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Editorial on the Research Topic

Bridging Music Informatics With Music Cognition

Over 30 authors contributed 15 articles toward this research topic. Collectively this body of work
represents a bridge between music informatics and music cognition, covering a broad range of
research topics.

We can categorize these fifteen articles into one of the following groups or a combination of
them, since the groups are not mutually exclusive:

(1) Research addressing problems or needs fundamental to one domain but borrowing methods,
approaches, and/or insights from the other domain.

(2) Research addressing problems or needs common to both domains and borrowing methods and
insights from either of the two domains.

(3) Research addressing problems or needs of one domain with strong implications for the other
domain.

Eleven articles (i.e., 73.3%) attempt to elucidate underlyingmental processes related tomusic. These
articles may be thought of as predominantly aligned withmusic cognition (Baker andMüllensiefen;
Barone et al.; Casey; Foubert et al.; Kim;McAdams et al.; McFee et al.; Siedenburg andMüllensiefen;
Stober; van der Weij et al.; Vempala and Russo). Two articles (i.e., 13.3%) (Kaneshiro et al.; Thoret
et al.) explore issues that fall mainly within the space of music informatics, while the two remaining
articles (i.e., 13.3%) (Janssen et al.; Krumhansl) explore areas with research motivations relevant to
both music cognition and music informatics. This cursory analysis might suggest that only limited
interactions between these domains exist. With the majority of interactions biased toward music
cognition, one might argue that this fragile new bridge is at risk of collapse!

However, a closer examination of the articles reveals a richer and balanced network of
interactions. Of the eleven articles that are predominantly aligned with music cognition, no less
than six (Barone et al.; Casey; Foubert et al.; McAdams et al.; Vempala and Russo; Siedenburg and
Müllensiefen) use feature extraction methods hailing from music informatics. In other words, the
dependence of these studies on music informatics should not be understated. Additionally, most of
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these eleven articles have moderate to strong implications
for music informatics. Likewise, the two articles that fall
predominantly within music informatics, have implications for
music cognition.

Since all the articles present research in more than one
key area within music informatics and music cognition, they
may be thought of as forming dynamic clusters that may be
characterized differently depending on one’s vantage point. The
key areas driving these clusters include but are not limited to:
statistical and computational modeling, machine learning, music
and emotion, musical preference and engagement, rhythm and
meter perception, musical timbre and instrument identification,
music similarity, music representation, structural segmentation,
implied harmony, music therapy, and big data analysis.

Baker and Müllensiefen, Kim, McAdams et al., van der
Weij et al., Vempala and Russo, use computational modeling
as a means to explain or interpret behaviors associated with
music cognition. van der Weij et al. use a probabilistic model
of meter expectation to explain the effects of enculturation.
But their model is generative and borrows techniques from
machine learning, thus bridging into music informatics. Both
McAdams et al. and Vempala and Russo explore music and
emotion. While McAdams et al. examine perceived emotion
based on the acoustic properties of timbre, Vempala and
Russo explore higher-level emotion judgments through a classic
cognitive modeling framework using machine learning methods.
Baker and Müllensiefen look at how similarity in compositional
structure affects salience and recognition, specifically through
the use of Wagner’s leitmotives. Among all the computational
modeling studies, Kim’s gradient frequency neural network for
estimating implied harmony, is the only biologically inspired
low-level computational model consisting of tonotopically tuned
nonlinear oscillators.

Both Stober and Casey present findings on music
representation as assessed by neural activity—a topic that
intersects music cognition, music information retrieval,
and cognitive neuroscience. Stober explores music imagery
information retrieval through EEG recordings whereas Casey
examines neural representation of music in naturalistic listening
conditions through fMRI. Both studies strongly depend on
machine learning and deep learning methods. Stober’s work also
highlights the need for sharing open datasets. Open science is
a practice common to music informatics and one that is fast
gaining ground in music cognition. This approach promotes
collaborative research endeavors and encourages replicability of
research findings.

Several studies in this topic address the importance of
timbre in music. While Siedenburg and Müllensiefen focus
on music similarity judgments, Thoret et al. look at timbre
and the modulation power spectrum as feature sources for
musical instrument identification. Thoret et al.’s work is
similar to, McAdams et al. since both inspect the role of
timbre in music perception. However, given the importance of
automatic source recognition in music informatics, it can be
argued that Thoret et al.’s work on instrument identification
is more closely aligned with music informatics than music
cognition.

Barone et al., Kaneshiro et al., and Janssen et al. emphasize
the role of corpus analysis methods in music informatics and
music cognition. Janssen et al. uses a folk music corpus to study
the relationship between musical memory and melodic variation
with pattern matching—research that is more traditionally
aligned with music cognition but has clear implications for
music informatics. Barone et al. and Kaneshiro et al. focus on
the analysis of big data - an area that has become especially
relevant since the advent of cloud storage and high performance
computing resources. Barone et al. examine statistical regularities
in music download patterns of listeners. Specifically, they look
at genre and emotion preference using acoustic features. Their
work serves as yet another example of research problems
fundamental to music cognition using methods borrowed from
music informatics.

Kaneshiro et al. also explore musical behavior of listeners at
scale. They study the types of musical events within a piece of
music that lead to enhanced engagement of the listener. Despite
addressing issues related to perception and preference in music
cognition, their work adheres more to music informatics because
of its application areas comprising music discovery, multimedia
search, and musical engagement.

McFee et al.’s work focuses on the analysis of musical
structure, and its role in hierarchical music segmentation by
annotators. They present ways to overcome limitations during
the occurrence of inter-annotator disagreements because of
ambiguous musical structure. Segmentation algorithms are an
active area of music informatics while perception of musical
structure is also integral tomusic cognition. As such, this research
falls well within the scope of both music informatics and music
cognition.

Foubert et al.’s article stands out as the only article with
application in music therapy. Their research is based on the
hypothesis that abnormal timing deviations during musical
improvisation can be used as predictors of interpersonal
relationship instability—a characteristic of borderline personality
disorder. A statistical model motivated from music cognition,
with rhythm and tempo-based pattern matching features
borrowed from music informatics, is used to diagnose patients
with borderline personality disorder.

Krumhansl’s article presents the results of an extensive survey
on the contexts in which people heard popular music in
their lifetimes, and how they developed their preferences for
music. The survey shows several interesting results about the
progression of music listening across the life span of different
participants. The results also provide more insights and context
about different effects such as generational effects, song specific
age effect, decade effect, influence of emotion on memory and
preference, among others. This study has relevance for music
informatics in particular, and for the music industry more
generally.

Given the breadth of research occurring at the intersection
of music informatics and music cognition, these 15 articles
represent a small sampling. Nonetheless, through their range and
diversity of topics, these articles give us a sense of the nature
and scope of research at this intersection. Hence, we can safely
conclude that, far from risk of collapse, the bridge between music
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informatics and music cognition is built on solid foundations.

The diversity of interactions explored in this topic suggests that

this bridge is sustainable and that it will continue to support
fruitful activity for decades to come.
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Evaluating Hierarchical Structure in
Music Annotations
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Music exhibits structure at multiple scales, ranging from motifs to large-scale functional

components. When inferring the structure of a piece, different listeners may attend to

different temporal scales, which can result in disagreements when they describe the

same piece. In the field of music informatics research (MIR), it is common to use corpora

annotated with structural boundaries at different levels. By quantifying disagreements

between multiple annotators, previous research has yielded several insights relevant to

the study of music cognition. First, annotators tend to agree when structural boundaries

are ambiguous. Second, this ambiguity seems to depend onmusical features, time scale,

and genre. Furthermore, it is possible to tune current annotation evaluation metrics to

better align with these perceptual differences. However, previous work has not directly

analyzed the effects of hierarchical structure because the existing methods for comparing

structural annotations are designed for “flat” descriptions, and do not readily generalize

to hierarchical annotations. In this paper, we extend and generalize previous work on

the evaluation of hierarchical descriptions of musical structure. We derive an evaluation

metric which can compare hierarchical annotations holistically across multiple levels. sing

this metric, we investigate inter-annotator agreement on the multilevel annotations of two

different music corpora, investigate the influence of acoustic properties on hierarchical

annotations, and evaluate existing hierarchical segmentation algorithms against the

distribution of inter-annotator agreement.

Keywords: music structure, hierarchy, evaluation, inter-annotator agreement

1. INTRODUCTION

Music is a highly structured information medium, containing sounds organized both
synchronously and sequentially according to attributes such as pitch, rhythm, and timbre. This
organization of sound gives rise to various musical notions of harmony, melody, style, and
form. These complex structures include multiple, inter-dependent levels of information that are
hierarchically organized: from individual notes and chords at the lowest levels, to measures,
motives and phrases at intermediate levels, to sectional parts at the top of the hierarchy (Lerdahl
and Jackendoff, 1983). This rich and intricate pattern of structures is one of the distinguishing
characteristics of music when compared to other auditory phenomena, such as speech and

environmental sound.
The perception of structure is fundamental to how listeners experience and interpret music.

Form-bearing cues such as melody, harmony, timbre, and texture (McAdams, 1989) can be
interpreted in the context of both short and long-term memory. Hierarchies are considered a

8
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fundamental aspect of structure perception, as musical structures
are best retained by listeners when they form hierarchical
patterns (Deutsch and Feroe, 1981). Lerdahl (1988) goes so far
as to advocate that hierarchical structure is absolutely essential
for listener appreciation of music since it would be impossible
to make associations between nonadjacent segments without it.
Hierarchical structure is also experienced by listeners over a
wide range of timescales on the order of seconds to minutes
in length (Farbood et al., 2015). Although interpretation of
hierarchical structure is certainly influenced by acculturation
and style familiarity (Barwick, 1989; Clayton, 1997; Drake, 1998;
Drake and El Heni, 2003; Bharucha et al., 2006; Nan et al.,
2006), there are aspects of it that are universal. For example,
listeners group together some elements of music based on
Gestalt theory (Deutsch, 1999; Trehub and Hannon, 2006), and
infants have been shown to differentiate between correctly and
incorrectly segmented Mozart sonatas (Krumhansl and Jusczyk,
1990).1

The importance of hierarchical structure in music is further
highlighted by research showing how perception of structure
is an essential aspect of musical performance (Cook, 2003).
Examination of timing variations in performances has shown
that the lengthening of phrase endings corresponds to the
hierarchical depth of the ending (Todd, 1985; Shaffer and Todd,
1987). Performers also differ in their interpretations much like
listeners (or annotators) differ in how they perceive structure. A
combination of converging factors can result in a clear structural
boundary, while lack of alignment can lead to an ambiguous
boundary. In ambiguous cases, listeners and performers may
focus on different cues to segment the music. This ambiguity has
not been the focus of empirical work, if only because it is (by
definition) hard to generalize.

Unsurprisingly, structure analysis has been an important area
of focus for music informatics research (MIR), dealing with tasks
such as motif-finding, summarization and audio thumbnailing,
and more commonly, segmentation into high-level sections (see
Paulus et al., 2010 for a review). Applications vary widely, from
the analysis of a variety of musical styles such as jazz (Balke
et al., 2016) and opera (Weiß et al., 2016), to algorithmic
composition (Herremans and Chew, 2016; Roy et al., 2016) and
the creation of mash-ups and remixes (Davies et al., 2014).

This line of work, however, is often limited by two significant
shortcomings. First, most existing approaches fail to account for
hierarchical organization in music, and characterize structure
simply as a sequence of non-overlapping segments. Barring
a few exceptions (McFee and Ellis, 2014a,b; McFee et al.,
2015a; Grill and Schlüter, 2015), this flat temporal partitioning
approach is the dominant paradigm for both the design
and evaluation of automated methods. Second, and more
fundamentally, automated methods are typically trained and
evaluated using a single “ground-truth” annotation for each
recording, which relies on the unrealistic assumption that there
is a single valid interpretation to the structure of a given

1In the context of the present article, these two elements (cultural and universal)

are not differentiated because the listeners who provide hierarchical analyses all

had prior experience with Western music.

recording or piece. However, it is well known that perception
of musical structure is ambiguous, and that annotators often
disagree in their interpretations. For example, Nieto (2015)
and Nieto et al. (2014) provide quantitative evidence of inter-
annotator disagreement, differentiating between content with
high and low ambiguity, and showing listener preference for
over- rather than under-segmentation. The work of Bruderer
(2008) shows that annotators tend to agree when quantifying
the degree of ambiguity of music segment boundaries, while in
Smith et al. (2014) disagreements depend on musical attributes,
genre, and (notably) time-scale. Differences in time-scale are
particularly problematic when hierarchical structures are not
considered, as mentioned above. This issue can potentially result
in a lack of differentiation between superficial disagreements,
arising from different but compatible analyses of a piece, from
fundamental discrepancies in interpretation, e.g., due to attention
to different acoustic cues, prior experience, cultural influences on
the listener, etc.

The main contribution of this article is a novel method for
measuring agreement between hierarchical music segmentations,
which we denote as the L-measure. The proposed approach can
be used to compare hierarchies of different depths, including
flat segmentations, as well as hierarchies that are not aligned
in depth, i.e., segments are assigned to the same hierarchical
level but correspond to different time-scales. By being invariant
to superficial disagreements of scale, this technique can
be used to identify true divergence of interpretation, and
thus help in isolating the factors that contribute to such
differences without being confounded by depth alignment
errors.

The L-measure applies equally to annotated and automatically
estimated hierarchical structures, and is therefore helpful to both
music cognition researchers studying inter-subject agreement
and to music informatics researchers seeking to train and
benchmark their algorithms. To this end, we also describe three
experimental studies that make use of the proposed method.
The first experiment compares the L-measure against a number
of standard flat metrics for the task of quantifying inter-
annotator agreement, and seeks to highlight the properties of
this technique and the shortcomings of existing approaches. The
second experiment uses the L-measure to identify fundamental
disagreements and then seeks to explain some of those differences
in terms of the annotators focus on specific acoustic attributes.
The third experiment evaluates the performance of hierarchical
segmentation algorithms using the L-measure and advances a
novel methodology for MIR evaluation that steps away from
the “ground-truth” paradigm and embraces the possibility of
multiple valid interpretations.

2. CORPORA

In our experiments, we use publicly available sets of hierarchical
structural annotations produced by at least two music experts
per track. To the best of our knowledge, the only published data
sets that meet these criteria are SALAMI (Smith et al., 2011) and
SPAM (Nieto and Bello, 2016).
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2.1. SALAMI
The publicly available portion of the Structural Annotations for
Large Amounts of Music Information (SALAMI) set contains
two hierarchical annotations for 1,359 tracks, 884 of which
have annotations from two distinct annotators and are included
in this study. These manual annotations were produced by a
total of 10 different music experts across the entire set, and
contain three levels of segmentations per track: fine, coarse,
and function. The fine level typically corresponds to short
phrases (described by lower-case letters), while the coarse section
represents larger sections (described by upper-case letters). The
function level applies semantic labels to large sections, e.g.,
“verse” or “chorus” (Smith et al., 2011). The boundaries of the
function level often coincide with those of the coarse level, but for
simplicity and consistency with SPAM (described below), we do
not use the function level. The SALAMI dataset includes music
from a variety of styles, including jazz, blues, classical, western
pop and rock, and non-western (“world”) music. We manually
edited 171 of the annotations to correct formatting errors and
enforce consistency with the annotation guide.2 The corrected
data is available online.3

2.2. SPAM
The Structural Poly Annotations of Music is a collection of
hierarchical annotations for 50 tracks of music, each annotated
by five experts. Annotations contain coarse and fine levels of
segmentation, following the same guidelines used in SALAMI.
The music in the SPAM collection includes examples from the
same styles as SALAMI. The tracks were automatically sampled
from a larger collection based on the degree of segment boundary
agreement among a set of estimations produced by different
algorithms (Nieto and Bello, 2016). Forty-five of these tracks
are particularly challenging for current automatic segmentation
algorithms, while the other five aremore straightforward in terms
of boundary detection. In the current work we treat all tracks
equally and use all 10 pairs of comparisons between different
annotators per track. The SPAM collection includes some of the
same audio examples as the SALAMI collection described above,
but the annotators are distinct, so annotation data is shared
between the two collections.

3. METHODS FOR COMPARING
ANNOTATIONS

The primary technical contribution of this work is a new way
of comparing structural annotations of music that span multiple
levels of analysis. In this section, we formalize the problem
statement and describe the design of the experiments in which
we test the method.

3.1. Comparing Flat Segmentations
Formally, a segmentation of a musical recording is defined by a
temporal partitioning of the recording into a sequence of labeled

2The SALAMI annotation guide is available at http://music.mcgill.ca/~jordan/

salami/SALAMI-Annotator-Guide.pdf.
3https://github.com/DDMAL/salami-data-public/pull/15

time intervals, which are denoted as segments. For a recording of
duration T samples, a segmentation can be encoded as mapping
of samples t ∈ [T] = {1, 2, . . . ,T} to some set of segment
labels Y = {y1, y2, . . . , yk}, which we will generally denote as a
function S : [T] → Y .4 For example, Y may consist of functional
labels, such as intro and verse, or section identifiers such as A
and B. A segment boundary is any time instant at the boundary
between two segments. Usually this corresponds to a change of
label S(t) 6= S(t − 1) (for t > 1), though boundaries between
similarly labeled segments can also occur, e.g., when a piece has
an AA form, or a verse repeats twice in succession.

When comparing two segmentations—denoted as the
reference SR and estimate SE—a variety of metrics have
been proposed, measuring either the agreement of segment
boundaries, or agreement between segment labels. Two
segmentations need not share the same label set Y , since different
annotators may not use labels consistently, so evaluation criteria
need to be invariant with respect to the choice of segment
labels, and instead focus on the patterns of label agreement
shared between annotations. Of the label agreement metrics, the
two most commonly used are pairwise classification (Levy and
Sandler, 2008) and normalized conditional entropy (Lukashevich,
2008).

3.1.1. Pairwise Classification
The pairwise classification metrics are derived by computing the
set A of pairs of similarly labeled distinct time instants (u, v)
within a segmentation:

A(S) :=
{
(u, v)

∣∣ S(u) = S(v)
}
. (1)

Pairwise precision (P-Rrecision) and recall (P-Recall) scores are
then derived by comparing A

(
SR

)
to A

(
SE

)
:

P-Precision
(
SR, SE

)
:=

∣∣A
(
SR

)
∩ A

(
SE

)∣∣
∣∣A

(
SE

)∣∣ (2)

P-Recall
(
SR, SE

)
:=

∣∣A
(
SR

)
∩ A

(
SE

)∣∣
∣∣A

(
SR

)∣∣ . (3)

The precision score measures the correctness of the predicted
label agreements, while the recall score measures how many
of the reference label agreements were found in the estimate.
Because these scores are defined in terms of exact label agreement
between time instants, they are sensitive to matching the exact
level of specificity in the analysis encoded by the two annotations
in question. If SE is at a higher (coarser) or lower (finer) level
of specificity than SR, the pairwise scores can be small, even
if the segmentations are mutually consistent. Examples of this
phenomenon are provided later in Section 4.

3.1.2. Normalized Conditional Entropy
The normalized conditional entropy (NCE) metrics take a
different approach to measuring similarity between annotations.

4Although segmentations are typically produced by annotators without reference

to a fixed time grid, it is standard to evaluate segmentations after re-sampling

segment labels at a standard resolution of 10 Hz (Raffel et al., 2014), which we

adopt for the remainder of this article.
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Given the two flat segmentations SR and SE, a joint probability
distribution P

[
yR, yE

]
is estimated as the frequency of time

instants t that receive label yR in the reference SR and yE in the
estimate SE:

P
[
yR, yE

]
∝

∣∣{t
∣∣ SR(t) = yR ∧ SE(t) = yE

}∣∣ (4)

From the joint distribution P, the conditional entropy is
computed between the marginal distributions PR and PE:

H
(
PE

∣∣ PR
)
=

∑

yR ,yE

P
[
yR, yE

]
log

PR
[
yR

]

P
[
yR, yE

] (5)

The conditional entropy therefore measures how much
information the reference distribution PR conveys about
the estimate distribution PE: if this value is small, then the
segmentations are similar, and if it is large, they are dissimilar.

The conditional entropy is then normalized by log
∣∣YE

∣∣: the
maximum possible entropy for a distribution over labels YE.5

The normalized entropy is subtracted from 1 to produce the so-
called over-segmentation score NCEo, and reversing the roles of
the reference and estimate yields the under-segmentation score
NCEu:

NCEo := 1−
H

(
PE

∣∣ PR
)

log
∣∣YE

∣∣ (6)

NCEu := 1−
H

(
PR

∣∣ PE
)

log
∣∣YR

∣∣ . (7)

The naming of these metrics derives from their application in
evaluating automatic segmentation algorithms. If the estimate
has large conditional entropy given the reference, then it is said
to be over-segmented since it is difficult to predict the estimated
segment label from the reference: this leads to a small NCEo.
Similar reasoning applies to NCEu: ifH

(
PR

∣∣PE
)
is large, then it is

difficult to predict the reference from the estimate, so the estimate
is thought to be under-segmented (and hence a small NCEu
score). If both NCEo and NCEu are large, then the estimate is
neither over- nor under-segmented with respect to the reference.

3.1.3. Comparing Annotations
When comparing two annotations in which there is no
privileged “reference” status for either—such as the case with
segmentations produced by two different annotators of equal
status—the notions of precision and recall, or over- and under-
segmentation can be dubious since neither annotation is assumed
to be “correct” or ground truth. Arbitrarily deciding that one
annotation was the reference and the other was the estimate
would produce precision and recall scores, but reversing the roles
of the annotations would exchange the roles of precision and
recall, since P-Precision(S1, S2) = P-Recall(S2, S1).

5It has been recently noted that maximum-entropy normalization can artificially

inflate scores in practice because the marginal distribution PE is often far from

uniform. See https://github.com/craffel/mir_eval/issues/226 for details. For the

remainder of this article, we focus comparisons on the pairwise classification

metrics, but include NCE scores for completeness.

A common solution to this ambiguity is to combine precision
and recall scores into a single summary number. This is most
often done by taking the harmonic mean of precision P and recall
R, to produce the F1-score or F-measure:

F := 2
P · R

P + R
. (8)

For the remainder of this article, we summarize the agreement
between two annotations by the F-measure, using precision
and recall for pairwise classification, and over- and under-
segmentation for NCE metrics.

3.2. Hierarchical Segmentation
A hierarchical segmentation is a sequence of segmentations

H = (S0, S1, S2, . . . , Sm), (9)

where the ordering typically encodes a coarse-to-fine analysis of
the recording. Each Si in a hierarchy is denoted as a level. We
assume that the first level S0 always consists of a single segment
which spans the entire track duration.6

Most often, when presented with two hierarchical
segmentations HR and HE, practitioners assume that the
hierarchies span the same set of levels, and compare the
hierarchies level-by-level: SR1 to SE1 , SR2 , S

E
2 , etc., or between

all pairs of levels (Smith et al., 2011). This results in a set of
independently calculated scores for the set of levels, rather
than a score that summarizes the agreement between the two
hierarchies. Moreover, this approach does not readily extend
to hierarchies of differing depths, and is not robust to depth
alignment errors, where one annotator’s S1 may correspond to
the other’s S2.

To the best of our knowledge, no previous work has
addressed the problem of holistically comparing two labeled
hierarchical segmentations. Our previous work (McFee et al.,
2015a) addressed the unlabeled, boundary-detection problem,
which can be recovered as a special case of the more general
formulation derived in the present work (where each segment
receives a unique label).

3.2.1. Hierarchical Label Agreement
Given a hierarchical segmentation H as defined in Equation (9)
and time instants u, v, define themeet of u and v under H as

M(u, v | H) := max k such that Sk(u) = Sk(v), (10)

that is,M(u, v | H) is the deepest level of H where u and v receive
the same label. The meet induces a partial ordering over pairs of
time instants: large values ofM(u, v |H) indicate a high degree of
similarity, and small values indicate low similarity.

To compare two hierarchical segmentations HR and HE, we
examine triples of distinct time instants t, u, v in terms of the
pairwise meets M

(
t, u

∣∣ HR
)
and M

(
t, v

∣∣ HR
)
. We define the

reference comparison set for a hierarchy H as

A(H) :=
{
(t, u, v)

∣∣ M (t, u |H) > M (t, v | H)
}
, (11)

6If S0 is not provided, it can be trivially synthesized. Including S0 in the hierarchy

is useful for ensuring that the metrics derived in Section 3.2.1 are well-formed.
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that is, the set of triples where (t, u) agree at a deeper level than
the pair (t, v).

Level-independent precision and recall scores—L-Precision
and L-Recall—can be defined, just as in the pairwise classification
method of Section 3.1.1, by comparing the size of the intersection
to the reference comparison set:

L-Precision
(
HR,HE

)
:=

∣∣A(HR) ∩ A(HE)
∣∣

∣∣A(HE)
∣∣ (12)

L-Recall
(
HR,HE

)
:=

∣∣A(HR) ∩ A(HE)
∣∣

∣∣A(HR)
∣∣ . (13)

These scores capture the rank-ordering of pairwise similarity
between time instants, and can be interpreted as a relaxation of
the pairwise classification metrics. We define the L-Measure as
the harmonic mean of L-Precision and L-Recall.

Rather than asking if an annotation describes two instants
(u, v) as the same or different, the scores defined here ask
whether (t, u) as more similar or less similar to each-other than
the pair (t, v), and whether that ordering is respected in both
annotations. An example of this process is illustrated in Figure 1.
Consequently, the proposed scores are robust to depth alignment
errors between annotations, and readily support comparison
between hierarchies of differing depth.

4. EXPERIMENT 1: L-MEASURES AND
FLAT METRICS

Our first experiment investigates how the L-measure described
above quantifies inter-annotator agreement for hierarchical
music segmentation as compared to metrics designed for flat
segmentations.7

4.1. Methods
The data sets described in Section 2 consist of musical recordings,
each of which has at least two hierarchical annotations, which are
each comprised of flat upper (high-level) and lower (low-level)
segmentations. For each pair of annotations, we compare the L-
measure to existing segmentation metrics (pairwise classification
and normalized conditional entropy) at both levels of the
hierarchy.

From this set of comparisons, we hope to identify examples
illustrating the following behaviors: pairs where the flat metrics
are small because the two annotations exist at different levels of
analysis; and pairs where the flat metrics are large at one level, but
small at the other, indicating hierarchical disagreement. In the
calculation of all evaluation metrics, segment labels are sampled
at a rate of 10 Hz, which is the standard practice for segmentation
evaluation (Raffel et al., 2014).

4.2. Results and Discussion
Figure 2 illustrates the behavior on SALAMI of the L-measure
compared to the flat segmentationmetrics (right column), as well
as all other pairs of comparisons betweenmetrics. Overlaid in red

7Our implementations for the experiments included in this paper are available at

https://github.com/bmcfee/segment_hierarchy_labels.

on each plot is the best-fit robust (Huber’s T) linear regression
line, with shaded regions indicating the 95% confidence intervals
as estimated by bootstrap sampling (n = 500 trials). This figure
demonstrates a general trend of positive correlation between
the L-measure and flat segmentation metrics at both levels,
indicating that the L-measure integrates information across the
entire hierarchy. Additionally, this plot exhibits a high degree of
correlation between the pairwise classification and NCE metrics
when confined to a single level. For the remainder of this
section, we will focus on comparing L-measure to the pairwise
classification metrics, which are more similar in implementation
to L-measure.

To get a better sense of how the L-measure captures
agreement over the full hierarchy, Figure 3 compares the L-
measure to the maximum and minimum agreements across
levels of the hierarchy: that is, L(HR,HE) compared to
max

(
F(SR1 , S

E
1 ), F(S

R
2 , S

E
2 )

)
. The resulting plots are broken into

quadrants I–IV along the median values of each metric, indicated
in red. To simplify the presentation, we only compared the L-
measure to the pairwise F-measure scores, though the results
using normalized conditional entropy scores are qualitatively
similar. Of particular interest in these plots are the points where
the maximum is small (disagreement at both levels) or the
minimum is large (agreement at both levels), and how the L-
measure scores these points.

Quantitatively, of the points below the median of maximum
F-measure (quadrants II and III of Figure 3, left), 81% lie below
the median L-measure (quadrant III). Conversely, the points
above the median of minimum F-measure (quadrants I and
IV of Figure 3, right) have 75% above the median L-measure
(quadrant I). These two quadrants (I and III) correspond to
subsets of examples where the L-measure broadly agrees with the
pairwise F-measure scores, indicating that there is little additional
discriminative information encoded in the hierarchy beyond
what is captured by level-wise comparisons. The remaining
points correspond to inversions of score from what would
be expected by level-by-level comparison: quadrant II in the
left plot (9.5% of points), and IV in the right plot (12.6% of
points).

Figure 4 illustrates example annotations drawn from each
quadrant of the left plot of Figure 3 (across-layer maximum vs.
L-measure). The two plots in the left column, corresponding to
quadrants II and III, illustrate examples where the flat metrics
disagree at both levels. The top-left plot (track 347) achieves a
large L-measure because the first annotator’s upper-level matches
well to the second annotator’s lower level, but not to the
second annotator’s upper-level. However, the two hierarchies
are generally consistent with one another, and the L-measure
identifies this consistency. The top-right plot (track 555) achieves
large pairwise agreement at the upper level (aside from E/E’, these
annotations are equivalent up to a permutation of the labels),
but small pairwise agreement at the lower level, because the
annotators disagree about whether the lower-level segment labels
repeat in the second half of the song. Just as in the previous
example (347), these two hierarchies are mutually consistent, and
the L-measure produces a high score for this pair. The bottom-
left plot (track 436) appears to consist of genuinely incompatible
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FIGURE 1 | The L-measure is computed by identifying triples of time instants (t, u, v) where (t, u) meet at a deeper level of the hierarchy (indicated by solid lines) than

(t, v) (dashed lines), as illustrated in the left plot (Annotator 1). In this example, the left annotation has M(t, u) = 2 (both belong to lower-level segments labeled as d),

and M(t, v) = 1 (both belong to upper-level segments labeled as C). The right annotation has M(t, u) = M(t, v) = 2: all three instants belong to segment label f, as

indicated by the solid lines. This triple is therefore counted as evidence of disagreement between the two hierarchies.

hierarchies, resulting in small scores across all metrics. The
bottom-right plot (track 616) illustrates agreement in the upper
level, but significant disagreement in the lower level, which is
taken as evidence of hierarchical disagreement and produces a
small L-measure (0.30).

Similarly, Figure 5 illustrates examples drawn from each
quadrant of the right plot in Figure 3 (across-layer minimum vs.
L-measure). Here, the right column is of interest, since it lists
annotations where the flat metrics agree at both levels (quadrants
I and IV). The top-right plot (track 829) contains virtually
identical hierarchies, and produces high scores under all metrics.
The bottom-right plot (track 1342) consists of two essentially
flat hierarchies where each lower-level contains the same label
structure as the corresponding upper level. The large flat metrics
here (F = 0.80) are easily understood since the majority of pairs
of instants are labeled similarly in both annotations, excepting
those (u, v) for which u is in sectionC/c for the second annotation
and v is not, which are in the minority. The small L-measure
(0.39) for this example is a consequence of the lack of label
diversity in the first annotation, as compared to the second. By
the definition in Equation (11), the L-measure only compares
triples (t, u, v) where the labels for u and v differ, and in the
second annotation, most of these triples contain an example
from the C/c sections. Since the second annotation provides no
information to disambiguate whether C is more similar to A or
Z, the L-measure assigns a small score when compared to the first
annotation.

A similar phenomenon can be observed in the bottom-left
plot (track 768), in which the first annotator used a single label
to describe the entire track in each level. In this case, nearly all
of the comparison triples derived from the second annotation
are not found in the first, resulting in an L-measure of 0.06. It
is worth noting that the conditional entropy measures would
behave similarly to the L-measure here, since the first annotation
has almost no label entropy in either level.

To summarize, the L-measure broadly agrees with the level-
by-level comparisons on the SALAMI dataset without requiring

assumptions about equivalent level structure or performing
comparisons between all pairs of levels. In the minority of
cases (22%) where the L-measure substantially disagrees with the
level-by-level comparison, the disagreements between metrics
are often explained by the flat segmentations not accounting
for hierarchical structure in the annotations. The exception to
this are annotations with low label diversity across multiple
levels, where the L-measure can assign a small score due to
insufficiently many contrasting triples to form the evaluation
(Figure 5, bottom-right).

5. EXPERIMENT 2: ACOUSTIC
ATTRIBUTES

In the second experiment, we investigate annotator disagreement
with respect to acoustic attributes. Two annotations that produce
a small L-measure may be due to annotators responding to
different perceptual or structural cues in the music.

5.1. Methods
To attempt to quantify attribute-based disagreement, we
extracted four acoustic features from each recording, designed to
capture aspects relating to tempo, rhythm, harmony, and timbre.
Our hypothesis was that if hierarchical annotations receive small
L-measure, and the annotators are indeed cued by different
acoustic properties, then this effect should be evident when
comparing annotations in a representation derived from acoustic
features. All audio was down-sampled and mixed to 22,050 Hz
mono prior to feature extraction, and all analysis was performed
with librosa 0.5 dev (McFee et al., 2015b). A visualization
of the features described in this section is provided in
Figure 6.

5.1.1. Tempo Features
The tempo features consist of the short-time auto-correlation of
the onset strength envelope of the recording. This feature loosely
captures the timing structure of note onsets centered around each
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FIGURE 2 | Relations between the different segment labeling metrics on the SALAMI dataset. Each subplot (i, j) corresponds to a pair of distinct metrics for i 6= j, while

the main diagonal illustrates the histogram of scores for the ith metric. Each point within a subplot corresponds to a pair of annotations of the same recording. The

best-fit linear regression line between each pair of metrics is overlaid in red, with shaded regions indicating the 95% confidence intervals.

time point in the recording. The location of peaks in the onset
strength auto-correlation can be used to infer the tempo at a given
time.

The onset strength is computed by the spectral flux of a
log-power Mel spectrogram of 128 bins sampled at a frame
rate of ∼ 43 Hz (hop size of 512 samples), and spanning
the frequency range up to 11,025 Hz. The short-time auto-
correlation is computed over centered windows of 384 frames
(∼ 8.9 s) using a Hann window, resulting in a feature matrix
Xt ∈ R

384×T
+ (for T frames). The value at Xτ [i, j] is large if an

onset envelope peak at frame j is likely to co-occur with another
peak at frame j + i. Each column was normalized by its peak
amplitude.

5.1.2. Rhythm Features
The rhythm features were computed by applying the scale
(Mellin) transform to the tempo features derived above (Cohen,
1993; De Sena and Rocchesso, 2007). The scale transform
magnitude has been used in prior work to produce an
approximately tempo-invariant representation of rhythmic
information (Holzapfel and Stylianou, 2011), so that similar
rhythmic patterns played at different speeds result in similar
feature representations.

At a high level, the scale transform works by re-sampling the
onset auto-correlation—i.e., each column of Xτ defined above—
on a logarithmic lag scale from a minimum lag t0 > 0 to the
maximum lag, which in our case is the auto-correlation window

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 133714

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McFee et al. Evaluating Hierarchical Structure in Music Annotations

FIGURE 3 | For each pair of annotations in the SALAMI dataset, we compare the L-measure to the maximum and minimum agreement between the upper and lower

levels. Agreement is measured by pairwise frame classification metrics. Red lines indicate the median values for each metric. A small maximum F-measure (quadrants

II and III in the left plot) indicates disagreement at both levels; a large minimum F-measure (quadrants I and IV in the right plot) indicates agreement at both levels.

length (384 frames). This transforms multiplicative scaling in
time to an additive shift in logarithmic lag. The Fourier transform
of this re-sampled signal then encodes additive shift as complex
phase. Discarding the phase information, while retaining the
magnitude, produces a tempo-invariant rhythm descriptor.

The scale transform has two parameters which must be set:
the minimum lag t0 (in fractional frames), and the number of
scale bins n (analogous to FFT bins), which we set to t0 = 0.5
and n = 64. Because the input (onset autocorrelation) is real-
valued, its scale transform is conjugate-symmetric, so we discard
the negative scale bins to produce a representation of dimension
⌊n/2⌋ + 1. The log-power of the scale transform magnitude was
computed to produce the rhythm features Xρ ∈ R

33×T .

5.1.3. Chroma Features
The harmony features were computed by extracting pitch class
(chroma) features at the same time resolution as the tempo
and rhythm features. Specifically, we applied the constant-Q
transformmagnitude using 36 bins per octave spanning the range
(C1,C8), summed energy within pitch classes, and normalized
each frame by peak amplitude. This resulted in a chromagram
Xχ ∈ R

12×T
+ .

5.1.4. Timbre Features
Finally, timbre features were computed by extracting the first 20
Mel frequency cepstral coefficients (MFCCs) using a log-power
Mel spectrogram of 128 bins, and the same frame rate as the
previous features. This resulted in theMFCC featurematrixXµ ∈

R
20×T .

5.1.5. Comparing Audio to Annotations
To compare audio features to hierarchical annotations, we
converted the audio features described above to self-similarity
matrices, described below. However, because the features are
sampled at a high frame rate, the resulting T × T self-similarity

matrices would require a large amount of memory to process (∼
3 GB for a four-minute song). We therefore down-sampled the
feature matrices to a frame rate of 4 Hz by linear interpolation
prior to computing the self-similarity matrices below. The tempo
and rhythm features are relatively stable across large extents
of time (each frame spans 8.9s), but the chroma and MFCC
features are confined to much smaller local regions defined by
their window sizes. To improve the stability of similarity for the
chroma and MFCC features, each frame was extended by time-
delay embedding (Kantz and Schreiber, 2004): concatenating the
features of the previous two frames (after down-sampling). This
provides a small amount of local context for each observation,
and is a commonly used technique in music structure analysis
algorithms (Serra et al., 2012).

We then computed self-similarity matrices for each feature
with a Gaussian kernel:

G[u, v] := e
− 1

σ
‖X[u]−X[v]‖2 (14)

where X[t] denotes the feature vector at frame t, and the
bandwidth σ is estimated as

σ := meanu medianv‖X[u]− X[v]‖2. (15)

Similarly, for each annotation, we computed the meet matrix M
by Equation (10) (also at a frame rate of 4 Hz). Figures 9, 10
illustrate examples of the feature-based self-similarity matrices,
as well as the meet matrices for two annotations each.

To compare M to each of the feature-based self-similarity
matrices Gτ ,Gρ ,Gχ ,Gµ, we first standardized each matrix
by subtracting its mean value and normalizing to have unit
Frobenius norm:

D̂ :=
D−meanu,vD[u, v]∥∥D−meanu,vD[u, v]

∥∥
F

. (16)
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FIGURE 4 | Four example tracks from SALAMI, one drawn from each quadrant of Figure 3 (Left), which compares L-measure to the maximum of upper- and

lower-level pairwise F-measure between tracks. For each track, two hierarchical annotations are displayed (top and bottom), and within each hierarchy, the upper level

is marked in green and the lower in blue. (Upper right) Track 555 (L = 0.94, upper F = 0.92, lower F = 0.69) has high agreement at the upper level, and small

agreement at the lower level. (Upper left) Track 347 (L = 0.89, upper F = 0.65, lower F = 0.19) has little within-level agreement between annotations, but the upper

level of the top annotation is nearly identical to the lower level of the bottom annotation, and the L-measure identifies this consistency. (Bottom left) Track 436

(L = 0.24, upper F = 0.35, lower F = 0.44) has little agreement at any level, and receives small scores in all metrics. (Bottom right) Track 616 (L = 0.30, upper

F = 0.998, lower F = 0.66) has high agreement within the upper level, but disagreement in the lower levels.

The inner product between normalized self-similarity matrices

〈
M̂, Ĝ

〉
F
:=

∑

u,v

M̂[u, v]Ĝ[u, v] (17)

can be interpreted as a cross-correlation between the vectorized
forms of M and G, and due to normalization, takes a value in
[−1, 1]. Collecting these inner products against each G matrix
results in a four-dimensional vector of feature-based similarity

to the annotationM:

z(M) :=
(〈
M̂, Ĝi

〉
F

)
i∈{τ ,ρ,χ ,µ}

(18)

To compare two annotations HR,HE with meet matrices
MR,ME, we could compute the Euclidean distance between
the corresponding z-vectors. However, correlated features (such
as tempo and rhythm) could artificially inflate the distance
calculation. We therefore define a whitening transform W−1,
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FIGURE 5 | Four example tracks from SALAMI, one drawn from each quadrant of Figure 3 (Right), which compares L-measure to the minimum of upper- and

lower-level pairwise F-measure between tracks. (Upper right) Track 829 (L = 0.94, upper F = 0.93, lower F = 0.96) has high agreement at the both levels, and

consequently a large L-measure. (Upper left) Track 307 (L = 0.94, upper F = 0.92, lower F = 0.11) has high agreement in the upper level, but the first annotator did

not detect the same repetition structure as the second in the lower level. (Bottom left) Track 768 (L = 0.06, upper F = 0.43, lower F = 0.18) has little agreement at

any level because the first annotator produced only single-label annotations. (Bottom right) Track 1342 (L = 0.39, upper F = 0.80, lower F = 0.80) has high pairwise

agreement at both levels, but receives a small L-measure because the first annotator did not identify the distinct C/c sections indicated by the second annotator.

where

W[i, j] :=
〈
Ĝi, Ĝj

〉
F
. (19)

This provides a track-dependent, orthogonal basis for comparing
meet matrices MR and ME. The distance between annotations is
then defined by

δ
(
HR,HE

)
:=

√(
z
(
MR

)
− z

(
ME

))T
W−1

(
z
(
MR

)
− z

(
ME

))
.

(20)

By introducing the whitening transformation, we reduce the
influence of correlations between acoustic features on the
resulting annotation distance δ. A large distance δ indicates that
the hierarchies correlate with different subsets of features, so
we expect an inverse relationship between δ and the L-measure
between the annotations.

5.2. Results and Discussion
The results of the acoustic feature correlation experiment are
displayed in Figure 7. As expected, the δ score is inversely
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FIGURE 6 | Features extracted from an example track in the SALAMI dataset, as described in Section 5.

related to the L-measure (r = −0.61 on the SALAMI data
set, r = −0.32 on SPAM). Because the SPAM dataset was
explicitly constructed from difficult examples, it produces smaller
L-measures on average than the SALAMI dataset. However,
the SPAM annotators did not appear to produce low label-
diversity annotations that generate small L-measures, so the
overall distribution is more concentrated. The δ distribution is
similar across both datasets, which explains the apparently large
discrepancy in correlation coefficients.

The estimated mean feature correlations are displayed in
Figure 8. Because the SPAM dataset provides all combinations
of the five annotators with the fifty tracks, it is more amenable
to statistical analysis of annotator behavior than the SALAMI
dataset. Using the SPAM dataset, we investigated the relationship
between feature types and annotators. A two-way, repeated-
measures ANOVA was performed with annotator and feature
type as fixed effects and tracks as a random effect (all results
Greenhouse-Geisser corrected). The main effects of annotator
and feature type were both significant: F(2.92, 142.85) = 3.44, p =

0.02, η2 = 0.068, η2p = 0.066 for annotator and F(2.52, 123.37) =

28.33, p = 1.49× 10−12, η2 = 0.159, η2p = 0.366 for feature type.
The interaction effect was also significant, F(8.26, 404.97) = 3.00,
p = 2.46 × 10−3, η2 = 5.17 × 10−3, η2p = 0.058. There was
a large effect size for feature type and very small effect sizes for
annotator and interaction.

Tukey’s test for multiple comparisons revealed a significant
difference between Annotators 3 and 4 (|z| = 2.88, p = 0.032)
and a slight difference between 2 and 4 (|z| = 2.52, p = 0.086).
Figure 8 (right) indicates that most of this difference is likely
attributable to the tempo feature, which annotator 4 correlates

with considerably less than the other annotators. These results
demonstrate that a small set of annotators are likely to produce
significantly different interpretations of musical structure, even
when they are following a common set of guidelines.

Figure 9 illustrates the self-similarity matrices for SALAMI
track 410: Erik Truffaz–Betty, a jazz recording featuring trumpet,
piano, bass, and drums. The two annotations for this track
produce a small L-measure of 0.25, and a large δ score of 0.67. In
this example, the two annotators appear to be expressing different
opinions about the organization of the piece, as illustrated in the
right-most column of Figure 9. Annotator 1 first separates the

extended final fermata from the rest of the recording in the upper

level, and then segments into repeated 4-bar progressions in the

lower level. Annotator 2 groups by instrumentation or texture in

the upper level, separating the piano and trumpet solos (center

blocks) from the head section, and then grouping by repeated
8-bar segments. The first annotation correlates well with all of
the feature-based similarity matrices, which exhibit low contrast
for the majority of the piece. The second annotation is generally
uncorrelated with the feature similarities, leading to the large δ

score between the two. Note that this does not imply that one
annotator was more “accurate” than the other, but it does suggest
that the differences in the annotations can be attributed, at least
in part, to perceptual characteristics of the music in question. In
this case, Annotator 2 accounted for both instrumentation
and harmony, while Annotator 1 accounted only for
harmony.

Figure 10 illustrates a second example, SALAMI track 936:
Astor Piazzola – Tango Aspasionado, which produces L-measure
of 0.46 and a relatively large δ = 0.45. The two annotators in
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FIGURE 7 | Feature correlation compared to L-measures on the SALAMI (Left) and SPAM (Right) datasets.

FIGURE 8 | The mean feature correlation for each feature type and annotator on the SPAM dataset. Error bars indicate the 95% confidence intervals estimated by

bootstrap sampling (n = 1, 000). Left: results are grouped by annotator ID; Right: results are grouped by feature type.

this example have again identified substantially different large-
scale structures, with the first annotation correlating highly with
tempo (0.57) and rhythmic (0.40) similarity as compared to
the second annotator (0.16 and 0.12, respectively). The second
annotator identified repeating melodic and harmonic themes
that persist across changes in instrumentation and rhythm. This
persistence explains the comparatively low correlation scores for
the tempo and rhythm features. The two annotators appear to
disagree on the relative importance of rhythmic and instrumental
characteristics, compared to melodic and harmonic features, in
determining the structure of the piece.

In both of these examples, and as a general trend illustrated in
Figure 8, annotations that relied on solely on harmony produced
lower correlation scores than those which align with timbre and
rhythm descriptors. This is likely a consequence of the dynamic
structure of harmony and chroma representations, which evolve
rapidly compared to the more locally stationary descriptors of

timbre, rhythm, and tempo. Chroma self-similarity matrices
(Figures 9, 10, bottom-left) tend to exhibit diagonal patterns
rather than solid blocks of self-similar time intervals, which
are easier to match against the annotation-based meet matrices
(right column). It may be possible to engineer locally stable
harmony representations that would be more amenable to this
kind of correlation analysis, but doing so without supposing a
pre-existing segmentationmodel is a non-trivial undertaking and
beyond the scope of the present experiment.

6. EXPERIMENT 3: HIERARCHICAL
ALGORITHMS

This last experiment focuses on using the L-measure to compare
hierarchical results estimated by automatic approaches with
those annotated by music experts. Assuming that the L-measure
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FIGURE 9 | Feature correlation for SALAMI track #410: Erik Truffaz–Betty, which achieves δ = 0.67, L-measure = 0.25. The two annotations encode different

hierarchical repetition structures, depicted in the meet matrices in the right-most column. Annotator 1’s hierarchy is more highly correlated with the feature-based

similarities: z = (0.62, 0.42, 0.26, 0.48) for tempo, rhythm, chroma, and MFCC, compared to z = (0.03, 0.07, 0.07, 0.04) for Annotator 2.

between human annotations defines the upper limit in terms
of performance for the automated hierarchical segmentation
task, we explore how the L-measure behaves when assessing
this type of algorithms. We are particularly interested in better
understanding how much room there is for improvement when
designing new approaches to this task.

6.1. Methods
To the best of our knowledge, only two automatic methods
that estimate hierarchical segmentations have been published
with open source implementations: Laplacian structural
decomposition (McFee and Ellis, 2014a), and Ordinal Linear
Discriminant Analysis (McFee and Ellis, 2014b). The Laplacian
method generates hierarchies of depth 10, where each layer i
consists of i + 1 unique segment labels McFee and Ellis (2014a).
For each layer index, this method first partitions the recording
into a set of discontinuous clusters (segment labels), and then
estimates segment boundaries according to changes in cluster
membership between successive time instants. Consequently,
each layer can have arbitrarily many segments, but the number
of unique segment labels is always fixed.

The OLDA method, as described by McFee and Ellis (2014b),
operates by agglomerative clustering of time instants into
segments, resulting in a binary tree with time instants at the
leaves, and the entire recording at the root. Each layer i of this
tree has i + 1 contiguous segments, and the tree is automatically
pruned based on the statistics of segment lengths and the

overall track duration. This results in a hierarchy of variable
depth, typically between 15 and 30 levels, where each level
can be seen as splitting one segment from the previous level
into two. Because OLDA only estimates segment boundaries,
segment labels were estimated at each level by using the 2D-
Fourier Magnitude Coefficients method (Nieto and Bello, 2014),
which yields state-of-the-art results in terms of automatic flat
segment label prediction. The 2D-FMC method is set to identify
a maximum of 7 unique labels per level of segmentation, as this
number was previously found to produce the best results in The
Beatles8 and SALAMI datasets. These sets are themost popular in
the task of structural segmentation, and it is a standard practice to
tune the parameters according to them (Kaiser and Sikora, 2010;
Nieto and Jehan, 2013; Nieto and Bello, 2014).

The standard approach to measuring the performance of
automatic algorithms is to compare the average scores derived
from a sample of tracks, each of which has one “ground truth”
annotation. However, as demonstrated in the previous sections,
there is still significant disagreement between annotators when
it comes to hierarchical segmentation, so selecting a single
annotation to use as a point of reference would bias the
results of the evaluation. Instead, we compared the output
of each algorithm to all annotations for a given track, with
results presented in terms of the full empirical distribution
over scores rather than the mean score. We quantify the

8http://isophonics.net/content/reference-annotations-beatles
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FIGURE 10 | Feature correlation for SALAMI track #936: Astor Piazzola–Tango Aspasionado, which achieves δ = 0.45, L-measure = 0.46. Annotator 1 is highly

correlated with the features: z = (0.57, 0.40, 0.11, 0.25) for tempo, rhythm, chroma, and MFCC, compared to z = (0.16, 0.12, 0.13, 0.25) for Annotator 2.

difference in distributions by the two-sample Kolmogorov-
Smirnov statistic, which measures the maximum difference
between the empirical cumulative distributions: a small value
(near 0) indicates high similarity, a large value (near 1) indicates
low similarity. For this experiment, the set of human annotations
had a privileged interpretation (compared to the automatic
methods), so we reported L-precision, L-recall, and L-measure
separately.

Both algorithms (OLDA and Laplacian) were run on
both datasets (SALAMI and SPAM) using the open-source
implementations found in the Music Structure Analysis
Framework, version 0.1.2-dev (Nieto and Bello, 2016). All
algorithm parameters were left at their default values.

6.2. Results and Discussion
The results of the automatic hierarchical segmentation algorithm
experiment are displayed in Figure 11. Both algorithms achieve
larger average L-recall (center column) than L-precision (left
column), which suggests that the automated methods, which
produce much deeper hierarchies than the reference annotations,
have identified more detailed structures than were encoded by
the human annotators. Notably, the Laplacian method achieved
a recall distribution quite close to that of the human annotators.
This indicates that the L-measure is robust to differences in
hierarchical depth: structures encoded in the depth-2 human

annotations can also be found in the depth-10 automatic
annotations.

The right column shows the total L-measure distribution
(combining precision and recall). In both datasets, the Laplacian
method was significantly more similar to the inter-annotator
distribution than the OLDA-2DFMC method was, despite the
mode at the bottom of the L-measure scale visible in Figure 11

(right). The region of low performance can be attributed to an
apparent weakness of the method on longer recordings (e.g.,
SALAMI-478 at 525 s, or SALAMI-108 at 432 s) where it tends
to over-emphasize short discontinuities and otherwise label the
remainder of the track as belonging primarily to one component.
This behavior can also be seen in the SALAMI distribution,
though such examples make up a smaller portion of the corpus,
and therefore exert less influence on the resulting distribution.

The results of this experiment demonstrate a rather large
gap between the distribution of inter-annotator agreement
and algorithm-annotator agreement. In the examples presented
here, and especially the Laplacian method, much of this
gap can be attributed to low precision. Low precision may
arise naturally from comparisons between deep and shallow
hierarchies. Because the reference annotations in both SALAMI
and SPAM have fixed depth, this effect is not observable in the
inter-annotator comparison distribution. This effect suggests a
trade-off between precision and recall as a function of hierarchy
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FIGURE 11 | The distribution L-measure scores for inter-annotator agreement, OLDA-2DFMC, and Laplacian on the SALAMI (Top row) and SPAM (Bottom row)

datasets. The left, middle, and right columns compare algorithm L-precision, L-recall, and L-measure to inter-annotator scores. For each algorithm, the two-sample

Kolmogorov-Smirnov test statistic K is computed against the inter-annotator distribution (smaller K is better).

depth. If a practitioner was interested in bounding hierarchy
depth to optimize this trade-off, the L-measure would provide a
means to do so.

7. GENERAL DISCUSSION

From the perspective of music informatics research, the
hierarchical evaluation technique described here opens up new
possibilities for algorithm development. Most existing automatic
segmentation methods, in one way or another, seek to optimize
the existing metrics for flat boundary detection and segment
label agreement. Boundary detection is often modeled as a
binary classification problem (boundary/not-boundary), and
labeling is often modeled as a clustering problem. The L-
measure suggests instead to treat both problems from the
perspective of similarity ranking, and could therefore be used to
define an objective function for a machine-learning approach to
hierarchical segmentation.

As demonstrated in Section 4, the L-measure can reduce
bias in the evaluation due to superficial differences between
two hierarchical segmentations, which better exposes meaningful
structural discrepancies. Still, there appears to be a considerable
amount of inter-annotator disagreement in commonly used
corpora. Disagreement is a pervasive problem in music
informatics research, where practitioners typically evaluate an
algorithm by comparing its output to a single “ground truth”

annotation for each track in the corpus. The evaluation described
in Section 6 represents a potentially viable alternative method
of evaluation, which seeks not to measure “agreement” against
human annotators, but rather to match the distribution of
agreement between human annotators. This approach could be
easily adapted to other tasks involving high degrees of inter-
annotator disagreement, such as chord recognition or automatic
tagging.

While the L-measure resolves some problems with evaluating
segmentations across different levels, it still shares some
limitations with previous label-based evaluation metrics.
Notably, none of the existing methods can distinguish between
adjacent repetitions of the same segment label (aa) from a
single segment spanning the same time interval (A). This
results in an evaluation which is blind to boundaries between
similarly labeled segments, and therefore discards important
cues indicating repetition. Similarly, variation segments—e.g.,
(A, A’) in SALAMI notation—are always treated as distinct,
and equally distinct as any other pair of dissimilar segments
(A,B). While the L-measure itself does not present a solution
to these problems, its ability to support hierarchies of arbitrary
depth could facilitate solutions in the future. Specifically, one
could augment an existing segmentation with additional lower
layers that distinguish among each instance of a label, so that
a, a decomposes into a1, a2, without losing the information
that both segments ultimately receive the same label. Similarly,

Frontiers in Psychology | www.frontiersin.org August 2017 | Volume 8 | Article 133722

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McFee et al. Evaluating Hierarchical Structure in Music Annotations

variations could be resolved by introducing a layer above which
unifies A, A’ both as of type A. Because this approach requires
significant manipulation of annotations, we leave it as future
work to investigate its effects.

The work described here also offers both insight and a
potential tool for researchers in the field of music cognition. The
results from Experiment 1 reveal that flat segmentation metrics
are confounded by superficial differences between otherwise
consistent hierarchical annotations, while the L-measure is
robust to these differences. The L-measure can therefore provide
a window into the individual differences inherent in the
perception of musical structure. Furthermore, the L-measure can
provide a quantitative metric for directly comparing hierarchical
analyses of musical form in experimental work. It can serve
as a means to objectively assess response similarity between
subjects on tasks that require analysis of metrical, grouping, and
prolongational hierarchies.

The results of Experiment 2 present evidence for distinct
modes of listening predicated on different acoustical features
of the music. Comparing differences in feature correlations can
help identify potential causal factors contributing to listener
interpretation of musical form. The feature analysis offers
objective evidence in support of qualitative observations for
how and why listeners interpret musical structure differently,
particularly in cases of significant disagreement.
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Enculturation is known to shape the perception of meter in music but this is not explicitly

accounted for by current cognitive models of meter perception. We hypothesize that the

induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to

a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize,

is based on previous exposure to rhythms. As such, predictive coding provides a possible

explanation for the waymeter perception is shaped by the cultural environment. Based on

this hypothesis, we present a probabilistic model of meter perception that uses statistical

properties of the relation between rhythm and meter to infer meter from quantized

rhythms. We show that our model can successfully predict annotated time signatures

from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that

by inferringmeter, our model improves prediction of the onsets of future events compared

to a similar probabilistic model that does not infer meter. Finally, as a proof of concept,

we demonstrate how our model can be used in a simulation of enculturation. From the

results of this simulation, we derive a class of rhythms that are likely to be interpreted

differently by enculturated listeners with different histories of exposure to rhythms.

Keywords: rhythm, cognition, meter perception, predictive coding, enculturation, computational modeling

1. INTRODUCTION

In a variety of settings, perception appears to be tuned to statistical properties of the environment.
It has for example been found that certain properties of neuron receptive fields in early visual
processing (Olshausen and Field, 1996) and early auditory processing (Smith and Lewicki, 2006)
emerge from information theoretically efficient learning algorithms trained respectively on natural
images or sounds. Such tuning, it has been suggested, happens both on an evolutionary time-scale
through gradual adaptation, and on an ontogenetic time scale, through brain plasticity (Clark,
2013).

The perception of meter in music appears to be shaped by cultural differences in musical
conventions. Exposure to rhythmically different music has been shown to influence perception
from an early age (Hannon and Trehub, 2005a,b), but such shaping possibly continues into
adulthood (Creel, 2011, 2012). In the current paper, we hypothesize that considering meter
perception from the perspective of predictive coding (Rao and Ballard, 1999; Friston, 2005; Clark,
2013) can help to understand how meter perception is shaped by one’s environment.

Rhythm is an important component of music traditions all over the world (Savage et al.,
2015). When listening to rhythms, onsets in the rhythm are perceived relative to a periodic and
hierarchically organized framework of beats (Honing, 2013). This mental framework, called meter,
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is induced in the mind of the listener by the rhythm. The
relation between rhythm and meter is complex. For a meter
to be perceived, not every beat in the meter needs to coincide
with onsets in the rhythm. In many cases, listeners can, through
conscious effort, alter their metrical interpretation of a rhythm.
At the same time, not every meter is equally easy to hear in every
rhythm. Meter, once induced, tends to show a certain resistance
to change. Therefore, meter perception is a fundamentally
incremental process (Longuet-Higgins and Steedman, 1971): the
same rhythmic passage can sound different depending on the
meter induced by the rhythm preceding the passage (Honing,
2013).

The organizing structure of meter is commonly described as
a hierarchy of pulses, yielding a periodic pattern of metrical
accents varying in salience at different points in time. Metrical
accent, or metrical salience, is commonly treated as a proxy for
temporal expectation, or the probability of an event onset at a
particular pulse (Palmer and Krumhansl, 1990). By investigating
a corpus of Western classical music, Palmer and Krumhansl
(1990) found that the distribution of onsets over different
positions relative to the meter reflected theoretical descriptions
of metrical hierarchy (Lerdahl and Jackendoff, 1983). Using a
goodness-of-fit paradigm, Palmer and Krumhansl (1990) found
that temporal expectations of North-American listeners also
reflect metrical hierarchy, although musicians showed evidence
of deeper hierarchical differentiation than non-musicians. Based
on these findings, Palmer and Krumhansl (1990) suggested
that composers communicate meter to listeners through the
distribution of onsets at different metrical positions. Listeners,
in turn, acquire their knowledge about meter through the
distribution of onsets over metrical positions in the music they
are exposed to.

More recent work has addressed the question of whether
hierarchical organization of onset distributions is a general
property of rhythmic organization or whether it is specific to
Western classical music and related styles. Holzapfel (2015),
for instance, found that in traditional Turkish makam music,
the distribution of onsets is modulated by the specific usul—a
type of rhythmic mode, corresponding in some ways to meter—
underlying a piece. Furthermore, the distribution of onsets within
one usul in Turkish makam music does not always exhibit
hierarchical organization. London et al. (2016) found that peaks
in onset distributions in a corpus ofMalian drumming recordings
are not periodically spaced. London et al. (2016) conclude that
in makam music and Malian drumming, distributions of onsets
do reflect metrical structure, but this structure is not always
isochronous or strictly hierarchical.

London et al. (2016) point out that their and Holzapfel
(2015) results question a basic assumption made by many
computational models, as well as empirical studies, namely that
metrical accent is equivalent to the likelihood of an onset. A
more likely alternative is that metrical expectations are derived
from extensive exposure to a musical idiom, by which, beyond
distributions of onsets and style-specific, stereotypical rhythmic
patterns associated with certain meters are learned.

Consistent with this suggestion, an increasing number of
empirical studies show that rhythm perception is affected by

enculturation (cf. Morrison and Demorest, 2009). For example,
Bulgarian or Macedonian adults are better in detecting metrical
violations in meters with a non-isochronous tactus level—the
level of beat that listeners are most likely to tap along with—(e.g.,
5/8 or 7/8) than North-American listeners (Hannon and Trehub,
2005a). This effect appears to be specific to complex meters to
which the listeners have been exposed (Hannon et al., 2012).

There have also been a number of observations in the
ethnomusicological literature suggesting that individuals from
different cultures perceive rhythms differently. For example,
during field work in the Bolivian Andes, while studying
Easter songs from Northern Potosí, (Stobart and Cross, 2000)
realized that while they had assumed many of the tunes where
indisputably anacrustic (i.e., a rhythm starting on an off-beat),
the local populations appeared to perceive them as beginning on a
downbeat. Another example is provided by rhythms from West-
African Sub-Saharanmusical cultures, which are characterized by
a great deal of metrical ambiguity (Locke, 1982). In particular,
many of these rhythms can be interpreted as having a binary
or ternary pulse. While individuals from West-African cultures
appear to perceive both pulses with equivalent ease, it can take
great effort forWestern listeners to hear the ternary pulse in some
of these rhythms.

The idea that perception, in general, is shaped by statistical
properties of the environment is not new (e.g., Barlow, 1961).
However, it recently has been developed into a framework
which has been argued to bear the promise of providing
an overarching theory of perception (Clark, 2013). Under
the name of predictive coding (Rao and Ballard, 1999), this
framework firmly grounds perception in prediction, based
largely on previous sensory experience. In fact, the theory
proposes that the brain’s primary occupation is to explain
sensory input using hierarchical generative models gleaned from
previous experience (Clark, 2013). Such models are realized
in a hierarchical organization of layers. The lowest layer in
the hierarchy represents sensations received directly from the
senses. Through feed-forward connections, information travels
upward in the hierarchy. Meanwhile, layers higher up in the
hierarchy attempt to predict information, propagated by layers
below. These predictions are cast to lower layers through
feedback connections. Successful prediction cancels out the
upward propagation of information. As a result, only prediction
error, information that higher layers failed to predict, propagates
upwards in the hierarchy. Based on prediction error, layers
gradually adapt their processing characteristics in a way that
minimizes prediction error with respect to layers lower in
the hierarchy. By this process of adaptation, the hierarchy of
layers is gradually shaped into a generative model of sensations,
where layers higher up in the hierarchy track causes in the
external world that underlie the received sensations (Friston,
2005). From an information-theoretic point of view, the resulting
coding scheme is highly efficient: the more accurate the top-
down predictions, the less bottom-up information is left to be
processed.

We propose a predictive coding account of meter perception
that involves statistical learning of musical rhythms and
generation of probabilistic expectations for event timings. Meters

Frontiers in Psychology | www.frontiersin.org May 2017 | Volume 8 | Article 82426

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Weij et al. A Probabilistic Model of Meter Perception

are modeled as distinct causes underlying the musical surface.
Inferring the underlying meter from rhythm allows the rhythm
to be related to rhythms previously heard in that meter, which
may help prediction performance. Enculturation is modeled by
estimating the parameters of the generative model on a corpus
of quantized rhythms annotated with meter. Since the model
learns the statistical properties of rhythms through exposure and
performs metrical inference based on these, it has the potential to
simulate enculturation effects in meter perception.

The paper is organized in six sections. In the remaining
part of the current section, Section 1.1 develops an account of
meter perception based on predictive coding, while Section 1.2
discusses relevant work in computational modeling of music
perception. Section 2 presents the probabilistic model of meter
perception in detail, concluding with a set of behaviors we
expect the model to exhibit. Section 3 presents the methods
used in a series of simulations designed to test these behaviors,
while Section 4 presents the results of the simulations. Section 5
discusses the results in the context of the existing literature and
includes implications for future research.

1.1. Meter Perception as Predictive Coding
The dynamic interaction of top-down and bottom-up processing
postulated by predictive coding is reminiscent of dynamic
interaction of bottom-up meter-induction and top-down
influence exerted by the induced meter, as pointed out by Vuust
and Witek (2014).

The hypothesis we explore in this paper is that predictive
coding can explain how meter perception is influenced by
enculturation. To explore the consequences of this idea, we
present a probabilistic model of meter perception, based on an
empirical Bayes scheme. Empirical Bayes schemes describe how
generative systems, such as the generative models posited by
predictive coding, are updated by experience (Friston, 2005).
We model meters as virtual causes underlying the rhythmic
surface: a meter imposes constraints the likelihood of rhythms. A
listener commanding an appropriate generative model reflecting
this relationship (i.e., how rhythms are generated from meters),
can, when presented only with a rhythmic surface, infer the
underlying meter. This process of inferring underlying causes
(meters) of experienced sensations (rhythms) involves inverting
the generative model of those sensations (which are the
end-product of the generative process). We hypothesize that
interpreting the rhythm in the context of an inferred meter
will reduce the discrepancy between predicted and experienced
sensations. In other words, inferring meter makes the rhythm
more predictable.

The generative model includes prior expectations, obtained
from previous experience, about which metrical categories are
likely to occur in general. For example, meters with non-
isochronous pulses (“complex” meters) are relatively uncommon
in Western-European music, but much more common in music
from the Balkans and Eastern Mediterranean region. Listeners
from these regions may be more likely to interpret a rhythm in a
meter with non-isochronous pulses than listeners from Western
Europe. These kind of prior biases might underlie the findings of
Hannon and Trehub (2005a) mentioned in the previous section.

Metrical categories favored by prior biases entail expectations
regarding the surface structure of rhythms. As bottom-up
evidence from the rhythm begins to flow in, these (top-down)
expectations are either confirmed or violated. Prediction error
results from a violation of the top-down expectations by the
incoming evidence. To reduce prediction error, the listener
revises their metrical interpretation of the rhythm, which in turn
alters the flow of top-down predictions. A predictive coding
perspective of meter perception thus posits a dynamic interplay
between bottom-up evidence and top-down expectations.

Crucially, both prior biases toward certain meters and the
dependencies between meter and the rhythmic surface—which
rhythms can be generated by a certain meter—are the result
of previous exposure. The generative model in the mind of
the listener underlying these representations is carved out by
previous experience in predictive processing of rhythmic signals.
Since the statistical properties of rhythms vary between styles
(e.g., Holzapfel, 2015; London et al., 2016), the processing biases
of listeners with significant differences in their exposure to
musical styles are likely to vary as well.

1.2. Related Work
Our approach in some respects resembles other recent
probabilistic models, in particular a generative model presented
by Temperley (2007). Temperley (2007, ch. 2) models meter
perception as probabilistic inference on a generative model
whose parameters are estimated using a training corpus. Meter is
represented as a multi-leveled hierarchical framework, which the
model generates level by level. The probability of onsets depends
only on the metrical status of the corresponding onset time.
Temperley (2009) generalizes this model to polyphonic musical
structure, and introduces a metrical model that conditions onset
probability on whether onsets occur on surrounding metrically
stronger beats. This approach introduces some sensitivity to
rhythmic context into the model. In later work, Temperley
(2010) evaluates this model, the hierarchical position model, and
compares its performance to other metrical models with varying
degrees of complexity. One model, called the first-order metrical
position model, was found to perform slightly better than the
hierarchical position model, but this increase in performance
comes at the cost of a higher number of parameters. Temperley
concludes that the hierarchical position model provides the best
trade-off between model-complexity and performance.

In a different approach, Holzapfel (2015) employs Bayesian
model selection to investigate the relation between usul (a
type of rhythmic mode, similar in some ways to meter) and
rhythm in Turkish makammusic. The representation of metrical
structure does not assume hierarchically organization, allowing
for arbitrary onset distributions to be learned. Like the models
compared by Temperley (2010), this model is not presented
explicitly as a meter-finding model, but is used to investigate the
statistical properties of a corpus of rhythms.

The approach presented here diverges from these models
in that it employs a general purpose probabilistic model of
sequential temporal expectation based on statistical learning
(Pearce, 2005) combined with an integrated process of metrical
inference such that expectations are generated given an inferred
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meter. The sequential model is a variable-order metrical position
model. Taking into account preceding context widens the range
of statistical properties of rhythmic organization that can be
learned by the model. In particular, the model is capable of
representing not only the frequency of onsets at various metrical
positions, but also the probability of onsets at metrical positions
conditioned on the preceding rhythmic sequence. The vastly
increased number of parameters of this model introduces a risk of
over-fitting; models withmany parametersmay start to fit to noise
in their training data, which harms generalization performance.
However, we employ sophisticated smoothing techniques that
avoid over-fitting (Pearce and Wiggins, 2004). Furthermore, we
to some extent safe-guard against over-fitting by evaluating our
model using cross-validation.

2. THE PROBABILISTIC MODEL

In this section and the sections that follow, we use the words
metrical category and metrical interpretation in a specific sense.
Metrical categories, denoted by m, represent different metrical
frameworks in which rhythms can be interpreted. Metrical
categories correspond directly to time signatures taken from
scores. Each metrical category has an associated period, denoted
by Tm. The period is encoded as a discrete number representing
the duration of one bar of m in basic quantized units of time
(see Section 2.1). The phase parameter, φ, encodes how a metrical
category aligns with the rhythmic surface. More precisely, φ

encodes the time-interval between the downbeat of the first
bar and the time point marked by zero in the encoding of the
rhythmic pattern. Together, a metrical category and phase form a
metrical interpretation.

The approach described below deals not with real audio
signals. Instead, the musical surface is represented as a sequence
of events. Each event corresponds to a note, as it might be found
in a musical score. The nth event in a sequence is denoted
by en. A sequence of events, starting at event n and ending at
event m is denoted by emn . Section 2.1 provides more details the
representation of rhythmic patterns.

Predictive coding postulates internal generative models
reflecting the causal structure of the external world. In analogy to
this, we model meter perception as the inversion of a generative
model of rhythms. Enculturation through exposure to rhythms
is modeled by deriving the parameters of the generative model
from a corpus of rhythms annotated with metrical interpretation.
During listening, the metrical category underlying a given
rhythm is generally not known to the listener. Instead, it has to be
inferred from rhythmic surface, which is assumed to result from
the generative model. The likelihood of a metrical interpretation
given an observed rhythm (i.e., a sequence of events) can be
inferred from the generative model through the application of
Bayes’ formula, as shown in Equation (1).

posterior︷ ︸︸ ︷
p(m,φ|en0) =

likelihood︷ ︸︸ ︷
p(en0 |m,φ)

prior︷ ︸︸ ︷
p(m,φ)

p(en0)︸ ︷︷ ︸
evidence

. (1)

Two factors play a role in calculating the likelihood of a metrical
category: The a priori likelihood of the metrical category itself,
operationalized here as themetrical category’s conventionality. In
Equation (1), this distribution is labeled prior. The other factor is
the likelihood of the rhythmic pattern given a certain metrical
structure. In Equation (1), this function is labeled likelihood.
The distribution over metrical interpretations inferred from the
observed events is called the posterior distribution. The factor
labeled evidence in Equation (1) is a constant with respect to
metrical interpretation. It ensures that the distribution sums to
unity.

The proposed generative model is illustrated in Figure 1. To
generate a rhythm, a metrical category is first generated from
a distribution, p(m), reflecting the prior likelihood of metrical
categories. Next, a phase is sampled from a uniform distribution
over a range of discrete phases allowed in m. From a model
associated with the selected metrical category, events are then
generated in an incremental fashion. As can be seen in Figure 1,
the likelihood of an event is conditioned on underlying metrical
category and preceding events.

Equation (1) can be expanded into the incremental and
recursive equation shown in Equation (2). This equation
expresses the posterior distribution given all events as
proportional to the product of the likelihood of the last
event, en and the posterior given all but the last event, en−1

0 .
Inferring the posterior incrementally after each event by refining
the posterior that resulted from the previous events can be
interpreted intuitively as the listener integrating the (bottom-up)
information provided by each event into their (top-down) beliefs
about the underlying metrical category. Note that the evidence
normalization constant has been omitted for clarity.

per-event posterior︷ ︸︸ ︷
p(m,φ|en0) ∝

{
per-event likelihood︷ ︸︸ ︷
p(en|m,φ, en−1

0 )

updated prior︷ ︸︸ ︷
p(m,φ|en−1

0 ) if n > 0,

p(en|m,φ)p(m,φ) else.

(2)

FIGURE 1 | Conditional dependency relations assumed by the model

between its probabilistic variables visualized as a graphical model

(Bishop, 2007, ch. 8). Shaded nodes represent observed variables,

unshaded nodes represent unobserved, hidden variables. Each node in the

graph is associated with a discrete probability distribution. If one or more

arrows terminate at a node, its associated probability distribution is

conditioned on the node(s) that the arrows originate from. Nodes labeled en

represent musical events indexed by n. The hidden variable at the top

represents a metrical interpretation. The hidden variable labeled ê represents a

predicted subsequent event.
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To infer the posterior distribution over metrical interpretations,
Equation (2) is evaluated for a set of possible metrical
interpretations. This set is constrained to include only metrical
categories that occur in the model’s training data. The number of
different phases considered per metrical category depends on the
period of the category, Tm.

To evaluate Equation (2), two probability distributions
need to be approximated: the prior distribution over metrical
interpretations, p(m,φ), and the likelihood function p(en0 |m,φ).
We discuss both in the following paragraphs.

First, we consider estimating the prior, which uses supervised
learning from a corpus of rhythms labeled withmetrical category.
The parameters of the distribution defining the a priori likelihood
of metrical categories (not phases), p(m), are set to their
maximum likelihood estimate, namely the relative frequency of
occurrence of a metrical category in the empirical training data.

p(m) =
Nm

N
, (3)

where Nm is the number of timesm was observed in the training
data and N is the total number of training examples (rhythms) in
the training data.

The prior distribution over metrical interpretations (i.e., the
joint distribution over phase and metrical category) is defined as
follows:

p(m,φ) =
p(m)

∑m′

Tm′p(m′)
. (4)

Each metrical interpretation is assigned a probability
proportional to the probability of its category. This definition
entails a reweighing of metrical categories to compensate for the
duration of their periods; it prevents meters with long periods
(many possible phases) from being at a disadvantage due to the
uniform spreading out of their probability over a large number
of phases.

Second, we consider estimating the likelihood. Calculating
the likelihood of an observed rhythm given a hypothesized
metrical interpretation involves two steps: First, the rhythm
under consideration is interpreted in a hypothesized metrical
interpretation specified by m and φ. Interpretation is
operationalized in the present model as converting the events
in the rhythm into a sequence of symbols encoding the position
of each event relative to the beginning of the bar in which it
occurs under the currently considered metrical interpretation.
The details of this conversion are discussed in Section 2.3.
Second, the likelihood of the resulting sequence of symbols is
estimated using an unsupervised probabilistic model trained on
metrically interpreted rhythms in the training corpus annotated
with the same metrical category,m. The likelihood that a rhythm
is generated by given metrical interpretation thus becomes the
likelihood of the sequence of symbols resulting from metrically
interpreting the event onset times in the rhythm. The likelihood
of the metrically interpreted rhythm, in turn, is determined on
the basis of a corpus of rhythms belonging to the same metrical
category.

Equation (2) decomposes the likelihood function into the
product of the per-event likelihoods, i.e., the likelihood of each

(metrically interpreted) event given the sequence of (metrically
interpreted) preceding events. In the present work, IDyOM
(Pearce, 2005) is used to approximate the per-event likelihood
function.

IDyOM is a flexible modeling framework based on variable-
order Markov modeling combined with a multiple-viewpoint
system for music prediction (Conklin and Witten, 1995). It
was designed for modeling dynamically changing auditory
expectations, based on long-term and short-term statistical
learning, which evolve as a piece of music unfolds. Empirical
research has demonstrated that IDyOM accurately simulates
listeners’ predictive processing of melody in many perceptual
tasks involving pitch expectation (Pearce, 2005; Pearce et al.,
2010; Omigie et al., 2012, 2013), uncertainty (Hansen and Pearce,
2014), segmentation (Pearce et al., 2010) and emotional response
(Egermann et al., 2013; Gingras et al., 2015).

Section 2.3 describes how our model is implemented on top
of IDyOM. While the present model does not make use of the
full range of modeling opportunities that the multiple-viewpoint
approach has to offer, presenting the model as an extension of
IDyOM highlights the continuity between the two probabilistic
modeling approaches.

Aspects of multiple viewpoint systems and IDyOM relevant to
the present model are introduced in Section 2.1 and Section 2.2.
Our treatment of this topic is far from complete; for a complete
overview, we refer the reader to Conklin and Witten (1995) and
Pearce (2005).

2.1. Representation of Rhythmic Patterns
Multiple viewpoint systems represent the musical surface as
a sequence of multi-dimensional datapoints encoding basic
attributes of musical events, such as pitch, onset time and
duration. These basic attributes of events are accessed through
viewpoints. A viewpoint maps sequences of events, rather than
individual events, to an element of its corresponding type, τ . The
set of all possible elements of a type τ is called the alphabet of
τ and is denoted by [τ ]. A viewpoint function may be undefined
for some sequences of events. The inter-onset-interval viewpoint,
for example, is undefined for the sequence e00, which consists of
only a single event, e0. Hence, a viewpoint is defined by a partial
function that maps sequences of events to elements of a type

9τ : ζ ∗ ⇀ [τ ],

where the symbol ζ ∗ denotes the set of all possible sequences of
events.

A distinction between two types of viewpoints is made. A basic
viewpoint simply returns one of the basic attributes of the last
event in the sequence to which it was applied (i.e., a projection
function). The alphabet of a basic viewpoint is determined by
the set of values of its corresponding attribute observed in the
training corpus (see Section 2.2). A derived viewpoint derives
more abstract attributes from one or more basic attributes of
one or more basic events. Its alphabet can be derived from the
alphabets of the basic viewpoints that the viewpoint is derived
of. The inter-onset-interval viewpoint and metrical viewpoints
introduced in Section 2.3 are examples of derived viewpoints. For
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derived viewpoints, multiple different sequences of events may
map to the same element.

The function 8τ returns the sequence of viewpoint elements
of type τ obtained by applying the viewpoint function 9τ

incrementally to to all prefixes of the sequence in order of
increasing length:

8τ (e
n
0) =

{
8τ (e

n− 1
0 )9τ (e

n
0) if 9τ (e

n
0) 6=⊥,

8τ (e
n− 1
0 ) else,

where ⊥ is a symbol indicating that the viewpoint is undefined
for the given sequence of events.

The model introduced here makes use of a single basic
viewpoint, namely on, returning the onset attribute of the last
event in a sequence, and a set of derived metrical viewpoints. The
alphabet of onset, [on], contains natural numbers that encode
the temporal position of a note as an integer-multiple of basic
quantized units. To obtain a finite, meaningful alphabet for on,
the onset alphabet is constructed online by adding the set of inter-
onset intervals encountered in the training data to the onset of the
previous event.

2.2. Predicting Musical Events
Predicting sequences of musical events in IDyOM requires
specifying a set of viewpoints, τ0, τ1, · · · , τn, on which to base
predictions. A predictive model is associated with each of these
viewpoints. Each predictive model is trained on the set of
symbol sequences obtained by applying the associated viewpoint
function 8τ to all event sequences in the training corpus.
To approximate the predictive distribution for a future event,
p(ê|en0), given a sequence of preceding events en0 , the function
8τ is applied, once for each of the specified viewpoints, to en0 to
obtain a set of sequences of viewpoint elements.

The per-viewpoint predictions, pτ (9τ (ê)|8τ (e
n
0)) are then

combined into a single event prediction, using a mechanism that
involves a weighted geometricmean. Some subtleties are involved
in converting the predictive distributions to a single domain so
that they can be combined (Pearce, 2005, ch. 7). These need
not concern us, as the model proposed here only uses a single
viewpoint to predict a single attribute of the event representation
(although it could be extended in the future to use multiple
viewpoints).

IDyOM thus reduces the challenge of estimating p(ê|en0)
to the parallel prediction of symbol sequences by estimating
pτ (9τ (ê)|8τ (e

n
0)) for each viewpoint τ0, τ1, · · · , τn. The

(domain-general) method employed by IDyOM for predicting
symbol sequences is based on a data-compression scheme called
prediction by partial matching (PPM), introduced by Cleary
and Witten (1984). Pearce and Wiggins (2004) provide an
overview of various modifications and improvements to the
original PPM scheme that have been proposed over the years,
and compare their performance using an information-theoretic
performance measure (see Section 2.4). IDyOM implements
multiple prediction schemes and furthermore allows predictions
to be based on two separate models: a long-term model
trained on a corpus of training data and a short-term model
trained, online, on only the current sequence of events. In our

simulations, we use only a long-term model (see Pearce et al.,
2005), employing a PPM* scheme using method C (Moffat,
1990) for calculating escape probabilities and adapted to use
interpolated smoothing—the configuration Pearce and Wiggins,
2004 found to yield the best results for a long-term model.
A parameter called model order-bound parameter limits the
amount of previous events taken into account in the predicting
the next event, ê: An order-bound of b means that it is assumed
that p(ê|en0) ≈ p(ê|en

n−b
). While Pearce and Wiggins (2004)

found that an unbounded model order worked best, the present
paper presents results for varying model order-bounds of up to
four.

2.3. Metrical Viewpoints, Metrical Models,
and Metrical Inference
The per-event likelihood function in Equation (2) is a predictive
distribution that, based on events observed so far and a
hypothesized metrical interpretation, specified by m and φ,
predicts the next event. This relies on interpreting the sequence
of events in the given metrical interpretation and estimating the
likelihood of the resulting sequence of symbols given a predictive
model of such sequences in the provided metrical category.
Interpretation of a rhythm in a specific metrical interpretation is
achieved in IDyOM through the introduction of a set of metrical
viewpoints. Metrical viewpoints transform a sequence of absolute
onset times into a sequence of symbols that depend on the
metrical interpretation implemented by the viewpoint.

The general form of a metrical viewpoint τm,φ is

9τm,φ (e
n
0) = f (m,φ, en0),

where f is a function that implements the metrical interpretation
given a phase and metrical category.

The present model uses a simple metrical interpretation
function that returns the metrical position of an onset.
This function makes few assumptions about the structural
organization of meter, and can accommodate complex, non-
isochronous meters. The metrical position of an onset is
defined as its position relative to the period and phase of an
interpretation. The general definition of the resulting metrical
position viewpoint, mp, is given below

9mpm,φ
(en0) =

(
9on(e

n
0)− φ

)
mod Tm,

where the viewpoint on is a basic viewpoint that returns the onset
of the last event in a sequence of events.

One metrical viewpoint is created for each metrical
interpretation considered by the model by instantiating m
and φ to a specific value.

The alphabet of the mp viewpoint is given by

[mpm,φ] = {0, 1, · · · ,Tm − 1}.

Using metrical viewpoints, metrical inference can be
implemented on top of the standard IDyOM machinery,
with one important caveat: the predictive model of a metrical
viewpoint, τm,φ is trained only on those sequences in the training
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data that have been annotated with metrical category m. Hence,
the predictability of a metrically interpreted rhythm depends
only on rhythms previously observed in the corresponding
metrical category.

One further subtlety needs to be addressed to complete
the model. Note that the per-viewpoint predictive distributions
mentioned in Section 2.2 are defined over a viewpoint’s alphabet
[τ ]. In order to predict the onset of the next event this alphabet
needs to be mapped back to the alphabet of the onset viewpoint,
[on]. However, any metrical position in [mp] theoretically
corresponds to an infinite number of periodically spaced onset
times. To be able to generate predictions for specific onset times,
and for metrical inference to work correctly, it is necessary that
the alphabet of a metrical viewpoint maps to unique onset times.
This can be achieved by linking the metrical position viewpoint
to another metrical viewpoint, which encodes the distance in bars
between the last event and the predicted event.

The equation below defines the bar distance viewpoint, bd in
terms of an intermediate metrical viewpoint, bn (bar number),
which calculates the number of bars elapsed between time zero
and the onset of the last event.

9bdm,φ (e
n
0) = 9bnm,φ (e

n
0)− 9bnm,φ (e

n− 1
0 ),

where metrical viewpoint bn is defined as

9bnm,φ (e
n
0) = integer

((
9one

n
0 − φ

)

Tm

)
.

A linked viewpoint is a special case of a derived viewpoint
composed of a number of constituent viewpoints. The elements
of linked viewpoints are tuples containing the values of
the constituent viewpoints. A linked viewpoint composed of
τ1, · · · , τn is denoted by τ1 ⊗ · · · ⊗ τn , its alphabet is given by
the Cartesian product of the constituent viewpoints’ alphabets:
[τ1]× · · · × [τn].

The linked metrical viewpoint used in our simulations is
denoted by mp⊗ bd, and encodes metrical position and distance
in bars between the penultimate and last event. Elements in the
alphabet of this viewpoint have a one-to-one correspondence to
elements in [on].

To summarize: metrical viewpoints and separate predictive
models per metrical category enable using IDyOM to estimate
the per-event likelihood function in Equation (2). In this model,
the likelihood of a metrical interpretation m depends on the
predictability of the sequence of symbols that results from
interpreting the rhythm in that metrical interpretation. This
predictability in turn depends on the set of rhythms previously
observed inm.

2.4. Expectation and Information Content
We have focussed our discussion so far on the issue of inferring
a posterior distribution over metrical interpretations. In order to
calculate prediction error, it is necessary to derive the predictive
distribution over future note onsets given a preceding rhythmic
context and an inferred meter.

To estimate prediction error, we look at the amount of
information communicated by each observation. Although it
is sometimes referred to as cross-entropy (e.g., Manning and
Schütze, 1999, ch. 2), we call this quantity the information content
(MacKay, 2003) of an event. Information content is defined as the
negative logarithm of the likelihood of observing the next event
given the predictive distribution conditioned on the sequence of
events observed so far:

h(ê|en0) = − log2 p(ê|e
n
0). (5)

In an information-theoretic sense, this quantity is equivalent
to prediction error. An unlikely (unexpected) event results in
a high prediction error, signaled by high information content.
Conversely, a likely event results in a low prediction error,
signaled by low information content.

The predictive distribution corresponds to the probability
distribution associated with the hidden variable labeled ê in the
graphical model in Figure 1. This distribution is obtained from
the generative model by marginalizing out meter and phase from
the posterior distribution inferred from the preceding events:

p(ê|en0) =

m∑ φ∑
p(ê|m,φ, en0)p(m,φ|en0), (6)

where the summation over meters sums over all metrical
categories considered by the model, m ∈ M, and the summation
over phases sums over all possible phase of category m, φ ∈

{0, 1, · · · ,Tm − 1}.
Equation (6) shows that the prediction of the onset of the next

event is subject to top-down influence from the distribution over
metrical interpretations inferred from bottom-up information
from the events observed so far.

2.5. Hypotheses
We expect an accurate computational model of human meter
perception to show certain patterns of behavior. First, we expect
it to be able to infer meters that agree with the time signatures
in notated scores (Longuet-Higgins and Lee, 1982; Temperley,
2004). Second, we argued that the metrical knowledge, acquired
by listeners through exposure to a musical idiom, is characterized
not only by the distribution of onsets over metrical positions, but
also by the probabilistic properties of how rhythms in particular
meters sequentially unfold. Thus, we expect that a model that
can learn such properties will lead to increased performance in
finding time signatures notated in scores compared to a similar
model that does not learn these properties. Third, we argued
above that categorizing rhythms into metrical categories can
plausibly be regarded as a strategy to reduce prediction error for
those rhythms. Therefore, we expect that our model will show
better performance in predicting the timing of musical events
than a comparable model that is agnostic of meter. Fourth, we
expect that our model will simulate enculturation by showing
sensitivity to the statistical properties of the rhythms it was
trained on. A model trained on rhythms with similar statistical
properties as the rhythms it is evaluated on will perform better
than amodel that was trained on rhythmswith different statistical
properties. If the statistical properties of rhythms originating
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from two cultures with different cultural practices regarding
rhythm are sufficiently different, we expect that a model trained
on rhythms from the same culture as the rhythms it is evaluated
on will outperform a model trained on rhythms from a culture
with different rhythmic practices. We evaluate these expectations
in Sections 3 and 4.

3. METHODS

3.1. Resolution of Onset Time and Phase
For reasons of computational efficiency, the resolution the phase
parameter of metrical interpretations is restricted to sixteenth
notes. This means that, for example, in the 3/4 category twelve
different phases are possible (since the duration of one 3/4 bar
is twelve sixteenth notes). Since all onset times in rhythms used
in this study encode distance from the beginning of the first bar
in the annotated meter, the correct phase of a rhythm can be
represented under any phase resolution. The representation of
rhythms in a phase of zero does not influence the evaluation: as
far as the model is concerned, all phases are initially equally likely
since the prior distribution over phase is uniform. The presence
of 32th notes and 16th-note triplets in the training data requires
that onset times are represented as integer multiples of symbolic
units corresponding to 96th notes.

3.2. Training Data
Except for one artificially constructed test set, the datasets used in
our simulations are all derived from the Essen folksong collection
(Schaffrath and Huron, 1995). The Essen folksong collection is
a corpus consisting of monophonic transcriptions of folksongs,
originating from various geographical regions across the globe.
The majority of the folksongs in this dataset originate from
regions in Germany and China. We use a version of the Essen
folksong collection encoded in humdrum format, which we
obtained from http://kernscores.stanford.edu.

Folksongs without an annotated time signature, or with
multiple time signatures are filtered out. The simulations
described below use different subsets of this filtered version of
the Essen folksong collection.

3.3. Classification Performance and the
Influence of Preceding Context
The first expectation formulated in Section 2.5 concerns the
model’s ability to infer meters that agree with time signatures
notated in scores. To evaluate this, classification performance is
measured using ten-fold cross validation on a dataset of German
folksongs. In a cross validation scheme, a model is trained and
evaluated ten times on different partitions of the dataset into a
training set and a test set. Reported classification scores are based
on the average classification score over all ten partitions.

The second expectation we formulated is that models
exploiting sequential probabilistic properties will perform better
in this task than a similar model that does not exploit
such properties. To evaluate this, we measure classification
performance of five different models configured with order-
bounds ranging from zero to four using cross validation. The
order-bound parameter (see Section 2.2) allows us to vary the

degree to which the model can learn sequential probabilistic
properties of rhythms, interpolating between a model that can
only learn distributions of onsets over metrical positions (order-
bound zero) and a model that predicts the subsequent metrical
position based on the metrical positions of the last four events
(order-bound four).

The result of performing inference on the generative model—
inferring meter from a rhythm—is not a single classification, but
a posterior probability distribution over metrical interpretations.
To determine in which meter the model interprets a rhythm,
an additional inferential step is required. All classification scores
reported in this paper are based on the interpretations with the
highest posterior probability after observing the entire rhythm.
An interpretation is considered correct if its phase and category
agree with the annotated time signature.

For these simulations, we used rhythms extracted from 4,966
German folksongs in the Essen folksong collection. This set is
constructed by selecting all melodies with an “ARE” record (area
of origin; Huron, 1999) indicating a region of Germany from the
Essen folksong collection, subject to the constraints described
in Section 3.2. Figure 2 shows the distribution of meters in the
resulting dataset. The most frequently appearing time signatures
in this set are 4/4, 2/4, 3/4, and 6/8.

3.4. Does Metrical Inference Reduce
Prediction Error?
The third expectation we formulated is that a model using
inferred meter to predict the onsets of musical events will
outperform comparable models that do not use metrical
inference. To assess whether metrical inference increases
predictive performance we compare the model an IDyOMmodel
that predicts event onset time without inferringmeter. Prediction
performance is measured by looking at average information
content (see Section 2.4), which represents the discrepancy
between predicted and observed events.

This IDyOM model is configured to use a single viewpoint,
encoding inter-onset intervals between subsequent events, to
predict onset time. Inter-onset interval is defined as the difference

FIGURE 2 | Histogram showing the of the distribution of meters in the

dataset of 4,966 German folksongs from the Essen folksong collection.
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between the onset time of the final and penultimate event. Both
models are trained and evaluated on the same dataset using cross-
validation, and the input of both models consists only of onset
times encoded in the event representation.

The results are reported, as before, for order-bounds varying
from zero to four. The values represent average information
content over cross validation folds.

3.5. Simulating Enculturation
The fourth expectation concerning the model’s behavior we
formulated is that it should show sensitivity to the statistical
properties of its training data. To investigate this, two types
of statistical aspects of training data that affect the model’s
behavior in different ways are distinguished. The first aspect is
the distribution of metrical categories in the training rhythms.
This distribution is directly reflected in the prior distribution,
encoding a priori likelihood of different metrical categories. The
effect of the prior distribution on themodel’s behavior can be seen
as inferential biases. The second aspect concerns the sequential
structure of the training rhythms themselves. This aspect includes
the distribution of onsets over different metrical positions, but
also the typical unfolding of rhythms interpreted in a specific
meter and the presence of stereotypical rhythmic patterns.

These two aspects of training data may influence the
encountered prediction error on novel rhythms as well as
the metrical category in which rhythms are interpreted.
To investigate the effect of inferential biases, we focus on
consequences of inferential biases for metrical interpretation.
In the investigation of the statistical properties of rhythms
themselves we focus on the effects of training data on prediction
error.

The simulations described below are all conducted using an
order-bound of four, since the cross validation results indicate
that, out of the considered order-bounds, four works best (see
Section 4).

3.5.1. Inferential Biases
A high prevalence of certain metrical categories in the music
to which a listener has been exposed to previously may lead
to inferential biases: a tendency to interpret rhythms in the
pervasive category. In probabilistic terms, this is a sensible
behavior: in the presence of uncertainty, it is optimal to tend
toward categories with a high a priori likelihood of occurring.
Such likelihoods are represented in the prior distribution over
metrical categories. Inferential biases are top-down in the sense
that they are independent of the particular rhythm encountered
by the model. Once the model begins to process a rhythm,
the prior distribution is updated by bottom-up evidence from
the rhythm. Inferential biases can alternatively be understood
as changing the initial state of meter induction. Meters favored
by the prior distribution require less evidence from rhythmic
events to gain a high posterior likelihood. In cases where a
rhythm is ambiguous (i.e., provides evidence for two or more
metrical categories), inferential biases toward either category can
be decisive in the model’s interpretation.

To investigate the effect of inferential biases, we train two
models on a subset of the German folksongs described in Section

3.3 containing 658 2/4 (a simple duple meter), 658 3/4 (a simple
triple meter) and 658 6/8 (a compound duple meter) training
examples. We bias the prior distribution of one model to favor
3/4 interpretations while the other model is biased to favor 6/8
interpretations.

In this simulation the prior distribution is not estimated
empirically using the relative frequency of metrical categories in
the training data. Instead, the parameters of the prior distribution
are manually set to the values shown in Table 1. The rationale
behind this choice is that if we would manipulate the prior
distribution by altering the number of training rhythms in a
metrical category, the number of training examples from which
the model predictive model of that category is learned would be
affected, which introduces performance differences that cannot
be attributed solely to the prior distribution.

The consequences of the biased prior distribution are
investigated using an artificially constructed test set. To
construct this set, first, a set of rhythmic patterns is constructed
by generating all possible patterns within the following
constraints: the total duration of a pattern is exactly twelve
sixteenth notes, none of the patterns begin with a rest and the
minimum inter-onset interval is a sixteenth note. The resulting
set consists of 211 rhythmic patterns: each pattern begins with
an onset and each sixteenth-note time point between the second
and twelfth sixteenth-note can contain an event onset. Because
twelve sixteenth notes is exactly the duration of one 3/4 or 6/8
bar, this set contains all rhythms with a minimum interval of
a sixteenth note that fit in one bar of a 3/4 or 6/8 meter. To
construct the final test set, each of these patterns is repeated four
times. The repetition allows the model more time to converge on
a single interpretation.

Both models are used to infer meter for each rhythm in
the test set. Note that while three different categories, 2/4, 3/4,
and 6/8, are considered, the quadruple repetition of patterns
with a duration of twelve sixteenth notes may favor 3/4 and
6/8 interpretations. Since this potential bias is a property of the
test set on which both models are evaluated, it does not cause
problems for the evaluation of the effect of inferential biases.

We expect that inferential biases will increase the number
of rhythms interpreted in the category corresponding to the
bias. Due to the juxtaposition of 3/4 and 6/8 inferential biases,
and the bar-level period-correspondence between these two
meters, we expect to find the greatest degree of disagreement
in interpretation of rhythms in the test set between the 3/4
and 6/8 categories: the 3/4 biased model will likely interpret
rhythms classified by the 6/8 biased model as 6/8 in 3/4 and vice
versa.

TABLE 1 | Prior probabilities of metrical categories used for simulating

inferential biases.

Category Prior probability

3/4 biased 6/8 biased

2/4 4/9 4/9

3/4 4/9 1/9

6/8 1/9 4/9
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It seems plausible that 3/4 and 6/8 inferential biases will lead
to some disagreement about the 2/4 category. An inferential
bias may lead a model to interpret rhythms classified by the
other model as 2/4 in the category corresponding to its bias.
At the tactus level, 2/4 and 3/4 exhibit structural similarities: by
convention, 2/4 and 3/4 both imply simple meters, where beats
are subdivided into two smaller units. The 6/8 time signature,
on the other hand, implies a compound meter. These (music-
theoretic) similarities between 2/4 and 3/4 may lead the 3/4
biasedmodel to interpret more rhythms, interpreted in 2/4 by the
6/8 biased model, according to its bias than the 6/8 biased model
will out of the rhythms interpreted in 2/4 by the 3/4 biasedmodel.
It is worth noting that 2/4 and 6/8 have a different structural
similarity at the level above the tactus: they are both duple meters.
However, the duration of beat in 2/4 and 6/8, in our quantized
input representation, is different, preventing this similarity from
playing a role in our model.

The set of rhythms interpreted differently by both models
likely consists of rhythms that do not strongly imply one specific
interpretation. We expect such rhythms to be either ambiguous,
or metrically over- or under-determined (London, 2012, pp. 75–
76). Because we define a classification as the interpretation with
the maximum posterior probability, the model always produces
an interpretation of a rhythm, even if evidence from the rhythm is
weak or conflicting. Therefore, some of the rhythms about which
the models disagree may be metrically vague, i.e., not strongly
suggesting any interpretation.

3.5.2. Cultural Distance between Chinese and

German Rhythms
In two simulations, we investigate how the model responds to
being trained on folksongs originating from China or Germany.
Music from these two areas might be different enough to
lead to differences in rhythmic processing between enculturated
individuals. By training the model on a dataset of Chinese and
German folksongs, we can simulate how, according to the model,
exposure to these stylistically different sets of rhythms affects
perception.

To this end, we use two dataset sets, containing folksongs
originating respectively from Germany and China. The German
dataset is the same one that is used for the cross validation
simulations described in Section 3.3. The dataset of Chinese
folksongs is constructed in the same way as the German
dataset, namely by selecting all folksongs from the Essen
folksong collection whose “ARE” reference record (Huron, 1999)
indicated a region in China and after first filtering out folksongs
with zero or more than one annotated time signatures.

We run simulations in two separate conditions. In both
conditions, two models are trained: one on a Chinese training
set, and one on a German training set. Both of these models are
subsequently evaluated on a separate Chinese and German test
set consisting of rhythms that do not occur in the training data.
In contrast to the simulation described above, we estimate the
prior distribution in its normal way (see Equations 3 and 4).

The number of rhythms of each metrical category used in the
test and train sets in the first and second condition are shown in
Table 2.

In the first condition (see the columns under “identical” in
Table 2), we control for the effect of the prior distribution and
use identical distributions of metrical categories in the training
data of both models. This allows us to attribute observed effects
to differences in the statistical properties of rhythms, ruling
out effects of differences in the number of training examples
or the differences in prior distributions. Meters considered in
the simulation need to be well represented in both datasets. In
the German and Chinese dataset that we have available, this
constraint leaves 2/4, 3/4, and 3/8 as suitable categories. Despite
this reduction, the number of rhythms in meters other than 2/4
in the Chinese dataset remains rather small.

Due to the small number of rhythms in meters other than
2/4 in the Chinese dataset, it is not possible to use a uniform
distribution of meters in the test sets for this condition. Instead,
we only include rhythms in 2/4 in the German and Chinese
test set.

In the second condition (see the columns under “empirical” in
Table 2), we allow the prior distribution to influence results and
use empirical distributions of metrical categories in the training
data of both models. By empirical, we mean that the relative
frequencies of meters in the test and training sets that we used
are equal to those observed in the Essen folksong collection.
Both training sets contained in total an equal number of training
examples.

Rhythms in the test sets for this condition are distributed to
the same proportions as in the corresponding training sets. The
Chinese test set predominantly contains rhythms annotated in
2/4 while the German test set also contains substantial numbers
of rhythms in 3/4 and 4/4.

We expect that, on the Chinese and the German test sets, the
model trained and tested on culturally similar music will exhibit
lower average information content and higher classification
performance than the model trained on culturally different
music. We expect to see this pattern of results both for the
identical, as well as for the empirical distribution of meters in the
training data.

4. RESULTS

4.1. Classification Performance and
Preceding Context
Figure 3A shows the average number of correct interpretations
found by our model at order-bounds ranging from zero to
four. The averages are obtained by first averaging all per-event
information contents (see Section 2.4) in the test set of one cross
validation fold, and subsequently over all cross-validation folds.
The standard deviations are calculated over the averages per
cross validation fold. At order-bound zero, the model interprets
rhythms in agreement with annotated time signatures in, on
average 38%, of the cases. At order-bound one, classification
performance increases sharply to, on average, 67% of the rhythms
in agreement with the annotated time signature. Increasing
order-bound further yields modest improvements. At order-
bound four, the highest we tested, on average, 71% the rhythms
were interpreted in agreement with the annotated time signature.
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TABLE 2 | Number of rhythms in different metrical categories in the training and test sets used in the simulation of enculturation.

Distribution of meters Identical Empirical

Country of origin Germany China Germany China

Dataset Training Test Training Test Training Test Training Test

Meter 2/4 950 200 950 200 339 60 1,009 178

4/4 132 0 132 0 427 75 90 16

3/4 35 0 35 0 296 52 24 4

3/8 19 0 19 0 74 13 13 2

All 1,136 200 1,136 200 1,136 200 1,136 200

FIGURE 3 | Classification performance and average information content for five different models varying in order-bound, evaluated using ten-fold

cross-validation. Markers represent values obtained by averaging over the ten folds. Error bars extend one standard deviation above and below the average values.

(A) Proportions of correctly classified interpretations. (B) Average information contents for the model (with metrical inference) compared to IDyOM without metrical

inference.

Variability in performance between different partitions of the
data in a training and test set is low, as the small error bars in
Figure 3A show.

4.2. Metrical Inference and Prediction Error
Figure 3B shows prediction performance in terms of average per-
event information content of rhythms under IDyOM (without
metrical inference) and our extended version of IDyOM (with
metrical inference). Both models were tested at order-bounds
ranging from zero to four.

The results shows that, in general, information content
decreases as order-bound increases for both the IDyOM model
(without metrical inference) and our model (with metrical
inference). The results also show that for all tested order-
bounds, the average information content is lower our model
(with metrical inference): for example 2.19 compared to 2.29
for order-bound zero and 1.34 compared to 1.54 at order-bound
four.

4.3. Simulating Enculturation
4.3.1. Inferential Biases
The results obtained from contrasting two models with manually
manipulated prior distributions on an artificially generated test
set are summarized in Table 3.

TABLE 3 | A contingency table showing the number of time signature

classifications by a 3/4 biased model and a 6/8 biased model.

3/4 biased

6/8 3/4 2/4 All

6/8 biased 6/8 471 83 40 594

3/4 0 395 0 395

2/4 0 54 1,005 1,059

All 471 532 1,045 2,048

The results shows that both models interpret approximately
half of all rhythms in 2/4. The rightmost column shows that the
6/8 biased model interprets more rhythms in 6/8 than in 3/4,
while the bottom row shows that the 3/4 biased model interprets
more rhythms in 3/4 than in 6/8.

The numbers on the diagonal show that both models agree
on the vast majority of interpretations. Both models agree on the
interpretation of rhythms that are classified as 3/4 or 6/8 despite
inferential bias: None of the rhythms that the 3/4 biased model
interprets as 6/8 are interpreted differently by the 6/8 biased
model. Similarly, none of the rhythms that the 6/8 biased model
interprets as 3/4 are classified differently by the 3/4 biased model.
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The numbers off the diagonal show that the greatest degree
of disagreement occurs between the 6/8 and 3/4 categories, but
there is also substantial disagreement between 2/4 and 3/4 and
2/4 and 6/8.

There are two categories of rhythms sensitive to inferential
biases: The first category consists of 83 rhythms that the 6/8
biased model interprets in 6/8 while the 3/4 biased model
interprets them in 3/4. The second category consists of rhythms
that one model interprets in 2/4 while the other model interprets
them in the category its biased toward. The 6/8 biased model
interprets 40 rhythms in 6/8 that the 3/4 biased model interprets
in 2/4. Out of the rhythms classified by the 6/8 biased model as
2/4, the 3/4 biased model interprets slightly more rhythms in
agreement with its bias (namely 54), than the 6/8 biased model
does out of the rhythms classified by the 3/4 biased model as 2/4
(namely 40).

4.3.2. Cultural Distance between Chinese and

German Rhythms
Table 4 shows average information content and classification
performance obtained in the simulations of enculturation with
German or Chinese folksongs. Results from two conditions are
reported: one in which the German and Chinese training sets
have an identical distribution of metrical categories and one in
which they have empirical distributions of metrical categories.

In both conditions the results can be said to show effects
of enculturation: The average information content for models
evaluated on rhythms from the same country as the rhythms
in their training data (culturally familiar) is lower than for
models trained on rhythms from the other country (culturally
unfamiliar). Classification performance shows a similar pattern:
in most cases, classification performance is better for models
evaluated on culturally familiar rhythms. However, in the
identical prior condition, classification performance of the
German model on the Chinese test set was slightly higher than of
the Chinese model. Furthermore, in the identical prior condition,
the average information content of the Chinese model is lower
when evaluated on the German test set compared to the Chinese
test set.

For both models and in both conditions, but most notably in
the identical priors condition, information content of rhythms in
the Chinese test set was slightly higher than that of rhythms in
the German test set.

Figures 4A,B project the rhythms from both test tests onto
a two-dimensional plane. The coordinates of each rhythm are
determined by the average information content of events in the
rhythm under the Chinese model (x-axis) and German model
(y-axis). Under this projection, rhythms from the two cultures
form clusters that are to some degree spatially separated. The
degree of separation is stronger in the empirical prior condition
(Figure 4B). For both conditions, average information content of
events in a single test set is highly correlated between bothmodels
(see Table 5).

5. DISCUSSION

A predictive coding view of perception entails that perception
depends on generative models in the mind of the perceiver that
are tuned by statistical properties of the environment, through
evolutionary adaptation and sensory experience, to predict

TABLE 4 | Average information content and classification performance of

models trained and evaluated on test sets with rhythms from Germany

and China.

Training set Test set

Identical priors Empirical priors

German Chinese German Chinese

Information content German 1.21 1.63 1.34 1.72

Chinese 1.32 1.49 1.70 1.49

Classification German 0.84 0.80 0.73 0.72

Chinese 0.59 0.77 0.47 0.75

Results are reported for two different conditions. One in which training sets contain

identical distributions of metrical categories, and one in which training sets contain

empirical distributions of metrical categories.

A B

FIGURE 4 | Scatter plots of the average information content of rhythms for the Chinese and German models. (A) Results for the training and test sets with

fixed distributions of meters. (B) Results for the training and test sets with empirical distributions of meters.
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TABLE 5 | Pearson product-moment correlation coefficients between

average information content per rhythm under the German and the

Chinese model, showing the degree to which information-content

assigned to the same rhythms by both models is related.

German test set Chinese test set

Fixed prior 0.74 0.94

Empirical prior 0.86 0.89

sensations. We hypothesized that effects of enculturation on the
perception of meter can be understood in terms of predictive
coding. To explore the consequences of this idea, we presented
a probabilistic model of meter perception for which predictive
coding served as the conceptual basis. The underlying hypothesis
is that meter perception is the result of a strategy, based on
statistical learning, probabilistic prediction and inference, for
increasing predictive accuracy in processing of temporal events
in music.

A set of expectations concerning the model’s behavior was
derived based on: the relevance of the model as a cognitive
model of meter perception, theoretical proposals about the
relation between rhythm and meter, the model’s ability to reduce
prediction error, and finally the model’s potential to simulate
enculturation. To investigate the degree to which the model
meets these expectations, we ran a series of simulations. The
results show that the model can infer metrical structure from
rhythms, and that this ability improves when statistical properties
of the succession of onsets in the metrical context are taken into
account. A comparison with a similar model that does not use
metrical inference demonstrates that metrical inference reduces
prediction error in predicting the timing of musical events.
Finally the results show hypothesized patterns of enculturation
when models are trained on corpora varying, both naturally
and artificially, in terms of distribution of meters and rhythmic
properties.

The following sections discuss the simulation results in detail.

5.1. Meter Classification and Preceding
Context
A model of meter perception can reasonably be expected
to interpret a simple rhythm in a meter that agrees with
the time signature that an educated listener would use when
transcribing that rhythm. The used rhythms were taken from
folksongs in the Essen folksong collection (Schaffrath andHuron,
1995). Despite its possible relevance to determining the time
signature, melodic information was disregarded. This limitation
notwithstanding, cross-validation results indicate that the model
generally infers interpretations that agree both in category and
phase with annotated time signatures. The best performing
model configuration interprets rhythms in a time signature
and phase that agrees with annotations in the Essen folksong
collection in 71% of the cases. These classifications were selected
by the model out of a large pool of alternatives. Summing the
number of possible phases per considered metrical category (see
Section 2) yields 320 possible metrical interpretations. Many of

A B

FIGURE 5 | Two rhythms that result in different orderings of the same

set of mp⊗ bd viewpoint elements. The number-pairs below the notes are

the values of mp⊗ bd. The top number represents the value of the bd

(bar-distance) viewpoint, the bottom number represents the value of the mp

(metrical position; expressed in multiples of an eighth note duration) viewpoint.

The rhythm in (A) is structurally different from the rhythm in (B), but under a

zeroth-order mp ⊗ bd viewpoint, they are indistinguishable.

these categories occur very infrequently in the training data,
resulting in a low a priori likelihood for these categories. If
we limit interpretations to the four most frequently occurring
metrical categories—4/4, 2/4, 3/4, and 6/8—the number of
interpretation options reduces to 48.

By varying the model’s order-bound (the amount of preceding
events that inform the prediction of the next event, see Section
2.2), we investigated to what degree learning statistical properties
of the succession of metrical positions in rhythms improved the
model’s performance.

Increasing the order-bound from zero to one yields the

most significant improvement in classification performance. This
finding is consistent with results obtained by Temperley (2010)
in a comparison of six onset-prediction models. Some of these
models were metrical, which means they made use of provided
(rather than probabilistically inferred) metrical information.
Temperley (2010) found that out of the compared models, the
twometrical and context-sensitive models, namely the first-order
metrical duration model and hierarchical position model, yielded
the lowest cross-entropy (information content) score.

The performance increase between order bound zero and one
is unsurprising. In a zeroth-order model, events in a rhythm are
conditionally independent given a meter. If the meter is known,
the probability of the next event only depends on its metrical
status and is independent of preceding events1. In a zeroth-order
model, a rhythm is a “bag of notes”: the order in which notes
occur is irrelevant to the final outcome. However, note-order
bears consequences for the metrical interpretation of a rhythm,
as illustrated in Figure 5. The rhythm in Figure 5A is structurally
different from the rhythm in Figure 5B, yet under a zeroth-order
model using mp⊗ bdmetrical viewpoints (see Section 2.3) these
rhythms are indistinguishable.

The results show that classification and prediction
performance, increases further when order-bound is increased
to four. Since this improvement is relatively modest, it remains
to be seen to what extent probabilistic information about the
succession of multiple events facilitates metrical inference.
Perhaps the effect of order-bound would be more pronounced

1The bd viewpoint used in our simulations indirectly introduces minor context

dependency: if its value zero it means that the current note is the first note in the

bar.
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for music styles with more complex rhythms than the folksongs
used here.

5.2. Metrical Inference Reduces Prediction
Error
We proposed that meter perception may result from predictive
coding: interpreting onsets in a rhythm as the result of a
generative model with different periodic categories (meters),
that are inferred from the pattern of onsets itself, may facilitate
prediction of future onsets. Interpreting a rhythm in a metrical
framework allows a listener to relate the observed events to
patterns they observed previously. A computational probabilistic
model that infers meter to predict the timing of events, such
as the one presented here, should therefore encounter a lower
prediction error in empirical rhythms compared to a similar
model that does not infer meter.

To evaluate this, we compared prediction performance of the
presented model to an IDyOM model that predicts the event
onset times without using metrical inference. This comparison
seems natural because the presented model implements metrical
inference directly on top of IDyOM as explained in Section 2.

Simulations show that the meter inferring model reduces
prediction error compared to IDyOM (without metrical
inference) under all tested order-bounds. These results support
the suggestion that inferring meter may improve temporal
prediction of events in rhythms.

5.3. Simulating Enculturation
The goals of the simulations concerning enculturation
were to investigate how our model’s behavior is shaped by
the statistical properties of rhythms in its training data,
and to investigate the extent to which these statistical
properties can be exploited to improve the prediction and
metrical interpretation of stylistically similar rhythms.
We first explored the consequences of inferential biases
on an artificially constructed set of potentially ambiguous
rhythms. Then, we studied the effect of statistical properties
of sets of rhythms on metrical inference. The results show
that when tested on Chinese rhythms, models trained
on rhythms of Chinese folksongs show better prediction
performance than models trained on German folksongs. The
converse was true when the models were tested on German
folksongs.

This simulation of enculturation should be seen as a
proof-of-concept: Patterns of quantized onset times annotated
with meter are a limited representation of the rich variety
of musical and non-musical experiences that may shape
listeners’ perception of meter. In the musical domain, timbre,
polyphony, expressive timing and dynamics are some examples
of aspects not considered by our approach that all could
plausibly form part of the experiences that shape meter
perception. Nevertheless, it is possible that monophonic
corpora of rhythms from different cultures can predict
some enculturation effects. The methodology presented
here is an illustration of how such predictions could be
made.

5.3.1. Inferential Biases
Inferential biases were introduced into the model by directly
manipulating the prior distribution, while avoiding differences
in the amount of training examples per metrical category, which
would influence the results.

We contrasted two models: one with a 6/8 inferential bias,
another with a 3/4 inferential bias. The models were evaluated on
an artificially constructed test set of rhythms with the potential
for ambiguity between 3/4 and 6/8. These test rhythms were not
annotated, as we intended find the set of rhythms for which
inferential biases could swing the model’s interpretation.

The results show that inferential biases affected the
distribution of interpretations over metrical categories in
ways that we expected: Each model interpreted more rhythms in
the category corresponding to its bias than the other model. Both
models agreed on the interpretation of the majority rhythms.
These rhythms contained enough evidence toward a particular
interpretation to override the model’s inferential bias. As we
expected on music theoretic grounds, the 3/4 biased model
swung the interpretation of slightly more rhythms, interpreted
in 2/4 by the 6/8 biased model, to a 3/4 interpretation than the
6/8 model did out of the set of rhythms interpreted in 2/4 by the
3/4 biased model.

Eight rhythms interpreted were interpreted in 3/4 without
pick up by the 3/4 biased model and in 6/8 without pick up
by the 6/8 biased model. These rhythms are shown, by way of
example, in Figure 6, along with metrical grids contrasting a
simple 3/4 interpretation with a compound 6/8 interpretation.
That the interpretation of these rhythms could be influenced
depending on inferential bias of the model suggests that they are
ambiguous (e.g., Figure 6vi), and/or metrically underdetermined
(e.g., Figures 6i,iv), or metrically vague, i.e., not strongly
suggesting any interpretation (e.g., Figure 6viii).

5.3.2. Cultural Distance between Chinese and

German Rhythms
In general agreement with the hypotheses presented in Section
2.5, the results in Table 4 show that models evaluated on a test
set with rhythms from the same country as the rhythms they
were trained on exhibit a lower average per-event information
content. The classification scores for models trained on culturally
familiar rhythms were also higher compared to models trained
on culturally unfamiliar rhythms, except on the Chinese test
set in the identical prior scenario. It could be that rhythms in
the Chinese portion of the Essen folksong collection (Schaffrath
and Huron, 1995) were less consistently annotated, but further
investigation is necessary to determine whether this is the case.
The pattern of results suggests that the statistical properties
of Chinese and German rhythms are different, and that these
differences can be exploited to optimize prediction and metrical
inference on rhythms from one of the countries.

In a recent study comparing recognition memory in North
American listeners on Turkish classical music and Western art
music, Demorest et al. (2016) found that rhythmic properties of
music did not contribute to an enculturation effect on memory
performance. At a first sight, these results seem surprising in
the light of earlier studies that did find effects of enculturation
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FIGURE 6 | The full set of rhythms interpreted as non-anacrustic 3/4 rhythm by a model with a 3/4 inferential bias and a non-anacrustic 6/8 rhythm by

a model with a 6/8 inferential bias. Each rhythm is shown in dot notation between a compound 6/8 metrical grid (above) and a 3/4 simple metrical grid (below).

The gray bars highlight onsets that fall on beats with different theoretical saliencies in both interpretations. Score transcriptions of the rhythms in 6/8 and 3/4 are

shown above and below the grids.

related to rhythmic organization of music (Hannon and Trehub,
2005a,b; Hannon et al., 2012). However, it is possible that while
rhythms are capable of eliciting effects of enculturation, such
rhythms did not occur in the stimuli used by Demorest et al.
(2016). Demorest et al. (2016) used a small set of stimuli that were
not specifically selected to contain rhythms likely to elicit an effect
of enculturation. The methodology applied in this simulation
of enculturation is an example of how probabilistic models of
rhythm perception can be employed to predict which rhythms
are likely to elicit an effect of enculturation.

We hypothesized that fine-tuning of perception to the
statistical properties of musical rhythms in one’s environment in
a way that leads to a reduction of prediction-error in rhythms
typical of one’s environment leads to differences in the processing
of meter. This idea is closely related to the notion of cultural
distance—the degree to which pitch relations in a musical excerpt
resemble the pitch relations typical to music from one’s own
culture—introduced recently by Demorest and Morrison (2016).
The cultural distance hypothesis (Demorest and Morrison, 2016)
states that cultural distance is predictive of various culturally
dependent responses such as preference, tension, expectation,
and memory. This hypothesis is supported by a series of studies
where cultural distance of stimulus material was found to affect

memory performance (for an extensive overview, see Morrison
and Demorest, 2009). Demorest and Morrison (2016) propose
that cultural distance could be measured using probabilistic
models of melodic expectancy, such as IDyOM, that learn the
statistical properties of music from a particular culture. Music
that is culturally distant from the music such a model is trained
on should be predicted less effectively than culturally familiar
music. As such, in the context of a cross-cultural study, average
information content—the degree to which observed events
deviate from one’s expectations—can be seen as an operational
definition of cultural distance.

The model presented here can supplement predictions about
melodic cultural distance as provided by existing probabilistic
models, with predictions about rhythmic cultural distance.
Cultural distance, as predicted by our probabilistic model, can
then be read directly from Figures 4A,B. If the probabilistic
aspects of rhythm learned by the presented model correspond
to those implicitly learned by human listeners, then, according
to the cultural distance hypothesis, rhythms in the top-right
part of Figures 4A,B should be more difficult to remember for
German listeners while rhythms in the bottom-right part of
Figures 4A,B should be more difficult to remember for Chinese
listeners.
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Other culturally dependent responsesmentioned byDemorest
and Morrison (2016) such as, expectation, preference, and
tension can be potentially linked to information content as
well. Regarding expectation, information content is a direct
consequence of predictive failure and has been shown to account
well for human pitch expectations (Pearce, 2005; Hansen and
Pearce, 2014). Regarding preference, perceived groove and
experienced pleasure have been hypothesized to depend on the
right balance between predictability and unpredictability (Witek
et al., 2014). Furthermore, influential proposals have postulated
close ties between expectation and both emotional responses
to music (Huron, 2006) and musical meaning (Meyer, 1957).
Regarding tension, melodic expectation has recently been linked
to expressive performance, which in turn was linked to perceived
tension (Gingras et al., 2015).

5.4. General Discussion
While it is commonly assumed that the metrical accent of a
beat, as derived from formal hierarchical descriptions of meter
(Lerdahl and Jackendoff, 1983), is proportional to the probability
of onsets at those beats, recent findings by Holzapfel (2015)
and London et al. (2016) challenge this view. London et al.
(2016) suggested that onset frequency need not be correlated with
metrical accent for effective communication of meter. Instead,
they argue, it is the recurrence and stability of rhythmic figures
in the context of specific meters that may play a key role in the
relation between rhythm and meter.

The results we presented show that models which take
into account the preceding context of musical events, thus
possessing the potential to learn the typical unfolding of
multiple characteristic rhythmic patterns under different meters,
are generally better at predicting rhythms and reconstructing
annotated meters from note onsets alone. These findings, we
would argue, provide further support for the idea the relationship
between rhythm and meter is not only characterized by the
distribution of note onsets, but also by characteristic rhythms and
statistical properties of succession of interval between events.

The model we presented learns a generative model of
rhythms from an annotated corpus. The supervised aspect of
this approach challenges the cognitive plausibility of our model.
Humans develop a feel for meter in their own culture without
someone explicitly informing them about the “right” metrical
interpretation. Nevertheless, situated exposure to rhythm almost
always happens within a context containing an abundance of
multi-sensory information related to the rhythmic practice.
Within the music itself, other instruments, expressive timing and
dynamics may provide strong metrical cues. In the environment,
being rocked to music as an infant, participating in dancing or
observing other people dance all contribute to the multi-sensory
context by which rhythm perception is shaped.While not entirely
putting concerns related to the supervised aspect of our approach
to rest, metrical annotations in our training data can potentially
be seen as capturing some of the information communicated in
situated exposure to rhythms.

We have only considered event onset times in the present
study, but other musical aspects such as melodic repetition are
known influence the perception of meter as well (Hannon et al.,

2004). A full account of meter perception should take these
aspects into account. Our model could be a good starting point
for such an account: due to the implementation of the model in
IDyOM, it is possible to link metrical viewpoints with melodic
viewpoints and incorporate melodic aspects into the generative
model.

Another limitation of the current model is its relatively
simple representation of metrical structure. Time signatures
fall short in capturing the structural complexity of perceived
meter. The model treats metrical categories as independent
generative models and structural similarities between meters
remain unexploited. The model is limited in its interpretation
of rhythms into metrical categories by the categories observed
in training data. In future work, we will seek to address these
limitations by extending the model’s representation of metrical
structure.

The model introduced here represents an extension of
previous work in probabilistic modeling of music (Conklin and
Witten, 1995; Pearce, 2005). It is worth pointing out that the
predictive mechanisms on which the model presented here is
based, are domain independent (Pearce and Wiggins, 2004). The
PPM* sequence prediction methods we employ can be applied to
any domain that can be represented as structured sequences of
symbols. Indeed, they were originally proposed in the field of text
compression, but have proven to be useful in cognitive models of
melodic expectation as well (Pearce, 2005; Pearce and Wiggins,
2012).

In summary, we have presented a computational probabilistic
model meter perception, grounded in a predictive coding
perspective of perception. The model has the potential to
simulate musical expectations resulting from the perception
of meter, shaped by previous exposure. The results show
that the model can interpret simple rhythms in meters that
agree with annotated time signatures and that it generates
the hypothesized effects of enculturation. Simulations such as
the ones presented here, can be used to generate theoretical
predictions for cross-cultural studies of rhythm perception.
Future research will determine the extent to which the learning
processes implemented by our model capture aspects of those at
work in human listeners.

AUTHOR CONTRIBUTIONS

BW designed and implemented the model. The model builds
on IDyOM, which was designed and implemented by MP; MP
and HH improved the model; HH, MP, and BW designed the
simulations; BW performed the research and analyzed the data;
BW wrote the paper; HH and MP improved the paper.

FUNDING

HH is supported by a Distinguished Lorentz fellowship granted
by the Lorentz Center for the Sciences and the Netherlands
Institute for Advanced Study in the Humanities and Social
Sciences (NIAS) and a Horizon grant of the Netherlands
Organization for Scientific Research (NWO). BW and MP also

Frontiers in Psychology | www.frontiersin.org May 2017 | Volume 8 | Article 82440

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Weij et al. A Probabilistic Model of Meter Perception

received support from the EPSRC Digital Music Platform Grant
held at Queen Mary (EP/K009559/1). MP is supported by a grant
from the UK Engineering and Physical Science Research Council
(EPSRC, EP/M000702/1).

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments which
significantly improved the presentation of this work.

REFERENCES

Barlow, H. B. (1961). “Possible principles underlying the transformations

of sensory messages,” in Sensory Communication, ed W. A. Rosenblith

(Cambridge, MA: MIT Press), 217–234.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. New York, NY:

Springer.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the

future of cognitive science. Behav. Brain Sci. 36, 181–253. doi: 10.1017/S0140

525X12000477

Cleary, J. G., and Witten, I. H. (1984). Data compression using adaptive

coding and partial string matching. IEEE Trans. Commun. 32, 396–402.

doi: 10.1109/TCOM.1984.1096090

Conklin, D., and Witten, I. H. (1995). Multiple viewpoint systems for music

prediction. J. New Music Res. 24, 51–73. doi: 10.1080/09298219508570672

Creel, S. C. (2011). Specific previous experience affects perception of harmony

and meter. J. Exp. Psychol. Hum. Percept. Perform. 37, 1512–1526.

doi: 10.1037/a0023507

Creel, S. C. (2012). Similarity-based restoration of metrical information: different

listening experiences result in different perceptual inferences. Cogn. Psychol. 65,

321–351. doi: 10.1016/j.cogpsych.2012.04.004

Demorest, S. M., and Morrison, S. J. (2016). “Quantifying culture: the cultural

distance hypothesis of melodic expectancy,” in The Oxford Handbook of

Cultural Neuroscience 1st Edn., Chapter 12, eds J. Y. Chiao, S.-C. Li, R.

Seligman, and R. Turner (Oxford: Oxford University Press).

Demorest, S. M., Morrison, S. J., Nguyen, V. Q., and Bodnar, E. N. (2016). The

influence of contextual cues on cultural bias in music memory. Music Percept.

33, 590–600. doi: 10.1525/mp.2016.33.5.590

Egermann, H., Pearce, M. T., Wiggins, G. A., and McAdams, S. (2013).

Probabilistic models of expectation violation predict psychophysiological

emotional responses to live concert music. Cogn. Affect. Behav. Neurosci. 13,

533–553. doi: 10.3758/s13415-013-0161-y

Friston, K. J. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. Ser.

B Biol. Sci. 360, 815–836. doi: 10.1098/rstb.2005.1622

Gingras, B., Pearce, M. T., Goodchild, M., Dean, R. T., Wiggins, G. A., and

McAdams, S. (2015). Linking melodic expectation to expressive performance

timing and perceived musical tension. J. Exp. Psychol. Hum. Percept. Perform.

42, 594–609. doi: 10.1037/xhp0000141

Hannon, E. E., Snyder, J. S., Eerola, T., and Krumhansl, C. L. (2004). The role of

melodic and temporal cues in perceiving musical meter. J. Exp. Psychol. Hum.

Percept. Perform. 30, 956–974. doi: 10.1037/0096-1523.30.5.956

Hannon, E. E., Soley, G., and Ullal, S. (2012). Familiarity overrides complexity

in rhythm perception: a cross-cultural comparison of American and

Turkish listeners. J. Exp. Psychol. Hum. Percept. Perform. 38, 543–548.

doi: 10.1037/a0027225

Hannon, E. E., and Trehub, S. E. (2005a). Metrical categories in infancy and

adulthood. Psychol. Sci. 16, 48–55. doi: 10.1111/j.0956-7976.2005.00779.x

Hannon, E. E., and Trehub, S. E. (2005b). Tuning in to musical rhythms: infants

learn more readily than adults. Proc. Natl. Acad. Sci. U.S.A. 102, 12639–12643.

doi: 10.1073/pnas.0504254102

Hansen, N. C., and Pearce, M. T. (2014). Predictive uncertainty in auditory

sequence processing. Front. Psychol. 5:1052. doi: 10.3389/fpsyg.2014.01052

Holzapfel, A. (2015). Relation between surface rhythm and rhythmic modes in

Turkish Makam music. J. New Music Res. 44, 25–38. doi: 10.1080/09298215.

2014.939661

Honing, H. (2013). “Structure and interpretation of rhythm in music,” in The

Psychology of Music, 3rd Edn., ed D. Deutsch (London: Academic Press),

369–404.

Huron, D. B. (1999).Music Research Using Humdrum: A User Guide. Stanford, CA:

Center for Computer Assisted Research in the Humanities.

Huron, D. B. (2006). Sweet Anticipation: Music and the Psychology of Expectation.

Cambridge, MA: The MIT Press.

Lerdahl, F., and Jackendoff, R. (1983). A Generative Theory of Tonal Music.

Cambridge, MA: MIT Press.

Locke, D. (1982). Principles of offbeat timing and cross-rhythm in southern Eve

dance drumming. Ethnomusicology 26, 217–246. doi: 10.2307/851524

London, J. (2012). Hearing in Time, 2nd Edn. New York, NY: Oxford University

Press.

London, J., Polak, R., and Jacoby, N. (2016). Rhythm histograms and musical

meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. 24,

474–480. doi: 10.3758/s13423-016-1093-7

Longuet-Higgins, H. C., and Lee, C. S. (1982). The perception of musical rhythms.

Perception 11, 115–128. doi: 10.1068/p110115

Longuet-Higgins, H. C., and Steedman, M. J. (1971). On interpreting bach.Mach.

Intell. 6, 221–241.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.

Cambridge, MA: Cambridge University Press.

Manning, C. D., and Schütze, H. (1999). Foundations of Statistical Natural

Language Processing. Cambridge, MA: The MIT Press.

Meyer, L. B. (1957). Meaning in music and information theory. J. Aesthet. Art Crit.

15, 412–424. doi: 10.2307/427154

Moffat, A. (1990). Implementing the PPM data compression scheme. IEEE Trans.

Commun. 38, 1917–1921. doi: 10.1109/26.61469

Morrison, S. J., and Demorest, S. M. (2009). “Cultural constraints on music

perception and cognition,” in Cultural Neuroscience: Cultural Influences on

Brain Function, vol. 178 of Progress in Brain Research, ed J. Y. Chiao

(Amsterdam: Elsevier), 67–77.

Olshausen, B. A., and Field, D. J. (1996). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature 381, 607–609.

doi: 10.1038/381607a0

Omigie, D., Pearce, M. T., and Stewart, L. (2012). Tracking of pitch

probabilities in congenital amusia. Neuropsychologia 50, 1483–1493.

doi: 10.1016/j.neuropsychologia.2012.02.034

Omigie, D., Pearce, M. T., Williamson, V. J., and Stewart, L. (2013).

Electrophysiological correlates of melodic processing in congenital amusia.

Neuropsychologia 51, 1749–1762. doi: 10.1016/j.neuropsychologia.2013.05.010

Palmer, C., and Krumhansl, C. L. (1990). Mental representations for

musical meter. J. Exp. Psychol. Hum. Percept. Perform. 16, 728–741.

doi: 10.1037/0096-1523.16.4.728

Pearce, M. T. (2005). The Construction and Evaluation of Statistical Models of

Melodic Structure in Music Perception and Composition. Ph.D. thesis, City

University, London.

Pearce, M. T., Conklin, D., and Wiggins, G. A. (2005). “Methods for combining

statistical models of music,” in Computer Music Modeling and Retrieval: Second

International Symposium, CMMR 2004 (Esbjerg, Denmark), Revised Papers

(Berlin; Heidelberg: Springer), 295–312. doi: 10.1007/978-3-540-31807-1_22

Pearce, M. T., Müllensiefen, D., and Wiggins, G. A. (2010). The role

of expectation and probabilistic learning in auditory boundary

perception: a model comparison. Perception 39, 1367–1392. doi: 10.1068/

p6507

Pearce, M. T., and Wiggins, G. A. (2004). Improved methods for statistical

modelling of monophonic music. J. New Music Res. 33, 367–385. doi: 10.1080/

0929821052000343840

Pearce, M. T., and Wiggins, G. A. (2012). Auditory expectation: the information

dynamics of music perception and cognition. Top. Cogn. Sci. 4, 625–652.

doi: 10.1111/j.1756-8765.2012.01214.x

Frontiers in Psychology | www.frontiersin.org May 2017 | Volume 8 | Article 82441

https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1109/TCOM.1984.1096090
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1037/a0023507
https://doi.org/10.1016/j.cogpsych.2012.04.004
https://doi.org/10.1525/mp.2016.33.5.590
https://doi.org/10.3758/s13415-013-0161-y
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1037/xhp0000141
https://doi.org/10.1037/0096-1523.30.5.956
https://doi.org/10.1037/a0027225
https://doi.org/10.1111/j.0956-7976.2005.00779.x
https://doi.org/10.1073/pnas.0504254102
https://doi.org/10.3389/fpsyg.2014.01052
https://doi.org/10.1080/09298215.2014.939661
https://doi.org/10.2307/851524
https://doi.org/10.3758/s13423-016-1093-7
https://doi.org/10.1068/p110115
https://doi.org/10.2307/427154
https://doi.org/10.1109/26.61469
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/j.neuropsychologia.2012.02.034
https://doi.org/10.1016/j.neuropsychologia.2013.05.010
https://doi.org/10.1037/0096-1523.16.4.728
https://doi.org/10.1007/978-3-540-31807-1_22
https://doi.org/10.1068/p6507
https://doi.org/10.1080/0929821052000343840
https://doi.org/10.1111/j.1756-8765.2012.01214.x
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Weij et al. A Probabilistic Model of Meter Perception

Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex:

a functional interpretation of some extra-classical receptive-field effects. Nat.

Neurosci. 2, 79–87. doi: 10.1038/4580

Savage, P. E., Brown, S., Sakai, E., and Currie, T. E. (2015). Statistical universals

reveal the structures and functions of humanmusic. Proc. Natl. Acad. Sci. U.S.A.

112, 8987–8992. doi: 10.1073/pnas.1414495112

Schaffrath, H., and Huron, D. (1995). The Essen Folksong Collection in the

Humdrum Kern Format. Menlo Park, CA: Center for Computer Assisted

Research in the Humanities.

Smith, E. C., and Lewicki, M. S. (2006). Efficient auditory coding. Nature 439,

978–982. doi: 10.1038/nature04485

Stobart, H., and Cross, I. (2000). The Andean anacrusis? Rhythmic structure and

perception in Easter songs of Northern Potosí, Bolivia. Br. J. Ethnomusicol. 9,

63–92. doi: 10.1080/09681220008567301

Temperley, D. (2004). An evaluation system for metrical models. Comput. Music J.

28, 28–44. doi: 10.1162/0148926041790621

Temperley, D. (2007).Music and Probability. Cambridge, MA: MIT Press.

Temperley, D. (2009). A unified probabilistic model for polyphonic

music analysis. J. New Music Res. 38, 3–18. doi: 10.1080/09298210902

928495

Temperley, D. (2010). Modeling common-practice rhythm. Music Percept. 27,

355–376. doi: 10.1525/mp.2010.27.5.355

Vuust, P., andWitek, M. A. G. (2014). Rhythmic complexity and predictive coding:

a novel approach to modeling rhythm and meter perception in music. Front.

Psychol. 5:1111. doi: 10.3389/fpsyg.2014.01111

Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., and Vuust,

P. (2014). Syncopation, body-movement and pleasure in Groove music. PLoS

ONE 9:e94446. doi: 10.1371/journal.pone.0094446

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 van der Weij, Pearce and Honing. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org May 2017 | Volume 8 | Article 82442

https://doi.org/10.1038/4580
https://doi.org/10.1073/pnas.1414495112
https://doi.org/10.1038/nature04485
https://doi.org/10.1080/09681220008567301
https://doi.org/10.1162/0148926041790621
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1525/mp.2010.27.5.355
https://doi.org/10.3389/fpsyg.2014.01111
https://doi.org/10.1371/journal.pone.0094446
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 04 May 2017

doi: 10.3389/fpsyg.2017.00662

Frontiers in Psychology | www.frontiersin.org May 2017 | Volume 8 | Article 662

Edited by:

Geraint A. Wiggins,

Queen Mary University of London, UK

Reviewed by:

Greg Poarch,

Westfälische Wilhelms-Universität

Münster, Germany

Andrei Radu Teodorescu,

Tel Aviv University, Israel

*Correspondence:

David J. Baker

dbake29@lsu.edu

Specialty section:

This article was submitted to

Cognition,

a section of the journal

Frontiers in Psychology

Received: 24 October 2016

Accepted: 12 April 2017

Published: 04 May 2017

Citation:

Baker DJ and Müllensiefen D (2017)

Perception of Leitmotives in Richard

Wagner’s Der Ring des Nibelungen.

Front. Psychol. 8:662.

doi: 10.3389/fpsyg.2017.00662

Perception of Leitmotives in Richard
Wagner’s Der Ring des Nibelungen

David J. Baker 1* and Daniel Müllensiefen 2

1Music Cognition and Computation Lab, School of Music and Dramatic Arts, Louisiana State University, Baton Rouge, LA,

USA, 2Music, Mind and Brain Lab, Department of Psychology, Goldsmiths, University of London, London, UK

The music of Richard Wagner tends to generate very diverse judgments indicative of

the complex relationship between listeners and the sophisticated musical structures in

Wagner’s music. This paper presents findings from two listening experiments using the

music fromWagner’s Der Ring des Nibelungen that explores musical as well as individual

listener parameters to better understand how listeners are able to hear leitmotives, a

compositional device closely associated with Wagner’s music. Results confirm findings

from a previous experiment showing that specific expertise with Wagner’s music can

account for a greater portion of the variance in an individual’s ability to recognize and

remember musical material compared to measures of generic musical training. Results

also explore how acoustical distance of the leitmotives affects memory recognition

using a chroma similarity measure. In addition, we show how characteristics of the

compositional structure of the leitmotives contributes to their salience andmemorability. A

final model is then presented that accounts for the aforementioned individual differences

factors, as well as parameters of musical surface and structure. Our results suggest that

that future work in music perception may consider both individual differences variables

beyond musical training, as well as symbolic features and audio commonly used in music

information retrieval in order to build robust models of musical perception and cognition.

Keywords: musical memory, leitmotives, opera, symbolic notation, computational Modeling

1. INTRODUCTION

While Richard Wagner and his music have been the topic of a wide range of musicological
and music theoretic research (Bailey, 1977; Deathridge and Dahlhaus, 1984; Dreyfus, 2012), the
compositional techniquesWagner developed and their effect on listeners has not received nearly as
much attention from the music psychology community. This may be due to the fact that Wagner’s
music does not make use of tonality in the traditional sense, but rather has been aptly described
by David Huron as “contracadential” and very harmonically sophisticated (Huron, 2006). Huron
notes that the complexity in Wagner’s music may be attributed to its cadential content in that his
cadences are “almost entirely divorced from perceptual or formal segmentation” (Huron, 2006,
p. 338)making hismusic difficult to process for listeners who do not have prior listening experience.

In addition to the difficulty delineating cadential structures in his music, Wagner also composed
his melodic material in order to avoid the regularity that is found in other 19th century composers
(Dahlhaus, 1980; Grey, 2007). This conscious choice to write melodic material that seems to
be endless and avoids easy segmentation often leads to difficulties for listeners, which results in
thwarted and delayed expectations of musical events. Despite these inherent difficulties in parsing
his cadential and melodic material, the continued popularity of his music for people at various
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points in history (Magee, 1988) seems to suggest that listeners
from a wide range of backgrounds are able to process and enjoy
the complex auditory scenes in his music.

Initial work investigating how listeners are able to hear salient
musical material in Wagner’s music was carried out by Deliège
(1992) in order to demonstrate the principles of musical cue
abstraction (Deliège and Mélen, 1997). Cue abstraction is rooted
in Gestalt schematization processes inspired by the work of
Lerdahl and Jackendoff (1983) and uses grouping and similarity-
difference principles in order to predict where listeners will
perceive musical boundaries as well as salient musical events.
Deliège’s studies on the perception of Wagner’s music focused
primarily on leitmotives, which are short musical ideas that can
be used to refer to people, places, or ideas related to the musical
narrative (Hacohen and Wagner, 1997).

Leitmotives are ideal cues for studying salient musical events
because they can exist in a multitude of permutations that are all
perceived as the same cognitive entity. For example, the Schwert-
Motiv, while often played in the major mode on the trumpet,
can also be orchestrated with varying mode, range, and timbre
in order to successfully convey the correct musical emotion the
composer intended. Despite these changes, the leitmotive is often
recognized as the same categorical entity as demonstrated in
Figures 1, 2.

Using leitmotives as cues, Deliège demonstrated her cue
abstraction principles, which model real-time music listening,
were able to accurately predict salient musical events in non-
tonal music (Deliège, 1992). Her initial findings showed higher
leitmotive recognition rates in participants with more musical
training, indicating that listener background played a significant
role in the identification of salient musical events. Deliège has
also demonstrated the success of the cue abstraction mechanism
with the music of Bach (Deliège, 1996), Berio (Deliège and
El Ahnmadi, 1990), and Boulez (Deliège, 1989).

Morimoto, Kamekawa, and Marui extended research on
leitmotives by investigating the effect of extra-musical verbal
information on the memorization and recognition of leitmotives.
They found that exposing listeners to different types of verbal
information in relation to musical material and the narrative did

FIGURE 1 | The Schwert-Motiv in D major.

FIGURE 2 | The Schwert-Motiv in C minor.

not result in any significant differences in the ability to recognize
and memorize leitmotives (Morimoto et al., 2009). In a similar
way, Albrecht and Frieler (2014) investigated how additional
visual information (i.e., the events on the opera stage) might
contribute to an individual’s leitmotive recognition rate. They
found that seeing and hearing the opera actually decreased an
individual’s ability to identify leitmotives in the auditory signal
and hence suggests that visual information can act as a distractor
in terms of encoding leitmotives.

Similar to much of existing work in music psychology,
these previously mentioned studies investigating the perception
of leitmotives categorized listeners based on their previous
musical training. While musical training has been shown to be
a factor that can contribute to performance in both tasks of
perception (Besson et al., 2007; Williamson et al., 2010) and
discrimination (Vuust et al., 2005) when investigating individual
differences on musicality, much of this research unsystematically
classifies participants into binary categories (such as “musicians”
and “non-musicians”), primarily considering their years of
formal musical training on an instrument as an indicator of
their musical skills and experience. This somewhat arbitrary
divide fails to consider other types of musical engagement or
abilities other than instrumental skills (e.g., different types of
perceptual abilities) which can also be deemed central to an
individual’s musicality (Levitin, 2012) or musical sophistication
(Müllensiefen et al., 2014).

There is a lot of evidence from recent empirical research
showing that scaled (i.e., continuous or ordinal as opposed to
categorical or binary) measures of musical skills and experience
represent good predictors in models of music perception and
cognition (Chin and Rickard, 2012; Schaal et al., 2015; Bouwer
et al., 2016), especially when considering musical background in
the general population.While the aforementioned studies tend to
reflect differences measuring individual’s musical training, other
studies have suggested that factors outside of musical training
such as familiarity with the genre or style of the musical material
(Tervaniemi, 2009; Hansen et al., 2016) as well as other non-
performative abilities can play a crucial role in perceptual models
(Bigand and Poulin-Charronnat, 2006). Though literature is
sparse regarding perceptual models that takes into account genre
familiarity, there are a number of studies that aim at mid-level
features, such as schematic expectations (Eerola et al., 2009),
and that do take into account listener backgrounds and musical
acculturation that can be integrated in the modeling process via
mechanisms such as statistical learning (Krumhansl et al., 2000).

We hypothesized that it might be possible to measure a
listener’s previous exposure to the music of Richard Wagner and
use that measure as a predictor for their ability to recognize
and remember cues in Wager’s music. A previous study by
Müllensiefen et al. (2016) found evidence that an individual’s
knowledge of and affinity for Wagner’s music predicts memory
accuracy for leitmotives in an experimental setting. In this
particular experiment, expertise for Wagner’s music was a
stronger predictor than the amount of musical training for the
participants’ performance in the melodic memory experiment.
These results suggested that an individual’s prior exposure and
understanding of a genre, and in particular Wagner’s music,
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does in fact play a significant role in the understanding of
complex musical passages and the extraction of and memory for
leitmotives.

In addition to individual differences between listeners in terms
of general musical expertise and familiarity with Wagner’s music
in particular, features of the musical material itself are certainly
also responsible for the degree to which the cognitive decoding
of Wagner’s music can be successful. Numerous studies from
1970s onwards have demonstrated how structural features of
music can facilitate or hinder cognitive processing (Dowling,
1971, 1972; Dowling and Fujitani, 1971; Cuddy et al., 1979).
However, much of this work made use of artificially constructed
musical stimuli with the primary aim to control the features of the
musical material used in the experimental setup , but sometimes
at the expense of the ecological validity and generalizability to real
music.

More recent work from music informatics and systematic
musicology has suggested computational measures that produce
feature descriptions of real music excerpts in symbolic encoding
that can be used successfully in models of music perception
and cognition (Pearce and Wiggins, 2006; Müllensiefen and
Halpern, 2014; Collins et al., 2015; Vempala and Russo, 2015;
Wiggins and Forth, 2015) Hence, one aim of this study is
to employ computational measures of musical structure with
leitmotives from Wagner’s music and assess to what degree they
are predictive of cognitive behavior. Complimentary to structural
features of leitmotives via symbolic encoding, we also aim to
assess how the similarity in sound between individual leitmotive
excerpts and their occurrence in a musical context contributes
to perceptual and cognitive decoding. There is a growing body
of research demonstrating the usefulness of sound and audio
features developed within the music information retrieval (MIR)
framework for describing the development of general preferences
and taste over time (Serra et al., 2013; Mauch et al., 2015),
cognitive attributes like the catchiness of pop songs (Burgoyne
et al., 2013; Van Balen, 2016), or perceived emotional content
(Friberg et al., 2014). Specifically, in this study we assess similarity
by comparing chromagram data derived from audio excerpts
(Müller and Wapnewski, 1992; Mauch et al., 2015).

In summary, this study intends to assess how features of the
compositional structure and audio similarity on one hand, as well
as individual musical sophistication and expertise with regard
to Wagner’s music on the other affect recognition memory for
leitmotives. Thus, the study aims to combine predictors reflecting
features of themusicalmaterial and traits of the listener in a single
model of perception and memory for leitmotives in Wagner’s
music. Specifically, we hypothesize that knowledge and affinity
for Wagner’s music music can be interpreted as proxies for
familiarity with his leitmotive technique and should therefore
have positive effects on leitmotive processing and memory. In
addition, general musical training should also aid processing
and memory on the experimental task, consistent with findings
from previous experiments (Dowling, 1978, 1986; Harrison et al.,
2016). The ability to speak Germanmay also provide a processing
advantage in this experiment since the German vocals might
provide extra clues toward the decoding of leitmotives and
musical events in the auditory scene. Wagner’s leitmotives are

often paired with certain terms or ideas from the libretto that we
believe could enable participants who speak German to encode
the musical structure of the leitmotives together with semantic
connotations. This ability to bind multiple features and aspects
of an a object at the encoding stage could then support retrieval
processes in the recognition task. This assumption is in line with
evidence from experimental studies that have shown a similar
differential memory advantage of presenting music and text
together (Serafine et al., 1984, 1986). Accounting for German
speaking abilities was also incorporated into the design in order
to account for any German text that could have been recognized
in the exposure phase since recordings of live opera were used.

In terms of features of structural complexity we expect more
complex leitmotives to be processed and remembered worse
(Harrison et al., 2016). Finally, we hypothesize that the similarity
in terms of sound (i.e., audio features) between an individual
leitmotive and any similar sound but not identical parts in a
longer passage can act as distractor and hence decrease memory
performance.

We employ a cross-over experimental design that makes use
of two scenes from Wagner’s Ring des Nibelungen. The design
allows us to use leitmotives that were the lures in the memory
test of Experiment I to serve as correct responses in Experiment
II and vice versa. Thus, the findings from both experiments
can potentially replicate each other and therefore the design
helps to disentangle incidental features of the leitmotives used
as experimental stimuli from the parameters of interest (i.e.,
compositional structure and audio similarity) that should have
the same effect in both experiments.

2. METHODS

2.1. Overall Design
This study consisted of two experiments that used the identical
experimental design and procedures: In both experiments an
approximately 10 min scene was played to participants followed
by a surprise memory test for 20 leitmotives, some of which
were present in the scene previously played (old items) and
others that had not been present in the scene (new items). The
two experiments were set up to replicate the findings from each
other and thus reduce the effects of incidental features and hence
ensure a greater robustness of the overall findings. The 10 new
items in Experiment I were used as old items in Experiment II and
the 7 old items in Experiment I were new items in Experiment
II. The passages used were picked for their overlap in musical
material, but due to using ecologically valid stimuli an even split
on leitmotives was not possible.

2.2. Overall Procedure
Participants were tested in small groups. Upon arriving at the
experiment participants signed a consent form and received
the experimental instructions, which instructed them to listen
attentively to a 10 min passage from a live recording of Der
Ring des Nibelungen and subsequently answer some questions
about the music. Participants listened to music via a pair of
stereo speakers sitting at distances from 1 to 4 m from the
speakers and via an initial sound check it was confirmed that
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the volume of the audio was set to a comfortable level for all
participants. After the exposure phase participants were handed
a response sheet and started the test phase. Here, participants
were played 20 short leitmotives for each of which they had
to indicate the perceived pleasantness of the leitmotive on a 7-
point scale, a binary indication (yes/no), whether this particular
leitmotive occurred in the 10 min passage from the exposure
phase, and a corresponding confidence rating on a 7-point scale.
In addition, they also rated valence and arousal expressed by the
leitmotive based on the Russell’s circumplex circle of emotion
(Russell, 1980). Questions were set up on their response sheet
in the the order listed above and participants were asked to fill
out the questions in order. Shorter leitmotives were repeated up
to 3 times with a 3 s pause between repetitions, such that each
leitmotive item in the test phase lasted approximately 20 s and
was followed by a silent gap of 10 s before the next leitmotive was
played. In total participants had approximately 30 s to make all
five ratings (pleasantness, explicit memory, confidence, valence,
arousal) and were told to complete their ratings before the next
leitmotive was played. The order of leitmotives was randomized
across two different lists to mitigate any order effects. Following
the test phase participants completed a set of questionnaires
assessing their musical background and Wagner affinity and
expertise. Ethical approval was obtained from the Goldsmiths
Psychology Department’s Ethics Board.

2.3. Overall Materials
2.3.1. Self-report Measures
The self-report measures filled out at the end of each
experimental session required participants to rate the familiarity
with the passage in the exposure phase on a 7-point scale,
their German speaking and writing abilities on 7-point scales,
the amount of musical training they had received via the
Training sub-scale of the Gold-MSI (Müllensiefen et al., 2014),
as well as 14 questions assessing their affinity to Richard
Wagner’s music, each using a 5-point scale. In addition they
also completed a 14-item objective multiple choice test assessing
objective knowledge of Der Ring des Nibelungen and various
facts relating to the life of Richard Wagner. Data from the
Wagner affinity questionnaire was analyzed using factor analysis
and each participant was assigned a corresponding factor score
as described in Müllensiefen et al. (2016). Data from Wagner
knowledgemultiple choice test was scored using an item response

model that generated an ability estimate for each participant
(Müllensiefen et al., 2016).

2.3.2. Measures of Musical Structure and Sound
In order to assess each leitmotive’s structural complexity,
leitmotives were transcribed as a short monophonic melody
into a symbolic music format and converted to a numerical
tabular format suitable for melodic feature extraction using
the FANTASTIC software toolbox (Müllensiefen, 2009). Four
features that each capture a different aspect of melodic
complexity and that had been used successfully to model
cognitive behavior on melodic discrimination tests were
extracted (see Müllensiefen, 2009; Harrison et al., 2016, for
details): (1) Interval entropy, defined via the relative frequency

of each melodic interval in the leitmotive, (2) Length, defined
as the number of notes (3) Tonalness, defined as the highest of
the 24 correlation coefficients as generated by the Krumhansl-
Schmuckler key finding algorithm (Krumhansl, 2001). (4) Local
step wise contour, defined as the mean absolute difference
between adjacent values in the pitch contour vector of a melody.

These four features correlated highly across the 20 leitmotives,
which suggested that they index a common dimension. Hence,
principal component analysis (PCA) was used to aggregate the
four features and derive a single measure of melodic complexity.
The unidimensional PCAmodel using all four features explained
60% of the variance in the data, with Length having a relatively
high uniqueness (0.59) value compared to the three other features
(all values < 0.36). As a result, Length was removed and a
unidimensional PCA model was run on the remaining 3 features
which achieved to explain 70% of the variance in the data. PCA
scores were derived from this model for each leitmotive and
were used in the subsequent analysis to represent structural (i.e.,
melodic) complexity.

To assess audio similarity we used chromagram features
(Mauch et al., 2015) that were extracted from the individual
leitmotives on the recognition list. The audio data was extracted
from the 10 min passage of the exposure phase of the experiment
using Sonic-Annotator (Cannam et al., 2010). Chromagram
features were then compared and the best alignment for each
leitmotive within the 10 min passage was identified using
database thresholding as implemented in the audioDB search
engine (Rhodes et al., 2010).

2.4. Experiment I

2.4.1. Design
The first experiment used a within-subjects design, with identical
experimental conditions for all participants. The independent
variables measured were musical training, German speaking
skills, Wagner affinity, as well as objective Wagner knowledge.
For each leitmotive, judgments of pleasantness, perceived
conveyed valence, as well as arousal ratings were also taken to
gather subjective assessments of the leitmotive stimuli for the
models. Questions regarding the musical material were taken in
real-time during the experiment in the order listed above and
information regarding individual differences were taken after the
listening portion of the experiment. Our item based model also
incorporated a chroma measure that was indicative of how close
the probed audio stimuli used in the experiment were to the audio
used in the listening portion of the experiment. The dependent
variable measured was whether or not a participant was able to
correctly identify a leitmotive from a listening test, as well as the
participant’s subjective ratings of the musical material itself.

2.4.2. Participants
For the first experiment a convenience sample (N = 100) was
used, with additional effort made to recruit participants with
either familiarity or affinity for the music of Richard Wagner
from across the greater London area. The experiment was
advertised over a host of mediums including posters, email lists,
Twitter and general word-of-mouth to find individuals familiar
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with themusic ofWagner. The sample wasmade up of 55 females
(55%) and 45 males (45%) with a mean age of 28.7 (R = 18–65,
SD = 11.82). Written consent was obtained from all participants
and participants had the option of accepting £7 compensation for
travel and time expenses.

2.4.3. Materials and Procedure
The musical stimuli of the first experiment were based off
an earlier study by Albrecht and Frieler (2014). The scene
was chosen for its narrative qualities and high concentration
of leitmotive material. The audio used was taken from the
second scene of the first act of Siegfried of the 1976 Pierre
Boulez Der Ring des Nibelungen DVD recording at the Bayreuth
Festspielhaus. This scene is colloquially referred to as the
Wanderer Scene. Excerpts chosen for probes in the memory
sequence were taken from the same Boulez recording.

Twenty probes containing the leitmotives were chosen after
consulting the Burghold (1910) libretto as well as the Albrecht
study. The 10 probes that occurred in the Wanderer Scene
were chosen to mirror the initial Albrecht study, each occurring
with various frequencies. The 10 probes used as lures were
taken from a similar narrative passage from the same recording
of Götterdömmerung. Leitmotives used as lures in the first
experiment were consequently used as “targets” (i.e., leitmotives
actually contained in the 10 min audio passage) in the second
experiment. After the 20 leitmotives were chosen, renditions of
each leitmotive were then taken from throughout the Boulez
Der Ring des Nibelungen to serve as audio excerpts for the test
phase. When possible, probes were chosen without simultaneous
sounding vocals. Data was collected using a participant response
sheet generated for the purpose of this experiment.

2.5. Experiment II

2.5.1. Participants
The second experiment also used a convenience sample (N
= 31) with additional effort made to recruit participants with
specialized Wagner knowledge. The sample was made up of 16
females (52%) and 15 males (48%) with a mean age of 25.19 (R=

18–65, SD= 8.91). Participants from Experiment I were excluded
from participating in Experiment II.

2.5.2. Materials
Participants were played a 10 min excerpt prior to Siegfried’s
death scene from Götterdämmerung. The 20 leitmotives probes
for the memory test were exactly the same as in Experiment II
only that their assignment to targets (old items) and lures (new
items) changed given the different passage in the exposure phase.
While the number of leitmotive items labeled as old and new was
split evenly in the first experiment, the constraint to use the same
leitmotive items as for Experiment I, resulted in 13 items old and
7 new items for Experiment II.

3. RESULTS

Across both samples the individual difference measures of
Wagner knowledge and Wagner affinity were highly correlated
(r = 0.71) and in order to avoid issues with multi-collinearity
within the linear regression models used for analysis, both

measures were subjected to a PCA which explained 85% of the
variance with one dimension. Component factor scores for each
participant were derived from the PCA model and were labeled
as Wagner expertise.

Data modeling proceeded in three steps. The first model
uses all data from both experiments and models participant
responses only in terms of individual differences measures.
The second model then uses significant individual difference
measures identified in the first model and assesses whether
the measure of structural leitmotive complexity as well as the
number of occurrences of the leitmotive in the exposure phase
contribute to modeling participant responses with old items.
Here, we first assess data from Experiment I and Experiment
II separately, and if model coefficients are comparable, we
subsequently combine the data from both experiments. In the
third step, we model responses to the new items including
any significant individual differences measures as well melodic
complexity in addition to sound similarity. All models use
participants’ binary responses as to whether a leitmotive was
present or not in the 10 min passage during the exposure
phase, scored either correct or incorrect, as the dependent
variable. At all steps the data was modeled using generalized
mixed effects models using participants as random effects and
all models were fit using the “lme4” (Bates et al., 2015) package
implemented in the statistical computing software “R” (R Core
Team, 2013).

3.1. Model I: Individual Parameters
The data from all participants from Experiments 1 and 2 (N =

131) was used for the construction of Model I. Predictor variables
initially specified for Model I were the Wagner expertise score,

the musical training score from the Gold-MSI, and self-reported
German speaking ability. In addition we used leitmotive as a
second random effect in addition to participants to accommodate
the fact that some leitmotive items might be generally more
or less difficult. The initial model is given in Table 1 and
shows that only Wagner expertise emerged as a significant
predictor of leitmotive recognition ability, while neither the
musical training score nor German speaking ability reached the
common significance threshold of p < 0.05. As a result, only
Wagner expertise was retained as a fixed effects predictor and
the model was refit. The refit individual differences model had
a predictive accuracy of 69.9% for the participant responses and
showed a significantly (p< 0.001 on a likelihood ratio test) better
fit to the data (BIC = 3,164) than a null model only including
random effects for participants and leitmotives (BIC = 3,236).
In addition, the fit was not significantly worse (p = 0.146) than

TABLE 1 | Model I: individual differences variables.

Coefficient Standard Error p-value

Intercept 0.61 0.20 <0.002***

Wagner Expertise 0.39 0.06 <0.001***

Musical Training 0.01 0.004 0.14

German Speaking Ability −0.02 0.03 0.40

***p < 0.001.
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the full model including all three individual differences measures
(BIC = 3,176). Therefore, we only used Wagner expertise as
an individual differences measure in the subsequent modeling
stages.

3.2. Model II: Old Items
For modeling responses to the old items two separate models
were constructed for the data from Experiment I (N = 100)
and II (N = 31). In addition to the random effect for
participants and Wagner expertise as fixed predictor, number
of occurrences of each leitmotive (as determined by the
first author) in the exposure phase and the PCA scores for
structural complexity were also included as fixed effects. Model
parameters for both models were computed using the Laplace
approximated maximum likelihood estimates and their 95%
confidence intervals were determined by likelihood profiling.
Parameter estimates and confidence intervals for both models
are given in Table 2 which shows that for all three fixed
effects parameters confidence intervals overlap substantially.
Specifically, the parameter estimates for Model II are contained
within the corresponding confidence intervals derived for Model
I, indicating that the estimates derived from the two models are
not significantly different from each other. After collapsing the
data from both experiments we computed a full model including
all main effects as well as interactions between the individual
differences in Wagner expertise and the two experimental factors
of times heard and structural complexity. This can be seen
in Table 3. We then removed the non-significant interaction
between times heard and Wagner expertise and obtained the
final model as given in Table 3. When compared on the
Bayesian Information Criterion fit index, this final model fit
the data substantially better (BIC = 1,635) than a null model
only including Wagner expertise (BIC = 1,675), a model only
including main effects (BIC= 1,642) and a model including both

TABLE 2 | Model II: old items, Modeling item level data from experiment I

and II separately.

Experiment I Experiment II

Coefficient CI Coefficient CI

Wagner Expertise 0.87 [0.17, 0.45] 0.57 [0.21, 0.95]

Times Heard −0.03 [−0.04, −0.01] −0.06 [−0.11, −0.02]

Structural Complexity −0.39 [−0.52, −0.26] −0.13 [−0.42, 0.14]

TABLE 3 | Model II: combining item level data from experiment I and II.

Coefficient Standard Error p-value

Intercept 0.92 0.08 <0.001***

Wagner Expertise 0.38 0.07 <0.001***

Structural Complexity −0.32 0.06 <0.001***

Times Heard −0.03 0.01 <0.001***

Expertise Complexity Interaction 0.24 0.06 <0.001***

***p < 0.001.

interaction effects (BIC= 1,640). The finalmodel had a predictive
accuracy of 68.12% In line with with one of our hypotheses,
Wagner expertise had a positive effect on memory performance,
while structural melodic complexity had a negative effect. Not
in line with our original hypotheses, the number of times a
leitmotive occurred in the exposure phase had a negative effect
on recognition rates. We provide a possible explanation for this
finding below.

3.3. Model III: New Items
For modeling the responses to the new items we followed
the same modeling strategy of firstly modeling the data from
Experiment I and consequently the data from Experiment II
separately. Building on the results from steps 1 and 2, we
included Wagner expertise as well as structural complexity as
fixed effects predictors and added sound similarity based on the
chromagram measure as a third predictor seen in Table 4. We
did not include the number of times the leitmotive occurred in
the exposure phase as a predictor because this variable has a
constant value of zero for new items. After collapsing the data
from both experiments we computed a full model including
all main effects as well as interactions between the individual
differences in Wagner expertise and the two experimental factors
of structural complexity and chroma distance. We removed
the non-significant interaction between chroma distance and
Wagner expertise and obtained the final model as given in
Table 5. When compared on the Bayesian Information Criterion
fit index, this final model fit the data substantially better (BIC
= 1,598) than a null model only including Wagner expertise
(BIC = 1,624), a model including both interaction effects (BIC
= 1,604) and was comparable to a model only have main effects
(BIC = 1,597). The final mode had a predictive accuracy of
69.45%.

TABLE 4 | Model III: modeling of data for new items from experiment I

and II.

Experiment I Old Items Experiment II Old Items

Coefficient CI Coefficient CI

Wagner Expertise 0.44 [0.27, 0.62] 0.40 [−0.04, 0.87]

Chroma Distance 1.04 [0.68, 1.42] −1.86 [−4.93, 1.08]

Structural Complexity 0.40 [0.18, 0.62] 0.30 [0.06, 0.54]

TABLE 5 | Model III: combined data for new items.

Coefficient Standard

Error

p-value

Intercept −0.23 0.17 0.19

Wagner Expertise 0.39 0.08 <0.001***

Structural Complexity 0.35 0.08 <0.001***

Chroma Distance 0.71 0.13 <0.001***

Wager Expertise Complexity Interaction 0.23 0.09 <0.01*

*p < 0.05; ***p < 0.001.
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In line with our hypotheses, Wagner expertise has a positive
effect on memory performance for new items, i.e., the ability to
identify new items as not having heard before. Unlike its effect in
the old item model, structural melodic complexity has a positive
effect on correctly responding to new items with “not heard
before” as does distance in terms of chromagram features.

4. DISCUSSION

Consistent with our initial hypothesis, the results of both
experiments demonstrate that these models of leitmotive
memory performance are comprehensive in that they include
both individual differences variables as well as symbolic and
audio features of musical structure. Model I was able to
reproduce results from previous work Müllensiefen et al. (2016)
demonstrating that Wagner expertise was a significant predictor
of a listener’s memory for musical material. Of the three
individual differences variables hypothesized to contribute to
an individual’s leitmotive recognition rate, only Wager expertise
but not general musical training nor German speaking ability
emerged as a significant predictor. One reason that musical
training may not have emerged as a significant predictor in the
individual differences model is that musical training andWagner
expertise are correlated. Using the mixed effects models it is not
possible to model correlations between predictors and in this case
the stronger predictor of Wagner expertise may be suppressing
the weaker predictor of musical training, thus possibly explaining
the different previous findings (Müllensiefen et al., 2016) due to a
different modeling technique (structural equation modeling) that
can handle correlated predictors. To our knowledge, this is one
of the first analyses that has used a scaled measure of musical
expertise other than musical training (i.e., stylistic expertise)
which accounts for the largest amount of variance explained in a
participant’s response, though for an exception see Farrugia et al.
(2016).

In addition to musical training not emerging as significant,
German speaking abilities also did not reach significance, which
might be attributed to either unintelligible diction from the
Wagnerian singing that would not lead tomore efficient encoding
or from not having enough German speakers as a part of the
sample. The results of the first model serve as initial evidence
for a hypothesis assuming that there are more aspects of musical
expertise that can be important for modeling music perception
and cognition other than solely relying on musical training as an
indicator for musical skills and expertise.

The second statistical model was able to confirm the
hypothesis that measures of structural complexity of items in the
test phase explain part of the variance in the participants’ memory
response data. This is consistent with other research using
similar methodologies (Dewitt and Crowder, 1986; Croonen,
1994). More specifically, the second model demonstrated that
the structural complexity of a leitmotive has a negative effect on
an individual’s ability to recognize musical material, while the
amount of times heard surprisingly displayed a negative effect.
The findings on structural complexity were not surprising in
light of some literature with complexity serving as a predictor
of memory recall (Harrison et al., 2016). The surprising finding
of the negative relationship with times heard might be attributed

to a variable not measured in this experiment that is related to
perceptual salience.

In the passage used, the more perceptually salient motives
occur less frequently than the others used in the excerpt. After
re-examining the excerpt, we believe that the perceptually salient
motives are those that are easier to detect and remember from
the dense auditory scene. Those motives would be structurally
simpler and in fact there is a clear negative correlation between
our measures of complexity and the amount of times heard in
the excerpt (r = −0.25), which means that simpler motives
occur most often. In addition, the experimental design of the
memory task introduced a correlation between structural length
and complexity on one hand and the number of times that
a motive was played in the test phase on the other hand,
because shorter motives were repeated more often during the
retrieval task. It is possible that these additional repetitions
could also have facilitated memory retrieval. That said, measures
of compositional complexity and simplicity are not all that
contribute to perceptual saliency. Gestalt principles like Prägnanz
or uniqueness with respect to a corpus are important as well.
The aspect of uniqueness is connected to principles of statistical
learning and can for example be measured by second order
corpus features which have already proven to be powerful
predictors in previous studies on melodic memory (Müllensiefen
and Halpern, 2014). To follow up on this finding, future research
will focus on investigating the extent to which compositional
features reflecting perceptual salience or uniqueness can be used
in respect to a large and appropriate corpus such as the Barlow
and Morgenstern dictionary of operatic themes (Barlow and
Morgenstern, 1966).

The third model aimed at explaining how listeners make
memory decisions regarding musical material that they cannot
recognize from a recent listening episode. It included measures
of chroma distance and structural complexity as well as a
significant interaction between Wagner expertise and structural
complexity. Accounting for a small, yet significant proportion of
the variance, the expertise and complexity interaction provides
further evidence supporting the notion that listeners with
different individual characteristics can react differently to the
same musical stimulus features. In particular the interaction
effect suggests an interpretation that listeners with high Wagner
expertise benefit from the structural complexity of the leitmotives
presented more strongly to make correct decisions about the
novelty of the leitmotive item. Additionally Model III also
includes a component that does not reflect compositional
structure in a traditional music-theoretical sense, but rather deals
directly with the sound itself. Interestingly the chroma distance
variable exhibits the strongest effect among the predictors in
the model (b = 0.71) and thus provides further evidence that
measures that reflect properties of sound and the musical surface
canmake important contributions to models of music perception
and cognition.

5. CONCLUSIONS

Overall, we believe the results from this experiment are able to
help close the gap between experimental work that has relied
heavily on artificial designs and musical stimuli for the sake
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of experimental control on one hand and research attempts
to capture music listening in a more ecological setting on the
other. The music of Richard Wagner has been notorious in its
reputation for being difficult to comprehend, but the results
from this study suggest that parsing the musical surface of
something like Der Ring des Nibelungen is a process that is
accomplished through repeated listening and active engagement
with the music that does not require specialized musical training.
Hearing these complex musical ideas is open to anyone and
being able to hear salient musical events in a dense musical
texture does not seem to be dependent on an individual’s musical
training. We believe that this is further evidence and reason
for beginning to move closer to musical perception modeling
that firstly moves away from using solely musical training as
a proxy for musical ability and secondly incorporates recent
work done in music informatics to help more accurately model
perception.
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Tonal melody can imply vertical harmony through a sequence of tones. Current methods

for automatic chord estimation commonly use chroma-based features extracted from

audio signals. However, the implied harmony of unaccompanied melodies can be difficult

to estimate on the basis of chroma content in the presence of frequent nonchord tones.

Here we present a novel approach to automatic chord estimation based on the human

perception of pitch sequences. We use cohesion and inhibition between pitches in

auditory short-term memory to differentiate chord tones and nonchord tones in tonal

melodies. We model short-term pitch memory as a gradient frequency neural network,

which is a biologically realistic model of auditory neural processing. The model is a

dynamical system consisting of a network of tonotopically tuned nonlinear oscillators

driven by audio signals. The oscillators interact with each other through nonlinear

resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the

interactions is taken as a measure of pitch salience. We test the model with a collection of

unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation.

We show that chord tones are selectively enhanced in the response of the model, thereby

increasing the accuracy of implied harmony estimation. We also find that, like other

existing features for chord estimation, the performance of the model can be improved by

using segmented input signals. We discuss possible ways to expand the present model

into a full chord estimation system within the dynamical systems framework.

Keywords: implied harmony, tonal melody, automatic chord estimation, pitch memory, dynamical system, neural

oscillation, gradient frequency neural network

INTRODUCTION

Melody is a succession of pitched sounds arranged to form a coherent musical pattern (Bingham,
1910; Apel, 1969). In Western tonal melodies, coherence is often achieved by organizing melodic
tones to imply harmonic progressions. Although tones in a melody sound successively in time, they
can convey the sense of harmony, which is a relationship among simultaneously sounding pitches,
by arpeggiating a chord and connecting chord tones via nonchord tones such as passing tones and
neighbor tones (Schenker, 1956; Thomson, 1999). Psychological studies have shown that implied
harmony is an important feature of the perception and cognition of tonal melodies (Cuddy et al.,
1981; Tan et al., 1981; Trainor and Trehub, 1994; Holleran et al., 1995; Povel and Jansen, 2002).

Automatic chord estimation is a classic research area in music informatics aimed at identifying
a sequence of chords that best matches the harmonic progression of a given music signal. Current
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signal-based approaches commonly employ chroma-based
features such as chromagram which carry information on the
energy distribution across 12 pitch classes or chromas (Jiang et al.,
2011; Cho and Bello, 2014). Thus, chord estimation using these
features is based on the duration and intensity of tones without
taking their temporal order into account, which is consistent
with the prevalent view of tonality perception and key-finding
mechanisms based on pitch-class distributions (Krumhansl,
1990; Krumhansl and Cuddy, 2010). Chroma distributions are
expected to be a reliable basis for chord estimation when there
are more chord tones than nonchord tones in the frame of
analysis. This is generally the case for harmonized music with
explicit chordal support but not necessarily for unaccompanied
melodies with frequent nonchord tones. Indeed, nonchord tones
are recognized as a common source of errors in automatic chord
estimation (Pardo and Birmingham, 2002; Lee and Slaney, 2006).

Here we present a novel feature extractor for automatic chord
estimation that selectively enhances chord tones over nonchord
tones on the basis of human perception of pitch sequences.
Instead of analyzing chroma distributions in the acoustic signal,
we use a model of human short-term pitch memory to determine
the relative perceptual salience of individual tones in the signal.
Psychological experiments have shown that pitches within a
whole-tone range inhibit each other so that short-term retention
of a pitch deteriorates when it is followed by a pitch neighbor
(Deutsch, 1972, 1973; Deutsch and Feroe, 1975). Also, it has
been shown that the memory of a melodic interval based on a
simple frequency ratio (e.g., the perfect fifth based on 3:2) is more
stable than the memory of a melodic interval based on a more
complex ratio (e.g., the tritone which is approximated by 45:32)
(Schellenberg and Trehub, 1994, 1996a,b). These findings suggest
that melodic steps (a semitone and a whole tone) and leaps
(intervals greater than a whole tone) have distinct perceptual
properties: A pitch is weakened when it is followed by a step,
while it becomes more salient when it forms a consonant leap
with another pitch. Therefore, the salience of melodic pitches is
determined not only by their duration but also by their temporal
order (Bharucha, 1984; Brown, 1988) since the latter determines
the pattern of steps and leaps. The differentiation between chord
tones and nonchord tones may arise from the pattern of cohesion
and competition among melodic pitches in short-term auditory
memory, such that salient pitches that cohere together are heard
as chord tones whereas pitches suppressed by others serve as
nonchord tones (Kim, 2011; Kim and Large, under revision).

In this paper, we test pitch interactions arising from the
pattern of melodic steps and leaps as a basis for automatic
chord estimation. To model the interaction of melodic pitches
in auditory memory, we use a network of tonotopically
tuned nonlinear oscillators. This is not an arbitrary choice of
implementation. Rather, it is based on the observation that
the two distinct types of pitch interaction discussed above—
inhibition by pitch neighbors and coherence based on simple
frequency relationships—correspond with the two characteristic
behaviors of nonlinear systems: lateral inhibition and nonlinear
resonance. The model, which is described below, is a dynamical
system; it is run by numerically integrating a set of differential
equations which specify the dynamics and interactions of its

components. Therefore, it runs forward in time (i.e., it can
potentially run in realtime) and does not involve any search
procedures or optimization steps that require access to an entire
time series. The model is driven by audio signals, and acoustic
frequencies are transformed into a complex pattern of oscillations
which we take as a measure of pitch salience. We test the model
with unaccompanied tonal melodies and show that chord tones
are selectively enhanced in the response of the model compared
to the distribution of physical tone durations.

GENERAL MATERIAL AND METHODS

Model
We model short-term pitch memory with a network of
tonotopically tuned nonlinear oscillators, which is known as a
gradient frequency neural network (abbreviated as GrFNN and
pronounced griffin; Large et al., 2010). Nonlinear oscillation is
found in many parts of the auditory system, including critical
oscillations in the cochlea (Camalet et al., 2000; Hudspeth et al.,
2010) and mode-locked firing of auditory subcortical neurons
(Large et al., 1998; Laudanski et al., 2010). We use a generic
mathematical form of nonlinear oscillation, called the canonical
model, which describes oscillatory activities with complex-valued
state variables (Kim and Large, 2015). GrFNNs have been used
successfully to model auditory neural processing (Lerud et al.,
2014, 2015) as well as music cognition (Large et al., 2015, 2016).

Here we describe the structure and function of the short-
term pitch memory model with an example. (The differential
equations governing the dynamics of the model are given
below, along with the parameter values used in this study, but
understanding of the mathematical details is not required to
comprehend the results and implications of this study.) The
model consists of two layers of nonlinear oscillators tuned to a
chromatic scale (Figure 1). Layer 1 is driven by an audio signal
and performs frequency analysis. Figure 2 shows the response
of the model to a passage composed by J. S. Bach for solo
violin. Layer 1 oscillators resonate to different frequencies so
that they separate out individual frequencies in the signal. The
parameters for Layer 1 oscillators were chosen to capture the
critical oscillations observed in the cochlea (see Equation 1 below
for more details).

Layer 2 is a model of short-term pitch memory. High-
amplitude oscillations above the on-threshold (see below) are
considered active pitch traces that are salient in auditory
memory. Layer 2 receives input from Layer 1 and includes
internal pairwise connections between all oscillators (see
Figure 1 and Equation 2 below). Through these connections,
Layer 2 oscillators either inhibit or resonate with each other
depending on their frequency relationships. Two oscillators
inhibit each other if their natural frequencies are a semitone or
a whole tone apart. So a Layer 2 oscillation is suppressed when
its stimulus tone is followed by another tone within a whole-
tone distance. For example, the memory trace for the second
tone (D♯6) in the Bach melody is suppressed at the onset of
the following tone (E6) which is a semitone apart (Figure 2B).
When the natural frequencies are more than a whole tone apart,
the oscillators resonate together by synchronizing in an integer
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FIGURE 1 | Schematic of the dynamical model of short-term pitch

memory. The colors and line widths used for different connection types are

only for visual distinction and do not indicate their relative strengths.

ratio (called mode-locking). Nonlinear resonance is stronger for
simpler frequency relationships such as 2:1 (an octave) and 3:2
(a perfect fifth) so that oscillations driven by a consonant leap
last longer than oscillations for a dissonant leap. For example,
the oscillatory traces at E6 and B5, which are a perfect fifth
apart, are sustained long beyond the physical duration of the
tones (Figure 2B). The parameters for Layer 2 oscillators were
chosen so that they have thresholds for turning on and off which
simulates the persistence and loss of memory traces.

The pairwise connections between Layer 2 oscillators are
governed by a Hebbian learning rule (Equation 3). The plastic
connections model short-term adaptation in the auditory system
rather than long-term learning. The connections strengthen
and weaken quickly depending on the current amplitude and
frequency relationship of their source and target oscillators.
When two Layer 2 oscillators in a simple frequency relationship
have high amplitudes at the same time, the plastic connections
between them quickly strengthen and let the oscillators reinforce
each other through nonlinear resonance (i.e., mode-locking).
When two oscillators within a whole-tone range are activated
simultaneously, the connections between them grow quickly but
they introduce lateral inhibition so that the oscillator with higher
amplitude (typically the one currently driven by a stimulus tone)
suppresses the other oscillator. The plastic connections decay
quickly as either of the oscillators goes below the off-threshold.

Let us discuss how the pitch memory model can improve the
estimation of implied harmony by selectively enhancing chord
tones over nonchord tones. Bach’s pieces for solo instruments,
such as the passage shown in Figure 2A, are well known for
creating an impression of vertical harmony out of a single
unaccompanied line (Davis, 2006). The oscillatory patterns
formed in Layer 2 show how this may be possible (Figure 2B).

FIGURE 2 | The model’s response to the opening of J. S. Bach’s Violin

Partita No. 3, BWV 1006, Prelude: (A) the musical score and (B) the

amplitudes of Layer 1 and Layer 2 oscillators and stimulus tones. The stimulus

(an audio signal) is depicted in a piano-roll representation. High-amplitude

oscillations in Layer 2 (depicted with dark colors) are considered active pitch

traces in auditory memory.

The first group of notes (E-D♯-E) leaves one oscillatory trace at
E6, with the trace for the neighbor tone (D♯6) confined to the
time of physical sounding due to lateral inhibition. The next three
notes (B-G♯-B) form consonant leaps, so their traces prolong
together without inhibiting each other (note that the trace at B5
is sustained through a temporal gap). The last five notes form a
turn figure made of only steps, so only the trace for the last note
(E5) is extended. At the end of the passage, the oscillations at
E6, B5 and E5 remain active. Along with the trace at G♯5, which
prolongs beyond the note duration before being suppressed by
the following F♯5, the active oscillatory traces suggest that the
melody implies an E-major harmony. It is possible to estimate
the chord from note durations (the chord tones take up 81% of
total notated duration), but chord tones are made more salient in
the response of the model (the chord tones take up 92% of total
trace duration, excluding prolongations past the offset of the last
note). Below we take the length of oscillatory traces as a measure
of pitch salience and test if it can serve as a better basis for chord
estimation than note durations.

Equations (1–3) specify the time evolution of each component
in the dynamical model. (The readers may skip the equations
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and proceed to the Material section.) Equation (1) describes the
interaction of Layer 1 oscillators with an external signal.

τ1
dz1i

dt
= z1i

(
α1 + i2π fi + β11|z1i|

2 +
ǫ1β12|z1i|

4

1− ǫ1|z1i|2

)
+ x(t),

(1)
where z1i is a complex-valued state variable specifying the
amplitude and phase of the ith oscillator in Layer 1, fi is its natural
frequency, x(t) is a complex-valued external signal which can be
obtained by applying the Hilbert transform to a real-valued audio
signal, and the roman i is the imaginary unit. The parameters
α1, β11, β12, and ǫ1 determine the intrinsic dynamics of the
oscillators, and τ1 is the time constant (see Kim and Large, 2015,
for an analysis of all intrinsic dynamics available in the canonical
model). The parameter values used are α1 = 0, β11 = −0.1,
β12 = −0.1, ǫ1 = 1, and τ1 = 0.0025 (this is the critical
Hopf regime, known to underlie cochlear dynamics; see Kim and
Large, 2015).

Equation (2) determines the dynamics of Layer 2 oscillators
(z2i) which receive input from Layer 1 oscillators of identical
natural frequencies (z1i) as well as from all other oscillators in
Layer 2 (z2j).

τ2i
dz2i

dt
= z2i

(
α2 + i2π + β21|z2i|

2 +
ǫ2β22|z2i|

4

1− ǫ2|z2i|2

)
+ caffz1i

+
∑

j 6=i

√
ǫ2

kij+mij−2
cijz

kij
2j z̄

mij−1

2i ,

(2)

where cij is a complex state variable for the plastic connection
from the jth oscillator to the ith oscillator, and caff is the strength
of afferent connections. kij and mij are integers that approximate
the frequency ratio of the ith and jth oscillators (i.e., kij : mij ≈

fi : fj), which corresponds to the ratio of mode-locking. The
parameter values used are α2 = −1.6, β21 = 2.2, β22 = −0.1,
ǫ2 = 1, τ2i = 1/fi, and caff = 1.5 (this is the subcritical double
limit cycle regime which exhibits hysteresis with different on- and
off-thresholds; see Kim and Large, 2015).

The evolution of plastic connections between Layer 2
oscillators (cij) is determined by a Hebbian learning rule,

τij
dcij

dt
= cij

(
λij + µ1ij|cij|

2 +
ǫcµ2ij|cij|

4

1− ǫc|cij|2

)

+
√

ǫc
kij+mij−2

κijz
mij

2i z̄
kij
2j . (3)

Different parameter values were used depending on the interval
between the natural frequencies of the source and target
oscillators. For a semitone difference: λij = −1, µ1ij = 0, µ2ij =

−1 and κij = −0.5 (inhibitory). For a whole tone difference:
λij = −1, µ1ij = 0, µ2ij = −1 and κij = −1 (inhibitory). For
a difference greater than a whole tone: λij = −0.1, µ1ij = 0,
µ2ij = −10000 and κij = 0.02 (excitatory). For all three cases:

ǫc = 1 and τij =
kij +mij

kijfj +mijfi
.

Material
We tested the dynamical model with tonal melodies from
seven Mozart piano sonatas (K. 279, K. 280, K. 281, K. 282,
K. 283, K. 331, and K. 545). We took the top voice from
the expositions of the first movements in sonata form. For
K. 311, which is a theme and variations, the melody was
taken from the theme. We selected these melodies because
they are accompanied by mostly unambiguous chordal support
in the left hand. We relied on both the melody and the
accompaniment to annotate each note in the melody with the
underlying chord and whether the note is a chord tone or a
nonchord tone. The Mozart melodies include ample nonchord
tones (593 nonchord tones out of 2,020 notes, comprising 29%
of total notes) compared to other collections we considered
(e.g., nonchord tones represent only 7% of the notes in the
vocal part of Schumann’s Dichterliebe). This makes the Mozart
melodies good materials to test for the differentiation between
chord tones and nonchord tones. We used the annotations
(based on both the melody and the accompaniment) to evaluate
the model’s responses to the unaccompanied melodies. The
annotations should not be considered as the only possible
harmonic interpretations since the harmony implied by a melody
(without accompaniment) could differ from the harmony of
the accompaniment (Temperley, 2007). Also, it is common
knowledge that the same melody can be harmonized in many
different ways. These potential discrepancies, however, would
only make the model’s predictions less accurate. Thus, the tests
reported below should be considered conservative tests.

For each Mozart melody, we created an audio signal made of
pure tones (complex-valued sinusoids) that match the notated
pitches and durations in the score. An amplitude envelope was
applied to each stimulus tone, with sustained amplitude of 0.04
and linear ramps of 5 ms at the onset and the offset. The use of
pure tones, instead of complex tones, is due to the limitation of
Layer 1 in the current form. Layer 2 is a model of short-term pitch
memory which takes oscillations at individual pitches as input.
Layer 1, however, separates individual spectral components in
the audio signal rather than extracting individual pitches (or
fundamental frequencies) from them. Instead of incorporating
pitch estimation into the model (which requires more than
frequency analysis; see, e.g., de Cheveigné, 2006), here we use
audio signals containing only pure tones for which pitches
can be obtained by frequency analysis alone. Currently we are
developing a GrFNN pitch estimator, and the future versions of
the present model will include a pitch estimator and thus be able
to handle signals containing complex sounds.

Methods
For each stimulus signal, the model was run by numerically
integrating Equations (1–3) using GrFNN Toolbox (Large et al.,
2014), which is a software library for building and running
GrFNNmodels. Before each integration, all oscillators and plastic
connections in the model were set to random initial conditions
with small amplitudes. The range of natural frequencies in the
model was determined by the pitch range of the stimulus melody.
The natural frequencies of the oscillators spanned from three
semitones below the lowest note in the melody up to three
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semitones above the highest note. For stable fixed-step numerical
integration, the sampling frequency was set to 20 times the
highest natural frequency in the model.

The duration of oscillatory traces in Layer 2 was taken as
a measure of pitch salience. Trace duration was defined as the
length of time from themoment a Layer 2 oscillation jumps above
the on-threshold until either the moment it drops below the off-
threshold or the next note onset at the same pitch or the offset
of the last note in the signal (or the last note in the chord span
for Test 2), whichever occurs first. So if a trace is extended into
another trace at the same pitch, the trace duration for the first
tone is counted only up to the onset of the second tone. For the
parameter values used in this study, the on- and off-thresholds
were 0.89 and 0.50 respectively. Note duration was defined as the
length of time for which the stimulus tone stays above 50% of its
maximum amplitude.

TEST 1: TRACE PROLONGATION FOR
CHORD TONES AND NONCHORD TONES

To test whether chord tones are selectively emphasized in
the model’s response, we compared the trace durations for
chord tones and nonchord tones. Given the high probability of
nonchord tones being followed by a step (Bharucha, 1996), we
predicted that the oscillatory traces driven by nonchord tones
would mostly end soon after the note offsets while the traces
for chord tones would often prolong beyond the note durations.
We tested this prediction by comparing the difference between
trace duration and note duration (hereafter, trace prolongation)
for chord tones and nonchord tones.

Methods
The model was run for each of the Mozart melodies separately
(see General Material and Methods above for details). For
each note in the melodies (marked either as a chord tone
or a nonchord tone), note duration, trace duration and
trace prolongation (= trace duration − note duration) were
determined. A t-test was performed to determine if chord
tones and nonchord tones had significantly different trace
prolongations.

Results and Discussion
The chord tones in the Mozart melodies had significantly longer
trace prolongations than the nonchord tones [two-sample t-test:
t(2, 018) = 12.07, p < 0.001]. The mean trace prolongations
for chord tones and nonchord tones were 420 and 76ms,
respectively (see Figure 3). This means that the chord tones were
more emphasized in the pitch memory model than in the note
durations. The note durations for chord tones and nonchord
tones were also significantly different [mean durations: 224 and
151 ms; t(2, 018) = 8.57, p < 0.001]. However, this difference
does not explain the difference in trace prolongation because the
trace prolongation for an isolated tone does not depend on the
note duration, provided that the tone is long enough to activate
an oscillatory trace (which is true for all notes in the Mozart
melodies). Thus, longer trace prolongations for chord tones are
attributed to the nonlinear interaction between oscillatory traces

FIGURE 3 | Comparison of the trace prolongations for chord tones and

nonchord tones in the Mozart melodies. Mean note duration, mean trace

duration and mean trace prolongation (i.e., trace duration − note duration) are

shown. The error bars indicate standard errors.

(i.e., inhibition and resonance) in conjunction with the fact that
nonchord tones are followed by step more often (91% of the time
in the Mozart melodies) than chord tones are (52%).

It is important to note that chord tones are selectively
enhanced in the pitch memory model because of the regularities
in the use of chord tones and nonchord tones in tonal music.
A basic rule of counterpoint states that a nonchord tone (or
a dissonance) must be resolved by step motion (Zarlino, 1558;
Fux, 1725). The pitch traces for nonchord tones are prolonged
to a lesser extent than the traces for chord tones because
nonchord tones are mostly followed by a step whereas chord
tones have no such restriction. If the opposite was true (i.e.,
chord tones were followed by a step while nonchord tones had
no constraint), nonchord tones would be emphasized in the
response of the model. Then, one could ask why chord tones and
nonchord tones are used in certain ways, which is by no means
limited to Western tonal music (Erickson, 1984; Thomson,
1999). It is reasonable to assume that the way melodic pitches
interact in auditory memory has guided and constrained the way
chord tones and nonchord tones are used in tonal music. The
function of nonchord tones is to embellish chord tones without
undermining their structural and perceptual prominence. Thus,
one would want to limit the salience of nonchord tones while
highlighting chord tones. Stepwise resolution of nonchord
tones, which leads to the suppression of their pitch salience,
may be viewed as a compositional practice evolved under the
selective pressure by the principles of pitch organization in
auditory memory.

TEST 2: TRACE DURATIONS WITHIN
CHORD SPANS

The comparison of trace prolongations illustrates an important
difference in the way chord tones and nonchord tones are used
and perceived in tonal melodies, but it does not necessarily show
that the prolonged traces contribute to better chord estimation.
This is because the above analysis associates the entire length
of a trace with the annotated function of the stimulus tone
within the chord span in which its note duration falls. It is
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possible that the oscillatory trace for a chord tone extends into
the next chord span where it is not a chord tone, and this
would compromise the accuracy of chord estimation. As shown
in Figure 4, trace prolongations beyond the current chord span
may strengthen or weaken the prominence of chord tones in
the next chord span. For example, the trace at E5 starting in
the first chord span prolongs into the second span where it
remains a chord tone, thereby enhancing the representation of
the chord tones. On the other hand, the trace at D5 that begins
in the second chord span becomes a nonchord-tone trace in
the next span. (It could be argued that this response is not
necessarily wrong because the chord annotation is based on both
the melody and the accompaniment, while the model is driven
by the melody only. It is an empirical question, which is beyond
the scope of this study, to what extent the model’s response
corresponds with the human perception of unaccompanied
melodies.)

To investigate the effect of trace prolongation across chord
spans, we compared the traces at chord pitches and nonchord
pitches within individual chord spans regardless of the origin of
the traces. The difference between the total trace durations for
chord pitches and the total trace durations for nonchord pitches
was taken as the perceptual salience of the annotated chord in the
model’s response. To evaluate the model’s contribution to chord
estimation over note durations, the difference in trace duration
was then compared to the difference in total note duration
between chord tones and nonchord tones in each chord span.

Methods
The simulation data obtained for Test 1 were used for the
analysis of individual chord spans. For each annotated chord
span, trace durations and note durations were summed for
chord pitches and nonchord pitches separately. The chord
boundaries used for calculating trace durations were shifted
forward by 40 ms to reflect the typical rise time of Layer 2

oscillations after the stimulus onset. For each chord span, the
differences between chord tones and nonchord tones in total
trace duration and total note duration were calculated. A t-
test was performed to determine whether the trace duration
differences and the note duration differences are significantly
different.

Results and Discussion
Figure 5 (top) shows the trace duration difference and the
note duration difference for each chord span in the theme of
K. 331. The graph reflects our observations above. For the
second chord span, the trace duration difference is greater
than the note duration difference (meaning chord pitches are
more emphasized in the model response than in the note
durations), while it is the opposite for the third chord span (chord
pitches less prominent in the model). For K. 331, the mean
trace duration difference between chord pitches and nonchord
pitches was 1304 ms, and the mean note duration difference was
973ms.

Considering all 405 chord spans in the sevenMozart melodies,
trace duration differences and note duration differences were
significantly different [paired-sample t-test: t(404) = 6.21,
p < 0.001], with the mean values of 1056ms (trace
duration differences) and 567ms (note duration differences) (see
Figure 6). This suggests that, overall, the dynamical model’s
response can provide a better basis for chord estimation than note
durations.

TEST 3: TRACE DURATIONS WITHIN
SEGMENTED CHORD SPANS

Despite the overall advantage of trace duration over note
duration, there are chord spans for which trace duration
performs worse than note duration (see Figure 5, top). As
discussed above, the prolongation of pitch traces across chord

FIGURE 4 | Oscillatory traces formed in Layer 2 in response to the first two phrases (the first 15 chord spans) in Mozart Piano Sonata No. 11, K. 331,

Theme. Vertical red lines demarcate chord spans, and horizontal lines indicate the pitches belonging to the chords. Chord annotations are based on both the melody

and the accompaniment.
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FIGURE 5 | Difference between chord pitches and nonchord pitches in

total trace duration and total note duration within each chord span in

Mozart Piano Sonata, K. 331, Theme. The top panel shows a single

simulation run with the entire melody, and the bottom panel shows simulations

for individual chord spans run separately. CT and NCT denote chord tones and

nonchord tones.

FIGURE 6 | Mean difference between chord pitches and nonchord

pitches in note duration, trace duration in single simulations and trace

duration in segmented simulations, averaged over all chord spans in

the seven Mozart melodies. The error bars indicate standard errors. CT and

NCT denote chord tones and nonchord tones.

boundaries could result in less accurate chord representations.
This issue points to the importance of segmentation in chord
estimation. Previous studies have shown that the accuracy
of chord estimation can be improved by synchronizing
analysis frames to the beat of the music being analyzed,
which tends to align with harmonic changes (Bartsch and
Wakefield, 2001; Bello and Pickens, 2005). We tested whether
chord estimation based on the pitch memory model could

be improved by using segmented stimulus signals. Instead
of running the model for entire melodies, we chopped the
melodies into individual chord spans and ran the model
for each segment separately. This would prevent previous
oscillatory traces from extending into the current chord span
because each simulation starts anew from small random initial
values.

Methods
A separate stimulus signal was prepared for each chord span
in the Mozart melodies (total 405 segments; see General
Material and Methods for the general procedures of stimulus
preparation), and the model was run for each individual segment
separately. As was done for Test 2, the total trace durations
and total note durations for chord pitches and nonchord
pitches were calculated for each chord span. A t-test was
performed to determine if trace duration differences and note
duration differences are significantly different in segmented
chord spans.

Results and Discussion
Figure 5 (bottom) shows trace duration differences and note
duration differences for the segmented simulations of K. 331.
It can be seen that the trace duration difference is either
comparable or greater than the note duration difference for
all chord spans. Over all seven melodies, the trace duration
differences for segmented simulations (1,211ms on average)
were significantly greater than those for single simulations
in Test 2 [t(404) = 3.16, p < 0.01; see Figure 6].
This shows that, as was found for previous methods using
chroma-based features, chord estimation based on the pitch
memory model can benefit from processing each chord span
separately.

GENERAL DISCUSSION

In this paper, we presented a first step toward automatic chord
estimation based on nonlinear dynamics, which draws on
research in music cognition and auditory neuroscience. As
an alternative to the current methods of feature extraction
for chord estimation, we used a dynamical model of
short-term pitch memory to predict the relative salience
of pitches in tonal melodies. We modeled cohesion and
competition between melodic pitches as dynamic pattern
formation in a gradient frequency neural network, which is
a biologically realistic model of auditory neural processing.
We tested the model with a collection of unaccompanied
melodies and showed that it can provide better mid-level
representations for chord estimation than the distribution
of note durations which current chroma-based features are
aimed to extract from the music signal. It was shown that
chord tones are rendered more prominent in the model’s
response than in the note durations and that the advantage
of the model can be increased by using segmented input
signals.

The present study is an attempt to bridge music informatics
with music cognition by developing a chord estimation method
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based on the human perception of implied harmony. Much
progress has been made in automatic chord estimation, with
state-of-the-art systems employing cutting-edge techniques
in signal processing and machine learning (see Cho and
Bello, 2014; McVicar et al., 2014, for reviews). Recently,
however, a plateau in performance was observed despite
continuous incorporation of new data-driven methods
which have proven to be successful in other machine
learning domains (Humphrey and Bello, 2015). This calls
for examination of the underlying assumptions of current
chord estimation methods and also encourages incorporation
of the findings in other related disciplines such as music
cognition and auditory neuroscience. Here we showed that
the pattern of pitch salience in the dynamical model of
auditory short-term memory can provide a better feature for
automatic chord estimation than the chroma distribution
in the audio signal. The success of the present method
demonstrates that human perception and underlying neural
mechanisms can provide foundations for breakthroughs
in music informatics research. It also warrants further
investigation as to whether the dynamical models of auditory
neural processing can improve the retrieval of other musical
information.

The dynamical model of short-term pitch memory presented
in this paper differs from previous models of echoic memory
in which individual pitch traces, once initiated, decay
monotonically independent of each other (e.g., Huron and
Parncutt, 1993; Leman, 2000; Toiviainen and Krumhansl, 2003).
In the present model, a pitch trace may sustain for a long
time or be suppressed quickly at the offset of the stimulus
tone depending on its interaction with other pitch traces,
which is consistent with experimental findings on short-term
pitch memory (Deutsch, 1972, 1973; Deutsch and Feroe, 1975;
Schellenberg and Trehub, 1994, 1996a,b). The pitch dynamics
observed in the present model also provides a psychological
basis for the music-theoretical concept of prolongation, a
central principle of the hierarchical organization of tonal music.
In Schekerian analysis, prolongation refers to the ways in
which a pitch or harmony remains active without physically
sounding (Katz, 1935; Forte and Gilbert, 1982; Larson, 1997).
The prolongation of pitch traces beyond note durations and the
subordination of pitch traces to strong neighbors in the present
model correspond directly with the idea of prolongation in
music theory.

The dynamical model presented in this paper acts as a feature
extractor that provides a novel mid-level representation for chord
estimation. Hence, it does not perform chord estimation or
labeling by itself. There are multiple ways to use the model for
automatic chord estimation. For example, the current methods
for estimating chords from feature representations (e.g., template
matching and stochastic models) could be applied to the output
of the present model. However, our ultimate goal is to expand the
current model to perform chord estimation within the dynamical
systems framework. This may be done by adding another layer
of oscillators that holds information about common chord types
by means of long-term Hebbian learning. The present model
utilizes short-term plasticity to capture the interaction between

pitch traces in short-term auditory memory. Adding long-
term plastic connections to the model would lead to pattern
formation in two different time scales, and the learning and
recognition of common chord types could be modeled in terms
of the interaction between layers with plasticity of different time
scales.

The introduction of long-term plasticity also means the
incorporation of the top-down influence of learned knowledge
into the dynamical model. Cognitive psychologists have shown
that listeners internalize regularities in tonal music through
passive exposure and that the implicit knowledge thus acquired
influences subsequent perceptions (Krumhansl, 1990; Tillmann
et al., 2000; Pearce andWiggins, 2012; Rohrmeier and Rebuschat,
2012). The model presented in this paper includes only afferent
connections from the stimulus to Layer 1 and then to Layer
2, and the plastic connections adjust quickly to the current
states of the oscillators. Thus, the response of the model
reflects only the pattern of pitch salience in the short-term
context. An extra layer with long-term plastic connections
could carry information about frequently encountered chord
types beyond the short-term context and modulate the activities
in Layer 2 through efferent (top-down) connections. In this
way, the influence of both short-term context and long-term
knowledge could be accounted for within the dynamical systems
framework.

We showed that the prominence of chord tones in the
model’s response could be raised by using segmented signals.
This is because running the model separately for each segment
prevents oscillatory traces from intruding into the next segment.
The same effect can be achieved by deactivating (or resetting)
oscillatory traces at segmentation boundaries while running
the model continuously with the entire (unsegmented) signal.
Segmentation would benefit chord estimation the most if it
aligns with chord span boundaries. Above we used segmentations
based on chord annotations, but this information is not available
to a system performing automatic chord estimation (actually,
that is the information such a system aims to obtain). One
possible way to incorporate segmentation into the present model
is to couple it with a rhythm model that synchronizes to a
musical beat and meter (e.g., Large et al., 2015). In the same
spirit as the use of beat-synchronized frames for chroma-based
features, the pitch memory model could receive a modulatory
signal from the rhythm model which deactivates pitch traces at
the time of each downbeat. The pitch memory model, on the
other hand, could provide input to the rhythm model at the
time of harmonic change, which is an important cue for the
perception of rhythm and meter (cf. Papadopoulos and Peeters,
2008).

Here we tested the dynamical model with unaccompanied
melodies to focus on the differentiation of chord tones and
nonchord tones in the absence of explicit chordal context.
We found that the model selectively enhanced chord tones
in the melodies, thus raising the probability of correct
chord estimation. The results of this study prompt us to
ask how well the model would handle music with multiple
voices. We predict that the model would still show an
advantage over raw pitch-class content. The presence of
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vertical consonant intervals, which typically form between
chord tones, would facilitate the suppression of nonchord
tones. Also, we expect the model to capture pitch dynamics
within individual voices as it did for single unaccompanied
melodies. This prediction will have to be tested in future
studies.
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There is evidence from a number of recent studies that most listeners are able to

extract information related to song identity, emotion, or genre from music excerpts with

durations in the range of tenths of seconds. Because of these very short durations, timbre

as a multifaceted auditory attribute appears as a plausible candidate for the type of

features that listeners make use of when processing short music excerpts. However,

the importance of timbre in listening tasks that involve short excerpts has not yet been

demonstrated empirically. Hence, the goal of this study was to develop a method that

allows to explore to what degree similarity judgments of short music clips can bemodeled

with low-level acoustic features related to timbre. We utilized the similarity data from

two large samples of participants: Sample I was obtained via an online survey, used

16 clips of 400 ms length, and contained responses of 137,339 participants. Sample II

was collected in a lab environment, used 16 clips of 800 ms length, and contained

responses from 648 participants. Our model used two sets of audio features which

included commonly used timbre descriptors and the well-known Mel-frequency cepstral

coefficients as well as their temporal derivates. In order to predict pairwise similarities, the

resulting distances between clips in terms of their audio features were used as predictor

variables with partial least-squares regression. We found that a sparse selection of three

to seven features from both descriptor sets—mainly encoding the coarse shape of the

spectrum as well as spectrotemporal variability—best predicted similarities across the

two sets of sounds. Notably, the inclusion of non-acoustic predictors of musical genre

and record release date allowed much better generalization performance and explained

up to 50% of shared variance (R2) between observations and model predictions. Overall,

the results of this study empirically demonstrate that both acoustic features related to

timbre as well as higher level categorical features such as musical genre play a major

role in the perception of short music clips.

Keywords: short audio clips, music similarity, timbre, audio features, genre

1. INTRODUCTION

There is growing evidence that human listeners are able to instantly categorize short music clips
containing complex mixtures of sounds, e.g., when scanning a radio dial or browsing through a
playlist. Even more, the information contained in clips lasting only a few hundred milliseconds or
less seems to be sufficient to perform tasks such as genre classification (Gjerdingen and Perrott,
2008; Mace et al., 2011; Plazak and Huron, 2011) or artist and song recognition (Schellenberg et al.,
1999; Krumhansl, 2010).
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More specifically, Gjerdingen and Perrott (2008) played
participants audio excerpts of commercially available music at
different lengths and asked them to indicate the genre of each
excerpt. They found that 44% of participants’ genre classifications
of 250 ms excerpts were identical to the classifications by the
same participants and of the same audio track when played for
3 s, demonstrating that listeners extract a considerable amount
of information from very short excerpts. Results by Schellenberg
et al. (1999) showed that even 100 ms excerpts could be
matched to song title and artists with above-chance accuracy,
and that time- varying high frequency information (> 1 kHz)
was particularly important for correct identification. Similarly,
Krumhansl (2010) showed that listeners are able to identify the
artists and titles for 25% of a stimulus set consisting of 400 ms
clips of popular music spanning four decades. Mace et al. (2011)
were able to demonstrate that even at 125 ms length participants
were able to achieve an accuracy of 54% on a genre recognition
task which had a guessing level of 20%. At this timescale there
are few, if any discernible melodic, rhythmic, harmonic or metric
relationships to base judgements on. Though when musical-
structural information is minimal, timbral information can still
be rich.

Timbre is here understood as an umbrella term that denotes
the bundle of auditory features (other than pitch, loudness,
duration) that contribute to both sound source categories and
sound quality (McAdams, 2013). In fact, timbre seems to be
processed even from very short stimulus durations. For instance,
Bigand et al. (2011) showed that variability in the spectral
envelope can be processed from sounds as short as 50ms.
More recent results by Suied et al. (2014) have shown that
listeners can even recognize timbre based on snippets as short
as 16 ms (depending on the instrument family). In the latter
study, performance increased monotonically with the length of
the excerpts and plateaued at around 64 ms.

Building on this research, Musil et al. (2013) devised an
individual differences test that investigates differences in the
ability to extract information from short audio clips and to use it
for similarity comparisons. This test forms part of the Goldsmiths
Musical Sophistication battery of listing tests (Müllensiefen
et al., 2014) and complements other individual differences tests
that focus on melodic memory and beat perception abilities.
The sound similarity test was designed to assess the ability to
decode and compare complex musical sound textures and to be
independent of temporal processing andmemory capabilities and
therefore only makes use of very short musical stimuli. While the
test has been used in practice and proved to be fairly unrelated to
other musical listening abilities (Müllensiefen et al., 2015), it has
been difficult to build a model based on audio features that would
describe participants’ similarity judgements adequately (Musil
et al., 2013).

On the contrary, there is a rich literature on audio features
associated with computer-based instrument identification (Joder
et al., 2009), genre classification (e.g., Andén and Mallat,
2011), the prediction of affective qualities (Laurier et al., 2009;
McAdams et al., 2017), or more general aspects of the perception
of audio excerpts (Alluri and Toiviainen, 2010). Audio features
are most commonly derived from the Short-Time Fourier

Transform of the music signal, from which spectral or temporal
statistics are computed. A standard example are summary
statistics such as the mean (i.e., centroid) or spread of short-
time spectra, or the correlation of spectra across consecutive time
windows (spectral flux). It is important to note that the utility
of specific timbre descriptors as well as the size of feature sets
varies considerably across computational and perceptual tasks.
In effect, timbre description in psychology traditionally employs
a handful of, say, less than 10 features, whereas many music
information retrieval approaches rely on audio representations
with a substantially higher dimensionality (Siedenburg et al.,
2016a).

None of the psychological studies on short audio clips has
used audio features to quantitatively model human perceptual
responses to very short audio clips. For that reason, it is currently
unclear to which extent simple categorization judgements can be
predicted by low-level properties of the audio signal, as opposed
to higher level concepts such as genre potentially inferred from
the audio. But constructing a cognitively adequatemodel of audio
similarity is not only useful for understanding what features and
cues listeners extract and process from short audio clips. It can
also serve as a first step for constructing future adaptive versions
of individual differences tests of audio classifications that could
allow a systematic scaling of difficulty of sets of audio clips by
selecting clips that are more or less similar.

This paper aims to contribute toward the understanding of
perceptual judgements of similarity for short music clips via a
modeling approach. The present contribution is the first study
to systematically quantify the extent to which similarity data
of short musical excerpts can be explained by acoustic timbre
descriptors. A notable feature of the current approach is that we
not only evaluate the constructed statistical models in terms of
their accuracy in describing a given set of observations, but also
in their capacities to generalize to unseen data sets. The predictive
accuracy of low-level timbre features is further compared with
variables that encode meta information in the form of the genre
and release date of songs.

This manuscript is organized as follows. In Section 2, we
describe the experimental samples, stimuli, and procedures that
provide the basis for our modeling study. In Section 3, the
structure of the model is described in detail, in particular
with regards to the audio features, normalization schemes,
and statistical models of perceptual similarity. In Section 4,
the presented models are comprehensively evaluated, before
potential implications on timbre modeling are discussed in
Section 5.

2. EXPERIMENTS

This study uses data from two separate experiments
that used a sorting paradigm to assess the perceptual
similarity of short music clips. In both cases the sorting
paradigm was part of a larger test battery on several
aspects of music perception (Müllensiefen et al., 2014).
Only the data gathered via the similarity sorting paradigm
is reported in this paper and has not been reported
previously. The Ethics Board of Goldsmiths, University of
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London approved the research undertaken and reported in
the manuscript.

2.1. Participants
Sample I comprised responses from 137,339 participants who
took part in the BBC Lab UK’s online test How Musical Are You?
in 2011 and 2012. The sample of participants is identical to the
sample reported by Müllensiefen et al. (2014, Study 4), although
the data from the sound similarity test has not been reported
previously. In the training sample, 45.2% of the participants were
female and mean age was 35.2 years (SD = 15). Participants
were mainly UK residents (66.9%) but because the How Musical

Are You? test was an open online application, the sample
also included participants from other mainly Western and
English-speaking countries (largest proportions: USA: 14.2%,
Canada: 2.3%, Australia: 1.1%). The sample contained a large
spread in terms of education (undergraduate degree/professional
qualification: 34.1%, still in education: 23.4%, postgraduate
degree: 19%, second school degree with around 18 years (e.g.,
British A-levels): 11.8%, first school degree around 16 years
(e.g., British GCSE/O-levels): 7.5%, etc.) as well as in terms
of the current profession of the participants (Other: 19.4%,
Education/Training: 12.4%, Unemployed: 10.7%, Information
technology: 7.1%, etc.). Only 1.8% stated “music” as their
occupation. Participants in Sample I were tested with 400 ms
excerpts.

Sample II comprised responses from 648 participants,
collected via several experimental batteries that were run at
Goldsmiths University of London between 2011 and 2014, all
of which contained the sound similarity test using 800 ms
excerpts. Participants came from a young student population
(undergraduates as well as postgraduates) and were less diverse
in terms of their educational and occupational background than
participants in Sample I1.

2.2. Stimuli
Prototypical but less well-known songs from four different genres
were selected as experimental stimuli, as described by Musil et al.
(2013). Because genre boundaries may be subjective and change
over time (Gjerdingen and Perrott, 2008), we used the main
four meta-genres identified by Rentfrow and Gosling (2003)
as a guidance and selected the most prominent popular music
style within each meta-category: jazz from reflective/complex,
rock from intense/rebellious, pop from upbeat/conventional,
and hip-hop from energetic/rhythmic. Additionally, following
Krumhansl’s (2010) finding that the approximate recording date
of a song can be identified fairly accurately from short excerpts,
specific decades were selected for each genre: 1960–70s for jazz,
1970–80s for rock, 1990–2000 for pop and hiphop. Exemplary
songs for each of these genres were selected from the suggestions
of prototypical songs given on the encyclopedic music datbase
allmusic.com. In order to avoid the recognition of specific overly
well-known tunes, songs were only selected if they were not

1Because participants of Sample II were aggregated from several individual

experiments, unfortunately it was impossible at this stage to track participants’

individual demographic information.

present in the all-time top-100 Billboard charts and had never
reached the top rank on the UK Billboard charts. However, two
of the selected songs (The Sign, I Wanna Love You Forever)
had reached first and third ranks of the US Hot-100 Billboard
charts, respectively. Hence, we cannot rule out the possibility
that individual participants might have recognized the songs of
individual excerpts. Aiming for representative sound fragments,
excerpts from each song were chosen such that the excerpt did
not contain any human voice, there were at least two recognizable
notes in the excerpt, and the fragment represented as much a
possible the maximal timbral diversity (i.e., maximum number of
instruments) of the song. In addition, the excerpt was preferably
taken from a repeated section of the song. A table with all song
titles, artists, and the corresponding genre is given in Table 1 of
the Appendix (Supplementary Materials).

Excerpts were extracted directly from .wav files taken from
the original CD recordings and stored at an audio sampling
rate of 44.1 kHz. For the computation of audio features, all
clips were converted to mono by summing both stereo channels.
For the two experiments, excerpts of lengths 400 ms (Sample I)
and 800 ms (Sample II) were used, extracted from different
locations in the song, to which a 20 ms fade-in and fade-out
was added. We needed to work with different stimulus durations
in Samples I and II because in the original sound similarity
sorting task (Müllensiefen et al., 2014), genre was used as a
proxy for sound similarity, based on the fact that songs that
belong to the same genre are often characterized by similarities
in sound (e.g., see Rentfrow et al., 2011). In the absence of a
perceptual-computational model of sound similarity at the stage
of designing the experimental task, genre was the best proxy
available to select groups of songs that would sound similar and at
the same time different from other groups of songs, thus allowing
to tentatively score the performance on the sorting task of each
participant. But from the analysis of the behavioral data obtained
for the 400ms excerpt set it became clear that many participants
scored close to chance level. After piloting different clip lengths,
a duration of 800ms then seemed to produce a distribution of
performance scores that better allowed to characterize inter-
individual differences.

2.3. Experimental procedure
The experimental paradigm was similar to the one used by
Gingras et al. (2011) and Giordano et al. (2010). The participants’
task was to listen to 16 short excerpts and to sort them into
four groups of four items each by their similarity in sound.
We deliberately avoided the term “genre” in the instructions
and did not specify the nature of the sound similarity. Excerpts
were identified by icons on a computer screen, while groups
corresponded to boxes. Participants could listen to an excerpt
by hovering over its icon, and could move icons around by
clicking and dragging. Participants were allowed to listen to each
clip as many times as they wished and change their sorting
solution as often as necessary. There was no time constraint
for the task and participants submitted their sorting solution
when they felt that it could not be amended further. Only
the final sorted state was recorded and used for subsequent
analysis.
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2.4. Data Characteristics
Pairwise perceptual similarity was defined as the relative number
of times two clips were placed in the same group by participants.
This measure is obtained by dividing the absolute number of
times two clips were placed in the same group by the respective
number of participants in each sample. The corresponding
distribution of similarities with range between zero and one is
shown in Figure 1 (left panel).

Recall from Section 2.1 that the demographics of the
participant populations from Samples I and II were not
matched. In order to rule out potentially confounding effects
of demographics on the similarity data, we drew subsamples
of Sample I that better matched the demographics of the
college-student population of Sample II. Among the 137,399
participants, there were 32,329 participants specifically with age
between 18 and 24 years. Thereof 18,639 participants stated
“At university” as occupational status, 3,199 participants stated
“Education/Training” as their occupation, and 1,957 participants
belonged to both categories. However, Pearson correlations
between the similarities derived from these subsamples and the
set of all participants were very strong, all r(118) > 0.992
(p < 0.001), which speaks against a pertinent influence of
demographics.

Note that the diagonal entries of the similarity matrices
depicted in Figure 1 (two rightmost panels) play a distinct
role. In fact, they derive from representing the data in matrix
form and not from participants’ direct classifications themselves
(who only encountered distinct clips). The value of the diagonal
entries of the matrix automatically equals one, regardless of
participants’ responses (because every clip trivially shares its
own group). However, their inclusion in the model bears the
danger of inflating figures of merit such as the coefficient of
determination R2. Because by simply differentiating identical
and non-identical clips with a binary variable, one can readily
obtain highly significant fits with the similarity data. For that
reason, we took a conservative stance and only considered non-
identical pairs for the following modeling, corresponding to the
lower triangular dissimilarity matrix without diagonal entries
(accordingly, the distribution of similarities depicted in the left
panel of Figure 1 only represents non-identical pairs). This
makes the interpretation of R2 coefficients more meaningful,

but also reduced their magnitude by more than 20% points on
average.

3. MODEL STRUCTURE

Modeling the similarity data comprised three main stages: (i)
feature extraction from the audio clips, (ii) feature normalization,
and the (iii) modeling of pairwise similarities of features.
More specifically, we used two sets of audio features, both
of which contained 24 features. Both sets were normalized
in five different ways (but the normalized features were not
pooled). The resulting pairwise distances of clips’ audio features
were then used as predictor variables in a latent-variable linear
regression technique, namely partial least-squares regression
(PLSR). Specifically, PLSR attempts to find the multidimensional
direction (i.e., the latent variables) in the space of the predictor
variables that best explains the maximal variance of the
dependent variables. Figure 2 visualizes the three modeling
stages. The basic model structure is similar to the timbre
dissimilarity model presented by Siedenburg et al. (2016b), but
complements stage i) with an additional set of features, considers
an array of normalization schemes in stage ii), and applies
the model to the case of short music clips instead of isolated
instrument tones.

3.1. Feature Sets
The two feature sets were: (i) a set of 24 timbre descriptors and
(ii) 12 Mel-frequency cepstral coefficients (MFCCs) as well as 12
of their 1-coefficients. In addition we also combined both sets to
obtain a third feature set (iii) with 48 features.

3.1.1. Timbre Descriptors
We used the Timbre Toolbox (v1.2, Peeters et al., 2011), a large
set of audio descriptors that describes the acoustic structure of
audio signals with a focus on timbre. For the current purpose,
we selected 24 out of its 164 descriptors. This selection possessed
great overlap with the 34 descriptors used in Siedenburg et al.
(2016b), which had provided a fairly robust model of musical
timbre dissimilarity of isolated musical tones, each played
individually on instruments of theWestern orchestra. In contrast
to the isolated tone case, however, ten of the twelve temporal

FIGURE 1 | (Left panel) Distribution of similarity data, here defined as the relative number of shared classifications of two clips. (Middle and right panel) pairwise

similarities for Samples I (400 ms) and Sample II (800ms).
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FIGURE 2 | Basic model structure. Note that every feature dimension is processed separately before being joined in the regression model.

descriptors were not taken into account for the description of
clips, because it could be assumed that measures of attack or
release-duration would not differ in any meaningful way across
the currently used clips, given that they were extracted from the
midsts of songs and contained dense musical textures.

Spectral shape descriptors were computed from an ERB-
spaced Gammatone filterbank decomposition of the signal.
They were measured with (fairly common) settings of 25 ms
time frames with 1/2 overlap and summarized via the median
and interquartile range as measures of central tendency and
variability, respectively. Spectral descriptors included the first
four moments of the spectral distribution, such as the spectral
centroid that has been shown to correlate with perceived
brightness (McAdams, 2013). Additional descriptors of the
spectral distribution such as the decrease and flatness were also
included, measuring spectral slope with an emphasis on lower
frequencies and the peakiness of the spectrum, respectively,
but also measures of spectrotemporal variation, relevant to
capture spectrotemporal variability (the so-called spectral flux)
(McAdams et al., 1995). We included four descriptors that were
based on the time domain representation of the signal: the
frequency and amplitude of energy modulation over time, and
the median and interquartile range of the zero crossing rate. A
full list of the descriptors is given in Table 2 in the Appendix
(Supplementary Materials).

3.1.2. Mel-Frequency Cepstral Coefficients
As an alternative set of features, we considered the commonly-
usedMel-frequency cepstral coefficients (MFCCs, Eronen, 2001)
and their temporal derivatives. MFCCs are derived via a discrete

cosine transform of the log-transformed power of Mel spectra.
MFCCs thus represent the shape of an audio signal’s spectral
envelope: going up from lower to higher coefficients, MFCCs
encode increasingly finer scales of spectral detail. MFCCs are
standard in various tasks in audio content analysis and music
information retrieval and have also been proposed as descriptors
for timbre perception (see the review in Siedenburg et al., 2016a).
In the current study, we used the first 12 MFCCs and their
corresponding 12 1MFCCs, i.e., their first derivative over time.
Both were computed for 25 ms time frames (1/2 overlap) of the
audio signal, and the resulting time series was summarized by the
median. These features were provided by theMIRtoolbox (v1.6.1,
Lartillot and Toiviainen, 2007).

3.2. Feature normalization
In order to regularize the often idiosyncratic distributions
of the raw feature values, five normalization schemes were
considered:

N1) None (i.e., using raw feature values),
N2) Range normalization to [0, 1],
N3) Z-scores with zero mean and unit standard deviation,
N4) Rank transformation according to the test set: replacing a

feature value by the fraction l/L, with l being the feature
value’s rank within the test set of size L,

N5) Rank transformation according to a corpus: replacing a
feature value by the fraction l′/L′, with l′ being the feature
value’s rank within the corpus of size L′.

The corpus was obtained by extracting clips from a freely-
available audio data set sampled at 44.1 kHz (Homburg et al.,
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2005). We selected 110 songs for each of the four meta-genres
of the current test set (jazz, rock, pop, hiphop), from which
we extracted ten 800 ms clips each. The resulting 4,400 clips
constituted our corpus. All of the above mentioned features
were extracted from each clip of the corpus and used for the
corpus-based ranking.

3.3. Similarity Modeling via Partial
Least-Squares Regression
Per clip, each feature provided one scalar value. For any pair of
clips, feature-wise distances were obtained by taking the absolute
difference of the pair’s respective feature values. These distances
were summarized in a design matrix X of size m × n, where
m = 120 = 16 · 15/2 denotes the number of pairs, and n denotes
the number of features. As outlined above, in a first step we used
three sets with (i) n = 24 timbre features (from the Timbre
Toolbox, TT), (ii) n = 24 (1)MFCCs, and (iii) n = 48 features
in the combined set.

In order to handle collinearity of predictors (Peeters et al.,
2011), we used partial least-squares regression (PLSR, Geladi
and Kowalski, 1986; Wold et al., 2001). PLSR is a regression
technique that projects the predicted and observed variables
onto respective sets of latent variables, such that the resulting
variables’ mutual covariance is maximized. More precisely, given
a dependent variable y and an design matrix X, PLSR generates a
latent decomposition such that X = TP′ + E and y = Uq′ + F
with loadings matrices P (n × k) and q (1 × k), and components
(“scores”) T (m × k) and U (m × k) plus error terms E and
F. The matrix W∗ (n × k) comprises the predictors’ weights,
such that T = XW∗. The regression coefficients for the original
design matrix can be obtained by β = W∗q′ (cf., Wold et al.,
2001), which yields a link to the generic multiple linear regression
(MLR) design via y = Xβ + F. The decomposition maximizes
the covariance of T and U, which yields latent variables that are
optimized to capture the linear relation between observations
and predictions. In this sense, PLSR also differs from principal
component analysis (PCA) followed byMLR, as for instance used
by Alluri et al. (2012), since PCA does not specifically adapt the
latent decomposition to the dependent variable of interest.

In order to prevent overfitting of the response variable, the
model complexity k can be selected via cross-validation. We used
a model with k = 2 latent components, which yielded minimal
8-fold cross-validation errors in a majority of the model and
evaluation conditions. We used the implementation provided by
the plsregress.m function as part of MATLAB version R2015b
(The MathWorks, Inc., Natick, MA), which applies the SIMPLS
algorithm (De Jong, 1993).

The importance of individual predictors in the PLSR model
was assessed by bootstrapping, which eventually allowed us to
construct sparse regression models. For each of the two training
conditions, the significance of the individual model coefficients
βi (i = 1, ..., n) was estimated by bootstrapping the 95%
confidence interval of the coefficients (Efron and Tibshirani,
1994; Mehmood et al., 2012). We used a percentile-type method,
that is, from the 16 clips per stimulus set, the similarity data
of four randomly selected clips (drawn with replacement) were

left out from the sample (yielding on average around 60% of the
data points intact). This process was repeated 1,000 times. For
every coefficient βi the resulting 0.025 and 0.975 percentiles were
taken as confidence boundaries. If confidence intervals did not
overlap with zero, a predictor’s contribution was considered to be
significant, and the respective feature was selected for the sparse
model.

4. MODEL EVALUATION

The goal of the subsequent model evaluation was to identify
from among the three different feature sets and the five different
normalization schemes an accurate and robust model of the
perceptual similarity data. We place a special focus not only on
the question how accurately a statistical model can be fitted to
training data, but also on how well the model generalizes to a
new set of perceptual data gathered from a different set of audio
excerpts. This question is addressed by including sparse models
in the subsequent evaluations that are known to generalize better
to new datasets (Friedman et al., 2009) and by permuting the data
from Sample I and Sample II as training and testsets. This means,
eachmodel is both fitted and tested on the datasets from Sample I
(400 ms clips) and Sample II (800 ms clips). This results in 2
× 2 evaluation conditions per model. This evaluation setup also
allows us to investigate the question how well a model describes
the data set it was fitted to and to what degree it might be
overfitted to the training data.

The evaluation proceeds in four steps. We first present
results for the three feature sets in combination with all five
normalization conditions. Secondly, we select a subset of the
most relevant features from each model via bootstrapping and

recompute the performance of the resulting sparse models.
Thirdly, we consider the role of meta information such as genre
and the release date of recordings. Finally, we discuss the role of
individual acoustic features.

4.1. Results: The Effect of Feature Sets and
Normalization Schemes
Table 1 presents the squared Pearson correlation coefficients R2

for the three full feature sets and five normalization schemes,
corresponding to the proportion of variance shared between
the model predictions and empirical observations. The results
indicate that the perceptual similarities of the 400 ms and
800 ms clips were both predicted with fairly similar accuracy.
The combination of the two feature sets, TT+MFCC, yielded the
highest R2 values on training sets as could be expected from
the larger pool of features to draw from. However, there are
obvious differences between model fits derived on the training
sets and model generalization to novel test sets, which suggests
that all models considered at this point generalize rather poorly
to unseen data. In fact, successful generalization is a rare
exception with only four out of 30 predictions of unseen data
yielding correlations that are significant at the α = 0.01 level.
Generalization of models based on MFCCs was particularly poor
and did not provide a single significant correlation on a novel
test set.
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TABLE 1 | R2 coefficients as performance indicators for full models derived from combining five normalization schemes (N1–N5) and three feature sets

(TT, Timbre Toolbox; MFCC, MFCC coefficients and MFCC delta coefficients), each evaluated in the two training and testing conditions from 400 (I) and

800 ms (II) clips.

TEST

N1 N2 N3 N4 N5

Raw Range z-scores r-test r-corpus

I II I II I II I II I II

TRAIN TT I – – 0.07 0.08 0.07 0.06 0.33 – 0.11 0.09

II – – – 0.18 – 0.19 – 0.22 – 0.25

Mean – 0.08 0.08 0.14 0.11

MFCC I 0.08 – 0.21 – 0.20 – 0.21 – 0.23 –

II – 0.15 – 0.20 – 0.20 – 0.22 – 0.24

Mean 0.06 0.10 0.10 0.11 0.12

TT+MFCC I – – 0.25 0.06 0.25 – 0.47 – 0.27 –

II – – – 0.24 – 0.26 – 0.39 – 0.33

Mean – 0.14 0.13 0.22 0.15

Note that R2 coefficients < 0.06 that correspond to non-significant correlations at p > 0.01 are not displayed for the sake of clarity. The mean for each combination of normalization

scheme and feature set across the four training-test evaluation conditions is given in the last row of each cell (non-significant correlations are considered a zero entry in the computation

of the mean). Best average performance per feature set is given in bold font.

In terms of the normalization schemes, models using the
test-set-based ranking (N4) produced the highest performance
values overall. In particular for the combined feature set
TT+MFCC, it yielded the best fit to the training data, potentially
indicating that participants rely on relative differences within
a specific acoustic context (namely the test set), rather than
on absolute differences of acoustic features. Figure 3 (top left
panel) shows the scatterplot of the corresponding TT+MFCC
(N4) model in all four evaluation conditions, graphically
depicting how model fits decrease from when training and
test dataset are identical to when datasets for model training
and test differ. This decrease in model fit may be interpreted
as an indicator of model overfitting. Hence, in the next
evaluation step we aim to achieve better generalization
performance and avoid overfitting by applying feature
selection.

4.2. Feature Selection
We applied the feature selection approach described in
Section 3.3 to obtain sparse models. This naturally led to different
configurations of significant predictors per model and evaluation
condition, which are displayed in Figure 4. The plot shows that
the selection was fairly consistent across the different feature sets,
in the sense that the combined feature set TT+MFCC roughly
comprised the features already selected for the individual sets
TT and MFCC. For the 400 ms clips, an average of 2.2, 3.0,
and 4.6 significant variables were retained for the TT, MFCC,
and TT+MFCC features sets, respectively (averaged across the
five normalizations). For 800 ms clips, an average number of
4.4, 2.2, and 5.6 features were retained for the three respective
feature sets. However, note that the set of features selected for

the 400 and 800 ms clips is quite different. In particular for the
test-ranked normalization (N4), the two sets do not share any
common member.

Table 2 shows the results in all conditions for the sparse
models2. There are 14/30 significant correlations for unseen test
data, which is an improvement compared to the full models
(4/30), yet still surprisingly low overall. Themean performance of
sparse models (across all four evaluation conditions) was rather
similar to the performance of the full models, which means
the increase in generalization performance was traded against
a decrease of accuracy on the training sets. The best model
was obtained by the combined model TT+MFCC with the test-
rank normalization (N4), with an average fit of R2 = 0.29
on the training data and R2 = 0.14 on novel test data. The
detailed scatterplots of predictions and observations are shown
in Figure 3.

Figure 4 (right panel) gives an overview and summary of the
behavior of all models considered so far in terms of accuracy
and generalization capacities: the x-axis displays the mean R2

coefficients on novel test sets (i.e., the average of the off-
diagonal values of the previously presented tables) and the
y-axis represents the fit on the training sets (i.e., average of
diagonal values). Generally, we are interested in a reasonable
trade-off between both measures, which currently only appears
to be achieved by the sparse TT+MFCC models with test-
rank normalization (N4). In this sense, the figure illustrates two
important methodological results: (a) The combined feature set
TT+MFCC is superior to both TT andMFCC, (b) sparse variable

2The number of PLSR latent components k was naturally reduced to k = 1, if only

one feature was selected by bootstrapping in the respective condition.
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FIGURE 3 | Every individual plot shows the correspondence between model predictions (x-axis) and empirically observed similarities (y-axis). Every

panel shows models that were trained to 400 ms (panel top row) or 800 ms clips (panel bottom row), and tested on the same two sets (left vs. right columns). Top left

panel shows full feature set; top right: sparse feature selection; bottom left: non-acoustic variables only; bottom right: sparse model together with non-acoustic

variables. All models utilize test-ranked features (N4).

selection is a means to trade accuracy on the training set against
a greater ability of the models to generalize to unseen datasets.

4.3. The Role of Genre and Release Date
In a final step, we included non-acoustic information as predictor
variables that were taken from the meta-data of the clips.
Specifically, we considered the categorical variable of genre
as well as the songs’ release dates. However, is it important
to keep in mind that the concept of genre is notoriously
ambiguous (Craft et al., 2007). In the current case, genre was
correlated not only with the release date of recordings, but
also with recording techniques, instrumentation, and thus also
with qualitative timbral similarity modeled by the continuously
varying audio features utilized here. Therefore, this step was of
exploratory nature and attempted to set the prediction results of

the acoustic model into relation with approaches relying on meta
information.

Genre was coded as binary predictor G indicating whether
two clips shared the same genre (G = 0) or not (G = 1). As
Figure 3 (bottom right panel) demonstrates, adding these two
predictors to themodel with the best generalization performance,
the sparse test-ranked-normalized TT+MFCC model, yielded
a substantial increase in model performance of at least 18
percentage points in R2. At the same time, the model that solely
utilizes meta information (Genre+Date) robustly partitions the
underlying pairs into fairly similar vs. dissimilar pairs. The
computational analyses presented in the present paper thus
confirm the efficiency of genre as a proxy for the selection
of stimuli (as described in Section 2.2), with genre explaining
the vast majority of the variability in the behavioral data.
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FIGURE 4 | (Left panel) Predictors selected for the sparse models. Pixels in colors other than dark blue refer to selected variables. The x-axis shows features,

namely TT descriptors (1–24, see Table 2 in Supplementary Materials), and the 12 MFCCs and 12 1MFCCs. The y-axis concatenates all conditions including the

400 ms and 800 ms clips and the feature sets TT, MFCC, and TT+MFCC. Normalizations N1–N5 are annotated on the right. (Right panel) Overview of results from

the solely acoustic models. Plot shows the mean fit to the training set (y-axis) and the mean fit on novel sets (x-axis). Circles correspond to the full models, triangles to

sparse sets of features. A few normalizations are annotated.

TABLE 2 | Performance of sparse models.

TEST

N1 N2 N3 N4 N5

Raw Range z-scores r-test r-corpus

I II I II I II I II I II

TRAIN Sparse TT I – 0.11 – 0.06 – – 0.24 – – 0.07

II – 0.11 – 0.14 – 0.14 0.10 0.16 – 0.20

Mean 0.05 0.05 0.03 0.12 0.07

Sparse MFCC I 0.08 – 0.09 0.06 0.09 0.06 0.12 0.12 0.11 –

II – 0.12 – 0.11 – 0.11 0.09 0.12 – 0.18

Mean 0.05 0.06 0.07 0.11 0.07

Sparse TT+MFCC I 0.07 0.11 0.12 0.07 0.12 0.06 0.34 0.16 0.13 0.08

II – 0.11 – 0.16 – 0.16 0.11 0.24 – 0.24

Mean 0.07 0.09 0.09 0.21 0.11

R2 coefficients are shown for the five normalizations (N1–N5) and three feature sets, each evaluated in the two training and testing conditions from 400 (I) and 800ms (II) clips. Correlations

with p > 0.01(R2 < 0.06) are not displayed for the sake of clarity. Condition means are concatenated below. Best average performance per feature set is given in bold font.

Moreover, the Genre+Date model here yielded better R2 values
in generalization than the model that relies on both acoustic and
meta variables. The latter, indeed surprising finding could be
taken as evidence for that listeners from Sample I and II used
different weightings of acoustic information in their responses,
potentially due to the different lengths of excerpts.

4.4. Role of Individual Features
By virtue of the parsimony of the sparse models, it is possible
to take a more detailed look at the individual weightings of
predictor variables. Here, we consider the exemplary case of
the TT+MFCC (+Genre+Date) models with test-set ranking

(N4). Figure 5 shows the (standardized) regression coefficients β ,
which reflect the relative importance of the individual predictors
for the prediction of similarity (y = Xβ + F).

For the models that included both acoustic and meta
descriptors, the plots indicate that the genre descriptor was the
most heavily weighted variable for both stimulus sets, and the
date of release showed a by far smaller influence. Note that we
found a very similar relation between the effect sizes of both
variables for the model solely using genre and date information
(the coefficients of which are not shown here). Regarding acoustic
descriptors, the selections for both stimulus sets represent
both spectral and spectrotemporal information: the spectral
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FIGURE 5 | PLSR coefficients β for the sparse model with test-rank normalization (N4), coefficients of the same model including genre and release

date, as well as genre and release only. (Left panel) 400 ms clips; (right panel) 800 ms clips.

envelope distribution is represented by features such as Crest,
Decrease, and MFCCs, whereas (spectro-)temporal modulations
are represented by Modulation Frequency, Spectrotemporal
Variation, and1MFCCs. Specifically, MFCC no. 4 was by a large
margin the most important acoustic feature for the 800 ms clips,
whereas 1 MFCC no. 4 was among the most important ones for
the 400 ms clips.

From a more general stance, the presented evaluation, using
five normalization conditions and three acoustic feature sets,
indicates that one should not overestimate the universality of
distinct acoustic features. In fact, the best model configuration
did not share any features across the two stimulus sets. A
plausible hypothesis could be that the duration of clips plays a
pertinent role in the ways in which listeners compile and weight
acoustic information from short music clips.

5. DISCUSSION

5.1. Summary
The main aim of this study was the development of the
first audio-feature-based model for the prediction of human
sound similarity judgements of short audio excerpts. We used
partial least-squares regression in order to map from acoustic
to perceptual similarity. Before entering the regression model,
acoustic dissimilarities were normalized by using five schemes:
(N1) raw feature values, (N2) range-normalization, (N3) z-
scores, (N4) rank-transformation according to test set, and
(N5) rank transformation according to a corpus. We then
followed an exhaustive combinatorial approach that combined
these five normalization schemes with two important candidate
feature sets, the Timbre Toolbox (Peeters et al., 2011) and
MFCCs, each of which contributed with 24 audio features.
Importantly, each candidate model was assessed on the dataset
it was fitted to, as well as on a set of novel audio excerpts.
Our results indicate that combining both feature sets resulted
in the most powerful model, in particular when being used
with a test-set based rank transformation (N4). And even the

sparse models with their drastically reduced numbers of features
generally containedmembers from both features sets. This speaks
for the complementary nature of Timbre Toolbox descriptors
and MFCCs when it comes to the description of the similarity
of music clips.

In line with the well-documented behavior of sparse models
in terms of better generalization (e.g., Friedman et al., 2009, Ch.
16.2.2), we also found a trade-off between model performance on
the training set vs. the models’ enhanced ability to generalize to
a new dataset. The best performing sparse model achieves an R2

of up to 0.34 when evaluated on the dataset is was trained on and
an R2 of up to 0.16 when evaluated on a new dataset. This result
for the first time provides evidence that a significant portion of
the variance in the similarity perception of short music clips can
be explained by acoustic features related to timbre. The fact that
including only two variables encoding meta-information, and
most importantly musical genre, substantially increased model
performance (up to R2 values of 0.52) suggests that the models
based on acoustic features do not capture all information that
participants are able to extract from the short audio clips and use
for the similarity grouping. This finding also implies that great
care should be taken in order to control for the effects of variables
such as genre in future studies of sound and music similarity.

This last result is analogous to the importance of categorical
information in the timbral dissimilarity of isolated instrument
tones reported by Siedenburg et al. (2016b), where the addition
of sound-source and instrument-family-related variables to a
model based on acoustic features significantly improved the
prediction of dissimilarity ratings (also see, Lemaitre et al.,
2010). In this respect, the current results suggest that even if
instructed to focus on low level auditory features (i.e., “the
sound”), participants’ responses are affected by higher level
concepts such as genre. Although differences in timbral qualities,
here measured by continuously varying audio features, likely
constitute an important part of genre, genre categories might also
be inferred from higher-level stylistic musical features such as
rudimentary rhythmic or pitch-related information that are still
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discernible in some of the clips. The current results then suggest
that the inference of higher level concepts such as emotion or
genre from short audio clips is based on more than timbral
qualities, but rather on a complex mixture of acoustical, musical,
and categorical (or higher-level) types of features. Notably, the
exact weightings of these variables may vary with the duration
of the excerpts. From the opposite perspective, the modeling
infrastructure built up here could of course be applied to
exploring the acoustic features utilized by humans in explicit
genre identification tasks.

5.2. Limitations of the Current Study and
Future Perspectives
This study represents the first rigorous attempt to build
quantitative models that describe the perception of short audio
excerpts based on audio feature extraction. Whereas, we have
achieved encouraging accuracies on the training data, there is
clearly room for improvement in future studies, in particular
when it comes to generalization performance. A limitation of
the current study is the fact that the two datasets differed in
terms of the length of the excerpts (400 vs. 800 ms) whereas the
modeling approach assumed that the same features are equally
suitable for clips of both lengths. But this assumption might
not be necessarily true. Hence, a future replication of this study
should include different datasets with clips of the same lengths.
Potentially, this might also help to achieve better generalization
results. Specifically, it would be necessary to confirm the
performance accuracy of the model with the best generalization
performance (i.e., the sparse version of the TT+MFCC feature set
using test-set-based rank normalization plus meta information)
on a completely new dataset. New audio excerpts could be
selected from a corpus according to their similarity predicted
by the model, allowing us to generate precise hypotheses about
the number of times the new excerpts are grouped together in
the grouping paradigm. Using fully randomized approaches for
determining the clips’ starting points in the song, as proposed by
Thiesen et al. (2016), would likely add further robustness to the
experimental design.

It is also worth noting that the similarity data used in this
study were derived from a grouping paradigm that required
participants to make categorical decisions and it is unclear
whether this specific paradigm introduced any sort of bias into
the data. However, several other experimental paradigms can
be used to obtain similarity data from participants and might
be employed in future studies alongside the grouping paradigm
(Giordano et al., 2011). These include pairwise similarity ratings
on fine-grained scales, rankings of clips in relation to an anchor
stimulus, triadic comparisons (Allan et al., 2007) or similarity
comparisons of two pairs of clips.

In order to capture relevant additional information contained
in the audio clips beyond timbral features, future investigations
could also include mid-level features that describe aspects of
the rhythmic, harmomic and pitch patterns (e.g., Müller, 2015).
However, a systematic study of the participants’ strategies used
for arriving at perceptual categorizations of short audio clips
would be a most helpful starting point for selecting features for

subsequent modeling. The thinking-aloud method (Kuusela and
Paul, 2000) commonly used in HCI research and other areas
could be highly instrumental here to obtain qualitative insights
into the cognitive processes employed when perceiving short
audio clips.

Eventually, a reliable computational model of the perceptual
similarity of short audio clips can serve as the basis for a
refined individual differences test that assesses the ability to
make fine-grained distinction between short musical excerpts.
A computational model is necessary in order to create a test
that is adaptive and homes in on the individual participant’s
ability level for judging sound similarities. In the case of the
grouping paradigm, the computational model would be used for
automatically selecting sets of clips that are easy vs. difficult to
group, i.e., that differ in their within/between-group similarity.
But the scientific value of a test that tracks and predicts an
individual’s ability to make similarity judgements lies not only in
potential use as a new testing tool. Significant additional value
comes from the cognitive insights gained from applying music
information retrieval techniques to model complex perceptual
processes.
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The ability of a listener to recognize sound sources, and in particular musical instruments

from the sounds they produce, raises the question of determining the acoustical

information used to achieve such a task. It is now well known that the shapes of the

temporal and spectral envelopes are crucial to the recognition of a musical instrument.

More recently, Modulation Power Spectra (MPS) have been shown to be a representation

that potentially explains the perception of musical instrument sounds. Nevertheless,

the question of which specific regions of this representation characterize a musical

instrument is still open. An identification task was applied to two subsets of musical

instruments: tuba, trombone, cello, saxophone, and clarinet on the one hand, and

marimba, vibraphone, guitar, harp, and viola pizzicato on the other. The sounds were

processed with filtered spectrotemporal modulations with 2D Gaussian windows. The

most relevant regions of this representation for instrument identification were determined

for each instrument and reveal the regions essential for their identification. The method

used here is based on a “molecular approach,” the so-called bubbles method. Globally,

the instruments were correctly identified and the lower values of spectrotemporal

modulations are the most important regions of the MPS for recognizing instruments.

Interestingly, instruments that were confused with each other led to non-overlapping

regions and were confused when they were filtered in the most salient region of the other

instrument. These results suggest that musical instrument timbres are characterized

by specific spectrotemporal modulations, information which could contribute to music

information retrieval tasks such as automatic source recognition.

Keywords: spectrotemporal modulation, musical timbre, Instrument identification, Modulation power spectrum,

Bubble method

INTRODUCTION

Automatic musical instrument recognition is one of the more complex problems in musical
informatics research. Work on how humans do this could provide important insights concerning
how to get machines to do it, as well to improve automatic annotation algorithms, for example.
Listeners’ ability to recognize musical instruments has animated research for many years. From
several points of view, either purely computational (Brown, 1999; Brown et al., 2001) or purely
perceptual (McAdams, 1993, 2013), it has been shown that the acoustic signal encompasses
many indices specific to each instrument, which contribute to their recognition. In order to
understand what information is essential for algorithms or for perceptual recognition processes,
mathematical representations of sound signals have been developed. In a discussion of the relation
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between Music Information Retrieval (MIR) issues and music
cognition issues, Aucouturier and Bigand (2013) stressed the
importance of investigating and developing biologically inspired
representations to better understand what signal information is
relevant in MIR tasks (see also Siedenburg et al., 2016), and
reciprocally, how MIR algorithms may help to better understand
the processing underpinning perceptual tasks.

The simplest representation of a sound is its waveform, which
corresponds to the sound pressure recorded by a microphone
or the vibration that moves the tympanic membrane. This
first type of representation leads to timbre descriptors that
are relevant either from a computational point of view or
that have been shown to significantly contribute to perceptual
dissimilarity judgments. For instance, attack time has been
shown to be a strong perceptual cue to distinguish sustained
and impulsively excited instruments (Iverson and Krumhansl,
1993; McAdams et al., 1995), and has also been shown to be
a relevant feature for instrument classification (Saldanha and
Corso, 1964). Nevertheless, this representation doesn’t reveal
many of aspects of a sound, in particular its spectral content. In
order to reveal the evolution of the spectral content over time,
spectrograms of sounds have been used for some time (Koenig
et al., 1946). Interestingly, this representation can be related to the
transformation of mechanical waves into neural signals achieved
at the cochlear level. Many sound descriptors have been derived
from this kind of representation. One of the most well-known
is certainly the average spectral centroid over the duration of a
sound, which has been shown to correlate well with perceptual
dimensions (e.g., Grey and Gordon, 1978; McAdams et al., 1995;
Giordano and McAdams, 2010; Hjortkjær and McAdams, 2016).

Many experiments using identification, discrimination or
dissimilarity-rating tasks have investigated the specific influence
of temporal and spectral cues on timbre perception. Hall and
Beauchamp (2009), for example, have shown in identification
and discrimination tasks that listeners are more sensitive to
the spectral envelope of musical instrument sounds than to
the temporal envelope, and they are more sensitive to spectral
envelope shape than to the spectral centroid per se. In a meta-
analysis of 23 datasets from 17 published studies, Giordano and
McAdams (2010) showed that confusions in identification tasks
are related to perceived similarity between the same instruments.
These experiments have stressed that perceptual results can be
explained to a certain extent by audio descriptors computed from
spectral and spectrotemporal descriptors that are plausibly used
by the auditory system to identify a sound source such as a
musical instrument.

Recent studies have emphasized the interest of another
kind of representation, the Modulation Power Spectrum (MPS)
(Elliott and Theunissen, 2009; Elliott et al., 2013). Basically,
the MPS corresponds to the two-dimensional Fourier transform
of a spectrogram and can be seen as a representation
characterizing its temporal and spectral periodicities. This
representation highlights the temporal and spectral regularities
of a spectrogram. For musical sounds with tremolo (regular
amplitude modulation) for example, the MPS will be composed
of a local maximum at the tremolo frequency. Similarly, if the
musical sound is perfectly harmonic, the MPS will be composed

of a local maximum in the spectral modulation dimension.
Interestingly, as with the waveform or the spectrogram, this
representation can be associated with a processing stage in
the auditory system. Indeed, some neuron populations in
primary auditory cortex seem to respond selectively to specific
spectrotemporal modulations, at least in the ferret (Shamma,
2001). The prominent role of these spectrotemporal modulations
in the perception and classification of musical timbre has been
suggested recently (Patil et al., 2012; Elliott et al., 2013; Hemery
and Aucouturier, 2015; Patil and Elhilali, 2015). In particular,
Patil et al. (2012) have shown that this kind of representation can
be used in the automatic classification of musical instruments,
but it also correlates with perceptual dissimilarity ratings
between instruments. Nevertheless, it remains unknown whether
specific aspects of spectrotemporal modulations are relevant
for the recognition of musical instruments. If some ranges of
spectrotemporal modulation are more relevant than others to
recognize and identify musical instruments, this would shed
light on a possible strategy used by auditory processes to
identify specific sound sources such as musical instruments.
From a purely computational point of view, this approach would
enable us to envisage new timbre descriptors related to musical
instruments in addition to those derived from temporal and time-
frequency representations (Peeters et al., 2011). Note that these
potential timbre descriptors based on the MPS representation
should also be linked to the timbre descriptors defined on
time-frequency representations. As the spectral modulations
are a kind of decomposition of the spectral envelope, MPS-
based timbre descriptors should be linked to descriptors such
as the formants, the spectral centroid, higher-order statistical
moments or mel-frequency cepstral coefficients. For more detail
concerning audio descriptors related to timbre perception, see
Pachet and Aucouturier (2004), Peeters et al. (2011), and Elliott
et al. (2013).

Here we tackle these questions for sustained (blown and
bowed) instruments (tuba, trombone, saxophone, clarinet, cello)
and instruments producing impulsive (plucked and struck)
sounds (viola pizzicato, guitar, harp, vibraphone, marimba). We
aimed to determine which region of the MPS leads to the
identification of these musical instruments. Based on a filtering
method proposed by Elliott and Theunissen (2009) and on a
“molecular” approach, the so-called “bubbles” method, proposed
by Gosselin and Schyns (2001), we set up an identification
task in which listeners had to recognize processed versions of
original sounds composed from a small region of their MPS.
This allows us to determine the relevance of the location of
each bubble, i.e., corresponding to a 2D Gaussian window, of
the MPS in the recognition of musical instrument sounds and
then, by combining the responses for bubble regions, to compute
a global mask that highlights the most salient MPS regions
for each instrument and for all instruments combined. This
approach allows us to identify themost salient regions of theMPS
for instrument identification, and moreover, if instruments are
confused with each other, to determine which regions of the MPS
lead to the specific confusions. The bubble method was initially
developed to identify which part of a face is used by the visual
system to determine gender and whether the face was expressive
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or not. Participants were asked to identify gender or categorize it
as expressive or not from small parts of the face. A similarmethod
has recently proved its efficacy in identifying which regions of
the MPS are relevant for speech intelligibility (Venezia et al.,
2016).

THE MODULATION POWER SPECTRUM
OF MUSICAL SOUNDS

The MPS is defined here as the two-dimensional Fourier
transform of the time-frequency representation (TFR) of a sound
signal (Singh and Theunissen, 2003; Elliott and Theunissen,
2009). More specifically, the TFR X(t, f ) itself is defined here
as the amplitude of the Fourier transform obtained with a
Gaussian window and is commonly known as the magnitude
of the Short-Term Fourier Transform (STFT) or the Gabor
Transform. The MPS is the amplitude of the successive Fourier
transforms along the STFT temporal and frequency axes. This
MPS representation is composed of two dimensions: temporal
modulations (in Hz) and spectral modulations (in cycles/Hz), see
Figure 1.

The resolution of the MPS, denoted MPS(s, r) with s and
r being spectral and temporal modulations, respectively,
is constrained by the resolution of the time-frequency
representation X

(
t, f
)
, mainly characterized by the effective

sizes of the temporal Gaussian windows and the overlap between
two successive windows. They indeed define the upper and
lower boundaries of the spectral and temporal modulations axes.
Constrained by the uncertainty principle σt ≥ 1

2πσf
where σt

and σf correspond to the uncertainties along the temporal and
spectral modulation dimensions, respectively, we here choose
σt = 11.61 ms and σf = 21.53 Hz leading to upper boundaries of
43 Hz and 23.22 cycles/Hz which correspond to values relevant
for the auditory perception of sounds such as speech (Elliott and
Theunissen, 2009).

EXPERIMENTS 1 AND 2

Materials and Methods
Participants
Thirty-one participants (12 females) with ages between 19 and
45 (M = 24.4, SD = 5.7) took part in the first experiment
and 32 participants (14 females) with ages between 18 and 45
(M = 24.2, SD = 5.7) took part in the second experiment.
All participants were musicians who had completed at least
second-year university-level musical training in performance,
composition or theory. Seventeen of the participants took part
in both experiments (5 females). Participants provided informed
consent, had normal hearing, and were compensated for their
time.

Stimuli
The stimuli were five arpeggios generated from samples of
the Vienna Symphonic Library. In the first experiment, five
sustained instruments (trombone, tuba, saxophone, cello, and
clarinet) playing three musical pitches: F#3 (with a fundamental

frequency of 185.0 Hz), C4 (261.6 Hz), and F#4 (370.0 Hz) were
chosen. This range of pitches doesn’t involve large variations of
timbre across the three different notes. In the second experiment,
five impulsive instruments were chosen (vibraphone, marimba,
harp, guitar, viola pizzicato) playing the same pitches. Based
on other work in the lab (McAdams et al., 2016), we chose
to separate sustained instruments from impulsive instruments
as it would have been too obvious to distinguish them in
an identification task. For each instrument, the three notes
were equalized in loudness in a preliminary experiment. Their
durations were all cut to 0.5 s with a 50-ms raised cosine
fade-out amplitude envelope to avoid discrimination based on
duration. The attack was preserved. Finally, arpeggios were
generated by concatenating the three notes from the lowest to the
highest.

In order to determine which regions of the MPS lead to the
identification of musical instruments, we employed a technique
for filtering instrumental sounds in the spectrotemporal
modulation domain (see Figure 1). With this technique, a sound
is processed by keeping only a small region of itsMPS, this filtered
version is reconstructed, and then whether the information
that remains is relevant for the identification of the initial
instrument is evaluated with listener testing. Hence, the MPS is
first multiplied by a “bubble,” a two-dimensional Gaussian MPS-
filter frequency response G(µs ,σs),(µr ,σr)(s, r) where µs, µr and
σs, σr are the means and standard deviations in the scale and rate
dimensions, respectively:

G(µs ,σs),(µr ,σr) (s, r) = exp

(
−
1

2

(
s− µs

σs

)2
)

exp

(
−
1

2

(
r − µr

σr

)2
)

(1)

It must be noted that the MPS and the filter G are composed of
four quadrants with positive and negative spectral and temporal
modulations. For the sake of simplicity and as the filter is
perfectly symmetric in amplitude and phase in the spectral
and temporal modulation dimensions, only positive values are
presented in what follows. The MPS-filtered TFR Y(t, f ) can then
be easily reconstructed by a 2D inverse Fourier transform of the
processed MPS: MPS(s, r) · G(µs ,σs),(µr ,σr)(s, r). Note that Y(t, f )
is magnitude only, lacks the phase, and thus does not allow for
perfect reconstruction of the waveform directly from standard
reconstruction technique such as the overlap-add method (OLA;
Rabiner and Schafer, 1978). Therefore, we instead used Griffin
and Lim’s (1984) algorithm in a MATLAB implementation
provided by Slaney (1994) in order to iteratively build a signal,
the STFT magnitude of which is as close as possible to the Y(t, f )
in a quadratic sense. Twenty-five iterations lead to a correct
reconstruction of the waveform for an acceptable computation
time. Figure 1 summarizes the whole analysis-filtering-synthesis
process. Practically speaking, the quality of the reconstruction is
evaluated by computing the averaged relative log-error ratio ǫ in
percent between the desired spectrogram Y(t, f ) and the STFT
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FIGURE 1 | Analysis–filtering–synthesis process. Only the top-right quadrant of the MPS and of the filter are represented.

magnitude of the reconstructed waveform Yb(t, f ):

ǫ = 100
1

NfNt

∑Nt

ti= 1

∑Nf

f i= 1

∣∣∣∣∣
log

(
Y
(
ti, fi

))
− log(Yb

(
ti, fi

)
)

log(Y
(
ti, fi

)
)

∣∣∣∣∣
(2)

where Nf and Nt are the numbers of frequency and time bins,
respectively.

The stimulus files were normalized at −3 dB relative to 16-bit
amplitude resolution. In the first experiment, the peak level of the
stimuli ranged from 58 to 71 dB SPL (A-weighted). In the second
experiment, the peak level of the stimuli ranged from 63 to 70 dB
SPL (A-weighted). Stimuli were classically sampled at 44,100 Hz
with 16-bit resolution.

Apparatus
Both experiments took place in an IAC model 120act-3
double-walled audiometric booth (IAC Acoustics, Bronx, NY).
Stimuli were presented over Sennheiser HD280Pro headphones
(Sennheiser Electronics GmbH, Wedemark, Germany) using a
Macintosh computer (Apple Computer, Inc., Cupertino, CA)
with digital-to-analog conversion on a Grace Design m904
monitor system (Grace Digital Audio, San Diego, CA). The
experimental interface was programmed in the Max7 audio
software environment (Cycling ’74, San Francisco, CA) and data
collection was programmed in Matlab (The Mathworks, Inc.,
Natick, MA) interacting via the User Data Protocol (udp).

Procedure
Participants first completed a standard pure-tone audiogram to
ensure normal hearing with hearing thresholds of 20 dB HL or
better at octave-spaced frequencies in the range of 250–8,000 Hz
(Martin and Champlin, 2000; ISO 389–8, 2004). The task was 5-
Alternative Forced Choice (5-AFC). In each trial, the participants
were asked to recognize the instrument that played the arpeggios

among the five instruments. They were asked to answer as quickly
as possible after hearing the sounds in order that they answer the
most intuitively when the sounds were degraded by the filtering
process. The experiment began with a training session of 15 trials
(5 instruments × 3 repetitions) during which the participants
performed the task with the original, unprocessed sounds. After
having completed the training session, the participants began
the main experiment, which was composed of 480 trials (5
instruments × 96 filters). For each instrument, the MPS was
filtered with 96 Gaussian filters G(µs ,σs),(µr ,σr) with the following
standard deviations: σr = 5 Hz and σs = 4 cycles/Hz
overlapping by 75% along each dimension (12 rates and 8
spectral modulations, see Figure 2). These standard deviations
were determined by empirical tests in order to provide a good
trade-off between accurate sampling and a reasonable number
of filters for sampling the MPS. The averaged log-error ratio
(cf. Equation 2) for the 480 sounds equaled 10.25%. Hence in
each trial, one of the five instrument arpeggios was processed
with one filter, and the participant had to recognize the original
instrument. The order of presentation of the 480 trials was
randomized for each participant.

Data Analysis
For all participants and for all five instruments, a confusion
matrix was computed and association scores were tested against
chance level with a one-tailed t-test. The p-values were adjusted
with Bonferroni corrections for multiple testing. The subsequent
data analysis was inspired by the so-called “bubbles” method
proposed by Gosselin and Schyns (2001). In each trial, if
the sound was properly associated with the instrument, the
MPS filter was added to a CorrectMask matrix. Across all
trials, each MPS filter was added to a TotalMask matrix. For
each participant, a ProportionMask was derived by dividing
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FIGURE 2 | Sampling of the Modulation Power Spectrum by 96

Gaussian filters in the scale-rate plane. The dots show the center value

and the circles the standard deviation of the 2D Gaussian distribution.

CorrectMask by TotalMask. If no region had any special
perceptual significance for recognition, ProportionMask would
be homogeneous. To the contrary, if some regions were more
important for recognition, they would have higher values than
the other regions of the ProportionMask. Note that our method
differs from that of Gosselin and Schyns (2001), which was
initially used to determine the most salient parts of a face for
gender and expressivity recognition. Although they used an
adaptivemethod that adjusted the number of bubbles to converge
on 75% correct recognition, here we only used single bubbles in
order to determine their independent contribution to instrument
identification. Given that MPS filters overlap each other, the
resulting ProportionMasks represent the relative importance of
each region of the MPS to the identification of that instrument.
In order to determine which regions are the most relevant
for the identification of each instrument, a one-tailed t-test
between ProportionMask values and the averaged value of the
ProportionMask (α = 0.05) was applied for each instrument
and across participants to compute a SalienceMask. Hence, the
p-values of these tests were here used as a measure of the
relevance of each spectrotemporal modulation value: the smaller
the p-values, the more salient the spectrotemporal modulation.
The statistical significance of each spectrotemporal modulation
was also determined and corresponds to the DiagnosticMask of
Gosselin and Schyns (2001). Here, we considered that a bin of
the SalienceMask is significant when the p-value is lower than
0.05. The DiagnosticMask is a binary mask set to 1 or 0 when the
SalienceMask is significant or not, respectively. The description
of all of the masks described previously is summarized in
Table 1.

In order to reveal the most salient spectrotemporal
modulation regions, we first computed the SalienceMask
for all instruments, and then for each instrument separately.
In addition, when one instrument is significantly confused
with another one, the same analysis is performed to generate a

ConfusionMask by substituting the correctly associated mask
in the CorrectMask with those from the instrument with which
it has been confused. This mask reveals the spectrotemporal
regions in which one instrument is incorrectly identified as
another.

Results
Confusion Matrices
Tables 2, 3 present the averaged confusion matrices across
participants from the two experiments. All instruments were
recognized above chance in both experiments [p < 0.001–
Trombone: t(30) =12.84, d = 2.31, Clarinet: t(30) =16.28, d =

2.92, Tuba: t(30) = 12.31, d = 2.21, Cello: t(30) = 13.84, d =

2.48, Saxophone: t(30) = 9.82, d = 1.76 for Experiment 1, and
p < 0.001—Viola Pizzicato: t(31) = 15.30, d = 2.70, Guitar:
t(31) = 8.02, d = 1.41, Harp: t(31) = 11.49, d = 2.03, Marimba:
t(31) = 13.02, d = 2.30, Vibraphone: t(31) = 10.57, d = 1.86
for Experiment 2]. In addition, in Experiment 1, tuba, cello
and saxophone were significantly confused with trombone [t(30)
= 5.91, p < 0.001, d = 1.06], saxophone [t(30) = 1.75, p <

0.05, d = 0.31] and cello [t(30) = 3.84, p < 0.01, d = 0.69],
respectively. In the second experiment, the guitar, harp, marimba
and vibraphone were significantly confused with harp [t(31) =
4.32, p < 0.001, d = 0.76], guitar [t(31) = 3.69, p < 0.001, d =

0.65], vibraphone [t(31) = 2.59, p < 0.01, d = 0.45] and marimba
[t(31) = 2.35, p < 0.05, d = 0.41], respectively.

Perceptually Relevant Spectrotemporal Modulations
Figures 3, 4 present the SalienceMask for all instruments
combined and for each instrument separately for Experiments
1 and 2. The yellowest regions of each plot are the most
salient regions of the MPS. The p-values of the ProportionMasks
are displayed. Concerning the sustained sounds and for all
instruments combined (upper left plot of Figure 3), the most
salient spectrotemporal modulations ranged from 0 to 30 Hz
and from 0 to 18 cyc/Hz. The trombone, the clarinet and the
cello also have their most relevant regions for low spectral and
temporal modulations (Figure 3). The saxophone has its most
salient region for temporal modulations comprised between 10
and 30 Hz. Concerning the tuba, the whole range of spectral
modulations is relevant for its identification. For impulsive
sounds and all instruments combined (upper left of Figure 4),
the most salient spectrotemporal modulations ranged from 0 to
18 Hz and from 0 to 15 cyc/Hz. The harp and the vibraphone
also have their most relevant regions for low spectral and
temporal modulation. The viola pizzicato has its most salient
MPS regions comprised between 10 and 30 Hz and 0 and 15
cyc/Hz. The marimba has its most salient regions for high rates
(>15 Hz). The guitar has its most salient regions for high rates
(>20 Hz) and high spectral modulations (>5 cyc/Hz). It is
interesting to note that in both experiments, the most relevant
spectrotemporal modulations for all instruments combined are
centered on the same region, i.e., low spectral and temporal
modulations.

If we consider the DiagnosticMask (see Figure 5), the most
salient regions of the plane for all sustained instruments
combined and all impulsive instruments combined represents
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TABLE 1 | Summary of the different Masks computed for the analysis of the salient regions of the MPS for each instrument.

Mask Description

CorrectMask For one instrument, sum of the filters leading to correct identification.

TotalMask Sum of all the filters.

ProportionMask Ratio between the CorrectMask and the TotalMask.

SalienceMask For each instrument, the p-value of a single-sample t-test against chance performance (0.2) of each bin of the CorrectMask.

ConfusionMask Ratio between the sum of the filters leading to a wrong association of instrument A with instrument B and the sum of all filters.

DiagnosticMask Binary mask associated with a SalienceMask or a ConfusionMask. For each bin, it equals 1 if the SalienceMask of ConfusionMask’s bin is

significant, i.e., p < 0.05, and equals 0 otherwise.

TABLE 2 | Confusion matrix in percent response averaged across

participants for experiment 1 (sustained sounds).

Trombone Clarinet Tuba Cello Saxophone

Trombone 61*** 2.6 20.6 3.5 12.3

Clarinet 3.6 69.9*** 7 9.6 9.9

Tuba 34.8*** 2.9 54.5*** 3.3 4.5

Cello 4.1 7.3 5.7 59.6*** 23.3*

Saxophone 5 7.6 5.5 30.9** 51***

Association rates significantly above chance are shown in bold. ***p < 0.001; **p < 0.01;

*p < 0.05.

TABLE 3 | Confusion matrix in percent response averaged across

participants for experiment 2 (impulsive sounds).

Viola Pizz. Guitar Harp Marimba Vibraphone

Viola Pizz. 69.8*** 9.9 12.1 5.3 2.9

Guitar 9.1 45.2*** 30.1*** 7 8.6

Harp 16.6 27.5*** 42.9*** 7.3 5.7

Marimba 3 4.5 4 61.9*** 26.5**

Vibraphone 0.6 1.6 1.1 30.1* 66.6***

Association rates significantly above chance are shown in bold. ***p < 0.001; **p < 0.01;

*p < 0.05.

38 and 22.9%, respectively. If we consider each instrument
separately, the sustaining instrument that provides the largest
salient area is the clarinet (45.5% of the MPS plane) followed by
saxophone (38.9%), trombone (33.4%), cello (28.3%), and tuba
(25.3%). The five impulsively excited instruments have salient
areas of similar size, 27.4% for viola pizzicato, 29% for guitar,
24.7% for harp, 27.1% for marimba and 24.6% for vibraphone.

Interestingly, for instruments that were confused, the
ConfusionMasks presented in Figures 6, 7 confirm that the
salient regions of the SalienceMask lead to confusion when an
instrument’s MPS is filtered with spectrotemporal modulations
in the most salient areas of the other instrument. For instance,
the area leading to identifications of the cello stimulus as a
saxophone corresponds to the most salient area of the saxophone
and vice versa. The same phenomenon is observed for the
marimba/vibraphone and harp/guitar pairs (see Figure 7) and to
a certain extent for the trombone and the tuba (see Figure 6).
These results confirm that these spectrotemporal areas are
specific to the timbre of the confused instruments.

DISCUSSION

In this paper we sought to determine the most salient regions
of the MPS for the identification of musical instruments
producing either sustained or impulsive sounds. Based on the
“bubbles” method developed by Gosselin and Schyns (2001),
we have shown that globally the most salient spectrotemporal
modulations are centered on low rates and low spectral
modulations. Interestingly, when two instruments are confused,
the spectrotemporal modulations enabling their discrimination
do not overlap, suggesting that these regions are specific to these
instruments. Moreover, note that confusions appear when the
original sounds are filtered in the most salient regions of the
instrument with which they are confused, reinforcing the idea
that they are specific to the timbre of these instruments. Also,
specific regions of the MPS other than the low spectral and
temporal modulations are specific to some instruments, e.g., for
the guitar. This does not concur with the general finding that
globally low rates and low spectral modulations are relevant and
suggests that when instruments were confused, listeners were
focusing on a specific region of the MPS.

From a perceptual point of view, the fact that different regions
of the MPS are more or less significant for the identification of
different instruments suggests that these regions are specific to
the timbre of these instruments. Counterintuitively, we could
have thought that instruments sharing the same relevant region
would be confused. However, the SalienceMasks reveal the region
that allows for identification within the context of the sound
set being tested. Two instruments can therefore have close
SalienceMasks and even provide good recognition, suggesting
that the SalienceMasks cannot be used as a measure of similarity
between instruments. Conversely, when two instruments are
confused, the fact that their salient spectrotemporal modulations
don’t overlap, and, even more, that their ConfusionMask falls
within the region of the SalienceMasks of the other instrument,
reinforces the idea that these two non-overlapping regions are
specific to these instruments in this context. For example,
according to these results, we can conclude that the SalienceMask
of the saxophone corresponds to specific timbral properties of
this instrument in comparison with those of the cello timbre
with which it has been confused. Nevertheless, we suspect that
if the cello had been removed from the instrument subset, the
SalienceMasks of the saxophone would have been different. The
same expectation would hold for the trombone/tuba, guitar/harp
and marimba/vibraphone pairs as well.
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FIGURE 3 | Experiment 1. SalienceMask of the MPS for the five sustained instruments and all instruments combined. The dashed line represents the threshold at

p = 0.05.

FIGURE 4 | Experiment 2. SalienceMask of the MPS of the five sustained instruments and all instruments combined. The dashed lines represent the thresholds at

p = 0.05.
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In order to fully validate that specific MPS regions are
characteristic of some instruments, additional experimentation
is needed. In particular, an identification experiment with
the original sounds filtered by their SalienceMasks would
evaluate whether it removes the confusions between the different
instruments. From a cortical point of view, we may expect that
this ability to focus on different regions of the MPS is possible
due to the plasticity of the neurons in primary auditory cortex.
Several studies have indeed revealed that neurons of this cortical
network can reshape their sensitivity to different spectrotemporal
modulations according to the needs of the tasks (Fritz et al., 2003;
David et al., 2012; Slee and David, 2015). It is therefore possible in
the context of each instrument subset that our cognitive processes
can focus on different regions of theMPS in order to discriminate
similar instrument sounds within a given stimulus context.

FIGURE 5 | DiagnosticMasks of the MPS of the five sustained

instruments. Left: Tuba red, Clarinet green, Saxophone yellow, Cello blue,

Trombone black. Right: Viola Pizzicato green, Guitar yellow, Harp red,

Marimba green, Vibraphone black.

These results can also be considered in the light of the
recent study of Isnard et al. (2016) who showed that severely
impoverished sounds in the time-frequency domain—music,
speech or environmental sounds—can still be recognized. In
the same way, Suied et al. (2013) determined a perceptually
sparse representation of speech sounds in the spectrotemporal
modulation domain in order to determine the minimum acoustic
information necessary to convey emotions in speech sounds. In
line with this work, we have shown here that musical instrument
sounds impoverished in the spectrotemporal modulation domain
can still be recognized.

From a more general perspective, these two experiments are
a first step toward determining new acoustic descriptors relevant
to the perception of musical timbre. Even if the MPS appears to
be less intuitive than the time-frequency representation, it must
be noted that it is an ingenious way to describe the spectrum of
a sound as it is invariant according to several transformations in
the time-frequency domain. Here, we considered a spectrogram
with a linear frequency scale for which the MPS is invariant
by translation in the time-frequency domain. Hence we may
expect to determine acoustical invariants that characterize
musical instruments categories (McAdams, 1993) from these
representations.

CONCLUSION

The results of this study shed light on the most relevant regions
of the MPS for the identification of musical instrument timbre.
From a perceptual point of view, this research provides a ground
from which to investigate whether the MPS regions determined
here could be used to determine new timbre descriptors and/or
serve as a sound representation for automatic recognition
algorithms. Moreover, comparison with other approaches to
timbre such as multidimensional scaling might be an interesting
perspective of this work, although Elliott et al. (2013) found

FIGURE 6 | Experiment 1. ConfusionMasks of the cello/saxophone (A) and trombone/tuba (B). The dashed lines represent the thresholds at p = 0.05. The upper

panels show the instrument identified as itself and the lower panels show the instrument identified as another instrument.

Frontiers in Psychology | www.frontiersin.org April 2017 | Volume 8 | Article 58781

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Thoret et al. Perceptually Salient Spectrotemporal Modulations

FIGURE 7 | Experiment 2. ConfusionMasks of the marimba/vibraphone (A) and guitar/harp (B). The dashed lines represent the thresholds at p = 0.05. The upper

panels show the instrument identified as itself and the lower panels show the instrument wrongly identified as another instrument.

fairly similar predictive power for MPS representations and
combinations of unidimensional audio descriptors. Future
research will focus on how this new approach is linked to
the other conceptions of timbre. In particular, we can expect
to link temporal modulations to the relevant aspects of the
temporal envelope (e.g., the attack time) and similarly with
spectral modulation and spectral envelope properties (e.g.,
formant and pitch). As the stimuli were composed of arpeggios,
no specific analysis has been done on how filtering in the
MPS domain might impact properties such as attack time
for each note. It is for instance plausible that the filtering
in the temporal modulation dimension may have impacted
rise times. Moreover, other parameters such as the loudness
of the filtered stimuli may have influenced the identification
scores and could also be investigated in further experiments,
although it isn’t clear how to “control” for this factor given
that the filtered signals in different regions of the MPS have
differing amounts of energy. Finally, it might be of interest to
compare the relevance of the MPS representation with other
spectrotemporal modulation representations such as those used
by Patil et al. (2012) or Andén et al. (2015) inspired by the
plausible two-dimensional wavelet achieved at the level of the
primary auditory cortex by spectrotemporal receptive fields
(Shamma, 2001).
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Composers often pick specific instruments to convey a given emotional tone in their

music, partly due to their expressive possibilities, but also due to their timbres in

specific registers and at given dynamic markings. Of interest to both music psychology

and music informatics from a computational point of view is the relation between the

acoustic properties that give rise to the timbre at a given pitch and the perceived

emotional quality of the tone. Musician and nonmusician listeners were presented with

137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class

D# across each instrument’s entire pitch range and with different playing techniques

for standard orchestral instruments drawn from the brass, woodwind, string, and

pitched percussion families. They rated each tone on six analogical-categorical scales in

terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal

(awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity.

Linear mixed models revealed interactive effects of musical training, instrument family,

and pitch register, with non-linear relations between pitch register and several dependent

variables. Twenty-three audio descriptors from the Timbre Toolbox were computed

for each sound and analyzed in two ways: linear partial least squares regression

(PLSR) and nonlinear artificial neural net modeling. These two analyses converged

in terms of the importance of various spectral, temporal, and spectrotemporal audio

descriptors in explaining the emotion ratings, but some differences also emerged.

Different combinations of audio descriptors make major contributions to the three

emotion dimensions, suggesting that they are carried by distinct acoustic properties.

Valence is more positive with lower spectral slopes, a greater emergence of strong

partials, and an amplitude envelope with a sharper attack and earlier decay. Higher

tension arousal is carried by brighter sounds, more spectral variation and more gentle

attacks. Greater energy arousal is associated with brighter sounds, with higher spectral

centroids and slower decrease of the spectral slope, as well as with greater spectral

emergence. The divergences between linear and nonlinear approaches are discussed.

Keywords: musical timbre, emotion, pitch register, musical instruments, valence, tension arousal, energy arousal,

preference
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INTRODUCTION

The relationship between music and emotion has become a
widely studied topic. Its existence is undeniable and multiple
studies have revealed that for most people the predominant
motivation for listening to and engaging in music is its emotional
impact (Sloboda and O’Neill, 2001; Krumhansl, 2002; Juslin
and Laukka, 2004). Although, there is an increasing amount
of research on music and emotion, it remains difficult to draw
decisive conclusions about how musical factors contribute to
emotion in a piece. In addition to global structural factors such as
mode, melody, harmony, tempo, and form (cf. Gabrielsson and
Lindström, 2010 for a review), it is likely that acoustic factors of a
sound can relay affective information as well. In this paper, we
examine musical instrument timbre and the audio descriptors
derived from the sound signal that contribute to its timbre in
relation to a three-dimensional model of perceived affect. We
also develop linear regression and nonlinear neural net models
to establish a computational link between audio descriptors
and perceived emotion ratings, providing a basis for a music
informatics approach to the role of timbre in emotion perception.

A three-dimensional model of affect measures emotion as
a function of valence, tension arousal, and energy arousal
(Schimmack and Grob, 2000). This model likely provides a
more complete representation of affect than the two-dimensional
model with only valence and arousal because tension arousal and
energy arousal have been shown to be two distinct measures of
activation that should not be collapsed into a single measure
(Schimmack and Reisenzein, 2002). Schubert (1999) completed
a series of experiments applying a dimensional model of affect to
music research and found the dimensional model to be a valid
and reliable measure for research involving music and emotion.
Furthermore, the three-dimensional model of affect has recently
been applied to multiple perceived emotion and music studies
(Ilie and Thompson, 2006; Eerola et al., 2009, 2012).

Emotion perception refers to a listener recognizing an
expressed emotion, but does not necessitate the feeling of
that emotion (Juslin and Västfjäll, 2008). When examining
expressed emotion in an entire piece, researchers have mostly
focused on pitch combination and order, as well as tempo,

which has led to the understanding that structural factors play
an important role in emotion perception in music listening.
However, listeners’ judgments of perceived emotion are not solely
based on these structural elements. By altering factors such
as amplitude, pitch register, pitch contour, temporal envelope,
and filtering in synthesized tone sequences, over two-thirds of
the variance in listener’s perceived emotion ratings have been
explained by the manipulation of the acoustic cues (Scherer and
Oshinsky, 1977). Further research supports the notion that finer
acoustic features, such as dynamics, articulation, spectrum, and
attack character are also factors listeners consider when making
emotion judgments (Juslin and Laukka, 2004; Gabrielsson and
Lindström, 2010). The latter three factors are components that
contribute to the timbre of a sound (McAdams et al., 1995).
Furthermore, performers and composers reportedly use timbre
as a means of communicating intended emotion to listeners
(Holmes, 2011), and parallels involving timbral dimensions have

been drawn between perceived emotion in music and in speech
sounds (Juslin and Laukka, 2003).

Timbre is a multidimensional acoustic attribute that is
composed of spectral, temporal, and spectrotemporal dimensions
(McAdams et al., 1995). The term “timbre” refers to a set of
perceptual attributes that listeners use to discriminate different
sound sources in addition to pitch, loudness, duration, and
spatial position. These attributes also contribute to source
identity (McAdams, 1993). Additionally, the timbre of acoustic
instruments varies with both pitch register and musical
dynamics, i.e., a given instrument played in a low register can
have a drastically different timbre when played in a high register,
and at a given pitch, a change in dynamics (playing effort) is also
accompanied by a change in timbre (Risset and Wessel, 1999;
Marozeau et al., 2003; McAdams and Goodchild, forthcoming).

The notion that perceived emotion can be judged by non-
structural acoustic features is supported by listeners’ ability to
make emotional judgments on sound samples of extremely short
duration, and therefore, with limited acoustic information. In
certain cases, as little as 250 ms of a musical excerpt holds enough
information to perceive an emotional tone in a consistentmanner
across listeners (Peretz et al., 1998; Filipic et al., 2010), and even
a single note provides listeners with enough cues to form an
emotional judgment (Bigand et al., 2005). Furthermore, musical
expertise has no impact on musical recognition and emotional
judgments based on minimal acoustic information (Filipic et al.,
2010). The ability to recognize emotion in such short stimuli
emphasizes the importance of examining how individual acoustic
factors, such as timbre, contribute to emotion perception in
music.

Timbre has been identified as a musical feature correlated
with perceived, discrete emotions. In general, bright sounds
are associated with happiness, dull sounds with sadness, sharp
sounds with anger, and soft sounds with both fear and tenderness
(Juslin and Laukka, 2004). When one group of participants in
a study by Huron et al. (2014) was asked to judge acoustic
properties of 44 Western instruments and another group to
judge those instruments’ ability to express sadness, all judgments
appeared to be based on participants’ familiarity and knowledge
of the instruments rather than on listening to their timbres.
Using the acoustic property judgments, such as the darkness of
sound, from the first group of participants as predictors for the
sadness judgments of the second group of participants, Huron
et al. concluded that acoustic properties of the instruments, the
ability of the instrument to make small pitch movements, to play
low pitches, and to play quietly predicted sadness judgments.
Furthermore, Hailstone et al. (2009) studied timbre as a main
factor contributing to emotion perception in music. Listeners
heardmelodies that possess a strong emotional intent and labeled
them with an emotion category in a forced-choice paradigm. The
melodies were played by one of four different instruments. There
was a significant interaction between instrument and emotion
judgment, suggesting that timbral cues may be more important
for communicating some basic emotions than others. However,
Hailstone et al.’s experiment only studied four instrument sounds
and four synthetic sounds with novel melodies, which could
possibly confound the emotional expression of the timbre alone.
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Eerola et al. (2012) examined timbre in relation to a two-
dimensional affect model of valence and energy arousal. The
stimuli consisted of 110 recorded samples of musical instrument
sounds. Pitch and duration were kept constant at D#4 (311-
Hz fundamental frequency) and 1 s, respectively, across all
stimuli, and loudness was equalized. Participants listened to the
individually presented stimuli and gave affect and preference
ratings. The rating scales included valence (pleasant/unpleasant),
energy arousal (awake/tired), tension arousal (tense/relaxed),
and preference (like/dislike). The three-dimensional model of
affect (Schimmack and Grob, 2000) used to collect ratings was
reduced to a two-dimensional model for analysis purposes due
to a highly collinear relationship between the energy-arousal
and tension-arousal dimensions. Furthermore, the valence and
preference ratings in their study had a nearly perfect correlation,
r = 0.97. They also investigated the acoustic cues contributing
to affect ratings of individual musical instrument sounds drawn
from woodwind, string, brass, and percussion families and
equalized in pitch, duration, and loudness. They selected seven
audio descriptors based on a principal component analysis of
26 descriptors from the MIRToolbox (Lartillot and Toiviainen,
2007). Valence ratings were primarily explained by a linear
combination of the ratio of high- to low-frequency energy,
temporal envelope centroid, and spectral skewness, with positive
valence resulting from sustained sounds with more energy in the
lower-frequency components. Energy-arousal ratings were more
related to the ratio of high- to low-frequency energy, temporal
envelope centroid, and attack slope, with energetic sounds having
sharper attacks and more dominant high frequency components.

It is important to note here that Eerola et al.’s (2012)
bipolar emotional valence scale was labeled from unpleasant
to pleasant. This provides a clear methodological difference
compared to Bigand et al.’s (2005) study in which emotional
valence (positive/negative) and pleasantness were rated on two
separate scales. The stimuli used in Bigand et al.’s Experiments 2
and 3 were orchestral excerpts of short duration (1 s), sometimes
consisting of one single tone. The difference in definition of the
scales may have contributed to a key difference in the findings,
because Bigand’s group found that the emotional valence
dimension was not correlated with pleasantness judgments (r =
0.08), suggesting that happy music is not necessarily identified
with pleasant emotions or sad music with unpleasant emotions.
These findings lead to our hypothesis that perceived valence
will not be completely correlated with preference ratings in the
current experiment.

Pitch height (or register) is also a factor in the perceived
affective quality of music and musical sounds. In an extensive
review of the literature on musical cues to emotion, Gabrielsson
and Lindström (2010) report somewhat inconsistent findings
on the link between affective qualities and pitch height. Across
the studies reviewed, higher pitch was variously associated with
expressions such as happy, serene, dreamy, graceful, exciting,
surprising, potent, angry, fearful, and active, whereas lower pitch
was characterized as sad, dignified/solemn, vigorous, exciting,
boring, and pleasant. These authors suggest that the apparent
contradictions may depend on musical context. In the speech
domain, higher pitch is associated with arousing and happy affect

and a submissive manner and lower pitch with calming and sad
affect and a more threatening manner (Frick, 1985), a principle
that appears to carry over into music (Juslin and Laukka, 2003;
Huron et al., 2006). Two studies have explicitly manipulated pitch
height (in addition to other musical parameters) to determine
its effect on emotion perception. Eerola et al. (2013) in an
emotion category rating paradigm found that at lower pitch,
ratings were higher for “scary” and “sad” and lower for “happy”
and “peaceful,” whereas at higher pitch, ratings were higher for
“happy,” intermediate for “sad” and “peaceful” and lowest for
“scary.” Ilie and Thompson (2006) used the 3Dmodel of emotion
and found that higher pitch was rated as more pleasant for music,
but as less pleasant for speech, thanwas lower pitch. In an analysis
of several thousand instrumental themes, Huron (2008) found
that on average pitch height was slightly lower forminor-key than
for major-key themes, indicating that composers intuitively use a
pitch height in addition to mode to convey emotional tone.

The following experiment aims to further contribute to
research regarding the role of timbre and pitch-register-related
differences in timbre in affect perception in music by showing
that participants’ judgments regarding perceived affect vary
systematically with timbral qualities of short instrument sounds
across their pitch registers. First we examined affect ratings in
relation to broader variables such as pitch register and instrument
family with a linear mixed model analysis, thus extending Eerola
et al.’s research by including different pitch registers. The role of
tessitura in emotion perception is a little-studied but important
issue, because orchestration treatises often mention the different
qualities of instrument sounds in their different registers (e.g.,
Adler, 2002). Confining a study to a single pitch places some
instruments in their optimal middle register and others in
extreme low or high registers, which require greater playing effort
and may by consequence affect their emotional qualities. By
extending the registers, we also expected to find different patterns
in the tension-arousal ratings compared to the energy-arousal
ratings, supporting a three-dimensional model of affect, instead
of a two-dimensional model. Additionally, we expected to find
a difference in the perceived valence ratings compared to the
preference ratings, highlighting a difference between perceived
measures and felt measures. Finally, we expected a significant
interaction between pitch register and instrument family for each
of the perceived affect ratings, showing perceived emotion ratings
may not be the same for all instruments across pitch registers.

To relate the perceptual results to timbral properties, we
then examined the relationship between the perceived affect
ratings and specific audio descriptors that compose timbre with
two techniques: a linear partial least squares regression (PLSR)
approach and a nonlinear artificial neural network model. PLSR
is a regression method that uses principal components analysis
(PCA) as an integral part and originates from the discipline
of chemometrics (Geladi and Kowalski, 1986). However, it
has been applied more recently within the field of auditory
perception (Rumsey et al., 2005; Kumar et al., 2008; Eerola
et al., 2009). PLSR analyzes complex correlational relationships
between perceptual measures as dependent variables and arrays
of acoustical or psychoacoustical variables (hereafter referred
to as audio descriptors) as independent variables. It deals with
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collinearity among independent variables by capturing what is
common among them in the principal components. It thus
carries out simultaneous data reduction and maximization of
covariance between the descriptors and the predicted data,
preserving correlational patterns between them. Supervised
feedforward artificial neural networks with back propagation
(i.e., multilayer perceptrons; Rumelhart et al., 1986; Haykin,
2008) are useful connectionist models that act as nonlinear
regression functions for emotion prediction based on audio
descriptors. The architecture of the feedforward networks is
simple with one hidden layer providing the necessary level of
nonlinearity.

METHODS

Affect Ratings
The experimental design isolated timbre as an independent
variable, similar to Experiment 1 presented in Eerola et al. (2012),
and allowed us to examine register, attack, and playing technique
as factors contributing to timbre. Modifications, such as an added
valence measure and increased range of pitch register, facilitated
a comparison between emotional valence and preference scales as
well as examining how changes in register contribute to changes
in timbral components that influence emotion ratings.

Participants
Forty participants (24 females) were between 18 and 35 years of
age (M = 23, SD = 4.4). Twenty participants reported formal
musical training ranging from 7 to 25 years of practice (M =

16, SD = 5.3), and 14 reported formal training with multiple
instruments. The remaining 20 participants reported no musical
training at a collegiate level and no more than 1 year of formal
music training during childhood. These two groups will be
referred to as musicians and nonmusicians, respectively. The
difference in age between the two groups was not significant, t(38)
=−0.42, p= 0.68.

Stimuli
One hundred and thirty seven recorded instrument sounds were
chosen from the Vienna Symphonic Library (Vienna Symphonic
Library GmbH, 2011). The recorded samples consisted of sounds
played by orchestral instruments from four instrument families:
brass, woodwinds, strings, and pitched percussion. Audio signals
were sampled at 44.1 kHz with 16-bit amplitude resolution. The
stimuli were edited to have a fixed duration of 500 ms with a
raised-cosine ramp applied to fade them out over the final 50 ms.
The attack of each sound was unaltered. The brass stimuli varied
by an attack parameter, having a weak, normal or strong attack, as
labeled in VSL. The percussion stimuli varied by mallet material,
using a felt, wood or metal mallet. Pitch class was kept constant
at D#, and the dynamic level was forte, as labeled in VSL. Samples
were chosen from the entire range of the instruments with stimuli
ranging from D#1 to D#7 (A4 has a fundamental frequency of
440 Hz). Most instruments cannot successfully play from D#1 to
D#7, so stimuli were only taken from appropriate and playable
registers for each instrument. Although, some instruments can
play outside of that range, there were not enough samples to

create useful, balanced groups. Furthermore, various techniques,
such as flutter-tonguing for brass and woodwinds and vibrato
and pizzicato for strings, were also included. A detailed list of the
stimuli is provided in Table S1.

Procedure
All participants passed a pure-tone audiometric test using a
MAICO MA 39 (MAICO Diagnostic GmbH, Berlin, Germany)
audiometer at octave-spaced frequencies from 125 Hz to 8 kHz
and were required to have thresholds at or below 20 dB HL in
order to proceed to the experiment (Martin and Champlin, 2000;
ISO, 2004).

The interface was created in TouchOSC (Hexler.net, 2011)
and consisted of a play button, six clearly labeled 9-point,
analogical-categorical scales (Weber, 1991), and a next button.
The next button was not activated until all six ratings were
completed; pressing this button would reset the display to the
original position and play the next sound. All 137 stimuli were
presented in a randomized order for each participant and each
sound could be played as many times as desired, although this
information was not recorded. Participants completed six ratings
per sound on the 9-point scales. The first four ratings measured
perceived emotion and reflected affect dimensions from the
three-dimensional model of affect (Schimmack and Grob, 2000)
with an additional measure of negative to positive valence. The
scales were labeled at the left and right ends with the following
pairs: negative/positive (valence), displeasure/pleasure (valence),
tired/awake (energy arousal), and tense/relaxed (tension arousal).
The participants were also reminded that a rating of 5 would
equate to a neutral rating. These four scales were labeled in blue
on the iPad interface. The last two ratings measured participants’
preference for and familiarity with each sound. These scales
were labeled with the pairs dislike/like and unfamiliar/familiar,
respectively. These two scales provided a felt rating of personal
preference and familiarity and were labeled in purple to
differentiate them from the perceived affect ratings. An example
of the interface is displayed in Figure 1. Participants were given
the following specific instructions: “For the first four scales, you
will be rating the degree to which the sound expresses a feeling
(NOT how it makes you feel). The last two ratings are how you
feel about the sound.” Participants completed the task within an
hour and were compensated for their time.

Apparatus
Participants completed the experiment individually inside an
IAC model 1203 sound-isolation booth (IAC Acoustics, Bronx,
NY). The sound samples were played from a Macintosh G5
computer (Apple Computer, Inc., Cupertino, CA), amplified with
a Grace Design m904 monitor system (Grace Digital Audio,
San Diego, CA), and heard over circumaural Sennheiser HD280
Pro headphones (Sennheiser Electronic GmbH, Wedemark,
Germany). The participants were not allowed to adjust the
volume. Sound levels were measured with a Brüel and Kjær
Type 2205 sound-level meter (A-weighting) connected to a Type
4152 artificial ear (Brüel and Kjær, Nærum, Denmark) to which
the headphones were coupled. Stimuli ranged between 59.8 and
77.5 dB SPL (M = 65.3, SD = 5.4). The participants completed
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FIGURE 1 | Screenshot of the experimental interface on the iPad.

the experiment on an iPad interface (Apple Computer, Inc.,
Cupertino, CA). The iPad communicated via OpenSoundControl
(Center for New Music and Audio Technologies, Berkley, CA)
messages over a wireless network with a Max/MSP version
5.1.9 (Cycling ’74, San Francisco, CA) patch run on the
Macintosh computer. The Max/MSP patch was designed to
randomize and play the stimuli as well as to record and output
the ratings.

Control Experiment
A control experiment was completed after the original
experiment to validate the original interface. The main purpose
was to confirm, with a correlation analysis between the control
ratings and the original ratings, that no bias resulted from the

order and orientation of the rating scales, which remained in a
fixed position for every trial and every participant in the original
experiment.

Participants
Twenty participants (12 females) were between 18 and 42 years
of age (M = 25, SD = 6.5). Ten participants reported formal
musical training ranging from 13 to 19 years of practice (M =

16, SD = 2.5), and seven of those reported formal training with
multiple instruments. The remaining 10 participants reported no
musical training at a collegiate level and no more than a year
of formal music training during childhood. The difference in
age between the two groups was not significant, t(18) = 0.69,
p= 0.50.
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Stimuli
Forty stimuli were selected from the original 137 samples to
create a group that was representative of the entire set. Therefore,
the control stimuli were brass, woodwind, string, and percussion
samples ranging from D#1 to D#7 with weak, normal, and
strong attacks. The relevant samples are marked with asterisks
in Table S1.

Procedure
The instructions and procedure were identical to the original
experiment. However, participants were randomly given one of
four different interfaces. The interfaces included the same play
and next buttons as the original, but the order of the six scales was
changed as well as the orientation (i.e., the end labels) of some of
the scales. However, the blue “perceived” scales and the purple
“felt” scales were always grouped together to avoid confusion
between perceived and felt ratings.

RESULTS

Consistency and Correlation Analyses
We conducted initial reliability analyses and correlations among
the scales. All scales had good internal consistency (Cronbach’s
α for 40 participants = 0.93 for positive/negative, 0.91 for
pleasure/displeasure, 0.92 for relaxed/tense, 0.90 for awake/tired,
0.97 for like/dislike, and 0.99 for familiar/unfamiliar).
Subsequently, the ratings were averaged across participants
for the correlation analysis, so each of the 137 sounds had one
measure for each of the six rating scales.

Table 1 displays the correlations between scales within and
between the main and control experiments as well as the
correlations between the main and control experiments for
the 40 sounds common to both studies. Correlations between
dependent variables in the main experiment include all 137
sounds, but the correlations within the control experiment and
between control and main experiments are only based on the
40 sounds common to both experiments. As all scales in the
experiment were very strongly correlated with the designated

control, r(38) ≥ 0.89, p < 0.001, the original interface was
confirmed to be valid and reliable. Further analysis is completed
on data from the main experiment only.

In the main experiment, the valence scales labeled
negative/positive and displeasure/pleasure had a very strong
Pearson’s correlation of r(135) = 0.97, p < 0.001. Therefore, in
the following analyses, the valence measure will only refer to the
negative/positive scale, and the displeasure/pleasure scale will
not be analyzed further. The tension-arousal and energy-arousal
ratings were only very weakly correlated. There was a strong
positive correlation between preference and valence ratings, and
a strong positive correlation between preference and tension
ratings. However, there was only a very weak positive correlation
between preference and energy ratings. Valence was moderately
negatively correlated with tension-arousal ratings and strongly
correlated with energy-arousal ratings. Familiarity was weakly to
moderately correlated with valence, tension arousal, and energy
arousal and strongly correlated with preference.

Linear Mixed Model Analyses
Further statistical analyses employed a linear mixed model
method (West et al., 2006), which performs a regression-
like analysis while controlling for random variance caused by
differences in factors such as participant and stimulus. Because
each participant rated all stimuli, the model included crossed
random effects for participant and stimulus (Baayen et al.,
2008). Specifically, a maximal random effects structure was
implemented due to the confirmatory hypothesis nature of the
analyses and to reduce Type I errors, i.e., false positives (Barr
et al., 2013). Analyses were completed with the R software
environment v3.0.2 (www.r-project.org) using the lmer function
from the lme4 package (Bates et al., 2014), the Anova function
from the Companion to Applied Regression (car) package (Fox
and Weisberg, 2011), and the lsmeans package for polynomial
contrasts (Lenth, 2013). Welch’s unequal variance t-test is used
to test the significance of the polynomial contrasts.

A linear mixed model analysis was completed for each of the
three perceived affect ratings (valence, tension arousal, energy

TABLE 1 | Person’s correlation coefficients among ratings of perceived valence, tension arousal, energy arousal, preference, and familiarity for sounds

common to both the main and control experiments.

Main Control

Valen Tens Ener Pref Famil Valen Tens Ener Pref

Main Tension 0.46**

Energy 0.68** −0.29**

Preference 0.72** 0.75** 0.19

Familiarity 0.56** 0.38** 0.31* 0.66**

Control Valence 0.89** −0.65** 0.44 0.81** 0.60**

Tension −0.28 0.89** 0.47 −0.67** −0.31 0.51*

Energy 0.56** 0.37 0.92** 0.01 0.18 0.33 −0.57**

Preference 0.57** −0.72** 0.02 0.89** 0.67** 0.80** 0.69** −0.06

Familiarity 0.46 −0.37 0.20 0.57** 0.90** 0.56** 0.31 0.14 0.65**

df = 135 for comparisons among Main variables and df = 38 between Main and Control and among Control variables. Bonferroni-corrected *p < 0.05, **p < 0.01.
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TABLE 2 | Linear mixed effects model type III wald F-Tests for ratings of perceived valence, tension arousal, energy arousal, preference, and familiarity.

df F p df F p

Valence (R2
= 0.53) Tension arousal (R2

= 0.43)

Intercept 1, 124.4 145.63 < 0.001 1, 121.70 121.96 < 0.001

Training (T) 1, 136.88 0.43 0.512 1, 132.04 1.56 0.214

Family (F) 3, 120.66 7.30 < 0.001 3, 121.11 4.04 0.009

Register (R) 6, 122.01 7.98 < 0.001 6, 120.75 4.15 < 0.001

T × F 3, 104.62 0.24 0.871 3, 95.27 1.38 0.253

T × R 6, 69.38 3.71 0.003 6, 56.34 2.27 0.050

F × R 16, 111.00 2.41 0.004 16, 111.00 2.41 0.004

T × F × R 16, 111.00 1.04 0.417 16, 111.00 2.13 0.011

Energy arousal (R2
= 0.50) Preference (R2

= 0.51)

Intercept 1, 124.02 381.45 < 0.001 1, 135.08 120.15 < 0.001

T 1, 137.48 0.05 0.819 1, 96.02 1.97 0.164

F 3, 118.78 1.67 0.178 3, 125.81 10.19 < 0.001

R 6, 112.83 13.27 < 0.001 6, 120.90 1.65 0.139

T × F 3, 91.45 1.44 0.239 3, 94.77 1.10 0.353

T × R 6, 53.83 2.10 0.068 6, 58.39 3.89 0.002

F × R 16, 111.00 3.09 < 0.001 16, 111.00 1.44 0.135

T × F × R 16, 111.00 2.30 0.006 16, 111.00 1.99 0.020

Familiarity (R2
= 0.59)

Intercept 1, 149.78 112.47 < 0.001

T 1, 70.46 5.89 0.018

F 3, 131.80 6.33 < 0.001

R 5, 120.36 0.82 0.540

T × F 3, 81.11 2.09 0.108

T × R 5, 69.51 0.58 0.716

F × R 16, 111.00 1.85 0.039

T × F × R 16, 111.00 1.62 0.084

N = 5480. All predictors are sum-coded factor variables. The following random effects were included: (a) random intercepts for Participant and Sounds, (b) random slopes for Family

and Register (within Participants) and Training (within Sounds).

arousal), as well as for the preference and familiarity ratings.
Fixed factors examined in these models included instrument
family and pitch register of the sounds andmusical training of the
participants. Attack and playing technique parameters were not
included in these initial analyses in order to simplify this model,
and because they are not always comparable across instrument
families, e.g., flutter tonguing is confined to wind instruments.
However, those factors were included in the models for the
individual instrument families. Because all participants rated all
sounds, a crossed random effects design was implemented and
the maximal random effects structure thus included random
intercepts for participant with random slopes for family and
register, and random intercepts for the stimuli with random
slopes for training.

Instrument Family and Pitch Register
Type III Wald F-test results from the five models are displayed in
Table 2. Musical training alone was only a significant predictor
of familiarity ratings, although the interaction of training and

register was a significant predictor for valence, tension-arousal,
and preference ratings. Family was a significant predictor for all
ratings except energy-arousal. Register alone and the interaction
between register and family both significantly predicted the
perceived affect ratings, but not the preference and familiarity
ratings. Register was especially influential for energy-arousal
ratings. The three-way interaction between training, family, and
register was significant for tension-arousal, energy-arousal, and
preference ratings.

Figures 2–6 display plots of predicted means for each
rating scale across register for each family and training group.
Polynomial contrasts on valence, tension arousal and energy
arousal were computed over octaves 2–6 (in which all instrument
families are present) with the lsmeans package in R separately
for musicians and nonmusicians (see Table S2). For Valence
ratings (Figure 2), register was highly significant and globally
presents a concave (inverted U-shaped) increasing form with
a peak around octave 5 or 6. The polynomial contrasts reveal
significant linear increasing and concave quadratic trends for
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FIGURE 2 | Means of perceived valence ratings across pitch register for each instrument family and each musical training group.

FIGURE 3 | Predicted means of perceived tension-arousal ratings across pitch register for each instrument family and training group.

brass, woodwinds, and strings for nonmusicians and for brass
and strings for musicians. Woodwinds present an increasing
linear trend for musicians as do percussion for both participant
groups. The lack of quadratic trend in these latter cases leads to
significant interactions between register and family and register
and training. There was a main effect of family—strings >

percussion > brass > woodwinds. There were valence peaks in
the middle-high register with the exceptions of percussion in the
higher registers for both groups and woodwinds in the highest

octave for musicians as indicated by training × register and
family× register interactions.

Tension-arousal ratings (Figure 3) were highly significant
for register and followed a convex increasing form, with most
families peaking at the lowest and highest octaves. There was
a significant training × family × register interaction indicating
different patterns across the two groups. The convex increasing
trend was apparent for all families in the nonmusician training
group, except that the percussion were convex decreasing.
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FIGURE 4 | Predicted means of perceived energy-arousal ratings across pitch register for each instrument family and training group.

FIGURE 5 | Predicted means of preference ratings across pitch register for each instrument family and training group.

Musicians’ ratings were similar for brass, woodwinds and strings,
but ratings for the percussion family remained relatively neutral
across all the registers as indicated by a lack of either linear or
quadratic trend.

Register was a highly significant predictor for energy-
arousal ratings (Figure 4), and a strong linear trend is visible
across registers, with lower registers perceived as more tired
and high registers perceived as more awake. Additionally,
the register × family interaction was significant. This can
be seen, specifically in the percussion family ratings in the

second octave (the lowest octave for percussion sounds in this
experiment), which were higher than the ratings of the other
families in this octave, Welch’s unequal variance t > 5.02, p
< 0.0001. Furthermore, the significant training × family ×

register interaction can be seen when comparing the differences
in energy-arousal ratings between the families in the low
registers: in the nonmusician group, the families are more
spread out in the first three octaves, whereas the ratings of the
musician group are more similar across families, even in the low
registers.
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FIGURE 6 | Predicted means of familiarity ratings across pitch register for each instrument family and training group.

Similarities among instrument families were slightly less
apparent in the graphs of preference and familiarity ratings
compared to the perceived affect ratings. Instrument family was a
significant predictor of preference ratings (Figure 5), and string
sounds in mid-register octaves 2–5 were the most preferred by
both musicians and nonmusicians, Welch’s t ≥ 2.57, df ≥ 110.63,
Bonferroni-corrected p < 0.0021, with three exceptions (strings
vs. percussion for nonmusicians in octaves 2 and 4, and for
musicians in octave 5). In line with a significant training× family
× register interaction, the musicians’ preference ratings for brass
and woodwind sounds were relatively neutral at lower and
mid-register pitches, then decreased in higher registers, whereas
nonmusicians preference ratings for brass and woodwind sounds
were low for low and high registers, but increased to a neutral
rating around octave 5. This pattern in the nonmusicians’ ratings
is similar to that found in the perceived valence ratings.

Familiarity ratings varied significantly as a function of both
training and family (Figure 6). Not surprisingly, they were
significantly higher for the musician group than the nonmusician
group. There was also a significant family × register interaction
depicted by the higher ratings of string sounds in octaves 2–6
compared to the string sounds in octaves 1 and 7. This trend
is inversed for percussion sounds, where the highest familiarity
ratings occurred in the lowest and highest octaves (2 and 7,
respectively).

Attack Strength and Playing Technique
To examine attack strength and playing technique as possible
factors contributing to affect ratings, the dataset was separated
by instrument family, and 20 linear mixed models were created:
one for each of the five ratings for each of the four instrument
families. All of the models included fixed factors of training and
register. Attack strength was included in the brass and percussion

models, and technique was included in the brass, woodwind
and string models. This separation was necessary because of the
lack of different attack strengths in the woodwind and string
samples and the lack of different playing techniques for the
percussion samples. As with the full models, a maximal random-
effects structure was specified for each instrument family model.
The brass familiarity, string preference and familiarity, and
percussion familiarity models did not converge. Reducing the
random effects structure by removing register as a random
slope allowed the models to converge, although this removal
increases likelihood of Type I errors. That being said, neither
attack strength nor technique was a significant predictor for any
individual instrument family model.

Summary
Valence ratings have a nonlinear concave relation to register,
with more positive valence in the middle registers, apart from
percussion for which valence progresses from negative to positive
from the lowest to the highest register. The effect of register
depends on both musical training and instrument family.
Nonmusicians gave more negative ratings in the lowest registers
compared to musicians. Globally strings have the most positive
valence followed by percussion, brass, and woodwinds in order
of increasingly negative valence.

Tension-arousal ratings have a nonlinear convex relation to
register. Again, the effect of register depends on training and
instrument family. Percussion sounds for musicians seem to be
unaffected by register and remain at a middle level of tension
arousal. Globally, brass receive the highest excitation ratings
followed by woodwinds, percussion and strings, which were rated
as calmest.

Energy arousal ratings increase monotonically with register,
but again they depend on training and instrument family. The
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ratings are quite similar across families for both groups of
participants in octaves 4–7 for nonmusicians and across all
octaves for musicians. In the lower octaves, the ratings are spread
out for nonmusicians with percussion being rated as most awake
followed by strings and then by woodwinds and brass, which are
rated similarly.

Preference ratings have a nonlinear concave relation to
register that depends on family and training and resemble valence
ratings in their form. Familiarity ratings are higher for musicians
than nonmusicians. They are concave with respect to register for
strings, convex for percussion, and unaffected by register for brass
and woodwinds.

Acoustic Descriptors
Due to its multidimensionality, it is necessary to account for
multiple acoustic properties when examining timbre (McAdams
et al., 1995). There are numerous audio descriptors derivable
from the sound signal that can be categorized as spectral,
temporal, or spectrotemporal properties of a sound. The
following analysis investigates the relationship between the
quantitative descriptors and the perceived affect ratings. The tool
we use is the Timbre Toolbox (Peeters et al., 2011) as recently
updated, corrected, and validated by Kazazis et al. (2016).

The Timbre Toolbox (Peeters et al., 2011) calculates temporal
descriptors, such as attack time, spectral descriptors, such as
spectral centroid, and spectrotemporal descriptors, such as
spectral variation over time, in Matlab (The MathWorks Inc.,
Natick, MA). There are three stages of computation. First, the
input representations of the signal are computed. The Timbre
Toolbox has several input representations. The ones we used here
included the temporal energy envelope and a Short-Term Fast-
Fourier Transform (STFT) with a frequency scale transformed
to a physiological scale related to the distribution of frequencies
along the basilar membrane in the inner ear as modeled by a scale
(ERB-rate) derived from the Equivalent Rectangular Bandwidth
(Moore and Glasberg, 1983). To calculate the temporal energy
envelope of a given audio signal, the amplitude of the analytic
signal, i.e., the signal with no negative-frequency components
(Smith, 2007), is given by the Hilbert transform of the audio
signal. The amplitude of the analytic signal is then low-pass
filtered with a third-order Butterworth filter with a cutoff
frequency of 5 Hz, resulting in the temporal energy envelope
input representation.

In the second stage of computation, scalar and time-series
descriptors are extracted from different input representations.
To estimate the attack portion of the signal, the “weakest-
effort method” (Peeters, 2004) is applied so that thresholds to
detect the start and end time of the attack are not fixed but
determined as a proportion of the maximum of the signal’s
energy envelope. Log-attack time, attack slope, and temporal
centroid are calculated from the temporal energy envelope input
representation. Log-attack time is the log10 of the duration (in
seconds) of the attack portion of the signal, and attack slope is
the averaged temporal slope of the energy envelope during the
attack portion of the signal. Additionally, the temporal centroid
is a measure of the center of gravity of the energy envelope of the
signal.

Each of the spectral descriptors is calculated from the ERB-
transformed STFT representation with Hamming time window
of 23.2 ms with a hop size of 5.8 ms, thereby giving a time series
for each descriptor. As described by Peeters et al. (2011), spectral
centroid is a measure of the center of mass of the spectrum
and is perceptually related to the “brightness” of the sound.
Spectral spread refers to the standard deviation of the spectrum
around the spectral mean value and spectral skewness refers
to the degree of asymmetry of the spectrum around the mean.
Spectral kurtosis examines the flatness of the distribution around
the mean value of the spectrum and can indicate a flat, normal,
or peaky distribution. Spectral slope is a linear regression over
the spectral amplitude values. Spectral decrease is the average of
the set of spectral slopes between the fundamental frequency and
the frequency of the kth harmonic. Spectral rolloff refers to the
frequency below which 95% of the signal energy is contained.
Spectral variation is a measure of the change in the spectral shape
over time, quantified as one minus the normalized correlation
between the spectra of successive time frames. Spectral flatness
captures the noisiness of the signal and varies between completely
“tonal” in the sense of being composed of clear, isolated frequency
components and completely noisy. Spectral crest measures the
degree of emergence of the most intense frequency component
above the average amplitudes of the whole spectrum.

Finally, the third stage of computation considers the median
and interquartile range (IQR) values of time-series descriptors
to represent both central tendency and variability, respectively
(Peeters et al., 2011). Time-series descriptors include spectral
centroid, spread, skewness, kurtosis, slope, decrease, rolloff,
variation, flatness, and crest. Adding the three temporal
descriptors gives the 23 descriptors listed in Table 3.

Partial Least-Squares Regression
We completed a PLSR to examine the relation of the
audio descriptors to the set of affect ratings. PLSR couples
multiple linear regression with principle components analysis.
Furthermore, we applied a five-fold cross-validation model to
each PLSR in which the n cases are divided into five subsets,
and the model is trained on four subsets and then predicts
the remaining subset. The subsets are then rotated so that the
training and prediction steps are applied to all combinations of
the subsets. In addition to calculating R2 as an evaluation of the
model fitness, cross-validation also allows for the calculation of
predictive relevance Q2, the squared cross-validation prediction
error summed across the five-folds (Wold et al., 2001).

We used the 23 Timbre Toolbox descriptors described above.
The median values of spectral time series provide spectral
information, and IQR measures as spectrotemporal information
represent the variability of the descriptor over time. The PLSR
and a subsequent correlation analysis were both completed in
Matlab (The MathWorks Inc., Natick, MA).

An initial analysis of collinearity among descriptors across
the complete sound set was performed. The 137 values for each
descriptor were correlated with those of every other descriptor,
and a hierarchical cluster analysis with average linkage was
performed on the correlation matrix. The resulting dendrogram
is shown in Figure 7. Several pairs of descriptors join at very
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TABLE 3 | Definition of acoustic descriptors from the timbre toolbox.

Acoustic descriptor Definition Derivative values

Spectral Centroid (log) Center of gravity of the spectrum Med*, IQR*

Spread Standard deviation of the spectrum around the mean Med, IQR*

Skewness Asymmetry of the spectrum around the mean Med*, IQR*

Kurtosis Flatness of spectrum around the mean Med, IQR

Slope Linear regression over the spectral amplitude values Med, IQR

Decrease Average of slopes between F0 and 2nd to kth harmonic Med*, IQR*

Rolloff Frequency below which 95% of the signal energy is contained Med, IQR*

Variation Variation of the spectrum over time Med*, IQR*

Flatness Ratio of the geometric and arithmetic means of the spectrum Med*, IQR*

Crest Ratio of the spectral maximum to the arithmetic spectral mean Med*, IQR*

Temporal Attack time (log) Duration of the attack portion of the sound *

Attack slope Rate of change of energy over time in the attack portion *

Centroid Center of gravity of the energy envelope *

For time-varying spectral descriptors, both the median (Med) and interquartile ranges (IQR) are computed over the duration of the sound, so each of these descriptors produces two

measures. *Indicates the 17 descriptors included in partial least-squares regression and neural network analyses (see text).

low levels indicating high collinearity. A PCA was conducted
on the whole set of descriptor values for the 137 sounds. The
PCA resulted in errors when including all 23 timbral descriptors
plus the nominal pitch of the sounds, because the correlation
matrix was not positive definite. Based on the hierarchical cluster
analysis, six descriptors that were highly correlated with others
were removed: Spectral Slope median and IQR, Spectral Spread
median, Spectral Rolloff median, Spectral Kurtosis median, and
IQR. These descriptors are highly correlated (r > 0.905) with
Spectral Centroid median for Spectral Slope, Spread, and Rolloff
medians, with Spectral Centroid IQR for Spectral Slope IQR, and
with Spectral Skewness median and IQR for Spectral Kurtosis
median and IQR, respectively. When these six were removed,
the PCA gave a strong Kaiser-Mayer-Olkin index of 0.691, and
the removal didn’t much affect the total variance explained
by the PCA (reduction by 2.2% of the variance explained) or its
dimensionality (five components in both cases). Removing pitch
as a factor reduced the explained variance by <1%, so it was not
included in subsequent analyses either.

The PLSR was thus completed with the group of 17 measures
(independent variables) shown with asterisks in Table 3. It was
conducted for each of three dependent variables: mean ratings
across participants of valence, tension arousal, and energy arousal
for each of the 137 stimuli. Based on a threshold eigenvalue of
1, the procedure selected three principal components (PC) for
valence and energy arousal, and four components for tension
arousal. The upper and lower benchmarks of the model are
measured by R2 (explanatory power) and Q2 (predictive power).
We also computed the root mean squared error (MSE) between
the mean ratings and the PLSR estimates. These values are
displayed in Table 4. The valence and energy arousal ratings are
better modeled than the tension arousal ratings; although all
three models have low RMSE. The loadings of each descriptor on
each PC are listed in Table 5. They can be interpreted as vector
coordinates of the 17 predictors in the three- or four-dimensional
spaces of the PCs or as their contributions to each PC.

Valence
Increases in PC1 (58% of the variance explained) are primarily
associated with increasing spectral centroid and spectral
crest medians, decreasing spectral decrease median, increasing
spectral crest variability (IQR), increasing attack slope, and
decreasing log attack time and temporal centroid. PC2 (6%)
loadings show a positive effect of spectral skewness median and
negative effects of spectral centroid and spectral flatness medians.
PC3 (3%) is more positive with decreasing spectral variation
median and with decreasing log attack time.

Tension Arousal
PC1 (39%) increases with increasing spectral centroid median
and decreasing spectral skewness and spectral decrease medians,
with additional negative contribution of spectral decrease IQR.
PC2 (9%) increases with increasing spectral variation median
and IQR. PC3 (5%) increases with increasing attack slope and
with decreasing log attack time and temporal centroid. PC4 (3%)
increases with decreasing spectral decrease IQR.

Energy Arousal
PC1 (72%) increases with increasing spectral centroid and crest
medians, with decreasing spectral skewness and spectral decrease
medians, with increasing spectral crest IQR, and with decreasing
spectral decrease IQR and temporal centroid. PC2 (2%) increases
with decreasing spectral flatness median and decreasing spectral
slope IQR. PC3 (2%) increases with increasing variability in
spectral flatness and increasing log attack time.

Globally, medians of all the time-varying spectral parameters
play a stronger role than do measures of their variability or
the temporal parameters, although the latter two groups make a
significant contribution. The acoustic underpinnings of emotion
portrayal by musical instrument sounds thus seem to result from
a complex interplay of spectral, temporal, and spectrotemporal
factors.
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FIGURE 7 | Dendrogram of the hierarchical cluster analysis of descriptor values across the entire stimulus set.

TABLE 4 | R2, Q2, and RMSE results for the PLSR models predicting

perceived valence, tension arousal, and energy arousal.

Valence Tension arousal Energy arousal

R2 0.6617 0.5605 0.7535

Q2 0.6032 0.4406 0.6867

RMSE 0.0827 0.0841 0.0772

Neural Network Model
Previous research has shown that non-linear methods can
be particularly useful in situations where linear methods are
insufficient to model the relationship between dependent and
independent variables. Artificial neural networks may be used
as a non-linear regression method (Coutinho and Cangelosi,
2011; Russo et al., 2013; Vempala and Russo, 2013) to predict

valence, tension arousal, and energy arousal ratings using timbre
descriptors.

We used supervised feedforward networks with back
propagation (i.e., multilayer perceptrons) for this purpose
(Bishop, 1996; Haykin, 2008; Rumelhart et al., 1986). We built
three types of prediction networks—one for valence, one for
tension arousal, and one for energy arousal in Matlab. Each
type of network consisted of one input layer with 17 units
corresponding to the descriptors with asterisks in Table 3, one
hidden layer with 3 units, and one output unit corresponding
to the mean valence, tension arousal or energy arousal value of
participants for that stimulus. Separate networks were trained
with valence, tension arousal, or energy arousal as the output
unit.

Our training paradigm involved five-fold cross-validation to
avoid over fitting the network to any specific partitioning of the
training and test sets. To enable cross-validation, we partitioned
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TABLE 5 | Loadings of each audio descriptor on the Principal Components (PC) for each emotion dimension in the PLSR analysis.

Valence Tension Arousal Energy Arousal

PC1 PC2 PC3 PC1 PC2 PC3 PC4 PC1 PC2 PC3

Spec centroid Med 6.18 -8.53 1.55 10.39 −3.95 1.81 −0.73 9.21 −5.05 0.89

Spec centroid IQR 3.25 −4.45 5.35 2.43 −1.67 −2.07 2.83 3.51 −6.72 3.90

Spec spread IQR 1.46 −2.92 4.27 −0.43 1.38 −2.36 −0.30 0.97 −3.63 5.55

Spec skewness Med −5.88 8.74 −1.89 −10.29 3.98 −1.07 0.89 −8.91 5.92 −0.64

Spec skewness IQR 0.67 −0.41 4.96 −2.29 0.41 −2.28 3.76 −0.49 −3.50 5.20

Spec decrease Med −8.10 4.88 −1.12 −8.04 5.88 −3.77 1.60 −10.03 0.86 −0.73

Spec decrease IQR −4.38 3.96 −1.83 −6.82 4.41 −2.93 −6.32 −6.21 3.24 −1.61

Spec rolloff IQR 1.20 −1.39 4.61 −1.59 0.50 −2.34 2.26 0.30 −3.21 5.87

Spec variation Med −2.18 −4.58 −6.63 0.99 8.79 4.41 −3.74 −1.40 2.32 2.38

Spec variation IQR −4.81 −5.62 −3.20 1.68 9.33 −0.30 −2.94 −3.53 −1.65 2.26

Spec flatness Med −2.10 −6.56 2.56 4.67 0.23 −5.97 −1.65 −0.07 −9.26 −1.43

Spec flatness IQR 1.87 −3.27 3.87 0.92 1.77 −1.54 −2.20 1.87 −1.55 6.58

Spec crest Med 8.20 −0.22 −0.05 3.89 −5.53 4.97 −3.79 8.65 5.09 0.75

Spec crest IQR 6.81 −1.46 1.50 2.38 −3.54 1.85 −5.53 6.87 2.47 1.77

Log attack time −7.47 −3.19 6.05 4.49 4.06 −7.34 2.65 −4.85 −3.15 6.56

Attack slope 7.99 3.02 −5.67 −4.36 −3.72 7.71 −3.36 5.35 3.93 −5.19

Temporal centroid −8.38 −1.59 2.56 2.65 3.56 −6.34 4.28 −6.29 −3.41 1.54

Partial R2 0.58 0.06 0.03 0.39 0.09 0.05 0.03 0.72 0.02 0.02

Loadings greater that 8.0 (or the highest value for a given PC if none are above 8) are shown in bold to highlight the primary contributors discussed in the text.

135 of the 137 stimuli in our dataset into five equal sets of 27.
For each fold, we tested the network on the 27 stimuli within that
fold along with the remaining two unused stimuli, after training
the network on the four additional folds (i.e., 108 stimuli; see
Table S1).

As is common in neural net modeling, all input descriptors
were range-normalized in the interval [0, 1] to allow the
network to maximize performance by capturing similarities and
differences within and across descriptors for all examples of the
training set. Connection weights from the input layer to the
hidden layer and from the hidden layer to the output unit were
initialized to random values between –0.05 and 0.05, allowing
for optimal adjustment of hidden units during training. Outputs
at the hidden layer were computed using sigmoid functions.
The sigmoid or logistic sigmoid function is commonly used
in multilayer perceptrons because it has desirable properties. It
transforms the data nonlinearly while limiting the range of values
between 0 and 1, thus acting as a useful squashing function. For
each training stimulus, the squared error between the network’s
predicted output and the mean participant rating was computed.
Changes to connection weights over successive epochs were
computed using back propagation of errors with gradient descent

and were then stored. After completion of each epoch (i.e., 108
training stimuli), connection weights were updated with the sum
of the stored weight changes.

While having more hidden units helps the network converge
earlier, and reduces the MSE, it also results in the network
becoming overfitted to the training set, thus reducing the
network’s generalizability. Hence, after initial simulations starting
with 7 hidden units, we progressively reduced the number of
hidden units down to 3 units, upon noticing that the network’s

TABLE 6 | Performance of neural networks modeling valence, tension

arousal, and energy arousal.

Network RMSE

Valence Tension arousal Energy arousal

1 0.0800 0.0814 0.0703

2 0.0801 0.0813 0.0672

3 0.0809 0.0803 0.0672

4 0.0816 0.0853 0.0687

5 0.0825 0.0822 0.0680

Mean 0.0810 0.0821 0.0683

performance was still high for all five-folds of cross-validation.
Each network was tested on the set of 29 stimuli. We computed
the RMSE as a measure of performance.

The valence and energy arousal networks were trained for
700 epochs, but the tension network took longer to converge,
requiring 1000 epochs. All networks successfully converged to a
MSE of <0.008. Cross-validation performance for each type of
output unit is reported for each of the five-folds along with the
mean performance in Table 6.

To get a sense of which of the timbre predictors were
important for each dependent variable, we used a method
developed by Milne (1995). This method computes the size
and sign of each feature’s contribution to the output by taking
into account the connection weights from that feature to the
hidden layer, and from the hidden layer to the output unit. We
computed feature contributions and averaged them across the
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TABLE 7 | Primary timbre descriptor contributions to each type of neural

net output unit.

Feature Valence Tension arousal Energy arousal

Spectral centroid median − +8.6 +8.3

Spectral spread IQR − −7.0 −

Spectral decrease median −9.5 − −9.6

Spectral rolloff IQR − +6.7 −

Spectral variation median −10.6 +15.9 −

Spectral variation IQR −11.0 − −12.1

Spectral flatness median − −7.2 −

Spectral crest median +10.9 − +7.7

Spectral crest IQR − − +15.2

Attack slope +7.9 −7.1 −

Temporal centroid −15.8 − −13.9

The values indicate the mean % contribution and the sign of the relation between the

model prediction and the audio descriptor.

five networks used for cross-validation. The mean contribution
proportions of the top six timbre features for perceived valence,
tension arousal, and energy arousal are reported as percentages
in Table 7, along with their signs. A negative sign indicates
that increases in the value of the feature are associated with
decreases in the emotion dimension. Different combinations of
spectral, temporal, and spectrotemporal descriptors contribute
to the neural network modeling of valence, tension arousal, and
energy arousal. Although, at some level all audio descriptors
make some contribution, the primary contributors differ across
the rating scales, suggesting acoustic independence among them.

DISCUSSION

We explored the perceived emotional qualities of 137 isolated
tones played by standard western orchestral instruments across
their entire pitch ranges and using different playing techniques.
One novel aspect of this study on the role of timbre in perceived
emotion is that both instrument family and pitch register were
varied. It is important to recognize that register affects the timbre
of notes produced by each instrument in the sense that several
spectral measures are strongly or very strongly correlated with
pitch octave [in decreasing order: spectral crest, r(135) = 0.826;
spectral decrease, r(135) = −0.816; spectral centroid, r(135) =

0.690; and spectral skewness, r(135) =−0.637]. Therefore, timbre
varies with register, but not directly as a function of fundamental
frequency. The aim was to determine the acoustic properties
related to timbre that contribute to ratings by musician and
nonmusician listeners on continuous scales of the emotional
qualities valence (on both positive vs. negative and pleasure vs.
displeasure scales), tension arousal and energy arousal. Listeners
also rated preference for and familiarity with each sound.We first
discuss the rating data as a function of pitch register, instrument
family, and the musical training of the listeners. We then discuss
the two approaches to modeling the data with linear PLSR and
nonlinear neural nets.

Listener Ratings (Ground Truth)
The two valence scales were very strongly correlated [r(135)
= 0.97], and so subsequent analyses were limited to the
positive/negative scale. It is worth recalling that using
musical excerpts of varying, but not systematically controlled
instrumentation, Bigand et al. (2005) found no correlation
between pleasantness and positive-negative valence. So other
musical properties may distinguish these two dimensions of
musical experience.

Linear mixed effects models that take into account variation
due to participants and stimulus items revealed strong
interactions of the factors pitch register, instrument family,
and musical training for all rating scales. Valence and preference
had nonlinear concave relations to register indicating that
maximally positive valence and preference corresponded to
middle registers. The exception to this pattern for valence
was the percussion family, which had a monotonic increasing
relation to register. The families in order from negative to
positive valence were woodwinds, brass, percussion, and strings.
Tension arousal had a nonlinear convex relation to register
except for the percussion family for musicians, which had a
medium tension level across registers. The families in order
of decreasing tension were brass, woodwinds, percussion, and
strings. Energy arousal had a monotonic relation to register, with
only small differences among the families in the lower registers
for nonmusicians. Familiarity ratings were higher for musicians
than nonmusicians and were concave with respect to register
for strings, convex for percussion and unaffected by register for
brass and woodwinds. These results can be compared to those of
Eerola et al. (2013) who manipulated several musical parameters
on musical phrases, including timbral brightness (flute, horn,
trumpet in order of increasing spectral centroid) and pitch
height (from F3 to B5 in 6-semitone steps, which corresponds
to the middle 2.5 octaves of our 6-octave range). These authors
found linear contributions of both timbre and register to ratings
of “scary” (increasing with brightness, decreasing with register),
“sad” (decreasing with brightness and register), and “peaceful”
(decreasing with brightness, increasing with register), but not
of “happy.” They also found slight quadratic contributions of
register to ratings of “scary” (convex) and “peaceful” (concave),
but not “happy” or “sad.” It is difficult to compare directly these
two sets of results, one being in a dimensional framework and
the other in a categorical framework, but they both emphasize
the complex mapping of emotion onto these musical parameters.
One does note, however, that a stronger nonlinearity appears
with a wider range of pitch heights.

Musical training interacted with register and instrument

family for all three emotion dimension ratings, and preference
ratings as well. It only interacted with family for familiarity
ratings. Regarding the valence ratings, musicians tended to
perceive low-register sounds as less negative than nonmusicians.
For tension arousal ratings, nonmusicians had convex curves
as a function of register for all families, whereas for musicians
only woodwinds and strings had this form; percussion were
unaffected by register, and tension increased monotonically with
register for brass. Energy arousal ratings were globally less
affected by instrument family and musical training, with the
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notable exception of results in lower registers where differences
in perceived energy arousal between families were found for
nonmusicians. As expected, familiarity ratings were higher
in the musician group and varied across instrument family.
Musicians are more familiar with sounds in extreme registers
than nonmusicians, and this familiarity could potentially play
a role in the perceived affect ratings. These differences between
musical training groups differ from the finding of Filipic et al.
(2010) who found no such difference with short musical clips.

In our experiment, there was a moderately strong positive
correlation between the perceived valence ratings and preference,
but the negative correlation between perceived tension-
arousal ratings and preference was slightly stronger. Although,
participants typically preferred more positive, less tense timbres,
this finding demonstrates that there is not a clear one-to-one
relationship between positive valence or tension and listener’s
preference. Furthermore, pitch register significantly influenced
both perceived valence and tension-arousal ratings so that
mid-register sounds were rated as more positive and more
relaxed than sounds of an extreme high or low register.

We confirmed that listeners can consistently rate the perceived
affect of individual sounds from different musical instruments
across their pitch registers with short sounds (500 ms). These
results are in accordance with those of Eerola et al.’s (2012)
Experiment 1 and other studies utilizing short musical samples
(Peretz et al., 1998; Bigand et al., 2005; Filipic et al., 2010) in
which the participants were able to rate perceived affect in 1-s
or 500-ms instrumental music samples with great consistency.

There were a few key differences between our results and
those of Ilie and Thompson (2006), on the one hand, and those
from Eerola et al.’s (2012) Experiment 1 on the other. First, the
tension-arousal and energy-arousal ratings were only weakly,
although significantly, correlated in the present study and Ilie
and Thompson’s, whereas they were strongly correlated in Eerola
et al.’s study. As the energy-arousal dimension had a monotonic
relation to register, listeners seem to have used primarily
spectral cues when making energy ratings and incorporated
additional acoustic information when making tension ratings
(see discussion of audio descriptors below). Furthermore, valence
and preference ratings in this experiment were moderately
correlated, whereas they were strongly correlated in Eerola et al.’s
study. Listeners did not necessarily prefer sounds with the highest
perceived valence. We therefore concur with Ilie and Thompson
in emphasizing the importance of differentiating these measures
in a larger stimulus context. One crucial difference is the use of
a single pitch in Eerola et al. compared to the whole range of
registers for each instrument in the present study. This would
mean that the sounds from some instruments in their study
would be in their extreme high or low registers. Pitch octave
in the present study was strongly correlated with valence, r(135)
= 0.624, p < 0.0001, weakly correlated with tension arousal,
r(135) = 0.242, p = 0.004, and very strongly correlated with
energy arousal, r(135) = 0.849, p < 0.0001. So the differential
effect of pitch register on the two arousal scales seems to
further distinguish them in the current study. Furthermore, the
linear mixed model analysis showed that the energy-arousal
ratings were strongly influenced by pitch register, and unlike

the tension-arousal ratings, were not significantly influenced
by instrument family. This finding is a significant contribution
to affect and timbre research because it shows that the two
arousal dimensions are distinctly perceivable in timbre and not
interchangeable, as they are influenced by different factors.

Linear and Nonlinear Modeling of the
Acoustic Basis for Perceived Emotion
Dimensions
To analyze the contribution to the emotion ratings of
acoustic properties related to timbre, we examined 23 acoustic
signal parameters taken from the Timbre Toolbox (Peeters
et al., 2011), spanning spectral, temporal, and spectrotemporal
audio descriptors. Initial hierarchical clustering and principal
components analyses suggested reducing these to 17 descriptors
due to high collinearity. It is interesting to note that the pitch
height descriptor did not make a significant contribution as it
was highly collinear with several spectral descriptors, underlining
again the fact that timbre and pitch covary strongly in many
acoustic musical instruments. A PLSR with these 17 descriptors
as predictors of each of the three emotion dimensions allowed
us to reduce the dimensionality to three principal components
for valence and energy arousal and to four principal components
for tension arousal. Additionally, a nonlinear neural network
multilevel perceptron model (NN) was programmed with 17
inputs represented by the audio descriptors, three hidden units,
and a single output separately modeling the three mean emotion
dimension ratings. In both cases, a five-fold cross-validation
method was used to estimate the reliability of the models.
Several measures compare ground truth values (means across
participants for a given emotional dimension) to predicted values
(Table 8). Model fitness (R2) is computed on items in the training
set (the 4 groups excluding the test set, see Table S1) for each fold
and then averaged across the five-folds. The model’s predictive
power (Q2) is computed on the five training sets collectively taken
across the five-folds. The prediction error (RMSE) is computed
on both training and test sets for each fold and is then averaged
across the five-folds. The percent improvement of the NN model
over the PLSRmodel is shown in Table 8, in which a positive sign
indicates higher values for NN. One notes that a much better
fit is obtained for all three emotion dimensions with the NN
models than with the PLSR models (32–78% improvement), as
they are all near perfect prediction. The predictive power across
training sets is more equivalent for the two techniques, but it
still shows more than 10% improvement for the two arousal
dimensions with the NN model. The prediction error is roughly
equivalent in the two models for valence and tension arousal,
and although better for energy arousal with the PLSR model, the
NN model still shows 12% improvement (lower error) for this
emotion dimension. The nonlinear approach would thus seem to
have modest modeling advantages over the linear approach.

Table 9 presents the primary audio descriptors that contribute
to each emotion dimension model for each technique. The ranks
of the six descriptors providing the highest loadings for PLSR
or highest percent contribution for NN are shown. Descriptors
that make major contributions to both models are highlighted

Frontiers in Psychology | www.frontiersin.org February 2017 | Volume 8 | Article 15399

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McAdams et al. Affective Qualities of Musical Instruments

TABLE 8 | Comparison of model fitness, predictive power, and prediction error for PLSR and neural network models.

Method R2 Q2 RMSE

Valence Tension Energy Valence Tension Energy Valence Tension Energy

PLSR 0.6617 0.5605 0.7535 0.6032 0.4406 0.6867 0.0827 0.0841 0.0772

NN-MLP 0.9971 0.9963 0.9983 0.6117 0.4870 0.7658 0.0810 0.0821 0.0683

Percentage of improvement (%) 51 78 32 1 11 12 −2 −2 −12

TABLE 9 | Ranks of primary audio descriptors contributing to PLSR and NN models.

Audio Descriptor Type Valence Tension Arousal Energy Arousal

PLSR NN PLSR NN PLSR NN

Spectral centroid median Spectral 2 – 1 2 3 5

Spectral centroid IQR Spectrotemporal – – – – 6 –

Spectral spread IQR Spectrotemporal – – – 5 – –

Spectral skewness median Spectral 1 – 2 – 4 –

Spectral skewness IQR Spectrotemporal – – – – – –

Spectral decrease median Spectral 5 5 5 — 1 4

Spectral decrease IQR Spectrotemporal – – – – – –

Spectral rollof IQR Spectrotemporal – – – 6 – –

Spectral variation median Spectrotemporal – 4 4 1 – –

Spectral variation IQR Spectrotemporal – 2 3 – – 3

Spectral flatness median Spectral – – – 3 2 –

Spectral flatness IQR Spectrotemporal – – – – – –

Spectral crest median Spectral 4 3 – – 5 6

Spectral crest IQR Spectrotemporal – – – – – 1

Log attack time Temporal – – – – – –

Attack slope Temporal 6 6 6 4 – –

Temporal centroid Temporal 3 1 – – – 2

PLSR is in green and NN in orange. Descriptors that make major contributions to both models are highlighted with darker colors.

with darker colors. Note firstly that different combinations
of audio descriptors make major contributions to the three
emotion dimensions, suggesting that they are carried by distinct
acoustic properties. Valence is primarily carried by spectral and
temporal properties. It is more positive with lower spectral
slopes (more high-frequency energy), a greater emergence of
strong partials, and an amplitude envelope with a sharper attack
and earlier decay. To the contrary, Eerola et al. (2012) found
more positive valence ratings with sustained sounds having more
low-frequency energy, and Ilie and Thompson (2006) found
more positive valence for lower-register sounds. Tension arousal
ratings are driven by all three types of descriptors. Higher
tension is carried by brighter sounds, more spectral variation
and more gentle attacks. This result is coherent with Ilie and
Thompson’s finding that increase pitch height is associated
with increase tension arousal. Energy arousal seems primarily
spectral in nature, and greater energy is associated with brighter
sounds with higher spectral centroids and slower decrease of
the spectral slope, as well as with a greater degree of spectral
emergence. The spectral aspect echoes Eerola et al.’s result
showing this emotion dimension to be associated with more
dominant high-frequency components, although those authors

also found sharper attacks to be associated with higher ratings of
energy arousal. Ilie and Thompson found no effect of pitch height
(and concomitantly, spectral distribution) on energy arousal. The
factors that distinguish these three studies is that ours covers a
much wider range of pitches, thus augmenting the role played
by pitch height and its concomitant timbral attributes related to
spectral properties.

CONCLUSION

This study examined timbre and its complex covariation
with pitch as musical elements capable of conveying emotion
information. It highlights the fact that changes in pitch are
accompanied by significant changes in timbral properties as
quantified by timbral audio descriptors. It also demonstrates
the fact that different intrinsic emotional qualities of musical
instrument sounds are carried by different, but overlapping,
sets of acoustic dimensions, suggesting that it is their complex
combination that specifies emotional tone. This work provides a
foundation for work on the acoustic underpinnings of perceived
emotion in musical sound that could stimulate additional work

Frontiers in Psychology | www.frontiersin.org February 2017 | Volume 8 | Article 153100

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


McAdams et al. Affective Qualities of Musical Instruments

in music informatics by providing tools for including timbre in
content-based approaches to automatic identification of mood
in music (Kim et al., 2010). Future research should apply
these results to increasingly ecological studies to validate the
relationship between timbre, pitch, and perceived affect in a
musical context and examine how that relationship interacts
with additional relationships between perceived affect and other
musical variables such as dynamics, tempo, harmony and texture.
But even on its own, this work provides a rough map of
how sounds produced by musical instruments in given registers
relate to perceived emotional tone, suggesting basic acoustic
characteristics upon which composers capitalize in sculpting
musical experience.
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Naresh N. Vempala1 and Frank A. Russo1,2*

1 SMART Lab, Department of Psychology, Ryerson University, Toronto, ON, Canada, 2 Toronto Rehabilitation Institute,
Toronto, ON, Canada

Emotion judgments and five channels of physiological data were obtained from 60
participants listening to 60 music excerpts. Various machine learning (ML) methods were
used to model the emotion judgments inclusive of neural networks, linear regression,
and random forests. Input for models of perceived emotion consisted of audio features
extracted from the music recordings. Input for models of felt emotion consisted of
physiological features extracted from the physiological recordings. Models were trained
and interpreted with consideration of the classic debate in music emotion between
cognitivists and emotivists. Our models supported a hybrid position wherein emotion
judgments were influenced by a combination of perceived and felt emotions. In
comparing the different ML approaches that were used for modeling, we conclude that
neural networks were optimal, yielding models that were flexible as well as interpretable.
Inspection of a committee machine, encompassing an ensemble of networks, revealed
that arousal judgments were predominantly influenced by felt emotion, whereas valence
judgments were predominantly influenced by perceived emotion.

Keywords: music cognition, music emotion, physiological responses, computational modeling, neural networks,
machine learning, random forests

INTRODUCTION

The classic philosophical debate on music emotion pits a “cognitivist” view of music emotion
against an “emotivist” view (see e.g., Kivy, 1989). The cognitivist view recognizes music as
expressing emotion without inducing it in the listener (Konečni, 2008). The emotivist view
supposes that music achieves its emotional ends by inducing genuine emotion in the listener. That
is to say that the listener not only perceives but also feels the emotion expressed by the music.
These feelings may give rise to or be the consequence of physiological responses. Meyer (1956)
concedes that while music may on occasion induce a genuine emotional response in the listener,
the accompanying physiological responses are likely too undifferentiated to be meaningful.

The debate is far from reconciled, and has been further complicated by the observation that
emotion that is perceived in music can in some instances be distinct from emotion that is felt
[Gabrielsson, 2002; see Schubert (2014) for a review]. Moreover, Juslin and Västfjäll (2008) argue
convincingly that there are likely multiple mechanisms that give rise to felt emotion, ranging from
brainstem reflexes to evaluative conditioning. Nonetheless, numerous studies have documented
interpretable physiological responses elicited during music listening (Krumhansl, 1997; Nyklicek
et al., 1997; Rainville et al., 2006; Lundqvist et al., 2009). Scherer and Zentner (2001) have
characterized the cognitivist and emotivist views as complementary, arguing that a fulsome view
of music emotion needs to consider both perspectives and the factors that give rise to their
dominance.
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To the best of our knowledge, the emotivist–cognitivist debate
has not been considered from a computational perspective.
In the current study, we obtained judgments about emotion
conveyed by the music as well as physiological responses. To
minimize biasing judgments in favor of one view of music
emotion, we told participants that we were interested in
judgments of emotion for each excerpt without being explicit
regarding “perceived” or “felt” emotion. Judgments were made
using a two-dimensional model of emotion encompassing
valence and arousal (VA; Russell, 1980). Valence was defined
as the hedonic dimension of emotion, ranging from pleasant
to unpleasant. Arousal was defined as the mobilization of
energy, ranging from calm to excited. In contrast with the
discrete view of emotions that argues independent processes for
distinct emotions (e.g., Ekman, 1992, 1999), the dimensional
approach proposes that all affective states may be characterized
on the basis of underlying dimensions of emotion. This
approach is in widespread use in music cognition research
(e.g., Schubert, 1999; Gomez and Danuser, 2004; Witvliet and
Vrana, 2007), and has been found to be particularly effective
in characterizing emotionally ambiguous stimuli (Eerola and
Vuoskoski, 2011).

We assumed that if the cognitivist position were true, we
should be able to model emotion judgments on the basis of deep
and surface-level features obtained from the music. Likewise, we
assumed that if the emotivist positions were true, we should be
able to model emotion judgments on the basis of physiological
responses. Another possibility that we considered is that emotion
judgments are the result of a meta-level cognitive decision-
making process that combines output from a perception module
and a feeling module (Figure 1). In this scenario, the perception
module would take its input from features drawn from the
music and the feeling module would take its input from features
drawn from physiology. While we acknowledge that this account
of emotion judgments is skeletal and reliant on some crude
assumptions, it provides a framework to guide our modeling
exercise.

We had two main objectives in this study. The first was
to develop computational models of emotion judgments. We
begin by modeling cognitivist and emotivist positions separately
using multilayer perceptrons. We then extend these models
to reflect a hybrid position in which both expert networks
are considered. We refer to this hybrid, meta-level cognitive
framework, as a committee machine1. Previous studies have
modeled emotion recognition (a) exclusively using audio features
[see Kim et al. (2010), for an extensive review; Coutinho and
Cangelosi, 2009], (b) exclusively using physiological features
(Kim and André, 2008), and (c) using a combination of audio
and physiological features in a common network (Coutinho and
Cangelosi, 2010). However, none of these studies have modeled
emotion recognition as a combination of felt and perceived
emotion using a meta-level framework.

1A preliminary version of the committee machine described here was reported in
Vempala and Russo (2013). Although this prior work was informed by the same
theoretical framework, the computational model was based on only 12 excerpts of
classical music. Given this small number of excerpts and the lack of genre diversity,
the generalizability of the model was extremely limited.

FIGURE 1 | A meta-cognitive network of emotion judgment combining
perceived and felt emotion.

Our second objective in this study was more methodological
in nature. With the current advent of machine learning (ML),
availability and accessibility of ML toolkits, application of ML
methods has become more viable for researchers interested in
music cognition. While this accessibility to ML methods has
opened up new avenues for research, the justification for using
specific ML methods is often unclear. In this study, we compared
the success of our committee machine with two other ML
approaches with the intent of highlighting the relative merits of
the different approaches.

MATERIALS AND METHODS

Participants
Our experiment was designed such that it required obtaining
emotion judgments and physiological response data from 60
participants. On the basis of previous physiological studies
involving testing sessions lasting more than 1 h we were expecting
several sources of data loss (e.g., electrodes recording facial
muscle activity losing contact due to perspiration). Therefore, we
recruited more than the necessary number of participants on an
ongoing basis, 110 in total, through our departmental participant
pool, until we obtained a complete data set from 60 participants.
On average, the final 60 participants (40 females, 15 males, 5
undeclared) were 22.9 years of age (SD = 7.2) with 4.0 years of
music training (SD= 3.9).

Stimuli and Apparatus
Our stimuli consisted of 60 excerpts of high-quality MIDI music
drawn from across four genres – Blues, Metal, Pop, and R&B (15
excerpts per genre). Each excerpt spanned approximately 32 bars
in duration. We chose to use MIDI music because of the broad
range of meta-level information that may be precisely extracted,
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consisting of both musical features (e.g., pitch and tempo) and
event-related features (e.g., velocity and event onset times), which
we plan to use in a separate project.

All 60 excerpts, listed in Appendix 1, were selected such
that audio renderings of these MIDI files were representative of
their respective genres, and were reasonably consistent with the
original versions released commercially. We used MIRtoolbox
(Lartillot and Toiviainen, 2007; Lartillot et al., 2008) to extract
12 low-level acoustic to mid-level musical features. These
features captured information corresponding to rhythm, timbre,
dynamics, pitch, and tonality, and were used in several previous
studies on music and emotion (MacDorman et al., 2007; Mion
and de Poli, 2008; Laurier et al., 2009; Eerola and Vuoskoski,
2011). The 12 features – rms, lowenergy, eventdensity, tempo,
pulseclarity, centroid, spread, rolloff, brightness, irregularity,
inharmonicity, and mode – were obtained for each bar of each
excerpt (technical descriptions are available in Lartillot, 2014).

Participants used their dominant hand for providing
continuous emotion ratings, while their non-dominant hand
was connected to the Biopac MP150 data acquisition system
for measurement of physiological responses2. The five channels
of physiological data included heart rate (HR), respiration
rate (Resp), skin conductance level (SCL), and facial muscle
activity from zygomaticus major (Zyg) and corrugator supercilii
(Corr). HR was collected by attaching a photoplethysmogram
transducer, using a Velcro strap, to the distal phalange of the
middle finger of the non-dominant hand. The transducer was
connected to a PPG100C amplifier which measured capillary
expansion through an infrared sensor. Resp was measured
using a TSD201 respiration belt tightened around the abdomen
and attached to an RSP100C amplifier that recorded changes
in abdominal circumference. SCL was measured by attaching
two TSD203 Ag–AgCl electrodes to the distal phalanges of
the index and ring fingers of the non-dominant hand using
Velcro straps, connected to a GSR100C amplifier. Facial
muscle activity was measured by placing two electrodes over
Zyg and two electrodes over corrugator supercilii muscle
regions, separated by 25 mm and attached to an EMG100C
amplifier.

Physiological data were subjected to feature analysis in order
to extract features that have previously been associated with the
VA dimensions of emotion. Physiological correlates of valence
include Zyg and Corr activity (e.g., Witvliet and Vrana, 2007;
Lundqvist et al., 2009; Russo and Liskovoi, 2014). Physiological
correlates of arousal include autonomic measures such as HR,
respiration, and galvanic skin response (e.g., Iwanaga et al., 1996;
Krumhansl, 1997; Baumgartner et al., 2005; Etzel et al., 2006;
Sandstrom and Russo, 2010; Russo and Liskovoi, 2014).

Experimental Design and Data Collection
Our experiment was designed such that (a) each participant
listened to 12 of the 60 excerpts (i.e., three from each of four
genres) and (b) each excerpt was heard by 12 unique participants.
Participants received a listening order that was independently

2The current study utilizes mean responses (emotion judgments and physiological
responses); continuous ratings will be modeled in a separate study.

randomized to minimize the influence of presentation order.
Each excerpt was preceded by 30 s of white noise and followed
by 50 s of silence. The root-mean-square (RMS) level of white
noise was equalized with the mean RMS level across all 60
excerpts. White noise was used as our baseline for physiological
measurements on the basis of previous studies suggesting the
appropriate use of RMS-matched white noise as an emotionally
neutral baseline for isolating the effects of emotion on physiology
(Nyklicek et al., 1997; Sokhadze, 2007; Sandstrom and Russo,
2010).

Each participant heard a stimulus file with 12 excerpts in
randomized order, white noise, and silence in the following
sequence:

WN → Ex → S → WN → Ex → S . . .

Here, WN indicates white noise, Ex indicates excerpt, and S
indicates silence. During the silence phase, participants provided
familiarity and preference ratings on the excerpt they heard last.
All excerpts were presented at approximately 75 dB SPL over
Sennheiser HD 580 Precision Headphones. We used the EMuJoy
Software (Nagel et al., 2007) for continuous data collection of
emotion ratings on the two-dimensional axes of VA (Russell,
1980).

The experimenter provided participants with a description
of the two-dimensional model prior to data collection. It
was explained that the x-axis conveyed emotion ranging from
negative to positive (i.e., valence) and the y-axis conveyed
emotion ranging from calm to excited (i.e., arousal). Participants
were asked to continuously rate each excerpt on a two-
dimensional grid while listening. Before commencing, listeners
familiarized themselves with the EMuJoy interface while
listening to two test excerpts that were not included in
the formal experiment. After completion of data collection
from all 60 participants, mean VA ratings were computed
for each participant, for 32 bar-length segments and for the
entire excerpt (i.e., the data were averaged per track for
each participant). These values were then averaged across
the 12 participants to obtain a mean emotion rating profile
for that excerpt. This procedure was repeated for all 60
excerpts.

Data Preparation
Similar to emotion ratings, audio features were extracted for each
bar of the excerpt and then aggregated.

Filtering and baseline subtraction for physiological data were
performed using FeatureFinder (Andrews et al., 2014), a free
Matlab toolbox for physiological signal analysis. The following
high-pass (HP) and/or low-pass (LP) filters were applied to
raw physiological data: HR (LP = 4 Hz; HP = 0.5 Hz), Resp
(LP = 1 Hz; HP = 0.05 Hz), GSR (LP = 10 Hz; HP = 0.5 Hz),
Zyg, and Corr (LP = 500 Hz; HP = 5 Hz). Features were
obtained for each excerpt and baseline corrected by subtracting
the equivalent feature obtained in the final 20 s of 30 s white
noise that preceded the excerpt. Similar to audio features and
their corresponding emotion ratings, physiological features were
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FIGURE 2 | A conceptual visualization of ML methods with respect to interpretability and flexibility, adapted from James et al. (2013).

computed for each bar of the excerpt and then averaged for its
entire duration.

Machine Learning Models
There exists a multitude of ML methods for both classification
and regression. Figure 2 provides a conceptual visualization that
plots flexibility of methods against interpretability of methods.
Since our problem involves predicting emotion ratings as
opposed to identifying emotion classes, it is a regression problem.
There is no single perfectly suited method for a regression
problem. In general, models that are developed with methods

that are flexible tend to be powerful in terms of fitting the
training data (Hastie et al., 2009; James et al., 2013). However,
the ability to interpret the salience of features tends to be better
in models that have been developed using methods with less
flexibility.

Another related issue is that while flexible models can
outperform simpler models as regards to reducing training error,
they tend to overfit the regression function to the training set.
Hence, the performance of models on a given test set can
vary dramatically, making their predictions less generalizable.
There are two typical ways of addressing this generalizability
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problem. Option 1 involves starting with methods with
low flexibility and then moving toward methods with more
flexibility until arriving at a model with good performance
and generalizability. Option 2 involves starting with a flexible
method that improves the likelihood of arriving at a model
with good performance, and then moving toward a simpler
method that performs relatively well (Kuhn and Johnson, 2013).
We chose to adopt a hybrid approach, starting with a method
that typically yields intermediate flexibility (i.e., artificial neural
networks), and then progressing to methods with lower or
higher flexibility – linear regression and random forests (RFs),
respectively.

Feature Reduction
When dealing with a high-dimensional dataset, feature reduction
by PCA or other means is typically an important step,
reducing the storage and computational space while increasing
interpretability. In our case, since we were dealing with only 12
audio features, our intention was on the removal of confounding
variables. These 12 features serve as independent variables used
by our models for predicting the dependent variable – valence
or arousal. Although a feature may be strongly correlated with
the dependent variable when assessed in isolation, its correlation
with the dependent variable may be suppressed when assessed
in a model involving numerous features that share common
variance. Hence, we computed a correlation matrix of all 12
features. We used a threshold of r = |0.8| to remove features
that were strongly correlated with each other. Among the four
features – spectral centroid, spectral spread, rolloff, and brightness,
our results (Figure 3) showed that spectral centroid was strongly
correlated with all three features – spectral spread, rolloff, and
brightness (r > |0.8| , p < 0.001) whereas spectral spread and rolloff
were correlated only with two of the remaining three features.
Brightness was strongly correlated only with spectral centroid. As
a result, we chose to remove spectral centroid and rolloff from our
set of features. We also computed a correlation matrix of the five
physiological features for all 60 excerpts, with the same threshold
of r= |0.8| for feature removal. None of the features were strongly
correlated with each other. Hence, all five features were retained
in our models.

Initial Analyses
As a first step in our exploration of the data, we checked to see
how well the independent variables accounted for the dependent
variables, by examining correlations between the features and the
mean VA ratings for the 60 excerpts. We examined correlations
for the audio features and physiological features separately since
they were being used for separate prediction models.

We observed positive correlations with arousal ratings for
eventdensity, r(58)= 0.48, p < 0.005 and brightness, r(58)= 0.27,
p < 0.05. We observed negative correlations with valence ratings
for eventdensity (r(58) = −0.33, p < 0.05), spectral centroid
(r(58)=−0.3, p < 0.05), and brightness (r(58)=−0.34, p < 0.05).
Among the five physiological features, there were no significant
correlations with arousal ratings but several with valence. In
particular, we observed a negative correlation with valence ratings
for Corr, r(58) = −0.26, p < 0.05, and a positive correlation

FIGURE 3 | Correlations of the 12 audio features.

with valence ratings for Resp, although the latter only reached
marginal significance, r(58)=−0.24, p= 0.06.

Artificial Neural Networks
Our objective in modeling was not to merely provide a
prediction method for emotion judgments, but to also provide a
theoretical explanation for music emotion judgments. Multilayer
perceptrons (i.e., a type of artificial neural network) (Rumelhart
et al., 1986; Haykin, 2008) have been known to serve as useful
connectionist models for exploring theories in cognitive science
(see McClelland and Rumelhart, 1989; Vempala, 2014). Our
previous work (Vempala and Russo, 2012, 2013; Russo et al.,
2013) has shown that multilayer perceptrons with a single hidden
layer can lead to nonlinear regression functions for emotion
prediction with good explanatory power. Importantly, these
models also lend themselves to interpretation.

We implemented three different types of artificial neural
network ensembles for predicting emotion judgments of
listeners – one that used only audio features from music to model
emotion perceived by a listener (perception model), another that
used only physiological responses as features to model emotion
felt by a listener (feeling model), and a hybrid ensemble that
combined outputs from both these network ensembles (hybrid
model), henceforth referred to as a committee machine. All the
networks were implemented in Matlab. For all three models
(i.e., perception model, feeling model, and hybrid model), the
dependent variables were the same – VA. The independent
variables were audio features for the perception model, and
physiological features for the feeling model. Since the hybrid
model was a meta-level network that combined outputs from
both these models, its independent variables were both audio and
physiological features.

We built two networks with audio features as input – one for
predicting valence and one for predicting arousal. Each network
was a supervised, feedforward network that consisted of 10 input
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units (i.e., one unit for each feature), one hidden layer, and
one output unit for either valence or arousal. One important
consideration in the use of neural networks is the propensity
to overfit to training data, leading to underperformance when
exposed to new data. To make our neural networks more robust,
we adopted the following training and testing procedure.

Dataset preparation for training and testing
For testing a neural network’s performance, the dataset is usually
split into a training set consisting of approximately 70–90% of the
data, and a test set consisting of 10–30% of the data, respectively.
Some decrease in the network’s performance is expected from
the training set to the test set. Poor performance on the test
set indicates that the network has either not fully converged
while training (i.e., has been under-trained) or has been over-
trained. Hence, the network is retrained accordingly. While
this is a widely accepted method for validating performance,
problems tend to arise because of idiosyncrasies associated with
partitioning. In general, some partitions will lead to overfitting
while other partitions will lead to underfitting.

To mitigate problems associated with partitioning the dataset,
we used k-fold cross-validation. Here, the dataset is split into
k equal-sized partitions called folds. k is typically 5 or 10.
This allows us to use each of the k-folds as a test set with
the remaining k−1-folds as the training set. The procedure is
repeated k times. Performance results on all k-folds are then
averaged. We used fivefold cross-validation, which enabled us to
come up with five different trained networks. We separated our
dataset of 60 excerpts such that 44 were used for training the
models and the remaining 16 were used for testing the models.
Forty of the 44 excerpts were partitioned into fivefolds for cross-
validation. So, each fold consisted of eight excerpts with two
excerpts from each of the four genres. Each of the five networks
was trained on 36 excerpts – 32 from the remaining fourfolds
along with the additional four excerpts that were not used for
cross-validation.

Network architecture
For methodological reasons, we used separate networks for
predicting VA. This architectural decision enabled us to train
networks individually without letting convergence for one
dependent variable affect the other. It also allowed us to examine
feature salience separately for VA.

The networks had to predict VA ratings based on 10 audio
features and/or five physiological features (Figures 4, 5). As
such, the training set for each of the networks predicting valence
consisted of 36 input vectors and 36 corresponding output values
for valence, representing the 36 excerpts. Likewise, the training
set for each of the networks predicting arousal consisted of 36
input vectors and 36 corresponding outputs for arousal. For
the perception networks, each input vector had 10 values, one
for each feature. For the feeling networks, each input vector
had five values, one for each physiological feature, collapsed
across participants. The corresponding outputs with VA values
were again collapsed across participants. To maximize network
learning (within and across channels), all of the audio and
physiological inputs were scaled to a value between 0 and 1

FIGURE 4 | Perception network with 10 features, 3 hidden units, and 1
output.

FIGURE 5 | Feeling network with five features, three hidden units, and one
output.

(Bishop, 1995) for each feature. VA values for all excerpts were
obtained on a scale ranging from −1 to 1. To make these values
compatible across the networks, we scaled them to a range
between 0 and 1. We chose to reduce the number of hidden
units to a number that offered us a flexible non-linear solution
while minimizing the likelihood of overfitting. To do so, we used
an iterative process of trial and error where we started with the
number of hidden units equal to the number of input units, then
reduced this number by one at each step, while checking to see if
the network’s performance remained consistent. Following this
process, we decided to keep the number of hidden units to 3.
Thus, the network architecture consisted of either 10 input units
(one for each audio feature) or five input units (one for each
physiological feature), a single hidden layer with three units, and
one output unit (either for valence or for arousal).

The following procedure was used to train the network:

(1) Connection weights Whi (input units to hidden units)
and Woh (hidden units to output units) were initialized
to random numbers between −0.05 and 0.05. Input
vectors were fed to the network from the training set
in a randomized order. Inputs were multiplied with the
connection weights Whi, and summed at each hidden unit.

(2) Hidden unit values were obtained by passing the summed
value at each hidden unit through a sigmoid function. These
values were multiplied with the connection weights Woh,
summed at each output unit, and passed through a sigmoid
function to arrive at the final output value between 0 and 1.
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(3) Squared errors between the network’s output and the
mean valence or arousal rating were computed. The
backpropagation algorithm using gradient descent was
applied and changes in connection weights were stored.
At the end of the entire epoch, connection weights were
updated with the sum of all stored weight changes.

The perception networks were trained for approximately
2000–3000 epochs by repeating step (2) to reduce the mean-
squared error to less than 0.045. The feeling networks took
longer to train than the perception networks, and required
approximately 15,000–30,000 epochs of training in order to
reduce the mean-squared error to less than 0.045. The learning
rate parameter was set to 0.1.

After training, each network was tested on its fold and the
root mean-squared error (RMSE) was computed. RMSE values
for the audio and physiological networks are shown in Tables 1, 2,
respectively. The mean and standard errors for perception and
feeling networks, for VA, indicate that both types of networks
were more-or-less similar in their averaged performance across
the fivefolds.

Performance of perception and feeling networks
After completing network training, we tested the trained
networks on the remaining 16 excerpts. We used all five
perception networks together as an ensemble and averaged their
outputs to give the final output for each test excerpt, for VA. We
used the same procedure to compute outputs from the feeling
networks. For valence, RMSE values for the perception network
ensemble and the feeling network ensemble were 0.27 and 0.34,
respectively, suggesting that the perception networks performed
better than the feeling networks in predicting valence. For
arousal, RMSE values for the perception network ensemble and

TABLE 1 | RMSE values of the five perception networks.

Fold Valence RMSE Arousal RMSE

1 0.27 0.18

2 0.21 0.34

3 0.16 0.33

4 0.26 0.14

5 0.16 0.15

Mean 0.21 0.23

SE 0.03 0.05

SE indicates standard error.

TABLE 2 | RMSE values of the five feeling networks.

Fold Valence RMSE Arousal RMSE

1 0.26 0.25

2 0.24 0.33

3 0.19 0.29

4 0.23 0.24

5 0.24 0.35

Mean 0.23 0.29

SE 0.01 0.02

SE indicates standard error.

FIGURE 6 | Committee machine – a hybrid network combining results from
the perception and feeling network ensembles.

the feeling network ensemble were 0.24 and 0.23, respectively,
suggesting that both networks performed similarly.

Committee machine
Our next step was to build a model under the assumption
that (a) listeners make separate emotion assessments based on
what they perceive from the music and what they feel when
listening, and (b) their final appraisal of emotion is based on a
weighted judgment that takes contributions from both sources
into account. This led us to implement our final hybrid model –
a committee machine (Haykin, 2008). The committee machine
is a meta-level network, as shown in Figure 6, which combines
outputs from each individual ensemble to arrive at its final
output.

First, we implemented a basic committee machine, which
merely averaged the outputs from both network ensembles.
Specifically, when predicting either the valence or the arousal
of an excerpt, outputs from the perception network ensemble
and the feeling network ensemble were combined with equal
weight contributions of 0.5. RMSE values for the committee
machine with ensemble averaged weights (CMEA) were 0.28
for valence and 0.21 for arousal. These results indicate that for
valence, the basic committee machine performed about as well
as the perception networks and better than the feeling networks.
However, for arousal, the basic committee machine performed
better than both perception and feeling networks.

Next, we implemented a committee machine that was
consistent with our hybrid framework where weights from each
of these network ensembles contributed to the final emotion
judgment in a way that illustrated meta-level decisions based
on emotion conveyed by perception and feeling. To obtain
an optimal linear combination of the weights (Hashem, 1997)
from each of these individual network ensembles, we performed
multiple linear regression such that outputs from these individual
ensembles were used as independent variables and mean VA
ratings were used as dependent variables. Linear regression was
performed on the entire set of 60 excerpts. The models for VA are
provided in Equations (1) and (2), respectively.

yV = 0.757x1V + 0.164x2V + 0.056 (1)

yA = 0.813x1A + 0.968x2A − 0.396 (2)
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Here, yV and yA refer to the VA outputs of the committee
machine on a scale from 0 to 1. x1V and x1A refer to the VA
outputs from the perception network ensemble on a scale from
0 to 1. Likewise, x2V and x2A refer to the VA outputs from the
feeling network ensemble on a scale from 0 to 1.

Based on Equation (1), for valence, the meta-level network
applies a weight of 0.757 to the perception ensemble output,
1.164 to the feeling ensemble output, and has a bias unit
of weight 0.056. Likewise, for arousal, based on Equation
(2) the meta-level network applies a weight of 0.813 to the
perception ensemble output, 0.968 to the feeling network output,
and has a bias unit of weight −0.396. To understand the
salience of each individual network’s contribution to the overall
prediction, we computed their proportion contributions while
ignoring the intercepts. For valence, the weight contributions
were 82.2% from the perception ensemble and 17.8% from
the feeling ensemble. For arousal, the weight contributions
were 45.6% from the perception ensemble and 54.4% from
the feeling ensemble. As expected, this committee machine
(CMLR) performed better than the individual ensembles, and
the CMEA, with RMSE values of 0.26 for valence, and 0.2 for
arousal.

Linear Regression
Although neural networks helped us from the perspective of
cognitive modeling, we wanted to ensure from the perspective
of ML that neural networks were not too powerful for our
needs. Perhaps a simpler and more interpretable approach could
predict VA ratings just as well. To mitigate the possibility of
overfitting and to allow for a consistent comparison between
models obtained from different ML methods, we again used
fivefold cross-validation with the same 44 excerpts that were
used for our neural networks. We performed stepwise forward
regression to examine which of the 10 audio features were
strongly correlated with the VA ratings. The stepwise criteria
in our regression models included variables which increased
probability of F by at least 0.05, and excluded variables which
decreased probability of F by less than 0.1. This led to four
derived regression models that predicted valence, and five
derived regression models that predicted arousal, using audio
features.

For valence, the first model accounted for 17.9% of the
variance in ratings, F(1,34) = 7.39, p < 0.05. The model
contained only brightness as its predictor variable (p < 0.05).
The second model accounted for 18.3% of the variance in ratings,
F(1,34) = 7.63, p < 0.01. Again, the model contained only
brightness as its predictor variable (p < 0.01). The third model
accounted for 25.4% of the variance in ratings, F(2,33) = 5.62,
p < 0.01. The model contained brightness and lowenergy as
its predictor variables (p < 0.01, p < 0.05, respectively). The
fourth model accounted for 36.9% of the variance in ratings,
F(3,32) = 6.24, p < 0.01. The model contained brightness,
lowenergy, and mode as its predictor variables (p < 0.01, p < 0.05,
and p < 0.05, respectively).

For arousal, the first model accounted for 33.4% of the
variance in ratings, F(1,34) = 17.02, p < 0.001. The model

contained only eventdensity as its predictor variable (p < 0.001).
The second model accounted for 43.9% of the variance in
ratings, F(1,34) = 26.6, p < 0.001. The model contained only
eventdensity as its predictor variable (p < 0.001). The third model
accounted for 39.0% of the variance in ratings, F(2,33) = 10.6,
p < 0.001. The model contained eventdensity and mode as its
predictor variables (p < 0.01 and p < 0.05, respectively). The
fourth model accounted for 23.6% of the variance in ratings,
F(1,34)= 10.5, p < 0.01. The model contained only eventdensity
as its predictor variable (p < 0.01). The fifth model accounted for
28.5% of the variance in ratings, F(1,34) = 13.6, p < 0.01. Again,
the model contained only eventdensity as its predictor variable
(p < 0.01).

We performed stepwise forward regression with the same
criteria as before, using the five physiological features as
our predictors. This led to three derived regression models
that predicted valence. No significant model emerged for
arousal.

For valence, the first model accounted for 12.8% of the
variance in ratings, F(1,34) = 5.01, p < 0.05. The model
contained only Corr as its predictor variable (p < 0.05). The
second model accounted for 14.4% of the variance in ratings,
F(1,34) = 5.72, p < 0.05. The model contained only Corr as
its predictor variable (p < 0.05). The third model accounted
for 24.9% of the variance in ratings, F(1,34) = 11.28, p < 0.01.
Again, the model contained only Corr as its predictor variable
(p < 0.01).

We tested these linear regression models on the 16 excerpts,
which the networks had previously not been exposed to. We used
all four perception models for valence and all five perception
models for arousal as ensembles by averaging their outputs to
give the final output for each test excerpt. We used the same
procedure for averaging outputs from the three feeling models for
valence. For valence, RMSE values for the perception ensemble
and the feeling ensemble were 0.25 and 0.66, respectively, clearly
showing that the perception ensemble performed much better
than the feeling ensemble in predicting valence. For arousal, a
comparison between perception and feeling ensembles could not
be made since no significant model emerged using physiological
features. RMSE for the perception ensemble was 0.23. These
results indicate that with audio features, a linear model was
sufficient to achieve prediction performance similar to a more
flexible model such as a neural network; however, with physiology
features, a flexible, nonlinear ML model was necessary to capture
the predictive capacity of the independent variables.

Random Forests
Our next step was to see if an approach to modeling with greater
flexibility than neural networks could lead to better performance.
To reiterate, we were interested in whether a different ML model
could offer better prediction, ignoring its suitability as a cognitive
computational model. We used RFs (Hastie et al., 2009; James
et al., 2013) for this purpose, and implemented them using the
caret (Kuhn et al., 2016) and mlbench (Leisch and Dimitriadou,
2010) packages in R. Random forests create an ensemble of
decision trees. Features from the available list are randomly

Frontiers in Psychology | www.frontiersin.org January 2018 | Volume 8 | Article 2239110

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02239 January 4, 2018 Time: 15:51 # 9

Vempala and Russo Modeling Emotion Judgments

selected with replacement to first construct individual decision
trees using the training data. After several such decision trees are
constructed, whenever a new sample is fed to the random forest,
predictions are made by these trees. The mean of all predictions
is used as the bagged final prediction of the random forest. So,
RFs, by nature, are an ensemble method, and are therefore useful
for reducing error due to overfitting. An additional aspect of
RFs is that they repeatedly take bootstrapped samples from the
training data, with replacement, to construct decision trees. This
process also helps in reducing error due to overfitting. As such,
splitting the data using k-fold cross-validation is considered to be
unnecessary.

Again, we trained separate random forest models for VA
using audio features and physiology features and tested these
trained models on the 16 test excerpts. For valence, RMSE values
for the perception model and the feeling model were 0.25 and
0.28, respectively, displaying the same pattern as before, with
perception features enabling better performance than feeling
features. For arousal, RMSE values for the perception model and
the feeling model were 0.2 and 0.26, respectively, suggesting that
the perception model had an advantage.

As seen in Table 3, the Random Forest models obtained
using audio features or physiological features were comparable
in performance to the committee machine derived using an
ensemble of neural networks.

DISCUSSION

In this study, we revisited the classic debate on music
and emotion involving the cognitivists and the emotivists.
We approached the debate from a computational modeling
perspective by using neural networks (multilayer perceptrons).
We modeled emotion judgments from the cognitivist perspective
using deep and surface-level audio features obtained from the
music alone. Likewise, we modeled emotion judgments from the
emotivists perspective using features that relate to felt emotion
(i.e., physiological responses). Both networks performed similarly
for arousal. However, for valence, the perception networks (i.e.,
cognitivist) performed better than the feeling networks (i.e.,
emotivist).

We also proposed another possibility that emotion judgments
can be modeled as a meta-level cognitive decision-making
process that combines output from a perception module and
a feeling module (Figure 1) – a hybrid of the cognitivist
and emotivist positions. In this scenario, a perception module
takes its input from features drawn from the music, while a
feeling module takes its input from features drawn from listener
physiology. We modeled this possibility using a committee
machine that combined VA contributions from two separate
network ensembles – a perception network ensemble and a
feeling network ensemble. The committee machine performed
better than the individual ensembles.

The committee machine enabled us to understand the
contribution of each individual network ensemble. For valence,
the weight contributions were 82.2% from the perception
ensemble and 17.8% from the feeling ensemble. For arousal, the TA
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weight contributions were 45.6% from the perception ensemble
and 54.4% from the feeling ensemble. From a theoretical
perspective, these findings suggest that felt emotion is more
salient in arousal judgments and that perceived emotion is more
salient in valence judgments. Given that the feeling ensemble
consists of physiological features, and contributed more toward
arousal than the perception ensemble, these findings also support
the current view in the field about the tight correspondence
between physiological features and the arousal dimension of
emotion.

We also assessed the validity of our ML method (i.e.,
neural networks) used for building the committee machine, by
comparing it with two other ML methods – multiple linear
regression and RFs. To keep comparisons between ML methods
consistent, we used the same partitioning of data for training and
testing with fivefold cross-validation. This comparison allowed
us to ensure that we found the right balance between feature
interpretability and model flexibility with neural networks.
Multiple linear regression while being less flexible than neural
networks as a regression method afforded us the ability to
interpret features better. However, this approach revealed its
own limitations associated with lack of flexibility. We found
that linear methods were not sufficient for deriving a robust,
generalizable regression function, using physiological features.
When physiological features were used individually as predictors,
they were not able to yield a regression model with significant
predictors. We refer to these cases as “no model,” indicating that
none of the features satisfied the inclusion criteria as predictors
in a regression model. However, when the features were used in
combination with each other as a nonlinear regression function
within neural networks, they performed as well or better than
audio features in predicting arousal. We chose RFs as our third
method, since they are a highly flexible ML method offering
various benefits (i.e., building decision trees through binary
recursion, repeated subsampling of features and training data
to create variance, and ensemble averaging of trees to avoid
overfitting). Despite these advantages, the RF approach did not
lead to models with greater explanatory power than that which
was obtained using neural networks.

There are several important limitations to this work. First,
it is important to acknowledge that we cannot fully isolate
features that reflect felt emotion as distinct from those that
reflect perceived emotion. In all likelihood, the perception of
emotion influences the feeling of emotion, independent of the
way in which these two networks eventually combine at the
level of cognition. Future work should attempt to reconcile
this important detail. As we noted at the outset, the models
considered here are skeletal and built upon some rather crude
assumptions. Second, we have no way of assessing the quality
of the features that we provided to the models. The audio
features considered as input in the perception models may or

may not have been a subset of the full profile of features that
were actually processed by listeners. Similarly, although the
physiological features we extracted are clearly associated with
felt emotion, they do not likely represent the full profile of
neurobiological features underlying felt emotion. Accordingly,
the power of all of the networks considered here should be
considered as bounded by the decisions that were made regarding
inputs. Finally, our modeling attempts were handicapped by the
size of our dataset. We noticed correlations between some of
the physiological features and arousal in some of the genres
considered. However, the size of these correlations was reduced
when the entire dataset was modeled. Since each genre was
limited to 15 excerpts, models derived at the genre level should be
interpreted with caution due to concerns about generalizability.
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Borderline personality disorder (BPD) is a serious and complex mental disorder with

a lifetime prevalence of 5.9%, characterized by pervasive difficulties with emotion

regulation, impulse control, and instability in interpersonal relationships and self-image.

Impairments in interpersonal functioning have always been a prominent characteristic

of BPD, indicating a need for research to identify the specific interpersonal processes

that are problematic for diagnosed individuals. Previous research has concentrated on

self-report questionnaires, unidirectional tests, and experimental paradigms wherein the

exchange of social signals between individuals was not the focus. We propose joint

musical improvisation as an alternative method to investigate interpersonal processes.

Using a novel, carefully planned, ABA′ accompaniment paradigm, and taking into

account the possible influences of mood, psychotropic medication, general attachment,

and musical sophistication, we recorded piano improvisations of 16 BPD patients and

12 matched healthy controls. We hypothesized that the insecure attachment system

associated with BPD would be activated in the joint improvisation and manifest in

measures of timing behavior. Results indicated that a logistic regression model, built on

differences in timing deviations, predicted diagnosis with 82% success. More specifically,

over the course of the improvisation B section (freer improvisation), controls’ timing

deviations decreased (temporal synchrony became more precise) whereas that of the

patients with BPD did not, confirming our hypothesis. These findings are in accordance

with previous research, where BPD is characterized by difficulties in attachment

relationships such as maintaining strong attachment with others, but it is novel to find

empirical evidence of such issues in joint musical improvisation. We suggest further

longitudinal research within the field of music therapy, to study how recovery of these

timing habits are related to attachment experiences and interpersonal functioning in

general.

Keywords: interpersonal synchronization, musical improvisation, interpersonal functioning, borderline personality

disorder, music information retrieval, music therapy, attachment, timing
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INTRODUCTION

Borderline personality disorder (BPD) is a serious and complex
mental disorder characterized by pervasive difficulties with
emotion regulation, impulse control, and instability in
interpersonal relationships and self-image (Skodol et al.,
2002). The lifetime prevalence of BPD is 5.9% (Grant et al.,
2008). Since its earliest descriptions in the literature, impairment
in interpersonal functioning has been a prominent characteristic
of people with BPD, both from theoretical and diagnostic
standpoints (Stern, 1938; Kernberg, 1967).

Despite the long history and that all current evidence-based
treatments of BPD include strategies to improve interpersonal
functioning, there remains a serious need to elucidate the specific
interpersonal processes that are problematic for individuals
diagnosed with BPD (Hill et al., 2011).

There are different methods that have been used for
assessing interpersonal functioning in BPD individuals.
Interpersonal functioning is traditionally measured by self-report
questionnaires and interviews (Sinnaeve et al., 2015). Researchers
have recently used other methods, such as experimental
paradigms, behavioral observations, ecological momentary
assessment, neuroscience based and psychophysiological tasks,
with the aim to assess and characterize better interpersonal
difficulties (see review Lazarus et al., 2014). However, most
studies in BPD use unidirectional tests, such as concerning facial
emotions expressed in pictures (Roepke et al., 2013; Lowyck
et al., 2016). A disadvantage of both self-report questionnaires
and current experimental paradigms is that the “hallmark
of social interaction, the circular exchange of social signals
between two or more individuals” (Roepke et al., 2013, p. 9) is
not the focus of study. In this paper, we propose accompanied
musical improvisation as an alternative method to investigate
interpersonal processes associated with BPD. The embodied
context of the musical interaction makes it possible to study the
automatic, preconscious behavior within complex interpersonal
interactions, which constitutes a lacuna in unidirectional tests.

Musical improvisation is frequently used in case studies

to study interpersonal processes in music therapy with BPD

patients (De Backer and Sutton, 2014). Clinical research in

music therapy has a long tradition of qualitative research, based
on detailed video and audio analyses of cases (Wheeler and
Kenny, 2005; Lee and McFerran, 2015). The various methods
and approaches that have been developed to study musical
improvisations require many cycles of subjective listening and
reflection in order to describe, analyze and interpret the
therapeutic significance of the music (Bonde, 2005; Wosch
and Wigram, 2007). Case study research from music therapy
describes difficulties in musical interaction within the BPD
population (Kupski, 2007; Knoche, 2009; Odell-Miller, 2011;
Plitt, 2012; Hannibal, 2014; Strehlow and Lindner, 2016).
Strehlow and Lindner (2016) described and categorized different
interpersonal interaction dimensions of a music therapy process
with BPD patients on the basis of an intensive case study (n
= 20). Based on subjective analysis of music therapy video
recordings, they identified 10 interaction patterns reflecting
typical BPD themes such as splitting phenomena, trauma genesis,

aggression and mentalization, and regulation of proximity and
distance. One of the contributions of our study is to provide
more objective, empirical evidence of the playing habits, and
interpersonal behavior of BPD patients. For this, we will be
using Music Information Retrieval (MIR) variables to quantify
the playing habits and interpersonal behavior in musical
improvisation with BPD individuals. To our knowledge, there is
no existing research on the actual playing and interactions (i.e.,
interpersonal musical behaviors) of patients with BPD in music
therapy.

Attachment Theory Predicts Impairments
in Temporal IPS in BPD Individuals
Previous experimental research on musical improvisation
has focused on individual performers (e.g., Keller et al.,
2011; Norgaard, 2011, 2014). More recently, researchers have
emphasized the interaction in joint improvisation as an
ecologically valid domain to investigate interpersonal processes,
and spontaneous coordinated behavior such as interpersonal
synchronization (IPS) in particular (Keller et al., 2014; Walton
et al., 2015). In a musical joint improvisation, the playing
behavior emerges within a context of social collaboration, and
without musical scores. Joint musical improvisation is a complex
interaction to study, but Jeung and Herpertz (2014) stress the
importance of socially complex stimuli to study interpersonal
processes in patients with BPD.

Fundamental to the interactions involved in joint musical
improvisation are affective and temporal IPS (Iyer, 2004; De
Backer and Foubert, 2011; Hennig, 2014). Affective IPS in
musical improvisations consists of shared moments that are
important in changing the relationship and moving it to a
deeper level of intersubjectivity within a therapeutic process.
There have been a number of studies concerning affective
IPS, addressing synchronicity (De Backer, 2008), meaningful
moments (Amir, 1996), significant moments (Trondalen, 2006),
affect attunement (Trondalen and Skårderud, 2007), and inter-
affective synchronization (Schumacher and Calvet, 2007).

In this study, we will focus on temporal IPS. Temporal IPS
entails the capacity to plan and execute specific actions at precise
times, in relation to other performers. People can synchronize
spontaneously, such as when people start to walk unintentionally
in the same gait cadence. Other forms of temporal IPS can be
intentional, for instance when dancers attune their movements
to those of a partner. Temporal synchronization in a joint action
is generally assessed based onmeasurements of “asynchronies” or
timing deviations between people (Mills et al., 2015).

Experimental research in the normal healthy population
demonstrates a strong relationship between the quality of
temporal IPS in (musical) joint action and experiences related
to social cohesion (Marsh et al., 2009), cooperation (Anshel
and Kipper, 1988; Wiltermuth and Heath, 2009), bonding
and attachment (Hove and Risen, 2009; Wheatley et al.,
2012). As for the BPD population, individuals appear to
cooperate less in an experimentally manipulated interpersonal
context than do controls (Lazarus et al., 2014). Further, BPD
individuals are likely to have more difficulties in repair of
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relationship ruptures than controls (King-Casas et al., 2008).
Ruptures in cooperation seem to be associated with diminished
trust in the interacting partner (Seres et al., 2009; Unoka
et al., 2009). Finally, oxytocin, a neuropeptide known to
enhance cooperation and prosocial behavior for instance in
musical joint action (e.g., Grape et al., 2002), may have
paradoxical effects for BPD individuals. For example, a study
of Bartz et al. (2010) showed that intranasal administration
of oxytocin did not have its normal trust facilitating effects
in response to a hypothetical partner cooperation in BPD
individuals.

From a theoretical viewpoint, BPD is typically characterized
by disturbed attachment (Agrawal et al., 2004; Gunderson and
Lyons-Ruth, 2008; Beeney et al., 2016). According to attachment
theory (Bowlby, 1988), the quality of relationships, such as
measured by child-caregiver IPS, results in the development
of mental representations, including beliefs about the self,
expectations about interpersonal relationships and their quality,
all of which act as prototypes or attachment patterns (e.g.,
secure/insecure) in later adult social interactions (Fraley, 2002;
Shaver and Mikulincer, 2005; Scott et al., 2009; Lindsey and
Caldera, 2014). This attachment theory is supported by research
suggesting that the quality of child-caregiver IPS is critical
to the emergence of other socio-cognitive and socio-affective
abilities (Crandell et al., 2003; Feldman, 2007a; Newman et al.,
2007; Feldman, 2007b, 2012; Gratier, 2009; Hobson et al., 2009;
Guedeney et al., 2011; Kiel et al., 2011; Kleinspehn-Ammerlahn
et al., 2011; Dumas et al., 2014).

Empirical research shows that BPD patients have difficulties
in maintaining close relationships, and attachment relationships
in particular (e.g., romantic partner, Melges and Swartz, 1989;
Levy, 2005; Gunderson and Lyons-Ruth, 2008; Choi-Kain
et al., 2009; Fonagy and Luyten, 2009; Beckes and Coan,
2011; Levy et al., 2015; Beeney et al., 2016). Difficulties
in attachment relationships are characterized by oscillations
between opposing fears of abandonment and dependency,
between neediness and angry withdrawal (Melges and Swartz,
1989). This leads to unstable relationships and difficulties in
maintaining strong attachments with others (Bodner et al.,
2011). For example, a recent study by Lazarus and Cheavens
(2016) found that women with BPD reported more relationship
ruptures within the previous month compared to healthy control
women.

Based on attachment theory and associated empirical research,
we predict that in our study involving an accompanied musical
improvisation, the (insecure) attachment system will be activated
in BPD patients, and this will affect temporal IPS between
therapist and BPD patients. More specifically, we predict:

(1) poorer temporal IPS, represented by higher overall timing
deviations, for BPD patients compared to normal controls;

(2) more oscillations (e.g., more variability) in timing deviations
between therapist and BPD patients compared to normal
controls;

(3) problems in maintaining and improving IPS between
therapist and BPD individuals in the course of the joint
improvisation compared to normal controls.

Impulsivity Traits Predict Differences in
Temporal IPS in BPD Individuals
Additionally, from the perspective of BPD pathology, we assume
that impulsivity, a core feature of BPD, will influence temporal
IPS in a joint musical improvisation. Impulsivity is one of the
9 diagnostic criteria in the Diagnostic and Statistical Manual of
Mental Disorders, 4th edition (DSM-IV; American Psychiatric
Association, 1994). In the literature, BPD is often described
and conceptualized as a disorder characterized by high levels of
impulsivity (Silk, 2000; Depue and Lenzenweger, 2001; Widiger
and Costa, 2002; Scott et al., 2009). These findings motivate a
further prediction for our own study, that (4) BPD patients will
play in a more impulsive manner than normal controls. In other
words, we predict that BPD individuals will be less inhibited in
their playing than normal controls and adapting to the therapist’s
playing more readily.

THE PRESENT STUDY

In this study, we propose using MIR variables for investigating
how aspects of a participant’s piano playing vary across an
accompanied improvisation. Generally, the field of MIR is
concerned with the extraction of meaningful information from
musical content (Peeters, 2013). Relevant existing work includes
research on performance style analysis (Dannenberg et al.,
1997; Widmer, 2002; Widmer and Goebl, 2004; Stamatatos and
Widmer, 2005; Cheng and Chew, 2008; Chew, 2012), temporal
coordination between performers (e.g., Loehr and Palmer, 2011;
Keller et al., 2014; Washburn et al., 2014), and one improvisation
study involving people with mental retardation (Luck et al.,
2006). Luck et al. (2006) found significant associations between
musical behavior and diagnosis level—that “most of the features
that predicted level of mental retardation related to temporal
aspects of the clients’ improvisations” (p. 43). We use MIR
variables to measure the presence and development of temporal
IPS between accompanist and participant, and to measure the
presence of rhythmic motifs/patterns in participants’ playing.
The temporal IPS variables overlap with those used in previous
work (e.g., Widmer and Goebl, 2004; Luck et al., 2006; Loehr and
Palmer, 2011), although, as we are motivated by different aspects
of theory and are therefore investigating different predictions,
there is not necessarily a one-to-one correspondence between
variable definitions. It is the application of these variables in the
context of BPD and joint improvisation that is novel.

Work on performance style analysis and temporal
coordination between performers tends to identify temporal,
dynamic, and articulatory variable categories. There is a focus
on how performers vary in playing the same piece, with less
attention paid to what notes are played, since this is the same or
very similar across performances. Relative to this literature, the
variables we calculate include some novel quantifications of what
is being played—of rhythmic motifs/patterns, based on previous
investigations into automatic pattern discovery in music (Collins
et al., 2010, 2016; Collins and Meredith, 2013). While our
hypotheses are concerned mainly with temporal IPS, it could be
that aspects of attachment style and impulsivity manifest not so
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much in timing information as in other dimensions of musical
organization.

Taking the introduction and this section on MIR variables
together, in this study we propose a novel structured piano
improvisation paradigm and MIR variables to investigate how
aspects of temporal IPS vary across the improvisation. We
use logistic regression modeling with these MIR variables as
independent variables, to predict whether a given participant is a
patient or a control, as well as to address our predictions (1)–(4).

METHODS

Participants
A sample of 16 carefully screened BPD patients and 12 matched
normal controls participated in the study. Participants in the BPD
group were patients consecutively admitted in the psychiatric
hospital UPC KULeuven, Kortenberg (Belgium), who met the
following inclusion criteria: (a) a primary diagnosis of BPD
according to the structured clinical interview for Diagnostic and
Statistical Manual of Mental Disorders, fourth edition (DSM–IV)
Axis II disorders (SCID-II), (b) age between 21 and 60 years, and
(c) not participated in music therapy sessions previously. Twenty
eight patients were screened for BPD, 20 patients who fulfilled
the inclusion criteria were asked to participate in the study, and,
subsequently, 16 patients confirmed willingness to do so.

Participants in the matching normal control sample were
recruited from the community, based on characteristics from the
BPD group. Control participants were pairwise-matched with the
BPD sample on gender, age, level of education, level of musical
education, and musical principal instrument. Sixteen potential
participants were asked and agreed to participate. Four of these
participants were excluded because they fulfilled criteria for at
least one personality disorder based on the Assessment of DSM-
IV personality Disorders (ADP-IV), a self-report questionnaire
for personality pathology (see below).

In summary, we collected and carried forward to the analysis
data from 16 BPD patients and12 matched controls. The absence
of matches for four BPD patients was not of particular concern,
because from a methodological standpoint, even if matching has
been performed, this does not necessitate a matched analysis
(Pearce, 2016).

The study was carried out in accordance with the
recommendations of the local ethics committee, UPC
KULeuven, and the central ethics committee, UZ KULeuven. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. After being provided with the necessary
information, all participants (BPD group and matched normal
control group) signed informed consent forms and were given an
appointment to participate in the improvisation within 4 days.
After completing the musical improvisation, participants were
asked to fill out the questionnaires as detailed below.

Most of the BPD patients were female (12 female; 3 male;
1 transgender). The mean age was 31 years (sd = 9.41;
range 21–51). Three patients completed primary high school,
four secondary high school, six higher education (professional
bachelor), and three higher education (academic master). Seven
patients indicated experience of playing a musical instrument,

among which five patients indicated that they had received
musical education and two patients described themselves as
autodidacts. Two patients had 1 year of musical education; two
patients had 2 years of musical education; one patient had 7
years of musical education; one patient had one and a half years
autodidactic experience; and one patient had 7 years autodidactic
experience. Three patients indicated voice as principal musical
instrument, two patients played guitar, one patient piano, and
one patient flute.

At the time of the study, 50% of the BPD patients were
receiving psychotropic medication. Most patients were using
more than one type of psychotropic medication (n = 5);
only three patients (19%) were using one type of psychotropic
medication.

Questionnaires and Measurements
Both BPD patients and normal controls completed (a) a listening
test of beat perception, (b) a questionnaire assessing age,
gender, educational level, musical principal instrument, musical
educational level, music therapy history, motoric restrictions,
hearing problems, and sensitivity for sound, (c) self report
measures of musical sophistication to analyse the confounding
influence of musical experiences (d) self report measures
of attachment (see below). Data on depression and current
psychotropic medication were only gathered for the BPD group.
Our reasoning for testing the influence of depression was because
depression has been hypothesized as a possible confounder in
interpersonal functioning in BPD (Fonagy and Bateman, 2008;
Lowyck et al., 2016). Current psychotropic medication was
gathered based on the medical records of the BPD patients.

The Goldsmiths Musical Sophistication Index

(Gold-MSI)
The Goldsmiths Musical Sophistication Index (Müllensiefen
et al., 2014) is a self-report inventory for individual differences
in musical sophistication. Because no Dutch translation was
available, we made use of a back-translated design (Hambleton,
2005) to provide a Dutch translated version of the test. Gold-
MSI is a 38-item self-report questionnaire. A range of musical
skills, abilities, and behaviors are measured which are observable
in both musicians and non-musicians. The Gold-MSI assesses
General Musical Sophistication and includes additional five
subscales: Active Engagement, Perceptual Abilities, Musical
Training, Singing Abilities, and Emotions.

Beat Alignment Test
The Iversen and Patel’s (2008) beat alignment test is a beat
perception test that includes 18 short fragments of instrumental
music (each excerpt 10–16 s in duration). The 18 excerpts
originate from nine musical pieces within three different styles:
Rock, jazz, and well-known classical. The tempi of the short
excerpts have a range 85–165 BPM. Participants were invited to
listen to the excerpts and to respondwhether a simultaneous beep
track was on or off the beat of the music. Half of the excerpts had
beep tracks exactly on the beat of the music, the other excerpts
had beep tracks off the beat.
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Diagnostic Inventory for Depression (DID)
The DID (Zimmerman et al., 2004) is a 38-item self-report scale.
Both severity of depression and symptom frequency are assessed
based on DSM-IV criteria. From this study, we used only the
nineteen-item severity subscale. The DID has high levels of test-
retest reliability, and good convergent and discriminant validity.
The DID was only administered in the BPD group.

Structured Clinical Interview for DSM-IV Axis II

Disorders (SCID II)
The SCID II interview (First et al., 1997), in a dutch translated
version (Weertman et al., 2000), consists of 119 questions
assessing the DSM-IV personality disorders (i.e., paranoid,
borderline, narcissistic, schizoid, schizotypal, antisocial,
histrionic, avoidant, dependent, and obsessive compulsive).
We administered a selection of the SCID, namely the questions
assessing borderline personality disorder (15 questions). The
SCID-II was only registered in the BPD group and was executed
by a senior psychologist, trained in the assessment of the SCID-II
interview.

Assessment of DSM-IV Personality Disorders

(ADP-IV)
The ADP-IV (Schotte et al., 1998) was administered in the
BPD group and the control group as a screening tool to detect
potential personality pathology. The ADP-IV is a screening tool
for personality disorder and includes 94 items in a randomized
order, which represent 80 criteria of the 10 DSM-IV personality
disorders, as well as two personality disorders listed in the
DSM–IV for research purposes (the depressive and passive-
aggressive personality disorders), which are represented in
additional 14 research criteria. Each item is rated on a seven-
point trait scale, from 1 (totally disagree) to 7 (totally agree).
When a person recognizes the presence of a trait and is giving
a score of five (rather agree) or higher on a trait question,
he/she is asked to answer an additional distress question,
“Has this characteristic ever caused you or others distress or
problems?” His/her additional answer is scored on a three-
point scale: 1 (totally not), 2 (somewhat), 3 (most certainly).
The ADP-IV provides dimensional and categorical scoring
formats. Categorical personality disorder diagnoses are acquired
according to the DSM-IV thresholds. In this study we used the
categorical scoring format. Control subjects were excluded in this
study when they scored above the respective DSM-IV thresholds.

Relationship Structures (ECR-R)
The Relationship Structures questionnaire (Fraley et al., 2011)
is a self-report measurement that is designed to assess
two fundamental dimensions underlying attachment patterns:
Anxiety and avoidance (Fraley et al., 2000). The anxiety
dimension assesses the extent to which people have the
tendency to worry about attachment-related concerns, such as
the availability and responsiveness of an attachment figure. The
avoidance dimension assesses the extent to which people have the
tendency to depend on others and to be uncomfortable opening
up to them. Prototypically secure people tend to score low on
both anxiety and avoidance dimensions. BPD patients tend to

score high on anxiety dimensions (Levy, 2005; Levy et al., 2015).
The measurement has 9 items and is developed with the aim to
assess patterns of attachment across several distinct relationships
(mother, father, romantic partner, and best friend). Participants
were asked to indicate for each item on a seven-point scale the
extent to which they agreed or disagreed with the statement (1:
strongly disagree; 7: strongly agree). The same 9 items can be used
with the distinct relationships described above. Recently, a new
supplementing item set was designed to assess people’s general
attachment styles (Fraley et al., 2015). The 9 items can be used
also to assess only one kind of relationship, which is described
as a short 9-item version of the ECR-R. We included one set
of 9 items to assess only one relationship style: People’s general
attachment styles. This was administered both in the BPD group
and the normal control group.

Stimuli
We use a novel, structured piano improvisation paradigm
distinguishing between two different accompaniment
frameworks—a predictable repetitive interaction, and a
more dynamic, socially complex interaction. The therapist’s
accompaniment was designed to be in a three-part ABA′

structure (see Figure 1): In part A, the accompanist played a
single low note that sounded for one beat before a two-note
chord was played and both were sustained for three beats to
make up a four-beat pattern (see the staff notation below A in
Figure 1). The musical term for this type of accompaniment
figure is “bourdon,” and it was repeated throughout section A at
a steady tempo; as implied by the label A’, this bourdon pattern
returned in the third section of the therapist’s accompaniment;
the content of section B was somewhat freer, but it generally
contained an increase in tempo and dynamic level, as well as a
change from Phrygian to Aeolian modes.

The rationale for this accompaniment design is that in the
more dynamic B part of the improvisation, the interaction comes
to the fore. Our premise is that in part B, the attachment system
will be more activated in BPD patients than in either parts A
or A’. As such, differences in temporal IPS between patients and
controls may well be revealed in the B part of the accompanied
improvisation. The most convenient way to determine whether
changes in IPS have occurred within part B is to split the music
data for this section in two, B1 and B2, and calculate variables
for these subparts separately. In experiments on visual working
memory (e.g., Brady et al., 2009), it is quite common to establish
regularities in stimuli, upon which participants may come to
rely in order to improve task performance, before subverting
those regularities and measuring participants’ sensitivities. Our
ABA′ accompaniment structure, where A establishes the regular
bourdon and B subverts it, can be seen as a less common
and therefore relatively novel musical analog of experimental
paradigms that establish and then subvert regularities in order
to measure participants’ sensitivities.

As mentioned above, we made use of an ABA′ structured
piano improvisation, distinguishing between two different
accompaniment frameworks. In the next section, we will give
more music-theoretic details related to our improvisation design.
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FIGURE 1 | This figure represents the ABA′ structure of the accompaniment design, with characteristics in content, beats per minute (BPM), and

duration. To make the transition to part B, the improviser added a short melodic phrase above the bourdon, which initiates the new character and mode. The staff

notation excerpts contain the bourdon accompaniment figure, as well as the most frequently played transitions from A to B in this study.

Part A
The A part of the piano improvisation is defined by a repetitive
bourdon figure (as presented in Figure 1). A bourdon is a
sustained or repetitive tonic tone of a scale or mode. When a
tone a fifth above the tonic is added (as in Figure 1), one speaks
of a “fifth bourdon.” The technique of sustaining a tone or fifth
is originally derived from folk music, wherein melodies were
developed over a sustained fifth bourdon. The advantages of
using a fifth bourdon are as follows: (1) it provides a technically
simple accompaniment with a harmonic basis; (2) this basis
is flexible with respect to mode (e.g., an elaboration might
be major/minor, modal, or atonal); (3) bourdon offers many
possibilities for the development of a melody or a polyphonic
elaboration by a participant.

The bourdon can also hinder musical
elaboration/improvisation when its use is too open (Figure 2,
left) or too rigid (Figure 2, center). Therefore, the bourdon in
this context is articulated with a metric pulse on the first and
second beat in common time (Figure 2, right). When a meter
manifests itself as such, the participant may experience this as a
supportive framework for improvisation.

Participants were instructed to play only the white keys
of the piano. This constrained the tonal scope of the
improvisations somewhat, but still left open the possibility that
the participant might emphasize (implicitly or explicitly) one or
more modes (e.g., Ionian by emphasizing pitch-class C, Dorian
by emphasizing pitch-class D, etc.). Taken as a whole with the
therapist’s bourdon (which emphasizes pitch-class E), the implied
mode may well be E Phrygian. The Phrygian mode, while having
a distinctive sound, can be found in a lot of musical cultures (in
Japanese scales, Spanish music, jazz, etc.).

Finally, we chose a playing speed of 80 BPM. This was
indicated to the therapist via a beep sound (rather, than say,
a blinking light), just before the improvisation began. This
was done aloud to indicate the speed to the participant also.

FIGURE 2 | Different options of rhythmic articulation for the bourdon

accompaniment.

As measured in adults, this tempo is more toward the lower
boundary of speeds to synchronize with an external pulse (Drake
et al., 2000). We chose this lower speed because several of
the participants had little piano playing or musical experience,
so the slow speed gave them the opportunity to explore
the instrument without the pressure of a faster tempo. We
expected an accelerando (speeding up) in the B part of the
improvisation.

Transition and Part B
Part B of the improvisation always starts in A Aeolian, following
a brief transition. There was only one exception to this in all our
data. This new and clear mode constitutes a substantial change
after the repetitive A section with its open fifths character. To
make the transition to the B part, the improviser adds a short
melodic phrase, above the fifth bourdon, which initiates the
new character part B (see Figure 1). The B part is characterized
by relatively little repetition and freer improvisation. The
tonal content remains modal, however. In this section, the
therapist was asked to attune and adapt his playing (tempo,
timbre, and dynamic) to that of the participant. Generally,
we observed an initial increase in tempo and dynamics in
this section.
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Part A′

The A′ part of the improvisation was a return to the repetitive
bourdon figure of part A, the only difference being that generally
the tempo began higher (due to coming from the faster B part),
and we placed no restriction on it returning to 80 BPM (although
sometimes it did).

MIR Variables
In the previous section, we stated the potential utility of
MIR variables for investigating how aspects of a participant’s
piano playing vary across an accompanied improvisation. In
the interests of clarity, we defer details of the music data
processing and mathematical definitions of all MIR variables
to Supplementary Materials. In brief, the music data was
beat-tracked by a professional musician/music therapist, and
each improvisation was then quantized automatically using
the Lisp package MCStylistic and Matlab package PattDisc
(Collins, 2011). The purpose of these steps (beat-tracking and
quantization) is to map and/or compare each performed note
to a start time (called ontime) commensurate with how it
would be written in staff notation, as a basis for measuring
participants’ IPS. The variables we considered are shown in
Table 1 (see Supplementary Materials for full definitions). Below
wemention only those that becamemost relevant in our analyses.
To avoid our analyses becoming too exploratory, we employed a
common, principled variable selection technique called stepwise
selection. As can be seen from Table 1, the focus was on variables
associated with IPS (seven out of 15), but for the sake of
thoroughness we included several from other categories (tempo,
rhythmic patterns, and interpersonal imitation) that were either
straightforward (Occam’s razor) or could be obliquely related to
IPS.

(1) MD_m stands for mean metrical deviation. This calculates
the average deviation between each note performed by a

participant and the underlying eighth-note beat of the therapist
to which it is closest. It is indicated by the blue horizontal lines in
Figure 3. The larger the value of MD_m, the more the participant
deviates from the beat over an improvisation section, and the
more “out of time” their playing will sound. We use this as one
operational definition for the participant’s overall asynchronies.

(2) The above variable says nothing about whether the
participant tends to play ahead of or behind the beat, or leader-
follower behavior. The variable LP, standing for lag proportion, is
the proportion of times that a participant’s notes are behind the

FIGURE 3 | Metrical deviations as a behavioral measure of IPS.

Horizontal dashed lines indicate the MIDI note numbers of important pitches in

A Aeolian. Vertical dashed lines indicate eighth-note beats. On the eighth-note

beat before 7 s, there is a relatively large timing deviation between the

participant’s and therapist’s playing. It can be seen that the participant’s

performed time of two notes (red circles) lags behind that of the therapist’s

(green triangles). The blue lines are a visual aid to indicate the deviation from

the closest eighth-note beat.

TABLE 1 | Summary of the MIR variables used to quantify aspects of a participant’s playing in the accompanied improvisation.

No. Variable label Variable name/Description Relation to theory

1 MD_m Mean metrical deviation IPS

2 MD_sd Standard deviation of metrical deviation IPS

3 LP Lag proportion IPS

4 MDA_m Mean of metrical deviations that are ahead of the beat IPS

5 MDA_sd Standard deviation of metrical deviations that are ahead of the beat IPS

6 MDB_m Mean of metrical deviations that are behind the beat IPS

7 MDB_sd Standard deviation of metrical deviations that are behind the beat IPS

8 TMP_m Mean tempo Tempo

9 TMP_sd Standard deviation of tempo Tempo

10 CR_dur Compression ratio applied to (ontime, duration)-pairs Rhythmic patterns

11 TC_o Translational coefficient applied to ontimes Rhythmic patterns

12 RS Rhythmic simplicity Rhythmic patterns

13 DN Note density Interpersonal imitation

14 AI_mu Mean articulation interaction Interpersonal imitation

15 AI_min Minimum articulation interaction Interpersonal imitation

The final column indicates the aspect of theory to which a particular variable may be most relevant.
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beat over the course of an improvisation section. If a participant
is always ahead of the beat, then LP= 0, and thus the participant
shows more leader behavior; if a participant is always behind the
beat, then LP = 1, and thus the participant shows more follower
behavior.

(7) The variable MDB_sd, standing for standard deviation of
metrical deviations behind the beat, measures the consistency of
timing deviations of those notes played late by the participant. If
a participant tends to play late (behind the beat) in a consistent
manner, then this variable will take a relatively small value; if
a participant tends to play late in an erratic manner, then this
variable will take a relatively large value.

(10) CR_dur stands for compression ratio applied to (ontime,
duration)-pairs. Existing work posits that the more it is possible
to compress data, the more structure or patterning the original
data contains (Collins et al., 2010, 2016; Collins and Meredith,
2013). The more rhythmic motifs or patterns in a participant’s
playing, the more their corresponding (ontime, duration)-point
set tends to be compressible, and the higher the compression ratio
will be.

(12) The variable RS, standing for rhythmic simplicity,
measures the prevalence of a participant’s most prevalent rhythm.
We tally their inter-onset times (the time differences between
the notes played), determine their modal (most prevalent) time
difference, and define RS as the proportion of all time differences
that belong to this mode. If a participant plays only isochronous
(evenly spaced) notes (possibly of differing pitches), then their
RS= 1; if a participant plays n notes such that the time difference
between two consecutive notes is never the same, then RS= 1/n,
i.e., is close to 0.

Variables were calculated from the separate parts of the
accompanist’s ABA′ structure, with the additional bisection
of section B into B1 and B2 (on the basis of the overall
duration of part B), to enable investigation of participant
sensitivities to the changes in musical content at the beginning of
section B.

Apparatus
The piano improvisation was recorded using a YamahaDisklavier
MPX70 piano. Each key was connected with a specially designed
optical sensor, and these were connected to a USBMIDI interface
(Motu Midi Express 128). Improvisations were recorded with
Logic Pro X (Mac system) and exported as MIDI files for
subsequent analyses. The MIR variables were calculated in
Matlab, and R was used for conducting statistical analyses.

Procedure
Participants were asked to play intuitively and freely on the
piano’s white keys, without playing well-known songs, but with
the aim of exploring joint interaction with the accompanist. They
were informed about the ABA′ structure of the improvisation.

The accompanist was a senior registered music therapist,
and undertook all the improvisations. The accompanist was
blind in the sense that no knowledge about the background
of the participants (control or BPD group) was known. The
accompanist had 35 years of clinical experience, was experienced
in the use of clinical improvisation, and had expertise in the

therapeutic musical interventions described by De Backer et al.
(2014).

The piano was chosen as an instrument based on a previous
study about choices of musical instruments used in individual
music therapy sessions with BPD patients (De Backer et al., 2016).
In that study, seven Belgian music therapists were asked to fill
in questionnaires about the musical instruments chosen by BPD
patients in individual sessions over a period of 1 year. Piano was
the most frequently used instrument in this population.

The accompanist was sitting on the left side of the piano
and played the lower registers of the keyboard. The participant
was sitting on the right side, and was playing the upper
registers (as shown in Figure 4). This setting was based on
the concept of the left and right hand position within music
therapy (De Backer et al., 2014)—that the therapist can sustain
and support (harmonically) the play of the participant. The
keyboard had a split point on G4, which enabled (mostly)
convenient splitting of the therapist and participant’s playing in
Logic.

RESULTS

We conducted both musical and statistical analyses of our data1.
In terms of musical analysis, Figure 5 (clickable in the online
version of the paper) shows transcriptions of some representative
excerpts and a plot of how they might be located in a two-
dimensional space consisting of temporal synchronization
and structural organization. There is clear evidence of

FIGURE 4 | Piano improvisation setting. Participant and therapist play

together on one piano. The figure shows the position of the therapist, toward

the left side of the keyboard, and the participant, toward the right side of the

keyboard (when looking from behind them).

1The data, analyses, and plots that underpin the paper are available at

http://bit.ly/2bgT77f.
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FIGURE 5 | A plot to describe musical characteristics of excerpts from recorded musical improvisations, with structural organization of musical notes

on the vertical axis and temporal synchronization on the horizontal. Excerpts (A–F) below the plot are transcriptions of the excerpts into staff notation.

A clickable version of this plot is available in the online version of this paper.

distinct playing habits, but these transcriptions and plot
were made primarily to deepen our knowledge of participants’
improvisations, rather than to address any of our four predictions
directly.

Statistical Analysis with MIR Variables
In terms of statistical analyses, we conducted logistic regressions
on a dependent variable of BPD (patient = 1, control = 0),
using independent variables as described in the section “MIR
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variables.” In other words, we investigated whether it was possible
to predict the category of a given participant (BPD or control),
based solely on quantifications of their playing habits. Initially,
we employed a stepwise selection procedure. Incorporated in the
first stage of stepwise selection is a comparative assessment of the
discriminative power of each variable in isolation. Supplementary
Figure 2 shows the distribution for each variable, split into
patients and controls, and that there was only one variable
(lag proportion in section B1, or LP_B1) with significant
differences between BPD_patients and controls, [t(25.04) =−2.32,
p = 0.029]. As such, LP_B1 is the first variable to enter
the model.

While rigorous, stepwise selection and the inclusion of further
variables tended to result in overfitting of the data and coefficient
blowup.2 En route to overfitting, however, we identified a
parsimonious model that provided strong predictions of BPD or
control, as summarized in the following equation and Table 2A.
The model consists of mean metrical deviation in section B1

TABLE 2 | Summary of three binary regressions on (A) mean metrical

deviation in section B1 (MD_m_B1) and the same in section B2

(MD_m_B2), (B) lag proportion in section B1 (LP_B1), and (C) lag

proportion in section B1 (LP_B1) and mean metrical deviation in section

B2 (MD_m_B2).

Variable B SE B z-value P

A

Intercept 3.35 2.10 1.60 0.111

MD_m_B1 −257.44 103.40 −2.49 0.013

MD_m_B2 210.28 95.46 2.20 0.028

Null deviance: 38.24 on 27 degrees of freedom

Residual deviance: 22.80 on 25 degrees of freedom

AIC: 28.80

B

Intercept 3.55 1.71 2.08 0.038

LP_B1 −7.66 3.83 −2.00 0.045

Null deviance: 38.24 on 27 degrees of freedom

Residual deviance: 33.16 on 26 degrees of freedom

AIC: 37.16

C

Intercept 5.73 2.47 2.32 0.021

LP_B1 −8.81 4.39 −2.01 0.045

MDB_sd_B1 −37.86 24.06 −1.57 0.116

Null deviance: 38.24 on 27 degrees of freedom

Residual deviance: 30.13 on 25 degrees of freedom

AIC: 36.77

The second column B, contains the coefficient estimate, the third column SE B, contains

the standard error of that coefficient, the fourth column contains the z-value and the fifth

column the associated p-value. As well as reporting null and residual deviances for each

model, Aikaike’s information criterion (AIC) is reported also. Models with lower AIC are

said to have a better fit to the data, while taking into account the number of constituent

variables.

2Selection proceeded from the null model according to improvement (reduction)

in Aikaike’s information criterion (AIC). It was not possible for selection to

proceed from a full model because we had more independent variables than data

points.

(MD_m_B1) and mean metrical deviation in B2 (MD_m_B2):

y = 3.35− 257.44 MD_m_B1+ 210.28 MD_m_B2+ ε

where y is the log odds of having BPD (patient ≈ 1, control
≈ 0) and ε is an error term. Nagelkerke’s R2 = 0.57 for this
model, and the Hosmer-Lemeshow test indicates that the actual
diagnoses (patient or control) are not significantly different from
those predicted by the model, χ2(8) = 5.31, p = 0.72. The signs
of the coefficients,−257.44 and+210.28, are opposite, suggesting
it is the difference between metrical deviation in sections B1 and
B2 that drives prediction of borderline personality disorder. On
further inspection, patients’ metrical deviations either tended to
become bigger in section B2 than in B1, or remain the same,
meaning their log odds of having BPD was driven toward 1 in
the above formula by the constant term being not much reduced
by −257.44 × MD_m_B1 + 210.28 × MD_m_B2. Controls, on
the other hand, had smaller metrical deviation in B2 than in B1,
meaning their log odds of having BPD was driven toward 0 by
−257.44 × MD_m_B1 being negative and of greater magnitude
than 210.28×MD_m_B2.

A plot of metrical deviation in section B1 is shown in blue
in Figure 6, metrical deviation in section B2 is shown in red,
the difference MD_m_B2−MD_m_B1 is shown in green, and a
dashed black line indicates how the difference acts as an effective
discriminator between BPD patient and control. All but three
patients have a difference above the cut off and all but two

FIGURE 6 | A plot of mean metrical deviations against participant.

Mean metrical deviation MD_m is the mean of the absolute deviations between

each played note onset and the time of the closest underlying beat. The blue

line is MD_m for section B1, the red line is MD_m for section B2, the green line

is the difference MD_m_B2−MD_m_B1, and the black horizontal line indicates

a cut off that discriminates between most BPD patients and controls.
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controls have a difference below. While the difference may seem
small (e.g., cut off is ∼4 ms), the pattern in results in Figure 6 is
clear: The blue line is always above the red for controls, but not
always so for BPD patients.

Applying a leave-one-out cross-validation procedure with this
model, we found a prediction error of 0.18. In other words,
this model successfully predicts whether a given participant has
or does not have BPD in 23 (= 0.18 × 28) out of 28 cases
(82% success). The chance that a baseline (guessing) model
succeeds in predicting more than 18 cases is less than 0.05
[P(Bn = 28, p = 0.5 > 18) = 0.043]. Even if we “assist” the baseline
model further, by including the knowledge that the proportion p
of BPD patients is 16/28, success in predicting more than 20 cases
is less than 0.05 [P(Bn = 28, p = 16/28 > 20) = 0.040]. That is,
our predictive model for BPD performs significantly better than
chance.

As suggested by the first stage of stepwise selection, another
model that might provide strong predictions of BPD is based
on lag proportion in section B1, LP_B1 (Table 2B). Nagelkerke’s
R2 = 0.22 for this model, and the Hosmer-Lemeshow test
indicates that the actual diagnoses are not significantly different
from those predicted by the model, χ2(8) = 4.77, p = 0.78.
The negative coefficient on LP_B1 suggests that the more a
participant lags behind the beat in section B1, the more likely
that participant is to be a control. AIC was not as good for the
lag variable (= 37.16) as for the model in Table 2A (AIC =

28.80), however, and also prediction error on cross-validation
was worse (0.24). To investigate whether we might improve
the lag proportion model further, we built a third model based
on it and variation in playing behind the beat in section B1
(MDB_sd_B1, see Table 2C). Nagelkerke’s R2 = 0.34 for this
model, and the Hosmer-Lemeshow test indicates that the actual
diagnoses are not significantly different from those predicted by
themodel, χ2(8) = 4.45, p= 0.81. This was motivated by seeding
a stepwise selection procedure with LP_B1 and including the
strongest predicting variable in the next stage, which happened
to be MDB_sd_B1. Despite the inclusion of an extra variable,
AIC (= 36.77) was not as low as for the metrical deviation model
in Table 2A (AIC = 28.80). The MDB_sd_B1 variable was not
significant in its own right (p= 0.116 inTable 2C) and prediction
error on cross-validation was worse (0.23).

Overall, therefore, we recommend the metrical deviation
model as a parsimonious and, according to cross-validation,
robust predictor for BPD. As described above, we explored
various possibilities in an attempt to find a better model. Now
we use the t-test results mentioned briefly at the beginning of this
subsection to address questions of significant differences between
patients and controls for the metrical deviation (MD_m_B1)
and lag (LP_B1) variables: (1) is there a significant difference
in MD_m_B1 between BPD patients and controls? According
to Welch’s two-sample t-test, there is no significant difference
[t(19.28) = −1.49, p = 0.153]. If we restrict the data to matched
participants so that we can conduct a (generally more powerful)
paired t-test, still there is no significant difference [t(11) =−1.09,
p = 0.297]; (2) is there a significant difference in LP_B1 between
BPD_patients and controls? As stated previously, there is a
significant difference [t(25.04) = −2.32, p = 0.029], with controls

lagging significantly more in section B1 than do BPD patients. In
summary, when the music accompaniment changes markedly in
section B1, BPD patients do not play significantly less or more
in time than do controls, but controls do tend to lag behind
the beat more often than do BPD patients. As a final remark in
this results section, we point out that in the second stage of a
stepwise selection procedure seeded with LP_B1, there are other
interesting variables that could make significant improvements
to the model (e.g., rhythmic simplicity in section B or RS_B,
compression ratio of ontime-duration pairs in sections A and A’
or CR_dur_A, CR_dur_A’). These variables did not contribute
as significantly as MDB_sd_B1, however, so we did not explore
them further, but they could be investigated by the interested
reader via the URL given in the caption of Figure 5.

Additional Analysis with the Metrical
Deviation Model (MD_m_B1−MD_m_B2)
Based on the significant findings of the metrical deviation model,
we calculated a new variable “MD_m_B1−MD_m_B2,” which
describes the behavior of improvement in IPS during the B part
of the improvisation. The interpretation of this measure is that
positive scores on this measure imply a trend in improving IPS
behavior. A negative score implies a trend in worsening IPS
behavior.

We conducted a series of separate analyses to test possible
influences of medication, severity of depression, and musical
capacities on IPS behavior. To measure musical capacities, we
assessed both perceptual and experiential capacities. Finally, we
included a psychological measurement of general attachment,
to explore if the variance in “MD_m_B1−MD_m_B2” could be
at least partially explained by the underlying fundamental two
dimensions of attachment: Avoidance and anxiety.

Influence of Musical Sophistication and Beat

Perception
General musical sophistication, and the additional five subscales
(Active Engagement, Perceptual Abilities, Musical Training,
Singing Abilities, and Emotions) did not correlate with
“MD_m_B1−MD_m_B2” in BPD patients. In normal controls,
no significant correlation was found. Neither was beat perception
significantly correlated with “MD_m_B1−MD_m_B2” in BPD
patients and normal controls.

Influence of Psychotropic Medication and Mood in

BPD Patients
Medication use did not correlate with “MD_m_B1−MD_m_B2”
in BPD patients. And also severity of depression did not show a
significant correlation.

Influence of General Attachment Style
There was a positive significant correlation between
“MD_m_B1−MD_m_B2” and avoidance general attachment
style [r(14) = 0.68, p < 0.01] in BPD patients, and a negative
significant correlation between “MD_m_B1−MD_m_B2” and
anxious general attachment style [r(14) =−0.55, p < 0.05].

Avoidance and anxiety dimensions accounted for 52% of the
variance in “MD_m_B1−MD_m_B2” in BPD patients [R2 =
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0.5229, F(2, 13) = 7.124, p < 0.01]. There was no correlation
between “MD_m_B1−MD_m_B2” and avoidance and anxiety
dimension in normal controls. Finally, we want tomake clear that
we did not Bonferroni-correct the p-values for these correlational
analysis. If we do, the remaining significant result concerns
avoidant general attachment style.

DISCUSSION

Conclusions
With a lifetime prevalence of 5.9% and serious consequences
for emotion regulation, impulse control, and interpersonal
relationships, BPD is a condition that has been and remains an
important subject of research in psychology and neuroscience.
Whereas, existing research on BPD—such as self-report
questionnaires and unidirectional studies—has not focused on
measuring the exchange of social signals between individuals,
we attempted to do so via the use of an ABA′ accompanied
improvisation paradigm. Impairments in IPS are a known
characteristic of BPD, and this paradigm made it possible
to measure timing habits in IPS (e.g., the exchange of social
signals) over the course of the musical interaction. In the B
part of the improvisation (freer improvisation), the intervention
from the therapist (accompaniment) invited a greater degree
of (social) interaction from the participant. We quantified 15
aspects of each participant’s playing across the improvisation
sections (A, B, split also into B1and B2, and finally A′),
focusing on temporal characteristics that may act as behavioral
measures of IPS, as well as some aspects intended to measure
impulsivity.

Our main predictions were that there would be: (1) poorer
temporal IPS, represented by higher overall timing deviations, for
BPD patients compared to normal controls; (2) more oscillations
(e.g., more variability) in timing deviations between therapist
and BPD patients compared to normal controls; (3) problems
in maintaining and improving IPS between therapist and BPD
individuals in the course of the joint improvisation compared
to normal controls; (4) more impulsivity (less inhibition) in
the playing of BPD patients than normal controls. Among
our main findings were that: (i) the control group showed
significant improvements in IPS over the course of section
B2 (variable name MD_m_B2) compared with section B1
(MD_m_B1) of the improvisation, contrary to the BPD group
who showed less improvement in IPS over the course of part
B (freer improvisation). This finding substantiates prediction
3; (ii) normal controls were significantly more likely to play
behind the beat in section B1 (variable name LP_B1) than
were BPD individuals, which substantiates prediction 4; (iii) a
logistic regression model built on the difference in mean metrical
deviation between sections B1 and B2 performed significantly
better than chance at categorizing given participants as either
having BPD or being a control (82% success rate). So while there
was not clear evidence to support predictions 1 and 2 in our
findings, we did find evidence to substantiate predictions 3 and
4, as well as a model whose discriminatory power suggests that
our behavioral measures of IPS are relevant to the diagnosis of
BPD.

Overall Timing Deviations and Oscillations in IPS
Contrary to our prediction 1, results showed that difficulties to
synchronize with others represented by strong overall timing
deviations (as measured by the variable MD_m) was not related
to BPD pathology. Neither was evidence of our prediction 2
found in the results—that BPD individuals would show more
oscillations in their playing (as measured by the variableMD_sd),
such as being very close in time to the therapist followed
by tendencies to withdraw from the therapist. This suggests
that differences in overall timing deviations and oscillations in
temporal IPS in a joint improvisation are not related to BPD
characteristics. Probably these specific timing aspects are more
related to other individual characteristics as proposed elsewhere
(e.g., Loehr and Palmer, 2011). For instance, Loehr and Palmer
(2011) address the correlation between individual tempo profiles
of two partners (in piano duet performances) and overall timing
deviations in temporal IPS in a joint musical interaction. Their
study shows that partners who have a similar “tempo profile”
synchronize better. Moreover, well-matched partners are better
able to simulate the timing of the other (e.g., action simulation),
they adapt better to the timing of the other in the course of the
interaction, and there is alsomoremutual adaptation between the
two partners, compared to less well-matched partners (Loehr and
Palmer, 2011). These findings were also found in research about
movement coordination in joint action (Schmidt and Turvey,
1994; Amazeen et al., 1995; Richardson et al., 2007). We suggest
that individual differences in tempo profiles between therapist
and patients will influence overall timing deviations in a joint
musical improvisation instead of BPD characteristics. Further
research may gain insight into the influence of therapist/patient
tempo profiles in therapeutic processes.

Maintaining and Improving Temporal IPS
As expected, results showed that BPD patients had difficulties
in maintaining and improving temporal IPS during the
improvisation compared to normal controls. This was only
visible within the B part (in particular, the B1–B2 transition)
of the improvisation, where the therapist’s playing invited
more musical interaction compared to parts A or A’, where
the therapist was repeating a short, stable pattern. In other
words, when the (insecure) attachment system of the patient
was activated, difficulties were found in maintaining and
improving temporal IPS in musical improvisations with BPD
patients.

In addition, we suppose that the underlying cognitive motor
skills associated with anticipation (Keller et al., 2007; Pecenka
and Keller, 2009; Rankin et al., 2009) and adaptation (Large and
Jones, 1999; Repp, 2001, 2011; Large et al., 2002; Repp and Keller,
2008; Loehr et al., 2011; Repp and Su, 2013) are hindered in their
ability to regulate and facilitate improvements in temporal IPS
when the attachment system is activated in BPD patients.

Taken together, it could be that inner representations of
attachment relationships and/or the quality of such relationships
are embedded/embodied in cognitive-motor strategies of BPD
patients, and that anticipatory mechanisms related to prediction
errors are hindered in their capacity to maximize prediction
of the future. Brain reward mechanisms are known to regulate
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prediction errors. In this sense, our findings seem to support
current theories about the relation between alterations in
the brain reward system in BPD individuals, attachment and
prediction error (Friston, 2005, 2010; Atzil et al., 2011; Fonagy
et al., 2011; Brown and Brüne, 2012; Enzi et al., 2013; Herpertz
and Bertsch, 2015).

Our findings may have interesting implications in relation
to music-therapeutic embodied strategies. If, within the music-
therapeutic process, BPD patients can experience repeated
experiences of “good enough” temporal IPS, this could lead to
implicit repair of maladaptive embodied timing strategies, related
to attachment experiences. This might mitigate affectively-
oriented interpersonal features in BPD patients, such as
intolerance of loneliness, conflicts with dependency, discomfort
with care, and fear of abandonment. These suggestions are
consistent with research suggesting that attachment patterns
could be changed as a result of significant changes in relationships
(e.g., Waters et al., 2000). However, we have to be careful about
making such predictions, because the findings in our study
are based on a cross-sectional experiment and thus are not
related to longer andmore complicated therapeutic interpersonal
processes.

In a recent study (Choi-Kain et al., 2010) an important
distinction was made between core affectively-oriented
interpersonal features (e.g., attachment fears, intolerance
of loneliness) and behavioral interpersonal features (e.g.,
sadism, entitlement, boundary violations, recurrent breakups,
demandingness). In particular it was shown that the core
affectively-oriented interpersonal features are more persistent
than behavioral interpersonal features. The affectively-oriented
symptoms are slower in remission and 15–25% of people with
BPD did not show improvement in these symptoms compared
to baseline in a 10-year follow-up (Choi-Kain et al., 2010). Our
findings promote music therapy as a possible complementary
therapy in the current field of evidence-based treatments,
especially for treating these affectively oriented interpersonal
problems, such as attachment fears, with BPD patients. That
said, longitudinal research is necessary to put these hypotheses
to the test.

Finally, our findings may further augment the expertise and
knowledge of music therapists, offering new tools with which to
attune to the timing capacities of the BPD patient, with the aim
of making improvements more readily, or where none could be
made before.

Impulsivity and Temporal IPS
Results showed that normal controls have the tendency to play
their notes significantly more often behind the notes of the
therapist than did the BPD patients (so-called lag proportion)
in section B1 of the improvisation. This is consistent with our
assumption that normal healthy controls are more inhibited in
their timing than BPD patients. This is only visible in B1—in
the first part of the freer improvisation. When the interaction
comes to the fore (part B), BPD patients seems less inhibited,
and seem to pursue the more immediate reward of joining the
interaction. This is in accordance with previous research about
the specificity of impulsivity in BPD patients. In a recent study

concerning impulsivity in BPD individuals, a distinction was
made between (a) choice or reward-related impulsivity and (b)
motor impulsivity (Barker et al., 2015). In particular, the results
showed that motor impulsivity was not significantly different
between BPD individuals and controls, instead reward-related
impulsivity was significantly greater in BPD individuals. Reward-
related impulsivity is characterized by choices of small immediate
reward, with a focus on the present and with little regard to the
future.

Our results suggest that BPD patient have the tendency
to pursue the musical interaction more immediately (reward-
related impulsivity), relative to healthy controls, who have the
tendency to wait longer to join the interaction.

It is plausible that the impulsive playing behavior in
BPD patients interferes with our previously described finding
about attachment-related impaired maintenance of IPS in
joint improvisation. A structural relationship between adult
attachment style and impulsivity trait is described in different
opposing theoretical models (Scott et al., 2009). The two most
common models are: (1) when the insecure attachment system
is activated, one cannot rely anymore on secure, adaptive and
support-seeking coping. Deficiences in coping strategies may
intensify central traits such as impulsivity in BPD patients (Levy
et al., 2006). In our study this means that because of the
activation of the insecure attachment sytem in the B part of
the improvisation, the impulsive behavior in BPD patients is
intensified, as seen in B1; (2) an opposing theoretical model
contends that the dispositional trait of impulsivity can impede
joint interactions, and may contribute to disturbed attachment
styles (e.g., Eisenberg et al., 1997, 2000). In our study this means
that because of the impulsive behavior in B1, there are difficulties
in improving IPS in the course of the improvisation. In this sense,
the impulsive behavior impedes the joint interaction in BPD
patients. We have to be cautious with possible interpretations,
however, because our study was not designed to reveal causal
relationships. In either case, our findings are consistent with
the existence of a relationship between impulsivity traits and
attachment difficulties with regard to impairments in temporal
IPS.

Ecological Validity
We would like to stress the ecological validity of this study—that
a free musical improvisation approximates social collaboration in
the real world more than do experimental studies that make use
of methods such as virtual partners (e.g., Repp, 2005; Fairhurst
et al., 2013, 2014). It is our premise that the complex and intensive
interactions arising from a (freer) musical improvisation are
more likely to activate the (insecure) attachment system in BPD
patients.

Limitations
This study has some limitations. First our sample is too small to
claim any generalizability of our findings. Second, the individuals
with BPD in our sample group participated in the context
of an inpatient treatment facility, so our results may not be
generalizable to other BPD patients. Further research in bigger
and other samples is needed. Third, the beat tracking in this study
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was done manually, which may cause subjective interferences.
Apart from using a beat-tracking algorithm (which may be error
prone and so require manual, subjective corrections anyway), we
suggest synchronization tasks with computer-generated pacing
signals as a possible means of reducing subjectivity. While
such tasks miss the human deviations (i.e., variations in timbre
and intensity) in the joint improvisation, studies on action
simulation have demonstrated that even very reduced stimuli
can be experienced as a human product with social meaning
(Steinbeis and Koelsch, 2009; Sevdalis and Keller, 2011). Finally,
we included only the subscale of the general attachment style in
this study. In future research, the assessment of attachment style
across several distinct relationships is necessary to gain better
insights into attachment-related correlations.

Future Directions
In terms of assessment and diagnosis of BPD, the methods
developed in our study could become part of a comparatively
lightweight tool to detect possible cases of BPD, in order to
reduce the need to administer more onerous questionnaires.
With regards treatment of BPD, longitudinal research (such
as randomized controlled trials) in music therapy is needed
to investigate the extent to which improvement in implicit
interpersonal processes of IPS is correlated with the improvement
of affectively oriented interpersonal functioning in BPD. In
terms of both assessment and treatment, recent improvements
in machine learning techniques and musical improvisation
invite the possibility that accompaniments for participants
could be computer-generated in real time, and thus musical
parameters of the accompanist could be controlled more

exhaustively, which might lead to more objective measures
of (the development of) a participant or patient’s musical
behavior.
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As an emerging sub-field of music information retrieval (MIR), music imagery information

retrieval (MIIR) aims to retrieve information from brain activity recorded during music

cognition–such as listening to or imagining music pieces. This is a highly inter-

disciplinary endeavor that requires expertise in MIR as well as cognitive neuroscience

and psychology. The OpenMIIR initiative strives to foster collaborations between these

fields to advance the state of the art in MIIR. As a first step, electroencephalography

(EEG) recordings of music perception and imagination have beenmade publicly available,

enabling MIR researchers to easily test and adapt their existing approaches for music

analysis like fingerprinting, beat tracking or tempo estimation on this new kind of data.

This paper reports on first results of MIIR experiments using these OpenMIIR datasets

and points out how these findings could drive new research in cognitive neuroscience.

Keywords: music cognition, music perception, music information retrieval, deep learning, representation learning

1. INTRODUCTION

Music Information Retrieval (MIR) is a relatively young field of research that has emerged over
the course of the last two decades. It brings together researchers from a large variety of disciplines
who—in the broadest sense—investigate methods to retrieve and interact with music information.
As theMIR community has grown, research questions also have becomemore diverse. The different
kinds of data considered in MIR now comprise, for instance, symbolic representations, audio
recordings, sheet music, playlists, (social) web data such as reviews or tweets, and usage meta-data.

As a very recent development, MIR researchers also have started to explore ways to detect and
extract music information from brain activity recorded during listening to or imagining music
pieces–a sub-field of MIR introduced as Music Imagery Information Retrieval (MIIR) in Stober
and Thompson (2012). In the long term, research in this direction might lead to new ways of
searching for music along the line of existing MIR approaches that, for instance, allow query by
singing, humming, tapping, or beat-boxing. Inspired by recent successes in reconstructing visual
stimuli (Miyawaki et al., 2008; Nishimoto et al., 2011; Cowen et al., 2014) and even dream imagery
(Horikawa et al., 2013), it might eventually be possible to even reconstruct music stimuli from
recorded brain activity.

In a broader context, Kaneshiro and Dmochowski (2015), for instance, mention transcription,
tagging and annotation, audience following, and portable MIR applications as possible scenarios
that could benefit from neuroimaging data such as EEG. Findings from MIIR can further support
the development of Brain-Computer Interfaces (BCIs) that facilitate interaction with music in new
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Stober Lessons Learned from OpenMIIR Initiative

ways beyond basic search–such as Brain-Computer Music
Interfaces (BCMIs) used to generate and control music (Miranda
and Castet, 2014). Finally and most importantly, this paper
aims to motivate an MIIR-driven approach to music cognition
research that can lead to new insights about on how the human
brain processes and encoders music.

The challenge of retrieving music information from
recordings of brain activity can in principle be approached
in the following naïve way: One could argue that as the brain
processes perceived music or recreates this experience in
imagination, it generates a transformed representation which is
captured—to some extend—by the recording equipment. Hence,
the recorded signal could in principle be seen as a mid-level
representation of the original music piece that has been heavily
distorted by two consecutive black-box filters—the brain and
the recording equipment. This transformation involves and
intermingles with several other brain processes unrelated to
music perception and is further limited by the capabilities of the
recording equipment which might additionally introduces signal
artifacts.

This setting calls for sophisticated signal processing
techniques, ideally developed in an intense interdisciplinary
collaboration between MIR researchers and neuroscientists.
In order to facilitate such a collaboration and contribute to
new developments in this emerging field of research, the first
OpenMIIR dataset was released as public domain in 2015 (Stober
et al., 2015b). This article summarizes work over the course
of a year since its publication. To this end, a brief overview of
the dataset is provided in section 2. as well as related research
in section 3. As the main part of this paper, section 4 covers
our experiments. This is followed by a discussion in section 5.
Finally, we draw conclusions and point out directions for future
work in section 6.

2. THE OPENMIIR DATASET

The OpenMIIR dataset (Stober et al., 2015b) comprises
Electroencephalography (EEG) recordings taken during music
perception and imagination.1 These data were collected from
10 subjects who listened to and imagined 12 short music
fragments—each 7–16 s long—taken from well-known pieces.
EEG was chosen as recording technique because it is much
more accessible to MIR researchers thanMagnoencephalography
(MEG) and functional Magnetic Resonance Imaging (fMRI),
withmore andmore affordable consumer-level devices becoming
available. Furthermore, EEG has a good temporal resolution that
can capture how music perception and imagination unfold over
time and allows for analyzing temporal characteristics of the
signal such as rhythmic information. The stimuli were selected
from different genres and systematically span several musical
dimensions such as meter, tempo, and the presence of lyrics.
This way, various retrieval and classification scenarios can be
addressed. As shown in Table 1, there are 3 groups with 4 stimuli
each.

1The dataset is available at https://github.com/sstober/openmiir

1. Stimuli 1–4 are from recordings of songs where a singing voice
(lyrics) is present.

2. Stimuli 11–14 are from different recordings of the same
songs as stimuli 1–4. These recordings do not contain a
singing voice. Instead, the melody is played by one or more
instruments.

3. Stimuli 21–24 are from recordings of purely instrumental
pieces that do not have any lyrics and thus it is not possible
to sing along.

All stimuli were normalized in volume and kept as similar in
length as possible with care taken to ensure that they all contained
complete musical phrases starting from the beginning of the
piece. The pairs of recordings for the same song with and without
lyrics were tempo-matched. The stimuli were presented to the
participants in several conditions while EEG was recorded.

1. Stimulus perception with cue clicks
2. Stimulus imagination with cue clicks
3. Stimulus imagination without cue clicks
4. Stimulus imagination without cue clicks, with additional

feedback from participants after each trial

Condition 1–3 trials were recorded directly back-to-back. The
goal was to lock time and tempo between conditions 1 and
2 through the cue to help identifying overlapping features.
Conditions 3 and 4 simulate a more realistic query scenario
where the system cannot know the tempo and meter in advance.
The presentation was divided into 5 blocks that each comprised
all 12 stimuli in randomized order. In total, 60 trials (12
stimuli × 5 blocks) per condition were recorded for each
subject.

EEG was recorded from 10 participants (3 male), aged
19–36, with normal hearing and no history of brain injury.
A BioSemi Active-Two system was used with 64 + 2
EEG channels sampled at 512Hz. Horizontal and vertical
Electrooculography (EOG) channels were recorded to capture
eye movements. The following common-practice pre-processing
steps were applied to the raw EEG and EOG data using the
MNE-python toolbox by Gramfort et al. (2013) to remove
unwanted artifacts. We removed and interpolated bad EEG

channels (between 0 and 3 per subject) identified by manual
visual inspection. The data was then filtered with a bandpass
keeping a frequency range between 0.5 and 30Hz. This
also removed any slow signal drift in the EEG. To remove
artifacts caused by eye blinks, we computed independent
components using extended Infomax independent component
analysis (ICA) as described by Lee et al. (1999) and semi-
automatically removed components that had a high correlation
with the EOG channels. Afterwards, the 64 EEG channels were
reconstructed from the remaining independent components
without reducing dimensionality. Furthermore, the data of
one participant was excluded for the experiments described
in this paper because of a considerable number of trials
with movement artifacts due to coughing. Finally, all trial
channels were additionally normalized to zero mean and range
[−1, 1].
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TABLE 1 | Information about the tempo, meter, and length of the stimuli (without cue clicks).

ID Group Name Meter Length Tempo in beats per minute (BPM)

1 Songs recorded with lyrics Chim Chim Cheree 3/4 13.3 s 212

2 Take Me Out to the Ballgame 3/4 7.7 s 189

3 Jingle Bells (lyrics) 4/4 9.7 s 200

4 Mary Had a Little Lamb 4/4 11.6 s 160

11 Songs recorded without lyrics Chim Chim Cheree 3/4 13.5 s 212

12 Take Me Out to the Ballgame 3/4 7.7 s 189

13 Jingle Bells 4/4 9.0 s 200

14 Mary Had a Little Lamb 4/4 12.2 s 160

21 Instrumental pieces Emperor Waltz 3/4 8.3 s 178

22 Hedwig’s Theme (Harry Potter) 3/4 16.0 s 166

23 Imperial March (Star Wars Theme) 4/4 9.2 s 104

24 Eine Kleine Nachtmusik 4/4 6.9 s 140

Mean 10.4 s 176

3. RELATED WORK

Retrieval based on brain wave recordings is still a very young
and largely unexplored domain. EEG signals have been used
to recognize emotions induced by music perception (Lin et al.,
2009; Cabredo et al., 2012) and to distinguish perceived rhythmic
stimuli (Stober et al., 2014). It has been shown that oscillatory
neural activity in the gamma frequency band (20–60Hz) is
sensitiv to accented tones in a rhythmic sequence (Snyder and
Large, 2005) and that oscillations in the beta band (20–30Hz)
increase in anticipation of strong tones in a non-isochronous
sequence (Fujioka et al., 2009, 2012; Iversen et al., 2009). While
listening to rhythmic sequences, the magnitude of steady state
evoked potentials (SSEPs), i.e., reflecting neural oscillations
entrained to the stimulus, changes for frequencies related to the
metrical structure of the rhythm as a sign of entrainment to beat
and meter (Nozaradan et al., 2011, 2012).

EEG studies by Geiser et al. (2009) have further shown that
perturbations of the rhythmic pattern lead to distinguishable
electrophysiological responses–commonly referred to as Event-
Related Potentials (ERPs). This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore, Vlek
et al. (2011) showed that imagined auditory accents imposed on
top of a steady metronome click can be recognized from ERPs.
However, as usual for ERP analysis to deal with noise in the
EEG signal and reduce the impact of unrelated brain activity, this
requires averaging the brain responses recorded for many events.
In contrast, retrieval scenarios usually only consider single trials.
Nevertheless, findings from ERP studies can guide the design of
single-trial approaches as demonstrated in subsection 4.1.

EEG has also been successfully used to distinguish perceived
melodies. In a study conducted by Schaefer et al. (2011), 10
participants listened to 7 short melody clips with a length
between 3.26 and 4.36 s. For single-trial classification, each
stimulus was presented for a total of 140 trials in randomized
back-to-back sequences of all stimuli. Using quadratically

regularized linear logistic-regression classifier with 10-fold cross-
validation, they were able to successfully classify the ERPs of
single trials. Within subjects, the accuracy varied between 25 and
70%. Applying the same classification scheme across participants,
they obtained between 35 and 53% accuracy. In a further analysis,
they combined all trials from all subjects and stimuli into a
grand average ERP. Using singular-value decomposition, they
obtained a fronto-central component that explained 23% of the
total signal variance. The related time courses showed significant
differences between stimuli that were strong enough for cross-
participant classification. Furthermore, a correlation with the
stimulus envelopes of up to .48 was observed with the highest
value over all stimuli at a time lag of 70–100ms.

Results from fMRI studies by Herholz et al. (2012) and
Halpern et al. (2004) provide strong evidence that perception
and imagination of music share common processes in the
brain, which is beneficial for training MIIR systems. As
Hubbard (2010) concludes in his review of the literature on
auditory imagery, “auditory imagery preserves many structural
and temporal properties of auditory stimuli” and “involves many
of the same brain areas as auditory perception”. This is also
underlined by Schaefer (2011, p. 142) whose “most important
conclusion is that there is a substantial amount of overlap between
the two tasks [music perception and imagination], and that
‘internally’ creating a perceptual experience uses functionalities
of ‘normal’ perception.” Thus, brain signals recorded while
listening to a music piece could serve as reference data
for a retrieval system in order to detect salient elements
in the signal that could be expected during imagination as
well.

A recent meta-analysis of Schaefer et al. (2013) summarized
evidence that EEG is capable of detecting brain activity during
the imagination of music. Most notably, encouraging preliminary
results for recognizing purely imagined music fragments from
EEG recordings were reported in Schaefer et al. (2009) where 4
out of 8 participants produced imagery that was classifiable (in a
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binary comparison) with an accuracy between 70 and 90% after
11 trials.

Another closely related field of research is the reconstruction
of auditory stimuli from EEG recordings. Deng et al. (2013)
observed that EEG recorded during listening to natural speech
contains traces of the speech amplitude envelope. They used ICA
and a source localization technique to enhance the strength of
this signal and successfully identify heard sentences. Applying
their technique to imagined speech, they reported statistically
significant single-sentence classification performance for 2 of
8 subjects with performance increasing when several sentences
were combined for a longer trial duration.

More recently, O’Sullivan et al. (2015) proposed a method for
decoding attentional selection in a cocktail party environment
from single-trial EEG recordings of approximately one minute
length. In their experiment, 40 subjects were presented with 2
classic works of fiction at the same time—each one to a different
ear—for 30 trials. In order to determine which of the 2 stimuli
a subject attended to, they reconstructed both stimuli envelopes
from the recorded EEG. To this end, they trained two different
decoders per trial using a linear regression approach—one to
reconstruct the attended stimulus and the other to reconstruct
the unattended one. This resulted in 60 decoders per subject.
These decoders where then averaged in a leave-on-out cross-
validation scheme. During testing, each decoder would predict
the stimulus with the best reconstruction from the EEG using
the Pearson correlation of the envelopes as measure of quality.
Using subject-specific decoders averaged from 29 training trials,
the prediction of the attended stimulus decoder was correct for
89% of the trials whereas the mean accuracy of the unattended
stimulus decoder was 78.9%. Alternatively, using a grand-average
decoding method that combined the decoders from every other
subject and every other trial, they obtained a mean accuracy of 82
and 75% respectively.

4. EXPERIMENTS

Our initial analyses of the OpenMIIR recordings was largely
exploratory. Hence, the following subsections cover three very
different approaches:

1. ERP-inspired single-trial analysis (subsection 4.1),

2. reconstruction of the audio stimulus envelope from the EEG
(subsection 4.2), and

3. extraction of stimulus-related brain activity from the EEG
recordings (subsection 4.3).

These approaches increase in complexity, ranging from hand-
crafted design to representation learning, i.e., a machine learning
pipeline that also includes learning suitable features from the raw
EEG data.2

The experiments were implemented in Python with the
exception of the Matlab code for the tempo estimation
experiment described in subsubsection 4.3.5. For neural network
training, the framework Theano (Al-Rfou et al., 2016) was used in

2An introduction and overview of representation learning is, for instance, provided

by Bengio et al. (2013).

combination with Blocks and Fuel (vanMerriënboer et al., 2015).
The code to run the experiments and to generate the plots shown
in this paper is made available as open source and linked from the
OpenMIIR website. As the OpenMIIR dataset is public domain,
this assures full reproducibility of the results presented here.

4.1. ERP-Inspired Single-Trial Tempo
Analysis
Our first experiment was inspired by traditional ERP analysis but
also incorporated autocorrelation as a common MIR approach
to tempo estimation (e.g., Ellis, 2007). This experiment has been
described in detail in Sternin et al. (2015). Recordings from 5
participants were used that were available at this point in time.
Additionally to the pre-processing steps described in section 2,
the EEG recordings were down-sampled to 64Hz.

4.1.1. Initial ERP-Analysis
We started with a basic ERP analysis and focused on the trials
recorded for conditions 1–3. Beat annotations were obtain for
all beats within the audio stimuli using the dynamic beat tracker
described in Ellis (2007) and provided by the librosa library.3 To
this end, the beat tracker was initialized with the known tempo
of each stimulus. The quality of the automatic annotations was
verified through sonification.

Given the beat annotations of the stimuli and assuming that
the participants would imagine the stimuli at a similar tempo in
conditions 2 and 3, we computed bar-aligned ERPs using non-
overlapping epochs from 100ms before to 2.4 s after a downbeat
annotation. This length was required to capture slightly more
than a single bar for the slowest stimulus–number 23 with a bar
length of more than 2.3 s. As expected, the resulting averaged
ERPs differed considerably between participants, stimuli, and
conditions. Nevertheless, we often observed a periodicity in the
averaged signal proportional to the bar length. Figure 1 shows
example ERPs for a specific participant and stimulus where this
is clearly visible in all conditions.

In order to analyze this periodicity, we computed the
autocorrelation curves by comparing each signal with itself at a
range of time lags. To this end, we aggregated all 64 EEG channels
into a mean signal. We further chose time lags corresponding to
the bar tempo range of the stimuli. The lower end of 24 BPM
was determined by the choice of the epoch length. Using longer
epochs would allow for extending the tempo range to slower
tempi, but this would be at the expense of fewer epochs available
for averaging.

4.1.2. Limitations and Potential Pitfalls
In general, more distinct peaks in the autocorrelation were
observed in the perception condition. For the two imagination
conditions, peaks were more blurred as can also be seen in
Figure 1. This is most likely caused by the lack of a time
locking mechanism, which allows the imagination tempo to
vary—causing bar onsets to deviate from the stimulus-based
annotations. This hypothesis is also backed by the observation

3https://github.com/bmcfee/librosa
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FIGURE 1 | (Top) Mean and standard deviation over all 64 EEG channels of the bar-aligned ERPs (without epochs overlap) for “Chim Chim Cheree (lyrics)” in

conditions 1–3 for participant P01. Each ERP was averaged over 25 epochs (5 from each trial). (Bottom) Corresponding autocorrelation scores in the relevant tempo

range. Dashed lines indicate downbeats (Top) and the approximate bar tempo of the stimulus plus its lower tempo harmonic (Bottom). Originally published in Sternin

et al. (2015).

that artificially jittering the bar onsets results in a decrease in
autocorrelation.

The computation of the ERPs benefits from a constant
stimulus tempo. The tempo values provided in Table 1 refer
to the initial tempo which is also used by the tempo cue. In
some stimuli, however, the tempo is not exactly constant but
changes slightly over time. In stimulus 22, for instance, the tempo
temporarily drops after the first half of the theme at around 8 s.
Such deviations further impact the quality of bar-aligned ERPs
because of the variable timing within the individual bars.

As a very important detail of the bar-aligned ERP analysis, it
is essential to ensure that the bar-aligned epochs do not overlap
by rejecting some of the epochs. If they overlap, a single data
segment can contribute to multiple epochs at different time
points. This can induce misleading autocorrelation peaks that are
not supported by the raw data.

4.1.3. Analyzing Single Trials
Based on the ERP-based observations, the question was whether
the tempo could similarly be estimated through autocorrelation
from single trials. This posed several challenges. First, there were
too few bar-aligned epochs in a single trial to use ERPs. Second,
neither the tempo of the stimulus nor the beat annotations should
be known a priori in a realistic setting. Therefore, there were
no reference points for extracting bar-aligned epochs. Moreover,
the problem of possible tempo variance in the imagination
conditions needed to be addressed.

Figure 2 illustrates our proposed solution to this problem. A
2.5-seconds sliding window is moved over the mean EEG signal
aggregated over all channels. At each position with a hop size of
5 samples at 64Hz, an autocorrelation curve is computed. The
curves for the individual window segments are stacked into a
two-dimensional matrix with the first dimension corresponding
to the window offset in the trial signal and the second dimension

corresponding to the possible tempo values. Hence, each matrix
value holds the score for a certain tempo at one specific point in
the trial. The scores in the matrix are finally aggregated deriving
an estimated tempo value for the trial. While the mean and
maximum over all matrix rows often produced significant peaks
in the aggregated autocorrelation curve as illustrated in Figure 2,
the following heuristic has led to slightly more stable results:

1. In each row, find the pair of tempo values with the maximal
combined score.

2. Select the median of all selected pairs.
3. From this pair, return the tempo value with the higher mean

value over all rows.

For the evaluation of our approach, we computed the mean
absolute error of the estimated tempo and the actual tempo.
We also considered the tempo harmonic below and above the
correct value, i.e., half or twice the tempo, as a correct result. The
prediction error, averaged across all stimuli, varied considerably
between participants ranging from 7.07, 7.15, and 8.11 in the
three conditions for participant P14 up to 9.81, 10.04, and
12.58 for P12. Furthermore, the results clearly showed a trend
that tempo was easier to predict for some stimuli, such as
“Chim Chim Cheree” (ID 1 and 11) and “Mary had a little
lamb” (ID 4 and 14), than for others. The slowest stimulus, the
“Imperial March” (ID 23) had the highest variation of prediction
accuracy. These initial results eventually encouraged further
research into estimating the stimulus tempo from the EEG using
more sophisticated signal processing techniques. This is further
described in subsubsection 4.3.5.

4.2. Audio Stimulus Envelope
Reconstruction
In our second experiment, we attempted to reconstruct the audio
stimulus envelopes from the EEG signals, i.e., reversing the
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FIGURE 2 | Schema of the proposed tempo estimation technique. All plots refer to the first of the five trials contributing to the imagination ERP of “Chim Chim Cheree

(lyrics)” in Figure 1, middle. Left top: EEG waveform (mean of all 64 channels) for the whole trial with the red box indicating the sliding window of 2.5 s. Left bottom:

Autocorrelation curve for this specific segment of the trial. Middle: Vertically stacked autocorrelation curves for the whole trial with the red horizontal line indicating the

position of the sliding window shown on the left. Right: Aggregated autocorrelation scores (mean and max) for the whole trial. Dashed vertical lines indicate the

stimulus bar tempo. Dotted vertical lines refer to half the bar tempo. Originally published in Sternin et al. (2015).

black-box signal transformations by the brain and the recording
equipment. An approximate reconstruction of the envelopes
would be a very useful feature for further retrieval steps such
as beat tracking, tempo prediction or stimulus identification.
Furthermore, it could also be directly sonified—for instance by
shaping a white-noise base signal with the up-sampled envelope.
This would be helpful for analysis and for interactive scenarios
like brain-computer interfacing where (auditory) feedback is
desirable.

Using the method described by O’Sullivan et al. (2015),
we attempted to reconstruct and classify the audio envelopes
shown in Figure 3. These envelopes were computed by applying
the Hilbert transform to the mono audio signal of the
stimuli, down-sampling to 64Hz and low-pass filtering at
8Hz. The EEG recordings were also down-sampled to 64Hz
matching the envelope sample rate. This rate was chosen to
reduce dimensionality and thus limit the number of regression
parameters.

The linear reconstruction technique used in O’Sullivan et al.
(2015) learns a filter matrix with individual weights for each
channel at a range of time lags based on the cross-correlation
between the EEG channels and the stimulus envelope. This
matrix is then used to convolve the EEG signal to produce the
reconstructed stimulus envelope. The size of the matrix and thus
the number of parameters to be fit depends on the number of
EEG channels and the maximum time lag to be considered.

Directly applying this technique did unfortunately not lead to
satisfying results. For the trial-specific decoders, the correlation
of the reconstruction and the stimulus envelope was only 0.11
on average with a very high variance of 0.52. Results were also
very unstable, i.e., minimally changing the length of the time-lag
window generally resulted in very different decoder weights. This
eventually produced very poor results when decoder matrices
were added together during training, rendering them useless for
classification.

We suspect two main reasons for this outcome: Firstly,
the trials might be too short for the algorithm to produce
stable decoder matrices and secondly, the music envelopes
differ significantly from those for speech. We tried to address

the second point by using envelopes computed from filtered
stimuli versions that emphasized the main voice (using an
“inverse-karaoke” filter as described in Duda et al., 2007) and
artificial “beat envelopes” derived from the beat and downbeat
annotations shown in Figure 3. However, this did not lead to an
improvement.

Limiting the maximum time lag to 375ms and reducing the
number of channels through PCA, we were able to reduce the
number of parameters and the resulting tendency of over-fitting
the filter matrix to the training data. However, the envelope
reconstruction quality remained very poor and the resulting
(leave-one-out) classification accuracy was not statistically
significant. Based on these observations, we concluded that the
tested approach which worked well for speech reconstruction is
not transferable to our music stimuli. We hypothesize that this is
caused by the lack of signal sparsity of the music stimuli.

4.3. Extracting Music-Related Brain Activity
This experiment aimed to extract brain activity that is related
to stimulus perception and imagination using techniques from
the field of deep representation learning. Note that this is
a much broader focus than the attempted stimulus envelope
reconstruction from the previous experiment. Naturally, any
EEG signal component correlated with the stimulus envelope
would be related to stimulus perception or imagination. But there
is potentially much more brain activity that is also related to the
music stimuli but not directly helpful for their reconstruction.

The basic pre-processing steps briefly described in section 2
aimed to improve the general signal quality by removing
common EEG artifacts. However, there is still the problem that
the EEG naturally also records brain activity that is unrelated
to music perception or imagination. These signals can be
considered as noise with respect to the specific focus of interest.
Separating this background noise from the music-related brain
activity is a very challenging task. Figuratively speaking, this
could be compared to a cocktail-party situation where a listener
would like to attend to a specific speaker in a room with
many independently ongoing conversations. As an additional
complication, the listener is not in the same room as the speakers
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FIGURE 3 | Stimulus envelopes (sampled at 64 Hz, low-pass filtered at 8Hz) with markers for beats (dashed lines) and downbeats (solid lines) obtained using the

dynamic beat tracker by Ellis (2007) as part of the librosa library.

but in the next room separated by a thick wall—analogously to
the EEG equipment that can only measure brain activity from the
outside with the skull in between.

This challenge calls for sophisticted signal processing
techniques. One newly emerging option is using so-called
deep artificial neural networks that over the last decade have
become very popular in various application domains such as
computer vision, automatic speech recognition, natural language
processing, and bioinformatics where they produce state-of-
the-art results on various tasks. These networks are able to
learn (hierarchies of increasingly) complex features from raw
data which is referred to as (deep) representation learning. The
learned feature representations can then be used to solvemachine
learning problems such as a classification tasks. We hypothesized
that this approach could also be applied to EEG analysis.

The main problem with applying deep neural networks for
EEG analysis is the limited amount of data for training. If all

perception trials are clipped to match the length of the shortest
stimulus, excluding the cue clicks, the total amount of EEG data
recorded for the perception conditions is 63min from 540 trials.
At the same time, each trial has more than 225,000 dimensions
at the original sampling rate of 512Hz. This is very unlike the
typical scenarios where deep neural networks are successful.4 In
such a setting with potentially many network parameters (due to
the number of input dimensions) and only a small set of training
instances, the neural net is very likely to overfit. I.e., it adapts too
much to the training data which results in a poor generalization
performance.

We addressed this challenge by focusing on small nets
that have few model parameters and by developing a special

4For comparison, a 224-by-224 RGB image in the Imagenet dataset has roughly

150,000 dimensions—about two-thirds of the size of the EEG trials. However,

Imagenet contains millions of labeled images for training.

pre-training technique called similarity-constraint encoding for
representation learning. The series of representation learning
experiments that eventually led to this technique is described in
detail in Stober et al. (2015a). In the following, we summarize the
main idea.

4.3.1. Similarity-Constraint Encoding
The idea of similarity-constraint encoding (SCE) is derived from
auto-encoder pre-training (Bengio et al., 2007). An auto-encoder
is a neural network that is trained to reconstruct its inputs
while its internal representation is limited to make this a non-
trivial task—for instance, through a structural bottleneck or
regularization of weights or activations. Additionally, the inputs
can be corrupted by adding random noise which can result
in more robust features (Vincent et al., 2010). This approach
has been successfully applied for learning compressed feature
representations—usually during an unsupervised pre-training
phase—in many domains such as for learning high-level image
features (Le, 2013), coding speech spectrograms (Deng et al.,
2010) or sentiment analysis (Socher et al., 2011).

EEG data already contain noise from various sources.
Furthermore, only a small portion of the recorded brain activity
is usually relevant in the context of an experiment. Given only
a small dataset, a basic auto-encoder would learn features that
represent the full EEG data including noise and irrelevant brain
activity. This limits the usefulness of the learned features. For
better features, the encoding needs to be more selective. To
this end, side information can be used. Demanding that trials
belonging to the same class5 are encoded similarly facilitates
learning features representing brain activity that is stable
across trials. Features to be used in classification tasks should

5There are several ways to assign the trials to classes based on the stimulus

meta-data such as the stimulus id, the meter, or the presence or absence of lyrics.
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furthermore allow for distinguishing between the respective
classes. This can be achieved by a training objective that also
considers how trials from other classes are encoded.

In the most basic form, the encoded representations of
two trials belonging to the same class are compared with an
encoded trial from a different class. The desired outcome of this
comparison can be expressed as a relative similarity constraint as
introduced in Schultz and Joachims (2003). A relative similarity
constraint (a, b, c) describes a relative comparison of the trials
a, b, and c in the form “a is more similar to b than a is to c.”
Here, a is the reference trial for the comparison. There exists
a vast literature on using such constraints to learn similarity
measures in general and for applications within MIR specifically
(Lübbers and Jarke, 2009; McFee and Lanckriet, 2010; Stober,
2011; Wolff and Weyde, 2014). Based on this formalization,
we define a cost function for learning a feature encoding by
combining all pairs of trials (a, b) from the same class with all
trials c belonging to different classes and demanding that a and
b are more similar. The resulting set of trial triplets is then used
to train a similarity-constraint encoder network as illustrated in
Figure 4.

All trials within a triplet that constitutes a similarity constraint
are processed using the same encoder pipeline. This results
in three internal feature representations. Based on these, the
reference trial is compared with the paired trial and the
trial from the other class resulting in two similarity scores.
We use the dot product as similarity measure because this
matches the way patterns are compared in a neural network
classifier and it is also suitable to compare time series. More
complex approaches are possible as well, as long as they
allow training through backpropagation. The output layer
of the similarity constraint encoder finally predicts the trial
with the highest similarity score without further applying
any additional affine transformations. The whole network
can be trained like a common binary classifier, minimizing
the error of predicting the wrong trial as belonging to
the same class as the reference. The only trainable part is
the shared encoder pipeline. This pipeline can be arbitrarily
complex—e.g., also include recurrent connections within the
pipeline.

After pre-training, the output of the encoder pipeline can be
used as feature representation to train a classifier for identifying
the actual classes (in contrast to the artificially constructed binary
classification problem for pre-training). Alternatively, as we will
show later, the features could also be used to train a classifier for
different classes than the ones originally used to construct the
triplets during pre-training.

4.3.2. Encoder Pipeline and Classifiers
For all SCE experiments described in the following, the encoder
pipeline consisted of a single convolutional layer with a single
filter and without a bias term. This filter aggregated the 64 raw
EEG channels into a single waveform processing one sample
(over all channels) at a time. I.e. it had the shape 64× 1 (channels
× samples) and thus a very small number of parameters. The
hyperbolic tangent (tanh) was used as activation function because
its output range matched the value range of the network inputs

([−1,1]). No pooling was applied. The number of network
and learning hyper parameters was kept as low as possible to
minimize their impact.

A linear support vector machine classifier (SVC) was trained
using Liblinear (Fan et al., 2008) on

• baseline (1): the raw EEG data,
• baseline (2): the averaged EEG data (mean over all channels as

a naïve filter), and
• the output of the pre-trained encoder pipeline.

With this setting, an increase in the stimulus classification
accuracy over the baselines can be attributed to a reduction of the
signal-to-noise ratio by the encoder pipeline. This could then be
interpreted as evidence that the encoder has successfully picked
up music-related brain activity.

As additional classifier, a simple neural network (NN) was
trained on the encoder pipeline output. This network consisted
of a single fully-connected layer with a Softmax non-linearity. No
bias term was used. This resulted in one temporal pattern learned
for each of the classes, which could then be analyzed. For further
comparison, we also trained and end-to-end neural network that
had the same structure as the encoder pipeline combined with the
neural network classifier but was initialized randomly instead of
pre-training. All tested methods are listed in Table 2.

4.3.3. Training and Evaluation Scheme
A nested cross-validation scheme as shown in Figure 5 was
chosen that allowed for using each one of the 540 trials for testing
once. The outer 9-fold cross-validation was performed across
subjects, training on 8 and testing on the 9th subject. The inner
5-fold cross-validation was used for model selection based on 1
of the 5 trial blocks. Training was divided into two phases.

In the first phase, the encoder pipeline was trained using
the proposed similarity-constraint encoding technique with the
hinge loss as cost function. Stochastic gradient descent (SGD)
with a batch size of 1,000 and the Adam (Kingma and Ba, 2014)
step rule was used. Training was stopped after 10 epochs and
the model with the lowest binary classification error on the
validation triplets was selected. Triplets were constructed such
that all trials within a triplet belonged to the same subject as
the simple encoder pipeline likely could not easily compensate
inter-subject differences. The validation triplets consisted of a
reference trial from the validation trials and the other two trials
drawn from the combined training and validation set of the inner
cross-validation. This way, a reasonable number of validation
triplets could be generated without sacrificing too many trials
for validation.6 The final encoder filter weights were computed
as mean of the 5-fold models. The output of this filter was used to
compute the features for the second training phase.

In the second phase, the two classifiers were trained. For
the SVC, the optimal value for the parameter C that controls
the trade-off between the model complexity and the proportion
of non-separable training instance was determined through a
grid search during the inner cross-validation. For the neural

6At least 2 of the 5 trials per class and subject are required to construct within-

subject triplets.
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FIGURE 4 | Processing scheme of a similarity-constraint encoder. Originally published in Stober (2017).

TABLE 2 | Accuracies for the three classification tasks: stimulus (12 classes), group (3 classes) and meter (2 classes).

Classifier Features Classification Accuracy & Significance

Stimulus (12)

(%)

Group (3)

(%)

Meter (2)

(%)

Chance of correct classification for a single trial 8.33 33.33 50.00

Chance accuracy at p = 0.001 for 560 trials w.r.t. cumulative binomial distribution 12.22 39.63 56.67

SVC Raw EEG 18.52 *** 40.37 ** 62.04 **

SVC Raw EEG channel mean 12.41 **** 38.70 *** 58.52 ****

End-to-end NN Raw EEG 18.15 *** 37.41 **** 60.56 ***

Dummy Output of stimulus classifier 38.89 *** 59.63 ***

SVC (reference) Stimulus SCE features 27.59 48.89 69.44

NN Stimulus SCE features 27.22 48.89 67.78

SVC Group SCE features 35.37 ****

NN Group SCE features 34.63 ****

SVC Meter SCE features 60.19 ***

NN Meter SCE features 58.88 ****

Chance accuracy values are provided for comparison. Significance levels are indicated against the best performing approach (highlighted in red) using McNemar’s tests (n = 540,

mid-p). **p < 0.01, ***p < 0.001, ****p < 0.0001.

network classifier, 5 fold models were trained for 100 epochs
using SGD with batch size 120, the Adam step rule, and the hinge
loss as cost function. The best models were selected based on
the classification performance on the validation trials and then
averaged to obtain the final classifier.

4.3.4. Stimulus Identification
As first classification task, we investigated stimulus identification.
There are 12 perfectly balanced classes–one for each stimulus.
Figure 6 shows the filters learned in the pre-training phase of
each outer cross-validation fold as well as the standard deviation
and ranges for the weights within the 5 inner cross-validation
folds. The filter weights only differed in small details across folds.
However, sometimes the polarity of the weights had flipped. To
avoid cancellation effects during aggregation, the polarity was
normalized based on the sign of the weight for channel T7 (next
to the left ear), which always had a high absolute value.

Themagnitude of the channel weights in the pre-trained filters
(which are further aggregated in Figure 7) indicates how much
the respective EEG channels are contributing to the aggregated
signal. The electrodes within the dark red areas that appear
bilaterally towards the back of the head lie directly over the
auditory cortex. These electrodes may be picking up on brain
activation from the auditory cortex that is modulated by the
perception of the stimuli. The electrodes within the blue areas
that appear more centrally may be picking up on the cognitive
processes that occur as a result of the brain processing the music
at a higher level.

However, as pointed out by Haufe et al. (2014), model
parameters for classification or decoding should not be directly
interpreted in terms of the brain activity as they depend on all
noise components in the data, too. Instead, a forward model
should be derived that explains how the measured signals were
generated from the neural sources. We applied the proposed
regression approach and trained a deconvolutional filter that
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FIGURE 5 | Nested cross-validation scheme with pre-training and supervised training phase. Triplet numbers for SCE pre-training refer to the 12-class stimulus

identification task.

FIGURE 6 | Topographic visualization of the learned filter weights aggregated over the 5 inner cross-validation folds within each outer cross-validation fold. (Top)

mean. (Middle) standard deviation. (Bottom) range (maximum–minimum). Columns correspond to outer cross-validation folds with the id of the test subject as

column label. The mean filters in the top row were used to compute the features for the supervised training phase. All plots use the same color map and range.

FIGURE 7 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for stimulus classification. Layer 1: mean of convolutional

layers from the pre-trained encoders (SCE), i.e., mean over the top row in Figure 6. The filter weights only differed in small details across folds. Layer 2: mean of

classifier layers trained in the supervised phase.
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FIGURE 8 | Visualization of the forward model (deconvolutional filter) trained to

reconstruct the originally recorded EEG signals from the encoder output over

all perception trials.

reconstructs the original EEG signal from the encoder output by
minimizing the mean squared error between the reconstructed
and the actual signal over all trials. For each trial, we used
the encoder from the respective outer cross-validation fold. The
resulting deconvolutional filter is shown in Figure 8.

Table 2 (column “stimulus”) lists the classification accuracy

for the tested approaches. Remarkably, all values were
significantly above chance. Even for baseline 2, the value of

12.41% was significant at p= 0.001. This significance value was
determined by using the cumulative binomial distribution to
estimate the likelihood of observing a given classification rate by
chance. To evaluate whether the differences in the classification
accuracies produced by the different methods are statistically
significant, McNemar’s tests using the “mid-p” variant suggested
in Fagerland et al. (2013) were applied. The obtained significance
levels are indicated in Table 2 for a comparison with the best
performing approach—using SVC in combination with the
SCE features learned for stimulus identification. The very
significant improvement of the classification accuracy over the
two baselines and the neural network trained end-to-end is a
strong indicator for a reduction of the signal-to-noise ratio.
Notably, the pre-trained filter is very superior to the naïve filter
of baseline 2 that was actually harmful judging from the drop in
accuracy.

The confusion matrices for the classifiers trained on the
encoder output are shown in Figure 9. Apart from the main
diagonal, two parallel diagonals can be seen that indicate
confusion between stimuli 1–4 and their corresponding stimuli
11–14, which are tempo-matched recordings of songs 1–
4 without lyrics. Analyzing the averaged neural network
parameters visualized in Figure 7 shows similar temporal
patterns for these stimuli pairs.7 A detailed analysis of the

7The average model is only for illustration and analysis. For testing, the respective

outer cross-validation fold model was used for each trial.

network layer activations as shown in Figure 10 reveals
noticeable peaks in the encoder output and matching weights
with high magnitude in the classifier layer that often coincide
with downbeats–i.e., the first beat within each measure, usually
with special musical emphasis. These peaks are not visible
in the channel-averaged EEG (baseline 2). Thus, it can be
concluded that the encoder filter has successfully extracted
a component from the EEG signal that contains musically
meaningful information.

Both, the systematic confusion of stimuli 1–4 with their
corresponding tempo-matched versions without lyrics (stimuli
11–14) as well as the temporal patterns learned by the neural
network classifier are strong indicators against a possible
“horse” classifier. Sturm (2014) defines a “horse” as “a system
appearing capable of a remarkable human feat [...] but actually
working by using irrelevant characteristics (confounds).” In
this specific context, a “horse” might base the classification on
signal components unrelated to music cognition. An additional
behavioral experiment where 8 subjects judged the similarity of
each stimulus pair confirmed the parallel diagonals observed in
the confusionmatrices. Measuring the time required to recognize
the individual music stimuli yielded average values of 1–3 s that
did not correlate with the third-downbeat peaks in the temporal
patterns of the classifier. This suggests that the peak is not related
to brain activity caused by stimulus recognition but rather by
musical features of the stimuli.

4.3.5. Tempo Estimation Revisited
In a follow-up experiment published in Stober et al. (2016) that
also picks up the thread from our tempo analysis experiment
described in subsection 4.1, we used the stimulus SCE features
as input to a sophisticated tempo estimation technique provided
by the Tempogram Toolbox.8 This technique has been originally
developed for analyzing audio recordings. To compute a
tempogram, a given music audio signal is first transformed into a
novelty curve that captures note onset information—for instance,
as the positive part of a spectral flux as described in Grosche
and Müller (2011a). Through a short-time Fourier analysis of the
novelty curve, the audio tempogram is derived that reveals how
dominant different tempi are at a given time point in the audio
signal. Aggregating a tempo histogram along the time axis yields
a tempo histogram where peaks indicate the predominant tempo
within the piece.

We applied the same processing pipeline for the perception
EEG data of participants P09 to P14 by directly interpreting the
EEG signal filtered by the SCE encoder pipeline as novelty curve.
We were able to observe peaks in the derived tempo histograms
that sometimes highly correlated with the stimulus tempo.
Averaging tempogram histograms over trials and participants
overall stabilized the tempo estimation. Remarkably, results
seemed to strongly depend on the music stimuli. For the first
8 stimuli (1–4 and 11–14), i.e., the songs recorded with and

8The Tempogram Toolbox contains MATLAB implementations for extracting

various types of tempo and pulse related audio representations (Grosche and

Müller, 2011b) A free implementation can be obtained at https://www.audiolabs-

erlangen.de/resources/MIR/tempogramtoolbox.
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FIGURE 9 | 12-class confusion matrices for the music stimuli (listed on the left) for the classifiers trained on the stimulus SCE output. Middle: SVC. Right: Neural

network classifier (NN). Results were aggregated from the 9 outer cross-validation folds (n = 540). Originally published in Stober (2017).

FIGURE 10 | Detailed analysis of all trials belonging to stimulus 1. Vertical marker lines indicate beats (dotted) and downbeats (dashed). The horizontal axis in rows

1–5 corresponds with the time in seconds or samples (row 5). (Top) Audio stimulus (green) and envelope (cyan). (2nd row) Raw EEG averaged over all 64 channels

per trial (gray) and overall mean (red). This is identical to the SVC input for baseline 2. (3rd row) Encoder output (activation) for the individual trials (gray) and overall

mean (red). (4th row) Patterns learned by the neural network classifier for this class in the 9 folds of the outer cross-validation (gray) and overall mean (blue). (5th row)

Alternative visualization (as in Figure 7) of the averaged pattern from row 4. (Bottom) Softmax output of the neural network classifier for the individual trials (gray) and

overall mean (red) with class labels on the horizontal axis. All outputs were generated using the respective test trials for each fold model in the outer cross-validation.

without lyrics, the tempo extraction seemed to work better
than for the last 4 (21–24), i.e., the instrumental pieces.
Exploring this effect was beyond the scope of this small
study. To uncover and properly understand the underlying

factors, a large-scale music perception experiment using stimuli
with systematically adapted tempi would be needed. Possible
reasons might be the complexity of the music stimuli, the
presence of lyrics, the participants, or the applied methodology
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FIGURE 11 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for group classification (stimuli 1–4: songs recorded with

lyrics, stimuli 11–14: songs recorded without lyrics, stimuli 21–24: instrumental pieces). Layer 1: mean of convolutional layers from the pre-trained encoders (SCE)

using the stimuli labels. Layer 2: mean of classifier layers trained in the supervised phase.

FIGURE 12 | Visualization of the average neural network parameters (from the 9 outer cross-validation folds) for meter classification. Layer 1: mean of convolutional

layers from the pre-trained encoders (SCE) using the stimuli labels. Layer 2: mean of classifier layers trained in the supervised phase.

and techniques. Investigating these issues could be a starting
point for interdisciplinary research between MIR and music
cognition.

4.3.6. Group Classification
As described in section 2 and shown in Table 1, the 12 music
stimuli can be grouped into 3 groups of 4 stimuli each: songs
recorded with lyrics (stimuli 1–4), songs recorded without lyrics
(stimuli 11–14), and instrumental pieces (stimuli 21–24). Using
these three perfectly balanced classes, 184,320 training triplets
and 72,960 validation triplets were available for each inner cross-
validation fold during SCE pre-training. Here, the SCE pre-
training did not result in a suitable feature representation as
indicated by the inferior classification accuracy compared to
the baselines shown in Table 2 (column “groups”). As a likely
reason, the SCE learning problem may me ill-posed, i.e., the
encoder pipeline may not have been sufficiently complex to learn
a transformation of the raw EEG that makes trials within groups
more similar to each other than to trials from the other groups.

As an alternative, we trained the group classifiers on the
feature representation from the stimulus classification task. This
resulted in a substantial increase in classification accuracy of
roughly 10%. We further added a “dummy” baseline classifier
that just derived the group class labels from the predicted
stimulus labels. The difference in accuracy indicates that the
stimulus SCE features seem to capture some relevant information
for the group classification task beyond what is necessary to
recognize the stimuli. Similarly to Figures 7 and 9 for the
stimulus classification task, Figure 11 shows the parameters of
the neural network classifier averaged over the 9 outer cross-
validation folds as well as the confusion matrices for the two
group classifiers trained on the stimulus SCE features. The
temporal patterns learned by the classifier are currently subject
of further analysis.

4.3.7. Meter Classification
There are two perfectly balanced classes with respect to meter
as half of the stimuli are in 3/4 meter and the others are in
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1. Select features of interest and determine their respective values for the stimuli

a. based on MIR feature extraction tools
b. defined by experts
c. determined in behavioral experiments

2. Compute a similarity matrix from pairwise stimulus similarities
3. Derive similarity constraints for training
4. Define an encoder pipeline based on hypotheses about the cognitive processes of interest. This can include:

a. applying pre-processing techniques like transforming the signal into a time-frequency representation or
computing signal components using ICA

b. focusing on specific data such as selecting specific channels, signal components or frequency bands
c. determining the encoder hyper parameters such as the number and kind of layers for artificial neural

networks

5. Train the retrieval model (such as the encoder combined with a classifier)
6. Analyze the trained model and its performance including

a. error and misclassification patterns (like the confusion matrices in Figure 9)
b. emerging encoder parameters (like the filters visualized in Figure 7) as well as corresponding forward

models (such as Figure 8)
c. patterns in encoder output (as shown in Figure 10)

7. Iterate with revised features (step 1) or hypotheses about the cognitive processes (step 4)

FIGURE 13 | Outline of the proposed MIR-driven research approach using similarity-constraint encoding as a specific example.

4/4 meter. With these class labels, 211,968 training triplets and
83,520 validation triplets are available for each inner cross-
validation fold during SCE pre-training. As for the group
classification, the resulting feature representation is not helpful
for this classification task. Instead, using the stimulus SCE
features again results in the best performance that is roughly 9%
higher. Figure 12 shows the parameters of the neural network
classifier averaged over the 9 outer cross-validation folds as well
as the confusion matrices for the two group classifiers trained on
the stimulus SCE features.

The inferior performance of the meter SCE features
may again be attributed to complexity limitations of the
simple convolutional encoder pipeline. We are currently
investigating more complex encoders that also incorporate
recurrent components to capture temporal patterns within the
encoder already.

4.3.8. Classifying EEG from the Imagination

Conditions
All SCE-based experiments described above focused on
perception data. Applying the same pre-training technique to
the data from the imagination conditions has so far not led to
significant classification results or to the discovery of meaningful
or interesting patterns. Also, using the encoder trained on the
perception data to filter the imagination trials before training
the classifier was not successful. As possible reason for this, we
suspect—at least for the current encoder design—that timing
and synchronization in the imagination trials are insufficiently
accurate. This makes it hard to learn an encoder that produced
similar temporal patterns or—given a successfully pre-trained
encoder—to learn temporal patterns for classification that

generalize well. Different encoder designs that can compensate
temporal variance may lead to better results. This needs to be
further investigated. However, focusing on the perception data
for now in order to improve the analysis methods appears to be
more promising.

5. DISCUSSION

5.1. Proposal of an MIR-Driven Research
Approach
Based on the findings from our representation learning
experiments described in subsection 4.3, we can derive the
following general MIR-driven approach to analyzing music
perception and imagination data as outlined in Figure 13. We
start by choosing a specific music feature—that necessarily has
to be present in the respective music stimuli—and attempt
to retrieve it from the recorded brain signals. Representation
learning techniques like similarity-constraint encoding allow for
finding signal filters that extract relevant components from the
recorded brain signals given that we have chosen a suitable
encoder pipeline. This choice should be hypothesis-driven
and informed by findings from cognitive neuroscience. If the
trained encoder pipeline indeed improves the signal-to-noise
ratio and consequently the retrieval performance, this can be
seen as supporting evidence for the hypothesis that guided the
encoder design. Analyzing the emerging network parameters and
activation patterns might further allow for learning more about
the underlying cognitive processes. Failure could be attributed
to poor encoder design choices and question the underlying
hypothesis, or it could be caused by limitations of the dataset.
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(For instance, there might be a bias within the dataset caused by
the choice of the stimuli or the participants.) The impact of the
latter should naturally be minimized through the study design.

5.2. Interpretation of Temporal Classifier
and Activation Patterns
The neural networks trained so far seem still simple enough to
allow for interpretation of the learned parameters by domain
experts and facilitate findings about the cognitive processes. Most
remarkably, the temporal patterns learned by the neural network
classifier for the stimulus identification task show prominent
signal peaks at the third downbeat (i.e., the beginning of the third
bar) for almost all stimuli. They can be clearly recognized in
the visualization of the averaged model parameters in Figure 7.
There are also noticeable matching peaks in the encoder filter
activation as shown in Figure 10 for one of the stimuli. This raises
the question which cognitive process could explain these patterns
and calls for further investigation by domain experts from music
cognition.

5.3. Lessons Learned from the OpenMIIR
Study Design
In the way it has been used so far, similarity-constraint
encoding imposes a strong regularization assumption that
requires a very tight synchronization of the trials to identify
good filter parameters. This is problematic if synchronization
between the stimuli and the recorded EEG signals is poor like
in the imagination conditions. Different encoder designs–for
instance including temporal pooling operations–might be able
to compensate the lack of tight synchronizations. But generally,
it seems very desirable for representation learning to ensure
synchronization by experimental design in the first place. In the
design of our study to collect the first OpenMIIR dataset, we
decided against having a metronome click for synchronization
during imagination trials in order to avoid artifacts caused
by the audio stimulation. It seems now like the downside of
having such artifacts is outweighed by the possible benefits of
tightly controlling the imagination tempo. Of course, the added
metronome clicks in the background would have to be exactly
identical in tempo, loudness etc. for all stimuli. Otherwise, they
would easily allow for distinguishing the stimuli by a “horse”
classifier.9 Hence, all stimuli would need to be in the same tempo
(or multiples) as the click.

Another issue is the variable length of the stimuli caused
by using full musical phrases in the original study. We ended
up cutting all trials to the length of the shortest one for our
representation learning approach. Zero-padding the shorter trials
instead would have easily given away their identity leading to
useless feature representations. To avoid recording likely unused
EEG data, it seems more desirable to have equal-length trials–
even as this means to stop in the middle of a musical phrase.
Having tempo-synced stimuli makes finding good cut points
already easier.

Furthermore, switching to imagination trials with a
metronome click would also rule out conditions 3 and 4 as

9Cf. Section 4.3.4 for a discussion of the “horse” phenomenon.

listed in section 2. With half as many conditions, already twice
as many trials could be recorded in the same time. Additionally
reducing the number of stimuli and the stimuli length would
allow for further increasing the number of trials per class and
condition. This could allow us to collect enough data for learning
within-subject feature representations and retrieval models.
Based on these considerations, we are currently designing a
follow-up OpenMIIR study to collect another EEG dataset.

6. CONCLUSIONS AND OUTLOOK

Less than four years have passed since the subject of MIIR
was first discussed during the “Unconference” (Anglade et al.,
2013) at the International Society of Music Information Retrieval
Conference (ISMIR) in 2012. ISMIR 2016 already featured a
well-attended tutorial on the “Introduction to EEG Decoding for
Music Information Retrieval Research” and for the first time, the
annual seminar onCognitively basedMusic Informatics Research
(CogMIR) was co-located as a satellite event which drew the
attention of many main-conference attendees. This is evidence
for the increasing interest within theMIR community to combine
MIR and music cognition research.

The goal of the OpenMIIR initiative is to foster
interdisciplinary exchange and collaborations between these
two fields. To this end, we introduced the OpenMIIR dataset
in 2015—an public-domain EEG dataset intended to enable
MIR researchers to venture into the domain of music imagery
and develop novel methods without the need for special EEG
equipment. This paper summarized our findings from a first
series of largely exploratory experiments addressing several MIIR
tasks with this dataset. For some tasks—especially when working
with data from the imagination conditions—our approaches
failed or did not perform as expected. We have hypothesized
why this might be the case and derived ideas for a follow-up EEG
study to collect a second dataset.

A first success of our efforts is our proposed similarity-
constraint encoding approach for extracting music-related
brain activity of EEG recordings. Using this technique, we
were able to train simple spatial filters that significantly
improve the signal-to-noise ratio for the perception data in
several classification tasks. There is a lot of potential for
improving the classification accuracy by using more complex
encoders that possibly comprise multiple layers of neurons
and recurrent connections. Investigating such options is one
major direction of our ongoing research efforts. We have also
obtained encouraging first results by applying MIR techniques
from the Tempogram Toolbox for estimating the stimulus
tempo from the perception EEG recordings. This experiment
nicely showcases how well-established MIR techniques for
music audio analysis can also be applied to music cognition
data.

We hope that our work described here inspires other
MIR researchers to try their methods in this emerging
interdisciplinary field and encourages music cognition
researchers to share their datasets and engage in an exchange
with the MIR community. Everybody interested is invited to
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contribute and collaborate within the OpenMIIR initiative.
Further information about the OpenMIIR initiative can be found
at https://openmiir.github.io where apart from the OpenMIIR
dataset itself, the code to run the described experiments is shared
and constantly being updated.
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Music of the 7Ts: Predicting and
Decoding Multivoxel fMRI Responses
with Acoustic, Schematic, and
Categorical Music Features
Michael A. Casey*

Bregman Music and Audio Lab, Computer Science and Music Departments, Dartmouth College, Hanover, NH, United States

Underlying the experience of listening to music are parallel streams of auditory,

categorical, and schematic qualia, whose representations and cortical organization

remain largely unresolved. We collected high-field (7T) fMRI data in a music listening

task, and analyzed the data using multivariate decoding and stimulus-encoding models.

Twenty subjects participated in the experiment, which measured BOLD responses

evoked by naturalistic listening to twenty-five music clips from five genres. Our first

analysis applied machine classification to the multivoxel patterns that were evoked in

temporal cortex. Results yielded above-chance levels for both stimulus identification and

genre classification–cross-validated by holding out data frommultiple of the stimuli during

model training and then testing decoding performance on the held-out data. Genremodel

misclassifications were significantly correlated with those in a corresponding behavioral

music categorization task, supporting the hypothesis that geometric properties of

multivoxel pattern spaces underlie observed musical behavior. A second analysis

employed a spherical searchlight regression analysis which predicted multivoxel pattern

responses to music features representing melody and harmony across a large area

of cortex. The resulting prediction-accuracy maps yielded significant clusters in the

temporal, frontal, parietal, and occipital lobes, as well as in the parahippocampal

gyrus and the cerebellum. These maps provide evidence in support of our hypothesis

that geometric properties of music cognition are neurally encoded as multivoxel

representational spaces. The maps also reveal a cortical topography that differentially

encodes categorical and absolute-pitch information in distributed and overlapping

networks, with smaller specialized regions that encode tonal music information in

relative-pitch representations.

Keywords: multivariate, fMRI, naturalistic, music-informatics, stimulus-encoding, genre, melody, harmony

1. INTRODUCTION

Humans possess an effortless proclivity to enjoy musical experiences in a wide variety of styles
and acoustic configurations. Being moved by, or moving to music requires mental processing that
is sensitive to specific auditory and schematic information–the precise features of which, as well
as their cortical organization, are yet to be properly understood. Substantial progress has been
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made in eliciting the tuning response of groups of voxels
to acoustic features in primary auditory areas (Aertsen and
Johannesma, 1981; Eggermont et al., 1981; Cariani and Delgutte,
1996; Bendor and Wang, 2005; McDermott and Oxenham,
2008). However, far less is known about responses to categorical
and schematic music features–such as genre categories and
pitch classes–and about music representations that are encoded
outside of primary auditory areas. We address the gap in
understanding the fundamental neural codes underlying music
cognition by combining methods from three research fields:
(i) music cognition, (ii) music information retrieval, and (iii)
multivoxel pattern analysis applied to high-field functional
magnetic resonance imaging (fMRI).

1.0.1. Multidimensional Representations in Music

Cognition and Music Informatics
Results of music cognition research show that multidimensional
geometries are implicated in the encoding of musical attributes
and in processes of anticipation and reward during music
perception. Examples of such geometries include the pitch spiral,
torus, and tonnetz models of tonal pitch cognition (Shepard,
1964; Krumhansl, 1990; Tymoczko, 2012), and simplex models
of categorical rhythm perception (Honing, 2012). These studies
demonstrated that common behavioral responses to music
are predicted by models employing statistical learning within
multidimensional geometric spaces.

Likewise, music information retrieval systems learn
embeddings of musical features in multidimensional spaces, the
geometric properties of which are used to successfully predict
behavior such as music categorization and musical preferences
(Bartsch and Wakefield, 2001; Tzanetakis et al., 2002). Such
representations are widely adopted for products and services
relating to music consumption (Casey et al., 2008). Hence, a
portion of the information in music is inherently geometric,
and the properties of such geometries correspond with human
behavior.

1.1. Prior Work
1.1.1. Voxel Encoding and Decoding Models
Direct testing of hypotheses about cognitive representations of
music and their topographies can be achieved with stimulus-
model-based encoding and decoding. Janata et al. (2002)
used the geometric pitch-torus model described by Krumhansl
(1990), which preserves pitch-distance relationships as perceived
by listeners. In their fMRI study, moment-to-moment pitch
information of the stimulus–a clarinet melody cycling through
all keys–was projected onto a pitch torus using an artificial
neural network model (self-organizing map), and the model
outputs were used as inputs to a regression model with
fMRI voxel responses as the dependent variables. Clusters of
significant model predictions were found in pre-frontal cortex,
predominantly in rostral and ventral reaches of superior frontal
gyrus (SFG). Also utilizing schematic stimulus-model-based
encoding, Foster and Zatorre (2010) studied absolute- and
relative-pitch representations in a melody-transposition memory
task. Their results implicated the intraparietal sulcus (IPS) in
comparing two differently transposed melodies.

Expanding the scope of topographical mapping of music
features, Alluri et al. (2012) used 25 acoustic features
automatically extracted from a single naturalistic musical
work–a tango of 8 min duration–to investigate voxel responses
to timbral, rhythmic, and tonal features voxel-wise for large
cortical and subcortical volumes. Results showed anatomically
distinct responses between the three feature groups. Timbral
features were implicated in HG, STG, rolandic operculum
(ROL), supramarginal gyrus (SMG), superior temporal pole
(STP), and the cerebellum; rhythmic and tonal features were
found in STG, inferior temporal gyrus (ITG), precuneus, and
several subcortical limbic areas–including the left hemispheric
amygdala, hippocampus and putamen, mid-cingulate gyrus,
supplementary motor area, and the insula. In a further study,
they were able to predict voxel responses in bilateral auditory
cortex to two music medleys (Alluri et al., 2013), showing
significant accuracy of voxel response predictions for auditory,
limbic, motor, somatosensory, and frontal areas. In a related
work, Toiviainen et al. (2014) demonstrated decoding of acoustic
features, predicting the stimulus feature from the voxel response.
They found contributions from STG, HG, ROL, and cerebellum
contributed to the decoding of timbral features. Bilateral STG,
right HG, and hippocampus were significant for rhythmic
features. Tonal features, however, were not predicted above
chance levels in their study, leaving open the question of whether
multivoxel patterns are required to accurately decode neural
representations of tonality.

1.1.2. Multivoxel Pattern Analysis
Multivariate pattern analysis (MVPA) treats voxels as the
dimensions of continuously-valued feature spaces, such that
stimulus-evoked activations are distributed and overlapping
between distinct conditions (Haxby et al., 2001; Kriegeskorte
et al., 2006; Kriegeskorte, 2011; Stelzer et al., 2013). MVPA
models of information representation may recruit the same set of
voxels in two ormore stimulus conditions with different response
levels in each (Haxby et al., 2014).

Applying multivoxel pattern analysis to music, Casey et al.
(2012) showed that timbral features based on cepstral coefficients
most accurately predicted voxel patterns in primary and
secondary auditory areas: Heschl’s gyrus (HG), superior temporal
gyrus (STG), and superior temporal sulcus (STS). Guntupalli
(2013) repeated the experiment of Casey et al. (2012), and
additionally performed whole-brain hyperalignment to create
between-subject models of stimulus encoding and reconstruction
for spectral and timbral acoustic features. Lee et al. (2011)
also used voxel-based decoding to classify melodic contour of
ascending and descending major and minor scales.

1.2. Hypothesis
Our central hypothesis is that distinct musical attributes are
neurally encoded as multivoxel representational spaces. The
dimensions of these spaces are individual voxel responses
that, when analyzed together in a region, yield properties
corresponding to musical behaviors. As such, we would expect
machine learning models to statistically infer and generalize the
patterns in these encodings, thus yielding accurate decoding of
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music information from multivoxel patterns elicited by novel
stimuli (decodingmodels) and accurate predictions of multivoxel
patterns for features of novel stimuli (stimulus-model-based
encoding).

We also hypothesize that, for naturalistic music listening,
multivoxel representational spaces will span the hierarchy of
music information from the most general–such as musical style
and genre–to the specific–such as melody encoded as relative
pitch classes. We further hypothesize that distinct musical
features will be differentially encoded across regions where
music information is processed, including temporal, pre-frontal,
frontal, parietal, occipital, hippocampal, and cerebellar regions,
as implied by the prior research outlined above.

We focus our investigation of multivoxel representations on
different levels of musical representation: high-level categorical
features (5-category music genre), schematic melody features
in absolute- and relative-pitch representations, and harmony
features encoded by acoustic pitch-class profiles, also called
chromagrams. The remainder of the paper proceeds as follows:
Section 2 describes the stimuli, experimental procedure, and
fMRI data collection and processing; Section 2.4 details the data
analysis methods; results are presented in Section 3 followed by
discussion of the results and their implication formusic cognition
in Section 4; and we conclude in Section 5 by outlining directions
for our future research.

2. MATERIALS AND METHODS

2.1. Participants
We used the public OpenFMRI dataset published in Hanke et al.
(2014) and Hanke et al. (2015). The subject pool consisted of 20
right-handed participants (mean age: 26.6 years, 12 male) who
responded to a bulletin calling for volunteers for the study. All
participants were native German speakers, and they all reported
to have normal hearing without permanent or current temporary
impairments and with no known history of neurological
disorders. Each participant filled out a questionnaire, detailing
basic demographic information, as well as music preference,
proficiency and education. As detailed in Hanke et al. (2014)
“Participants were fully instructed about the nature of the study,
and gave their informed consent for participation in the study
as well as for publicly sharing all obtained data in anonymized
form. They were paid 100 EUR for their participation. The study
was approved by the ethics committee of the Otto-von-Guericke-
University of Magdeburg, Germany” (approval reference 37/13).

2.2. Stimuli and Procedure
Stimuli used in this study were identical to those used in three
previous studies: Casey et al. (2012), Guntupalli (2013), and
Hanke et al. (2015), and are made publicly available in the
OpenFMRI Study Forrest dataset (Hanke et al., 2014). Twenty five
stereo, high-quality naturalistic music stimuli (6 s duration; 44.1
kHz sampling rate) were acquired, with five stimuli in each of
five different music genres: (1) Ambient, (2) Country (3) Heavy
Metal, (4) RocknRoll, and (5) Symphonic, see Table 1. Each
stimulus consisted of a six-second excerpt from the middle of a
distinct music recording captured from a high-quality Internet

streaming service that was seeded by a representative artist for
each genre. Clips were manually aligned to the nearest metrical
down beat, and they were energy balanced so that the root-mean-
square power value was equal across clips. A 50 ms quarter-sine
ramp was applied at the start and end of each excerpt to suppress
transients. The most prominent differences between the music
clips were the presence or absence of vocals and percussion.

Procedures and stimulation setup were as previously reported
in Hanke et al. (2014). Participants listened to the audio
using custom-built in-ear headphones. After an initial sound
calibration, eight scanning runs were performed with each
run started by the participant with a key-press ready signal.
There were 25 trials, with five different stimuli for each of the
five genres per run. Stimulus genre ordering was 2nd-order
sequence counter-balanced using De Bruijn cycles. Scanning was
continuous, with a delay of 4 s, 6 s, or 8 s between trials. The
order of delays was also randomized within each run. Five times
per run, once per genre, participants were presented with a
question asking for a Yes/No response to a particular feature of
the stimulus: e.g., “Was there a female singer?” “Did the song have
a happy melody?” The questions were designed to keep subjects’
attention on the listening task. Participants were given inter-
run breaks, with most resting for under a minute between runs.
Stimulus presentation and response logging were implemented
using PsychoPy running on a computer with the (Neuro)Debian
operating system.

2.2.1. Schematic and Acoustic Features Extraction
In addition to genre labels, the following musical features
were extracted from each stimulus: melody schema (absolute
pitch), melody schema (relative pitch), and acoustic chromagram
features (absolute pitch). The melodies for each of the twenty-
five 6-second stimuli were annotated manually by two music
undergraduate students and one music graduate student, using
the ABC symbolic music standard (Oppenheim, 2010) with
discreet pitch-classes aligned to a tempo-invariant metrical
grid quantized by 16th-notes. The three sets of annotations
were subsequently compared to achieve maximal agreement.
These human transcriptions were automatically converted to
schematic observation matrices consisting of 12-dimensional
absolute pitch-class binary indicator vectors both in the original
key (absolute pitch), and transposed to the key of C (relative
pitch). Annotations were automatically re-sampled from tempo-
normalized 16th-note metrical locations to an absolute time-
scale of regular 0.1 s sample intervals, using stimulus tempo
information, yielding a 60× 12 observation matrix per stimulus.
Figure 1 shows the absolute-pitch melody binary indicator
matrix and the corresponding chromagram feature matrix for
“Theme from ‘Creation”’ by Brian Eno, which is the second
stimulus in the Ambient category.

Schematic features are invariant to non pitch-class variation
in the stimulus, such as loudness fluctuations, timbre, frequency
content, articulation, and spatial information. To test whether
such variation would be a confounding factor, we also extracted
acoustic chromagram features–continuous-valued energies of
equal-temperament pitch-class profiles extracted via the Essentia
audio MIR toolkit (Bogdanov et al., 2013). Among the
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TABLE 1 | List of stimuli used in experiments showing details of music genres,

(seed artist), title, artist, and musical key for each clip.

Style/(Seed artist) Title Artist Key (Clip)

Ambient

(Brian Eno) A Clearing Brian Eno F

Theme from

“Creation”

Brian Eno C

Old Land Eno Moebius Roedelius C

Horizons Lointains Galerie Stratique Cm

IO - Moon of

Jupiter

Anugarma B

Country

(Waylon Jennings) Are You Sure...? Waylon Jennings C

Me and Paul Willie Nelson A

Pancho and Lefty Merle Haggard D

Whiskey Bent and

Hell Bound

Hank Williams Jr. G

Welfare Line Willie Nelson D

Heavy Metal

(Ozzy Osbourne) Fire in the Sky Ozzy Osbourne D♭

You’ve Got

Another Thing

Coming

Judas Priest F♯

Of Wolf & Man Metallica E

You Shook Me All

Night Long

AC-DC G

Rock You Like A

Hurricane

Scorpions Em

Rock & Roll

(Eddie Cochran) Jailhouse Rock Elvis Presley E♭

Shake Rattle and

Roll

Bill Haley F

Bama Lama Bama

Loo

Little Richard F

Come On Let’s Go Ritchie Valens A

Money Honey Eddie Cochran E

Symphonic

(Beethoven) Symphony No. 9

Mvt. 2

Beethoven F

Symphony No. 4

Mvt. 4

Tchaikovsky B♭m

Symphony No. 2

Mvt. 4

Sibelius D

Symphony No. 5

Mvt. 1

Schubert F

Symphony No. 6

Mvt. 1

Beethoven F

All clips were 6 s duration, acquired from 44.1 kHz stereo 192 kbps streams.

numerous differences between acoustic chromagrams and
binary-chord schema are the presence of continuous energy
values, amplitude modulation (due to loudness and dynamics),
spectral envelope modulation (due to timbre), energy (from

melody and bass notes and their harmonics), mis-aligned
frequency channels (tuning), harmonic energy, room acoustics,
and additive noise–to enumerate just a few differences. All
features, schematic and acoustic, were further processed by
singular-value decomposition, preserving the coefficients that
explained at least 95% of the feature variance across the training
stimulus set. As with the EPI features, feature matrices were
flattened into vectors by stacking the 60 observation vectors
(60 × 0.1 s samples) for each stimulus, thereby preserving
their temporal sequence information, prior to subsequent data
analysis.

2.3. fMRI Data Acquisition and
Pre-processing
The high-resolution 7-Tesla fMRI data was previously released
via the OpenFMRI initiative (Hanke et al., 2015); the stimuli
and experiment design used in the music perception phase of
the data release (scanning session III) reproduce the original
3T experiment of Casey et al. (2012). To our knowledge, the
current study is the first feature-based analysis of the music
representational spaces revealed by the published high-resolution
data set.

Functional MRI data was recorded during auditory
stimulation. Anatomical T1-weighted scans were performed
at 3 Tesla, and T2∗-weighted functional scans were performed
at 7 Tesla for slabs with partial brain coverage (MNI152 z ≈

−30mm. . . 40mm). Subjects were given the cognitive task
of listening attentively to the twenty five music clips in five
genres, as shown in Table 1, and answering a dual-choice
question, e.g., “did the clip have a happy melody?” Subjects
responded “yes” or “no” to these questions via a response
button box. These questions helped to ensure that subjects
attended to the music across trials. Data from these catch
trials were discarded from the analyses. The process was
repeated eight times for each participant, using a unique
quasi-randomized second-order balanced stimulus sequence
for each subject and for each of the eight acquisition runs.
Data consisted of 153 volumes per run, with a repetition time
(TR) of 2.0 s each volume. Following is a summary of details
of scanning, motion correction, and distortion processing as
described in Hanke et al. (2014). T2*-weighted echo-planar
images were acquired during stimulation using a 7-Tesla
Siemens MAGNETOM magnetic resonance scanner. Thirty
six axial slices (thickness 1.4 mm, 1.4 × 1.4mm in-plane
resolution, 224 mm field-of-view (FoV), anterior-to-posterior
phase encoding direction) with a 10% inter-slice gap were
recorded in ascending order. This configuration was chosen to
achieve a balance between spatial resolution, volume coverage
and volume acquisition time. Slices were oriented to include
the ventral portions of frontal and occipital cortex while
minimizing intersection with the eyeballs. The field-of-view
was centered on the approximate location of Heschl’s gyrus.
Head-movement correction utilized reference scans at the start
of the recording session and was performed on-line within the
scanner in conjunction with a high-field distortion correction
procedure.
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FIGURE 1 | (Left) Schematic melody features (absolute pitch) for stimulus Ambient002. The binary-valued indicator matrices were obtained by three independent

human expert transcriptions, followed by machine encoding to absolute time-scale and relative-pitch representation. (Right) Audio chromagram features (absolute

pitch) for the same stimulus automatically extracted using the Essentia audio feature extraction toolkit in Python. Visible in the diagram is the trait that chromagram

features are polyphonic, encoding all pitches present in the music clip, such as those corresponding to bass and chords, in addition to the melody.

EPI images were co-registered to a common group template
using FSL’s FLIRT, MCFLIRT, and FNIRT software. A group-
specific template volume for EPI images was derived in
order to aid anatomical alignment across brains. Subject’s
functional images were aligned to their respective reference-
scan images, acquired at the start of the session, via a rigid
body transformation using MCFLIRT. Each subject’s reference-
aligned images were averaged to create a template image for each
brain. Subsequently, all subjects’ template images were aligned
by means of an affine transformation using FLIRT. The affine
transformation was determined using the subject’s brain with the
least root mean square difference to the average image across all
brains prior to alignment. The resulting average template volume
was masked to produce the maximal intersection of individual
brains to create the group EPI template volume (Hanke et al.,
2014).

EPI data were then projected to voxel features using a
per-voxel General Linear Model (GLM) for each stimulus in
each run. The GLM was fitted for the EPI voxel time series
in each run using the PyMVPA software framework (Hanke
et al., 2009). The model fitting algorithm used the event-related
design matrix (e.g., 3 × 2 s TRs per 6-s stimulus condition)
with a double-gamma hemodynamic response function (HRF)
regressor.

2.4. Analysis
2.4.1. Analysis 1: Mulivoxel Classification by Song

and by Music Genre
Within-subject classifiers were trained on two tasks: song
(stimulus) classification and genre (category) classification.
After feature selection using a held-out portion of the
dataset, song classifiers were cross-validated by run, and
genre classifiers were cross-validated by stimulus–with category
balancing achieved by holding out all runs of one stimulus
from each of the five categories per cross-validation fold.
We used linear-kernel support vector machines (SVM) with
margin-parameter, C, scaled according to the norm of the
data.

2.4.1.1. Region of interest specification
Three bilateral regions in temporal cortex were selected from
the Harvard-Oxford Cortical Structural Atlas, using FSLVIEW’s
Atlas Tools, and then warped to each subject’s brain via the
common group template. Regions of interest (ROIs) were
selected spanning primary and secondary auditory cortex due to
their implication in priormusic classification studies (Casey et al.,
2012; Guntupalli, 2013); these were: Heschl’s gyrus (HG), anterior
superior temporal gyrus (aSTG), and posterior superior temporal
gyrus (pSTG).

To reduce the impact of noisy voxels on classifier
performance, sensitivity-based feature selection retained
only the top 5,000 voxels in each ROI. One-way analysis of
variance (ANOVA), with individual stimulus factors, was applied
followed by sensitivity-based feature selection, keeping only
5,000 voxels with the highest F-scores. To address possible
circularity bias between feature selection and model training and
testing, e.g., see Kriegeskorte et al. (2009), runs 1 and 4 were
held out for feature selection and the remaining six runs were
used for model training and cross-validation. Z-score mapping
of the fMRI data was folded into the cross validation. Analysis
scripts were implemented in Python 2.7.12 using the Anaconda
distribution and the PyMVPA 2.6.0 framework (Hanke et al.,
2009).

2.4.2. Analysis 2: Stimulus-Encoding Model

Searchlight
The anatomical distribution of cognitive music representations
was analyzed using a searchlight algorithm (Kriegeskorte et al.,
2006; Haxby et al., 2014). This procedure yielded an anatomical
map of stimulus-model-based prediction accuracies in spherical
subsets (“searchlights”) centered on every voxel; the map value
for each voxel thus derives from the information present in each
searchlight volume, and not each voxel individually. Stimulus
encoding models were trained and tested for each of ≈ 6, 250
searchlight volumes–varied by subject anatomy–over a large
volume of cortex–all Harvard-Oxford Cortical Atlas regions
within the field of view, including pre-frontal, frontal, parietal,
occipital, para-hippocampal, and cerebellar regions–using ridge

Frontiers in Psychology | www.frontiersin.org July 2017 | Volume 8 | Article 1179153

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Casey Predicting and Decoding Music Multivoxel Responses

FIGURE 2 | Group-level mean accuracies for song (upper) and genre (lower) SVM classifiers for voxels in Heschl’s gyrus (HG), anterior superior temporal gyrus

(aSTG), and posterior superior temporal gyrus (pSTG). The figures show that distinct anatomical ROIs yield similar relational information about music. The patterns of

misclassifications show that when songs are misclassified, they are more likely to be confused with items from the same genre, or a similar sounding genre: e.g.,

Ambient and Symphonic; and Rock-n-Roll and Country. (A) Song SVM (HG). (B) Song SVM (aSTG). (C) Song SVM (pSTG). (D) Genre SVM (HG). (E) Genre SVM

(aSTG). (F) Genre SVM (pSTG).

regression with music stimulus features as input variables and
voxel pattern responses as the dependent variables. The models
were used to predict the voxel pattern response vector for new
stimuli on the basis of their extracted musical features. Ridge
regression was chosen due to its use of Tikhonov regularization,
to counter possible deleterious effects of overdetermined models
and other numerical instabilities.

A sphere-radius of 3 voxels was used and the accuracy of
the predictions was defined as the correlation-error probability
(1− p) between model predictions and voxels in each searchlight
volume. The correlation-error probability yielded a measure
in the range [0 . . . 1], with perfect predictions scoring 1. The
searchlight creates ROIs by exhaustive subset selection, therefore
we did not need to hold runs out for feature selection as we did
in Analysis 1. For testing on novel data, balanced cross-validation
held out all 8 runs of a randomly-selected stimulus in each of the
five genre categories. Cross-validation was repeated 10 times in
each searchlight, yielding 5-stimuli × 8 runs × 10 repetitions =
400 tests per searchlight, which were averaged to give a single
correlation-error probability score per searchlight. Due to the
large computational demand of searchlight analysis, we used
randomized scattering by 3 voxels, and averaged results over the
multiple cross-validation folds, which sped-up the computation
by a factor of 27 relative to a searchlight sphere spacing of 1 voxel.

The searchlight analysis, and permutation computations for
bootstrapping the null distribution, took approximately 15,000 h
of CPU time using scattering, so the speed-up factor was critical
to the computational feasibility of the results. The searchlight
with radius 3 voxels yielded spheres containing a maximum
of 123 voxels for each center location. Following the methods
of Stelzer et al. (2013), group-level statistical evaluation of the
searchlight analysis was implemented using 100, 000 bootstrap
samples drawn pair-wise by subjects from 100 randomized-target
null models in each searchlight, and then estimating a voxel-wise
threshold with probability p< 0.001 with respect to the bootstrap
null distribution.

3. RESULTS

3.1. Analysis 1
Figure 2 shows the group-averaged cross-validated results
of within-subject SVM classification for the three bilateral
temporal-region ROIs used for Analysis 1. Song classification
results, with balanced cross-validation by run (Chance = 4%),
were: HG (Mean = 21.1%, SE = 0.9%), aSTG (Mean = 18.5%,
SE = 1.1%), and pSTG (Mean = 23.2%, SE = 1.0%). Results
for 5-way genre classification, with balanced cross-validation by
stimulus (Chance= 20%), were: HG (Mean= 54.5%, SE= 5.9%),
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FIGURE 3 | Group-averaged behavioral genre category-assignment

confusions (n = 20; Mean = 86.4%, SE = 8.0%, Chance = 20%). Category

confusions overlap those shown in Figure 2, with predominant confusions

occurring between the Ambient and Symphonic genres, and also between the

Country, Heavy Metal, and Rock&Roll genres.

aSTG (Mean= 52.1%, SE= 5.4%), and pSTG (Mean= 52.4%, SE
= 5.5%).

Figure 3 shows the results of behavioral genre categorization
(n = 20) for the 25 stimuli used in the genre classification
task. Accuracies in the behavioral task (Mean = 86.4%, SE
= 8.0%, Chance = 20%) were higher than the SVM classifier
reported above. The Spearman rank-order correlation scores, r,
between the group-averaged confusion matrix of the behavioral
task and the group-averaged confusion matrix for the genre
classifier for each ROI were HG (r = 0.76, p < 0.01), aSTG
(r = 0.79, p < 0.01), and pSTG (r = 0.79, p < 0.01). The
spearman rank-order correlation was calculated using the values
above the main diagonal of the confusion matrices only, so as to
remove positive correlation bias due to the diagonal structure of
confusion matrices (Guntupalli, 2013).

3.2. Analysis 2
Figure 4 and Table 2 show MNI-space group-level FWE-
corrected clusters (p < 0.05) based on stimulus-model-based
encoding prediction accuracies (correlation-error probabilities).
Significant clusters were identified for all three feature
representations–melody relative pitch, melody absolute pitch,
and acoustic chromagram features–in multiple sites spanning
the searchlight regions of interest (ROIs). Acoustic chromagram
features yielded the greatest number of significant clusters, 97
(43 left, 47 right, 7 both hemispheres), followed by absolute-pitch
melody features (15 left, 12 right, 2 both), then relative-pitch
melody features (1 left, 1 right, 1 both). Significant chromagram
(Chrom) feature clusters occupied a total volume 10,595 voxels,
spanning sites in most of the bilateral searchlight ROI volume:
namely, temporal primary and secondary auditory cortex (A1,
A2)–including Heschl’s gyrus (HG), planum temporale (PT),
superior temporal gyrus (STG), supramarginal gyrus (SMG),

middle temporal gyrus (MTG) all lateralized marginally to the
right hemisphere; Rolandic operculum (ROL); inferior frontal
gyrus (IFG); temporal, frontal, and occipital poles (TP, FP, OP);
middle frontal gyrus (MFG)/Broca’s area; frontal orbital cortex
(FO); intracalcarine cortex (CAL); insular cortex (IC); lingual
gyrus (LING); parahippocampal gyrus (PHG); cerebellum; and
multiple visual areas (V1, V2, V3, V4).

Clusters due to absolute-pitch melody features occupied a
total volume of 3,276 voxels and were concentrated in temporal
and frontal areas largely overlapping those of chromagram
features, but with fewer and smaller significant clusters. Notable
differences in the distribution of clusters compared with
chromagram features were the inclusion of clusters in the
putamen; a greater presence of clusters in right MTG and
STG; and left-lateralized clusters in multiple visual areas (V1,
V2, V3, V4). Finally, relative-pitch melody features exhibited
clusters that occupied a total volume of 317 voxels which were
lateralized and concentrated in three clusters: the junction of the
right cerebellum (c-VI) and temporal-occipital fusiform gyrus
(FFG), left planum polare (PP), and right PT (A2). We observed
overlapping representations of all three feature representations
in the left PP. Outside of this area, relative-pitch and absolute-
pitch melody features had no further overlapping clusters.
Chromagram and relative-pitch melody clusters overlapped in
the right cerebellum and in the right PT extending through the
parietal operculum (PO) area of A1. Chromagram and absolute-
pitch clusters overlapped in numerous sites that were mostly
lateralized to the right: pMTG, HG, PT, FFG, CAL, FO, SMG, FP,
IFG.

4. DISCUSSION

4.1. Analysis 1
The within-subject song classification results show significantly
higher accuracies than previously reported in Guntupalli
(2013) (Mean = 15.95%, SE = 1.62%, Chance = 4%) for the
same stimuli using different subjects with different (3T) fMRI
data. One reason for the greater accuracies in the current
study may be the use of high-field (7T) fMRI data, which
doubles the spatial resolution of voxels in each dimension
thus affording greater detail for pattern discrimination.
Differences in voxel selection strategies are enumerated
below.

The within-subject genre classification accuracies are slightly
lower than those reported in Casey et al. (2012) (Mean = 60.0%)
for the same stimuli, but with more stringent cross validation
in the current study, and ≈25% lower than those reported in
Guntupalli (2013) for the same stimuli. Apart from the use
of high-field fMRI in the current study, differences between
the current and the two former studies include 5,000-voxel
feature selection by ROI in the current study, no sensitivity
based selection in Casey et al. (2012), and 1,000-voxel feature-
selection from whole brain voxels in Guntupalli (2013). The
latter study also employed a different cross-validation scheme,
which also accounts for some of the difference in accuracy.
In the case of genre classification, selection of voxels from
the whole brain 3T data yielded greater classifier accuracies
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FIGURE 4 | MNI-space group-level FWE-corrected clusters (p < 0.05) organized in 4 mm-spaced axial columns. In this multivariate analysis, the map value for each

voxel derives from the information present in a 3-voxel-radius searchlight volume (max 123 voxels) and not each voxel individually. Acoustic chromagram features

yielded the greatest number of significant clusters, 97 (43 left, 47 right, 7 both hemispheres), followed by absolute-pitch melody features (15 left, 12 right, 2 both), then

relative-pitch melody features (1 left, 1 right, 1 both).

than restricting voxel selection to temporal cortex with 7T
data. Overall, these results show that distinct anatomical ROIs
yield similar pattern-space information about song identity and
genre, thus they hierarchically encode multiple levels of music
information.

The high correlation score between behavioral and classifier
confusion matrices is due to both exhibiting the same pattern
of confusions between Ambient and Symphonic categories,
and between Country and Rock&Roll categories. The most
prominent difference between these two groups of confusions
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TABLE 2 | Average group results: searchlight-based (sphere radius = 3 voxels, max. size 123 voxels) cross-validated within-subject stimulus encoding (n = 20; ridge

regression).

Center of mass (MNI)

# Voxels Max Mean Std X Y Z pclus. Structure

Melody (Relative)

1 122 0.84 0.67 0.21 73.8 57.0 54.9 0.0110 Occipital Fusiform Gyrus

2 100 0.85 0.76 0.15 130.0 111.1 62.1 0.0174 Planum Polare

3 95 0.83 0.66 0.21 58.4 97.3 90.7 0.0174 Planum Temporale

Melody (Absolute)

1 282 0.84 0.69 0.20 119.8 80.4 62.8 0.0001 Temporal Occip. Fusiform

2 281 0.86 0.78 0.13 58.5 95.9 86.9 0.0001 Planum Temporale

3 230 0.86 0.84 0.01 49.9 145.1 73.2 0.0001 Frontal Operculum Cortex

4 209 0.84 0.63 0.25 104.7 54.2 76.1 0.0001 Intracalcarine Cortex

5 206 0.83 0.69 0.21 68.7 53.5 75.7 0.0001 Intracalcarine Cortex

6 164 0.85 0.78 0.14 121.8 147.2 87.9 0.0004 Frontal Operculum Cortex

7 161 0.83 0.76 0.14 75.1 66.7 59.4 0.0004 Lingual Gyrus

8 136 0.84 0.69 0.21 54.4 144.0 95.2 0.0013 Inferior Frontal Gyrus

9 125 0.86 0.78 0.15 99.4 85.9 68.7 0.0019 Parahippocampal Gyrus

10 112 0.85 0.64 0.26 60.1 90.3 52.5 0.0036 Temporal Fusiform Cortex

11 101 0.82 0.65 0.23 147.1 90.5 99.8 0.0064 Parietal Operculum Cortex

12 90 0.86 0.77 0.18 52.8 111.1 80.7 0.0117 Insular Cortex

13 85 0.86 0.79 0.13 103.2 88.8 59.5 0.0149 Parahippocampal Gyrus

14 80 0.87 0.86 0.00 139.9 154.4 94.1 0.0191 Inferior Frontal Gyrus

15 78 0.85 0.81 0.07 134.7 131.8 93.0 0.0204 Precentral Gyrus

Chroma (Absolute)

1 503 0.83 0.70 0.19 119.8 80.4 62.8 0.0001 Temporal Occip. Fusiform

2 422 0.83 0.68 0.22 58.5 95.9 86.9 0.0001 Planum Temporale

3 373 0.85 0.74 0.18 49.9 145.1 73.2 0.0001 Frontal Operculum Cortex

4 304 0.84 0.66 0.22 104.7 54.2 76.1 0.0001 Intracalcarine Cortex

5 280 0.84 0.67 0.23 68.7 53.5 75.7 0.0001 Intracalcarine Cortex

6 276 0.83 0.64 0.24 121.8 147.2 87.9 0.0001 Frontal Operculum Cortex

7 273 0.84 0.66 0.22 75.1 66.7 59.4 0.0001 Lingual Gyrus

8 270 0.83 0.69 0.18 54.4 144.0 95.2 0.0001 Inferior Frontal Gyrus

9 257 0.86 0.77 0.14 99.4 85.9 68.7 0.0001 Parahippocampal Gyrus

10 182 0.82 0.66 0.20 60.1 90.3 52.5 0.0002 Temporal Fusiform Cortex

11 181 0.85 0.67 0.23 147.1 90.5 99.8 0.0002 Parietal Operculum Cortex

12 167 0.84 0.56 0.28 52.8 111.1 80.7 0.0003 Insular Cortex

13 159 0.83 0.70 0.17 48.6 120.0 50.4 0.0003 No label found!

14 159 0.85 0.69 0.18 139.9 75.1 78.8 0.0003 Middle Temporal Gyrus

15 157 0.83 0.72 0.17 72.1 160.3 55.6 0.0003 Frontal Orbital Cortex

The table lists statistics (size, max/mean/std accuracy) as well as localization information (coordinates in mm MNI152) for clusters with above-chance classification performance in the

group (FWE-corrected, cluster-level probability p < 0.05).

is that the confusion between Rock’n Roll and Heavy Metal in
the behavioral task is much greater than it is with the classifier.
These classification results show that songs that are misclassified
at either the song level or the genre level are more likely to be
confused with items from the same genre, or with items from a
similar-sounding genre: e.g., Ambient and Symphonic, and Rock-
n-Roll and Country. The latter implies that there is a super-
ordinate category above the level of genre, one possibility for
which is the presence or absence of vocals and/or percussion.

4.2. Analysis 2
In the realm of schematic feature representations, Janata
et al. (2002) showed how dynamic attributes of tonal music,
namely key changes, can be mapped onto a consistent cortical
topography in prefrontal areas. Furthermore, they showed that
the “tonality surface” representation was invariant to changes
in the starting reference key, when the study was repeated with
the same subjects over multiple scanning sessions. Hence, they
demonstrated a direct cognitive representation of relative pitch
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encoding. In our work, we also found group-level representations
of relative pitch, but for melodic encoding, rather than the
slowly varying key surface of the previous work. Foster and
Zatorre (2010) implicated IPS in the manipulation of auditory
representations, such as used in a melodic transposition memory
task. Whilst we found no significant clusters in the vicinity of IPS
for relative-pitchmelody features, we surmise that the naturalistic
listening condition of the current study–i.e., attentive listening
without an explicit memory task–elicited a differing view of voxel
response patterns to relative pitch encoding of melodies than did
the earlier work. Our relative-pitch results do however overlap
with Janata et al. (2002) who also found in their tonality study
with key that relative-pitch representations were present in the
cerebellum and hippocampus, as well as in pre-frontal areas, both
of which are present in our results.

Alluri et al. (2013) used an aggregate stimulus encoding
model to perform voxel-wise response predictions to novel
stimuli. Since the features were aggregated, they were not able
to map responses to individual musical attributes. However,
their aggregate model prediction results anatomically overlap
with the current study, in that they found significant model-
prediction accuracies in primary and secondary auditory areas
(STG, HG, MTG), as well as pre-frontal and frontal areas (SFG),
Rolandic operculum, putamen, and insula. In their earlier work,
Casey et al. (2012) demonstrated stimulus-encoding-model-
based decoding for low-level audio features corresponding to
chromagram, spectral, and cepstral audio features. Chromagram
features performed significantly above chance level in predicting
the brain response for superior-temporal regions. In the current
study, we have found wide activation of acoustic chromagram
features across the all cortical and subcortical ROIs of the
searchlight analysis. However, we note that the acoustic feature
has folded within it the acoustic confounds described in
Section 2, so components of the chromagram feature for acoustic
mixtures, as in naturalistic music stimuli, may elicit sensitivities
across many ROIs because the feature encodes substantial
additional information beyond the intended representation of
polyphonic pitch content of the stimulus.

5. CONCLUSION AND FUTURE
DIRECTIONS

We have demonstrated parallel, distributed, and overlapping
representations of musical features using machine learning
models, high-field fMRI, and naturalistic music stimuli. The
results from Analysis 1 show that decoding models can
identify songs significantly above chance levels by their voxel
pattern responses for held-out runs, and that categorical models
accurately decode music genre categories for voxel pattern
responses to novel stimuli in five genres. Furthermore, the
pattern of confusions exhibited by the classifiers was significantly
correlated with confusions in a behavioral categorization task.
These results support our hypothesis that music cognition
is neurally represented by multivoxel pattern spaces whose
geometric properties, such as distance between response vectors,
underlie observed human musical behavior.

Results from Analysis 2 demonstrate that stimulus-model-
based-encoding accurately predicts voxel responses to music
stimuli yielding significant clusters in multiple sites across the
cortical volume. As we expected to see, distinct musical features
are differentially encoded in distributed and anatomically
overlapping sites. The current study extends prior work in
stimulus-model-based encoding of music representational spaces
by providing maps, not only of audio-based feature encoding,
but also of schematic music features. Mapping parallel features
of the information content in music content reveals wide
networks of overlapping representational spaces for music.
Future work will explore how well different pitch and rhythm
representational space hypotheses, such as the tonnetz and the
simplex models, can predict multivoxel responses in areas known
to be implicated in the processing of these musical attributes,
which will allow us to select the most likely neurally encoded
representation among competing representational hypotheses
for specific musical attributes.

We note, however, that care must be taken when extracting
acoustic features to avoid confounding within the feature
multiple unintended attributes of the stimulus along with the
intended musical attribute, as we observed with the chromagram
feature. This highlights a potentially important advantage of
symbolic music features for mapping music cognition, and it also
throws into question the utility of mixed low-level audio features
for mapping music representations across cortical volumes.
Audio source separation methods, which are the subject of
much current music informatics research, may proove useful for
increasing the representaitonal specificity of automatic acoustic
feature extraction.

Our future work will include regrouping our analyses,
separating results by genre, to test the hypothesis that
music is cortically organized by high-level categories–such
as genre, emotion, and semantic categories–with lower-level
schematic and acoustic features repeatedly embedded within
these superordinate representational spaces. The current study
modeled stimulus-synchronous imaging. A further refinement to
our work would be to introduce of models for predictive stimulus
encoding, in which features of current and past time steps
predict future voxel responses. Such models would be necessary
to illuminate the neural representation of prediction-driven
mechanisms that are widely understood to be implicated in the
anticipation and reward mechanisms of musical enjoyment.
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We present a hypothesis-driven study on the variation of melody phrases in a collection

of Dutch folk songs. We investigate the variation of phrases within the folk songs through

a pattern matching method which detects occurrences of these phrases within folk song

variants, and ask the question: do the phrases which show less variation have different

properties than those which do? We hypothesize that theories on melody recall may

predict variation, and as such, investigate phrase length, the position and number of

repetitions of a given phrase in the melody in which it occurs, as well as expectancy and

motif repetivity. We show that all of these predictors account for the observed variation to

a moderate degree, and that, as hypothesized, those phrases vary less which are rather

short, contain highly expected melodic material, occur relatively early in the melody, and

contain small pitch intervals. A large portion of the variance is left unexplained by the

current model, however, which leads us to a discussion of future approaches to study

memorability of melodies.

Keywords: music information retrieval, music cognition, recall, memorability, stability, folk songs, corpus analysis

1. INTRODUCTION

Songs and instrumental pieces in a musical tradition are subject to change: as they are adopted by a
new generation of listeners and musicians, they evolve into something new while retaining some of
their original characteristics. The current article investigates to what extent this change of melodies
may be explained by hypotheses on the memorability of melodies.

To address this question, we investigate a corpus of folk songs collected in the second half of the
twentieth century, in which we can identify groups of variants. The variants are results of real-life
melody transmission, something which would be difficult to study in an experimental setting, but
for which the present folk song collection possesses high ecological validity. In folk song research,
there is a long-standing interest in those melodic segments which resist change during melody
transmission. This resistance to change is also referred to as stability (Bronson, 1951).

According to models of cultural evolution, the relative frequency of cultural artifacts can be
explained based on drift alone: certain phrases might have been copied more frequently than others
purely based on chance, and the relative stability of a given phrase in a collection of folk songs would

be random (Henrich and Boyd, 2002). We hypothesize, instead, that stability can be predicted
through the memorability of melodies.

To quantify stability, or the amount of variation a folk song segment undergoes through oral
transmission, we follow Bronson’s notion that “there is probably no more objective test of stability
than frequency of occurrence.” (Bronson, 1951, p. 51). We formalize the relative stability of a
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melodic segment as its frequency of occurrence across variants
of the same folk song. We focus on melodic phrases from the folk
songs and employ a novel pattern matching method to determine
whether or not amatch for a given phrasemay be found in a given
folk song variant, based on similarity measures tested in Music
Information Retrieval, and evaluated on a subset of folk songs
in previous work (Janssen et al., in press). We then test whether
there is a statistical relationship between a given phrase’s matches
in variants, and the same phrase’s memorability, i.e., properties
which might facilitate its recall.

Part of our predictions for the memorability of melodies
are drawn from serial recall experiments, which typically test
how well participants in studies remember word lists—presented
visually or auditorily—or purely visual or spatial cues. Based
on this research, we can expect that the length of a phrase
might influence its memorability: a phrase with many notes
contains more items that need to be correctly reproduced, and
will therefore be harder to remember than a phrase with few
notes. This does not take into account effects of chunking,
which might reduce the memory load of phrases with many
notes (Miller, 1956). Recall experiments with lists of different
lengths have shown that increasing the length of a memorized list
decreases the proportion of correctly recalled items (Ward, 2002).
Moreover, rehearsal in the form of phrase repetitionsmight play a
role: a phrase that is repeated several times within amelodymight
bememorizedmore faithfully than a phrase that only occurs once
in each verse. The repetition can be considered rehearsal, which
has been shown to increase retention of items (Murdock and
Metcalfe, 1978).

Besides, the position of a melodic phrase within a piece might
influence its memorability: in serial recall experiments, these
effects are known as serial position effects (Deese and Kaufman,
1957). When the start of lists is remembered better, this is
considered a primacy effect (Murdock, 1962). When words were
presented auditorily, Crowder and Morton (1969) found that the
end of lists were remembered better, which might lead one to
expect that melodies, also auditory in nature, exhibit a recency
effect. However, in Rubin’s (1977) experiments on long-term
retention of well-known spoken word passages (the Preamble
to the constitution of the United States, Psalm 23, and Hamlet’s
monolog from the eponymous Shakespeare play), words at the
start of such a passage are recalled better than items in the middle
or at the end. As this situation is maybe closest to singing a
folk song from memory, we assume that phrases at the start
of melodies may also be more stable. Of course, serial position
effects may be caused by an individual’s more frequent exposure
to items early or late in a melody (Ward, 2002), in which case
we would expect that rehearsal is more important than serial
position to explain the stability of melodic segments.

Next to these general hypotheses on recall, we test hypotheses
based on melody recall research. Firstly, a significant body of
research linksmelody recall to expectancy. According to Kleeman
(1985), only music which can be processed by listeners based on
their musical expectations, will be selected for transmission in
a musical tradition (p. 17). Supporting this, Schmuckler (1997)
found a relationship between expectancy ratings and melody
recall in an experimental study on folk song melodies. To this

end, 16 participants were instructed to rate how well artificial
variants of 14 folk songs confirmed their expectancy. The variants
of the folk songs were generated by scrambling the notes at
the end of each song, maintaining the rhythmical structure
and the end note. Afterwards, participants had to identify the
melodies they had encountered in the first part of the experiment,
presented along with previously unheard melodies. The hit rates
were positively correlated with the expectancy rating, indicating
that those melodies which conform best to melodic expectations
of listeners are also most reliably recalled.

An alternative prediction would be that it is actually
more unexpected items which are easier remembered. This
is corroborated by evidence from free recall, where items
which are unusual are usually better remembered (von Restorff,
1933). For music, Müllensiefen and Halpern (2014) found that
memorability of melodies was increased if they contained a
large amount of unique motifs, i.e., melodic material which is
unusual and therefore unexpected. This means that expectancy
may influence variation of melodies in opposing ways, which we
both adopt as hypotheses (see hypotheses 4a and 4b in the list of
hypotheses below).

Different formalizations of melodic expectancy exist, among
which the influential implication-realization theory by Narmour
(1990) predicts that the direction and distance, or pitch interval,
between two ensuing musical tones implies the direction and
size of the next pitch interval. Schellenberg (1996) quantified
the principles that Narmour defined, such that for a given
implicative pitch interval, there is a measurable expectancy of
which note is likely to ensue. He performed three listening
experiments in which listeners rated how well the last note
fulfilled their expectations after listening to excerpts from British
and Chinese folk songs, and from atonal music, and reanalyzed
data from Unyk and Carlsen (1987). His experiments showed
that the quantified implication-realization principles were highly
correlated with listeners’ expectancies.

Schellenberg found that Narmour’s model can be reduced
to two factors, pitch proximity and pitch reversal, without
significant loss in explanatory power (Schellenberg, 1997).
Hence, Schellenberg’s simplified model can be considered a
quantification of expectancy, which may predict how well a given
melody is retained in a musical tradition.

Inspired by an article by Meyer (1957), Conklin and Witten
(1995) approach expectancy with information-theoretical
measures: according to Meyer’s theory, expectancies are
generated by learned probabilities of given events. A listener
expects musical events she has heard frequently before, and
will be surprised by musical events she hears for the first time.
Conklin and Witten assume that this learning, and hence
expectancy, can be based on different musical aspects, such as
pitches, pitch intervals or durations, among others. For this, they
developed a predictive model based on various musical aspects,
which they refer to as viewpoints.

Conklin and Witten’s model applies Prediction by Partial
Matching (Cleary and Witten, 1984) to a given note event,
expressed by one or several viewpoints. Prediction by Partial
Matching (PPM) is a statistical model that is trained on the
frequencies of n-grams, or sequences of n symbols, in a collection
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of documents, and which can then be used to predict a symbol
in an unseen document given its context. In music prediction,
the symbols are musical notes, described by various viewpoints,
e.g., pitch, duration, pitch interval, or accentuation. If the model
encounters a note sequence it has not seen in the learning phase,
it will backtrack to the next shorter note sequence which it did
encounter, and use the frequency of the shorter sequence to
predict the following note.

Pearce and Wiggins (2004) extended Conklin and Witten’s
model such that the length of the musical sequence, or the
order of the n-gram, is variable. Pearce and Wiggins confirmed
that statistical information as modeled by their system, dubbed
IDyOM (Information Dynamics of Music)1, predicts listener’s
expectancy ratings from various listening experiments on folk
songs, hymns and single intervals to a great extent (Pearce and
Wiggins, 2012).

Some recent corpus studies of popular music have indicated
that the presence of repeating motifs in a melody or phrase
may enhance its memorability. As such, Müllensiefen and
Halpern (2014) investigated a large number of musical features
derived from music notation of 80 Western pop songs, to
see which of them would best predict the memorability of
80 pop song excerpts. The memorability was determined
in a recall experiment with 34 participants, who listened
to 40 excerpts and later were presented with all of the
excerpts, having to indicate whether they had heard the
song before, and how pleasant they considered the excerpt
in question. The researchers considered responses on the
pleasantness to represent implicit memory for the music,
through the mere exposure effect (Zajonc, 1980). Müllensiefen
and Halpern’s results indicate that a melody is more easily
remembered explicitly if it consists of motifs which are repeated
within the melody. For the implicit memory of melodies,
however, it was found that motifs should not repeat too
much.

Van Balen et al. (2015) measure the memorability of pop songs
that participants are likely to have heard through radio and other
media. They register this memorability through reaction times
in a game. The goal of the game is to indicate whether or not
the player recognizes a given song segment (cf. Burgoyne et al.,
2013). If the player’s response is fast, Van Balen and colleagues
surmise that the song segment in question is very memorable, or
catchy. They use a range of features to predict the memorability
of the melodies, among which the features used by Müllensiefen
and Halpern (2014).

One of Balen and colleagues’ strongest predictors of
memorability turned out to be motif repetivity, which is
in line with Müllensiefen and Halpern’s findings on explicit
melody recall. As our study focusses on melodies which
were explicitly remembered by their singers, rather than
pleasantness ratings of these melodies, we therefore adopt
the prediction that motif repetivity will increase a phrase’s
stability. Motif repetivity can also be seen as related to
chunking, as repeating motifs would provide meaningful
subdivisions within a phrase. Chunking has been shown

1https://code.soundsoftware.ac.uk/projects/idyom-project.

to facilitate learning in various domains (Gobet et al.,
2001).

Based on the above observations, in the current paper we
investigate the following five hypotheses of how variation of folk
songs may be predicted through theories on melody recall:

1. Shorter phrases show less variation.
2. Phrases which repeat within their source melody show less

variation.
3. Phrases which occur early in their source melody show less

variation.
4. A phrases’ expectancy is related to its variation.

(a) Phrases which contain highly expected melodic material
show less variation.

(b) Phrases which contain highly surprising melodic material
show less variation.

5. Phrases composed of repeating motifs show less variation.

2. MATERIALS AND METHODS

Our research was carried out using the folk song corpus (FS)
from the Meertens Tune Collections2. This corpus comprises
4,125 digitized transcriptions of monophonic songs, of which
the largest part has been recorded in field work between 1950
and 1980 (Grijp, 2008). 1,245 transcriptions originate from song
books of the nineteenth and twentieth century known to contain
variants to the recorded songs.

The corpus has been categorized into tune families, or groups
of variants, by domain experts (c.f. Volk and van Kranenburg,
2012), and we use these pre-defined groups to investigate stability
between song variants. We compare variants from the same
tune family. Each variant is considered to represent the variation
imposed by a particular singer or song book editor to a given
melody. Consequently, we analyze which phrases of the songs
belonging to a tune family vary more, or vary less between
different variants: if a phrase occurs in many variants, this means
that this phrase is less subject to change, or more stable.

To this end, we separate the FS corpus into three sub-
corpora: (1) a training corpus of 360 melodies for which
annotations of phrase occurrences were available; (2) a test
corpus of 1,695 melodies with tune families comprising at least
five variants, but excluding tune families from the training
corpus; (3) a background corpus of 1,000 melodies with tune
families comprising very few variants. All melodies which could
potentially be related to melodies from the test corpus—because
they might be hitherto unrecognized variants of a tune family in
the test corpus (tune family membership undefined), or because
they were subtypes of a tune family in the test corpus—were
excluded from the background corpus.

The training corpus was used to train the computational
method to find phrase occurrences; the background corpus was
used to train information theoretical models; the test corpus was
used to test the relationship between variation of the folk song
phrases and their hypothesized memorability.

2www.liederenbank.nl/mtc.
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2.1. Detecting Phrase Occurrences
To quantify the amount of variation, or stability of a given
melodic phrase (the query phrase), we detect its occurrences in
melodies belonging to the tune family fromwhich it was taken (its
source tune family): the more variants of the source tune family
the query phrase occurs in, the higher the stability of the phrase.

We detect occurrences through pattern matching, or the
computational comparison of the query phrase to all melodies
in its source tune family. The extent to which any segment in a
givenmelody resembles the query phrase can be detected through
various similarity measures. Earlier research on the above-
mentioned training corpus with phrase occurrence annotations
has shown that a combined measure of the similarity measures
city-block distance (Steinbeck, 1982), local alignment (Smith
and Waterman, 1981) and structure induction (Meredith, 2006)
reproduces human annotations of phrase occurrences best. The
similarity measures, as well as the way in which they were
combined, are described in the Supplementary Material.

Research on the training corpus also showed which similarity
score should be used as a threshold to separate between relevant
occurrences (i.e., detected matches which were also annotated as
instances of the query phrase) and irrelevant occurrences (i.e.,
detected matches which were not annotated as instances of the
query phrase) for each of the three measures (Janssen et al.,
in press). This optimal similarity threshold results in the best
trade-off betweenmissing as few relevant occurrences as possible,
while producing as few as possible irrelevant occurrences.

Our previous research indicated that the combined measure
produces errors in comparison to human annotators, i.e., it
misses about 30% of the relevant occurrences, and detects about
8% irrelevant occurrences. The percentage of produced errors
differs depending on the analyzed tune family. Using the pattern
matching procedure, for the 9,639 phrases from 147 tune families
in the test corpus, we receive 170,803 computational judgements
on the occurrences of these phrases in their respective source tune
families.

2.2. Formalizing Hypotheses
This section describes the formalization of hypotheses on
memorability of melodies3. For illustration purposes, we present
a running example in Figure 1, a folk song melody from the tune
family Van Peer en Lijn (1), part of the test corpus. This melody
has ten phrases and shows how under the current formalizations,
different hypotheses arrive at different predictions of stability for
each phrase. Throughout this section, we refer to a query phrase
as q, which is taken from its sourcemelody, s. The sourcemelody’s
notes are referred to as sj. The query phrase starts at index j = a
and has a length of n notes.

2.2.1. Influence of Phrase Length

We test whether the length of the phrases has influence on their
stability by defining the phrase length as the number of notes n of
which a given phrase is composed.

Len(q) = n (1)

3The implementations of the hypotheses can be found at https://github.com/

BeritJanssen/Stability.

In the example melody, the shortest phrases (phrase 2 and 4) have
a length of seven notes, the longest phrase (phrase 9) has 16 notes.
According to the prediction of the list length effect, we would
expect the second and fourth phrases to be more stable than the
ninth phrase. Over the whole dataset, phrase length takes values
in the range [3, 26] in the dataset, with a mean of Len = 9.11 and
a standard deviation of SD(Len) = 2.23.

2.2.2. Influence of Rehearsal

Rehearsal is modeled based on phrase repetitions: if a phrase is
repeated multiple times within a melody, it is subject to more
rehearsal, hence it may be expected to be more stable. The
resulting predictor, phrase repetition, is measured by counting
the occurrences of a phrase in its source melody. All phrases
in a melody s are defined as sets of notes Pid. id refers to the
sequential index of the phrase P in the melody. Each phrase’s
notes are represented by their onset from the start of the phrase
and their pitch. The query phrase is a set of notesQwith the same
representation. For every phrase Pid we determine its equality
score to Q as follows:

Eq(Pid,Q) =

{
1 if Pid = Q

0 otherwise
(2)

Then we measure the number of phrase repetitions Rep of the
query phrase q by summing the equality scores of all f phrases
Pid in the melody.

Rep(q) =

f∑

id=1

Eq(Pid,Q) (3)

In the example melody, the first and second phrase repeat exactly
as the third and fourth phrase, respectively. The other phrases
do not repeat anywhere in the melody. This means that phrase
repetition is Rep = 2 for the first four phrases, Rep = 1 for
the other six phrases. This would lead to the prediction that the
first four phrases are more stable than the last six phrases. Phrase
repetition takes values in the range of [1, 4] in the dataset, with a
mean of Rep = 1.17 and a standard deviation of SD(Rep) = 0.39.

2.2.3. Influence of the Primacy Effect

We test the primacy effect based on the position of a phrase in
its source melody. We formalize the phrase position as a given
phrase’s sequential index, qid, from qid = 1 to qid = g for
all g phrases in the source melody. For the example melody of
Figure 1, g = 10.

Pos(q) = qid (4)

In the examplemelody, the first phrase has a value of Pos = 1, and
the last phrase a value of Pos = 10. Phrase position takes values
in the range of [1, 22] in the dataset, with a mean of Pos = 3.44
and a standard deviation of SD(Pos) = 2.06.

2.2.4. Influence of Expectancy

To quantify expectancy, we make use of two formalizations: one
by Schellenberg (1997), which is based on observations from
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FIGURE 1 | An example melody from the test corpus, belonging to the tune family Van Peer en Lijn (1), which comprises six variants. This melody is

used to illustrate the formalizations of the hypotheses. The number on top of the sheet music shows the record number in the Dutch folk song database, the numbers

left of the staves show the sequential phrase indices. A recording can be found at http://www.liederenbank.nl/sound.php?recordid=74521&lan=en.

music theory, and one by Pearce and Wiggins (2004), which is
based on statistical analysis of a background corpus.

We base both models on pitch intervals between consecutive
notes. The pitch of a given note pitch(sj), or its height in the

human hearing range, is represented by its MIDI note number.
This entails that pitches are integers, in which a semitone
difference between two pitches is indicated by a difference of one.
The pitch interval between a note sj and its predecessor sj−1 is
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defined by pInt(sj) = pitch(sj)− pitch(sj−1), where a positive sign
indicates that the preceding note is lower, and a negative sign that
the preceding note is higher. Both models make predictions for
single notes, rather than whole phrases. We derive predictions for
whole phrases through averaging the note values over the length
of the phrase.

2.2.4.1. Expectancy: music theory
The first component of Schellenberg’s model, pitch proximity,
states that listeners expect small steps between melody tones.
The further a given note is away from its predecessor, the more
unexpected it is. The model does not make any predictions for
pitch intervals equal to or larger than an octave.

PitchProx(sj) =

{∣∣ pInt(sj)
∣∣ if

∣∣ pInt(sj)
∣∣ < 12

undefined otherwise
(5)

In Figure 2A we show the first phrase of the example melody,
with the pitch proximity values printed underneath each note,
referring to the pitch interval to its preceding note. Note that the
pitch interval, and therefore pitch proximity, is not defined for
the first note of amelody, as there is no previous pitch fromwhich
a pitch interval could be measured.

To calculate the pitch proximity of a phrase, the pitch
proximity values of the notes sj belonging to a given phrase are
averaged over the whole phrase, and the negative value of this
average is used for easier interpretation, such that if a phrase has
a high value of pitch proximity, its pitches are close to each other,
while lower values indicate larger pitch intervals. Notes for which
pitch proximity is not defined are discarded from the averaging
procedure.

Prox(q) = −
1

n

a+n∑

j=a

PitchProx(sj) (6)

We show the pitch proximity values for the seventh and
eighth phrase of the example melody in Figure 2A. The
average proximity of the two phrases amounts to Prox =

−13/9 = −1.44 and Prox = −20/7 = −2.85, respectively,
which means that we would expect the seventh phrase to
be more stable than the eighth phrase. Pitch proximity takes
values in the range of [−6.0, 0.0] in the whole data set, with
a mean of Prox = −2.01 and a standard deviation of
SD(Prox) = 0.69.

The other factor in Schellenberg’s model is pitch reversal,
which summarizes the long-standing observation from music
theory that if leaps between melody notes do occur, they tend to
be followed by stepwise motion in the opposite direction (Meyer,
1956). See the Supplementary Material for the quantification
of this principle, which for a given melody note results in
values ranging from PitchRev(sj) = −1, or least expected, to
PitchRev(sj) = 2.5, or most expected. As with pitch proximity,
we calculate the average reversal of a phrase through calculating
the arithmetic mean of its constituent notes. As pitch reversal
makes predictions based on two pitch intervals, it is not

defined for the first two notes of a melody. Notes for which
pitch reversal is not defined are discarded from the averaging
procedure.

Rev(q) =
1

n

a+n∑

j=a

PitchRev(sj) (7)

We show the pitch reversal values for the seventh and eighth
phrase of the example melody in Figure 2B. The average reversal
of the two example phrases amounts to Rev = 3/9 = 0.33
and Rev = 1/7 = 0.14, respectively, which means that we
would expect the seventh phrase to bemore stable than the eighth
phrase. Pitch reversal takes values in the range of [−0.5, 1.5] in
the whole data set, with a mean of Rev = 0.30 and a standard
deviation of SD(Rev) = 0.24.

2.2.4.2. Expectancy: information theory
The IDyOM (Information Dynamics of Music) model by Pearce
analyzes the frequencies of n-grams in a music collection, and
based on these observed frequencies, assigns probabilities to
notes in unseen melodies, given the notes preceding it. The
preceding notes are also referred to as context. The length of the
context can be set by the user. If the model cannot find a relevant
n-gram of the context length specified by the user, it backtracks
to shorter melodic contexts, and uses those frequencies to return
the probability of a given note.

We let the model analyze our background corpus, with the
melodies represented as pitch intervals. As we are interested
in contexts of phrase length, we limit the n-gram length to
the average phrase length of nine. We use IDyOM’s long-term
model, i.e., the model does not update itself while observing the
query phrases, and we apply the interpolation weighting scheme
C, which balances longer and shorter melodic contexts evenly.
This was proven to be the best performing weighting scheme in
experiments by Pearce (2005).

We express the expectancy of a given melodic segment
through its average information content. Information content
is the natural logarithm of the inverse probability P(sj) of a
note to occur given the previous melodic context, based on the
probabilities of the background corpus. We choose information
content rather than probability, as the logarithmic representation
makes it possible to compare the typically small probability values
in a more meaningful way. Information content is often also
referred to as Surprisal, as its values increases as events get less
expected.

We average the information content of all notes in a query
phrase by their arithmetic mean, which is equivalent to a
geometric mean of the probabilities. We call this average
information content surprisal in the following, to indicate that
higher values denote less expected phrases.

Sur(q) =
1

n

a+n∑

j=a

log(
1

P(sj)
) (8)

We show the information content for the seventh and eighth
phrase of the example melody in Figure 2C. The context used
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FIGURE 2 | Phrase 7 and 8 of the example melody, showing the values for each note resulting from different theories. (A) Values according to

Schellenberg’s pitch-proximity principle. (B) Values according to Schellenberg’s pitch-reversal principle. (C) Information Content, calculated with IDyOM, based on a

background corpus. The numbers in brackets indicate how much context is considered to calculate information content, which in this case ranges from 2 (two

previous notes considered) to 8 in the second phrase (eight previous notes considered).

to generate the information content is shown in brackets.
The surprisal of the two example phrases amounts to Sur =

21.74/9 = 2.42 and Sur = 25.88/7 = 3.7, respectively, which
means that we would expect the seventh phrase to be more stable
than the eighth phrase. Surprisal takes values in the range of
[1.15, 6.86] in the whole data set, with a mean of Sur = 2.68 and
a standard deviation of SD(Sur) = 0.53.

2.2.5. The Influence of Repeating Motifs

As Müllensiefen and Halpern (2014) and Van Balen et al.
(2015) found a relationship between repetitiveness of short
motifs and the recall of a melody, we follow their procedure
and use the FANTASTIC toolbox (Müllensiefen, 2009) to
compute a frequency table of such short motifs t for each
phrase. FANTASTIC uses a music representation which
codes the relative pitches and durations of consecutive
notes, see the Supplementary Material for a detailed
description.

We follow Müllensiefen (2009) in their formalization to
measure repeating motifs through entropy. The motifs are
n-grams of character sequences representing the pitch and
duration relationships between notes. The lengths of motifs to be
investigated can be determined by the user. For each investigated
motif length l, the frequency of unique motifs vz,l is counted,
and compared to the total number of motifs of that length Nt,l

covering the phrase. The entropy Hl is then calculated from each
unique motif ’s relative frequency fz,l, i.e., how often a given motif
vz,l occurs in a phrase with relation to all motifs of that length in
the phrase.

The relative frequencies of all unique motifs are multiplied
with their binary logarithm, summed, and divided by the
binary logarithm of the number of all motifs of that
length in the phrase (Nu,l) for normalization. A value of
H = 1.0 then indicates maximal entropy, and minimal
repetitiveness: there are no repeating motifs of length l at
all in the phrase; a lower value indicates that there are some
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repeating motifs.

H(l) = −

∑N
z=1 t,lfz,l · log2 fz,l

log2 Nu,l
(9)

The mean entropy of the motifs is then the average over all
possible motif lengths. We analyze, in accordance with earlier
work, motifs from two notes to six notes in length. We take the
negative value of this average to definemotif repetivity: the higher
the average entropy, or the more distinct motifs in the phrase, the
lower the repetivity.

MR(q) = −

∑6
l=2H(l)

5
(10)

To illustrate the concept, refer again to Figure 1, in which the
second and fourth phrase, consist of repeated steps up by a third.
This sequence can be subdivided into three identical sequences of
two notes each (as the representation of the FANTASTIC toolbox
does not distinguish between minor and major intervals): this
would mean that this phrase has higher motif repetivity than, for
instance, the sixth phrase. See the Supplementary Material for an
example calculation of the motif repetivity of the second/fourth
and the sixth phrase. The motif repetivity of the second/fourth
phrase amounts to MR = −0.90, and of the sixth phrase to
MR = −0.98, so wewould expect the second and fourth phrase to
be more stable than the sixth phrase. Motif repetivity takes values
in the range of [−1.0, 0.0] in the whole data set, with a mean of
MR = −0.92 and a standard deviation of SD(MR) = 0.09.

2.3. Measuring Statistical Relationships
Since our outcome variables are binary, i.e., a given query
phrase occurs or does not occur in a given melody, we
model the statistical relationship between the likelihood that a
given query phrase occurs and its properties through logistic
regression. In logistic regression, the odds that an event happens
are predicted as a function of one or multiple independent
variables. The logarithm of the odds is also known as the
logit function, where P stands for the probability that an event
happens:

logit(P) = log(
P

1− P
) (11)

The goal of logistic regression is to find a curve that best separates
the true events from the false events. In our case, this means that
we want to predict the probability P that a given query phrase
q has a match in a given melody s, based on the vector F of the
independent variables hypothesized to contribute to long-term
memorability of melodies.

logit(P) = β F+ ǫ (12)

In this equation, β represents the slope of the prediction
function, ǫ represents the random effects of the model, i.e., the
random error for each melodic segment, assumed to be normally
distributed. If the prediction of the probability of occurrence (i.e.,
the inverse logit of the prediction function) were perfect, this

would lead to a curve separating the occurrences clearly from the
non-occurrences.

However, the tune family dependent error of the
computational method detecting occurrences needs to be
taken into account. This could be done by separate logistic
regression models for each tune family; yet this would mean that
we could not globally estimate how well a specific hypothesis
accounts for probability of occurrence. We therefore choose
another solution to model the relationship between phrase
properties and occurrence: a generalized linear mixed model
(GLMM) which can model the variation of all data at the same
time.

Generalized linear models are a framework in which
relationships between independent variables and dependent
variables of binomial, multinomial, ordinal and continuous
distributions can be investigated. A special case of this framework
are mixed models, in which not only a general random effect (ǫ),
but also random effects for subgroups of the data can be taken
into account. This way, we can model the tune family dependent
error of the computational method. We assume that every tune
family has a different intercept term in the model, i.e., the height
at which the logistic regression curve crosses the y axis. Hence,
the decision function between occurrence vs. non-occurrence of
the model is shifted, depending on the tune family.

We again assume F as the vector representing the independent
variables of the query phrases, β as the slope of the prediction
function, ǫ as the random error, but now also take into account
the random effect µ, based on the individual error of each tune
family, summarized in the vector tf. Then the model can be
formalized as follows:

logit(P) = β F+ µ tf+ ǫ (13)

One could also think of the fixed effects, expressed by µ tf as the
between-tune-family variance, and the random effects, expressed
by ǫ, as the within-tune-family variance. Using this model, we test
our hypotheses on possible correlates of long-termmelody recall.

To be able to compare the independent variables derived from
our hypotheses, we standardize all variables x of the predictor
vector by subtracting the arithmetic mean x, and dividing by the
standard deviation SD(x) of a given variable.

Fx =
x− x

SD(x)
(14)

This leads to the overall model for all phrase occurrences, in
which units can be compared against each other. We apply a
Generalized Linear Mixed Model with fixed slopes and random
intercepts for each tune family through the R package LME44 to
the test corpus of the dataset containing 9,639 phrases from 147
tune families.

2.4. Model Selection
We select the independent variables contributing to the strongest
model predicting long-term memorability of folk song phrases,

4https://CRAN.R-project.org/package=lme4.
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TABLE 1 | The best models for different degrees of freedom, from 3 df with one parameter, to 9 df with seven parameters.

Parameter estimate 3 df 4 df 5 df 6 df 7 df 8 df 9 df

Surprisal −0.27 −0.29 −0.30 −0.30 −0.29 −0.24 −0.24

Phrase length −0.32 −0.32 −0.33 −0.30 −0.31 −0.30

Phrase position −0.10 −0.12 −0.12 −0.10 −0.10

Phrase repetition 0.08 0.09 0.09 0.09

Motif repetivity 0.08 0.08 0.08

Average proximity 0.09 0.10

Average reversal 0.05

AICc 209159.8 206889.7 206584.4 206355.5 206157.6 206012.1 205941.5

For each model, the second order Akaike information criterion (AICc) is shown, with lower values indicating better model fit. Surprisal is the parameter which leads to the best model

with only one predictor; the other parameters are listed in the order by which they are added, leading to the best model fit when all parameters are used.

using the R library MuMIn5. This model selection compares
all possible combinations of independent variables and ranks
them based on their second-order Akaike information criterion
(AICc) (Hurvich and Tsai, 1989). The second-order Akaike
information criterion penalizes the addition of extra parameters
to a model, such that it strikes a balance between model fit and
parsimony (Burnham and Anderson, 2004). Furthermore, we
estimate the effect size of the best model with a technique to
determine R2 of mixed models by Nakagawa and Schielzeth
(2013).

3. RESULTS

We show the best models selected from three degrees of freedom
(3 df), with one model parameter, to nine degrees of freedom
(9 df), with seven model parameters, in Table 1. The models’
second-order Akaike information criteria decrease as more
parameters get added, indicating better model fit. Our results
show that the strongest model for the stability of melodic
phrases is the full model with all independent variables: phrase
length, phrase repetition, phrase position, pitch proximity, pitch
reversal, surprisal andmotif repetivity. This model yields anAICc

lower by 70.65 than the second best model. Table 2 shows the
estimated prediction coefficients, the variances of the tune family
dependent error and the residual error for the full model, as
well as the model fit in R2. The fixed effects alone, marginalized,
explain R2

marginal
= 0.05, or about 5% of the variance, which is

a mid-sized effect for mixed models (Cohen, 1992; Kirk, 1996).
When the tune family dependent random effects are considered
along with the fixed effects (R2

conditional
), 22% of the variation in

the data is explained.
The prediction coefficients show that phrase length and

surprisal possess most predictive power: with increase of a given
query phrase’s length, its stability decreases. Higher expectancy
leads to increased stability. Furthermore, the coefficients also
indicate that earlier phrases tend to be more stable, as with an
increase in the phrase index, the odds that a query phrase occurs
in a given melody are decreased. Moreover, an increase in pitch
proximity, or a decrease in the average size of the pitch intervals

5https://CRAN.R-project.org/package=MuMIn.

in a phrase, leads to a higher chance of an occurrence. More
repetitions of a query phrase also result in the increased odds
of occurrence. Pitch reversal and motif repetivity contribute
least strongly to the model, but the signs of the parameters are
as expected: if a phrase confirms expectations of pitch reversal,
its odds of occurrence are increased, and likewise, if a phrase
contains many repeating motifs, its odds of occurrence are
increased.

We also tested the model for multicollinearity, confirming
that the approximate correlations of parameter estimates do not
exceed 0.6, which justifies our treatment of the model parameters
as independent predictors.

To illustrate the predictions of the model, we show the
predicted as well as the observed frequency of occurrence for
the ten phrases of the example melody in Figure 3. According
to the model, the first four phrases have the highest probability
of occurrence, and indeed these phrases also have the highest
observed frequency of occurrence (i.e., stability). The predictions
do differ from many of the observed values, as for instance the
higher stability of phrase 1 and 3 as compared to phrase 2 and 4
is not captured by the model.

4. DISCUSSION

The current research shows that folk song collections are a
valuable resource for studying the relationship between melody
variation and memorability. All proposed hypotheses relating
to recall in general and music recall in particular contribute to
prediction of folk song variation, as model selection among all
combinations of parameters leads to a model with all hypotheses
as predictors.

Of course, the variation that is explained with the current
model is still rather low at R2 = 0.05. This might mean that
there are potentially more, and stronger predictors for melody
variation that have not been tested in this study. It is also good
to keep in mind that the phrase occurrences in folk songs do
not represent “clean” experimental data in which all aspects but
melody recall are controlled. The ecological validity comes at the
cost of potential noise. Some aspects that might deteriorate the
observed variation are (a) the computational method to detect
occurrences; (b) the inherent ambiguity of phrase occurrences,
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i.e., humans do not agree on occurrences perfectly (Janssen et al.,
in press); (c) a bias in the corpus toward specific regions and
demographic groups (Grijp, 2008).

Alternatively, one could assume that a large proportion
of melody variation is a result of drift, and therefore
random (Henrich and Boyd, 2002). Therefore, it is enlightening
that the hypotheses do contribute to explaining variation in the
dataset, in spite of potential noise in the data. Memorability
predicts the amount of melodic variation, or stability, as follows:
phrases which resist change should be short (list length effect,
hypothesis 1) and contain little surprising melodic material (i.e.,
low surprisal, a formalization of expectancy, hypothesis 4a).
Moreover, it is beneficial if a phrase occurs relatively early in
a melody (primacy effect, hypothesis 3), and has mostly small
pitch intervals (i.e., high average proximity, a formalization of
expectancy, hypothesis 4a). The repetition of a phrase in its
source melody also contributes to its memorability (rehearsal
effect, hypothesis 2), even though this effect is somewhat weaker
in our analysis than other predictors. Average reversal, or the
tendency for a melody to adhere to the gap fill principle,
i.e., following a leap by stepwise motion in the opposite
direction (expectancy, hypothesis 4a) and motif repetivity within
the phrase (hypothesis 5) seem to account for long-term
memorability to a more limited extent. All predictors related
to expectancy indicate that more expected melodic material
increases stability, leading us to reject hypothesis 4b.

As for possible drawbacks of the presented study, the three
predictors related to expectancy (average proximity, average
reversal and surprisal) share the disadvantage that for the first
few notes of a melody, no or little information on expectancy is
available. This means that there is a potential imbalance between
the initial and later phrases of a melody, as the predictor values
of initial phrases are based on less information. The alternative,
treating every phrase as isolated, so that no context from previous
phrases is used for creating expectancy values, seemed unrealistic,
however, as the recall of phrases is cued by previous melodic
material (cf. Rubin, 1995, p. 190). For the current folk song
collection, in which the same melody is sung multiple times with
different verses, it may be interesting to investigate in how far
considering the end of a given melody as the melodic context for
the start of this melody influences expectancy predictions.

The expectancy predictors defined by Schellenberg (1997),
average proximity and average reversal, may be comparatively
unsuccessful model parameters as they were not necessarily
designed to be averaged for a longer melodic context: they were
defined to quantify the fulfillment of listener expectations at a
given note. However, these predictors still contribute to a better
model, which shows that they capture some information on
memorability which may predict variation of melodies in this
corpus.

The relatively low contribution of motif repetivity as a
predictor for melodic variation may be partly ascribed to the
fact that the phrases are very short melodic material, and as
such rarely contain repeated motifs. It would be interesting to
investigate if motif repetivity increases stability of longer melodic
contexts, e.g., full folk song melodies. For the current analysis of
phrases with an average length of nine notes, which are unlikely
to contain repeated motifs longer than four notes, it may be

TABLE 2 | The parameters of the best model of the model selection:

estimated regression coefficient β̂ and 95% confidence interval for phrase

length, phrase repetitions within the source melody, phrase position in

the source melody, pitch proximity and pitch reversal as defined by

Schellenberg (1997), expectancy, as defined by IDyOM (Pearce and

Wiggins, 2004), and motif repetivity, as defined by Müllensiefen (2009).

Parameter β̂ 95% CI

Intercept −0.22 [−0.35,−0.08]

Surprisal −0.24 [−0.25,−0.22]

Phrase length −0.30 [−0.32,−0.29]

Phrase position −0.10 [−0.11,−0.09]

Phrase repetition 0.09 [0.08, 0.10]

Motif repetivity 0.08 [0.07, 0.09]

Average proximity 0.10 [0.08, 0.11]

Average reversal 0.05 [0.04, 0.06]

σtf 0.84 [0.74, 0.95]

R2
marginal

0.05

R2
conditional

0.22

At the bottom of the table we report the standard deviation of the random effect (tune

family), as well as the marginalized and conditional R2 calculated according to Nakagawa

and Schielzeth (2013).

sufficient to limit the maximal n-gram length to four notes for
future research on motif repetivity in phrases. To hold our use of
the method comparable to earlier research, we decided to analyze
motifs of the same lengths as previous authors. Moreover, there is
no disadvantage to considering longer n-grams other than longer
computation time, as the FANTASTIC toolbox automatically
disregards n-grams which are longer than the length of a phrase.

With the current approach, we cannot address the influence
of other memory effects on melody variation, such as fill-in
effects, spacing effects or confusion errors. Fill-in effects (Conrad
and Hull, 1964), which lead to the later inclusion of an item
that was skipped earlier in serial recall, may also play a role in
melody recall. This might be observed, for instance, if melodic
material within a phrase or melody is rearranged, such that
a motif which usually starts a melody appears later instead.
With the current method, these effects would be missed, as only
the amount of melodic variation, but not the kind of melodic
variation, is investigated. In the same vein, the spacing effect from
free recall (c.f. Hintzman, 1969; Madigan, 1969), which relates to
the space between rehearsals of items, cannot be studied on the
basis of phrases, which do not necessarily repeat within a melody,
and if they do, usually are not spaced far apart. Instead, shorter
melodic contexts might be interesting to study to this effect.

Furthermore, confusion errors (Page and Norris, 1998), which
in serial recall of words lead to the erroneous recall of acoustically
similar words, might also be interesting to study for melody
variation. This might occur if instead of a melodic phrase in
a given folk song, a similar phrase from another folk song is
recalled. As our study analyzes variation per tune family and
not across different tune families, melodic material that might
correspond between different folk songs is not identified as such.

As our analysis of an existing folk song corpus highlighted
some mechanisms behind melodic variation which may be tied
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FIGURE 3 | The predicted (yellow diamonds) and observed (blue stars) frequency of occurrence, in percent, for the ten phrases of the example melody.

The predictions are generated by the generalized linear mixed model, for the model parameters see Table 2. The observed frequency of occurrence is based on how

many of the five variants, other than the example melody, contain a given phrase from the example melody. The dashed line shows the model’s intercept for frequency

of occurrence for this tune family, which is at 58%, meaning that is slightly more likely for the phrases of this tune family to occur in the respective variants than not.

to memorability of melodies, this shows that it would certainly be
fruitful to perform more studies based on computational music
analysis: such research could be performed on the present folk
song corpus to investigate other potential effects of recall (cf.
Olthof et al., 2015), or our methods could be applied to other
music collections, to see whether our findings can be replicated
with respect to melodic variation in other musical traditions.

Next to further computational studies, it would certainly also
be an important future contribution to test the predictions on
melodic variation in an experiment with human participants.
Could the amount of variation when melodies are learned in
an experimental setting also be predicted through important
parameters of our corpus analysis, e.g., through surprisal, phrase
length and phrase position?

As the melodies in the Meertens Tune Collections were
recorded or notated long after the singers or editors had learned
the melodies, it would also be interesting to investigate whether
immediate recall of melodies in a laboratory setting leads to
different kinds of variation than if melodies are recalled weeks
or months later. As such, the present collection, and other folk
song collections, might be an overlooked resource to study recall
and long term memory for melodies.
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Based on a large behavioral dataset of music downloads, two analyses investigate

whether the acoustic features of listeners’ preferred musical genres influence their

choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies

feature distributions for pairs of genre-defined subgroups that are distinct. Using

correlation analysis, these distributions are used to test the degree of similarity between

subgroups’ main genres and the other music within their download collections. Analysis

2 explores the issue of main-to-secondary genre influence through the production of

10 feature-influence matrices, one per acoustic feature, in which cell values indicate the

percentage change in features for genres and subgroups compared to overall population

averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored

within the two analyses. Results strongly indicate that the acoustic features of people’s

main genres influence the tracks they download within non-preferred, secondary musical

styles. The nature of this influence and its possible actuating mechanisms are discussed

with respect to research on musical preference, personality, and statistical learning.

Keywords: Nokia DB, acoustic features, musical preference, musical genre, music downloads, musical influence,

music information retrieval

1. INTRODUCTION

This paper concerns the degree to which the acoustic features of a person’s preferred musical
genre influence their choice of songs or tracks within non-preferred, secondary musical styles.
For example, do people who favor Dance music, which is typically faster in tempo than other
styles, listen to up-tempo Jazz and/or Reggae tracks, rather than slower examples of these genres?
Similarly, might someone whose preference is for Metal also gravitate toward relatively dynamic,
“high-octane” Country or Blues music (assuming, of course, that those genres are not mutually
exclusive; Bansal and Woolhouse, 2015). Although conceptually straightforward, this question
addresses active research areas within the fields ofmusic cognition andMusic Information Retrieval
(MIR), and, to some extent, highlights current limitations within both. Firstly, the phenomenon of
features within a preferred genre influencing song selection within secondary musical styles falls
under the general topic of “cognitive leakiness,” a notion explored in depth in the area of consumer
choice and commerce (e.g., Rieskamp et al., 2006), but less so in music perception. Secondly, topics
involving musical features, in this case extracted from audio, by necessity utilize MIR techniques
(e.g., Lartillot and Toiviainen, 2007). The psychological reality of extracted acoustic features is an
open question (Friberg and Schoonderwaldt, 2014), and therefore research demonstrating their
influence upon musical preference, may, in part, help to legitimize their perceptual existence.
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In attempting to investigate song selection and acoustic-
feature influence, our study brought music cognition and MIR
together within the context of “big data” (Russom, 2011). The
data in question consisted of ca 1.3 billion music downloads
made by approximately 17 million users in multiple countries
between 2007 and 2014. Somewhat anticipating our results, the
following analyses demonstrate significant effects with respect
to 10 extracted acoustic features, and 10 subgroups of users
defined by preferred musical genre. Before describing the data,
methodology, and reporting our results, we first review literature
that addresses factors responsible for, and that influence, device
usage and decision making, including song selection.

Similarly to the devices used in our study, which were mobile
phones (see Section 2), Butt and Phillips (2008) sought to predict
amounts and types of mobile-phone use from 120 participants
rated for extraversion, agreeableness, conscientiousness,
neuroticism, and self-esteem (using the Coopersmith self-esteem
inventory; Coopersmith, 1959). Individuals assessed as being
neurotic, disagreeable, unconscientious, and/or extraverted
tended to spend more time messaging using SMS; disagreeable
extraverts changed cellphone backgrounds and ringtones more
frequently, indicating phone use as a means of stimulation
and/or diversion; individuals who scored highly in neuroticism
had relatively greater internet use, according to the authors,
perhaps in an attempt to overcome loneliness. In sum, Butt
and Phillips (2008) concluded that psychological profiling with
respect to established personality dimensions could robustly
explain how people chose to use their mobile phones.

While successfully modeling human behavior, some
researchers (e.g., Ross et al., 2009) have argued that the
personality traits referred to above may be too general to model
online behavior, including cellphone usage. For example, Hughes
et al. (2012) investigated whether a lower-order, relatively narrow
personality facet such as Need for Cognition (NFC) was able
to predict online social and information-seeking behaviors.
NFC is an individual’s predisposition to engage with and
enjoy information and cognitive endeavors, e.g., news content,
crossword puzzles, Sudoku (Haugtvedt et al., 1992; Verplanken,
1993). Despite its specificity, as opposed to a broader dimension
such as openness, NFC in the study conducted by Hughes et al.
(2012) was found to correlate positively with Twitter usage,
presumably due to this social-networking service’s relatively
high information content. Those with high ratings for sociability
and extraversion appeared to prefer Facebook. For additional
research concerning social media and personality, see Moore and
McElroy (2012).

In addition to device- and personality-specific research,
studies exploring the interconnectedness of various forms
of media and the consumption of culture, including music,
have been undertaken. Finn (1997), in a diary study of
over 200 university students, correlated radio listening, TV
watching, pleasure reading, and moviegoing with openness,
conscientiousness, extraversion, agreeableness, and neuroticism
(referred to as the Big Five personality traits; see Costa and
MacCrae, 1992). The strongest relationship for mass-media use
was between openness and pleasure reading; extraversion was
negatively associated with pleasure reading, as was openness

and watching TV. Rentfrow and Gosling (2003) assert that the
perception of a musical genre depends in part upon the social
setting in which it is heard and, by extension, the medium
through which it is accessed; in other words, that people’s
preferences for certain media over others may influence musical
categorization. With respect to music listening, where radio
continues to play a major role (Peoples, 2015), personality studies
have uncovered multiple associations: openness with Blues and
Jazz; conscientiousness with Soul and Funk; extraversion with
Pop and Rap, and so on (Zweigenhaft, 2008; see also Rentfrow
and Gosling, 2003). Moreover, personality appears not only to
influence the extent to which individual genres are chosen,
but also the overall heterogeneity of our musical tastes, i.e.,
whether we possess narrow or wide-ranging music-listening
habits (Rawlings and Ciancarelli, 1997). In sum, personality
research provides evidence for the existence of an overarching
psychological framework in which effects akin to cognitive
leakiness may occur (Rieskamp et al., 2006). As the research
outlined above indicates, personality is a potent phenomenon,
suffusing, guiding, and shaping our decisions, including the
seemingly inconsequential behavior of choosing music.

In contrast to personality, which is assumed to be relatively
stable over time (Leon et al., 1979), mood can undergo rapid
affective swings (McFarlane et al., 1988). Moreover, while
research has tended to concentrate on how music influences or
induces mood, particularly with respect to consumer choice (e.g.,
Kim and Areni, 1993; North et al., 1999), the converse is also
true: mood influences musical choice (Friedman et al., 2012).
Which is to say, assuming environmental factors and personal
histories to be equal, a person’s musical preferences do not
depend solely on their personality, but, in addition, are subject
to spur-of-the-moment choices influenced by mood.

Amongst the theoretical models advanced to elucidate the
role of mood in decision-making, perhaps the most influential
is the Affect Infusion Model (AIM), developed by Joseph
Forgas in the early 1990s (Forgas, 1995). In brief, the AIM
seeks to explain how mood determines a person’s capacity to
process information—the importance of mood tends to increase
in situations involving heavy cognitive load. As information
complexity rises, and redundancy falls, the influence of mood on
an individual’s evaluations and responses increases, resulting in
“intuitive” decision-making. Presumably, therefore, when faced
with a plethora of diverse musical artists, tracks, and genres,
people tend to rely more upon their current mood, in which
case the influence of personality may be temporarily reduced
or suspended. To the authors’ knowledge, within the domain of
music-preference research, this hypothesis has yet to be tested.

Despite this possible lacuna within the experimental literature,
paradigms employing music-induced moods have produced
results that are consistent with aspects of the AIM model.
For example, risk-taking varies when mood is induced through
listening to preferred vs. disliked music. In a real-money
gambling study, in which participants placed bets during
either music-liked and disliked trial blocks, Halko and Kaustia
(2015) found that people’s appetites for risk-taking significantly
increased when listening to preferred tracks. They conjectured
that listening to preferred types of music increases the “marginal

Frontiers in Psychology | www.frontiersin.org July 2017 | Volume 8 | Article 931173

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Barone et al. Influence of Acoustic Features

utility” of money (i.e., the additional satisfaction someone gains
from consuming a good or service; Kauder, 2015), which,
in turn, increases the likelihood of participating in gambling.
Furthermore, Halko and Kaustia (2015) argued that their results
are supported by recent studies in neuroscience. Berns et al.
(2010) have found levels of activation in reward areas of the
brain (e.g., nucleus accumbens) to be proportional to the degree
to which music is liked. The behavioral effect of music on
risk-taking also co-varies with brain activation in the amygdala
and the dorsal striatum (Halko et al., 2015), key brain regions
associated with the calculation and assessment of value. In short,
in addition to its mood-inducing properties, music listening gives
rise to distributed neurological operations in which functionally
differentiated networks are simultaneously activated. For a
review of research relating to the induction of mood through
music, see Västfjäll (2002).

While mood and personality pertain, to some degree, to
an individual, shared demographic factors, including culture,
education, sex, and age appear to affect people’s musical choices
(Christenson and Peterson, 1988; Roberts and Henriksen, 1990;
Peterson and Kern, 1996; LeBlanc et al., 1999; Schäfer and
Sedlmeier, 2009; North and Davidson, 2013). Of these, age
is the strongest predictor of musical preference (Christenson
and Peterson, 1988). Older adolescents prefer ‘lighter’ qualities
in music compared to younger adolescents (Roberts and
Henriksen, 1990). General enjoyment of music from Grade
1 to college drops for a time until rising around the age
of puberty, following a U-shaped curve across development
(LeBlanc et al., 1996). Supported by cross-cultural studies,
sociological research suggests that preferences for eclectic artists
rise as national education values improve (Peterson and Kern,
1996). With respect to sex, a music-choice study suggested
that males prefer music with themes of dominance and
independence, whereas females preferredmusic with relationship
and emotion themes (Christenson and Peterson, 1988). However,
the extent to which this research is generalizable is open to
debate: almost 30 years has elapsed since Christenson and
Peterson’s study, which was based on low-sample surveys
with relatively little demographic variation. Furthermore,
LeBlanc et al. (1999) and North and Davidson (2013)
found that demographic information did not conclusively
determine music preferences; two- and three-way interactions
were found between age, sex and country, and controlling
for these factors significantly reduced the strength of the
relationships.

Although the foregoing covers aspects of decision-making
involving music, none of the research and experimental scenarios
referred to above necessarily replicate, or are fully applicable
to, the particular issue at hand; namely, the degree to which
the features of a person’s preferred musical genre influence
their choice of tracks within non-preferred, secondary musical
styles. A primary motivation for undertaking this research was
because, to our knowledge, musical-feature influence has yet
to be investigated using large behavioral data sets. Despite not
containing user-personality information per se, our database
of global music consumption afforded us the opportunity
to undertake research in this hitherto underexplored area,

and, in the process, develop a series of relatively novel
analytical methods. The study is divided into two main
analyses. Using correlation, Analysis 1 identified differences
in feature-dispersion patterns of genre-defined subgroups
of users. Analysis 2 involved the exhaustive calculation of
feature-influence matrices, which, in combination with central-
tendency statistics, were used to detect the influence of main-
genre features on those of secondary genres. The methods
and results of each analysis follow a description of the
data.

2. DATA

2.1. Database
This study utilized a global music-download database, consisting
primarily of music metadata made by people downloading
tracks and albums onto Nokia mobile phones. The data became
accessible through a data-sharing agreement between McMaster
University and the Nokia Corporation, begun in 2012; the aim
of the agreement was to facilitate sociocultural and musicological
research relating to global music consumption. In January 2015,
the Nokia division responsible for online music became a
separate entity under the name MixRadio; MixRadio ceased
commercial operations in February 2016. Henceforth, we refer
to the data as pertaining to the Nokia DB1.

Nokia DB contains downloads from 32 countries,
representing every major continent, made between November
2007 and September 2014. In total there are over 1.36 billion
track-downloads, relating to a subset of ca 17 million user
accounts, and approximately 36 million tracks, written and/or
performed by over one million artists. Following the purchase of
a mobile device, users could explore artists and tracks without
further cost constraints via online stores. Each download’s
metadata includes information such as track name, artist, album,
anonymous user identifier (ID), date, local time, country, and
artist-level genre. Supplied by record labels, in total there are 63
genre tags, ranging from mainstream (Country, Pop, Rock) to
relatively obscure (Ambient, Flamenco, Khaleeji). For additional
information and research concerning Nokia DB, see Woolhouse
and Bansal (2013), Woolhouse et al. (2014), Woolhouse and
Renwick (2016).

2.2. Data Enrichment
Prior to embarking upon this study, we enriched the download
metadata with acoustic features from open-source databases,
including The Echo Nest (Bertin-Mahieux et al., 2011). As of
May 2016, The Echo Nest application programming interface
(API) was subsumed by Spotify; henceforth, for the sake of
simplicity, we refer to all extracted acoustic features in our
analyses as relating to Spotify. Examples of acoustic features
accessed from the Spotify Web API2 include Acousticness,
Danceability, Duration, Energy, Instrumentalness, Liveness,
Loudness, Speechiness, Tempo, and Valence. The data are

1Nokia DB represents a portion of Nokia’s total commercial activity, and is

therefore not indicative of market share.
2https://developer.spotify.com/web-api/
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arranged in a relational database management system and
queried using the open-source MySQL 5.1 implementation of
SQL (Groff and Weinberg, 2002). In addition, the Python
Database API (Lemburg, 2008) enabled more extensive, iterative
analyses to be undertaken.

2.3. Acoustic Features
Of the 36 million songs available in Nokia DB, 9 million have
been linked to the 10 high- and low-level acoustic features
(McKay, 2004, p. 10) listed below. A brief description of each
feature now follows; see Jehan and DesRoches (2011) for further
information3.

Acousticness. Value representing the probability that a track was
created using acoustic instruments, including voice. Float;
range, 0–1.

Danceability. A track’s “foot-tapping” quality, based on tempo,
rhythm stability, beat strength, and isochrony. Float; range,
0–1.

Duration. The duration of a track in seconds as calculated by the
Spotify analyzer. Float; maximum value, 6,060 s.

Energy. A perceptual estimation of frenetic activity throughout
a track. High-Energy tracks have increased entropy, and
tend to feel fast, loud, and noisy (e.g., Death Metal). Float;
range, 0–1.

Instrumentalness. Value representing the probability that a
track was created using only instrumental sounds, as
opposed to speech and/or singing. Float; range, 0–1.

Liveness. Value representing the probability that a track was
recorded in the presence of an audience rather than in a
studio. Float; range, 0–1.

Loudness. The average loudness of a track in decibels. Loudness
is the psychological correlate of signal amplitude.

Speechiness. Value representing the presence of spoken words
in a track, e.g., talk show, audio book, poetry, rap. Float;
range, 0–1.

Tempo. The estimated tempo of a track in beats per minute.
Float; range, 0–294.

Valence. A perceptual estimation of a tracks positive/negative
affect, e.g., happy and cheerful, or sad and depressed. Float;
range, 0–1.

2.4. X-heads
The behavioral aspects of our analyses were based on the
categorization of users into “X-head” subgroups, where X was
the most numerous genre. For example, a user with a majority of
Metal downloads was classified as a Metal-head; most Classical
downloads, a Classical-head, and so on. This enabled us to

3Online information can be accessed at the following webpage: https://web.

archive.org/web/20150112031805/http://developer.echonest.com/acoustic-

attributes.html

identify groups of users that were more accustomed, so we
assume, to one particular genre than another, and, thus, attuned
to the acoustic features prevailing within that genre. In rare
instances where no genre had an absolute majority, the genre
of the chronologically earliest download determined a user’s
categorization.

Our intention was for the definition of an X-head to be as
straightforward as possible, and hence our simple criterion of a
majority of downloads of a particular genre. In order to keep
our study within manageable parameters, 10 X-head subgroups
were selected for investigation: Bollywood, Classical, Dance,
Jazz, Mandarin Pop, Metal, Pop, Rap/Hip Hop, Reggae, and
Rock. Two primary reasons determined this choice: (1) these are
amongst the most heavily downloaded genres within Nokia DB;
and (2) they include culturally distinct genres, some of which
are perhaps less well represented in music-psychology research,
e.g., Mandarin Pop. Table 1 shows the total number of users and
tracks per X-head subgroup entered into the analyses.

3. ANALYSIS 1: FEATURE DISTRIBUTIONS

3.1. Method
The initial task in Analysis 1 was to identify feature distributions
for pairs of X-head subgroups that were distinct. The reason
for this is illustrated in Figures 1, 2. Figure 1 shows the Energy
distributions of tracks belonging to two X-head subgroups: the
solid-orange line, DM , shows the distribution for Dance tracks
downloaded by Dance-heads (DanceMain = DM); the solid-blue
line, JM , shows the distribution for Jazz tracks downloaded by
Jazz-heads (JazzMain = JM). Notice that the peak of DM is to the
right, while the peak of JM is to the left. The two peaks’ relative
positions indicate that, in general, Dance tracks listened to by
Dance-heads have higher Energy than Jazz tracks listened to by
Jazz-heads, as calculated by the Spotify analyzer.

Also present within Figure 1 are lines that show Energy
distributions belonging to Dance- and Jazz-heads, but for tracks
other than their predominant genres: the dotted-orange line,
DO, shows the distribution of non-Dance tracks downloaded by
Dance-heads (DanceOther = DO); the dotted-blue line, JO, shows
the distribution of non-Jazz tracks downloaded by Jazz-heads

TABLE 1 | Descriptive statistics for X-head subgroups: number of users; number

of downloads (average downloads per user).

X-head subgroup Users Downloads

Pop 3,215,135 74,421,204 (23.14)

Bollywood 2,134,919 30,340,368 (14.21)

Mandarin Pop 1,944,975 15,165,454 (7.80)

Rock 349,205 23,489,799 (67.27)

Dance 163,388 1,676,634 (10.26)

Rap/Hip Hop 156,384 2,122,862 (13.57)

Metal 94,015 4,513,560 (48.01)

Classical 45,903 2,260,496 (49.25)

Jazz 22,644 1,131,941 (50.00)

Reggae 13,530 240,615 (17.63)
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FIGURE 1 | Energy distributions of tracks belonging to Dance-head and Jazz-head subgroups. The orange lines, DM and DO, show the distributions of tracks

downloaded by Dance-heads; the blue lines, JM and JO, show the distributions of tracks downloaded by Jazz-heads.

FIGURE 2 | Energy distributions of tracks belonging to Bollywood-head and Reggae-head subgroups. The purple lines, BM and BO, show the distributions of tracks

downloaded by Bollywood-heads; the green lines, RM and RO, show the distributions of tracks downloaded by Reggae-heads.

(JazzOther = JO). Two things are important to note: (1) the
Energy distribution of Dance-heads’ non-Dance tracks mirrors
the distribution of their Dance tracks, e.g., both DM and DO

peak on the right; and (2) the Energy distribution of Jazz-heads’
non-Jazz tracks mirrors the distribution of their Jazz tracks,
e.g., both JM and JO peak on the left. Which is to say, when
Dance-heads download non-Dance tracks, there is a tendency
for these tracks to be similar in terms of Energy to Dance
tracks. Alternatively put, the generally high Energy of Dance
tracks influences the choices Dance-heads make with respect
to non-Dance music, while the generally low Energy of Jazz
tracks influences the choices Jazz-heads make with respect to
non-Jazz music.

The observation above relies upon X-head pairs having
dissimilar feature distributions (i.e., lines DM and JM), and,
in the case of Figure 1, the distribution of DM being closer
to DO than JO, and JM being closer to JO than DO. If,
however, the distributions of the X-heads’ main genres are
homologous, as is the case for Bollywood- and Reggae-heads
in Figure 2 (solid green and purple lines), then no such
pattern of similar/different distributions is possible. Which is
to say, distributions where X-heads’ main genres are more-
or-less similar, are less able to demonstrate acoustic-feature
influence.

The distributions for all possible X-heads’ main genres
were correlated with each other in order to identify pairs
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FIGURE 3 | Correlation matrix for Energy showing coefficients between pairs of X-head subgroups. The two highlighted cells relate to the solid lines in Figures 1, 2,

Dance and Jazz, and Bollywood and Reggae respectively.

with dissimilar distributions. This was conducted for all
10 features. Using Pearson product-moment correlation, five
features yielded no negative coefficients, and were thereby
eliminated from the analysis. The five remaining features
yielding negative coefficients, usable in the analysis, included
Acousticness, Danceability, Energy, Loudness, and Valence.
Figure 3 shows the correlation matrix for feature Energy. The
two highlighted cells within the matrix relate to the solid lines
in Figures 1, 2, Dance and Jazz, and Bollywood and Reggae
respectively. The Dance-Jazz coefficient is negative (reflected in
the dissimilar distributions in Figure 1); the Bollywood-Reggae
coefficient is positive (reflected in the similar distributions in
Figure 2). In the case of Energy, this process yielded 19 X-
head pairs suitable for analysis, i.e., 19 cells with negative
coefficients.

Following this, for each X-head pair AB, the distribution
of A’s main genre (e.g., DM , Figure 1) was correlated with the
distribution of A’s other music (e.g., DO). Next, the distribution
of A’s main genre (e.g., DM) was correlated with the distribution
of B’s other music (e.g., JO). This produced two coefficients.
This process was then repeated for B: B’s main genre (e.g.,
JM) was correlated with the distribution of their other music
(e.g., JO), and the distribution of B’s main genre (e.g., JM) was
correlated with the distribution of A’s other music (e.g., DO). A
and B together, therefore, produced four coefficients. For each

feature, this was repeated for all X-head pairs with negatively
correlated distributions, and the resulting coefficients entered
into a paired sample t-tests in which “within-group” coefficients
(e.g., DM correlated with DO) were paired with “between-group”
coefficients (e.g., DM correlated with JO).

Figure 4 illustrates this process for Energy with respect to
Dance- and Jazz-heads. In total, the 19 X-head pairs identified
in the Energy correlation matrix in Figure 3 gave rise to a t-test
into which 38 pairs were entered. This enabled us to observe
whether there was a closer relationship between the features of
A’s main genre and their other music (Figure 4, red column;
e.g., DM and DO) than with the features of B’s other music
(Figure 4, blue column; e.g., DM and JO) and vice versa, i.e.,
whether there was a significant influence of the main genre on
music of secondary importance within people’s downloads. If
there had been no influence, then the distributions of either
A or B’s other music (e.g., DO or JO) would not be expected
to show a consistently closer relationship to their respective
main genre distributions (e.g., DM or JM). The results of this
analysis for the five viable features referred to above are now
presented.

3.2. Results
As previously described, the presence of negatively correlated
distributions, shown in Figure 3 with respect to Energy,
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FIGURE 4 | Example of paired sample t-test with respect to Energy in which within-group coefficients were paired with between-group coefficients. Only the first two

from 38 pairs are shown.

enabled the influence of five features to be studied using the
present methodology. In sum, Acousticness had 12 negatively
correlated distributions, Danceability 10, Energy 19, Loudness
5, and Valence 9 (see Supplementary Figure 1). Figure 5

shows boxplots of the five features within the analysis.
The red boxes on the left of each graph represent the
within X-head coefficients; blue boxes on the right are the
between X-head coefficients. Paired-sample t-tests, conducted
to compare the within X-head coefficients and between
X-head coefficients, showed the following results (sig. 2-
tailed):

Acousticness. Significant difference for within (M = 0.749, SD
= 0.170) and between (M = 0.250, SD = 0.302) X-head
coefficients; t(23)= 11.887, p < 0.0001.

Danceabilty. Significant difference for within (M = 0.608, SD
= 0.225) and between (M = 0.313, SD = 0.288) X-head
coefficients; t(19)= 8.046, p < 0.0001.

Energy. Significant difference for within (M = 0.557, SD =

0.233) and between (M = 0.174, SD = 0.414) X-head
coefficients; t(37)= 9.110, p < 0.0001.

Loudness. Significant difference for within (M = 0.636, SD
= 0.270) and between (M = 0.315, SD = 0.301) X-head
coefficients; t(9)= 10.656, p < 0.0001.

Valence. Significant difference for within (M = 0.653, SD =

0.113) and between (M = 0.223, SD = 0.199) X-head
coefficients; t(17)= 11.887, p < 0.0001.

3.3. Discussion
The statistics above confirm what is clearly evident in the
boxplots in Figure 5: there is a significant difference in
the two sets of coefficients for each feature; in general,
coefficients for the within condition are greater than the
between condition. This is also true for the feature Loudness,
which had only five X-head pairs with negatively correlated
distributions (producing 10 pairs of coefficients). In other
words, even with a relatively low n, there is a statistically

closer relationship between the features of an X-head’s main
genre and their other music than with the features of a
different X-head’s other music, i.e., a significant influence of the
main genre on music of secondary importance within people’s
downloads.

Despite the results having a clear direction, the current
method was not able to test the influence of five of the
10 features within the analysis: Duration, Instrumentalness,
Liveness, Speechiness, and Tempo. Although the observed
pattern of influence may well extend to these features, this is by
no means certain—for cognitive and neurological reasons, this
phenomenon may be limited to particular acoustic features; for
example, perhaps those that are more closely tied in some way to
personality (e.g., McCown et al., 1997). Moreover, Analysis 1 was
not able to address whether some X-head subgroups exhibited
more influence, or if specific genres were more susceptible
to being influenced by other genres more dominant within
people’s download collections. For example, is it the case that
Classical is more prone to the influence of negatively valenced
or sad music than, say, Metal? Similarly, might Jazz be more
immune to the influence of up-tempo music than Bollywood,
and what might be the interaction of X-head subgroup on
these processes? Our aim was not necessarily to explain such
patterns, which may well involve a combination of personality
and sociocultural factors, but rather to observe the degree to
which they existed within Nokia DB. To this end, we undertook
a second analysis in which detailed information relating to each
X-head subgroup and our selected 10 genres was brought to
light.

4. ANALYSIS 2: FEATURE-INFLUENCE
MATRICES

4.1. Method
Each feature-influence matrix, referred to as C, was calculated
from two submatrices, A and B. A, a 10 (X-heads) × 10 (genres)
submatrix, contained the average feature values of all songs
within a genre downloaded by an X-head subgroup (for example,
the average value of Valence for all Reggae tracks downloaded
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FIGURE 5 | Boxplots of the five features within Analysis 1. Red boxes represent the within X-head coefficients; blue boxes represent the between X-head coefficients.

by Classical-heads). B, a 10 (genres) × 1 (averages) submatrix,
contained the average feature value of each genre downloaded
by all users, excluding those made by the main X-head subgroup
(for example, the average Valence of Metal tracks downloaded by
everyone except Metal-heads). C, the 10 (X-heads)× 10 (genres)
feature-influence matrix, was calculated by subtracting the row
values in A (subtrahends) from those in B (minuends), and
converting the resulting differences into percentage changes from
the averages in B. Formally, the above is given by:

F = {∀xg ∈ Fxg , xg = {
Fxg − Pg

Pg
∗ 100}} (1)

Where:

F = Feature-influence matrix (Matrix C)

x = X-head subgroup

Fxg =Average feature value for genre (g) in X-head (x) subgroup
(Submatrix A)

Pg = Average feature value for genre (g) for entire population
(Submatrix B)

xg = Average feature value for genre (g) listened to by X-head
subgroup (x)

We illustrated this process with reference to Submatrices A and B,
Matrix C (the feature-influence matrix), and feature Valence. For
clarity, the calculation is simplified to include only three X-head
subgroups and genres: Dance, Metal, and Pop.

TABLE 2 | Example of Submatrix A showing the average Valence of three genres

downloaded by three X-head subgroups.

Classical Dance Metal

Classical-heads 0.27 0.43 0.38

Dance-heads 0.28 0.41 0.37

Metal-heads 0.28 0.44 0.35

Rows represent X-heads; columns represent genres.

4.1.1. Submatrix A

Table 2 shows Matrix A: rows (i) represent X-head subgroups;
columns (j) represent genres downloaded by each X-head
subgroup. For example, average Classical, Dance, and Metal
Valence values for Dance-heads (i = 2, j = (1, 2, 3)) are
(2, 1) = 0.28, (2, 2) = 0.41, and (2, 3) = 0.37 respectively.

4.1.2. Submatrix B

Table 3 shows Submatrix B: the columns are genres; the row is
the average Valence of each genre, excluding members of that
particular X-head subgroup. For example, the average Valence for
Metal music downloaded by non-Metal-heads (1, 3) = 0.39.

4.1.3. Matrix C (Feature-Influence Matrix)

Table 4 shows Matrix C, generated by subtracting cell i, j in
Submatrix A from cell i, j in Submatrix B. We take the percentage
change for that feature using the population average for a
particular genre in Submatrix B (similar results were obtained
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TABLE 3 | Example of Submatrix B for feature Valence with three genres.

Classical Dance Metal

Population average 0.28 0.47 0.39

Average feature values of genres, excluding members of each particular X-head

subgroup.

TABLE 4 | Example of Matrix C, the feature-influence matrix, showing the

percentage Valence change of three genres downloaded by three X-head

subgroups.

Classical (%) Dance (%) Metal (%)

Classical-heads −3.57 −8.51 −2.56

Dance-heads 0.0 −12.8 −5.12

Metal-heads 0.0 −6.1 −10.26

Rows represent X-heads; columns represent genres.

using population medians as opposed to averages). For example,
to calculate cell (2, 2) of Matrix C:

Ci,j =

(
A(i, j)− B(j)

B(j)

)
∗ 100

C2,2 =

(
0.41− 0.47

0.47

)
∗ 100 = −12.8

This example indicates that Dance-heads downloaded Dance
music that was 12.8% more negatively valenced than the rest of
the population downloading Dance.

4.2. Results
Figure 6 shows the feature-influence matrix for Acousticness.
Cell values indicate the percentage change in Acousticness of
genres (columns) downloaded by X-head subgroups (rows),
compared to the average Acousticness of genres downloaded by
the overall population. The highlighted diagonal cells (running
top left to bottom right) show X-heads with respect to their
main genres. The highlighted column on the right shows the
median value of each row, excluding diagonally highlighted
cells.

Of the 100 possible diagonal-to-median cell pairings (10
features × 10 X-heads), the signs of 64 were in agreement;
36 were in disagreement (see Supplementary Figure 2). These
pairings are shown in the scatterplot in Figure 7. Light-green
quadrants indicate sign agreement between the row medians
and X-heads with respect to their main genres, either positive
or negative; pink quadrants indicate sign disagreement. The
adjusted r2-value, 0.1039, gives rise to the following statistic: r =
0.34, n= 100, p < 0.0001.

The 10 feature-influence matrices enabled two further,
complementary questions to be explored. First, across all X-
heads, which feature of their main genres most strongly
influenced their other genres? For example, is the relationship
between X-heads’ main and other genres stronger for Energy than
Danceability? This question was assessed by correlating X-heads’

main genres with the nine other genres in each of their download
collections. This produced one overall coefficient per feature-
influence matrix; the resulting 10 coefficients were then ranked
in order. The second question asked which X-head subgroup
across all features had the closest relationship between their
main genre and other genres. For example, do the features of
Mandarin Pop-heads’ main genre more strongly influence the
corresponding features of their other genres than is the case
for Reggae-heads? This question was investigated by correlating
each X-head’s main genre with the nine other genres in each
feature-influence matrix. This produced one overall coefficient
per X-head subgroup, and, as before, the resulting 10 coefficients
were ranked in order. The results of these analyses are shown in
Tables 5, 6. Rows represent ranks, either of features or X-heads.
Also shown are associated Pearson product-moment correlation
coefficients.

4.3. Discussion
The finding in the feature-influence matrices that the signs
of 64 diagonal-to-median cell pairings were in agreement,
with 36 in disagreement, strongly suggests that there is a
directional relationship, either positive or negative, between
the features of X-heads’ main genres and those of their other
genres. This is confirmed in the scatterplot in Figure 7, and
associated correlation statistic (r = 0.34), in which there was
a significant, positive relationship between the variables. Of
course, our assumption is that the direction of influence is
from the main to the other genres in each X-head subgroup:
intuitively, at least, it seems to make sense that most individuals
have a preferred musical style that influences their choices
in other genres. However, the converse could be true: the
features of X-heads’ secondary genres influence the choices
they make in their main genre, although this is perhaps less
likely.

In the foregoing diagonal-to-median cell analysis, two
additional analyses sought to establish ranked orders showing:
(1) which feature of X-heads’ main genres most strongly
influenced their other genres, and (2) which X-head subgroup’s
main genre most strongly influenced their other genres across
all features. In Table 5, the top-ranked feature was Speechiness
(r = 0.52)—the presence or absence of spoken words in
tracks belonging to main genres appears to have created a
preference for similarly “speechy” tracks in X-heads’ other
genres. Similarly, the Danceability, Loudness, and Energy of
users’ predominant tracks appear to have heavily influenced
tracks of secondary importance. At the other end of the
spectrum, there was little-to-no relationship between X-
heads’ main and other genres in terms of Liveness (whether
a track was recorded at a live event) and Instrumentalness
(whether a track was created using only instrumental
sounds).

The top-ranked X-head subgroups were Metal (r = 0.56) and
Jazz (r = 0.49). The dynamic nature of much Metal music seems
to have created a musical ‘fingerprint’ that strongly expressed
itself in the other genresMetal-heads downloaded. Likewise, Jazz-
heads seem compelled to seek out music containing Jazz-like
qualities when exploring non-Jazz music. Conversely, Mandarin
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FIGURE 6 | Feature-influence matrix for Acousticness. The highlighted diagonal cells (running top-left to bottom right) show X-heads with respect to their main

genres. The highlighted column on the right shows the median value of each row, excluding diagonally highlighted cells.

FIGURE 7 | Scatterplot showing the 100 diagonal-to-median cell pairings of the 10 feature-influence matrices. Light-green quadrants indicate sign agreement

between the row medians and X-heads with respect to their main genres, either positive or negative; pink quadrants indicate sign disagreement.

Pop and Pop’s musical features did not significantly influence
the other music downloaded by these X-head subgroups, perhaps
because the features of these genre are relatively indistinct (r =

0.09 and r = 0.08 respectively). These findings, and those relating
to Analysis 1, are now discussed in the broader context of the
paper.
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TABLE 5 | Table showing the ranked order of features.

Rank Feature (n = 90)

1 Speechiness; r = 0.52***

2 Danceability; r = 0.48***

3 Loudness; r = 0.45***

4 Energy; r = 0.44***

5 Acousticness; r = 0.28**

6 Tempo; r = 0.19

7 Duration; r = 0.17

8 Valence; r = 0.14

9 Liveness; r = 0.06

10 Instrumentalness; r = 0.04

The feature column shows which feature of X-heads’ main genres is closest to their other

genres (p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001).

TABLE 6 | Table showing the ranked order of X-heads.

Rank X-head (n = 90)

1 Metal; r = 0.56***

2 Jazz; r = 0.49***

3 Dance; r = 0.45***

4 Classical; r = 0.41***

5 Rap; r = 0.28**

6 Rock; r = 0.26*

7 Bollywood; r = 0.14

8 Reggae; r = 0.11

9 Mandarin Pop; r = 0.09

10 Pop; r = 0.08

The X-head column shows the subgroup with the closest relationship between their main

genre and other genres, across all features (p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001).

5. GENERAL DISCUSSION

Using pairs of X-head subgroups whose feature distributions
negatively correlated, Analysis 1 found that there was a consistent
relationship between X-heads’ main and other genres; the
methodology enabled five acoustic features to be investigated.
Analysis 2 added detail to this finding through the production
of 10 feature-influence matrices; there was a significant positive
correlation between the diagonal-to-median cell pairings across
the matrices, again strongly indicating that there is a relationship
between the features of X-heads’ main genres and those of
their other genres. Therefore, with respect to the question
posed at the outset, the core findings of this paper support
the proposition that the acoustic features of a person’s main
musical genre influence their choices within non-preferred,
secondary styles. Which is to say, attributes of the tracks within
preferred genres influence the other genres of people’s music-
download collections. The nature of this influence, and its
possible actuating mechanisms, form the major part of the
following discussion.

Although, as outlined in Section 1, substantial research
has been undertaken in relation to musical preference and

personality, for a variety of reasons relatively few studies have
explored this issue using large music-consumption databases,
such as Nokia DB. First, in terms of usual research timescales (i.e.,
years, not months), APIs, through which large volumes of data
become accessible to external researchers, are relative newcomers
to the academic landscape. Second, API rate-limits typically
restrict the amount of data that is available; similarly, database
limits may constrain the type of information that a researcher
is able to export. And third, for sound methodological reasons
relating to data integrity, psychologists have tended to rely on
relatively small subject pools to whom individual personality or
self-image tests can be administered (e.g., Zweigenhaft, 2008;
Krause and Hargreaves, 2013).

In seeking to corroborate the findings of preexisting music-
personality studies, Bansal and Woolhouse (2015), using Nokia
DB, investigated (1) whether X-head subgroups showed distinct
patterns of genre exclusivity, and, if so, (2) whether genre
exclusivity related to the Big Five personality factors (Costa and
MacCrae, 1992). X-heads ranked from exclusive to inclusive were
as follows: Pop, Dance, Rap, Metal, Rock, Classical, Country,
Folk, Jazz, and Indie. Interestingly, this aligned with previous
literature showing that individuals who prefer Jazz and Folk score
highly in the Big Five factor of openness (Zweigenhaft, 2008).
Those high in openness were also found to avoid genres like Pop;
likewise, Bansal and Woolhouse (2015) determined Pop-heads
to be the most genre exclusive. In sum, genre-openness (and –
agreeableness) associations from Zweigenhaft (2008) predicted
genre inclusivity in Nokia DB X-heads—individuals with high
openness scores (and/or agreeableness) were more likely to
have a wider selection of genres within their music collections.
Bansal and Woolhouse (2015) did not find conscientiousness,
extraversion, or neuroticism to be predictors of genre exclusivity.

By demonstrating that personality-related behavior is
discernable within big data concerning music consumption,
Bansal and Woolhouse’s (2015) research is highly relevant to
the current study. If personality can be shown to have guided
genre exclusiveness, then its involvement in other aspects of
people’s musical choices is not only possible, but, arguably,
probable. In the present instance, a mechanism is being sought
that may account for influence in terms of acoustic features and
genres of secondary importance within X-heads’ downloads.
McCown et al. (1997) linked exaggerated bass frequencies, i.e.,
a specific acoustic feature, to a particular personality factor,
neuroticism—it would seem self-evident that other acoustic
features, including those explored within our study, will likewise
be linked to aspects of personality, and therefore expressed
throughout individuals’ music collections. For example, in
Table 6 Dance-heads are the third most influence-exhibiting
subgroup (r = 0.45), indicating that the feature values of their
main genre were significantly related to those of their other
genres. Similarly, Danceability, a feature strongly associated
with Dance-heads (see Figure 1), also ranks highly in Table 5

(r = 0.48). Given the work of McCown et al. (1997) linking
Dance with neuroticism, it is tempting to conjecture that the
increased feature influence of Dance-heads and Danceability is
in someway related to heightened obsessiveness, a trait strongly
associated with neurotic tendencies (Samuels et al., 2000).
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However, although intriguing, this proposition is beyond the
scope of the present study, and thus awaits further investigation.

Alongside our fledgling personality hypothesis, expounded
above, the work of Berns et al. (2010) and Halko and
Kaustia (2015), discussed briefly in Section 1, is suggestive of
neurophysiological mechanisms underpinning musical-feature
influence. Specifically, we address this issue with reference
to Aniruddh Patel’s research involving music, language, and
statistical learning—the ability of humans and other animals
to acquire implicit knowledge about the world through the
extraction of statistical regularities within their environments
(Friedman et al., 2001; for neurological evidence concerning
statistical learning of language, see Cheour et al., 1998; Rivera-
Gaxiola et al., 2005). In order to account for the finding that
the prosodies of English and French are reflected in the rhythms
and melodies of these countries’ respective instrumental music,
Patel proposes a “direct-route” hypothesis, in which “statistical
learning of the prosodic patterns of speech creates implicit
knowledge of rhythmic and melodic patterns in language, which
can in turn influence the creation of rhythmic and tonal patterns
in music” (Patel et al., 2006, p. 3043). In other words, statistically
acquired sound-pattern knowledge “leaks” from the domain of
language, resulting in the rhythmic and melodic modification
of music. Typically assessed using the Normalized Pairwise
Variability Index (nPVI), a technique that measures the degree of
durational contrast between successive elements in a sequence,
research demonstrating this phenomenon is both robust and
compelling (e.g., Huron and Ollen, 2003; Patel and Daniele, 2003;
Daniele and Patel, 2004).

Patel’s work is highlighted here by way of analogy—the
phenomenon of musical-feature influence is limited to music,
and therefore is not a cross-domain effect. However, statistical
learning may well be pertinent to our findings, and suggests the
existence of a mechanism that is more or less independent of
personality (to our knowledge, no research has linked personality
factors with abilities in statistical learning). Given empirical
evidence of temporal and intervallic relationships between music
and language, and Patel’s assertion that this is underpinned by
statistical learning and hence causal in nature, it is plausible to
suggest that a similar process operates with respect to musical
features. That is, listeners extract the statistical regularities of
musical features, which in turn influence the creation of musical
preferences beyond established style boundaries and/or genre
categories. Statistical regularities of features may be relatively
straightforward, such as Tempo—the speed of the most salient
pulse in the music, usually measured by allowing listeners to tap
along to perceptually noticeable beats (McKinney and Moelants,
2006)—or complex, such as Danceability—an amalgamation of
tempo, rhythm stability, beat strength, and isochrony.

In Table 5, the effect of Tempo on secondary genres was
only marginally significant, whereas Danceability was highly
significant. If statistical learning is at play, this finding suggests
that its effect is bolstered through the presence of multiple,
mutually reinforcing acoustic components, as is the case for
Danceability. Arguably less plausible, however, is the notion
that statistical learning affects X-head subgroups differentially. If
this were the case, the rankings in Table 6 would indicate that

Metal-heads, who are at the top of the table, engage in statistical
learning, whereas Pop-heads, at the bottom, do not. While this
seems unlikely, it might be that Metal is acoustically more regular
than Pop, and therefore facilitates statistical learning to a greater
degree; although, given the high level of signal redundancy in
much Pop music, this hypothesis would seem to be doubtful.

5.1. Limitations
In presenting our findings we have attempted to develop
and adapt a range of approaches, suitable to the data at
hand. And while the premise of the question motivating our
research is supported by a series of cogent results, the adopted
methodologies, as well as the data themselves, are limited in a
variety of ways and raise a number of questions.

First, the algorithms responsible for Spotify’s acoustic features
are proprietary, and therefore not publically available. As a
result, although our primary aim was to investigate and record
the presence of musical-feature influence, we were unable to
assess in detail which specific acoustic elements were responsible
for our findings. Which frequency bands within an X-head’s
main genre, for example, have in general a greater influence
on their other genres? Which components of Acousticness are
present throughout an X-head’s download collection, and which
are specific to their main genre? Moreover, and perhaps of
greater import, as mentioned at the outset, the psychological
reality of acoustic features is, as yet, unquantified (Friberg and
Schoonderwaldt, 2014). Although a feature like Valence may
make sense to those who know and love music’s emotional
power, its interpretation across listeners may be highly divergent.
Valence is frequently characterized with reference to mode, either
major (positive/happy) or minor (negative/sad) (Kastner and
Crowder, 1990). However, those familiar with works such as
Elgar’s “Nimrod” (Enigma Variations, Op. 36), which although in
a major key is deeply poignant, may take a very different view of
this dichotomy.

Second, no attempt has been made to address the issue of
mood, referred to in Section 1. As discussed, in contrast to the
stability of personality, mood is thought to change relatively
rapidly (McFarlane et al., 1988). Our analyses did not take
into account temporal order or download timelines, which may
have revealed day-to-day effects of mood. For example, an
important question might be, do downloads oscillate between
negative and positive Valence, and, if so, is the influence of the
upswing to positive different from the downswing? Although this
question is beyond the scope of the present study, and would no
doubt require very different methodologies to those used here
(e.g., time-series analysis), the Nokia DB does contain detailed
date/time information that would, in theory, enable this matter
to be addressed.

Third, as mentioned in Section 2, our intention was to define
X-heads straightforwardly, i.e., a majority of downloads in a
particular genre. While this simple metric has the advantage of
transparency—X-heads are not cooked up using a complicated,
opaque recipe—the approach will undoubtedly have created a
class of users with overlapping, ill-defined boundaries, which
could have introduced undue noise into the analyses. In this
respect, no attempt was made to separate “Super-heads,” e.g.,
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users in the upper quartile in terms of main-genre proportion,
from “Weak-heads,” e.g., users in the lower quartile. And,
consequently, some users in different X-head subgroups may
have been similar. For example, consider two users, P and Q,
with the following download proportions: P = 55% Jazz, 45%
Classical; Q = 55% Classical, 45% Jazz. Despite P and Q having
a great deal in common, our method would group them as
categorically distinct: P a Jazz-head, Q a Classical-head. The
question then arises as to whether feature influence is more
accentuated in Super-heads vs. Weak-heads (which we would
imagine to be the case), or whether no such effect exists. While
the downside of our simple X-head definition was that this issue
could not be addressed, the upside is that the data within Nokia
DB, with a little preprocessing, affords us the opportunity to
answer this question in detail in the future.

5.2. Closing Remarks
In summary, Analyses 1 and 2 found strong evidence of
influence with respect to users’ consumption of multiple styles
of music; clear relationships emerged between the features
of X-heads’ main and secondary genres. This effect was
found to be stronger for some features than others, most
noticeably Speechiness, Danceability, and Loudness, and more
pronounced in certain subgroups, such as Metal-heads, Jazz-
heads, and Dance-heads. While the reasons for differential
effects within features and X-heads is unknown, two probable,
independent causal mechanisms were suggested to account for
main-to-secondary genre influence. First, personality creates an
overarching psychological framework in which certain factors,
such as openness and agreeableness, guide musical preference,
irrespective of genre; some personality factors may be linked to
specific acoustic features. Second, via statistical learning, listeners
extract the acoustic regularities of variousmusical features, which
in turn influence the creation of musical preferences beyond
favored styles and/or genres. Of course, these mechanisms need
not bemutually exclusive, butmay serve to reinforce one another.
Attempts, therefore, to tease apart the effects of personality and
statistical learning could prove to be difficult, although paradigms
in which these factors are independently manipulated might
settle the issue of personality vs. statistical learning conclusively.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the Research Ethics Board of McMaster
University, Canada. The protocol was approved by the McMaster
Research Ethics Committee.

AUTHOR CONTRIBUTIONS

MB: Study design and execution, data analysis and interpretation,
figure and graph creation, and manuscript review. JB: Study
design and manuscript review. MW: Manuscript drafting, study
design, data analysis and interpretation.

FUNDING

This research is generously supported by a Partnership
Development Grant (#890-2014-0126) from the Social Sciences
and Humanities Research Council of Canada, awarded to MW.

ACKNOWLEDGMENTS

The authors would like to thank the following people
who have supported the research presented in this paper
in a variety of ways: Dora Rosati, Kurt DaCosta, Nick
Rogers, and Mark Hahn of SHARCNET/Compute Canada and
Research & High-Performance Computing Support, McMaster
University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2017.00931/full#supplementary-material

Supplementary Figure 1 | Correlation matrices for all acoustic features

(Acousticness, Danceability, Duration, Energy, Instrumentalness, Liveness,

Loudness, Speechiness, Tempo, Valence), as described in Section 3.1, Figure 3.

Supplementary Figure 2 | Feature-influence matrices for all acoustic features

(Acousticness, Danceability, Duration, Energy, Instrumentalness, Liveness,

Loudness, Speechiness, Tempo, Valence), as described in Section 4.1, Figure 6.

REFERENCES

Bansal, J., and Woolhouse, M. (2015). “Predictive power of personality on

music-genre exclusivity,” in Proceedings of the International Society for Music

Information Retrieval (Málaga), 652–658.

Berns, G. S., Capra, C. M., Moore, S., and Noussair, C. (2010). Neural mechanisms

of the influence of popularity on adolescent ratings of music. Neuroimage 49,

2687–2696. doi: 10.1016/j.neuroimage.2009.10.070

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). “The million

song dataset,” in Proceedings of the International Society for Music Information

Retrieval, Vol. 2 (Miami, FL), 10.

Butt, S., and Phillips, J. G. (2008). Personality and self reported mobile phone use.

Comput. Hum. Behav. 24, 346–360. doi: 10.1016/j.chb.2007.01.019

Cheour,M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., et al. (1998).

Development of language-specific phoneme representations in the infant brain.

Nat. Neurosci. 1, 351–353. doi: 10.1038/1561

Christenson, P. G., and Peterson, J. B. (1988). Genre and gender in

the structure of music preferences. Commun. Res. 15, 282–301.

doi: 10.1177/009365088015003004

Coopersmith, S. (1959). Amethod for determining types of self-esteem. J. Abnorm.

Soc. Psychol. 59:87.

Costa, P. T., and MacCrae, R. R. (1992). Revised NEO Personality Inventory

(NEO PI-R) and NEO Five-Factor Inventory (NEO FFI): Professional Manual.

Psychological Assessment Resources.

Daniele, J. R., and Patel, A. D. (2004). “The interplay of linguistic and historical

influences on musical rhythm in different cultures,” in Proceedings of the

International Conference on Music Perception and Cognition (Evanston, IL),

3–7.

Finn, S. (1997). Origins of media exposure: linking personality traits

to tv, radio, print, and film use. Commun. Res. 24, 507–529.

doi: 10.1177/009365097024005003

Forgas, J. P. (1995). Mood and judgment: the affect infusion model (AIM). Psychol.

Bull. 117:39. doi: 10.1037/0033-2909.117.1.39

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical

Learning, Vol. 1. Berlin: Springer.

Friedman, R. S., Gordis, E., and Förster, J. (2012). Re-exploring the

influence of sad mood on music preference. Media Psychol. 15, 249–266.

doi: 10.1080/15213269.2012.693812

Frontiers in Psychology | www.frontiersin.org July 2017 | Volume 8 | Article 931184

http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00931/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2009.10.070
https://doi.org/10.1016/j.chb.2007.01.019
https://doi.org/10.1038/1561
https://doi.org/10.1177/009365088015003004
https://doi.org/10.1177/009365097024005003
https://doi.org/10.1037/0033-2909.117.1.39
https://doi.org/10.1080/15213269.2012.693812
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Barone et al. Influence of Acoustic Features

Friberg, A., and Schoonderwaldt, E. (2014). Using perceptu- ally defined music

features in music information retrieval. arXiv preprint arXiv, 1–39.

Groff, J. R., and Weinberg, P. N. (2002). SQL: The Complete Reference, Vol. 2.

Osborne: McGraw-Hill.

Halko, M.-L., and Kaustia, M. (2015). Risk on/risk off: risk-taking varies

with subjectively preferred and disliked music. PLoS ONE 10:e0135436.

doi: 10.1371/journal.pone.0135436

Halko, M.-L., Mäkelä, T., Nummenmaa, L., Hlushchuk, Y., and Schürmann,

M. (2015). Hedonic context modulates risky choices and reward responses

in amygdala and dorsal striatum. J. Neurosci. Psychol. Econ. 8:100.

doi: 10.1037/npe0000036

Haugtvedt, C. P., Petty, R. E., and Cacioppo, J. T. (1992). Need for cognition

and advertising: understanding the role of personality variables in consumer

behavior. J. Consum. Psychol. 1, 239–260. doi: 10.1016/S1057-7408(08)80038-1

Hughes, D. J., Rowe,M., Batey, M., and Lee, A. (2012). A tale of two sites: twitter vs.

Facebook and the personality predictors of social media usage. Comput. Hum.

Behav. 28, 561–569. doi: 10.1016/j.chb.2011.11.001

Huron, D., and Ollen, J. (2003). Agogic contrast in French and English themes:

further support for patel and daniele (2003). Music Percept. 21, 267–271.

doi: 10.1525/mp.2003.21.2.267

Jehan, T., and DesRoches, D. (2011). The Echo Nest Analyzer Documentation.

Available online at: https://web.archive.org/web/20150112031755/http://

developer.echonest.com/docs/v4

Kastner, M. P., and Crowder, R. G. (1990). Perception of the major/minor

distinction: IV. Emotional connotations in young children. Music Percept. 8,

189–201. doi: 10.2307/40285496

Kauder, E. (2015). History of Marginal Utility Theory. Princeton, NJ: Princeton

University Press.

Kim, D., and Areni, C. S. (1993). The influence of background music on shopping

behavior: Classical versus top-forty music in a wine store. Adv. Consum. Res.

20, 336–340.

Krause, A. E., and Hargreaves, D. J. (2013). myTunes: digital music

library users and their self-images. Psychol. Music 41, 531–544.

doi: 10.1177/0305735612440612

Lartillot, O., and Toiviainen, P. (2007). “A MATLAB toolbox for musical feature

extraction from audio,” in Proceedings of the International Conference on Digital

Audio Effects (Bordeaux), 237–244.

LeBlanc, A., Jin, Y. C., Stamou, L., and McCrary, J. (1999). “Effect of age, country,

and gender on music listening preferences,” in Bulletin of the Council for

Research inMusic Education, eds J. Geringer, M. Kalmar, O. DeJesus, R.Walker,

G. Welch, and D. Hargreaves (Magaliesberg: University of Illinois Press),

72–76.

LeBlanc, A., Sims, W. L., Siivola, C., and Obert, M. (1996). Music style preferences

of different age listeners. J. Res. Music Educ. 44, 49–59. doi: 10.2307/3345413

Lemburg, M.-A. (2008). Python database API specification v2.0. Python Enhanc.

Propos. 249. Available online at: https://www.python.org/dev/peps/pep-0249/

Leon, G. R., Gillum, B., Gillum, R., and Gouze, M. (1979). Personality stability and

change over a 30-year period—middle age to old age. J. Consult. Clin. Psychol.

47, 517–524.

McCown, W., Keiser, R., Mulhearn, S., and Williamson, D. (1997). The role of

personality and gender in preference for exaggerated bass in music. Pers. Indiv.

Differ. 23, 543–547. doi: 10.1016/S0191-8869(97)00085-8

McFarlane, J., Martin, C. L., and Williams, T. M. (1988). Mood fluctuations.

Psychol. Women Q. 12, 201–223. doi: 10.1111/j.1471-6402.1988.tb00937.x

McKay, C. (2004). Automatic Genre Classification of MIDI Recordings. Ph.D.,

thesis, McGill University.

McKinney, M. F., and Moelants, D. (2006). Ambiguity in tempo perception:

what draws listeners to different metrical levels? Music Percept. 24, 155–166.

doi: 10.1525/mp.2006.24.2.155

Moore, K., and McElroy, J. C. (2012). The influence of personality on

Facebook usage, wall postings, and regret. Comput. Hum. Behav. 28, 267–274.

doi: 10.1016/j.chb.2011.09.009

North, A. C., and Davidson, J. W. (2013). Musical taste, employment, education,

and global region. Scand. J. Psychol. 54, 432–441. doi: 10.1111/sjop.12065

North, A. C., Hargreaves, D. J., and McKendrick, J. (1999). The influence

of in-store music on wine selections. J. Appl. Psychol. 84:271.

doi: 10.1037/0021-9010.84.2.271

Patel, A. D., and Daniele, J. R. (2003). An empirical comparison

of rhythm in language and music. Cognition 87, B35–B45.

doi: 10.1016/S0010-0277(02)00187-7

Patel, A. D., Iversen, J. R., and Rosenberg, J. C. (2006). Comparing the rhythm and

melody of speech and music: the case of British English and French. J. Acoust.

Soc. Am. 119, 3034–3047. doi: 10.1121/1.2179657

Peoples, G. (2015). While Radio Still Reigns, Concerts Are an Important Source

of Music Discovery, Says New Report. Availabe online at: www.billboard.

com/articles/business/6699699/while-radio-still-reigns-concerts-are-an-

important-source-of-music

Peterson, R. A., and Kern, R. M. (1996). Changing highbrow taste: from snob to

omnivore. Am. Sociolo. Rev. 5, 900–907.

Rawlings, D., and Ciancarelli, V. (1997). Music preference and the five-factor

model of the NEO personality inventory. Psychol. Music 25, 120–132.

doi: 10.1177/0305735697252003

Rentfrow, P. J., and Gosling, S. D. (2003). The do re mi’s of everyday life: the

structure and personality correlates of music preferences. J. Pers. Soc. Psychol.

84, 1236–1256. doi: 10.1037/0022-3514.84.6.1236

Rieskamp, J., Busemeyer, J. R., and Mellers, B. A. (2006). Extending the bounds

of rationality: evidence and theories of preferential choice. J. Econ. Liter. 44,

631–661. doi: 10.1257/jel.44.3.631

Rivera-Gaxiola, M., Klarman, L., Garcia-Sierra, A., and Kuhl, P. K. (2005). Neural

patterns to speech and vocabulary growth in american infants.NeuroReport 16,

495–498. doi: 10.1097/00001756-200504040-00015

Roberts, D. F., and Henriksen, L. (1990). Music Listening vs. Television Viewing

among Older Adolescents. Dublin: International Communication Association.

Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., and Orr, R. R.

(2009). Personality and motivations associated with facebook use. Comput.

Hum. Behav. 25, 578–586. doi: 10.1016/j.chb.2008.12.024

Russom, P. (2011).Big Data Analytics. TDWI Best Practices Report. FourthQuarter,

1–35.

Samuels, J., Nestadt, G., Bienvenu, O. J., Costa, P. T., Riddle, M. A.,

Liang, K.-Y., et al. (2000). Personality disorders and normal personality

dimensions in obsessive—compulsive disorder. Br. J. Psychiatry 177, 457–462.

doi: 10.1192/bjp.177.5.457

Schäfer, T., and Sedlmeier, P. (2009). From the functions of music to music

preference. Psychol. Music 37, 279–300. doi: 10.1177/0305735608097247

Västfjäll, D. (2002). Emotion induction through music: a review of

the musical mood induction procedure. Musicae Sci. 5, 173–211.

doi: 10.1177/10298649020050S107

Verplanken, B. (1993). Need for cognition and external information search:

responses to time pressure during decision-making. J. Res. Pers. 27, 238–252.

doi: 10.1006/jrpe.1993.1017

Woolhouse, M., and Bansal, J. (2013). Work, rest and (press) play: music

consumption as an indicator of human economic development. J. Interdiscip.

Music Stud. 7, 45–71. doi: 10.4407/jims.2015.05.003

Woolhouse, M., and Renwick, J. (2016). Generalizing case-based analyses in the

study of global music consumption.Digit. Stud.Available online at: http://www.

digitalstudies.org/ojs/index.php/digital_studies/article/view/312/397

Woolhouse, M., Renwick, J., and Tidhar, D. (2014). Every track you take: analysing

the dynamics of song and genre reception through music downloading. Digit.

Stud. Available online at: http://www.digitalstudies.org/ojs/index.php/digital_

studies/article/view/266/321

Zweigenhaft, R. L. (2008). A do re mi encore: a closer look at the

personality correlates of music preferences. J. Indiv. Differ. 29, 45–55.

doi: 10.1027/1614-0001.29.1.45

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Barone, Bansal and Woolhouse. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org July 2017 | Volume 8 | Article 931185

https://doi.org/10.1371/journal.pone.0135436
https://doi.org/10.1037/npe0000036
https://doi.org/10.1016/S1057-7408(08)
https://doi.org/10.1016/j.chb.2011.11.001
https://doi.org/10.1525/mp.2003.21.2.267
https://web.archive.org/web/20150112031755/http://developer.echonest.com/docs/v4
https://web.archive.org/web/20150112031755/http://developer.echonest.com/docs/v4
https://doi.org/10.2307/40285496
https://doi.org/10.1177/0305735612440612
https://doi.org/10.2307/3345413
https://www.python.org/dev/peps/pep-0249/
https://doi.org/10.1016/S0191-8869(97)00085-8
https://doi.org/10.1111/j.1471-6402.1988.tb00937.x
https://doi.org/10.1525/mp.2006.24.2.155
https://doi.org/10.1016/j.chb.2011.09.009
https://doi.org/10.1111/sjop.12065
https://doi.org/10.1037/0021-9010.84.2.271
https://doi.org/10.1016/S0010-0277(02)00187-7
https://doi.org/10.1121/1.2179657
www.billboard.com/articles/business/6699699/while-radio-still-reigns-concerts-are-an-important-source-of-music
www.billboard.com/articles/business/6699699/while-radio-still-reigns-concerts-are-an-important-source-of-music
www.billboard.com/articles/business/6699699/while-radio-still-reigns-concerts-are-an-important-source-of-music
https://doi.org/10.1177/0305735697252003
https://doi.org/10.1037/0022-3514.84.6.1236
https://doi.org/10.1257/jel.44.3.631
https://doi.org/10.1097/00001756-200504040-00015
https://doi.org/10.1016/j.chb.2008.12.024
https://doi.org/10.1192/bjp.177.5.457
https://doi.org/10.1177/0305735608097247
https://doi.org/10.1177/10298649020050S107
https://doi.org/10.1006/jrpe.1993.1017
https://doi.org/10.4407/jims.2015.05.003
http://www.digitalstudies.org/ojs/index.php/digital_studies/article/view/312/397
http://www.digitalstudies.org/ojs/index.php/digital_studies/article/view/312/397
http://www.digitalstudies.org/ojs/index.php/digital_studies/article/view/266/321
http://www.digitalstudies.org/ojs/index.php/digital_studies/article/view/266/321
https://doi.org/10.1027/1614-0001.29.1.45
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 23 March 2017

doi: 10.3389/fpsyg.2017.00416

Frontiers in Psychology | www.frontiersin.org March 2017 | Volume 8 | Article 416

Edited by:

Geraint A. Wiggins,

Queen Mary University of London, UK

Reviewed by:

Dipanjan Roy,

Allahabad University, India

Lin Guo,

University of Pennsylvania, USA

*Correspondence:

Blair Kaneshiro

blairbo@ccrma.stanford.edu

Specialty section:

This article was submitted to

Cognition,

a section of the journal

Frontiers in Psychology

Received: 24 October 2017

Accepted: 06 March 2017

Published: 23 March 2017

Citation:

Kaneshiro B, Ruan F, Baker CW and

Berger J (2017) Characterizing

Listener Engagement with Popular

Songs Using Large-Scale Music

Discovery Data. Front. Psychol. 8:416.

doi: 10.3389/fpsyg.2017.00416

Characterizing Listener Engagement
with Popular Songs Using
Large-Scale Music Discovery Data

Blair Kaneshiro 1, 2*, Feng Ruan 3, Casey W. Baker 2 and Jonathan Berger 1

1Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, USA, 2 Shazam Entertainment,

Ltd., Redwood City, CA, USA, 3Department of Statistics, Stanford University, Stanford, CA, USA

Music discovery in everyday situations has been facilitated in recent years by audio

content recognition services such as Shazam. The widespread use of such services

has produced a wealth of user data, specifying where and when a global audience takes

action to learnmore about music playing around them. Here, we analyze a large collection

of Shazam queries of popular songs to study the relationship between the timing of

queries and corresponding musical content. Our results reveal that the distribution of

queries varies over the course of a song, and that salient musical events drive an increase

in queries during a song. Furthermore, we find that the distribution of queries at the time

of a song’s release differs from the distribution following a song’s peak and subsequent

decline in popularity, possibly reflecting an evolution of user intent over the “life cycle” of

a song. Finally, we derive insights into the data size needed to achieve consistent query

distributions for individual songs. The combined findings of this study suggest that music

discovery behavior, and other facets of the human experience of music, can be studied

quantitatively using large-scale industrial data.

Keywords: Shazam, popular music, music discovery, multimedia search, music information retrieval, musical

engagement, social media

1. INTRODUCTION

Discovering new music is a popular pastime, and opportunities for music discovery present
themselves throughout everyday life. However, relatively little is known about this behavior
and what drives it. In a recent interview study, Laplante and Downie (2011) found that the
active, deliberate search for music information—whether finding new music or information about
music—is generally considered both useful and intrinsically enjoyable. In an earlier diary study,
however, Cunningham et al. (2007) report that the majority of exposures to new music occur
in passive encounters—that is, when a listener was not actively seeking to discover new music.
Furthermore, while participants in that study reacted positively to over 60% of their encounters
with new music, they also reported that passive music encounters were difficult to act upon in the
moment. Since the publication of that study, the rise of mobile services and ubiquitous internet
now facilitate instantaneous music discovery during everyday life, whether music is actively sought
or passively encountered. Accompanying the widespread use of such services is an unprecedented
volume of user data bearing potential insights into where and when people discover music, as
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well as what music they choose to discover. These data
surpass what can be collected through controlled laboratory
or ethnographic studies in terms of size, scope, and ecological
validity.

In recent years, industrial user data reflecting a variety of
musical behaviors—including but not limited to social sharing,
consumption, and information seeking—have been utilized in
music informatics research. Twitter, being freely available for
aggregation, currently serves as the most common source of
data and has been used to explore a variety of topics including
artist and music similarity (Schedl, 2010; Schedl et al., 2014),
music recommendation (Zangerle et al., 2012; Pichl et al., 2014,
2015), geographical attributes of music consumption (Schedl,
2013; Moore et al., 2014), and hit prediction (Kim et al., 2014;
Zangerle et al., 2016). Music consumption and sharing has
also been approached using Spotify URLs shared via Twitter
(Pichl et al., 2014, 2015) and music download data from the
MixRadio database (Bansal and Woolhouse, 2015). A number of
these studies have contributed or made use of publicly available
research corpuses, including the Million Musical Tweets Dataset,
containing temporal and geographical information linked to
music-related tweets (Hauger et al., 2013); the continually
updated #nowplaying dataset of music-related tweets (Zangerle
et al., 2014); and Gracenote’s GNMID14 dataset, which includes
annotated music identification matches (Summers et al., 2016).

In the present study, we explore large-scale music discovery
behavior using query data from the audio identification service
Shazam1. In particular, we investigate whether the timing of
audio identification queries within a song can be related back
to specific musical events. We aggregate and analyze a large
collection of Shazam query offsets—that moment in a song when
a user initiates a query—over a set ofmassively popular songs.We
first verify that the distribution of query offsets is not uniform
but in fact varies over the course of a song. Next, we show
that the overall shape of a query offset histogram also varies
over the “life cycle” of a hit song, with more queries occurring
toward the start of a song once the song has achieved widespread
popularity. We then demonstrate that salient musical events—
such as the start of a song, onset of vocals, and start of first
chorus—are followed by a rise in query activity. We conclude
with an assessment of histogram consistency as a function of
data size in order to determine what constitutes a sufficient
data size for this type of analysis. The findings from this study
provide first insights into the types of musical events that
engage listeners at a large scale, compelling them to take action
to obtain more information about a piece of music. To our
knowledge, this is the first time that engagement with specific
musical events has been studied with an ecologically valid, large-
scale dataset. Findings from this study will advance knowledge
of consumption of popular music, information seeking about
music, and—more broadly—how and when a large audience
chooses to engage with music in their environment. Finally,
to promote further research on music discovery, the dataset of
over 188 million Shazam queries analyzed in this study is made
publicly available.

1http://www.shazam.com.

2. MATERIALS AND METHODS

2.1. Audio Content Recognition with
Shazam
Shazam is a service that returns the identity of a prerecorded
audio excerpt—usually a song—in response to a user
query. Over 20 million Shazam queries are performed each
day by more than 100 million monthly users worldwide;
incoming queries are matched over a deduplicated catalog
comprising over 30 million audio tracks. Shazam’s audio
recognition algorithm is based on fast combinatorial hashing
of spectrogram peaks, and was developed with real-world
use cases in mind. As a result, Shazam’s performance is
robust to noise and distortion; provides fast performance
over a large database of music; and offers a high recognition
(true-positive) rate with a low false-positive rate (Wang,
2003).

Shazam queries typically involve a single button press once the
application is loaded. For queries initiated from mobile devices,2

the user loads the Shazam application and pushes a prominently
displayed Shazam icon on the main screen (Figure 1, left).
The ambient acoustical signal is recorded through the device

microphone, converted to an audio fingerprint, and matched.
If the query is matched successfully, the match result is then
displayed on the device screen. In the most common use case
of song identification, the application will return a variety of
metadata (Figure 1, right) including song title and artist; total
number of Shazam queries for the track identifier (“trackid”)
corresponding to the match; and options for sharing the query
result (e.g., through social media or text message). Oftentimes
the query result will also include links to third-party services
to purchase or stream the song; links to watch the song’s
music video on YouTube; an option to view song lyrics;
and music recommendations. The Shazam icon is displayed
somewhere onscreen at all times; thus, users can easily initiate
new queries without having to return to the home screen of
the application. Selected platforms also offer an “Auto Shazam”
feature, which prompts the application to listen and attempt
audio matches continuously in the background. Users can
additionally retrieve track results through text searches (Figure 1,
center).

The audio matches, metadata, and other features listed
above represent data returned to users. Each query additionally
generates a collection of data stored internally to Shazam,
including date and time of the query; location information if
the user has agreed to share it; the returned track and other
candidate tracks that were not returned; metadata associated
with the returned track; device platform (e.g., iOS, Android);
language used on the device; installation id of the application;
and the length of time the query took to perform. Importantly,
Shazam also stores the query “offset,” which is the time stamp
of the initiation of the query relative to the start of the returned
track. In other words, the offset tells us when in a song the user
performed the query. The present analysis utilizes query offsets
and dates.

2Shazam also has a desktop application for Mac.

Frontiers in Psychology | www.frontiersin.org March 2017 | Volume 8 | Article 416187

http://www.shazam.com
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Kaneshiro et al. Large-Scale Music Discovery

FIGURE 1 | Shazam application screenshots. Shazam audio queries are typically initiated from a mobile device. (Left) Upon loading the application, the Shazam
icon is prominently displayed on the main screen. (Center) Queries can also be initiated through a text search. (Right) A successful audio query or selection from text
query results returns the track page for the song of interest. Information returned to the user on the track page includes basic metadata about the song, as well as
related media including the music video and lyrics when available. The Shazam logo is ubiquitously displayed as users navigate the application; thus, new queries can
be initiated at any time. Image used with permission.

2.2. Dataset
2.2.1. Song Set
As this study is a first quantitative analysis of Shazam query
offsets, we chose to limit the number of songs used for analysis,
but to select songs that would each offer an abundance of
Shazam queries while also reflecting a widespread listening
audience. For these reasons, we chose as our song set the
top 20 songs from the Billboard Year End Hot 100 chart
for 2015, which lists the most popular songs across genres
for the entire year, as determined by radio impressions, sales,
and streaming activity3. An additional advantage of selecting
songs from this particular chart is that the Billboard Hot 100
chart is released weekly; therefore, our analyses can probe
music discovery behavior at specific stages of song popularity.
Billboard charts in general are considered a standard industry
measure of song popularity, and weekly Billboard Hot 100
charts in particular have been used as a benchmark of song
popularity in a number of previous studies (Kim et al., 2014;
Nunes and Ordanini, 2014; Nunes et al., 2015; Zangerle et al.,
2016).

The set of songs is summarized in Table 1. The 15th-ranked
song on the Billboard chart (“Bad Blood” by Taylor Swift

3http://www.billboard.com/charts/year-end/2015/hot-100-songs.

Feat. Kendrick Lamar) was excluded from analysis due to a
known problem with the query data. We therefore include the
21st-ranked song in the set in order to have a set totaling
20 songs.

2.2.1.1. Song metadata
As the selected set of songs all achieved widespread popularity,
it was possible to aggregate additional information about the
songs from a variety of public sources. We obtained release
dates from each song’s Wikipedia page. Peak Billboard chart
dates were obtained from the Billboard Hot 100 weekly
charts and verified against Wikipedia when possible. For songs
that held their peak chart position for multiple weeks, we
used the date of the first week that the peak position was
reached.

To identify the most “correct” version of the audio for each
song, we followed the Amazon purchase link, when it was
available, from the Shazam track page corresponding to the
primary trackid of the song. If the Amazon link was missing
or led to a clearly incorrect destination, we located the song
on Amazon manually or through an alternate Shazam trackid.
We purchased digital versions of all tracks from their resolved
Amazon destinations, and then verified the song lengths against
primary Spotify results when possible.
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TABLE 1 | Song and dataset information.

Rank Title Artist Length (s) Shazam query offsets

% usable # usable

1 Uptown Funk! Mark Ronson Feat. Bruno Mars 270 98.57 13,855,245

2 Thinking Out Loud Ed Sheeran 282 98.97 17,142,656

3 See You Again Wiz Khalifa Feat. Charlie Puth 230 98.73 12,522,399

4 Trap Queen Fetty Wap 223 98.77 6,072,939

5 Sugar Maroon 5 236 98.92 5,811,731

6 Shut Up and Dance Walk the Moon 200 98.47 5,034,637

7 Blank Space Taylor Swift 232 98.11 6,764,128

8 Watch Me Silento 186 96.99 4,463,863

9 Earned It (Fifty Shades of Grey) The Weeknd 252 98.66 7,514,440

10 The Hills The Weeknd 243 99.08 8,657,473

11 Cheerleader (Felix Jaehn Remix) OMI 182 96.84 17,933,224

12 Can’t Feel My Face The Weeknd 214 99.34 8,675,375

13 Love Me Like You Do Ellie Goulding 251 99.56 9,925,090

14 Take Me to Church Hozier 242 98.82 15,854,482

16 Lean On Major Lazer & DJ Snake Feat. M0 177 99.10 19,974,795

17 Want to Want Me Jason Derulo 208 98.89 9,885,505

18 Shake It Off Taylor Swift 220 95.90 3,162,707

19 Where Are Ü Now Skrillex & Diplo with Justin Bieber 251 99.44 7,639,899

20 Fight Song Rachel Platten 205 99.23 4,359,870

21 679 Fetty Wap Feat. Remy Boyz 197 98.71 3,020,785

TOTAL 188,271,243

Shazam queries corresponding to 20 top-ranked songs from the Billboard Year End Hot 100 chart for 2015 were analyzed in the study. Song lengths are rounded up to the nearest

second. The percent usable and number of usable queries reflect the cleaned datasets. Song 15 is omitted from analysis.

2.2.1.2. Coding of salient musical events
Portions of our analysis focus on the onset of vocals and
onset of the first occurrence of the chorus. While the songs
analyzed here broadly represent “popular music,” assigning
conventional pop-song labels, such as verses and choruses, to the
structural elements of the songs proved somewhat challenging
and subjective. Therefore, for an objective identification of
chorus elements within each song, we used lyrics from the Genius
website,4 which are both fully licensed5 and annotated with
structural song-part labels such as “Verse” and “Chorus.” For the
first onset of vocals, we used the audio timing linked to the first
occurrence of labeled (e.g., “Verse” or “Bridge”) content in the
lyrics, ignoring “Intro” content. For the first occurrence of the
chorus, we identified the timing of the audio corresponding to the
first instance of “Chorus” or “Hook” material in the lyrics. These
times are not necessarily disjoint for a given song—e.g., the first
entrance of vocals could be an instance of the chorus.

Additional metadata for the song set, including Shazam and
Amazon track identifiers, release and peak Billboard dates, and
onset times of vocals and choruses, are included in the Table S1.

2.2.2. Shazam Data Aggregation and Preprocessing
For the selected songs, we aggregated worldwide Shazam query
dates and offsets from the Shazam database over the date

4http://genius.com.
5http://genius.com/static/licensing.

range January 1, 2014 through May 31, 2016, inclusive. All
but one song were released after January 1, 2014, and songs
peaked on Billboard between September 6, 2014 and October 31,
2015. Therefore, we consider this date range representative of
a song’s journey through the Billboard charts. Aggregated data
include audio queries only—no text queries—and do not include
Auto Shazam queries or queries performed through the desktop
application.

Offset values are given in seconds with sub-millisecond
precision. Dates are resolved by day, based on GMT timestamps.
To clean the data, we removed incomplete queries (missing date
or offset values) as well as queries with offsets less than or equal
to zero, or greater than the length of the corresponding audio
recording. We did not exclude queries whose date preceded the
release date, as listed release dates for songs as singles could
come after the release date for an album on which the song was
included.

The number of usable queries per song ranged from 3,020,785
to 19,974,795, with a median value of 8,148,686 queries. Between
95.90 and 99.56% of the original number of queries for each song
were usable after data cleaning. In total, the dataset comprises
188,271,243 queries across the 20 songs. The cleaned datasets are
publicly available for download in .csv format from the Stanford
Digital Repository (Shazam Entertainment, Ltd., 2016)6.

6http://purl.stanford.edu/fj396zz8014.
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2.3. Analysis
All data preprocessing and analyses were performed using R
software, version 3.2.2 (R Core Team, 2015).

2.3.1. Tests of Uniformity
As the present study rests on the assumption that volumes
of Shazam queries are higher at some points of a song than
others, our first analysis was to determine whether the volume
of query offsets for a given song indeed varies over time. To
address this first question, we performed two-sided Kolmogorov-
Smirnov tests (Conover, 1971) on the distributions of offsets for
each song, comparing each distribution of offsets to a uniform
distribution over the interval [0, songLength]. Under the null
hypothesis of uniformly distributed query offsets, Shazam queries
would be equally likely to occur at any point during a song,
precluding further exploration of musical events that drive peaks
in the query offset histograms. Due to the possibility of ties with
our present data size, we added a small perturbation to each
offset (uniformly distributed random variables over the interval
[−0.000005, 0.000005]) before performing the tests.

2.3.2. Assessing Changes in Histogram Shape
Our second question concerned changes in histogram shape over
time. Anecdotal analyses of Shazam query offsets have suggested
that once a song becomes popular, the distribution of query
offsets shifts closer to the beginning of the song.

To approach this problem quantitatively required both a
temporal metric of song popularity and a definition for what
portion of a song constitutes its “beginning.” To address the
first point, we selected three points of interest in the life cycle
of each song: The song’s release date; the date of its peak on
the Billboard Hot 100 chart; and the end dates of the dataset.
Ranges of time between these three events varied by song. Songs
peaked on Billboard between 19 and 463 days after release, with
a median release-to-peak delay of 127 days. The time range
between peaking on Billboard and the last date in the dataset
ranged from 213 to 633 days, with a median value of 374 days.
Dates and latencies between dates are reported in Table S1.

For the second point, instead of choosing an arbitrary,
fixed duration (e.g., 30 s) to denote the beginning of each
song, we devised an analysis that would compare distributions
over all possible beginning durations db using the following
procedure. For each song, we first extracted the first 100,000
queries following release and peak Billboard dates, and the final
100,000 queries, by date, in the dataset. Following that, for db
increasing from 1 to the length of the song in seconds, we
performed Chi-squared tests of proportions on Billboard peak
date vs. release date, end of dataset vs. release date, and end
of dataset vs. Billboard peak date. Because we were specifically
interested in assessing whether queries migrated toward the
beginning of the song for the later set of queries, we performed
one-sided tests with the alternative hypothesis being that the
proportion of queries less than db was greater for the set of
queries corresponding to the later time point.

Due to data size, the p-values resulting from these tests
were generally so small as to be uninformative. Therefore,
we focus on percentile Chi-squared statistics over increasing

db for each song, and report these results across songs. This
analysis comprises a total of 13,503 multiple comparisons
(three comparisons per time point per song times 4,501
total time points across all songs). Therefore, as we do not
correct here for multiple comparisons, we use a conservative
significance threshold of p < 10−10, keeping us well under
the statistical significance threshold of α = 0.01, had
a Bonferroni correction been performed (Bonferroni, 1936;
McDonald, 2014).

2.3.3. Computing Histogram Slopes at Salient

Musical Events
For our third analysis, we wished to test the hypothesis that
salient musical events drive a subsequent increase in query
volume. For the present analysis we chose three salient structural
events that were present in every song: Beginning of song, initial
onset of vocals, and initial onset of chorus/hook section.

We devised an exploratory analysis of the query offset volume
around these musical events by focusing on offset histogram
slopes following these events. As our previous analysis revealed
a leftward shift in offset distributions for later dates, we used
only the first 1,000,000 queries for each song (by date) for
this computation. We first used local polynomial regression

(Fan and Gijbels, 1996) to estimate histogram slopes over
time for each song, with a temporal resolution of 1 s. We
then converted each song’s estimated histogram slopes to slope
percentiles in order to bring the data to a more common
scale across songs. As the timing of onset of vocals and
chorus can vary from song to song, we extracted 15-s analysis
windows starting from the onset of each event, and then for
each event type (beginning, vocals, chorus) we aggregated the
windows across songs so that the 15-s intervals were now
aligned according to the onsets of the musical event of interest—
similar to the approach taken by Tsai et al. (2014) in analyzing
physiological responses at chorus onsets across a set of popular
songs.

For each of the musical events of interest, we report the
median of histogram slope percentiles over time across the songs,
along with first and third quartiles. For reference, we also report
results from the same analysis, using randomly selected window
start times for each song.

2.3.4. Data Size and Histogram Consistency
Our final analysis examined the relationship between data size
and histogram consistency. One reason for selecting massively
popular songs was to have millions of queries to work with for
each. But do the underlying distributions of the data require such
large collections of queries, or is a smaller sample size sufficient?

To investigate this matter further, we assessed consistency
of query offset distributions, computing histogram distance
between disjoint data subsets of varying sample size for
individual songs. For songs whose data comprised more
than 8 million queries, we drew a random subsample of
8 million queries for the following analysis. On a per-song
basis we randomly partitioned the collection of queries into
two halves. For an increasing number of trials ni from 1
to nTotalTrials/2, we normalized the cumulative histograms
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of the two halves into discrete probability densities (each
summing to 1), and then used the total variation distance
(Levin et al., 2009) to measure the distance between these
two probability distributions. This partitioning procedure was
repeated over 100 randomization iterations for each song. We
then computed the mean output across randomization iterations
for each song. We report the median, across songs, of these
results.

3. RESULTS

3.1. Distributions of Query Offsets Are Not
Uniform
For our first analysis, we assessed whether query offsets
for a given song are uniformly distributed over time
(implying no relationship between musical events and
number of queries), or whether the volume of queries
varies over the course of a song. Scale-free plots of the
offset histograms are shown in Figure 2. By visual inspection,
the histograms do not reflect uniform distributions of query
offsets. Additionally, the timing, height, and shape of the
histogram peaks vary from song to song. Results of the
Kolmogorov-Smirnov tests of uniformity provide a quantitative
validation of our observations, rejecting the null hypothesis
with p < 10−15 for all songs (no correction for multiple
comparisons).

3.2. Shapes of Offset Histograms Change
over Time
Our second question was whether the distribution of query
offsets shifts toward the beginning of a song as the song moves
through its hit life cycle—that is, whether users tend to perform
the Shazam query earlier in a song once the song has attained,
or dropped from, popularity. Query offset histograms around
release date, peak Billboard date, and end of the dataset are shown
for the first four songs in our song set in Figure 3 (plots for
remaining songs are included in Figures S1–S4). Each subplot
comprises 100,000 queries. The shift in the histogram toward
the beginning of the song (left side of each plot) is evident
for each of these songs, especially for the “End” subset of the
dataset.

As amore quantitative assessment, we performed Chi-squared
tests of proportions on sets of queries drawn from the time
of song release, peak Billboard date, and final dates of the
dataset. Chi-squared tests of proportions were performed over a
beginning window of increasing duration to assess the size of the
statistic when comparing pairs of life-cycle samples. Results are
shown in Figure 4. In the top row of plots, percentile Chi-squared
statistics (y-axis) as a function of beginning window length in
seconds (x-axis) are plotted, with the median across songs shown
in black, and first and third quartile of individual songs shown
in gray. Median Chi-squared statistic percentiles are notably high
at the beginnings of songs for end date vs. peak Billboard date
(peaking at 13 s), and end date vs. release date (peaking at 19 s).
This indicates that across songs, tests of proportions as to whether
the later set of queries was distributed closer to the start of a

given song returned consistently high Chi-squared statistics for
the beginning portions of the songs.

More detail on individual songs is given in the bottom plots
of Figure 4, which specifies the beginning window lengths that
produced statistically significant Chi-squared statistics. Here, we
see that nine of the songs in the set exhibited a constant migration
of queries toward the start of the song from release date to
peak Billboard date, and all 20 songs exhibited this shift when
comparing queries from the peak Billboard date to those from
the final dates in the dataset (recall that Song 15 was omitted
from analysis). Comparing release date to end date, all but one
song (Song 10) exhibit a leftward histogram shift when the first
30 s of the histogram are analyzed. Taken together, these results
suggest that users do tend to perform queries earlier in a song for
dates toward the end of the dataset, compared to dates around
the song’s release or peak on the Billboard Hot 100 chart.

3.3. Salient Musical Events Drive Increase
in Queries
Our third analysis examined whether three salient musical
events—the start of a song, the first onset of vocals, and
the onset of the first chorus—would drive an increase in
queries. This is a first step toward relating the histogram
peaks, evident in Figure 2, to structurally salient musical
events, and toward generalizing music discovery behavior across
the songs, which vary in their timing and arrangement of
shared musical events. The results of the histogram slope
analysis by song part, summarized across songs, is shown in
Figure 5. Each plot represents a 15-s window time-locked to
the beginning, first onset of vocals, onset of first chorus, and
random time point, respectively, across songs. Therefore, the
x-axis of each plot is time, and the y-axis is percentile of
histogram slope. The three structurally salient time points are
all followed by notably high histogram slopes, representing
an increase in query volume over time. As shown by the
median measure across songs (black line), this behavior does
generalize across the song set. The shaded quartile area suggests
that this behavior is more consistent for onset of vocals
than onset of chorus. In comparison, histogram slopes from
randomly selected 15-s windows, shown in the bottom plot,
do not reach the percentile levels of the musically salient
conditions.

3.4. Sample Size for Consistent Query
Offset Distributions
Our final question concerns the necessary data size to reach a
“consistent” distribution of offsets. Figure 6 shows histograms
of random subsamples of varying amounts for four of the songs
in our set (subsampled histograms for the remaining songs can
be found in Figures S5–S8). As can be appreciated by visual
inspection of the plots, main peaks in offset distributions are
fairly well separated from noise with as few as 1,000 queries.
Based on observation, we consider a sample of 20,000 adequate
to represent the general shape of the overall distribution, with
finely temporally resolved peaks emerging when 50,000 queries
are used.
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FIGURE 2 | Shazam query offset histograms. Histograms are computed from the query offsets of the 20 hit songs analyzed in the study (summarized in Table 1).
Each histogram presents the density of Shazam queries (y-axis) over time (x-axis) for a given song. Histograms are scaled to maximum density and song duration on a
per-song basis. The number of queries per song ranges from 3,020,785 (Song 21) to 19,974,795 (Song 16), with a median of 8,148,686 queries per song.

The median total variation distance between randomly
sampled disjoint subsets as a function of subsample size across
the song set is shown in Figure 7. As shown in the left
panel (Figure 7), the trajectory of these results is consistent
across songs. The distance between distributions of two disjoint
subsamples for a given song decreases rapidly as a function

of sample size, leveling off well below 500,000 queries. While
there exists no standard metric of “good” total variation
distance, we identify the median subsample size necessary to
achieve total variation distance of 0.1 and 0.05 (Figure 7, right
panel). A median subsample size of 26,000 queries is required
to achieve total variation distance of 0.1—somewhat in line
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FIGURE 3 | Example histograms throughout hit song life cycle. Subsampled query distributions at the time of song release, date of peak position on Billboard,
and end of the dataset for four songs. The distribution of query offsets for the end dates in particular exhibit a pronounced shift toward the beginning of each song.

with our observations of the histograms in Figure 6—while
104,000 queries correspond to a median total variation distance
of 0.05.

4. DISCUSSION

In this study, we investigated music discovery behavior on a large
scale by analyzing the timing of Shazam queries during popular
songs. Using a dataset of over 188 million queries of 20 hit songs,
our findings suggest a relationship between musical events and
the timing of Shazam queries. We show that query offsets are not
uniformly distributed throughout a song, but rather vary over
the course of a song, and may thus be driven in particular by
salient musical and structural elements of the song. Furthermore,
the shapes of the offset histograms themselves change over the
course of the hit song life cycle, showing that the musical content
that compels listeners to query a song changes as a function of
song popularity or listener exposure to a song. A closer analysis
of salient song parts reveals that the onset of vocals and the
first occurrence of the chorus in particular drive an increase in
queries. Finally, having ample data, we assessed the consistency of
the data as a function of data size, and propose that Shazam query
offsets for the present song set reach consistent distributions with
around 26,000 queries.

Shazam’s user data offer several advantages for the study of
music discovery. First and foremost is the scale and scope of

the data, representing a massive global user base that performs
millions of queries each day. Also, while the current study focused
on only a small set of songs, Shazam’s music catalog contains
over 30 million deduplicated tracks. Thus, in terms of both size
and demographic diversity of the experimental sample (users), as
well as number of stimuli (song catalog), Shazam data capture
music discovery at a scale not attainable in controlled studies.
The dataset analyzed here is comparable in size to other recently
released industrial datasets for music research. For example,
the #nowplaying dataset currently exceeds 56 million tweets
(Zangerle et al., 2014), while Gracenote’s GNMID14 dataset
exceeds 100 million music identification matches (Summers
et al., 2016). Shazam data are also ubiquitous, meaning that they
reflect music discovery in a variety of contexts throughout daily
life. As a result, the user data reflect a wide range of music
discovery scenarios. Third, Shazam data possess an ecological
validity lacking in controlled laboratory studies, as users engage
the application in real-world information-seeking scenarios, and
were not asked to adopt this behavior as part of a study.
Finally, what uniquely differentiates Shazam’s data from most
other data—including other large-scale social media data—is its
objectivity. By this, we mean that under the assumed primary
use case of learning the identity of a musical excerpt, Shazam
queries are motivated by interest in some aspect of the musical
content, even while the queried excerpt may be unknown to the
user. Therefore, interest inmusical contentmay be reflectedmore
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FIGURE 4 | Changes in histogram shape during the hit song life cycle. We performed Chi-squared tests of proportions to assess whether distributions of query
offsets migrate toward the beginning of the song as a song achieves popularity. One-sided tests compared each later-vs.-earlier pair of subsamples using a beginning
window of increasing duration. (Top) Median percentile Chi-squared statistics, across songs, with first and third quartiles, for each pairwise test over beginning
windows of increasing length. We converted statistics to percentiles on a per-song basis to impose a common scale across songs. For peak Billboard vs. end date
and release date vs. end date, window lengths of around 50 s or less produce notably high Chi-squared statistics, demonstrating that query offsets for the latest dates
are more concentrated at the beginnings of songs. (Bottom) Raster plot of beginning window lengths producing p < 10−10 in the tests of proportions for individual
songs (no correction for multiple comparisons).

directly in Shazam queries than in other formats such as tweets,
where the content of a posted tweet (and decision whether to
post it) has been mediated by the user, reflecting a confluence
of musical taste and the user’s conscious awareness of how the
posted content aligns with his or her expressed identity (Lonsdale
and North, 2011; Rentfrow, 2012).

4.1. Musical Correlates of Shazam Queries
4.1.1. Query Volume Varies Throughout a Song
In our first analysis, we tested the uniformity of the offset
histograms. Visual inspection of the offset histograms of our
song set (Figure 2) and results of statistical tests indicate that
the query offset distributions are not uniform, and that queries
are more likely to occur at some points during the songs
than others. In this way, Shazam query offset histograms may
facilitate the “locate” research proposed by Honing (2010), in that
they reveal points in a song that a number of listeners found
engaging.

The timing and heights of histogram peaks vary from song
to song. We surmised that this was a reflection of the variation
in song structure (e.g., arrangement of choruses, verses, and
other elements) across the song set, but that the peaks might
reflect structurally salient events that occur across the songs.
By analyzing regions of the histograms time-locked to such
events, we were able to show that the initial onset of vocals

and occurrence of the first chorus drive increases in query
volume—represented by high percentiles of histogram slopes—in
a consistent fashion across songs.

In relating offset histogram peaks to musical events, it is
important to keep in mind that users are assumed to successfully
query a given broadcast of a song only once. This is reflected
to some extent in the overall downward trend in query volume
over the duration of a song. Musical content driving Shazam
queries may be better characterized, then, as the first content
in a song that compelled a user to take action and perform the
query. Therefore, this content was presumably more engaging
than content that came before, but not necessarily more engaging
than content that comes after—the user just would not need
to query the song a second time, as he had already received
the benefit of the query result. Under this reasoning, songs
for which the highest histogram peak is not the first peak (for
example, Song 14, Song 19, and Song 20) may be of particular
interest, as these represent a break from the conventional
histogram shape, and may highlight especially engaging musical
material occurring later in the song. Furthermore, as shown
in Figure 8, histogram peak heights can vary even across
occurrences of the same song part (here, most notably for
the second verse compared to the first), which may reflect
changes in texture, instrumentation, or other musical content.
Finally, our present analysis used histogram slopes as indicators
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FIGURE 5 | Slopes of histograms after salient musical events. Median
(black) with first and third quartiles (gray) of histogram slopes across songs are
plotted, time-locked to specific musical events. Histogram slopes for each
song were converted to percentiles prior to plotting. Histogram slopes
increase following the start of the song (top plot), the first onset of vocals in
the song (second plot), and the onset of the first chorus (third plot). In
particular, histogram slopes are consistently high across songs around 9 s
after the first onset of vocals and first onset of the chorus. (Bottom plot)

When randomly selected time points, rather than salient musical events, are
considered, the median histogram slope across songs over time peaks around
the 50th percentile.

of upcoming histogram peaks; future analyses could utilize
other histogram features, such as the density or timing of the
peaks themselves, or the local minima interspersed between the
peaks.

4.1.2. Inferring Intent-to-Query Time
A Shazam query typically does not occur at the exact moment
the user was compelled to perform the query. In many cases,
the user must retrieve his or her mobile device, unlock it,
and load the Shazam application before the query can be
performed. Therefore, there exists in the offset data an unknown
latency between intent-to-query and query time, which can
range from 0 to 10 s or more. We did not attempt to estimate
or correct for this latency in our present analyses. However,
the histogram slopes following salient musical events may

provide some insight into the duration of this delay. If our
musical events of interest in fact drive increased queries, we
might interpret the time point after such events, at which
histogram slopes are consistently high across songs, as an
estimate of the mean latency between onset of the song part
and initiation of the query. Based on the present results
(shown in Figure 5), histogram slopes become consistently
high around 9 s after the onset of vocals or the first
chorus.

We find that peaks and troughs of an offset histogram
are better aligned with structural segmentation boundaries
of the song when the histogram is shifted to account for
an estimated latency. For example, Figure 8 shows the
offset histogram for Song 10, with structural segmentation
boundaries visualized in the background. When all
offsets are shifted back by 6 s as shown in the figure,
the resulting histogram aligns well with the structural
segmentation boundaries. Visualizing the other songs in
a similar fashion reveals some variation in adjustments
required to optimally align histograms with song part
boundaries.

Even so, the assumption that histogram slope percentiles or
minima convey the intent-to-action delay remains speculative
at this stage. Furthermore, the histogram slopes over our time
window of interest vary from song to song, as does the optimal
time shifting of histograms to align local minima with song-
part boundaries. Therefore, additional research—perhaps in
a controlled experimental setting—will be required to better
characterize this delay, and to determine whether our current
proposed approaches for inferring it are appropriate.

4.1.3. Impact of Hit Song Life Cycle
As shown in our second analysis, the shapes of offset histograms
change over the life cycle of the hit songs in our song set.
As a song attained and receded from its peak position on
the Billboard chart, queries tended to occur closer to the start
of the song. Therefore, even though the underlying musical
content was unchanged, users tended to query the audio earlier
once a song became successful. As we will later discuss, the
intent of the query may have changed, e.g., users querying later
in the life cycle may have been doing so for reasons other
than to learn the identity of the song. However, it may also
be that repeated exposures to such popular songs, which—
even while the identity of the song may remain unknown—
enhance familiarity, processing fluency, and even preference
(Nunes et al., 2015), could compel the user to query the
song earlier than he would have done prior to so many
exposures. Therefore, it would be interesting to repeat this
analysis with songs that never achieved ubiquitous broadcast
and widespread popularity, in order to assess in finer detail the
impact of popularity and exposure on changes in music discovery
behavior.

In interpreting the changes in histogram shape over a song’s
life cycle, we note that the earliest and latest subsets of data
(release date and end date) are always disjoint, but that repeated
observations may exist with either of these subsets and the
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FIGURE 6 | Example subsampled histograms. Histograms (density plots) of various quantities of random subsamples for four of the songs. Histograms are scaled
to common density and time axes on a per-song basis. The most prominent peaks of the full-sample histogram emerge with as few as 1,000 queries, and are visually
similar by 20,000 queries. The finer details of the full-distribution histograms are discernible with subsamples of 50,000 queries.

Billboard peak date subset—for example, if a song peaked on
Billboard soon after its release.

4.1.4. Disentangling Discovery and Preference
Under the premise that Shazam queries are primarily searches for
identities of unknown songs, it would be erroneous to equate a
user’s Shazam history with his or hermost-lovedmusic. However,
if we may assume that users query songs because they are in
some way attracted to, or at least aroused by, the songs’ musical
content, we may conclude that musical attributes of a user’s
queried songs reflect, to some extent, the musical preferences

of that user. In other words, a queried song’s musical content,
especially around the query offset, may contain features that
compel the user to take action and want to know more. In
this sense, one’s discovered music, more so than freely chosen
songs, may be more widely representative of musical preferences,
as it encompasses music (and musical features) beyond the
scope of what a user could have articulated in advance that he
wanted to hear—and possibly across a broader range of musical
genres. And, given that known recommended tracks have been
shown to be received more positively by listeners than unknown
recommendations (Mesnage et al., 2011), music discovery data
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FIGURE 7 | Histogram consistency as a function of data size. (Left)

Median of per-song total variation distance computed across the songs, as a
function of subsample size in each of the two distributions being compared.
Results of individual songs (colored curves) lie close to the median. Total
variation distance shows a sharp drop for subsample sizes up to around
200,000 observations followed by a gradual decrease to a subsample size of
1.5 million. (Right) The median subsample size corresponding to a total
variation distance of 0.1 is 26,000 observations. Median total variation
distance of 0.05 is attained with a subsample size of 104,000 queries.

FIGURE 8 | Song 10 query offset histogram annotated with song parts.

The query offset histogram (density plot) of Song 10 is plotted with structural
segmentation annotations. The entire distribution has been shifted back in
time by 6 s to demonstrate better alignment of the histogram shape with
structural segmentation boundaries once an estimated intent-to-action query
latency is considered. Prominent peaks in the histogram are now seen to
correspond to specific song parts.

may be especially valuable in deepening our understanding of
positive reception of new music, since it largely reflects music
that was both unknown to, and positively received by, the
user.

4.1.5. Inferring User Intent
While the typical Shazam use case is assumed to be the
identification of an unknown audio excerpt, this is by no
means the only use case of the service. Other use cases include
querying a song in order to access other features of the query
result, including the music video, lyrics, artist information;
to purchase the song or add it to a third-party playlist; to
establish a static access point for the song; to share the song
via messaging or social media services; or to demonstrate or
test the performance of the application. The shift in query
offsets toward the beginning of songs that have peaked in
popularity could thus reflect a change in user intent, whereby

fewer users are using Shazam to learn the identity of the
song at that point, and are instead reflecting an alternative use
case.

In fact, in the realm of web searches, informational need
is known to account for <50% of queries, with navigational
(attempting to reach a specific site) and transactional (reaching
a site where further interactions will take place) thought to
account for the remainder of use cases (Broder, 2002). This
framework of query intent has more recently been extended
to the case of multimedia search, for example text queries for
videos (Hanjalic et al., 2012). The Shazam use cases mentioned
thus far could arguably be categorized as informational (e.g.,
learn song identity, information about a song) or transactional
(e.g., add song to Spotify playlist). However, user intent is not
always communicated clearly in a query, and in fact may not
even be clear to the user as the query is being performed
(Kofler et al., 2016). In the case of Shazam, audio queries are
invariant—all initiated by a button press—and therefore provide
no insight into user intent. However, it could be possible to
infer intent through other factors, such as day or time of query,
geography, song popularity, or previous users’ interactions with
the query result, and to adjust the content of the query result
accordingly.

4.2. Considerations
While the dataset used in the present study provides several
advantages for studying music discovery on a large scale,
there exist several unknown contextual factors underlying
the queries. First, as our analysis takes into account only
query offset and date, we gain no insights from the time or
location of the queries. Furthermore, from the present data
we do not know how the user reacted to the query result, or
whether the query reflects positive reception of the musical
content.

In addition, Shazam’s utility varies according to the music
listening setting. Streaming services and personal playlists
provide ubiquitous metadata, which can be accessed with
often greater ease than performing a Shazam query. Therefore,
Shazam is likely used primarily to identify unknown songs in
settings where the user does not otherwise have easy access
to song metadata. This could include radio listening as well
as public settings in which the user does not control music
play (e.g., club, retail, or restaurant). While streaming and
playlist listening scenarios typically involve “zero-play” music
consumption—that is, the song is likely heard from its start
(Frank, 2009)—in radio and other Shazam-worthy settings, we
cannot assume the user was exposed to the song from its onset,
which could affect the interpretation of some of the present
results.

Issues related to the performance of the application should
be noted as well. Spurious observations were addressed to some
extent during data cleaning, but likely persist throughout the
data. Due to a pre-recording functionality of Shazam that begins
at application launch, time stamps of query offsets may precede
the time of the actual query by up to 3 s for an unknown
percentage of users. Certain listening environments, such as
those with heavy reverberation, can impede the performance
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of the application and could therefore require multiple query
attempts in order to obtain a result. The presence of vocals
during a song may also complicate interpretation of results.
While we might interpret a connection between vocals and
increased queries as a reflection of musical engagement, it
could also be the case that portions of the song with highly
prominent vocals may be easier for the Shazam algorithm to
match successfully. Prominent vocals may also be easier for a
human listener to pick out in a noisy environment. Therefore,
disentangling “vocalness” from “catchiness” (by which we mean
engaging in the moment, not necessarily memorable in the long
term; Burgoyne et al., 2013) could be a useful topic for future
research.

In sum, conclusions from the current study must be taken in
the context of various unknowns pertaining to users, listening
settings, application performance, and other uncontrolled
factors. The research questions addressed here could therefore
benefit from further investigation in a human-subjects laboratory
study setting, where potential confounds and unknowns can be
controlled.

4.3. Future Work
4.3.1. Hooks and Catchiness
Through an analysis of offset histogram slopes, this study
provides first insights into Shazam queries following song
starts, initial onsets of vocals, and first occurrences of choruses.
This approach could be broadened to consider more generally
the role of “hooks” in music discovery. Musical hooks are
defined in many ways, largely describing the part(s) of a song
that grab the listener’s attention and stand out from other
content (Burns, 1987). Hooks need not be restricted only to
popular music (Mercer-Taylor, 1999), but are often discussed
in the context of popular songs and are thought to occur
primarily at structural segmentation boundaries (i.e., starts
of song parts; Burns, 1987; Mercer-Taylor, 1999; Burgoyne
et al., 2013). The construction of a hook can involve musical
features such as rhythm, melody, and harmony, as well as
production decisions such as editing and mix (Burns, 1987).
The study of musical hooks historically involved human analysis
of hand-picked excerpts (Mercer-Taylor, 1999; Kronengold,
2005); in recent years, computational approaches have also
evolved (Burgoyne et al., 2013; Van Balen et al., 2013,
2015), which may facilitate hook research over large audio
corpuses.

Singability is considered to be a characteristic of hooks
(Kronengold, 2005), and is thought to increase listener
engagement, both by increasing familiarity and by inspiring the
listener to sing along (Frank, 2009). In addition to such intrinsic
factors as singability or catchiness, the arrangement of structural
elements within a song is also critical to engaging the listener
(Mercer-Taylor, 1999). Shazam query offset histograms could
prove useful in exploring all of these topics further. While we
used annotated lyrics to guide our identification of salient song
parts, future research could consider computational models of
catchiness—perhaps constructed from computationally extracted
audio features (McFee et al., 2015),7 higher-level musical

7https://github.com/librosa/librosa.

features (Van Balen et al., 2015),8 and structural segmentation
boundaries (Nieto and Bello, 2016)9—and use Shazam query
distributions to validate the models. Alternatively, a model could
be learned directly from features of the audio corresponding to
the histogram peaks themselves. In addition to increasing our
understanding of what types of musical features attract listeners,
these analyses have the potential to explain the appearance
of higher histogram peaks later in a song, as in Song 10
(Figure 8).

4.3.2. Modeling and Prediction of Hit Songs
Large-scale music discovery data may also provide new insights
into modeling and predicting hit songs. Hit prediction remains
an open area of research (Pachet and Roy, 2008; Pachet, 2012),
and has been attempted with audio and lyrics features (Dhanaraj
and Logan, 2005; Herremans et al., 2014) and Twitter data
(Kim et al., 2014; Zangerle et al., 2016) with varying success.
Other recent studies have found instrumentation (Nunes and
Ordanini, 2014) and lexical repetition (Nunes et al., 2015) to
be predictive of peak chart position for past Billboard hits.
The potential of Shazam’s data for hit prediction has been
discussed in news articles.10 Audio, lyrics, instrumentation,
and other features found to be predictive of success in the
past studies mentioned above could be explored using query
offset histograms. While the present analysis considered only
hit songs, query offsets—or other Shazam data attributes—
of a song set with more variation in popularity could lead
to the formulation of unique predictors of eventual song
success.

4.3.3. Other Time-Based Analyses
When thinking about Shazam queries, time can signify many
things. Our present analyses considered two types of time: The
timing of queries over the course of a song, and the longer-term
time scale of the hit song life cycle, spanning several months.
Other approaches to time could include day of week—known to
impact listening behavior (Schedl, 2013) as well as Shazam query
volume—and time of day.

4.3.4. Other Behaviors and Data Attributes
The present study provides novel insights into music discovery,
using only two of Shazam’s many data attributes. A variety
of additional musical questions could be addressed using
Shazam user data. User interactions with the application
after receiving a query result could provide insight into user
preference and user intent. Other analyses could model music
discovery or preference by considering specific geographies,
musical genres, or even individual users. Large-scale data have
been used to address specific musical questions including the
long tail in music-related microblogs (Schedl et al., 2014),
social media behavior of Classical music fans (Schedl and
Tkalčič, 2014), the relationship between musical taste and
personality factors (Bansal and Woolhouse, 2015), and Twitter
activity around a specific musical event (Iren et al., 2016).

8https://github.com/jvbalen/catchy.
9https://github.com/urinieto/msaf.
10http://www.theatlantic.com/magazine/archive/2014/12/the-shazam-effect/

382237/.
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Using Shazam data in this way—to address specific musical
questions—promises interesting approaches for future research
endeavors.
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Listening Niches across a Century of
Popular Music
Carol Lynne Krumhansl*

Department of Psychology, Cornell University, Ithaca, NY, USA

This article investigates the contexts, or “listening niches”, in which people hear popular
music. The study spanned a century of popular music, divided into 10 decades, with
participants born between 1940 and 1999. It asks about whether they know and like the
music in each decade, and their emotional reactions. It also asks whether the music is
associated with personal memories and, if so, with whom they were listening, or whether
they were listening alone. Finally, it asks what styles of music they were listening to, and
the music media they were listening with, in different periods of their lives. The results
show a regular progression through the life span of listening with different individuals
(from parents to children) and with different media (from records to streaming services).
A number of effects found in previous studies were replicated, but the study also showed
differences across the birth cohorts. Overall, there was a song specific age effect with
preferences for music of late adolescence and early adulthood; however, this effect
was stronger for the older participants. In general, music of the 1940s, 1960s, and
1980s was preferred, particularly among younger participants. Music of these decades
also produced the strongest emotional responses, and the most frequent and specific
personal memories. When growing up, the participants tended to listen to the older
music on the older media, but rapidly shifted to the new music technologies in their
late teens and early 20s. Younger listeners are currently listening less to music alone
than older listeners, suggesting an important role of socially sharing music, but they
also report feeling sadder when listening to music. Finally, the oldest listeners had the
broadest taste, liking music that they had been exposed to during their lifetimes in
different listening niches.

Keywords: dehumanization, reminiscence bump, music technology, popular music, music and emotion, age
cohort, music decade

INTRODUCTION

The survey reported in this article seeks to characterize the contexts, or “listening niches”, in which
people hear popular music throughout their lifetimes. It is an extension of a study that investigated
autobiographical memories and life-long preferences for music in young adults (Krumhansl and
Zupnick, 2013). That study used top Billboard hits from five-and-a-half decades, 1955–2009. For
each half decade, a clip was made with a compilation of short, recognizable segments of the top two
hits from each year. Participants reported the percentage of songs from each half-decade that they
recognized, how much they liked the songs, and how highly they rated the quality of the songs. They
also reported their emotional response to the songs from each half decade. Finally, they reported
whether they had personal memories associated with the songs and, if so, whether these memories
were from listening with parents, alone, or with other people while growing up, or listening alone
or with other people recently.
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All these measures showed the typical increase for music
released over the two decades of their lives, with the highest
ratings for the music of the most recent half decade. This
is consistent with previous studies showing preferences for
music from late adolescence and early adulthood (Holbrook and
Schindler, 1989; Schulkind et al., 1999; Janssen et al., 2007).
More generally, the term “reminiscence bump” has been used to
describe the peak in autobiographical memories and knowledge
of events occurring during this period of people’s lives (Rubin
et al., 1986). However, we found an unexpected effect in as much
as the same measures peaked for the music of their parents’
late adolescence and early adulthood, music of the 1980s. In
other words, they were familiar with, and liked, the music that
was popular when their parents were the same age as they are
now. We knew from their reports that they were listening to
the music of the 1980s with their parents, but were not listening
to it currently. We called the effect the “cascading reminiscence
bump”.

These results suggested it would be interesting to investigate in
more detail the contexts in which people of different birth cohorts
have listened to and developed preferences for music throughout
their lives. The sample includes nearly 1900 participants born
between 1940 and 1999, divided into six birth cohorts, those
born in the 1940s, 1950s, 1960s, 1970s, 1980s, or 1990s. A short
segment was extracted from the most popular song from each
year from 1910 to 2009 (based on Whitburn, 1999, for years
before 1955, and the Billboard’s year-end Hot 100 chart for years
since). Ten excerpts were joined together to form a clip for each
of 10 decades: 1910s, 1920s, . . ., 1990s, 2000s.

For the clip of music from each decade, the participants
reported whether they knew the songs, whether they liked the
songs, what their emotional reactions to the songs were, and
whether they had they had personal memories associated with the
songs. If so, they were asked how specific the memory is and with
whom they were listening. Because the sample of participants
varied widely in age, the choices included parents, siblings and
other family members, friends and peers, spouses or partners,
children, and listening alone. To understand more about the
contexts in which they were listening to music, they were asked
what styles of music they were listening to during three periods
of their lives: growing up, ages 18–25, and now. For the same
three periods, they were also asked with what music media they
were listening. Because the music spanned a century, the choices
included radio, record, tape cassette, dances and parties, concerts,
performed by others or by themselves, CDs, and various digital
media other than CD, such as digital download and streaming.

Music information systems currently being developed
promise new insights into how music is consumed, chosen and
distributed, who listens to what styles of music, and how people
share information about music with one another. Potentially,
this kind of information may provide new information about
fundamental issues that have been studied in music psychology.
These issues include which aspects of musical structure
contribute to memory and preference (e.g., Krumhansl, 1990;
Narmour, 1990; Pearce and Wiggins, 2012), how personality
traits and context affect musical choices (e.g., Hargreaves
and North, 1997; Rentfrow and Gosling, 2003; Gabrielsson,

2011), and the nature of and mechanisms generating musical
emotions (e.g., Blood and Zatorre, 2001; Sloboda and O’Neill,
2001; Krumhansl, 2002; Juslin and Västfjäll, 2008; Eerola and
Vuoskoski, 2010). Practical insights about the therapeutic use of
music and the value of music in public and private spaces may
also derive from the analysis of large-scale data on music and its
uses.

In particular, streaming services, such as Pandora and
Spotify, would seem to greatly expand the amount of data on
musical behaviors potentially available. Spotify, in particular,
stresses a data-based culture for understanding music behavior,
consumption, and choice. These services offer access to huge
libraries of music and provide tools to aid listeners’ discovery
of new music. Luck (2016) identified psychological factors
that make such services attractive, including freedom from
ownership responsibility, enhanced discovery and emotional
engagement, and nostalgia-fulfilment. However rich the potential
of such information, there are limitations. A poll conducted by
CivicScience in 2015 showed that 45% of Pandora and 62% of
Spotify active users are less than 30 years old1. In addition, given
the emphasis on discovering new music, the services tend to
feature recent, innovative styles. It is hoped that the results of
this broad, retrospective survey reported here can be seen as
complementing what we can learn from contemporary music
information systems.

MATERIALS AND METHODS

Stimulus Materials
Appendix A lists the 100 songs that were used to make up the
10 clips that the listeners heard. For the years 1910–1954, before
Billboard magazine began publishing the year-end Hot 100 chart,
the song that was used in the clip was the top single listed in
Joel Whitburn’s (1999) A Century of Pop Music. His criteria
for choosing the top single varied depending on the year. The
number of sources and the size of the charts varied, but for each
year Whitburn listed the total number of weeks the song appeared
on any one of the charts. We chose for each year the song that
charted for the greatest number of weeks. For the years 1955–
2009, the song was the top single from every year-end Hot 100
chart2. These more recent Billboard charts are compiled from
national samples of radio air-play, top 40 radio playlists, retail
sales and, more recently, internet sales reports.

There were 10 clips, each spanning a 10-year period, with an
excerpt from the top song for each year. The excerpts were taken
from the songs’ choruses to maximize recognition. Thus, there
were a total of 10 songs per clip for each of 10 music decades
(1910–1919, 1920–1929, . . ., 2000–2009). Musical clips averaged
56.6 s (SD = 18.89). A practice clip consisted of the second most
popular songs from 1955 to 1964. All excerpts were recorded
from Spotify’s streaming music service with the exception of a

1https://www.emarketer.com/Article/Pandora-Maintains-Strong-Audience-
Lead-Over-Spotify/1012476
2http://en.wikipedia.org/wiki/List_of_Billboard_YearEnd_number_one_singles_
and_albums#cite_note-221
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couple from the 1910-1919 era, which were taken from Internet
Archive3.

Procedure
The experiment was designed with the Qualtrics research suite
of tools and participants linked to the questionnaire by way of
the Cornell Music Cognition4. Appendix B lists the questions
asked in the survey. After each clip, participants reported the
percentage of songs they recognized and how much they liked
the songs. All responses were given on a Likert-type scale (0–10),
except for the percent recognized (0–100). Participants also rated
their emotional responses: sad, happy, nostalgic, romantic, and
energized (with 0= Does not describe my feelings, 10= Describes
my feelings). Next, they were asked if they would choose to
hear similar songs, if given the opportunity. This was included
to be a measure of the appeal of the songs from that decade
independently of whether or not they were previously familiar
with them. Finally, participants reported whether they had
personal memories associated with the music. If so, then they
were asked how specific are the memories on a scale from 0 to 10,
from what period in their life (childhood up to 13 years old, teens
ages 13–19, 20s, 30s, 40s, ages 50–65, over 65) and in what social
context (listening alone, with parents, spouse/partner, children,
siblings or other family members, and friends or peers). For these,
they could select all that apply. They first made these responses
with the practice clip, and then the 10 clips for each of the 10
decades which were presented in random order.

Following the ratings of the music clips, the participants
answered a number of demographic questions: gender, year born,
year mother born, year father born, years when children (if any)
were born, their nationality, and the country in which they are
currently living and, if they were living in the USA, for how many
years.

Finally, a number of questions inquired about their music
listening histories for each of three periods of their lives: growing
up, ages 18–25, and now. For each of these periods, they indicated
how many hours they listened to these styles: pop and rock,
rhythm and blues, country and folk, classical, jazz, ethnic and
world, and other. Then, for the same period they indicated where
they heard popular music with these options: radio, record, tape
cassette, dances and parties, concerts, heard performed by family
and friends, played myself, CDs, subscription services (e.g.,
Spotify, Rhapsody, etc.), YouTube, Internet radio (e.g., Pandora),
digital download (e.g., mp3), and other. They could select all that
apply. They answered all of these questions for growing up, before
proceeding to ages 18–25, and then they finally answered these
questions for now. The protocol was approved by the Cornell
University Institutional Review Board. Participants volunteered,
granted their informed consent to record their responses, and
were not compensated.

Participants
1910 (729 Males, 1181 Females) participants voluntarily
completed the questionnaire. After the publication of Krumhansl

3https://www.archive.org
4http://music.psych.cornell.edu

and Zupnick (2013), the results were covered in various press
media worldwide. The link to Cornell Music Cognition4 was
included in the NPR coverage5, which is most likely the major
source of participants, especially the older participants living
in the USA. The majority (1085) were living in the USA, but
more than 100 participants came from the Netherlands (268),
Mexico (183), and Croatia (139), and it was not possible to
determine how they found the link to the questionnaire. The
questionnaire was discontinued and the data were compiled in
October 2013.

The birth years of the participants ranged from 1928–2001.
For the statistical analyses, there were enough participants
born in each of six decades: 1940–1949 (N = 64), 1950–1959
(N = 214), 1960–1969 (N = 243), 1970–1979 (N = 392),
1980–1989 (N = 601), and 1990–1999 (N = 384). This gives a
total number of 1899 participants included in the data analysis.
They will be identified in the figures by the midpoint of the decade
of their birth, for example 1945 for those born in the decade
1940–1949, and they will be referred to as the 1940s cohort.
For the participants currently residing in the USA, their average
birth year was 1973. The average birth year of those currently
living outside the USA was 1981. When analyzed separately, it
was difficult to separate effects of current residency from effects
of age differences, so the two groups will not be separated in
the statistical analyses that are reported. The average age of
their father when they were born was 30.7 years (range 29.0–
32.0), with the youngest fathers for the 60s and 70s cohorts. The
average age of their mother when they were born was 28.1 years
(range 26.5–29.4), with the youngest mothers for the 60s and 70
cohorts.

Figure 1 shows the number of hours per week the participants
listened to different styles of music. As can be seen, for
participants in all cohorts and all three spans of their lives, the
most hours were spent listening to rock and pop music. Thus,
the focus on Billboard top hits in the study was appropriate
given their listening histories. The distribution of hours listening
across the three time periods of their lives was quite consistent;
the correlation between the distributions growing up and ages
18–25 was r(5) = 0.97, between growing up and now was
r(5) = 0.95, and between 18 and 25 and now was r(5) = 0.95.
Despite these general patterns, some differences were found
between the cohorts. The older cohorts listened more to
classical, country and folk, and rhythm and blues, whereas the
younger cohorts listened more to ethnic and world music, and
music that did not fall in any of the categories listed in the
questionnaire.

RESULTS

Age and Who Was in the Listening Niche
The first analysis was undertaken to get an overview of who was
in the participants’ listening niches at different periods of their
lives. The data used in the analysis were, for each of six cohorts,

5http://www.npr.org/sections/health-shots/2013/09/05/219278386/turns-out-
your-kids-really-did-love-that-music-you-played
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FIGURE 1 | (A) Styles of music listened to when growing up for the
participants born in each decade, the birth cohorts. (B) Styles listened to
when ages 19–25. (C) Styles listening to now.

how much they were listening to the music of each of 10 music
decades (6 cohorts × 10 music decades). This was found for
the different periods of their lives (0–12 years, 13–19 years, 20–
29 years, 30–39 years, 40–49 years, and 50–65 years); the data
for listening when over 65 was too sparse to include. The same
data (6 cohorts × 10 music decades) were compiled for whom
they were listening to the music with (parents, siblings and other
family members, with friends or peers, with spouse or partner,
with children, or alone).

Figure 2 shows the results of a principal components analysis
done on these data. The arrows point in similar directions if
they were listening to similar music at these times of their lives
with these individuals. It shows that when the participants were
ages 0–12, they were most often listening to music with their
parents, by ages 13–19, they were listening more with siblings
and other family members. Then later, through their 20s, they
were more often listening alone or with friends and peers. By
ages 30–39, music was listened to with spouse or partner, and
then with children for participants in their 30s and 40s. The first

(horizontal) dimension accounted for 48.1% of the variance in the
data; the second (vertical) dimension accounted for 32.3% of the
variance, for a total of 80.4% of the variance. Overall, the results
suggest a regular progression of listening with different groups of
people throughout the life span ranging from parents in early life
to children in later life.

Song Specific Age
The next analysis looked at the liking ratings as a function of the
participants’ age at the time the music was popular, the “song
specific age” (Holbrook and Schindler, 1989). It was calculated
as the approximate age they were when the song was popular.
For example, the song specific age for the cohort born in the
1960s and the music of the 1980s was 20. The analysis was also
done on 5-year cohorts, with similar results and will not be
reported.

The results showed an increase in how much they liked the
music up to the age of about 20 and then a decrease for music
that was popular later in their lives. This was confirmed by a
polynomial regression which accounted for 62% of the variance
[F(2,57) = 46.9, p < 0.0002] and both the linear and quadratic
effects were significant [F(1,57) = 45.3 and 48.4, respectively,
both p< 0.0001). Overall, liking ratings were lowest for the songs
that were popular long before the participants were born, and for
the most recent songs for those in the oldest age cohort.

However, a closer look showed notable differences between the
three oldest cohorts (40s, 50s, 60s) and the three youngest cohorts
(70s, 80s, 90s). The liking ratings for the two groups as a function
of the song specific age are shown in Figure 3. It is apparent
that the song specific age effect is stronger and more regular for
the older cohorts than for the younger cohorts; the peak is more
distinct and occurs somewhat later for the older cohorts than the
younger cohorts.

Music Decade
The next analysis considered whether there were overall
preferences for different decades of music. To look at this, the
decade of music was added to the analysis of variance with linear
and quadratic effects of song specific age (as above). In other
words, the analysis looked to see whether once the effect of song
specific age was factored out there was a residual effect of the
decade of the music. The analysis with both the song specific age
and decade accounted for 86% of the variance in the liking ratings
[F(11,48)= 26.6, p < 0.0001] and the effect of decade was highly
significant [F(9,48)= 9.0, p < 0.0001].

There were peaks for music popular in the 1940s and in the
1960s. A contrast comparing music from the 1940s to the music
from the 1930s and 1950s produced a marginally significant effect
[F(1,48) = 3.5, p = 0.066, which would be significant by a one-
tailed test]. A contrast comparing music from the 1960s to the
music from the 1950s and 1970s produced a significant effect
[F(1,48) = 10.4, p = 0.0023]. Thus, the peaks for music of the
1940s and 1960s were confirmed statistically. A contrast was also
computed testing whether the average liking ratings for music
of the 1980s exceeded that for the 1970s or 1990s because the
earlier paper (Krumhansl and Zupnick, 2013) found a peak for
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FIGURE 2 | Principal components analysis of music listened to at different ages and with whom.

the music of the 1980s in college age participants. The result was
non-significant [F(1,48)= 1.74, p= 0.19].

However, as can be seen in Figure 4 the decade of music effect
was stronger for the younger cohort than the older cohort. Their
liking ratings showed clear peaks for the music in the decades
of the 1940s, 1960s, and 1980s. In contrast, the liking ratings for
the older cohort were more evenly distributed with a broad peak
around the music of the 1960s and 1970s, which is consistent with
the song specific age effect described earlier.

Emotional Reactions
Figure 5 shows the emotional reactions to music of the
different decades. There was a significant effect of decade
for all the emotion scales, with the weakest effect for sad
[energized F(9,50) = 21.1, p < 0.001, happy F(9,50) = 18.3,
p < 0.001, nostalgic F(9,50) = 7.7, p < 0.001, romantic
F(9,50) = 12.0, p < 0.001, sad F(9,50) = 2.8, p = 0.01] For
all the scales (except sad) there was an increasing trend from
the earliest decade to the music of the 1980s, and then a
decrease. For sad, a test comparing means showed that the

only significant difference is between the 1910s (the saddest)
and the 2000s (the least sad). Distinctive peaks relative to
neighboring decades can be seen in the curves for happy,
nostalgic, and energized for music of the 1940s, 1960s and 1980s
(except for nostalgia, possibly because the music is relatively
recent).

The next analysis considered how much the emotional
reactions accounted for how well they liked the music. A multiple
regression predicting liking from these five emotional responses
accounted for 99.2% of the variance [F(5,54) = 1346.9,
p < 0.0001], which indicates that the emotional reaction to
the music is a very strong predictor of how well the music
is liked. Each of the five emotions was significant in the
multiple regression [energized F(1,54) = 5.20, p = 0.03; happy
F(1,54) = 42.7, p < 0.0001, nostalgic F(1,54) = 40.2, p < 0.0001,
romantic F(1,54) = 16.7, p < 0.0001, sad F(1,54) = 38.0,
p < 0.0001], suggesting they are each making independent
contributions to how well the music is liked. The regression
coefficient for all of the emotions except sad was positive,
suggesting that sadder popular music is less preferred. It should
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FIGURE 3 | Plot of liking ratings as a function of song specific age (the
age of the participant when the song was popular), divided up
between the three oldest and three youngest birth cohorts.

FIGURE 4 | The liking ratings as a function of the decade of the music,
divided up between the three oldest and three youngest birth cohorts.

be noted, however, that the music from none of the decades is
rated highly on sad.

Because the liking ratings might be influenced by whether
the participants recognized the songs (and the correlation
between the two was, in fact, r(58) = 0.92, p < 0.0001),
the survey included another question about whether they
would choose to hear music like that in each decade again.
The correlation with whether they recognized the music and
whether they would like to hear music like that again was
still fairly strong [r(58) = 0.87, p < 0.0001]. However, there
was a possibly interesting difference in the emotions that
predicted whether they said they would like to hear music like
that again. The five emotion ratings accounted for 98.2% of
the variance [F(5,54) = 607.4, p < 0.0001], but only happy
and romantic contributed positively [happy F(1,54) = 97.4,
p < 0.0001, romantic F(1,54) = 6.9, p = 0.011] and energized
contributed negatively [F(1,54) = 12.9, p = 0.0007]; the other

FIGURE 5 | The emotional reactions to the music of the different
decades.

two scales were marginally significant and in the same direction
as before. Thus, hearing music that makes the participants feel
energized made them less likely to want to hear music like that
again.

The final analysis considered whether the different birth
cohorts had different emotional reactions to the songs of different
decades. Even though the younger participants didn’t know the
older songs and the older participants didn’t know the most
recent songs, they agreed on their emotional reactions to the
music. To look at this statistically, for each birth cohort, an
emotion profile was made of the five emotion scales for the
10 decades of music. For example, the emotion profile for the
40s cohort was the rating on the five emotion scales for all
10 decades of music, for a total of 50 values. The correlations
between the emotion profiles for all pairs of cohorts were highly
significant (at p < 0.001, when Bonferonni corrected for multiple
comparisons). This might be an artifact of the low ratings on
sad, so the same analysis was done after that scale was excluded
and the correlations between all pairs of cohorts were still highly
significant (except for the correlation between the oldest and the
youngest cohorts when corrected for multiple comparisons).

Personal Memories
Overall, 53.6% of the participants reported having personal
memories associated with the songs in the 10 decades, and
those memories were rated an average of 5.73 on specificity
(0–10). There was no effect of birth cohort on either the
percent of associated memories or their specificity. Both measures
correlated strongly with whether they liked and recognized the
songs, and wanted to hear songs like that again. Listeners’
reported memories correlated most strongly with music they
heard when they were 13–19 years old [r(58)= 0.81, p < 0.0001)
and 20–29 years old (r(58) = 0.83, p < 0.0001], although how
much they listened to music from all periods of their lives
(except ages 50–65) correlated significantly with the proportion
of people reporting associated memories; the same was true for
the specificity of the memory.
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The incidence of personal memories was also associated
positively with the song decades that were rated high on
making them feel energized, happy, nostalgic, and romantic
[r(58) = 0.94, r(58) = 0.95, r(58) = 0.86, r(58) = 0.66,
respectively, all p< 0.0001], and negatively on sad [r(58)= –0.29,
p = 0.023]. The proportion of participants reporting personal
memories correlated most strongly with music they heard
listening alone [r(58) = 0.96, p < 0.0001] and with friends and
peers [r(58) = 0.91, p < 0.0001], the music they heard most
often in their teens and early adulthood, but the correlations were
significant for all periods of their lives. As for how specific the
memories were, the ratings correlated most strongly with music
they heard listening alone [r(58) = 0.90, p < 0.0001] and with
friends and peers [r(58) = 0.91, p < 0.0001], but the correlations
were significant for all of the music they listened to with others
except for music they listened to with parents.

Music Media
Participants also indicated which media they were using when
listening to music during three periods of their lives: growing up,
19–25 years, and now. Figure 6 shows the percentage of people
in each birth cohort who were listening to music on the most
common media: concerts, parties, radio, records, tape, CDs, and
Digital. Digital was the composite of digital download, YouTube,
internet radio, and subscription services. The responses for
“played myself ” were not included because of the ambiguity of
the question: whether they were performing it themselves, or
playing a recording of someone else performing the music.

For all periods of their lives, they were listening to music on
radio at a fairly high level although note the decreasing use of
radio presently. The youngest birth cohort is listening to music
almost as much in digital formats. Beyond that, we see effects
of the period of their lives that relate to music media. Growing
up, the older participants were listening to music on records,
whereas younger birth cohorts were listening to music on tape,
and the youngest on CDs and in other digital formats. For music
in late teenage and early adult years, the oldest listeners were
hearing music on records, but also tapes; the middle birth cohorts
had clearly switched to tape, and the youngest participants were
listening to music on CDs and on digital media. Finally, nearly
no one is listening to music on records or tapes now, but more
on CDs and other digital formats, even including the oldest
birth cohorts. Finally, participants seem to have heard music at
concerts and parties most often when they were ages 19–25 years.

Differences between Birth Cohorts
The results described above showed that the decade effect
(preferences for music of the 1940s, 1960s, and 1980s) was
stronger for the younger generations and the song specific age
effect (with a peak in preference for music popular in late teens
and early 20s) was stronger for the older generations. When
looking for other differences between the birth cohorts, some
obvious effects emerged. For example, the younger cohorts were
less familiar with the older music and liked it less than the more
recent music; the opposite was true for the older cohorts. Three
less obvious findings emerged, however.

FIGURE 6 | (A) The music media used when growing up. (B) Media used
ages 19–25. (C) Media used now.

One finding concerned the overlap between the music they
listened to with their parents and their friends and peers. Figure 7
shows for each cohort the decades of the music they listened to
with their parents and their friends and peers. The oldest three
birth cohorts listened to the older music with their parents and
the newer music with their friends, with very little overlap. When
it comes to the cohort born in the 1970s, we start to see them
listening to the older music with their parents, particularly the
music of the 1940s and 1960s, and only the newer music, the
music of their early adulthood, with their friends and peers. This
pattern became stronger for the birth cohorts from the 1980s and
1990s.

As described earlier, there was a predictable pattern of who
was listening to music with the participants as they moved
through different stages of their lives, from parents to children.
However, there was a somewhat surprising effect of birth cohort
on how much they listened to music alone. Figure 8A shows
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FIGURE 7 | The decade of the music listened to with friends and parents for participants born in each decade. (A) 40s cohort; (B) 50s cohort; (C) 60s
cohort; (D) 70s cohort; (E) 80s cohort; (F) 90s cohort.

the percentage of people in the different birth cohorts who
reported listening to music alone, showing a decline for younger
participants. When decade of music was included in the analysis,
a linear contrast found a quite significant decreasing effect of
birth cohort [F(1,54)= 10.9, p= 0.0017] on how much they were
listening to music alone. Given the prevalence in more recent
years of personal listening devices, one might have expected the
opposite effect.

The final effect concerned the different cohorts’ overall
emotional responses to the music. No significant effect of birth
cohert was found on any of the emotion scales, with the exception
that the younger birth cohorts generally gave notably higher
ratings on sad. As can be seen in Figure 8B, the younger birth

cohorts judged the music of all decades to make them feel sadder
than the older birth cohorts [F(1,58)= 29.8, p < 0.0001].

Cumulative Effects of Listening Niches
on Musical Preferences
Figure 9A graphs how much each birth cohort liked the music
of each decade. As can be seen, those born in the 1940s had a
broader liking curve than any of the other birth cohorts. This may
be because they have, over their lifetimes, listened to music with
more different types of people. Figure 9B shows, for each decade
of music with whom they were listening. With their parents, they
were listening to the music of the 1940s, during the decade in
which they were born. They were also listening to music of the
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FIGURE 8 | (A) Shows for each birth cohort how much music they listened to music alone (average and mean error bars). (B) Ratings of each cohort of feeling sad
while listening to music (average and mean error bars).

1910s, music that their parents would have been listening to with
their parents in the decade in which they were born, that is, with
our participants’ grandparents. With siblings and other family
members, they were listening to this same music and also to the
music of the 1950s, music that was contemporary when they were
young. The listened alone most to music of the 1950s, 1960s, and
1970s, the music of their teen years, 20s, and 30s. With friends and
peers, they listened most to music of the 1960s and 1970s, in their
teen and early adult years. Overall this birth cohort listened to

music most often during this period of their lives. They listened
with spouse or partner most to music of the 1960s and 1970s,
when in their 20s and 30s. And, finally, they listened with their
children most to music of the 1980s, when their children would
have been in their teens. Note that after this they were listening
relatively little to newer music, especially music of the 1990s and
2000s. Note that in Figure 9A, they liked the music of these
decades least, the music that they also were not hearing in any
of their listening niches.
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FIGURE 9 | (A) The liking ratings of the birth cohorts for each decade of
music. (B) For the generation born in the 1940s, with whom they were
listening for each decade of music.

DISCUSSION

The main objective of the present study was to gain a more
detailed understanding of the contexts in which people listen to
and develop preferences for music. One important component of
the “listening niches” was with whom they were listening. Given
the wide range of ages of the participants, it was possible to trace a
regular progression throughout the life span: they were listening
with parents as children, with siblings and other family members
in their teen years, with friends and peers and alone in their
twenties, with spouse or partner in their thirties, and finally with
children when they were in their forties.

The present study replicated the song specific age effect found
in many studies (e.g., Holbrook and Schindler, 1989; Schulkind
et al., 1999; Schubert, 2016). The effect is an overall preference for
songs that were popular in late adolescence and early adulthood.
A recent study by Rathbone et al. (2016) found, however, that
the reminiscence bump was pronounced only if the music was
personally significant to the listener. Other factors that might
contribute to the reminiscence bump found for music (and also
for other domains, such as public events, sports, and films)
include the occurrence of personally significant events during
these years, physiological changes, formation of personal values,
and music as a badge of social identity (see Rubin et al., 1998, for
a review).

Another effect found in this study was a decade effect. Music
of the 1940s was preferred to music of its neighboring decades
(i.e., the 1930s and 1950s), and the same was true for music of
the 1960s. The music of the 1980s also showed a peak, but it was

different from its neighbors only for the younger participants. To
try to understand the decade effect, the emotional responses to
music of the different decades were considered. Consistent with
the decade effect, the music of the 1940s and 1960s was judged
to make the participants feel happier and more energized and
nostalgic than the music of their neighboring decades. The same
was true of the music of the 1980s, although the effect of nostalgia
was somewhat muted possibly owing to its relative recency. These
results are in line with the finding that popular music is generally
judged to be positive in both valence and arousal (e.g., Platz et al.,
2015).

In general, the popular music used here was not judged to be
sad, except perhaps for the oldest decade of music, the 1910s.
Schellenberg and von Scheve’s (2012) analysis of 1000 Top 40
recordings found an increase over the period from 1965 to 2009
of minor mode and slower tempo. Consistent with this, the minor
mode songs in the present study were predominantly from the
most recent decade. However, it might be noted, the study by
Platz et al. (2015) did not support the shift to sadder songs
over this period in German popular songs; their study included
music from the period 1930 to 2010. Schellenberg and von Scheve
(2012) hypothesized that this shift to minor mode and slower
tempo would make more recent songs sound sadder, although
they did not test this empirically. Our participants did not rate
the more recent music as making them feel sadder than earlier
songs (in fact, none of these top hits were rated as making them
feel sad), but they did rate the more recent songs as making them
feel less energized, happy, nostalgic, and romantic.

The same influences of emotion were found for personal
memories associated with the songs: their incidence was
positively related to songs that made them feel energized, happy,
nostalgic, and romantic, and negatively to those that made them
feel sad. Despite the century long span of the music, more
than half the participants reported personal memories associated
with the music in the study. This complements the finding
that 30% of the time listeners in Janata et al. (2007) study
had somewhat or strongly autobiographical memories associated
with 1500 randomly selected popular songs. The prevalence
and specificity of personal memories were greatest for music
heard in the teens and 20s, but also came from all periods of
their lives. They were most prevalent and specific for music
heard with friends and peers, and alone, but were associated
with all contexts, except for music listened to with parents
possibly because autobiographical memory emerges gradually in
development (Nelson and Fivush, 2004). The older participants
judged their personal memories to be as specific as the younger
participants, but it should be noted that there are general
shifts from episodic to semantic details in autobiographical
memories with aging (Levine et al., 2002). Overall, these results
are consistent with the frequency, durability, strength and rich
content of autobiographical memories associated with music
(e.g., Gabrielsson, 2001, 2011; Janata et al., 2007; Belfi et al., 2015).

The emotion rating scales almost perfectly predicted how
well the music from the different decades was liked. However,
other factors might be involved. In the 1940s, WW II made
popular both songs that brought the war home and sentimental
ballads for those remaining at home (Sanjek, 1988), which have
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been absorbed into film and other popular media (Basinger,
2003). After the war, high-quality, low cost tape recorders
helped establish independent labels broadening the musical styles
available on recordings (Burgess, 2014). The 1960s was a time
of political unrest and tremendous artistic innovation, including
that of the Beatles and the Rolling Stones, but also Motown,
country, folk and, late in the decade, disco and hip hop. The 1980s
ushered in a conservative political era and saw the introduction of
music videos on MTV, and influential albums by Michael Jackson,
Madonna, Springsteen, Prince, and others. Burgess (2014) also
details technical advancements in music production during these
decades. It is impossible to assess from the current survey
how influential these, and cultural and artistic factors, have
been in establishing the participants’ preferences and emotional
responses.

The survey does, however, provide some information about
the media the participants were using to hear popular music.
They reported how they were hearing music during three periods
of their lives: when they were growing up, when they were 19–
25 years of age, and now. Radio has been a major source of music
for all birth cohorts during all periods of their lives, although
a decline was apparent for the youngest birth cohorts. In the
1940s, the transistor radio was invented, and car radios came in
by the late 1940s. In the 1960s, radio developed the long-playing
FM format, and AM radio innovated the Billboard Hot 100 in
1959. Internet radio was pioneered in the 1990s. Thus, radio in
its various forms has been a constant source of music delivery for
all the birth cohorts. Other music media have undergone shifts,
however, and this might be a partial cue to the decade effect
found.

Important changes in how music could be heard occurred in
the 1940s, 1960s, and 1980s (Burgess, 2014). Columbia Records
introduced the 33 1/3 RPM long playing record in 1948 with
greatly improved signal to noise ratio and longer playing times.
The survey found that records were the predominant music
media (together with radio) while growing up for the cohorts
born in the 1940s, 1950s, 1960s, and even the 1970s, suggesting
that young participants were listening to their parents’ music
on their parents’ media, records. However, by the time they
were listening to music during ages 19–25 they shifted to the
new media of the 1960s, tape. Phillips compact cassette was
introduced in 1963, making it possible to listen to music almost
anywhere and inexpensively sharing it with others. For the
participants born in the 60s and 70s, tape was the predominant
music media while growing up, again suggesting that they were
listening to their parents’ music on their parents’ media, tape.
But by the time they were listening to music during ages 19–25
they shifted to the new media of the 1980s, CDs. Sony and Philips
introduced the CD format in 1983. For the cohort born in the
1960s, 1970s, and 1980s, tape was still the primary music media
while growing up, again suggesting they were listening to their
parents’ music on their parents’ media, tape. However, by the time
they were 19–25 years of age, they were primarily listening with
the new technology, music on CDs.

Stepping away from these particular results, one factor
contributing to the preferences for music of the 1940s, 1960s,
and 1980s may be the introduction of music media that

were significant improvements over previous media. The most
likely candidates, based on the survey results, are: long-playing
records, cassette tapes, and CDs. While growing up, listeners
appear to have heard the music of the previous birth cohorts
on the older technologies, but actively sought new music on
the new technologies in their teens and twenties. Perhaps it
is during that period of their lives that they began building
their own music collections in the new media, developing
their musical preferences, and establishing associated personal
memories and emotional responses. Radio has been a major
source of music for all birth cohorts, although the digital
formats (other than CD) seem to be overtaking radio for the
youngest cohorts. An interesting question, given the adoption
of streaming services with no physical musical artifacts (Luck,
2016), is whether intergenerational transfer of music will be
less prevalent in the future, or whether the easy access to very
large music libraries will actually facilitate sharing music across
generations.

Finally, the study turned up some generational differences.
Listeners born in the 1940s, 1950s, and 1960s listened to very
different music with their parents and their friends. They listened
to the older music with their parents, but more contemporary
music with their friends. This is consistent with the idea that
the older birth cohorts used music, particularly the music of the
1960s and 1970s, to distance themselves from their parents. In
contrast, those born in the 1970s, 1980s, and 1990s listened to
some of the older music with both their parents and their friends,
especially music of the 1940s and 1960s and, for the youngest two
birth cohorts, the music of the 1980s, replicating Krumhansl and
Zupnick (2013).

Other generational differences were found. The oldest three
birth cohorts showed a stronger effect of song-specific age,
whereas the youngest three birth cohorts showed a stronger effect
of the decade of the music. One possible explanation for this is
that the older participants may generally have had less access to
a wide variety of music. Other than music heard on radio, they
would have had to purchase records, tapes, and CDs. In contrast,
because the younger participants have had relatively easy access
to a greater variety of music, they could freely sample music of
widely different styles and eras, especially that from the preferred
decades.

Another generational effect was that the younger participants
tended to listen alone less than the older participants. One might
have thought, with the availability of personal listening devices,
they would be listening alone more. A survey done by Edison
Research6 found that listeners report friends and family were
among the most important sources to keep up-to-date with
music, together with AM/FM radio, suggesting they discover
music by listening with others. The present finding that younger
listeners listen alone less also fits with the idea that music sharing
is used to as a way to convey information about ourselves to
others (Rentfrow and Gosling, 2003, 2006; Lonsdale and North,
2009).

A somewhat surprising result was that the older participants
generally found the music less sad than the younger participants.

6http://www.edisonresearch.com/the-infinite-dial-2016/
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This may be because the older individuals tend to focus on
more positive things in general (Mather and Carstensen, 2005),
so that they might have focused on the more upbeat songs in
each decade. Alternately, the effect might be specific to music,
with older participants having had more experience with the
older sadder music and thus responded less to the sad content in
the songs while, conversely, the younger participants were more
experienced with less happy music and were thus responding to
the less happy content. Music is multivalent, in as much as it
can express multiple emotions simultaneously (Krumhansl, 1997;
Vines et al., 2005), so that the same piece of music might be, for
example, happy, sad and nostalgic at the same time.

The final generational effect came from looking at the oldest
birth cohort, those born in the 1940s, to see the cumulative effect
of listening to music over approximately 70 years. This birth
cohort had the most eclectic taste of all the cohorts, that is,
they liked music from all periods of their lives except from the
last two decades, as will be discussed below. The finding argues
against the stereotype of that generation (mostly “baby boomers”)
has musical tastes confined to music of the 1960s. Although
that music played a strong role in defining their identities, their
musical tastes are considerably broader than just the music of
their youth.

Schubert’s (2016) younger participants reported their tastes
broadening over time. The result for this older generation
suggests that this process might continue well into the lifetime.
This kind of “open-earedness” (Hargreaves, 1982) may be
facilitated by the variety of listening niches the oldest participants
have occupied. Listening with parents, siblings and other family
members, friends and peers, spouse, or partner, and finally with
children have given them broad exposure to, and developed their
liking for, music of many decades. Cohen (2000) has suggested
reduced plasticity with age makes it difficult to acquire the
grammar of new styles of popular music, and this might be
reflected in the steep drop off in preferences for the most recent

music. It may also be that people in their 60s and 70s no longer
typically occupy multigenerational listening niches.

The music industry is currently undergoing rapid changes
in how music is produced, delivered, and shared between
individuals. What will come of these changes is a question
of great interest. If the present findings offer any guidance,
various forces are likely to play a stabilizing role in future
developments. One is that people move through a generally
regular sequence of listening niches that are populated by
different individuals and media over time. They adapt to
new technologies in a gradual way. Musical tastes tend
to broaden with age, and listening to music is a social
activity with people sharing music recommendations with
one another, increasingly across generations. All these forces,
at least as they have operated over the last century, have
produced systematic patterns of change over time despite the
marked evolution of musical styles and technologies. Rather
than creating ruptures in music listening patterns, periods of
particularly rapid evolution have in fact resulted in enhanced
preferences for, and emotional responses to, music from those
decades.
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APPENDIX A

Songs Used in the Survey

1910–1919
Casey Jones Billy Murray
Alexander’s Ragtime Band Arthur Collins and Byron Harlan
Moonlight Bay American Quartet
When Irish Eyes Are Smiling Chauncey Olcott
The Song That Stole My Heart Away Henry Burr
It’s A Long Way To Tipperary John McCormack
M-o-t-h-e-r (A Word That Means The World To Me) Henry Burr
Over There American Quartet
Just A Baby’s Prayer At Twilight Henry Burr
Till We Meet Again Henry Burr and Albert Campbell

1920–1929
Dardanella Ben Selvin and His Orchestra
Wang-Wang Blues Paul Whiteman
April Showers Al Jolson
Parade Of The Wooden Soldiers Paul Whiteman Orchestra
It Ain’t Gonna Rain No Mo Wendell Hall
The Prisoner’s Song Vernon Dalhart
Valencia (A Song Of Spain) Paul Whiteman and His Orchestra
My Blue Heaven Gene Austin
Sonny Boy Al Jolson
Tiptoe Through The Tulips Nick Lucas

1930–1939
Stein Song Rudy Vallee
El Manicero (The Peanut Vendor) Don Azipiazu and The Havana Casino Orchestra
Night and Day Leo Reisman
The Last Round Up George Olson and His Music
June In January Bing Crosby
Cheek To Cheek Fred Astaire
Pennies From Heaven Bing Crosby
Sweet Leilani Bing Crosby
A-Tisket A-Tasket Ella Fitzgerald, Chick Webb
Deep Purple Larry Clinton

1940–1949
In The Mood Glenn Miller
Amapola (Pretty Little Poppy) Jimmy Dorsey and His Orchestra
White Christmas Bing Crosby
I’ve Heard That Song Before Harry James and His Orchestra
Swinging On A Star Bing Crosby
Rum and Coca Cola The Andrews Sisters
The Gypsy The Ink Spots
Near You Francis Craig
Buttons And Bows Dinah Shore
Riders In The Sky (A Cowboy Legend) Vaughn Monoroe and His Orchestra
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1950–1959
The Tennessee Waltz Patti Page
Cry Johnnie Ray and The Four Lads
You Belong To Me Jo Stafford
Vaya Con Dios (May God Be With You) Les Paul, Mary Ford
Little Things Mean A Lot Kitty Kallen
Cherry Pink And Apple Blossom White Perez Prado
Heartbreak Hotel Elvis Presley
All Shook Up Elvis Presley
Volare (Nel Blue Dipinto Di Blu) Demenico Modugno
The Battle of New Orleans Johnny Horton

1960–1969
Theme From “A Summer Place” Percy Faith
Tossin’ And Turnin’ Bobby Lewis
Stranger On The Shore Mr. Acker Bilk
Sugar Shack Jimmy Gilmer and The Fireballs
I Want To Hold Your Hand The Beatles
Wooly Bully Sam The Sham and The Pharoahs
The Ballad Of The Green Berets Sgt. Barry Sadler
To Sir With Love Lulu
Hey Jude The Beatles
Sugar, Sugar Archies

1970–1979
Bridge Over Troubled Water Simon and Garfunkel
Joy To The World Three Dog Night
The First Time Ever I Saw Your Face Roberta Flack
Tie A Yellow Ribbon ’Round The Ole Oak Tree Tony Orlando
The Way We Were Barbara Streisand
Love Will Keep Us Together Captain and Tennille
Silly Love Songs Wings
Tonight’s The Night (Gonna Be Alright) Rod Stewart
Shadow Dancing Andy Gibb
My Sharona Knack

1980–1989
Call Me Blondie
Bette Davis Eyes Kim Carnes
Physical Olivia Newton-John
Every Breath You Take The Police
When Doves Cry Prince
Careless Whisper Wham!
That’s What Friends Are For Dionne and Friends
Walk Like An Egyptian Bangles
Faith George Michael
Look Away Chicago
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1990–1999
Hold On Wilson Phillips
(Everything I Do) I Do It For You Bryan Adams
End Of The Road Boyz II Men
I Will Always Love You Whitney Houston
The Sign Ace of Base
Gangsta’s Paradise Coolio
Candle In The Wind Elton John
Too Close Next
Believe Cher

2000–2009
Breathe Faith Hill
Hanging By A Moment Lifehouse
How You Remind Me Nickelback
In Da Club 50 Cent
Yeah! Usher featuring Lil’ Jon and Ludacris
We Belong Together Mariah Carey
Bad Day Daniel Powter
Irreplaceable Beyonce
Low Flo Rida featuring T-Pain
Boom Boom Pow The Black Eyed Peas
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APPENDIX B

Questions on Survey
For each decade (1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, and 2000s):

Percent recognized (0–100)
How much do you like these songs? (0–10)
How much do these songs make you feel sad? (0–10)
How much do these songs make you feel happy? (0–10)
How much do these songs make you feel nostalgic? (0–10)
How much do these songs make you feel energized? (0–10)
How much do these songs make you feel romantic? (0–10)
If given the opportunity, would you choose to hear more songs like this?
Are any of these songs associated with personal memories? (Y/N)

if so:
How specific are the memories (for example, who you were with, where, when)? (0–10)
During what period(s) in your life?-Childhood (up to 13 years old) (Y/N)
During what period(s) in your life?-Teens (13–19 years old) (Y/N)
During what period(s) in your life?-20s (including college) (Y/N)
During what period(s) in your life?-30s (Y/N)
During what period(s) in your life?-40s (Y/N)
During what period(s) in your life?-50s-65 (Y/N)
During what period(s) in your life?-Over 65 (Y/N)
What context(s)?-Listening alone (Y/N)
What context(s)?-Listening with parents (Y/N)
What context(s)?-Listening with spouse/partner (Y/N)
What context(s)?-Listening with children (Y/N)
What context(s)?-Listening with siblings or other family members (Y/N)
What context(s)?-Listening with friends or peers (Y/N)

Demographics
What is your gender? (M/F)
What year were you born?
What year was your mother born?
What year was your father born?
Do you have children?

if so:
What year was your first child born?
What year was your second child born?
What year was your third child born?
What year was your forth child born?

What is your nationality?
Are you living in the USA now? (Y/N)
If so, how many years have you lived in the USA?

For each of three periods of life (growing up at home, about 18 - 25, within the last year or so):
How much did you listen to?

Pop and Rock (hours per week)
Rhythm and Blues (hours per week)
Country and Folk (hours per week)
Classical (hours per week)
Jazz (hours per week)
Ethnic and World (hours per week)
Other (hours per week)
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Where did you hear popular music?

Radio (Y/N)
Record (Y/N)
Tape cassette (Y/N)
Dances and parties (Y/N)
Concerts (Y/N)
Heard performed by family and friends (Y/N)
Played myself (Y/N)
CDs (Y/N)
Subscription services (e.g., Spotify, Rhapsody, etc.) (Y/N)
YouTube (Y/N)
Internet radio (e.g., Pandora) (Y/N)
Digital download (e.g., mp3) (Y/N)
Other (Y/N)
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