townsend also shows, however, that, in a discrete state-space, this pure 
verification agreement can be dominated by a stochastic verification procedure in 
which the lender only verifies with a probability g < 1 if a bad state is announced. 
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The result that the promised payoff to the principal should be constant 
whenever verification does not take place implies that there exists no 
contract that solves both the risk-shifting and the observability problem 
simultaneously. To see why, remember that the only contract that avoids 
risk-shifting is such that the principal receives a constant share of realized 
project returns. Such a contract, however, can only be compatible with the 
above solution to the observability problem if verification always occurs. 
But in this case, verification costs are maximized, which is clearly 
SUboptimal. 
Risk-shifting incentives of debt contracts are endemic to the convex 
structure of the payoff to the borrower that results from a constant 
payment in good states, i.e. when terminal project return is high. As the 
subsequent analysis demonstrates, these adverse incentives can be 
mitigated through the use of collateral. 

2.3.2 Collateral 
Suppose that lender and borrower come to the agreement that the borrower 
is to provide the lender with collateral in amount X. Assume that the 
contract is a standard debt contract, which calls for payment of a fixed 
amount D at maturity, that the loan is not fully collateralized (that is, that 
X < D) and that the life of the loan is fixed at T (early repayment is 
therefore precluded). Then, the payoff to the lender at maturity is 

Min[D;X +S-c], (24) 

where c denotes the fixed verification cost borne by the lender if 
bankruptcy occurs (Figure 2.6). 
The payoff to the borrower is given by 

Max[O;X +S -D]= Max[O;S -(D- X)]. (25) 

This payoff structure is the same as that of a call option on S with exercise 
price D - X , as Figure 2.7 illustrates. 
Hence, the expected payoff to the borrower is equal to the value of this 
call option: 

(26) 

where 

(27) 

N (-) denotes the cumulative standard normal distribution function and 'Z" 

the remaining life of the loan. 
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D 

X-c 

~-------,--------------------~S 
D-X 

Figure 2.6: Payoff of a collateralized loan to the lender. 

--------~------------------~s 
D-X 

Figure 2.7: The payoff of a collateralized loan to the borrower has the same 
structure as that of a call option on S with an exercise price D - X . 

To explore the influence of the existence of collateral on the agent's risk
shifting incentives, compute the partial derivative of his expected payoff 
with respect to a: 
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(28) 

This expression is positive, so that the risk-shifting problem exists. It is, 
however, mitigated as the amount of collateral increases. If xi D, that is, 
if the loan is almost fully collateralized, we have 

lim d = lim _In-'(:-D_-_S_x---')'-+----;:::::(r:-+_l_a_2...:..)_'r 

XiD XiD a.fi 

and therefore 

In(s)+(r+la2 } 

a.fi 

limln(D- X) 
XiD = +00 

a.fi 

lim de = lim s.fi e-d212 = O. 
XiD da dt-.J2ir 

(29) 

(30) 

Only in the limiting case where the loan is fully collateralized does the 
risk-shifting problem disappear. The reason for this result is that when the 
lender's claim is fully secured by collateral, it becomes totally riskless. 
Since the value of the lender's claim does not depend on project risk 
anymore, the borrower is unable to reduce it by shifting project risk. In 
this respect, collateral can be understood as a contractual device 
influencing the borrower's risk-shifting incentive. 
Figure 2.8 illustrates this fact by plotting the risk-shifting incentive (28) 
for different collateral amounts. It demonstrates that the amount of 
collateral guaranteeing the loan has a dramatic influence on the risk
shifting incentive of the borrower. As the amount of collateral is 
increased, the risk-shifting incentive increases for low project values and 
falls for high project values. In the limiting case of full collateralization, 
the risk-shifting incentive disappears completely. 
Collateral therefore protects the lender in two distinct ways: first, it grants 
him a claim on an additional asset in the case of bankruptcy, thus allowing 
him to recover more wealth. Second, and somewhat less obviously, it 
mitigates the borrower's incentives to shift risk, thus reduCing the 
probability of the bankruptcy (verification) region being reached.9 If the 
loan is fully secured by collateral, the borrower's risk-shifting incentive 
disappears and its interests become aligned with those of the lender. 

9 This dual function of contractual devices will also appear in the case of loan 
covenants (see Section 3.5.4 below). 
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Figure 2.8: Influence of collateral on the risk-shifting incentive of the 
borrower for the following parameter values: D = 50, r = 0.05, (J = r = 1 . 
As the amount of collateral is increased, the risk-shifting incentive increases 
for low project values and falls for high project values. In the limiting case 
offull collateralization, the risk-shifting incentive disappears completely. 

2.4 Conclusion 
This chapter used the game theory analysis of options to address two 
classical problems in financial contracting, the risk-shifting problem and 
the observability problem, and to explore the relationship between them. 
The term risk-shifting stands for the borrower's incentive to influence the 
risk of his project in order to increase the value of his payoff at the 
expense of the lender. The analysis presented in Section 2.2 showed that, 
at any point in time, there exists an infinity of profit-sharing rules avoiding 
risk-shifting. However, only one of these contracts was found to be 
dynamically stable (renegociation-proof): the linear profit-sharing 
contract, in which the lender receives a proportional share of the project's 
gross return. 
The observability problem arises because the lender is unable to observe 
project return at no cost. If a linear profit-sharing scheme is agreed upon 
in order to avoid risk-shifting, then the borrower has an incentive to 
understate the project return. The reason is that in so doing, he reduces the 
amount due to the lender. To address the observability problem, a fixed 
payment can therefore be agreed upon. The contract agreed upon by lender 
and borrower then takes the form of a standard debt contract. 
The analysis presented in Section 2.3 demonstrated that solving the 
observability problem through a (concave) standard debt contract creates a 
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risk-shifting problem, and that any attempt to solve the risk-shifting 
problem through a linear risk-sharing contract creates a revelation 
problem. Hence, except in the case of fully collateralized debt, which is 
effectively risk-free, both problems cannot be solved simultaneously. The 
reason is that risk-taking incentives of less-than-fully-collateralized loan 
contracts are endemic to the existence of limited liability and the 
associated convex structure of the payoff to the borrower (see John et al. 
(1991». 
This fact has an important practical implication. Suppose the lender 
wishes to finance two companies, one having no opportunity for risk
shifting but a value that is costly to monitor (say, a huge industrial 
corporation) and the other having risk-shifting opportunities but 
observable returns (say, a startup). Then, he should finance the industrial 
firm with debt and buy equity in the startup. While this rule may be useful 
in deciding which contractual arrangement to choose when one incentive 
problem clearly dominates the other, it is of no help if both the risk
shifting and the observability problem are acute. In other words, there 
exists a fundamental trade-off between solving both problems. 



3. Endogenous Bankruptcy and Capital Structure 

3.1 Introduction 
This chapter uses the game theory analysis of options to analyze the 
principal-agent problem created by endogenous bankruptcy, its 
implications for the firm's capital structure choice, investment decision 
and the structure of debt contracts. Moreover, the effects .of loan 
covenants on the borrower's incentives to increase asset risk and the 
payout rate are analyzed, and it is demonstrated that when bankruptcy is 
endogenous, monitoring asset value and monitoring asset risk can be 
considered as substitutes. 
The analysis presented in this chapter is closely related to the work of 
Leland (1994) and Chesney and Gibson (1994). Leland (1994) analyzes 
the problem of endogenous bankruptcy. While conceptually drawing on 
his model, this chapter provides an analysis that differs from that of 
Leland (1994) in several respects. First, the model presented below 
considers two distinct types of interests on a loan, an effective payment 
and an increase in the face value of debt. In doing so, different incentive 
effects of these two components of debt service can be analyzed. Second, 
the analysis below discusses endogenous bankruptcy as a principal-agent 
problem and quantifies the agency cost of debt. Third, stressing the game 
theory perspective of this book and furthering the analysis of Chapter 2, 
the effect of loan covenants and of the lender's information about asset 
value on risk-taking incentives is presented. Fourth, some interesting 
properties of optimal capital structure are explored. Finally, possible 
incentive contracts aiming at achieving specific goals are developed. 
It is interesting to contrast some of the results in this chapter with those of 
Chesney and Gibson (1994). Modeling firm equity as a knock~out call 
option, Chesney and Gibson (1994) analyze the risk incentive effects of 
debt. While their approach is quite similar to that taken in the sequel, two 
important differences deserve mention. First, they use a finite, given firm 
life of T, whereas we use an infinite horizon (that is, a perpetual down
and-out option). The rationale for doing so is that in practice, firms are not 
closed or liquidated as their debt matures. Rather, as long as it pays to do 
so, their life is extended through the issue of new debt. Therefore, the 
appropriate model for the Chesney and Gibson (1994) approach would be 
that of a knock-out option with extendible maturity, which could be priced 
according to the method developed by Longstaff (1990). The approach 
taken in this chapter does this implicitly. By specifying a continuous 
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interest payment with default on this payment triggering immediate 
liquidation, the analysis below de facto models firm equity as a knock-out 
option with an instantaneously extendible maturity, where the 
instantaneous interest payment is the premium to be paid in exchange for 
an infinitesimal extension of the option's maturity. 
The approach presented below differs from that presented in Chesney and 
Gibson (1994) in a second respect, however. Whereas they use a fixed, 
exogenous knock-out boundary, the analysis in this chapter treats 
bankruptcy as endogenous. This alternative specification yields results 
that are quite different from those presented in Chesney and Gibson 
(1994). While they are able to derive an interior optimal firm risk, the 
analysis below demonstrates that, absent covenants, equity holders would 
always wish to increase firm risk. The reason is that, in doing so, they 
lower the knock-out boundary, thus raising the value of equity. 

3.2 The Model 
Consider a lender (say, a financial intermediary) and a borrower (say, a 
firm) that reach the following agreement: in exchange for a loan of F, the 
borrower is to pay an instantaneous interest of 4JD(t)dt to the lender, 

where D(t) = Doer>t denotes the face value of debt and 4J is the 

instantaneous interest rate to be effectively paid on debt. Asset sales are 
prohibited. Hence, any net cash outflows associated with interest 
payments must be financed by selling additional equity. This setting 
generalizes the model in Leland (1994) insofar as it distinguishes between 
effective interest payments 4JD(t)dt and the increase in the face value of 

debt, which occurs with the rate r*. Throughout, it is assumed that r* < r , 
where r denotes the risk-free interest rate. 
Assume that the firm is liquidated if (and only if) the borrower defaults on 
his interest payments to the lender. If bankruptcy occurs, a fraction 
OS; a < 1 of value is lost, leaving debt holders with (1- a)S B' where S B 

denotes the asset value at which bankruptcy occurs. 
The structure of the game between lender and borrower is summarized in 
Figure 3.1. In the first phase, the financing decision is made. The amount 
of debt, D, and the interest rates r* and 4J are determined. Once this 
financing is done, the firm chooses its investment program. Finally, equity 
holders choose their bankruptcy strategy. If the firm goes bankrupt, its 
assets are liquidated and payoffs are realized. 
Throughout the chapter, any conflicts of interest between management and 
equity holders are ignored. Rather, it is assumed that the firm (or its 
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management) makes the decisions that lie in the best interest of equity 
holders, possibly at the expense of creditors. 
The structure of the chapter is as follows: Section 3.3 values the firm and 
its different securities. Section 3.4 analyzes the last stage of the game, 
namely, the bankruptcy decision of the equity holders. It demonstrates that 
the equity holders' bankruptcy choice is suboptimal from the standpoint of 
the lender. This conflict provides a rationale for some commonly observed 
characteristics of loan contracts. The agency cost resulting from the 
socially suboptimal bankruptcy strategy of the equity holders is measured. 
Using the results on bankruptcy, Section 3.5 analyzes possible problems in 
the firm's investment decision, namely, the underinvestment problem and 
the risk-shifting problem. Then, Section 3.6 derives the optimal capital 
structure and discusses its properties. Section 3.7 develops an incentive 
contract aiming at realizing a prespecified bankruptcy behavior of the 
borrower. Section 3.8 presents an extension of the model to a different 
payout setting. Section 3.9 summarizes the main results and insights of the 
chapter. 

Financing Decision 
Interest Rates r* and ifJ 

Amount of Debt D 

~ 
Investment Decision 

Underinvestment? 
Risk Incentive Issues 

~ 
Bankruptcy Decision and Payoffs 

Bankruptcy-triggering asset value SB 

Figure 3.1: Structure of the game. In the first phase, lender and borrower 
sign a contract specifying the face amount of debt, D, and the interest rates 
r* and ifJ. Then, the borrower chooses his investment strategy. Finally, if the 
equity holders default on interest payments, the firm is liquidated and 
payoffs are received. 

Seminar fUr K8pltaJmarktforschung und Finanztarung 
Ludwig·Maximilians-Universitat Milnchan 

Schackstra6e 4 . 80539 MOnchen 
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3.3 The Value of the Firm and its Securities 

Once the game has been specified, the next step is to value the players' 
payoffs using option pricing theory, treating all the players' decision 
variables as parameters. This constitutes the object of this section. In 
Section 3.4, we will then begin the analysis of the players' optimal 
strategies with the last decision to be made, namely, the equity holders' 
bankruptcy decision. 

3.3.1 The Value of Debt 

The value of the borrower's assets, S, is assumed to follow the usual 
geometric Brownian motion 

dS = pSdt + (JSdZ . (1) 

For the time being, assume that asset substitution is not possible, so that 
the parameters J1 and (J are known to the lender. Since asset sales are 
prohibited, any net cash outflows associated with interest payments must 
be financed by selling additional equity. The value of the lender's claim 
satisfies the following differential equation: 

+(J2S2 Fss + rSFs + r * D(t)FD(I) - rF + l/JD(t) = 0, (2) 

where subscripts to F denote partial derivatives. Note that F depends on t 
only through the face value of debt D(t). Making the change in variables! 

and defining 

V=~ 
D(t) 

(3) 

G(V) = F(S) (4) 
D(t) , 

one can show that G satisfies the following ordinary differential equation:2 

+(J2V2G" + (r - r*)VG' - (r - r*)G + l/J = O. (5) 

The general solution is 

(6) 

where 

1 See Merton (1990), p. 298. 
2 From the definitions in equations (3) and (4), Fs = G', Fss = G" / D, 

FD = G - VG' . Substituting these expressions into (2) yields 

G" 
ta 2S 2 -+rSG' +r* D(G - VG') - rDG +l/JD=O. 

D 
Collecting terms and crossing out D gives (5). See Ingersoll (1987), p. 380 for an 
example of this method. 
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r-r* 
r*=2--. 
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(7) 

Substituting the original variables back into (6) yields the following 
expression for the value of the debt, F: 

( l+y* * F=aoD(t)+a1S+a2 D(t)) s-y. 

This value must satisfy the following boundary conditions: 

F(SB) = (l-a)SB' 

F(oo) = ¢D(t) . 
r-r* 

(8) 

(9) 

(10) 

Equation (9) stems from the properties of the bankruptcy process; 
equation (10) states that bankruptcy becomes irrelevant and the debt risk
free as S becomes very large. From (10), a1 must be zero. Hence, we can 

write 
( ) 1+Y* * F = aoD(t) + a2 D(t) S-Y. (11) 

Then, from (10), we have 

- ¢ ao ---. (12) 
r-r* 

Finally, using (9), we obtain 

F(SB) = (1-a)SB =_¢-D(t)+a2(D(t»)I+Y*S;Y*, (13) 
r-r* 

and 

(l-a)SB--¢-D(t) (S )Y*( S ¢) 
a2 = r-r* = _B_ (l-a)-B---- (14) 

(D(t) t Y* S;y* D(t) D(t) r - r * ' 
and therefore for the value of the debt, F: 

F(S) = ¢D(t) +(D(t)ty*(~)r*(I-a)~--¢-)s-Y* 
r-r* D(t) D(t) r-r* 

(15) 

= ¢D(t) +(I-a)SB _ ¢D(t»)(~)-Y* 
r-r* r-r* SB 

The value of the risky debt thus equals the value of the risk-free debt, 
¢D(t) I (r - r*), plus a (negative) amount that takes the expected losses in 

the event of bankruptcy into account. To interpret equation (15) more 
easily, one can rewrite it as 
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q,D(t) ( (S J-Y*) ( S J-Y* F(S)=-- 1- - +(1-a)SB -
r-r* SB . SB 

(16) 

Equation (16) says that the value of the risky debt equals the value of the 
risk-free debt, q,D(t) I (r - r*), times the risk-neutral probability that 

bankruptcy does not occur, 1- (S I S B) -y* , plus the value of the proceeds 

from asset liquidation in the event of bankruptcy, (1- a)S B' times the 

risk-neutral probability of bankruptcy, (S I S B) -y* . 

3.3.2 The Value of the Firm 
From Leland (1994), we know that the total value of the firm W reflects 
three terms: the firm's asset value S, the value of the tax deduction of 
interest payments TB, less the value of bankruptcy costs K. The value of 
bankruptcy costs K must satisfy (8) with boundary conditions 

K( S B) = as B ' (17) 
K(oo) =0. (18) 

From (18), ao = a l = 0, and from (17), we get 

K(SB)=aSB =a2(D(t)tY*Sl/* ~ a2 =a ~ , ( )
I+Y* 

D(t) 

and therefore 
I+y* 

K(S) = a2(D(t) t Y* S-y* = a(~) (D(t) )I+Y* s-y* 
D(t) 

= as B I+y* s-y* 

(19) 

(20) 

Similarly, the value of the tax benefits, TB, must satisfy (8) with boundary 
conditions 

TB( S B) = 0, (21) 

TB(oo) = Bq,D(t) . (22) 
r-r* 

Boundary condition (21) states that the tax benefits are lost if bankruptcy 
occurs. Boundary condition (22) states that, as the asset value becomes 
very large and bankruptcy unlikely, the value of the tax benefits 
approaches the value of the risk-free debt times the tax rate B. From (22), 
a l = 0 and ao = Bq, I (r - r*). Substituting these values into (8) and using 

(21) yields 
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(23) 

Hence, 

TB(S) = 8l/JD(t) 8l/J (~)y. (D(t) t y• s-y* 
r- r* r- r* D(t) 

= 8l/JD(t) [1-(~J-Y*J. 
r-r* SB 

(24) 

Using (20) and (24), the total value of the finn, W, is: 
W(S) = S + TB(S) - K(S) 

= S + 8l/JD(t) (1- (~J-Y.J -aS1+Y• S-Y·. 
r-r* SB 

(25) 

Equation (25) says that the total value of the finn, W, equals current asset 
value, S, plus the present value of the tax shields, 8l/JD(t) / (r - r*) , times 
the risk-neutral probability that bankruptcy does not occur, 
1- (S / S B ) -Y·, minus the value lost in the event of bankruptcy, as B , 

times the risk-neutral probability of bankruptcy, (S / S B) _yo • 

3.3.3 The Value of Equity 

The value of equity, E, is the total value of the finn W less the value of 
debt F: 

E(S) = W(S) - F(S) 

= S + 8l/JD(t) (1- (~)-Y.J -aS1+Y• S-Y· 
r-r* SB 

- (l/JD(t) + (0- a)S B - l/JD(t) )(~)-Y.J 
r-r* r-r* SB 

(26) 

= S -(1- 8)l/JD(t) (1 -(~)-Y. J -S 1+Y· S _yO • 

r-r* SB 

Equations (5), (25) and (26) give the value of debt, the finn and equity 
for arbitrary parameter values. Using these results, the players' optimal 
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strategies can now be solved for, starting with the last decision of the 
game, namely, the equity holders' bankruptcy strategy S B • 

3.4 The Effect of Capital Structure on the Firm's Bankruptcy 
Decision 

3.4.1 The Equity Holders' Optimal Bankruptcy Choice 

The asset value which triggers bankruptcy, S B , can now be determined. It 
is chosen by the equity holders so as to maximize the current value of 
equity, that is, by setting 

aE(S) = (1-8)l/JD(t)r*sf-ls-y* -(1 + r*)SfS-Y* =0, (27) 
aSB r-r* 

yielding3 

S B = (1- 8)l/JD(t) r * = (1- 8)l/J~(t) , (28) 
r - r * 1+ r * r - r * +0" /2 

where the second equality follows from the definition of r * in equation 

(7). Notice that this value is linear in l/JD(t) and does not depend on the 

current asset value S. The reason for this result is the following: The 
product of the interest rate l/J and the face value of debt D(t) gives the 
premium that equity holders must pay to debt holders to keep their option 
alive. The higher this premium, the higher the asset value at which paying 
it will not be optimal from the standpoint of the equity holders and the 
higher therefore the bankruptcy-triggering asset value S B • 

Notice, also, that a higher asset risk 0" implies a lower bankruptcy trigger 
S B • The intuition for this result is clear: as asset risk rises, so does the 

value of equity for a given S B' Hence, the equity holders' incentive to 

3 It is a maximum, since 

d 2E(S) (1- 8)A,])(t) 
--:-~= 'I' *( *-I)SY*-2S-y' -(1 *) *Sy*-IS-y* dS2 r-r* r r B +r r B 

B 

=Sy*-2S-y* *((1-8)~D(t) ( *-1)-(1+ *)S ) 
B r r-r* r r B 

=Sy*-2S-y* *(1-8)~D(t)( *-1)-(1+ *) (1-8)~D(t) r* ) 
B r r-r* r r r-r* l+r* 

_ -S y*-2 S -y* * (1- 8)~D(t) 0 
- B r * <. r-r 
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default on the interest payment, i.e. on the premium to keep the option 
alive is weaker. This lowers the bankruptcy trigger S B • 

3.4.2 The Principal-Agent Problem of Endogenous Bankruptcy 
The simple model presented above can be used to analyze the principal
agent problem of endogenous bankruptcy in loan contracts in a very 
general way. The incentive problem stems from the fact that borrower and 
lender do not agree on the appropriate asset value which is to trigger 
bankruptcy. 
To see this, assume that the lender would be entitled to choose the 
bankruptcy-triggering point. Then, he would either set it at zero, or choose 
it as high as possible, that is, force bankruptcy immediately, or as soon as 
the condition 

S> ¢D(t) 
(r-r*)(l-a) 

(29) 

is met.4 

4 The question to be solved here is that of the strategy S B that maximizes the value 

of debt. The first-order-condition is 

dF(S) [1-a( S )-r' ( SB I/J )r*( S )-r.) 
dS B = D(t) D(t) S; + (1- a) D(t) - r - r * S; S; 

= ((1 + r *)(1- a)- I/JD(t) ~)(~)-r. = o. 
r-r* SB SB 

Solving for S B yields 

SB = ¢D(t) r* 
(r-r*)(l-a) l+r* 

However, evaluating d 2 F(S) / dS; shows that this point is in fact a minimum: 

a2 F(S) (( *)( _ )_ I/JD(t) r*-I)r:(~)-r. 
-. 2 l+r 1 a _ * S S S dS B r r B B B 

[ 
I/JD(t) r*-l Jr*(s)-r. 

= (l+r*)(l-a)- r-r* I/JD(t) ~ S; S; 
(r-r*)(1-a) l+r* 

_ (l+r*)(l-a)(~)-r. 
- S S >0. 

B B 

But then, there are two possible optima: 0 and 00. One can show that 
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But which bankruptcy trigger is socially optimal, i.e. maximizes the value 
of the firm as a whole? Since 

aw = _(OtfJD(t) r *Sr-IS-r* + a(l + r *)srs-r*)< 0 'VSB > 0, (29) 
aSB r-r* 

the bankruptcy trigger that maximizes firm value is S B = O. Thes~ results 

are summarized in the following figure which plots the values of E, F and 
W as a function of the bankruptcy-triggering asset value S B for different 

face values of debt D. As S B rises, firm value W is reduced. Equity value 

E, however, rises at first, reaches a global maximum at (28) and then falls. 
Finally, debt value Ffalls at first, reaches a minimum at 

S B = tfJD(t) r * (30) 
(r - r*)(1- a) 1 + r * 

and then increases again. 
The socially optimal bankruptcy trigger S B = 0 is, however, not 

achievable. To see this, remember that the lender will liquidate as soon as 
S > tfJD(t) / «r - r*)(l- a», and that the optimal bankruptcy trigger from 

the standpoint of the borrower is S B = (1- O)tfJD(t) / (r - r * +0'2 /2) . 

Now assume that the lender would want to enter a contract leading the 
borrower to choose S B = O. Then, he must set tfJ = 0 . But then we know 

that the value of the lender's claim equals 

F(SB = 0) = tfJD(t) = O. (32) 
r-r* 

lim F(S) = ~D(t) 
s.J.o r - r * 

and 
lim F(S) = +00 . 
s. t-

Basically, this latter strategy should be chosen by the lender. Unfortunately, it is 
not feasible. A feasible strategy for the lender, however, is to liquidate if current 
asset value is be such that liquidating now yields more than choosing the strategy 
to liquidate when the asset value falls to zero, that is, if 

F(S B = S) = ~D(t) + (1- a)S - ~D(t) > ~D(t) = F(S B = 0) , 
r-r* r-r* r-r* 

or 

S ~D(t) 
> (r-r*)(l-a)' 

This means that the lender will typically choose to liquidate projects doing very 
poorly and those doing very well, whichever comes first. 
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Figure 3.2: Value of the firm, debt and equity for different face values of 
debt as a function of the bankruptcy-triggering asset level S B for the 
following parameter values: () = 1/ 3, tfJ = 0.05, a = 0.2, S = 100, 

r - r* = 0.05 and (J' = 0.2. As S B is increased, overall firm value W is 
reduced. Equity value E rises, and then falls. Finally, debt value F falls at 
first, and then rises. 

Moreover, if the lender would set l/> = 0, then he would wish to liquidate 
the position as soon as S > 0 . Clearly, this would be suboptimal from the 
standpoint of the borrower. 
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The analysis presented here therefore provides a rationale for two very 
important characteristics of debt contracts, namely, 
• the provision that a certain interest is to be paid effectively, and not 

merely added to the principal amount of the loan (i.e. ~ > 0), and 

• the provision that the lender is allowed to call the loan if (and often 
only if) the borrower defaults on his interest payments. 

These two characteristics arise from the fact that the lender's claim is 
worthless if ~ = 0 and from his incentive to call the loan as soon as 

S > ~D(t) / «r - r*)(l- a» if this is not prevented contractually. It is 
interesting to note that these two facts, which are specified exogenously in 
many models, arise endogenously in the context of this model. They are a 
direct consequence of the problem of choosing a bankruptcy trigger 
acceptable to both the lender and the borrower. 

3.4.3 Measuring the Agency Cost of Debt 
Using the above results on the equity holders' optimal bankruptcy 
decision, the agency cost of debt can be determined. By analogy with the 
analysis in Mello and Parsons (1992), the agency cost of debt is defined as 
the reduction in firm value resulting from the equity holders' choosing a 
socially suboptimal bankruptcy strategy. Formally, the agency cost of 
debt, C, equals: 

C=W(SB =O)-W(SB = (l-e)~D(t) r* ). (33) 
r-r* l+r* 

Using (25) yields 

C=S-r* ~D(t)(e+a(l_e)-L)(l-e)~D(t) r* )r- (34) 
r-r* l+r* r-r* l+r* 

As given by (34), the agency cost of debt C depends positively on the face 
value of debt D(t), on the interest rate ~ and on the bankruptcy cost a. 
The intuition for these results is the following: because the agency cost of 
debt embodies the expected deadweight loss resulting from bankruptcy, it 
will depend positively on factors leading to more frequent bankruptcy (~ 
and D(t» and on the (fraction of) value lost in the event of bankruptcy, a. 

3.5 The Investment Decision 
Once the equity holders' optimal bankruptcy decision has been 
determined, their investment choices can be analyzed. More specifically, 
this section is concerned with two classical problems arising in the theory 
of corporate finance: underinvestment and risk-shifting. 
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3.5.1 Myers' (1977) Underinvestment Problem 

Myers (1977) argues that firms may forgo profitable investment 
opportunities because of the existence of debt. The intuition behind this 
result is that by recapitalizing the firm, shareholders make debt less risky. 
Hence, a part of the benefits of new investment accrues to debt holders. 
To analyze the underinvestment problem, we model new investment as a 
scaling-up of existing operations by the factor w > o. That is, new 
investment is an impulse pushing asset value from S to (1 + w)S .. Equity 

value after recapitalization will equal 

E«(1 + w)S) = (1 + w)S - (1- 8)l/JD(t) (1_(1 + w)S ]-r*J 
r- r* S8 (35) 

- S~+Y* ((1 + w)SrY•. 
The increase in equity value is 

M: = E«(1 + w)S) - E(S) 

= wS - (1- 8)l/JD(t) (~]-r*(I_ (I + wry*) (36) 
r-r* S8 

+ S~+Y*S-Y*(I- (I + wrY*). 
For additional investment to be undertaken, the increase in the value of 
equity must be greater than the amount invested: M: > wS. Using (36), 
this condition becomes 

S8 > (l-8)l/JD(t). 
r-r* 

Substituting for the value 

becomes 

of S 8 from equation 

or 

____ (_I-_8..:....!)l/J_D..:,...(t:....-) (1- 8)l/JD(t) 
- > , 
r-r*+(j2/2 r-r* 

(j2 
r-r*+-< r-r* 

2 

(37) 

(28), condition (37) 

(38) 

(39) 

which is impossible. Hence, if debt cannot be renegociated, 
underinvestment always obtains, regardless of current asset value (Figure 
3.3). The reason is that a part of the increase in overall firm value resulting 
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from the shareholders' equity contribution accrues to debt holders .5 

Formally, the debt appreciation that would result if the new investment 
were undertaken equals 

"'F(S) + -a)S, - :~~;)(:. r ((I + wr" -I) > 0 (40) 

and is depicted in Figure 3.3. 

120 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Scale-up factor w 

- - - - - -Investment 

---Equity 
Appreciation 

---Debt 
Appreciation 

- - - Increase In Firm 
Value 

Figure 3.3: Myers' underinvestment problem for the following parameter 
values: 0=1/3,1/>=0.1, a=O.2, D(t)=70 . S=lOO, r-r*=0.05 and 

(J = 0.2 . Contributing additional equity capital is unprofitable for the 
shareholders because a part of the resulting increase in firm value accrues 
to debt holders. Hence, profitable investment is not undertaken. 

3.5.2 Risk-Shifting 

The above analysis assumed that the project risk (J was known to the 
principal and constant. This might, however, not always be the case. The 
question of whether the agent has an incentive to increase risk IS, 

5 Note that from the standpoint of overall firm value, additional investment is 
always beneficial, since it increases the value of the tax benefits and reduces 
bankruptcy costs. Formally, 

( Ol/>D(t) )( S )-r' . 
LlW(S)=wS+ r-r* +aS B S; (1-(I+wrr »wS. 
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therefore, of particular interest. To answer it, consider the partial 
derivative of the equity value (26) with respect to (12: 

aE(S) = aE(S) dr* =~(((1-0)ljJD(t) SB)(~)-r*). dr·* . (41) 
a(12 ar* d(12 ar* r-r* SB d(12 

Since 
dr* r* -=--<0 (42) 
d(12 (12 ' 

aSB (1-0)ljJD(t) 1 (43) 
ar* = r-r* (l+r*)2' 

and 

a((s I SBrr*) = (~)-r* ~(_ *In(S(r-r*)(1+r*))) 
ar* SB ar* r (1-0)ljJD(t)r* 

__ (~)-r*(ln(S(r-r*)(1+r*»)+ *(_1 __ 1)) (44) 
- SB (1-0)ljJD(t)r* r l+r* r* 

= _(~)-r*(ln(~) _ ~), 
SB SB l+r 

we have 

aE(S) = _ aSB .(~)-r. +((1-0)ljJD(t) _SB).~((~)-r*) 
ar* ar* SB r-r* ar* SB 

= _ (1-0)ljJD(t) 1 (~J-r. 
r-r* (l+r*)2 SB 

(45) 

_((1-0)ljJD(t) SB)(~J-r* .(In(~J--l ) 
r-r* SB SB l+r* 

= (1- O)ljJD(t) (~J-r* _1_ln(~). 
r-r* SB l+r* SB 

Expression (45) is negative as long as S > S B' that is, as long as 
bankruptcy hasn't been declared. Now, from (42), (45) implies: 

aE(S) = aE(S) dr * > o. (46) 
a(12 ar * d(12 
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Figure 3.4: Plot of the value of equity against risk for different values of 
r - r * and the following parameter values: e = 1 / 3, ¢ = 0.05, a = 0.2 , 

D(t) = 50 and S = 100. As asset risk a is increased, equity value rises, thus 
leading to a risk-shifting problem. 

In words, the borrower has an incentive to increase project risk (Figure 
3.4). This fact has an important implication for the optimal behavior of the 
lender: instead of monitoring asset value, he should focus on monitoring 
asset risk, since the latter is, in fact, the relevant variable for the 
bankruptcy decision of the borrower. Section 3.7 below demonstrates that, 
if project risk is given and known to the lender, then he can construct an 
incentive contract leading the agent to choose any bankruptcy strategy. 

3.5.3 Measuring the Agency Cost of Debt: II 

To measure the agency cost of debt due to risk-shifting, one must compare 
firm value in the social optimum with that achieved when equity holders 
are allowed to shift risk. From (25), it is not difficult to see that W will be 
maximal when y * i 00, i.e. when (j J.. O. The intuition is the following: 

when asset risk vanishes, the value of the firm equals asset value plus the 
value of the tax shields. Because bankruptcy never occurs when (j J.. 0, the 
value of bankruptcy costs is zero. 
Formally, the agency cost of debt due to risk shifting, C, is given by 

C = lim W(S) -lim W(S) . (47) 
y'i~ y*.l.o 

Using 
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lim W(S) = S + Ol/JD(t) 
y*t- r-r* 

(48) 

and 
limW(S) = S 
y*J.o 

(49) 

yields the following value for the agency cost of debt, C: 

C = lim W(S) -lim W(S) = Ol/JD(t) . (50) 
y*t - y*J.o r - r * 

Expression (50) implies that the value of the (safe) tax shields is lost if the 
borrower is allowed to engage in risk-shifting.6 

3.5.4 The Incentive Effects of Loan Covenants 
It may be interesting to analyze the incentive effects of loan covenants. 
Suppose that lender and borrower can agree on the following covenant: if 
asset value falls below a contractually pre-specified value SB' the firm 
will be liquidated. How does this covenant change the risk incentives 
faced by the borrower? Computing the partial derivative of equity value 

(26) with respect to a 2 , with the bankruptcy-triggering asset value SB 
held constant, i.e. JSB / Ja2 = 0 yields 

SB).~(! )-y* 
Ja2 SB 

- )( s )-y* (s) r * 
SB SB In SB .-;;z. 

JE(S) = ((1- O)l/JD(t) 
Ja2 r-r* 

(51) 

= ((1- 8)l/JD(t) 
r-r* 

The sign of expression (51) depends on that of 

( 1- 8)l/JD(t) _ SB). 
r-r* 

(52) 

If the bankruptcy trigger is low, so that (52) is positive, then the firm has a 
positive incentive to increase risk. If, however, (52) is negative, then 
equity value increases when risk is reduced. Thus, a high enough safety 
covenant allows the lender to deter the borrower from taking undue risk. 

6 Alternatively, if one were to assume that the range of asset risks available to 

equity holders is an interval [Q, a], the socially optimal project risk would be Q, 

and equity holders would choose a. Hence, the agency cost of debt ·could be 

obtained by evaluating the expression C = W(S; a = Q) - W(S; a = a). 
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More specifically, when SB > (1- 8)t/JD(t) / (r - r*), the borrower tries to 
reduce risk as much as possible to avoid bankruptcy. 
Note that any loan covenant SB which is to be effective in deterring the 

borrower from shifting risk must lie above the endogenous bankruptcy
triggering asset value (28). Formally, for any asset risk 0", we have 

S- (1- 8)t/JD(t) (1- 8)t/JD(t) r * S 
B> > = B' 

r-r* r-r* 1+r* 
(53) 

which means that a loan covenant that protects creditors against risk
shifting also leads shareholders to declare bankruptcy at a higher asset 
value. Therefore, we can say that loan covenants protect creditors in two 
ways. First, by triggering bankruptcy at a high enough asset value, they 
reduce losses incurred by creditors in the event of bankruptcy. Second, 
and more importantly, by rendering the bankruptcy-triggering asset value 
independent of firm asset risk, they mitigate or suppress the equity holders' 
risk-shifting incentives, thus avoiding the bankruptcy region ever being 
reached.7 

3.6 The Financing Decision 

3.6.1 Optimal Capital Structure 
Using the results on endogenous bankruptcy, the equity holders' capital 
structure choice can now be analyzed. Again, assume that asset 
substitution is not possible, so that 0" is known to the lender. Alternatively, 
we could assume that risk-shifting is, to a certain extent, possible but that 
the borrower cannot increase 0" without bound. In this case, th~ lender 
would simply anticipate the borrower's subsequent risk-shifting behavior 
and use the highest asset risk achievable by the borrower in his 
calculations. 
At the time the financing decision is made, the equity holders want to 
maximize the value of equity net of their initial investment I. The latter is 
equal to the current value of the project S minus outside financing 
received from the debt holders, which, in a competitive market, will equal 
F(S) . Hence, 1= S - F(S) . Therefore, the equity holders maximize net 
equity value 

E(S) - I = E(S) - (S - F(S» = E(S) + F(S) - S . (54) 

7 Note the similarity of this result with that obtained for collateral in Section 2.3.2. 
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This confirms the general result of agency theory that agency costs are 
eventually borne by the agent, here the equity holders.s Now, 
E(S) + F(S) = W(S) , so the equity holders actually maximize 

W(S) - S = 8¢D(t) [1- (~)-Y*J - aS1+Y* S-y* (55) 
r-r* S8 

with respect to the face value of debt D(t). Substituting for S 8 (as given 

by (28)) in (55) yields 

W(S) - S = 1-8¢D(t) ( ((1- 8)¢r * D(t) JY*] 
r - r * S(r - r *)(1 + r *) 

_ a (1- 8)¢r * D(t) S-Y* ( J
I+Y* 

(r - r *)(1 + r *) (56) 

= 8¢D(t) _ (D(t) t Y* S-y* . 
r-r* 

y* 

[ 
(1-8)¢r* J 8+r*(8+a(I-8)) 

(r - r *)(1 + r *) (r - r *)(1 + r *) . 
Net equity value (56) can be thought of as the profit accruing to equity 
holders when they organize the firm. The first-order condition for a 
maximum in (56) is9 

a(W(S) - S) = -¢-(8 _ (D(t) (1- 8)¢r * JY* 

aD(t) r-r* S (r-r*)(I+r*) (57) 

(8 + r * ( 8 + a( 1-8)))) = O. 
Solving (57) for D(t) yields the following expression for the optimal face 

value of debt, D(t): 

8 See Jensen and Meckling (1976), p. 91. 
9 It is a maximum, since 

J 2 (W(S)-S) y* tfJ (D(t) (1-8)tfJy* Jro 

J(D(t)Y =- D(t) r-r* S (r-r*)(1+y*) 

(e + y *(e + a(1-e))) < O. 
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Figure 3.5: Net equity value W(S) - S as a function of the face value of 
debt D(t) for different values of ¢ and the following parameter values: 
() = I / 3, a = 0.2, S = 100, r - r* = 0.05 and a = 0.2 . 

l/y* 

- (r-r*)(t+ Y*)( 8 J D (t) = 5 -'---'-'-----'- ----:----.....,... 
(t-8)¢Y* 8+Y*(8+a(t-8)) 

( J
llY* 

r-r*+a 2 /2 8 
=5 (t-8)¢ 8+Y*(8+a(t-8)) 

(58) 

Figures 3.5 and 3.6 show plots of net equity value W(5) - 5 for different 

face values of debt for a set of parameters. In both figures, net equity value 
W(5) - 5 reaches an interior maximum, illustrating the generic existence 

of an optimal capital structure balancing tax benefits and bankruptcy costs. 
From equation (58), it is easy to see that the optimal face value of debt is 
decreasing in the interest rate ¢: 

l/y* 

JDU)=_5 r - r *+CT 2 /2( 8 J <0 (59) 
J¢ (t-8)¢2 8+Y*(8+a(t-8)) . 

This result is depicted in Figure 3.7, which plots the optimal face value of 
debt as a function of the interest rate ¢. An additional insight into the 
properties of optimal capital structure can be gained from (58). 
Multiplying this expression by ¢' we can see that the optimal 
instantaneous coupon payment 
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Figure 3.7: Optimal leverage 15 / S for different values of r - r * and the 
following parameter values: e = 1 / 3, a = 0.2 and <Y = 0.2 . As the interest 
rate ¢J is increased, optimal leverage falls. 

lIy* 

ljJD(t) = S r - r * +a2 12 [ 0 J (60) 
1-0 O+r*(O+a(l-O)) 
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is independent of tjJ. 
The sign of dD(t) / d(r - r*) is difficult to ascertain analytically. A 

numerical computation for the base case shows that it is quite likely to be 
negative, as is illustrated in Figure 3.8. 

1.4 

1.2 

Q) 
CI 
III :» 0.8 
> 
CD 
....I 0.6 
iii 
E 
E. 0.4 
o 

0.2 

---Phl=0.05 

- - - - - -Phl=0.07 

---Phl=0.09 

0.01 0.02 0.03 0.04 0.05 0.06 

r-r" 

Figure 3.8: Optimal leverage D / S for different values of l/J and the 
following parameter values: (J = 1 / 3. a = 0.2 and (J = 0.2 . As the interest 
rate r* is increased. optimal leverage falls. 

3.6.2 Interest Payments vs. Increase in the Face Value of Debt 

Using the optimal capital structure result above, the question of how debt 
service is going to be split between r* and tjJ can now be addressed. To do 
this, substitute the result (58) in the equation for W(S) - S to get 

W(S)-S=~(l+Y*(l+at?))-lIr', t?= 1-8. 
t? 8 

(61) 

Inspection of equation (61) shows that W(S) - S does not depend on tjJ. 

Hence, once account is taken of the borrower's capital structure choice, he 
is indifferent as to which interest rate he effectively has to pay to the 
lender. Such is not the case, however, for the interest rate differential 
r - r * . To see this, recall that 

dy* 2 
d(r-r*) -~. 

(62) 

Then, 
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Figure 3.9: Influence of the interest rate spread r - r * on net equity value 
W(S) - S for the following parameter values: (J = 1/3, a = 0.2 and 
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a(w(s) - s) _ a(W(S) - S) dy * 

a(r - r*) ay * d(r - r*) 

55 

= S(t+y*(l+at?)(IY' (In(l+ Y*(l+at?)) _ l+at? J. (63) 

t?(r-r*) y* l+y*(l+at?) 

One can show that (63) is positive, which means that net equity value rises 
with the interest rate spread r - r * , as Figure 3.9 illustrates. JO This in tum 

10 For r * = 0, the value of the expression 

( In(l+r*(I+a1?))- r*(I(+a1?) )), 
1+ r * 1+ a1? 

which determines the sign of (63), is zero. Now, as r * increases, this expression 

becomes positive, since 

(J ( r * (i + a1?) ) - In(l + r * (I + a1?)) - _---'--,_--'--c-

(Jr * 1 + r * (I + a1? ) 

= 1 + a1? (I _ I ) > 0 
l+r*(i+a1?) l+r*(I+a1?) 

for r* > o. Thus, expression (63) is positive as well. 
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implies that net equity value W(S) - S is decreasing in the interest rate 

r*. We therefore have the following result: the borrower is indifferent as 
to which ¢ is to be chosen, but strongly prefers a low r*. Hence, we should 
expect debt contracts to call for effective payments, instead of adding the 
interest to the principal amount of the debt. 11 

3.6.3 Equilibrium on the Credit Market 

The results presented above suggest an interesting implication for 
eqUilibrium on the credit market. To understand this point, assume that, 
although the market is competitive, there is a given amount of funds 
available for lending purposes. 
There are basically two ways in which equilibrium on quantities can be 
attained: either through an increase in ¢ or through an increase in r*. 
Although any increase in ¢ or r* leads, through the capital structure 
choice, to a reduction in the optimal face value of debt D, increasing the 
interest rate ¢ has no influence on the amount of external financing F 
actually collected by shareholders. To see this. substitute (58) in (28) and 
(15) to get 

S (l+aD)(I+r*)+(I-a)(1-0) 
F(S) = 1 11 • , 

1-0 (l+r*(I+aD)) + r 
(64) 

which does not depend on ¢. Therefore, clearing on the credit market must 
be achieved through the interest rate r*. 

3.6.4 Capital Structure and the Expected Life of Companies 

The results obtained here can provide an interesting insight into the 
expected life of companies as a function of capital structure and interest 
payments. To analyze this problem, recall that, if capital structure is 
optimally chosen at initial time 0, then we have by the previous analysis 

IIr· 

- r-r*+a2 /2( 0 J Do = So () (65) 
(1-0)¢ O+r* 0+a(I-0) 

Now, bankruptcy occurs when 

SB = (1-0)¢D(t) 
r-r*+a2 /2 

(28) 

11 Note that this is true at the time the contract is signed. Afterwards. once the 
amount of debt has been chosen. the borrower might display different preferences. 
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Substituting the optimal capital structure at initial time (65) into (28) 
yields 

S ( ) - (1- 8)¢ D ,*t 
B t - 2 oe 

r-r*+a /2 

~ Soe'·' ( 1 + r * (1 + aDJ"· 
(66) 

From the analysis in Ingersoll (1987, p. 353), the mean time to absorbtion 
at the origin for a random variable following the process d.x = pdt + adZ 
with initial value Xo is given by 

- Xo r=-. (67) 
/1 

Now, S / S B (t) is a lognormally distributed random variable with initial 

value 

and drift12 

S S ( )IIY' --L = ___ -=-0 ---lIy-' = 1 + r * (1 + atJ) 
SB(O) ( J 

So l+r*(I+atJ) 

a 2 
/1-r*--. 

2 
Hence, taking logarithms, we obtain 

Xo = In ~ = _1 In(1 + r * (1 + atJ)) , 
SB(O) r* 

and the mean time to absorbtion (i.e. bankruptcy) equals 

f = Xo = In( 1 + r * (1 + atJ)) 
/1-r*-a 2 /2 r*(/1-r*-a2 /2)· 

(68) 

(69) 

(70) 

(71) 

Inspection of equation (71) shows that the mean time to bankruptcy does 
not depend on the parameter ¢. This means that the borrower, if allowed to 
choose his capital structure freely, will make his choice so as to keep the 
mean time to bankruptcy constant. Again, this is not the case for the 
parameter r*. 

12 Let a random variable S follow a geometric Brownian motion. Then, In S has 
drift )1- (J2 12 and variance (J2 • See Hull (1993), p. 209. 
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3.7 An Incentive Contract 

By choosing the appropriate value for the interest payment parameter <p, 
the lender can actually lead the borrower to select any bankruptcy
triggering value S B. In this section, we develop an incentive contract in 

which the lender sets <p such that he suffers no (nominal) losses upon 
bankruptcy. In other words, <p is set such that the borrower declares 
bankruptcy when the asset value reaches D(t) / (1- a), thus allowing the 

lender to recover the face amount of his claim, D( t) . 
Such a policy might be interesting for the lender for a number of reasons, 
which have their roots in the fact that most of real-world institutions 
operate with nominal amounts. First, he might himself be an agent and 
fear being sued for taking too much risk (which, in the real world, occurs 
when loans are not repaid "in full" in nominal terms). Second, liquidating 
assets early may increase confidence in his solvability and avoid some 
problems typical for financial intermediaries, such as bank runs. 
Furthermore, this policy enables the lender to avoid having to monitor the 
borrower and to save on monitoring costs, since he can use the (early) 
information provided by default on interest payments to engage in project 
liquidation and recover the principal amount of his debt, D(t). Finally, as 

the analysis on capital structure has demonstrated, varying <p merely leads 
the borrower to borrow less and has no influence on the value of the firm. 
In other words, the incentive contract has no social welfare costs. J3 

To lead the agent to default as soon as the asset value reaches 
D(t) / (1- a) , the lender should set <p such that 

S B = (1- 8)<PD(t) r * = D(t) , (72) 
r-r* I+r* I-a 

yielding an "optimal" <p: 

- r-r* I+r* (r-r*)+0"2/2 
<p - - -'------'---

- (1-a)(l-8) r* - (l-a)(l-8) . 
(73) 

It can be interesting to analyze the properties of this incentive contract. Its 
most striking feature is to result in a total debt service that lies above the 
risk-free rate of retum. 14 To see this, consider the total instantaneous rate 

13 In effect, since the optimal instantaneous coupon payment is independent of qJ, 
the contract has no effect on the mean time to bankruptcy either. Bankruptcy 
occurs early in the sense that it is declared when asset value reaches a value that 
lies above the face value of debt. 
14 By assumption, however, the loan is fairly priced. 
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of return, which is the sum of the effective interest payment rate t/J and the 
rate of increase in the face value of debt r*: 

- (r-r*)+0"2/2 r-(8(1-a)+a)r*+0"2/ 2 
t/J + r* = + r* = . (74) 

(1- a)(I- 8) (1- a)(I- 8) 

Taking the partial derivative of (74) with respect to r*, we get 

a(iii +r*) 8(I-a)+a 1 
ar * = - (1- a)(I- 8) = 1- (1- a)(l- 8) < 0 . (75) 

Equation (75) means that total payments are reduced whenever the growth 
rate in D(t), r*, is raised. Assume we would like total debt service to 

equal the risk-free rate ofretum r. Then, we must have 

;;; * (r-r*)+0"2/2 * 
'I'+r= +r=r 

(l-a)(1-8) 

0"2 
<=> (r - r*)(I- (1- a)(l- 8») = -2' 

(76) 

that is 
0"2 1 

r*= r+ > r. 
2 1-(1-a)(1-8) 

(77) 

But then, 

iii = r - r * +0"2 12 = _~ 1 < O. (7S) 
(1-a)(1-8) 2 1-(I-a)(1-8) 

If iii < 0, however, the borrower never defaults and the incentive 

mechanism breaks down. We therefore must have iii > O. This condition 

then implies 
- (r-r*)+0"2/2 
t/J = >0 

(1-a)(1-8) 

Therefore, we get 

0"2 
<=> r*< r--

2 

- (r-r*)+0"2/2 r-r*(I-(1-a)(l-8»)+0"2/2 
t/J + r* = + r* = --....!..-------!----

(1- a)(1-8) (1- a)(1- 8) 

(79) 

r - (r - 0"2 12)(1- (1- a)(I- 8) ) + 0"2 12 
> (SO) 

(1- a)(I- 8) 

(r - 0"2 12)(1- a)(I- 8) 0"2 
= =r+-. 

(1-a)(1-8) 2 
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In order to maintain the incentive mechanism, the lender must set ¢ > 0 . 

But then, he must ask for a total interest payment ¢ + r* > r + cr 2 /2 . That 

is, he asks for a total interest above the risk-free rate. 15 

3.8 Extensions of the Model 

The analysis presented above can be extended to other payout settings. As 
an example, consider the case in which total payouts are a fixed proportion 
f3 of total asset value, to be shared between lender and borrower. Then, S 
evolves according to 

dS = (11- f3)Sdt + crSdz . (81) 

In this setting, the lender receives ¢D(t) and the borrower f3St - ¢D(t) 

per unit time. 

3.8.1 The Value of the Firm and its Securities 

The value of the debt satisfies the following partial differential equation: 

!cr2 S2 Fss + (r - f3)SFs + r * D(t)FD - rF + ¢D(t) = o. (82) 

Making the same change in variables as in Section 3.3.1, i.e. 
V = St / D(t) , defining G(V) = F(S) / D(t) , and using the same line of 

reasoning that lead to equation (5), we get 

!cr2V 2G" + (r - r * -f3)VG' - (r - r*)G + ¢ = 0, (83) 

which has general solution 

G = ao + a l V At + a2 V Az , (84) 

where 

b - ~b2 + 2(r - r*)cr2 

AI =- 2 >0, 
cr 

(85) 

, _ b+~b2 +2(r-r*)cr2 

/1,2 -- 2 <0, 
cr 

(86) 

b=r-r*-f3-cr2 /2. (87) 

Multiplying by D(t), we get 

IS As an alternative way of seeing that ¢ + r* = r yields a trigger value smaller 

than the principal amount of the loan, just set ¢:: r - r * in equation (28) to 

obtain 

SB =(1-e)D(t)~< D(t). 
l+y* 
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(88) 

This value must satisfy the same boundary conditions as in the base case, 
i.e. 

F(SB) = (1- a)SB' 

F(oo) =-CP-D(t). 
r-r* 

From boundary condition (10), we get a l = 0 , and then 

a --cp-
o- r-r*' 

a 2 =(~)-Az(I_a)~ __ CP ). 
D(t) D(t) r-r* 

Hence, the value of debt, F, equals: 

F(S) = D(t)[-CP +(I-a)~--CP )(~JAzJ' 
r-r* D(t) r-r* SB 

which is just equation (15) above with - r * replaced by 

Analogously, the value of bankruptcy costs is easily seen to be 
K(S) = aSB1-AzS Az , 

and the value of the tax shields 

TB(S) = 8cpD(t) [1- (~JAz J . 
r-r* SB 

Then, the value of equity, E, is: 

E(S) = S - (1- 8)cpD(t) [1- (~JAz J -S~-Az SAz . 
r-r* SB 

3.8.2 The Bankruptcy Decision 

(9) 

(10) 

(89) 

(90) 

(91) 

~. 

(92) 

(93) 

(94) 

From (94), the bankruptcy-triggering asset value SB can be computed as: 

S B = - (1- 8)cpD(t) ~ . (95) 
r-r* 1-~ 

Therefore, the contract that yields net proceeds from bankruptcy equal to 
the principal amount of the loan is given by 

cP = _ r - r * 1-~ . (96) 
(1-a)(1-8) ~ 
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3.8.3 The Effect of the Payout Rate on Equity Value 

An interesting question that arises in this new setting is that of the effect 
of an increase in the payout rate {3 on the value of equity. Using 

as B = (1- 8)¢D(t) I < 0 

aA.-z r-r* (1-A.-zY 
(97) 

and 

(98) 

we get 

aE(S) = (1- 8)¢D(t) a (~JAz 
a~ r-r* a~ SB 

-( ~~ (:.f +s. d~ (:.f) (99) 

= (1- 8)¢D(t) (~JAz -1-ln(~J 
r-r* SB 1-~ SB 

Now, 

-=- 1+ >0 dA.-z 1 ( r-r*-{3-(J2/2 J 
d{3 (J2 ~(r-r*-{3-(J2I2r +2(r-r*)(J2 ' 

(100) 

so the derivative of the value of equity with respect to the payout rate, 
aE(S) _ aE(S) dA2 
~- aA2 d{3' 

(101) 

is posItIve as long as bankruptcy has not been declared. Hence, 
shareholders can raise the value of their equity claim by maximizing 
payouts. The reason is that by doing so, they take money away from the 
creditors. This effect is depicted in Figure 3.10. In the limit, shareholders 
might decide to payout the whole asset value immediately, i.e. set {3 i 00 • 

One can show that in this case, equity value equals asset value S, i.e. 
limE(S) = S . (102) 
f3i= 
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To protect himself against excessive payouts, the lender will therefore 
have an incentive to enforce a loan covenant limiting payouts. 
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Figure 3.10: Influence of the payout rate f3 on equity value E for the 
following parameter values: 8 = 11 3 , 4> = 0.05, a = 0.2 , D(t) = 70, 

S = 100 and (j = 0.2. As the payout rate is increased, the value of equity 
rises. 

3.8.4 Effect of a Loan Covenant on the Optimal Payout Rate 
The shareholders' incentive to increase payouts is very similar to the risk
shifting problem discussed in Section 3.5.2. Therefore, in addition to a 
direct covenant specifying a maximum payout rate, debt holders can use 
an indirect covenant of the form presented in Section 3.5.4. to mitigate the 
shareholders' incentive to increase payouts. To see this, suppose that a 
loan covenant setting a pre-specified bankruptcy-triggering asset value SB 
is agreed upon. With SB fixed, 

aE(S) = ((l-O)<PD(t) -SB)(!)~ In(!). (103) 
a~ r-r* SB SB 

Using the fact that aE(S)/af3=(aE(S)/a~)·(d~/df3) and 

d~ / df3 > 0, the shareholders will have an incentive to increase payouts 

whenever 
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( 1- 8)</JD(t) SB) > o. 
r-r* 

(104) 

If SB > (1- 8)</JD(t) I (r - r*), however, the shareholders will seek to 

minimize payouts. Again, note the similarity of this result with that on the 
effect of a loan covenant on the equity holders' risk-shifting incentives. 
We are now able to state the following general result: if the asset value is 
observable, then lender and borrower can solve both the risk-shifting 
problem and the problem of excessive payouts by agreeing on a covenant 
specifying that liquidation will be triggered as soon as the asset value 
reaches a pre-specified value SB such that SB > (1- 8)</JD(t) I (r - r*) . 
Risk-shifting and excessive payouts are to be expected, however, if the 
asset value is not observable or such a covenant is not enforceable. In this 
case, the lender should concentrate on monitoring asset risk and payouts, 
since these are, in fact, the relevant factors influencing the shareholders' 
bankruptcy decision and the value of debt. In this respect, monitoring the 
asset value on the one hand and monitoring asset risk and payouts on the 
other can be considered as substitutes. 

3.9 Conclusion 
In this chapter, we used a simple model to analyze the incentive effects of 
loan contracts. First, the equity holders' bankruptcy decision was analyzed. 
More specifically, it was demonstrated that, with endogenous bankruptcy, 
• lender and equity holders will, in general, not agree as to when 

bankruptcy is to be declared. 
• capital structure and interest rates have an influence on the borrower's 

bankruptcy decision. The asset value at which the borrower defaults on 
interest payments rises with the face value of debt and the interest rate 
effectively paid on debt and falls with asset risk. 

• the borrower's bankruptcy decision is socially suboptimal in the sense 
that it does not maximize overall firm value. In other words, 
endogenous bankruptcy creates a principal-agent problem. The 
resulting agency cost of debt can be measured. It is increasing in the 
face value of debt, the interest rate effectively paid on debt and 
bankruptcy costs. 

• some common characteristics of loan contracts, such as a positive 
effective interest rate and the provision that the loan can be called only 
when the borrower defaults on the interest payment, can be derived 
endogenously as a consequence of the conflict of interest that exists 
between lenders and equity holders. 
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Turning to the firm's investment decision, it was then shown that Myers' 
underinvestment problem exists: because of the existence of debt, firms 
forgo profitable investment opportunities. The reason is that when 
shareholders recapitalize the firm, a part of the resulting increase in 
overall firm value accrues to debt holders, making the additional 
investment unprofitable. 
The existence of debt gives shareholders an incentive to increase project 
risk in order to raise the value of equity. The agency cost resulting from 
this second distortion of the firm's investment decision can be measured. 
The risk-shifting problem can be overcome through the use of a bond 
covenant specifying that liquidation is to occur if asset value falls below a 
contractually pre-specified level. Enforcement of this covenant requires 
that the lender monitors asset value carefully. 
Extending the model to the case of endogenous payouts, it was shown that 
the borrower's incentive to increase the payout rate is analytically very 
similar to the risk-shifting problem. It can be overcome through the use of 
a bond covenant specifying that liquidation is to occur if asset value falls 
below a contractually pre-specified level. As in the case of risk-shifting, 
enforcement of this covenant requires that the lender monitors asset value 
carefully. 
Alternatively, the lender can limit payouts contractually and monitor asset 
risk carefully to avoid having to monitor the asset value. In this respect, 
monitoring the asset value on the one hand and monitoring asset risk and 
payouts on the other can be considered as substitutes. The reason is that 
when project risk and the payout rate are given, the equity holders' 
bankruptcy strategy is fully determined by contractual provisions. 
Moreover, by setting an appropriate interest rate, an incentive contract can 
be constructed that leads the borrower to declare bankruptcy once asset 
value reaches a certain share of the face value of debt. 
In analyzing the firm's capital structure choice, it was shown that a rising 
interest rate implies a lower optimal nominal leverage but has no influence 
on the amount of outside financing actually collected by shareholders by 
selling debt. At the time of the financing, the optimal instantaneous 
coupon payment, overall firm value, and mean time to bankruptcy are all 
independent of the interest rate. 



4. Junior Debt 

4.1 Introduction 
While many papers in the literature have provided a rationale for the 
existence of debt, such as tax benefits or signaling effects, only a few have 
made the distinction between senior and junior debt and analyzed the 
consequences of differing priority of claims for firm behavior. Perotti and 
Spier (1993) and Hart and Moore (1995) are two recent exceptions. Both 
of these papers explore the effects of the existence of both senior and 
junior debt on the firm's investment decision. Perotti and Spier (1993) 
show that value may be extracted from senior claims through the issue of 
junior debt. The reason is that by retiring equity through a junior debt 
issue, the shareholders credibly threaten not to undertake valuable new 
investment unless senior debt holders concede to a reduction of their 
claims. Hart and Moore (1995) show that a mix of short-term and senior 
long-term debt might be necessary to deter management from undertaking 
unprofitable investment. The basic intuition, extending that of Jensen 
(1986), is that short-term debt forces management to disgorge free cash 
flows. 
This chapter uses the game theory analysis of options to analyze the 
incentive effects of junior debt with the firm's investment strategy held 
constant. Drawing on the model of Chapter 3, we price senior and junior 
debt, show that the existence of senior debt distorts the equity holders' 
choice to issue junior debt and that a junior debt issue has a negative 
influence on the value of senior debt, thus invalidating the conventional 
wisdom that seniority fully protects debt holders against adverse wealth 
changes resulting from the issue of new debt. This extends the results of 
Perotti and Spier (1993) to the case of a constant investment strategy. 

4.2 The Model 
The model used in this chapter draws heavily on that of Chapter 3. As 
before, the value of the borrower's assets, S, is assumed to follow the 
geometric Brownian motion 

dS = f.1Sdt + aSdZ . (1) 

Asset substitution is not possible, so that the parameters J1 and a are 
known to all parties. As was the case in the previous chapter, assume that 
asset sales are prohibited. Hence, any net cash outflows associated with 
interest payments must be financed by selling additional equity. 
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Assume further that the borrower, to finance his project, borrows from a 
first lender, 1, with whom he reaches the following agreement: in 
exchange of a loan of F\, the borrower is to pay an instantaneous interest 

of ¢IDldt to the lender, where DI and ¢I denote the face value of debt 

and the interest rate, respectively. 
Finally, assume that the borrower is free to borrow additional amounts 
from other lenders, but that any other claim issued will be junior to the 
first claim. For simplicity, we will assume that the borrower only borrows 
once more; the analysis could be extended to a higher number of claims, at 
the cost of greater complexity. Let this second claim be denoted by F2 
and consist of a promise by the borrower to pay to lender 2 an 
instantaneous interest of ¢2 D2dt , the loan having a face amount of D2 • 

If (and only it) the borrower defaults on any of the promised payments, the 
firm will be considered bankrupt vis-a.-vis all the creditors and liquidated. 
If bankruptcy occurs, a fraction 0 ~ a < 1 of value is lost, leaving 
creditors with (1- a)S B' where S B denotes the asset value at which 

bankruptcy occurs. The structure of this game is depicted in Figure 4.1. 

Senior Debt Issue 
Interest Rate tPJ 

Amount of Debt D J 

~ 
Junior Debt Issue 

Interest Rate tP2 
Amount of Debt D2 

~ 
Bankruptcy Decision and Payoffs 

Bankruptcy-triggering asset value SB 

Figure 4.1: Structure of the game. In the first phase, senior debt is issued. In 
a later period, equity holders might decide to issue junior debt. Finally, if 
the equity holders default on interest payments, bankruptcy is declared and 
the firm is liquidated. 
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The structure of the chapter is as follows: Section 4.3 uses option pricing 
to determine the value of the firm and its securities. Section 4.4 analyzes 
the equity holders' bankruptcy decision. Section 4.5 explores the firm's 
decision to issue junior debt and shows that it is distorted by the existence 
of senior debt. Section 4.6 describes the influence of a junior debt issue on 
the value of senior debt and illustrates that seniority need not protect debt 
holders against adverse wealth changes resulting from the issue' of new 
debt. Section 4.7 concludes the chapter. 

4.3 The Value of the Firm and its Securities 
Once the game has been specified, the next step in the method is to value 
the players' payoffs using option pricing theory, treating all the players' 
decision variables as parameters. This is done in this section. 

4.3.1 The Value of Senior Debt 
The value of the senior lender's claim, F;, satisfies the following 

differential equation: 
ta2 S2 F;''+ rSF..' - rF; + ifJlDI = 0, 

which has general solution 

F; = a o +a)S +a2S-r , r == 2r I (12. 

This value must satisfy the following boundary conditions: 

F;(SB)= Min[(1-a)SB;D)] , 

(2) 

(3) 

(4) 

F; (00) = <p) D) . (5) 
r 

Equation (4) stems from the properties of the bankruptcy process; 
equation (5) states that bankruptcy becomes irrelevant as S becomes very 
large. From (5), a) must be zero. Hence, we can write 

(6) 
Then, from (5), we have 

<p)D) a o =--. (7) 
r 

The problem now is that the asset value that triggers bankruptcy, S B' is 
still unknown, and we therefore do not know which of the values in (4) to 
use. Considering the case where (1- a)S B < D) first and using (4), we 
obtain 

(8) 

and 
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a 2 = ((1-a)SB - tP)~) )S~. (9) 

Therefore, the value of senior debt, F), equals: 

1'.(S) = tPt~1 +(o-a)s. - tPt~1 X:. r (10) 

In the second case, where (1- a)S B < D), boundary condition (4) yields 

Fi(SB) = D) = tP)D) +a2S;r (11) 
r 

and 

a 2 = D{ 1- ~ )S~ . (12) 

Therefore, the value of senior debt, F), is given by: 

F, (S) = tPt; + D{ 1-~ X:. r (13) 

These results can be summarized as follows: 

tPt; +((1-a)s. - tPt; X:. r 
tPt; +~(1- ~ x:.r F;(S) = (14) 

As in Chapter 3, (15) can be interpreted in terms of the risk-neutral 

probability of bankruptcy, (S I SB)-r . In order to do so, rewrite senior 

debt value as F;(S)=(lAD)lr)(l-(SISB)-r)+(l-a)SB(SISB)-r for 

(l-a)SB < D) and as F;(S) = (tP)D) I r)(1- (S I SB)-r) + D)(S I SB)-r for 

(1- a)S B > D). Then, the value of senior debt equals the value of the risk

free debt, lAD) I r , times the risk-neutral probability that bankruptcy does 

not occur, 1- (S I SB)-r, plus the payoff to senior creditors in the event of 

bankruptcy, (l-a)SB or D) (depending on whether (1-a)SB< D) or 

(1- a)S B > D), times the risk-neutral probability of bankruptcy, 

(S I SB)-r . 
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4.3.2 The Value of Junior Debt 
A similar analysis can be conducted to determine the value of junior debt, 
F2 . It must also satisfy equation (2), that is, F2 must be of the form 

F2 = ao +a)S +a2S-r , 

subject to the boundary conditions 

F2 (SB)= Max[O;Min[(l-a)SB -D);D2 ]], 

(15) 

(16) 

F2 (00) = ¢2 D2 . (17) 
r 

Boundary condition (16) reflects the effect of the seniority of F) over F2 
on the payoff to junior debt holders in the event of bankruptcy. From (17), 
and as in the case of the pricing of senior debt, a) must be zero and 

ao = ¢2D2 . (18) 
r 

Hence, F2 becomes 

F2 = ¢2 D2 +a2S-r . (19) 
r 

In applying boundary condition (16) to equation (19), three cases must be 
distinguished: 

• Case 1: (1-a)SB < D). 

In this case, the payoff to junior debt holders in the event of bankruptcy is 
zero, and (16) becomes 

yielding 

a2 = - ¢2D2 S~ . 
r 

Therefore, the value of junior debt, F2 , is given by: 

• Case 2: D) < (1-a)SB < D) + D2 • 

Then, boundary condition (16) becomes 

implying 

F2(SB) = (l-a)SB - D), 

. >l"',i~ar ti'Jr Kapitaimarkttorschul'lg Ulld Rnanzier.Jng 

< "c,·t',l-Max,rnilians-Universitat MOr.chen 
.. :c:r';>e'.,r;t' <i:18 4 80:;3::" MUf'.(.hen 

(20) 

(21) 

(22) 

(23) 
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(24) 

and 

• Case 3: (l-a)SB > D) + D2. 

In this case, the face amount of junior debt, D2 , is repaid in fuil in the 

event of bankruptcy, and (16) becomes 

F2 (S B) = D2 ' (26) 

implying 

(27) 

and 

(28) 

These results can be summarized as follows: 

¢2D2 ( ¢2D2)( S )-r F2 (S)= -r-+ (1-a)SB -D) --r- SB (29) 

if D) <(l-a)SB <D) +D2 

~'~' + D,(l- ¢: )(:. r if (l-a)S. > D, + D,. 
As was done for senior debt, the value of junior debt (29) can be 
interpreted in terms of the payoffs to junior bondholders weighted with the 

risk-neutral probability of bankruptcy, (S / S B) -r . 

4.3.3 The Value of the Firm 

From Leland (1994), we know that the total value of the firm W reflects 
three terms: the firm's asset value S, the value of the tax deduction of 
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interest payments TB, less the value of bankruptcy costs K. The value of 
bankruptcy costs K must satisfy (3) with boundary conditions 

K( S B) = as B ' (30) 

K(oo) =0. (31) 

From' (31), ao = a l = 0 , and from (30), we get 

K(SB)=aSB =a2S;Y ~ 

and therefore 

I+y 
a 2 =aSB ' (32) 

K(S) = a 2S-r =aSB1+rS-r . (33) 

Similarly, the value of the tax benefits, TB, must satisfy (3) with boundary 
conditions 

(34) 

TB( 00) = 8 fPI DI + fP2 D2 . (35) 
r 

Boundary condition (34) says that the tax benefits are lost if bankruptcy 
occurs. Boundary condition (35) says that, as the asset value becomes very 
large and bankruptcy unlikely, the value of the tax benefits approaches the 
value of the risk-free debt times the tax rate 8. From (34), a l = 0 and 

a o = 8( fPI DI + fP2 D2) / r . Substituting into (3) and using (34), we get 

TB(SB)=8 fPIDI +fP2 D2 +a2S/ =0 ~ 
r (36) 

Hence, 

TB(S) = O~D, :Ii,D, [1-(:' n. (37) 

Using (33) and (37), the total value of the firm, W, equals: 
W(S) = S + TB(S) - K(S) 

= S +O~D, :Ii,D, [1-(:' n-aS~+rs-r (38) 

As in Chapter 3, the total value of the firm, W, equals current asset value, 
S, plus the present value of the tax shields, 8( fPI DI + fP2 D2) / r , times the 

risk-neutral probability that bankruptcy does not occur, 1-(S i SB)-Y*' 

minus the value lost in the event of bankruptcy, asB , times the risk

neutral probability of bankruptcy, (S / S B) -y* . 
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4.3.4 The Value of Equity 
The value of equity, E, is the total value of the firm W less the value of 
outstanding debt, Fj + F2 : 

E(S) = W(S) - (F\ (S) + F2 (S)) . (39) 

Because the bankruptcy strategy of the equity holders is still unknown, 
however, three cases have to be distinguished: 

• Case i: (l-a)SB < D\. 
In this case, 

and 

Hence, 

E(S) = S + 8(¢I~ ; q"D,) (1_(:' f)-aI'!+rs-r 

(10) 

(22) 

-[ ¢I; +((1-a)SB - ¢I~I x:.r + q,,~2(1-(:.rJJ (40) 

= S -(1- 8)(¢I; + q"D,) (1- (:. f)- S!"S-r. 

• Case 2: D\ < (1- a)S B < D\ + D2 • 

Then, 

and 

Therefore, 

(13) 
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E(S) = S + 6(~IDI ;~D,) [1-(:' r)-~~"'s-' 
-[~~I+D{I-~x:.r +~~' 

+((1-a)s, -DI - ~~' X:. n 
= S - (1-6)(~~1 +~D')[I_(:' r)-s~"'s-'. 

• Case 3: (l-a)SB > D\ +D2 . 

Then, 

and 

Therefore, 

E(S) = S + 6(~IDI ;~,D,) [1-(:' r)- ~~'" S-, 

_[¢I~I +D{I- ~ x:.r + ~'~' +D,(I- ¢: x:.r] 
= S - (1-6)(~1~1 +~D,) [1- (:. n 
-(DI +D,{:, r -~~·'S-'. 

These results can be summarized as follows: 

75 

(41) 

(13) 

(28) 

(42) 
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s - (t-8)(IPJ~1 +!I,D,) (1-(:' r)- S~'r S-r 

if (1-a)SB<D1 +D2 

E(S) ~ S - (1-6)(1PJ~1 +!I,D,) [1-(:' r) (43) 

-(Dl +D,{:, r -aS~'YS-r 
if (1- a)S B > DI + D2· 

Figure 4.2 illustrates the results of this section by plotting the value of the 
firm and its securities for different values of the bankruptcy trigger S B ' 

which is still arbitrary at this point. As was the case in Figure 3.2, firm 
value falls as the bankruptcy trigger S B is increased. Equity value E rises 

at first, and then falls. Finally, the value of both senior debt FI and junior 

debt F2 falls, and then rises, but junior debt is far more sensitive to 

changes in S B than senior debt. 
Now that the players' payoffs have been valued, the game can be solved 
for the players' optimal strategies, starting with the last decision, namely, 
the equity holders' bankruptcy decision. 

4.4 The Equity Holders' Optimal Bankruptcy Choice 

Using equation (43), it is now possible to determine the bankruptcy
triggering asset value S B. It is chosen by the equity holders so as to 

maximize the current value of equity. In the case (1- a)S B < DI + D2 ' this 
maximization leads to the first-order condition 

aE(S) = (1-8)(¢IDI +¢2D2)y.5rIS-r -(1+r)S~S-r =0, (44) 
aSB r 

yielding I 
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Figure 4.2: Value of the firm, debt and equity as a function of the 
bankruptcy-triggering asset level S B for the following parameter values: 

8=113 , a=0.2 , S=loo, r=tP, =tP2 =0.05, D,=D2 =50 and 

(J = 0.2 . As S B is increased, firm value W falls. Equity value E rises at first, 

and then falls. Finally, the value of both senior debt F; and junior debt F2 

falls, and then rises, but junior debt is far more sensitive to changes in S B 

than senior debt. 
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SB = (1-8)(<p. D• + <P2 D2) . (45) 
r + (J2 /2 

Notice that this value doesn't depend on current asset value. S. The 
question of whether (1 - a)S B < D. or (1- a)S B > D. will depend on the 

parameters in (45) and cannot be answered in general. 
In the case where (1 - a)S B > D. + D2 ' the first-order condition is 

aE(S) = ((l-8)(<P. D• + <P2 D2) (D. +D2»)rst,s-r 
aSB r (46) 

- a(1 + r)S~S-r = 0 
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and the optimal value for S B equals:2 

S = r (l-B)(C/>IDI +C/>2D2) (D D») 
B 1+ 2 • 

a(r+1) r 
(47) 

The question of whether (45) or (47) is the optimal bankruptcy strategy 
cannot be answered generally, since the corresponding equity values will 
depend on the model parameters. In the sequel, we assume that (45) is 
optimal. This arbitrary choice allows us to analyze the interesting case in 
which the lender defaults partially on (at least) the junior claim.3 

2 It is a maximum, since 

aZ!~S) = ((l-O)(tA~! +~Dz) (D! + D2»)r(r-l)sr zs-r -ar(l +r)Sr!S-r 

= ,srzs-r( ((1-0)(tA~1 +~Dz) (DI + Dz)}r-l) -a(l+r)SB) 

= -,srzs-r( (1-0)(tA~! +~Dz) (D! +Dz») < o. 

3 This assumption need not hold. To see this, notice first that the bankruptcy 
strategy S B = (D! + Dz) I (1- a) cannot be optimal: 

aE(S)1 (D! + Dz )r( tAD! +~Dz ) 
aSB tD,+D, = (l-a)S (l-O)(1-a)r r(D!+Dz) -(l+r) 

S. I-a 

together with 

aE(S)1 ( DI + Dz )r( tAD! +~Dz ) 
aSB S.J,D;~:, = (1-a)S (l-O)(1-a)r r(DI +Dz) -(a+r) 

imply 

aE(s)1 aE(s)1 
aSB tD,+D, < aSB ,D,+D,· 

S. I-a S ... I-a 

Now suppose that aE(S)laSBI t~ <0. Then there exists a bankruptcy trigger 
s. l-a 

SB < (DI +Dz)/(l-a) such that E(SB = SB» E(SB = (DI +Dz)f(l-a»). 

Alternatively, if aE(S)/asBI t~ ;::0, then aE(S)lasBI I~ >0 and there 
~ - ~ .. -

must exist a bankruptcy trigger SB > (DI +Dz)/(l-a) with the property that 

E(SB = SB) > E(SB = (DI + Dz)1 (l-a»). Hence, SB = (D! + Dz)1 (I-a) cannot 

be optimal. It follows then that a sufficient condition for (45) not to be optimal is 
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4.5 The Firm's Decision to Issue Junior Claims 
Once the bankruptcy decision has been analyzed, the next question to be 
answered when solving the game is that of knowing if and when the firm 
will decide to issue junior claims. First, however, we wish to know when 
it will be socially optimal to increase leverage. Such will be the case if 

aWeS) > 0, (48) 
a( f/J2 D2 ) tPz~=O 

that is, if issuing junior debt raises the total value of the 
Differentiating (38) partially with respect to f/J2D2 yields 

aWeS) = e(1_(..£)-r]_ef/J\D\ +f/J2D2 r l-e (..£)-r 
a( f/J2 D2 ) r S B r S B r + 0-2 /2 S B 

1- e -a(1+r) S~S-r 
r+0-2/2 

= e _ (e + e + a(1- e) )(..£)-r 
r r 0- 2 /2 SB 

This expression will be positive if and only if 

(1- e)f/J\ D\ (e + r( e + a(1- e) )JIIr 
S> , 

r+0-2/2 e 

that is, if current asset value is sufficiently high. 

firm. 

(49) 

(50) 

Equation (50) gives the necessary and sufficient condition for the.issue of 
junior debt to be socially optimal. But when is such an issue likely to be 
made? To answer this question, some additional assumptions on what the 
equity holders will do with the amount collected in the issue are required. 
Suppose that this amount is paid out to shareholders. Then, shareholders 
seek to maximize the amount they are entitled to, which is equal to the 
value of equity, E, plus the amount paid out, F2 : 

E(S) + F2 (S) = W(S) - F\ (S) . (51) 

or 
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The problem with equation (51) is that its value depends on the 
bankruptcy decision of the shareholders and that we do not know whether 
it is such that (1- a)S B < D1 or (1- a)S B > D). Therefore, two cases 

have to be distinguished: 

• Case 1: (1-a)SB > D1 
Suppose first that (1- a)S B > D). Then, this condition will be satisfied as 

well after the additional debt has been issued. To see this, remember that 

SB = (1-8)(q,)D1 +q,2D2)/(r+(J2 12). Then it is clear that SB rises 

when q,2D2 increases, that is, the bankruptcy-triggering asset value 

increases when junior debt is issued. 
Remember that when (1- a)S B > D) , the value of senior debt is given by 

Then, 

F;(S) ~ ~~I +D{I- ~ X:. r 
W(S) - F;(S) ~ S +0 ~DI :¢,D, (1-(:' r)- ClII'~¥f S-r 

_(¢I~I (1-(:.r}D{:.rJ 
~S+ (0-1l¢1; +~,D, (1-(:' n 

-D{:' r -ClII'~'r S-r. 

(13) 

(52) 
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For this expression to be positive, we must have 

( J
y B+r(B+a(l-B))+ }Dl(r-¢l) 

S ~~+~~ -- >--------------~~~~~ 
SB B 

or, evaluating this expression at ¢2 D2 = 0 : 

( J 
l/y 

B+ r(B+a(I-B))+r i-I 

B 

81 

(54) 

(55) 

Comparing condition (55) with (50), we see that, for a junior debt issue to 
be profitable to the borrower, S must be higher than in the social optimum 
if r > ¢l and lower if r < ¢l . The reason is that, by triggering bankruptcy 

earlier, the issue increases the value of senior debt whenever r > ¢l' as 

inspection of equation (13) shows. In other words, with r> ¢l' a part of 

the social gain achieved through a capital structure change is reaped by 
senior debt holders. If r < ¢l' the opposite is true. In the special case 

where r = ¢l ' the value of senior debt equals that of a risk-free asset: 

F; (S) = ¢ID1 + Dl(I-.P!.)(~J-y = ¢ID1 = D1· (56) 
r r SB r 

Therefore, the issue of junior debt has no consequences on the value of 
senior debt.4 

• Case 2: (l-a)SB < Dl 
Now consider the situation in which (1- a)S B < D1 • Then, using the 

expression 

F,(Sl = ~'~' +((l-alS. - ~I; X:. r (10) 

we can compute the equity holders' payoff, E(S) + F2 (S) = W(S) - Fl (S), 

as 

4 We will return to this point in Section 4.6 and demonstrate that (56) is, in fact, 
never satisfied. 
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W(S) - F,(S) = S +0 ¢JD, :II,D, (1-(:' f)-aS!+YS--1 

-( ~'~' (1-(:' r}(t-ajsB(:, fJ 
=S+o¢JD, :II,D, (1-(:' rJ (57) 

-~'~' (1-(:' rJ- S!+rS-r. 

(58) 

For this expression to be positive at <p2D2 = 0 , we must have 

S S - (l-8)<pIDI 
> B - , 

r+cr2 /2 
(59) 

which means that a junior debt issue makes sense as long as the 
bankruptcy trigger hasn't been reached. Thus, condition (59) is merely the 
tendency that equity holders have to increase payouts, which has been 
illustrated in Section 3.8.3, in another shape. 
What are the consequences of these results for capital structure? The 
equity holders' decision to issue junior debt is governed by equation (55) 
or (59), which do not match the condition required for a junior debt issue 
to be socially optimal (equation (50». This means that the existence of 
senior debt distorts the equity holders' decision to issue junior debt, thus 
leading to socially suboptimal capital structures, as Figure 4.3 illustrates. 
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Figure 4.3: Effect of a junior debt issue on the value of the equity holders' 
claim, E + F2 , and firm value Was a function of current asset value S for 

the following parameter values: e = 1/ 3, a = 0.2 , r = tPl = tP2 = 0.05, 

DI = 50, D2 = 10 and (J = 0.2 . Over some range of asset values, a junior 
debt issue increases the value of the equity holders' claim, but reduces 
overall firm value, thus giving rise to a principal-agent problem. 
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The reason for this result is that issuing junior debt transfers wealth away 
from senior creditors to equity holders. We will now analyze this point in 
more detail, because it demonstrates that seniority does not protect debt 
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holders against adverse wealth effects resulting from subsequent debt 
Issues. 

4.6 The Influence of Junior Debt on the Value of Senior Debt 
The previous section showed that the equity holders' decision to issue 
junior debt is distorted by the existence of senior debt and argued that the 
reason for this result lies in the influence of junior debt issues on the value 
of senior debt. In this section, we demonstrate that no senior debt contract 
exists that immunizes senior debt holders against the issue of junior debt. 
In Section 4.6.1, we first show that no contract can be found that 
immunizes senior debt holders altogether. Section 4.6.2 will then be 
concerned with immunization against negative wealth effects. 

4.6.1 On the Impossibility of Total Immunization 
To analyze the effect of junior debt issues on the value of senior debt, let 
us compute the partial derivative of the value senior debt with respect to 
tP2 D2 . If (1- a)S B < D, ' then 

aF,(S) tP,D, r 1-8 S ( J
-r 

a(tP2D2) =- r SB r+0"2 /2 S;; 

1 8 (S J-r 
+(I-a)(I+r) -2 -

r+O" /2 SB 
(60) 

__ 1_ ~ I-a 1-8 _ tP,D, ( J-r( J 
- 0"2 /2 SB ( )( ) tP,D1 +tP2D2 

Evaluating this expression at tP2D2 = 0 yields 

aF,(S) =_21_(~J-r((I-a)(1-8)-I)<0, (61) 
a(tP2D2) 0" /2 SB 

and it is clear that a junior debt issue has a negative influence on the value 
of senior debt. 
Now consider the case in which (1- a)S B > DI . Then, 

~(S)= ~~l +D1(1- ~ )(~rr, (13) 

and therefore, 
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JF; (S) _ D (1-~)(~)-r.L 1- 8 
J(¢2D2) -) r S8 S8 r+O'2/2 

_ 2DJ(r-¢J) (S )-r 
O'2(¢JDJ +¢2D2) S8 

(62) 

Now, senior debt holders could immunize against a junior debt issue by 
choosing 1/>1 = r . But then, from the analysis in Section 4.4 above and from 

the fact that I/>z Dz = 0, the equity holders' optimal bankruptcy choice is 

given by 

S = (1-8)(I/>I Dl +l/>zDz) = (1-8)I/>, D, < D (63) 
B r+O'z/2 r+O'z/2 I' 

which contradicts our assumption that (1- a)S B > D, . Hence, in spite of 

senior debt having priority over other claims, its value is influenced by the 
issue of junior claims. There is no way in which senior debt can be 
immunized against the issue of junior claims. 

4.6.2 On the Impossibility of Immunization against Negative 
Influence 

In practice, however, senior debt holders will be interested in avoiding a 
negative influence of a junior debt issue on the value of their claim. Is this 
aim achievable? From equation (61), it is clear that this is impossible in 
the case where (1- a)S 8 < D, . In the case where (1- a)S 8 > D, , we would 

require 

that is 
(65) 

But (65) implies (1- a)S 8 < D) , a contradiction. Therefore, immunization 

against the adverse effects of a junior debt issue is impossible as well. 
Figure 4.4 gives an example of the effect of a junior debt issue on the 
value of senior debt. When junior debt with a face value of lOis issued, 
the value of senior debt falls. This illustrates the above result that seniority 
need not protect debt holders against adverse wealth changes resulting 
from the issue of new debt. This wealth transfer from senior debt holders 
to equity holders distorts the equity holders' decision to issue junior debt 
and gives rise to suboptimal capital structures. 
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Figure 4.4: Effect of a junior debt issue on the value of senior debt as a 
function of current asset value S for the following parameter v.alues: 
o = 11 3, a = 0.2 , r = tPl = tP2 = 0.05, Dl = 50, D2 = 10 and (j = 0.2 . 

When junior debt with a face value of J 0 is issued, the value of senior debt 
falls. Through the issue, shareholders transfer wealth away from senior 
bondholders. Thus, seniority need not protect senior debt holders against 
adverse wealth changes resulting from the issue of new debt. 

4.7 Conclusion 

The analysis presented in this chapter has shown how senior and junior 
debt could be priced by taking the seniority of claims into account in the 
boundary conditions of the contingent claims pricing formula. After 
valuing senior and junior debt, the firm, and equity, it was shown that 
when bankruptcy is endogenous, the existence of junior debt influences 
the equity holders' optimal bankruptcy choice and therefore the timing of 
bankruptcy. 
Moreover, it was demonstrated that the existence of senior debt distorts 
the equity holders' decision to issue junior debt. The reason is that a 
change in capital structure involving the issue of junior debt and the 
payout of the proceeds to equity holders reduces the market value of 
senior debt. The existence of this wealth transfer from senior debt holders 
to equity holders invalidates the conventional wisdom that seniority 
protects debt holders against adverse wealth changes resulting from the 
issue of new debt. It was demonstrated that there exists no contract 
immunizing senior debt holders from the negative influence of a junior 
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debt issue on the value of their claim. The reason for this result is that the 
existence of junior debt changes the firm's bankruptcy decision and 
therefore the timing of bankruptcy. 
Besides these theoretical considerations, the distortion of the equity 
holders' decision to issue junior debt presented in this chapter implies that 
socially suboptimal capital structures are likely to arise in practice in spite 
of seniority. In other words, seniority does not resolve the principal-agent 
problem of junior debt issues. 



s. BankRuns 

5.1 Introduction 
Bank Runs are one of the most puzzling phenomena of banking history. 
Calorniris (1997) reports that banking crises in ancient Greece and Rome 
date from at least the 4th century B.C., as do government interventions to 
alleviate them. 
Diamond and Dybvig (1983) depict how banks can provide risk-sharing 
potential to depositors unaware of their future consumption needs. They 
show that this risk-sharing function provides both the rationale for the 
existence of banks and for their vulnerability to runs, even if there is no 
uncertainty over the value of the projects the bank has invested in. 
This chapter considers bank runs in a world in which the payoff of the 
projects in which the bank has invested may be uncertain. In a continuous
time framework, we show that banks are indeed vulnerable to runs. 
Moreover, the possibility of bank runs has a very important implication for 
the role of financial intermediaries as providers of capital. 
The focus of the chapter, however, lies on the incentive effects of the 
possibility of bank runs. The analysis provided below demonstrates that 
the existence of bank runs disciplines bank behavior. The reason is that 
banks anticipate the possibility of runs and reduce the risk of their 
investments so as to avoid them. Therefore, in the simple setting presented 
below, runs would not occur in equilibrium. 

5.2 The Model 
Consider a bank with two depositors A and B, each having a deposit of 
X 0 dollars at initial time O. Suppose that the bank invests this money in a 

risky asset with initial price So = X 0 and whose value S follows a 
geometric Brownian motion 

dS = pSdt + crSdz . (1) 

Assume that a continuous interest rate of r * is paid on the deposits and 
that the risk-free rate of interest is r, where r* < r . Hence, each depositor's 
claim at time t is given by 

X(t) = Xo ·er'.r • (2) 

Furthermore, assume that the depositors are allowed to withdraw the full 
amount of their deposit at any time without prior notice. If the bank has to 
liquidate the project it has invested in, it must, however, incur a 
proportional cost of a. Note that in this setting, financial intermediation is 
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viable if the money remains deposited long enough at the bank so that the 
interest differential (or deposit spread) r - r * earned by the bank makes 
up the expected liquidation cost of a. 
The analysis in this chapter abstracts from possible conflicts of interest 
between bank management and shareholders. Throughout, it is assumed 
that bank management makes decisions that maximize the value of equity. 
The structure of the game between bank and depositors is depicted in 
Figure 5.1. First, bank equity holders decide on how much capital to 
provide to the bank and depositors decide whether to deposit their money 
with the bank or not. In a second phase, the bank chooses its investment 
strategy. If a run seems imminent, bank equity holders must decide on 
whether to recapitalize the bank or not. Finally, depositors decide on 
whether to run on the bank or not. If they decide to run, bank assets are 
liquidated and payoffs are realized. 

Bank FinancinglFunding Decision 
Depositor Deposit Decision 

I Bank Investment Decision I 

I Bank Recapitalization Decision I 

I Depositor Run Decision and Payoffs I 

Figure 5.1: Structure of the game. First, the bank is funded and depositors 
decide whether to deposit their money or not. The bank then chooses an 
investment strategy. If a run seems imminent, bank equity holders choose 
whether to recapitalize the bank or not. Finally, depositors might decide to 
run on the bank. If they do so, bank assets are liquidated and payoffs are 
realized. 

The remainder of the chapter is organized as follows: Section 5.3 analyzes 
the depositors' decision of whether to run on the bank or not. Section 5.4 
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describes the function of banks as providers of capital. Section 5.5 values 
the bank's equity as a knock-out call option. Section 5.6 explores the 
equity holders' decision to recapitalize the bank and shows that 
recapitalization can be expected to occur when asset value falls below a 
certain level. Section 5.7 determines the bank's optimal investment 
decision when bank runs are possible and shows that the possibility of 
runs disciplines bank behavior. Section 5.8 discusses consequences of the 
possibility of runs for the bank's funding policy. Section 5.9 comments on 
the equilibrium deposit spread and the role of transactions costs for the 
viability of financial intermediation. Section 5.10 concludes the chapter. 

5.3 The Incentive to Start a Run 

The first question to be answered when solving the game depicted in 
Figure 5.1 above is whether bank runs will, under the assumptions of 
Section 5.2, be likely to occur, and if yes, when. To answer this question, 
let a depositor's withdrawal decision be modeled as a two-person game. 
Instead of writing down the payoff matrix of the game and searching for 
the Nash equilibria, simply consider the payoff to the players. The payoff 
to each of the players, which is depicted in Figure 5.2 below, is given by 

Min[2(1-a)S,;X(t)] (3) 

if he withdraws first, and 
Max[O; 2(1-a)St - X(t)] (4) 

if he doesn't. 
When could a run occur? Clearly, the bank is vulnerable to a run as soon 
as the situation arises in which both depositors want to withdraw first, that 
is, as soon as 

Min[2(1-a)St;X(t)] > Max[O;2(1-a)S,-X(t)]. (5) 

From Figure 5.2 below, it is immediately apparent that this will be the 
case if and only if 

(6) 

Condition (6) means that a run is possible as soon as the value of bank 
assets after liquidation is lower than the face value of deposits: 
(l-a)St < X(t). 

5.4 A Preliminary Condition for the Existence of Banks 
As the previous analysis has shown, depositors have an incentive to run on 
the bank as soon as St < X (t) / (1- a) . What are the implications of this 
fact for the bank? 
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X(t) 
Min[2(1-a)S;X(t)] : - - - _.-

I 
I 

I 

I 
I .:Max(0;2(1-a)S-X(t)] 

I 

L~--~--~----~--------------~S 
X(t) 

I-a 

Figure 5.2: Payoff of withdrawing first and second for different asset values. 
If current asset value is lower than X (t) / (1- a), depositors have an 
incentive to try to withdraw first, thus triggering a bank run. 

The most obvious is that, at initial time, when So = X 0' the bank might be 

subject to a run, that is, the depositors will not deposit their money at the 
bank. As a result, the bank must find a way to induce potential depositors 
to deposit. But how? 
The simplest way for the bank to induce this is to provide some capital at 
initial time. To see this, suppose the bank owners agree to add x dollars of 
equity for each dollar deposited at the bank. Then, by analogy with the 
analysis above, no run will occur as long as 

(l+x)St>X(t) ¢::> St> X(t) =s, . (7) 
1- a (1- a)(l + x) 

Potential depositors can be induced to deposit their money at the bank if 
condition (7) holds at initial time. Substituting So = X 0 in this last 

condition yields 

X Xo 
0>---"---

(1- a)(1 +x) 
¢::> (1- a)(1 + x) > I ¢::> 

a 
X>--. 

I - a 
(8) 

Hence, depositors will agree to deposit their money if the bank or, more 
precisely, its shareholders agree to compensate for expected liquidation 
costs by providing a / (1- a) dollars of capital for each dollar deposited. 
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5.5 Valuing the Bank's Equity 
After having stressed that a bank can only exist if it provides capital at 
initial time, the bank's equity can be valued. The aim of this section is to 
provide an analytical valuation formula for this equity, which will then 
allow us to analyze incentive problems on the part of the bank. To 
facilitate this valuation, we make the following additional assumptions: 

Assumption 1: Because of the instantaneous nature of runs, the equity 
holders cannot provide the bank with new equity when a run occurs. 

Assumption 2: As soon as the condition for a run to be possible, 
S, ~ S, = X (t) / «1- a)(1 + x»), is satisfied, the run will occur, the 

bank will have to be liquidated and the equity holders will get nothing. 

Assumption 3: If no run occurs and the bank wants to liquidate its projects, 
it can do so at a proportional variable cost of [J, where [J < a reflects 

the fact that assets can be sold at a higher price when liquidation occurs 
voluntarily than in the event of a run. 

Under these additional assumptions, the bank with two depositors in effect 
holds two perpetual down-and-out call options on (1- {J)(1 + x)S, with an 

exercise price of X(t) and a knockout price of1 

K(t) = 1- [J X(t). (9) 
I-a 

Let C~ ((1- {J)(1 + x)S,; K(t») denote the value of the perpetual down

and-out call option. Making the change in variables 

and defining 

V = (1- [J)(1 + x)S, 

X(t) 

F(V)=~ X(t) , 

F satisfies the following ordinary differential equation: 

(10) 

(11) 

I From Assumption 2, a run occurs whenever S, = S, = X (t) / ((1- a)(1 + x» . 

Hence, in units of (1- /3)(1 + x)S" the knock-out price is given by 

K(t) = (1-/3)(1+x)s, = (1-/3)(1+ x) X(t) = 1-/3 X(t). 
(1-a)(1+x) I-a 
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to'2V2 F" + (r - r*)VF' - (r - r*)F = 0, (12) 

subject to the boundary condition:2 

F(l- f3 )=O. (13) 
I-a 

The solution is 

F(V) = V - 1- 13 . v-yo , r* == 2 r - r * . (14) ( )
l+Y* 

I-a 0'2 

Substituting the original variables back into (14) yields 
C_ = F(V)X(t) 

= VX(t) _(1- f3)l+Y* X(t)V-Y* 
I-a 

= (1- /3)(1 + x)S, _ (1- f3)l+Y• X(t)((l- 13)(1 + x)S, )-y* (15) 
I-a X(t) 

[ ~~ J =(1-f3)(1+X)S,-( X(t) ) Sf-Yo. 
(1- a)(1 +x) 

Equation (15) gives the value of the bank's equity when depositors might 
choose to run on the bank.3 It equals asset value net of liquidation costs, 
(1- /3)(1 + x)S, , minus the expected losses resulting from a run, which are 

equal to the discount resulting from the knock-out feature of the option. 
An example of the dependence of equity value on asset value is given in 
Figures 5.3 and 5.4. It is interesting to note that equity value is increasing 
in the deposit spread r - r * and decreasing in asset risk 0'. 

5.6 The Shareholders' Recapitalization Decision 
The above derivation of the value of equity assumed that the shareholders 
would not recapitalize the bank if asset value falls and a bank run is 
imminent. This additional assumption was justified with the argument that 
bank runs occur quickly, and therefore a recapitalization is impossible. It 
might, however, be interesting to analyze the question of whether 
shareholders would be willing to recapitalize the bank. 

2 On the pricing of knock-out options see Ingersoll (1987), p. 371 f. 
3 In the sequel, equity value is assumed to be given by (15), although actual equity 
value is double that amount. This additional assumption has no influence on the 
results of the following sections. 
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Figure 5.3: Equity value C _ as a function of asset value for different values 

of the deposit spread r - r * and for the following parameter values: 
a = 0.1, f3 = 0.05, x = 0.1, X = 100 and (J = 0.2 . As asset value rises, so 

does equity value. Moreover, equity value is higher, the wider the deposit 
spread. 
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Figure 5.4: Equity value C_ as a function of asset value S for different 

values of asset risk (J and for the following parameter values: a = 0.1, 

f3 = 0.05, x = 0.1, X = 100 and r - r* = 0.01. As asset value rises, so does 
the value of equity. A rising asset risk, however, has a negative influence on 
equity value. 
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To answer it, we model the recapitalization decision as an impulse on S 
that results in an increase in asset value from (1 + x)S, to (1 + w)(1 + x)S" 

where w > 0 denotes the percentage increase in asset value achieved 
through recapitalization.4 The value of equity after recapitalization is 

C~ = (1-,8)(I+x) (l+w)S, -( X(t) ) .((1+w)S,rY*. (16) ( 
I+Y*) 

(1- a)(1 + x) 

The increase in the value of equity equals 

I1C~ = (1- ,8)(1 + x) wS, - ( X (t) ) (1 + w) -y* -1)S,-Y* .(17) ( 
I+y* ) 

(1- a)(1 +x) 

Increasing asset value is only profitable for shareholders if the increase in 
equity value exceeds the initial investment w(l + x)S" that is, if 

I1C~ > w(1 + x)S, . (18) 

Condition (18) can be written as 

(1- ,8)(1 + X)(WS, - ( X (t) )I+Y* . (1 + w) -y* -l)S,-y*) 
(1- a)(l + x) (19) 

> w(1+x)S" 

or 

(1-,8)(1+X)( X(t) )1+Y*.(l-(l+W)-Y*)S,-Y*>,Bw(1+X)S" (20) 
(1- a)(1 + x) 

which says that the increase in equity value resulting from making a run 
less likely must exceed the value lost because of liquidation costs, 
,8w(1 + x)S, . Equivalently, (20) can be written as 

[ 
S, ]'+r. < \_ f3 \- (\ +w)~· (2\) 

XU) ,8 w 

(1-a)(l+x) 

Equation (21) shows that shareholders will choose to recapitalize the bank 
as soon as asset value is sufficiently low, as Figure 5.5 demonstrates. 
The result that shareholders would be willing to recapitalize the bank is in 
sharp contrast to that of underinvestment encountered in Chapter 3. To 
understand why, remember that the underinvestment result of Section 

4 Note the similarity of this analysis with that presented in Section 3.5.1 (Myers' 
underinvestment problem). 
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3.5 .1 obtained because a part of the increase in firm value resulting from 
the recapitalization accrued to debt holders. Here, however, recapitalizing 
the bank does not result in a wealth transfer to the depositors. 
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Figure 5.5: Increase in equity value as a function of the recapitalization 
share w for different current asset values and for the following parameter 
values: a=O.1, /3=0.05. x=O.l. X =100. r-r*=O.OI and a=O.2.If 

asset value S is low at 100 (upper panel). shareholders choose to 
recapitalize the bank. If asset value is high at 500 (lower panel). 
recapitalization is not profitable. because the capital cost exceeds the 
resulting increase in equity value. 
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5.7 The Bank's Investment Incentives when Bank Runs are Possible 

Once bank equity has been valued taking the depositors' run decision into 
account, the bank's investment incentives can be analyzed. The basic 
question to be answered in this respect is that of knowing how the 
possibility of a bank run influences the bank's risk-taking incentives. 
Again, assume that shareholders cannot recapitalize the bank if asset value 
falls. Then, bank equity value is given by (15). Taking the partial 
derivative of this expression with respect to r * yields 

acoo = -(1- {3)(1 + x)( X (t) )1+r* St-r* In[ (1- :)~1 + x) l' (22) ar* (l-a)(I+x) St 

which is positive since (by Assumption 2 above) the bank only exists as 
long as St > X (t) I «1- a)(1 + x» , so that 

[ 
X(t) 1 

In (1-a~~I+X) <0. (23) 

What insight can be gained from equation (22)? Remembering that 

dr* r* -=--<0 (24) 
da 2 a 2 ' 

we have 

(25) 

Equation (25) implies that, as long as assets are fairly priced, the bank is 
better off by reducing asset risk as much as possible, that is, by setting 
a = 0 in the limit. In other words, the possibility of bank runs leads the 
bank to reduce its risk. 
This fact yields an interesting endogenous justification for the existence of 
demandable debt: demandable debt resolves the incentive problem of risk
shifting by allowing the depositors to withdraw as soon as the value of the 
bank's investment falls to a prespecified level. This result complements the 
classical explanation for demandable debt found in the literature. namely 
that of allowing depositors to react to stochastic preference shocks and 
liquidity needs by providing them with consumption flexibility. It extends 
the results of Calomiris and Kahn (1991), who show that demandable debt 
can be thought of as an incentive scheme to deter bank management from 
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fraud. It demonstrates the disciplining effect of the possibility of bank runs 
that has been mentioned by several authors in the literature. 5 

The result of equation (25) has, however, another intuitive interpretation. 
By allowing depositors to withdraw at any time, demandable debt makes 
the claim of the depositors riskless. Hence, the deposit contract allows a 
separation of the returns for the time value of money and for the riskiness 
of the underlying venture. The latter is borne entirely by the equity 
holders.6 

Because of equation (25), the bank might decide to invest everything in 
the risk-free asset. For completeness, let us compute the value of equity in 
this case. By assumption, the risk-free asset can be liquidated at no cost. 
Let Bo be the initial amount invested in the risk-free asset and B(t) 

denote the value of the risk-free asset at time t. Then, 

B(t) = Boert . (26) 

With a capital x, total asset value equals 

(1 + x)B(t) = (1 + x)Boert . (27) 

Now, the payoff to the equity holders if they choose to liquidate the bank 
at time tis 

L(t) = (1 + x)B(t) - X (t) = (1 + x) Boert - Xoe r' t . (28) 

By assumption, Bo = X 0' so 

L(t) = X o((1+x)e rt _er*t). (29) 

The present value of this expression is 

£o(t) = Xo((1 + x) - e(r*-r)t). (30) 

To determine when the equity holders will choose to liquidate the bank, 
compute 

J£o(t) _ (* )X (r*-r)t - ( *)X (r*-r)t 0 --- - r -r oe - r - r oe >. at 
(31) 

Equation (31) implies that equity holders will never choose to liquidate 
the bank. Therefore, the value of equity is 

L = lim Lo(t) = limXo(1+x) _e(r*-r)t) = Xo(1+x). 
tt~ tt~ 

(32) 

Equation (32) gives the value of equity when the bank invests everything 
in the risk-free asset. One easily sees that, at initial time, when the 
investment decision is made, 

5 See, for example, Kaufman (1988), p. 568 and Baer and Brewer (1986). 
6 See Postlewaite and Vives (1987), p. 490. 
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L=Xo(1+x»C==(I-,8)(I+x)Xo 1- 1 ) ,(33) ( ( 
l+Y*) 

(l-a)(l+x) 

so that the bank will decide to invest everything in the risk-free asset. As a 
consequence, in equilibrium, runs never occur. 

5.8 The Bank's Funding Decision 

Once the bank's optimal investment choice has been determined, one can 
work backward through the game and analyze the equity holders' financing 
decision, i.e. determine what amount of capital x equity holders will 
choose to provide to the bank in order to maximize their expected profit. 
Section 5.8.1 discusses the profitability of intermediation in general. 
Sections 5.8.2 and 5.8.3 then explore the equity holders' optimal funding 
policies for positive and zero asset risk, respectively. 

5.8.1 On the Feasibility of Viable Intermediation in General 

For the equity holders to be ready to provide some capital, the value of 
bank equity at initial time must exceed the capital cost xX o. In other 

words, the expected profit from the intermediation actIvIty, 
G = C= - xXo, must be positive. Treating the general case with positive 

variance first, and using the fact that So = X 0' we get 

G=C=-xXo 

( 
l+y* ) 

= (1- ,8)(1 + x) X 0 - ( X 0 ) X oY* - xX 0 
(l-a)(I+x) 

= X o(I-,8(1+X)- (1-,8)(1+x;+ *J. 
((1-a)(1+x») Y 

For G to be positive, we must have 

that is, 

or 

1-,8(1+x)- (1-,8)(I+x; * >0, 
((1-a)(1+x») +Y 

(1- ,8)(1 + x) < (0- a)(l + x) t Y* , 

1- ,8(1 + x) 

(34) 

(35) 

(36) 

In((1- ,8)(1 + x») -In(l- ,8(1 + x») 
1 + r* > . (37) 

In((1- a)(1 + x») 



5.8 The Bank's Funding Decision 101 

Equation (37) means that, for the expected profit from funding a bank to 
be positive, the deposit spread must exceed a certain value, which, for a 
given capital x, is proportional to the variance of the return on the bank's 
investments: 

r-r* In((1-,8)(1+x»)-ln(I-,8(I+x») 
1+2--> <=> 

(j2 In((1- a)(1 + x») 

r _ r* > (j2 (In((1- ,8)(1 + x) )-In(I-,8(1 + x») -1). 
2 In((l- a)(1 + x») 

(38) 

From equation (38), it is clear that the bank will be ready to provide some 
starting capital if the deposit spread is high enough. This result is 
illustrated in Figure 5.6. 
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Figure 5.6: Expected profit from funding a bank as a function of the deposit 
spread r - r * for different values of asset risk a and for the following 
parameter values: a = 0.1, f3 = 0.05, x = 0.2 and X = 100. The expected 

profit is higher, the greater the deposit spread and the lower the asset risk. 

5.8.2 Optimal Bank Capital when Asset Risk is Positive 

Now that the feasibility of viable intermediation has been demonstrated, 
the equity holders' optimal funding policy can be analyzed in more detail. 
For completeness, let us first explore the case in which asset risk (j is 
positive. From equation (34) above, 
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aG =xo(-f3+r*. 1-13 *J. ax ((1-a)(1+x)ty 

Setting this expression equal to zero and solving for x yields 7 

1 1 

(1- a)(1 + x) = (r *. 1- f3)I+YO ¢:> X = (r * (1- 13) If3)i+Y* 
13 I-a 

Let x denote the optimal value of x as given by (40). Then, 
1 

di = 1 (r *. 1-13) l+y* > 0 
iJa (l_a)2 13 

and 

(39) 

1. (40) 

(41) 

Equation (41) says that an increase in a, the proportional liquidation cost 
in the event of a run, leads the equity holders to provide the bank with 
more capital. The sign of expression (42) is ambiguous. It is, therefore, not 
possible to say how a change in the deposit spread or asset risk (which 
both enter r *) will, in general, influence the optimal capital x. The 

reason for this ambiguity is that an increase in the deposit spread or a 
reduction in asset risk has two conflicting effects. On the one hand, it 
makes intermediation more profitable, which would call for a higher 
capital commitment. On the other, it makes runs less probable, thus 
reducing the capital required at initial time. The question of which of these 
effects dominates can only be answered on a case-by-case basis. 
As shown previously, the bank will seek to set r * as high as possible by 

reducing G. Hence, the optimal funding share x can be determined by 
taking the limit as r * i 00 of expression (40), yielding 

7 Since 

(}2G_ X *(1 *) 1-/3 0 
-u - - or +r· ( )l+r*( )2+r* < , 

OA I-a l+x 
one is ensured that condition (40) is that required for a maximum. 
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_1_ . In(r*.¥) 
( 1- f3)I+r* lim (l-a)(1+x) = lim y*._- =eY' i - l+r* 

r*j~ f3 

which means that the profit-maximizing x is set such that the depositors 
just agree to deposit their money, and everything is invested in an almost 
risk-free asset. 
To confirm the result of Section 5.8.1 that funding a bank can be 
profitable for equity holders, compute 

lim G = lim XO[l- f3(1 + x) - (1- f3)(1 + x) * J. (44) 
(12.l.0 r*j ~ ( (1- a)(1 + x) t r 

By assumption, ((1- a)(1 + x») ~ 1, so two cases have to be distinguished: 

• Case 1: ((1-a)(1+x»)= 1 

Then, 
lim G = Xo(l- f3(1 + x) - (1- f3)(1 +x») = -xXo < o. (45) 

(12-+0 

The bank cannot make money, and hence the equity owners have no 
incentive to provide the bank with capital. This situation is in fact the 
degenerate case where the depositors deposit their money and withdraw it 
immediately, thus triggering costly liquidation and making intermediation 
unprofitable . 

• Case 2: ((1-a)(1+x»)> 1 

Then, 
(46) 

This value will be positive as long as x < (1- f3) / f3 . The question of the 

feasibility of a bank then boils down to the question of knowing if the 
above condition is satisfied. Since the condition x> a / (1- a) must be 

satisfied to induce potential depositors to deposit, the bank can only be 
viable if the condition (1- f3) / f3 > x> a / 0- a) is realized. This is only 

possible if a + f3 < 1 , that is, if liquidation costs are not too high. 

5.8.3 Optimal Bank Capital with Zero Asset Risk 

Turning to the case where asset risk (j is zero, the value of the bank's 
expected profit, G = L - xX 0' can be computed using (32) to yield: 

G = L-xXo = (1+x)Xo -xXo = Xo. (46) 
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Clearly, 
()G 
-=0 ax ' (47) 

so that the equity holders are indifferent so as to which amount of capital 
to invest into the bank. This is not surprising: since everything is invested 
in the risk-free asset, which earns a return above the deposit rate r* and 
can be liquidated at no cost, runs never occur. Therefore, bank capital, 
which was introduced as a means to cover expected liquidation costs and 
lead potential depositors to deposit, is no more necessary and becomes 
irrelevant. 

5.9 A Note on the Equilibrium Deposit Spread 

The analysis above took the deposit spread as given. How high should one 
expect it to be? If entry into the banking market is free, then one should 
expect the deposit spread to be zero. Therefore, for the expected profits to 
financial intermediation to be positive, entry restrictions, such as 
chartering, are necessary. 
For intermediation to yield positive expected profits, another condition 
closely related to restricted entry is required. To see this, suppose that the 
risk-free asset could also be traded at no cost by depositors. Then, they 
would be able to achieve a return of r on their own, and there would be no 
reason for banks to exist. It is not unreasonable to assume, however, that 
some economic agents have a cost advantage in asset trading and therefore 
become financial intermediaries. In this case, the bank provides liquidity 
services to depositors, which then agree to receive an interest r* < r on 
their deposits. This transactions costs rationale for specialization has been 
stressed by Merton (1989). 

5.10 Conclusion 
The analysis of this chapter has demonstrated that a bank will be 
vulnerable to a bank as soon as the value of its assets net of liquidation 
costs falls below the face value of deposits. When costs have to be 
incurred in the event of liquidation of bank assets, the bank has to provide 
capital covering these expected costs in order to induce depositors to 
deposit their money. In this sense, banks have a role as providers of 
capital. 
Given the depositors' optimal strategy as to when to run on the bank, the 
bank's equity can be valued as a knock-out perpetual call option. It has 
been shown that, when asset value falls between a certain level, 
shareholders would usually be willing to recapitalize the bank. 
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The bank behaves so as to maximize equity value, taking into account the 
possibility of runs. When making its investment decision, it anticipates the 
possibility of runs and reduces the risk of its investments as much as 
possible in order to avoid runs. In other words, the possibility of bank runs 
disciplines bank behavior. Demandable debt can thus be understood as an 
optimal contractual arrangement designed to deter banks from engaging in 
risk-shifting activities. The simple model presented above provides a very 
strong illustration of this fact: the bank's investment decision has no 
interior optimum and everything is invested in the risk-free asset. Thus, 
runs never occur in equilibrium. A somewhat richer, but analytically more 
demanding model could consider a portfolio of riskless and risky asset and 
show that the share invested in the risky asset decreases when bank runs 
are possible. 
Turning to the financing decision, it was demonstrated that financial 
intermediation will be profitable as long as the deposit spread is 
sufficiently high. For such to be the case, barriers to entry, such as 
chartering or transactions costs advantages, are necessary. When asset risk 
is positive, optimal bank capital increases with liquidation costs. The 
dependence of optimal bank capital on the deposit spread and asset risk, 
however, is ambiguous. The reason for this ambiguity is that an increase in 
the deposit spread or a reduction in asset risk has two conflicting effects. 
On the one hand, it makes intermediation more profitable, which would 
call for a higher capital commitment. On the other, it makes runs less 
probable, thus reducing the capital required at initial time. When asset risk 
is zero, shareholders are indifferent as to which amount of bank capital to 
invest into the bank. 
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6.1 Introduction 
The analysis in Chapter 5 considered bank runs and showed that their 
possibility might lead the bank to invest only in the risk-free asset if there 
is no underpricing of risky assets. A natural question that arises is that of 
knowing if the bank can prevent runs by another means than providing 
capital. This chapter analyzes one of these possibilities: deposit insurance. 
Deposit insurance ensures the depositors that they will not suffer if others 
choose to withdraw their money and they do not. Under the simplifying 
assumptions of Chapter 5, deposit insurance means that the depositors are 

sure they will receive at least X(t) = Xoer*t whenever they choose to 

withdraw. Hence, the incentive to try to withdraw first embedded in 
condition (6) of Chapter 5 disappears and depositors would, in this model, 
never choose to withdraw. 
In the last few years, a sizeable literature has emerged which is devoted to 
deposit insurance pricing. While fair pricing, which was developed in the 
wave of the Savings and Loans debacle, is an economically important 
issue, the nature of the insurance premium as a sunk cost for the bank has 
the important consequence that it cannot be expected to change the 
incentives faced by the bank. This important point was stressed by John et 
al. (1991), who demonstrated that the risk-shifting incentives of a 
depository institution fundamentally arise from the existence of limited 
liability and the associated convex payoff to equity holders. Their analysis 
constitutes the starting point for the issues addressed in this chapter: 
• How does the existence of deposit insurance influence the risk-shifting 

incentives faced by the bank and its funding decision? 
• What is the economic cost or benefit of deposit insurance? 

6.2 The Model 
Consider a bank operating in conditions similar to those of Chapter 5: At 
time t, it has a total amount of X (t) = X oer*t in deposits. Asset value S 

follows a geometric Brownian motion. For each dollar deposited at initial 
time 0, bank equity holders have added an amount x in equity capital. 
Hence, total asset value is given by (1 + x)St . To liquidate the assets, a 

proportional cost of f3 has to be incurred. In the event of a bank run, this 
proportional liquidation cost is higher and amounts to a. 
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Suppose that deposits are insured. At any point in time, the guarantor 
knows the value of the bank's assets and can liquidate them immediately if 
he wishes. Assume, further, that if the guarantor decides to seize the assets 
and to liquidate them, he will realize (1- /3)(1 + x)S,. If liquidation 

occurs, depositors are paid in full; they receive the face amount of their 
deposits, X (t) , regardless of the proceeds from liquidation. Any proceeds 

from liquidation in excess of the face value of deposits X (t) are paid to 

the bank's shareholders. Thus, the guarantor in effect writes a perpetual 
put option on the bank's assets, with an exercise price equal to the current 
value of deposits, X(t). 

Under these assumptions, the structure of the game is that given in Figure 
6.1. After the bank is funded, it makes its investment decision. The 
guarantor observes asset value and may choose to liquidate the bank. 

Bank FinancinglFunding Decision 

Bank Investment Decision 

Guarantor Liquidation Decision 

Figure 6.1: Structure of the game between the bank and the guarantor when 
the latter can observe asset value perfectly and liquidate assets immediately. 
After the bank is funded, it chooses its investment strategy. If asset. value 
reaches a certain level, the guarantor may decide to liquidate the bank. 

The structure of the chapter is as follows: Section 6.3 uses option pricing 
to value the cost of deposit insurance, bank equity and social welfare. 
Section 6.4 explores the guarantor's optimal liquidation strategy and 
comments on the ability of deposit insurance to enhance social welfare. 
Section 6.5 addresses the question of whether the existence of deposit 
insurance influences the bank's investment and financing decisions. 
Sections 6.6 and 6.7 extend the basic model to the cases where immediate 
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liquidation is not possible and where the guarantor cannot observe asset 
value, respectively. Section 6.8 concludes the chapter. 

6.3 Valuing Deposit Insurance, Bank Equity and Social Welfare 

Before the game depicted in Figure 6.1 can be solved, the players' payoffs 
must be valued using option pricing. This is done in Sections 6.3.1 and 
6.3.2. In Section 6.3.3, a measure of social welfare is presented. 

6.3.1 The Value of the Deposit Insurance Guarantee 

Remember that the guarantee has the structure of a perpetual put option on 
(1- /3)(1 + x)St with an exercise price equal to the face value of deposits, 

X(t). Let P~«1-/3)(1+x)St,S(X(t))) denote the value of the put 

option, where S(X(t)) denotes the asset value at which the guarantor 

liquidates the bank. 
Making the change in variables 

and defining 

V = (1- /3)(1 + x)St 
X(t) 

F(V)=~ 
X(t) , 

F satisfies the following ordinary differential equation:' 

ta2V2 F" + (r - r*)VF' - (r - r*)F = 0, 

subject to the boundary conditions 
F(oo) = 0, 

F(V) = 1- if = 1- (1- /3)(1 +x)S(X(t)) 
X(t) , 

(1) 

(2) 

(3) 

(4) 

(5) 

where V denotes the assets-to-deposits ratio at which the bank is closed 
by the guarantor.2 Notice that liquidation costs, /3, and bank capital, x, 
have been taken care of in the definition of V . The general solution to (3) 
is 

F(V) - V V -y* * - 2 r - r * -a\ +a2 ,r = --2-' 
a 

(6) 

\ Merton (1990), p. 298. uses a similar procedure to price a warrant with a 
continuously changing exercise price. 

2 As will be seen shortly. S(X(t)) is linear in X(t). so that V does not depend on 
X(t) . 
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From boundary condition (4), we can easily see that at = O. From 

boundary condition (5), we get 
- - __ yO 

F(V) = 1-V = a2 V , (7) 

and therefore: 

( -) -y* a2 = I-V·V . 

Hence, 

F = a2 . V = (1- tI) . (~ ) -y* 
From the definition of F, we get 

P_ = F(V)· X(t) 

= X(t)(I-V){~rY* 

= (X (t) - (1- 13)(1 + x)S(X (t» ).( s, )-y* 
S(X(t» 

(8) 

(9) 

(10) 

Equation (10) gives the expected cost of the deposit insurance guarantee 

as a function of the guarantor's liquidation strategy, S(X(t». This cost 

equals the amount paid out by the insurer in the event of liquidation, 

X (t) - (1- /3)(1 + x)S(X (t» , times the factor (S, / S(X (t»)-Y*, which 

takes both the risk-neutral probability of liquidation and the time value of 
money into account. 

6.3.2 The Value of Bank Equity 
Bank equity can be modeled as a perpetual knock-out call option on 
(1- 13)(1 + x)S, with a knock-out price equal to the guarantors' liquidation 

strategy S(X(t». Let C_((1-/3)(I+x)S,;S(X(t») denote the value of 

this perpetual down-and-out option. Making the change in variables (1) 
and defining 

F(V) = C_ 
X(t) , 

F satisfies (3) subject to the boundary condition 

F(V) =0. 

(11) 

(12) 

Using (6) and setting at = 1 to avoid arbitrage, boundary condition (12) 
yields 
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- - --Y· 
F(V)=O=V+a2V , (13) 

and therefore: 

Hence, 

-i+y· 
a 2 =-V 

F = V + a2 . v-y· = V - if -( ~ ry
• 

From the definition of F, we get 
C"" = F(V)· X(t) 

~ X(t{v -v(~rJ 
=(I-f3)(1+X)(St-S(X(t))( St )-Y.J. 

S(X(t» 

(14) 

(15) 

(16) 

Equation (16) gives the value of bank equity as a function of the 

guarantor's liquidation strategy, S (X (t». This value equals total asset 

value net of liquidation costs, (1- {3)(1 + x)S , minus the discount resulting 

from the knock-out feature of the option, (1- {3)(1 + x)S(X (t»· 

(St / S(X(t)))-Y·. Note, again, that (St / S(X(t)))-Y· can be thought of as 

the risk-neutral probability of liquidation, adjusted for the time value of 
money. 

6.3.3 The Value of Social Welfare 
To analyze the welfare effects of deposit insurance, social welfare must be 
valued. An appealing measure of social welfare is the difference between 
the bank's equity value, C"", and the value of the deposit insurance 

guarantee, P"". Using (10) and (16), the value of the social surplus, IT, is 

given by: 

IT= C"" - P"" 

~ X(t{v -v(~r} X(t)(I-V)(~r (17) 

~ X(t{v -(~r) ~ (1- P)(I + x)S, - X(t)(~r 
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The value of social surplus as given by (17) equals asset value 

(1- fJ)(1 + x)S minus the expected payout to depositors, X (t)(S, I 8rr* . 

As usual, the factor (S, 18)-r* can be interpreted as the risk-neutral 

probability of liquidation, adjusted for the time value of money. 
Note that expressions (10), (16) and (17) are much simpler when they are 
represented using V. Consequently, this form shall sometimes be used in 
the sequel. 

6.4 The Guarantor's Liquidation Strategy and Social Welfare 
In this section, the guarantor's liquidation strategy and its influence on the 
value of bank equity and social welfare are discussed. Moreover, the 
question of whether deposit insurance can enhance social welfare is 
addressed. 
Through his liquidation strategy, the guarantor might follow several 
objectives. First, he might wish to minimize the cost of the deposit 
insurance guarantee. This question is addressed in section 6.4.1. Second, 
he might wish to maximize social welfare. This problem is discussed in 
section 6.4.2. Section 6.4.3 then comments on the generic ability of 
deposit insurance to enhance social welfare. 

6.4.1 Minimizing the Cost of the Guarantee 
To solve for the optimal exercise strategy from the guarantor's standpoint, 
one must remember that the guarantor holds a short put on the assets. 
Hence, he will seek to minimize its value. This can be achieved by setting 

iT = 1, (18) 
which yields a put option value of zero.3 Equivalently, the cost-minimizing 
liquidation strategy (18) can be written as: 

S(X(t» - X(t) (19) 
- (1-fJ)(I+x)' 

The intuition for this result is the following: By liquidating bank assets 
early, the guarantor avoids incurring any liability from the guarantee. The 
guarantee is, therefore, worthless. As we will see later, however, this 
liquidation strategy doesn't mean that deposit insurance as a whole is 
worthless. 

3 Note that by setting S = 0, the guarantor also minimizes the value of the 
guarantee. This result stems from the fact that depositors never withdraw if the 
bank is not liquidated. A more complicated model with depositors withdrawing 
their money randomly over time would eliminate this solution. 
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6.4.2 Maximizing Social Welfare 

Suppose now that the guarantor is not concerned with the cost of the 
guarantee, but chooses a liquidation strategy Y that maximizes social 
welfare. Differentiating (17) partially with respect to Y yields: 

~=_r*X(t)(~)-Y' <0 V-Y>O . (20) 
dV V V 

Hence, from a social welfare standpoint, it is optimal never to liquidate the 
bank, that is, to set Y = O. Note that this in turn implies S = 0 . This result 
is intuitively clear: by avoiding liquidation altogether, society can save on 
liquidation costs (which are a loss in this model). Figure 6.2 plots the 
values of equity C~, the guarantee p~ and social surplus n = C~ - p~ as 

a function of the guarantor's liquidation strategy S. It illustrates that 
social surplus is a monotone decreasing function of the liquidation
triggering asset value S, implying that the socially optimal liquidation 
strategy for the guarantor is S = 0 . 
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Figure 6.2: Value of bank equity C~ , the deposit insurance guarantee p~ 

and social surplus n as a function of the liquidation-triggering asset value 
S for the following parameter values: f3 = 0.05, x = 0.1, S = 120, 

X = 100, r - r* = 0.01 and (J = 0.2. As the liquidation-triggering asset 
value S is increased, both the value of equity and the value of the social 
surplus fall. The cost of the deposit insurance guarantee rises at first, and 
then falls. Hence, the socially optimal liquidation strategy for the guarantor 
is never to liquidate the bank, i.e. set S = O. 
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6.4.3 Can Deposit Insurance Enhance Social Welfare? 

This section is devoted to a very controversial question: can deposit 
insurance enhance social welfare? And if so, under what conditions? The 
method followed here is relatively simple. It consists in comparing social 
welfare (17) with the value of bank equity when there is no deposit 
insurance. 
From the analysis in Chapter 5, remember that when there is no deposit 
insurance, the value of bank equity equals 

C::'=(1-/3)(I+X)(S,-( X(t) )1+r*s,_r*). (21) 
(1-a)(I+x) 

For there to be a welfare gain from deposit insurance, social welfare in the 
presence of deposit insurance must exceed the value of bank equity in the 
absence of deposit insurance. Formally, one must have 

IT = (1- 13)(1 + x)S, _ X (t)( S, )-r* 
S(X(t» 

> (1- 13)(1 + X)(S, _ ( X(t) )1+r* s,-r*) = C::., 
(1- a)(1 +x) 

(22) 

that is 

X(t)( S, )-r* < (1-f3)(1+X)( X(t) )l+r's,_r*, (23) 
S(X(t» (l-a)(I+x) 

or 

(S(X (t» Y* < (1- /3)(1 + x)X (t) r* ((1- a)(1 + x) r(1+r*) 

I- f3 ( X(t) )r* 
= I-a (1-a)(1+x) 

(24) 

In words, deposit insurance will enhance social welfare if the guarantor 
chooses to liquidate the assets at a low enough value. It is interesting to 
note that the critical liquidation strategy S (X (t» under which deposit 

insurance enhances social welfare depends on two factors: 
(1- 13) I (1- a), which measures the value that can be saved by 
liquidating bank assets normally instead of through a fire sale, and 
X (t) I «1- a)(1 + x» , which is the asset value that would trigger a run if 
deposit insurance did not exist. 
To sum up, deposit insurance will create social value either if costly fire 
sales can be avoided (13 < a), or if the guarantor displays some 
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forbearance (and liquidates less frequently than would be the case if bank 
runs were possible). This implies that deposit insurance might enhance 
social welfare even if the guarantor provides no effective guarantee. To 
see this, suppose the guarantor, seeking to minimize the value of the 

guarantee, were to set S(X(t»=X(t)/((1-!3)(I+x», as posited by 

(19). Substituting this expression into (24) yields the following condition 
for social welfare enhancement through deposit insurance: 

Cl-;)ii+xJ <!((1-:)i;+xJ (25) 

Simplifying (25) then leads to 
!3 < a, (26) 

which is satisfied by assumption. 

6.5 The Incentive Effects of Deposit Insurance 
In this section, the effects of the existence of deposit insurance on the 
bank's optimal investment and funding decisions are analyzed. Section 
6.5.1 shows that the existence of deposit insurance does not alleviate the 
bank's risk-taking incentives. Section 6.5.2 then demonstrates that deposit 
insurance and forbearance on the part of the guarantor can be thought of as 
substitutes for bank capital. 

6.5.1 The Investment Decision 
A question of interest is that of knowing how the guarantor's liquidation 
strategy V influences the bank's risk-taking incentives. Remembering that 

and using 

and 

yields 

ac~ ac~ dy* 
a(J2 = ay * d(J2 

dy* y* 
--=--<0 
d(J2 (J2 

(27) 

(28) 

(29) 
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ac -
-T<O VV>O. 
dG 

(30) 

Hence, as long as the assets-to-deposits ratio at which the guarantor 
chooses to liquidate the bank is positive, the existence of deposit insurance 
does not alleviate the bank's incentive to reduce its risk. Figure 6.3 plots 
the value of bank equity C~ as a function of the liquidation-triggering 

assets-to-deposits ratio iT for different levels of asset risk G and illustrates 
that a lowering of iT raises equity value but does not alter the negative 
dependence of C~ on asset risk G. 
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Figure 6.3: Value of bank equity C_ as a function of the liquidation

triggering assets-to-deposits ratio V for different values of asset risk a and 
the following parameter values: f3 = 0.05. x = 0.1. S = 120. X = 100 and 

r - r* = 0.01. As V is increased. equity value falls. For any given V. 
equity value is higher. the lower the asset risk. 

This result is in sharp contrast to the conclusions of the existing hterature, 
which stress the risk-shifting incentives of deposit insurance. Where does 
the difference come from? 
Most of the existing literature implicitly or explicitly assumes that the 
guarantor cannot monitor the bank perfectly, and therefore cannot assess 
asset value properly. This alternative assumption is a possible explanation, 
as will be seen in Section 6.7. 
Another important point to be kept in mind when interpreting the results is 
the assumption implicitly used here that the guarantor chose a liquidation 
strategy iT, and then stuck to it. There is, however, nothing preventing the 
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guarantor in lowering V more and more as the asset value moves closer to 
the boundary. In the limit, the guarantor sets V equal to zero. This 
lowering of V may occur for a number of reasons, the most important 
being that the guarantor himself usually is an agent acting on behalf of the 
government. Moreover, politicians might be interested in hiding the extent 
of losses to their voters, which is an additional reason for lowering V or 
avoiding liquidation altogether.4 Note that, with V = 0, ac_ / (}y* = 0, so 

that the bank has no incentive to increase or decrease risk. 
In the absence of deposit insurance, depositors bear the full cost of losses 
and therefore have an incentive to withdraw their funds early. This 
incentive makes the threat of liquidation credible and self-enforcing, 
thereby leading the bank to reduce its risk. This fact may be an additional 
reason why the government often fails to liquidate banks early. If the 
guarantor were to liquidate, banks would tend to invest only in short-term, 
low-risk assets. This would have important consequences for the real 
economy, where long-term capital is required. Therefore, without deposit 
insurance, the possibility might exist that long-term capital becomes 
unavailable for investment. If the government recognizes this fact,· it might 
wish to make credible that it will not liquidate insolvent banks, thus 
enabling long-term investment. This point is similar to that made by 
Diamond and Dybvig (1983). 

6.5.2 The Financing Decision 

In this section, the influence of the guarantor's liquidation strategy on the 
optimal amount of capital is analyzed. At the time the financing decision 
is made, bank equity holders choose a capital x that maximizes their 
expected profit from funding the bank. Using (16) and setting So = Xo 
yields: 

G=C_ -xXo 

= Xo(I- J3(I+X)-(I-/3)(I+X)( V )I+Y*J. 
(1- /3)(1 + x) 

(31) 

Differentiating this expression with respect to x and setting the result 
equal to zero yields 

4 See Kane (1995) for an excellent overview of the agency problems of 
government deposit insurance. 
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I 

(1- /3)(1 +x) = V(r* I,/t' (32) 

Hence, x is decreasing in 1- if, which is a measure of the guarantor's 
forbearance. The effect of if on the optimal capital x and capi(al share 
x / (1 + x) is depicted in Figure 6.4. 

The analysis. in this section demonstrates that deposit insurance and the 
guarantor's forbearance not only are means of avoiding costly bank runs, 
fire sales and liquidation. Remember that, in equilibrium, bank runs would 
almost never occur. Rather, deposit insurance and forbearance might be 
thought of as substitutes for bank capital. It is, therefore, not surprising 
that deposit insurance was introduced in the Great Depression, in a period 
of relative capital scarcity. Deposit insurance and forbearance can be 
thought of as a means of keeping banks alive without requiring huge 
amounts of capital. 
To support this thesis, remember that, before deposit insurance was 
introduced, banks had much higher capital ratios than today. Kaufman 
(1988) reports values close to 25 percent at the tum of the last century. 
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Figure 6.4: Optimal capital x and capital share x / (1 + x) as a function of 

the liquidation-triggering assets-to-deposits ratio V, where x has been 
constrained to be positive, for the following parameter values: f3 = 0.05, 

r - r* = 0.01 and (J = 0.2. As V is increased, optimal capital x and capital 
share x / (l + x) rise. Thus, deposit insurance can be considered as a 
substitute for bank capital. 
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6.6 Deposit Insurance when there are Liquidation Delays 

The results derived in the previous section depend crucially on the 
assumptions that asset value is perfectly observable by the guarantor and 
that liquidation, once decided, can occur immediately. In this section, this 
latter assumption is relaxed. It is assumed that the guarantor can still 
observe asset value at no cost, but must wait some time '! before he can 
liquidate the assets, once he has decided to do so. The case in which the 
guarantor cannot observe asset value will be discussed in Section 6.7. 
In this setting, the game between the guarantor and the bank can be 
described as follows: as long as the asset value lies above the trigger 
S(X(t» , the bank operates freely. If S = S(X(t» , however, the 

guarantor decides to liquidate the bank and announces this to the bank. 
Denote the time at which this occurs by to. At this point, the bank may 

choose to change its investment policy. After the time '! elapses, assets are 
effectively seized and the bank owners get any amount in excess of the 
deposit value X (to + '!). The structure of the game is therefore that 
depicted in Figure 6.5. 

Bank Investment Decision 

Guarantor Liquidation Decision 

Bank Investment Decision 

I Effective Liquidation I 
Figure 6.5: Structure of the game when there is a delay of t' between the 
liquidation decision and effective liquidation. After the bank chooses its 
investment strategy, the guarantor observes asset value and might choose to 
liquidate the bank. Then, the bank may choose to change its investment 
strategy. Finally, after the delay elapses. effective liquidation takes place 
and payoffs are received. 
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From the above assumptions, the payoff to the bank's shareholders is 
Max[O; (1- fi)(1 + X)S'oH - X (to + r)] , (33) 

which has the same structure as the payoff on a call option. The payoff to 
the guarantor is 

Min[O;(1- fi)(1+ X)S'oH - X (to +r)] (34) 

and has the same structure as that of a put option. 
To understand the incentive problem resulting from the impossibility of 
immediate liquidation, consider the risk-taking incentives of the bank. As 
long as the guarantor has not announced liquidation, the bank has an 
incentive to reduce its risk in order to reduce the probability of the asset 
value reaching the liquidation trigger. Once liquidation has been decided, 
however, the bank holds a call option with finite life r and has an incentive 
to increase asset risk to raise the value of the option. 
This fact has an important implication for the practice of deposit 
insurance: to avoid risk-shifting by the bank, the guarantor should monitor 
the asset value closely and seize the assets as soon as he decides to 
liquidate the bank. This result can be extended to other firms. Many 
bankruptcy laws, for example, place the firm under judicial administration 
to avoid the equity holders or managers' engaging in asset substitution or 
fraud. Our analysis therefore has a very intuitive interpretation. 

6.7 Deposit Insurance with Unobservable Asset Value 

Suppose now that the guarantor cannot observe the asset value at all and 
wishes to lead the bank to liquidate voluntarily as soon as the assets-to
deposits ratio V reaches a pre-specified level. Then, he must try to 
construct an incentive contract such that liquidating the bank early is a 
dominant strategy for the equity holders. The structure of the game, which 
is depicted in Figure 6.6, stresses that the decision of whether to liquidate 
the bank now lies in the hands of the equity holders. 

6.7.1 A First Attempt: Extending the Model of Chapter 3 

One is tempted to use a contract of the type analyzed in Chapter 3, which 
was shown to be able to lead equity holders to declare bankruptcy 
voluntarily at any pre-specified level of asset value. In the case of deposit 
insurance, one would require the bank's equity holders to pay an 
instantaneous premium of ¢X (t)dt to the insurer, which would have the 

same revelation function as the interest payment ¢D(t)dt of Chapter 3. 

The problem with this approach, however, is that the bank's equity holders 
might decide to have the bank pay the premium with its own assets instead 
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of paying it themselves. This might result in bankruptcy being declared 
later than the guarantor would expect. 

Contract Bank/Guarantor 

Bank Investment Decision 

Bank Liquidation Decision 

Figure 6.6: Structure of the game when the guarantor cannot observe asset 
value. After agreeing on a deposit insurance contract with the guarantor, 
the bank chooses an investment strategy. At some point, depending on the 
incentives set by the contractual provisions, the bank might decide to turn its 
assets to the guarantor for liquidation. 

To see this, suppose that the premium l/JX (t)dt is paid through the sale of 
bank assets. Then, the value of the bank's assets, S, evolves according to 

dS = (J1S -l/JX (t))dt + aSd'l , (35) 

and the value of bank equity, E, satisfies the following differential 
equation: 

!(52 S2 Ess + (rS -l/JX(t))Es + r * X(t)E x(t) - rE = 0, (36) 

where subscripts to E denote partial derivatives, subject to the following 
boundary conditions: 

E(S) = 0, 

E(oo) = S _l/JX(t) . 
r-r* 

(37) 

(38) 

Boundary condition (37) states that equity holders get nothing if the bank 
is closed. Boundary condition (38) states that, as asset value becomes very 
large, bank closure becomes unlikely and equity value therefore equals 
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asset value minus the present value of insurance premium payments. 
Making the change in variables 

and defining 

S 
V=-

x(t) 

F(V) = E(S) 
X(t) , 

(39) 

(40) 

ta2V2 F" + ((r - r*)V - cfJ)F' - (r - r*)F = O. (41) 

To solve this equation, we use the same methodology as in Black and Cox 
(1976) and Hua and Sundaresan (1997). Define 

Z=l!L 
a 2V 

(42) 

and 

F(V) = ZY*e-zh(Z). (43) 

Then, (41) reduces to Kummer's equation 

Zh" +(2+ r *-Z)h' - 2h = 0, (44) 

which has general solution of the form 

h(Z) = u)M(2,2+r*,Z)+u2Z-(I+Y*) M(I-r*,-r*,Z), (45) 

where M(,,) is the confluent hypergeometric function.6 Substituting the 

original variables back yields 

5 From the definitions in equations (39) and (40), Es = F', Ess = F" / X , 

Ex = F - VF' . Substituting these expressions into (36) yields 

ta2S2 F" / X +(rS -CPX)F' + r* X(F - VF') - rXF = O. 

Then, using the definition of V, one obtains 

x(ta2v 2 F" +(rV - CP)F' + r *(F - VF') - rF)= O. 

Collecting terms and crossing out X then gives (41). 
6 The confluent hypergeometric function M(·,.,.) IS defined as 

~ a xn 
M(a,b,x) = 1+ ~ b: -;!, where an =a(a+l)(a+2) ... (a+n-l) and analogously 

for bn • It has the following properties, which are described in Slater (1968): 

M (a,b,O) = 1 , 

M(a,b,x) = eX M(b-a,b,-x), 

X l-b M(1 +a -b,2-b,x) = xl-bex M(1-a,2-b,-x). 
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= a l (l:L)Y* e -::v M(2,2 + r*, l:L) 
a 2V a 2V 

(46) 

+a,e-:!V(:!v r M(l-y*.-r*·:!v} 
Using the property M(a,b,x) = eX M(b-a,b,-x) given in Footnote 6 and 

remembering that M ( -1, -r*, x) = 1 + x / r * , we get 

F(V) = a{:!v Y* M(r*,2+ r*,- :!V) 

(47) 

Hence, 
E(S) = F(V)X(t) 

= X( )(2c/JX(t»)Y* M( * 2 * _ 2c/JX(t») a l t 2 r ' + r , 2 as as 
(48) 

+ a2 a 2 S (1- _1 2c/JX(t»). 
2c/J r * a 2 S 

Applying boundary condition (38) yields a2 = 2c/J / a 2 • Substituting this 

result into (48), one obtains 

E(S) = a l X (t)(2c/J~(t»)Y* M(r*,2 + r*, 2c/J~(t»)+ (s _ c/JX(t»). (49) 
a S a S r-r* 

Applying boundary condition (37) then yields 

a l = _(~ __ c/J_)(2c/JX(t»)-Y*/M(r*'2+r*,_ 2c/JX(t»). (50) 
X(t) r-r* a2S a2S 

Therefore, the value of equity, E, is given by: 

M( * 2 * 2c/JX(t») 
( )( )

-y* r, + r,- 2 

E(S) = S - c/JX(t) + c/JX(t) _ S ~ as. (51) 
r-r* r-r* S ( 2~(t») M r* 2+r* __ 'I'=-----.:....c.. , , a 2S 
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It is interesting to note that equity value (51) equals asset value S minus 
q,X (t) / (r - r*), the present value of insurance premium payments if 

bankruptcy never occurs, plus a term that takes the wealth effects of 
bankruptcy into account. 
At this point, the equity holders' bankruptcy strategy is still unknown. To 
determine it, one first removes terms where S does not appear in (51), 
thus obtaining 

Sr* (q,X(t) -s). 
M(r*'2 + r*,- 2q, ) r-r* 

(12S/X(t) 

(52) 

Taking the logarithmic derivative of (52) with respect to S yields the 
first-order condition 

M'( *2+ *_2q,X(t»)2q,X(t) 
r * _ r, r, (12 S (12 S 2 1 

--"--~------<---::--+ = 0, (53) 
S M(r*,2+ r *,- 2q,~S(t») S _ q,X(t: 

(1 r-r 

which can also be written as 

( r* r-r* ) (12S2 M'O 
S + (r-r*)S -q,X(t) 2q,X(t) = MO' 

(54) 

Now, M' / M is positive since r* > 0.7 Therefore, 

r* r-r* -=-+ >0, 
S (r-r*)S -q,X(t) 

(55) 

that iss 

7 Using the property M'(a,b,x)=~M(a+l,b+l,x) of the confluent 

hypergeometric function and the fact that M(a,b,x) = eX M(b-a,b,-x) yields 

M'(r* 2+r* - 2l/>X5!)) ~M(l+r* 3+r* _ 2l/>X5!)) 
, , a 2 S 2 + r * "a 2 S 

M( * 2 * - 2l/>X(t)) M( * 2 * _ 2l/>X(t)) r ' +r , 2- r , +r ' 2-as as 

M(2 3 * 2l/>X(t)) * ' +r, 2S-r a =-- >0. 
2+r* M(22 * 2l/>X(t)) , +r, 2-as 
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s < CPX(t)~, (56) 
r-r*l+r* 

which means that, when premium payments can be made from existing 
assets, the optimal bankruptcy trigger is lower than in the case where the 
premium is paid by the shareholders.9 One might suspect that the equity 
holders' optimal bankruptcy strategy is to wait until the asset value reaches 
zero before defaulting on insurance premium payments. The reason is that 
when the insurance premium is paid from bank assets, paying it costs 
nothing directly to equity holders. Therefore, the payment has no 
commitment value and the incentive scheme breaks down. In fact, one can 
show that the first-order condition (54) will be satisfied asymptotically as 
S J, 0 . \0 Figure 6.7 illustrates this result graphically. 

8 One can check by contradiction that (r-r*)S -f/>X(t) must be negative in the 

optimum: suppose that this were not the case. Then, we would have 

- cpX(t) r* S>----. 
r-r* l+r* 

Together, these conditions would imply 

( r * r - r * ) a 2 S2 r * a 2 S2 a 2 S 
S + (r-r*)S -f/>X(t) 2f/>X(t) > S 2f/>X(t) =r* 2f/>X(t) 

a 2 f/>X(t) r* r* r* >r*---------=-->--
2f/>X(t) r-r* l+r* l+r* 2+r* 

M(23 * 2f/>X(t)) M'( *2 *_2f/>X(t)) * ' +r, 2S r , +r, a2S 
> r a 

2+r*M(22 *2f/>X(t)) M(*2 *_2f/>X(t)) , , +r, 2- r , +r , 2-
as as 

thus violating the optimality condition (54). 
9 Remember that, when the premium is paid by the shareholders, the analysis of 
Chapter 3 applies and the bankruptcy-triggering asset value is given by 

S = f/>X(t)~. 
r-r* l+r* 

10 From Slater (1968), 

lim M(a,b~x) = r(b) , 
.. i- e"xa- r(a) 

where r(a) is the gamma function, r(a) = r sa-le-·'ds. Applying this property to 

the right hand side of (54) using the relationship 
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Figure 6.7: Plot of equity value (51) against the bankruptcy-triggering asset 
value S for the following parameter values: tP = om, S = 100, X = 50, 
r - r* = 0.01 and (J = 0.2. When the insurance premium can be paid from 
bank assets, it has no commitment value and the equity holders' optimal 
bankruptcy strategy is S = 0 . 

M'( * 2 * - 2tPX(t») M(23 * 2~X(t») r , +r , 2- , +r, 2-
_+ _____ (J_S___f_ _ r * (J S 

M( * 2 * _ 2tPX(t») - 2+r* M(22 * 2tPX(t») r , +r, (J2S ' +r , (J2S 

demonstrated in Footnote 7 yields 

,( 2tPX(t») (2tPX(t») M r*,2+r*,-~ * M 2,3+r*,~ r (J r r (J 
~m (* * 2tPX(t») = 2+r* fm ( * 2tPX(t») 

M r ,2+r ,- (J2S M 2,2+r , (J2S 

r* . M(2,3+r*,x) r*. r(3+r*)eX x -l-Y"r(2) 
=--hm =--hm • 

2+r*xi- M(2,2+r*,x) 2+r*xt- r(2+r*)e X x-r 'r(2) 

r * r(3 + r*) 1 1 
= lim- = r*lim- = 0, 

2+r* r(2+r*) xt- x xt- X 

so the right hand side of (54) is zero. Straightforward calculations then show that 
the left hand side of (54) is also zero, so that (54) is asymptotically satisfied as 

SJ-O. 
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6.7.2 Merton's Solution 
In a model of surplus insurance, Merton (1997) constructs an incentive 
contract to lead the insiders to reveal the true current asset value and 
declare bankruptcy as soon as the value of the surplus falls to zero. In this 
section, a similar analysis is conducted for the case of deposit insurance. 
The basic intuition is that the guarantor can lead the bank to declare 
bankruptcy early by promising to pay a certain amount to equity holders if 
they choose to liquidate the bank. This promise can be interpreted as an 
incentive contract. 
For simplicity, suppose that no insurance premium is paid and that the 
value of the bank's assets follows the usual geometric Brownian motion 

dS = pSdt + aSdZ . (57) 

As before, the deposits are assumed to follow 
X(t) = Xo ·er*./ • (58) 

Let E(S) denote the value of bank equity, and ignore bank capital and 

liquidation costs, which would only complicate the analysis without 
changing the main insight. Making the change in variables 

V=~ (59) 
X(t) 

and defining 

F(V) = E(S) 
X(t) , 

F satisfies the following ordinary differential equation: 

ta2v2 F" + (r - r*)VF' - (r - r*)F = O. 

The general solution is 
* r-r* 

F(V) = a1V +a2V-r , r*= 2--2-, 
a 

(60) 

(61) 

(62) 

Now, suppose the guarantor wants the assets to be turned in as soon as 
V = c , that is, wants to render 

V =c (63) 

self-enforcing, where Y denotes the assets-to-deposits ratio at which the 
equity holders choose to turn the bank's assets to the guarantor for 
liquidation. To achieve this goal, the guarantor can enter the following 
contract with the bank: if the bank turns the assets to the guarantor, it will 
receive 

Max[O;a+bY]. (64) 
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Applying this boundary condition to equation (62) with a l = 1 to avoid 

arbitrage yields 

F(V)=V +a2V-Y* =a+bV ¢::> a2 = (a+(b-l)V)VY*. (65) 

F therefore becomes 

F(V) = V + (a + (b-l)V)(; rY
*, (66) 

and the value of equity equals II 

E(S) ~ x(v +(a+(b-l)V~~ r") (67) 

Bank equity holders choose that value of V which maximizes the value of 
equity, that is, set 

J~~) ~ x«b-l)(~r + V (a+(b-l)V\~rJ 
= XV-Y*((1 + r*)(b -l)VY* + r * aVY*-I) = 0, 

thus yieldingl2 

- a r* V=---. 
I-bl+r* 

(68) 

(69) 

The guarantor, knowing that the bank will choose (69), should therefore 
set a and b such that 

- a r* V =-----=c, 
I-bl+r* 

which will be self-enforcing if 

II For convenience, equity value is written as a function of V = S, / x(t) . 

12 Since 

rPE(s)1 ( - - ) av 2 v=~~ = XV-r* (l+y*)(b_1)Vr*-ly*+y*(y*-I)aVr*-2 

I-b l+r* 

= xv-r*vr*-2Y *((l+y*)(b-1)V +(y*-I)a) 

= XV-r*Vr*-2 y *(-ay*+(y*-I)a) 

= -ay * XV-r*Vr*-2 < 0, 

it is a maximum. 

(70) 
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- a r* a+bV =a+b-----
I-b l+r* 

= a((l-b)(l+r*)+br*) = a(l+r*-b) >0. 
(71) 

(l-b)(l+r*) (l-b)(l+r*) 
This means that, in order to induce the bank to tender assets as the 
boundary (70) is reached, the guarantor has to pay a positive amount to 
equity holders when they turn in their assets for liquidation. This is 
exactly the opposite of what we tried to do in the previous section, where 
the bank's no more paying the insurance premium was to trigger 
liquidation. 
A natural question that arises is that of knowing how contract (70) 
changes the risk-taking incentives of the bank. Substituting the equity 
holders' optimal bankruptcy decision (70) into the equity value (67) yields 

E(S)=X v+(a+(b-l)_a ~)[ V * ]-r* 
I-b l+r* ~_r_ 

1-b 1 + r * (72) 

= x(v +_a_(I-b)(I+ r *)V)-r*]. 
l+r* ar* 

Removing constant terms and taking logs yields 

<l> = Ina -In(1 + r*) - r *In((l-b)(l + r*)v) , (73) 
ar* 

which is to be maximized. Now, 

a<I> = __ l __ ln(l-b)(l+r*)V)_r*(_l ___ l ) 
ar* l+r* ar* l+r* r* 

= _(_l_+ln((l-b)(l+r*)V)+~_lJ (74) 
l+r* ar* l+r* 

= _In((I-b)(l +r*)V) < 0, 
ar* 

since In((l- b)(1 + r*)V / (ar*») is positive by assumption. Hence, using 

dr* r* -=--<0 (75) 
da2 a 2 ' 

we get 
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~ ~ dr* --=--->0 
da2 dy * da 2 ' 

(76) 

which implies that under contract (70), the bank has an incentive to 
increase asset risk in order to raise equity value. This clearly restricts the 
usefulness of contract (70) for the practice of deposit insurance. At this 
point, it is interesting to note that we are facing a situation that is very 
similar to that encountered in Chapter 3. When asset value is observable, 
the threat of liquidation by the guarantor leads the bank to reduce its risk 
as much as possible. However, when asset value is unobservable, the 
guarantor's attempt to construct an incentive contract triggering early 
liquidation fails because it gives the bank an incentive to increase its asset 
risk. 

6.S Conclusion 

Deposit insurance prevents bank runs by ensuring depositors that they will 
not suffer if others choose to withdraw their money and they do not. 
Building on the results of Chapter 5, and assuming that the bank's asset 
value is perfectly observable and that the guarantor can seize the bank's 
assets and liquidate them immediately if he wishes, this chapter began by 
valuing deposit insurance as a perpetual put option and bank equity as a 
knock-out perpetual call option, conditional on the guarantor's liquidation 
strategy. 
In order to analyze the costs and benefits of deposit insurance, a measure 
of social welfare, the difference between the bank's equity value and the 
value of the insurance guarantee, was introduced. It was shown that 
deposit insurance will be socially beneficial if it can avoid costly fire sales 
or asset liquidation altogether. 
In analyzing the incentive effects of deposit insurance, it was 
demonstrated that risk-reduction incentives similar to those implied by the 
possibility of bank runs exist if the insurer can monitor asset value 
perfectly and liquidate assets immediately. Moreover, the guarantor's 
forbearance was shown to lower the bank's optimal capital share. Deposit 
insurance can therefore be considered as a substitute for bank capital. 
However, the bank's incentive to reduce asset risk is not robust. When the 
assumptions of immediate liquidation and perfect observability of current 
asset value by the guarantor are relaxed, bank behavior changes. More 
specifically, if there are liquidation delays, risk-shifting behavior by banks 
may arise once liquidation has been announced by the guarantor. 
If the guarantor is unable to observe asset value altogether, then an 
incentive contract such that the bank tenders its assets as soon as they 
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reach some specific value can be constructed. This contract, however, 
gives rise to a risk-shifting problem. This limits its usefulness. for the 
practice of deposit insurance. It also stresses the importance of a close 
supervision of insured depository institutions in order to avoid the 
incentive problems resulting from unobservable asset values. 
In this setting, we are thus facing a situation that is very similar to that 
encountered in Chapter 3. When asset value is observable, the threat of 
liquidation by the guarantor leads the bank to reduce its risk as much as 
possible. However, when asset value is unobservable, the guarantor's 
attempt to construct an incentive contract triggering early liquidation 
might fail because it gives the bank an incentive to increase its asset risk. 
Again, monitoring asset value and monitoring asset risk can be considered 
as substitutes. 



7. Summary and Conclusions 

In recent years, game theory has faced methodological problems in 
handling uncertainty and timing decisions in dynamic models. This book 
presents a method to analyze these kind of situations, the game theory 
analysis of options, which can be understood as an attempt to integrate 
game theory and option pricing. 
As it is presented in Chapter 1, the game theory analysis of options in 
effect replaces the maximization of expected utility encountered in 
classical game theory models with the maximization of the value of an 
option, which gives the arbitrage-free value of the payoffs to the players 
and can therefore be considered as a proxy for expected utility. Over the 
expected-utility approach, the option-pricing approach has the advantage 
that it automatically takes the time value of money and the price of risk 
into account. The main advantage of the method, however, lies in its 
ability to separate two issues in economic model building, namely, that of 
the valuation of uncertain future payoffs and that of strategic interactions. 
Using option pricing, arbitrage-free values for the payoffs to the economic 
agents can be obtained. These values are then inserted into the strategic 
games between the agents, which can thus be analyzed more realistically. 
By integrating game theory and option pricing, the game theory analysis of 
options actually provides the link between markets and organizations: 
while the use of option pricing enables the valuation of the. players' 
payoffs using market criteria, game theory modeling takes the institutional 
structure of organizations into account. 
In the subsequent chapters, a number of examples from the theory of 
corporate finance and financial intermediation in continuous time are 
presented. 
Chapter 2 demonstrates that the two classical problems in financial 
contracting, namely, the risk-shifting problem and the observability 
problem, are very closely related. Whereas solving the risk-shifting 
problem calls for a linear profit-sharing rule between the lender and the 
borrower, solving the observability problem results in a concave payoff to 
the lender and a convex payoff to the borrower. This convexity, however, 
gives the borrower an incentive to increase project risk. There is, 
therefore, a tradeoff between both problems. They can only be solved 
simultaneously if the lender's claim becomes risk-free, which can be 
achieved through full collateralization of the loan. 
The analysis of endogenous bankruptcy in Chapter 3 demonstrates that the 
amount of debt and the interest rates on this debt influence the equity 
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holders' bankruptcy decision. This, in tum, has an effect on the structure 
of debt contracts and the capital structure choice at initial time. In 
particular, the equity holders choose a capital structure so as to hold the 
expected life of companies constant. Finally, Chapter 3 shows how debt 
holders can use interest payments to lead the equity holders to declare 
bankruptcy as soon as the asset value reaches a pre-specified level. 
The analysis of junior debt in Chapter 4 demonstrates that a junior debt 
issue reduces the value of senior debt through its influence on the equity 
holders' bankruptcy decision. This wealth transfer between different 
classes of security holders distorts the equity holders' capital structure 
choice and may give rise to socially suboptimal capital structures. 
Moreover, this result invalidates the conventional wisdom that seniority 
fully protects debt holders against adverse wealth effects resulting from 
subsequent debt issues. 
The analysis of bank runs in Chapter 5 shows that bank runs may occur as 
soon as the value of the bank's assets (net of liquidation costs) falls below 
the face value of deposits. Modeling the value of bank equity as a knock
out call option, it is demonstrated that the possibility of a bank run leads 
the bank to reduce its asset risk, and eventually to invest everything in the 
risk-free asset. Demandable debt can thus be understood as an optimal 
contractual arrangement to preclude banks from engaging in risk-shifting 
activities. It results in a separation of the returns for the time value of 
money and for the riskiness of the underlying venture. 
Using the results of Chapter 5, Chapter 6 first analyzes the costs and 
benefits of deposit insurance. In particular, it shows that deposit insurance 
is socially beneficial to the extent that it lowers liquidation costs. This 
occurs through the avoidance of costly fire-sales that would be triggered in 
the event of a bank run. Liquidation will occur less frequently if a fall in 
the asset value below the face value of deposits is tolerated by the 
guarantor. Consequently, some forbearance on the part of the guarantor 
typically is socially beneficial. In analyzing the incentive effects of deposit 
insurance, it is shown that its existence has no influence on the bank's 
investment incentives as long as the guarantor can monitor the asset value 
perfectly and is able to seize or liquidate bank assets immediately. If this is 
not the case, however, some interesting incentive problems may arise. 
More precisely, if the guarantor has to wait before he can liquidate the 
bank, his announcement to liquidate will induce the bank to increase its 
risk. If the guarantor cannot observe asset value at all, then he has to 
construct an incentive contract leading the bank to liquidate on its own in 
due time. The analysis demonstrates that the incentive scheme developed 
in Chapter 3 might break down. Instead, the guarantor has to enter a 
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contract with the bank promising to pay a certain positive amount to the 
shareholders if they declare bankruptcy. This contract, however, gives rise 
to a risk-shifting problem. Hence, monitoring asset value and monitoring 
asset risk can be considered as substitutes. 
This short overview of the main results of this text illustrate how powerful 
an instrument the game theory analysis of options is. The methodology 
presented in the preceding chapters can, no doubt, be applied to other 
problems of dynamic strategic interactions under uncertainty, such as real 
investment. 
The method has, however, some important limitations. First, although 
separation of valuation and strategic issues is possible, the mathematical 
expressions obtained in the models of the preceding chapters were, in 
general, quite complex. This mathematical complexity, which is inherent 
to option pricing, means that simple, closed-form solutions might not 
always be obtainable. 
Second, the method only works easily if the players' optimal strategies are 
non-stochastic, i.e. do not depend on the value taken by the state variable. 
The reason is that if the optimal strategy is state- and path-dependent, 
valuation of the players' payoffs using traditional option. pricing 
methodologies becomes tedious, if not impossible. As a result, the players' 
optimal strategies in the preceding stages cannot be computed. For 
instance, in the analysis of junior debt, it is not possible to value senior 
debt before junior debt is issued since the equity holders' decision to issue 
junior debt depends on current project value, which is stochastic. These 
restrictions should be kept in mind when applying this method. They also 
provide directions for further research. 
Finally, it should be remembered that continuous-time modeling is an 
abstraction of reality. Thus, caution is required when interpreting the 
results obtained with the method. The analysis of any model mostly 
requires restrictive assumptions. Nevertheless, continuous-time analysis 
can provide a good approximation. 
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